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Preface

This report documents my master thesis carried out during the spring of 2015. The thesis has

been carried out as part of the RAMS Engineering MSc program at the Norwegian University of

Science and Technology (NTNU), and is concerned with new method for reliability and avail-

ability assessment and investigates different configurations of blowout preventer stack in the

case study. The reader is assumed to be familiar with the terminology used in the NTNU course

TPK4120 Safety and Reliability Analysis and/or the terminology used in Rausand and Lundteigen

(2014). The reader is also assumed to have knowledge of the basics concepts involved with

subsea blowout preventer. It is further assumed that the reader has basic knowledge of the

IEC61508 standard for functional safety of electric/electronic/programmable electronic safety-

related systems..

Trondheim, 2015-06-16

Juntao Zhang
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Summary and Conclusions

The blowout preventer system is acting the secondary safety barrier in a hydrocarbon well,

where the drilling mud column is defined as the primary safety barrier. However, in pratical

industry, there is a new demand for improved methods of assessing the reliability and availabil-

ity of blowout preventer systems. The objective of this master thesis is to propose the relatively

new method for reliability and availability assessment based on Bayesian Network, focusing on

the comparsion between the various blowout preventers stack and the influence of the external

information in the case study.

The thesis starting with introduction of safety critical system including the basic terminology

for reliability and availability assessment. The relevant standards regarding oil and gas industry

are also introduced.

The brief review about the blowout preventer is presented next. The basic structure of blowout

preventer and the three main subsystems are identified and introduced. The classification of

possible failure and desired functions of main components are reported. Finally, the brief re-

search review about the previous reliability assessment method of subsea blowout preventer

is presented, pointing out some potential weakness of the traditional methods, which indicat-

ing the Bayesian Network is the one possible solution when new requirement of reliability and

availability is demanded.

Then the introduction of Bayesian Network is mainly investigated for those who are not very

familiar with this method. The possible allocation of Bayesian Network in reliability assess-

ment and the comparsion between Bayesian Network model and the traditional method are

mainly discussed. Then in the end of this chapter, there are two examples to show how the tra-

ditional method used in the assessment of blowout preventer can be transferred into Bayesian

Network model without losing any details, in addtion, the advanced modeling powers regarding

introduction of probabilistic gates, multiple states for variables and updating information when

scanerio is known are revealed in both examples.

Finally the case study about reliability and availability assessment of different blowout preven-

ters is created. There are mainly three different type of blowout preventer stacks withing dif-

ferent degrees of performing the desired functions under the most demanding situations. The
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Bayesian Network model is able to perform such assessment effectively and one addtional in-

formation is taken into account since the contribution of the wellbore pressure has significant

implications on the blowout preventer’s ability to seal around or seal off the wellbore.

Finally, the conclusion and discussion are provided. The main conclusion are summarized as

three key findings. First, Bayesian Network is proven to carry out the reliability and availabil-

ity assessment when there is the new requirement in pratical situations, especially for updating

the information when the test data is available during the operation. Second, Bayesian Network

based reliability and availability assessment is possible for applying in the large scale model

since it can handle probabilistic gates and multiple states of components, where the traditional

method such as Fault Tree Analysis may not be able to deal with such challenges. Third, accord-

ing to the analysis results of the case study, the blowout preventer equipped with the Deepwater

Horizon type of stack is considered as the most reliable one in the most demanding situation,

if the correct repair strategy is applied. In addition, this kind of blowout preventer is relatively

very stable under the high wellbore pressure condition even though withing lower redundancy

of the pipe ram subsystem, due to inclusion of casing shear ram which improves the shearing

ability significantly.
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Chapter 1

Introduction

1.1 Background

The Macondo accident is the most severe blowout accident with the extreme consequence in oil

and gas industry, recently. 11 crews were killed and the Gulf of Mexico was irretrievably polluted

during this disaster. A considerable amount of literatures has investigated the main causes of

the accident. Accordingly, most of them argued that the improvement of reliability assessment

of safety critical system is crucial to prevent from happening again in the future. In the final

report on the investigation of Macondo well blowout (Deepwater-Horizon-Study-Group, 2008),

they concluded that the uncontrolled blowout is caused by three categories: unrecognized risk

in production casing design and construction, procedure of temporary abandonment of the

well and the failure in attempting to shut-in the well such as disconnecting the drill rig from

the well and activating the blowout preventer (BOP). The report also indicates that failure of

the BOP as one of final barrier when dealing with well control problems is one of main causes

of the accident. In the weak of the occurrence of Macondo accident, the improved reliability

assessment of BOP is becoming recognized.

After reviewing standards and guidelines concerning oil and gas industries: the basic idea be-

hind the safety critical system and relevant reliability assessment methods are discussed in this

report. However, some weaknesses in the previous reliability study of BOP system are revealed

after reviewing the BOP system, where the traditional methods is no longer adequate enough to

perform the suitable analysis under the specific requirement. Since the BOP system is not only

2
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acting as the safety barrier but also perform the operational functions, some external causes

should be taken into account such as the wellbore conditions; Due to the data collection and

estimation of unknown parameters of modelling, some issues such as common cause failure

(CCF) have not been fully covered in the previous assessment (Hokstad and Rausand, 2008);

In addition, one may expect that there is a reassessment method for updating reliability infor-

mation once the testing data of BOP system is available, which means making the diagnostic

analysis possible in reliability assessment of BOP system. In order to carry out the more accu-

rate reliability assessment of BOP system, one appropriate probabilistic assessment model so

called Bayesian Network (BN) should be introduced to face challenges upon the special features

and requirement of BOP system.

This Master thesis is starting with the review of basic concepts of the reliability assessment of

safety critical system. Then, the problem existing in the previous BOP reliability assessment

is presented. The detailed introduction of Bayesian Network is given by descriptive examples

afterwards. Firstly, two examples are created for demonstrating how the traditional method

is converted into Bayesian Network and the relevant comparison between them is revealed to

indicating the advantage of Bayesian Network . Then the case study is carried out by using

Bayesian Network model regarding overcoming existing challenges.

1.2 Objectives

The main objective of this master thesis is to indicate the new requirement of reliability assess-

ment in the existing subsea BOP system and propose the new method to fulfill those kinds of

requirement. To be more specific, the objectives are:

1. Give the overall review about main concepts and approaches for reliability assessment

related to safety-critical systems:

• To describe the conceptions and relevant terminology and of safety critical system,

in order to help understanding the following part

• To investigate the reliability measures with different calculation methods in order to

understand the difference between two major reliability measures
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• To identify the safety integrity level and its requirement and allocation method

2. Present a basic understanding of BOP system, its basic structure, functions, failure modes

and relevant information

• To describe the main elements of BOP and what they are mainly used for, and present

and compare the different configuration of BOP stack

• To classify essential functions and failure modes of the whole BOP system

• To identify the possible weakness or existing research gaps by reviewing the previous

work

3. Introduce the suitable method for new reliability assessment in case of BOP system

• To give brief introduction to the basic conceptions of Bayesian Network

• To discuss the possible solution of applying Bayesian Network in reliability assess-

ment, by illustrating simple examples concerning transferring Fault Tree Analysis to

Bayesian Network

4. Carry out the case study about the Bayesian Network based assessment of BOP system

• To describe the current problem existing in the BOP system reliability assessment

• To solve the existing problems by Bayesian Network Model

• To discuss the key findings based on the results of the analysis

1.3 Delimitations

Since viewers are supposed to have the basic knowledge in reliability assessment or relevant

backgrounds, some aspects related to safety critical system and some specific calculations and

formulas are only briefly investigated but not specifically described due to the limited space in

this report.

In the calculation of proposed assessment method, some simplification of modeling of BOP

system is made so that the loss of details is unavoidable and the operation of some components
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of BOP system is not included. And some parameters are estimated by expert judgment and

personal opinion of author.

1.4 Approach

• Interviews: The formulated problem is identified based on the literature review from the

semester project, professional supervisions and some opinions and suggestions from the

industrial companies, DNV and Rio. After discussing with experts from industry with op-

eration and modelling experiences, the suitable method and the scope of the thesis is

finally chosen for solutions.

• Literature research: Some contexts in this thesis are abstracted from the semester project

report written by the author to avoid some unnecessary efforts, such as the summary of

safety critical system, the investigation about the BOP system and the potential problems

in its previous reliability assessment of BOP system.

• Case study:As suggested by supervisors, the main approach for creating Bayesian Network

model in this master thesis is to use Matlab, which has the professional computational

power and the specific toolbox for Bayesian Network. The instruction manual and the

relevant programming can be find in the website of Bayesian Network Toolbox of Matlab

(Matlab, 2015).

1.5 Structure of the Report

Chapter 2 gives the overview of safety critical system conception in addition with the terminol-

ogy of safety instrumented system before explanation and discussion of reliability measure and

performance evaluation of related system.

Chapter 3 starts with the system familiarization of the BOP system with respect to its physical

structure, and then classifies the functions and possible failure of the BOP system from the pre-

vious research in reliability evaluation of the BOP system to identify the possible challenges in

its traditional reliability assessment.
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Chapter 4 introduces the basic ideas and rules behind Bayesian Network and its relevant cal-

culations. And the detailed introduction about building Bayesian Network model is given by a

simple example. Then the discussion about how Bayesian Network applying in the reliability

assessment and the comparison from traditional method are given afterwards.

Chapter 5 carrys out the case study of the BOP system regarding the different configuration

stack: Classical, Modern and Deepwater Horizon, which equipped with different subsystem

within various redundancy. In addition, the effect of the wellbore pressure is also investigated

by using the forward analysis and backward analysis.

Chapter 6 discusses the generated results from the previous chapters, especially for case study.

The research respective is also proposed for future development in this area.



Chapter 2

Reliability Assessment of Safety Critical

Systems

In this chapter, some basic terminology and conceptions about safety critical system are in-

troduced briefly from subchapter 2.1 to 2.5. And subchapter 2.6 gives the introduction about

reliability measures of safety critical system and how the terms are used in the calculation. In

addition, subchapter 2.7 presents how to evaluate the performance of safety critical system by

allocating the reliability measures.

2.1 Basic Conceptions of Safety-Critical Systems

A safety-critical system is a system whose failure may lead to harm to people, economic loss, and/or

environmental damage.

—(Rausand and Lundteigen, 2014)

When the failure of the system would lead to the unacceptable consequence, this kind of system

is called as safety-critical system. The safety-critical system is designed to perform the safety

functions that can prevent equipment under control (EUC) from undesirable consequence. Note

that EUC could be people in case that system is designed to protect person from harms. EUC

can be protected more than one safety barrier, but all the safety barriers with respect to EUC are

not necessarily safety critical system.

7
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2.2 Relevant Technologies and Applicable Standards

Electrical,electronic,or programmable electronic (E/E/PE) technology is mostly applied in safety-

critical systems (Rausand and Lundteigen, 2014), often together with mechanical or other tech-

nology items. The system-critical system should include at least one of E/E/PE technology. If

the system excludes the E/E/PE technology, the system can use the term as Safety-related sys-

tem, but it may be difficult to distinguish these two.

There are many sector-specific standards for process industry, machinery system, nuclear power

plants and automotive industry. The sector-specific standards can restrict its application to the

most typical and desired way of designing and operating a safety-critical system. In this master

thesis, the case study is about subsea blowout preventer system, and then the standards of ap-

plication of safety instrumented system in the process industry including oil and gas industry

are mainly mentioned and discussed in this report. Especially the standard Functional safety

of electrical/electronic/programmable electronic safety related systems (IEC-61508, 2010) and the

standard Functional safety – safety instrumented systems for the process industry sector (IEC-

61511, 2003) are very important standards for introducing safety related systems that involve

E/E/PE technology. In addition, Norwegian oil and gas application of IEC 61508 and IEC 61511

in the Norwegian Petroleum industry (NOG-070, 2004) gives the summary of these standards

and related applications in oil and gas industry.

2.3 Safety Instrumented Systems

As indicated in subchapter 2.2, the system-critical system should include at least one of E/E/PE

technology. This kind of system may also be referred as the term safety instrumented system

(SIS) in the process industry, which is used as a protection layer between the hazards of the

process and the public (Rausand and Lundteigen, 2014). For the rest of report, SIS is used in

line with the term in process industry instead of safety critical system. A typical SIS shown in

Figure 2.1 consists of at least three subsystems:sensor subsystem, logic solver subsystem and

final element subsystem.

• Sensor subsystem also called as i nput el ement s. The function is to monitor the state of
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Figure 2.1: A typical SIS system

EUC and detect the undesired event and send the electrical signal to the logic solver. For

example, fire and gas detectors in the process industry.

• Logic solver subsystem received the electrical signal from at least one sensor and determine

of required actions based on the interpretation of signals. The logic solver is also consid-

ered “brain” of the SIS. The programmable logic controller (PLC) is the typical logic solver

automation and safety of electromechanical processes, control system, shutdown system

and so forth. When the SIS has n logic solvers, it may require k out of n logic solvers to

agree on the following actions.

• Final element subsystem also called as actuating devices. The function is to perform the

safety function to prevent harm. The final elements could be more than one to perform

the same function. A group with n identical final elements can function when at least k

of n channels are functioning, then it is said to be a koon voting. As show in Figure 2.2,

when three valves located on the same pipeline, each can stop the pipeline therefore it is

a 2oo3 voting.

2.3.1 Safety-instrumented Functions

Safety-instrumented Function (SIF) is a function that has been intentionally designed to protect

the EUC against a specific demand. However, a safety function is not necessarily to be a SIF and

a SIS can perform more than one SIF. Then it is imprecise to say the reliability of a SIF is the same

as the reliability of the SIS or the safety loop which is performing the SIF. A SIS that implements a
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Figure 2.2: 2oo3 voting system

SIF is not only designed to perform the SIF on demand, but also to keep SIF in deactivates state

without the presence of demand.

2.3.2 Modes of Operations

According to the IEC 61508 (IEC-61508, 2010), demand is the condition that activates the SIF,

and it is normally categorized based on how often the SIF are demanded. Normally, once per

year is considered as the borderline but the rationale behind has not been clearly argued in

related standards.

• Low-demand mode: is operated seldom and demanded less than once every year

• High-demand mode: is operated frequently and demanded more than once every year

• Continuous mode: is operated continuously. The safety function is always at demand, and

is also a special case of high demand mode.

It is important to distinguish the difference between the low-demanded mode and high/continuous

mode. A SIF in EUC with low-demanded mode is usually kept passive and only activate when

there is the response. A SIF that operates in high/continuous mode plays an active role in con-

trol of the EUC. The importance of classification is revealed in the calculations of reliability as-

sessment which would be introduced in subchapter 2.6, since the input parameter and calcu-

lated formula are different based on the demand mode.
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2.4 Failures and Failure Modes

A failure is the event that terminates the ability of required function where a failure mode is to

tell how the item or system fails to perform the required function (Rausand and Lundteigen,

2014). The failure rate is described as frequency of occurrence of failure in the certain time

period.

The(IEC-61508, 2010) also indicates two types of failures:

• The random hardware failure. It can be caused by aging, inadequate maintenance, exces-

sive stress and human errors, but some analysts may not agree on that human errors and

excessive stress should be classified as random hardware failure.

• The systematic faults. It is related to the deterministic cause in design phase, operational

phase, documentation and other relevant factors resulting from systematic failures, which

means that the appropriate modification of the design, manufacturing process and oper-

ational procedures will availably eliminate such faults.

The category of hardware failures/faults based on consequence and detect ability is of

vital importance in calculation of reliability of SIFs, which can be distinguished as:

• Dangerous undetected (DU) faults: This kind of failure will bring the component into fail

state and can be only revealed by proof-test or occurrence of demand. The DU faults

mainly contribute to SIF unavailability.

• Dangerous detected (DD) faults: This kind of failure will terminate the item to perform

the required function and can be detected in the short time or immediately.

• Safe undetected (SU) failure: The failure will not cause the item to perform safety func-

tions.

• Safe detected (SD) failure: The failure is not dangerous and can be detected by automatic

self-testing.
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2.5 Testing Interval of SIS

Test is one of the important ways to detect the potential failure, which has the significant in-

fluence on the system reliability. There are two parameters interval and coverage can be use to

describe two types of test:

• Proof test: It is used to reveal DU failures before a demand occurs. The time region be-

tween initiations of proof tests is called proof test interval. The proof test coverage is

expressed as the percentage of DU failures that are detected during a proof test, which

means that the higher value of coverage, then the better proof test. In general, the proof

test is important to prevent DU failures in low demand system. However, it is not so evi-

dent in high demand system since the demand rate is so high so that there is not enough

time for high demand system to response for restoration. Then contribution of DD failure

to PFH is considered as negligible.

• Diagnostic test: It is used to automatically detect the specific failure to avoid fully shut-

down, usually in shorter time interval than proof test. The Diagnostic test coverage can

be expressed as the ratio between the dangerous failures detected during diagnostic tests

and the all dangerous failures.

2.6 Reliability Measures

Probability of failure on demand (PFD) is most widely used reliability measure in low-demand

system. It can be expressed as the probability that SIF operated in low-demand mode cannot be

performed at time t when there is a dangerous failure.

PFD(t ) = Pr(The SIF cannot be performed at time t ) (2.1)

In the practical cases, the average value of PFD is used rather than a function of time. As as-

sumptions in (Rausand and Lundteigen, 2014) , a SIF is proof-tested after regular intervals of

length t and the system is considered to be as good as new after proof test. Then long term aver-

age probability of failure on demand can be expressed as follows, where the two key parameters
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are 1) estimated failure rates from large data collection and 2) the typical test interval.

PFDav g = 1

τ

∫ 0

τ
PFD(t )d t . (2.2)

PFDavg can be interpreted in two ways according to formula:

• It can be the probability that SIF cannot be performed in response to the demand or

• It is able to be expressed as mean proportion of downtime that item cannot perform re-

quired function.

For the typical SIS, the simplified equation could be easily used in calculations of PFDavg, the

PFD of SIS can be the sum of the PFDs of three individual elements. This simplified equation is

originally driven from Markov models, unlike Markov model, however, the time dependent fail-

ures or sequence dependent failures are not involved in the simplified equation, which means

that the simplified equation cannot be used for analysis of programmable logic solvers.

PFDSI S =∑
PFDI E +∑

PFDLS +
∑

PFDF E (2.3)

Frequency of dangerous failure per hour (PFH) is defined as the time-dependent frequency

given as number of dangerous failures per hour for SIF operated in high or continuous demand.

High-demand means that the SIS is seldom proof-tested since the higher demand rate results

in no time for response. The time interval (0, τ) can be the proof test interval if the SIS is proof-

tested or be chosen as estimated lifetime of the SIS if the SIS is not proof-tested. The average

PFH in time interval (t1, t2) is

PFD(t1, t2) = E(ND (t2))−E(ND (t1))

t2 − t1
(2.4)

Where ND (ti ) denotes the mean number of dangerous failure in interval (t1, t2).

In the part 6 of (IEC-61508, 2010), the approximation formula is calculated for a group of chan-

nels or single channel and assumed the channels are independent and any parallel structure of

channels constitutes identical components. The IEC formula is calculated as follows,where two

parameters are used : 1) group failure frequency λD,G ; and 2) group-equivalent mean downtime

tG ,E and the approximation is adequate when λD,G tG ,E is small. :
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PFDav g =λD,G tG ,E (2.5)

In addition, there are two other parameters to derive the formulas: 1) Channel dangerous fail-

ure rate λD and 2) Channel equivalent mean downtime tC ,E where i th failure tG ,Ei for multiple

channel failures in koon voted group does not result in group failure.

tC ,E = λDU

λD
(
τ

2
+MRT )+ λDD

λD
MT T R (2.6)

tG ,Ei =
λDU

λD
(

τ

n −k +2
+MRT )+ λDD

λD
MT T R (2.7)

Where MRT is the mean repair time after detected failure and MT T R is the mean time to

restoration.

Consider a 1oo2 system as the example, then the first dangerous failure occurs with 2λD and

means downtime of a single channel is tC ,E ; the dangerous group failure occurs if the sec-

ond channel fails when there is one failed channel. The probability is then 1− e−λD tC ,E is ap-

proximated as λD tC ,E if it is less than 0.1. Then λD,G is approximated as λ2
D tC ,E .Then group-

equivalent mean down time tG ,E is equal to λDU
λD

(τ3 +MRT )+ λDD
λD

MT T R. The similar reduced

equations are achieved for 1oo1, 1oo2, 1oo3, 2oo3, 1oo4, 2oo4.

If the CCFs is considered to contribute in IEC formulas, then the standard beta factor model is

suggested to use. For 1oo2 system, the PF Dav g includes CCF can be expressed as:

PFDav g = 2[(1−βD )λDD + (1−βD )λDU ]2tC ,E tG ,E +βDλDD MT T R +βλDU (
τ

2
+MRT ) (2.8)

Where β is the factor of common cause failure and βD indicates the fraction of detected danger-

ous failures in the common cause failure factor and is usually assumed to be 0.5.

The part 6 of (IEC-61508, 2010) also provides the similar approximation formulas for PFH. Then

PF HG ,i for a koon voted group is determined as follows, where for a 1oo1 system the PFH is

equal to the frequency of DU:

PFH =λDU (2.9)
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PFHkoon
G ,i = n

 n −1

n −k

 (λ(i )
D )n−k+1(λ(i )

C E )n−k (2.10)

For a 1oo2 system the formula of PFH is shown as:

PFH1oo2 = 2[(1−βD )λDD + (1−βD )λDU ]2tC ,E +βDλDD +βλDU (2.11)

For most of the SIS low demand mode has been assumed, and a considerable amount of liter-

ature has been focused on this kind of system. In recent years, however, the research emphasis

has been shifted in the discussion of high demand mode. The main differences between PFD

and PFH can be driven from three aspects:

• PFD is the probability that fails to function when demand, where PFH is the frequency

given as the number of dangerous failures per hour

• PFD is applied in calculation of the low demand mode where has enough time for proof-

test. PFH is applied in calculation of the high demand mode or continuous mode where

there is no time for response of proof test due to the higher demand rate.

• DD failure contribute less significantly to the calculation of PFH, since the demand rate is

so high that there is no enough time to repair or restore the system.

When the demand rate close to once per year, the choice of these two reliability measures may

lead to the different conclusion. However, conclusion has not been drawn in the Rausand’s book

(Rausand and Lundteigen, 2014) yet. For the further treatment of this issue, see (Jin et al., 2011)

and (Liu and Rausand, 2011) . In addition, Hauge (2013) provides the further discussion about

choice between PFD and PFH.

2.7 Safety Integrity Level

Safety integrity is defined as the performance measure for a SIF in the IEC-61508 (2010) . The

Safety integrity level (SIL), measures for safety performance of the system in order to reduce the

risk and increase the safety for system. SIL is divided into four, SIL1, SIL 2, SIL 3 and SIL 4, with

SIL 4 being the most reliable and SIL 1 being the least.
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The (IEC-61508, 2010) distinguishes between hardware safety integrity, software safety integrity

and systematic safety integrity. In Rausand’s book (Rausand and Lundteigen, 2014), hardware

safety integrity is mainly introduced and is covered partly in random hardware safety integrity.

If a SIF is said to meet the SIL requirement, then each of these three integrities must be fulfilled.

There is a close relationship between reliability measures and safety integrity. Safety integrity

is particular application rather than generic statement since it is related to reliability measures

with some specific conditions, such as stated period of time. Average PFD and PFH are mainly

used for safety integrity, which has already been introduced in the previous sub-chapter 2.6. In

Rausand’s book (Rausand and Lundteigen, 2014), there are several important terminology issues

should be noticed:

• A SIL is always related to a specific SIF instead of a SIS

• A SIL is to evaluate the whole safety loop (including sensors, logic solver, and final ele-

ments) instead of any subsystem or components

2.7.1 SIL Requirement

To achieve a given SIL, there are three main types of requirements that must be fulfilled in (NOG-

070, 2004):

• Quantitative requirement, expressed as PFD or PFH. A quantitative analysis should in-

clude random hardware failure, common cause failure and relevant failures. Separate

function can be certified, but required failure probability should be verified for complete

function so that the SIL requirement applies to a complete function instead of individ-

ual component that perform the function. Since PFD is used as the demand rate per year,

where PFH is defined as frequency per hour and one year is approximately 104 hours, then

there is 104 difference in values between two different modes on the same SIL as observed

in Table 2.1.

• Qualitative requirement, expressed as architectural constraints besides PFD and PFH re-

quirement which can be given in terms of three parameters:
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Table 2.1: SIL for safety functions on different modes (modified from (NOG-070, 2004), Table8.1)
Safety Intergrity Level Demand Mode of

Operation (PFD)
Continuous/ High

Demand of
Operation(PFH)

4 ≥ 10−5 to < 10−4 ≥ 10−9 to < 10−8

3 ≥ 10−4 to < 10−3 ≥ 10−8 to < 10−7

2 ≥ 10−3 to < 10−2 ≥ 10−7 to < 10−6

1 ≥ 10−2 to < 10−1 ≥ 10−6 to < 10−5

Table 2.2: Architectural constraint on type A subsystem (modified from (NOG-070, 2004) , Table
8.2)

Safety Failure fraction
Hardware fault tolerance

0 1 2
< 60% SIL1 SIL2 SIL3

60%−90% SIL2 SIL3 SIL4
90%−99% SIL3 SIL4 SIL4
> 99% SIL3 SIL4 SIL4

1. Hardware fault tolerance (HFT): in the IEC 61508 , it is defined as the digit to show

the ability of a hardware subsystem to continue to perform a required function when

there are faults or errors. If there is a channel that still is able to perform the required

function as normal under the condition that other channels fails, then the HFT of the

system is 1. For example, 2oo3 voted group is HFT=1.

2. Safe failure fraction (SFF): it is defined as in IEC 61508, the ratio of the failure rate

besides DU failure to the total failure rate, where the total failure contains the safe

failure SD, SU and dangerous failure DU, DD.

3. Types of subsystem: all possible failure modes can be determined for all constituent

components for type A system but the behavior of type B subsystems cannot be com-

pletely determined for at least one component. The relevant information is given in

Table 2.2 and 2.3.

• Avoid and control systematic faults. The systematic faults are the faults in hardware and

software corresponding to design, operation and maintenance or testing. This kind of

fault is not quantified in (IEC-61508, 2010) and (IEC-61511, 2003). But there are some

certain measures are recommended in order to avoid and control systematic faults during
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Table 2.3: Architectural constraint on type B subsystem (modified from (NOG-070, 2004) , Table
8.3)

Safety Failure fraction
Hardware fault tolerance

0 1 2
< 60% Not allowed SIL1 SIL2

60%−90% SIL1 SIL2 SIL3
90%−99% SIL2 SIL3 SIL4
> 99% SIL3 SIL4 SIL4

the design phase.

2.7.2 SIL Allocation

SIL allocation is the process in order to optimize the design to meet the SIL requirement for a

SIF. The methods of SIL allocation can be categorized as:

• Qualitative methods, which determine the SIL from knowledge of risks associated to sys-

tem. The typical method is Risk Graph.

• Quantitative methods, which are required to compute the reliability of SIS based on the

failure rate and repair rate of components. Fault Tree Analysis (FTA), Markov approach

and Petri-Nets are the well-known methods to fulfill the requirement.

• Semi-quantitative methods, which assign the value but not necessarily based on exact

measurements. The most widespread method is Risk Matrix, which defines SIL accord-

ing to the extent of risk and the frequency of occurrence. The other methods like Layer

of Protection Analysis (LOPA) and Event Tree Analysis (ETA) are also recommended. Min-

imum SIL requirement is usually used in Norwegian oil and gas industry for commonly

used SIFs, which is not described in the (IEC-61508, 2010) but is suggested in (NOG-070,

2004).



Chapter 3

Blowout Preventer System

3.1 System Introduction of Blowout Preventer

The BOP system is one of the safety critical parts of the subsea drilling system since it acts as the

final barrier to prevent loss of well control. In addition, the BOP system is used for a range of rou-

tine operational tasks, such as casing pressure and formation strength tests (British-Petroleum,

2010).

There are three important components of the BOP system: lower marine riser package(LMRP),

BOP stack and control system. The BOP system includes two types of preventers: ram preventer

and annular preventer. In addition, the valves and piping (choke lines and kill lines) are used to

maintain pressure control in the well. A typical subsea BOP system is shown in Figure 3.1.

A typical subsea BOP system is equipped with five to six ram preventers and one or two annular

preventers. Annular preventers are located above ram preventers since their working pressures

are different from ram preventers. The typical configuration has two shear rams in order to

establish a redundant system to increase the reliability. The BOP stack is attached to the well-

head with a hydraulically operated, high-pressure wellhead connector attached the LMRP to

the marine drilling riser. The detailed discussion for each main element is presented as follows

(British-Petroleum, 2010).

19
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Figure 3.1: A typical BOP structure, modified from (NOG-070, 2004), Figure A.22
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3.1.1 Main Elements of LMRP

The LMRP mainly consists of flexible joint, annular preventer, control pods, LMRP connector

and choke and kill line connector:

• Flexible joint: this component is located at the top of the LMRP. It is designed to handle

up to angular deflection from vertical axis of BOP (no more than 10 degree).

• Annular preventer: the function of upper annular preventer is to seal the wellbore annulus

while drill pipe is running through LMRP and BOP stack. The lower annular preventer is

acting as the first barrier of BOP to close around the drill pipe when there is an accident.

It is installed above the ram preventers, since the working pressure of annular preventer is

10000 psi when close around the pipe and 5000 psi when close on the open hole, which is

lower than the working pressure of ram preventers (Transocean, 2011).

• Control pods: It provides the communication between the LMRP and BOP stack compo-

nents and the surface control system. The two pods are usually called as “blue pod” and

“yellow pod”, which are identical and redundant modules. There is generally a spare pod

located on the rig besides the blue pod and the yellow pod. The control pods can activate

all the BOP functions, which makes safety and reliability of control pods is of importance.

• LMRP connector: It provides the connection between bottom of LMRP and the top of BOP

stack. It allows the disconnection of the LMRP when there is the requirement of repairing

control pods, and in event of an emergency or loss of rig dynamic-position station keep-

ing.

• Choke and kill line connector: It connect between choke and kill lines on the LMRP and

BOP stack with hydraulically operation.

3.1.2 Main Elements of Blowout Preventer Stack

BOP stack mainly consists of blind shear ram, casing shear ram, pipe ram, wellhead connector,

choke and kill line valves and BOP stack hydraulic accumulators.
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• Blind shear ram (BSR): it is used to cut the drill pipe and seal the wellbore and can be

actuated in two modes: under 3000 psi closing pressure, or 4000 psi closing pressure. The

activation of BSR is the last-option in case of emergency since it can completely seal off

the wellbore, which leads to the serve damage of the equipment and rig downtime.

• Casing shear ram (CSR): it is similar to the BSR when drill pipe, casing and tool joints. The

cutting ability of CSR is designed to be higher than BSR but it cannot seal the wellbore.

The CSR is critical if cutting the heaviest drill pipe or casing is beyond the ability of BSR.

• Pipes ram: there are three type of pipe ram based on the positions: upper, middle and

lower. They are designed to close and seal on tubular with specific range of outer diame-

ter (OD). For lower pipe ram, it is usually referred as the “test ram”. Based on the design

principle, there are two types: 1) standard pipe rams can seal with specific OD tolerance

and 2) variable bore rams (VBR) can seal must of tubular dimension.

• Wellhead connector: this hydraulically-actuated connector can be used to connect the

BOP stack to subsea wellhead housing.

• Choke and kill line valves: they are operated in fail-safe ‘close’ and can be used to isolate

the choke and kill line piping connections to the BOP ram.

• BOP stack hydraulic accumulators: .The accumulator store pressurized hydraulic fluid at

5000 psi CSRs supplied from topside hydraulic power unit (HPU). It will be reduced to

4000 psi by manually-set hydraulic regulators when the accumulator bottles are used for

normal closing operation of the high-pressure BSRs and high-pressure operation. The

leak of accumulators will affect both pods.

There are various types of stack configurations even all BOP stacks are principally similar. For

traditional BOP stack, which is still in use in many offshore locations, all the pipe rams are stan-

dard and there is not any CSR installed in BOP system. The disadvantages are revealed distinctly,

since the pipe ram can only seal with certain OD tolerance, which is not in favor of the redun-

dancy of BOP system. Moreover, the exclusion of CSR would lead to the insufficient ability for

shearing the heavy pipe.
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For modern BOP stack, there is only one standard pipe ram instead of three in traditional stack

for improvement in redundancy. And the modern BOP stack is equipped with the CSR for in-

creasing the ability for shearing in the most demanding well control situations. This type of BOP

stack is usually referred as standard stack configuration.

Deepwater Horizon (DWH) BOP stack was the one that used in Macondo well. The only differ-

ence between the standard BOP stack and DWH BOP stack is the pipe rams, where pipe rams in

DWH BOP stack are all VBRs and lower pipe ram is the test ram. Compared to the standard BOP

stack, three VBRs increase the flexibility and redundancy to shear tubular OD to the new higher

level, and the test ram reduce the prepared time before the test starts and resumed time after

the test completes. However, the converting of normal pipe ram to test ram results in the loss of

redundant annual sealing function since the test ram can only seal the wellbore pressure from

above but not from below.

3.1.3 Main Elements of Control System

Unlike most of BOP components actuated hydraulically, the multiplexed (MUX) control sys-

tem involved in performing most of the BOP desired functions is supported by both electri-

cal/electronic and hydraulic components. The control systems are mounted both at topside

and subsea BOP.

On the topside, the main component is the central control unit (CCU), which generally consists

of two control panels: the driller’s control panel (DCP) and the toolpusher’s control panel(TCP).

Each of control panels equipped with two PLCs, sometimes three PLC forming as the triple mod-

ular redundant (TMR) subsystem (Cai et al., 2012b). The main function of CCU is to provide

electric power when the signals from those control panels on the topside transmitted to the

subsea control pods (both blue and yellow pods) through the MUX cables.Besides the electric

power supply for control system, there is the hydraulic fluid supply system supplied from the

reservoir connected with an HPU. The pod selector valve is able to guide the fluid to the se-

lected pod, and further directs to subsea accumulators after activating the pods. Two identical

and redundant subsea electronic modules (SEM): SEM A and SEM B are located in each control

pod, and can be activated when the surface fluid supply is directed accordingly.It can be used

for energizing the solenoid valves then the high pressure fluid is directed into the shuttle valve.
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In addition, the SEMs can monitor and transmit the relevant data from instruments located on

the BOP system to the surface for decision-making.

3.2 Function Identification of Blowout Preventer System

The NORSOK standard (D-010, 2004) indicates that “there should be two well barriers available

during all well activities and operations”. Based on this principle, there are always at least two

well barriers, where the fluid column of drilling mud is defined as the primary well barriers and

the BOP system then becomes one of the secondary barriers. Others could be the casing, casing

cement and the wellhead.

If the BOP is considered as the well barrier, then the essential BOP function is to shut in the well

in event of emergency. There are three defined sub-functions of BOP to prevent blowouts and

well leaks (NOG-070, 2004):

1. Seal around drill pipe

2. Seal the open hole

3. Shear drill pipe and seal off well

Function 1 above is mostly performed in common situation. Both annular preventers and pipe

ram preventers can perform this certain function for the purpose. There can be limitations to

when the pipe rams work properly, such as closing on drill collars, tool joints, perforation guns,

etc.

Function 2, as indicated before, the blind shear ram can seal the well on the open hole. To be

noticed, only when the drilling pipe is not running through the BOP then function 2 is involved.

Function 3 above the drill pipe has to be sheared before the well can be sealed off. Failure in

performing this intended function in the BOP system will directly lead to the loss of well control.

In subsea drilling operation, the shear rams is of importance to seal and the mud column as the

primary barrier is significantly contributed to the wellbore pressure. Factory acceptance testing

is performed for the BOP to shear a pipe and is considered as a destructive test.
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3.3 Failure Identification of Blowout Preventer System

After presenting the system familiarization and functions identification of BOP, the failure iden-

tification of BOP should be required to complete the initial analysis of BOP system. This analysis

can be carried out through some qualitative methods such as failure mode, effects and critical-

ity analysis (FEMCA) and hazard and operability study (HAZOP). In this section, the brief sum-

mary of failures identification the failure modes identified in (Holand, 1999), (Holand, 1987) and

(Holand, 1997) and author’s judgment.

The failure modes for each component of the BOP system can be demonstrated separately in

following:

• Flexible joints: As Holand (1987) and Holand (1999) indicates that: more failures in flexible

joint when the ball joints were used in earlier days. In general, the observed failures in the

flexible joints are rare.

• Annular preventers: there are two main failure mode observed in Phase II report (Holand,

1999): Internal leakage failure and Failed to fully open failure. They both lead to pull up the

BOP or the LMRP. Most of the internal leakage failures is observed on the wellhead failure

and the rest is occurred on the rig when the BOP was tested prior to running (Holand,

1999). The failure mode ‘failed to fully open’ is the well-known annular problem and it is

not that safety critical but contributes to the rig downtime. According to Holand (1997)

and Holand (1997), this type of failure is reduced significantly compared to the 80s.

• Ram-type preventers: there are several types of failure mode in ram preventers:

Failed to close: This can cause the leakage on the BSR from the shuttle valve and also has

the problems with BSR shuttle valve for shearing.

Failed to open: it is considered as a rare failure mode in previous study, however, several

failures are observed in Phase II report.

Internal leakage (through the closed ram): This failure is in the BSR sealing area.

External leakage (bonnet/door seal): This can cause the leakage to sea in bonnet sealing

areas.
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All those failure modes can be summarized as: 1) the internal failure of ram preventer to

close (pipe ram), shear and seal (BSR) and shear (CSR); 2) shuttle valve to preventer leaks.

According to Holand (1987), however, due to improved preventive maintenance and some

minor design modifications, the failure rate of internal and external leakage has decreased

significantly during the past years.

• Hydraulic connectors: The external leakage to environment and failed to unlock are the

most frequent observed failures. Failed to unlock LMRP connectors is a most important

failure model since the failure in disconnection can cause the riser damage and large rig

downtime. To prevent the external leakage in the wellhead is of great importance of con-

trolling a well kick.

• Choke and kill valve: there are basically two types: internal leakage and external leakage,

where the failure mode internal leakage is usually considered as less important since there

require the extra leakage to allow the well fluid reach the surrounding if choke and kill

valve both in failed state.

• Control systems: there are three main BOP control system principles: MUX control sys-

tem transmit the MUX pilot signal to pods, pre-charge pilot hydraulic control system can

reduce the BOP function response time by pre-charge pressure and pilot hydraulic con-

trol system to activate the pilot valves (Holand, 1999). The failure modes could be: surface

control valve failure, external leakage in pilot line, fails to select, equipment failure, pilot

signal failure from topside and so forth.

• Backup control system: In Norway, the back-up control systems has been required since

80s, however, in countries like Brazil and Italy, the back-up control system is not manda-

tory. The back-up control system uses the acoustic signal transmission. As suggested by

Holand (1987), the typical failure is on the topside acoustic equipment.

Due to the limited pages, the complete list of all the possible failure is not developed in this

report. Here recommending reviewing the FTA developed in Phase II report for familiarization

of all the possible failures in the BOP system.
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3.4 Reviews of Blowout Preventer System Reliability Assessment

After reviewing most of the aspects and conception for SIS reliability assessment and building

the basic understanding of the BOP system, then the problem formulation should be carried

out. To achieve this objective, it is necessary to have the quick review of the previous BOP

reliability studies to show the key contributors and authors for reliability analysis of the BOP

system and identify the relevant approach. Besides, the possible weaknesses in these analysis

approaches are identified, which trigger for the further discussion and problem formulation.

There is a considerable amount of literature concerning reliability of subsea BOP system. A com-

prehensive study of Subsea BOP performance in the North Sea between 1978 and 1986 was car-

ried out by Holand (1987). Besides that, SINTEF spent more than two decades to collect data and

information of BOP system during this period. The most recent and widely recognized report

for BOP reliability studies is the technical report Reliability of Subsea BOP systems for Deepwa-

ter Application, Phase II DW written by project leader Per Holand and reviewed and commented

by Marvin Rausand (Holand, 1999). It is based on the reliability experience from BOPs that have

been used in the US GoM OCS from 1997 to 1998, which provides the reliable data for failure in

most components of BOP based on the reliability experience from wells drilled.

The subsequent reliability assessment of the BOP system is based on those literatures in some

degree, such as the report for analysis of deepwater kicks and BOP performance (Holand and

Skalle, 2001), the report using Markov methods investigating performance of BOP systems (Cai

et al., 2012b), the report using Bayesian Networks for evaluating reliability of BOP control sys-

tem (Cai et al., 2012a). The Phase II report (Holand, 1999) is the most widely used one, since it

generates the clear description of failure modes in the BOP system by developing the FTA and

provides the reliable data source based on the daily reports.

However, there are some weaknesses existing in the previous approach of BOP reliability as-

sessment, even though in the widely acceptable approach indicated in Phase II report (Holand,

1999). Here, the main difference in the construction of BOP stack, modelling approach and rel-

evant assumption in the calculations method are identified as the weakness in previous study:

• Construction of BOP stack: In Phase II report (Holand, 1999), the BOP stack is similar to

the traditional stack without CSR as indicated before. The exclusion of CSR decreases the
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shearing capacity of the BOP, which result in the lower redundancy level in event of cutting

drill pipe.

• Modelling approach: FTA is used in (Holand, 1999)’s report for reliability assessment since

FTA is the most common quantitative method in reliability assessment. However, for typ-

ical redundant system like the BOP system, the FTA may not be the most suitable model

for reliability assessment. (Liu and Rausand, 2011) suggest Markov method because of its

flexibility. Some other methods like Petri-net and Bayesian method can also be the alter-

natives. The further discussion about the potential weakness of FTA would be discussed

in the following subchapter 4.3.

• Updating information: due to lacking of generic data, the uncertainty generated from the

expert judgement sometimes lead to the imprecise reliability assessment. Bayesian Net-

work provides the diagnostic analysis based on the calculation of posteriors will help for

facing this challenge. Besides that, in the on-going pratical situation, the Bayesian Net-

work model will also provide the way for updating the reliability assessment when the test

data or faulty state of system, subsystem or components is available for analysis.



Chapter 4

Bayesian Network in Reliability Assessment

4.1 Introdution of Bayesian Network

4.1.1 Basic Conceptions of Bayesian Network

There are three basic causal networks should be introduced before starting the Bayesian net-

works. According to Jensens’ book (Jensen, 1996), they are serial connections, diverging con-

nections and converging connections. In these connections, when there is a link connects the

variable A to variable B then variable B is a child of variable A, and variable A is a parent of vari-

able B. It is obvious that the certainty of variable of parent would have the impact on the child

and vice versa. If taking diverging connections as the example, when the certainty function of

variable B is increasing, the certainty of variable A will increase inversely; the increased certainty

of variable A is expected to have the increased certainty of variable C or D.

For the serial and diverging connection, when the variable V between variables A and B are given

evidence, or neither V or descendants of V have received evidence for converging connection,

then A and B are called d-separated. If A and B are not d-separated then them are called as d-

connected. For instance, in serial connections of Figure 4.1, if variable B is given, then A and B

are called as d-separated or independent. Similarly, B, C, D are d-separated given A in diverging

connections, or B, C, D are independent when nothing known about A in converging connec-

tions (Jensen, 1996).

Bayesian network (BN), is the widely used method, dealing with representing uncertain knowl-

29
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Figure 4.1: Serial, diverging and converging connections

edge of probabilistic systems in a variety of real-world problems. It can be expressed as the

graphical representation which consists of a directed acyclic graph (DAG) formed by variables

together with the directed edges and conditional probability table (CPT) for conditional prob-

abilities of variables on all corresponding parents (Jensen, 1996). The connected nodes means

that they are conditional dependent on the parent nodes, where the nodes that are not con-

nected are conditionally independent of each other. It means if there are variables or nodes

without any parent then they are called as the root nodes and the unconditional probabilities or

prior probabilities for such variables should be specified.

Variables in a model which are neither hypothesis variables nor information variables are called

mediating variables. Usually mediating variable will increase the precision of model, but there

is a risk of increasing the complexity.

The quantitative analysis of BNs relies on the conditional independence assumption and causal

dependence between nodes by developing the CPT for each node. The marginal posterior prob-

ability P (X |E) for each variable X can be computed by using different classes of algorithms,

where a set of variable E called as evidence, which means that the condition or the observation of

variables is known. Then for the joint probability distribution of a set of variables [X1, X2.....Xn],

it gives as follows, where P [Xi ] states for the parent of variable Xi :

P [X1, X2.....Xn] =
n∏

i=1
P [Xi |P (Xi )] (4.1)

The quantitative analysis of BNs can be both forward (or predictive) analysis and backward (or

diagnostic) analysis. In forward analysis, the probability calculation of occurrence of any node is

based on the prior probabilities of the root nodes and the conditional dependence of each node,
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Table 4.1: Conditional probability of P (A|B)
b1 b2 b3

a1 0.2 0.3 0.1
a2 0.2 0.3 0.2
a3 0.6 0.4 0.7

Table 4.2: Joint probability for variables A and B
b1 b2 b3

a1 0.06 0.09 0.04
a2 0.06 0.09 0.08
a3 0.18 0.12 0.28

where root nodes are the nodes without parent nodes. In the backward analysis, the calculation

of the posterior probability of any given set of variables given some evidence is considered as

the instantiation of some of the variables to one of their admissible values (Bobbio et al., 2001).

4.1.2 Probability Calculation of Bayesian network

Conditional probability is the basic concept in Bayesian causal networks. It gives that the state-

ment of probability of event A is P (A|B) given the event B. The basic rule for conditional proba-

bility calculation is P (A|B)×P (B) = P (A,B), where the P (A,B) states for the probability of joint

event of A and B. And this formula can also be read as P (A|B)×P (B) = P (B |A)×P (A) and this

yields the well Bayes’ rule.

When the variable A has states a1, a2...an and variable B has states b1,b2...bn then the probabil-

ity distributions of variable A and B are P (A) = (a1, a2...an) and P (B) = (b1,b2...bn) respectively,

where
∑n

i=1 ai = 1 and
∑n

j=1 b j = 1 . Then the basic rule could be apply for calculate the joint

probability and conditional probability for variable A and B. In Table 4.1 for conditional proba-

bility of P (A|B), we firstly assign the conditional probability of variables A and B, and it can be

easily found that the sum of each column is equal to 1. Then if P (B) = (0.3, 0.3, 0.4), we can get

Table 4.2 for joint probability of variables A and B by using basic rule, and we can summarize the

P (A) = ∑n
i=1(ai ,b j ) = (0.19,0.23,0.58). Similarly in Table 4.3, the conditional probability P (B|A)

can be calculated by applying Bayes’ rule in 4.1, where P (B) = (0.3, 0.3, 0.4) and P (A) = (0.19,

0.23, 0.58).
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Table 4.3: Conditional probability of P (B|A)
b1 b2 b3

a1 0.32 0.26 0.31
a2 0.47 0.39 0.21
a3 0.21 0.35 0.48

Table 4.4: States Identification of Example
Rain soon (true) It will rain soon
Rain soon (false) It will not rain soon

Cloudy weather (true) Cloudy
Non-cloudy weather (false) Not cloudy

Weather forecast reports rain (true) Weather forecast reports rain before
Weather forecast reports rain (false) Weather forecast don’t reports rain before

High humidity (true) humidity increase
High humidity (false) Feeling that humidity is normal as usual

4.1.3 Building Bayesian Network Model

There are generally three steps for organizing the BBN model:

• Identify the hypothesis event

• Provide information variables for certainty estimation

• Build up causal structure after identifying the relationships between variables.

To explain how to build a Bayesian model, here is a simple example starting with two hypothesis

events, namely ‘rain soon and ‘no rain soon. Therefore, the hypothesis variable (child) is called as

R-soon (rain soon) with states y and n. Then three information variables (parents) are defined

as C (Cloudy), W (weather forecast reports rain), H (high humidity) with two states y and n,

which will indicate the child variables or be influenced and impacted by child variables. Then

the states for all variables are shown in the Table 4.4, in this example, only binary states (true and

false) are assigned. Finally, we can estimate simple conditional probability for each variable by

subjective estimation based on experience in Figure 4.2.

Noted conditional probability table in this example is relatively small since only three variables

with two states have been assigned. In the large-scale BBN model within numerous compo-

nents, the CPT would enlarge geometrically and the increasing interactions between subsys-
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Figure 4.2: Causal networks with probabilities for example

Table 4.5: Posterior probability for child variable when Pr (R=T) =1
Pr(F) Pr(T)

Variable C 0.7612 0.2388
Variable W 0.1985 0.8015
Variable H 0.5940 0.4060

tems will become too cumbersome to be involved in the computation. Then some software ap-

plications are suggested to estimating the probabilities and implement computational model,

such as (HUGIN, 2015) suggested by (Jensen, 1996). In this paper, the software (Matlab, 2014) is

suggested to be used in computational model.

We can get the marginalized probability of event R by computational software Matlab. Then

the probability of event R occurs is Pr (R = T ) = 0.3828, where the corresponding Pr (R = F ) =
0.6172, which means that the probability of raining soon is 38.28%. Moreover, the diagnostic

analysis can be performed by computing the marginal probability of all parent variables when

the evidence is given that it will rain soon. Then the posterior probabilities of parent variables

when the evidence of R is given are shown in Table 4.5 and Table 4.6.
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Table 4.6: Posterior probability for child variable when Pr (R=F) =1
Pr(F) Pr(T)

Variable C 0.8241 0.1759
Variable W 0.8490 0.1510
Variable H 0.7657 0.2343

Table 4.7: Joint probability for example(C,W,H,R)
C W H R Values
1 1 1 1 0.3326
2 1 1 1 0.0672
1 2 1 1 0.0560
2 2 1 1 0.0168
1 1 2 1 0.1008
2 1 2 1 0.0234
1 2 2 1 0.0192
2 2 2 1 0.0012
1 1 1 2 0.0034
2 1 1 2 0.0168
1 2 1 2 0.1680
2 2 1 2 0.0392
1 1 2 2 0.0432
2 1 2 2 0.0126
1 2 2 2 0.0768
2 2 2 2 0.0228

From the second column of Table 4.5, it can be found out that the posterior probabilities of Pr

(C=T) =0.2388, Pr (W=T) =0.8015, Pr (H=T) =0.4060, which means that the severity rank of par-

ent variables is: W>H>C. According to the first column in Table 4.6, the severity rank of parent

variables when there is no rain follows the similar rule, but this relationship is not revealed dis-

tinctly. In addition, the joint probability could be also computed by Matlab, where the sum of

values in Table 4.7 is equal to 1.

4.2 Comparison between Bayesian Network and other methods

In the past, Bayesian network is generally used in development of the artificial intelligence and

industrial engineering decision making strategy (Jensen, 1996), since this method can deal with

the error and uncertainty in probabilistic computation model when lacking of statistical data for
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prior probability estimation. Recently, due to the ability of information updating for Bayes’ the-

orem, Bayesian network was starting to be applied in the reliability assessment of large complex

system, such as software-based system (Gustav, 2000), simple structural system (Sankaran et al.,

2001) or as an alternative for traditional reliability assessment method (Bobbio et al., 2001).

However, so far few researchers have performed the reliability assessment in the subsea BOP

system.

There are many traditional reliability assessment methods, such as reliability block diagram

(RBD), fault tree analysis and event tree analysis. Similar as Bayesian Network, these methods

are developed based on the description of the system flow chart of system functions. Compared

to those methods, however, Bayesian Network can update the system information or perform

the reassessment of reliability when the test data of system or components becomes available. It

is one of the biggest differences between the other methods and Bayesian Network: when infor-

mation or observations are provided for some nodes or the whole system, also called as “given

evidence”, it can “renew” the performance assessment of any other components or the whole

system, which is impossible to obtain by all these methods.

There are some other advanced methods for reliability assessment, like Markov method or Petri-

net method, and they are generally used in dynamic analysis of the complex system. However,

one of the difficulties is that the reliability engineers should identify all the possible states before

building the model. It may be hard for the expert of reliability engineering but who is unfamiliar

with the specific system.

4.3 From Fault Tree Analysis to Bayesian Network

In this section, FTA is the one analytically compared to BN by investigating how FTA can be

translated into BN without losing any details and obtaining the advanced modelling power si-

multaneously,and the unreliability of the top event (TE) or subsystem of FTA can be also cal-

culated as the prior probability of target variable in faulty state when given no evidence in BN

model, while backward (diagnostic) analysis can also compute the severity ranking of compo-

nents. Basically, FTA can be analyzed both qualitatively and quantitatively, and minimal cut-sets

method is most frequently used in quantitative part.
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Figure 4.3: AND-gate and OR-gate in Bayesian Network

Compared to FTA which is the mostly applied method in reliability assessment of subsea BOP

system in the past decades, BN model can avoid generating duplication of basic nodes or events,

which reduce the model size and make the system more easily to be understood, especially in

the large and complex system with many components and complicated interrelation between

components. Moreover, some unnecessary assumptions in FTA can be removed when trans-

lating into BN: (1) the binary gates (AND gate and OR gate) are replaced by the probabilistic

gates; (2) the general binary states (survival or failure) for components in FTA are extended to

be multiple states in BN; (3) components are no longer statistically independent.

FTA can be translated by an algorithm (Bobbio et al., 2001) or automatically by the software

named RADYBAN (Cai et al., 2012a). Kim (2011) also provides the method for mapping RBD

into BN. Here taking the algorithm method as the example to show how the AND-gate and OR-

gate could be translated into BN nodes.

As Figure 4.3 shown above, we have two basic events A and B, where the value 0 and 1 represent

non-fault state and fault state, respectively. It is noticed that the translation of AND-gate and

OR-gate from FTA results in the same DAG in BBN but with the different corresponding CPTs.
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4.3.1 Common Cause Failure in Fault Tree and Bayesian Network

SIS is widely applied in the oil and gas industry to reveal the hazards and eliminate the con-

sequence to human, material assets and the environment. To achieve this objective, the SIS is

often equipped with redundant system with various degrees. For example, in BOP system one

can find the control pods has two identical subsystems, yellow pod and blue pod within asso-

ciated components, forming the most typical redundant system. However, CCFs have serious

impacts on the reliability of SIS, lead to simultaneous failures of redundant system. According

to Rausand and Lundteigen (2007), CCF cause into root cause and coupling factor. A root cause

is a basic cause like extreme environment condition (e.g. bad weather and deep water depth).

A coupling factor reveals that failures of components caused by the same root cause (e.g. same

design and same maintenance).

Since the subsea BOP system is the typical redundant system, then the CCFs can have a strong

impact on the BOP system. It means that the CCF should be treated more carefully in reliabil-

ity analysis of the BOP system. As Rausand and Lundteigen (2007) argued that, the oil and gas

industry should pay more attention on CCFs in the design phase of SISs than the operational

phase. Many projects and institutions have contributed to the reliability analysis and data col-

lection. The OREDA project is carried out by oil companies to collect reliability data based on

the maintenance reports from single item failure, however, this approach cannot properly col-

lect the information related to CCFs. The Norwegian Petroleum Safety Authority (PSA) is in-

creasingly focused on independence reduction between SIFs (Rausand and Lundteigen, 2007).

There are two methods for inclusion of CCF in FTA: implicit and explicit. The explicit method

is to treat CCF as the separate event in the logic model by adding an OR-gate directly to the top

event of FTA; CCF in the implicit method is considered as the term in the minimal cut set, which

which implies the cause-effect relationship between failure and some failure cause (Hokstad

and Rausand, 2008). According to the literature review for this topic, both methods have their

own defects. Generally, there is few high quality data for explicit method, according to Rau-

sand and Høyland (2004), the explicit method will receive the more accurate result than implicit

method even with low quality of data. As argued by Lundteigen and Rausand (2009), however,

for the system with more than one type of common causes, the implicit method would keep

the fault tree simple and avoid incorrect inclusion of dependent events in the FTA. The Markov
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Figure 4.4: Common Cause Failure in Bayesian Network

technique can be used to model both implicit and explicit cause for system consisting of fewer

components (Hokstad and Rausand, 2008).

The example for allocating common cause failure in BN model is shown in Figure 4.4, where Si

stands for the root nodes which lead to the failure of component Ci and F stands for the system

state. For Figure 4.4 a), the root nodes are uncorrelated, which means that only variable S2 acts

as the CCF since it can lead to the failure of both basic variables. For Figure 4.4 b), the root node

insists of all the correlated root variables associated with joint probability for computation. In

this case study, the uncorrelated root variables are mainly applied for inclusion of CCFs and

only one common cause component is considered for each redundant system. According to

the property of binary gates in FTA, sometimes the root CCF in BN can be directly linked to the

desired event to avoid the repeating

The identical components or the components sharing the same working or desgin mechanism

are considered to be dependent and susceptible to the common cause failure, such common

cause failures will be indicated as the root variables, for example, when component i and com-

ponent j share one common cause, then Si and S j represent the independent root nodes where

Si , j indicates the root node that directed to both child nodes.
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4.3.2 Advanced Modelling Power of Bayesian Network Compared to Fault Tree

Accurate reliability estimation requires the high quality of data resource as the input for the clas-

sic reliability assessment. However, in the realistic cases, there is limited number of observed

data can be obtained from the daily reports. Then the estimated parameters based on the expe-

rience and the expert judgement should be provided and contributed significantly, even through

the uncertianty of such estimation will generate the inaccurate result. This is one of the com-

mon problem among the traditional reliability estimation approaches, however, it can be solved

in BN by introducing random variables instead of deterministic values in FTA. In addition, one

of the most unique characteristics of BN is the ability for updating the information of occurance

probability of the root variables when the certain states of the other variables are observed. BN

with this ability is able to deal with the uncertainty of parameter since posterior probability can

be updated when new information is provided, then uncertainty will be reduced continuously

through re-analysis (Nima et al., 2011).

In addition, it allows multi-state variable to be easily accommodated into DAG, where there are

only two states can be taken into account in FTA. In the real case, some parent variables may

not always have or have no effect on the child variables, for example, assumed that there is

an additional variable called "human interface" has three states: positive, irrelevant, negative,

where irrelevant means that variable has no effect on its child variables. Sometimes variables

may have the different levels of effect, for instance, a processing system may have two modules

as the redundant system. Assumed power supply spends 50% of total working voltage for each

modules and there will be the abnormal performance in defective working state when only one

module can work (one working module can support to perform the desired function sufficiently

but the redundant module is not activated, where redundant module is activated when abnor-

mal voltage is provided for it). Suppose this variable has five states with different percentages of

power: 100%, 70%, 50%, 20% and 0%, with respect to two working modules, one working module

with one activated redundant module, only one working module, only one activated redundant

module and no redundant system, respectively. Obviously, compared to FTA, the multi-states

in BBN model is closed to the real case and can be easily applied in the large complicated re-

dundant system. This kind of analysis is allowed in some dynamically analysis method such as

Markov method, as shown in Figure 4.5. However, there would be at least three nodes for the
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Figure 4.5: Markov model of processing system

description of one component with three states, which makes an extremely large Markov model

with a large number of components.

Another advantage of BBN is that it can remove one basic assumption in FTA, when means that

it allows one to find the dependent failures between variables. From the example about power

supply above, it is known that the modules will stop working due to the loss of power supply,

but it may also induce the other variables besides modules to break down, such as sensors. This

kind of dependence between failure of power supply and failure of sensors is not possible to be

allocated in FTA. However, this can be modeled in BN model by assuming corresponding states

and adding entries of CPT.

4.4 Example: Fault Tree based Bayesian Network Model

Here providing a simple example for mapping FTA into BN model. The original example is sum-

merized from the part of FTA in the Appendix 1 of PhaseII report (Holand, 1999), where the top

event is the "The control system is not operative" and the input data is estimated by author’s

judgement and generic data, which is not very realistic but that is enough for demonstrating

how the model works. The contruction and corresponding analysis for FTA are carried out by
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Table 4.8: Prior probability and posterior probability of basic events
Basic Event Priors

(Example1)
Posteriors

(Example1)
Priors

(Example2)
Posteriors

(Example2)
CPODEX 0.007293 0.5981 0.0071 0.5870

PODEXBP 0.065633 0.3952 0.065633 0.4045
PODEXYP 0.065633 0.3952 0.065633 0.4045

SELECT 0.0005208 0.0427 0.0005208 0.0439
Accumul 0.041675 0.04168 0.041675 0.04168

IVYP 0.004687 0.00469 0.004687 0.00469
IVBP 0.004687 0.00469 0.004687 0.00469

CSELE 0.0000521 0.0043 0.000051 0.0042
SELEBP 0.000469 0.0028 0.000469 0.0029
SELEYP 0.000469 0.0028 0.000469 0.0029
ACPVEL 0.0005208 0.000521 0.0005208 0.000521

CIV 0.0005208 0.000521 0.00051 0.0006

the software program (CARA, 1996) developed by SINTEF, and the corresponding FT-based BN

model is generated by software (HUGIN, 2015).

In this example, assumed that components sharing the same working mechaism or design prin-

ciple (IVYP and IVBP, SELEBP and SELEYP and PODEXBP and PODEXYP) would have only one

common cause failure, then the FT can be simplified with explicit inclusion of CCF and es-

tablished as Figure 4.6 shown. All the components are assumed to be non-repairable and the

experimental time is assumed as 5000 hours, so prior probabilities calculated as as probabilities

on demand are shown in first column of Table 4.8.

Firstly, according to the analysis of CARA Fault Tree, one can find that there are nine cut sets for

this fault tree, where the cut set means that the top event will occur when all the compoenents

in one cut set are in the faulty state. According to Holand (1999), the unavailability is calculated

as the mean fractional deadtime (MFDT) of the component, considering the component within

a constant failure rate λ and the failures are assumed to be found at the fixed test interval τ:

MFDT = (λ×τ)/2,assumed that λτ¿ 1 (4.2)

Noted that in practical case, the test interval will rarely be fixed and some systems are redundant

system (each singel components will be tested simultaneously), which means that this formula

will get the optimistic results in both case. In addtion, Holand (1999) indicated that some fail-
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Figure 4.6: Simple example for FTA, modified from Appendix 1 of Phase II report(Holand, 1999)
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Figure 4.7: FT-based BN model for Example 1 in software HUGIN

ures in control system are observed when they occur, not only during the testing. So that the

calculated results will be conservative.

4.4.1 Example 1: Updating information and Severity Ranking

According to the result of CARA Fault Tree, the unavailability of top event is equal to 1.2192×
10−2 when the test interval is 5000 hours. Based on this fault tree, Example 1 is created in the

HUGIN as shown in Figure 4.7. One can find out that the size of model is reduced because of

the employment of probabilistic gate by modifying CPTs. And the unavailability is calculated as

the 0.0122 based on prior probabilities, which yields the same result using tranditional method

FTA.

The marginal posterior probability for each single basic event given the total system is malfunc-

tion can be computed and reported in the second column of the Table 4.8. Noticed that the pos-

terior probabilities of "CPODEX","SELECT","PODEXBP","PODEXYP","SELEBP","SELEYP" and

"CSELE" increase when compared to corresponding prior probabilities. This measure some-

times can be explained as the indication of the criticality of component given faulty system,

where the variable within high posterior probability indicates that it is more vulnerable than

others. One can see that CCFs have serious influence to the system: the posteriors of CCF in this

example are higher than corresponding posteriors for independent failure of components, even

though priors are much lower.
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Figure 4.8: Component importance of basic events

Moreover, one can compute the component importance, which can measure how the change in

the reliability of component will result in the comparatively change in the reliability of the total

system. As shown in the Figure 4.8,the criticality importance for each component is calculated

and ranked by CARA Fault Tree. The component i is called critical if the other components of

the system are in such states that the system is functioning if and only if component i is func-

tioning. Then the critical importance I C R (i |t ) of component i is the probability that component

i is critical and failed at time t when the failure of system at time t is known (Rausand and Høy-

land, 2004). In FTA, since Q0(t ) denotes the unavailability of the top event and qi (t ) denotes the

unavailability of the component i , then the critical importance could be calculated based on

following equation :

I C R (i |t ) = ∂Q0(t )

∂qi (t )
× qi (t )

Q0(t )
(4.3)

However, we can noticed that the severity ranking based on marginal posterior probability is

a little bit different from the component importance computed by FTA, for example, "Accu-

mul" seems more critical than "SELEBP" and "SELEYP" based on ranking of marginal posterior

probability but reverse based on the criticality importance. This situation could be explained

away: one can observe from Table 4.8 that the posterior probabilities of components change

after providing information the faulty of TE except variables "Accumul", "IVBP", "IVYP" , "CIV"

and "ACPVEL". It means that those components become independent to the top event because
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the related cut sets [Accumul, ACPVEL, CIV] and [Accumul, ACPVEL, IVYP, IVBP] are almost

imposible to happen and those variables do not conribute to malfuntion of system. Since the

value of Accumul is higher than values of "SELEBP" and "SELEYP" , then it will provide the

wrong information of indication of criticality. One solution is to reset the failure rate of "Accu-

mul" to become lower than "SELEBP" and "SELEYP" . The new result shows that this change of

prior probability has no influence on the unavailability of system and the identification of crit-

ical events based on marginal posterior probability and minimal cutset will finally become the

same.

In fact, the joint posterior probability for each single component given system failure as evi-

dence is able to provide the more useful and precise diagnostic analysis than the analysis based

on marginal posterior probability or based on criticality importance. In the Bayesian Network,

there is a direct method to get the most probable one of all possible states of variables given evi-

dence, which is also called as most probable explanation (MPE). The BN model is able to obtain

the most probable state of all root nodes and non-root nodes through MPE. In this case, when

using the MPE concept, the most probable state is faulty state of root variables "CPODEX" and

functioning state of other root variables. Then the joint posterior probability of MPE (only con-

cerns root nodes) is shown as follows, where the variable within overline represents the variable

is in the functioning state:

Pr = Pr[CPODEX,(other root nodes)|TE] = Pr[CPODEX,(other root nodes),TE]

Pr[TE]
= 0.4945 (4.4)

The obvious benefit of MPE is to find the desired result without obtaining all possible states,

in this case the state size is 212 = 4096, where 12 root nodes are involved. To be noticed, MPE

implies the most likely state is not always the same as the result of minimal cutset method (Nima

et al., 2011). In addition, MPE also implies that the other variables have little contribution to the

failure of the syatem.

Posterior probabilities obtained through the calculation of Example 1 could be used for infor-

mation integration, combining with the judgments of experts, generic data and test data dur-

ing development. Then the impact of uncertainty from expert judgement or simulation results
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Figure 4.9: FT-based BN model for Example 2 in software HUGIN

would be gradually lower by repetition of generating BN model. For more details of information

intergation and updating approach, please check the methods proposed by Peng et al. (2013).

4.4.2 Example 2: Multiple State and Dependent Failure

As we discussed before in section 4.3.2, advantage of modeling power for BN model, the ap-

plication of multi-state and dependent failure, can be demonstrated by the modification of the

Example 1.

Since control pods with blue and yellow pods have the associated redundant components:"IVYP"

and "IVBP", "SELEBP" and "SELEYP" and "PODEXBP" and "PODEXYP", then assumed that

there are two variables within different-levels of stress: "Stress 1" (High stress, Normal stress,

Low Stress) and "Stress 2"(High stress, Low Stress) for estimation of effect for CCFs. The corre-

sponding model for inclusion of such variables is shown in Figure 4.9.

Besides, assumed there is a group "Expert" within two experts (exp1 and exp2) to estimate the

probabilities that the component will survive under the occurrence of CCFs. To be noticed, the

occurrence and new assigned values of CCFs become independent to the internal or indepen-

dent failure of related components and the survival probabilities estimated by experts only has

influence on the CCFs. The related assigned values for "Stress 1" & "Stress 2" and "Expert" are

reported in Table 4.9 and Table 4.10, respectively, where "Stress 1" has prior as [High (0.3), Nor-
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Table 4.9: CPT of root nodes "Stress 1" and "Stress 2"
Stress 1 Stress 2 CIV CPODEX CSELE

High High 0.0010416 0.014586 0.00010416
Normal Low 0.0003906 0.00546975 0.00003906

Low High 0.0005208 0.007293 0.0000521
High Low 0.0005208 0.007293 0.0000521

Normal High 0.0007812 0.0109395 0.00007812
Low Low 0.0002604 0.0036465 0.00002604

Table 4.10: Simplified CPT of root node "Expert"
Expert CIV and CPODEX and CSELE M1 and M2
exp1 one CCF (M2) 0.01 (survive)
exp2 one CCF (M2) 0.05 (survive)
exp1 two CCFs (M1) 0.05(survive)
exp2 two CCFs (M1) 0.1 (survive)

mal (0.2), Low (0.5)], "Stress 2" has prior as [High (0.4), Low (0.6)], "Expert" has prior as [exp1

(0.6), exp2 (0.4)]. Since the CPTs for M1 and M2 would be increasly enlarged, here the assump-

tion is made that the effect of different CCFs are treated equally and the states for non-CCFs

follows the rule of AND-gate to avoid the long table.

Through the analysis result generated by HUGIN, one can easily find out that:

1. After introducing two stress variables, the priors of CCFs of Example have been decreased

a little bit. The posteriors of "CPODEX" and "CSELE" in Example 2 are lower than the

posteriors in Example 2, however, the posterior of "CIV" becomes higher and no longer

independent as in Example 1.

2. Posteriors for all the other non-CCF variables have a bit increase compared to Example 1,

except the cut-set [Accumul, ACPVEL, IVYP, IVBP].

3. After calculating the posteriors, the information variables "Expert", "Stress 1" and "Stress

2" have been updated to [0.6058(exp1),0.3942(exp2)], [37.56(H),20.84(N),0.4160(L)],[0.5008

(H), 49.92(L)], respectively. One may conclude that the reliability for each expert remians

the same. There is a increase in High degree in "Stress 1" while Low degree decreases, and

degrees of "Stress 2" get balanced.

4. After the modification, the prior probability of leaf node "TE" decreases from the 1.22% to
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1.19%, indicating the effect of uncertainty in the model. And the MPE configuration within

probability as 0.045 indicates that the state of informative variables "Expert", "Stress 1"

and "Stress 2" become exp1, High and High, respectively.

By reviewing these examples, one may conclude that the FT-based BN model can update the

reliability prediction when the component-level or system-level test data become available. In

fact, when the new information on any variables are provided in Bayesian Network, the proba-

bilistic peformance of all the other variables would be updated. In addition, the advanced mod-

eling power of BN, probabilistic gates, multiple states and the inclusion of correlations among

variables (especially for common cause failure) can also be revealed by these two examples.



Chapter 5

Case study: Reliability Assessment of BOP

System in Base Case

The objective of this case study is to demonstrate the application of Bayesian Network in reliabil-

ity assessment of the BOP system with different configuration stack under the most demanding

situation, mainly focus on the effect of pressure conditions of the wellbore. Based on the discus-

sion of two examples in the last chapter, the reliability predicition and the analysis for criticality

ranking based on updated performance when given information can be carried out in this case

study.

5.1 Case Introduction

5.1.1 Description of Case Study

According to the subchapter 3.2, there are three essential functions in BOP system:

1. Seal around drill pipe

2. Seal the open hole

3. Shear drill pipe and seal off well

For the most frequent situation as recorded by Holand and Skalle (2001) within largest propor-

tion (85.4 precent), all the annulars and pipe rams can seal around the drill pipe (Function 1)

49
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and the CSR and the BSR are able to shear drill pipe and seal off well (Function 3) when needed

(the open hole situation requiring the Function 2 is only recorded as 4.2 precent of cases). Con-

sidering the operation of sealing off the well results in the huge downtime and possibility of

closing the well entirely, then the first attempt is always to perform the Function 1 instead of

Function 3.

Performing Function 1 always starts with closing annulars. If both annulars fail to close, then

the forward operation is to close one of the pipe rams (normally to close the lower ram first to

keep the hydrocarbon as far as away from the rig). If the BOP fails to perform the Function 1,

then the activation of BSR is required for Function 3. The relevant reliability block diagrams for

Function 1 and Function 3 are reported in Figure a Reliability block diagram for the base case

and Figure b Reliability block diagram for the base case , respectively. However, if the pressure

in the wellbore is too high, the redundancy of the BOP system is therefore lost from 1oo5 to

1oo3. Since the working pressure of annular preventers is only 5000 psi, which is much lower

than the working pressure of ram preventers (15000 psi), then the high pressure situation may

result in the malfunction of annular preventers. Besides that, it is assumed that under the high

pressure situation, the drill pipe or casing is becoming heavy, then performing Function 3 may

requires BSR and CSR works at the same time since the CSR is designed to have larger shearing

ability than BSR. Then the reliability block diagrams for Function 1 and Function 3 under high

pressure situation are reported in Figure c Reliability block diagram for the base case and Figure

d Reliability block diagram for the base case , respectively.

Different configurations of the BOP stack are presented in Table 5.1, where one may find out

that only Deepwater Horizon (DWH) stack is equipped with CSR but "losing" one pipe ram (the

pipe ram is converted to test ram, which largely reduces the preparing and resume time for

pressure testing on BOP system but loses the redundant sealing function). Equipping with CSR

will have the better performance and higher probability for the successful shearing since the

CSR is designed to shear the heaviest drill pipe and casing.

Performing the BOP function normally requires that subsystems of BOP system are functioning

mutually :

• Control panels (Toolpusher’s control panel is acting as the secondary barrier to Driller’s

control panel) with PLC system can send electronic signal for command "activiting shear
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Figure 5.1: Reliability block diagram for the base case

Table 5.1: Different configurations of the BOP stack
Annular

preventer(AP)
Blind shear ram

(BSR)
Pipe ram (PR) Casing shear

ram (CSR)
Classical 2 1 3 0
Modern 2 2 3 0

DWH 2 1 2 1
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Figure 5.2: Bayesian Network model for case study

ram", through the MUX cables to the control pods, where CCU provides electric power

supports for this process.

• The electronic signal can be converted to the hydraulic signal by activited control pods,

then require the fluid supply transporting to the subsea components for BOP functions.

• The operation of the activited control pod requires the surface control valve and solenoid

valve in the chosen pod works simultaneously, and the shuttle valve can direct the fluid

for actuate relevant control valve.

Based on the descriptions from previous sections 3.1.2 and 3.1.3, Bayesian nodes with logic ar-

rangement of performing the BOP function under the base case is then shown in the Figure

5.2. Only two control panels, TMR system, CCU, two redundant control pods, two shear rams

(CSR and BSR), two or three pipe rams and two annular preventers are mainly investigated. No-

ticed that subsystems control panels, control pods, shear rams, pipe rams with n redundant

components are forming as the 1oon connections, where the number of components for each

subsystem is not presented, then the Figure 5.2 can present the BOP system with different con-

figuration stack.
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5.1.2 Software for Analysis

Since the number states and nodes in this case study exceeds the limit of the trial version of

HUGIN (2015), then the common-used mathmatical software Matlab (2014) with Bayesian Net-

work toolbox is suggested to handle the analysis of case study. Due to some updated version

problem, the Bayesian Network toolbox may not be able to create the graphical demonstration.

The relevant codes for the case study are shown in Appendix. Besides that, the professional soft-

ware GRIF (2014) is suggested for quick calculation for probabilities of different states of nodes

in Mavkov model.

5.1.3 Assumptions and Calculations for Input Data

As shown in Figure 5.2, Control panels, TMR system, CCU and control pods are forming as the

serial connection to initial the Function 1, since the single failure of each subsystem results

in failing to performing desired function. This serial connection may reduce the working load

for setting input data (If these four subsystems forming as the OR-gate to the event Function 1

then the matrix for Function will be significantly increased), however, it may be impossible for

calculating posteriors of these four subsystems individually. According to the research review,

annulars, pipe rams and shear rams are of most importance for reliability,then such model is

acceptable and available for analysis of case study focusing on the different configuration stack

.

This case study focusing on the performance of different configuration of BOP stack under the

most demanding situations and the effect of the wellbore pressure. In order to avoid the un-

necessary repetitive modelling work and simplify the calculations, some assumptions should

be made as follows:

1. Initial states for all components and system are assumed to be perfect.

2. Both failure rate and repair rates are considered in this case study and assumed as the

constant over the experiment time and are statistically independent.

3. Failures are assumed to be detected immediately and there is not any undetected failure.
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Table 5.2: Estimated C-value for CCFs of component i
Component C-value (Ci )

Control panels (CPL) 0.15
Control pods (CPD) 0.15

Annular preventers (AP) 0.1
Pipe rams (PR) 0.1

Blind shear ram (BSR) 0.1

4. For the common cause failure, only the components sharing the same working mecha-

nism and design principle are considered to fail simultaneously under the shock. The

repair actions for homogeneous components failed under shock are independent.

5. The repair actions are only taken when subsystem fails, and the repaired component is

assumed to be as good as the new one.

6. To avoid the large-scale model, some components are omitted, such as kill and choke

lines. Only the main subsystem and associated components are considered.

As discussed before, common cause failures are dominant for system reliability in the accident

scenario. The most common model for common cause failures is the beta-factor model, which

is also recommended by (IEC-61508, 2010). Here the C-factor model is suggested, which is es-

sentially the same as the beta-factor model but the failure rate for CCF is defined asλ(c) =C×λ(i )

(Rausand and Lundteigen, 2014). The estimated value for C based on the author’s judgement is

given in the Table 5.2, where i stands for CPL, CPD, AP, PR and BSR, respectivelly. And the in-

dividual failure rate and repair rate obtained based on the collected data and research review

(Holand, 1999; Holand and Awan, 2012; Cai et al., 2012b)) for all the components is given in

Table 5.3, where j stands for CPL, CPD, AP, PR, BSR,CSR, CCU and TMR, respectivelly.

The corresponding Markov model are proposed for 1oo1, 1oo2 and 1oo3 in Figure 5.3. It is no-

ticed that: CPL, TMR, CCU and CSR are 1oo1 system; AP, PR(DWH) and BSR (Modern) are 1oo2

system; PR (Modern and Classical) are 1oo3 system.Based on the state transition digarms, the

transition rate matrices can be obtained as follows in Eqs.(5.1) - (5.3): (Rausand and Lundteigen,

2014)
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Table 5.3: Failure rate and repair rate for single component
Component Failure rate λ j (per hour) Repair rate µ j (per hour)

Control panel (single) 1.6667×10−4 1.429×10−1

Control pod (single) 1.1433×10−4 8.621×10−3

Annular preventers (single) 2.059×10−4 6.944×10−3

Pipe rams (single) 1.5590×10−4 6.944×10−3

Blind shear ram (single) 1.8708×10−4 6.944×10−3

Casing shear ram (CSR) 1.8708×10−4 6.944×10−3

CCU 1.000×10−7 1.000×10−2

TMR controller 8.255×10−6 8.333×10−2

P1oo1 =
 −λ j λ j

µ j −µ j

 (5.1)

P1oo2 =


−(2×λi +λC ) 2×λi λC

0 −(λi +λC ) (λi +λC )

2×µi 0 −2×µi

 (5.2)

P1oo3 =



−(3×λi +λC ) 3×λi 0 λC

0 −(4×λi +λC ) 2×λi (2×λi +λC )

0 0 −(λi +λC ) (λi +λC )

3×µi 0 0 −3×µi

 (5.3)

Then probability for each state can be calculated by GRIF (2014) and input into the Bayesian

Network Model. The starting state matrix for all the components is [1,0,0..0], which implies that

all the operations start perfectly. Based on the calculation from GRIF, the priors for each subsys-

tem can be obtained as shown in Appendix B.1, where the experimental time is 8760 hours (one

year) and the step time is 438 hours.
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Figure 5.3: State transition digarm for case study (1oo1, 1oo2, 1oo3)

5.2 Bayesian Network Modelling

5.2.1 Conditional Probability Tables for Model

As shown in Figure 5.2, there is a information variable mamed "Wellbore pressure" (WP) for

indicating different CPTs of Function 1, Function 3 and effectiveness of BSR. To simplify the

analysis and calculation, some assumptions are made as follows for explaining the relevant CPTs

for Function 1 and Function 3 are shown in Table 5.4 and Table 5.5, respectively:

1. For each redundant subsystem except BSR,if there is at least one working component

for this subsystem, then the subsystem is assumed to be "Working", otherwise the state

is "Faulty". And there are three states for BSR: "Working(1)","Working(2)" and "Faulty",

which suggest the different influences on the child node "Function 3".

2. For the Classical and Modern stack which are not equipped with CSR, the state for CSR is

always treated as "Faulty".

3. There are two states for "Wellbore pressure": "High" and "Normal". When the state of



CHAPTER 5. CASE STUDY: RELIABILITY ASSESSMENT OF BOP SYSTEM IN BASE CASE 57

Table 5.4: Simplified CPTs for Function 1
AP PR WP Function 1

(Working)
Function 1

(Faulty)
Working Working High 1 0

Faulty Working High 1 0
Working Faulty High 0 1

Faulty Working High 0 1
Working Working Normal 1 0

Faulty Working Normal 1 0
Working Faulty Normal 1 0

Faulty Working Normal 0 1

Table 5.5: Simplified CPTs for Function 3
BSR CSR WP Function 3

(Working)
Function 3

(Faulty)
Working (1) Working High 0.95 0.05
Working (2) Faulty High 0.85 0.15

Faulty Working Normal 0 1
Working (1) Faulty Normal 1 0
Working (2) Working High 0.999 0.001

Faulty Faulty High 0 1
Working (1) Working Normal 1 0
Working (2) Faulty Normal 1 0

Faulty Working High 0 1
Working (1) Faulty High 0.45 0.55
Working (2) Working Normal 1 0

Faulty Faulty Normal 0 1

"Wellbore pressure" is "High", the estimated probabilities for performing the Function 3

by using one BSR, two BSR or combination of BSR and CSR based on the shearing ability

are shown in Table 5.5. For example, if the wellbore pressure is too high, there is still a

small chance estimated as 0.001 for failing to perform Function 3 by using two BSRs.

4. For the serial connection, the failure of the parent node results in the failure of child node

(This also could be explained as: the information of failure from the previous transfers

to the next-level through the child node without considering states of child node). Then

in the Table 5.4, only the working state of CPD is considered; and in the Table 5.5, the

simplified CPTs are provided given the faulty state of Function 1.
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5.2.2 Analysis and Discussion of Results

Three different configurations of BOP stack were investigated in this case study, considering the

effect of information variable "Wellbore Pressure". According to D-010 (2004), the BOP should

be recertified every five years. In this case study, however, the experimental time (also called as

the mission time) sets as 8760 hours (one year) since the reliability of BOP in base case reaches

the "steady" value before five years. The generic data is obtained from the technical reports and

the research review (Holand, 1999; Holand and Awan, 2012; Cai et al., 2012b), and there are also

some data like C-value for CCFs estimated by author, which may not be very realistic because

of lacking pratical experience.The codes for generate BN model (taking Classical configuration

stack as example) for case study in Matlab are reported in Appendix B.2.

To investigate the performance of the BOP system within different configuration stack, both

reliability and availability are evaluated. The availability is the probability that the system per-

forming the desired function at the given time point or over time period and the reliability is

maily for evaluation of the non-repariable system (Rausand and Høyland, 2004). In order to get

the priors for reliability evaluation, the repair action should be removed from the Markov model.

The reliability and availability analysis for different configuration BOP stack are given in Figure

5.5 and Figure 5.4, where the variable WP is set as [0.25(High), 0.75(Normal)] and the relevant

analysis result is reported in Appendix B.3.

By reviewing the Figure 5.4, one can easily conclude that availability of DWH type is higher and

is faster to reach the "steady" value than the other two. The results suggest that even with lower

redundancy of pipe ram subsystem, the inclusion of CSR still has the better performance re-

garding availability than introducing one addtional BSR. However, comparing the reliability as

shown in Figure Reliability for different configuration BOP stack when WP=[0.25, 0.75], Modern

configuration BOP stack is more reliable than DWH BOP stack and Classical BOP stack, which

indicating that the repair action is of great importantance for BOP system within DWH configu-

ration stack. And one can resonably predict that the difference of reliability between DWH and

Classical could be omitted if experimental time becomes longer than one year, which means

the negative effect of absence of one pipe ram is not fully masked by inclusiopn of CSR for long

working period without any repairs or imperfect repair. In the pratical situation, if the proper

repairing strategy is applied, the BOP system with DWH type of stack is still expected to have
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Figure 5.4: Availability for different configuration BOP stack when WP=[0.25, 0.75]

better performance under the most demanding situations.

The unique and important ability for diagnostic analysis of Bayesian Network Model is the cal-

culation of posteriors. As indicated in Table 5.6, the posteriors for root nodes BSR, AP,PR and CSR

are generated, where the time point is 8760 hours, WP is set as[0.25(High), 0.75(Normal)] and the

repair action is taken into account. Noticed that for three different configuration BOP stack, the

initiation for performing Function 1 and Function 3 is the same. Then the nodes CPL,TMR,CCU

and CPOD are treated as the serial connection before activating Function 1 therefore it worth

nothing for posteriors calculation of such nodes.

One observation is that the root node PR has the highest increase yields the calculation result

of MPE, which indicating that the pipe ram is the most critical component given scenario in

all types of BOP stack. When comparing Classical stack and Modern stack, the additional BSR

slightly improve the reliability of Function 3 as the last barrier, while the pipe ram becomes more

critical since Function 1 is more likely to be "blame" given the failure of system. Based on the

comparsion between DWH type and Modern type, the introduction of CSR has siginificantly re-

duced the posterior of PR even with higher priors. However, the posterior of BSR is increased

dramatically compared to Classical, which indicating the losing redundancy of Pipe ram sub-

system causes the failure of Function 3 should be more responsible for the faulty state of total

system. As the Figure 5.4 indicated, this kind of modification still increase the availability of the

BOP system.
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Figure 5.5: Reliability for different configuration BOP stack when WP=[0.25, 0.75]

For the reliability analysis of three configurations, since there is not any repair actions to lower

the priors of the each subsystem,the model within increasing priors are not very suitable for

such diagnostic analysis based on posterior probabilities. The alternative method then could

be the MPE method. The most probable state given the scenario is the faulty state of pipe ram

subsystem at very beginning; then the most probable one becomes the failure of BSR and CSR,

which indicating the Function 3 is malfunction when priors get higher; Finally, when the ex-

perimental time comes to approximate half year, all the components or subsystem trends to be

faulty given accident since priors are too high.

Generally, the annular preventers contribue little to the failure of total system, while the pipe

rams are considered to have larger contribution than blind shear ram. To be noticed, in some

cases, the root nodes with the higher posterior is not implied as the most probable node to

happen given fault.

The influence of wellbore pressure is mainly indicated in Figure 5.7 and Figure 5.6. One may

observe that the DWH stack has a slighter decrement of availability when the value P decrease

from 0.9 to 0.15, which implies that DWH stack is more stable and reliable than the others under

the high pressure situation. The similar conclusion can also be draw based on the observation

of Figure 5.6, the effect of increasing wellbore pressure still has smallest impact on the perfor-
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Table 5.6: Priors and Posteriors for some root nodes, when WP=[0.25, 0.75] and time = 8760 hrs
Classical Modern DWH

Priors Posteriors Priors Posteriors Priors Posteriors
BSR 0.026234 0.1009 0.3552(W2),

0.00989 (F)
0.1253(W2),
0.0533 (F)

0.026234 0.4883

AP 0.010892 0.01171 0.010892 0.01132 0.010892 0.01509
PR 0.0075741 0.54693 0.0075741 0.56189 0.008191 0.44278

CSR - - - - 0.026234 0.12977

Figure 5.6: Reliability for different configuration BOP stack when WP=[1-P,P]

mance of DWH BOP stack, which indicating that the installation of CSR can effectivelya against

the high pressure conditions. Besides that, even the Modern configuration BOP stack is most

reliable under high pressure condition as shown in Figure 5.6, the wellbore pressure still has the

greatest influence on its reliability. It suggests that the increasing redundancy of BSR subsystem

is not working, since the high wellbore pressure conditions requires the high shearing ability

when performing Function 3, which generall only provided by CSR.

As shown in Figure 5.8, the posterior P of DWH stack is more sensitive: when wellbore pressure

trends to be high, the system is more likely to fail due to the loss of redundancy; when wellbore

pressure trends to be normal, then the effect of additional CSR is greater than the effect of losing
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Figure 5.7: Availability for different configuration BOP stack when WP=[1-P,P]

one pipe ram. This could be also explained by using MPE method: when the P is set as 0.9

which implies that wellbore pressure is very impossible to be high, then MPE tells that the most

probable component in faulty state given the failure of total system is the BSR instead of pipe

ram.

5.3 Validation of Model

Normally the senstivity analysis should be carried out fulfill the validation of model. Accord-

ing to the literature review regarding demonstrating the created model is reasonable,three re-

quirment should be fulfilled (Jones et al., 2010; Cai et al., 2012b,a):

1. A slight increase/decrease in the prior subjective probabilities of each parent node should

certainly result in the effect of a relative increase/decrease of the posterior probabilities of

child nodes.

2. Given the variation of subjective probability distributions of each parent node,its influ-

ence magnitude to child node values should keep consistent.

3. The total influence magnitudes of the combination of the probability variations from x
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Figure 5.8: Posteriors of value P (within repair actions)

attributes on the values should be always greater than the one from the set of x–y (y ∈ x)

attributes.

If taking DWH stack as the example, as shown in Fugure 5.8, when the prior of value P

increased from 0.15 to 0.3, the corresponding posterior increases from 0.02129 to 0.05018;

As indicating in Figure 5.4, when the prior of root node PR increase from 0.0022870 to

0.0081910, the unavailability increases from 0.000122 to 0.000412. If P is set as 0.45 instead

of 0.75, then unavailability increases from 0.000412 to 0.000727612. Those observation

satisfy the requirements for validation of model.



Chapter 6

Summary and Recommendations for

Further Work

6.1 Summary and Conclusions

This thesis firstly presents a method of translating Fault Tree into Bayesian Network without

losing any details, in addtion with the more advanced modelling power: effectively building

the large scale model, applying probabilistic gates, solution for uncertainty and inclusion of the

multiple states for nodes. Then the case study is carried out, in order to propose the improved

reliability and availability assessment about BOP system within different configurations, based

on Bayesian Network model. According to the generated results from Example 1, Example 2 and

case study, the main conclusion of the thesis can be summarized as follows:

1. Fault-Tree based Bayesian Network model is proven to update the priors when the new in-

formation of the system is taken into account and the updated information could be very

useful for diagonstic analysis. And the most probable explanation method of Bayesian

Network is also proven to have the more precise severity ranking of components char-

acteristics than the minimal cut-set method provided by Fault Tree Analysis, since MPE

configuration considering the occurrence and non-occurrence of root nodes simultane-

ously.

2. Due to the limited number of the generic data, the uncertainty from the expert knowledge

64
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is unavoidable. Then Bayesian Network is implied as the suitable method for re-estimate

the mutual informations probabilistically. However, the detailed method for solving such

kind of challenge is not covered in this master thesis.

3. Bayesian Network is proven to carry out the more detailed analysis than the traditional

method such as Fault Tree Analysis.Every Fault Tree can be tranlating into Bayesian Net-

work as indicated in Chapter 4. Therefore some assumption of Fault Tree can be removed

to investigate more complicated situations, within the ability of handle multiple states

and dependent failures.

4. The classical BOP stack is still in use in many offshore locations around the world, the

analysis result from case study suggest that the industry should generally moving towards

the DWH BOP stack since it is more reliable under high wellbore pressure condition, which

means the shearing ability for BOP system becomes more important. According to up-

dated posteriors, the pipe ram subsytem is most critical, however, the implementation of

casing shear ram in DWH BOP stack is proven to compensate for losing redundancy of

pipe rams. Moreover, the correct choice of suitable and effective repair strategy is very

critical for improving availability of DWH BOP stack.

6.2 Research Prespectives

According to the current results, here gives some recommendations for possible extensions of

research work in this or similiar filed as follows:

• Short-term: some additional informative variable could be added into the model in the

case study, such as the diameter of pipe. If it is too large, then the fixed pipe rams (usu-

ally upper pipe ram and lower pipe ram) is not able to perform the Function 1, then re-

dundancy of Function is reduced from 1oo5 to 1oo3 (middle pipe ram and two annular

preventers), where the shearing ability remains the same. The introduction of the infor-

mative variable about pipe diameter in the Bayesian Network model is able to perform a

more detailed and precise reliability/ availability assessment of BOP systems within dif-

ferent configurations stack.
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• Long-term: some other modeling power of Bayesian Network could be applied to carry

out a more detailed analysis which closed to the pratical situations, such as Dynamic

Bayesian Network. As discussed before, there are a few researchers have discussed the

suitable method for re-estimate the priors which originally generated by domain experts.

Such analysis can be applied in the real industry or in the decision-making strategy re-

garding BOP system or some other similar large-scale safety critical systems.



Appendix A

Acronyms

BOP Blowout preventer

CCF Common cause failure

BN Bayesian Network

EUC Equipment under control

E/E/PE Electrical,electronic,or programmable electronic

SIS Safety Instrumented System

PLC Programmable logic controller

SIF Safety-instrumented function

DU Dangerous undetected

DD Dangerous detected

SU Safe undetected

SD Safe detected

PFD Probability of failure on demand

PFH Frequency of dangerous failure per hour
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MRT Mean repair time

MTTR Mean time to restoration

SIL Safety integrity level

HFT Hardware fault tolerance

SFF Safe failure fraction

FTA Fault tree analysis

LOPA Layer of protection analysis

ETA Event tree analysis

RAMS Reliability, availability, maintainability, and safety

LMRP Lower marine riser package

LAP Lower annular preventer

UPR Upper pipe ram

MPR Middle pipe ram

LPR Lower pipe ram

BSR Blind shear ram

CSR Casing shear ram

OD Outer diameter

VBR Variable bore rams

HPU Hydraulic power unit

DWH Deepwater Horizon

MUX Multiplexed
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CCU Central control unit

DCP Driller’s control panel

TCP Toolpusher’s control panel

SEM Subsea electronic modules

FEMCA Failure mode, effects and criticality analysis

HAZOP Hazard and operability study

DAG Directed acyclic graph

CPT Conditional probability table

RBD Reliability block diagram

MFDT Mean fractional deadtime

TE Top event

MPE Most probable explanation

PSA Norwegian Petroleum Safety Authority

AP Annular preventer

TMR Triple modular redundancy controllers

PR Pipe ram

CPOD Control pods

WP Wellbore pressure

CPL Control panels



Appendix B

Relevant Data and Code for Case Study

B.1 Priors data for each subsystem in case study
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B.2 Codes for Matlab

N = 12

dag = zeros(N,N)

BSR= 1; CSR= 2; AP= 3; PR = 4; WP =5;CPL = 6; TMR = 7; CCU = 8;CPOD = 9; F1 = 10; F3 = 11; BOP

= 12;

dag(AP,F1)= 1

dag(PR,F1)= 1

dag(WP,F1)= 1

dag(CPOD,F1)= 1

dag(BSR,F3)= 1

dag(CSR,F3)= 1

dag(WP,F3)= 1

dag(F1,F3)= 1

dag(CPL,TMR)= 1

dag(TMR,CCU)= 1

dag(CCU,CPOD)= 1

dag(F3,BOP)= 1

discrete_nodes = 1:N

node_sizes = [3 2 2 2 2 2 2 2 2 2 2 2 ]

P=0.75;

t=438 ;CPL1oo2=0.00016297 ;TMR1oo1=0.000099054 ;CCU1oo1=0.0000098747 ;CPD1oo2=0.0015298

;AP1oo2=0.0034561 ;PR1oo3=0.0030165 ;CSR1oo1=1 ;BSR1oo1=0.02508;

t=876 ;CPL1oo2=0.00022351 ;TMR1oo1=0.000099054 ;CCU1oo1=0.0000099983 ;CPD1oo2=0.0020647

;AP1oo2=0.0052957 ;PR1oo3=0.0047306 ;CSR1oo1=1 ;BSR1oo1=0.026184;

t=1314 ;CPL1oo2=0.0002716 ;TMR1oo1=0.000099054 ;CCU1oo1=0.0000099999 ;CPD1oo2=0.0025208

;AP1oo2=0.006681 ;PR1oo3=0.0058441 ;CSR1oo1=1 ;BSR1oo1=0.026232;

t=1752 ;CPL1oo2=0.00030981 ;TMR1oo1=0.000099054 ;CCU1oo1=0.0000099999 ;CPD1oo2=0.00291

;AP1oo2=0.0077255 ;PR1oo3=0.0065608 ;CSR1oo1=1 ;BSR1oo1=0.026234;

t=2190 ;CPL1oo2=0.00034016 ;TMR1oo1=0.000099054 ;CCU1oo1=0.0000099999 ;CPD1oo2=0.0032423
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;AP1oo2=0.0085131 ;PR1oo3=0.0070162 ;CSR1oo1=1 ;BSR1oo1=0.026234;

t=2628 ;CPL1oo2=0.00036428 ;TMR1oo1=0.000099054 ;CCU1oo1=0.0000099999 ;CPD1oo2=0.0035258

;AP1oo2=0.0091069 ;PR1oo3=0.0073003 ;CSR1oo1=1 ;BSR1oo1=0.026234;

t=3066 ;CPL1oo2=0.00038345 ;TMR1oo1=0.000099054 ;CCU1oo1=0.0000099999 ;CPD1oo2=0.0037679

;AP1oo2=0.0095546 ;PR1oo3=0.0074729 ;CSR1oo1=1 ;BSR1oo1=0.026234;

t=3504 ;CPL1oo2=0.00039867 ;TMR1oo1=0.000099054 ;CCU1oo1=0.0000099999 ;CPD1oo2=0.0039744

;AP1oo2=0.0098922 ;PR1oo3=0.0075735 ;CSR1oo1=1 ;BSR1oo1=0.026234;

t=3942 ;CPL1oo2=0.00041077 ;TMR1oo1=0.000099054 ;CCU1oo1=0.0000099999 ;CPD1oo2=0.0041507

;AP1oo2=0.010147 ;PR1oo3=0.0076281 ;CSR1oo1=1 ;BSR1oo1=0.026234;

t=4380 ;CPL1oo2=0.00042038 ;TMR1oo1=0.000099054 ;CCU1oo1=0.0000099999 ;CPD1oo2=0.0043012

;AP1oo2=0.010339 ;PR1oo3=0.0076538 ;CSR1oo1=1 ;BSR1oo1=0.026234;

t=4818 ;CPL1oo2=0.00042801 ;TMR1oo1=0.000099054 ;CCU1oo1=0.0000099999 ;CPD1oo2=0.0044296

;AP1oo2=0.010483 ;PR1oo3=0.0076618 ;CSR1oo1=1 ;BSR1oo1=0.026234;

t=5256 ;CPL1oo2=0.00043408 ;TMR1oo1=0.000099054 ;CCU1oo1=0.0000099999 ;CPD1oo2=0.0045392

;AP1oo2=0.010592 ;PR1oo3=0.0076593 ;CSR1oo1=1 ;BSR1oo1=0.026234;

t=5694 ;CPL1oo2=0.0004389 ;TMR1oo1=0.000099054 ;CCU1oo1=0.0000099999 ;CPD1oo2=0.0046328

;AP1oo2=0.010675 ;PR1oo3=0.007651 ;CSR1oo1=1 ;BSR1oo1=0.026234;

t=6132 ;CPL1oo2=0.00044273 ;TMR1oo1=0.000099054 ;CCU1oo1=0.0000099999 ;CPD1oo2=0.0047126

;AP1oo2=0.010737 ;PR1oo3=0.0076398 ;CSR1oo1=1 ;BSR1oo1=0.026234;

t=6570 ;CPL1oo2=0.00044577 ;TMR1oo1=0.000099054 ;CCU1oo1=0.0000099999 ;CPD1oo2=0.0047808

;AP1oo2=0.010784 ;PR1oo3=0.0076275 ;CSR1oo1=1 ;BSR1oo1=0.026234;

t=7008 ;CPL1oo2=0.00044819 ;TMR1oo1=0.000099054 ;CCU1oo1=0.0000099999 ;CPD1oo2=0.0048389

;AP1oo2=0.010819 ;PR1oo3=0.0076151 ;CSR1oo1=1 ;BSR1oo1=0.026234;

t=8760 ;CPL1oo2=0.00045381 ;TMR1oo1=0.000099054 ;CCU1oo1=0.0000099999 ;CPD1oo2=0.004998

;AP1oo2=0.010892 ;PR1oo3=0.0075741 ;CSR1oo1=1 ;BSR1oo1=0.026234;

bnet = mk_bnet(dag, node_sizes, ’discrete’, discrete_nodes)

bnet.CPDBSR = tabular_CPD(bnet, BSR, [1-BSR1oo1 0 BSR1oo1])

bnet.CPDCSR = tabular_CPD(bnet, CSR, [1-CSR1oo1 CSR1oo1])

bnet.CPDAP = tabular_CPD(bnet, AP, [1-AP1oo2 AP1oo2])

bnet.CPDPR = tabular_CPD(bnet, PR, [1-PR1oo3 PR1oo3])
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bnet.CPDWP = tabular_CPD(bnet, WP, [1-P P])

bnet.CPDCPL = tabular_CPD(bnet, CPL, [1-CPL1oo2 CPL1oo2])

bnet.CPDTMR = tabular_CPD(bnet, TMR, [1-TMR1oo1 0 TMR1oo1 1])

bnet.CPDCCU = tabular_CPD(bnet, CCU, [1-CCU1oo1 0 CCU1oo1 1])

bnet.CPDCPOD = tabular_CPD(bnet, CPOD, [1-CPD1oo2 0 CPD1oo2 1])

bnet.CPDF1 = tabular_CPD(bnet, F1, [1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1])

bnet.CPDF3 = tabular_CPD(bnet, F3, [1 1 1 1 1 1 1 1 1 1 1 1 0.95 0.999 0 0.45 0.85 0 1 1 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0.05 0.001 1 0.55 0.15 1 0 0 1 0 0 1])

bnet.CPDBOP = tabular_CPD(bnet, BOP, [1 0 0 1])

engine = jtree_inf_engine(bnet);

evidence = cell(1,N);

evidenceBOP= 2

[engine, ll] = enter_evidence(engine, evidence);

[mpe, ll] = calc_mpe(engine, evidence)

mpe

marg = marginal_nodes(engine, BOP);

marg.T

B.3 Analysis results of BN model
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Figure B.3: Analysis results of BN model in case study

Figure B.4: Analysis results of BN model in case study (2)
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