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Summary 
This thesis investigates the potential of using ultrasonic assisted drilling (UAD) in the oil and 

gas industry in order to increase drilling performance. UAD has shown positive effects when 

drilling in materials like metal and ceramics. A dedicated tool for introducing ultrasonic 

vibration into a standard TerraTek scratch test machine were designed and manufactured. The 

conducted experiments investigated the effect of ultrasonic vibration with regard to normal 

and shear force, stick-slip effect and wear. The main results from the experiments were:  

 The force readings from all the experiments shows that ultrasonic vibration has a 

positive effect on drilling performance in rock samples. Tests performed at Berea 

sandstone shows 40% and 90% reduction in shear force and normal force respectively.  

 The lack of being able to reproduce any real stick-slips in the tests makes it difficult to 

draw a conclusion if the ultrasonic vibration has any effect on stick-slip. 

 The wear test indicates that the ultrasonic vibration has a negative impact in terms of 

wear on the cutter. More work needs to be done to clarify if this is a problem using 

Polycrystalline diamond compact (PDC) bits. 

In the end, a design was presented as a solution for integration of a piezoelectric actuator into 

a wireline deployed well tractor, used for drilling scale in production wells. 

In general, the results from the force tests were positive and further work should be 

performed. Further work should include analysis of increased amplitude of PDC cutter, wear 

on the PDC cutter, and the effect of introducing a full size bit with ultrasonic vibration for scale 

milling.  
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Sammendrag 
Denne oppgaven undersøker potensialet for bruk av ultrasonisk assistert boring (UAD) i olje- 

og gassindustrien for å øke boreytelsen. UAD har vist positiv effekt ved boring i materialer som 

metall og keramikk. Det ble konstruert og produsert et dedikert verktøy for å tilføre 

ultrasoniske vibrasjoner til en standard TerraTek skrape maskin. Forsøkene undersøkte 

effekten av ultrasoniske vibrasjoner med hensyn til normal og skjærkraft, stick-slip effekt og 

slitasje. Hovedresultatene fra forsøkene var: 

 Kraftavlesningene fra alle forsøkene viser at ultrasoniske vibrasjoner har en positiv 

effekt på borekraften i steinprøver. Tester utført på Berea-sandsten viser en reduksjon 

på henholdsvis 40% og 90% av skjærkraft og normalkraft. 

 Siden det ikke lot seg gjøre å reprodusere ”stick-slips” i testen er det vanskelig å tekke 

en konklusjon om hvorvidt ultrasonisk vibrasjon har noen effekt på ”stick-slips”. 

 Slitasje-testen indikerer at ultrasonisk vibrasjon har en negativ effekt i form av slitasje 

på kutteren. Mer arbeid må gjøres for å avklare om dette er et problem på 

Polycrystalline diamond compact (PDC) kuttere. 

Til slutt blir det presentert en løsning for integrering av en piezoelektrisk aktuator til en 

wireline brønntraktor, til boring av avleiringer produksjonsbrønner. 

Generelt var resultatene fra kraftavlesingene positive og videre arbeid bør utføres. Videre 

arbeid bør omfatte analyse av økt amplitude på PDC-kutter, slitasje på PDC-kutter, og effekten 

av å bruke en fullskala borekrone med ultrasonisk vibrasjon for boring av avleiringer i 

produksjonsbrønner.  
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1 Introduction 
 

In the later years, the demand for better and more effective methods of drilling and cutting of 

materials have increased, leading to further development of Ultrasonic Assisted Drilling (UAD). 

In the oil and gas industry, drilling and well interventions are time consuming and expensive. 

Typical day rates are in the order of $400 000 for semi-submersible drilling rigs. Well 

interventions reduce or stop production, leading to lost income. By increasing drilling 

efficiency, large savings can be made.  

Very little research has been done with regard to UAD in rock, National Aeronautics and Space 

Administration (NASA) has developed a core sampler for use on the Mars rover. This core 

sampler uses only ultrasonic vibration to drill, with no rotation (Bar-Cohen, Sherrit, and Bao 

2007).  

To get a deeper understanding in how ultrasonic vibration affects rock-drilling performance, 

a series of experiments are conducted. The experiments measure the cutting force, stick-slip 

effect and wear on the cutter. 

At the end, a proposed solution for integrating a piezoelectric element into well a tractor is 

presented. Well tractors have limited power supply and can increase its range by increasing 

the efficiency. The well tractor with vibration is intended for scale removal. 

The first section is a literature survey on existing technologies using UAD.  
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2 Theory 
 

The use of ultrasonic vibration in different manufacturing processes is well documented for 

more than 60 years, and was first technically described in the 1940s by Lewis Balamuth (Edelen 

2007). The first ultrasonic drilling machines developed, was without rotation. In 1964 

Ultrasonic assisted drilling (UAD) was invented by Legge(Ishikawa et al. 1998).  

This chapter will go thru today’s technology. Describe some of the effects ultrasonic vibration 

has in other applications and how it can effect drilling using a well tractor. In the end an 

introduction to well tractors, piezoelectric actuators and scale in production tubing will be 

given.  

2.1 Ultrasonic Assisted Drilling 
UAD is a hybrid process combining conventional drilling and ultrasonic oscillation. Applicable 

to both ductile and brittle materials. (Chang and Bone 2005). Experiments with calcium 

aluminum silicate and magnesia stabilized zirconia have shown that the material removal 

rates obtained from UAD is six to ten times higher than that from a conventional drilling 

process under similar conditions(Prabhakar 1992). In comparison with conventional drilling, 

UAD show for superior surface finish and low tool pressure(Cleave 1976). 

2.1.1 Force Reduction by Vibration 
Force reduction is especially interesting in regard to the well tractor, due to limited power 

supply through the wireline. By reducing the power needed to turn the drill bit and the power 

needed to push the tractor, it will be possible to perform deeper operations or do the 

operations faster.  

Experiences from UAD on other materials than rock has shown some good tendencies when 

it comes to force reduction. 

Pujana et al. (2009), made an analysis of ultrasonic-assisted drilling of Ti6Al4V. By introducing 

ultrasonic vibration with 9µm amplitude, they observed a reduction from 350N during 

conventional drilling, to 170N with UAD.  

Ishikawa et al. (1998), presented a study on combined vibration drilling by ultrasonic and low 

frequency vibrations for hard and brittle materials. The result of this study showed that by 

inducing both ultrasonic and low frequency vibrations to the workpiece, the lowest cutting 

force, tool wear and nicest cut were obtained. However, applying two different vibrations to 

a drill bit is complicated, and applying just ultrasonic vibration is by far the second best 

alternative. Reducing drilling force from 14N to 7N.  

2.1.2 Vibration Effect on Wear 
Wear on the drill bit, is an important factor. Rapid wear means more tripping of equipment 

out and into the well. Resulting in increased time spent on operation, loss of production time 

plus day rate of service/drilling vessel (Ford 2012).  

How UAV will affect the drill bit is an important question. UAV have shown varying effects on 

cutting tools, depending on cutting material.  
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Tsuboi et al. (2012), studied the effect of Ultrasonic vibration and cavitation-aided 

micromachining of hard and brittle materials. When drilling through silicon carbide they 

experienced a remarkable increase in the number of holes each drill bit lasted by introducing 

axial vibration to the bit. By conventional drilling, a drill bit lasted 12 holes, and with vibration, 

it lasted 40.  

Azarhoushang and Akbari (2006), performed an experimental investigation of ultrasonic 

assisted drilling of Inconel 738-LC. Inconel is in the range of new alloys that causes high tool 

temperatures and rapid wear of cutting edges. By introducing vibration to the drilling, they 

experienced a significantly decrease in tool wear, shown in Figure 2.1. In addition, they 

experienced up to 60% improvement in surface roughness and circularity on the machined 

pieces.  

 

Figure 2.1: Worn TiN-coated drill bits (Azarhoushang and Akbari 2006). 

Chang and Bone (2005), focused on burr size reduction in drilling by ultrasonic assistance. 

Their work focused on drilling in A1100-0 aluminum. Their research pointed out a significant 

reduction in burr width and height. They observed an increase in wear on the HSS drill bits in 

form of chipping on UAD compared to conventional drilling. However, TiN-coated HSS drill bits 

did not show any signs of chipping.  
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2.1.3 Stick slip 

Stick-slip as it is known in drilling situations can occur throughout the drill string for many 

reasons, the most prevalent form of stick-slip and the form that is relevant for UAD, occur at 

the drill bit and is referred to as bit related stick-slip. Figure 2.2 illustrates a stick-slip. Stick-

slip is initiated when the energy or torque being delivered to the bit by the drill string is not 

sufficient to overcome the formation being drilled, at this point the bit slows down or stops in 

the “stick” phase. The torque builds up in the drill string resulting in twists until enough torque 

has been developed to crush the formation, at which point the drill bit breaks free from the 

“stick” phase and rapidly accelerates, rotating at several times the intended rotary speed 

(Deen, Wedel, and Nayan 2011, Wedel, Mathison, and Hightower 2011). 

 

Figure 2.2: Illustration of stick slip(Deen, Wedel, and Nayan 2011). 

Stick-slip can severely shorten a Polycrystalline diamond compact (PDC) cutters life (Figure 

2.3), resulting in poor runs. Damage to expensive equipment is not limited to the drill bit. 

Downhole motors or rotary steerable systems, measurement tools, stabilizers, drill collars, 

and drill pipe are all string components that can be damaged by stick-slip(Wedel, Mathison, 

and Hightower 2011, Chen, Blackwood, and Lamine 2002). 
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Figure 2.3: Bit wear without and with stick slip failure(Deen, Wedel, and Nayan 2011). 

Stick-slip also effects drilling by well tractor. Power supplied by tractor/motor combination is 

limited. As a result, the system must be optimized to deliver a regular supply of power to the 

drill bit. This can be difficult as downhole conditions can be hard to read and indications of 

stalling can be missed (Oiltools 2014). 

 

2.2 Well Tractor 
The Well Tractor (Figure 2.4) is an auxiliary tool used to push well Intervention equipment 

along highly deviated and horizontal sections of oil or gas wells. Without the tractor, well 

interventions in wells like this must be done with a drill string, requiring a much bigger and 

more expensive vessel. Normally a motor is mounted on the end of the tractor; this is used to 

power the milling and cleaning tools that are mounted on to the shaft. Wireline well tractors 

can only be used for drilling as long as there is flow in the well, to get rid of cuttings. 

 

Figure 2.4: Illustration of well tractor without drill bit(AkerSolutions 2013). 
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Power to the well tractor and tools are limited by the power that can be delivered through the 

wireline. For example a well tractor in a well using the wireline in Appendix C and assuming 

P=3kW as max input: 

 

Figure 2.5: Wire diagram for well tractor. 

Loss through wireline shown in Figure 2.5: 

U=1000V, max low voltage (NORSOK 2001) 

I=3000W/1000V= 3A  

Rc= 6,6Ω/km   Ra=3,94Ω/km 

R= (6,6+3,94)Ω/km =10,54Ω/km 

ULOST= 10,54Ω/km · 3A=31,62V/km 

PLOST= 31,62V/km · 3A=94,86W/km 

This results in the well tractor in the bottom of the deepest oil wells, reaching up to 10km, to 

have lost almost 1kW of the power available. This will also be more critical as wells are being 

drilled in deeper waters.   

2.3 Piezoelectric Actuator 
In 1880, the Curie brothers first examined the piezoelectric effect on crystal materials, which 

has the capacity to produce electrical charges in response to externally applied forces, called 

the direct effect. This effect is reciprocal, meaning that the piezoelectric material changes its 

dimensions under applied electrical charges(Technologies 2012).  

A piezoelectric material has electromechanical interaction between its mechanical and 

electrical state. When a piezoelectric material is compressed, it creates an electrical field, as 

shown in Figure 2.6. The inverse is also true. When a piezoelectric material is subjected to an 

electric field, it will change dimensions(M4Siences 2011).  
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Figure 2.6: Piezoelectric, low compression on the left, high compression on the right. 

 

Much has happened since 1880. In 1988, Multilayer Actuators (MLAs) were introduced to the 

market. This circumvented many of the earlier limitations of the piezo actuator. MLAs are easy 

to operate, and are being increasingly used in various applications. The required excitation 

voltage of 150V or less is well adapted to modern electronics, compared to over 1000V on 

earlier actuators(Technologies 2012). MLAs are individual slices of piezoelectric materials that 

can be connected, forming a piezo stack (Figure 2.7).  

 

Figure 2.7: Piezo stack (PI 2014). 

2.3.1 Designing Piezoelectric Actuators 

How to design piezoelectric actuators is a large topic, only the most essential factors for the 

actuator described in section 4.2 will be presented. Information about the design process is 

gathered from Noliac (2014), Instrumente (2001), Instrumente (2015) and Technology (2015). 

For Lead Zirconate Titanate (PZT) materials a strain on the order of 1/1000 (0.1%) can be 

achieved with high reliability. This means that a 100 mm long PZT actuator can expand by 100 

micrometers when the maximum electric field is applied. If both the regular and inverse 

electric fields are used, a relative strain up to 0.2 % is achievable. 
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Piezoelectric actuators are sensitive to pulling and shear forces. In addition, the piezoelectric 

elements can get depolarized: 

 Electrical depolarization; exposure to a strong electrical field of opposite polarity to 

the polarization field will depolarize a piezoelectric element. 

 Mechanical depolarization; mechanical depolarization occurs when the mechanical 

stress on a piezoelectric element becomes sufficiently high to disturb the domain 

orientation and hence destroy the alignment of dipoles. 

 Thermal depolarization; if a piezoelectric element is heated to its Curie point, the 

polarization direction becomes disordered and the elements becomes completely 

depolarized.  

PZT ceramics can withstand high pushing forces and carry loads of several tons. PZT ceramic 

material can withstand pressures up to approximately 250 MPa (2500 x 105N/m²) before it 

breaks mechanically. For practical applications, this value must not be approached. 

Depolarization occurs at pressures around 20 to 30 % of the mechanical limit. If the maximum 

compressive force for a PZT is exceeded, damage to the ceramics as well as depolarization 

may occur.  

In the next sub chapters, the most important formulas for calculations of piezoelectric 

actuators are presented.   

Actuator Stiffness 

The actuator stiffness kPZT is an important parameter for calculating force generation, resonant 

frequency, and system behavior. 

𝑘𝑃𝑍𝑇 =
𝐸 ∙  𝐴

𝑙
 

Where: 

E= Young’s modulus for the PZT compound (Pa) 
A= Cross section area of the actuator (m2) 
l= Actuator length (m) 

 

Force generation 
Blocked force, is the maximum force the actuator can produce.  

𝐹𝑚𝑎𝑥 ≈  𝑘𝑃𝑍𝑇 ∙  ∆𝐿0 

Where: 

kPZT= PZT actuator stiffness (N/m) 

ΔL0= Max. nominal displacement without external force (m) 
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Reduction in displacement  

Components installed on or working against the actuator will reduce the displacement. 

Constant force: 

A mass is installed on the PZT which applies a force F = m·a. The zero point will be offset by an 

amount of: 

∆𝐿𝑁 ≈
𝐹

𝑘𝑃𝑍𝑇
 

Where:  
ΔLN= Zero point offset (m) 
F= Force (mass times gravity) (N) 
kPZT= PZT actuator stiffness (N/m) 

Changing force: 

When working against springs the external force changes, reducing the displacement of the 

PZT. Maximum displacement loss: 

∆𝐿𝑅 = ∆𝐿0 × (1 −
𝑘𝑃𝑍𝑇

𝑘𝑃𝑍𝑇 + 𝑘𝑠𝑝𝑟𝑖𝑛𝑔
) 

Where: 

ΔL0= Max. nominal displacement without external force (m) 

ΔLR= Lost displacement due to external spring (m) 

kPZT= PZT actuator stiffness (N/m) 

kspring= Spring stiffness (N/m) 

Resonant Frequency 

Maximum operating frequency for the actuator, limited by the extra weight added to the 

actuator. 

𝑓0 =  1
2⁄ 𝜋 ∙  √

𝑘𝑃𝑍𝑇

𝑚𝑒𝑓𝑓
 

Where: 

f0= Resonant frequenzy (Hz) 

kPZT= PZT actuator stiffness (N/m) 

meff= Effective mass (kg) 

𝑚𝑒𝑓𝑓 ≈  
𝑚𝑃𝑍𝑇

3
+ 𝑚 

mPZT= Weight of the actuator(kg) 

m= Mass of end pieces (weight that the actuator need to push) (kg) 
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Electrical Requirements 

Average power requirement from the actuator. 

𝑃𝑎 ≈ 𝐶 ∙   𝑈𝑚𝑎𝑥  ∙   𝑈𝑝−𝑝  ∙  𝑓 

Where 

Pa= Average power (W) 

f= Operating frequency 

Up-p= Peak-peak drive voltage (V) 

Umax=Maximum output voltage swing of the amplifier (V) 

C= PZT actuator capacitance (F) 

𝐶 = 𝑛 ∙  𝜀33  ∙  𝐴/𝑑𝑠 
n= number of layers 

Ɛ33= Relative dielectric constant (no dimension) 

A= Cross section area of the actuator (m2) 

ds= Layer thickness (m) 

 

2.4 Scale 
Scale is a major issue in the oil and gas industry. Under certain conditions, the natural 

chemistry of produced fluid derived from the reservoir geology can lead to the formation of 

salts, which in turn can deposit as scale in the production system. Similarly, deposition can be 

promoted when seawater either is injected into the reservoir to maintain pressure or has 

migrated to the producing zone from another zone. A scale build up like in Figure 2.8 can 

appear within 24 hours, ruining the productivity of a well. Inhibitors are used to avoid scale, 

using to little or wrong mix of inhibitor may lead to scale. When scale first is present, well 

intervention is required. Scale, depending on its composition can be very hard to 

remove(Crabtree et al. 1999, BP 2010). For this project, scale is compared with drilling through 

sandstone.  

 

Figure 2.8: Scale bould up in 3-inch pipe (BP 2010). 
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3 Experimental work 
 

The goal of the experiment is to measure and examine the forces acting on the  Polycrystalline 

Diamond Compact (PDC) bits while drilling. Moreover, see what effect ultrasonic frequency 

vibration has on the cutter. Adding a stick-slip effect mechanism to the rig opens for the 

possibility to test the effect with ultrasonic vibration. 

3.1 Original Rig 
The original test rig is a TerraTek 7060-200 (Figure 3.1). The original rig is built for scratch 

testing of rock samples, but without vibration and stick-slip mechanism. The rig works in the 

following way: The unit performing the measurements on the cutting tool, herby called the 

measurement unit, is stationary. The rock sample is placed on the lower rig. The lower rig 

moves the rock sample with a typical speed of 4mm/s and a maximum force of 4000N towards 

the cutting tool. The movement of the rig is quite similar to the movement of one tooth on a 

PDC bit. 

 

Figure 3.1: Original test rig. 
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3.2 Extra Features  

 

Figure 3.2: Test rig vibration tool. 

To test the effect of ultrasonic vibration, a device (Figure 3.2) was fabricated, to fit onto the 

original test rig. Technical drawings of the device can be found in Appendix A. The actuator 

used was a PPA60L (Appendix E) powered by LC75C and LA75C signal transformers delivered 

by Cedrat Technologies. The LabView program described in chapter 3.2.2 recorded the signal 

from the frequency generator. The frequency generator controls the output from the 

transformers.  

3.2.1 Force Reduction by Vibration 

To measure the effect of UAV on the force needed to cut the rock, the original test rig includes 

all the needed features. However, it is important to be aware that the modifications done to 

the rig by the vibration device, effects the results on the force readings. This implies that 

experiments performed without the modification is not comparable with tests performed with 

the modifications. Test performed with the cutter mounted for 20µm amplitude and for 32µm 

amplitude will show different force readings and should not be directly compared.   

3.2.2 Stick-Slip Reduction by Vibration 
In order to test the effect of UAV on stick slip behavior, the rig was designed with the 

possibility to move independently from the original test rig, and springs to store energy like a 

twisting drill string (Figure 3.3). The three springs located closest to the actuator, takes all the 

force from the cutting movement, the other three is there to keep it in place and soften the 

impact from severe slips. The spring configuration was decided by testing. Soft enough to give 

some movement, and stiff enough to keep it “floating”. During the stick-slip test, the 
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configuration was identical in the front and back row: one C04800721000M and two 13190. 

Detailed information about the springs can be found in Appendix D. 

 

Figure 3.3:The rig showing sliding plate and springs. 

To measure the stick-slip, a linear slider potentiometer was connected (Figure 3.4). The 

potentiometer measures how long the cutter blade is pushed back, relative to the measuring 

unit. The potentiometer is connected to a circuit board (Appendix B) to process the signal 

into being compatible with NI USB-6009. Through the NI USB-6009, the data is loaded into 

LabView.  

 

Figure 3.4: Potentiometer for stick slip measurement. 
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A LabView program was made to record the frequency and stick-slip displacement. The 

program code can be found in Appendix F. Figure 3.5 shows the LabView program. LabView 

plots the stick-slip displacement and frequency in two different windows, with the 

opportunity to export the data to Excel.   

 

Figure 3.5: LabView program, displacement to the left, frequency to the right. 

To lock the stick slip mechanism for the other tests, four lock blocks were introduced, as 

illustrated in Figure 3.6. 

 

Figure 3.6: Lock tool, four blocks between the springs. 
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3.2.3 Vibration Effect on Wear 

The original PDC blade were changed out with steel blades. Four numbered copies of the PDC 

blade were made as shown in Figure 3.7. The PDC blade is not suitable for this test due to the 

limited time and amount of scratching needed to show any signs of wear on a PDC blade.   

 

Figure 3.7: PDC blade to the left and four steel copies to the right. 

To be able to present a valid comparison of the wear on different blades, microscopy analysis 

was needed. An Alicona Conofocal Infinite Focus Microscope (IFM) was used for 

documentation. More information about the Alcona IFM can be found at (Alcona.com 2015). 

The identification was conducted according to the following procedure on each blade: 

1. Wash the blade with Acetone to remove small particles and grease. 

2. Blow dry the blade to dry of the Acetone. 

3. Start documentation in the IFM as soon as possible after cleaning. 

4. Run scratch test.  

5. Repeat point 1-3.   

6. Compare the wear on each blade.  
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3.3 Experimental Setup 
The experimental setup carried out in this project, listed as a procedure: 

1. Install the high frequency vibration device, with the wanted springs or lock tools. 

2. Clamp the selected rock sample to the test rig (Figure 3.8). Make sure that rig 

components do not crash into each other (metal to metal) during a scratch test. 

3. Calibrate the measuring equipment (set to zero). Set vertical and horizontal zero 

point. 

4. Adjust to wanted cutting depth and set wanted cutting length and speed.  

5. Set wanted frequency if any, to the actuator. Can also be adjusted during the test.  

6. Press start. If recordings of frequency and displacement is to be taken, press start 

on the LabView program at the same time.  

N.B. The first 1-3 scratch runs over a sample are normally poor. It takes at least one run before 

the surface is even and the whole width of the blade touches the rock sample.  

 

Figure 3.8: Securing the rock sample. 
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4 Results 
 

This chapter presents, the results obtained from the experimental work and a technical design 

sketch for integrating ultrasonic vibration into a well tractor assembly.  

4.1 Experimental Results 
The results from the experimental work are presented in the next subsections. In total, over 

70 scratch tests were performed, the results presented were picked out to represent the 

overall impression. All tests were performed on either Berea sandstone, Grunnes soapstone 

or Dionysos marble (Figure 4.1). Marble is significantly harder than the other two samples.  

 

Figure 4.1:Stones used for testing, from the left: Berea Sandstone, Grunnes Soapstone and Dionysos Marble. 

All tests are performed with a cutting blade of 10mm. The amplitude for all tests except for 

the 20µm amplitude test was run with 32µm vibration. 
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4.1.1 Force Reduction by Vibration 

In the setup for force reduction by vibration, the effect of ultrasonic vibration with respect to 

force is presented. Figure 4.2 illustrates that presence of vibration generally is better than no 

vibration, but some frequencies are better than others. From Figure 4.2 it is possible to see a 

significant decrease in force around 500Hz, 1000Hz and 1200Hz. These frequencies were used 

in the next tests, where each of these frequencies were studied more thoroughly. 500Hz was 

skipped for the tests on soapstone and marble because 1000- and 1200Hz gave much better 

results. 

 

Figure 4.2: Scratch test with increasing frequency vibration. 

From the diagrams (Figure 4.3, Figure 4.5 and Figure 4.7) it was possible to control that the 

different test runs followed the same pattern, signaled by low variation between the runs. For 

example, a sudden change in the rock sample on one of the tests would show a sudden peak 

in only one of the curves.   

The column charts (Figure 4.4, Figure 4.6 and Figure 4.8) show the average force values for 

each run. These values were the best for directly comparing of the effect of each frequency. 

From the figures, we see that 1000- and 1200Hz were similar. 1000Hz gave slightly better 

result; therefore, 1000Hz was used for the speed and frequency test, and in the wear and 

stick-slip analysis.  

Force tests were performed at 0,5mm cutting depth for the sandstone and soapstone and 

0,3mm for the marble.  
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Berea Sandstone 

 

Figure 4.3: Berea sandstone, scratch diagram. 

 

Figure 4.4: Berea sandstone, average scratch values. 
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Grunnes Soapstone 

 

Figure 4.5: Grunnes soapstone, scratch diagram. 

 

Figure 4.6: Grunnes soapstone, average scratch values. 
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Dionysos Marble 

 

Figure 4.7: Dionysos marble, scratch diagram. 

 

Figure 4.8: Dionysos marble, average scratch values. 
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Speed and Amplitude 

 

Figure 4.9: Average scratch values for certain speeds. 

Figure 4.9 indicates that the effect of ultrasonic vibration decreases with increasing cutting 

speed, but at 12mm/s the test shows signs of improvement again. The tests were performed 

with 0.3mm cut depth on Berea sandstone. 

For the amplitude test there was no graphical illustration because the 20- and 32µm 

displacement cannot be directly compared (section 3.2.1). Instead a comparison in percentage 

force reduction is given. The tests are performed with 0.5mm cut depth and 4mm/s cutting 

velocity in Berea sandstone. 

20µm displacement: 

0Hz – 296,7N shear load 

1000Hz – 259,0N shear load 

Force Reduction by Vibration =  
(296,7 − 259)

296,7
× 100 = 12,7% 

32µm displacement: 

0Hz – 162,4N shear load 

1000Hz – 99,2N shear load 

Force Reduction by Vibration =  
(162,4−99,2)

162,4
× 100 = 38,9%  

According to these tests, the vibration amplitude has a major impact on the efficiency of the 

ultrasonic vibration.  
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4.1.2 Stick-Slip Reduction by Vibration 
The performed tests failed to reproduce any real stick-slips. The largest difference in the stick-

slip effect with respect to vibration was that tests performed with vibration slipped more 

frequently, see Figure 4.10. The displacement shows some variation from test to test; in 

general, the displacement was slightly smaller for tests run with vibration than without. The 

stick-slip tests were conducted in Berea sandstone. 

 

Figure 4.10: Stick-Slip curve. 

4.1.3 Vibration Effect on Wear 
The documentation carried out using the IFM microscope resulted in 2D and 3D pictures of 

each cutter blade, before and after scraping.  

Figure 4.11 shows the initial 2D pictures of the blades.  The similarity between the blades are 

so high that comparison in 3D is based on the blades looking the same before scratch tests. 

All pictures are taken in the same corner of the cutter blades, the corner of interest is the one 

up to the right for the 2D pictures. The pictures in 3D are from the front of the blade with the 

corner of the cutting blade down to the left. 2D pictures are magnified 2,5 times and 3D 

pictures are magnified 20 times.  

 

Figure 4.11: 2D X2,5 initial picture of blade 1 to 4. 
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This experiment was conducted on two different stone types. Berea sandstone and Dionysos 

marble. 

For comparison the initial and final 2D pictures were placed on top of each other, the green 

pattern shows the initial blade. The 0Hz blade is also mirrored for direct comparison.   

From Figure 4.12 and Figure 4.15 it is clear that the cutter blades subjected to ultrasonic 

vibration show a higher degree of wear. The wear on the cutter were higher for tests 

performed using marble compared to sandstone. However, in both cases the non-vibration 

cutter blades shows more wear on the edges compared with the ones exposed to vibration. 

The green areas in Figure 4.12 and Figure 4.15 are measured by using ImageJ (program for 

measurements on pictures), the overall wear difference are as follows: 

Berea sanstone: 

0Hz wear = 1,231mm2 

1000Hz wear = 1,324mm2 

𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑 𝑤𝑒𝑎𝑟 =  
(1,324 − 1,231)

1,231
× 100 = 7,5% 

Dionysos marble: 

0Hz wear = 0,854mm2 

1000Hz wear = 1,029mm2 

𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑 𝑤𝑒𝑎𝑟 =  
(1,029 − 0,854)

0,854
× 100 = 20,5% 

The wear on Berea sandstone was larger because the rock sample for the Berea sandstone 

was much longer than the marble, and the test used the whole length of the rock sample.   

An interesting detail seen on the 3D pictures (Figure 4.13, Figure 4.14, Figure 4.16 and Figure 

4.17) is that the blades with vibration build up a ridge on the tip of the blade. This ridge could 

affect the wear in long term. If the test had lasted for a longer time, the amount of wear on 

the non-vibration blades and the vibration blades could have equalized. Larger 3D pictures 

with profile indication can be found in Appendix G.  
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Berea Sandstone 

 

Figure 4.12: 2D X2,5 comparison of cutter blades after test on Berea sandstone, green section shows the wear. The small  
white stripe in the upper left corner is a measurement scale, 200µm. 

 

Figure 4.13: 3D X20 comparison from the front of cutter blade after test on Berea Sandstone, picture with profile indication. 

 

Figure 4.14: 3D X20 comparison from the front of cutter blade after test on Berea Sandstone. 
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Dionysos Marble 

 

Figure 4.15: 2D X2,5 comparison of cutter blades after test on Dionysos Marble, green section shows the wear. The small 
white stripe in the upper left corner is a measurement scale, 200µm. 

 

Figure 4.16: 3D X20 comparison from the front of cutter blade after test on Dionysos Marble, picture with profile indication. 

 

Figure 4.17: 3D X20 comparison from the front of cutter blade after test on Dionysos Marble. 
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4.2 Ultrasonic Assisted Tractor Operation  

 

Figure 4.18: X-ray picture of ultrasonic tractor equipment, divided in five sections. 

In this sub-chapter, a proposed solution for integrating ultrasonic vibration into well tractor 

equipment is presented. The equipment is divided into five sections plus the drill bit. Each 

section has a special function, and are screwed together to form the Ultrasonic Assisted 

Tractor. This design is used to simplify repairs, and make it possible to optimize the equipment 

for each operation. Connection to the tractor is omitted, because it needs to fit the connection 

from the desired manufacturer.  

It has only been made calculations for the piezoelectric actuator. The rest is a principal sketch. 

The drawing is made in a scale giving the body diameter of 80 mm and the drill bit diameter 

of 120 mm. 

Figure 4.18 shows the different sections of the system: 

1. Electrical 

2. Pressure equalization 

3. Motor 

4. Gear 

5. Actuator 

The next sub chapters present the different sections. The pictures shown will be in x-ray vision 

to see the details better. The natural metallic color is used if nothing else is stated. The main 

body of the equipment is made of titanium for corrosion and wear resistance.  

4.2.1 Electrical 

The electrical equipment is not shown in details. Wires to the motor and the actuator are not 

shown in the figures, but there is sufficient space. The electrical section will consist of the 

following units: 

 Voltage transformer, for the actuator and possibly the motor. 

 Sine inverter/controller for the actuator. 
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There are some strict requirements for these components: 

 Pressure resistant, more than 1000bar. 

 Fit inside a tube with inner diameter of 74mm. 

 Keep energy loss at a minimum. 

The voltage transformer is one of the components appropriate to replace for optimization in 

each well intervention, depending on cable length.   

4.2.2 Pressure Equalization 

 

Figure 4.19: Pressure compensation section. 

To withstand the extreme pressures in oil and gas wells, the equipment is designed to be filled 

with silicon oil and pressure compensated. Silicone oil is an electric insulator, so it do not 

damage the electric components. Figure 4.19 shows the holes letting the fluid or gas from the 

well into the compensation cylinder (Figure 4.20). The spring in the system is used to ensure 

one bar overpressure.   

 

Figure 4.20: Pressure compensating cylinder. 
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The main reasons for using pressure equalization instead of building it strong enough to 

withstand the pressure are: 

 Thinner walls to give more space for components. 

 Pressure resistant seal on the shaft to the drill bit would create a lot of friction when 

you got a spinning shaft that also moves in and out.    

4.2.3 Motor 

 

Figure 4.21: Motor section, (a) electric motor. 

The brighter part (a) in Figure 4.21 illustrates an open electric motor, dedicated for 

operation in liquid fluids. The electric motor is also relevant to change depending on well 

depth to achieve optimum speed for the operation. It is preferable to avoid using voltage 

transformer to reduce loss in the electrical system. 

4.2.4 Gear 

 

Figure 4.22: Gear section. 
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Gear is needed to keep the motor running at an optimum speed for energy saving, and to 

achieve a high torque on the drill bit.  

 

 

Figure 4.23: Gear box with pressure equalizer. 

The gearbox is designed with an own pressure equalizer. To ensure smooth running and long 

lifetime, the gears should run in gear oil. Keeping the gear oil separated also prevents potential 

metal chips from the gear to short-circuit any electrical components.   

 

Figure 4.24: Gear wheels, (A) x-ray- and (B) realistic-view. 

A planetary gear is used. Planetary gears are compact and has outstanding power transmission 

efficiency (Lu and Jin 2011). The gear has a ratio of 14:1, giving 150rpm at drill bit when the 

motor holds 2100rpm.  
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4.2.5 Actuator 

 

Figure 4.25: Actuator section. 

The main focus in the design proposal is directed to the actuator section. Figure 4.26 shows 

the components inside the actuator section. Presented in colors for easier identification.  

 

Figure 4.26: Inside the actuator section, in colors. 

1. (Red) Shaft from the gearbox and lower actuator holder. Inside you can see the 

path for the wires to the actuator. 

2. (Dark green) Electric transfer for the actuator through the shaft. 

3. (Pink) Foundation for the actuator system and tapered roller bearings. 

4. (Green) Piezoelectric actuator. 

5. (Turquoise) Upper actuator holder and drill bit shaft. 

6. (Blue) Spring and spring foundation.    

Upper and lower actuator holder is designed with grooves to fit into each other, transferring 

the rotational movement and allowing axial movement. 

The spring is used to ensure that the drill bit vibrates, pushing the upper actuator holder and 

shaft towards the actuator, and keeping the lower actuator holder against its foundation.  

Tapered roller bearings are used because they can withstand both axial and radial forces.  
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Piezoelectric actuator 

The design process is based on the equations presented in section 2.3.1. The following 

actuator specifications and operating requirements are used to design the actuator.  

Displacement: 

50µm gives some room for reduction in displacement caused by external forces. The actuator 

does not need to run at max voltage to achieve 32µm displacement. Alternatively the 

displacement can be increased.  

50µm gives an actuator length of 50mm, using the regular electric field to minimize the 

amount of electric controllers needed.  

Force: 

Assuming scale deposition in the production tubing is similar to sandstone with respect to 

drilling. Maximum compressive strength of sandstone: 140N/mm2 (Mineralszone 2015). 

An approximation was made for the contact area between the teeth in the drill bit and the 

formation being drilled. By putting all the teeth in a continues line from the center of the drill 

bit and out to the edge a line of 60mm is formed. The teeth are tilted slightly backwards giving 

a larger contact area than just the edge, approximately 60mm·2mm=120mm2. 

F=140N/mm2*120mm2=16800N 

External forces: 

A spring will push the drill bit back against the actuator. The drill bit is not directly connected 

to the actuator in order to minimize the tensile loads acting on the actuator. The spring pushes 

back the drill bit after every push from the actuator. 

kspring = 78,5N/50µm=1570000N/m 

The volume of the drill bit and the shaft is 0,51dm3. Using tungsten carbide for both the shaft 

and drill bit gives a total mass of 8kg. Tungsten carbide are used in the shaft because it is 

approximately two times stiffer than steel, thereby displacing the vibration better. 

FDrill bit = 8kg·9,81m/s2=78,5N 

In addition, 1000N push force from tractor.   

For the actuator, PZT-4 (Morgan 2010) data is used for further calculations. PZT-4 and the 

specifications described above gives the following properties:  
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Youngs modulus E   6,3·1010Pa 

Cross section A   3,5·10-4m 

Length l    0,05m 

Max. nominal displacement  5·10-5m 

Weight of shaft and drill bit  8,0kg 

kSPRING     392,4·105N/m 

Density PZT ρPZT    7500kg/m3 

Umax     150V 

Frequency f    1000Hz 

Layer thickness ds   1,0·10-4m 

Number of layers n   500 

Dielectric constant in vacuum Ɛ0 8,85·10-12As/Vm 

Ɛ33/Ɛ0     1300 

Ɛ33     1,15·10-8 

 

150V is the maximum voltage for multilayer piezo electrical elements, lowering the voltage 

reduces the displacement and the energy demand.  

The cross section area was found by trial and error, until all requirements were fulfilled. The 

blocking force must be more than the crush force to have any effect if the drill hits scale of 

this roughness. More force also limits the displacement lost to the spring and drill bit. Too 

much extra force and the actuator will use an unnecessarily amount of energy. 350mm2 was 

the final choice. The calculations are presented as follows. 

Actuator stiffness: 

𝑘𝑃𝑍𝑇 =
𝐸 ∙ 𝐴

𝑙
 

𝑘𝑃𝑍𝑇 =
63𝐺𝑃𝑎 ∙ 3,5 ∙ 10−4𝑚2

0,05𝑚
 

𝑘𝑃𝑍𝑇 = 44,1 ∙ 107𝑁/𝑚 

 

Force generaion (block force): 

𝐹𝑚𝑎𝑥 ≈  𝑘𝑃𝑍𝑇 ∙  ∆𝐿0 

𝐹𝑚𝑎𝑥 ≈  44,1 ∙ 107𝑁/𝑚 ∙  5 ∙ 10−5𝑚 

𝐹𝑚𝑎𝑥 ≈  22050𝑁 
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Influence on displacement by external force: 

By mass:  

∆𝐿𝑁 ≈
𝐹

𝑘𝑃𝑍𝑇
 

∆𝐿𝑁 ≈
8,0𝑘𝑔 ∙ 9,81𝑚/𝑠2

44,1 ∙ 107𝑁/𝑚
 

∆𝐿𝑁 ≈ 2,5 ∙ 10−6𝑚 

By spring: 

∆𝐿𝑅 = ∆𝐿0 ∙ (1 −
𝑘𝑃𝑍𝑇

𝑘𝑃𝑍𝑇 +  𝑘𝑠𝑝𝑟𝑖𝑛𝑔
) 

∆𝐿𝑅 = 5 ∙ 10−5𝑚 ∙ (1 −
44,1 ∙ 107𝑁/𝑚

44,1 ∙ 107𝑁/𝑚 + 392,4 ∙ 105𝑁/𝑚 
) 

∆𝐿𝑅 = 4,1 ∙ 10−6𝑁/𝑚 

To achieve 32µm displacement, the actuator needs to be adjusted to 38,6µm (ΔLN + ΔLR + 

32µm). 

Resonant frequency: 

To calculate the resonant frequency the effective mass must be calculated. 

𝑚𝑒𝑓𝑓 ≈  
𝑚𝑃𝑍𝑇

3
+ 𝑚 

𝑚𝑒𝑓𝑓 ≈  
0,13𝑘𝑔

3
+ 8 

𝑚𝑒𝑓𝑓 ≈  8,044𝑘𝑔 

  

𝑓0 =  1
2⁄ 𝜋 ∙ √

𝑘𝑃𝑍𝑇

𝑚𝑒𝑓𝑓
 

𝑓0 =  1
2⁄ 𝜋 ∙ √

44,1 ∙ 107𝑁/𝑚

8,044𝑘𝑔
 

𝑓0 =  11625𝐻𝑧 
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Capacitance: 

𝐶 = 𝑛 ∙ 𝜀33  ∙
𝐴

𝑑𝑠
 

𝐶 = 500 ∙ 1,15 ∙ 107  ∙
𝐴3,5 ∙ 10−4𝑚2

1,0 ∙ 10−4𝑚
 

𝐶 = 2,0 ∙ 10−5𝐹 

 

Average power: 

𝑃𝑎 ≈ 𝐶 ∙  𝑈𝑚𝑎𝑥  ∙  𝑈𝑝−𝑝  ∙ 𝑓 

𝑃𝑎 ≈ 2,0 ∙ 10−5𝐹 ∙  150𝑉 ∙  150𝑉 ∙ 1000𝐻𝑧 

𝑃𝑎 ≈ 453𝑊 

By comparing the designed well tractor equipment with a standard tractor driller from 

Qinterra (2015): 

Standard driller: 

Output torque: 110Nm at 180rpm 

𝑃(𝑘𝑊) =
𝑇(𝑁𝑚) ∙ 𝑛𝑟𝑝𝑚(𝑟𝑝𝑚)

9550
 

𝑃(𝑘𝑊) =
110𝑁𝑚 ∙ 180

9550
 

𝑃(𝑘𝑊) = 2,073𝑘𝑊 

With a reduction of 40% in shear forces the needed power is 1240W. Adding the extra power 

needed for the actuator gives 1693W. The effect of ultrasonic vibration gives a reduction of 

380W. This power can be used to increase the range or to speed up the drilling process.  
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4.2.6 Drill Bit 

 

Figure 4.27: Drill bit. 

The drill bit (Figure 4.27) is a standard Polycrystalline diamond compact (PDC) bit. Wolfram 

carbide was chosen as material because the calculations indicated that the extra weight 

docent have a large influence on the vibration. Wolfram carbide is the normal material to use 

on PDC bits because of its extreme toughness.   
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5 Discussion 
 

A discussion of the results are presented in this chapter. The discussion follows the same 

thematic structure and order as the previous chapter, 4.  

5.1 Force Reduction by Vibration 
The PPA60L will only be used up to 2000Hz and is by definition not ultrasonic (ultrasonic is 

defined greater than 20kHz). The low speed compared with other UAD examples, implies that 

the frequency can be much lower and still have more strokes per mm. The ultrasonic definition 

is used since it is the industry standard for high frequency assisted drilling.  

All samples showed a clear improvement with ultrasonic vibration, especially around 1000Hz 

and 32µm displacement of the cutter. However, as the frequency and displacement 

measurement during the tests were based on the signal output of the frequency transformer, 

and not measurements done to the cutting head, the output vibration might be different from 

the input signal. The actuator in the test rig needs to vibrate a plate in addition to the cutting 

head, and the mass of the plate and cutting tool could have influenced the actuator. 

Alternatively, the plate could have flexed, losing some of the movement. This means that the 

optimum frequency might be slightly lower than 1000Hz and the displacement slightly lower 

than 32µm. It was tried to fit an accelerometer to the test rig, but the accelerometer did not 

manage to pick up all the movements, so it was rejected. A good alternative could have been 

a magnetic sensor that can measure both frequency and displacement. For this project, there 

were no time to order a magnetic sensor when the accelerometer failed.  

The test performed on Berea sandstone is the most reliable. From Figure 4.3 you can see that 

each test, follows the same pattern. The tests on Grunnes soapstone and Dionysos marble 

shows larger deviations. For the soapstone test something must have disturbed the normal 

force calibration, as positive numbers should not be possible. Why there were so large 

variations in the soapstone test is a bit unclear, but it could have been variations in the rock 

sample. The rock sample was just one piece of soapstone, and not a sample dedicated for 

testing. For the marble you can see there are some sections where the curve flattens out in 

Figure 4.7. These flat sections are a result of the rig getting stuck while doing scratch tests in 

marble.  

The speed and amplitude tests performed on Berea sandstone are representative tests. 

According to the amplitude test it is interesting to look at higher amplitudes.  

5.2 Stick-Slip reduction by Vibration 
The performed tests did not manage to reproduce a real stick slip. What was obtained from 

the test was that vibration generally gives a smaller stick. The jagged curve in Figure 4.10 can 

indicate that vibration counteracts the bit to get really stuck. Rather giving a constant flow of 

small stick-slips.  

5.3 Vibration Effect on Wear 
The tests on Berea sandstone is the most representative ones, performed without any 

interference. On tests performed in marble, the rig got stuck as with the force test in marble. 
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In addition, the cutter blade just floated on top of the rock sample during the first test, so the 

scratch needed to be run two times. This happened for both the standard test and the 

vibration test, and was therefore included in the result.  

How representative this test is compared to drill bits where the teeth are made from 

Polycrystalline diamond compact (PDC) (not steel) is questionable. PDC is built up from 

industrial diamonds, giving them an extreme hardness. As presented in section 2.1.2 Chang 

and Bone (2005) also had a problem with wear on softer drilling bits.  

5.4 Ultrasonic Assisted Tractor Operation 
Piezoelectric actuators are prone to small volume changes because the polarization field in 

the crystal is not 100% in one direction. If this is the case, it could be a problem; the actuator 

then needs to push the corresponding volume of high pressure liquid. It is unknown if vacuum 

bobbles forming when using the actuator is a problem. 

If the piezoelectric material is heated above the Curie point, it will get depolarized. It is 

recommended to only operate at half of the Curie point (Technologies 2015). Well tractors 

have a maximum temperature of 177°C (Qinterra 2015). The Curie point for PZT-4 is 328°C 

(Morgan 2010). This means that the temperature for the actuator is close to maximum, and if 

the voltage transformer, actuator and the electric motor produces any extensive heat, it could 

be a problem.   

A wireline with a small control wire inside could make it possible to control parameters like 

motor speed, frequency and the amplitude.   
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6 Conclusion 
 

Conclusions from the experiments:  

 The force readings from all the experiments show that ultrasonic vibration has a 

positive effect on drilling performance in rock samples. Tests performed in Berea 

sandstone shows 40% and 90% reduction in shear force and normal force respectively.  

 Increased speed on the cutter blade indicates a reduction in the effect of ultrasonic 

vibration in terms of force reduction.  

 Increased amplitude indicates improved performance.  

 The lack of being able to reproduce any real stick-slips makes it difficult to draw a 

conclusion if the ultrasonic vibration has any effect on stick-slip. 

 The wear test indicates that the ultrasonic vibration has a negative impact in terms of 

wear on the cutter. More work needs to be done to clarify if this is a problem using 

Polycrystalline diamond compact (PDC) bits. 

The technical drawing shows a solution for integrating a piezoelectric actuator into a tractor 

driller. The suggested design is feasible. But is should be further investigated if volume change 

and temperature (discussed in chapter 5.4) will affect the performance.  

In general, the results from the force tests are positive and further work should be performed.  
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7 Proposed Further Work 
 

 Investigation of the temperature and volume. Questions raised in chapter 5.4.  

 Run tests with larger amplitudes.  

 Scale up the force test using a full size PDC drill bit for scale removal, and investigate 

the effect of increased drill speed/penetration.   

 Perform a new stick slip test. A solution for making a laboratory stick-slip might be to 

run the test over two different rock samples by placing them close to each other. Then 

the blade might get stuck in the transition. 

 Perform a new wear test with PDC blades. This test needs to be longer than the test 

performed in the project in order to see the effect of wear on the PDC cutter blade. 

By installing an actuator on the tool holder of a lathe could be a possible solution.  

 Investigate the possibility to introduce ultrasonic vibration to conventional drilling. 

Investigate the possibility to use a mud motor to generate electric power or wired drill 

string (NOV 2015).  
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8 Nomenclature 
 

A = Cross section area of the actuator (m2) 

C = PZT actuator capacitance (F) 

E = Young’s modulus for the PZT compound (Pa)  

f = Operating frequency (Hz) 

F = Force (mass times gravity) (N) 

F0 = Resonant frequenzy (Hz) 
FDrill bit = Gravity force drill bit (N) 

Fmax = Block force (N) 

kPZT = PZT actuator stiffness (N/m) 

kspring = Spring stiffness (N/m) 

l = Actuator length (m) 
meff = Effective mass (kg) 
mPZT = Weight of the actuator(kg) 

m = Mass of end pieces (kg) 

n = number of layers 

nrpm= rounds per minute  

Pa = Average power (W) 

PLOST = Power lost in cable 

R = Resitance (Ω) 

Ra = Resistance in steel armor (Ω) 

Rc = Resistance in copper conductor (Ω) 

T = Torque (Nm) 

ULOST = Voltage lost in cable (V) 

Up-p= Peak-peak drive voltage (V) 

Umax=Maximum output voltage swing of the amplifier (V) 

ΔL0 = Max. nominal displacement without external force (m) 

ΔLN = Zero point offset (m) 
ΔLR = Lost displacement due to external spring (m) 

Ɛ33 = Relative dielectric constant  

ρPZT = density of PZT-4 (kg/m3) 
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Appendix A, Technical Drawings 
Technical drawings 
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Appendix B, Electric Circuit board 
Electric circuit for processing potentiometer signal 
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Appendix C, Wireline 
Wireline 
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Appendix D, Springs 
Springs 
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Appendix E, Piezoelectric Actuator 
Piezoelectric actuator, PPA60L 
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Appendix F, LabView Program 
LabView program  
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Appendix G, 3D Pictures 
3D pictures with profile indication 
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0Hz Berea sandstone: 

 

1000Hz Bera sandstone: 
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0Hz Dionysos Marble: 

 

1000Hz Dionysos Marble: 

  


