
Bruk av robotsyn for griping av et objekt i
bevegelse

Jens Arne K Engesæter

Undervannsteknologi

Hovedveileder: Olav Egeland, IPK

Institutt for produksjons- og kvalitetsteknikk

Innlevert: juni 2015

Norges teknisk-naturvitenskapelige universitet

Robotic Vision for Grasping of an Object in
Motion

Jens Arne Krakhella Engesæter

Juni 2015

Master Thesis
Department of Production and Quality Engineering

Norwegian University of Science and Technology

Supervisor 1: Professor Olav Egeland

i

Preface

This is a concluding Master’s thesis in study of program Subsea Technology at NTNU. The
work was carried out between January and June 2015.

The interest of computer vision started whit the course “Robotics” lectured by professor Olav
Egeland, and the opportunity to implement computer vision in a system of an actual robot
was very tempting. This resulted in the topic of "Robotic Vision for Grasping an Object in
Motion" for this Final Master’s thesis.

Trondheim, 2012-12-16

Jens Arne Krakhella Engesaeter

ii

iii

Acknowledgment

I would like to give a special thanks to PhD candidate Adam Leon Kleppe for his cooperation
and help during the project. He has been a good adviser and his involvement in the work has
been very helpful in selection of the right tools, software and tutorials for the experiments. He
has also implemented the communication utilities between the KUKA Agilus Controller and
the Ubuntu computer, which is an essential part of the setup.

I would like to thank professor Olav Egeland for his supervising, inputs and always having the
office open for students with questions. I am very grateful for the opportunity to both have a
practical and theoretical work during the project, and also be able to implement my theoretical
work on an actual robot.

The workshop employees at the lab have been very helpful, and I would like to thank them for
been available for questions when advices and necessary equipments were needed.

Finally, I would like to thank my good friends and fellow students at the Subsea Technology
program for good cooperation and two great years together.

(JAKE)

iv

v

Summary

The main objective of this project was to study grasping of an object in motion by using
a combination of computer vision and a manipulator. The two tracking methods SIFT and
SURF were compared, and implemented as a part of a visual system in the robotic lab at the
Department of Production and Quality Engineering.

SIFT and SURF are both key-point detectors, but based on different mathematical background
and structure. SURF is claimed to be faster than SIFT, and both are supposed to be scale and
rotation invariant. To investigate the performance of the two methods, different experiments
were done to measure robustness and computation time. In all the experiments, a 2D camera
was used to observe a particular object moving with a constant velocity along a constant path.
Different tags were attached to the object, and the methods were implemented with a range of
parameters to study resulting performance.

To track an object in motion and predict a position for grasping an object, images have to
be processed as close to real time as possible. Therefor it was important to be familiar with
the behavior of the methods and optimize the implementations for computational efficiency.
To understand which information is important in a captured image, fundamental knowledge
about camera, transformations and image processing are presented in the report. In order to
obtain good detection of the object, there will also be an explanation of which parameters are
adjustable, and which limitations are to be expected.

The report presents how the computer vision has been combined with a manipulator with rela-
tionship to the communication, transformations and the user interface between robot, camera
and the computer. Equations for converting a position observed in a 2D camera to a world
position represented in 3 dimensions are included, and tools to determine a suitable trajectory
with respect to kinematic constraints are presented.

The evaluation of robustness and measurement of computation time are presented as plots.
Both SIFT and SURF performed well in the tracking of the object in motion and all experiments
carried out successfully. Some problems occurred due to communication delay between the
computer and the manipulator, and possible solutions are suggested and presented in the report.

vi

vii

Sammendrag

Målsetningen for dette prosjektet var å få en manipulator til å gripe et objekt i bevegelse ved
bruk av robot syn. To deteksjonsmetoder ble sammenlignet og implementert i et kamerabasert
styringssystem i robotcellen ved Institutt for produksjons- og kvalitetsteknikk.

Begge metodene er basert på de samme grunnfunksjonene, men strukturen og matematikken
bak algoritmene er annerledes. Den ene metoden er påstått å være mye raskere enn den andre,
og begge metodene skal være upåvirket av skalering- og rotasjonsendinger i et bilde. For å
underbygge disse påstandene, er det blitt gjort forskjellige ekskrementer for å måle robusthet
og beregningstid. Alle eksperimentene er gjennomført ved bruk av et 2D kamera som observerer
et bestemt objekt som beveger seg i en fast rute med en konstant fart. Metodene ble målt i
forhold til forskjellige klistrelapper som ble festet på objektet, og metodene ble implementert
med forskjellige begrensinger og egenskaper slik at det kunne samles data fra ulike situasjoner.

For å kunne gjennomføre et godt praktisk eksperiment, hvor begge metodene ville kunne kom-
bineres med roboten, var det viktig å måle beregningstiden til metodene, og eventuelt komme
med forslag til forbedringer. For å kunne følge objektet og forutse dens neste bevegelse, er
det viktig at bildene fra kameraet bli behandlet så nært sann tid som mulig. For å forstå
hvilken informasjon man skal se etter i et bilde, er grunnleggende kunnskap om kamera, trans-
formasjoner og bildebehandling presentert i rapporten. For å kunne detektere objektet best
mulig, blir det også forklart hvilke justerbare parametere, begrensinger og resultater man kan
forvente for begge metodene.

Kommunikasjon, transformasjoner og bruker grensesnitt for kunne navigere en manipulator ved
bruk av robot syn vil bli forklart, og formler for å konvertere posisjoner sett med 2D kamera til
et 3 dimensjonalt punkt i verden vil bli utledet. Det blir også gitt en introduksjon til verktøy
som kan bergene en passende bane for roboten på hensyn av kinematiske restriksjoner.

Alle eksperimentene har vært gjennomførbare, og evalueringen av robusthet og måling av bereg-
ningstid blir presentert i plot. Det oppsto noen problemer med kommunikasjonen mellom data-
maskinen og roboten. Mulige løsninger er blitt foreslått, og underbygget med tilhørende plott
av målinger.

viii

ix

Contents

Preface . ii
Acknowledgment . iv
Summary . vi

1 Introduction 1
1.1 Background . 1
1.2 Objectives . 2
1.3 Structure of the Report . 2

2 Image Formation and Image Processing 4
2.1 Camera . 4
2.2 Digital Image . 5
2.3 Homogeneous Transformation . 6
2.4 Grey scale . 8
2.5 Features . 9
2.6 Descriptors . 10

3 Computer Vision 12
3.1 SIFT . 12

3.1.1 Detection of scale space extrema . 12
3.1.2 Local extrema detection . 15
3.1.3 Elimination of unstable extrema values 16
3.1.4 Feature orientation . 18
3.1.5 SIFT-descriptors . 19

3.2 SURF . 20
3.2.1 Interest point detection . 20
3.2.2 Interest point localisation . 22
3.2.3 Orientation assignment . 23
3.2.4 SURF-descriptors . 25

3.3 Matching . 26

4 Robotics 28
4.1 Robot Kinematics . 28
4.2 Denavit-Hartenberg Parameters . 29
4.3 End-Point Open-Loop Control . 31
4.4 Position-Based Visual Servoing . 31
4.5 OpenCV . 32
4.6 ROS . 32

x

4.7 Camera Calibration . 34

5 Implementation of SIFT and SURF 36
5.1 Experiment 1: Comparing SIFT and SURF . 36

5.1.1 Identify Robustness . 36
5.1.2 Computation Time . 50

5.2 Experiment 2: Grasping an object in motion with a KUKA Agilus Manipulator 54
5.2.1 Tag detection . 54
5.2.2 Estimate Transformation . 55
5.2.3 Masks . 56
5.2.4 Angle Velocity Estimation . 58
5.2.5 Motion Planning . 60
5.2.6 Grasping Object . 64

6 Results 66
6.1 Result from Experiment 1: Comparing SIFT and SURF 66

6.1.1 Results from Identifying Robustness . 66
6.1.2 Results from Computation Time . 67
6.1.3 Improvement of Computation Time . 69

6.2 Results from Experiment 2: Grasping an object in motion with a KUKA Agilus
Manipulator . 71
6.2.1 Video . 71

7 Summary and Recommendations for Further Work 73
7.1 Conclution . 73
7.2 Discussion . 74
7.3 Recommendations for Further Work . 75

A Additional Information for Chapter 5 77
A.1 Additional Graphs to Section: Expenditure of Time 77
A.2 Additional Graphs for Section: Computation Time 88

B Additional Information for Chapter 6 99
B.1 Additional Graphs to Chapter: Results from Computation Time 99
B.2 Additional Graphs for Section of Improvement to Computation Time 103

C Source Code 107

D Digital Appendix 124

Bibliography 125

xi

List of Figures

2.1 Pinhole camera geometry [7]. 4
2.2 Central projection model representing image plane and discrete pixels [4]. 5
2.3 Transformations between camera and a world point [4]. 6
2.4 Example of emphasizing intensity in gray scale [4]. 8
2.5 An example of a RGB image converted to grey scale [20]. 8
2.6 Illustration of features. 9
2.7 Illustration of a SIFT-descriptor [3]. 10
2.8 Illustration of features with descriptors. The descriptors are illustrated as green

grids. 10

3.1 Illustration of a DiffG-filter used in SIFT [17]. 13
3.2 Illustration of two Gaussian-filters with different scale used in SIFT [17]. 13
3.3 Gaussian-filter in SIFT with σ = 5 implemented in MATLAB. 14
3.4 DiffG made of G(u, v, k5σ) and G(u, v, k4σ) in SIFT. 14
3.5 Pyramid of different DiffG-filters in convolution with an images in different sizes.

Left: Illustration implemented in MATLAB. Right: Image from [1]. 14
3.6 Lowe’s octave structure for computing the scale space DoG representation of an

image [17]. 15
3.7 Detection of local maxima and minima in SIFT. Pixel X will be compared with

its 28 neighbors [13]. 15
3.8 Increased threshold to eliminate low contrasts in SIFT. Example is implemented

in MATLAB.. Left: Low contrasts threshold = 0.02. Right: Low contrasts
threshold = 0.05. 17

3.9 Increasing of threshold for edge elimination in SIFT (high contrasts). Example
is implemented in MATLAB. Left: Edge threshold = 0.1. Right: Edge threshold
= 0.7. 18

3.10 Illustration of a SIFT-descriptor [3]. 19
3.11 Illustration of pixel values estimated with an integral image [19]. 20
3.12 Left: Double derivative Gaussian filter in v direction (Lvv) and in uv direction

(Luv). Right: Approximation of double derivative Gaussian with box filter in
same directions (Duv, Dvv). Grey area is weighted 0 [1] 21

3.13 Left: Illustrates the scale space pyramid used in SIFT. Right: Illustration the
scale space pyramid used in SURF [1] . 22

3.14 Upper filter: Dvv. Bottom: Duv. The filter dimension increases from 9 × 9 to
15× 15 [1]. 23

3.15 Illustration of scale distribution per octave [1]. 23

xii

3.16 Illustration of Haar wavelet filter. Left: Filter for gradients in u direction. Right:
Filter for gradients in v direction. The black region is weighted 1 and the white
is weighted -1 [1]. 24

3.17 Result of Haar wavelet filtering. The red dots represents positive responses, and
the blue arrow represents the sum of responses as a vector [1]. 24

3.18 Left: Oriented 4× 4 grid covering a feature ready to be filtered. Each square of
the grid is filtered by a Haar wavelet-filter of 5× 5 (illustrated as a 2× 2 matrix
in right figure) for detection of gradients relative to the orientation of the grid [1]. 25

3.19 Left: Homogeneous region results in a low response due to Haar Wavelet filtering.
Middle: If intensity in horizontal direction is frequently changed, the value of∑
|dx| is high and the others remain low. Right: If the intensity is gradually

increasing in the horizontal direction, both
∑
dx and

∑
|dx| will respond with

a high value [1]. 25
3.20 Matching two images using SIFT and nearest neighbour. 26

4.1 Rotation direction of the different joints. 30
4.2 End-point open-loop. The camera is fixed in the world and observing a target

and the end-effector [4]. 31
4.3 Visual servo system with PBVS [4]. 31
4.4 How nodes communicates in ROS [4]. 32
4.5 Example of a bigger map of nodes. 33
4.6 ROS Calibration Tool. 34

5.1 Test tags. 37
5.2 Communication between ROS nodes while using SIFT and SURF in experiment 1. 37
5.3 Scene of experiment 1. 38
5.4 Left: Tag 1 selected from Google. Right: Tag 1 captured with the camera. . . . 38
5.5 SIFT function in OpenCV initialized with recommended values. 39
5.6 SURF function in OpenCV initialized with recommended values. 39
5.7 Testing tag 1. 40
5.8 Comparing matches in tag 1, analyzed with SIFT and SURF. 41
5.9 Testing tag 2. 42
5.10 Comparing matches in tag 2, analyzed with SIFT and SURF. 43
5.11 Testing tag 3. 44
5.12 Comparing matches in tag 3, analyzed with SIFT and SURF. 45
5.13 Testing tag 5. 46
5.14 Comparing matches in tag 5, analyzed with SIFT and SURF. 47
5.15 Testing tag 9. 48
5.16 Comparing matches in tag 9, analyzed with SIFT and SURF. 49
5.17 Time used to detecting approximately 440 features using tag 1. 51
5.18 Time used to descriptor extraction of approximately 440 features using tag 1. . 52
5.19 Time used to match approximately 440 features suing tag 1. 53
5.20 Scene of experiment 2. 54
5.21 A mask defined to detect features in the starting position. From pixel 290 to

330 in u direction (horizontal), and from 200 to 240 in v direction (vertical). . . 56
5.22 A mask defined to detect features in the end position. From pixel 530 to 570 in

u direction (horizontal), and from 30 to 70 in v direction (vertical). 56

xiii

5.23 Scene in experiment 2, with an illustration of the camera view in blue, the
transformations from robot gripper to the tag, Z and a smartPAD. 57

5.24 Transformation from the tag to the center of the train track circle via the prin-
ciple point. 58

5.25 Estimation of angle velocity. 59
5.26 The KUKA Agilus grasping an object in motion. 60
5.27 Node structure in ROS, involving 2D camera, an implementation of a feature

detector, Movit! and a KUKA Agilus KR 6 R900 sixx robot. 61
5.28 KR C4 controller, KUKA Agilus KR 6 R900 sixx and the smartPAD. 62
5.29 rviz simulation of a trajectory defined with MoveIt!. 63
5.30 Image of the gripper. 64

6.1 Time of detecting features and create descriptor using tag 1. 68
6.2 Time of detecting features and extracting descriptors using tag 1. 70

A.1 Testing tag 4. 78
A.2 Comparing matches results using tag 4. Image stream are analysed with SIFT

and SURF. 79
A.3 Testing tag 6. 80
A.4 Comparing matches results using tag 6. Image stream are analysed with SIFT

and SURF. 81
A.5 Testing tag 7. 82
A.6 Comparing matches results using tag 7. Image stream are analysed with SIFT

and SURF. 83
A.7 Testing tag 8. 84
A.8 Comparing matches results using tag 8. Image stream are analysed with SIFT

and SURF. 85
A.9 Testing tag 10. 86
A.10 Comparing matches results using tag 10. Image stream are analysed with SIFT

and SURF. 87
A.11 Time used to detecting approximately 698 features in tag 1. 89
A.12 Time used to extract descriptors for approximately 698 features from tag 1. . . 90
A.13 Time used to match approximately 698 features in tag 1. 91
A.14 Time used to detecting approximately 166 features in tag 9. 92
A.15 Time used to extract descriptors for approximately 166 features from tag 9. . . 93
A.16 Time used to match approximately 166 features in tag 9. 94
A.17 Time used to detecting approximately 916 features in tag 9. 95
A.18 Time used to extract descriptors for approximately 916 features from tag 9. . . 96
A.19 Time used to match approximately 916 features in tag 9. 97

B.1 Time used for detecting features, descriptor extraction and matching 698 key-
points using tag 1. 100

B.2 Time used for detecting features, descriptor extraction and matching 166 key-
points using tag 9. 101

B.3 Time used for detecting features, descriptor extraction and matching 916 key-
points using tag 9. 102

xiv

B.4 Total time used to detect features, extract descriptors and matching 230 features
in tag 1. 104

B.5 Total time used to detect features, extract descriptors and matching 185 features
in tag 9. 105

B.6 Total time used to detect features, extract descriptors and matching 230 features
in tag 9. 106

xv

List of Tables

4.1 Denavit-Hartenberg parameters for KUKA Agilus. 29

6.1 Results from experiment of identifying robustness. 66
6.2 Results from experiment of computation time, where the percentage value of

SURF compared to SIFT is presented. 67
6.3 Results related to an implementation of the feature detector of SURF in com-

bination with the descriptor extractor of SIFT compared with a standard im-
plementation of SIFT, which contains the feature detector and the descriptor
extractor of SIFT. 69

xvi

xvii

Chapter 1

Introduction

1.1 Background

In 2014, the worldwide sales of industrial robots reached a new record with an increase of 27%
soled units in one year [8]. This shows that industry is increasingly willing to invest in robotics
and automotive solutions to do work traditionally done by humans. This progress is especially
large within automation, chemical, rubber, plastic and food industry, and the strongest drivers
of the growth were the automotive followed by the electronics industry [8].

The main topic of this report is relates to automation, and is specialized to solutions for sub-
sea technology and mass production. Within subsea technology, robots are used in petroleum
production and mining of minerals. Subsea structures are currently deployed on thousands of
meters depth, and the industry need customized units to operate in these harsh environments.
Remotely operated vehicle (ROV) and autonomous underwater vehicle (AUV) are developed
for this purpose, and new discoveries make the conditions increasingly challenging. High pres-
sure, currents, obstacles and sudden temperature changes may cause vibration and unwanted
movement on the underwater vehicle. These challenges make operations more time-consuming
and solutions to decrease the influence of these challenges are needed. The vibrations may
result in issues of brightness, rotation, scale, noise and illumination in the sight of view. Since
the navigation system of the vehicle depends on information about the surroundings, computer
vision should be able to collect reliable data close to real time. Similar detecting properties
is also relevant for mas production, where computer vision should be able to classify specific
object according to design, patterns or colors.

To day, some algorithms for detecting objects are developed and results have been com-
pared [10]. This report have some similarities to this previous comparisons, but the current
data is based on a live tracking of an object instead of tracking an object in a collection of
different images. This evaluation will give an indication according to which a feature detector
is useful in situations related to subsea technology and mass production, or not.

Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Feature (SURF) are the
two methods tested in this report. Different analytical experiments were performed to gather
reliable data for an evaluation, and a practical experiment was performed to prove the utility
of a feature detector. The experiments were implemented using C++ with an open source
library called OpenCV included. For acquiring the relevant competence for solving the given
objectives, a literature study was also a part of the project.

1

1.2 Objectives

The main objectives of this Master’s thesis has been as follows:

• Present the methods SIFT and SURF

• Implement SIFT and SURF for an image stream and track an object in motion. Test the
methods, and discuss the results according to computation time and robustness.

• Implement an experiment where an Agilus robot is navigated according to a camera
system using SIFT and SURF.

• Try to grasp an object in motion by using computer vision.

1.3 Structure of the Report

The rest of the report is organized as follows:

• Chapter 2 presents fundamental information about a camera, relationship between 2D
and 3D, and which information an image contains.

• Chapter 3 describes the mathematics behind SIFT and SURF, together with an intro-
duction to a matching method.

• Chapter 4 explain fundamental knowledge about robotics, communication and user in-
terface.

• Chapter 5 explain the experiments and presents collected data.

• Chapter 6 presents results and improvements.

• Chapter 7 summarize the experiments with a conclusion, discussion and presents recom-
mendations to further work.

• Appendix A includes additional information for Chapter 5.

• Appendix B includes additional information for Chapter 6.

• Appendix C includes C++ source code.

• Appendix D Digital Appendix contains source code and movies from the experiments.

2

3

Chapter 2

Image Formation and Image Processing

To track an object in motion, continuous collection of accurate data is important. Data must
be easy to analyze and the total operation should be as close to real time as possible. To
understand which information is important and how to detect it, this chapter will discuss
fundamental knowledge about camera, transformations and image processing.

2.1 Camera

Pinhole is a simple way to present camera basics. It is a closed box with only light coming
thought a small hole in center of one of the walls. The hole is facing the object and is made
to admit enough light to make an inverted projection of the object on the inside wall ahead
of the hole, see figure 2.1. The length between these walls is called focal length, f , and if f is
known, the model can be used to find the geometry of a point in the world, expressed in two
dimensions.

Figure 2.1: Pinhole camera geometry [7].

The figure illustrates the camera center C, where the optical axis intersects the image plane
with a focal length z = f , seen from camera. This point of intersection is called the principal
point o and defines origin of the image plane. Using similar triangles, the point P = (X,Y, Z)
in the world can be projected in the image plane as p = (x, y). Where

x = f
X

Z
, y = f

Y

Z
(2.1)

4

that is a perspective projection from world to the image plan, and represent the point trans-
formed from R3 to R2.

2.2 Digital Image

A digital image plane is represented as a W × H grid of equally spaced points called pixels,
where W is width and H is height. The grid is organized in pixel coordinates as two vectors,
u and v. The vectors are both positive integers and have origin = (0, 0) defined in the upper
left corner in the image plane. The position from camera to world is represented in Cartesian
coordinates (x, y) with origin in center of the image plane. To create a correspondence between
the pixel coordinates and the Cartesian coordinates, a relationship may be expressed with
formula

u =
x

ρw
+ u0, v =

y

ρh
+ v0, (2.2)

where ρw is the width and ρh is the height of a single pixel, and o = (u0, v0) is the coordinate
of the principal point, see Figure 2.2.

Figure 2.2: Central projection model representing image plane and discrete pixels [4].

5

2.3 Homogeneous Transformation

When the relationship between Cartesian coordinates and pixel coordinates are known, homo-
geneous transformation may be used to make a projection of world point P = (X,Y, Z)T in the
image plane. By scaling the Cartesian X and Y coordinates with the Cartesian Z coordinate,
the transformation between the Cartesian and pixel coordinates becomes linear, and the world
point P can be represented in homogeneous form p̃ = Z(x, y, 1)T (tilde is used to express
that the coordinates are homogeneous) in the image plane. The world point coordinates are
converted pixel coordinates, with

u =
x

ρw
+ u0, v

′ =
y

ρh
+ v0. (2.3)

Then the homogeneous pixel coordinates of point P̃ is represented as

p̃ = Z

uv
1

 (2.4)

in the image plane. When the world point is represented as homogeneous pixel coordinates in
the image plane, the transformation between the point and camera have to be defined. Next

Figure 2.3: Transformations between camera and a world point [4].

step is to define the transformation from world point P̃ to the camera with

CP̃ = (0TC)−1 0P̃ , (2.5)

where 0TC is the transformation from world {0} to camera {C} and 0P̃ is transformation
from world to P̃ , see Figure 2.3. When relationship between pixel coordinates and Cartesian
coordinates, the transformations and the internal camera parameters are known, the projection

6

of a world point in the image plane may be express with respect to the camera. The general
form of the expression is

p̃ =

f/ρw 0 u0

0 f/ρh v0

0 0 1

︸ ︷︷ ︸

K

1 0 0 0
0 1 0 0
0 0 1 0

︸ ︷︷ ︸

P0

(0TC)−1P̃ (2.6)

= KP0(0TC)−1P̃ (2.7)

= CP̃ . (2.8)

where C is a 3×4 matrix that express transformation due to scale, translations and perspective
projection [4]. This matrix is often referred to as the camera calibration matrix. By repeating
this operation on each point in an image, a complete object will be expressed in the image
plane, and SIFT or SURF may be used to detect robust an invariant regions.

7

2.4 Grey scale

To detect regions in an image that are invariant to variations in transformation, scale, noise
and rotation, it is necessary to emphasize and compare the pixels. One method is to convert
the image to grey scale, which means that the pixels are represented according to intensity.
The intensity is described by a value between 0 and 1, where black equals 0 and white equals
1, see Figure 2.4

Figure 2.4: Example of emphasizing intensity in gray scale [4].

This method makes it possible to detect and evaluate extrema values in the image. A tool that
is important for both SIFT and SURF is the estimation of robustness and orientation of the
selected regions. An example of an image that is converted from color to grey scale is illustrated
in Figure 2.5.

Figure 2.5: An example of a RGB image converted to grey scale [20].

8

2.5 Features

To track a moving object, a sequence of images of object motion must be processed and com-
pared. For easy detection, the selection of an object or tag with distinct points is important.
An object presented in images may be influenced by scaling, affine invariance, rotation and
transformation. Detection of unique regions that are highly reliable is therefore necessary to
unambiguously identify the object in other images. This type of homogeneous regions (blobs),
lines and distinct points in a scene are called features [4]. A feature can be represented by the
pixel coordinates of an extrema point in center of a unique region, the orientation of the image
gradient and a scale value representing the scale where the extrema point was first detected. A
feature is usually represented as a clock with a pointer, see Figure 2.6. The radius of the clock
indicates the uniqueness of the feature and the pointer indicates the direction of the greatest
image gradient. The radius and orientation are determined depending on the method. More
details are described in Chapter 3.1 about SIFT and Chapter 3.2 about SURF.

Figure 2.6: Illustration of features.

9

2.6 Descriptors

The main property of a feature is the ability to be repeatedly identified in other images. The
repeatability expresses reliability in terms of how each feature may be detected in different
images. To make a feature detectable in a new image among thousands of other points, each
single feature is awarded a distinctive and unique description of their closest pixels. This de-
scription contains vectors that represents the orientation and the image gradient in the specific
area. The description is called a descriptor, and is structured and dimensioned depending on
method. The descriptor can basically be illustrated in a grid of vectors, see Figure 2.7. The
SIFT features in Figure 2.6 are described with descriptors in Figure 2.8. Details about how
descriptors are constructed according to method are discussed in chapter about SIFT 3.1 and
SURF 3.2.

Figure 2.7: Illustration of a SIFT-descriptor [3].

Figure 2.8: Illustration of features with descriptors. The descriptors are illustrated as green
grids.

10

11

Chapter 3

Computer Vision

When using SIFT and SURF, it is useful to be familiar with the structure of the algorithms, the
limitations, and expected results. It is also necessary to know an accurate and fast matching
method to compare the results afterwards. This chapter gives a description of this and illustrates
the SIFT and SURF methods and a matching method called FLANN.

3.1 SIFT

SIFT is an acronym for scale-invariant feature transform and is an widely used algorithm
within computer vision [13]. SIFT was published by David Lowe (1999) and patented by the
University of British Columbia [14]. The purpose of SIFT is to extract scale and rotation
invariant features form an image, that are partially invariant to variation in illumination and
3-dimensional camera viewpoint. The goal is to make each feature so distinct that it cannot
be confused with other features in a database holding thousands of features from different
images [13]. To detect these unique features, SIFT is built up in four stages where the regions
of interest are identified.

3.1.1 Detection of scale space extrema

The first stage in SIFT is scale invariant feature detecting. This is done by converting the
image to grey-scale and then search for features that are stable across all possible scales. The
method is based on a function with continuous scale change called scale space [21]. The purpose
of scale space is to detect pixels that express either a minima or maxima in a specific scale.
By increasingly scale of the image, regions becomes increasingly blurred and smaller regions
progressively disappears from view [4]. The scale space of an image is defined as a function
L(u, v, σ) where u, v are pixel coordinates and σ is scale. This function is produced of a variable-
scale Gaussian G(u, v, σ) in convolution with an input image I(u, v). This gives formula

L(u, v, σ) = G(u, v, σ) ∗ I(u, v), (3.1)

where ∗ is a convolution operator and

G(u, v, σ) =
1

2πσ2
e−(u2+v2)/2σ2

. (3.2)

To effectively detect maxima and minima in the scale space, Lowe have proposed using Differ-
ence of Gaussian (DiffG) in convolution with the image, D(u, v, σ). A DiffG-filter is illustrated

12

in Figure 3.1. The convolution with DiffG and the image may be expressed with formula

D(u, v, σ) = (G(u, v, kσ)−G(u, v, σ)) ∗ I(u, v) = L(u, v, kσ)− L(u, v, σ). (3.3)

Figure 3.1: Illustration of a DiffG-filter used in SIFT [17].

The scaling process is built up in octaves where scale is increasing within each octave. The
scaling is increased with a multiplication factor k for each step. This means that the first filter
may have σ0 = σ, see for instance left filter in Figure 3.2, the second filter have σ1 = kσ,
see right filter in Figure 3.2 and the third filter have σ2 = k2σ. A typically Gaussian filter is
illustrated in Figure 3.3, where the filter is highly weighted in the center.

Figure 3.2: Illustration of two Gaussian-filters with different scale used in SIFT [17].

To scale the image across all possible scales Lowe proposed values based on experience from
experimental data. The scales are chosen according to the highest percentage repeatability in
respect of efficiency [13]. This leads to the multiplicative factor k = 2

1
s , where s is an integer.

It is preferred to have s = 3 and s + 1 images in each octave, with a base scale of σ = 1.6
applied to the first image in each octave [17]. It is also recommended to reduce the image

13

resolution with a factor of 2 for each octave, while the size of the sequence of Gaussian filters
applied at each octave remains the same. This means that an image with resolution of 512×512
in convolution with a DiffG-filter in the first octave, will have resolution 256 × 256 in second
octave, etc. This is illustrated in Figure 3.4.

Figure 3.3: Gaussian-filter in SIFT with
σ = 5 implemented in MATLAB.

Figure 3.4: DiffG made of G(u, v, k5σ)
and G(u, v, k4σ) in SIFT.

This simplifies the calculation so that smaller images are applied to a one-sized filter, instead
of applying very large filters to original-sized images [17]. When the image have been scaled
across all possible scales, all the resulting D(u, v, σ) images are stacked in a pyramid shaped
scale space, see Figure 3.5. Lowe’s octave structure for computing the scale space DiffG repre-
sentation of an image is illustrated in Figure 3.6.

Figure 3.5: Pyramid of different DiffG-filters in convolution with an images in different sizes.
Left: Illustration implemented in MATLAB. Right: Image from [1].

14

Figure 3.6: Lowe’s octave structure for computing the scale space DoG representation of an
image [17].

3.1.2 Local extrema detection

When an image is scaled across all possible scales, the maxima and the minima must be located.
This is done by comparing each single pixel with its 28 neighbors. The pixels are picked from
images D(u, v, σ) stacked in the pyramid and compared with the eight closest pixels in the
current scale, the nine closest pixels in the scale above and the nine closest pixels in the scale
below, see Figure 3.7. If a pixel appears to express either maxima or minima among the
neighbors, this pixel is the important one.

Figure 3.7: Detection of local maxima and minima in SIFT. Pixel X will be compared with its
28 neighbors [13].

15

3.1.3 Elimination of unstable extrema values

The comparison of neighbors may accept many local extrema and not all of these will be stable
and required forward in the process. To define the required pixels, accurate mapping eliminates
pixels related to low contrasts and pixels along edges. The first step is to eliminate pixels with
low contrast, for instance pixels in black dots on a white paper. These regions of pixels will
appear to be unique compared to the white paper, but uniform compared to other black dots
on the same paper. These pixels are not required further in the evaluation. To determine the
exact location of stable extrema values, interpolation of collected data describing the neighbor
pixels is used. The interpolation is done with Taylor expansion, where each sample point from
D(u, v, σ) is defined as the origin. An expression of the interpolation may be

D(x) = D +
∂DT

∂x
x +

1

2
xT∂

2D

∂x2
x, (3.4)

where x = (u, v, σ) is the offset from the pixel that is evaluated (origin). By deriving the Taylor
expansion with respect to x and setting the expression to zero, the location of the extrema value
x̂ can be determined with formula

x̂ = −∂
2D−1

∂x2

∂D

∂x
. (3.5)

If x̂ is greater than 0.5 in any of the directions u, v or σ, the extrema value will be closer
to another pixel x. In that case, x = (u, v, σ) must be changed and a new interpolation is
performed with respect a new point. This operation is repeated until x̂ is less than 0.5 in
all u, v and σ, or until interpolations are carried out a predetermined number of times. The
resulting x̂ = (u, v, σ) will then be summarized with the location of the evaluated pixel location
in D(u, v, σ) to determine the interpolated estimate of the location of the extrema value. The
next step is then to remove extrema values of small contrasts using D(x̂). By combining the
formula (3.4) and (3.5) to

D(x̂) = D +
1

2

∂DT

∂x
x̂, (3.6)

a minimum threshold of D(x̂) may be determined. This eliminates the smaller D(x̂) values.
Lowe suggests a threshold value of 0.03 as default in his paper [13]. Figure 3.8 illustrates a
result of increasing this threshold.

16

Figure 3.8: Increased threshold to eliminate low contrasts in SIFT. Example is implemented in
MATLAB.. Left: Low contrasts threshold = 0.02. Right: Low contrasts threshold = 0.05.

After elimination of extrema values related to small contrasts, the third stage is to eliminate
pixels along edges. Pixels along edges will appear as high contrast across the edge, but low
contrast along the edge. These regions make unstable features, and are not required further in
the evaluation. The method used to eliminate these regions is based on the principal curvature
in images picked from the scale space pyramid. The principal curvature depends on the image
contrast. A large curvature will represent a high contrast and a small curvature will represent a
low contrast. The principal curvature of the image D will be proportional with the eigenvalues
of the Hessian matrix. This means that limitations between maximum and minimum of the
principal curvature may be defined by estimating the relationship between the eigenvalues in a
Hessian matrix. Hessian matrix is given by

H =

[
Duu Duv

Dvu Dvv

]
(3.7)

and the relationship between the eigenvalues are estimated by computing the determinant and
the trace of the Hessian matrix. The trace and determinant are expressed as

Tr(H) = Duu +Dvv = α+ β, (3.8)

Det(H) = DuuDvv − (Duv)
2 = αβ, (3.9)

where α represents the largest eigenvalue and β represents the smallest. By estimating the
ratio r between these two eigenvalues, the relationship may be expressed as α = rβ. This gives
the formula

Tr(H)2

Det(H)
=

(α+ β)2

αβ
=

(r + 1)2

r
. (3.10)

By checking if the principal curvature have a ratio less than r, pixels along edges will be
eliminated. This may be determined with formula [12]

Det(H)

Tr(H)2
<

r

(r + 1)2
. (3.11)

This maximum limit is recommended to be r = 10 by Lowe [13], and Figure 3.9 illustrates a
increasing of the threshold for edge elimination.

17

Figure 3.9: Increasing of threshold for edge elimination in SIFT (high contrasts). Example is
implemented in MATLAB. Left: Edge threshold = 0.1. Right: Edge threshold = 0.7.

3.1.4 Feature orientation

At this point, each distinctive point (key point) has an estimated image coordinate and a
scale. The remaining part is to assign a consistent orientation to each key point to ensure
rotation invariance. The orientation is estimated according to the gradient magnitude m(u, v)
and orientation θ(u, v) for a Gaussian smoothed images, L, with the closest scale with respect
to each specific key point. For instance, if an extrema value was detected in D(u, v, k5σ),
then m(u, v) and θ(u, v) are determined with respect of image plane L(u, v) with k5σ in the
scale axis, see Figure 3.5. The purpose of estimating a consistent orientation based on local
image properties is to represent the descriptor with respect to this orientation. This makes
features recognizable independent of image rotation. Since the extrema values are detected
at different scales, some of the features will be more robust than others. To determine the
gradient magnitude and the orientation of one specific Gaussian smoothed images, Lowe has
derived two equations, (3.12) and (3.13) [13].

m(u, v) =
√

(L(u+ 1, v)− L(u− 1, v))2 + (L(u, v + 1)− L(u, v − 1))2, (3.12)

θ(u, v) = tan−1 (L(u, v + 1)− L(u, v − 1)

(L(u+ 1, v)− L(u− 1, v)
. (3.13)

These orientations are then plotted in a histogram divided in 36 columns. Each column repre-
sent 10◦ of a total 360◦ of possible orientation. Each orientation is weighted with respect to the
gradient magnitude and the scale σ representing the Gaussian smoothed image. When all 360◦

are plotted, a vector expressing the gradient magnitude and the orientation can be defined.
This vector is a result of column values that are located within 80% of the highest column in
the histogram. The final orientation vector is added to the feature, and the completed feature
can be represented with coordinates, scale and orientation. The feature is usually visualized
as a clock with a pointer. The gradient magnitude is represented as the clock radius and the
orientation is represented as the pointer position. This is illustrated in Figure 3.10.

18

3.1.5 SIFT-descriptors

Each feature is assigned a descriptor based on the characteristic coordinate u, v, orientation θ
and the scale σ of the feature. First, a oriented square centered in u, v is created in the original
image. The orientation is defined by θ, and each side of the square is a multiple of the scale
σ. The image is blurred with a Gaussian of the similar σ, and the square is divided in a grid
of 16 × 16. Precomputed gradients, see Chapter 3.1.4 are defined in each grid, and weighted
with a Gaussian filter centered in the middle of the square. This means that gradients close to
u, v will be highly weighted. The next step is dividing the square into a 4 × 4 grid, where a
histogram of eight orientation bins are defined in each grid. A collection of all these histograms
results in a 128-dimensional vector [17]. To reduce the effect of illumination changes, is the
vector normalized into unit length. This cancels extremely large values, and will reduce affects
because of contrast changes. The final vector will then be the specific descriptor of the specific
feature. The process is illustrated in Figure 3.10.

Figure 3.10: Illustration of a SIFT-descriptor [3].

19

3.2 SURF

SURF is an acronym for Speeded Up Robust Features [1] and was first presented by Herbert Bay
(2006). SURF is a local feature detector partly inspired by SIFT, and includes many similar
functions. The main difference relates to the mathematics that underlies the algorithms, and
according to [1] SURF is less complicated and organized to produce fast computation compared
to SIFT. To become more familiar with the algorithm, this chapter presents the structure and
the procedures for local features detection according to the SURF method.

3.2.1 Interest point detection

First step in SURF is to detect pixels of interest. Similar to SIFT, all images are initially
smoothed in SURF. The difference is that SURF uses a more efficient method called a box
filter, where the filter size is easily estimated using a method called Integral Image [19]. This
is an iterative calculation of the sum of pixel values within a rectangle of an image. In image
I(u, v), the integral image IΣ will represent the sum of pixel values between a point (u, v)T and
the origin. Formally expressed with formula

IΣ(u, v) =

i≤u∑
i=0

j≤v∑
j=0

I(i, j). (3.14)

When the integral image is defined, the sum of pixel values within the rectangle may easily be
calculated, see example in Figure 3.11.

Figure 3.11: Illustration of pixel values estimated with an integral image [19].

20

This means that the sum of pixel values within the rectangle 4 may be computed according to
four reference points. The sum of pixel values at point A is equal the sum of pixel values in
rectangle 1. The sum of pixel values at point B is 1 + 2, the sum of pixel values at C is 1 + 3
and the sum of pixel values at D are equal 1 + 2 + 3 + 4. The sum of pixel values in rectangular
4 may finally be computed with formula

Σ = A+D − (C +B). (3.15)

Since the computation is independent of filter size, this method is very efficient to filter large
areas. SURF save a lot of computing power and can execute fast convolutions on an approxi-
mately constant time. To locate the robust extrema values in the image, the detector is based
on the maximal determinant of a double derivative Gaussian with respect to the pixel (u, v).
This results in a Hessian matrix H(u, v, σ) in I(u, v) with a scaling σ. The Hessian matrix
expresses with formula

H =

[
Luu Luv
Lvu Lvv

]
, (3.16)

where Luu is the double derivative Gaussian ∂2

∂2(u,v)2
g(σ) in a convolution with image I(u, v),

similarly for Luv and Lvv. This method requires much computing power and was replaced with
box filter due to efficiency, like LoG was replaced with DiffG in SIFT [2]. Box filter is illustrated
in Figure 3.12. In this manner, SURF constructs a scale space of box filters in various sizes.

Figure 3.12: Left: Double derivative Gaussian filter in v direction (Lvv) and in uv direction
(Luv). Right: Approximation of double derivative Gaussian with box filter in same directions
(Duv, Dvv). Grey area is weighted 0 [1]

The advantage of this approach is that the box filters are defined in terms of integral images,
which keeps computation time approximately constant regardless to filter size. The box filter
is denoted as Duu, Duv and Dvv, and Figure 3.12 illustrates a filter with dimension 9× 9 and
approximates a Gaussian with σ = 1.2 [1]. This scale is the lowest scale in a scale space of
SURF. The approximation between box filters and the determinant of a Hessian matrix of a
double derivative Gaussian may be expressed with formula

det(Happrox) = DuuDvv − (wDuv)
2, (3.17)

where w = 0.9 is a proportion required to make the approximation correct [1]. As mentioned
in Chapter 3.1.1 the scale space pyramid in SIFT is constructed of Gaussian smoothed images.
Size decreases and scale increases according to the pyramid height. In SURF, it is the other
way around. The first scale space layer has a box filter of dimension 9× 9, and then increases
the dimension according to the pyramid height, see Figure 3.13. Simultaneously as the box
filter increases, the associated scaling σ also increase. This scale value is an approximation

21

σapprox, and is constantly increased according to the actual box filter. This may be determined
from [2]

σapprox = ActualFilterDimension · BaseFilterscaling

BaseFiltersize
(3.18)

σapprox = ActualFilterDimension · 1.2

9
. (3.19)

When the scale is determined for each filter, the scale space pyramid may be constructed. The
scale space contains only box filters, and the filters do not have to be in a convolution with the
image at all the time. This make a convolution between the original image and any box filter
possible, even several box filters in parallel. This reduces the computing power substantially.

Figure 3.13: Left: Illustrates the scale space pyramid used in SIFT. Right: Illustration the
scale space pyramid used in SURF [1]

Similarly with SIFT, the scale space of SURF is divided into octaves. The scaling changes
according to a certain value and the pyramid scales the image across all possible scales. To
scale the image correctly, the filter center is ensured by increasing the dimension of the filter
with 6 pixels for each scale. This means that the first octave contains filters from 9×9 to 15×15,
21×21 and finally 27×27 [1]. Figure 3.14 illustrates how the filter dimensions increase. To scale
the image across all possible scales, the scale have to overlap the next octaves. The dimensions
of the two first filters in each octave will then be determined according to the first and the last
filter in previous octave. All filters after these two filters increase with 6 pixels that duplicates
in next octave. This mean that the filter dimensions increases with 6 pixels in first octave,
increases with 12 pixels in second and 24 in third. Then first octave consists of filter 9 × 9,
15 × 15, 21 × 21, 27 × 27 and second octave consists of 15 × 15, 27 × 27, 39 × 39, 51 × 51.
Figure 3.15 illustrates how the scale is distributed in each octave.

3.2.2 Interest point localisation

When the scale space is constructed, extremum values may be located. The approach is similar
to the approach in SIFT. The first step is to compare each pixel with its 28 neighbors in scale
space, see Chapter 3.1.1. The extrema is then expressed in a Hessian matrix H(u, v, σ) and
interpolated in a Taylor expansion, similar to D(u, v, σ) in SIFT. The 0.5 threshold is also the
same as in SIFT, see Chapter 3.1.3. All accepted extrema points are then used to create the
features and the descriptors.

22

Figure 3.14: Upper filter: Dvv. Bottom: Duv. The filter dimension increases from 9 × 9 to
15× 15 [1].

Figure 3.15: Illustration of scale distribution per octave [1].

3.2.3 Orientation assignment

As in SIFT the assignment of a consistent orientation based on the local image properties is
important. The determination of the orientation is done using the integral image in combination
with a Haar wavelet filter to evaluate all points of interest and their neighborhood [1]. Haar
wavelet filters are simple filters used to find the gradient in both u and v direction (Figure 3.16).
To estimate the orientation, the Haar wavelet filter is defined with a side length of 4σ, searching
in a radius of 6σ around each point of interest. The σ value is equal to the representative scale
where the extrema was first detected. The pixels are then divided into six windows, where
the Haar wavelet responses in the u direction are represented as points along the abscissa,
and responses in v direction as points along the ordinate [6]. The dominant orientation in
each window is then estimated by calculating the sum of all horizontal and vertical responses
within 60◦, and is finally represented as a vector. Each vector is then compared, and the most

23

dominant of the total six becomes the final feature orientation [1]. See example in Figure 3.17.
The feature consists of the same value as in SIFT, a u, v coordinate representing the point of
interest, scale σ and orientation, and are also visualized as a clock with a pointer.

Figure 3.16: Illustration of Haar wavelet filter. Left: Filter for gradients in u direction. Right:
Filter for gradients in v direction. The black region is weighted 1 and the white is weighted
-1 [1].

Figure 3.17: Result of Haar wavelet filtering. The red dots represents positive responses, and
the blue arrow represents the sum of responses as a vector [1].

24

3.2.4 SURF-descriptors

The last step is to create a descriptor for each single feature. This is done by constructing a
4×4 grid which is centered by the point of interest, and which is oriented along the orientation
of the feature. The grid dimension is set to 20σ, where σ is the representative scale for the
specific feature. The next step is to filter the image with a 5× 5 Haar wavelet filter to detect
the gradients in the region covered by the grid (3.18). When the Haar wavelet filter has filtered
the horizontal and vertical direction of each 5 × 5 region, the responses are summed up in
each square of the 4 × 4 grid (the notation for direction is x = u and y = v). In order to
capture information about the polarity of intensity changes, the sum of absolute values are also
extracted, |dx| and |dy|. This results in a 4D vector v expressed with formula

~v =
(∑

dx,
∑

dy,
∑
|dx|,

∑
|dy|

)
. (3.20)

Concatenation of all values of the 4×4 grid results in a descriptor vector of length 64. This is half
the size of a SIFT descriptor, and may result in a faster matching process whit less computation.
Figure 3.19 illustrates how Haar wavelet filter responds to three different gradient cases.

Figure 3.18: Left: Oriented 4 × 4 grid covering a feature ready to be filtered. Each square of
the grid is filtered by a Haar wavelet-filter of 5× 5 (illustrated as a 2× 2 matrix in right figure)
for detection of gradients relative to the orientation of the grid [1].

Figure 3.19: Left: Homogeneous region results in a low response due to Haar Wavelet filtering.
Middle: If intensity in horizontal direction is frequently changed, the value of

∑
|dx| is high

and the others remain low. Right: If the intensity is gradually increasing in the horizontal
direction, both

∑
dx and

∑
|dx| will respond with a high value [1].

25

3.3 Matching

Matching is the procedure where corresponding features in two or more images are detected.
Matching is a good way to compare SIFT and SURF to measure robustness and the need for
computing power. Since SIFT and SURF are both robust methods, the simple but fast matching
method FLANN is used to compare the detected keypoints. FLANN is an acronym for Fast
Library for Approximate Nearest Neighbour, and contain a collection of algorithms optimized
for fast nearest neighbor search in large datasets and for high dimensional features [15]. The
idea of nearest neighbor matching is to measure distances between features. This means that
features located close to eachother will match, and a match is perfect if the distance is equal to
zero. This may happen in cases where features have the same location or illustrates a similar
object in two or more different images. In Figure 3.20, nearest neighbor matching are illustrated
by plotting lines between matches in two equal images.

Figure 3.20: Matching two images using SIFT and nearest neighbour.

26

27

Chapter 4

Robotics

A KUKA Agilus KR 6 R900 sixx robot was used to grasp the moving object. To interconnect a
usb 2D camera, a manipulator and a computer it is necessary to know the forward kinematics
of the manipulator and interface protocols of the different systems. In this chapter, the forward
kinematics and the operating system ROS is presented.

4.1 Robot Kinematics

The Denavit-Hartenberg parameters are used in the forward kinematics to calculated the Carte-
sian position and orientation of the gripper. This is described by the The commands sent to
the KUKA Agilus is rotation matrix R, and the vector p, where

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 , p =

pxpy
pz

 . (4.1)

This can be combined in a 4× 4 transformation matrix

T =

r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

 . (4.2)

28

4.2 Denavit-Hartenberg Parameters

A serial-link manipulator consists of a set of links in a chain connected by joints. Each joint has
one degree of freedom (1DOF), either translational (a sliding or prismatic joint) or rotational
(a revolute joint) [4]. The KUKA Agilus used in this project has six degree of freedom (6DOF),
where all joints are revolute. The Denavit-Hartenberg parameters is shown in Table 4.1 and
they are specified with respect to the direction of rotation shown in Figure 3.20. The Z axis is
pointing downwards in the start position.

Denavit-Hartenberg Parameters
Link[−] θ[rad] di[m] ai−1[mm] αi−1[rad]
1 θ∗1 -400 -25 −π2
2 θ∗2 0 315 0
3 θ∗3 0 35 π

2
4 θ∗4 -356 0 π

2
5 θ∗5 0 0 −π2
6 θ∗6 -80 0 π

Table 4.1: Denavit-Hartenberg parameters for KUKA Agilus.

These Denavit-Hartenberg parameters are further used to calculate the robots forward kine-
matics. The transformation from link coordinate frame {j−1} to frame {j} is defined in terms
of elementary rotations and translations as

j−1Aj(θj , dj , aj , αj) = TRz(θj)Tz(dj)Tx(aj)TRx(αj). (4.3)

which can be expanded as

j−1Aj(qj) =

cos θj − sin θj cosαj sin θj sinαj aj cos θj
sin θj cos θj cosαj − cos θj sinαj aj sin θj

0 sinαj cosαj dj
0 0 0 1

 . (4.4)

The parameters αj and aj are constants. The joint variables are denoted θj , and dj is constant
in a revolute joint [4]. The matrix (4.4) is used on each joint from the robot base to the
end-effector, and can be expressed as

TWE = T 0
6 = A0

1A
1
2A

2
3A

3
4A

4
5A

5
6. (4.5)

This transformation matrix describes the position and rotation of the end-effector as a function
of the six joints with respect to the base of the robot.

29

Figure 4.1: Rotation direction of the different joints.

30

4.3 End-Point Open-Loop Control

End-point open-loop control is used to observe the scene and estimate poses for the manipulator
with respect to a tracked object. This is a method where the object, scene and the gripper are
observed from a camera fixed at an arbitrary position in the world [4], see Figure 2.5.

Figure 4.2: End-point open-loop. The camera is fixed in the world and observing a target and
the end-effector [4].

4.4 Position-Based Visual Servoing

In this project the Position-Based Viusal Servoing (PBVS) approach was applied to estimate
poses for the manipulator. PBVS uses observed visual features, a calibrated camera and a
known geometric model or to determine the pose of the object with respect to the camera.
Positions may then be continuously estimated, while the manipulator moves toward an object.
This is illustrated in a control loop in Figure 4.1 [4]. The approach is computationally expensive,
and since the tracked object is moving some simplification are done to make the computer work
faster in the experiment.

Figure 4.3: Visual servo system with PBVS [4].

31

4.5 OpenCV

OpenCV (Open Source Computer Vision Library) is an open source computer vision and ma-
chine learning software library. OpenCV was built to provide a common infrastructure for
computer vision applications and to accelerate the use of machine perception in the commer-
cial products [9]. It contains SIFT, SURF and FLANN, has C++ and Python interfaces and
support Ubuntu and Windows. It is a well documented library and good utility for implemen-
tation of computer vision.

4.6 ROS

The ROS, Robot Operating system is used to communicate between the camera, computer and
the robot. ROS is an open source and flexible framework for writing robot software. ROS
contains many different tools, libraries, and communicates with several type of robots [18].
ROS also supports C++, Python, and has OpenCV integrated in its library. In ROS, all of
the different processes are structured in nodes under a main node called roscore. This is a
master coordination node, that must be running in order for ROS nodes to communicate. A
node is an executable that uses ROS to communicate with other nodes [18], for example web-
camera, RSI-communication, a visualisation tool or a simulation tools. An example of a simple
communication stream where a camera is passing images to an implementation of SIFT and
SURF is illustrated in Figure 4.4. The camera is a node, and represented as an ellipse called
"usb_cam". This node publish information to a topic called "usb_camimage_raw". The topic
is represented as a box. Nodes can publish data to a topic as well as subscribe to a topic to
receive data. In this example, the topic is holding images, and two nodes named "sift" and
"surf" are subscribing to this topic. "sift" represents the implementation of SIFT and "surf"
represents the implementation of SURF. A more complex communication stream is illustrated
in Figure 4.5.

Figure 4.4: How nodes communicates in ROS [4].

32

Figure 4.5: Example of a bigger map of nodes.

33

4.7 Camera Calibration

If a monocular camera (2-Dimensional) is used to measure distances, the intrinsic parameters
for the specific camera must be available. This parameters are represented in the camera cal-
ibration matrix (2.8) and they are usually unknown. In general the principal point is not at
the centre of the photosite array, and the focal length of a lens has only an accuracy of 4%.
The focal length is only correct if the lens is focused at infinity. The pixel dimensions ρw and
ρh may be possible to obtain from data sheet deliver by the producer, but the rest have to be
determined with a camera calibration tool. Calibration techniques rely on sets of world points
whose relative coordinates are known and whose corresponding image-plane coordinates are
also known. In this project, these calibration techniques was performed using the ROS inte-
grated ROS Calibration Tool. This was a simple method which uses a chessboard whit known
square dimensions. The calibration tool gather images of the chessboard in different poses and
orientations. These images was then compared and relative poses was estimated. When the
bar related to X, Y, Size and Skew becomes green, the calibration tool had collected enough
images and the camera calibration matrix could be estimated (Figure 4.6). All experiments
were performed with a Logitech Webcam C930e, and the corresponding calibration matrix K
is defined as

K =

516.496569 0.000000 309.255248
0.000000 516.477238 268.673559

0 0 1

 . (4.6)

Figure 4.6: ROS Calibration Tool.

34

35

Chapter 5

Implementation of SIFT and SURF

This chapter consist of two different experiments. In the first experiment SIFT and SURF were
used to track an object in motion. Different data describing the behaviour of the algorithms
were logged and the object was changed several times. The purpose of the experiment was to
gather data for a comparison and evaluate the methods afterwards. The second experiment
was an experiment where the algorithms were used in a practical setting. By combining a 2D
camera, a feature detector and a KUKA Agilus manipulator, the manipulator may grasp the
object in an estimated position given in world coordinates. SIFT, SURF and FLANN were
implemented with C++ using library OpenCV, and the communication was manage by ROS.

5.1 Experiment 1: Comparing SIFT and SURF

The first experiment was a comparison of the methods with respect to speed and robustness.
The main purpose was gathering reliable data to evaluate the methods on an equal basis.
The experiment was carried out using SIFT and SURF for tracking an object in motion in
a real time image stream. To perform an experiment under as equal conditions as possible,
the algorithms tracked ten different tags attached to one particular object with constant speed
and direction. Threshold limitations were initialized while tracking the first tag. The two tags
obtaining best performance was further analyzed in other to measure the computation time
for the methods. The computation time included three steps; feature detection, descriptor
extraction and matching.

5.1.1 Identify Robustness

Ten tags were selected randomly after a search in Google, where the criteria was distinctive
details, see tags in Figure 5.1. The tags were attached to an object in motion, tested one by
one. A LEGO train was used as a moving object, where an electrical engine ensured constant
velocity and train tracks ensured a constant path. Both methods was tested with respect to
scale, rotation and tracking interval, an all behavior was logged to a text file. The train was
observed by a camera fixed 0.766 meters above the table, with the image plane facing the scene
in parallel with the table, see scene in Figure 5.3.

36

Figure 5.1: Test tags.

The camera was fix in this position during all the experiments to ensure a constant camera view,
and reduce disturbance related to angle changes in the camera view. To test the algorithms
according to mismatches, only half of the train tracks was within the camera view. This made
situations where the train was clearly out of view, and occurrence of mismatches were easy to
observe in the plot. Limited distance between the camera and the object was also an advantage
to gather good matches and reduce difficulties with tracking. All image captured by the camera
was sent (30 fps) to a computer and distributed by ROS to both SIFT and SURF. The ROS
administrated communication stream is illustrated in Figure 5.2 and described in Chapter 4.6.

Figure 5.2: Communication between ROS nodes while using SIFT and SURF in experiment 1.

37

Figure 5.3: Scene of experiment 1.

Figure 5.4: Left: Tag 1 selected from Google. Right: Tag 1 captured with the camera.

38

Figure 5.5: SIFT function in OpenCV initialized with recommended values.

Figure 5.6: SURF function in OpenCV initialized with recommended values.

The Library of OpenCV includes both SIFT and SURF. The functions and there default values
are represented for SIFT in Figure 5.6 and for SURF in Figure 5.5. In SIFT, the nFeature is
the number of best matches to retain. nOctaveLayers is the number of layers in each octave.
contrastThreshold is the threshold to filter out low contrasts, while edge-like features is filtered
out with edgeThreshold, see Chapter 3.1.3. sigma is the sigma value of the first octave [5].
More details about SIFT in Chapter 3.1. In SURF, the minHessian is a limit that reject
features with a lower hessian then the defined threshold, see Chapter 3.2.1. nOctaves is the
number of Gaussian pyramid octaves, which is used by the descriptor. nOctaveLayers is the
number of images within each octave of a Gaussian pyramid [5]. More details about SURF
in Chapter 3.2. SIFT was implemented with default values, but SURF was limited with a
hessianThreshold=5000 for to avoid mismatches. All detected features during the test was
matched with features from a training image of the current tag. This training image was a
camera-captured image of a printed version of the tag. This was necessary to reduce the color
difference between the training image and all the camera-captured images during live object
tracking, see color differences in Figure 5.4. Each feature was finally matched using matching
method FLANN with a maximum Euclidean distance of 90 (three times min_dist = 30) to
the nearest neighbor. A strict limitation for detect robust features. Some of the tests are
represented in images below with corresponding graph, the rest; 4, 6, 7, 8 and 10, are available
in Appendix A.1.

39

Figure 5.7: Testing tag 1.

The first tag was the reference to the chosen properties for all the tests. SIFT tracked the tag
continuous, with no perceptible mismatches and got a maximum of 17 good matches. SURF
had rather no perceptible mismatches, and a maximum of seven matches, see Figure 5.7. The
results are represented in Figure 5.8.

40

Figure 5.8: Comparing matches in tag 1, analyzed with SIFT and SURF.

41

Figure 5.9: Testing tag 2.

The second tag appeared to be difficult to track. SIFT got maximum four matches and the
tracking unstable, see Figure 5.10. SURF got no matches at all, see Figure 5.9.

42

Figure 5.10: Comparing matches in tag 2, analyzed with SIFT and SURF.

43

Figure 5.11: Testing tag 3.

The third tag appeared to be very easy for SIFT to track. Over 350 matches were counted.
For SURF, the situation was opposite. SURF got several mismatches. Figure 5.11 clearly
represents how SURF got contentious mismatches even when the tag was outside the camera
view, see graph in Figure 5.12.

44

Figure 5.12: Comparing matches in tag 3, analyzed with SIFT and SURF.

45

Figure 5.13: Testing tag 5.

The fifth tag appeared to be very difficult to track, see Figure 5.13. Neither SIFT or SURF got
feature matching, and the tag was observed to be very shine and illumination effected. The tag
was black painted and easily disturbed by light reflection. Only mismatches was registered, see
Figure 5.14.

46

Figure 5.14: Comparing matches in tag 5, analyzed with SIFT and SURF.

47

Figure 5.15: Testing tag 9.

The ninth tag appeared to be an easy tag to track, see Figure 5.15. SIFT got 16 matches,
SURF got 15 matches and none mismatches was observed, see Figure 5.16. The tracking was
stable, and contained for a long period.

48

Figure 5.16: Comparing matches in tag 9, analyzed with SIFT and SURF.

49

5.1.2 Computation Time

According to the developer of SURF, the Fast Hessian integrated in the algorithm is three
times faster than the DoG integrated in SIFT [2]. By implementing SURF instead of SIFT
the total time of the three steps; detection, description and matching should be performed
significantly faster [1]. This was tested by tracking tag 1 and tag 9 with constraints that forced
both methods to detect a similar average amount of features. The time spent on the three steps
were logged and compared. The detected number of features were decided to be 440 and 689
in tag 1, and 166 and 916 in tag 9. Figure 5.17, 5.18 and 5.19 descried behavior related to 440
features in tag 1. The rest of the graphs are available in Appendix A.2.

50

Figure 5.17: Time used to detecting approximately 440 features using tag 1.

51

Figure 5.18: Time used to descriptor extraction of approximately 440 features using tag 1.

52

Figure 5.19: Time used to match approximately 440 features suing tag 1.

53

5.2 Experiment 2: Grasping an object in motion with a KUKA Agilus
Manipulator

In experiment 2, SIFT and SURF were used in a practical experiment. The methods were used
to detect positions of a tag attached to an object in motion, and captured with a 2D camera.
The position was convert to Cartesian world coordinates and transmitted to a KUKA Agilus
Manipulator. By estimating a velocity of the tag and an advanced position along the train
track, the KUKA Agilus could grasp the moving object at an estimated position. Scene of
experiment 2 is represented in Figure 5.20.

Figure 5.20: Scene of experiment 2.

5.2.1 Tag detection

The first step was detecting features in the camera-captured images. SIFT and SURF were
implemented using ROS, similar as in experiment 1. FLANN was used as matching method, and
all matches were evaluated according to a predetermined Euclidean distance. The matching
features were stacked in an array, and a pixel coordinate was estimated with respect to the
average of the stack. This estimated pixel coordinate p̃(u, v) was approximately the tag center,
and the image coordinate p(x, y) could be converted with formulaxy

1

︸︷︷︸
p

= K−1

uv
1

︸︷︷︸
p̃

, (5.1)

54

where K is defined as (4.6). By scaling the image coordinates with the distance from camera
to the tag, Z, the unknown world coordinate P (X,Y, Z) could with formula

X =
x

f
Z, Y =

y

f
Z. (5.2)

This scaling was necessary to make a correspondence between distances in the image plane
and distances in the world. Since the metric focal length was unknown, the experiment was
simplified by using the normalized image plane where f = 1.

5.2.2 Estimate Transformation

The next step was to estimate the transformation from the manipulator to the tag. Since the
principal point is not necessarily defined in the camera center (4.7), a circle was implemented
to illustrate the principal point, according to the coordinate defined in the camera calibration
matrix, see expression 4.6. The circle was redrawn on the table to make a reference point related
to the image plane. To define transformation between the robot base and the tag, TW

Tag, the
transformation was divided into three steps. The first transformation was between the robot
base and the closest table corner, TW

B . By running the robot gripper to the corner, the robot
translation was displayed on the smartPAD, and a rotation could be defined according to the
robot base. TW

B was expressed as

TW
B =

0 −1 0 0.67562
1 0 0 0.20626
0 0 1 0.17484
0 0 0 1

 . (5.3)

Next step, was estimating the transformation from the table corner to the principal point drawn
on the table, TB

Pp. This was determined by a rotation of 180◦ around Y axis and a measured
translation along the table in x and y direction. The 180◦ rotation was added since the gripper
and the camera were rotated 180◦ with respect to the robot base. TB

Pp is expressed as

TB
Pp =

−1 0 0 0.391
0 1 0 1.445
0 0 −1 0
0 0 0 1

 . (5.4)

The transformation between the robot base and the principle point was then expressed as

TW
Pp =

0 −1 0 −076938
−1 0 0 0.59726
0 0 −1 0.17484
0 0 0 1

 . (5.5)

The last transformation was between the principle point and the tag, T Pp
Tag. Since the camera

and the gripper operates in a parallel coordinate system, the tag position could be continuously
defined by tag detection using the camera, see previous section 5.2.1. The total transformation
of TW

Tag is illustrated in Figure 5.23.

55

5.2.3 Masks

Masks were implemented to limit the feature detection to a predefined pixel area in the image
plane. Avoidance of mismatches was the purpose. Since the tag center was an estimation of
the average position of the best matches, outliers was preferred to be avoided for making the
position as accurate as possible.

Figure 5.21: A mask defined to detect features in the starting position. From pixel 290 to 330
in u direction (horizontal), and from 200 to 240 in v direction (vertical).

Figure 5.22: A mask defined to detect features in the end position. From pixel 530 to 570 in u
direction (horizontal), and from 30 to 70 in v direction (vertical).

56

Figure 5.23: Scene in experiment 2, with an illustration of the camera view in blue, the trans-
formations from robot gripper to the tag, Z and a smartPAD.

57

5.2.4 Angle Velocity Estimation

Next step was estimating velocity of the train, by measuring traveling time between two po-
sitions with respect to the centre of the train track circle (TC). The different tag positions
was given with respect to the camera, and the transformation from the tag to the centre of
the train track circle had to be estimated via the principle point. This was performed by
estimating the transformation between the tag and the principle point, T Tag

Pp , and then the
transformation between the principle point and the center of the train track circle T TC

Pp . The
total transformations are represented in Figure 5.24.

Figure 5.24: Transformation from the tag to the center of the train track circle via the principle
point.

The angle velocity was then determined by initializing a stopwatch, and measure time during
a predefined interval of detection. For example in ten images. The tag position in the first and
the last images was then used to estimate the angle and the curve length along the train track.
The angle was estimated by using isosceles triangle theorem and Pythagorean theorem, where
two equal triangle sides are constructed by the radius of the train track circle, see Figure 5.25.
The angle was determined by using equation (5.6) and then (5.7).

|BC| =
√

(xB − xC)2 + (yB − yC)2, (5.6)

θ = 2 arcsin

(
|BC|

2r

)
. (5.7)

The train was observed to have some sequential irregular movement, which complicated the
time estimation. To make the effect of the movement as small as possible, the lap time was
used instead of a shorter interval. This gives an average velocity, and the effect of irregular
movements can be neglected. The average angle velocity was estimated with formula

ω =
2πr

ttot
, (5.8)

58

and the travelled distance (curve length) was estimated with

l = θr. (5.9)

When both angle velocity and curve length were determined between the two positions, the
time for grasping the object could be estimated with formula

tl =
l

ω
. (5.10)

In this experiment, the object was grasped at the same position as the tag was last detected.
This position is represented as C(xC , yC) in Figure 5.25, and the coordinate was immediately
transmitted to the robot after estimation, to ensure that the robot had enough time to arrive
the new position.

Figure 5.25: Estimation of angle velocity.

59

Figure 5.26: The KUKA Agilus grasping an object in motion.

5.2.5 Motion Planning

To move the manipulator to a requested position, the inverse kinematic from the specific point
to the robot base have to be estimated. The manipulator may reach a position through many
different paths and determining a perfect trajectory for a specific situation is challenging. The
trajectory have to be a Cartesian path decided according to constraints related to joint limi-
tations, path, operating time, speed and step size. To compute this perfect trajectory, a ROS
integrated package called MoveIt! was used. This package communicates with the manipulator
through ROS topics and actions [16]. Actions are represented as left right arrows in Figure 5.27.
The communication between the camera, the computer, Movit! and the manipulator is illus-
trated in Figure 5.27. Movit! listens to the "Joint states" and the "TF" topic generated by
the robot and determine joint locations according to this. The "Joint states" topic contains
information about the joints related to for example angles, and the "TF" topic relates to the
forward kinematic of the joints related to the robot base. A node called "Agilus 2", which
represents the KUKA Agilus manipulator, continuously updates these topics. This node com-
municates with the robot trough Robot Sensor Interface (RSI), which is a program that passes
information between the KR C4 controller and the computer as a XML file over an Ethernet
connection. The KR C4 controller administrates signals between the robot, PLC, safety sys-
tems and the smartPAD. KR C4 controller, KUKA Agilus KR 6 R900 sixx and the smartPAD
are represented in Figure 5.28.

60

Figure 5.27: Node structure in ROS, involving 2D camera, an implementation of a feature
detector, Movit! and a KUKA Agilus KR 6 R900 sixx robot.

61

When the "Movit" node receives a request for a new position, it generates a desired trajectory
with respect to the KUKA Agilus predefined kinematic constraints [16]. These constraints are
related to position, orientations, joints and user-specified constraints.

Figure 5.28: KR C4 controller, KUKA Agilus KR 6 R900 sixx and the smartPAD.

62

This trajectory will move the manipulator to the desired location. The result delivered by
"Movit" is a trajectory and not just a path. Movit! will use the desired maximum velocities
to generate a trajectory that obeys velocity constraints at the joint level. To obtain the best
trajectory according to the constraints, MoveIt! uses an open-source motion planning library
OMPL (Open Motion Planning Library) as primary/default set of planners. When the final
trajectory is determined, the inverse kinematics to move the joints must be estimated. Movit!
uses a integrated default inverse kinematics plugin that is configured using a numerical jacobian-
based solver. If any object is mounted on the robot, for example a gripper, this can be configured
in Movit! and the trajectory will avoid the obstruction by using a collision checker supported
in ROS. The trajectory may finally be generated, and the motion can be executed on the
manipulator. The trajectory will appear as a linear trajectory, and can also be simulated in a
ROS integrated simulation tool called rviz, see Figure 5.29.

Figure 5.29: rviz simulation of a trajectory defined with MoveIt!.

63

5.2.6 Grasping Object

Last step of the experiment was grasping the object at the estimated time. The gripper was
implemented as an object in the same implementation as the feature detection, and then a part
of the same node "Feature detector", see Figure 5.27. This object communicated with a PLC
and was able to open and close the gripper if requested, see gripper in Figure 5.30. It appeared
to be a delay in the communication with the gripper, and this was compensated by advancing
the command with 1.4 seconds.

Figure 5.30: Image of the gripper.

64

65

Chapter 6

Results

6.1 Result from Experiment 1: Comparing SIFT and SURF

6.1.1 Results from Identifying Robustness

To identify the robustness of each method, ten tags were tracked and the results were compared.
The goal was to gather reliable data and evaluate the methods on an equal basis. The results
shows variation had a wide variety and some of the tags turned out to be almost untrace-
able. Duration of matching intervals and the number of maximum matches are represented in
Table 6.1.

Identifying robustness
Tag [-] Method [SIFT/SURF] Maximum

matches [#]
Best matching interval [-] Mismatch

[Yes/No]
1 SIFT 17 7.448 Yes

SURF 8 7.1667 No
2 SIFT 4 2.4125 No

SURF 0 0 No
3 SIFT 368 7.1648 No

SURF 0 0 Yes
4 SIFT 1 0 Yes

SURF 0 0 Yes
5 SIFT 1 0 Yes

SURF 0 0 Yes
6 SIFT 30 9.4086 Yes

SURF 2 0.101 Yes
7 SIFT 0 0 Yes

SURF 0 0 No
8 SIFT 78 11.3825 No

SURF 12 5.6009 No
9 SIFT 16 7.3714 No

SURF 15 7.693 No
10 SIFT 7 6.6165 Yes

SURF 1 6.3326 No

Table 6.1: Results from experiment of identifying robustness.

According to the table, SIFT appears to be more robust than SURF. Both method tracked tags

66

for long intervals unaffected by rotation and scale, but SIFT got a better result than SURF
in total. SIFT had usually the longest tracking intervals and the highest number of matches,
but in some SURF appeared to get less mismatches than SIFT. This could be a result of the
strict value of the Hessian threshold (minHessian=5000) used to detect robust features. The
total experience of this test was that SIFT had the most reliable results, but SURF is a good
replacement if the input values were adjusted according to the specific object in motion. Masks
could also be used to restrict the tracking area if results appears to be affected of mismatches.

6.1.2 Results from Computation Time

In operations where computing power is limited, fast feature detection is necessary. SIFT and
SURF were implemented to detect an equal amount of features in two different tags. The
results were compared with respect to time spent on the three steps; detecting, description and
matching. The time was logged and plotted in graphs, see Chapter 5.1.2, and a percentage
values of the time used in SURF compared to SIFT is represented in Table 6.2. These percentage
values were based on the average values from four graphs, the plot in Figure 6.1 and three
additional graphs in Appendix A.2.

Computation Time
Tag [#] Features [#] Detecting [s] Descriptors [s] Match [s] Total [s]

SIFT 1 440.075 0.112 0.114 0.007 0.233
SURF 1 439.857 0.076 0.113 0.003 0.192
Difference [%] 99.951 67.956 99.418 43.038 82.492
SIFT 1 698.052 0.111 0.123 0.009 0.243
SURF 1 698.667 0.087 0.166 0.005 0.258
Difference [%] 100.088 78.420 135.474 57.130 106.409
SIFT 9 166.157 0.113 0.077 0.002 0.192
SURF 9 165.616 0.062 0.054 0.001 0.117
Difference [%] 99.675 54.942 69.503 76.612 61.006
SIFT 9 916.041 0.103 0.110 0.006 0.219
SURF 9 915.885 0.081 0.164 0.004 0.250
Difference [%] 99.983 78.623 149.837 69.995 113.939

Table 6.2: Results from experiment of computation time, where the percentage value of SURF
compared to SIFT is presented.

The result was not as expected. SIFT and SURF was tested according to a vary amount of
features, 440 and 689 in tag 1, and 166 and 916 in tag 9, and SURF was expected to have
an approximately constant and low computing time. SIFT was implemented with the default
values and a limitation of features. The predefined amount of features was then ensured in
SURF by adjusting the detection with a suitable Hessian threshold. SURF obtained best
result using a strict minHessian=5000, detecting 166 features, and worst results using the
recommended minHessian=400 [5], detecting 440 features. The first detection corresponds to
61% of the time spent in SIFT, while the second situation corresponds to 114%. In the two
other cases, the percentages correspondence was 82.5% and 106.5%. According to [2], this is
quite unexpected results. SURF is supposed to be up to three time faster than SIFT [2], and
these results did not show any significantly faster detection using SURF. The table (Table 6.2)
shows that the descriptor extraction is the most affected due to variation in amount of features,
and the result was especially unusual when 698 and 916 features were detected. In these cases,

67

SURF used significantly more time than SIFT to create descriptors that are half the dimension
of a SIFT-descriptor.

Figure 6.1: Time of detecting features and create descriptor using tag 1.

68

6.1.3 Improvement of Computation Time

To improve the computation, the implementation of the feature detector in SURF was combined
with the implementation of the descriptor extractor in SIFT. The implementation was executed
on the same tags as in the previous Chapter 6.1.2 and compared with an implementation of
the SIFT feature detector and the SIFT descriptor extractor. 165, 185 and 230 features were
detected in this test. The computation time of detecting 165 features is represented as a
graph in Figure 6.2. The corresponding graphs from the three other implementations are
illustrated in Appendix B.2. The finally results are compared and represented in Table 6.3.
The implementation of a combination of the SURF feature detector and the SIFT descriptor
extractor appears to be 50% faster then a implementation of a SIFT detector together with
a SIFT descriptor extractor. This combination could be a solution for operations where the
computation power is limited and the computations must be performed close to real time.

Computation Time
Tag [#] Features [#] Detecting [s] Descriptors [s] Match [s] Total [s]

SIFT 1 165.146 0.120 0.086 0.003 0.210
SURF/SIFT 1 165.114 0.063 0.032 0.001 0.097
Difference [%] 99.981 52.581 37.266 47.684 46.205
SIFT 1 230.179 0.117 0.096 0.004 0.217
SURF/SIFT 1 230.055 0.065 0.034 0.001 0.100
Difference [%] 99.946 55.686 35.364 28.578 46.197
SIFT 9 185.162 0.113 0.080 0.002 0.195
SURF/SIFT 9 184.819 0.065 0.055 0.001 0.121
Difference [%] 99.815 56.913 68.834 78.603 61.969
SIFT 9 230.146 0.108 0.090 0.001 0.199
SURF/SIFT 9 229.875 0.065 0.034 0.001 0.100
Difference [%] 99.882 59.913 37.434 110.356 50.027

Table 6.3: Results related to an implementation of the feature detector of SURF in combination
with the descriptor extractor of SIFT compared with a standard implementation of SIFT, which
contains the feature detector and the descriptor extractor of SIFT.

69

Figure 6.2: Time of detecting features and extracting descriptors using tag 1.

70

6.2 Results from Experiment 2: Grasping an object in motion with a KUKA
Agilus Manipulator

Both SIFT and SURF were useful to estimate position in Cartesian world coordinates with
the 2-dimensional camera. SIFT was the best solution when using strict limitations, but since
detection areas could be restricted with masks, SURF was a good solution according to com-
putation time. Both methods appeared to perform good tracking of the tag. The practical
experiment represents how SIFT and SURF could be used to track objects in motion using the
visual characteristics. For example, colors, patterns, design or tags.

6.2.1 Video

A video of the experiment has been produced and placed as Digital Appendix D. It is a movie
of an implementation of SIFT, while tracking an object in motion. The angle velocity and a
grasping position with a corresponding time are estimated. The grasping position is transmitted
to the KUKA Agilus Manipulator and the manipulator executes the requested trajectory. When
the KUKA Agilus Manipulator approaches the given position, the gripper becomes activated
and the object is grasped at the estimated time. Finally, the KUKA Agilus manipulator delivers
the object at a predefined position.

71

72

Chapter 7

Summary and Recommendations for Further Work

7.1 Conclution

The main objective of this project was to detect an object in motion using computer vision.
The two different methods SIFT and SURF, were compared and implemented in a practical ex-
periment. To perform an overall evaluation of the methods, three experiments used to compare,
matches, matching intervals and computation time.

The results were as expected. SIFT was more robust then SURF, and SURF was mostly
faster than SIFT. Both methods show weaknesses related to illumination changes, especially
in the left area of the camera view, which was close to a light source. This is visible in for
example Figure 5.7, where the light reflection appears as a white area on the left side of the
train track. It was also performed an experiment combining the SURF feature detector and
the SIFT descriptor extractor. The combination proved to be more efficient and a standard
implementation, and could be a replacement when computation power are limited.

The practical experiment shows how a position for a manipulator could be estimated according
to pixel values. The implementation was successful, and a movie was produced to show the
result of the implementation (6.2.1). The methods delivers good performance and show high
potential for improving the industry of both mass production and subsea technology. Both
methods appeared to be very robust according changes in scale and rotation, especially when
the object was stationary. When the tag was at rest in the start position, several tests show
high number of matches, and a marked decrease occurred when the tag started to move. See
graphs illustrated in Chapter 5.1.1 and Appendix A.1.

73

7.2 Discussion

SIFT resulted in increased computation time, which in some cases caused a trajectory abor-
tion. The problem was related to the ROS node "Agilus 2" (Figure 5.27), which expected
continues information from the controller about trajectory goals. In some cases, SIFT caused
an interruption for longer than a predefined limitation of time, and the current robot action
was aborted by the node. This caused an incomplete trajectory, and the experiment had to be
reinitialized.

This repeated abortion made some limitations for the experiment, and simplifications were
necessary to completing the project. When the manipulator was requested to do a rotation of
a joint, the trajectory estimation caused an interruption in the connection with the controller,
and the trajectory was uncompleted. The interruption happened several times, and the final
suggestion was to avoid all rotations. An appropriate position for grasping of the object was
defined, and the manipulator could navigate without any interruption. The rotation issue could
also be avoided by dividing the total rotation into smaller steps. The computation power will
then decrease, and the communication will stay uninterrupted.

The best solution of avoiding the connection delay was by decreasing the need of computation
power. A suggestion, is to implement the combination of the SURF feature detector and
the SIFT descriptor extractor discussed in Chapter 6.1.3, and save 50% computation time,
according to the results in Table 6.3. If this is not saving enough power, another solution
could be an additional computer to separate the computer vision form the communication
with the robot controller. This will divide the required computation power between these two
computers, and an interruption of the continuously connection between the computer and the
KUKA controller may be avoided.

During the experiments, the LEGO train was observed to have irregular velocity. The train
was highly affected by the battery capacity, and was acting differently during the day. This
made some difficulties in the performing of experiment 2, since the position of the object
was estimated according to the angle velocity. The experiment was therefore simplified, and
successfully completed by using the lap time instead of a shorter interval. In the other tests,
both SIFT and SURF was running simultaneously and the velocity was affecting both methods
equally. Since the results were based on the performance of the method during each test, the
influence of the velocity change was expect to be very low.

74

7.3 Recommendations for Further Work

In the practical experiment, the manipulator was navigated according to the movement of tag
1. A recommendation to future work is to perform the experiment 2 with a higher velocity by
using tag 8. This was an easier tag to track.

Rotation of the gripper was avoided in experiment 2 due to communication interruption between
the KUKA Controller and the computer. A recommendation is to implement the combination
of SURF feature detector and the SIFT descriptor extractor. Probably this combination will
save enough computation power to sustain the required communication.

Implement SIFT using 3D camera. During the project, a SIFT function for feature detecting
in a 3 dimensional view was observed. The function is available in an open source library called
Point Cloud Library, and is an adaption of the original algorithm. This method detects features
in a point clouds instead of an images [11]. A recommendation is to implement this on the
robotic lab, using an Asus 3D camera or a Kinect.

75

76

Appendix A

Additional Information for Chapter 5

A.1 Additional Graphs to Section: Expenditure of Time

Additional figures to Chapter 5.1.1. Figure A.2 represent the amount of matches using tag 4.
The tag was possible to track with both methods, but many mismatches and intervals without
matching occurred. Figure A.3 and Figure A.4 represents tag 6. Good results for SIFT, and
small number off matches using SURF. Figure A.6 represents number of matches using tag
7. This had quite similar results as tag 5, see Chapter 5.1.1. The tag was highly affected of
luminous reflectance and difficult to track. Figure A.8 represents the number of matches using
tag 8. This had quite similar results as tag 9, see Chapter 5.1.1. Both methods had smooth
tracking for a long distance, and many matches occurred. Figure A.10 represents the number
of matches using tag 10. Tag 10 was quite easy to track.

77

Figure A.1: Testing tag 4.

The forth tag appeared to have many intervals without matches using SIFT, and many mis-
matches using SURF, see FigureA.2.

78

Figure A.2: Comparing matches results using tag 4. Image stream are analysed with SIFT and
SURF.

79

Figure A.3: Testing tag 6.

The sixth tag had very good results using SIFT. SIFT got up to 30 matches and had a stable
number of matches for a long period. SURF was not that reliable, and got maximum two good
matches, see Figure A.3.

80

Figure A.4: Comparing matches results using tag 6. Image stream are analysed with SIFT and
SURF.

81

Figure A.5: Testing tag 7.

The seventh tag was almost as bad as the fifth tag. The tag was easy effected by light and
many mismatches occured.

82

Figure A.6: Comparing matches results using tag 7. Image stream are analysed with SIFT and
SURF.

83

Figure A.7: Testing tag 8.

Tag eight tag appeared to be a very good tag. SIFT had up to 78 matches, SURF got 12 and
none of them had mismatches, see Figure A.7. The tag was also tracked during a long interval.

84

Figure A.8: Comparing matches results using tag 8. Image stream are analysed with SIFT and
SURF.

85

Figure A.9: Testing tag 10.

Using the tenth tag, SIFT had maximum seven matches, and SURF got maximum one.

86

Figure A.10: Comparing matches results using tag 10. Image stream are analysed with SIFT
and SURF.

87

A.2 Additional Graphs for Section: Computation Time

This chapter represents the additional graphs related to Chapter 5.1.2. Figure A.11 represents
time used to detecting approximately 698 features in tag 1. Figure A.12 represents time used
to create the descriptors, and Figure A.13 represents the time used for matching the features.
Similar are represented for 166 features from tag 9 in Figure A.14,Figure A.15, Figure A.16
and for 916 features from tag 9 in Figure A.17, Figure A.18, Figure A.19.

88

Figure A.11: Time used to detecting approximately 698 features in tag 1.

89

Figure A.12: Time used to extract descriptors for approximately 698 features from tag 1.

90

Figure A.13: Time used to match approximately 698 features in tag 1.

91

Figure A.14: Time used to detecting approximately 166 features in tag 9.

92

Figure A.15: Time used to extract descriptors for approximately 166 features from tag 9.

93

Figure A.16: Time used to match approximately 166 features in tag 9.

94

Figure A.17: Time used to detecting approximately 916 features in tag 9.

95

Figure A.18: Time used to extract descriptors for approximately 916 features from tag 9.

96

Figure A.19: Time used to match approximately 916 features in tag 9.

97

98

Appendix B

Additional Information for Chapter 6

B.1 Additional Graphs to Chapter: Results from Computation Time

The results in Chapter 6.1.2 are based on three more situations of feature detecting. Figure B.1
represents the total time used to detect features, descriptors extraction and matching keypoints
for 689 features in tag 1. Figure B.2 represents the three similar steps for tracking 166 features
in tag 9 and Figure B.3 represents 916 features in tag 9.

99

Figure B.1: Time used for detecting features, descriptor extraction and matching 698 keypoints
using tag 1.

100

Figure B.2: Time used for detecting features, descriptor extraction and matching 166 keypoints
using tag 9.

101

Figure B.3: Time used for detecting features, descriptor extraction and matching 916 keypoints
using tag 9.

102

B.2 Additional Graphs for Section of Improvement to Computation Time

Additional graphs for section about improvement of computation time represented in Chap-
ter 6.1.3. It was performed an experiment of combining the implementation of the SURF
feature detector with the SIFT descriptor extractor, and comparing the result with a SIFT im-
plementation. Figure B.4 represent the detection of 230 features in tag 1, Figure B.5 represent
the detection of 185 features in tag 9 and Figure B.6 represent the detection of 230 features in
tag 9.

103

Figure B.4: Total time used to detect features, extract descriptors and matching 230 features
in tag 1.

104

Figure B.5: Total time used to detect features, extract descriptors and matching 185 features
in tag 9.

105

Figure B.6: Total time used to detect features, extract descriptors and matching 230 features
in tag 9.

106

Appendix C

Source Code

107

1 /∗∗
2 ∗ Tracking ob j e c t in motion and l ogg ing behaviour o f the a lgor i thm SIFT .
3 ∗ The program i s based on a t u t o r i a l from OpenCV: Features2D + Homography to f i nd a ←↩

known ob j e c t
4 ∗http :// docs . opencv . org /doc/ t u t o r i a l s / f e a tu r e s 2d / feature_homography/←↩

feature_homography . html
5
6 ∗ Author : Jens Arne K. Engesaeter .
7 ∗ NTNU 2015
8 ∗/
9

10 //ROS
11 #inc lude <ros / ros . h>
12 #inc lude <image_transport / image_transport . h>
13 #inc lude <cv_bridge/ cv_bridge . h>
14 #inc lude "std_msgs/Float64Mult iArray . h"
15 #inc lude <sensor_msgs/ image_encodings . h>
16 #inc lude <geometry_msgs/Pose . h>
17
18 //C++
19 #inc lude <iostream>
20 #inc lude <s td i o . h>
21 #inc lude <s t d l i b . h>
22 #inc lude <vector>
23 #inc lude <time . h>
24 #inc lude <fstream>
25 #inc lude <cmath>
26 #inc lude <vector>
27 #inc lude <sstream>
28 #inc lude <cs td io>
29 #inc lude <iomanip>
30 #inc lude <time . h>
31
32 //OpenCV
33 #inc lude <opencv2/opencv . hpp>
34 #inc lude <opencv2/ non f ree / f e a tu r e s 2d . hpp>
35 #inc lude <opencv2/ f ea tu r e s 2d / f ea tu r e s 2d . hpp>
36 #inc lude <opencv2/ non f ree / nonf ree . hpp>
37 #inc lude "opencv2/ ca l i b3d / ca l i b3d . hpp"
38 #inc lude "opencv2/ core / core . hpp"
39 #inc lude <opencv2/ imgproc/ imgproc . hpp>
40 #inc lude <opencv2/ h ighgu i / h ighgu i . hpp>
41 #inc lude <opencv2/ l egacy / l egacy . hpp>
42
43 // f e a t u r e s – The number o f bes t f e a t u r e s to r e t a i n . The f e a t u r e s are ranked by t h e i r ←↩

s c o r e s (measured in SIFT algor i thm as the l o c a l c on t ra s t)
44 //OctaveLayers – The number o f l a y e r s in each octave . 3 i s the value used in D. Lowe ←↩

paper . The number o f oc taves i s computed automat i ca l l y from the image r e s o l u t i o n .
45 // contras tThresho ld – The con t ra s t th r e sho ld used to f i l t e r out weak f e a t u r e s in semi−←↩

uniform (low−con t ra s t) r e g i on s . The l a r g e r the thresho ld , the l e s s f e a t u r e s are ←↩
produced by the de t e c t o r .

46 // edgeThreshold – The thr e sho ld used to f i l t e r out edge− l i k e f e a t u r e s . Note that the ←↩
i t s meaning i s d i f f e r e n t from the contrastThresho ld , i . e . the l a r g e r the ←↩
edgeThreshold , the l e s s f e a t u r e s are f i l t e r e d out (more f e a t u r e s are r e t a i n ed) .

47 // sigma – The sigma o f the Gaussian app l i ed to the input image at the octave #0. I f ←↩
your image i s captured with a weak camera with s o f t l en s e s , you might want to ←↩
reduce the number .

48
49 //Defau l t va lue s
50 // double contras tThresho ld = 0 . 0 4 ;
51 // double edgeThreshold = 10 ;
52 // double sigma = 1 . 6 ;
53
54 i n t nFeatures = 0 ;
55 i n t nOctaveLayers = 5 ;
56 double contrastThreshold = 0 . 0 4 ;

108

57 double edgeThreshold = 10 ;
58 double sigma = 1 . 6 ;
59
60 std : : clock_t total_time ;
61 std : : ofstream SIFTLogg ;
62
63 c l a s s ImageConverter
64 {
65 p r i va t e :
66 ros : : NodeHandle nh_ ;
67 image_transport : : ImageTransport it_ ;
68 image_transport : : Subscriber image_sub_ ;
69
70 pub l i c :
71
72 ImageConverter ()
73 : it_ (nh_)
74 {
75 // Subscr ibe to input video f e ed
76 image_sub_ = it_ . subscribe ("usb_cam/image_raw" , 1 , &ImageConverter : : imageCb , t h i s)←↩

;
77 }
78
79 ~ImageConverter ()
80 {
81 }
82
83 void imageCb (const sensor_msgs : : ImageConstPtr& msg)
84 {
85 // I n i t a l i z e cv br idge to operate images between ROS and OpenCV
86 cv_bridge : : CvImagePtr cv_ptr ;
87 t ry
88 {
89 cv_ptr = cv_bridge : : toCvCopy (msg , sensor_msgs : : image_encodings : : BGR8) ;
90 }
91 catch (cv_bridge : : Exception& e)
92 {
93 ROS_ERROR (" cv_bridge except ion : %s " , e . what ()) ;
94 re turn ;
95 }
96
97 // I n i t i a l i z e t imers
98 std : : clock_t init_detect , init_descriptor , final ;
99 double final_detect , final_descriptor , final_time ;

100
101 // I n i t i a l i z e t e s t image and convert i t to gray s c a l e
102 cv : : Mat img_object = cv : : imread ("/home/minions /workspaces /minion_ws/ s r c /←↩

opencv_test / tag9 . jpg " , CV_LOAD_IMAGE_GRAYSCALE) ;
103 cv : : Mat image_scene = cv_ptr−>image ;
104
105 std : : vector<cv : : KeyPoint> keypoints_object , keypoints_scene ;
106 std : : vector< cv : : DMatch > matches ;
107
108 // Step 1 : Detect the keypo ints us ing SIFT Detector
109
110 cv : : SiftFeatureDetector detector (nFeatures , nOctaveLayers , contrastThreshold , ←↩

edgeThreshold , sigma) ;
111
112 //Detect f e a t u e r s and measure time
113 init_detect=clock () ;
114 detector . detect (img_object , keypoints_object) ;
115 detector . detect (image_scene , keypoints_scene) ;
116 final=clock ()−init_detect ;
117 final_detect=(double) final / ((double) CLOCKS_PER_SEC) ;
118 final =0;
119

109

120 // Draw keypo ints
121 cv : : Mat img_keypoints_1 ;
122 cv : : Mat img_keypoints_2 ;
123
124 // Step 2 : Ca l cu la t e d e s c r i p t o r s
125 cv : : SiftDescriptorExtractor extractor ;
126
127 cv : : Mat descriptors_object , descriptors_scene ;
128
129 //Create d e s c r i p t o r s and measure time
130 init_descriptor=clock () ;
131 extractor . compute (img_object , keypoints_object , descriptors_object) ;
132 extractor . compute (image_scene , keypoints_scene , descriptors_scene) ;
133 final=clock ()−init_descriptor ;
134 final_descriptor=(double) final / ((double) CLOCKS_PER_SEC) ;
135 final =0;
136
137 //Draw keypo ints
138 drawKeypoints (img_object , keypoints_object , descriptors_object , cv : : Scalar : : all←↩

(−1) , cv : : DrawMatchesFlags : : DRAW_RICH_KEYPOINTS) ;
139 drawKeypoints (image_scene , keypoints_scene , descriptors_scene , cv : : Scalar : : all (−1)←↩

, cv : : DrawMatchesFlags : : DRAW_RICH_KEYPOINTS) ;
140
141 //Write logged va lues to t ex t f i l e
142 SIFTLogg << std : : setw (25) << (double) final_detect <<" ; " <<
143 std : : setw (23) << keypoints_scene . size () <<" ; " <<
144 std : : setw (25) << final_descriptor <<" ; " <<
145 std : : setw (22) << final_time<< \n ;
146
147 // Show detec ted keypo ints
148 imshow ("Keypoints 1 SIFT" , descriptors_object) ;
149 imshow ("Keypoints 2 SIFT" , descriptors_scene) ;
150
151 cv : : waitKey (1) ;
152 }
153 } ;
154
155 i n t main (i n t argc , char ∗∗ argv)
156 {
157 // I n i t a l i z e a node
158 ros : : init (argc , argv , " s i f t ") ;
159 ros : : NodeHandle n ;
160 total_time=clock () ;
161
162 //Open logg f i l e f o r wr i t i ng
163 SIFTLogg . open ("SIFT_Rapport_treshold . txt ") ;
164
165 //Add header to logg f i l e
166 SIFTLogg <<std : : setw (20) << "nFeatures = " <<nFeatures<<" ; nOctaveLayers = " <<←↩

nOctaveLayers<<" ; contras tThresho ld = "<<contrastThreshold<< " ; edgeThreshold = ←↩
"<<edgeThreshold<<" ; sigma = "<<sigma<<" ; "<< \n << \n <<

167 std : : setw (20) << "Time to de t e c t f e a t u r e s [s] ; " <<
168 std : : setw (20) << "Ammount o f f e a t u r e s [#] ; " <<
169 std : : setw (20) << "Time to make d e s c r i p t o r [s] ; " <<
170 std : : setw (20) << "Total time [s] ; "<< \n ;
171 // Cal l ob j e c t to use SIFT in a l i v e stream
172 ImageConverter ic ;
173 ros : : spin () ;
174 // c l o s e logg f i l e
175 SIFTLogg . close () ;
176
177 re turn 0 ;
178 }

110

1 /∗∗
2 ∗ Tracking ob j e c t in motion and l ogg ing behaviour o f the a lgor i thm SURF.
3 ∗ The program i s based on a t u t o r i a l from OpenCV: Features2D + Homography to f i nd a ←↩

known ob j e c t
4 ∗ Author : Jens Arne K. Engesaeter .
5 ∗ NTNU 2015
6 ∗/
7
8 //ROS
9 #inc lude <ros / ros . h>

10 #inc lude <image_transport / image_transport . h>
11 #inc lude <cv_bridge/ cv_bridge . h>
12 #inc lude "std_msgs/Float64Mult iArray . h"
13 #inc lude <sensor_msgs/ image_encodings . h>
14 #inc lude <geometry_msgs/Pose . h>
15
16 //C++
17 #inc lude <iostream>
18 #inc lude <s td i o . h>
19 #inc lude <s t d l i b . h>
20 #inc lude <vector>
21 #inc lude <time . h>
22 #inc lude <fstream>
23 #inc lude <cmath>
24 #inc lude <vector>
25 #inc lude <sstream>
26 #inc lude <cs td io>
27 #inc lude <iomanip>
28 #inc lude <time . h>
29
30 //OpenCV
31 #inc lude <opencv2/opencv . hpp>
32 #inc lude <opencv2/ non f ree / f e a tu r e s 2d . hpp>
33 #inc lude <opencv2/ f ea tu r e s 2d / f ea tu r e s 2d . hpp>
34 #inc lude <opencv2/ non f ree / nonf ree . hpp>
35 #inc lude "opencv2/ ca l i b3d / ca l i b3d . hpp"
36 #inc lude "opencv2/ core / core . hpp"
37 #inc lude <opencv2/ imgproc/ imgproc . hpp>
38 #inc lude <opencv2/ h ighgu i / h ighgu i . hpp>
39 #inc lude <opencv2/ l egacy / l egacy . hpp>
40
41
42 // i n t extended
43 // 0 means that the ba s i c d e s c r i p t o r s (64 e lements each) s h a l l be computed
44 // 1 means that the extended d e s c r i p t o r s (128 e lements each) s h a l l be computed
45
46 // i n t upr ight
47 // 0 means that de t e c t o r computes o r i e n t a t i o n o f each f e a tu r e .
48 // 1 means that the o r i e n t a t i o n i s not computed (which i s much , much f a s t e r) . ←↩

For example , i f you match images from a s t e r e o pair , or do image s t i t c h i n g , the ←↩
matched f e a t u r e s l i k e l y have very s im i l a r angles , and you can speed up f e a tu r e ←↩
ex t r a c t i on by s e t t i n g upr ight =1.

49
50 // double hess ianThresho ld (minHessian)
51 // Threshold f o r the keypoint de t e c t o r . Only f ea tu r e s , whose he s s i an i s l a r g e r than←↩

hess ianThresho ld are r e t a in ed by the de t e c t o r . Therefore , the l a r g e r the value , ←↩
the l e s s keypo ints you w i l l get . A good de f au l t va lue could be from 300 to 500 , ←↩
depending from the image con t ra s t .

52
53 // i n t nOctaves
54 // The number o f a gauss ian pyramid octaves that the de t e c t o r uses . I t i s s e t to 4 ←↩

by de f au l t . I f you want to get very l a r g e f e a tu r e s , use the l a r g e r va lue . I f you ←↩
want j u s t smal l f e a tu r e s , dec r ea se i t .

55
56 // i n t nOctaveLayers

111

57 // The number o f images with in each octave o f a gauss ian pyramid . I t i s s e t to 2 by←↩
de f au l t .

58
59 //Defau l t va lue s
60 // double minHessian = 350 ; // 300−400 i s recomended
61 // i n t nOctaves=4;
62 // i n t nOctaveLayers=2;
63 // bool extended=true ;
64 // bool upr ight=f a l s e ;
65
66 double minHessian = 350 ;
67 i n t nOctaves=4;
68 i n t nOctaveLayers=5;
69 bool extended=true ;
70 bool upright=f a l s e ;
71
72 std : : clock_t total_time ;
73 std : : ofstream SURFLogg ;
74
75 c l a s s ImageConverter
76 {
77 p r i va t e :
78 ros : : NodeHandle nh_ ;
79 image_transport : : ImageTransport it_ ;
80 image_transport : : Subscriber image_sub_ ;
81
82 pub l i c :
83
84 ImageConverter ()
85 : it_ (nh_)
86 {
87 // Subscr ibe to input video f e ed
88 image_sub_ = it_ . subscribe ("usb_cam/image_raw" , 1 , &ImageConverter : : imageCb , t h i s)←↩

;
89 }
90
91 ~ImageConverter ()
92 {
93 }
94
95 void imageCb (const sensor_msgs : : ImageConstPtr& msg)
96 {
97 // I n i t a l i z e cv br idge to operate images between ROS and OpenCV
98 cv_bridge : : CvImagePtr cv_ptr ;
99 t ry

100 {
101 cv_ptr = cv_bridge : : toCvCopy (msg , sensor_msgs : : image_encodings : : BGR8) ;
102 }
103 catch (cv_bridge : : Exception& e)
104 {
105 ROS_ERROR (" cv_bridge except ion : %s " , e . what ()) ;
106 re turn ;
107 }
108
109 // I n i t i a l i z e t imers
110 std : : clock_t init_detect , init_descriptor , final ;
111 double final_detect , final_descriptor , final_time ;
112
113 // I n i t i a l i z e t e s t image and convert i t to gray s c a l e
114 cv : : Mat img_object = cv : : imread ("/home/minions /workspaces /minion_ws/ s r c /←↩

opencv_test / tag9 . jpg " , CV_LOAD_IMAGE_GRAYSCALE) ;
115 cv : : Mat image_scene = cv_ptr−>image ;
116
117 std : : vector<cv : : KeyPoint> keypoints_object , keypoints_scene ;
118 std : : vector< cv : : DMatch > matches ;
119

112

120 // Step 1 : Detect the keypo ints us ing SURF Detector
121
122 cv : : SurfFeatureDetector detector (minHessian , nOctaves , nOctaveLayers , extended , ←↩

upright) ;
123
124 //Detect f e a t u e r s and measure time
125 init_detect=clock () ;
126 detector . detect (img_object , keypoints_object) ;
127 detector . detect (image_scene , keypoints_scene) ;
128 final=clock ()−init_detect ;
129 final_detect=(double) final / ((double) CLOCKS_PER_SEC) ;
130 final =0;
131
132 // Draw keypo ints
133 cv : : Mat img_keypoints_1 ;
134 cv : : Mat img_keypoints_2 ;
135
136
137 //−− Step 2 : Ca l cu la t e d e s c r i p t o r s (f e a tu r e ve c t o r s)
138 cv : : SurfDescriptorExtractor extractor ;
139
140 cv : : Mat descriptors_object , descriptors_scene ;
141
142 //Create d e s c r i p t o r s and measure time
143 init_descriptor=clock () ;
144 extractor . compute (img_object , keypoints_object , descriptors_object) ;
145 extractor . compute (image_scene , keypoints_scene , descriptors_scene) ;
146 final=clock ()−init_descriptor ;
147 final_descriptor=(double) final / ((double) CLOCKS_PER_SEC) ;
148 final =0;
149
150 //Draw keypo ints
151 drawKeypoints (img_object , keypoints_object , descriptors_object , cv : : Scalar : : all←↩

(−1) , cv : : DrawMatchesFlags : : DRAW_RICH_KEYPOINTS) ;
152 drawKeypoints (image_scene , keypoints_scene , descriptors_scene , cv : : Scalar : : all (−1)←↩

, cv : : DrawMatchesFlags : : DRAW_RICH_KEYPOINTS) ;
153
154 //Write logged va lues to t ex t f i l e
155
156 SURFLogg << std : : setw (25) << (double) final_detect <<" ; " <<
157 std : : setw (23) << keypoints_scene . size () <<" ; " <<
158 std : : setw (25) << final_descriptor <<" ; " <<
159 std : : setw (22) << final_time<< \n ;
160
161 // Show detec ted keypo ints
162 imshow ("Keypoints SURF 1" , descriptors_object) ;
163 imshow ("Keypoints SURF 2" , descriptors_scene) ;
164
165 cv : : waitKey (1) ;
166 }
167 } ;
168
169 i n t main (i n t argc , char ∗∗ argv)
170 {
171 // I n i t a l i z e a node
172 ros : : init (argc , argv , " s u r f ") ;
173 ros : : NodeHandle n ;
174 total_time=clock () ;
175
176 //Open logg f i l e f o r wr i t i ng
177 SURFLogg . open ("SURF_Rapport_treshold . txt ") ;
178
179 //Add header to logg f i l e
180 SURFLogg <<std : : setw (20) << "minHessian = " <<minHessian<<" ; nOctaves = " <<nOctaves←↩

<<" ; nOctaveLayers = "<<nOctaveLayers<< " ; extended = "<<extended<<" ; upr ight = ←↩
"<<upright<<" ; "<< \n << \n <<

113

181 std : : setw (20) << "Time to de t e c t f e a t u r e s [s] ; " <<
182 std : : setw (20) << "Ammount o f f e a t u r e s [#] ; " <<
183 std : : setw (20) << "Time to make d e s c r i p t o r [s] ; " <<
184 std : : setw (20) << "Total time [s] ; "<< \n ;
185
186 // Cal l ob j e c t to use SIFT in a l i v e stream
187 ImageConverter ic ;
188 ros : : spin () ;
189 // c l o s e logg f i l e
190 SURFLogg . close () ;
191
192 re turn 0 ;
193 }

114

1 /∗∗
2 Grasping a moving ob j e c t us ing a combination o f SIFT/SURF and a KUKA Agi lus KR 6 R900 ←↩

s i xx robot .
3 The program i s based on a t u t o r i a l from OpenCV: Features2D + Homography to f i nd a known←↩

ob j e c t
4 Author : Jens Arne K. Engesaeter .
5 NTNU 2015
6 ∗/
7
8 //ROS
9 #inc lude <ros / ros . h>

10 #inc lude <image_transport / image_transport . h>
11 #inc lude <cv_bridge/ cv_bridge . h>
12 #inc lude "std_msgs/Float64Mult iArray . h"
13 #inc lude <sensor_msgs/ image_encodings . h>
14 #inc lude <geometry_msgs/Pose . h>
15
16 //C++
17 #inc lude <iostream>
18 #inc lude <s td i o . h>
19 #inc lude <s t d l i b . h>
20 #inc lude <vector>
21 #inc lude <time . h>
22 #inc lude <fstream>
23 #inc lude <cmath>
24 #inc lude <vector>
25 #inc lude <sstream>
26 #inc lude <cs td io>
27 #inc lude <iomanip>
28 #inc lude <time . h>
29
30 //Eigen
31 #inc lude <Eigen/Eigen>
32
33 //OpenCV
34 #inc lude <opencv2/opencv . hpp>
35 #inc lude <opencv2/ non f ree / f e a tu r e s 2d . hpp>
36 #inc lude <opencv2/ f ea tu r e s 2d / f ea tu r e s 2d . hpp>
37 #inc lude <opencv2/ non f ree / nonf ree . hpp>
38 #inc lude "opencv2/ ca l i b3d / ca l i b3d . hpp"
39 #inc lude "opencv2/ core / core . hpp"
40 #inc lude <opencv2/ imgproc/ imgproc . hpp>
41 #inc lude <opencv2/ h ighgu i / h ighgu i . hpp>
42 #inc lude <opencv2/ l egacy / l egacy . hpp>
43
44 //Robot
45 #inc lude " robot_gripper . hpp"
46 #inc lude " robot_planning_execution . hpp"
47 #inc lude " robot_option_flag . hpp"
48
49 // I n i t i l i z e g r ippe r and KUKA Agi lus robot
50 ih : : RobotGripper gripper (ih : : ROBOT_OPTION_VERBOSE_INFO) ;
51 ih : : RobotPlanningExecution∗ ag1 ;
52
53 //Global va lue s
54
55 //Matrix
56 Eigen : : MatrixXd T_R_B (4 , 4) ;
57 Eigen : : MatrixXd T_R_TAG (4 , 4) ;
58 Eigen : : MatrixXd T_R_IC (4 , 4) ;
59
60 Eigen : : MatrixXd T_IC_TC (4 , 4) ;
61 Eigen : : MatrixXd T_IC_TAG (4 , 4) ;
62 Eigen : : MatrixXd T_IC_TAG_start (4 , 4) ;
63 Eigen : : MatrixXd T_IC_TAG_end (4 , 4) ;
64

115

65 Eigen : : MatrixXd T_TAG_TC_start (4 , 4) ;
66 Eigen : : MatrixXd T_TAG_TC_end (4 , 4) ;
67
68 //Average po s i t i o n a f t e r i_mages have been checked
69 double avg_X_pix_center = 0 . 0 ;
70 double avg_Y_pix_center = 0 . 0 ;
71
72 double X_pix_center_start = 0 . 0 ;
73 double Y_pix_center_start = 0 . 0 ;
74 double X_pix_center_end = 0 . 0 ;
75 double Y_pix_center_end = 0 . 0 ;
76
77 //Poses f o r movit
78 double movit_pose_x ;
79 double movit_pose_y ;
80 double movit_pose_z ;
81
82 //Timer
83 double timeObjToPose =0;
84 double stop_watch =0;
85
86 // Flags
87 bool obj_detected = f a l s e ;
88 bool object_grabed= f a l s e ;
89 bool pose_given = f a l s e ;
90 bool time_measured = f a l s e ;
91 bool robot_pose_calculated = f a l s e ;
92 bool timeOfangleVelosity=f a l s e ;
93
94 //Radius o f t r a i n t rack
95 const double r = 0 . 3 2 ;
96
97 s t a t i c const std : : string OPENCV_WINDOW = "Good Matches & Object d e t e c t i on " ;
98
99 double AngleVelosity (Eigen : : MatrixXd T_IC_TAG_start , Eigen : : MatrixXd T_IC_TAG_end , ←↩

double stop_watch)
100 {
101 // I n i t i l i z e v a r i a b l e s f o r e s t imat i on o f ang le v e l o c i t y
102 double angleVelosity =0;
103
104 // Star t pos
105 double start_end_x =0;
106 double start_end_y=0;
107
108 //Vectors
109 double AB=0;
110 double AC=0;
111 double BC=0;
112 double pose_length=0;
113 double L_start_end=0;
114
115 //Circumference
116 double L_tot=0;
117
118 //Angle
119 double theta =0;
120
121 //Timers
122 double lengthGripPos =0;
123 double time_start_end =0;
124
125 //Homogeneous t rans f o rmat i ons matrix from image cente r to tag cent e r
126 T_IC_TC << 1 , 0 , 0 , −0.08 ,
127 0 , 1 , 0 , −0.385 ,
128 0 , 0 , 1 , 0 ,
129 0 , 0 , 0 , 1 ;

116

130
131 //Homogeneous t rans f o rmat i ons matrix
132 T_TAG_TC_start << T_IC_TAG_start . inverse () ∗T_IC_TC ;
133 T_TAG_TC_end << T_IC_TAG_end . inverse () ∗T_IC_TC ;
134
135 //Coordinates f o r grasp ing po s i t i o n
136 start_end_x = T_TAG_TC_start (12) − T_TAG_TC_end (12) ;
137 start_end_y = T_TAG_TC_start (13) − T_TAG_TC_end (13) ;
138
139 //Vectors
140 AB= std : : sqrt (std : : pow (T_TAG_TC_start (12) ,2)+std : : pow (T_TAG_TC_start (13) ,2)) ;
141 AC= std : : sqrt (std : : pow (T_TAG_TC_end (12) ,2)+std : : pow (T_TAG_TC_end (13) ,2)) ;
142 BC = std : : sqrt (std : : pow (start_end_x , 2)+std : : pow (start_end_y , 2)) ;
143
144 pose_length = std : : sqrt (std : : pow (start_end_x , 2)+std : : pow (start_end_y , 2)) ;
145 std : : cout<< "Length : "<<pose_length<<std : : endl ;
146 theta=2∗asin ((pose_length ∗0 . 5) /r) ;
147 std : : cout<<"Radians : "<< theta<<std : : endl ;
148
149 L_tot = 2∗M_PI∗r ;
150 angleVelosity=L_tot/stop_watch ;
151 lengthGripPos=r∗theta ;
152 timeObjToPose = lengthGripPos/angleVelosity ;
153
154 std : : cout<<"Curve Length : "<<lengthGripPos<<std : : endl ;
155 std : : cout<<"Circumference : "<<L_tot<<std : : endl ;
156 std : : cout<<"Degrees : "<<(180∗theta) /M_PI<<std : : endl ;
157 std : : cout<<"AngleVe los i ty : "<<angleVelosity<<std : : endl ;
158 std : : cout<<"timeObjToPose : "<< timeObjToPose<<std : : endl ;
159
160 re turn timeObjToPose ;
161 }
162
163 c l a s s ImageConverter
164 {
165 p r i va t e :
166 ros : : NodeHandle nh_ ;
167 image_transport : : ImageTransport it_ ;
168 image_transport : : Subscriber image_sub_ ;
169 ros : : Publisher world_pos ;
170
171 pub l i c :
172
173 ImageConverter ()
174 : it_ (nh_)
175 {
176 // Subscr ive to input v ideo f e ed and pub l i sh output v ideo f e ed
177 image_sub_ = it_ . subscribe ("usb_cam/image_raw" , 1 , &ImageConverter : : imageCb , t h i s)←↩

;
178
179 cv : : namedWindow (OPENCV_WINDOW) ;
180 }
181
182 ~ImageConverter ()
183 {
184 cv : : destroyWindow (OPENCV_WINDOW) ;
185 }
186
187 void imageCb (const sensor_msgs : : ImageConstPtr& msg)
188 {
189 cv_bridge : : CvImagePtr cv_ptr ;
190 t ry
191 {
192 cv_ptr = cv_bridge : : toCvCopy (msg , sensor_msgs : : image_encodings : : BGR8) ;
193 }
194 catch (cv_bridge : : Exception& e)

117

195 {
196 ROS_ERROR (" cv_bridge except ion : %s " , e . what ()) ;
197 re turn ;
198 }
199
200 //Distance from camera to tag in meters
201 double Z_world = 0 . 6 5 6 ;
202
203 //Poses
204 double X_world_center_start ;
205 double Y_world_center_start ;
206 double X_world_center_end ;
207 double Y_world_center_end ;
208
209 double avg_X_world0 = 0 . 0 ;
210 double avg_Y_world0 = 0 . 0 ;
211
212 //Timers
213 std : : clock_t timer , grab_obj , final ;
214 double time ;
215
216 //Transformation from robot to image cente r
217 T_R_IC << 0 ,−1 , 0 ,−0.76938 ,
218 −1, 0 , 0 , 0 .59726 ,
219 0 , 0 ,−1 , 0 .17484 ,
220 0 , 0 , 0 , 1 ;
221
222 //Camera matrix
223 Eigen : : Matrix3d camMatrix ;
224 camMatrix << 516.496569 , 0 .000000 , 309 .255248 ,
225 0 .000000 , 516 .477238 , 268 .673559 ,
226 0 .000000 , 0 .000000 , 1 . 000000 ;
227
228 Eigen : : Matrix3d camMatrix_inv ;
229 camMatrix_inv = camMatrix . inverse () ;
230
231 // I n i t a l i z e t e s t image
232 cv : : Mat img_object = cv : : imread ("/home/minions /workspaces /minion_ws/ s r c /←↩

opencv_test / tag1 . jpg " , CV_LOAD_IMAGE_GRAYSCALE) ;
233
234 cv : : Mat image_scene = cv_ptr−>image ;
235
236 i n t nFeatures = 5000 ;
237 std : : vector<cv : : KeyPoint> keypoints_object , keypoints_scene , keypoints_scene2 ;
238 std : : vector< cv : : DMatch > matches , matches2 ;
239
240
241 //Step 1 : Detect the keypo ints us ing SIFT Detector
242 cv : : SiftFeatureDetector detector (nFeatures) ;
243 cv : : SiftFeatureDetector detector2 (nFeatures) ;
244
245 //Def ine mask in s t a r t p o s i t i o n
246 //Type o f mask i s CV_8U
247 cv : : Mat mask = cv : : Mat : : zeros (image_scene . size () , CV_8U) ;
248 // Re s t r i c t i o n o f p i x e l va lue s
249 cv : : Mat roi (mask , cv : : Rect (290 ,200 ,40 ,40)) ;
250 roi = cv : : Scalar (255 , 255 , 255) ;
251
252 detector . detect (image_scene , keypoints_scene , mask) ;
253
254 //Def ine mask in end po s i t i o n . The ob j e c t w i l l be grabed in t h i s p o s i t i o n .
255 // type o f mask i s CV_8U
256 cv : : Mat mask2 = cv : : Mat : : zeros (image_scene . size () , CV_8U) ;
257 // Re s t r i d t i on o f p i x e l va lue s
258 cv : : Mat roi2 (mask2 , cv : : Rect (530 ,30 ,40 ,40)) ;
259 roi2 = cv : : Scalar (255 , 255 , 255) ;

118

260 detector2 . detect (image_scene , keypoints_scene2 , mask2) ;
261
262 //MASK FINISH
263
264 detector . detect (img_object , keypoints_object) ;
265 detector2 . detect (img_object , keypoints_object) ;
266
267
268 // Step 2 : Ca l cu la t e d e s c r i p t o r s (f e a tu r e ve c t o r s)
269 cv : : SiftDescriptorExtractor extractor ;
270
271 cv : : Mat descriptors_object , descriptors_scene , descriptors_scene2 ;
272
273 extractor . compute (img_object , keypoints_object , descriptors_object) ;
274 extractor . compute (image_scene , keypoints_scene , descriptors_scene) ;
275 extractor . compute (image_scene , keypoints_scene2 , descriptors_scene2) ;
276
277 // Draw keypo ints
278 cv : : Mat img_keypoints_1 ; cv : : Mat img_keypoints_2 ; cv : : Mat img_keypoints_3 ;
279 // t e s t = keypoints_object [1] ;
280
281 drawKeypoints (img_object , keypoints_object , img_keypoints_1 , cv : : Scalar : : all (−1) ,←↩

cv : : DrawMatchesFlags : : DEFAULT) ;
282 drawKeypoints (image_scene , keypoints_scene , img_keypoints_2 , cv : : Scalar : : all (−1) ,←↩

cv : : DrawMatchesFlags : : DEFAULT) ;
283 drawKeypoints (image_scene , keypoints_scene2 , img_keypoints_3 , cv : : Scalar : : all (−1)←↩

, cv : : DrawMatchesFlags : : DEFAULT) ;
284
285 // Show detec ted (drawn) keypo ints
286 //imshow(" Keypoints 1" , img_keypoints_1) ;
287 //imshow(" Keypoints 2" , img_keypoints_2) ;
288 //imshow(" Keypoints 3" , img_keypoints_3) ;
289 cv : : circle (image_scene , cv : : Point (0 , 0) , 10 , CV_RGB (255 ,0 , 0)) ;
290 cv : : circle (image_scene , cv : : Point (309 .255248 ,268 .673559) , 10 , CV_RGB (255 ,0 , 0)) ;
291
292 cv : : waitKey (1) ;
293
294 // Step 3 : Matching d e s c r i p t o r v e c t o r s us ing FLANN matcher
295 cv : : FlannBasedMatcher matcher , matcher2 ;
296
297 matcher . match (descriptors_object , descriptors_scene , matches) ;
298 matcher2 . match (descriptors_object , descriptors_scene2 , matches2) ;
299
300 double max_dist = 0 ; double min_dist = 70 ;
301
302 //Matches in f i r s t mash
303 // Quick c a l c u l a t i o n o f max and min d i s t an c e s between keypo ints
304 f o r (i n t i = 0 ; i < descriptors_object . rows ; i++)
305 { double dist = matches [i] . distance ;
306 i f (dist < min_dist) min_dist = dist ;
307 i f (dist > max_dist) max_dist = dist ;
308 }
309 //−− Draw only "good" matches (i . e . whose d i s t ance i s l e s s than 3∗min_dist)
310 std : : vector< cv : : DMatch > good_matches ;
311
312 f o r (i n t i = 0 ; i < descriptors_object . rows ; i++)
313 { i f (matches [i] . distance < 3∗ min_dist)
314 { good_matches . push_back (matches [i]) ; }
315 }
316
317 cv : : Mat img_matches=cv_ptr−>image ;
318
319 cv : : drawMatches (img_object , keypoints_object , image_scene , keypoints_scene ,
320 good_matches , img_matches , cv : : Scalar : : all (−1) , cv : : Scalar : : all (−1) ,
321 cv : : vector<char >() , cv : : DrawMatchesFlags : : NOT_DRAW_SINGLE_POINTS) ;
322

119

323 //−− Loca l i z e the ob j e c t from obj in scene
324 std : : vector<cv : : Point2f> obj ;
325 std : : vector<cv : : Point2f> scene ;
326
327 f o r (size_t i = 0 ; i < good_matches . size () ; i++)
328 {
329 // Get the keypo ints from the good matches
330 obj . push_back (keypoints_object [good_matches [i] . queryIdx] . pt) ;
331 scene . push_back (keypoints_scene [good_matches [i] . trainIdx] . pt) ;
332 }
333
334 //Matches in second mask
335 //−− Quick c a l c u l a t i o n o f max and min d i s t an c e s between keypo ints
336 f o r (i n t i = 0 ; i < descriptors_object . rows ; i++)
337 { double dist = matches2 [i] . distance ;
338 i f (dist < min_dist) min_dist = dist ;
339 i f (dist > max_dist) max_dist = dist ;
340 }
341
342 // Draw only "good" matches (i . e . whose d i s t anc e i s l e s s than 3∗min_dist)
343 std : : vector< cv : : DMatch > good_matches2 ;
344
345 f o r (i n t i = 0 ; i < descriptors_object . rows ; i++)
346 { i f (matches2 [i] . distance < 3∗ min_dist)
347 { good_matches2 . push_back (matches2 [i]) ; }
348 }
349 cv : : Mat img_matches2=cv_ptr−>image ;
350
351 cv : : drawMatches (img_object , keypoints_object , image_scene , keypoints_scene2 ,
352 good_matches2 , img_matches2 , cv : : Scalar : : all (−1) , cv : : Scalar : : all (−1) ,
353 cv : : vector<char >() , cv : : DrawMatchesFlags : : NOT_DRAW_SINGLE_POINTS) ;
354
355 // Loca l i z e the ob j e c t from obj in scene
356 std : : vector<cv : : Point2f> obj2 ;
357 std : : vector<cv : : Point2f> scene2 ;
358
359
360 f o r (size_t i = 0 ; i < good_matches2 . size () ; i++)
361 {
362 //−− Get the keypo ints from the good matches
363 obj2 . push_back (keypoints_object [good_matches2 [i] . queryIdx] . pt) ;
364 scene2 . push_back (keypoints_scene2 [good_matches2 [i] . trainIdx] . pt) ;
365 }
366
367 // I f tag i s detec ted s t a r t pos i s de f i ned and the t imer i s a c t i va t ed
368 i f (good_matches . size () > 0 && obj_detected == f a l s e) {
369 timer=clock () ;
370
371 std : : cout<<"Object i s detec ted ! "<<std : : endl ;
372 std : : cout<<"Time : "<<time<<std : : endl ;
373 std : : cout<<"Center p o s i t i o n : 1"<<X_pix_center_start<<" , "<<Y_pix_center_start<<←↩

std : : endl ;
374 std : : cout<<"Good matches 1 : "<<good_matches . size ()<<std : : endl ;
375
376 //Est imates p o s i t i o n when the tag was f i r s t detec ted
377 f o r (i n t i_image = 0 ; i_image < good_matches . size () ; i_image++){
378
379 avg_X_pix_center = avg_X_pix_center + (double) keypoints_scene [good_matches [←↩

i_image] . trainIdx] . pt . x ;
380 avg_Y_pix_center = avg_Y_pix_center + (double) keypoints_scene [good_matches [←↩

i_image] . trainIdx] . pt . y ;
381 }
382 X_pix_center_start = avg_X_pix_center /(good_matches . size ()) ;
383 Y_pix_center_start = avg_Y_pix_center /(good_matches . size ()) ;
384
385 avg_X_pix_center = 0 . 0 ;

120

386 avg_Y_pix_center = 0 . 0 ;
387
388 std : : cout<<X_pix_center_start<<" , "<<Y_pix_center_start<<std : : endl ;
389
390 //Convert p i x e l c oo rd ina t e s to Cartes ian coo rd ina t e s
391 Eigen : : MatrixXd pixCor_center_start (3 , 1) ;
392 pixCor_center_start << X_pix_center_start ,
393 Y_pix_center_start ,
394 1 . 000000 ;
395
396 Eigen : : MatrixXd norCor_center_start (3 , 1) ;
397 norCor_center_start << camMatrix_inv∗pixCor_center_start ;
398
399 norCor_center_start = norCor_center_start∗Z_world ;
400
401 X_world_center_start = (double) (norCor_center_start (0)) ;
402 Y_world_center_start = (double) (norCor_center_start (1)) ;
403
404 //Transformation from camera cente r to s t a r t p o s i t i o n
405 T_IC_TAG_start << 1 ,0 ,0 , (X_world_center_start) ,
406 0 ,1 ,0 , (Y_world_center_start) ,
407 0 ,0 ,1 , −0.11 ,
408 0 ,0 ,0 , 1 ;
409
410 std : : cout<<"T_IC_TAG_start : \n"<<T_IC_TAG_start<<std : : endl ;
411
412 obj_detected = true ;
413 }
414
415 // I f tag i s detec ted in second mask , the ang le v e l o c i t y and gashping po s i t i o n may ←↩

be est imated
416 e l s e i f (good_matches2 . size () > 0 && robot_pose_calculated == f a l s e && ←↩

obj_detected == true) {
417
418 //Est imates p o s i t i o n to grab ob j e c t
419 f o r (i n t i_image = 0 ; i_image < good_matches2 . size () ; i_image++){
420
421 avg_X_pix_center = avg_X_pix_center + (double) keypoints_scene2 [good_matches2 [←↩

i_image] . trainIdx] . pt . x ;
422 avg_Y_pix_center = avg_Y_pix_center + (double) keypoints_scene2 [good_matches2 [←↩

i_image] . trainIdx] . pt . y ;
423 }
424 X_pix_center_end = avg_X_pix_center /(good_matches2 . size ()) ;
425 Y_pix_center_end = avg_Y_pix_center /(good_matches2 . size ()) ;
426
427 avg_X_pix_center = 0 . 0 ;
428 avg_Y_pix_center = 0 . 0 ;
429
430
431 std : : cout<<"Time : "<<time<<std : : endl ;
432 std : : cout<<"Center p o s i t i o n 2 : "<<X_pix_center_end<<" , "<<Y_pix_center_end<<std←↩

: : endl ;
433 std : : cout<<"Good matches 2 : "<<good_matches2 . size ()<<std : : endl ;
434
435 //Convert p i x e l c oo rd ina t e s to Cartes ian coo rd ina t e s
436 Eigen : : MatrixXd pixCor_center_end (3 , 1) ;
437 pixCor_center_end << X_pix_center_end ,
438 Y_pix_center_end ,
439 1 . 000000 ;
440
441 Eigen : : MatrixXd norCor_center_end (3 , 1) ;
442 norCor_center_end << camMatrix_inv∗pixCor_center_end ;
443
444 norCor_center_end = norCor_center_end∗Z_world ;
445
446 X_world_center_end = (double) (norCor_center_end (0)) ;

121

447 Y_world_center_end = (double) (norCor_center_end (1)) ;
448
449 //Transformation from camera cente r to end po s i t i o n
450 Eigen : : MatrixXd T_IC_TAG_end (4 , 4) ;
451 T_IC_TAG_end << 1 ,0 ,0 , (X_world_center_end) ,
452 0 ,1 ,0 , (Y_world_center_end) ,
453 0 ,0 ,1 , −0.11 ,
454 0 ,0 ,0 , 1 ;
455
456
457 //Tag pose r e l a t e d to the robot base
458 T_R_TAG << T_R_IC∗T_IC_TAG_end ;
459
460 std : : cout<<"T_IC_TAG_end: \n"<<T_IC_TAG_end<<std : : endl ;
461 std : : cout<<"Robot POSE: \n"<<T_R_TAG<<std : : endl ;
462
463
464 //Adding o f f s e t r e l a t e d to Movit
465 movit_pose_x = T_R_TAG (12) + 0 .000509 ;
466 movit_pose_y = T_R_TAG (13) −0.6025+0.0275;
467 movit_pose_z=1.17;
468
469
470 //Request robot to grabbing po s i t i o n
471 ag1 . goToPoseByXYZ(−movit_pose_x , movit_pose_y , movit_pose_z) ;
472
473 std : : cout<<"Movit ! "<<movit_pose_x<<" , "<<movit_pose_y<<" , "<<movit_pose_z<<std : :←↩

endl ;
474 robot_pose_calculated = true ;
475 }
476
477 //Stop watch s tops when ob j e c t i s observed in s t a r t p o s i t i o n f o r a secound
478 e l s e i f (good_matches . size () > 0 && obj_detected == true && time > 10 && ←↩

time_measured==f a l s e) {
479 final=clock ()−timer ;
480 stop_watch=(double) final / ((double) CLOCKS_PER_SEC) ;
481 final=0;
482 timer = clock () ;
483 std : : cout<<"Stop_watch ! "<<stop_watch<<std : : endl ;
484
485 //Move g r ippe r down
486 ag1 . goToRelativePoseByXYZ (0 ,0 ,−0.13) ;
487
488 time_measured=true ;
489 }
490 // Est imates time to gab ob j e c t
491 e l s e i f (time_measured==true && robot_pose_calculated == true && object_grabed== ←↩

f a l s e) {
492 i f (timeOfangleVelosity==f a l s e) {
493 timeObjToPose = AngleVelosity (T_IC_TAG_start , T_IC_TAG_end , stop_watch) ;
494 timeOfangleVelosity=true ;
495 }
496 time==0;
497 final=clock ()−timer ;
498 time=(double) final / ((double) CLOCKS_PER_SEC) ;
499 std : : cout<<"Time : "<<time<<std : : endl ;
500
501 i f ((time + 1 . 4)>timeObjToPose) {
502 std : : cout<< "GRAB OBJECT! "<<std : : endl ;
503 std : : cout << "Gripping " << std : : endl ;
504
505 //Gripper c l o s e s
506 gripper . closeGripper () ;
507 ros : : Duration (0 . 5) . sleep () ;
508
509 // L i f t ob j e c t

122

510 ag1 . goToRelativePoseByXYZ (0 , 0 , 0 . 1 3) ;
511
512 //Move to cent e r o f the t r a i n t rack and put down the ob j e c t
513 ag1 . goToPoseByXYZ (−0 .40 ,0 ,1 .3) ;
514 ag1 . goToRelativePoseByXYZ (0 ,0 ,−0.19) ;
515 ros : : Duration (7) . sleep () ;
516
517 //Open gr ippe r
518 gripper . openGripper () ;
519
520 //Robot goes to s t a r t p o s i t i o n
521 ag1 . goToRelativePoseByXYZ (0 , 0 , 0 . 1 9) ;
522 ag1 . goToPoseByXYZ (0 . 0 5 , 0 . 0 5 , 1 . 3) ;
523
524 //End loop
525 object_grabed= true ;
526 }
527 }
528
529 e l s e i f (obj_detected == true && good_matches . size () == 0 && object_grabed== f a l s e)←↩

{
530 //No ob j e c t detec ted
531 final=clock ()−timer ;
532 time=(double) final / ((double) CLOCKS_PER_SEC) ;
533 }
534 e l s e {}
535
536 i f (! world_pos) {
537 ROS_WARN (" Pub l i she r i n v a l i d ! ") ;
538 }
539 //−− Show detec ted matches
540 cv : : imshow (OPENCV_WINDOW , image_scene) ;
541 cv : : waitKey (1) ;
542 }
543 } ;
544
545 i n t main (i n t argc , char ∗∗ argv)
546 {
547 ros : : init (argc , argv , " image_converter ") ;
548 ros : : NodeHandle n ;
549 // I n i t i l i z e a robot node
550 ag1 = new ih : : RobotPlanningExecution (" a g i l u s 1 " , 0 . 1 , 1 , 10) ;
551 //Moves robot to s t a r t pose
552 ag1 . goToPoseByXYZ (0 . 0 5 , 0 . 0 5 , 1 . 3) ;
553
554 ImageConverter ic ;
555 ros : : spin () ;
556
557 re turn 0 ;
558 }

123

Appendix D

Digital Appendix

A .zip called Digital_Appendix_JensArneEngesaeter.zip is included as a digital appendix. This
file contains:

• The .mp4 file, Grasping_an_object_in_motion.mp4 is a additional movie to illustrate
the experiment 2 in Chapter 5.2, where a KUKA Agilus grasping an object in motion
according to observations from a Logitech Webcam C930e.

• The .cpp file, track_train_movie.cpp is the source code for implementation of experiment
2 in Chapter 5.2.

• The .mkv file, stor_tag1_mindist30_hassian5000_nfeatures0.mkv is a additional movie
illustrate the tracking in experiment 1 in Chapter 5.1.1.

• The .cpp file, object_tracker_SIFT.cpp is the source code for implementation of experi-
ment 1 in Chapter 5.1.2.

• The .cpp file, object_tracker_SIFT.cpp is the source code for implementation of experi-
ment 1 in Chapter 5.1.2.

• The folder, Tags contains the ten different tags used in experiment 1 in Chapter 5.1.1
and Chapter 5.1.2.

124

Bibliography

[1] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-Up Robust
Features (SURF). Computer Vision and Image Understanding, 110(3):346 – 359, 2008.

[2] Herbert Bay, Beat Fasel, and Luc Van Gool. Interactive museum guide: Fast and robust
recognition of museum objects. First International Workshop on Mobile Vision, 2006.

[3] Jason Clemons. SIFT: Scale invariant feature transform by david lowe. Lecture, Opened
02.10.2014 .

[4] Peter Corke. Robotics, Vision and Control. Springe, 2013.

[5] OpenCV dev team. Feature Detection and Description. http://docs.opencv.org/
modules/nonfree/doc/feature_detection.html?highlight=sift. Opened 16.05.2015.

[6] Christopher Evans. Notes on the OpenSURF library. Technical Report CSTR-09-001,
University of Bristol, January 2009.

[7] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision,
Second Edition. Cambridge University Press, 2004.

[8] IFR. World Robotics 2014 Industrial Robots. http://www.ifr.org/industrial-robots/
statistics/, 2014. Opened 20.10.2014.

[9] itseez. About opencv. http://opencv.org/about.html. Opened 16.05.2015.

[10] Luo Juan and Oubong Gwun. A comparison of sift, pca-sift and surf. International Journal
of Image Processing (IJIP), 3(4):143–152, 2009.

[11] Point Cloud Library. 3D SIFT in PCL. http://docs.pointclouds.org/trunk/classpcl_
1_1_s_i_f_t_keypoint.html#details. Opened 21.05.2015.

[12] T. Lindeberg. Scale Invariant Feature Transform. Scholarpedia, 7(5):10491, 2012. revision
142692.

[13] David G Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110, 2004.

[14] David G Lowe. Method and apparatus for identifying scale invariant features in an image
and use of same for locating an object in an image, March 23 2004. US Patent 6,711,293.

[15] Alexander Mordvintsev and Abid K. Feature Matching. http://
opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_feature2d/
py_matcher/py_matcher.html. Opened 08.05.2015.

125

http://docs.opencv.org/modules/nonfree/doc/feature_detection.html?highlight=sift
http://docs.opencv.org/modules/nonfree/doc/feature_detection.html?highlight=sift
http://www.ifr.org/industrial-robots/statistics/
http://www.ifr.org/industrial-robots/statistics/
http://opencv.org/about.html
http://docs.pointclouds.org/trunk/classpcl_1_1_s_i_f_t_keypoint.html#details
http://docs.pointclouds.org/trunk/classpcl_1_1_s_i_f_t_keypoint.html#details
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html

[16] Open Source MoveIt! Concepts. http://moveit.ros.org/documentation/concepts/
#The_move_group_node. Opened 21.05.2015.

[17] Richard J Radke. Computer Vision for Visual Effects. Cambridge University Press, 2013.

[18] ROS. About ros. http://www.ros.org/about-ros/. Opened 01.05.2015.

[19] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple
features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of
the 2001 IEEE Computer Society Conference on, volume 1, pages I–511. IEEE, 2001.

[20] Wikipedia. Grayscale. http://en.wikipedia.org/wiki/Grayscale, 2 oktober 2014.
Opened 05.12.2014.

[21] Andrew P Witkin. Scale-space filtering: A new approach to multi-scale description. In
Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP’84.,
volume 9, pages 150–153. IEEE, 1984.

126

http://moveit.ros.org/documentation/concepts/#The_move_group_node
http://moveit.ros.org/documentation/concepts/#The_move_group_node
http://www.ros.org/about-ros/
http://en.wikipedia.org/wiki/Grayscale

	Preface
	Acknowledgment
	Summary
	Introduction
	Background
	Objectives
	Structure of the Report

	Image Formation and Image Processing
	Camera
	Digital Image
	Homogeneous Transformation
	Grey scale
	Features
	Descriptors

	Computer Vision
	SIFT
	Detection of scale space extrema
	Local extrema detection
	Elimination of unstable extrema values
	Feature orientation
	SIFT-descriptors

	SURF
	Interest point detection
	Interest point localisation
	Orientation assignment
	SURF-descriptors

	Matching

	Robotics
	Robot Kinematics
	Denavit-Hartenberg Parameters
	End-Point Open-Loop Control
	Position-Based Visual Servoing
	OpenCV
	ROS
	Camera Calibration

	Implementation of SIFT and SURF
	Experiment 1: Comparing SIFT and SURF
	Identify Robustness
	Computation Time

	Experiment 2: Grasping an object in motion with a KUKA Agilus Manipulator
	Tag detection
	Estimate Transformation
	Masks
	Angle Velocity Estimation
	Motion Planning
	Grasping Object

	Results
	Result from Experiment 1: Comparing SIFT and SURF
	Results from Identifying Robustness
	Results from Computation Time
	Improvement of Computation Time

	Results from Experiment 2: Grasping an object in motion with a KUKA Agilus Manipulator
	Video

	Summary and Recommendations for Further Work
	Conclution
	Discussion
	Recommendations for Further Work

	Additional Information for Chapter 5
	Additional Graphs to Section: Expenditure of Time
	Additional Graphs for Section: Computation Time

	Additional Information for Chapter 6
	Additional Graphs to Chapter: Results from Computation Time
	Additional Graphs for Section of Improvement to Computation Time

	Source Code
	Digital Appendix
	Bibliography

