
FieldOpt: Enhanced Software Framework 
for Petroleum Field Optimization
Development of Software Support System for 

the Integration of Oil Production Problems 

with Optimization Methodology

Einar Johan Moen Baumann

Master of Science in Engineering and ICT

Supervisor: Jon Kleppe, IPT
Co-supervisor: Mathias Bellout, IPT

Department of Petroleum Engineering and Applied Geophysics

Submission date: June 2015

Norwegian University of Science and Technology



 



Abstract

This thesis concerns the development of FieldOpt, a software framework that
aims at being a common platform for MSc. and Ph.D. students of optimization
theory and petroleum engineering to conduct research. With FieldOpt, we seek
to simplify and speed up the process of developing and applying new optimization
methodologies to interesting petroleum cases. We achieve this by structuring
the source code in a way that facilitates modifications and additions through
the use of abstract classes and clearly defined interfaces, and by implementing
process-level parallelization.

We present some background on topics relevant to our work. We start with
a general description of optimization algorithms, in particular pattern search
algorithms, focusing on the compass search algorithm that we implemented in
FieldOpt. Other key topics are reservoir simulation; parallel computing, focusing
on process-level parallelization in distributed systems; and software architecture,
which is crucial to the implementation of any software framework. We then
go on to describe how FieldOpt was implemented, using class- and sequence
diagrams to describe the structure of the code and the sequence of instructions
during execution. We also present a case study examining the correctness and
performance of our implementation under various conditions.

The optimization interface we created is simple and well defined. It should be
flexible enough to facilitate implementation of most pattern search algorithms,
but it will likely need some modifications in the future. We find that our im-
plementation exhibits exceptional performance for large problems and that the
performance scales very well when a large number of processors are available.
When run in parallel, our implementation reaches a solution more than 90% faster
than when run in serial for large problems. However, we also identify some issues
linked to our implementation of workload scheduling, caused by irregular behavior
in the reservoir simulator. These irregularities may cause the program to have a
very long execution time for some problems, and a systematic handling of them
should be implemented.



ii



Sammendrag

Denne oppgaven tar for seg utviklingen av FieldOpt, et programvarerammeverk
som tar sikte på å være en felles plattform for MSc. og Ph.D. studenter innen
optimaliseringsteori og petroleumsteknologi til å drive forskning. Med FieldOpt
forsøker vi å forenkle og effektivisere prosessen med å utvikle og anvende nye
optimaliseringsmetoder på interessante petroleumsproblemer. Vi oppnår dette ved
å strukturere kildekoden på en måte som muliggjør modifikasjoner og utvidelser ved
bruk av abstrakte klasser og klart definerte grensesnitt, samt ved å implementere
parallellisering på prosessnivå.

Vi presenterer litt bakgrunnsinformasjon om emner som er relevante for arbei-
det. Vi starter med en generell beskrivelse av optimaliseringsalgoritmer, spesielt
pattern search algoritmer, med fokus på compass search-algoritmen vi imple-
menterte i FieldOpt. Andre sentrale temaer er reservoarsimulering; parallelle
beregninger, med fokus på parallellisering på prosessnivå i distribuerte systemer;
og programvarearkitektur, som er kritisk for ethvert programvarerammeverk.
Videre beskriver vi hvordan FieldOpt ble implementert ved hjelp av klasse- og
sekvensdiagrammer som beskriver strukturen i koden og instruksjonssekvenser
under kjøring. Vi presenterer også en casestudie der vi undersøker korrektheten
og ytelsen til implementeringen vår.

Optimaliseringsgrensesnittet vi laget er enkelt og tydelig definert. Det bør
være fleksibel nok til å tilrettelegge for implementering av de fleste pattern search-
algoritmer, men det vil trolig kreve endringer i fremtiden. Vi ser at implementerin-
gen vår har svært god ytelse for store problemer, og at ytelsen skalerer godt når
et stort antall prosessorer er tilgjengelig. Når programmet kjøres i parallell, finner
implementeringen en løsning mer enn 90% raskere enn når det kjøres serielt for
store problemer. Men vi ser også at vår implementering av “arbeidsfordeling”
har noen problemer, forårsaket av uregelmessig oppførsel i reservoarsimulatoren.
Disse uregelmessighetene kan føre til at programmet får veldig lang kjøretid for
enkelte problemer, og en systematisk håndtering av dette bør implementeres.



iv



Preface
This thesis is written as part of the Master’s degree in Engineering and ICT
with specialization in Integrated Operations in the Petroleum Industry, at the
Department of Petroleum Engineering & Applied Geophysics at the Norwegian
University of Science and Technology, NTNU. It was written during the spring
semester of 2015 under the supervision of Prof. Jon Kleppe and Postdoc Mathias
Bellout.
We assume the reader of this report is familiar with reservoir simulation and

object-oriented programming and related terminology.
The software developed during this project builds upon and significantly en-

hances ResOpt, an optimization software package created by Alexander Juell
during his Postdoc at the IO Center at NTNU. The work in this project has both
enhanced the functionality of and added new features to ResOpt. The code has
been restructured to increase efficiency and allow for extensive parallelization; the
optimizer interface was completely rewritten, and a pattern search algorithm was
added. The main result of this work is that the code is now better organized, more
robust and has greater extension and scaling capabilities. Besides an expanded
documentation, these changes and additions are the key features we rely on to
make the further planned development of FieldOpt more efficient.

We call the new version of the software package FieldOpt. FieldOpt currently
comprises more than sixteen thousand lines of C++ source code, of which around
four thousand are written from the ground up; the rest originate from ResOpt’s
source code. The source code for FieldOpt is available in its entirety on GitHub
(https://github.com/iocenter/FieldOpt).

v

https://github.com/iocenter/FieldOpt


vi



Acknowledgments
I would like to thank my supervisor professor Jon Kleppe for valuable conversations
and advice, and my co-supervisor Mathias Bellout for his help and advice on almost
every aspect of this thesis – without his expertise in integrating optimization
theory with petroleum field development problems I would not have been able to
complete this project.
I would also like to thank Alexander Juell: without his original ResOpt code

FieldOpt would probably not have been created at all.
Lastly, thanks to SINTEF Applied Mathematics for making their MRST reser-

voir simulator available for free and open-source. It made the development of
FieldOpt easier and its open-source nature is likely to prove very useful in the
future development.

vii



viii



Contents

1 Introduction 1

2 Background 5
2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Problem Formulation and Optimization Algorithms . . . . . . . . . 6

2.2.1 Pattern Search Methods For Optimization . . . . . . . . . . 7
2.2.2 Compass Search . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Other Pattern Search Algorithms . . . . . . . . . . . . . . . 13

2.3 Reservoir Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 About the MRST Reservoir Simulator . . . . . . . . . . . . 15

2.4 Parallel Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Parallel Computer Hardware Architecture . . . . . . . . . . 16
2.4.2 Computer Clusters . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Parallel Programming Paradigms . . . . . . . . . . . . . . . 17
2.4.4 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . 21
2.4.5 Communication Overhead . . . . . . . . . . . . . . . . . . . 22

2.5 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Implementation 25
3.1 Frameworks and Libraries . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Qt Framework . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.3 Open MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Class Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Sequence Diagrams . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

ix



3.6 Simulator Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6.1 MRST Interface . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Optimizer Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7.1 Bookkeeper . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.8 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.8.1 MasterRunner . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.8.2 SimulationLauncher . . . . . . . . . . . . . . . . . . . . . . 36
3.8.3 Communication . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.9 Driver Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.10 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Case Study 45
4.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Simulator Execution Time . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Optimizer Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.1 Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.2 Speedup and Efficiency . . . . . . . . . . . . . . . . . . . . 53

5 Conclusions & Recommendations for Further Work 57

Glossary 61

References 62

A Software Development 65
A.1 Class Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.2 Sequence Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Signed Master’s Contract 69

x



List of Figures

2.1 Examples of search patterns. . . . . . . . . . . . . . . . . . . . . . 7
2.2 Patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Compass search iterations. . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Reservoir discretization. . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Shared memory multiprocessor architecture. . . . . . . . . . . . . . 16
2.6 Distributed memory multiprocessor architecture. . . . . . . . . . . 17
2.7 Kongull’s hardware architecture. . . . . . . . . . . . . . . . . . . . 18
2.8 Amdahl’s law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Black box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Architecture view. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Class diagram: Overview. . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Class diagram: Model. . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Class diagram: Case. . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Class diagram: Simulator. . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Class diagram: Optimizer. . . . . . . . . . . . . . . . . . . . . . . . 34
3.8 Class diagram: Bookkeeper. . . . . . . . . . . . . . . . . . . . . . . 35
3.9 Flowchart: Process level program flow. . . . . . . . . . . . . . . . . 37
3.10 Sequence diagram: MasterRunner. . . . . . . . . . . . . . . . . . . 38
3.11 Sequence diagram: SimulatorLauncher. . . . . . . . . . . . . . . . . 39
3.12 Class diagram: Transfer objects. . . . . . . . . . . . . . . . . . . . 40
3.13 Decomposition of transfer objects. . . . . . . . . . . . . . . . . . . 40
3.14 Sequence diagram: Communication. . . . . . . . . . . . . . . . . . 42

4.1 Reservoir model used in case study. . . . . . . . . . . . . . . . . . . 45
4.2 Plot: Simulator execution time. . . . . . . . . . . . . . . . . . . . . 46
4.3 Plot: Convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Plot: Execution time vs. number of variables (2 procs.). . . . . . . 49
4.5 Plot: Execution time vs. number of procs. (12 vars.). . . . . . . . 49
4.6 Plot: Best execution time vs. number of variables. . . . . . . . . . 50

xi



4.7 Plot: Execution time versus number of processors (2, 4 , 8 vars.) . 52
4.8 Plot: Execution time vs. number of processors. . . . . . . . . . . . 52
4.9 Plot: Batch execution time versus number of procs. . . . . . . . . . 53
4.10 Plot: Speedup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.11 Speedup for the case with 24 variables calculated using an estimated

value for the serial execution time from equation (4.1). . . . . . . . 54
4.12 Plot: Efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.1 Examples of a basic class and a basic abstract class. . . . . . . . . 65
A.2 Inheritance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.3 A sequence diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xii



Chapter 1
Introduction

This thesis concerns the development of FieldOpt, a software framework that aims
at being a common platform for MSc. and Ph.D. students to conduct research.
FieldOpt seeks to promote research by efficiently integrating methodology from
two important academic fields: optimization theory and petroleum engineering.
The main idea behind FieldOpt is to consolidate and make user-friendly much
of the groundwork necessary to conduct optimization on a variety of petroleum
problems. By laying this foundation, FieldOpt seeks to simplify and speed up
the process of developing and applying new optimization methodologies, as well
as making it easier to test new techniques on interesting petroleum cases. In
particular, FieldOpt will serve as an integration framework that will both include
and facilitate the application of various optimization methods to field development
problems, e.g., well placement or production strategy.

FieldOpt as a Software Framework When we refer to FieldOpt as a software
framework, we mean that it is not only intended to be modified and extended
by its users, but also that it should be able to solve a set of problems “out-
of-the-box”. One of the main concerns when developing FieldOpt has been to
lower the threshold for expanding its functionality. E.g., users wishing to add a
new optimizer can do so without having to understand the reservoir model or
the simulator interface. Currently, FieldOpt can apply one optimization to one
reservoir model that can be evaluated using one reservoir simulator.

ResOpt FieldOpt is based on ResOpt, developed by Alexander Juell. ResOpt
is a tool for field development optimization, providing a set of optimizers and
simulator interfaces to solve a range of problems. Our main issue with ResOpt
besides its lack of extensive documentation is the very tight coupling between many
parts of the code, which makes the code difficult to modify. The tight coupling
is a significant issue when our goal is to develop a framework for customized
research. We, therefore, decided only to keep the model (the code describing the

1



Chapter 1. Introduction

“problem”) and simulator interface from ResOpt, clean up the code and improve
the documentation.

Scope of Work ResOpt is designed to solve a whole range of problems that
include pipes, compressors, and pressure boosters coupled to the reservoir model
in a tightly connected system. From this starting point, for our first steps in the
development of FieldOpt, we have chosen a fundamental scope of work where we
focus primarily on improving the core functionality of the software. Roughly, this
core functionality consists of the main coupling between optimization algorithm
and production case, and the efficient operation of this joint system. We believe
that focusing on consolidating and further improving this core functionality, e.g.,
through greater modularity, is the best way to facilitate future development of
the software package. Once properly deployed, the strong core will also make
FieldOpt more robust to a broad range of users. Within the scope of this work,
the type of problems we chiefly deal with involve procedures to find improved
well locations and production strategy while making extensive use of reservoir
simulation models for cost function evaluations. However, as FieldOpt is made to
be easily extensible, we plan for a wider range of problems, including pipe network
and facilities, to be implemented in the future.

Parallelization Solving optimization problems that deal with petroleum cases
typically involves computationally demanding reservoir simulations. Moreover,
since these type of problems often include a relatively large number of variables
(in the hundreds), we have in our development of FieldOpt put significant effort on
achieving good performance through parallelization. ResOpt utilizes thread-level
parallelization to exploit multiple local processing cores, which is sufficient if the
best available hardware is a workstation. However, this setup cannot exploit the
much larger computational power available in distributed hardware architectures,
such as computer clusters and supercomputers. For this reason, in FieldOpt we use
process level parallelization with cross-process communication based on message
passing in FieldOpt’s parallel “runner”, which lets us exploit both distributed and
localized hardware architectures.

Software Architecture If a software framework is to be easily modifiable,
it needs to have a good software architecture. Moreover, a good architecture
makes implementing parallelism, especially when utilizing message passing for
communication, a much more straightforward task. Because of its importance,
software architecture is discussed quite extensively in this report.

Structure of this Document The next chapter presents background topics
such as optimization algorithms, reservoir simulation, parallel computing and
software architecture. Chapter 3 presents how we implemented the various features
of FieldOpt, and we discuss which and how different software libraries were used.
We also include diagrams that describe FieldOpt’s architecture, interfaces and
program flow. In Chapter 4 we introduce a case study examining FieldOpt’s

2



performance. We look at how well the program can utilize large amounts of
available computational power, as well as how well the implemented optimization
algorithm handles various problem sizes. Chapter 5 summarizes the work in this
project, and the results we have obtained. In this chapter, we also discuss further
work and highlight different facets of FieldOpt that need further improvement
and extension.

3



Chapter 1. Introduction

4



Chapter 2
Background

The work done in this project combines aspects of optimization, reservoir simula-
tion, software development and parallel computing. In this chapter, we provide
brief introductions to those parts of these topics that are relevant to our work.
The aim of this background chapter is to help clarify why we decided on imple-
menting the software the way we did. We start with a description of optimization
algorithms in general, and in particular pattern search methods. We then give
a short description of reservoir simulators, which are, in our current setup, the
main engine for evaluating cost function values. We then provide a thorough
introduction to parallel computing, and finally, we discuss software architecture.

2.1 Terminology
To avoid misunderstandings, we here define some common terms used in this
thesis:

CPU: Central Processing Unit, contains one or more processors.

Processor: A physical processing unit or core, part of the CPU.

Process: An instance of a program.

Driver File: Used to deliver a set of configurations to FieldOpt, ResOpt and
various reservoir simulators.

Node: A hardware unit in a computer cluster or supercomputer, containing
memory modules and one or more CPUs.

Parallel Computation: Computations running in parallel either by use of mul-
tiple processes or multiple threads.

Framework: Software which provides rudimentary functionality that is intended
to be modified and expanded by its users.

5



Chapter 2. Background

Move: In pattern search optimization, a “move” refers to a coordinate generated
by the algorithm that is some distance away from some origin point.

Model: A complete description of a problem, including the reservoir model, as
well as the definition of possible variables and constraints associated with
that problem.

Case: A variation of a model. It is used both in terms of a particular problem
size (a model with a specific number of variables) and as a perturbation of
a model (a specific set of variable values).

Batch: The set of coordinates generated by an optimizer in one iteration.

2.2 Problem Formulation and Optimization Algo-
rithms

Given FieldOpt is intended as a framework for petroleum field optimization, with
support for a wide range of algorithms, we start with a brief introduction of the
general problem formulation used in this work. Mathematically, we define opti-
mization as the minimization or maximization of a function subject to constraints
on its variables [1]. We write this as

min
x∈Rn

f(x) subject to

{
ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I . . . . . . . . . . (2.1)

where E and I are sets of indexes for equality and and inequality constraints,
respectively. Currently, however, our problems only involve field development
topics such as well placement or production strategy. Therefore, we may state
the problem in (2.1) in a more specific form [2]:

min
x∈Zn1 ,u∈Rn2

−f(x,u) subject to

{
xd ≤ x ≤ xu,

ud ≤ u ≤ uu,
. . . . . . (2.2)

Here x denotes discrete well placement variables while u refers to continuous
well control variables. This is the standard formulation we use in the current
implementation of FieldOpt. However, other types of formulations, e.g., using
real variables to describe well locations, are entirely possible.

Furthermore, in this project, we limit our work to bound constraints only,
i.e. sets of values describing a bound that any valid coordinate must be inside.
We restrict ourselves to bound constraints because they have been sufficient for
the problems we have considered. Moreover, for the simple test case we have
implemented, we use only one type of variables, x, since the algorithms we present
handle integer and real variables in the same manner.

The remainder of this section is restricted to a particular class of derivative-free
optimization algorithms, namely, pattern search methods, which are a subclass of
direct search methods.

6



2.2. Problem Formulation and Optimization Algorithms

(a) Compass. (b) Factorial. (c) Composite.

Figure 2.1: Examples of patterns applied to two-dimensional objective functions.
Adapted from [5].

2.2.1 Pattern Search Methods For Optimization

Pattern search methods are a subclass of direct search methods. Hooke and
Jeeves [3] defined direct search algorithms as algorithms that perform a

... sequential examination of trial solutions involving comparison of
each trial solution with the “best” obtained up to that time together
with a strategy for determining (as a function of earlier results) what
the next trial solution will be.

This explanation of direct search also applies in a straightforward manner to the
case where we have sets of trial solutions, i.e., batches computed in parallel, where
we compare the best trial solution from the batch to the best solution up to that
time. Another property of direct search methods in general is that they do not
compute or explicitly approximate derivatives of the objective function [3, 4].

Torczon [4] defines pattern search methods as direct search methods that
perform a search using a pattern of points which are independent of the objective
function. Many different patterns may be used, and which is more successful
depends on the objective function. Examples of three patterns applied to two-
dimensional grids are shown in Figure 2.1.

One of the main reasons we chose to focus on pattern search methods is that
they are easily parallelized. That an algorithm lends itself to parallelization is an
important feature because it means that, even though algorithms requiring fewer
function evaluations exist, a parallelized algorithm may reach a solution after a
shorter time because we can evaluate several coordinates simultaneously.

Another argument for pattern search methods and derivative-free methods in
general is that they are more easily applied to our problems than classical methods
using gradients are. Gradients are often problematic when dealing with reservoir
models as they often have non-smooth objective functions, usually a result of
heterogeneities in the reservoir (e.g. varying permeability, fractures) [2]. This is a
significant issue, as noise in the objective will severely affect the approximation of
derivatives, as illustrated in Figure 2.2.

7



Chapter 2. Background

0 0.2 0.4
−0.5

0

0.5

1

1.5

2

2.5

x

f
(x
)

f(x)

f ′(x)
f ′′(x)

(a) Plot of a non-smooth function and
its derivatives.

0 0.2 0.4
−0.5

0

0.5

1

1.5

2

2.5

x

f
(x
)

f(x)

f ′(x)
f ′′(x)

(b) Plot of a smooth function and its
derivatives.

Figure 2.2: Plot of a non-smooth function and a smooth function and their corre-
sponding derivatives. The graphs are meant to illustrate how severely numerically
calculated derivatives are affected by non-smooth functions.

8



2.2. Problem Formulation and Optimization Algorithms

A final, less important point is that pattern search methods enable us to
acquire tentative results before the optimization is completed. We can do this
because we always keep the “best” result obtained up to the current time [3].

2.2.2 Compass Search
Compass search is one of the simplest and earliest types of pattern search algo-
rithms. It is often slow to reach an accurate solution, but it converges reasonably
fast in the beginning, and it is easy to implement in a computer program [5]. The
compass search algorithm may be summarized as follows:

1. Try moves of equal length in each direction along each coordinate axis from
the current position.

2. If any of the moves yields a reduction in the objective function value, move
to that point. Return to step 1.

3. If none of the moves yield a reduction in the objective value, halve the step
length and return to step 1.

More formally, the compass search algorithm starts at an initial position x0,
and moves a distance ∆0 along each direction d ∈ D, where D is the set of positive
and negative unit coordinate vectors along all the n dimensions in the objective
function:

D = {e1, e2, . . . , en,−e1,−e2, . . . ,−en}.
This initial step is shown on a two-dimensional objective function in Figure 2.3a.
If we get a reduction in the objective value from any of the moves, the move that
yielded the lowest objective value is stored as the new “best” position, and further
moves are made from this point, as in Figure 2.3b,2.3c. If none of the moves yield
a lower objective value, as in Figure 2.3d, the step length ∆ is halved, and new
moves half the distance from the current best position are evaluated, as shown in
Figure 2.3e,2.3f. This process repeats itself until the set tolerance ∆tol is reached.
Pseudo-code for this algorithm is shown in Algorithm 1.

How quickly the algorithm converges, and to which stationary point it con-
verges, depends on the values of x0 and ∆0. How exact our solution is depends
on the value of ∆tol.

Note that the “best” position may have been found long before the algorithm
terminates, but the algorithm will always continue until ∆ ≤ ∆tol.

2.2.2.1 Bound Constraints

A variable often has a range that it has to be inside. Such ranges are called bound
constraints. In our problems, dealing with reservoir simulation, these may for
example state that the set of coordinates describing a well position is not allowed
to be outside the reservoir; or that the bottom hole pressure in a well is not
allowed to be negative. In equation (2.2) we wrote this as

xd ≤ x ≤ xu,

9



Chapter 2. Background

(a) Initial pattern. Found
better value east.

(b) Moved east. Found
better value north.

(c) Moved north. Found
better value east.

(d) Moved east. Found no
better value.

(e) Contracted. Found no
better value.

(f) Contracted. Found
better value north. ∆tol

reached.

Figure 2.3: Iterations using compass search. Green indicates current center;
red indicates successful moves; blue indicates unsuccessful moves; gray indicates
previously evaluated points. This figure is adapted from [5].

Algorithm 1 Compass Search Algorithm adapted from [5].

1: procedure CompassSearch(f,x0,∆tol,∆0,D)
2: fbest ← f(x) . Set initial value for fbest.
3: x← x0 . Set initial value for x.
4: ∆← ∆0 . Set initial step length.
5: while ∆ > ∆tol do . Iterate while step length is greater than tolerance.
6: M← (x + ∆× dk) for all dk ∈ D . Create list M of moves xk.
7: xmin ← argmin f(xk) . Find best move in iteration
8: if f(xmin) < fbest then . Found a better position.
9: x← xmin . Change the “best” position.

10: fbest = f(xmin) . Change the “best” objective value
11: else . Did not find a better position.
12: ∆← 1

2∆ . Reduce the step-length.
13: end if
14: end while
15: end procedure

10



2.2. Problem Formulation and Optimization Algorithms

Algorithm 2 Compass Search Algorithm adapted from [5], with added bound
constraint checking. The added part is on lines 7-11.

1: procedure CompassSearch(f,x0,∆tol,∆0,D, xd, xu)
2: fbest ← f(x)
3: x← x0

4: ∆← ∆0

5: while ∆ > ∆tol do
6: M← (x + ∆× dk) for all dk ∈ D
7: for all xk ∈M do
8: if xk < xd or xk > xu then . Check if the move is inside bounds.
9: Discard xk . Discard moves outside the bounds

10: end if
11: end for
12: xmin ← argmin f(xk)
13: if f(xmin) < fbest then
14: x← xmin

15: fbest = f(xmin)
16: else
17: ∆← 1

2∆
18: end if
19: end while
20: end procedure

Where xd and xu are vectors containing values that the corresponding values in
x must be greater than or equal to, or less than or equal to, respectively.

The simplest way to integrate bound constraints on this form into Algorithm 1
is to check whether or not the generated set of moves violates the bound conditions.
If a move violates a bound condition, it is discarded before evaluating the objective
function. This is shown in Algorithm 2.

2.2.2.2 Bookkeeping

As seen in Figure 2.3, compass search often evaluates the same position more
than once. When the evaluation entails performing a costly simulation, this may
lead to a lot of wasted time. This issue may be alleviated by using bookkeeping,
i.e. keeping track of all previously evaluated positions. By doing this, we can
check whether we have already evaluated a position or a position very near it,
and discard it if it has before we spend time evaluating it again. Algorithm 3
shows how we added bookkeeping to the compass search algorithm shown in
Algorithm 2.

When implemented, a bookkeeper will naturally lead to some overhead, espe-
cially in terms of memory consumed by the optimizer. However, this is negligible
when compared to the cost of evaluating the objective function in our application.

11



Chapter 2. Background

Algorithm 3 Compass Search Algorithm adapted from [5], with added bound
constraint checking and bookkeeping. The added parts are on lines 5 and 11-15.

1: procedure CompassSearch(f,x0,∆tol,∆0,D, xd, xu)
2: fbest ← f(x)
3: x← x0

4: ∆← ∆0

5: B← x . Add the initial position to the bookkeeper.
6: while ∆ > ∆tol do
7: M← (x + ∆× dk) for all dk ∈ D
8: for all xk ∈M do
9: if xk < xd or xk > xu then

10: Discard xk

11: else if xk ≈ xb for any xb ∈ B then . Check Bookkeeper.
12: Discard xk

13: else
14: B← xk . Add move to bookkeeper.
15: end if
16: end for
17: xmin ← argmin f(xk)
18: if f(xmin) < fbest then
19: x← xmin

20: fbest = f(xmin)
21: else
22: ∆← 1

2∆
23: end if
24: end while
25: end procedure

12



2.2. Problem Formulation and Optimization Algorithms

2.2.3 Parallelization

As previously stated, most pattern search algorithms lend themselves easily to
parallelization. This is also true for compass search. One way of parallelizing
the compass search algorithm is to evaluate the moves generated in an iteration
simultaneously. Given an n-dimensional objective function, each iteration will
produce two moves for each of the n dimensions, i.e. 2n moves1. This means
that we can distribute the main workload in the optimization, i.e. the function
evaluations, across up to 2n processors. An implication of this is that the time it
takes to evaluate all the moves in an iteration is independent of the dimensionality
of the problem if we have access to a sufficient number of processors.

2.2.4 Other Pattern Search Algorithms

Naturally, compass search is not the only algorithm suitable for our type of
problem. Some algorithms are more flexible than compass search, others have a
better convergence rate, and others still are more efficiently parallelized. In this
subsection, we will discuss two other algorithms: one more flexible than compass
search, and one designed specifically to run in parallel.

2.2.4.1 Generating Set Search

Generating Set Search (GSS), as described by Kolda, Lewis and Torczon [5], is
really a subclass of pattern search algorithms. It is, however, possible to implement
GSS as a single algorithm that takes parameters and subroutines describing the
pattern and tactics to be used. This flexibility allows us to refine the pattern and
tactics to fit the current problem better.

Note that compass search is part of the GSS subclass, i.e. an implementation
of GSS run with a particular set of parameters will behave exactly like compass
search, but GSS is significantly more complex to implement.

2.2.4.2 Asynchronous Parallel Pattern Search

Asynchronous Parallel Pattern Search (APPS) was described by Hough, Kolda,
and Torczon [6]. It is, as indicated by the name, a pattern search method
specifically designed to be executed in parallel while incorporating asynchronous
features. Asynchrony is useful because the number of available processors may
not be an integer fraction of the batch size, and/or because the execution time
for the function evaluations may not be constant. If either of these is the case,
and our algorithm is synchronous, a potentially large fraction of the available
processors may have to wait until the current batch of evaluations is completed
until they are given more work.

The APPS algorithm solves these issues by making each process responsible
for its search direction. The processes communicate their current best points

1When bound constraints are enforced, or bookkeeping is used, we will often get fewer
valid/new moves.

13



Chapter 2. Background

∆x

∆y

∆z

x

z
y

φ1,1,1

k1,1,1

S1,1,1

φ2,1,1

k2,1,1

S2,1,1

Figure 2.4: Illustration of a 4 × 3 × 2 reservoir model.

with each other and make decisions on which direction to move from what they
currently know. The processes are also able to detect on their own whether they
have converged, and send a terminate signal to the other processes if they have.

While the APPS algorithm is likely too different from other pattern search
algorithms to be implemented in FieldOpt, elements from it are likely to prove
very useful as future additions to the part of FieldOpt controlling the general
program flow.

2.3 Reservoir Simulation

In FieldOpt, reservoir simulators play the role of objective function evaluators.
The reservoir model is simulated with a set of properties, and the resulting value
of, for instance, the cumulative oil production is taken as the value of the objective
function. In this section, we present a very brief overview of the basics of reservoir
simulation.

A reservoir simulator utilizes a number of differential equations to describe
the flow of fluids. As solving these equations analytically is only feasible for very
simple systems [7], it is necessary to create discrete reservoir models so that the
flow equations can be solved numerically.

The reservoir is discretized by dividing it into blocks, each associated with
a set of properties (e.g. porosity, permeability, saturations) approximating the
properties in the corresponding area of the real reservoir. This is illustrated in
Figure 2.4. This discrete model allows us to calculate the flow within the model
using a set of easily solved equations, each of which describe the state of each
block, including the flow into- or out of it, at some point in time.

14



2.4. Parallel Computing

2.3.1 About the MRST Reservoir Simulator
The MRST (MATLAB Reservoir Simulation Toolbox) is developed by SINTEF
Applied Mathematics. It provides multiple solvers suitable for a range of systems.
It is currently the only reservoir simulator supported by FieldOpt. MRST is
mainly intended as a toolbox for rapid prototyping and demonstration of new
simulation methods and modeling concepts on unstructured grids [8]. As indicated
by the acronym, it is developed in the MATLAB programming language.

2.4 Parallel Computing
This section describes the most common parallel computer architectures, focusing
on the ones available for us to use at NTNU. The descriptions are somewhat
simplified in that cache memory and network topologies are ignored. We do
this largely because they are not critical to the development of FieldOpt. The
cache-intensive operations are performed by simulators over which we have little
or no control, and FieldOpt’s communication is not extensive enough to benefit
significantly from specific topologies.

Parallel computing may be implemented at different levels in the system, the
four main levels being [9]

1. Data-level parallelism. When we simultaneously operate on multiple bits of
data. An example is when different processors perform some mathematical
operation on different parts of a vector. This form of parallelism is often a
component in other forms of parallelization.

2. Instruction-level parallelism. When a processor simultaneously executes more
than one instruction. One method of achieving this is through instruction
pipelining, where the multiply and add operations in ~a = ~b + γ~c may be
performed simultaneously. Instruction pipelines are normally present in
modern processors, and compilers automatically optimize code for to take
advantage of them.

3. Thread-level parallelism. A thread is a portion of a program that may or
may not run on a separate processor in a shared memory system. It shares
the resources of its parent process.

4. Process-level parallelization. A process is a program that is running on the
computer. It has its own set of resources. When utilizing process-level
parallelization, the different instances may all reside on a single machine, or
spread out across a network, and normally share information using message
passing.

The two first forms of parallelism will not be discussed further, as FieldOpt
does not use data-level parallelism2, and instruction-level parallelism is taken care
of automatically by the hardware and compiler.

2Although data-level parallelism is not explicitly implemented in FieldOpt, it is likely used
extensively by the reservoirs simulator it utilizes.

15



Chapter 2. Background

P P P P

M

P P P P

M M M M

Network

Figure 2.5: Examples of two shared-memory multiprocessor architectures. On
the left, the processors are connected to the shared memory using a system bus.
On the right, the processors are connected to the shared memory using a network.
The illustration is adapted from [9].

2.4.1 Parallel Computer Hardware Architecture

When implementing a parallel computer program, we need to take into considera-
tion the architecture of the hardware on which the program will be executed. The
hardware architecture is important because the different architectures require dif-
ferent forms of communication between the parallel parts of the program. The two
primary types of architectures that are interesting in our case are shared-memory
and distributed-memory.

2.4.1.1 Shared-Memory Multiprocessor Architectures

In a shared-memory multiprocessor system, multiple processors share the same
memory and can use it for communication [9]. ThereYay are different ways of
implementing a shared-memory architecture. The processors may be connected
to the memory using a system bus, or through a network; both implementations
are illustrated in Figure 2.5. The former implementation is most common today
and is found in computers with a multi-core CPU or multiple CPU’s.

The processors in a shared-memory architecture are most easily exploited using
thread-level parallelism, through implementations like POSIX and OpenMP. Using
thread parallelization is convenient as we do not have to worry about how to get
data from one thread to another: they can all read the same information stored in
the local memory. Thread-level parallelism often also gives us a performance boost
compared to process-level parallelism, as we avoid the latency and bandwidth
issues associated with the use of message passing for communication.

2.4.1.2 Distributed-Memory Multiprocessor Architectures

In a distributed-memory multiprocessor, each processor is associated with a
memory module (Figure 2.6), and the processors are connected to each other
through some network [9]. The distributed-memory architecture is commonly
used in larger computers, e.g. supercomputers.

As the processors are unable to access each others’ memory, communication,
i.e. data transfer, is achieved by utilizing a message passing library, for example

16



2.4. Parallel Computing

P P P P

M M M M

Network

Figure 2.6: Example of a distributed-memory multiprocessor architecture. Each
processing unit has its own memory, and the processors are interconnected through
a network. The illustration is adapted from [9].

the MPI (Message Passing Interface) library. We use the library to spawn multiple
instances of the program that can communicate with each other by sending and
receiving messages. The performance depends on the network topology and its
inherent latency and bandwidth, as well as the size and frequency of data transfers.

2.4.2 Computer Clusters

Computer clusters consist of multiple computers connected to each other through
a network, usually a local area network (LAN). Computer clusters normally consist
of multiple compute-nodes, as well as (at least) one login node and shared memory
nodes.

Modern computer clusters often combine the shared-memory and distributed-
memory architectures. For example, the Kongull computer cluster at NTNU
consist of one login node, four I/O (shared memory) nodes ad 108 compute-
nodes [10]. An illustration of its architecture is shown in Figure 2.7. Each of the
compute-nodes has an internal shared-memory architecture with private memory.
The nodes are connected to each other through a LAN, i.e. distributed-memory
architecture, and they all have access to the same information stored in the shared
memory nodes.

2.4.3 Parallel Programming Paradigms

As mentioned in the previous section, different hardware architectures require us
to use different forms of communication in our parallel programs. These forms of
communication are implemented in different programming paradigms. Here we
will discuss the two most commonly used paradigms: thread based implemented
using OpenMP, and message passing implemented using MPI.

To illustrate how to implement multi-threading and message passing, we will
implement a program that calculates the sum of all elements in a vector containing
all integers from 0 to 99. A serial implementation of the program is shown in
Listing 2.1. Besides the main-function, it contains one function to initialize the
vector and one function to calculate the sum of the vector.

17



Chapter 2. Background

P P P P P P

CPU1

P P P P P P

CPU2

M

Compute-node 1

P P P P P P

CPU1

P P P P P P

CPU2

M

Compute-node 2

Client machine Shared memory

Network

Figure 2.7: Kongull’s hardware architecture. Multiple nodes are connected to
each other through a network. Each node contains two CPUs with six processor
cores sharing the same memory. In addition to the computation nodes, there’s also
one login/client node and shared memory/storage.

18



2.4. Parallel Computing

Listing 2.1: Serial implementation of a program that generates a vector containing
the numbers from 0 to 99 and calculates the sum of the numbers.

1 int calculateSum(vector <int > numbers) {
2 int sum = 0;
3 for (int i = 0; i < numbers.size(); ++i) {
4 sum += numbers[i];
5 }
6 return sum;
7 }
8
9 vector <int > initializeNumbers(int size , int start) {

10 vector <int > numbers(size);
11 for (int i = 0; i < size; ++i) {
12 numbers[i] = start + i;
13 }
14 return numbers;
15 }
16
17 int main(int argc , char **argv) {
18 int size = 100;
19 vector <int > numbers = initializeNumbers(size , 0);
20 int sum = calculateSum(numbers);
21 cout << sum << endl;
22 return 0;
23 }

Parallelization will be shown using OpenMP and MPI, but with a larger
focus on MPI as this is what we have implemented in FieldOpt. We include
OpenMP because it is a simple way to provide further parallelization in more
computationally demanding optimization algorithms that may be implemented in
the future.

2.4.3.1 OpenMP

Thread based parallelization is the easiest way to implement parallelization on
shared-memory systems. One way of implementing it is by use of OpenMP,
available for the C, C++ and Fortran programming languages [9]. If we want to,
for example, parallelize a for-loop, this is easily achieved using a pragma, i.e. a
compiler statement. A parallel version of the calculateSum-function in Listing 2.1
using OpenMP is shown in Listing 2.2.

Note that OpenMP has to be supported by the compiler to work (and most
modern compilers do support it), but the program will still compile (without
parallelization) if it is not supported.

The main reason parallelizing the for-loop with OpenMP is as easy as it is, is
that all the threads have access to the same vector-variable stored in the memory.
OpenMP simply distributes intervals of the for-loop to the threads using some
scheduling system (which we may select manually).

2.4.3.2 MPI

On distributed-memory architectures, parallelism is usually implemented using
process-level parallelism and message passing through the MPI library. Information

19



Chapter 2. Background

Listing 2.2: Parallel implementation of the program in Listing 2.1, using OpenMP.
The only change from the serial version is the addition of a pragma-statement in
the calculateSum-function, the remaining code is identical.

1 int calculateSum(vector <int > numbers) {
2 int sum = 0;
3 #pragma omp parallel for
4 for (int i = 0; i < numbers.size(); ++i) {
5 sum += numbers[i];
6 }
7 return sum;
8 }

is transferred between processes using point-to-point or collective communication.
The following are the most important communication functions found in MPI:

Send Send data from one process to another process.

Receive Receive data from another process. When the program reaches a call to
a Receive function, it will wait until it receives something, i.e. the function
is “blocking”.

Broadcast Send the same data data from one process to all other processes.

Scatter Send different parts of a data array from one process to all other pro-
cesses.

Gather/Allgather Inverse of scatter. Receive parts of an array from other
processes and assemble it into one array. Allgather will assemble the full
array on all processes.

Reduce/Allreduce Similar to Gather/Allgather, this function will collect the
elements of an array on other processes and perform some operation on
them, e.g. calculate the sum or average of the numbers in an array spread
across several processes.

The MPI library assigns each instance of the program a unique rank (an
ID number) and provides a function to access the number of instances of the
program. We use this information when we call the Send/Receive functions,
and to determine which process should perform which task. The library also
provides functions for configuring the network topology, i.e. how the processes
are “connected” to each other.

Listing 2.3 shows how the main-function in Listing 2.1 is modified to im-
plement MPI-parallelization across four processes. The initializeNumbers and
calculateSum functions used are identical to the serial implementation, but the
main-function is modified to ensure that each process only initializes one-fourth of
the vector before calculating the sum of that part. The MPI_Allreduce-function
is then used to sum all the part-sums, giving the total sum on all the processes.

20



2.4. Parallel Computing

Listing 2.3: Parallel implementation of the program in Listing 2.1, using MPI.
The initializeNumbers and calculateSum functions are identical to the serial im-
plementation. Only the required parts of the vector is initialized by each process
before the sum of that part is calculated. Finally, the total sum is calculated and
distributed to all processes using MPI_Allreduce.

1 int main(int argc , char **argv)
2 {
3 int rank , worldSize;
4 MPI_Init (&argc , &argv); // Initialize MPI.
5 MPI_Comm_size(MPI_COMM_WORLD , &worldSize); // Get the total number of

processes.
6 MPI_Comm_rank(MPI_COMM_WORLD , &rank); // Get the rank of this process.
7 int size = 100;
8
9 vector <int > part = initializeNumbers(size/worldSize , size/worldSize*rank);

// Initialize part of the vector.
10 int partSum = calculateSum(part); // Calculate the part -sum.
11 int sum;
12 MPI_Allreduce (&partSum , &sum , 1, MPI_INT , MPI_SUM , MPI_COMM_WORLD); //

Calculate the complete sum.
13 cout << sum << endl;
14 MPI_Finalize ();
15 return 0;
16 }

2.4.4 Performance Metrics
To quantify how good the implementation of a parallel program is, we need some
standard metrics. The two primary performance metrics for parallel software
systems are speedup and efficiency. The two are closely related to each other
and require us to measure the serial execution time when only one processor is
available, and the parallel execution time when p processors are available [11].

2.4.4.1 Speedup

Speedup is a measure of the reduction in execution time when the number of
processors available is increased from one to p. It is calculated as the ratio between
the serial execution time Ts and the parallel execution time on p processors Tp:

Sp =
Ts
Tp

. . . . . . . . . . . . . . . . . . . . . . . . (2.3)

The speedup typically increases up to some limit with the number of processors
available for solving the problem. The speedup flattens out when the amount of
work to be performed is too small to keep the available processors busy. If the
amount of data which needs to be transferred between the processors is large, or
if data has to be sent many times during the execution, the speedup may also be
reduced due to network transfer times and latency.

The ideal speedup is Sp = p, i.e. the execution time is reduced linearly with
increasing p. If a program displays perfect speedup, increasing p from one to two
will halve the execution time, increasing it to four will reduce it to one fourth,
and so on.

21



Chapter 2. Background

2.4.4.2 Efficiency

Efficiency is a measure of how well the available processors are utilized on average.
It is defined as the ratio between the speedup Sp and the number of available
processors p:

ηp =
Sp

p
. . . . . . . . . . . . . . . . . . . . . . . . (2.4)

The ideal efficiency is ηp = 1 for any p.

2.4.4.3 Amdahl’s Law for Multiprocessor Systems

Amdahl’s law for multiprocessor systems allows us to calculate the speedup we can
expect to get from a program running on p processors, given that the fraction of
work performed by the program that lends itself to parallelization, f , is known [9].
Amdahl’s law for speedup is given as

Sp =
1

(1− f) + f/p
. . . . . . . . . . . . . . . . . . . (2.5)

From equation (2.5) and Figure 2.8 we see that if we are to get a significant
speedup as p grows large, we must have

1− f � f/p, . . . . . . . . . . . . . . . . . . . . . . (2.6)

i.e. nearly all the work must be parallelizable.
In our case, the parallelizable work f is the evaluation of the batches of

cases produced by the optimization algorithm. The serial work 1 − f is the
work performed by the optimizer itself. Thus we will get a larger speedup for
optimization algorithms which do not perform much work themselves, and which
produces large batches of cases to be evaluated in each iteration.

2.4.5 Communication Overhead
In all distributed parallel systems, there will be communication delays between
the running processes. The two primary measures of this delay are latency and
bandwidth. The latency of a system is the time it takes for one bit to travel
from the source to its destination. The bandwidth of a system is the amount of
information that can be transferred per time unit after the first bit has arrived [12].

Typically, for a node in a computer cluster with an internal shared-memory
architecture, the latency will be very low, and the bandwidth will be very high.
However, when we utilize more than one node, information has to be transferred
over the local network. The latency will be significantly higher and the bandwidth
considerably lower than for internal communication in the node.

This overhead may become a significant performance bottleneck for programs
that need to transfer large amounts of data between the processes if the bandwidth
is low, or for programs that need to transfer information very frequently if the
latency is high.

22



2.5. Software Architecture

100 101 102 103

100

101

102

103

Number of processors (p)

Sp
ee

du
p

(S
p
)

f = 1.0

f = 0.99

f = 0.9

f = 0.5

Figure 2.8: Amdahl’s law.

2.5 Software Architecture
One of the most widely used textbooks on the topic [13] uses the following
definition of software architecture:

The software architecture of a system is the set of structures needed to
reason about the system, which comprise software elements, relations
among them, and properties of both.

For larger systems such as FieldOpt, which are intended to be used for a long
time and to be modified by several different people, the architecture is crucial. The
system’s structure has to facilitate maintenance (e.g. bug-fixing and upgrading of
libraries) and expansion (e.g. adding new optimizers and simulator interfaces).
The architecture is also important for the initial implementation of features. For
example, implementing MPI parallelization is made much easier by having low
coupling in the portion of the program concerned with the control flow of the
program.

A useful way to categorize the properties a system should have, i.e. be built
to support, is through quality attributes, defined by [13] as

... a measurable or testable property of a of a system that is used to
indicate how well the system satisfies the needs of its stakeholders.

The quality attributes we deemed to be most important for FieldOpt are:

Modifiability: How easily modifications can be made to the system.

23



Chapter 2. Background

Performance: The system’s ability to make timing requirements.

Scalability: How well the system is able to utilize added resources.

Testability: How easily the system can be made to demonstrate its faults.

Quality attributes are implemented through the use of architectural tactics
and patterns. Architectural patterns are collections of architectural decisions that
are often found in practice, and tactics are the building blocks of patterns. Many
tactics may simultaneously work to fulfill multiple quality attributes.

Some examples of tactics to increase the modifiability of a system are to reduce
the size of modules, increase the cohesion in the modules, and reduce the coupling
in the modules. Together, these tactics let us more easily change the functionality
in one part of the system without having to make modifications to many other
parts of the system, thus saving time.

The testability of a system may be increased by, perhaps most importantly,
limiting the complexity of the modules in a system so that we can thoroughly test
them independently to ensure their correctness. Note that the tactics employed
to increase the modifiability of a system often has reduced module complexity as
a side-effect, so designing the system to satisfy the first attribute often satisfies
the other.

The performance of a program like FieldOpt, where most of the work is actually
performed by an external program (a reservoir simulator) which we have little or
no control over, can primarily be increased by executing the external program in
a more efficient manner, for example by introducing concurrency. This brings us
to the last quality attribute: scalability. We can increase the scalability of our
program by enabling it to exploit a larger amount of resources, i.e. design it so
that it can utilize a large number compute-nodes and communicate efficiently
between them.

24



Chapter 3
Implementation

In this chapter, we describe how we implemented the various features in FieldOpt.
We briefly describe the overall architecture of the program and the libraries
we decided to use before we go more in depth on the optimizer and simulator
interfaces and the implementation of the parallel runner and broker. We also
include a brief discussion on the use of driver files and how FieldOpt handles
them.

In this chapter and the next, class names, attributes and methods/functions
are typeset using a mono-spaced font.

On the Importance of a Good Software Implementation To the user,
FieldOpt may be perceived as a black box, taking in a driver file and giving out a
solution and some logs (Figure 3.1). However, how quickly the program can give
you a solution, how well it utilizes the available resources, and for how long it will
be able to do its job depends on how it is implemented.

If the program’s source code lacks documentation, uses “strange” libraries, or
lacks a good structure, it will be difficult to maintain and extend it in the future.
If a new developer tries to add new functionality to the program but is unable
to understand some critical part of the existing code, he may not be able to do
his job. If the code is very tightly coupled, he may have to change many parts
of the source code to fix one bug. If the code uses a library that is no longer
maintained, it may become incompatible with other more updated libraries or in
the worst-case scenario unavailable.

Today, how quickly a computationally heavy program such as FieldOpt can
do its job largely depends on how well it can utilize a larger number of processors.
A program is much easier to parallelize if the different functionalities in its source
code are isolated, i.e. the critical parts of the program have as few responsibilities
as possible. If this is not the case, distributing the workload efficiently will be
difficult or impossible.

25



Chapter 3. Implementation

FieldOpt

Driver File

Reservoir Definition

Optimization Logs

Final Result

Performance Logs

Figure 3.1: How FieldOpt operates as seen from the outside.

3.1 Frameworks and Libraries
Like most other non-trivial programs, FieldOpt is implemented using a set of
frameworks and libraries to ease the implementation of some basic tasks. In this
section, we give a short description of the frameworks and libraries we’ve used.

3.1.1 Qt Framework
Qt is a cross-platform application and UI framework for C++ developed by The
Qt Company [14]. We decided to use the Qt Framework while developing FieldOpt
mainly because ResOpt was developed using Qt: using Qt in FieldOpt eased the
reuse of ResOpt code.

The Qt Framework also provides features that proved very useful when de-
veloping the new system, such as the Signals and Slots event handling system,
which we most widely employ for handling exceptions. It also provides wrappers
for common C++ structures and data types, such as strings and vectors, which
make them easier to work with.

Another advantage of using Qt is the build system: qmake. Qmake helps with
locating libraries and generating build scripts for various platforms. When using
the Qt Creator IDE (the official Qt IDE) for development, using qmake is much
more convenient than using the alternatives (e.g. CMake), because qmake takes
semi-automatically generated Qt Creator project files as input for creating build
scripts.

3.1.2 Boost
Boost provides a set of free libraries for C++ complementing the standard libraries.
Many of Boost’s features have been incorporated into the C++11 standard [15].
FieldOpt primarily uses Boost’s MPI library, which provides wrappers for the
most important functionalities in MPI and makes it easier to work with.

3.1.3 Open MPI
Open MPI is an open source implementation of Message Passing Interface (MPI).
It is maintained by several academic, research and industry partners [16].

26



3.2. Diagrams

3.2 Diagrams

In the following sections we will make use of a few standard types of UML (Unified
Modeling Language) diagrams. Here, we describe these briefly. Slightly more
extensive descriptions are given in the appendices.

3.2.1 Class Diagrams

Class diagrams describe the properties of a class. We generally show simplified
diagrams, only including the interesting methods, attributes, and inheritances.
A brief explanation of the notation we use is given in Appendix A.1. Also, note
that in our diagrams, when a class implements an abstract class, it implicitly
implements all of its virtual functions.

3.2.2 Sequence Diagrams

Sequence diagrams show the sequence of instructions executed in a particular
scenario and the objects involved in the execution. A brief explanation of how
they should be interpreted is given in Appendix A.2.

3.3 Architecture

The main concerns when creating FieldOpt were to establish an architecture that
better facilitates performance and scalability when running the program, as well
as increasing the modifiability and testability of the code. This section gives an
overview of the architectural tactics employed while porting the ResOpt code and
implementing the original FieldOpt code.

The primary architectural tactics used to increase modifiability and testability
are increased cohesion and reduced coupling. These two are closely related, and
collectively they state that each module and submodule should have very specific
responsibilities and depend on as few other modules as possible. An example
of how these tactics have impacted the structure of FieldOpts code include the
complete separation of the code into a library, intended to be a stable core,
which includes the model description, optimizers and simulator interfaces; and an
application which utilizes the library to perform the actual tasks. These separate
modules also use different external libraries: the FieldOpt library only depends
on the Qt library, while the much smaller application additionally depends on
Boost and Open MPI. These relations are illustrated in Figure 3.2. Another
example of how the reduced coupling tactic is employed is the use of abstract
classes such as Optimizer and Simulator to limit the amount of changes required
in the application code when the library is changed. A simplified overview of the
relations between the most important classes in the application- and library layers
are given in Figure 3.3.

The same tactics used to increase modifiability and testability also help with
better utilizing the available resources in parallel systems, as the different types

27



Chapter 3. Implementation

Open MPI Qt

Boost FieldOpt Library

Application

Figure 3.2: An overview of FieldOpts architecture and the libraries it utilizes. A
component utilizes all components below it, but none above it or beside it.

Application

Library

MasterRunner Broker

SimulationLauncher

1

<<abstract>>
Optimizer

CompassSearchOptimizer

<<abstract>>
Simulator

MrstBatchSimulator

<<abstract>>
Model

CoupledModel

AdjointsCoupledModel

<
<

im
port>

>

Figure 3.3: A class diagram showing the most important classes in FieldOpt and
their relations.

28



3.4. Model

of MPI processes can run more independently. The processes responsible for
simulation do not know what the process in charge of the general program does
and vice versa, and their only common modules are the objects used to describe
the data flow between them. This independence between the parts means that
the workload is easily distributed across a network, and changes to one will not
affect the other as long as the changes do not affect the communication.

We use abstract classes as interfaces for models, simulators, and optimizers.
An abstract class defines some common attributes and methods for a particular
subtype of classes, but it has some purely virtual methods1 which it defines the
signature for, but not the implementation. Abstract classes cannot be instantiated
on their own – only classes implementing their virtual methods can be instantiated.
Abstract classes let us specify the critical methods and attributes common to
all simulator and optimizer variations in one place, and define the methods and
attributes specific to an optimization algorithm or simulator interface in a separate
class. Abstract classes also free FieldOpts application layer from having to worry
which optimizer or simulator is being used after instantiating it, as the common
methods are sufficient to utilize the optimizers and simulators.

3.4 Model

The Model-class and its subclasses contain all the information needed by FieldOpt
to solve the problem specified by the user. It contains the path to the file specifying
the reservoir; attributes describing the variables in the model; and settings defining
which simulator and optimizer to use and with which settings. The Model class
contains methods to validate itself; methods to update its various attributes
after a simulation has been executed; and methods to apply perturbations to its
variables.

Model is implemented as an abstract class, so we need to have more specific
implementations of it. ResOpt defined several different variations, e.g. coupled
model, decoupled model, but FieldOpt currently only uses one: AdjointsCou-
pledModel, a subclass of CoupledModel created specifically to be used with the
MRST reservoir simulator. The inheritance is shown in the class diagram in
Figure 3.4.

Note that, as the models are more or less copied from ResOpt, they contain a
lot of code for setting and updating pipe systems. These methods and attributes
are not shown in the class diagrams and are not discussed here as this functionality
is not used in FieldOpt. They also contain some optimization related methods
that are not used, because this work is now handled by optimizers (as it should
be).

1They can also have virtual methods that are implemented but can be overridden by
subclasses.

29



Chapter 3. Implementation

<<abstract>>
Model

- reservoir : Reservoir*
- wells : vector<Well*>
- p_obj : Objective *
- master_schedule : vector<double>
- m_driver_path : string
- runtimeSettings : RuntimeSettings*

+ Model()
+ validate() : bool
+ process() : void
+ initialize() : void

CoupledModel

- vars_binary : vector<BinaryVariable*>
- vars_real : vector<RealVariable*>
- vars_integer : vector<IntVariable*>
- constraints : vector<Constraint*>
+ CoupledModel()

AdjointsCoupledModel

+ AdjointsCoupledModel()
+ applyCaseVariables(Case* c) : bool

Figure 3.4: Class diagram showing the abstract Model class and the subclasses
that are used by FieldOpt.

30



3.5. Case

Case
- real_var_values : vector<double>
- binary_var_values : vector<double>
- integer_var_values : vector<int>
- integer_bound_constraints : vector<IntegerBoundaryConstraint*>
- real_bound_constraints : vector<DoubleBoundaryConstraint*>
- binary_bound_constraints : vector<DoubleBoundaryConstraint*>
- objective_value : double

+ Case(m : Model*)
+ boundariesOk() : bool

Figure 3.5: Class diagram showing the implementation of the Case class.

3.5 Case

The Case class contains a complete set of variable values from a perturbed model.
It also contains the bound constraints specified for the problem, as well as a
method to verify itself (i.e. to make sure that the variable values do not violate
their constraints). A class diagram is shown in Figure 3.5. The Case class is used
to describe perturbations by most parts of FieldOpt except for the simulator for
three main reasons:

• the Case class is much more primitive than the Model class: it uses vectors
of primitive types instead of vectors of custom objects, which generally
makes it easier to work with.

• we need to generate many perturbations of each model that all need to be
kept in the memory. Because Case objects are much smaller than Model
objects, it is practical, in terms of memory usage, to use Case objects that
may be applied to a single Model object to update the variable values before
it is evaluated by a simulator.

• having optimizers only use Case objects means that if someone wishes to
implement a new optimizer, he or she need only learn how the relatively
simple Case object works.

Note that the Case-class in FieldOpt contains a number of attributes and
methods which are not used. These have been kept from ResOpt, but will likely
be removed in the future.

3.6 Simulator Interface

The reservoir simulator interface has not been changed from ResOpt, only some
internal code cleanup has been performed. The abstract Simulator class and its
MrstBatchSimulator implementation is shown in Figure 3.6.

31



Chapter 3. Implementation

<<abstract>>
Simulator

- folder : string

+ Simulator()
+ setFolder(folder : string) : void
+ generateInputFiles(m : Model*) : bool
+ launchSimulator() : bool
+ readOutput(m : Model*) : bool

MrstBatchSimulator
- matlab_path : string

+ MrstBatchSimulator()

Figure 3.6: Class diagram showing the Simulator interface and the MrstBatch-
Simulator implementation.

Currently, only an interface for an old version of MRST (2013a) has been
implemented. Among the interfaces available in ResOpt, MRST was chosen
because it is the easiest one to get working on NTNU’s Kongull computer cluster.

After instantiating a specific simulator, performing a simulation using any
simulator and acquiring the results requires four methods to be called:

1. setFolder(folderPath): Set the work directory for the simulator. The driver
files for the simulator will be created here, and the simulator will write its
output here.

2. generateInputFiles(model): Generate the driver files required by the simu-
lator to evaluate the Model object provided as parameter.

3. launchSimulator(): Execute the simulation.

4. readOutput(model): Read the output from the simulation and store it in
the provided Model object.

3.6.1 MRST Interface

The MRST interface is not an interface in the same sense as the other interfaces
discussed in this chapter. It is a connection between FieldOpt and the external
simulator. It generates Matlab scripts and executes them using Matlab.

The implementation in FieldOpt has not changed much from ResOpt. Only
two changes other than general cleanup have been made:

• The Matlab scripts were updated to make them work with the most recent
versions of Matlab.

32



3.7. Optimizer Interface

• POSIX is now used to execute Matlab instead of QProcess from the Qt
framework. This was necessary as QProcess refuses to play nice with MPI,
but it means that FieldOpt cannot be executed on recent versions of the
Windows operating system.

3.7 Optimizer Interface
Beside the MPI parallelization, the specification of the optimizer interface was
the area where the most effort was made when we created FieldOpt. We strove
to create an interface that is as simple as possible (i.e. requires few external
function calls to operate) while at the same time allowing a large set of algorithms
to be implemented using it. The resulting abstract Optimizer class is shown
in Figure 3.7. The interface is designed to fit most pattern search algorithms,
although there are certainly some exceptions (e.g. APPS [6] which requires the
algorithm to perform tasks that in FieldOpt are delegated to the application
layer).

The Optimizer class has four attributes which are available to all classes
implementing it:

• best_case: Holds the best case found at any time.

• new_cases: Holds the most recently generated set of perturbations.

• evals: The number of perturbations that have been generated and returned
to the application layer. When a case has been returned, it is considered to
have been evaluated and counts towards the maximum number of function
evaluations allowed.

• max_evals: The maximum number of function evaluations allowed. This
may be specified by the user in the driver file.

It also provides a method which returns the current best case, getBestCase(),
and specifies five virtual methods which must be implemented by all optimizers:

• initialize(baseCase, optimizerSettings): Initialize the optimizer by setting
the base-case and various settings, such as pattern parameters, maximum
number of evaluations etc.

• getNewCases(): Get a new set of perturbations.

• compareCases(cases): Process a set of evaluated perturbations. Update
the best case and adjust pattern parameters if necessary.

• isFinished(): Check if the optimizer is finished; i.e. if any of the termination
conditions has been met (minimum step length, maximum number of allowed
evaluations, etc.).

• getStatus(): Get the current status of the optimizer. This may be used to
by the application layer to monitor the overall progress of the optimizer.

33



Chapter 3. Implementation

<<abstract>>
Optimizer

# best_case : Case*
# new_cases : vector<Case*>
# evals : int
# max_evals : int

+ getBestCase() : Case*
+ initialize(baseCase : Case*, settings : OptimizerSettings)
: void
+ getNewCases() : vector<Case*>
+ compareCases(cases : vector<Case*>) : void
+ isFinished() : bool
+ getStatus() : hash<string, double>

<<abstract>>
GSSAlgorithm

# step_length : double
# minimum_step_length : double

# perturb(c : Case*) : vector<Case*>
# isBetter(c : Case*) : bool

CompassSearchOptimizer

- bookkeeper : Bookkeeper

- isValid(c : Case*) : bool
- reduceStepLength() : void

Figure 3.7: Class diagram showing the abstract Optimizer and GSSAlgorithm
classes and the CompassSearchOptimizer class.

34



3.8. Parallelization

Bookkeeper

- entries : vector<vector<double> >
- tolerance : double
+ Bookkeeper(double tolerance)
+ addEntry(Case* c) : void
+ isCalculated(Case* c) : bool

Figure 3.8: Class diagram showing the implementation of our bookkeeper.

Compass search is the only algorithm implemented thus far in FieldOpt.
In addition to the abstract Optimizer class, it also implements the abstract
GSSAlgorithm class, which specifies a few attributes and methods that are
common to all generating set search algorithms. The implementation utilizes a
bookkeeper to avoid dealing out cases for evaluation which have already been
evaluated, and uses Case’s built-in ability to check whether all variables are within
their defined bound constraints to avoid dealing out invalid cases.

3.7.1 Bookkeeper
The Bookkeeper class allows optimization algorithms to submit Case objects to
it, and check whether a Case object has already been added to the bookkeeper.
A class diagram of the implemented Bookkeeper class is shown in Figure 3.8.

When a case is added to the bookkeeper (using addEntry(case)), it is converted
to a vector containing all of its variables, describing a point in n-dimensional
space, which is stored in the entries vector. When an optimizer attempts to check
if a case has already been calculated (using isCalculated(case)), the bookkeeper
vectorizes the variables in the case and calculates the distance d between the input
case and each of the other cases in the entries vector using the expression

d =

√√√√ n∑
i=1

[(
Cnew

i − Cold
i

)2] . . . . . . . . . . . . . . . . (3.1)

where Cnew
i represents variable i in the “new” case, and Cold

i represents variable i
in one of the cases stored in entries. If the distance between the new case and
any of the old cases is less than the value specified in tolerance, the case is said
to have been previously calculated, and the method returns true; otherwise it is a
new case and the method returns false.

3.8 Parallelization
All parallel aspects in FieldOpt are implemented in the application layer using MPI.
To facilitate this, we use three main classes: MasterRunner which takes care of the
program flow in general, calls the optimizer, distributes perturbations and prints
results; SimulationLauncher which receives perturbations from MasterRunner,

35



Chapter 3. Implementation

applies them to the Model, performs the simulation and returns the results; and a
Broker, part of the MasterRunner, which is responsible for effectively distributing
the perturbations among the processes running instances of SimulationLauncher.

Overall, the application layer in FieldOpt has a “master/slave” architecture.
The master process, running an instance of MasterRunner, takes care of all pro-
gram flow, and controls all slave processes running SimulationLauncher through
MPI messages.

As mentioned earlier, the MasterRunner and SimulationLauncher classes
are very loosely coupled. Their only common classes are the so-called transfer
objects Perturbation and Result, which are used to transfer new perturbations
and simulation results.

A flowchart showing the overall flow of FieldOpt on process-level is shown
in Figure 3.9. We give more detailed descriptions of the program flow in in
the processes running MasterRunner and SimulationLauncher in the following
subsections.

3.8.1 MasterRunner

When FieldOpt is executed, a single instance of the MasterRunner class is created
in the root process, i.e. the MPI process with rank zero. This object uses an
optimizer to get new perturbations, assigns unique IDs to them, and passes them
on to the Broker. It then orders the Broker to have the perturbations evaluated.
When the Broker has terminated, the MasterRunner retrieves the results from
it and resets it before submitting the results to the optimizer. This process
is repeated until the optimizer reports that it has reached some termination
condition. The process is illustrated in the sequence diagram in Figure 3.10.

3.8.1.1 Broker

The MasterRunner keeps an instance of the Broker class. It is responsible
for cross-process communication for the MasterRunner. It sends Perturbation-
objects and receives Result-objects. The broker keeps track of all perturbations
in the current iteration and notes which have been evaluated. It also tracks
which processes are currently free (i.e. not currently performing a simulation).
It uses this information to ensure that as long as there is a sufficient number of
not-evaluated perturbations available, all processes are kept busy. By doing this
asynchronously, the broker mitigates the issue of some simulations taking a longer
time to evaluate than others.

3.8.2 SimulationLauncher

Besides receiving perturbations sent from the root process and returning results
to it, the SimulationLauncher class only has one responsibility: launching sim-
ulations. After it receives a new perturbation, it applies it to the Model before
simulating it. It then extracts the objective value from the simulation results and

36



3.8. Parallelization

read program parameters

check
rank

initialize
Master-
Runner

read
driver file

initialize
optimizer
& broker

optimizer
iteration

is
finished?

finalize

initialize
Simulation-
Launcher

read
driver file

simulate
case

is
finished?

finalize

rank = 0 rank 6= 0

no

yes

rank 6= 0

yes

no

Figure 3.9: Flowchart of the program flow on process-level. “Rank” is the unique
number MPI assigns to each process.

37



Chapter 3. Implementation

: MasterRunner : Optimizer : Broker

getNewCases()

perturb(best case)

new cases
new cases

getCaseIds(new cases)

case ids
setPerturbations(new cases, case ids)

evaluatePerturbations()

sendNextPerturbation()

Init. send loop: fill all proc.Init. send loop: fill all proc.

recvResult()

sendNextPerturbation()

recvResult()

Main Send/Recv loopMain Send/Recv loop

getResults()

results
compareCases(results)

reset()

Main optimization loopMain optimization loop

Figure 3.10: Sequence diagram showing the program flow as seen from the root
process. This is a detailed view of the framed portion on the left side of Figure 3.9.

38



3.8. Parallelization

: SimulationLauncher

receivePerturbations()

startSimulation()

returnResults()

Main simulation loopMain simulation loop

Figure 3.11: Sequence diagram showing the program flow as seen from a processes
responsible for simulations. This is a detailed view of the framed portion on the
right side of Figure 3.9.

returns it to the MasterRunner. A sequence diagram illustrating the process is
shown in Figure 3.11.

3.8.3 Communication

The communication between processes in FieldOpt’s application layer is performed
using primitive MPI_Send/Recv function calls, facilitated by two different trans-
fer objects: Perturbation, containing all variable values in a perturbation; and
Result, containing the value of the objective function after the perturbed model
has been evaluated. Both objects have an ID attribute, and Perturbation and
Result objects corresponding to the same perturbation will have the same ID.
Class diagrams of the objects are shown in Figure 3.12. Note that these objects
cannot be sent directly using MPI, so they are disassembled and sent as primitive
arrays. When they are received, the arrays are reassembled into the proper type
of object. This decomposition is illustrated in Figure 3.13.

The overall communication in the application layer is shown using a sequence
diagram in Figure 3.14. This diagram is a combination of Figures 3.10 and 3.11
with the interactions between them added. Essentially, the procedure of one
optimizer iteration as seen from the root process is as follows:

1. The MasterRunner retrieves a set of perturbed cases from an optimizer,
generates Perturbation-objects with assigned IDs, submits them to the
Broker, and asks it to have them evaluated.

2. Given p available processes, the broker sends out p− 1 perturbations, thus
putting all SimulationLauncher instances to work. When a perturbation is

39



Chapter 3. Implementation

Perturbation
- perturbation_id : int
- binaryVariables : vector<double>
- integerVariables : vector<int>
- realVariables : vector<double>
- c : Case*
+ Perturbation(c : Case*, id : int)
+ Perturbation(header : vector<int>,
binaries : vector<double>, integers :
vector<int>, reals : vector<double>)
+ getCase(m : Model*) : Case*
+ getSendHeader() : vector<int>

Result
- perturbation_id : int
- result : double
- c : Case*
+ Result(c : Case*, id : int)
+ Result(id : int, r : double)

Figure 3.12: Class diagrams showing the implementation of the transfer objects.

Perturbation
perturbation_id = 5
binaryVariables = {}
integerVariables = {1,
2, 4}
realVariables = {1.0}

header = {5, 0, 3, 1}
binaries = {}
integers = {1, 2, 4}
reals = {1.0}

header = {id, #binaries,
#integers, #reals}

Figure 3.13: Illustration of how the attributes in a Perturbation object are
decomposed into four primitive vectors, the first one describing the object as a
whole and the rest containing variable values.

40



3.8. Parallelization

sent to a process, that process is noted as being “busy”.

3. The Broker waits until it has received the first result. When the result
arrives, the process that sent it is marked as “free”. The received result is
reassembled into a Result-object and stored.

4. The broker now enters a loop which alternates between sending a perturba-
tion to a free process (and marking it as busy), and receiving a result from
a process (and marking it as free). This continues until all perturbations
have been sent for evaluation.

5. When all processes have been marked as “free”, i.e. when all results have
been received by the Broker, control is given back to the MasterRunner.

6. When the MasterRunner asks for the results, the Broker assembles the
Perturbation, Result and Model objects into a vector of Case objects which
is then passed on to the optimizer.

As seen from the SimulationLauncher, the procedure is significantly simpler:

1. The SimulationLauncher waits to receive a perturbation.

2. When a perturbation is received, the Perturbation object is reassembled
and a Case object is created from it before applying the Case to the Model.

3. A simulator is launched to evaluate the Model.

4. The objective value is extracted from the simulation results and a Result
object is created. This object is sent back to the root process.

5. Return to step 1.

41



Chapter 3. Implementation

: MasterRunner : Optimizer : Broker : SimulationLauncher(s)

getNewCases()

new cases
evaluatePerturbations()

receivePerturbations()

sendNextPerturbation

perturbation

startSimulation()

recvResult()

returnResults()

result

Broker loopBroker loop

getResults()

compareCases

Figure 3.14: Sequence diagram showing an overview of the communication in the
application layer. This is a simplified combination of Figures 3.10 and 3.11.

42



3.9. Driver Files

3.9 Driver Files
FieldOpt uses the same driver files as ResOpt, with some added (optional) prop-
erties for configuring the new type of optimizers. The driver files are, however,
handled slightly differently. Whereas ResOpt created instances of Optimizer and
Simulator in addition to Model when reading the driver file, FieldOpt creates
the Model object and settings objects describing the optimizer and simulator
settings. These settings objects are attached to the Model object and handled
in the application layer. Decoupling the Optimizer and Simulator classes from
the DriverReader class was done as part of a larger strategy to reduce the size
and complexity of the DriverReader class after migrating it from ResOpt. We
felt that doing this was necessary because it is one of the most complex classes,
with very tight coupling to almost every part of ResOpt, which is not desirable.

3.10 User Interface
FieldOpt’s user interface is console-based and very simple. The program is started
by executing one of three command variations:

1 mpirun -n 6 Console /path/to/driver/file.dat
2 mpirun -n 6 Console /path/to/driver/file.dat -verbose
3 mpirun -n 6 Console /path/to/driver/file.dat /path/to/mrst/

“Console” is the (temporary) name of the application calling the FieldOpt library.
All these three variations will execute FieldOpt with 6 MPI processes. The
first example executes FieldOpt in “silent mode” (which hides all printing from
the library layer except for severe errors) using the MRST-path specified in the
driver file; the second does the same as the first, but prints all warnings and
debug-related messages from the library layer; the third does the same as the
first, but ignores the MRST path specified in the driver file and instead uses
the one provided as a parameter. The third mode is included because when a
program is executed on Kongull, it is necessary to give file paths that include a
system variable. Achieving this is significantly easier when the shell decodes the
variable before it reaches FieldOpt than if FieldOpt is to read and decode the
path including the variable from the driver file.

43



Chapter 3. Implementation

44



Chapter 4
Case Study

To test FieldOpt, we used one of the example models provided with ResOpt. The
reservoir model used is described in the next section. We created several variations
of the driver file for the problem, where the bottom hole pressure was allowed to
vary with various numbers of time steps. The cases were run on NTNU’s Kongull
computer cluster. The test runs allowed us to verify that our implementation of
the compass search algorithm is correct, and also, more interestingly, to measure
the performance of FieldOpt under various conditions.

4.1 Model
The model consists of a 20×10×6 reservoir grid with one producing well. The grid
blocks have dimensions 60′ × 60′ × 3′; the porosity is 30%; the permeabilities are
kx = 50, ky = 50, kz = 25 mD; the initial oil saturation is 85% and homogeneous;
the well is placed in a corner and penetrates the 5 topmost layers. The model is
illustrated in Figure 4.1.

Wp

x

z y

Figure 4.1: Reservoir model used in this case study. It consists of 20 × 10 × 6
blocks; it has one production well

45



Chapter 4. Case Study

0 20 40 60 80 100 120 140 160 180 200 220 240 260

0.5

1

1.5

2

2.5

Case number

E
xe
cu
ti
on

ti
m
e
[m

in
]—

T

Measurement

Figure 4.2: Plot showing the execution time for the reservoir simulator for the
272 different cases evaluated for the case with 12 variables, run on 26 processors.

4.2 Simulator Execution Time

As we see in Figure 4.2, the execution times for the simulations are quite similar.
The vast majority of the 272 cases have execution times of around 0.5 minutes,
but there are a few (6) cases with execution times of up to 2.5 minutes, i.e.
approximately five times longer. It is unclear what causes this. Likely, it is due
to some artifact in simulating the model with those specific sets of variables, e.g.,
convergence issues with the solver that may be related to how the numerical
problem is set up for that particular configuration. Another possible source, at
broker-level, might be some unknown bug in the load balancing system, causing
it to hand multiple simulations to the same processor. In any case, this type of
situations is one of the main reasons why we implemented the broker. In our
current implementation, the other processors will continue to simulate other cases
while the simulations with longer execution times are running.

4.3 Optimizer Convergence

Figure 4.3 illustrates the convergence rate of the compass search optimizer im-
plementation. We see that the end result has already been found after iteration
3, but the algorithm has to continue until some termination condition has been
reached. In this case, it reaches the minimum step length after iteration 9.

46



4.3. Optimizer Convergence

0 1 2 3 4 5 6 7 8 9

−2

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4
·104

Iteration Number

O
bj

ec
ti

ve
V

al
ue

Average objective values in batch
Minimum objective value in batch
End result

Figure 4.3: Batch objective values showing the convergence of the optimizer. A
batch is one set of cases generated by the optimizer, i.e. the perturbations generated
in one iteration.

47



Chapter 4. Case Study

4.4 Performance
We measured the performance of FieldOpt by executing the same model with 2,
4, 8, 12 and 24 variables, on between 2 and 48 processors. Runs were not made
using a single process, as FieldOpt requires at least two processes to function (one
for the MasterRunner and at least one for SimulationLaunchers). The serial
execution time used when calculating speedup and performance is therefore from
runs with two processes. This is valid because FieldOpt operates serially when
run with only two processes: the root process and the other process never perform
work at the same time.

We did not measure the serial execution time for the case with 24 variables,
as this would likely have taken around 30 hours. Instead, we use relationships
deduced from the measured times to approximate an execution time for this case.

4.4.1 Execution Time
The execution time of a program is the simplest measure of performance, and it
is a critical component of most other performance measures. The execution time
of a program is the time measured from the moment the program is executed to
the moment it terminates. The term is also used for subsections of the program,
for example the time it takes to perform a simulation or a batch of simulations.
In this section we look at FieldOpt’s execution times for problems with varying
numbers of variables and available processors to determine how the program scales
with these parameters.

4.4.1.1 Dependence on Problem Size Under Serial Execution

In Figure 4.4 we examine how the execution times increase with an increasing
number of variables when FieldOpt is run in serial (i.e. on two processors). The
times were measured for cases with 2, 4, 8 and 12 variables. We see that the
serial execution time Ts increases approximately with the square of the number
of variables v:

Ts(v) = Ts(2)× (v − 1)2, . . . . . . . . . . . . . . . . . (4.1)

where Ts(2) is the serial execution time for the case with two variables.

4.4.1.2 Dependence on Number of Available Processors

In Figure 4.5 we look at how the execution time is reduced as more processors
are made available when FieldOpt is run repeatedly with the 12 variable-case.
Ideally, the parallel execution time Tp as a function of the number of processors
p would be Tp(p) = Ts/p. We do not quite reach this, as one of the processors
(the one running the MasterRunner) performs no work most of the time. But, at
least asymptotically, we do get close:

Tp(p) =
Ts
p− 1

. . . . . . . . . . . . . . . . . . . . . (4.2)

48



4.4. Performance

2 3 4 5 6 7 8 9 10 11 12

0

50

100

150

1.41

166.65

Number of variables — v

Se
ri
al

ex
ec
ut
io
n
ti
m
e
[m

in
]—

T
s
(v
)

Measured times
Ts(2)× (v − 1)2

Figure 4.4: Measured execution times for cases with various numbers of variables
run with two processors available.

0 5 10 15 20 25
0

50

100

150
166.65

13.75 14.30

Number of processors — p

E
xe
cu
ti
on

ti
m
e
[m

in
]—

T
p
(p
)

Measured execution times
Ts/(p− 1)

Figure 4.5: Measured execution times for the case with 12 variables for various
numbers of available processors.

49



Chapter 4. Case Study

2 4 6 8 10 12 14 16 18 20 22 24
0

10

20

30

1.41

34.77

32.46

Number of variables — v

E
xe
cu
ti
on

ti
m
e
[m

in
]—

T
p
(v
)

Measured times
Ts(2)× (v − 1)

Figure 4.6: Measured execution time versus number of variables when using
parallelization. The execution times picked for this plot are the lowest ones for each
case, e.g. 4 variables with 9 processors, 8 variables with 18 processors.

4.4.1.3 Dependence on Problem Size Under Parallel Execution

In Figure 4.6 we have selected the cases with the lowest measured execution time
for each variable-case, e.g. 4 variables executed on 9 processors and 8 variables
executed on 18 processors. This lets us examine the parallel execution time for
varying numbers of variables, Tp(v). We see that this relation is approximately

Tp(v) = Ts(2)× (v − 1). . . . . . . . . . . . . . . . . . (4.3)

In other words, the parallelization implemented in FieldOpt has reduced the
execution time’s dependency on the number of variables from quadratic to linear.

4.4.1.4 Resource Utilization

Figures 4.5, 4.7 and 4.8 collectively show all the execution times we measured.
Table 4.1 shows the “best” (i.e. lowest) and “worst” (i.e. highest) execution times
for all cases. The worst times for all cases are the times measured using only
two processors (for the case with 24 variables, this value was approximated using
equation (4.1)).

We see that the best execution times are all achieved when using approximately
p = 2v processors. This is because a case with v variables will give at most 2v
cases to be evaluated per iteration, and to evaluate all of these simultaneously
one go, we need p = 2v + 1 processors: 2v for the simulations and one for the
MasterRunner.

50



4.4. Performance

Table 4.1: Highest execution time Tworst measured on two processors (approxi-
mated using equation (4.1) for the case with 24 variables); lowest execution times
Tbest measured on pbest processors; and the percentage reduction between the two.
The execution times are given in number of minutes.

Variables Tworst Tbest Reduction pbest

2 3.73 1.40 62% 24
4 12.12 2.70 78% 9
8 50.55 7.13 86% 18
12 166.65 13.75 92% 24
24 ≈ 2000 34.77 98% 44

We see that, overall, we get a good reduction for all problem sizes, but the
reduction is significantly larger for the larger problems. This is because the
program is able to effectively utilize a larger set of processors when it has more
cases to evaluate in each batch.

4.4.1.5 Local Maxima and Minima

From the execution time plots, especially Figure 4.5 and 4.8, we observe an
interesting effect: the execution time increases when we add processors in excess
of approximately p = 2v. In Figure 4.7 we also see that there are several local
minima and maxima. Both these phenomena likely have the same cause.

The time it takes to evaluate a batch stays approximately constant at a few
different levels when we add processors, but adding more MPI processes also
increases FieldOpt’s startup time and communication latency. This is because,
given constant simulator execution times, we will evaluate the batches in a number
of distinct sets. So if we have a batch of 8 cases1 and we have 4 processors available
for evaluation, the batch will be evaluated as two sets of 4 cases. If we increase
the number to 5 processors the batch will be evaluated in one set of 5 cases and
one of three. Each set will still take the same amount of time to evaluate, but
the additional process adds to the initial startup time of FieldOpt, increases the
communication latency between the processes, and is not used much of the time.
The execution time in this case will not decrease until we add so many processes
that each batch can be evaluated as one set. This is illustrated with measured
batch execution times in Figure 4.9.

1The batch sizes will vary between optimizer iterations because of the bookkeeper and bound
conditions. For instance, the batch sizes for a complete run with four varaibles are 8, 7, 4, 3, 2,
4, 4, 4, 4 and 4.

51



Chapter 4. Case Study

2 4 6 8 10 12 14 16 18 20 22 24

0

10

20

30

40

50

3.73
1.40

50.55

7.13
8.73

Number of processors — p

E
xe
cu
ti
on

ti
m
e
[m

in
]—

T
p
(p
)

2 Variables
4 Variables
8 Variables

Figure 4.7: Execution time versus number of processors for the cases with 2, 4
and 8 variables.

24 26 28 30 32 34 36 38 40 42 44 46 48
30

40

50

60

70

80

90 89.89

34.77

37.83

Number of processors — p

E
xe
cu
ti
on

ti
m
e
[m

in
]—

T
p
(p
)

24 Variables

Figure 4.8: Measured execution time versus number of available processors for
the case with 24 variables.

52



4.4. Performance

2 3 4 5 6 7 8 9 10 11 12

0.5

1

1.5

2

Number of processors — p

E
xe
cu
ti
on

ti
m
e
[m

in
]—

T
p
(p
)

Batchsize 8.
Batchsize 7.
Batchsize 4.
Batchsize 3.
Batchsize 2.

Figure 4.9: Batch execution time versus number of available processors.

4.4.2 Speedup and Efficiency
In Figure 4.10 we see that we achieve a good speedup, especially for the cases with
higher numbers of variables. For the case with 12 variables we achieve Sp > 10
for p > 20, which corresponds to the value predicted using Amdahls Law when
assuming that 95% of the work is parallelizable. In reality, the parallelizable work
is an even larger portion, but the curve is dragged down by the fact that the
root process is doing almost no work most of the time. The impact of this one
mostly-idle process is even more apparent in the curves for 2, 4 and 8 variables.
However, for larger cases, the impact would likely be negligible and we would
come closer to perfect speedup. As we see in Figure 4.11, the estimated speedup
for the case with 24 variables lies around optimal speedup.

The efficiency plot in Figure 4.12 shows that the parallel efficiency, especially
for the smaller problems, rises and falls periodically with the number of processors.
This is related to the issue with batch sizes discussed section 4.4.1.5. We also see
that the parallel efficiency drops quite steeply when the speedup flattens because
the added processors are not being utilized.

53



Chapter 4. Case Study

2 3 4 5 6 8 10 12 16 20 26

1

10

f = 0.95
f = 0.85

f = 0.65

Number of processors — p

Sp
ee
du

p
—

S
p

2 Vars. 4 Vars.
8 Vars. 12 Vars.
Amdahls Law (f)

Figure 4.10: Plot of speedup for the cases with 2, 4, 8 and 12 variables. The
dotted lines show the predictions from Amdahls Law (equation (2.5)) for various
values of f .

2 3 4 5 6 8 10 12 16 20 25 303540 50

2

3

5

10

20

50

70

Number of processors — p

Sp
ee
du

p
—

S
p

24 Vars. Amdahls Law (f = 1.0)

Figure 4.11: Speedup for the case with 24 variables calculated using an estimated
value for the serial execution time from equation (4.1).

54



4.4. Performance

2 3 4 5 6 8 10 12 16 20 26

0.1

0.2

0.3

0.4

0.5

Number of processors — p

E
ffi
ci
en
cy

—
η p

2 Vars.
4 Vars.
8 Vars.
12 Vars.

Figure 4.12: Efficiency.

55



Chapter 4. Case Study

56



Chapter 5
Conclusions & Recommendations
for Further Work

This thesis has dealt with the development of a software framework that couples
topics from mathematical theory, i.e., optimization algorithms, with topics from
petroleum engineering, i.e., field development problems. The main goal of this
framework is to facilitate research work that builds upon the integration of these
two topics. A main priority has been to create software that runs efficiently on
distributed hardware architectures. A second focus has been to make the code
easily accessible and extensible through simplification and modularization and
extensive documentation of the code, to encourage further development of the
software by its users. At the moment, we feel FieldOpt can utilize large, distributed
hardware architectures quite well. However, only time will show whether or not
we have met our second goal. It was easy for us to implement a relatively simple
optimization algorithm, but this might not turn out to be a straightforward
process for other users. We might need to develop support-procedures based on
user-feedback to aid this process.

Core Functionality There is still room for significant improvement of the core
functionalities in FieldOpt. For example, the code requires much cleanup in
general, and some of the code ported from ResOpt – particularly the model –
should be completely rewritten to make it more flexible and easy to maintain.
Moreover, while we have extended the documentation substantially, there remains
a lot of work in this area, given FieldOpt is intended to be modified and extended
by a range of developers with differing backgrounds.

Optimizer Interface At the moment, the optimizer interface we have im-
plemented is clear and well-defined. Though the current interface should be
suitable for most pattern search algorithms, we have thus far only implemented

57



Chapter 5. Conclusions & Recommendations for Further Work

one algorithm: the simple compass search algorithm. In the future, the interface
will likely need to be modified to cater to more complex types of pattern search
algorithms, as well as to a wider range of different kinds of algorithms developed
either in-house, or coming from ready-made solver packages.

Load Balancing The code that handles load balancing works well for problems
that deal with a relatively large number of variables, with reservoir models
that are not too demanding. However, the load balancing procedure is less
suitable for problems with few variables and time-consuming models. In our
current algorithm implementation, few variables mean that the optimizer will
generate few cases per iteration, which in turn means that we can exploit fewer
processors. A straightforward solution to this problem is to enable a second level
of parallelization in our solution design, at the simulation level. Implementing
support for a reservoir simulator that itself uses parallelization would allow a larger
number of processors to be utilized even when the optimization algorithm yields
few cases per iteration. Another possible solution is to implement a peer-to-peer
communication paradigm (similar to the one used by the APPS algorithm [6]),
instead of the current master/slave paradigm. The peer-to-peer paradigm would
allow all the available processors to perform simulations, meaning no core(s) would
be reserved solely for control and optimization purposes.

Asynchrony Another way to increase the performance in FieldOpt is to im-
plement an asynchronous optimization algorithm. Currently, our asynchronous
broker handles the load balancing issue arising from non-homogeneous simulation
times quite well, but towards the end of evaluating a batch, an increasing number
of processors will be idle. If the optimization algorithm itself is capable of provid-
ing new cases mid-iteration when given the results of the cases evaluated so far,
we could potentially exploit all processors close to 100

Non-Homogenous Simulation Times While our brokers’ handling of non-
homogeneous simulation times works quite well in our test case, it is not good
enough if a five-fold increase in simulation time, similar to the one seen in Chapter
4, occurs when running a model that normally takes several hours to simulate.
Such situations with highly non-homogeneous simulation times must be handled
systematically. A first approach is to develop more specific parameter settings
at reservoir level to diminish the likelihood of troublesome configurations. Along
these lines, we could though it would be significant undertaking, perform an
in-depth study of the relationship between the range of feasible configurations
and the numerical stability of the particular model. If possible, we could develop
constraints to limit our search to ranges that are likely to yield stable solutions.
Another option on the reactive side is for the broker level to include some form of
early detection for this type situations, i.e., a monitor function. This monitoring
would enable the broker to terminate simulations that are taking too long or
behaving irregularly.

58



Driver Files Finally, the main way of configuring FieldOpt is, as with most
reservoir simulators, through a driver file. FieldOpt uses ResOpt’s driver files
with only small additions, and they are are intended to be written manually using
a text editor. These driver files “feel” outdated. For example, knowing what to
put in them requires extensive reading of manuals, and finding errors is often
time-consuming. For further development, we propose creating a graphical user
interface that would allow the user to create and edit driver files for FieldOpt.
These files should be in a machine-readable format (e.g. XML or JSON), since
this would significantly reduce the complexity of the code needed to read and
write the files. The reduced complexity would in turn make it easier to add new
configuration options.

59



Chapter 5. Conclusions & Recommendations for Further Work

60



Glossary

Boost Free, cross-platform, peer-reviewed C++ library.. 26

C++ A programming language. 26

Efficiency A measure of the average of the average utlilization of the available
processors when executing a program.. 21

MPI Message Passing Interface (MPI) is a standardized, portable interface for
message passing. It is primarily used when programming parallel computers
with distributed memory.. 16, 26

MRST MATLAB Reservoir Simulation Toolbox is a MATLAB toolbox developed
by SINTEF Applied Mathematics.. 32

OpenMP Open Multi-Processing, an API supporting shared-memory multipro-
cessing.. 16

POSIX Portable Operating System Interface. Provides an interface to the
undelying operating system, including a standard multi-threading library..
16

Qt Cross-platform application and UI framework for C++.. 26

Speedup A measure of the reduction in execution time for a program when the
number of available processors are increased.. 21

61



Glossary

62



Bibliography

[1] J. Nocedal and S. J. Wright, Numerical optimization. New York: Springer,
2006.

[2] M. C. Bellout, D. Echeverría Ciaurri, L. Durlofsky, B. Foss, and J. Kleppe,
“Joint optimization of oil well placement and controls,” Computational
Geosciences, vol. 16, no. 4, pp. 1061–1079, 2012. [Online]. Available:
http://dx.doi.org/10.1007/s10596-012-9303-5

[3] R. Hooke and T. A. Jeeves, “ “direct search” solution of numerical and
statistical problems.” J. ACM, vol. 8, no. 2, pp. 212–229, 1961. [Online].
Available: http://dblp.uni-trier.de/db/journals/jacm/jacm8.html#HookeJ61

[4] V. Torczon, “On the convergence of pattern search algorithms,” SIAM
Journal on Optimization, vol. 7, no. 1, pp. 1–25, feb 1997. [Online]. Available:
http://dx.doi.org/10.1137/S1052623493250780

[5] T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct
search: New perspectives on some classical and modern methods,”
SIAM Review, vol. 45, no. 3, pp. 385–482, 2003. [Online]. Available:
http://dx.doi.org/10.1137/S003614450242889

[6] P. D. Hough, T. G. Kolda, and V. J. Torczon, “Asynchronous parallel
pattern search for nonlinear optimization,” SIAM Journal on Scientific
Computing, vol. 23, no. 1, pp. 134–156, 2000. [Online]. Available:
http://dx.doi.org/10.1137/S1064827599365823

[7] D. W. Peaceman, Fundamentals of numerical reservoir simulation. Amster-
dam; New York: Elsevier Scientific Pub. Co. : Distributors for the U.S. and
Canada, Elsevier North-Holland, 1977, ch. 1, pp. 2–5.

[8] SINTEF, “Sintef mrst project web page,” 2015, accessed: 29.4.2015. [Online].
Available: http://www.sintef.no/Projectweb/MRST/

63

http://dx.doi.org/10.1007/s10596-012-9303-5
http://dblp.uni-trier.de/db/journals/jacm/jacm8.html#HookeJ61
http://dx.doi.org/10.1137/S1052623493250780
http://dx.doi.org/10.1137/S003614450242889
http://dx.doi.org/10.1137/S1064827599365823
http://www.sintef.no/Projectweb/MRST/


Bibliography

[9] F. Begali, Algorithms and Parallel Computing, 1st ed., ser. Wiley Series on
Parallel and Distributed Computing. John Wiley & Sons, Inc, 2011.

[10] NTNU HPC Group, “Kongull hardware,” HPC Wiki, 2015, accessed:
08.05.2015. [Online]. Available: https://www.hpc.ntnu.no/display/hpc/
Kongull+Hardware

[11] D. Eager, J. Zahorjan, and E. Lazowska, “Speedup versus efficiency in
parallel systems.” Computers, IEEE Transactions on, vol. 38, no. 3, pp.
408–423, mar 1989. [Online]. Available: http://dx.doi.org/10.1109/12.21127

[12] N. Matloff, Programming on Parallel Machines, 2015. [Online]. Available:
http://heather.cs.ucdavis.edu/parprocbook

[13] L. Bass, P. Clements, and R. Kazman, Software architecture in practice.
Upper Saddle River, NJ: Addison-Wesley, 2013.

[14] The Qt Company, “Qt framework web page,” 2015, accessed: 11.03.2015.
[Online]. Available: http://www.sintef.no/Projectweb/MRST/

[15] B. Schäling, The boost C++ libraries. XML Press, 2014.

[16] Indiana University, “Open mpi project home page,” 2015, accessed:
20.05.2015. [Online]. Available: http://www.open-mpi.org/

64

https://www.hpc.ntnu.no/display/hpc/Kongull+Hardware
https://www.hpc.ntnu.no/display/hpc/Kongull+Hardware
http://dx.doi.org/10.1109/12.21127
http://heather.cs.ucdavis.edu/parprocbook
http://www.sintef.no/Projectweb/MRST/
http://www.open-mpi.org/


Appendix A
Software Development

A.1 Class Diagrams

This section is a short summary of how the various symbols in class diagrams are
used in this report.

ClassName
- privateAttribute : int
+ publicAttribute : vector<double>
# protectedAttribute : vector<double>

- privateMethod() : void
+ publicMethod(param : int) : int

(a) Basic class properties.

<<abstract>>
AbstractClassName

# protectedAttribute : string

+ publicMethod() : double

(b) An abstract class.

Figure A.1: Examples of a basic class and a basic abstract class.

A basic class is shown as in Figure A.1a.

• The name of the class is in bold on the first line.

• Methods always have parentheses after the name.

• Private attributes and methods are are prefixed with a ‘-’. Private attributes
and methods are only available to the class itself.

• Public attributes and methods are prefixed with a ‘+’. Public attributes
and methods are available for all parts of the program.

• Protected attributes and methods are prefixed with a ‘#’. Protected at-
tributes and methods are only visible to the class itself and its subclasses.

65



Appendix A. Software Development

• The type of an attribute and the return-type of a method is indicated after
the last ‘:’.

• The type of a parameter is indicated after a ‘:’ inside the parentheses.

• When a data structure type such as ‘vector’ or ‘list’ is followed by angle
brackets, the word inside the brackets indicates the type of the elements
which make up the data structure.

An abstract class is shown in Figure A.1b. Abstract classes cannot be in-
stantiated on their own, only classes implementing their virtual methods may be
instantiated. Virtual methods are shown in cursive. They must be implemented
by classes that implement the abstract class.

Package

<<abstract>>
AbstractClass

# protectedAttribute : string

# publicProtectedMethod() : double

Class
- privateAttribute : int
+ publicAttribute : vector<double>
# protectedAttribute : string

- privateMethod() : void
+ publicMethod(param : int) : int
+ publicMethod() : double

SubClass
+ publicMethod() : string

Class2

Class3

0..*

<
<

im
port>

>

Figure A.2: Inheritance.

Figure A.2 shows how inheritance is indicated in class diagrams.

• The arrow with the dotted line indicates that the Class implements the
AbstractClass. The in this report we say that a class implementing an
abstract class implicitly implements all it’s virtual methods.

• The arrow with the solid line indicates that the SubClass inherits from
the Class. All of Class’ public and protected attributes and methods are
available to SubClass, and so is the protected (and public) attributes and
methods.

• The open arrow (→) indicates that Class is associated with zero or more
instances of Class2.

66



A.2. Sequence Diagrams

• The dotted line with the open arrow with «import» indicates that Class2
imports Class3.

• Packages indicate “parts” of the system. I.e. Class2 and Class3 are part
of a subsystem which is, to some extent, decoupled from other parts of the
system.

A.2 Sequence Diagrams

This section contains a short description of how sequence diagrams in this should
be read. A simple example is shown in Figure A.3.

: Instance1 : Instance2 : Instance3

functionName(parameter)

perturb(best case)

new cases
returned data

getCaseIds(new cases)

case ids
messageCall(parameter1, parameter2)

message

LoopLoop

Figure A.3: A sequence diagram.

• The events describes in a sequence diagram increases from top to bottom.

• Object instances are indicated with their names on the top row, and dashed
lines down from them.

• Solid blocks superimposed on the dashed lines down from objects indicate
when they are active.

67



Appendix A. Software Development

• Solid lines with solid arrows indicate synchronous messages (function/method
calls).

• Dashed lines with open arrows indicate return messages.

• Solid, tilted lines with open arrows indicate asynchronous, non-instant
messages (MPI messages).

• Loops are indicated with a frame and a label. The events inside a loop
occur repeatedly until some termination condition is met.

68






	Introduction
	Background
	Terminology
	Problem Formulation and Optimization Algorithms
	Pattern Search Methods For Optimization
	Compass Search
	Parallelization
	Other Pattern Search Algorithms

	Reservoir Simulation
	About the MRST Reservoir Simulator

	Parallel Computing
	Parallel Computer Hardware Architecture
	Computer Clusters
	Parallel Programming Paradigms
	Performance Metrics
	Communication Overhead

	Software Architecture

	Implementation
	Frameworks and Libraries
	Qt Framework
	Boost
	Open MPI

	Diagrams
	Class Diagrams
	Sequence Diagrams

	Architecture
	Model
	Case
	Simulator Interface
	MRST Interface

	Optimizer Interface
	Bookkeeper

	Parallelization
	MasterRunner
	SimulationLauncher
	Communication

	Driver Files
	User Interface

	Case Study
	Model
	Simulator Execution Time
	Optimizer Convergence
	Performance
	Execution Time
	Speedup and Efficiency


	Conclusions & Recommendations for Further Work
	Glossary
	References
	Software Development
	Class Diagrams
	Sequence Diagrams

	Signed Master's Contract

