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Preface

This master thesis was written during the spring of 2015. The thesis is carried out as a part of the

Subsea Technology MSc at the Norwegian University of Science and Technology (NTNU), and

concerns the reliability assessment of subsea BOP control systems.

Professor Marvin Rausand brought up the title, reliability assessment of subsea BOP control

systems.

The reader is assumed to have basic knowledge about the petroleum industry and knowl-

edge about safety reliability, equivalent to the books Rausand and Høyland (2004) and Rausand

(2014).

Some of the definitions used in the report are from the International Electrotechnical Vo-

cabulary (IEV) http://www.electroperdia.org. References to the vocabulary are given in

the text as IEV xxx-yy-zz, where xxx refers to the chapter, and yy-zz is the number of the defini-

tion.

Trondheim, 2015-06-10

————————————–

Øyvind Korsvik Sætre

http://www.electroperdia.org
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Summary

The subsea blowout preventer (BOP) and the BOP control system were the most important con-

tributors to the Macondo accident in April 2010. A BOP is a large valve system used during the

drilling phase; to seal, control, and monitor oil and gas wells. As a consequence of the Macondo

accident, improved methods for reliability assessment of BOPs are now required.

Over the years, several subsea BOP reliability studies have been performed, where techni-

cal solutions and potential failures are thoroughly investigated. As a result of the information

gained, both maintenance and reliability of the BOP systems have improved. Despite overall

improvements, the BOP is still a main contributor to risk and downtime in the drilling phase. A

deeper look into the reliability reports reveals the control system of the BOP as the root of the

majority of failures.

Most subsea BOPs are equipped with a multiplex control system with a combination of elec-

tronics and hydraulics, used to operate the different functions of the BOP. Despite the high level

of redundancy, several sections of the system are subject to critical system failures.

To prevent BOP failures, national regulations and standards have been developed in several

countries. Most of the national requirements are similar, but there are also differences. These

similarities and differences are illustrated in this study through a detailed comparison between

the relevant regulations and standards in Norway and the United States, with respect to general-,

design- and operational BOP requirements.

The main focus of this study is the multiplex subsea BOP control system. The potential crit-

ical failures of this system are identified and analyzed in a detailed failure mode, effects, and

criticality analysis (FMECA). This analysis shows that the shuttle valve, the pod selector valve,

the subsea accumulators, and the fluid reservoir are the most safety-critical parts of the control

system.

The BOP control system has several redundant elements and these may be vulnerable to

common-cause failures. The potential common-cause failures are examined in this study and

found to have a significant influence on the reliability of the control system.

Improving current reliability assessments of subsea BOP control systems requires a thorough

review of both the system and the previously used methods. In this study, a fault tree analysis is
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performed to reveal the relevant failure combinations. To improve reliability calculations pro-

vided by common fault tree analysis programs, a post-processing of the minimal cut sets in a

spreadsheet (i.e., Excel) is proposed to cover the effect of common-cause failures. The method

gives a more conservative and accurate approximation compared to the existing methods.

An event tree analysis is performed to cover the switching phases between the two pods,

showing the time dependencies that can influence the consequences. This type of switching

cannot be modeled in the fault tree, therefore, recommendations to apply the event tree analysis

to similar situations to get a more accurate reliability estimate, is given.

For components such as the shear ram, a perfect function test cannot be conducted. In

the performed analysis, no such components are evaluated. However, in an expanded analy-

sis of the subsea BOP control system, such components will be involved, therefore, adding the

contribution from the proof test coverage factor to components prone to imperfect testing, is

recommended.
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Sammendrag

Undervannsutblåsningsventilen (bedre kjent som BOP) og BOP kontrollsystemet var blant de

utløsende faktorene i Macondo-ulykken april 2010. En BOP er et stort ventilsystem brukt un-

der borefasen for å; forsegle, kontrollere og overvåke olje og gassbrønner. Som et resultat av

Macondo-ulykken kreves nå forbedrede metoder for pålitelighetsanalyser av BOP’er.

Gjennom årene har flere pålitelighetsanalyser på undervanns BOP’er blitt utført, hvor tekniske

løsninger og potensielle feil har blitt grundig undersøkt. Som et resultat har både vedlikeholdet

og påliteligheten til BOP’er blitt forbedret. Til tross for en generell forbedring, er BOP’er fortsatt

en av hovedårsakene bak risiko og nedetid i borefasen. Undersøkelser av pålitelighetsrapporter

avslører kontrollsystemet til BOP’en som rotårsaken til flertallet av feilene.

Majoriteten av undervanns BOP’er er utstyrt med et multiplex kontrollsystem, som er en

kombinasjon av elektronikk og hydraulikk, brukt til å operere de forskjellige funksjonene i BOP’en.

Til tross for mye redundans, er systemet fortsatt utsatt for kritiske feil.

For å forhindre BOP feil, er nasjonale forskrifter og standarder utviklet i flere land. Flertallet

av de nasjonale forskriftene er like, men forskjeller finnes. Likhetene og forskjellene er i opp-

gaven illustrert gjennom en detaljert sammenligning mellom relevante forskrifter fra Norge og

Amerikas forente stater, med fokus på generelle-, utformings-, og operasjonelle BOP krav.

Hovedfokuset for denne oppgaven er det multiplexede undervanns BOP kontrollsystemet.

De potensielle kritiske feilene i systemet er identifisert og analysert i en detaljert feilmode, effek-

ter og kritikalitets analyse. Analysen viser at skyttelventilen, pod velgerventilen, undervannsakku-

mulatorene og væske reservoaret er de mest sikkerhetskritiske delene av kontrollsystemet.

BOP kontrollsystemet har flere redundante elementer som kan være utsatt for felles feil.

Potensialet for felles feil er undersøkt i oppgaven og funnet til å ha en signifikant påvirkning

på påliteligheten til systemet.

For å forbedre nåværende pålitelighetsvurderinger av undervanns BOP kontrollsystemer,

kreves en grundig gjennomgang av både systemet og tidligere brukte metoder. I denne studien

er en feiltreanalyse anvendt for å avsløre mulige feilårsaker. For å forbedre eksisterende feiltre

kalkulasjoner, er en metode for å post-prosessere de minimale kutt setene i et regneark (dvs.,

Excel) foreslått for å ta høyde for bidraget fra felles feil.
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En hendelsestreanalyse er utført for å dekke vekslingsfasen mellom to poder for å vise at

tidsavhengighet kan dirkete påvirke konsekvensen. Denne typen veksling kan ikke bli mod-

ellert inn i et feiltre, derfor anbefales det å anvende et hendelsestre for liknende situasjoner for

å oppnå et mer nøyaktig pålitelighets estimat.

For komponenter som skjæravstengeren kan ikke en perfekt funksjonstest utføres. I analy-

sen er ingen slike komponenter evaluert. I en utvidet analyse av undervanns BOP kontrollsys-

temet vil slike komponenter bli involvert, derfor anbefales det å legge til bidraget fra sikker test

dekningsfaktoren til komponenter utsatt for ufullkommen testing.



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Structure of the Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Subsea BOP Control System 4

2.1 Multiplex Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 MUX Control Panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 MUX Control Pod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Subsea Electronic Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Solenoid Valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Hydraulic Power Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 Accumulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.9 Programmable Logic Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.10 Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.11 Subsea Transducer Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.12 Hose Bundles and Reels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.13 Typical Control Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vii



CONTENTS viii

3 Reliability Review 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 BOP General Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Mean Time To Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 BOP Downtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.3 BOP Failure Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Subsea BOP Control System Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Control System Mean Time To Failure . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 Control System Failure Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Regulations and Standards 30

4.1 American Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 BSEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.2 American Petroleum Institute . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.3 Function Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Norwegian Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Petroleum Safety Authority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.2 NORSOK D-001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.3 NOG 070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 BSEE vs. PSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.2 NORSOK vs. API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Subsea BOP Control System Failures 38

5.1 Failure Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.1 Safety Critical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.2 Sources of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.3 BOP Control System Failure Modes . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Common Cause Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.1 CCF Modeling Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.2 Modeling Common Cause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



CONTENTS ix

5.2.3 CCF Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.4 Potential CCFs in Subsea BOP Control Systems . . . . . . . . . . . . . . . . . 42

6 Analysis 43

6.1 FMECA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Fault Tree Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2.1 Theory Behind Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2.2 Fault Tree Analysis of the Subsea BOP Control System . . . . . . . . . . . . . 48

6.3 Event Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Summary and Recommendations for Further Work 59

7.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.3 Recommendations for Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.3.1 Proof Test Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.3.2 Event Tree Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.3.3 Common Cause Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.3.4 Three Pods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A Acronyms 63

B FMECA Sheets 66

B.1 FMECA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

C Fault Tree Analysis 72

C.1 Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

C.2 Basic Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

C.3 Minimal Cut Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Bibliography 83



Chapter 1

Introduction

1.1 Background

The Macondo accident occurred on April 20th 2010, 11 people were killed, and approximately

4.9 million barrels of crude oil were spilled into the ocean. The accident caused the largest off-

shore oil spill ever, and the president of the United States declared it the biggest environmental

catastrophe ever to occur in the country’s history. The accident was caused by a blowout in the

Macondo well, drilled by the Transocean-owned rig, Deepwater Horizon (DWH). The rig crew

lost control of the situation and hydrocarbons emerged up to the drill floor, shortly after the

hydrocarbons were ignited, eventually causing the DWH to sink.

Accident commissions later formed to investigate the event, pointed to the subsea blowout

preventer (BOP) as one of the main reasons for the accident. The BOP is a safety critical sys-

tem used to ensure safe drilling and well interventions. The main function of the BOP is to

seal the well in the event of a blowout. In the aftermath of the DWH investigations reports, re-

newed focus was brought to the BOP, and enhanced BOP reliability assessments methods were

demanded.

Several reports on the quantification of the subsea BOP reliability have been published over

the years, especially by Per Holand. The reports are based on collection and analysis of rig spe-

cific failure data, and have resulted in a great amount of knowledge about BOP failures, failure

causes, maintenance and testing. A recurring source of failure in several of the reports is the

BOP control system.

1
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To find the weaknesses in a system, such as the BOP control system, requires a great deal of

work. Several master thesis have been written about BOP systems, but satisfactory methods for

quantifying the subsea BOP control system are still lacking.

Quantification of the subsea BOP reliability has mostly been based on test intervals and esti-

mated failure rates. In Klakegg (2012), the contribution from common cause failures (CCFs) are

also taken into consideration, however, this analysis considers the entire BOP system. A poten-

tial improvement from the previous analyses could be to include the CCFs contribution in an

analysis for the part of the BOP system where most failures occur, the control system.

Subsea BOP systems must comply with certain relevant standards and regulations. These

are frequently updated and can vary depending on where the system is located. Designers and

operators are therefore required to continually follow up the requirements for their present situ-

ation. For subsea BOPs, the most relevant guidelines and standards are for example, IEC-61511

(2011), IEC-61508 (2005), and NOG - 070 (2004).

The methods applied for quantifying the reliability are based on theoretical principles from

reliability engineering, and the majority of these are covered in Rausand and Høyland (2004)

and Rausand (2014). However, these theories may in some cases not be fully adequate.

To prevent accidents like the Macondo blowout, new/improved methods for complex safety

critical systems, such as the subsea BOP system, must be developed. The main focus when ap-

plying such methods is to produce an accurate result as possible. This report takes a deeper look

into the subsea BOP control system, and how its current reliability analyses can be enhanced.

1.2 Objectives

The main objectives of this study are:

1. Carry out and document a literature survey on the current status of the reliability perfor-

mance of subsea BOP control systems (incl. regulations and standards) and to reveal the

role of these systems in drilling accidents.

2. Become familiar with the design of a typical subsea BOP control system.
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3. Perform a functional analysis of a subsea BOP control system and carry out a detailed

FMECA for different operational modes/scenarios.

4. Carry out a reliability assessment of a subsea BOP control system.

1.3 Limitations

The report is limited to only considering the reliability of BOP control system designed for deep-

water drilling. No human factors are considered and the scope ends when the shear ram is acti-

vated.

The emphasis of the reliability analysis lies in the methodology, rather than the detailed

modeling of the subsea BOP control system.

1.4 Structure of the Report

The rest of the report is structured as follows. Chapter 2 gives a description of the subsea BOP

control system. Chapter 3 discusses previous reliability studies and looks at potential failures

in the subsea BOP control system. In chapter 4, an overview of regulations and standards are

presented, as well as a comparison between Norwegian and United States regulations and stan-

dards. Chapter 5 discusses failures in the system and the potential contribution from CCFs.

Chapter 6 provides an approach to quantify the subsea BOP control systems reliability, through

post-processing the minimal cut sets from the fault tree analysis, and a discussion about the

following result. In chapter 7, the report is summarized and concluded, and recommendations

and ideas for further work are suggested.



Chapter 2

Subsea BOP Control System

The blowout preventer (BOP) control system is the brain of the subsea BOP system. It controls

when the preventers are to close and open, with or without using primary rig power. The most

essential parts of the system are the accumulators, the operating fluid, the high pressure piping

to transport and direct fluid and the remote unit for controlling valves with the hydraulic unit

(Goins and Sheffield, 1983). The main BOP components with a short description is shown in

Fig. 2.1.

2.1 Multiplex Control System

A multiplex control system (MUX) is an electro-hydraulic system applied to control the func-

tions of a subsea BOP. The MUX system is a replacement for the all-hydraulic system, previously

used for subsea BOP applications. The basic layout of a MUX control system from topside to sea

bottom is shown in Fig. 2.2.

The MUX system provides electrical power, hydraulic power, control signals and communi-

cation to the numerous BOP functions. It uses modems (modulator/demodulator) to send and

receive signals to and from control computers, via copper wires. The cable goes from the rig

and down along the riser to the BOP. The multi conductor cables carry the multiplexed signals

in both directions. The power is provided by the Power and Communication Cabinets (A & B).

Each cabinet has a dedicated uninterruptible power supply (UPS) delivering 230 VAC electrical

power. It has the ability to power the BOP system for a minimum of two hours, should the main

4
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Figure 2.1: Typical configuration of a subsea BOP, from Grondahl (2015)
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Driller’s Panel Toolpusher’s PanelCentral Control Unit

Redundant 
System

Surface 
Accumulators

Hydraulic 
Fluid 

Reservoir 
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Sub-sea
Accumulators

Accumulator PressureRegulator
Regulated Fluid  Pressure

MUX Cable 
Reel

Active Pod
Electrical Signal

BOP/LMRP

BASIC MULTIPLEX SYSTEM

Figure 2.2: Basic MUX system, from Rees and Matthews (2011)

power be lost (Engineering Services LP, 2014).

The MUX control system is housed on the lower marine riser package (LMRP). Stingers con-

nect the hydraulic control between the LMRP and the BOP stack. The stingers are located at the

bottom of the LMRP and are extended to fit into recipients on the BOP side (stingers are shown

in Fig. 2.4). When connection is made, each individual seal is activated by the corresponding

stinger to prevent leakages.



CHAPTER 2. SUBSEA BOP CONTROL SYSTEM 7

Figure 2.3: Driller’s panel, from Imperial Oil and ExxonMobile (2009)

2.2 MUX Control Panels

Normally, three control panels controls the MUX system, driller’s control panel (DCP), tool-

pusher’s panel (TCP) and a remote panel. The DCP is located on the rig floor, while the TCP

is on the bridge. They both contain a set of pushbuttons controlling the BOP functions. Func-

tions of high criticality are often equipped with covers, seen in the left hand picture in Fig. 2.3.

Alarms indicating abnormal fluid level, pressure and "read backs", are shown in the right hand

side picture.

The remote control panel contains the same functions to operate the BOP, and can be done

remotely from the hydraulic control manifold or the central processor. The panel is required

to be explosion proof or air-purged and is normally placed in the toolpusher’s quarters, or in

similar nonhazardous areas (Hals and Molnes, 1984).
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Pilot Accumulators

POD Electronics

Solenoid Valves

POD Hydraulic
Section

Stack Stingers

LMRP Stringers

Figure 2.4: Complete pod with covers removed, adapted from Imperial Oil and ExxonMobile
(2009)

2.3 MUX Control Pod

The MUX control pod is an electro-hydraulic valve control mounted on the LMRP. Normally

there are two pods, but systems including three do exist. They are identical, interchangeable

and can be installed in the blue or yellow position (see Fig. 2.1 for placement). Each pod con-

sists of hydraulic pressure regulators, solenoid pilot valves, subsea electronic modules (SEMs),

subsea transducer modules (STMs), hydraulic valves and hydraulic accumulators (Engineering

Services LP, 2014). Both pods receive commands from the MUX and initiate solenoid valve ac-

tions; however, only one does it with hydraulic fluid, causing the effect of the other pod to be

none. A pod without covers and named elements is shown in Fig. 2.4.

Both pods can perform all required functions on the BOP, making them redundant. How-
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ever, a problem occurring in one of the pods will cause the system to be retrieved to the surface

for repair. A major problem occurring during operations would cause the system control to be

transferred to the other pod. Preparations for retrieving the riser and the LMRP, will immedi-

ately start. Situations where problems can be considered minor, may prevent the system from

retrievement (Shanks et al., 2003).

An example of the control systems logic for an element closure in a subsea BOP is shown in

Fig. 2.5. The hydraulic fluid is transported from the reservoir bank, through rigid and flexible

conduit lines in the umbilical and ending in the conduit valve package (Drægebø, 2014). In the

conduit valve package a pod selector directs the fluid to one of the pods. Before entering the

pod, the fluid pressure is controlled/adjusted by a hydraulic regulator.

Each pod contains a low-pressure accumulator and a solenoid valve for each preventer. The

generated low-pressure fluid is directed via a shuttle valve and into a pilot valve, opening for the

high pressure fluid to go to the preventer(s) through hard lines.

An example of the process in Fig 2.5 could be: A situation requiring a BOP ram to close, a

MUX signal would be sent from the central control unit to the pod for decoding. The decoded

signal would notify the specific solenoid valve to open, causing the low-pressure hydraulic fluid

to open the pilot valve. As a result, the pilot valve would shift and send stored high-pressurized

hydraulic fluid from the accumulator to the BOP ram for closure.

2.4 Subsea Electronic Module

For each MUX control pod placed on the BOP, a corresponding subsea electronic module (SEM)

is installed. The SEM is a sealed pressure vessel protecting the subsea electronics and bat-

teries against the subsea environment. The SEM is internally redundant containing two pro-

grammable logical controllers (PLCs), two 9-volt battery packs and two automatic mode func-

tion/deadman cards (Engineering Services LP, 2014). The internally redundant systems are re-

ferred to as SEM A and SEM B. The inside of the pods, and the placement of the SEMs are dis-

played in Fig. 2.6.

During normal operations, a 230 VAC electrical power supply voltage feeds the two power

supplies inside the SEM. The main control cable goes from the topside equipment and to an
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Figure 2.5: Example of a BOP element function electro-hydraulic control system principle, from
Strand (2014)
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Figure 2.6: Inside of a POD, from Engineering Services LP (2014)

electrical connector mounted in the base plate on the pod. The power conductors are connected

with the power supply, while signal conductors are connected to the MUX system modem. The

modem controls both the uplink and downlink communication for the system. Analog data

signals from pressure transducers and other sensors are digitally converted before transmitted

to the surface. All-important values for pressure and voltage are monitored by this system. A

SEM with and without housing is displayed in Fig. 2.7.

2.5 Solenoid Valve

In a subsea BOP application, a solenoid valve (SV) is a hydraulic valve activated by an electrical

signal from the control system, which produces a pressure output by opening an internal valve

(Engineering Services LP, 2014). Normally the SV is equipped with two redundant coils within

its core. One or both coils can be energized by a 24/27 VDC power supply, causing actuation of

a hydraulic valve.

Commands from the rig are sent through the MUX control system and converted by the
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Figure 2.7: Example of a SEM with and without housing, from Engineering Services LP (2014)

SEMs to numerous actions, operating the BOP functions hydraulically. The electrical outputs

from the SEMs are converted into hydraulic fluid actions, using the SV. When the SV is electri-

cally energized, the magnetic forces in the coil pull the armature of the solenoid into the space

within the coil and open the valve (Engineering Services LP, 2014). When the coil is deenger-

gized, a spring pushes the armature back, closing the valve. In systems with redundant coils,

activation of one coil is enough to actuate the solenoid. However, in the Macondo accident it

came apparent how critical the polarity of the coils is. One of the coils was wired with oppo-

site polarity, and the magnetic effect was canceled out. In this case the valve would not open,

despite energizing both coils.

The hydraulic section of the SVs use sliding metal-to-metal, shear type seals, the same as the

main BOP control valves (Cameron Controls). The SVs are arranged and installed in a way that

makes them easily accessible from the outside of the MUX package (see Fig. 2.4).

The SVs need to endure pressure in the range of 3000 to 5000 psi, and temperatures down to

1.6 °C. As a result, the valves are enclosed in a heavy stainless steel housing (shown in Fig. 2.8)

for protection. It also includes cable assemblies, allowing the SV to be plug-connected to the

control system (Engineering Services LP, 2014).



CHAPTER 2. SUBSEA BOP CONTROL SYSTEM 13

Figure 2.8: Typical BOP solenoid valve, from Engineering Services LP (2014)

2.6 Cable

Communication between the rig and a subsea BOP primarily goes through cable. There are two

types of cables applied, hydraulic and MUX. The different cables each belong to one of the dif-

ferent control systems, the all hydraulic system and MUX system, which both holds advantages

and disadvantages.

In a hydraulic cable, individual hydraulic lines represent all the BOP functions. The cable

consists of numerous small hydraulic lines wrapped around a thick line for the hydraulic supply,

going to the accumulators. The deeper the well, the longer it takes for the hydraulic system to

activate the BOP functions. The hydraulic system is therefore not recommended for deep water

drilling, as it also requires more hydraulic fluid and more pressure to be pumped.

In a MUX cable only electrical signals and power supplies are sent down to the control pods.

The pods have PLCs to decode the signals, before forwarding the commands. The hydraulic fluid

for the accumulators is sent via a separate line. The distance does not affect the multiplexed line

and the pods will receive a command from the surface instantaneously. The MUX cables are

most common nowadays for subsea BOP control systems. Compared to the all hydraulic they

are costs reduced, size of lines are decreased and problems with retrieving and running large

hose bundles are removed.

The MUX cables are stored on reels on the platform. The reels are equipped with slip rings,

allowing circuitry to be maintained during reel rotation. The cable is normally equipped with
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Power Lines (4)

Communication Lines (8)

Figure 2.9: MUX cable, from Imperial Oil and ExxonMobile (2009)

four power supplies wires and 6-12 communication conductors. Typically, the cable has an

outer diameter of 1-1/2" (Imperial Oil and ExxonMobile, 2009). A typical MUX cable is shown in

Fig. 2.9.

2.7 Hydraulic Power Unit

The hydraulic power unit (HPU) mixes, monitors, stores hydraulic fluid and generates pressur-

ized hydraulic fluid for BOP system control usage. The hydraulic fluid helps operate the numer-

ous BOP functions and surface accumulators, going via regulators and manifolds.

The HPU pressure is normally in the range of 3000 to 5000 psi and is charged with three or

four electric powered triplex pumps, with one typically connected to the emergency generator.

The accumulators are charged with enough energy to operate all the BOP stack functions.

The fluid going through the system is a mixture of water and water-soluble oil, with a ratio

ranging from 1:50 - 1:100. In cases where temperatures gets too low, glycol antifreeze is mixed

into the fluid, preventing the lines from freezing (Hals and Molnes, 1984).
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2.8 Accumulators

Requirements to having three different sets of accumulators in a MUX subsea BOP system is

given:

1. Topside

2. On the LMRP

3. On the BOP stack

Normally, two accumulator banks provide pilot pressure to the pod pressure regulators.

Each bank consisting of four small accumulators, see Fig. 2.4.

The accumulators are precharged nitrogen bottles containing hydraulic fluid under pres-

sure (Hawker, 2011). Each accumulator has a predefined pressure, dependent on the operating

water depth. The charge pressure from the accumulator banks is controlled by "bleeding" and

"feeding" short pulses from the controlling solenoid valves (Cameron Controls).

API 53 (2012) specifies time limits for executing each of the BOP functions, typically at 30,

40 or 60 seconds. The subsea accumulators can be considered batteries charged with hydraulic

fluid, applied to fulfill the requirements. Should the umbilical be disconnected or broken, will

the LMRP functions be activated either through remotely operated vehicle (ROV) operations or

acoustic control.

Both for topside and stack mounted accumulators are the supply systems arranged in the

same way. Charged to the right pressure and automatically recharged when the pressure drops

too low. The blue and yellow control pods share the same accumulator, causing a leakage to

affect both pods. To ensure that a failure on one pod does not affect the accumulator, the hy-

draulic supply system is equipped with accumulator isolation valves. Closing of the valves and

regaining control topside will influence the closing time of each preventer severely.

Accumulators located subsea on the BOP stack is normally precharged up to 1200 psi, plus

the hydrostatic pressure. Retrieving the accumulators requires the pressure to be bled off sub-

sea, preventing the accumulators from bursting once they reach the surface or before.

The main contribution from the accumulators is to reduce the response time from the sys-

tem, and absorb shock waves caused by high pressure and flow, as a result of function activation.



CHAPTER 2. SUBSEA BOP CONTROL SYSTEM 16

2.9 Programmable Logic Controller

A programmable logic controller (PLC) is an industrial computer that receives and interprets

signals from the rig deck, and forwards commands. Normally, the subsea MUX PLCs communi-

cate with computers on the rig and subsea, but can in emergency situations operate on its own

(Engineering Services LP, 2014). During operations, the PLCs continually cycles through pro-

grammed inputs. All control computers react as predefined when receiving communications

on the bus network.

2.10 Relay

A relay can be considered a small electrical switch, enabled by electric signals from the control

system. It can have several different outputs and is normally used to control inputs to other

logical devices or small power activations.

2.11 Subsea Transducer Module

Subsea transducer modules (STM) facilitate wiring and electronics to the temperature and pres-

sure transmitters used in the MUX system in each pod.

2.12 Hose Bundles and Reels

The hydraulic hose bundles transport the fluid from the master control manifold and down to

the blue and yellow control pods. Normally the supply line has an inner diameter (ID) of 1.0".

The hose bundles are connected to the master control manifold by jumper hoses and are

mounted on big reels for storing and handling.

2.13 Typical Control Fluid

Fig. 2.10 shows a typical arrangement of a BOP control fluid circuit. The accumulator increases

the fluid pressure to 3000-5000 psi, from thereon the fluid is sent via the pod selector valve and
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further down to one of the pods.

When the hydraulic control fluid is transported from the surface to the pods, a significant

pressure drop occurs over the normally 1" ID cable. As a result, the flow rate from the surface

accumulator is limited. The stack-mounted accumulators therefore assist with boosting the

BOP open-/closing time response, to an acceptable level.

Should a fault occur or maintenance is required on one of the accumulators, total isolation

from the circuit can be done with isolator pilot valves. Both surface and subsea accumulator

valves gets blocked, isolating the accumulators from the line. They are brought back on the line

when the isolator pilot valves are moved in the opposite direction.

The hydraulic manifold contains a flow meter for volumetric measuring of the control fluid.

An accurate flow meter can record how much of the fluid volume is consumed by the subsea

system, and indicate if something is wrong.

The initial pressure produced in the accumulator is too high for most BOP stack functions.

As a result, pressure regulators are mounted on top of the pods. Normally a BOP control system

consists of 2-3 regulators. One dedicated to regulate the pressure on the marine riser ball joint,

one for the annular preventers and one for the ram preventers (Hals and Molnes, 1984).

In Fig. 2.10 the selector valve shows two potential sources controlling the pressure. With the

selector valve in the UNIT position, the air regulator mounted on the master hydraulic manifold

adjusts the pressure. When the selector is in the REMOTE position, the operator, through push

buttons, controls the pressure. By energizing solenoid valves corresponding to the given com-

mand, adjustments through the air pilot regulator are made. A monitoring line for the subsea

pressure is sent up to the pressure gauge on the manifold, and further directed to indicators in

the driller’s panel.
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Figure 2.10: Typical control fluid pressure regulator circuit, from Hals and Molnes (1984)



Chapter 3

Reliability Review

There are two types of BOP failures considered important: (i) Failures that prevents the BOP

from acting as a safety barrier or making the BOP unable to perform a safety function, and (ii)

failures resulting in drilling stop and thereby causing economic losses.

The following review is conducted to highlight the significant contribution to downtime on

subsea BOPs caused by the control system.

Z Reliability: The ability of an item to perform a required function under stated environmental

and operational conditions and for a stated period of time (IEV ref 192-01-24).

3.1 Introduction

This chapter reviews several reliability reports on subsea BOP equipment. The review is carried

out to highlight critical BOP issues, and be an indicator to where greater focus regarding reliabil-

ity for a subsea BOP system should be. The review is based on the three following study reports,

assigned simpler names for readability:

• Study 1 - Phase I DW, examined the reliability of subsea BOPs applied in wells drilled in

more than 400 meters water depth in Norway and Brazil, during 1992-1996. The study is

further discussed and analyzed in Holand and Awan (2012) and Holand (1999).

19
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• Study 2 - Reliability of Subsea BOP Systems for Deepwater Application, Phase II DW. It ex-

amines the reliability of subsea BOPs applied in wells drilled above 400 meters to more

than 2000 meters water depth in the Gulf of Mexico (GOM), during 1997-1998. The study

is further discussed and analyzed in Holand (1999).

• Study 3 - Reliability of Deepwater Subsea BOP Systems and Well Kicks. Looks at the relia-

bility of subsea BOPs applied in wells drilled in more than 600 meters in the GOM, during

2007-2009. The study is further discussed and analyzed in Holand and Awan (2012).

3.2 BOP General Reliability

The studies introduces different expressions, the following are used frequently in this review.

• BOP failure can be a failure of a single component or a control system failure. A BOP

failure does not necessarily lead to retrievement of the system, because of the redundancy

in the system.

• BOP days are the total number of days from when the BOP is attached to the wellhead,

until it is retrieved for the last time.

• Mean time to failure (MTTF) is the average time for the first failure of a component on the

BOP. The MTTF is the inverse of the failure rate, for systems with constant failure rates.

• Safety critical failures can occur after the installation test of the subsea BOP is completed.

The BOP acts as a well barrier, and failures are therefore critical. The importance of a

failure depends on which part of the BOP system fails.

• Hours lost refer to the number of hours were drilling is suspended, caused by failures on

equipment.

3.2.1 Mean Time To Failure

A comparison of the three studies with respect to MTTF and average downtime is shown in Tab.

3.1. It should be noted that the sources of information in the different studies differ. Study 1
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and 2 uses daily drilling reports, whereas study 3 is based on the well activity reports. In the

well activity reports, less critical failures with little downtime are often not reported, and will

not show up in the comparison, making the analysis somewhat degraded. The most important

results from the studies are listed below.

• In study 1, the MTTF was approximately 23 days, with an average downtime of 25 hours

per failure.

• In study 2, the MTTF was approximately 34 days, with an average downtime of 31 hours

per failure.

• In study 3, the MTTF was approximately 96 days, with an average downtime of 86 hours

per failure.

Comparing study 1 and 2 reveals a slight difference. Study 2 has a higher MTTF, but the

average downtime per failure is also higher.

In study 3, the differences from the two previous studies are much bigger. The MTTF has

almost tripled, but the repair time for a component also increased significantly. The changed

MTTF came as a result of improved equipment on the BOP. For the increased repair time, no ex-

plicit reason was given in the reports other than the effect of the increased water depth. Despite

the increased pulling length, the downtime would most likely not be tripled. Other factors that

may have contributed could be the increased complexity of the system, changed maintenance

routines once the equipment already is pulled, bad weather or unavailability of spare parts.

3.2.2 BOP Downtime

Z BOP downtime: The number of hours lost because of a failure on the BOP, regardless of the

BOP being attached to the wellhead or not (Holand and Awan, 2012).

In study 1, the average downtime per BOP day was 1.08 hours. The biggest contribution to

the downtime came from the control system and choke/kill line failures (MCS Kenny, 2013).
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Table 3.1: BOP MTTF and average downtime, from Holand and Awan (2012) and Holand (1999).

Study Location of
Subsea BOPs

Period No. of
Wells

BOP-
days

Total lost
time (hrs)

No. of
failures

MTTF
(BOP-
days)

Avg.
downtime
per failure

(hr.)

Avg.
downtime

per BOP-day
(hrs)

1 Brazil and
Norway, wells
drilled in water
depth more
than 400 m

1992 –
1996

144 3,191 3457.5 138 23.12 25.05 1.08

2 GOM, wells
drilled in 400 m
to more than
2000 m

1997 –
1998

83 4,009 3637.5 117 34.26 31.09 0.91

3 GOM wells
drilled in water
depth more
than 600 m

2007 –
2009

259 15,056 13,448 156 96.51 86.21 0.89

In study 2, the average downtime per BOP day was 0.91 hours. In this study, the downtime

was mainly caused by failures in the ram preventers. The preventers failed to open on three

different occasions, this was not observed in early stages of BOP testing. The accident report

concluded that it came as a result of new designs (MCS Kenny, 2013).

In study 3, the average downtime per BOP day was 0.89 hours, which was the lowest of all

three studies. The main contribution to the down time came as a result of a failure occurring on

the control system were only the LMRP needed to be retrieved. This caused the BOP stack to be

left on the wellhead, avoiding major downtime.

3.2.3 BOP Failure Discussion

For a failure to be critical in terms of well control, the BOP must be an acting barrier. The BOP

is first considered an acting barrier when attachment on the wellhead is made and the instal-

lation test is completed and accepted. All failures occurring on the BOP after installation are

considered safety critical failures. The severity of a failure depends on which part of the systems

is compromised.

The failure distribution of the different BOP studies is shown in Fig. 3.1. The average down-

time per hour for the main components in the BOP are listed. The control system is likely to
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Figure 3.1: Comparison of BOP item specific downtime, from Holand and Awan (2012)

cause the most downtime in all three studies, with the exception of the ram preventers in study

2. The control system failures were revealed during function tests. However, a failure in the

control system will most likely not compromise the well control, because of its redundancy.

A summary of the number of failures and the corresponding percentages for the main BOP

components are shown in Tab. 3.2, revealing the subsea BOP control system as the biggest con-

tributor to equipment failure in all studies. The failures are revealed by function tests performed

every 7 days, as required by The Bureau of Safety and Environmental Enforcement (BSEE), title

30, part 250.449. Failure data from study 1 is restricted. Summing up Tab. 3.2, the most impor-

tant values are:

• Study 1: 45% of all failures came from the control system.

• Study 2: 60 of the total 117 failures, 51%, came from the control system

• Study 3: 72 of the total 156 failures, 46%, came from the control system

The control system clearly dominates the failure rates in every study. However, the control sys-

tems include several components, making it more vulnerable to failures.
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Table 3.2: Summary of BOP failures, from Holand and Awan (2012) and Holand (1999).

Study number

1 2 3

BOP Components No. of Failures/percentage

Annular Preventer - 12/ 10% 24/ 15%
Connector - 10/ 8% 8/ 5%
Control System 45% 60/ 51% 72/46%
Choke & Kill Valve - 13/ 11% 4/ 2.5%
Choke & Kill Lines, All - 8/ 7% 17/ 11%
Ram Preventer - 11/ 9% 23/ 15%
Flexible - 1/ 0.08% 1/ 0.06%

Total 138 117 156

Table 3.3: MTTF of main BOP components, study 2 and 3, from Holand and Awan (2012) and
Holand (1999).

Study number

2 3

Component/ System MTTF Operating days/ failure

Annulars 334 627
Rams 364 655
Choke & Kill Valves 308 3,764
Choke & Kill Valves, All 501 886
Connectors 401 1,882
Control Systems 67 209

- Conventional 71 242
- MUX 46 198

Flexible Joint 4,009 15,056

MTTF for main subsea components during operating days is shown in Tab. 3.3. Note that

every single component has an increased MTTF in study 3, compared to study 2, and for the

control systems it has more than tripled. This comes as a result of development of technology

and increased robustness on the different components. No MTTF data is available on study 1 in

the public domain.

Failures that could not be assigned to the categories described in Tab. 3.2 or 3.3 have not

been taken into account in this comparison.
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3.3 Subsea BOP Control System Reliability

3.3.1 Control System Mean Time To Failure

In the different studies all three types of subsea BOP control systems are represented: Pilot hy-

draulic control system, pre-charged pilot hydraulic control system and multiplex control system

(MUX).

The pilot signal is transmitted from the rig to the subsea control pods. The main differences

between the systems are found in the pilot hydraulic control system where the pilot valves are

activated directly by a pilot signal. The pre-charged pilot hydraulic system works the same way

as the pilot hydraulic, only the pilot signal is given a pre-charged pressure, reducing the response

time. For the MUX system, an electrical signal is transmitted to the pods instantaneously, allow-

ing the subsea pilot valve to function immediately (Holand, 1999).

Study 1 and 2 was mainly dominated by pilot hydraulic or pre-charged pilot hydraulic sys-

tems. In study 3 the majority of rigs were equipped with MUX systems.

A comparison of the control systems MTTFs for the different studies is shown in Fig. 3.2. It

can be seen that the MTTF in study 3 is increasingly larger compared to the previous two. Tab.

3.1 shows that significantly more BOP days are covered in study 3. It seems that the BOPs in

general have improved compared to older studies. It should be noted that study 3 is based on

well activity reports, whereas the two others are based on daily drilling reports, as mentioned

earlier. This will have an effect on the calculated MTTF.

The MTTF for the MUX control systems and the conventional pilot control systems from

study 3 are compared in Fig. 3.3. The differences between the systems are not significant, and

similar results were found in the two other studies (Holand and Awan, 2012).

The average failure downtime for the different subsea BOP control systems in study 3 is

shown in Fig. 3.4. The MUX system had approximately double the downtime, compared to

the conventional. It should be noted that the MUX system was applied in deeper waters com-

pared to the conventional. The increased downtime mainly came as a result of a few failures

requiring a long repair time (Holand and Awan, 2012).
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3.3.2 Control System Failure Discussion

The majority of the control system failures were caused by failures of components in the control

pods. For example, leakages in solenoid valves, leakage in subsea plate mounted (SPM) valves

or malfunction in stack connector regulator (MCS Kenny, 2013).

The control system failures from study 2 are presented in Tab. 3.4. Failures marked "Un-

known" are unspecified failures. Failures marked "Other", are failures specified in different cat-

egories than the ones in the table. Failures detected and resolved by switching to the back-up

system, is marked with zero loss of time.

In the MUX control system, the dominating downtime came from loss of all functions in one

pod, with an average downtime of 198.5 hours per failure. Only one incident of loosing function

in both pods occurred during the study, leading to 2.5 hours without control of the BOP.

The control system failures for study 3 are presented in Tab. 3.5. The dominating downtime

of the MUX control system came from loss of all functions in one pod, with an average downtime

of 132.7 hours per failure.

The failure causing the most downtime in both studies are "Loss of all functions one pod".
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Table 3.4: Control system failure distribution for study 2, from Holand (1999).

Type of Failure No. of
failures

Total lost
time (hrs)

Average
Downtime - per

BOP-day (hrs)

Days in
Service

(BOP-days)

Multiplex Electro Hydraulic

Loss of all functions both pods 1 2.5 2.5
Loss of all functions one pod 1 189.5 189.5
Loss of one function one pod 1 1 1
Unknown 4 17.5 4.4
Other 3 10 3.3
All 10 220.5 22.1 459

Pre-charged pilot hydraulic

Loss of all functions both pods 1 42.5 42.5
Spurious operation of BOP function (s) 1 1.75 1.8
Loss of several functions one pod 4 54.5 13.6
Loss of one function one pod 4 14 3.5
Unknown 2 7.5 3.8
Other 4 18.5 4.6
All 16 138.5 8.7 552

Pilot Hydraulic

Spurious operation of BOP function(s) 2 57.5 28.8
Loss of all functions one pod 6 173.5 28.9
Loss of several functions one pod 1 135 135
Loss of one function both pods 1 121.5 121.5
Loss of one function one pod 8 33.5 4.2
Loss of control of one topside panel 1 2 2
Unknown 3 81 27
Other 4 16 4
All 26 620 23.8 2,553

Conventional Pilot, unknown if pre-charged or not

Loss of all functions one pod 2 3.5 1.8
Loss of several functions both pods 1 0 0
Loss of several functions one pod 1 35.5 35.5
Loss of one function one pod 2 1 0.5
Unknown 2 2.25 1.1
All 8 42.25 5.3 445
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Table 3.5: Control system failure distribution for Study 3, from Holand and Awan (2012).

Type of Failure No. of
failures

Total lost
time (hrs)

Average
Downtime - per
BOP - day (hrs)

Days in
Service

(BOP-days)

Multiplex Electro Hydraulic

Loss of all functions both pods 1 192 192
Loss of all functions one pod 12 1592.5 132.7
Loss of one function both pods 4 168 42
Loss of one function one pod 10 576 57.6
Loss of several functions one pod 1 0 0
Unknown 19 1,108.5 58.3
Other 5 330 41.3
All 55 3,967 72.1 10,942

Pilot Hydraulic

Loss of all functions one pod 2 216 108
Loss of one function both pods 2 0 0
Loss of one function one pod 6 25 4.2
Loss of several functions one pod 2 504 252
Unknown 1 0 0
Other 4 0 0
All 17 745 43.8 4,114

The root cause of the failure is difficult to determine, but most likely it could come from loss of

power, loss of hydraulic, dirt entering the system or a systematic error in the programming logic.

In all three studies, all functions in both pods failed in the control systems. This is a safety

critical failure, as it leads to loss of control of the entire BOP.

Common for both studies is that only failures occurring in the system were documented,

such that no indication to what other types of failures were tested for. As a result, Tab. 3.4 and

3.5 are not equal to each other, and a satisfactory comparison is much more difficult to conduct.
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Regulations and Standards

In the following chapter, only Norwegian and United States (U.S.) requirements for subsea BOPs

are discussed, as they are the most relevant for this report.

4.1 American Requirements

4.1.1 BSEE

The Bureau of Safety and Environmental Enforcement (BSEE) provide regulations for design,

operation and maintenance of subsea BOP systems in federal waters of the U.S. Gulf of Mexico

(USGoM). Internationally, the BSEE regulations are considered the most recognized regulations

(Strand, 2014). For guidance on how to fulfill the requirements, BSEE make references to impor-

tant standards from the American Petroleum Institute (API), such as, API 53 (2012), API spec 16D

(2005), and API spec 16A. Main design requirements from BSEE for a subsea BOP, with primary

focus on the control system, are listed below (from §250.442).

The subsea BOP must:

• Have an operable dual-pod control system to ensure proper and independent operation

of the BOP system

• Have an accumulator system to provide fast closure of the BOP components and to oper-

ate all critical functions in case of a loss of the power fluid connection to the surface

30
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• Have two redundant BOP control panels whereof one panel on the drilling floor

• Have operational or physical barrier(s) on BOP control panels to prevent accidental dis-

connect functions

• Clearly label all control panels for the subsea BOP system

4.1.2 American Petroleum Institute

To fulfill the BSEE requirements concerning usage and design for subsea BOPs, API std 53 is

applied. The standard is considered one of the most internationally recognized, concerning

drilling. API spec 16D provides specific requirements to the design of the control system. Worth

noticing is that API spec 16D does not mention safety integrity system (SIS) terminology, as

opposed to NOG - 070 (2004), applied for the Norwegian continental shelf (NCS) (see. 4.2.3).

4.1.3 Function Testing

Despite that API std 53 is an extension of the BSEE requirements, differences can be found.

Worth noticing is the test intervals for function testing of the control system. API std 53 states

that function tests of the control system for a subsea BOP should be executed at least every 21

day (7.6.5.1.1), while BSEE set the requirement for every 14 day (§250.449). The test interval

from BSEE should therefore be applied.

Reliability data collected by Sattler and Gallander (2010) shows that failures in the control

systems are normally revealed by function tests. Sattler and Gallander (2010) states that through

the use of simple function tests, a large percentage of the failures could be discovered. Meaning

a high proof test coverage (PTC) can be obtained on the control system for a subsea BOP by

performing full proof tests.
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4.2 Norwegian Requirements

4.2.1 Petroleum Safety Authority

The Petroleum Safety Authority Norway (PSA) issues operation and maintenance regulations

concerning design for subsea BOP systems in Norway. The PSA is equivalent to BSEE in the

U.S. The PSA further refers to standards for fulfillment of the requirements. The most relevant

standard for well drilling activities on the NCS is NORSOK D-001 (2012).

4.2.2 NORSOK D-001

In NORSOK D-001, descriptions of different requirements concerning drilling operations are

given. The most important features are: functionality, design, installation, testing and equip-

ment on both fixed installations and mobile offshore drilling unites (NORSOK D-001, 2012).

Several similarities can be found between the NORSOK standards and the API standards, since

both are built on the same basis. Still differences can be found, which are further discussed in

4.3.

4.2.3 NOG 070

NORSOK D-001 states that requirements for BOP control systems made in NOG-070 shall be

met. NOG-070 is an application of IEC 61508 and IEC 61511 made by Norwegian Oil and Gas,

for the Norwegian petroleum industry. The following safety integrity functions (SIFs) for a BOP

control system are described in NOG-070:

1. Seal around drill pipe

2. Seal an open hole

3. Shear drill pipe and seal off well

In NOG-070, minimum safety requirements for the different functions are described with

safety integrity levels (SILs). All three BOP functions above are given a SIL 2 requirement, mean-

ing an average probability of failure on demand (PF D AV G ) in less than 1 per 100 failure.
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In NORSOK D-001 only references to the SIF is made for the control system. The SIF only

incorporates components going from the BOP control panels and down to the BOP accumulator

isolation valves (Strand, 2014). While in NOG-070, the final elements are also included in the

reliability assessment. As a result, the PF D AV G increases. Therefore, obtaining a higher SIL

requirement would be much harder following the NOG-070. The current system would have to

be changed, and more rams in standard BOP assemblies would be required (NOG - 070, 2004).

4.3 Comparison

4.3.1 BSEE vs. PSA

To highlight the differences in requirements between Norway and U.S., a summary of regula-

tions concerning subsea BOPs from BSEE and PSA is shown in Tab. 4.1. The comparison has a

basis in BSEE regulations and related PSA regulations have been added.

Cases where the requirements are the same can be found. For example, both state that the

best and safest technology should be applied, at all time. The similarities between the two are

mostly found in requirements on a general level.

The major differences between the two regulations are the specificity. The PSA requirements

focus mainly on the system on a general level, whereas the BSEE is much more specific in regard

to equipment and personnel.

The PSA mostly emphasizes that dangerous situations needs to be avoided, whereas in the

BSEE specific demands to equipment and personnel are given to prevent dangerous situations

from happening.

4.3.2 NORSOK vs. API

This comparison takes a deeper look at the control system for subsea BOPs.

Both API and NORSOK issues several standards. Comparing them up to one and other can

be difficult since non of them are equal to each other. Therefore, a comparison has been made

with a basis in NORSOK D-001 and equivalent requirements from API std 53 and API spec 16D.

NORSOK D-001 describes the requirements to the control system much like what is done in
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Table 4.1: Comparison of the BSEE and the PSA requirements for subsea BOPs.

BSEE (USA, USGoM OCS) PSA (Norway, North Sea)

General Principles
30 CFR §250.401
- Use the best available and safest drilling technology
- Have a person onsite during drilling operations that
are trained to fulfill all responsibilities
- Use and maintain equipment and materials necessary
to ensure the safety
- Ensure that the toolpusher, operator’s representative,
or a member of the drilling crew maintains continuous
surveillance on the rig floor

Activities regulations: Section 85 - Well Barriers
- During drilling and well activities, there shall be tested
well barriers with sufficient independence
- If a barrier fails, activities shall not be carried out in
the well other than those intended to restore the barrier

Design
30 CFR 250.440-451
- At least four remote-controlled BOP preventers/rams:
At least one annular preventer, two pipe rams, and one
blind-shear rams, capable of shearing any drill pipe
(including workstring and tubing)
- A dual-pod control system ensuring independent op-
eration of the BOP system
- Accumulators providing fast closure of the BOP com-
ponents and to operate all critical functions in case of
a loss of the power fluid connection to the surface
- Working-pressure rating of each BOP component
must exceed maximum anticipated surface pressures
- Subsea BOP stack equipped with ROV intervention
capability
- Operational or physical barrier(s) on BOP control
panels to prevent accidental disconnect functions
- Clearly label all control panels for the subsea BOP sys-
tem
- At least two BOP control stations. One on the drilling
floor, the other located easy accessible away from the
drilling floor
- A choke and a kill line on the BOP stack. Each line
must be equipped with two full-opening valves, both
valves in each line must be remote-controlled

Facilities regulations: Section 48 - Well barriers
- Shall be designed such that well integrity is ensured
and the barrier functions are safeguarded during the
well’s lifetime.
- Prevent influx or outflow to the environment
- Shall be designed such that their performance can be
verified
Facilities regulations: Section 49 – Well control equip-
ment
- Be designed and capable of activation such that it en-
sures both barrier integrity and well control
- Have remote-controlled valves with mechanical lock-
ing mechanisms in the closed position
- Floating facilities shall have an alternative activation
system for activating critical functions on the BOP in
the event of an evacuation

Operation
30 CFR 250.442
- Install the BOP system before drilling below the sur-
face casing, unless other requirements are given by the
District Manager
- Constantly have ROV crew available when the BOP is
deployed, as an option for use during intervention
- Before removing the marine riser, displace the fluid in
the riser with seawater
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Maintenance
30 CFR 250.446-449
- Conduct a weekly well-control drill with each drilling
crew
- Visually inspect the subsea BOP system and marine
riser at least once every 3 days
- Maintain and inspect the BOP system to ensure that
the equipment functions properly
- Stump test the subsea BOP system before installa-
tion. Perform the initial subsea BOP test on the seafloor
within 30 days of the stump test
- Alternate tests between control stations and pods
- Pressure test the blind or blind-shear ram BOP during
stump tests and at all casing points
- The interval between any blind or blind-shear ram
BOP pressure tests may not exceed 30 days
- Function test annular and ram BOPs every 7 days be-
tween pressure tests
- Document all test results and make them available to
BSEE upon request

Activities regulations: Section 45
- The responsible party shall ensure that facilities or
parts thereof are maintained, so that they are capable
of carrying out their intended functions in all phases of
their lifetime
Activities regulations: Section 47
- Fault modes that may constitute a health, safety or en-
vironment risk, cf. Section 46, shall be systematically
prevented through a maintenance programme
- This programme shall include activities for monitor-
ing performance and technical condition, which en-
sure identification and correction of failure modes that
are under development or have occurred

30 CFR 250.451
- BOP control station or pod that does not function
properly, suspend further drilling operations until that
station or pod is operable
- If activated blind shear ram or casing shear ram and
sheared pipe or casing, correct problem, and conduct a
full pressure test of the BOP stack

API std 53, while API spec 16D is much more oriented on the details of the system. References

to API spec 16D can therefore be found in NORSOK D-001. For example: "Color configuration

shall follow API Spec 16D for subsea and dry BOPs".

Despite the high level of details in API spec 16D, some additional requirements have been

made in the Norwegian regulations, compared to the two U.S. standards.

Most requirements from NORSOK D-001 are covered in the API standards, but a few ex-

ceptions can be found, see Tab. 4.2. NORSOK D-001 requires activation of the BOP from at

least three different locations, while API only requires two. NORSOK D-001 requires all electri-

cal equipment to be EX 1 proof and have a UPS, whereas API only present requirements for the

UPS. The last major difference between the standards is that the failure of one activation panel,

shall not affect activation on the remaining panels. No such requirements could be found in the

two API standards.

Differences between the standards are small, and the API covers a great deal of areas. Still

1EX is short for explosion
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some supplements have been added by the Norwegian government worth noticing.
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Table 4.2: Comparison of NORSOK vs API for control systems.

NORSOK (Norway, North Sea) API (USA, USGoM OCS)

NORSOK D-001 - 6.42.1
It shall be possible to activate the BOP from at least
three (3) locations on the facility:
- one activation panel at the driller’s position;
- independent activation panel in a safe accessible
area, reference clause 5.2 design outline 4th section;
- activated directly on the main unit (except multiplex
systems which require a 3rd remote control).

API std 53 - 7.3.14.3
-One control station location shall provide easy acces-
sibility for the drill crew.
API std 53 - 7.3.14.4
-The other control station shall be placed away from
the rig floor to provide safe access for functioning the
BOPs during an emergency well control event.

NORSOK D-001 - 6.42.1
Control panels shall clearly indicate (e.g. by means of
lights for remote panel) whether the functions are in
open or closed position.

API Spec 16D - 5.2.5.4
Panel lamps (or other means of visual indication) used
to indicate function status shall track the position of
the hydraulic control valves. Red, amber and green
shall be used as standards colors for control panel in-
dicator lights (or displays)

NORSOK D-001 - 6.42.1
The control panels shall be equipped with a secur-
ing device against unintentional operation of essential
functions (e.g. shear ram, riser connection).

API Spec 16D - 5.2.5.5
A transparent safety cover or other lock-out means that
does not obstruct visibility of function status shall be
employed to avoid unintended operation for critical
equipment.

NORSOK D-001 - 6.42.1
All electrical equipment related to activate the
BOP/diverter shall be supplied by UPS and Ex proof.

API Spec 16D - 5.4.2
Electrical power (excludning the pump system) shall be
supplied from one or more uninterruptable power sup-
plies with backup battery capacities to operate the con-
trol for at least 2 hours.

NORSOK D-001 - 6.42.1
Failure of one activation panel shall not effect activa-
tion from remaining panels.

NORSOK D-001 - 6.42.2
When calculating additional accumulator capacity for
subsea BOPs, corrections shall be made for hydrostatic
pressure of the relevant sea water column, as well as for
sea temperature.

API std 53 - 7.3.11.4
The manufacturer-supplied control system surface
base pressure, adjusted for water depth and operating
temperature, shall be used as required. Documenta-
tion of the measurement and adjustment shall be re-
tained at the rig site.
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Subsea BOP Control System Failures

5.1 Failure Assessment

When estimating the reliability of a safety critical system, such as the subsea BOP control sys-

tem, a process for identifying potential failures in the system should be conducted through the

use of familiarization and functional analyses. The best approach is to apply a qualitative anal-

ysis such as hazard and operability study (HAZOP), hazard identification (HAZID) or failure

mode, effects and criticality analysis (FMECA) (Drægebø, 2014). Ideally, the analysis should

involve personnel from several different disciplines with expert/extensive knowledge about the

system.

5.1.1 Safety Critical System

When analyzing the subsea BOP control system, failures that can prevent the system from per-

forming its intended safety function or process demands, are the events of highest importance.

Both these are classified as dangerous undetected (DU) failures. In the analysis for the subsea

BOP control systems, only DU-failures are considered.

It should be noted that a conventional safety critical system is not normally operated without

a process demand. However, the BOP system differs from this, as some functions are operated

during normal operation. Annular preventers, for example, are closed for stripping of the drill

pipe (Klakegg, 2012). A critical failure preventing activation of such an operation, will be dis-

38
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covered during normal mode, without a process demand. The analysis calculations presumes

that all failures are detected in proof tests, hence, this will in some cases not be true for the

subsea BOP control system. However, the effect of the deviation will not be significant, and the

assumption that the BOP system is a safety critical system can therefore be recognized.

5.1.2 Sources of Data

The quantitative analyses are based on failure rates and test intervals (τ) for relevant compo-

nents in the subsea BOP control system. The main sources of data are Holand and Awan (2012),

Holand (1999), Håbrekke et al. (2013) and previous master thesis work form Klakegg (2012) and

Drægebø (2014). Not all components in the analysis are covered in the data sources; as a result,

some components have "expert judgment" failure rates.

5.1.3 BOP Control System Failure Modes

Based on the previous studies, some of the typical failure modes that can cause DU-failures in a

subsea BOP control system are listed below.

• Leakage in pod selector valve

• Blue/yellow pod, SEM A/B fail to activate solenoid valve

• Topside control panels PLCs fail to signal pods

• Loss of communication with pods, because of failure in MUX cable

• Loss of hydraulic fluid in pods, because of leakage in hydraulic lines

In addition to these typical failure modes, common cause failures (CCFs) for the system

should also be identified. The next section gives a brief introduction to CCF theory, the effect of

CCF on the subsea BOP control system and how to include CCF in a reliability assessment of the

system.
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5.2 Common Cause Failures

Safety critical systems are often equipped with a high level of redundancy, and the subsea BOP

control system is no exception. Redundancy is integrated into safety critical systems to en-

hance its reliability (Lundteigen and Rausand, 2007). In the BOP system, redundancy ensures

functional safety in the event of a kick.

Before quantifying the reliability of redundant safety critical systems, categorizing potential

failures must be done. Failures are mainly divided into either random hardware- or systematic

failure. Random hardware failure are caused by natural stressors and are considered indepen-

dent failures, such that a component failure in a system is not assumed to influence the other

components failure rates, normally called aging failure (Hauge et al., 2013). Systematic failures

may come as a result of failures related to operation, excessive stress or installation, making

components in the same system potentially dependent (Hauge et al., 2013). Systematic depen-

dent failures will in most cases lead to CCFs, meaning, more than one component failing by the

same cause, within a given period. CCFs can potentially reduce the effect of redundancy in a

safety critical system (Rausand, 2014).

For redundant systems, such as the subsea BOP control system, the potential impact from

CCFs with regard to system reliability, is huge. Identification of potential CCFs and necessary

measures to prevent the failures from occurring, are extremely important before the system can

be installed (Rausand and Høyland, 2004).

5.2.1 CCF Modeling Theory

The term CCF has been discussed for a long time, and still no general definition has been ac-

cepted, meaning, people within different sectors have different opinions of what CCFs are (Rau-

sand, 2014). IEC-61508 (2005) defined CCF as: "failure, that is the result of one or more events,

causing concurrent of two or more separate channels in a multiple channel system, leading to

system failure". In the nuclear power industry CCF is defined as: “a dependent failure in which

two or more component fault states exist simultaneously, or within a short time interval, and are

a direct result of a shared cause”.

Simultaneous is an important expression to understand when categorizing failures as CCFs.
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There can be a distinct dependency between failures, even though they do not occur at the

exact same time (Hokstad and Rausand, 2008). In Stamatelatos and Dezfuli (2011), a CCF event

is defined as multiple failures occurring during the same mission. The mission is dependent

on what type of industry the system is within. For example, in the aviation industry, a CCF

event would be if multiple failures occurred during a flight. For a subsea BOP control system,

the mission time is equal to the periodic testing time. Hokstad and Rausand (2008) state that if

multiple failures occur on redundant components within the test interval (τ), it can be classified

as CCFs. The test intervals can vary in the range of hours to a year, making it more complex to

decide if failures in the same system are independent or CCFs.

5.2.2 Modeling Common Cause

Rausand (2014) implies that there exists a cause-effect relationship between the CCF event and

a certain cause. However, this is rarely reflected in most CCF models, and is in several cases

difficult to identify, and yet quantify. Causes of CCFs that can be identified, should explicitly be

modeled into, for example, a reliability block diagram (RBD) or with a fault tree analysis (FTA)

(Rausand and Høyland, 2004). Explicit modeling, even with low quality input data, is considered

more accurate compared to CCF modeling with implicit data (Rausand and Høyland, 2004).

Lundteigen and Rausand (2009) state that by applying the explicit approach to systems with

several types of common cause, such as the subsea BOP control system, may lead to large and

complex fault trees. The increased complexity may cause events to be overlooked or included

in multiple places. By applying the implicit approach the fault tree is kept simple and the CCFs

are based on the minimal cut sets (Lundteigen and Rausand, 2009). The analysis in this report

will therefore be using implicit modeling of CCFs for the BOP control system.

Beta Factor Model

The beta-factor model is most commonly used, and recommended in IEC-61508 (2005) and

IEC-61511 (2011), for implicit modeling of CCFs for safety critical systems. The model assumes

that of all the failures in the system, a fraction is CCF. This fraction value is assigned to beta,β. An

occurring CCF assumes that all components in that group will fail as a result of the same cause
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(Lundteigen and Rausand, 2009). The contribution to the system from independent DU-failures

are expressed as (1−β)λDU , while failures from CCFs are expressed as βλDU .

A weakness in the beta-factor model is that voted configurations are not taken into account.

Meaning, CCFs are expected where not all redundant independent components fail, in systems

such as, 1-out-of-3 and 2-out-of-3 (Lundteigen and Rausand, 2009). The PDS method adds a

correction factor taking this into account, and Hauge et al. (2013) argue for its use. In this report

the beta-factor model is preferred, easy to understand, the β parameter is easy to interpret and

it provides an adequate result.

5.2.3 CCF Data Sources

When quantifying the beta-factor, relevant and updated failure data for CCFs are important.

However, access to such data is limited, therefore other methods must be applied. In Rausand

(2014) the IEC 61508 method is mentioned, which consists of 37 relevant questions, used to

quantify the β-values. Still a satisfactory quantification is hard to perform with limited time and

knowledge.

5.2.4 Potential CCFs in Subsea BOP Control Systems

As described earlier in chapter 2, the subsea BOP control system consists of several subsys-

tems with identical and redundant components that can be exposed to CCFs, for example,

SEMs, PLCs, MUX cables, hydraulic cables, pod accumulator isolation valves, shuttle valves and

solenoid valves in each pod. To further determine what type of CCFs these components can be

exposed to, an analysis, typically FMECA or HAZOP should be performed.
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Analysis

The report has, so far, given a general description of the subsea BOP control system, with key

functions and system boundaries. Previous studies have been evaluated and discussed. The

most relevant failure modes for subsea BOP control systems have been presented along with

the potential contribution from CCFs. Based on previous chapters, an approach to quantifying

the reliability by conducting an FMECA followed by an FTA, is made.

6.1 FMECA

An FMECA involves reviewing numerous components, assemblies and subsystems to identify

the potential causes and effects of failures, and are often the first item of a systems reliability

study (Rausand and Høyland, 2004). Ideally, the FMECA should be performed in close coopera-

tion with the design team and is based on detailed knowledge about the system and its compo-

nents (Rausand, 2014). However, for this analysis there is limited access to such personnel, and

potential failure modes or consequence may have been overlooked. The focus of the analysis

lies therefore in the method of it.

Data Sources

The analysis performed is based on the system description of the subea BOP control systems

in chapter 2, the reliability study performed in chapter 3 involving studies such as Holand and

Awan (2012) and Holand (1999), and previous master thesis work from Drægebø (2014) and
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Table 6.1: Potential failure modes in a subsea BOP control system

Comp.
number

Component Failure
number

Some potential failures

Sub-function 1: BOP control functions

1.1 Power supply unit (topside) F-1.1.1 Transmission failure
F-1.1.2 Erratic output

1.2 Control panels (topside) F-1.2.1 Erratic output

1.3 Electric prower from back-up battery F-1.3.1 Insufficient power

1.4 Batteries in pods F-1.4.1 Insufficient power

1.5 MUX cable reel F-1.5.1 Transmission failure

1.6 CCU F-1.6.1 Control/ signal failure
F-1.6.2 Erratic output
F-1.6.3 Fail to function on demand
F-1.6.4 Spurious activation

1.7 Pod selector valve F-1.7.1 Fail to move

1.8 Blue/ yellow pod F-1.8.1 Unable to deliver hydraulic
power

1.9 Solenoid valve F-1.9.1 Fail to move

1.10 SPM valve F-1.10.1 Fail to open/ close

1.11 Shuttle valve F-1.11.1 Fail to move (stuck in
position)

1.12 Choke and kill valve F-1.12.1 Fail to open/ close
F-1.12.2 External leakage
F-1.12.3 Internal leakage

Sub-function 2: Power supply

2.1 Subsea accumulator F-2.1.1 Internal leakage
F-2.1.2 Burst bladder

2.2 Fluid reservoir F-2.2.1 Containment of reservoir
F-2.2.2 Too low volumetric capacity
F-2.2.3 Reservoir plugged

2.3 HPU F-2.3.1 Hydraulic pump failure

2.4 Hydraulic line from HPU to BOP F-2.4.1 Plugged/ choked line
F-2.4.2 External leakage
F-2.4.3 Internal leakage

2.5 Regulator valve F-2.5.1 Fail to move

2.6 Pod isolation valve F-2.6.1 Fail to open/ close

2.7 Hydraulic lines on BOP stack F-2.7.1 Internal leakage
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Klakegg (2012). The subsea BOP control system is broken down to approximately 30 compo-

nents, which will be further analyzed.

Subsea BOP Control Systems FMECA

All the analyzed components and some of the failure modes considered most important for this

analysis are identified and assigned an identification number in Tab. 6.1. The corresponding

FMECA sheets are given in Appendix B.1.

The criticality is divided into three different classes in the analysis:

• P: Production loss

• E: Environmental impact

• S: Safety of personnel

For each of the consequence classes the criticality is ranked with different colors, green meaning

acceptable risk, yellow meaning tolerable risk and red meaning critical risk.

Most of the components within the BOP control functions are assigned with an acceptable

criticality level, mainly as a result of redundancy. A failure occurring on one of the pods should

lead to retrievement of the system, however, the production loss class is still marked acceptable

for such components, because the pods will not be retrieved until next scheduled maintenance.

Component failures considered most critical for the sub-system are the CCU, pod selector valve

and shuttle valve. A CCU failure has the option of acoustic back-up control or ROV, to operate

the BOP. Failures in the pod selector valve or shuttle valve are both marked critical, because a

failure in either of these would lead to loss of control of the BOP.

For components within the power supply sub function, are the subsea accumulators, fluid

reservoir, hydraulic lines on the BOP stack and hydraulic line from HPU to BOP, all considered

most critical in the system. A failure in the subsea accumulator would not directly lead to loss of

control because of redundant bottles and overcharging, however a potentially dangerous situa-

tion could occur. A reservoir with low fluid levels is dangerous for personnel, but also easier to

detect compared to failures on the sea bottom. The potential of hydraulic lines failing to deliver

hydraulics are dangerous, however increased storage in the accumulators and pod redundancy

limits the potential risk.
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6.2 Fault Tree Analysis

6.2.1 Theory Behind Approach

Relationship to Safety Instrumented Functions

Before quantifying the reliability of a subsea BOP control system, linking it against a well know

regulatory requirement, based on probabilistic formulas, is most ideal. As a result, better un-

derstandability and verification of the system can be achieved. An example of such a system is

the safety integrity level (SIL), defined below.

Z SIL: Discrete level (one out of four) for specifying the safety integrity requirements of the

safety instrumented functions to be allocated to the safety instrumented systems (IEC-61511,

2011).

Applying SIL to the subsea BOP control system requires compliance with the definition of

safety-instrumented systems (SIS), which governs one or more safety instrumented functions

(SIFs). The SIS consists of at least three subsystems, sensors(s), logic solver(s) and final ele-

ment(s) (Rausand, 2014). Categorizing the subsea BOP control system underneath the SIS def-

inition can to some degree be considered accurate. However, a SIS is mainly intended for ded-

icated safety systems that automatically respond to a process demand through the use of SIFs.

The BOP system does not respond to process demands automatically, but relies on personnel’s

knowledge and physical interaction to activate such functions. Also, the BOP functions are part

of the normal operation, and not only dedicated to the role as safety barrier, like the SIS (Klakegg,

2012). Applying the SIS definition directly to the subsea BOP control system can therefore not

be done.

Despite inaccuracies between the BOP systems and the SIS definition, is the BOP reliabil-

ity commented in SIL methodology in NOG - 070 (2004) (mentioned shortly in chapter 4.2.3).

NOG-070 recommends that the required PFD/SIL level for each well should be calculated, and

tolerable risk levels be set as part of the application process for consent to exploration and devel-

opment drilling. A SIL 2 requirement is set for both isolation of the well and closing of the blind
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shear ram. Worth noticing is that no recommendations has been given to the actual shearing of

the pipe (Klakegg, 2012).

Systems within SIS terminology can be divided into two groups related to operation, con-

tinuous/high demand mode, or low demand mode. Continuous/high demand is calculated

through the average probability of dangerous failures per hour (PFH), while low demand mode,

uses the average probability failure on demand (PFD). The system in question must be calcu-

lated using one of these methods, to comply with SIL levels. IEC-61508 (2005) states that the

BOP should be considered as operating in a low demand mode of operation, meaning the BOP

system should be expressed by the average PFD of the SIF.

Model Selection

To quantify the PFD for the functions in the subsea BOP control system, a reliability analysis

method must be applied. Several different methods are available, and in Rausand (2014), seven

different approaches are recommended. IEC 61508 and IEC 61511 suggest for this type of analy-

sis either fault tree analysis (FTA), reliability block diagrams (RBD), or Markov methods, should

be applied. The CCF contribution must also be accounted for in the analysis. Lundteigen and

Rausand (2009) recommend the use of FTA or RBD for complex systems, such as the subsea BOP

control system.

FTA modeling focuses on the failure of a function, rather than the achievement of one.

The FTA model makes it easier to identify failures that are not directly linked to a component

function, and is considered intuitive and structured compared to RBD and Markov methods

(Lundteigen and Rausand, 2009).

RBD models often resemble the physical structure of the system, because of the similarities

between the block sequencing and the systems activation of components. Modeling of the RBD

is based on how functions are achieved, rather than the failure of it, as in FTA. Lundteigen and

Rausand (2009) describe this as a possible strength, but also a weakness, because functions in-

stalled (or should be installed) to protect the main system function may easily be forgotten. As

opposed to the physical structure, the RBD may include the same component in different sec-

tions of the model, if the component is part of several functions. This may confuse personnel

unfamiliar with reliability modeling (Lundteigen and Rausand, 2009).
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The Markov methods have the ability to model systems who frequently switch between dif-

ferent operational modes, and can be used to analyze repairable systems with complex repair

strategies (Rausand and Høyland, 2004). However, the number of system states increases expo-

nentially with the number of components, making systems with moderate complexity difficult

to comprehend (Lundteigen and Rausand, 2009).

The subsea BOP control system is a large and complex system, considering both design and

operations and maintenance. The frequency of different operational situations is relatively low,

making the Markov methods less suitable. RBDs can be a sufficient tool for modeling parts of

the system, for example, when reviewing the effect of redundancy in different operational situ-

ations (Klakegg, 2012). When conducting reviews of the system, close involvement with design

engineers and operators are extremely important. The FTA provides an intuitive and structured

analysis on the whole system, based on the potential failures. It has a structured design and

is easy to understand for personnel without a reliability background. Based on this, the FTA is

preferred for the reliability assessment of the subsea BOP control system.

6.2.2 Fault Tree Analysis of the Subsea BOP Control System

Conservative PFD approximation

Analyses previously discussed in the report have all used FTA programs to calculate the PFD of

the systems. The calculations are in most cases influenced by lack of data, causing approxima-

tions to be made. Approximations used must be conservative, so that the "actual" PFD is lower

than the one calculated (Lundteigen and Rausand, 2009). Studies such as Holand and Awan

(2012) and Holand (1999), uses the FTA software tool Cara FaultTree to model and calculate the

top event probabilities. The programs weakness, along with other similar FTA programs, is that

it produces non-conservative values, meaning inaccurate PFD approximations (Lundteigen and

Rausand, 2009).

In Lundteigen and Rausand (2009), an alternative approach for producing non-conservative

and more accurate estimates of the PFD is presented. The approach is based on post-processing

minimal cut sets, and has the ability to include CCFs. Further it will be shown how the approach

presented by Lundteigen and Rausand (2009) can be applied to produce conservative PFD esti-
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mates, including CCFs, for the subsea BOP control system.

Consider a fault tree for a specified TOP event, constructed and identified with m minimal

cut sets {MC1, MC2, ..., MCm}. Let PDF j ,i denote the (average) PFD of a component i in minimal

cut set j, for j = 1,2,...,m. Minimal cut j of order m j is a 1−out−o f −m j voted structure, and only

fails ones all m j components are in a failed state, at the same time. When all components are

independent in the minimal j, the PFD of the minimal cut is normally calculated by (Lundteigen

and Rausand, 2009):

PF DMC j ≈
m j∏
i=1

PF D j ,i (6.1)

Several software tools uses (6.1), including Cara FaultTree, for calculating the PFD of a minimal

cut, however, the result is not accurate (Dutuit et al., 2008). Due to the well known Schwartz’ in-

equality saying that "the average of a product is not equal to the product of averages" (Lundteigen

and Rausand, 2009). Equation 6.1 is therefore categorized as a non-conservative approximation.

The average PF D j ,i , for a single component i in minimal cut j, periodically tested and has a

constant DU failure rate, can be calculated as (Rausand and Høyland, 2004):

PF D j ,i = 1

τ

∫ τ

0
(1−exp(−λDU , j ,i · t ))d t ≈ λDU , j ,i ·τ

2
(6.2)

Equation 6.2 gives a conservative PFD approximation, and is considered to produce ade-

quate results when (Rausand and Høyland, 2004):

• λDU , j ,i ·τ < 10−2 Approximation might be to conservative for higher values (Lundteigen

and Rausand, 2009).

• Detection of a DU failure stops the operation and is not resumed until the failure has been

repaired.

• The functional test is perfect, meaning, all DU failures are revealed during testing.

The subsea BOP control system fulfills the two first conditions; the third is not fully obtained

because of the shear ram. A perfect test cannot be conducted on the shear ram, only an imper-

fect functional test can be performed. To account for this, the term proof test coverage factor

(PTC) is introduced in Rausand (2014).
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Including the PTC when calculating the PF DMC j accounts for the fraction (1-PTC) of all

DU-failures that are left unrevealed after the function test. Failures left undetected by weekly

functional tests, can normally not be revealed until the systems gets a complete overhaul (τ̃).

For a single channel, such as the shear ram, the PFD for the component failure mode will be

(Rausand, 2014):

PF Dav g ≈ PTC ·λDUτ

2
+ (1−PTC )λDU τ̃

2
(6.3)

Rausand (2014) makes references to studies based on SINTEF reports, showing the PTC has

a high order of magnitude on the systems. Therefore, it is argued that the PTC shall be included

in the PFD calculation for the subsea BOP control system, for components exposed to such

failures.

The PF DMC j for a minimal cut j with m j independent components and a test interval τ, can

be expressed as following (Lundteigen and Rausand, 2009):

PF DMC j =
1

τ

∫ τ

0

m j∏
i=1

(1−exp(−λDU , j ,i · t ))d t

≤ 1

τ

∫ τ

0

m j∏
i=1

(λDU , j ,i · t )d t

=

(∏m j

i=1λDU , j ,i

)
·τm j

m j +1

=
(
λ̄DU , j ·τ

)
m j +1

(6.4)

where

λ̄DU , j =
( m j∏

i=1
λDU , j ,i

) 1
m j

(6.5)

is the geometric mean of the m j failure rates, in the minimal cut j.

To better compare the conservative with non-conservative approximations, a minimal cut

j consisting of two independent components with the same failure rate, λDU , j , is inserted into

the formulas. Combining (6.1) and (6.2) gives PF DMC j = (λDU , j · τ)2/4. While inserting the
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failure rates into (6.4) gives PF DMC j = (λDU , jτ)2/3, showing that the non-conservative is 25

% lower than the conservative. The percentage increases with the order m j , of minimal cut

sets. Meaning the result of the PFD approximations achieved in the FTA tools calculations can

be greatly improved by post-processing the minimal cut sets using the approach presented in

Lundteigen and Rausand (2009).

Fault Tree Development

Development of the fault tree should ideally be done in close cooperation with design engineers

and operators of the BOP system. This type of personnel has not been available when writing

the report, but input from experienced personnel at SINTEF has strengthened the analysis. Still,

it should be noted that due to limited experience with the system, critical failures might have

been overlooked or incorrectly included in the fault tree.

The scope of the analysis starts after the push button has been activated, and ends when the

shear ram is activated. Meaning human factors and the shearing ability of the shear ram is not

considered.

The TOP event in the FTA relates to the control system’s ability to close the shear ram upon

request. The fault trees can be found in Appendix C.1 and the corresponding basic events are

listed in Appendix C.2. The failure rates for the basic events are mostly based on Holand and

Awan (2012) and Håbrekke et al. (2013), with a few exceptions where "expert judgment" has

been used.

Minimal Cut Sets

The minimal cut sets of the fault tree are generated by the Cara FaultTree program. All orders

of the cut sets are considered due to the potential contribution from the beta-factor. However,

the highest order of cut sets is 4. All the minimal cut sets are imported into Excel for further

calculation, and can be found in Appendix C.3.

Identification of Common Cause Component Groups

For each minimal cut set MC j , it must be determined whether the components are dependent

or independent. This is done by looking for common root causes and coupling factors in each of
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the minimal cut sets (Lundteigen and Rausand, 2009). Components in the subsea BOP control

system that are dependent and share the same common failure cause, are included in the same

common cause component group CG j ,v , for j = 1,2, ...,m and v = 1,2, ...,r j , where r j is the

number of different common cause component groups in minimal cut MC j (Lundteigen and

Rausand, 2009). In cases where a minimal cut set contains a single common cause component

group, the index v may be omitted from the notation. Each CG j ,v is assigned a corresponding

beta factor, β j ,v .

The identified common cause groups in the events are marked in bold in the table for the

minimal cut sets, found in Appendix C.3. Cut sets where identical components in different sys-

tems are marked as common cause, is a result of exposure to failures such as similar design and

material, same power line and/or prone to same stressors such as temperature, vibration and

pressure. Other common cause groups are mainly a result of common electric and/or hydraulic

source.

Quantifying β j ,v for CG j ,v

Preferably the β-values should be quantified using plant specific conditions, applying specially

developed checklists (Lundteigen and Rausand, 2009). Due to somewhat limited knowledge

about the subsea BOP control system, the preferred approach is a combination of finding data

in the NOG - 070 (2004) and expert judgment. β-values for the SEMs and PLCs are found in the

NOG - 070 (2004), while the rest of the values are based on expert judgment. The β-values are

listed in Tab. 6.2.

PFD Calculations

PFD calculation of the system is performed based on the generated minimal cut sets and the

identified common cause component groups. The methods for calculating the different mini-

mal cut sets in the subsea BOP control system are based on theory presented in Lundteigen and

Rausand (2009).

Calculating the PF DMC j is influenced by the following (Lundteigen and Rausand, 2009):

1. The order m j of the minimal cut
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Table 6.2: β-factor values

CCF component
groups (CG)

CCF components groups Beta-factor

CG 1 PBDCP,PBTCP 10 %
CG 2 HSLA,LPA 10 %
CG 3 EEPFY,EEPFB 10 %
CG 4 PMAIVY,PMAIVB 10 %
CG 5 SVSOPY,SVSOPB 10 %
CG 6 BPF,YPF 10 %
CG 7 MUXB,MUXY 10 %
CG 8 LSMAV,ELSA 10 %
CG 9 SEMAB,SEMBB 5 %
CG 10 SEMAY,SEMBY 5 %
CG 11 PLCAB,PLCBB 1 %
CG 12 PLCAY,PLCBY 1 %

2. Whether or not the components of the minimal cut are identical

3. Whether or not the components of the minimal cut are dependent

4. Whether or not the components of the minimal cut are tested simultaneously

The analysis considers all orders of cut sets, but only cut sets to the order 4 were generated

by the analysis. In chapter 4 it was stated that the pods should be tested every 14 day, meaning,

one pod was tested every 7 day. However, the reliability data applied in the analysis is for testing

every 7 day. Therefore, it is presumed that all components in the system are tested simultane-

ously.

Minimal cut sets with only independent components are calculated using (6.4) and (6.5),

directly.

Considering minimal cut j, where the components are identical and dependent, the PF DMC j

can be calculated from (Lundteigen and Rausand, 2009):

PF DMC j ≈
((

1−β j
)
λDU , j ·τ

)m j

m j +1
+ β jλDU , j ·τ

2
(6.6)

Components in a minimal cut set that are non-identical, can still be exposed to the same

CCF, such as vibrations, temperature increase or pressure increase. Lundteigen and Rausand

(2009) state that this must be cared for when applying the beta factor model for calculating
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PLCAY

PLCBY

C1

CG12

PLCAB

PLCBB

C2

CG11

Figure 6.1: Minimal cut 115, with two common cause component groups

the CCFs contribution. To overcome the problem, Lundteigen and Rausand (2009) purpose to

define the beta-factor to be a fraction of the lowest component failure rate, as this rate limits

how often components fails simultaneously in a parallel structure.

The PF DMC j for a minimal cut with dependent, non-identical components all belonging to

the same common cause component group, based on this approach, becomes (Lundteigen and

Rausand, 2009):

PF DMC j ≈

[
(1−β j )λ̄DU , j ·τ

]m j

m j +1
+β j ·λmin

DU , j ·
τ

2
(6.7)

where

λmin
DU , j = min{λDU , j ,i } (6.8)

is the lowest DU failure rate in MC j

For minimal cut sets consisting of more than one common cause component group, or in-

cludes both independent and dependent components, (6.6) or (6.7) cannot be applied. This

situation, with a basis in the analysis, is illustrated in Fig. 6.1, showing the minimal cut set with

two common cause component groups, CG 11 and CG 12, each with two components. The CCFs
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(C1 and C2) are included as "virtual" components, in series with the parallel structure.

The remaning components in the MC j , are the independent components, marked H j (Lundteigen

and Rausand, 2009). The order of H j is denoted by k(I )
j , and the order of CG j ,v by k(C )

j ,v (Lundteigen

and Rausand, 2009). Components in H j have failure rates λ(I )
DU ,i for i = 1,2, ...,k(C )

j ,v and the com-

ponents in CG j ,v haveλ j ,v,l for v = 1,2, ...,r j and l = 1,2, ...,k(C )
j ,v (Lundteigen and Rausand, 2009).

For the minimal cut in Fig. 6.2, k(I ) = 0, r = 2, k(C )
1 = 2 and k(C )

2 = 2.

Following the approach from Lundteigen and Rausand (2009), the PF DMC j of the virtual

cut set with the lowest order in a minimal cut set, containing more than one common cause

component group and/or both dependent and independent components, can be expressed as

following:

PF D (I )
MC j ≈

(∏k(I )
j

i=1λ
(I )
j ,i ·

∏r j

v=1β j ,v ·λmin,v
DU , j

)
τ

k(I )
j r j

k(I )
j + r j +1

(6.9)

where λmin,v
DU , j is the lowest failure rate in CG j ,v in minimal cut MC j .

To better understand (6.9), an example of the MC 115, shown in Fig. 6.1, can be applied. The

minimal cut sets consists of the following virtual cuts: {C1, C2}, {C1, PLCAB, PLCBB}, {C2, PLCAY,

PLCBY} and {PLCAB, PLCBB, PLCAY, PLCBY}. In this example, the failure rate and β-factor is the

same for all the components, making it easier to simplify the equations. {C1, C2} has the lowest

order, and the following values can be determined: k(I ) = 0, r = 2, k(C )
1 = 2 and k(C )

2 = 2, the PFD

for the cut is then:

PF D (1)
MC ≈ β2λ2

DU ·τ2

3
(6.10)

The PFD for the remaning cut sets are found using the same method as above, based on the

approach in Lundteigen and Rausand (2009).

PF D2
MC = PF D3

MC ≈ (1−β)2λ2
DUβλDU ·τ3

4
(6.11)

PF D4
MC ≈ (1−β)2λ2

DU (1−β)2λ2
DU ·τ4

5
(6.12)
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This approach is used for calculating cut sets consisting of both several common cause com-

ponents and for cut sets consisting of both common cause components and independent com-

ponents, in the subsea BOP control system.

Calculation of the PF DMC j of a minimal cut j, can be done using the "upper bound approx-

imation" (Lundteigen and Rausand, 2009).

PF DMC j ≈ 1−
n∏

i=1

(
1−PF D (k)

MC j

)
(6.13)

where n is the number of virtual cuts in MC j

Calculate system PF DSI F

The PF DSI F for the top event is calculated in Appendix C.3 using (6.14), meaning the probability

that the subsea BOP control system is unable to activate the shear ram upon demand. The PFD

for each of the minimal cut sets have been calculated using Excel and applying the formulas

described earlier.

PF DSI F ≈ 1−
m∏

j=1

(
1−PF DMC j

)
(6.14)

Discussion

The calculated PF DSI F using conservative values and considering the contribution from CCF is

approximately 7.66·10−4, the calculations generated by Cara FaultTree, gives a value of 4.15·10−4.

Meaning, the manually calculated result is almost doubled compared to Cara FaultTree.

The calculations show the biggest contribution comes from a variety of different compo-

nents, such as the shuttle valve, manifold regulator and different electric failures. The solenoid

valves, PLCs and SEMs have much smaller contributions, and can almost be neglected from the

calculations. Comparing the result to other reports such as Holand and Awan (2012) is difficult,

older reports are based on the entire BOP system, while in this analysis the focus lies only within

the control system, and the corresponding components.

The results clearly show the importance of using conservative PFD approximations. For cut

sets consisting of one or more components, the PF DMC j has significantly increased, using the
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methods described in Lundteigen and Rausand (2009). The contribution from the CCFs is also

substantial. However, the biggest influence is mainly on cut sets consisting of components with

low failure rates, hence having a relativity small impact on the system.

6.3 Event Tree

Introduction

The fault tree model provides a "static" picture of the system during a specified time in a spec-

ified condition. It shows numerous paths consisting of different events, potentially leading to

system failures. The weakness in an FTA is that the sequence of the events does not affect the

analysis.

An event tree analysis (ETA) provides a more "dynamic" model of the system. The event tree

is a logic tree diagram; it starts with an initiating event (e.g., a kick) and provides a systematic

coverage of the time sequence of event propagation to its potential outcomes or consequences

(e.g., a blowout) (Rausand and Høyland, 2004). In this section, a brief discussion is made about

how an ETA can strengthen the reliability assessment of the subsea BOP control system

Event Tree Analysis on Crucial Systems

The ETA method is a great supplement for gaining a wider perspective of the risk picture and

potentially dangerous situations escalating during well control. However, conducting a full ETA

on a system is both time consuming and often requires new elements in well control to be in-

cluded, for example, the mud column. Therefore, only a small part of the subsea BOP control

system is considered to highlight the shortcomings of the FTA.

A simplified event tree of a shear ram activation is shown in Fig. 6.2. The ETA considers the

potential outcome of a failed pod activation, and the time duration before the redundant pod is

activated (unless that one also fails to activate). The duration of time from blue pod activation

and yellow pod activation, is marked x. This event takes approximately 2-3 minutes, and will

have a direct influence on the consequence. However, this is not possible to model in a fault

tree.
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Push button
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cannot activate

Yes

Yes
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Shear ram activated

Shear ram activated

Shear ram not activated

Shear ram not activated

Figure 6.2: Event tree of pod activation

Applying ETA on specific parts of the system will strengthen the analysis, however, it is both

time consuming and requires the scope of the analysis to be substantially widen.



Chapter 7

Summary and Recommendations for

Further Work

7.1 Summary and Conclusions

The Macondo accident reports identified the BOP and its control system as main causes of the

accident. As a consequence of this accident, improved methods for BOP reliability assessments

are now required.

Several reliability assessment studies are discussed in this report, and all of these points to

the subsea BOP control system as the main contributor to critical BOP failures.

The relevant regulations and standards in Norway and the United States have been com-

pared as part of this study. They are rather similar, but there are also differences, especially when

it comes to specificity. PSA gives requirements on a general level, whereas BSEE provides much

more specific details with regards to equipment and personnel. Regarding standards, NORSOK

D-001 mostly contains the same requirements as API 53 and API spec 16D, but differences such

as BOP activation required from three different places, and all electrical equipment is required

to be EX-proof and have access to a UPS, could be found.

To identify potentially critical failures in the subsea BOP control system a detailed FMECA

has been performed, and revealed that the shuttle valve, the pod selector valve, the subsea ac-

cumulators and the fluid reservoir were the most safety critical components in the system.

The potential contribution from CCFs was examined and found relevant for the analysis of

59
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the control system.

To improve current reliability assessments methods of the subsea BOP control system, a

thorough review of both the system and previously used methods was required. Relevant failure

modes and potential failures were identified using the FTA. To improve reliability calculations, a

method based on post-processing of the minimal cut sets generated in the FTA, was purposed.

The method gave a more conservative and accurate approximation, and the calculated result

almost doubled, compared to the conventional method. The contribution from CCFs was also

implemented.

The ETA was performed to cover the switching phases between the two pods, showing the

time dependencies that can influence the consequences. This type of switching cannot be mod-

eled in the fault tree, therefore, recommendations to apply the ETA to similar situations to get a

more accurate reliability estimate is given.

For components such as the shear ram, a perfect function test cannot be performed. In the

analysis, no such components are evaluated. However, in an expanded analysis of the subsea

BOP control system, such components will be involved, therefore, it is recommended to add the

contribution from PTC to components with imperfect testing.

7.2 Discussion

Neglecting human factors from the analysis is not ideal, in the event of a kick, an essential part of

the operation is for humans to detected and act, before the control system takes over. Ignoring

the human factors makes the result in the analysis some what degraded, however, modeling and

quantification of human factors can be difficult. The effects of human factors in well integrity

are discussed in Vignes (2011).

The majority of data used in the calculations may be outdated, as a result of limited access

to updated data. The preliminary results from an ongoing SINTEF study shows a significantly

higher beta-value compared to old reports. The old values are based on detection of dangerous

detected failures by using diagnostic tests; however, in the analysis only DU-failures are consid-

ered. A higher contribution from the beta-factors can therefore be argued for.

The transition between pods is not fully accounted for in the analysis. In Rausand and Høy-
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land (2004) the term imperfect switching is introduced, where the probability of switching be-

tween two redundant components is quantified. This contribution is not present in the analysis,

and may have an impact on the calculations.

7.3 Recommendations for Further Work

The study is carried out within a limited period of time and recommendations to explore the

conclusions of this report further, is given. Recommended tasks for making better conclusions

are described below.

7.3.1 Proof Test Coverage

In an expanded analysis of a subsea BOP, components prone to imperfect tests are likely to be

included. Calculating the PFD contribution from these components using the same methods

applied for components with perfect proof tests will be wrong. Therefore, recommendations

are given to add the contribution from the proof test coverage factor, for such components.

7.3.2 Event Tree Model

To strengthen the reliability analysis for the subsea BOP control system, it is recommended to

expand the scope of the analysis and include event tree modeling.

7.3.3 Common Cause Failures

Performing a deeper analysis on potential common cause failures in the subsea BOP control

system could expose more components prone to common cause failures, and strengthen the

analysis.

7.3.4 Three Pods

Cameron has a control system containing three pods. A comparison between the conventional

two pod system and the three pod system could provide useful knowledge about advantages and
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disadvantages between the systems, and give recommendations to future subsea BOP control

systems.



Appendix A

Acronyms

API American Petroleum Institute

BOP Blowout Preventer

BSEE The Bureau of Safety and Environmental Enforcement

CCF Common Cause Failure

CCU Central Control Unit

DCP Driller’s Control Panel

DU Dangerous Undetected

DWH Deepwater Horizon

EX Explosion

FMECA Failure Mode, Effects and Criticality Analysis

FTA Fault Tree Analysis

GOM Gulf of Mexico

HAZID Hazard Identification

HAZOP Hazard and Operability
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HPU Hydraulic Power Unit

ID Inner Diameter

LMRP Lower Marine Riser Package

MTTF Mean time to failure

MUX Multiplex

NCS Norwegian Continental Shelf

NOG Norwegian Oil and Gas Association

PFD Probability of Failure on Demand

PFH Probability of Dangerous Failures per Hour

PLC Programmable Logical Controller

PSA Petroleum Safety Authority Norway

PTC Proof Test Coverage

RAMS Reliability, availability, maintainability, and safety

RBD Reliability Block Diagram

ROV Remotely Operated Vehicle

SEM Subsea Electronic Module

SIF Safety Integrity Function

SIL Safety Integrity Level

SIS Safety Instrumented System

STM Subsea Transducer Module

SV Solenoid Valve
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TCP Toolpusher’s Control Panel

UPS Uninterruptible Power Supply

U.S. United States
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Component Function
Operational
mode Failure mode

Failure cause or 
mechanism

Detection of 
failure

On the 
subsystem

On the system
function

Risk reducing 
measures/ safeguard

E�ect of  failure
Description
of failureDescription of unit

Power supply
unit 

(topside)

Deliver
power to 
el. panels
and CCU

Avaliable
at all times

Transmission
failure

Erratic output

Failed electrical
cable No direct e�ect,

because of
safeguard

Control
panels

(topside)

Sends
activation
signals to

CCU

Avaliable
at all times

Electric  failure

Failure in MUX
cable

Testing/
operation

Pods will
not recieve
activation

signal

Pods wil
not activate, 

use secondary
control system
to activate BOP

Frequent testing 
and inspection.

Redundancy:
Have at least two 
separate panels

Electric
power from 

back-up
battery

Deliver
power to
el. panels
and CCU

as back-up

Insu�cient
power

Failed electrical
cable Testing/

operation

No direct  e�ect,
because of 
redundancy

Maintenace/ 
operational routines.

Redundancy:
Main power is the 
primary source of 

power

Batteries in
pods

Enable pods
to convert
el. signals

to hydraulic

Thermal variations Maintenance/ 
operational routines.

Redundancy:
Batterie in other pod

and acoustic
back-up system

Solenoid 
valves would
not function

Rams could not
be activated in
an emergency 

Comp.
No

1.1

F-
1.1.1

F-
1.1.2

Mechanical/
electrical failure

Testing/
operation

No direct 
e�ect

No electrical
output

Frequent testing.
Redundancy: 

Back-up battery

1.2 F-
1.2.1

Erratic output

1.3 Standby
F-

1.3.1
Battery empty

No direct 
e�ect

1.4
Avaliable

at all times
F-

1.4.1
Insu�cient

power Corrosion

Obsolete battery

Testing/
operation

1.5 MUX cable
reel

Transefer 
electric
 comm.

signals from
CCU to

subsea pod

Avaliable
at all times

F-
1.5.1

Transmission
failure

Worn cable

Short circuit

No signal sent
from electric panel

Testing/
operation

Not able to
initiate BOP 

functions

Commands from
control panels
cannot initiate
BOP functions

Maintenance/
operational routines.

Redundancy:
Other MUX cable

can be applied

Sub-function 1: BOP control functions

P E S
Criticality
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Component Function
Operational
mode Failure mode

Failure cause or 
mechanism

Detection of 
failure

On the 
subsystem

On the system
function

Risk reducing 
measures/ safeguard

E�ect of  failure
Description
of failureDescription of unit

CCU

Send/recieve
comm.
signals

Monitoring

Avaliable
at all times

Control/signal
failure

Erratic output

Mechanical/
electrical failure

BOP functions
will not be 
activated

Pod 
selector 

valve

Deliver
power to
el. panels
and CCU

as back-up

Fail to move Monitoring
 of valve 
position

If failure in a pod
and trying to route

hydraulic �uid
away from it,

no BOP function
will be executed.

Maintenace/ 
operational routines.

Regulary testing

Blue/
Yellow
pods

Direct
hydraulic
�uid and

operate the
BOP

SEM does 
not work Frequent testing, 

change damaged 
parts during

maintenance,
always have a pod

working

BOP will not 
activate, use

di�erent pod 

Comp.
No P

1.6

F-
1.6.1

F-
1.6.2

Mechanical/
electrical failure.

Testing/
operation

Routing failure
of electrical

signals

Frequent testing.
Redundancy: 
ROV operation

 and
acoustic back-up

control system

1.7
F-

1.7.1
Hyraulic �uid

wrongly routed

1.8 Avaliable
at all times

F-
1.8.1

Unable to 
deliver 

hydraulic 
power

High pressure 
valve does
 not open

Solenoid valve
do not activate

Testing/
operation

1.9
Solenoid

valve

Convert
electrical 

signals
into

hydraulics

Avaliable
at all times

F-
1.9.1

Fail to 
move Obstruction

Corrosion

Testing/
operation

Can no longer
operate the

solenoid valves
from control

panel

Still possible to 
operate the BOP

functions 
manually

Maintenance/
operational routines.

Regulary function
testing of the BOP

F-
1.6.3

F-
1.6.4

Fail to 
function

on demand

Spurious 
activation

Mechanical/
electrical failure.

Worn cables
Mechanical/

electrical failure.
Worn cables

Routing failure
of electrical

signals

No signal
output

Routing failure
of electrical

signals

Avaliable
at all times

Mechanical
 failure

Obstruction

Corrosion

Mechanical/
electrical failure.

E S
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Component Function
Operational
mode Failure mode

Failure cause or 
mechanism

Detection of 
failure

On the 
subsystem

On the system
function

Risk reducing 
measures/ safeguard

E�ect of  failure
Description
of failureDescription of unit

SPM
valve

Avaliable
at all times

Shuttle
valve

Transfer 
hydraulics

to BOP
functions

Fail to move
Monitoring

 of valve 
position

Redundancy
on shear rams

will be lost, worst
case no

shearing

Maintenace/ 
operational routines.

Regular function
 testing of

BOP

Choke
and kill
valve

Testing
BOP

functions
(Well killing

is outside
scope)

Mechanical
failure, corrosion,

plugged line Redundancy:
Other ckoke 
and kill valve

No mediate
e�ect, because
of redundancy 

Comp.
No P

1.10
F-

1.10.1

Monitoring
using

�owmeter
and

pressure
transmitter.

Testing/
operation

1.11 F-
1.11.1

Shuttle valve
cannot move

1.12
Avaliable

at all times

F-
1.12.1

Fail to
open/close

Worn/degraded
parts

Monitoring/
Testing

procedures

Fail to
open/close.

Fail between
positions

Mechanical
failure, stuck,

corrosion,
worn/ degraded

parts,
hydraulic
leakage.

No mediate
e�ect, because
of redundant

SPM valves

Avaliable
at all times

Mechanical
 failure

Corrosion,
due to exposure

Convert
electrical 

signals
into

hydraulics

SPM valve
will not open/

close, will
cause delay

in the hydraulic
 system

Maintenace/ 
operational routines.

Regulary testing.
Redundancy:

Have redundant
SPM valve

External
leakage

Internal
leakage Worn/degraded

parts

Unable to 
perform testing

as planned 

E S
Criticality
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Component Function
Operational
mode Failure mode

Failure cause or 
mechanism

Detection of 
failure

On the 
subsystem

On the system
function

Risk reducing 
measures/ safeguard

E�ect of  failure
Description
of failureDescription of unit

Subsea
accu-

mulators

Avaliable
at all times

Fluid
reservoir

Store 
hydraulic 

�uid,
provide 

high 
pressure
to BOP

functions

Reservoir cover
degraded, 
causing the

reservoir to be
contaminated by

dirt

Installing stainers
will reduce number

of large particles.

Pumps clogging.
Fine particles

passing through, 
causing wear on

pumps 

Comp.
No P

2.1

F-
2.1.1

Regular
testing  of

BOP
functions

2.2
Avaliable

at all times

F-
2.2.1

Failure in level
transmitter.
Capacity of 
reservoir is

to small

Maintenace
procedured/

Sampling
of �uid to

operations 

Internal
leakage

Mechanical
damage.

Poor quality
on accumulator

valve

No mediate
e�ect, because
of redundancy.
BOP functions

will work because
of overcapacity

Accumulator
capacity is 
reduced/

lack of pressure/
does not 
function

Regular function
test of BOP

functions and
leak testing.

Redundancy:
Bottles are 

charged more
than what is

needed.

Containment
of reservoir

Too small
or clogged

went on
the hydraulic

reservoir

Fluid quality
is degraded,

damages
valves 

Sub-function 2: Power Supply

Burst bladder
F-

2.1.1

Wear due to 
aging.

Damage on
valve in bottom

of baldder

Lack of 
pressure/

Gas in system/
A�ected 

bladder will not 
function

Som reduced 
capacity.

BOP functions
will work because

of overcapacity.
Particles from

bursted baldder
can enter the

 hydraulic system

Deliver
hydraulic

�uid Too low
volumetric

capacity

Reservoir
plugged

F-
2.2.2

F-
2.2.3

Visual 
inspection.

Level
transmitter 

Visual 
inspection.

Level
transmitter 

Empty tank or
over�own if

more �uid is in
the system, 

than capacity 

Leakage
of hydraulic

�uid 

Potentail spilling
�uid to the 

environment

No mediate
e�ect, because
of safeguards

Maintenance/
operational routines.

Low level alarm.
Environmently
friendly �uid

Accumulators
store enough 

energy to 
secure BOP
operations

E S
Criticality
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Component Function
Operational
mode Failure mode

Failure cause or 
mechanism

Detection of 
failure

On the 
subsystem

On the system
function

Risk reducing 
measures/ safeguard

E�ect of  failure
Description
of failureDescription of unit

HPU
Deliver

hydraulics
Avaliable

at all times
Hydraulic

pump
failure

Mechanical/
electrical failure System will still

function because
of redundancy

Hydraulic
line from
HPU to

BOP

Plugged/
choked line

Pumps 
running

excessivly
Alarm

indication
Visual

inspection

Potential loss
of individual

BOP functions

Maintenace/ 
operational routines.

Low level alarms
Environmental

�uid

Regulator
valve

Regulate
hydraulics

Mechanical/
electrical failure

Corrosion
Failure in

solenoid valve

No direct 
qonsequence due

to redundancy

Comp.
No P

2.3
F-

2.3.1

Pumps are
monitored
with alarms

Pumps are 
not running

Maintenance/
operational routines

Redundancy:
Extra pumps

and accumulator
banks

2.4

F-
2.4.1

Spill to 
environment

2.5 Avaliable
at all times

F-
2.5.1

Fail to
move

Testing/
operation/

pressure
trasmitters

2.6
POD

isolation
valve

Avaliable
at all times

F-
2.6.1

Internal 
leakage

Testing/
operation

Unable to
perform BOP

functions

Leakage to the
environment

Monitoring of
valve, �ow meter

and pressure
transmitters

Mechanical 
failure.

Contamination
of �uid

External forces
Vibration

Failure  in �ttings
gaskets, etc.

Mechanical,
corrosion failure

Quality of 
electrical motor

in pump

Deliver
hydraulics

Avaliable
at all times

F-
2.4.2

F-
2.4.3

External
leakage

Internal
leakage

External forces
Vibration

Failure  in �ttings
gaskets, etc.

Reduced �uid
delivery

Reduced �uid
delivery
Spill to 

environment

Loos all hydraulic
�uid.

Loss of BOP 
functions

No qonsequence
because of

redundancy

Regulators
cannot be

operated from
panels

Maintenace/ 
operational routines.

Can me operated
manually or be 

bypassed

Regulate
hydraulics

2.7
Hydraulic
lines on

BOP
stack

Transfer
hydraulic

�uid

Avaliable
at all times

F-
2.7.1

Internal 
leakage

Mechanical,
corrosion failure

Testing/
operation

Unable to
perform BOP

functions

Leakage to the
environment

Monitoring of
valve, �ow meter

and pressure
transmitters

E S
Criticality
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C.2 Basic Events

The basic events for the fault tree are listed on the next page. Failure rates marked with green

been derived from Holand and Awan (2012). Those failure rates marked with red is derived from

Håbrekke et al. (2013), and those marked with yellow are "expert judgment"
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Basic	  event	   Failure	  mode	  description	  
Failure	  rate	  
per	  day	  

Test	  intervall	  
(Days)	  

PBDCP	   DCP	  push	  button	  fails	   9.60E-‐06	   7	  
EEPFB	   Electric	  or	  electronic	  pod	  failure,	  blue	  pod	   6.00E-‐04	   7	  
EEPFY	   Electric	  or	  electronic	  pod	  failure,	  yellow	  pod	   6.00E-‐04	   7	  
ELCLB	   External	  leakage	  in	  blue	  conduit	  line	  or	  associated	  equipment	   3.80E-‐04	   7	  
ELSA	   External	  leakage	  in	  subsea	  accumulator	   6.70E-‐05	   7	  
ELCLY	   External	  leakage	  in	  yellow	  conduit	  line	  or	  associated	  equipment	   3.80E-‐04	   7	  
SPVCLB	   Fail	  to	  open	  surface	  pilot	  valve	  for	  blue	  conduit	  line	   3.00E-‐04	   7	  
SPVCLY	   Fail	  to	  open	  surface	  pilot	  valve	  for	  yellow	  conduit	  line	   3.00E-‐04	   7	  
MPVB	   Failed	  to	  open	  mounted	  pilot	  valve,	  blue	  pod	   5.00E-‐04	   7	  
MPVY	   Failed	  to	  open	  mounted	  pilot	  valve,	  yellow	  pod	   5.00E-‐04	   7	  

FCEEH	  
Failure	  to	  operate	  BOP	  from	  control	  system.	  Caused	  by	  
electronics,	  electric	  or	  hydraulic	  problems	   1.00E-‐04	   7	  

BPF	   Function	  fails,	  blue	  pod	   2.00E-‐05	   7	  
YPF	   Function	  fails,	  yellow	  pod	   2.00E-‐05	   7	  
HLRCB	   Hydraulic	  leak	  that	  ruins	  the	  blue	  pod	  control	   2.30E-‐04	   7	  
HLRCY	   Hydraulic	  leak	  that	  ruins	  yellow	  pod	  control	   2.30E-‐04	   7	  
HSLA	   Leakage	  in	  hydraulic	  supply	  line	  to	  accumulator	   2.40E-‐06	   7	  
PMAIVB	   Leakage	  in	  pod	  mounted	  accumulator	  isolation	  valve,	  blue	  pod	   5.00E-‐05	   7	  

PMAIVY	  
Leakage	  in	  pod	  mounted	  accumulator	  isolation	  valve,	  yellow	  
pod	   5.00E-‐05	   7	  

MUXB	   Loss	  of	  MUX	  power/	  communication,	  blue	  pod	   9.60E-‐07	   7	  
MUXY	   Loss	  of	  MUX	  power/	  communication,	  yellow	  pod	   9.60E-‐07	   7	  
LPA	   Low	  pressure	  in	  accumulator	   2.40E-‐06	   7	  
MRBP	   Manifold	  regulator	  fails,	  blue	  pod	   1.20E-‐03	   7	  
MRYP	   Manifold	  regulator	  fails,	  yellow	  pod	   1.20E-‐03	   7	  
PLCAB	   PLC	  A	  failure,	  blue	  pod	   1.68E-‐05	   7	  
PLCAY	   PLC	  A	  failure,	  yellow	  pod	   1.68E-‐05	   7	  
PLCBB	   PLC	  B	  failure,	  blue	  pod	   1.68E-‐05	   7	  
PLCBY	   PLC	  B	  failure,	  yellow	  pod	   1.68E-‐05	   7	  
SEMAY	   SEM	  A,	  blue	  pod	  fails	   9.10E-‐05	   7	  
SEMAB	   SEM	  A,	  yellow	  pod	  fails	   9.10E-‐05	   7	  
SEMBB	   SEM	  B,	  blue	  pod	  fails	   9.10E-‐05	   7	  
SEMBY	   SEM	  B,	  yellow	  pod	  fails	   9.10E-‐05	   7	  
PSVL	   Severe	  leakage	  in	  pod	  selector	  valve	   2.08E-‐07	   7	  
LSMAV	   Severe	  leakage	  through	  the	  stack	  mounted	  accumulator	  valve	   2.50E-‐05	   7	  
SVLE	   Shuttle	  valve	  or	  line	  to	  preventer	  leaks	  external	   1.00E-‐05	   7	  
SVSOPB	   Shuttle	  valve	  stuck	  in	  opposite	  position,	  blue	  pod	   1.67E-‐07	   7	  
SVSOPY	   Shuttle	  valve	  stuck	  in	  opposite	  position,	  yellow	  pod	   1.67E-‐07	   7	  
SCFOB	   Solenoid	  valve	  fails	  to	  open,	  blue	  pod	   3.84E-‐06	   7	  
SVFOY	   Solenoid	  valve	  fails	  to	  open,	  yellow	  pod	   3.84E-‐06	   7	  
PBTCP	   TCP	  push	  button	  fails	   9.60E-‐06	   7	  
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C.3 Minimal Cut Sets

Cara FaultTree generated the minimal cut sets. The basic event marked in bold indicates a com-

mon cause component relationship. At the end of the table, the PF DSI F for the TOP event can

be found.
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ID# Minimal#cuts#j#

Non1cons.#
PFD#

w/out#CCF#
Cons.#PFD#
w/out#CCF#

Cons#PFD#
w/#CCF# 11PFD#

MC#1# {FCEEH}## *# 3.50E*04# *# 0.9996500000000#
MC#2# {PSVL}## *# 7.28E*07# *# 0.9999992720000#
MC#3# {SVLE}## *# 3.50E*05# *# 0.9999650000000#
MC#4# {PBDCP,PBTCP}## 1.13E*09# 2.26E*09# 3.36E*06# 0.9999966381711#
MC#5# {HSLA,LPA}## 6.48E*07# 1.41E*10# 8.40E*07# 0.9999991598857#
MC#6# {SVFOY,SCFOB}## 1.81E*10# 3.61E*10# *# 0.9999999996387#
MC#7# {HLRCY,SCFOB}## 1.81E*10# 3.61E*10# *# 0.9999999996387#
MC#8# {EEPFY,SCFOB}## 2.82E*08# 5.64E*08# *# 0.9999999435520#
MC#9# {PMAIVY,SCFOB}## 2.35E*09# 4.70E*09# *# 0.9999999952968#
MC#10# {SVSOPY,SCFOB}## 7.84E*12# 1.57E*11# *# 0.9999999999843#
MC#11# {MRYP,SCFOB}## 5.64E*08# 1.13E*07# *# 0.9999998871040#
MC#12# {YPF,SCFOB}## 9.41E*10# 1.88E*09# *# 0.9999999981184#
MC#13# {MUXY,SCFOB}## 4.52E*11# 9.03E*11# *# 0.9999999999097#
MC#14# {SVFOY,HLRCB}## 1.08E*08# 2.16E*08# *# 0.9999999783616#
MC#15# {HLRCY,HLRCB}## 6.48E*07# 1.30E*06# *# 0.9999987039500#
MC#16# {EEPFY,HLRCB}## 1.69E*06# 3.38E*06# *# 0.9999966190000#
MC#17# {PMAIVY,HLRCB}## 1.41E*07# 2.82E*07# *# 0.9999997182951#
MC#18# {SVSOPY,HLRCB}## 4.70E*10# 9.39E*10# *# 0.9999999990606#
MC#19# {MRYP,HLRCB}## 3.38E*06# 6.76E*06# *# 0.9999932380000#
MC#20# {YPF,HLRCB}## 5.64E*08# 1.13E*07# *# 0.9999998873000#
MC#21# {MUXY,HLRCB}## 2.70E*09# 5.41E*09# *# 0.9999999945904#
MC#22# {SVFOY,EEPFB}## 2.82E*08# 5.64E*08# *# 0.9999999435520#
MC#23# {HLRCY,EEPFB}## 1.69E*06# 3.38E*06# *# 0.9999966190000#
MC#24# {EEPFY,EEPFB}## 4.41E*06# 8.82E*06# 2.17E*04# 0.9997828558000#
MC#25# {PMAIVY,EEPFB}## 3.67E*07# 7.35E*07# *# 0.9999992651176#
MC#26# {SVSOPY,EEPFB}## 1.23E*09# 2.45E*09# *# 0.9999999975495#
MC#27# {MRYP,EEPFB}## 8.82E*06# 1.76E*05# *# 0.9999823600000#
MC#28# {YPF,EEPFB}## 1.47E*07# 2.94E*07# *# 0.9999997060000#
MC#29# {MUXY,EEPFB}## 7.06E*09# 1.41E*08# *# 0.9999999858880#
MC#30# {SVFOY,PMAIVB}## 2.35E*09# 4.70E*09# *# 0.9999999952968#
MC#31# {HLRCY,PMAIVB}## 1.41E*07# 2.82E*07# *# 0.9999997182951#
MC#32# {EEPFY,PMAIVB}## 3.67E*07# 7.35E*07# *# 0.9999992651176#
MC#33# {PMAIVY,PMAIVB}## 3.06E*08# 6.12E*08# 1.75E*05# 0.9999824532034#
MC#34# {SVSOPY,PMAIVB}## 1.02E*10# 2.04E*10# *# 0.9999999997958#
MC#35# {MRYP,PMAIVB}## 7.35E*07# 1.47E*06# *# 0.9999985302352#
MC#36# {YPF,PMAIVB}## 1.22E*08# 2.45E*08# *# 0.9999999755039#
MC#37# {MUXY,PMAIVB}## 5.88E*10# 1.18E*09# *# 0.9999999988242#
MC#38# {SVFOY,SVSOPB}## 7.84E*12# 1.57E*11# *# 0.9999999999843#
MC#39# {HLRCY,SVSOPB}## 4.70E*10# 9.39E*10# *# 0.9999999990606#
MC#40# {EEPFY,SVSOPB}## 1.23E*09# 2.45E*09# *# 0.9999999975495#
MC#41# {PMAIVY,SVSOPB}## 1.02E*10# 2.04E*10# *# 0.9999999997958#
MC#42# {SVSOPY,SVSOPB}## 3.40E*13# 6.81E*13# 5.83E*08# 0.9999999416544#
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MC#43# {MRYP,SVSOPB}## 2.45E*09# 4.90E*09# *# 0.9999999950990#
MC#44# {YPF,SVSOPB}## 4.08E*11# 8.17E*11# *# 0.9999999999183#
MC#45# {MUXY,SVSOPB}## 1.96E*12# 3.92E*12# *# 0.9999999999961#
MC#46# {MRBP,SVFOY}## 5.64E*08# 1.13E*07# *# 0.9999998871040#
MC#47# {MRBP,HLRCY}## 3.38E*06# 6.76E*06# *# 0.9999932380000#
MC#48# {MRBP,EEPFY}## 8.82E*06# 1.76E*05# *# 0.9999823600000#
MC#49# {MRBP,PMAIVY}## 7.35E*07# 1.47E*06# *# 0.9999985302352#
MC#50# {MRBP,SVSOPY}## 2.45E*09# 4.90E*09# *# 0.9999999950990#
MC#51# {MRBP,MRYP}## 1.76E*05# 3.53E*05# *# 0.9999647200000#
MC#52# {MRBP,YPF}## 2.94E*07# 5.88E*07# *# 0.9999994120000#
MC#53# {MRBP,MUXY}## 1.41E*08# 2.82E*08# *# 0.9999999717760#
MC#54# {BPF,SVFOY}## 9.41E*10# 1.88E*09# *# 0.9999999981184#
MC#55# {BPF,HLRCY}## 5.64E*08# 1.13E*07# *# 0.9999998873000#
MC#56# {BPF,EEPFY}## 1.47E*07# 2.94E*07# *# 0.9999997060000#
MC#57# {BPF,PMAIVY}## 1.22E*08# 2.45E*08# *# 0.9999999755039#
MC#58# {BPF,SVSOPY}## 4.08E*11# 8.17E*11# *# 0.9999999999183#
MC#59# {BPF,MRYP}## 2.94E*07# 5.88E*07# *# 0.9999994120000#
MC#60# {BPF,YPF}## 4.90E*09# 9.80E*09# 7.01E*06# 0.9999929920620#
MC#61# {BPF,MUXY}## 2.35E*10# 4.70E*10# *# 0.9999999995296#
MC#62# {MUXB,SVFOY}## 4.52E*11# 9.03E*11# *# 0.9999999999097#
MC#63# {MUXB,HLRCY}## 2.70E*09# 5.41E*09# *# 0.9999999945904#
MC#64# {MUXB,EEPFY}## 7.06E*09# 1.41E*08# *# 0.9999999858880#
MC#65# {MUXB,PMAIVY}## 5.88E*10# 1.18E*09# *# 0.9999999988242#
MC#66# {MUXB,SVSOPY}## 1.96E*12# 3.92E*12# *# 0.9999999999961#
MC#67# {MUXB,MRYP}## 1.41E*08# 2.82E*08# *# 0.9999999717760#
MC#68# {MUXB,YPF}## 2.35E*10# 4.70E*10# *# 0.9999999995296#
MC#69# {MUXB,MUXY}## 1.13E*11# 2.26E*11# 3.36E*07# 0.9999996639817#
MC#70# {LSMAV,ELSA}## 1.37E*10# 2.74E*10# 5.85E*08# 0.9999999415072#
MC#71# {ELCLB,ELCLY}## 1.77E*06# 3.54E*06# *# 0.9999964622000#
MC#72# {ELCLB,SPVCLY}## 1.40E*06# 2.79E*06# *# 0.9999972070000#
MC#73# {ELCLB,MPVY}## 2.33E*06# 4.66E*06# *# 0.9999953450000#
MC#74# {SPVCLB,ELCLY}## 1.40E*06# 2.79E*06# *# 0.9999972070000#
MC#75# {SPVCLB,SPVCLY}## 1.10E*06# 2.21E*06# *# 0.9999977950000#
MC#76# {SPVCLB,MPVY}## 1.84E*06# 3.68E*06# *# 0.9999963250000#
MC#77# {MPVB,ELCLY}## 2.33E*06# 4.66E*06# *# 0.9999953450000#
MC#78# {MPVB,SPVCLY}## 1.84E*06# 3.68E*06# *# 0.9999963250000#
MC#79# {MPVB,MPVY}## 3.06E*06# 6.13E*06# *# 0.9999938750000#
MC#80# {SVFOY,SEMAB,SEMBB}## 1.36E*12# 2.73E*12# 2.88E*10# 0.9999999997122#
MC#81# {HLRCY,SEMAB,SEMBB}## 8.17E*11# 1.63E*10# 1.72E*08# 0.9999999827598#
MC#82# {EEPFY,SEMAB,SEMBB}## 2.13E*10# 4.26E*10# 4.50E*08# 0.9999999550255#
MC#83# {PMAIVY,SEMAB,SEMBB}## 1.77E*11# 3.55E*11# 3.75E*09# 0.9999999962527#
MC#84# {SVSOPY,SEMAB,SEMBB}## 5.92E*14# 1.18E*13# 1.25E*11# 0.9999999999875#
MC#85# {MRYP,SEMAB,SEMBB}## 4.26E*10# 8.52E*10# 8.99E*08# 0.9999999100510#
MC#86# {YPF,SEMAB,SEMBB}## 7.10E*12# 1.42E*11# 1.50E*09# 0.9999999985009#
MC#87# {MUXY,SEMAB,SEMBB}## 3.41E*13# 6.82E*13# 7.20E*11# 0.9999999999280#
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!

MC#88# {SVFOY,PLCAB,PLCBB}# 4.65E*14# 9.29E*14# 1.06E*11# 0.9999999999894#
MC#89# {HLRCY,PLCAB,PLCBB}## 2.78E*12# 5.57E*12# 6.37E*10# 0.9999999993634#
MC#90# {EEPFY,PLCAB,PLCBB}# 7.26E*12# 1.45E*11# 1.66E*09# 0.9999999983394#
MC#91# #{PMAIVY,PLCAB,PLCBB}# 6.05E*13# 1.21E*12# 1.38E*10# 0.9999999998616#
MC#92# #{SVSOPY,PLCAB,PLCBB}## 2.02E*15# 4.03E*15# 4.61E*13# 0.9999999999995#
MC#93# {MRYP,PLCAB,PLCBB}## 1.45E*11# 2.90E*11# 3.32E*09# 0.9999999966787#
MC#94# #{YPF,PLCAB,PLCBB}# 2.42E*13# 4.84E*13# 5.54E*11# 0.9999999999446#
MC#95# {MUXY,PLCAB,PLCBB}# 1.16E*14# 2.32E*14# 2.66E*12# 0.9999999999973#
MC#96# {SEMAY,SEMBY,SCFOB}# 1.36E*12# 2.73E*12# 2.88E*10# 0.9999999997122#
MC#97# {PLCAY,PLCBY,SCFOB}# 4.65E*14# 9.29E*14# 1.06E*11# 0.9999999999894#
MC#98# {SEMAY,SEMBY,HLRCB}# 8.17E*11# 1.63E*10# 1.72E*08# 0.9999999827598#
MC#99# {PLCAY,PLCBY,HLRCB}## 2.78E*12# 5.57E*12# 6.37E*10# 0.9999999993634#
MC#100# {SEMAY,SEMBY,EEPFB}## 2.13E*10# 4.26E*10# 4.50E*08# 0.9999999550255#
MC#101# {PLCAY,PLCBY,EEPFB}# 7.26E*12# 1.45E*11# 1.66E*09# 0.9999999983394#
MC#102# {SEMAY,SEMBY,PMAIVB}## 1.77E*11# 3.55E*11# 3.75E*09# 0.9999999962527#
MC#103# {PLCAY,PLCBY,PMAIVB}## 6.05E*13# 1.21E*12# 1.38E*10# 0.9999999998616#
MC#104# {SEMAY,SEMBY,SVSOPB}## 5.92E*14# 1.18E*13# 1.25E*11# 0.9999999999875#
MC#105# {PLCAY,PLCBY,SVSOPB}## 2.02E*15# 4.03E*15# 4.61E*13# 0.9999999999995#
MC#106# {MRBP,SEMAY,SEMBY}# 4.26E*10# 8.52E*10# 8.99E*08# 0.9999999100510#
MC#107# {MRBP,PLCAY,PLCBY}## 1.45E*11# 2.90E*11# 3.32E*09# 0.9999999966787#
MC#108# {BPF,SEMAY,SEMBY}## 7.10E*12# 1.42E*11# 1.50E*09# 0.9999999985009#
MC#109# {BPF,PLCAY,PLCBY}## 2.42E*13# 4.84E*13# 5.54E*11# 0.9999999999446#
MC#110# {MUXB,SEMAY,SEMBY}# 3.41E*13# 6.82E*13# 7.20E*11# 0.9999999999280#
MC#111# {MUXB,PLCAY,PLCBY}## 1.16E*14# 2.32E*14# 2.66E*12# 0.9999999999973#
MC#112# {[SEMAY,SEMBY],[SEMAB,SEMBB]}# 1.03E*14# 3.29E*14# 3.46E*10# 0.9999999996541#
MC#113# {[PLCAY,PLCBY],[SEMAB,SEMBB]}## 3.51E*16# 1.12E*15# 1.27E*11# 0.9999999999873#
MC#114# {[SEMAY,SEMBY],[PLCAB,PLCBB]}## 3.51E*16# 1.12E*15# 1.27E*11# 0.9999999999873#
MC#115# {[PLCAY,PLCBY],[PLCAB,PLCBB]}# 1.20E*17# 3.83E*17# 4.72E*13# 0.9999999999995#

# # # #
PFDsif# 7.66E*04#
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