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Preface

This is a Master Thesis carried out at the Department of Marine Technology, at NTNU, in the
spring of 2015. The topic is vortex induced vibrations (VIV) of slender marine structures, focus-
ing on nonlinear time domain analysis of free spanning pipelines. The topic was chosen based
on what was done in the Projects Thesis (Ulveseter, 2014), and can be considered an extension
of that work.

The PhD student Mats Thorsen has been working on a linear time domain model for calcu-
lations of vortex induced vibrations since 2012. Professor Carl Martin Larsen, my supervisor,
thought it would be interesting to apply Thorsen’s work on a structural model of a pipeline, tak-
ing into account nonlinear soil-pipe interaction. I wanted to to code my own program instead
of using commercial software. This Master Thesis made it possible to develop a new calculating
program, based on Thorsen’s work, and thus we agreed on this project.

The readers of this report should be familiar with basic theory of dynamic analysis. Frequency
domain, time domain, eigenfrequency and dynamic equilibrium are some of the terms assumed
known in advance. Concerning VIV, basic concepts are presented. However, the language is
technical. It is thus a great advantage to have knowledge about hydrodynamics and marine
structures, to understand the technical expressions used throughout the text.

Trondheim, 2015-07-30

Jan Vidar Ulveseter
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Abstract

In this thesis a model for nonlinear analysis of vortex induced vibrations (VIV), applied to free
spanning pipelines, is proposed. The developed model takes into account the soil-pipe inter-
action. Through case studies, conclusions can be drawn toward the influence of nonlinear soil-
pipe interaction, compared to linear prediction tools. Soil-pipe interaction is important to con-
sider because of VIV induced bending stresses at the pipe shoulders. The fatigue damage at the
span shoulders can be a limiting factor for lifetime estimations of pipelines. Hence a reliable
model, including nonlinear soil dampers and soil springs, is necessary for realistic results.

The nonlinear analysis program is created in MATLAB. It is based on Mats Thorsen’s linear time
domain VIV model for analysis of simple supported beams. To make it applicable for free span-
ning pipelines, a seabed profile and the pipeline static configuration, must be found. RIFLEX is
used to find the static configuration. When the seabed and static configuration is known, soil
dampers and soil springs can be added to the vertical translation degrees of freedom at posi-
tions of soil penetration.

The proposed program has the option of a linear or a nonlinear analysis. They are referred to as
Ulveseter’s linear model and Ulveseter’s nonlinear model, respectively. If the linear analysis is
chosen, the stiffness and damping matrices are based on the static configuration, and are con-
stant throughout the time integration. By updating the stiffness and damping matrices for every
time step of the time integration, it is possible to switch the soil springs and soil dampers off,
when the pipeline lifts up from the seabed. They can be turn on again in case of seabed pene-
tration. This is how the nonlinear soil-pipe interaction is established.

Ulveseter’s nonlinear model is compared to Ulveseter’s linear model and VIVANA. Through six
case studies predictions of response amplitudes and stress amplitudes are found for a variation
of pipeline data, seabed profiles, soil stiffness values, soil damping values and current velocities.
The results show that the stress amplitudes at the pipe shoulders are reduced for the nonlinear
model. The soil damping has a small influence on the response predictions for most cases. The
seabed curvature around the pipe shoulders influences the touch down point position for Ul-
veseter’s nonlinear model. Less seabed curvature makes the touch down point vary more than in
case of a large curvature. Increasing soil stiffness is observed to increase the stress amplitudes.
It can also trigger a mode shift, as seen for Ulveseter’s linear model. Increased current velocity
results in a mode shift of the response shape. Ulveseter’s model compares well to VIVANA, but
predicts in most cases somehow smaller stress and response values than VIVANA.

Concerning the influence of soil damping, it may depend on the pipeline properties, seabed
profile and current conditions. It is only the first case study where the soil damping influence
is of significance for all VIV models. This case is based on a shorter pipe, with less bending
stiffness, with less end tension facing a stronger current, than the other cases. Also, the seabed
profile has a smaller curvature at the pipe shoulders than the rest of the cases. However, Case 1
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is based on an extreme current velocity and the pipe tension is low compared to bending stiff-
ness and and dimensions of the pipe. Hence, for the more realistic cases, the soil damping is of
less importance for the response. In Case 3 and 4, the soil damping effect is larger for Ulveseter’s
nonlinear model, than the linear prediction tools. However, the result might be influenced by
transient effects.

The proposed nonlinear program is limited to look at cross-flow motion only. Axial degrees of
freedom are neglected because they are considered to be of secondary importance. The only
nonlinearity accounted for is the soil-pipe interaction. Tension variations, large displacements
and nonlinear material properties are not considered. A fully nonlinear analysis should include
both static and dynamic forces in the dynamic analysis. Because the proposed model uses the
static configuration found from RIFLEX, this is not possible to do in a consistent way. Therefore
an approximation is performed to account for the effect of gravity. To improve the present work,
Ulveseter’s model should be modified to account for these limitations.
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Sammendrag

I denne avhandlingen er en modell for ikke-lineær analyse av virvelinduserte vibrasjoner (VIV)
foreslått. Den er begrenset til analyse av frittspente rør. Modellen tar hensyn til havbunn-rør in-
teraksjon. Ved å utføre case-studier kan vi trekke slutninger om hvordan ikke-lineær havbunn-
rør interaksjon påvirker responsen sammenlignet med lineære modeller. Havbunn-rør interak-
sjon er viktig å ta hensyn til på grunn av VIV induserte bøyespenninger på rørets skuldre. Tret-
thetskader på skuldrene kan være en begrensende faktor for levetiden til rørledninger. Derfor
må en pålitelig modell inkluder ikke-lineære bunndempere og bunnfjærer, for realistiske resul-
tater.

Det ikke-lineære analyseprogrammet er laget i MATLAB. Det er basert på Mats Thorsens lineære
tidsdomene VIV modell for analyse av fritt opplagte bjelker. For at Thorsens modell skal kunne
gjøre beregninger på rørledninger i frie spenn må det etableres en havbunnsprofil og en tilhøren-
de statisk konfigurasjon. Denne delen av analysen er gjort i RIFLEX. Når statisk konfigurasjon
er kjent kan vi legge til bunnfjærer og bunndempere ved nodene som penetrerer havbunnen.

Programmet har mulighet til både en lineær og en ikke-lineær analyse. De er referert til som
Ulveseters lineære og ikke-lineære modell. I den lineære analysen er stivhets og dempings-
matrisene konstante gjennom tidsintegrasjonen av den dynamiske likevektsligningen. Dermed
må havbunnsstivhet og dempning inkluderes i modellen før den dynamiske analysen begynner.
Dette gjøres basert på den statiske konfigurasjonen. For den ikke-lineære modellen blir stivhets
og dempningsmatrisen oppdatert for hvert tidskritt. Hver node sjekkes for havbunnspene-
trasjon. Hvis vi har havbunnskontakt blir en bunnfjær og en bunndemper lagt til stivhetsma-
trisen og dempningsmatrisen. Hvis vi ikke har bunnkontakt vil programmet sjekke neste node
uten å legge til en bunnfjær og en bunndemper.

Ulveseters ikke-lineære modell er sammenlignet med Ulveseters lineære modell og VIVANA.
Gjennom seks case-studier finnes responsamplituder og spenningsamplituder for varierende
rørledningskarakteristikk, bunnprofiler, bunnstivhetsverdier, bunndempningsverdier og strøm-
hastigheter. Resultatene viser at spenningsamplitudene i skuldrene er redusert for den ikke-
lineær modell. Bunndemping har en liten innvirkning på responsen i de fleste tilfeller. Havbun-
nens krumning rundt skuldrene påvirker berøringspunktet for Ulveseters ikke-lineære modell.
Mindre krumning gir større variasjon av berøringspunktet. Økende bunnstivhet gir større spen-
ningsamplituder. Det kan også utløse et modeskifte, som er observert for Ulveseters lineære
modell. Øket strømhastighet resulterer i et modeskifte. Ulveseter modell sammenligner godt
med VIVANA, men spår i de fleste tilfeller mindre spenning og responsverdier.

Effekten av bunndempning avhenger av rørledningskarakteristikk, bunnprofil og strømforhold.
Det er bare i Case 1 at bunndempingen er av signifikant betydning for responsen till alle VIV
modellene. Denne casen er basert på et kortere rør, med mindre bøyestivhet, med mindre
strekk som møter en sterkere strøm enn de andre tilfellene. Dessuten har bunnprofilen en
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mindre krumning ved rørskuldrene enn i resten av tilfellene. Case 1 er basert på en ekstrem
strømhastighet og rørets strekk er lav sammenlignet med bøyestivhet og dimensjoner til røret.
Derfor er konklusjonen at bunndemping har liten betydning for responsen i de mer realistiske
studiene. I Case 3 og 4 er den ikke-lineære modellen mer påvirket av bunndempning, enn de
lineære modellene. Det er konkludert med at dette antakeligvis skyldes transiente effekter.

Det foreslåtte ikke-lineære programmet er begrenset til å se på bevegelser i vertikal retning. Ak-
sielle frihetsgrader er neglisjert fordi de anses å være av underordnet betydning. Den eneste
ikke-lineariteten i programmet er havbunn-rør interaksjonen. Strekkvariasjoner, store forskyvn-
inger og ikke-lineære materialegenskaper er ikke inkludert i modellen. En full ikke-lineær anal-
yse bør inneholde både statiske og dynamiske krefter i den dynamisk analysen. Fordi den fores-
låtte modellen bruker statisk konfigurasjon funnet fra RIFLEX, er ikke dette mulig å gjøre på
en tilfredsstillende måte. Derfor er en tilnærmelse utført for å ta hensyn til virkningen av tyn-
gdekraften. For å forbedre dette arbeidet bør Ulveseters modell endres for å ta hensyn til disse
begrensningene.
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Notation

Symbols

General

U [m/s] Undisturbed flow velocity

D [m] Diameter of cross section

L [m] Length of pipe

T [N] End tension

E I [N m2] Bending stiffness

ν [m2/s] Kinematic viscosity of water

ρ [kg /m3] Water density

fv [s−1] Vortex shedding frequency

fn [s−1] Eigenfrequency in still water for mode number n

fosc [s−1] Response frequency

ω [rad/s] Oscillation frequency

m [kg/m] Dry mass of cylinder per unit length

ma0 [kg/m] Added mass of cylinder in still water

ma [kg/m] Added mass of cylinder in actual flow conditions

ws [kg/m] Submerged weight of pipe per unit length

ks [N /m2] vertical soil stiffness per unit length

cs [N s/m2] vertical soil damping per unit length

Thorsen’s VIV model

y0 [m] Cross-flow amplitude

φexc,y [-] Instantaneous phase of cross-flow excitation force

φẏ [-] Instantaneous phase of cross-flow velocity

Cv [-] Empirical coefficient for amplitude dependent force
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VIVANA

Ce,C F [-] Excitation force coefficient in cross-flow direction

Ce,I L [-] Excitation force coefficient in in-line direction

Ce [-] Excitation force coefficient in cross-flow or in-line direction

Non-dimensional parameters

f̂ = D fosc
U Non-dimensional frequency

Ur = U
D fn

Reduced velocity

St = D fv
U Strouhal number

Re = U D
ν

Reynolds number

A
D Amplitude ratio

λ= cs
ccr

Estimated vertical soil damping ratio

Abbreviations

VIV Vortex Induced Vibrations

CF Cross-flow, normal to inflow

IL In-line, parallel to inflow

CFD Computational Fluid Dynamics

FEM Finite Element Method

dof degree of freedom
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Chapter 1

Introduction

1.1 Background

Slender marine structures exposed to a current may experience vortex induced vibrations (VIV).
It is a phenomenon important to include in dynamic analyses of risers and pipelines because
it causes fatigue damage. It is a complex phenomenon were research has been substantial for
several decades. Still, there are large uncertainties related to response predictions. The un-
certainty makes it necessary to do conservative estimates of VIV. Vortex shedding suppression
devices, such as helical strakes on risers, might be over-used as a consequence of this. Suppres-
sion devices increase cost and makes the installation more demanding. Better VIV models can
potentially save the industry for a lot of money.

SHEAR7 is a VIV prediction program widely used by the industry. It is limited to treat a linearized
problem because it solves the dynamic equilibrium equation in frequency domain. Risers and
pipelines are highly nonlinear structures. Tension variations and soil-pipe interaction are im-
portant nonlinear effects that must be included in an analysis of vortex induced vibrations, for
reliable results. To include these effects, a time domain model for the VIV forces must be cou-
pled to a nonlinear structural model. Several attempts have been made to find a good time
domain force model, but with varying results. However, Mats Thorsen, a PhD student at the De-
partment of Marine Technology at NTNU, is developing a time domain VIV model, which looks
promising. If his force model is coupled to a nonlinear structural model, nonlinearities can be
included in the VIV analysis.

One of the uncertainties of VIV for pipelines is the pipe-soil interaction, and the correspond-
ing soil damping. The soil-pipe interaction depends on the properties of the soil, which are not
easily obtained. If realistic values of the soil stiffness and soil damping are used in a nonlinear
soil-pipe interaction model, more knowledge of VIV for free spanning pipelines can be gained.
In this Master Thesis, the nonlinear soil-pipe interaction for free spanning pipelines is to be in-
vestigated. It is only cross-flow motion that is considered, when the pipeline is subjected to a
uniform current flow. We are interested in the pipeline response for different pipeline proper-

1



2 CHAPTER 1. INTRODUCTION

ties, seabed profiles, current velocities, soil stiffness and soil damping values. Comparing the
nonlinear VIV model with linear models, it is interesting to see and to discuss the differences.

Literature Survey

Describing basic concepts of VIV, (Larsen, 2011) gives a good overview of the state of the art.
(Sumer and Fredsøe, 2006) gives information about experimental results with cylinders oscillat-
ing in air and water. This is directly related to empirical VIV models, using experimental data to
describe the loads from the water. One of these empirical VIV programs is VIVANA. It solves the
dynamic equilibrium equation in frequency domain (Passano et al., 2014).

Several time domain VIV models have been developed since the 1990s. (Lie, 1995), (Finn et al.,
1999) and (Mainçon and Larsen, 2011), are the most important ones. Also, the concept of wake
oscillators (Zarantonello and Brikhoff, 1957) is the basis for some time domain VIV analyses.
Lastly, Mats Thorsen has published several papers based on his time domain VIV model. (Thorsen
et al., 2014), (Thorsen et al., 2015a) and (Thorsen et al., 2015b) describe the theoretical founda-
tion of the model, and results from case studies.

Concerning VIV on pipelines in particular, (Larsen et al., 2004) and (Larsen and Koushan, 2005)
suggests a nonlinear time domain method. The effect of nonlinear soil-pipe interaction is in-
vestigated with respect to stress amplitudes at the pipeline shoulders. The nonlinear soil-pipe
interaction is complex, and (Veritas, 2006) is the Recommended Practice, for how to determine
values of the soil stiffness and soil damping. (Lie et al., 2001) and (Larsen and Passano, 2006)
gives information about how to include soil-pipe interaction in a dynamic analysis. Even though
Computational Fluid Dynamics (CFD) is considered immature for VIV predictions due to the
computational cost, attempts have been made to analyze pipelines using 2D planes. This was
done by (Halse, 1997).

To create a nonlinear time domain analysis program we need to know the theory of dynamic
analysis. (Langen and Sigbjörnsson, 1979) is a book describing in detail general methods of how
to perform dynamic analyses. (Larsen, 2014) does not contain the same level of details on non-
linear dynamic analyses. However, it discusses the differences between linear and nonlinear
analyses of flexible pipes in particular, which is relevant for analyses of free spanning pipelines.

1.2 Objectives

The purpose of the present work is to study the effect of nonlinear soil-pipe interaction for free
spanning pipelines experiencing VIV. Both nonlinear soil springs and soil dampers are of inter-
est. This is to be done using the time domain VIV model proposed by Mats Thorsen combined
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with a self-made nonlinear structural FEM model.

The objectives are as follows:

• Present basic theory for VIV, with focus on time domain VIV combined with nonlinear
FEM as applied for free spanning pipelines

• Describe interaction mechanisms for pipes with bottom contact and how contact forces
and damping can be accounted for in a VIV analysis

• Make a simple MATLAB program for analysis of free spanning pipelines with nonlinear
springs and dampers at the shoulders, and combine it with Thorsen’s time domain VIV
model

• Use the developed method on selected cases and compare with frequency domain solu-
tions, and other time domain solutions

1.3 Limitations

The study is limited to 2D only considering cross flow VIV. The pipeline is facing a uniform cur-
rent, so we do not look at the effect of the the boundary layer induced by the fluid-soil interac-
tion. The nonlinearity in the model is limited to nonlinear soil-pipe interaction. Other nonlin-
earities, like varying tension and large displacements are not considered. Also, axial translation
degrees of freedom are not included in the structural model because they are of secondary im-
portance.

The developed nonlinear time domain VIV program is compared to results from VIVANA and
time domain VIVANA/RIFLEX analyses. We do not look at how the models compare to experi-
mental results, or to other VIV prediction tools. The study treat varying soil damping, soil stiff-
ness, seabed profile, current velocity and pipeline characteristics in six separate case studies.
For more reliable trends and results, more cases should be investigated.

1.4 Approach

To fulfill the objectives, a good theoretical foundation of VIV, dynamic analysis, pipelines and
soil-pipe interaction is needed. Hence, an extensive literature survey is performed. From this,
the two first objectives focusing on presenting theory, can be met. Parts of this was already cov-
ered in (Ulveseter, 2014).

Mats Thorsen’s linear model is the starting point for the third objective. With this program, a
linear time domain VIV analysis of a simple supported beam can be analyzed. To make the pro-
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gram applicable for pipelines, a seabed and a static configuration must be found. The static
configuration can be found in RIFLEX. Based on the pipeline position relative to the seabed,
springs and dampers can be applied to the vertical translation degree of freedom (dofs) where
the pipe initially is penetrating the seafloor. Applying the Newmark-β time integration scheme
that was already in Thorsen’s code, the linear pipeline response can be found.

A nonlinear time domain analysis where the nonlinearity is related to pipe-soil interaction, has
time varying stiffness and damping matrices. The soil damping and soil stiffness must be turned
off when the pipeline rises from the soil, and switched on again if the pipeline penetrates the
seafloor. This can be taken into account by updating the stiffness and damping matrices for ev-
ery time step of the time integration. Applying a nonlinear scheme for time integration, as out-
lined in (Langen and Sigbjörnsson, 1979), the nonlinear pipeline response is the output. Thus,
the third objective can be fulfilled.

The third objective is, by far, the most time consuming objective. Time is spent on:

• Understanding Thorsen’s original program

• Learning how to use RIFLEX/VIVANA

• Debugging the code, and make sure the different functions work as they should

• Convergence testing

• Making an understandable code

The forth objective is related to testing the new program, referred to as Ulveseter’s model, against
other VIV prediction tools. VIVANA and RIFLEX are MARINTEK programs developed in coop-
eration with the Marine Technology Department at NTNU. It thus natural that VIVANA is used
as the other VIV prediction tool. In (Larsen et al., 2004) nonlinear time domain analysis of VIV
on free spanning pipelines is presented. Pipeline dimensions, and case studies can be based on
what was done in this paper.

1.5 Structure of the Report

Chapter 2 introduces VIV in general. What causes VIV and what parameters influence the VIV
response are questions to be answered. First, we look at the fixed cylinder case and explain the
hydrodynamics when the cylinder faces a current. Then, VIV modeling based on different solu-
tion methods is presented, with a main focus on empirical VIV models. The empirical models
are based on experiments, and two traditional VIV experiments are discussed. The experiment
with a rigid pipe with flexible support shows lock-in, and how the vortex shedding frequency,
still water eigenfrequency and oscillation frequency are all important concepts in VIV. Then, the
experiment with a rigid pipe given forced harmonic motion is explained. Chapter 2 is to a large
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extent based on (Ulveseter, 2014).

Chapter 3 presents the theory behind VIVANA, the MARINTEK developed VIV model. We look
at the different steps of the analysis, from finding the static configuration using RIFLEX, to cal-
culate the VIV response solving the dynamic equilibrium equation in frequency domain. Added
mass model, excitation force model, excitation zones and damping model are discussed and
how they relate to experimental results is presented. This chapter is also, based on (Ulveseter,
2014).

Chapter 4 describes different time domain VIV models. What theories they are based upon, and
their limitations. Thorsen’s time domain VIV model is presented in Chapter 5. The force model,
both in-line and cross-flow is described in detail. The synchronization of the oscillation fre-
quency and the vortex shedding frequency is explained, which is the main difference between
this model and other VIV models. The linear structural model is also presented.

Chapter 6 goes more into details about free spanning pipelines. It is explained why a linear VIV
model is not suited for analyses of free spanning pipelines, and important nonlinearities are
discussed. We see examples on how it is possible to perform VIV analyses on pipelines, with
focus on the soil-pipe interaction. This interaction is described in form of soil stiffness and soil
damping, and it is suggested how these parameters can be quantified and implemented in an
analysis. Parts of this is taken from (Ulveseter, 2014).

Chapter 7 gives information about the developed nonlinear VIV program for analysis of free
spanning pipelines. We are introduced to the theoretical foundation of the nonlinear dynamic
analysis. Many pages are used to discuss the limitations of the program, and thus how reliable
the predictions are. Then, the MATLAB code is presented, showing the different functions cre-
ated and the build-up of the program. To make it easier to understand, flowcharts are used to
visualize the program build-up, and the logic behind it.

Chapter 8 is where the case studies are presented. The first case is an extension of the case in
(Ulveseter, 2014), while the other cases are based on pipeline properties and seabed configura-
tions as applied in (Larsen et al., 2004). During the six cases, we see how pipeline response is
affected by pipeline properties, seabed profile, soil stiffness, soil damping and current velocity.
All cases include a comparison between the developed nonlinear program, the developed linear
program and VIVANA.

Chapter 9 discusses the findings in Chapter 8. The results are discussed with respect to what
is physically expected. Also, trends regrading the soil damping influence is presented. Lastly,
current velocities and pipeline properties as applied in the different case studies are discussed
with respect to how realistic they are. Chapter 10 is the conclusion and recommendations for
further work.



Chapter 2

Introduction to Vortex Induced
Vibrations

Vortex induced vibrations (VIV) is an important phenomenon to account for in design of long
slender marine structures, such as risers and pipelines. When subjected to a current, vortices
will develop and be shed in the wake of the structure. These vortices give rise to forces, causing
vibrations. VIV can be a limiting factor considering the lifetime of the slender marine structure.
This is a result of the fatigue fatigue damage caused by the oscillatory VIV motion, inducing os-
cillatory stresses.

2.1 Hydrodynamics for a fixed circular cylinder

In describing the hydrodynamics around a fixed circular cross section, it is common to refer
to hydrodynamic numbers. The value of Reynolds number (Re), Strouhal number (St) and the
roughness parameter (∆ ) will influence the flow situation, and are defined as follows:

Re = U D

ν
(2.1)

St = D fv

U
(2.2)

∆= k

D
(2.3)

Reynolds number gives the relationship between inertia forces and frictional forces (Steen and
Minsaas, 2013). It will influence the flow characteristics in form of laminar-turbulent transition,
flow separation and the vortex street. This is shown in Figure 2.1.

6
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Figure 2.1: Flow around a circular cross section for different Re (Sunden)

The Strouhal number gives the relationship between the diameter of the cross section, the in-
flow velocity and the vortex shedding frequency. Strouhal number is a function of Reynolds
number and the roughness parameter as indicated in Figure 2.2. In the subcritical flow regime
St ≈ 0,2 and the value will not significantly change for other flow regimes if the pipe has a rough
surface. This is often the case in the marine environment.

The forces induced by the vortex shedding are shown in Figure 2.3. The vortex shedding will
cause the velocity profile around the cross section to change. Vortex shedding from one side of
the cylinder results in an opposite circulation. The change of velocity around the cylinder re-
sults in a pressure change. This gives a force resultant contributing to a force component in-line
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Figure 2.2: Strouhal number for rough and smooth cylinder surface as function of Re (Larsen,
2011). Originally in (Faltinsen, 1990)

with the inflow (IL) and a component perpendicular to the inflow (CF). After half a vortex shed-
ding period, a vortex will shed from the other side of the cylinder. This causes the lift force to
change direction. The direction of the drag force will be independent on vortex shedding being
from the upper or lower side of the cylinder. Thus the drag force will oscillate with two times the
vortex shedding frequency.

2.2 Modeling of VIV

To perform a VIV analysis the challenge is related to modeling of the hydrodynamic forces acting
on the slender structure. There are two different approaches for this:

• Computational Fluid Dynamics (CFD)

• Empirical methods
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Figure 2.3: How drag forces and lift forces vary in time for a circular cross section (Pettersen,
2007)

The first method (CFD) is to solve the Navier-Stokes equations in a numerical way to get the
pressure and velocity distribution in the fluid area around the structure. It is common to use
Finite Element Method (FEM), Finite Difference Method or Finite Volume Method as the nu-
merical tool. Today such an analysis is very time consuming and hence the use is limited.

The second method is to model the hydrodynamic forces based on empirical coefficients. The
reliability of the VIV prediction of this method will depend on added mass coefficient, dynamic
force coefficient, average drag coefficient and average lift coefficient. The hydrodynamic coeffi-
cients must be determined through experiments.

There exists a lot of empirical data from experiments with cylinders. This data is typically from
the subcritical flow regime, Re ε(300,300000). For a real size riser facing a high stream velocity,
we might exceed the subcritical flow regime. If we in this case choose to use empirical coeffi-
cients from the subcritical flow regime, it is considered conservative on cases where Re is higher
(Larsen, 2011). It represents, however, an uncertainty in the empirical model, and even though
it is expensive an time consuming, large scale experiments might make the empirical VIV mod-
els more reliable.
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Today, most tools for calculation of VIV are based on empirical hydrodynamic coefficients, since
CFD-based programs demand a lot of computational power and time. Some of the existing pro-
grams are:

• SHEAR7

• VIVA

• VIVANA

• ABRAVIV

• ViCoMO

• Norske Hydro

The models apply different methods to solve the dynamic equilibrium equation. There are two
main solution procedures. As can be seen in Figure 2.4, we distinguish between solution in fre-
quency domain and time domain.

A frequency domain solution is limited to treat a linearized problem. Pipelines and risers be-
have nonlinearly due to soil-pipe interaction. This effect is impossible to investigate for solution
in frequency domain. An upside applying a frequency domain solution is the use of empirical
data. From experiments, empirical coefficients are found as function of frequency. This makes
the empirical data easy to fit a frequency domain VIV model.

A time domain solution gives rise to more possibilities because linearization is not needed. It
is possible to potentially implement the VIV model in advanced structural FEM models, like
RIFLEX or SIMLA. Then, all relevant nonlinearities related to pipelines and risers in operation
can be investigated. However, a time domain solution is complex, due to the complexity of VIV
as a phenomenon. The complexity and the time integration process can make the code slower
than a frequency domain method, and thus not as attractive for the industry as an engineering
tool. However, the largest problem has been to create a reliable force model in time domain.
Several attempts have been made, with varying success. In Chapter 4 and 5, different time
domain models are presented and discussed.
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Figure 2.4: Solution method for empirical VIV models (Larsen, 2011)

2.3 Experiments and empirical coefficients

Hydrodynamic coefficients used in empirical VIV models are found through experiments. There
are several types of experiments that can be performed. In the following we will look at two
cases:

• Rigid pipe with flexible supports in constant flow

• Rigid pipe with forced harmonic motions

Rigid pipe with flexible supports in constant flow

The experimental setup is schematically shown in Figure 2.5, for IL- and CF-direction. An ex-
periment with a rigid pipe with flexible supports will give us information about amplitudes of
motion and phase angle between excitation force and response. It is also possible to find added
mass coefficients when the oscillation frequency is measured, applying Equation 2.7. However,
it is more common to find added mass from forced harmonic motions as described in the next
section. Running the experiment for different current velocities, the amplitudes, phase angels,
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Figure 2.5: Schematic illustration of experimental setup for rigid pipe with flexible supports
(Sumer and Fredsøe, 2006)

vortex shedding frequency and vibration frequency can be found as function of reduced veloc-
ity, defined as:

Ur = U

D fn
(2.4)

The three important frequencies in this case are:

Still water frequency:

fn = 1

2π

√
k

m +ma0
(2.5)

Vortex shedding frequency:

fv = StU

D
(2.6)

Response/vibration frequency:

fosc = 1

2π

√
k

m +ma
(2.7)
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Here, k is the spring stiffness, m is the mass of the cylinder, ma0 is the added mass in still water
and ma is the added mass for the actual flow and oscillation situation.

Results from an experiment of a rigid pipe in water (Sumer and Fredsøe, 2006) are given in Fig-
ure 2.6. What is shown is the response frequency, vortex shedding frequency and corresponding
motion amplitudes as function of reduced velocity, in the cross flow direction. The plot illus-
trate the phenomenon called lock-in. We see that for a wide range of reduced velocities the
vortex shedding frequency and the vibration frequency attaches to one another. It is seen that,
at a reduced velocity ≈ 3, the vibration frequency attaches to the vortex shedding frequency and
the motion amplitudes start to increase. At reduced velocity ≈ 6 the vortex shedding frequency
no longer follows Equation 2.6, but instead it attaches to the eigenfrequency of the structure.
As the reduced velocity is further increased the eigenfrequency of the structure changes. This
is due to added mass, which is dependent on the actual flow and oscillation process. In the
lock-in range the vibration frequency is the eigenfrequency corrected for changing added mass,
and lock-in is thus a true resonant phenomenon. The vortex shedding frequency still follows
the eigenfrequency of the structure until the reduced velocity has a value ≈ 8. Then the vortex
shedding again follows Equation 2.6, and the motion amplitude decreases.

The vibration frequency is a compromise between the eigenfrequency in still water and the vor-
tex shedding frequency. Where, in this range the vibration frequency is, depends on the dry
mass of the cylinder. For a heavy cylinder, the added mass contribution is relatively less impor-
tant than for a light cylinder. Thus, a heavy cylinder will have a vibration frequency closer to the
eigenfrequency in still water. The lock-in range is also affected by the dry mass. A light cylinder
will have a wider lock-in range due to the changing added mass.

VIV is a self-limiting process. For two different initial conditions, we can see how the VIV mo-
tions change with time. What is observed is that for larger initial amplitude than in steady state,
the response decreases in time until it reaches the steady state value. For lower initial amplitude
than in steady state, the response increases until steady state is reached. This can be seen from
Figure 2.7. We get back to how VIV is self-limiting in Section 3.1.2, looking at how the excitation
force coefficients in VIVANA depend on response amplitude.

Rigid pipe with forced harmonic motions

From full scale measurements it is possible to find the trajectory of a 2D cross section of slender
marine structures. It is possible to do an analysis where, instead of measuring responses from
given forces, we measure forces from given responses. Thus we can find the force contribu-
tions in phase with acceleration and velocity when we know the response of the structure. Then
added mass coefficient, in phase with acceleration, and excitation force coefficients, in phase
with velocity, can be found.

It is normal to do such experiments with pure harmonic IL- or CF-response, and plot the re-
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Figure 2.6: Experimental results for cross flow vortex induced vibrations (Sumer and Fredsøe,
2006)

Figure 2.7: Time history of response oscillation for a cylinder with two different initial conditions
(Larsen, 2011)
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sulting coefficients as contour-plots dependent on the amplitude ratio A
D and non dimensional

frequency f̂.

f̂ = fosc D

U
(2.8)

We can write the known harmonic response, velocity and acceleration as:

r = x0si n(ωt ), ṙ =ωx0cos(ωt ), r̈ =−ω2x0si n(ωt ) (2.9)

The inertia force and the hydrodynamic force are the only forces acting on the cylinder with
forced harmonic motions. We have no restoring force and no damping force. The sum of the
inertia force and the hydrodynamic force must thus equal the driving force, which can be mea-
sured.

M(−ω2x0si n(ωt )+FH si n(ωt +ε) = Driving force (2.10)

Now, splitting the hydrodynamic force in a component in phase with velocity and acceleration,
we get:

(M +MA)(−ω2x0si n(ωt ))+Fe (ωx0cos(ωt )) = Driving force (2.11)

Thus we can find added mass MA and excitation force Fe .

This experimental procedure, with pure harmonic IL- and CF-response, is the basis for added
mass and excitation force coefficients in VIVANA (Section 3.1.1 and Section 3.1.2 ). In the newer
versions of VIVANA, empirical data for combined CF and IL VIV is given. This data is based
on observed trajectories for cross sections of a flexible beam, and is also found through experi-
ments with forced motions.



Chapter 3

Frequency domain VIV model

By the industry, semi empirical VIV tools in frequency domain are considered state of the art.
Two typical models used are SHEAR7 and VIVANA. Even though the main focus of the present
work is related to time domain models, case studies are performed in Chapter 8 comparing
frequency domain and time domain solutions. VIVANA is used as the frequency domain pro-
gram. It is thus an advantage to know the theoretical basis of the program. This chapter gives
an overview of the solution procedure implemented in VIVANA, and the build-up of the pro-
gram.

3.1 VIVANA

MARINTEK has developed VIVANA for analyses of VIV for slender marine structures. It is based
on solution of the dynamic equilibrium in frequency domain. An iteration scheme is applied to
generate consistency between excitation forces and the response. IL and CF analyses are typi-
cally performed separately, but from VIVANA version 3.7, we also have access to hydrodynamic
coefficients from combined IL and CF experiments. Thus it is possible to perform a combined
CF and IL analysis. The structure itself is a finite element model with beam or bar elements. The
analysis is performed as follows (Passano et al., 2014):

1. Static analysis:
VIVANA is dependent on the MARINTEK program RIFLEX. In RIFLEX we must first per-
form a static analysis to get the static configuration of the slender marine structure.

2. Eigenvalue analysis in still water:
Modeshapes and corresponding eigenfrequencies are found for still water, solving the
eigenvalue problem. The modeshapes are split into CF and IL contributions.

3. Identification of possible excitation frequencies:
A subset of the eigenfrequencies are used as potential active response frequencies. Added
mass depends on the motion of the structure, and eigenfrequencies depends on added

16
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mass. Hence iteration must be performed to match the added mass with the frequencies
of oscillation under VIV conditions. However, in the combined IL and CF case, it is as-
sumed that the IL frequency is two times the CF frequency, and the iteration is not need.

4. Finding excitation zones:
The response frequencies are given an excitation zone based on an interval of non-dimensional
frequency. In this zone the active response frequency can excite the structure. In practical
problems, excitation zones for different response frequencies may overlap. To avoid this
VIVANA has the option between space sharing and time sharing.

5. Calculate response:
Using the response frequencies found in step 3 and the excitation zones found in step 4,
the response of the slender marine structure can be found using the frequency domain
method. The solution has converged when we have consistency between nonlinear ex-
citation forces, damping forces and response. The iteration scheme also gives consistent
local response amplitude and the phase between local load and response.

6. Post-processing:
In this step fatigue analysis and amplification of drag coefficients are performed. The
results are stored on VIVANA result files.

3.1.1 Added mass model

The added mass coefficients, in pure CF and IL, are based on experiments with rigid cylinders
given a harmonic motion. The response ratio and the frequency of oscillation are varied sys-
tematically. The result can be presented as a contour plot. It shows that added mass, in general,
is dependent on both response amplitude and frequency of oscillation. However, in VIVANA, it
is assumed that the response amplitude is less important than the frequency. In CF-analyses, a
value of AC F

D = 0.5 is chosen, as indicated in Figure 3.1. This makes added mass only dependent
on frequency, as can be seen from Figure 3.2. A similar procedure is applied for pure IL-analysis.

For the case with combined CF and IL, the added mass coefficients used in VIVANA are based
on experiments with forced motions of a rigid cylinder. However, the trajectory of the cylinder
is based on observed trajectories for cross sections of a flexible beam.

3.1.2 Excitation force model

The excitation forces are in phase with the response velocity and will oscillate accordingly. The
excitation force amplitude over the length ∆L is given as:

Fe,C F = 1

2
ρCe,C F DU 2∆L (3.1)
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Figure 3.1: Contour plot of added mass coefficient as function of non-dimensional response
amplitude and frequency of oscillation (Lie et al., 2008)

Figure 3.2: Simplified added mass coefficient only as function of non dimensional frequency
used in VIVANA (Lie et al., 2008)

The same setup applies for the IL-direction.
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As for added mass coefficients, the excitation force coefficients are based on experiments with
rigid cylinders given a harmonic motion. The result is a contour plot of the excitation force co-
efficient shown in Figure 3.3. We know from item 3 in the list above (Section 3.1), that we only
look at a subset of the eigenfrequencies when finding the active response frequencies. To find
out which frequencies that are most important we look at the Ce,C F -values of largest magnitude.
From Figure 3.3, we find this to be for f̂ ∈ (0.125,0.3).

Figure 3.3: Contour plot of excitation force coefficient in CF-direction, with red lines pointing
out frequency interval of importance, in VIVANA (Passano et al., 2014)

In VIVANA the excitation force coefficients are treated as function of the amplitude ratio. But
the points A, B and C in Figure 3.4 and Figure 3.5 depend on non-dimensional frequency. The
curves from A to B and B to C are given as second order polynomials. The points are defined as
follows:

• Point A: Value of Ce at A
D = 0

• Point B: The maximum value of Ce at corresponding amplitude ratio

• Point C: Amplitude ratio where Ce = 0
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From these curves (Figure 3.4 and Figure 3.5) we see that at A
D > ( A

D )Ce=0 the excitation force co-
efficients become negative. This implies that we have damping instead of excitation. Physically,
instead of the water giving energy to the structure, the structure gives energy to the water. Thus
VIV is a self-limiting phenomenon.

Figure 3.4: Excitation force coefficient in CF-direction used in VIVANA (Lie et al., 2008)

Figure 3.5: Excitation force coefficient in IL-direction used in VIVANA (Lie et al., 2008)
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3.1.3 Excitation zones

In real life situations with a riser in sheared current, we will have a large number of different
modeshapes and frequencies varying in time and space. To model this chaotic picture, VIVANA
is based on the assumption that at a specific point on the riser, only one response frequency
can be active, at a given time. This assumption is in good agreement with experiments. VIVANA
provides the user with the choice between time sharing and space sharing, to make sure this
criteria is satisfied. Overlapping excitation zones are shown in Figure 3.6

Figure 3.6: Overlapping excitation zones for a riser in sheared current (Passano et al., 2014)

The assumption of only one active frequency at a given point at a given time, is satisfied through
an energy consideration. The active response frequencies are ranked based on the value of
Ei =

∫
Le,i

U 3(s)D2(s)( A
D )Ce=0d s. Here, Le,i is the length of the excitation zone. The highest ranked

response frequency, referred to as the dominating frequency, will have its whole excitation zone
to excite the structure. For overlapping zones, the response frequency with the lowest ranking
will loose the overlapping zone.

Space sharing means that the excitation zones, according to the ranking system, are constant in
time. This is shown in Figure 3.7. Time sharing means that the same ranking system is used to
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define for how long time the different response frequencies are to occupy its entire excitation
zone. In this case we have overlapping excitation zones, but they are not active simultaneously.
This is shown in Figure 3.8

Figure 3.7: A riser in shear current with the second eigenfrequency as the dominating frequency
(space sharing) (Larsen, 2011)

3.1.4 Damping model

In VIVANA, we look at structural damping and hydrodynamic damping separately.

The structural damping is limited to internal friction and local strains in the pipe, and is mod-
eled using Rayleigh-damping. The damping matrix C is assumed to be proportional to the stiff-
ness matrix K. The damping matrix is frequency dependent, and for response frequency ωi the
damping is written like:

Ci =αi K (3.2)
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Figure 3.8: Illustration of time sharing (Passano et al., 2014)

where αi = 2ξ
ωi

. ξ is the structural damping ratio.

The hydrodynamic damping is modeled at zones outside the excitation zones, and are due to
drag forces. The damping force, over the length ∆L, is defined as:

F D = Ru̇∆L (3.3)

Here u̇ is the response velocity.

The damping coefficient distributed over the length of the damping zones is referred to as R. As
a default value for this coefficient, VIVANA uses Venegopal’s damping model propsed by Ven-
uopal (1996). In this model, formulas for calculating R for low and high velocity zones and for
still water are given in (Passano et al., 2014). The other possibility is to use the data for excitation
force coefficients outside of the excitation zones, and combine this information with a general
model for still water damping.

Since the excitation force coefficients turn negative for large values of the amplitude ratio, damp-
ing may also occur inside the excitation zones. VIVANA calculates the distributed damping co-
efficient according to the following formula:

RCe =−ρDU 2Ce

2ωA
(3.4)
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3.1.5 Solving the dynamic equilibrium equation

As already stated, VIVANA solves the dynamic equilibrium, Equation 3.5, in the frequency do-
main.

Mr̈ +C ṙ +K r = R (3.5)

the excitation force R is assumed to be harmonically oscillating. Introducing a complex notation
we can write:

R = X e iωt (3.6)

Here X, the load vector, contains a real part and an imaginary part. The phase angle of the
harmonic load for the different sections of the structure is contained in this vector. Having har-
monic loading, we assume harmonic response, hence the response is written as:

r = xe iωt (3.7)

We can split the mass matrix M and damping matrix C into a structural and a hydrodynamic
component. We can also define an excitation force vector XL which is zero outside the excitation
zones. The result is:

(Ms +MH )r̈ + (Cs +CH )ṙ +K r = XLe iωt (3.8)

Substituting the expressions for r into the equilibrium equation we get:

−ω2(Ms +MH )x + iω(Cs +CH )x +K x = XL (3.9)

Now, stating that the hydrodynamic damping coefficient and excitation force are functions of
the response, we can write the response vector as:

x = [−ω2(Ms +MH )+ iω(Cs +CH (x))+K ]−1XL(x) = H(ω)XL(x) (3.10)

Here, H(ω) is referred to as the frequency response matrix.

For consistency in the solution, iteration must be applied to assure agreement between re-
sponse, damping and excitation force.



Chapter 4

Time domain VIV models

Several time domain VIV models have been developed during the last decades. In this chap-
ter, some of these methods are presented. Thorsen’s time domain VIV model is the basis for
the analysis part of this thesis (see Chapter 7 and 8). Because of this, Thorsen’s VIV model is
presented in great detail, in the next chapter.

4.1 Wake oscillators

Several attempts creating a time domain VIV model use the concept of a wake oscillator. A con-
cept which was introduced by (Zarantonello and Brikhoff, 1957). The basic idea of the wake
oscillator is that a a single variable is capable of describing the vortex shedding process. The
variable satisfies a van der Pol equation describing a self-sustained, stable and nearly harmonic
oscillator of finite amplitude (Facchinetti et al., 2004).

4.2 The MARINTEK model

(Lie, 1995) proposed a time domain VIV model which was described and compared to other VIV
models by (Larsen and Halse, 1997). In the following it is refer to as the MARINTEK model. The
model is applicable in cross-flow direction only, and does not take into account increased drag
force due to the cross-flow vibrations. The structure is a finite element model and the dynamic
equilibrium equation is solved using direct time integration.

The dynamic equilibrium is presented as:

(M +C A)ẍ(t )+ (C +CL)ẋ(t )+K x(t ) = Fv (t ) (4.1)
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M, C and K are the structural mass, damping and stiffness matrix respectively. x(t) is the cross
flow response vector, ẋ(t ) is the cross flow velocity vector and ẍ(t ) is the cross flow acceleration
vector. The hydrodynamic load is given by Fv , CL and C A. Fv is the Strouhal load vector, CL is
the hydrodynamic damping matrix and C A is the added mass matrix.

The model is semi-empirical and based on experiments by (Sarpkaya, 1978). The experiments
consist of forced harmonic motion of cylinders in steady flow. Describing the measured load
as given in Equation 4.2, it is possible to extract a force coefficient in phase with acceleration
(Cmh) and a coefficient in phase with velocity (Cdh). ωc is the frequency of the forced harmonic
motion.

FL = 1

2
ρDLU 2[Cmh si n(ωc t )−Cdhcos(ωc t )] (4.2)

From Sarpkaya’s data, the MARINTEK model defines the added mass coefficient and damping
coefficient as follows:

C A =Cmh
ρDLU 2

2xaωc
2

(4.3)

CL =Cdh
ρDLU 2

2xaωc
(4.4)

where xa is the amplitude of the forced oscillation.

The forces caused by the vortex shedding process is found in the Strouhal load vector Fv given
as:

Fv = 1

2
ρDLU 2Cv si n(ωv t +φv ) (4.5)

where ωv is the Strouhal frequency, φv is the phase shift between the force and the structural
response and Cv is an empirical force coefficient.

To solve Equation 4.1 the response is allowed to build up with Fv as the only excitation force.
Then, the following procedure for time integration is performed (Larsen and Halse, 1997):

1. Based on the previous time history for each node of the structural model, frequency of
oscillation an amplitude are found

2. Reduced velocity at each node is calculated from UR = 2πU
ωD

3. CL and C A are found from Equation 4.3 and 4.4 for each node
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4. The calculated hydrodynamic coefficients are introduced in Equation 4.1, and the dy-
namic equilibrium equation can be solved for this specific time step

What is positive with the MARITNEK model is that correlation length is not of concern. The re-
sponse calculated from the procedure above will automatically build up correlation. Determi-
nation of correlation length has been a problem in earlier VIV models (Larsen and Halse, 1997).
One example is the LICengineering model, where a model for vortex shedding correlation gives
the correlation length. A more detailed description of the LICengineering model can be found
in (Hansen, 1982).

A limitation regarding the MARINTEK model is due to the empirical coefficients. Since the ex-
perimental results are based on only one active frequency, the model will have trouble predict-
ing VIV for structures with several active modes and frequencies. Also in a case with oscillating
inflow, the time integration method applied will make it difficult to distinguish the convergency
process and the transient dynamic effect.

4.3 Time Domain model by Lyle Finn, Kostas Lambrakos and
Jim Maher

A time domain VIV model for prediction of riser VIV was developed and presented in (Finn et al.,
1999). The goal with the method was to get a better VIV prediction tool than SHEAR7, for risers.
Risers behave highly nonlinear due to moving contact point between riser and seabed, and also
due to vessel motion on the sea surface. A linear frequency domain model is not capable of cap-
turing these effects in a satisfactory way.

The time domain VIV model is three-dimensional. The force model is based on Morison’s equa-
tion, including both a drag force term and an inertia term. The hydrodynamic force model is
decomposed into an in-line model and a transverse (cross-flow) model.

The in-line force is given as:

FI T = FD I +FI I (4.6)

The drag term FD I is:

FD I = 1

2
ρDCD |Vr el |VI N (4.7)

Here, Vr el is the resultant relative velocity vector between the inflow velocity and response ve-
locity. VI N is the in-line component of the relative velocity.
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The inertial term FI I is given by:

FI I = ρπD2

4
(Ca(aW I −aRI )+aW I ) (4.8)

Here, aW I is the in-line acceleration of the water and aRI is the in-line acceleration of the riser.

The transverse force also consists of an inertia term and a drag term. They are given in the same
way as in Equation 4.6 and 4.8, except for the in-line components of velocity and acceleration
are replaced by the corresponding components in transverse direction. The difference between
the in-line force and the transverse force is that the transverse force also includes the lift force.
The lift force is given by:

FL = 1

2
ρCL(t )DVI N

2 (4.9)

The lift force coefficient is:

CL(t ) =CL0cos(2π fL t +φL) (4.10)

Where CL0 is the amplitude of the lift coefficient. It depends on Reynolds number and the am-
plitude of the VIV motions. fL is the frequency of the lift coefficient and φL is the phase of the
lift coefficient. fL andφL are determined from experimental results presented by (Blevins, 1990).

The presented force model is coupled to the FEM software ABAQUS. It makes it possible to ac-
count for geometric nonlinearities like large displacements and seafloor contact.

4.4 Time domain model by Philippe Mainçon

(Mainçon and Larsen, 2011) proposed a time domain VIV model. The work was based on the
postulate:

The fluid force on a section of the slender structure, is completely determined by the
recent histories at that section of the velocities of the structure and the undisturbed
fluid (Mainçon and Larsen, 2011)

By this formulation essential assumptions of the VIV model are included. Looking at the fluid
forces on "a section" of the slender structure indicates that strip theory is assumed. This means
that in the fluid, the fluid forces on one section are not influenced by the fluid force on another
section. Furthermore, that the forces are "completely determined" means that the model is de-
terministic. The most important point in the postulate is related to the velocities of the fluid
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and the structure. In (Mainçon and Larsen, 2011) the word "tachogram" is used as the "recent
history of x and y components of the velocity". This velocity history has to be determined in
order to find the fluid forces on the section, and how this is done is a key point of this method.
An illustration of the postulate is given in Figure 4.1.

Figure 4.1: Illustration showing that the velocity trajectory in in-line and cross-flow for a section
gives the fluid forces in in-line and cross-flow direction (Larsen)

The VIV model can be split up into the following steps (Mainçon and Larsen, 2011):

• The velocity of the cylinder relative to the fluid is found

• the velocity is scaled making the cylinder diameter the unit of distance

• The tachogram is compressed into a small number of "Laguerre coefficients"

• The Laguerre coefficients are used to enter an interpolation function returning the x and
y component of the hydrodynamic force

• The force is scaled back to the relevant diameter

• Forces related to acceleration of the fluid flow is added

A problem with this work is to determine what is recent time history, to be able to find the forces.
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The model also needs data for a large number of trajectories. From case studies performed by
(Mainçon and Larsen, 2011) the conclusion is that trajectory stability and related issues has to
be understood in greater detail to make this model an engineering tool.



Chapter 5

Thorsen’s time domain VIV model

Since 2012 Mats Jørgen Thorsen has worked on a description of the hydrodynamic forces caused
by VIV. Finding a hydrodynamic force formulation applicable in time domain, Thorsen is devel-
oping a calculation program, making it possible to predict VIV response, for slender marine
structures, by solving the dynamic equilibrium equation in time domain. The following discus-
sion is based on (Thorsen et al., 2014), (Thorsen et al., 2015a) and (Thorsen et al., 2015b).

The structure is divided into a set of elements, and the program calculates the hydrodynamic
forces at each element by assuming no hydrodynamic interaction between them. The struc-
ture is a FE model with structural stiffness, damping and mass. The program calculates CF
VIV and IL VIV separately due to the assumption of small displacements and linear structural
behavior. The coordinate system is defined as shown in Figure 5.1. The x-axis represents the IL-
displacement away from the static equilibrium position, while the y-axis represents the cross-
flow displacement. Furthermore x and y are used as subscripts indicating in-line and cross-flow
respectively.

Figure 5.1: The coordinate system used in NTNU time domain (Thorsen et al., 2015b)
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5.1 Hydrodynamic force model in cross-flow direction

The hydrodynamic force model consists of three terms:

• The excitation force Fexc,y

• The damping force Fd ,y

• The added mass force Fa,y

The excitation force is due to vortex shedding changing the pressure field around the cylinder,
causing a force resultant in the y-direction. It is given as:

Fexc,y = 1

2
ρDU 2Cv cos(φexc,y ) (5.1)

A main difference between this program and other VIV models is the synchronization between
the oscillation frequency of the cylinder and the vortex shedding frequency. Inspired by bio-
logical synchronization mechanisms (Thorsen et al., 2014), Thorsen was able to mathematically
describe a relation between the frequency of oscillation and the vortex shedding frequency. This
property is expressed in φexc,y referred to as the instantaneous phase of the force.

dφexc,y

d t
= H(φẏ −φexc,y ) (5.2)

φẏ is the instantaneous phase of the cross-flow velocity and H is a function of φẏ −φexc,y , de-
termined from modified data of the excitation coefficient. The meaning of Equation 5.2 can be
explained by looking at two different signals oscillating from 0 to 2π with a phase shift between
them. This is illustrated in Figure 5.2. Equivalently, we can look at the oscillations as time de-
pendent angles around the unit circle. We now let one signal be the instantaneous phase of the
force, and the other signal is the instantaneous phase of the cross-flow velocity. In order for the
two signals to synchronize to each other, assuming the phase of the cross-flow velocity constant
and larger than the phase of the force, φexc,y has to increase for the two phases to be equal.

Mathematically speaking
dφexc,y

d t > 0 when φẏ is constant. This is the situation in Figure 5.3.

The function H gives the synchronization properties between the excitation force and the oscil-

lation frequency of the cylinder. It is made non-dimensional so that f̂ = f D
U = HD

2πU , where f is the

oscillation frequency of the cylinder. As seen from Figure 5.4, f̂ ∈ (0.1,0.25). Thus f̂ has to be
in this range for lock-in to occur. If not, the excitation force will not synchronize to the cylinder
velocity, and the fluid will be unable to transfer energy to the structure. Hence the vibration
amplitudes will be severely reduced.
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Figure 5.2: Two oscillating signals with a phase lag between them (Thorsen et al., 2015b)

Figure 5.3: The instantaneous phase of cross-flow velocity and the instantaneous phase of the
excitation force (Thorsen et al., 2015b)

The excitation force is a function of the cross-flow motion amplitude referred to as y0. This
dependency is expressed in the non-dimensional coefficient Cv = Cv ( y0

D ), and is based on ex-
perimental results. The relation is shown in Figure 5.5
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Figure 5.4: Non-dimensional frequency plotted against the instantaneous phase of the cross-
flow velocity minus the instantaneous phase of the force (Thorsen et al., 2015b)

Figure 5.5: Cv as a function of the amplitude ratio (Thorsen et al., 2015b)

The damping force is due to resistance created by cross-flow cylinder motion (Thorsen et al.,
2015b). It is given by the following formula:
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Fd ,y =−1

2
ρDCd ,y |ẏ |ẏ (5.3)

Where Cd ,y = 0.31 + 0.89 y0
D . The damping force model was originally based on the damping

model proposed by (Venugopal, 1996). However, for the damping model to work in time do-
main, modifications had to be done to make the damping not a function of frequency. In the
latest version of the damping force model, as presented here, there is good agreement with ex-
perimental results from (Vikestad et al., 2000) and (Morse and Williamson, 2009).

The added mass force is the force caused by the changing pressure field due to the cylinder
acceleration. Based on potential theory we get:

Fa,y =−ρπD2

4
ÿ (5.4)

Thus the total hydrodynamic force in cross-flow direction is expressed as:

Fy = 1

2
ρDU 2Cv cos(φexc,y )− 1

2
ρDCd ,y |ẏ |ẏ −ρπD2

4
ÿ (5.5)

5.2 Hydrodynamic force model in in-line direction

Concerning in-line VIV, the hydrodynamic force is based on the same principles as for the cross-
flow case. The force is split up into an excitation term, a damping term and an added mass term.
However, there are some differences. The motion amplitudes for in-line VIV are strongly depen-
dent on cross-flow motion (Larsen, 2011). This is shown in Figure 5.6. It is observed that for
Ur > 2.5 both IL and CF VIV will occur, and as a result of increasing cross-flow motion ampli-
tudes, the in-line amplitudes will also increase. Thus, it is important that the present VIV model
is able to capture this physical effect. Thorsen’s VIV model is not capable of predicting IL VIV for
Ur less than 2.5. This is due to the excitation force model (Equation 5.6), which depends on the
maximum cross-flow amplitude. At reduced velocity less than 2.5, CF VIV is not present.

The excitation force in in-line direction is derived assuming that the relative inflow velocity on
the structure is normal to the excitation force vector. This is illustrated in Figure 5.7. Physically,
we can argue that for a stationary cylinder, the in-line force component of the excitation force is
much smaller than the cross-flow component. Thus the undisturbed inflow velocity is approx-
imately normal to the excitation force vector. For an oscillating cylinder, the same argument is
applied, but instead of the undisturbed inflow velocity, the relative velocity is assumed normal
to the excitation force (Thorsen et al., 2015a).

Based on this simplification the following formula for the oscillating excitation force in in-line
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Figure 5.6: Trajectory and amplitude of vibrations for the midpoint of a flexible beam for in-
creasing flow velocity (Larsen, 2011). Originally from (Aronsen, 2006)

Figure 5.7: Cylinder with undisturbed inflow velocity U, relative velocity ~V and excitation force
vector ~Fexc (Thorsen et al., 2015a)

direction can be derived:

Fexc,x = 1

4
ρDU ẏmaxCv cos(φexc,x) (5.6)

Where ẏmax is the maximum CF velocity, Cv is the same amplitude dependent function as for
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the CF case, and φexc,x is the instantaneous phase of the IL velocity.

(Pettersen, 2007) states that the IL excitation force oscillates with two times the vortex shedding
frequency, while the CF excitation force oscillates with the vortex shedding frequency. Using

the notation formulated by Thorsen this implies that
dφexc,x

d t = 2
dφexc,x

d t . However, for lock-in to
occur, the in-line excitation force need to be able to synchronize with the in-line velocity of the
cylinder. This is obtained assuming:

dφexc,x

d t
= 2

dφexc,x

d t
[1+αsi n(φẋ −φexc,x)] (5.7)

Where α is a small number so that
dφexc,x

d t ≈ 2
dφexc,x

d t .

The total hydrodynamic force in in-line direction is given as:

Fx = 1

4
ρDU ẏmaxCv cosφexc,x − 1

2
ρDCd ,x |ẋ|ẋ −ρπD2

4
ÿ (5.8)

Where Cd ,x = 0.31+0.89 x0
D

5.3 Phases and amplitudes

To implement an excitation force depending on response, we need a way of extracting this in-
formation in the dynamic analysis. Assuming a narrow-banded signal the response amplitude
can be estimated from:

Ay = 1

2

∫ t2

t1

|ẏ |d t (5.9)

Here t1 and t2 are the time at the most recent zero up crossings of the velocity. The synchroniza-
tion model needs the phase of the velocity. The concept of phase portraits is used to find the
phase. More information about the phase portrait is provided in (Thorsen et al., 2015a).

5.4 Structural model

The structure itself consists of 2D beam elements in a finite element model. Axial degrees of
freedom are not taken into account, so that each element has two rotation dofs and two trans-
lation dofs. The dynamic equilibrium equation is given as:
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Mr̈(t )+Cṙ(t )+Kr(t ) = F(t ) (5.10)

The mass matrix M is based on a consistent mass formulation and the added mass term from
the hydrodynamic force is included. The damping matrix C provides the structural damping,
and a Rayleigh-damping formulation is applied so that C =α1M+α2K. K is the stiffness matrix
and is a sum of the bending stiffness and the geometric stiffness due to tensioning. r(t ) con-
tains the nodal displacements, and the hydrodynamic force vector F(t ) contains either in-line
or cross-flow hydrodynamic forces. Equation 5.10 is solved using time integration. Newmark-β
is applied with λ= 0.5 and β= 0.25 (see Section 7.1).



Chapter 6

Pipelines

Pipelines are frequently used by the offshore industry for transportation of oil and gas to land
terminals (Larsen et al., 2004). When laid on an uneven seabed, these pipelines will have several
free spans, as is the case for the Ormen Lange field in the North Sea. When facing a current,
the free spans will be subjected to an oscillating excitation force, due to the vortex shedding
process. If the structural characteristics of the free spanning pipe, the seabed profile and the
current condition is such that the frequency of the excitation force is close to an eigenfrequency
of free spanning pipe, we get VIV. The resulting stresses can cause fatigue damage. It is thus
important to make fairly accurate predictions of VIV, to make sure the estimated lifetime of the
pipeline is acceptable.

A good prediction tool for VIV on free spanning pipelines requires a model taking into account
all important nonlinear effects. The pipe-seabed interaction requires nonlinear seabed springs.
They should allow the pipe to lift off from the soil, but to some extent prevent pipe penetra-
tion of the seabed. Also nonlinear soil damping can be of importance for the pipeline response.
Boundary conditions will be time varying because the touch down point position is a function
of pipeline response, soil erosion and tension variations. This will again affect the length of the
free span.

There are still many uncertainties related to the hydrodynamics for a pipe close to a seabed.
Empirical VIV models are typically based on coefficients found from tests with beams in infinite
fluid. The hydrodynamic situation will be different when the cylinder is close to a wall. More
knowledge about soil pipe-interaction is a key point for better prediction tools of VIV for free
spanning pipelines. Data on cylinder vibrations close to a wall exists, but has traditionally not
been implemented in VIV codes.

39
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6.1 Pipe-soil interaction

Pipe-soil interaction is complex. It depends strongly on the soil properties, which are not easily
obtained. In addition, parameters like loading history, load rate and amplitude are important
for the interaction (Veritas, 2006). In the following, general recommendations for how to deter-
mine soil stiffness and soil damping levels based on (Veritas, 2006), are briefly discussed. Also, a
simplified method for determination of the soil parameters is presented. Then, methods on how
to account for nonlinear soil-pipe interaction in a nonlinear FE model, are given. We limit our-
selves to look at the vertical soil-pipe interaction properties. This means horizontal interaction,
such as friction, is not discussed.

6.1.1 Stiffness due to soil-pipe interaction

The soil stiffness depends on the material of the soil. In (Veritas, 2006) the soil is classified into
cohesive soil (clays) and cohesionless soil (sand). The different soil materials have different
properties, and the Recommended Practice suggests what properties to use. Some of the prop-
erties are: Submerged weight, Poisson ratio, shear strength and plasticity index. Based on the
soil properties, formulas for vertical reaction forces per unit length are proposed. Rv is used as
the symbol for reaction force per unit length, and v is the symbol for penetration.

(Veritas, 2006) differ between the static soil stiffness and the dynamic soil stiffness. The static
soil stiffness is determined as Kv,s = Rv /v and the dynamic stiffness as Kv = ∆Fv /∆δv . Here,
∆Fv is the vertical dynamic force between pipe and soil per unit length, and ∆δv is the associ-
ated vertical displacement of the pipe.

The vertical soil stiffness may be evaluated as:

KV = 0.88G

1−ν (6.1)

"This equation is based on elastic half space theory for a rectangular foundation under assump-
tion of a pipe length that equals 10 times the contact width between pipe and soil" (Veritas,
2006). Here, G is the shear modulus and ν is the Poisson’s ratio.

Another option, when the seabed shape is not complex, is to express Kv [kN /m2] as:

Kv = Cv

1−ν (
2

3

ρs

ρ
+ 1

3
)
p

D (6.2)

where ρs
ρ is "specific mass ratio between the pipe mass (not including added mass) and the dis-
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placed water" (Veritas, 2006). The corresponding values of Cv and the static soil stiffness Kv,s is
given in the tables below.

Table 6.1: Stiffness properties for pipe-soil interaction in sand (Veritas, 2006)
Sand type Cv [kN /m5/2] Kv,s [kN /m2]
Loose 10500 250
Medium 14500 530
Dense 21000 1350

Table 6.2: Stiffness properties for pipe-soil interaction in clay (Veritas, 2006)
Clay type Cv [kN /m5/2] Kv,s [kN /m2]
Very soft 600 50-100
Soft 1400 160-260
Firm 3000 500-800
Stiff 4500 1000-1600
Very stiff 11000 2000-3000
Hard 12000 2600-4200

6.1.2 Damping due to soil-pipe interaction

For a pipeline with bottom contact, we will have a damping contribution from the soil-pipe in-
teraction. It can be split into two mechanisms:

• Material damping associated with the pipe-soil interaction

• Radiation damping due to elastic waves

The radiation damping is strongly dependent on oscillation frequency, and is more important
for high frequency oscillations. It is mainly the material damping which is important for free
spanning pipelines. This damping mechanism is associated with the material properties of the
pipe an the sea bottom. The soil typically consists of sand or rocks and can have a large variety
of hardnesses. In general, softer soil will give a larger soil damping. However, there are large un-
certainties related to the material properties of the soil, which must be taken into consideration
when choosing a damping level in the VIV analysis. In (Veritas, 2006) recommended values for
the modal soil damping ratio is given for different soil types and hardnesses.

A modal analysis for determination of soil damping values is proposed. The modal soil damping
ratio is defined as follows:

ξsoi l =
1

4π f0

∫
L c(s)φ2(s)d s∫

L m(s)φ2(s)d s
(6.3)
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where c(s) is the distributed soil damping. It depends on elastic energy stored by the soil and
the energy dissipated by the viscous damper.

In a FEM analysis, c(s) must be modeled with discrete dampers. In this case the viscous damp-
ing coefficient ci for support i is found from:

ci = 2ξi
ki

ω
(6.4)

ki is linearized spring stiffness at support i, ξi is the damping ratio at support i and ω is the an-
gular frequency of the mode. The damping ratio can be found from the following formula:

ξi = 1

4π

EDi ssi pated

EEl ast i c
(6.5)

EDi ssi pated is the energy loss per cycle at support i, and EEl ast i c is the equivalent elastic energy
at support i. This is illustrated in Figure 6.1.

Figure 6.1: Energy dissipation at soil support (Veritas, 2006)

The soil damping depends on support displacements and is nonlinear. Iteration must be per-
formed to assure agreement between ki and ξi , for determination of ci in Equation 6.4. In Fig-
ure 6.2, we see how the soil stiffness and the damping ratio depend on dynamic displacement
and soil penetration.
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Figure 6.2: Characteristics of a nonlinear soil damper (Veritas, 2006)

In addition to the material damping and radiation damping, hydrodynamic damping close to
the soil can be a contribution to the total soil-pipe interaction damping. When the pipe moves
up and down relative to the soil, the induced fluid motion will generate damping.

6.1.3 Simplified method to determine soil stiffness and soil damping

As an estimate of the soil stiffness and the soil damping values, the simplified procedure applied
in the Project Thesis (Ulveseter, 2014), can be used.

The critical damping per meter is given as:

ccr = 2(m +ma)ω0 (6.6)

where m is the dry mass per meter and ma is the added mass per meter,ω0 is the eigenfrequency

given as ω0 =
√

k
m+ma

, and k is the soil stiffness per meter. Thus,

ccr = 2
√

k(m +ma) (6.7)

We assume that where we have pipe-soil interaction, the penetration of the seabottom is 1/4
of the pipe radius. Statically, the force on the seafloor from the pipe is due to the submerged
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weight of the pipe (see Figure 6.3). From this, assuming a linear spring stiffness we can make
use of Hooke’s Law, and hence find the spring stiffness.

ks = F

∆x
(6.8)

where the force F = (m −ρA)g and ∆x = 1
4 R. R is the radius of the pipe, A is the cross section

area, ρ is the density of water and g is the gravitational acceleration.

The relative damping ratio is given as λ = cs
ccr

. This implies that the vertical soil damping as
function of the relative damping ratio can be found as:

cs =λ2
√

k(m +ma) (6.9)

Using these assumptions, the soil stiffness is given directly from Equation 6.8. The vertical soil
damping can be determined from an estimation of the damping ratio according to Equation 6.9.
This procedure is used in the case studies in Chapter 8, where the damping ratio λ is used to in-
dicate the magnitude of the soil damping.

Figure 6.3: Pipeline penetrates the seafloor due to the submerged weight of the pipeline

6.1.4 Soil-pipe interaction implemented in a FE model

In a FE model, soil-pipe interaction must be included using discrete damper and stiffeners at
vertical translations dofs where the pipe penetrates the seafloor. This is discussed in (Lie et al.,
2001) and (Larsen and Passano, 2006), where VIV calculations on catenary risers are the topic.
The same theory is applicable for free spanning pipelines.

There are three models that can be used for analyses of seafloor-pipe interaction. In Figure 6.4,
the principles are illustrated.
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• Truncated model: The free span is simply supported at both ends. All energy is reflected
back from the support points, and the seabed is not taken into account. This simple model
is often used in VIV analyses.

• Elastic spring support: The seabed at the pipe shoulders is modeled with soil springs.
Thus the energy is not reflected from a single point, but from all the elastic springs. This
model is more realistic and accurate than the truncated model, concerning local stress
distribution around the touch down point.

• Springs and dampers: In addition to the elastic springs, discrete dampers at the soil con-
tact points will transfer some of the energy to the fluid. This is the most realistic model
due to the soil-pipe damping as described in Section 6.1.2.

Figure 6.4: Modeling of soil-pipe interaction in a FE-analysis (Larsen and Passano, 2006)

The most accurate FE model, will be the third item in the list above, using nonlinear springs and
dampers. The nonlinearity is due to the varying soil contact. The springs and dampers should
be turned off when the pipeline rises from the seafloor, and should be turned on again in case of
seafloor penetration. Linear springs and dampers do not allow this. The touch down point will,
in the linear case, be fixed, at the static value. This makes it impossible to include new springs if
the pipeline penetrates the soil at new positions. Also, springs are not removed in case of spring
tension. The difference between linear and nonlinear springs is shown in Figure 6.5. The same
concept applies for soil dampers.
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Figure 6.5: Linear soil springs (red dashed line) and nonlinear soil springs (black line) (Larsen
and Passano, 2006)

6.2 Modeling of VIV for pipelines

To include nonlinearities in the VIV model related to nonlinear springs at the shoulders, we must
perform a nonlinear time domain analysis. Such a nonlinear time domain method is presented
in (Larsen and Koushan, 2005) and (Larsen et al., 2004), where it is applied to free spanning
pipelines. From Section 3.1 we know that VIVANA solves the dynamic equilibrium equation in
frequency domain. A procedure for nonlinear time domain analysis using VIVANA together with
RIFLEX is still possible. The procedure is as follows:

• Nonlinear static analysis in RIFLEX

• Frequency domain analysis in VIVANA

• Use the result (nodal forces, dominating frequencies, added mass and damping) from VI-
VANA and transfer back to RIFLEX.

• Perform a nonlinear time domain analysis in RIFLEX

The first two steps in this method are the traditional steps of a VIVANA analysis. What we achieve
with the addition of the two last steps is to take the nonlinearities into consideration. This will,
in theory, give a better prediction of the local stress distribution around the pipe shoulders,
since we here will have nonlinear behavior. Using the procedure in the list above it is important
to make sure that the response pattern for the VIVANA frequency domain solution and the time
domain solution is approximately the same. If not, the result from the frequency analysis is not
applicable in time domain. This is because the hydrodynamic coefficients depend on response.

CFD is briefly discussed as a tool for VIV prediction in Section 2.2, but it is concluded that the
computational cost is too high. However, attempts have been made to predict VIV for pipelines
splitting up the pipe in 2-dimensional sections. This was done by (Halse, 1997), and the concept
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is illustrated in Figure 6.6. The hydrodynamic forces are calculated for predefined sections solv-
ing Navier-Stokes equations. The force is assumed constant between the sections. This force
model was coupled to a linear structural model by Halse, to illustrate a free spanning pipeline.

The force model is a function of time, so that the structural model can be coupled to a nonlinear
structural model taking important nonlinearities into consideration. Unfortunately, the force
model fails at high Reynolds numbers, due to the highly 3-dimensional flow picture around a
pipe.

Figure 6.6: Illustration of 2-dimensional sections where CFD is applied to find hydrodynamic
forces on a free spanning pipeline (Halse, 1997)
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Matlab code for VIV prediction of free
spanning pipelines

In Section 5, a time domain VIV model developed by Mats Thorsen was presented. As discussed
in Section 2.2 a time domain solution gives rise to more possibilities than a frequency domain
model. The possibilities related to nonlinear soil dampers and nonlinear soil springs are tested
and the resulting program is presented in the following. We will see how Thorsen’s VIV model
can be used as the basis for a simplified nonlinear analysis program of free spanning pipelines,
referred to as Ulveseter’s model.

7.1 Nonlinear time domain analysis

Ulveseter’s model is based on a general procedure for nonlinear dynamic analysis. The theory
is based on (Langen and Sigbjörnsson, 1979). It is assumed that the most important nonlinear-
ity for a free spanning pipeline is due to soil-pipe interaction, so geometric nonlinearities due
to large displacements and nonlinear material properties are not discussed, and not taken into
account in Ulveseter’s model.

Our goal is to solve the dynamic equilibrium equation given as:

Mr̈ (t )+F D (t )+F S(t ) =Q(t ,r, ṙ ) (7.1)

Here F D (t ) is the nonlinear damping force (due to varying contact between soil and pipe) and
F S(t ) is the nonlinear restoring force (also due to varying contact between soil and pipe).

Equation 7.1 is solved using time integration. Subscripts are introduced indicating equilibrium
at a given time step. Subtracting the equilibrium equation at time step k from equilibrium at
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time step k+1, we get the following incremental formulation:

M(r̈k+1 − r̈k )+ (F D
k+1 −F D

k )+ (F S
k+1 −F S

k ) =Qk+1 −Qk (7.2)

We write this equation as:

∆F I
k +∆F D

k +∆F S
k =∆Qk (7.3)

Where the following equations are valid:

∆rk = rk+1 − rk (7.4)

∆F I
k = M∆r̈k (7.5)

∆F D
k = F D

k+1 −F D
k =C I k∆ṙk (7.6)

∆F S
k = F S

k+1 −F S
k = K I k∆rk (7.7)

∆Qk =Qk+1 −Qk (7.8)

K I k and C I k are the incremental stiffness matrix and damping matrix between time step k and
k+1 respectively. In the case of a pipeline these matrices will depend on the soil contact. If, at a
node around the shoulders, the pipe penetrates the seabed, a soil damping term and soil stiff-
ness term is added to corresponding positions in the incremental matrices.

In theory we do a linearization of the stiffness and damping matrix within the time increment.
The linearization depends on results from both time step k and time step k+1. However, since
the result at time step k+1 is unknown, the initial incremental value is used.

The governing equation can now be written as:

M∆r̈k +C I k∆ṙk +K I k∆rk =∆Qk (7.9)

Equation 7.9 can be solved for ∆rk , ∆ṙk and ∆r̈k using nonlinear Newmark-β time integration.
The problem is that we have no guarantee that there is equilibrium between internal and exter-
nal forces, because the linearization of K I k and C I k only depends on the initial time step tk . To
solve this challenge iteration has to be introduced, or the time step has to be so small that con-
vergence still is achieved. As discussed in Section 7.2, Ulveseter’s model does not use iteration.
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However, iteration schemes where tested in the code, but was later rejected due to satisfactory
results, without iteration. General iteration procedures, which were considered in Ulveseter’s
model, are based on finding the load residual.

The load residual (error) can be expressed as:

∆Fk+1 =Qk+1 − (F I
k+1 +F D

k+1 +F S
k+1) (7.10)

To iterate on the error we substitute ∆Qk in Equation 7.9 with ∆Fk+1 in Equation 7.10 and com-
pute a correction ∆k to ∆rk . In Figure 7.1 we see the difference between iteration and no itera-
tion. The algorithm for iteration, using i as the iteration number, is:

M∆̈i
k +C I k∆̇

i
k +K I k∆

i
k =Qk+1 − (F I

k+1
i−1 +F D

k+1
i−1 +F S

k+1
i−1

) (7.11)

The new displacement increment is now:

∆r i
k =∆r i+1

k +∆i (7.12)

Figure 7.1: Internal and external force with and without equilibrium correction (Langen and
Sigbjörnsson, 1979)

The iteration using Equation 7.11 has constant C I k and K I k for every iteration loop. This proce-
dure is called Modified Newton-Raphson. It is typically used due to lower computational effort
than Newton-Raphson, where the incremental matrices are updated for each iteration. The dif-
ference is shown in Figure 7.2.
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Figure 7.2: Equilibrium iteration (Langen and Sigbjörnsson, 1979)

Newmark-β

Newark-β is the time integration procedure used in Ulveseter’s model. In the linear case, the
equation for displacement and velocity at time step tk+1 is given as:

ṙk+1 = ṙk + (1−λ)hr̈k +λhr̈k+1 (7.13)

rk+1 = rk +hṙk + (
1

2
−β)h2r̈k +βh2r̈k+1 (7.14)

where h is the length of the time step, and β and λ are weighting factors. The weighting terms
determine the nature of the time integration procedure. Using β = 0.25 and λ = 0.5, the time
integration procedure correspond to the method of constant average acceleration. λdetermines
the artificial damping. If this value equals 0.5, no artificial damping is present. The method
can also be formulated on incremental form, which is convenient for nonlinear analyses. More
information about this can be found in (Langen and Sigbjörnsson, 1979). The inspiration for the
nonlinear Newmark-β algorithm used in Ulveseter’s model is given in Appendix B.

7.2 Limitations and general remarks

Ulveseter’s model is limited to cross-flow vortex induced vibrations. Thorsen’s original hydro-
dynamic force model is used even though it is based on a cylinder oscillating in infinite fluid.
This is questionable for a pipeline close to the seabed. At positions along the pipe where we
have initial contact between the pipe and the seabed, the hydrodynamic force is assumed equal
to zero. This is done because of large uncertainties related to the hydrodynamics around a pipe
resting on the seabed. Thus the hydrodynamic external force is only active along the initial free
span. The program is 2D and axial dofs are neglected as for the original program by Thorsen.
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Thus soil friction is not considered.

Semi nonlinear model

As discussed in (Larsen, 2014), a finite element analysis should start from a stress free config-
uration. A nonlinear time domain analysis can then be applied to find the static configuration
of the pipeline, giving equilibrium between gravitational forces, buoyancy forces and stiffness
forces due to the seabed and the structural characteristics of the pipe. In a linear analysis the
dynamic response is found around the static configuration, including dynamic forces only. A
full nonlinear procedure should apply both static and dynamic loads in the calculation.

Due to convergence problems finding the static equilibrium of the pipeline in still water, Ul-
veseter’s model uses the static configuration found from RIFLEX as input. The response pattern
is found around this static equilibrium configuration, and forces due to gravity and buoyancy
are not included in the force model. The nonlinearities that are accounted for in the simplified
program is varying soil stiffness and damping. Physically, the idea is that when the pipeline is in
contact with the seabed both soil damping and soil stiffness is added to the initial damping and
stiffness matrix, at the vertical translation dofs. When there is no contact between the pipe and
the seabed, the soil damping and soil stiffness terms are removed.

However, when gravitational forces are not included, the pipeline will lift off from the soil in an
unphysical way, because there are no gravitational forces holding it down. To be able to include
gravity and buoyancy in a satisfactory way, some of the soil springs and dampers are allowed
to restrict lift off of, up to a certain limit. We let the soil springs at node positions that are ini-
tially penetrating the seabed, be active until the vertical uplift above the seabed equals the static
equilibrium position due to gravitational forces only. Nodes initially penetrate the seafloor is
referred to as section 1 in Figure 7.3. The behavior of the nonlinear spring force relative to the
vertical uplift over the seabed is illustrated in Figure 7.4.

Looking at element number i initially penetrating the seabed, the static equilibrium yields:

ks l∆i = ws l g (7.15)

Where ks is the soil spring stiffness per length, l is the element length, ∆i is the vertical uplift
above the seabed at node i, ws is the submerged weight per length and g is the gravitational ac-
celeration.

Solving Equation 7.15 with respect to the vertical uplift, we get:

∆i = ws

ks
(7.16)
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Figure 7.3: Illustration of the three sections where the soil springs have different characteristics
to take into account the submerged weight of the pipeline

Figure 7.4: The behavior of the nonlinear spring at an element along the pipeline initially pene-
trating the seabed (section 1), compared to the vertical uplift above the seabed

This means that the vertical translation dofs along the pipe, at nodes initially penetrating the
seabed, the soil springs will be active for∆< ws

ks
(∆= 0 means vertical position of pipeline equals

vertical position of seabed).

As an estimate for the element at the transition between initial seabed penetration and no pen-
etration (referred to as section 2 in Figure 7.3), the vertical translation dof is allowed to have a
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Figure 7.5: The behavior of the nonlinear spring at the transition element for soil contact (sec-
tion 2), compared to the vertical uplift above the seabed

Figure 7.6: The behavior of the nonlinear spring at an element along the pipeline with no initial
penetrating the seabed (section 3), compared to the vertical uplift above the seabed

positive displacement of ∆ < 0.5 ws
ks

for the soil spring to be active. The resulting spring force is
illustrated in Figure 7.5. The factor 0.5 is added because we assume that half the element is pen-
etrating the seabed, while the other half is not. For the vertical translation dofs in the free span
(section 3 in Figure 7.3) the soil springs are only active for ∆< 0. This means that the springs in
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the free span are only active when the pipe tries to penetrate the seafloor. The resulting non-
linear spring force is shown in Figure 7.6. It is observed that no spring tension is allowed in this
case.

Other limitations

An obvious limitation with Ulveseter’s model is the assumption of constant geometry. Ideally,
the geometry should be updated for each time step, introducing a local coordinate system for
each element. What is done in the present model is that soil contact is investigated for a geome-
try that is not changing. This is a contradiction. Since VIV is a self limiting process the response
amplitudes are considered small, so the assumption of constant geometry is not a significant
contribution to errors.

When it comes to the nonlinear springs and dampers used in Ulveseter’s model, they are linear
with respect to stiffness and damping coefficients. This will not be the case for a real pipeline
with soil contact. Other nonlinear effects that can be important for VIV on free spanning pipelines
is varying tension and elasto-plastic material behavior. This is not implemented in the MATLAB
code.

7.3 Validation

Equilibrium and convergence

To ensure equilibrium between internal and external forces will in theory demand iteration due
to the nonlinear soil contact. Due to the fact that Ulveseter’s model is not a fully nonlinear
model, it is hard to implement a general iteration procedure. It is possible to create an iteration
algorithm where we find the exact time the pipeline penetrates the seabed. Then the soil stiff-
ness and soil damping can be added at the correct time giving equilibrium between external and
intern forces. However, when the time step is fixed, the pipeline will not feel the soil penetration
at the correct time. This results in deviations from the dynamic equilibrium. But when the time
step is close to zero, the error introduced is tolerable.

For simplicity, Ulveseter’s model uses small time steps, and no iteration procedures. There has
been performed several tests to document that the dynamic equilibrium is satisfied. The dy-
namic equilibrium at time step k is given as:

M ÿk +Ck ẏk +Kk yk =Qk (7.17)

Here, Ck is the sum of structural damping and soil damping at time step k, and Kk is the sum of
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structural stiffness and soil stiffness at time step k.

Study of Ulveseter’s model shows that the equation is satisfied almost at all dofs at all time steps.
However, some discrepancies are observed. The equality between left hand side and right hand
side of Equation 7.17 is not always satisfied in the area around the shoulders. This must be ex-
pected when iteration is not implemented. However, the study shows that the residuals of sig-
nificant size are rear. This is probably due to the small time step. Equilibrium is always achieved
at the time steps before and after the residual. Since no effect of the residual is observed in the
pipeline response, the conclusion is that iteration is not needed.

When equilibrium is satisfied we must make sure the displacement, velocity and acceleration
are consistent. It is well known that the time derivative of displacement is velocity, and the time
derivative of velocity is acceleration. The time history of a translation dof in section 3 is shown in
Figure 7.7. We see that the displacement is zero when the velocity has a minimum or maximum.
It is also observed that the velocity is zero when acceleration has a maximum or minimum.
The consistency is thus satisfied. However, the acceleration shows significant fluctuations. This
must be expected when using Newmark-β time integration.

Figure 7.7: Relation between displacement, velocity and acceleration for a translation dof in
section 3
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7.4 Program overview

The simplified nonlinear analysis program is built up as indicated in Figure 7.8. The MATLAB-
script "analysis.m" is the main script, and the other blocks in the figure are functions driven
from "analysis.m", in the indicated order.

First input parameters need to be defined. Length of the pipe, external diameter, tension, dry
mass, bending stiffness, current velocity and water density are some of these parameters. The
input parameters also include the soil stiffness and soil damping values. After the initial param-
eters are defined, numerical inputs are chosen. These include simulation time, length of time
step, number of elements in the FE model and parameters used in the Newmark-β time integra-
tion. This is done in "input_parameters.m".

In "RIFLEX_input.m" the static configuration of the pipe relative to the seabed is extracted from
the RIFLEX analysis. This is also the case for the geometry of the seabed. Based on the given
input the static length of the free span is calculated and an equivalent horizontal seabed with a
square valley in the free span is created. The horizontal seabed is later to be used in the linear
analysis.

"FE_model.m" produces the global stiffness matrix as the sum of bending stiffness and geomet-
ric stiffness due to tensioning. A consistent mass matrix is created and the damping matrix is
assumed to have the form of Rayleigh damping. Rows and columns corresponding to the ver-
tical translation dofs at pipe ends are dropped due to the boundary conditions. The pipe is
assumed to be simply supported at this stage.

7.4.1 Ulveseter’s linear model

If type= 1, as indicated in Figure 7.8, a linear analysis will be performed. The structure of "lin-
ear_analysis.m" is given in Figure 7.9. A linear analysis means that the damping matrix and
stiffness matrix are constant through the time integration process of the dynamic equilibrium
equation. Thus to be able to account for the pipe-soil interaction, the soil stiffness and soil
damping values must be added to all the vertical translations dofs initially in contact with the
seabed, before the time integration starts. This is performed in the functions "soil_stiffness.m"
and "soil_damping.m".

The linear time integration is performed in the function "linear_time_domain.m". Here, the
current is aloud to build up slowly from 0 m/s to the value given as input. The hydrodynamic
forces are calculated for the translation dofs in the free span. Here Thorsen’s model is applied.
Then, an algorithm for linear Newmark-β time integration gives the response, velocity and ac-
celeration for the next time step. This loop will continue until the simulation time corresponds
to the chosen value.
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analysis

input_parameters

RIFLEX_input

FE_model

IFlinear_analysis nonlinear_analysis

POSTproc

type=2type=1

Figure 7.8: Program overview

linear_analysis

soil_stiffness

soil_damping

linear_time_domain

Figure 7.9: Overview of the function "linear_analysis.m"
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7.4.2 Ulveseter’s nonlinear model

If type= 2 (see Figure 7.8) "analysis.m" will instead of performing a linear analysis, do a non-
linear analysis. The structure of "nonlinear_analysis.m" is shown in Figure 7.10. The main dif-
ference between the linear and nonlinear analysis is that the nonlinear analysis requires that
the stiffness matrix and damping matrix are calculated for every time step of the time integra-
tion. This is done in the function "nonlinear_soil.m". At every time step this function uses the
information about the seabed position and the response of the pipe to check if the pipe is in
contact with the soil. If there is contact, the input value of the soil stiffness and damping stiff-
ness is added to the vertical translation dofs where we have pipe-soil contact. If there is no
contact, "nonlinear_soil.m" will check the next node along the pipeline without adding stiffness
and damping terms. To include gravity, the pipe is partly restricted against lift off in section 1
and 2 (see Figure 7.3, Figure 7.4 and Figure 7.5). This is implemented in "nonlinear_soil.m".

The hydrodynamic force is calculated in "hydroforce.m" for time step tk+1. This is the same hy-
drodynamic force model as applied in the linear analysis. We now have enough information to
apply an algorithm for nonlinear Newmark-β time integration. This method solves the dynamic
equilibrium equation incrementally. The output is response, velocity and acceleration for time
step tk+1. We then look at the next time step, indicated with the block k = k +1 in Figure 7.10.
The same procedure is applied over and over again until the simulation time is reached.

7.4.3 Post-processing

From the linear or nonlinear analysis, we get matrices consisting of the pipeline response at
all dofs for all time steps. This data is post-processed in the function "POSTproc.m" (see Fig-
ure 7.8). The function "STRESSamp.m" finds the curvature and calculates the maximum stress
amplitude looking at the maximum and minimum value of the stresses at each node. The stress
amplitudes are found considering the last 10% of the simulation time to avoid transient effects.
The stress is found as:

σ= E
D

2

∂2 y

∂z2
(7.18)

Where E is the E-module, D is the pipe diameter and ∂2 y
∂z2 is the curvature of the pipeline.

The stress amplitude is given as:

∆σa = 1

2
(∆σmax +∆σmi n) (7.19)

Where ∆σmax is the maximum stress at a specific node and ∆σmi n is the minimum stress at the
same node. This information makes it possible to find the stress amplitude distribution over the
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nonlinear_analysis

for time step tk

nonlinear_soil

hydroforce

nonlinear_newmark_beta

k = k + 1

Figure 7.10: Overview of the function "nonlinear_analysis.m"
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POSTproc

STRESSamp

fpeak

write_to_file

plots

Figure 7.11: Overview of the function "POSTproc.m"

length of the pipeline.

Next, the response frequency is found from the spectrum in "fpeak.m". Then, "write_to_file.m"
stores results in text-files. Lastly, the results are visualized through the function "plots.m".
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Case studies

In this chapter Ulveseter’s model is tested against VIVANA analyses and a VIVANA/RIFLEX time-
domain analysis. For most cases, the soil damping is varied to see how it influences the pipeline
response, using linear models and the nonlinear model. The different vertical soil damping
values are referred to as a ratio between applied soil damping and the estimated critical soil
damping. The symbol λ is used as the damping ratio, and the procedure for finding this value
is outlined in Section 6.1.3. A test on how the current speed influences the response modes has
also been performed.

8.1 Case 1 - Extension of the Project Thesis

The first case is an extension of the Project Thesis (Ulveseter, 2014). A pipeline on an irregular
seabed is subjected to a constant current in the x-direction (see Figure 5.1). Both VIVANA and
Ulveseter’s model are used to calculate the vortex induced vibrations in the cross-flow direction.
The data for the case is given in Table 8.1.

Table 8.1: Data for Case 1
Name Symbol Size Dimension
Length L 180 m
Diameter D 0.4 m
Bending stiffness EI 8.9∗107 N m2

Mass per unit length (air) m 217.96 kg /m
End tension T 10∗103 N
Current velocity U 1.2 m/s

All linear models are tested for soil damping ratio between 0 and 25% of estimated critical soil
damping (see Equation 6.9), and the soil stiffness is determined from Equation 6.8. The non-
linear Ulveseter’s model is used between 10% and 25% critical soil damping. The structural

62
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damping is set equal to zero in all cases. For both VIVANA and Ulveseter’s model, the static con-
figuration of the pipe relative to the seabed is found from RIFLEX. This is the starting point for
the VIV analysis. It is shown in Figure 8.1.

Results

Figure 8.1: The seabed and the static configuration found from RIFLEX
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Ulveseter’s linear model

Figure 8.2: Snapshots of the cross-flow response from Ulveseter’s linear model, for λ= 0.10

Figure 8.3: Stress amplitudes for different vertical soil damping values, from Ulveseter’s linear
model

Figure 8.4: Response amplitudes for different vertical soil damping values, from Ulveseter’s lin-
ear model
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Ulveseter’s nonlinear model

Figure 8.5: Snapshots of the cross-flow response from Ulveseter’s nonlinear model, for λ= 0.10

Figure 8.6: Stress amplitudes for different vertical soil damping values, from Ulveseter’s nonlin-
ear model

Figure 8.7: Response amplitudes for different vertical soil damping values, from Ulveseter’s non-
linear model
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VIVANA

Figure 8.8: Snapshots of the cross flow response from VIVANA, for λ= 0.10

Figure 8.9: Stress amplitudes for different values of the vertical soil damping, from VIVANA

Figure 8.10: Response amplitudes for different values of the vertical soil damping, from VIVANA
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Comparison between the models

Figure 8.11: Comparison of maximum cross-flow response, for VIVANA and Ulveseter’s model

Figure 8.12: Comparison of maximum cross-flow stress amplitudes, for VIVANA and Ulveseter’s
model
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Observations

• For increasing soil damping, response amplitudes and stress amplitudes decrease in mag-
nitude (Figure 8.3, 8.4, 8.6, 8.7, 8.9, 8.10). This trend is the same for all models. However,
how much the response and stress amplitudes decrease for increasing soil damping is dif-
ferent. Ulveseter’s nonlinear model is less affected by the soil damping.

• From the comparison between the results at 10% of estimated local critical damping (Fig-
ure 8.11, 8.12), it is clear that VIVANA predicts larger stresses and response amplitudes
than Ulveseter’s model.

• Ulveseter’s nonlinear model has varying touch down points (Figure 8.5), a larger response
amplitude than Ulveseter’s linear model (Figure 8.11), but smaller stress amplitudes (Fig-
ure 8.12).

8.2 Case 2 - Realistic pipeline model

Case 2 is VIV analysis for a pipeline based on the same realistic pipeline dimensions and current
condition as used by (Larsen et al., 2004). Ulveseter’s linear and nonlinear model is compared
to results from VIVANA. The VIV analysis is a cross-flow analysis only, and the pipeline is facing
a constant current in the x-direction, as for Case 1.

Due to convergence problems in VIVANA, the case with 0 soil damping is not part of the VIVANA
analysis. The VIVANA results are presented for a range between 5% and 25% of estimated critical
soil damping, where convergence was achieved. Ulveseter’s linear model is tested for 0 to 25%
of critical soil damping, and Ulveseter’s nonlinear model is tested for 10% to 25% of critical soil
damping. The data for the case is given in Table 8.2

Table 8.2: Data for Case 2
Name Symbol Size Dimension
Length L 380 m
Diameter D 0.55 m
Bending stiffness EI 2.9∗108 N m2

Mass per unit length (air) m 315 kg /m
End tension T 450∗103 N
Current velocity U 0.7 m/s
Soil stiffness ks 40∗103 N /m2

Table 8.2 gives information about the soil stiffness ks . This value is the same as used by (Larsen
et al., 2004), where it is referred to as the soft bottom case. Equation 6.9 is used to find the rela-
tive vertical soil damping, as for Case 1.
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Results

Figure 8.13: The seabed and the static configuration found from RIFLEX
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Ulveseter’s linear model

Figure 8.14: Snapshots of the cross-flow response, from Ulveseter’s linear model, for λ= 0.10

Figure 8.15: Stress amplitudes for different vertical soil damping values, from Ulveseter’s linear
model

Figure 8.16: Response amplitudes for different vertical soil damping values, from Ulveseter’s
linear model
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Ulveseter’s nonlinear model

Figure 8.17: Snapshots of the cross-flow response, from Ulveseter’s nonlinear model, forλ= 0.10

Figure 8.18: Stress amplitudes for different values of the vertical soil damping, from Ulveseter’s
nonlinear model

Figure 8.19: Response amplitudes for different vertical soil damping values, from Ulveseter’s
nonlinear model
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VIVANA

Figure 8.20: Snapshots of the cross-flow response, from VIVANA, for λ= 0.10

Figure 8.21: Stress amplitudes for different values of the vertical soil damping, from VIVANA

Figure 8.22: Response amplitudes for different values of the vertical soil damping, from VIVANA
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Comparison between the models

Figure 8.23: Comparison of maximum cross-flow response, for VIVANA and Ulveseter’s model

Figure 8.24: Comparison of maximum cross-flow stress amplitudes, for VIVANA and Ulveseter’s
model
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Observations

• From Figure 8.15, 8.16, 8.18, 8.19, 8.21, 8.22, the response amplitudes and stress am-
plitudes are little affected by the soil damping. This is the case for both Ulveseter’s model
and VIVANA.

• In Figure 8.24, the stress amplitudes around the touch down points are smaller for Ul-
veseter’s nonlinear model than for the linear models.

• The seabed profile has a large curvature at the shoulders (Figure 8.13) compared to Case
1 (Figure 8.1).

• Ulveseter’s nonlinear model predicts almost symmetric response about the z-axis, and the
touch down points are almost fixed (Figure 8.17).

• As for Case 1, VIVANA predicts larger responses than Ulveseter’s model. The difference is
smaller than for Case 1.

8.3 Case 3 - Realistic pipeline model with different seabed pro-
file

In Case 3, the goal is to investigate the effect of the seabed profile. The same pipeline facing the
same current as for Case 2 is investigated (see Table 8.2 for data). The seabed in Case 3 has a
smaller curvature at the shoulders, than what was applied in Case 2. This can be seen in Fig-
ure 8.25 and 8.26. As for Case 2, Ulveseter’s linear model is tested for relative soil damping ratio
between 0 and 25% of estimated critical soil damping. Ulveseter’s nonlinear model is tested for
soil damping values between 10% and 25% of estimated critical soil damping. Due to conver-
gence problems VIVANA is only tested for λ= 0.5,0.10,0.20 and 0.25. It is still possible to see the
trends and do comparisons between the different results.
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Results

Figure 8.25: The seabed and the static configuration for Case 2 and Case 3 found from RIFLEX

Figure 8.26: Comparison of seabed and static configuration for Case 1, 2 and 3
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Ulveseter’s linear model

Figure 8.27: Snapshots of the cross-flow response, from Ulveseter’s linear model, for λ= 0.10

Figure 8.28: Stress amplitudes for different vertical soil damping values, from Ulveseter’s linear
model

Figure 8.29: Response amplitudes for different vertical soil damping values, from Ulveseter’s
linear model
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Ulveseter’s nonlinear model

Figure 8.30: Snapshots of the cross-flow response from Ulveseter’s nonlinear model, for λ= 0.10

Figure 8.31: Stress amplitudes for different values of the vertical soil damping, from Ulveseter’s
nonlinear model

Figure 8.32: Response amplitudes for different vertical soil damping values, from Ulveseter’s
nonlinear model



78 CHAPTER 8. CASE STUDIES

VIVANA

Figure 8.33: Snapshots of the cross-flow response, from VIVANA, for λ= 0.10

Figure 8.34: Stress amplitudes for different values of the vertical soil damping, from VIVANA

Figure 8.35: Response amplitudes for different values of the vertical soil damping, from VIVANA
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Comparison between the models

Figure 8.36: Comparison of maximum cross-flow response, for VIVANA and Ulveseter’s models

Figure 8.37: Comparison of maximum cross-flow stress amplitudes, for VIVANA and Ulveseter’s
models
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Observations

• in Figure 8.37, Ulveseter’s nonlinear model gives a great reduction in stress amplitudes at
the shoulders, compared to Ulveseter’s linear model, but there is a lager stress peak at the
middle of the free span.

• in Figure 8.30 the asymmetry about the z-axis of the response from Ulveseter’s nonlinear
model is clear, so the touch down point varies more than for Case 2.

• Response amplitudes, for both VIVANA and Ulveseter’s model, are little affected by the soil
damping, as was observed for Case 2 (Figure 8.28, 8.29, 8.31, 8.32, 8.34, 8.35). However,
in this case Ulveseter’s nonlinear model is more sensitive to soil damping, than Ulveseter’s
linear model, which is opposite from the observation in Case 1.

8.4 Case 4 - Realistic pipeline model with varying soil stiffness

In Case 4 we use the same pipeline model, and seabed profile as in Case 2. The difference is that
the soil stiffness ks is varied to see how it influences the effect of soil damping and response be-
havior. Two new values of the soil stiffness have been tested. In Case 2 the soil stiffness was set
to 40kN/m2. Here, the soil stiffness values tested are 80kN/m2 and 10.2kN/m2. The first value
is chosen to see the effect of a hard bottom. The last value is chosen based on the procedure
outlined in Section 6.1.3, Equation 6.8, to look at the effect of a soft bottom.

Due to convergence problems in VIVANA, the soft bottom case is only tested for soil damping
ratios of 0.15, 0,20 and 0.25. For the same reason, the hard bottom case is tested for soil damping
ratios of 0.05 - 0.25. Ulveseter’s linear model applies soil damping ratios in the range of 0 to 0.25,
while Ulveseter’s nonlinear model applies soil damping ratios of 0.10-0.25.
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Results

Figure 8.38: Static configuration relative to seabed: The hard bottom case (ks = 80kN/m2) and
the soft bottom case (ks = 10.2kN/m2)

Figure 8.39: Results from Ulveseter’s linear model: The hard bottom case (ks = 80kN/m2) and
the soft bottom case (ks = 10.2kN/m2)
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Figure 8.40: Results from Ulveseter’s nonlinear model: The hard bottom case (ks = 80kN/m2)
and the soft bottom case (ks = 10.2kN/m2)

Figure 8.41: Results from VIVANA: The hard bottom case (ks = 80kN/m2) and the soft bottom
case (ks = 10.2kN/m2)
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Figure 8.42: Results from all models with soil damping ratio 0.15: The hard bottom case (ks =
80kN/m2) and the soft bottom case (ks = 10.2kN/m2)
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Observations

• The static free span will be longer for the hard bottom case than the soft bottom case
(Figure 8.38).

• Ulveseter’s linear model predicts response oscillations of mode two (Figure 8.39), while Ul-
veseter’s nonlinear model (Figure 8.40) and VIVANA (Figure 8.41) give mode one response.

• All results are little influenced by the soil damping. However, Ulveseter’s nonlinear model
has the largest variations due to soil damping, for the hard bottom case.

• All models give largest stresses for the hard bottom case.

• The difference between the models gets smaller when the soil stiffness decreases (Fig-
ure 8.42).

8.5 Case 5 - Realistic pipeline model with different current ve-
locities

It is of interest to compare VIVANA to Ulveseter’s model for different current velocities, to see
how the response behaves. Case 5 is an investigation using the same data as applied in Case
2, only that the current velocity is varied, instead of the soil damping or the soil stiffness. Ul-
veseter’s model and VIVANA are tested for a a vertical soil damping value of 10% of critical damp-
ing.
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Results

Figure 8.43: Snapshots of pipeline responses from Ulveseter’s linear model, for current velocities
0.8m/s to 1.1m/s

Figure 8.44: Snapshots of pipeline responses from Ulveseter’s nonlinear model, for current ve-
locities 0.8m/s to 1.1m/s
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Figure 8.45: Snapshots of pipeline responses from VIVANA, for current velocities 0.8m/s to
1.1m/s
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Observations

• The change from the first mode to the second mode for Ulveseter’ linear model takes place
for a current velocity between 0.9m/s and 1m/s (Figure 8.43).

• For Ulveseter’s nonlinear model, there is also a mode shift between a current velocity of
0.9m/s and 1m/s. However, the response picture becomes more chaotic, than for Ul-
veseter’s linear model, at the mode shift (Figure 8.44).

• VIVANA predicts a mode shift from the first to second mode for a current velocity between
1.0m/s and 1.1m/s. Thus, in this case, VIVANA needs about 10% larger current velocity for
the mode to change, than what was observed using Ulveseter’s model (Figure 8.45).

8.6 Case 6 - Comparison to time domain analysis

In (Larsen et al., 2004) a VIV analysis using VIVANA and RIFLEX for a realistic pipeline model is
presented. Both a nonlinear time domain solution combining RIFLEX and VIVANA as discussed
in Section 6.2, and a traditional VIVANA frequency domain solution is presented and compared.
Some of the results from the study will in the following be compared to Ulveseter’s model. It is of
special interest to see how Ulveseter’s nonlinear model fits the results from the nonlinear time
domain analysis using RIFLEX/VIVANA.

As one of the authors of (Larsen et al., 2004), Carl Martin Larsen has access to RIFLEX and VI-
VANA files that where used in the paper. Some of the files contain case studies that where not in
the paper, but were part of the study. In these files comparisons between the traditional VIVANA
analysis and the RIFLEX/VIVANA time domain analysis are done. It is one of these files Case 5 is
based upon. The data for the case, as was applied by Larsen, is given in Table 8.3.

Table 8.3: Data for Case 5
Name Symbol Size Dimension
Length L 380 m
Diameter D 0.556 m
Bending stiffness EI 2.93∗107 N m2

Mass per unit length (air) m 314.86 kg /m
End tension T 450∗103 N
Current velocity U 0.7 m/s
Soil stiffness ks 40∗103 N /m2
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Results

Figure 8.46: Seabed and static configuration for Case 4

Figure 8.47: Comparison between Ulveseter’s nonlinear and linear model
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Figure 8.48: Comparison between traditional VIVANA analysis and VIVANA/RIFLEX time do-
main analysis

Figure 8.49: Comparison between Ulveseter’s model and VIVANA/RIFLEX



90 CHAPTER 8. CASE STUDIES

Observations

• Both Ulveseter’s nonlinear model and RIFLEX/VIVANA nonlinear time domain model be-
haves very similarly, relative to the corresponding linear solutions (Figure 8.46 and 8.47).
Both nonlinear models get a reduction of stress amplitude, significantly at the shoulders,
and some at the middle of the free span. A difference between the two models is that Ul-
veseter’s nonlinear model has a small stress reduction between the shoulder peak and the
midspan peak, giving a larger stress value than Ulveseter’s linear model. This is not seen
in RIFLEX/VIVANA nonlinear model, where the stress curve more or less follows the linear
frequency domain VIVANA solution.

• Looking at Figure 8.49, some differences regarding the shape of the curves, comparing
Ulveseter’s model and VIVANA, are observed.
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Discussion

9.1 Discussion of results

The six case studies give a good description of Ulveseter’s model, and how it compares to VI-
VANA. Many of the findings are explainable using physical understanding of the nonlinear soil-
pipe interaction mechanism and dynamic behavior of pipes.

For all cases comparing stress amplitudes from Ulveseter’s model and VIVANA, we see a reduc-
tion of stress amplitudes at the pipe shoulders, for the nonlinear model. This, even though the
nonlinear model may predict larger response amplitudes, as for Case 1. This can be explained
knowing that the bending stress is a function of curvature. The nonlinear soil-pipe interaction
allows the pipeline to lift up from the seabed at the pipe shoulders. This results in a curvature
reduction around the touch down points, so that the accumulation of fatigue damage at the
shoulders is reduced for Ulveseter’s nonlinear model.

The seabed profile affects the behavior of Ulveseter’s nonlinear model. The case with the small-
est curvature at the pipe shoulders, Case 1, has a very asymmetric response shape. In other
words, the positions of the touch down points vary easily with the pipeline response, which is
as physically expected for a relatively flat seabed. For Case 2, a steep valley is used as the sea
bottom profile. This results in the response being almost symmetric about the longitudinal axis.
The touch down points varies more for Case 3, where a less steep valley is used as seabed.

In Case 4, the soil stiffness is varied. The result is that the hard bottom case will induce re-
sponse mode two for Ulveseter’s linear model. Ulveseter’s nonlinear model will oscillate with
mode one. For the soft bottom case all VIV models give response of first mode. The reason for
the mode shift in Ulveseter’s linear model is not trivial. A larger soil stiffness will add to the
total stiffness matrix, increasing the eigenfrequency. Thus a larger load frequency is need to
excite mode two. However, increased soil stiffness will make the free span longer. Hence there
are fewer soil stiffness terms that contribute to the total stiffness compared to the soft bottom
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case. The total effect is that the total stiffness is smaller in the hard bottom case giving smaller
eigenfrequencies. From Figure 2.5, we know that the maximum response for cross-flow VIV is
typically when the reduced velocity is between 6 and 8. Since Thorsen’s VIV model is based on
empirical coefficients, the model should be capable of capturing this experimental observation.
The soft bottom case is compared against the hard bottom case for Ulveseter’s linear model in
Table 9.1. We see that the hard bottom case will have a reduced velocity of 6.5 for the second
mode, while the soft bottom case will have a reduced velocity of 6.9 for the first mode.

Table 9.1: Case 4: Eigenfrequencies and reduced velocity for different mode shapes
Ulveseter’s linear model
Mode Hard bottom case Soft bottom case
1 f1 = 0.09s−1 Ur = 14.7 f1 = 0.18s−1 Ur = 6.9
2 f2 = 0.20s−1 Ur = 6.5 f2 = 0.42s−1 Ur = 3.0
3 f3 = 0.34s−1 Ur = 3.7 f3 = 0.65s−1 Ur = 2.0

Another interesting finding is how the response shape changes mode with increasing current
velocity. Physically, increasing velocity will increase the vortex shedding frequency. At one cur-
rent velocity, the vortex shedding frequency will be so large that instead of exciting the eigen-
frequency corresponding to the first mode shape, it will excite the eigenfrequency of the second
mode shape. Thus, we get a mode shift. For Case 5 we see that the current velocity giving mode
shift is different from VIVANA and Ulveseter’s model. This is probably due to the different added
mass models applied in VIVANA and Thorsen’s force model.

The nonlinear time domain analysis applying RIFLEX and VIVANA compares well to Ulveseter’s
model. However, the shape of the stress amplitude curves is a little different. This can be a result
of axial stresses. Ulveseter’s model is limited to vertical and rotation dofs. Applied to a case were
bending stresses are small, axial stresses may not be negligible, affecting the results.

Soil damping

When it comes to the influence of soil damping, it is only for Case 1 we can conclude that the
soil damping effect is of significant magnitude for all models. There can be several reasons why
the other cases were less dependent on the soil damping. In general, it looks like the influence
of soil damping is a function of the pipeline properties, and the hydrodynamic properties. Case
1 deals with a shorter pipe, with less bending stiffness, with less end tension and with a stronger
current, than the other cases. Also, the seabed profile applied for Case 1 has a smaller curvature
at the pipe shoulders than the rest of the cases. However the seabed profile do not significantly
change the influence of soil damping alone, as investigated for Case 3.

From Case 3 and 4, Ulveseter’s nonlinear is more sensitive to soil damping than Ulveseter’s linear
model and VIVANA. Especially for small soil damping values. Comparing λ = 0.10 to λ = 0.15
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in Figure 8.31 and 8.40, the stress amplitudes are seen to change significantly. This might be
a result of convergence problems in Ulveseter’s nonlinear model. From test cases, the model is
not capable of finding a steady-state solution if the soil stiffness is too high, and the soil damping
too low. This is why the nonlinear model is only applied to cases where the soil damping is larger
or equal to 10% of the estimated critical damping. When the case studies were performed, the
time response at a node in the shoulder region was plotted for every case study. This was done
to try to ensure that a steady-state solution was found. However, it might be that Case 3 and 4 are
on the limit of reaching steady-state, and hence the stress amplitudes are affected by this.

9.2 Discussion of current and pipeline properties

Concerning the structural properties of the pipeline model in Case 1, the tension in the pipe is
low compared to the bending stiffness and dimensions of the pipeline. Professor Svein Sævik
at the Department of Marine Technology at NTNU has more than 10 years experience with
pipeline engineering. From his experience, a 14-inch pipeline (≈0.36m) should have a tension
of the order of magnitude 100kN. This is a factor of 10 more than what was applied in Case 1. The
structural characteristics of the other pipeline cases are based on the realistic model in (Larsen
et al., 2004). Here the tension is higher, and the structural dimensions fits better with Sævik’s
experience.

(Yttervik, 2004) describes current conditions at locations of special interest for the oil and gas
industry. One of these places is the Norwegian Sea, where a current called Continental Slope
Current passes through west of Shetland and Norway. The mean flow velocity is approximately
0.2m/s, but peak values of more than 1m/s have been observed. In the Atlantic Ocean, West
of Africa, oil and gas fields such as Girassol, Bonga and Kizomba are present. The Guinea Cur-
rent outside the coast of West Africa can have current velocities up to 1m/s (Richardson and
Reverdin, 1987).

In the case studies performed in Chapter 8, a velocity range of 0.7m/s to 1.2m/s is considered.
From the discussion above, these are extreme current conditions. At least for Case 1, where the
flow velocity is 1.2m/s. Realistically, the current will be affected by the boundary layer induced
by the flow-seabed interaction. Thus a uniform inflow, as analyzed in the present study, is not
accurate. However, since there are large uncertainties and variations in current flow conditions,
extreme vales are chosen to make conservative estimates.



Chapter 10

Summary and Recommendations for
Further Work

10.1 Summary and Conclusion

In this Master Thesis, several aspects of VIV have been addressed. Chapter 2 gave a brief intro-
duction to VIV as a phenomenon starting with hydrodynamics around a fixed circular cylinder
in current. The modeling procedures, looking at CFD as a VIV prediction tool and empirical VIV
models, were presented. Then, examples on how to perform VIV experiments were discussed,
focusing on experimental results and how they can be applied in empirical VIV models. Chapter
3 was a presentation of VIVANA, which is the only frequency domain VIV model that has been
studied in detail.

The main part of the present work is related to time domain VIV models, and how to apply them
on free spanning pipelines. Chapter 4,5 and 6 handled these topics. In Chapter 4, several time
domain VIV models were presented. In Chapter 5, Thorsen’s VIV model was explained in detail.
Chapter 6 gave a discussion on free spanning pipelines subjected to VIV, how to account for and
quantify soil-pipe interaction, and examples on how to perform time domain VIV analyses. The
first two objectives are related to literature study and presentation of time domain VIV, nonlin-
ear FEM as applied for free spanning pipelines, and soil-pipe interaction. These objectives were
answered in these three chapters.

My contribution to the field is presented in Chapter 7 and 8. Based on Thorsen’s time domain
VIV model, a nonlinear analysis tool, referred to as Ulveseter’s model, was programmed using
MATLAB. Ulveseter’s model gives the option of a linear analysis and a nonlinear analysis. This is
explained in Chapter 7, and both options are used in the case studies in Chapter 8. Ulveseter’s
nonlinear model takes into account the nonlinear soil-pipe interaction. This is done by updat-
ing the stiffness and damping matrices for every time step of the time integration, by checking if
the translations dofs are in contact with the seabed. If there is contact, a soil damping term and
a soil stiffness term is added to the associated matrices. If there is no contact, no soil damping
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term or soil stiffness term is added.

The goal was to make a simple MATLAB program looking at the effect of nonlinear soil-pipe
interaction. As discussed in Chapter 7 are there many simplifications in Ulveseter’s nonlinear
model. However, the program is capable of predicting physically meaningful results, and com-
pares well to Ulveseter’s linear model and VIVANA. Also, convergence was tested to make sure
that the dynamic equilibrium equation was solved correctly. Thus we conclude that the third
objective is achieved.

The last objective was to compare Ulveseter model with other frequency domain and time do-
main solutions. The study is presented in Chapter 8. The effect of pipeline characteristics,
seabed profile, soil stiffness, soil damping and current velocity was investigated. VIVANA was
used as the frequency domain model. One comparison to another nonlinear time domain pre-
dictions was performed. This accomplishes the last objective.

The case study shows that:

• The soil damping has little influence on the overall response. It is only for Case 1 that the
soil damping is of importance for all models. As discussed in Chapter 9, the other cases
are more realistic both concerning structural properties of the pipeline, and the current
velocity. In Case 3 and 4, Ulveseter’s nonlinear model is more affected by the soil damping
than the linear prediction tools. However, this might be a result of transient effects.

• Ulveseter’s model compares good to VIVANA, but the general trend is that VIVANA predicts
larger response and stress amplitudes.

• Physically meaningful results are observed. For Ulveseter’s nonlinear model we have that
the stress amplitudes at pipe shoulders are reduced compared to the linear models, the
seabed profile affects the variation of touch down points, increased current velocity in-
duces a mode shift of the response, and increasing soil stiffness increases stress ampli-
tudes.

10.2 Recommendations for Further Work

Results from nonlinear VIV predictions are limited in the literature, so there are many possibil-
ities for further work. More case studies can be performed, increasing the understanding of the
soil damping effect on pipeline response. In this thesis, three different pipeline models are used
for case studies. An extension can be to look at other pipelines with different structural proper-
ties. It is also possible to test for new seabed configurations, nonuniform current, variations in
free span length, etc.

A more natural extension might be to improve the developed program, referred to as Ulveseter’s
model, to improve the quality of the results. Limitations of the model have been addressed i Sec-
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tion 7.2. A major limitation is that the static configuration of the pipeline is found from RIFLEX.
This makes it impossible to perform a fully nonlinear analysis where all forces, both dynamic
and static, are included at the same time. To spend more time on developing a static solution
procedure in Ulveseter’s model can therefore be a good improvement of the present work. Also,
an extension to 3D is possible by implementing Thorsen’s in-line model to Ulveseter’s model,
which again makes it possible to perform new case studies.

Thorsen’s VIV model can also be applied to other slender marine structures than pipelines. VIV
analyses on risers, especially drilling risers, are by the industry considered to yield too conserva-
tive results. Combining Thorsen’s VIV model with a more advanced nonlinear structural model,
using for example RIFLEX or SIMLA, makes it possible to investigate this issue. We can for ex-
ample consider drill string geometry stiffness, inertia and damping forces from mud interaction.
The plan is to investigate this in my PhD study.



Appendix A

MATLAB program

In this Appendix, the MATLAB-functions used in Ulveseter’s model, are listed.

A.1 analysis

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % %
3 % code name: %
4 % ULVESETER'S MODEL %
5 % %
6 % Based on Thorsen's VIV model %
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8

9 clear all
10 close all
11 clc
12

13 %% Input options %%
14 %%%%%%%%%%%%%%%%%%%
15 text1 = 'Choose Case 1,2,3,4,5,6 or 7: ';
16 text2 = 'Choose linear analysis (1) or nonlinear analysis (2): ';
17 Case = input(text1);
18 type = input(text2);
19

20 %% Input parameters %%
21 %%%%%%%%%%%%%%%%%%%%%%
22 [D,L,EI,E,T,U,mdry,rho_sw,Ca,alpha1,alpha2,k_s,c_s,n,g,Tsim,h,m,l,n_dof,...
23 n_dof_red,n_nodes,transdofs,gamma,beta] = input_parameters(Case);
24

25 %% Inputs from RIFLEX %%
26 %%%%%%%%%%%%%%%%%%%%%%%%
27 [seabed_VIVANA, static_config, free_span_length,sea_bottom,static_gap] = ...
28 RIFLEX_input(Case,l,D,n_nodes,L);
29
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30 %% Establishing FE model %%
31 %%%%%%%%%%%%%%%%%%%%%%%%%%%
32 [Ksys,Csys,Msys,Ksys_initial,Csys_initial] = ...
33 FE_model(EI,l,T,m,n,n_dof,alpha1,alpha2);
34

35 %% Eigenfrequencies %%
36 %%%%%%%%%%%%%%%%%%%%%%
37 MATLAB_f0_initial = (1/(2*pi)) * sqrt(eig(Ksys,Msys));
38

39 %% LINEAR ANALYSIS BEGINS %%
40 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
41 if type == 1
42

43 %linear analysis
44 [y,ytrans,dy,dytrans,ddy,ddytrans,phi_exc,Qy,Qytrans,time,Ay0,Ay1,...
45 dymax,ddymax,N,MATLAB_f0] = linear_analysis(Ksys,Msys,Csys,k_s,c_s,...
46 sea_bottom,transdofs,gamma,beta,h,rho_sw,D,l,Tsim,U,static_gap);
47

48 %% NONLINEAR ANALYSIS BEGINS %%
49 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
50 elseif type == 2
51

52 %nonlinear analysis
53 [y,ytrans,dy,dytrans,ddy,ddytrans,phi_exc,Qy,Qytrans,time,Ay0,Ay1,...
54 dymax,ddymax,N] = nonlinear_analysis(Ksys_initial,...
55 Csys_initial,Ksys,Msys,Csys,k_s,c_s,sea_bottom,transdofs,gamma,beta,h,...
56 rho_sw,D,l,Tsim,U,static_gap,static_config,mdry,seabed_VIVANA,n,g);
57

58 end %if type
59

60 %% Post-processing %
61 %%%%%%%%%%%%%%%%%%%%
62 [stress_amp, stress_rms,stress_std,fp] = POSTproc(ytrans,l,L,D,E,N,n,h,...
63 Tsim,c_s,k_s,type,sea_bottom,seabed_VIVANA,static_config,Case);
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A.2 input_parameters

1 %input parameters
2

3 function [D,L,EI,E,T,U,mdry,rho_sw,Ca,alpha1,alpha2,k_s,c_s,n,g,Tsim,h,m,...
4 l,n_dof,n_dof_red,n_nodes,transdofs,gamma,beta] = input_parameters(Case)
5

6

7 if Case == 1 %Pipeline data for same model as used in my Project Thesis
8

9 %Physical:
10 A_int = 0.1018; %[m^2] internal area
11 A_ext = 0.1256; %[m^2] total area
12 D = 2 * sqrt(A_ext/pi); %[m] external diameter
13 L = 180; %[m] model length
14 EI = 8.9*10^7; %[Nm^2] bending stiffness
15 E = 207*10^9; %[N/m^2] E-module (steel, used in VIVANA)
16 T = 10*10^3; %[N] tension (STAMOD CALLAS)
17 U = 1.2; %[m/s] incoming current velocity
18 mdry = 217.96; %[kg/m] mass per unit length, dry
19 rho_sw = 1027; %[kg/m^3] density of water
20 Ca = 1.0; %[-] added mass coefficient
21 alpha1 = 0; % proportional damping factor 1
22 alpha2 = 0; % proportional damping factor 2
23 k_s = 17460.105; %[N/m^2] vertical soil_stiffness per meter
24 c_s = 492.25; %[Ns/m^2] vertical soil damping per meter
25 n = 180; %[-] number of elements
26

27 elseif Case == 2 || Case == 3 %% model used in omae2004
28

29 %Physical:
30 D = 0.55; %[m] external diameter
31 L = 380; %[m] model length
32 EI = 2.9*10^8; %[Nm^2] bending stiffness
33 E = 208*10^9; %[N/m^2] E-module (steel)
34 T = 450*10^3; %[N] tension
35 U = 0.7; %[m/s] incoming current velocity
36 mdry = 315; %[kg/m] mass per unit length, dry
37 rho_sw = 1025; %[kg/m^3] density of water
38 Ca = 1.0; %[-] added mass coefficient
39 alpha1 = 0; % proportional damping factor 1
40 alpha2 = 0; % proportional damping factor 2
41 k_s = 40*10^3; %[N/m^2] vertical soil_stiffness per meter
42 c_s = 945.32; %[Ns/m^2] vertical soil damping per meter
43 n = 380; %[-] number of elements
44

45 elseif Case == 4 %% model used for comparison to time domain analysis
46 %Physical:
47 D = 0.556; %[m] external diameter
48 L = 380; %[m] model length
49 EI = 2.93*10^7; %[Nm^2] bending stiffness
50 E = 20.6*10^9; %[N/m^2] E-module (steel)
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51 T = 450*10^3; %[N] tension
52 U = 0.7; %[m/s] incoming current velocity
53 mdry = 315; %[kg/m] mass per unit length, dry
54 rho_sw = 1025; %[kg/m^3] density of water
55 Ca = 1.0; %[-] added mass coefficient
56 alpha1 = 0; % proportional damping factor 1
57 alpha2 = 0; % proportional damping factor 2
58 k_s = 40*10^3; %[N/m^2] vertical soil_stiffness per meter
59 c_s = 954.11; %[Ns/m^2] vertical soil damping per meter
60 n = 380; %[-] number of elements
61

62 elseif Case == 5 %% model used in omae2004, with varying current speed
63

64 %Physical:
65 D = 0.55; %[m] external diameter
66 L = 380; %[m] model length
67 EI = 2.9*10^8; %[Nm^2] bending stiffness
68 E = 208*10^9; %[N/m^2] E-module (steel)
69 T = 450*10^3; %[N] tension
70 U = 1.1; %[m/s] incoming current velocity
71 mdry = 315; %[kg/m] mass per unit length, dry
72 rho_sw = 1025; %[kg/m^3] density of water
73 Ca = 1.0; %[-] added mass coefficient
74 alpha1 = 0; % proportional damping factor 1
75 alpha2 = 0; % proportional damping factor 2
76 k_s = 40*10^3; %[N/m^2] vertical soil_stiffness per meter
77 c_s = 945.32; %[Ns/m^2] vertical soil damping per meter
78 n = 380; %[-] number of elements
79

80 elseif Case == 6 %% model used in omae2004, hard bottom case
81

82 %Physical:
83 D = 0.55; %[m] external diameter
84 L = 380; %[m] model length
85 EI = 2.9*10^8; %[Nm^2] bending stiffness
86 E = 208*10^9; %[N/m^2] E-module (steel)
87 T = 450*10^3; %[N] tension
88 U = 0.7; %[m/s] incoming current velocity
89 mdry = 315; %[kg/m] mass per unit length, dry
90 rho_sw = 1025; %[kg/m^3] density of water
91 Ca = 1.0; %[-] added mass coefficient
92 alpha1 = 0; % proportional damping factor 1
93 alpha2 = 0; % proportional damping factor 2
94 k_s = 80*10^3; %[N/m^2] vertical soil_stiffness per meter
95 c_s = 945.32; %[Ns/m^2] vertical soil damping per meter
96 n = 380; %[-] number of elements
97

98 elseif Case == 7 %% model used in omae2004, soft bottom case
99

100 %Physical:
101 D = 0.55; %[m] external diameter
102 L = 380; %[m] model length
103 EI = 2.9*10^8; %[Nm^2] bending stiffness
104 E = 208*10^9; %[N/m^2] E-module (steel)
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105 T = 450*10^3; %[N] tension
106 U = 0.7; %[m/s] incoming current velocity
107 mdry = 315; %[kg/m] mass per unit length, dry
108 rho_sw = 1025; %[kg/m^3] density of water
109 Ca = 1.0; %[-] added mass coefficient
110 alpha1 = 0; % proportional damping factor 1
111 alpha2 = 0; % proportional damping factor 2
112 k_s = 10199.187; %[N/m^2] vertical soil_stiffness per meter
113 c_s = 945.32; %[Ns/m^2] vertical soil damping per meter
114 n = 380; %[-] number of elements
115 end
116 g = 9.81; %[m/s^2] acceleration of gravity
117 %% Numerical input
118

119 Tsim = 150; % simulation time
120 h = 0.01; % time step size
121 %n = 180; % number of elements
122 gamma = 0.5; % Newmark parameter
123 beta = 0.25; % Newmark parameter
124

125 m = mdry+Ca*rho_sw*pi/4*D^2; %mass + added mass per unit length
126 l = L/n; %length of each element
127 n_dof = (n+1)*2; %mumber of dofs
128 n_dof_red = n_dof - 2; %reduced number of dofs after BCs
129 n_nodes = n + 1; %number of nodes
130 transdofs = [2:2:2*n-1]; %id translation dofs, reduced set
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A.3 RIFLEX_input

1 %all inputs from RIFLEX for simplified nonlinear time domain analysis
2 function [seabed_VIVANA, static_config, ...

free_span_length,sea_bottom,static_gap]...
3 = RIFLEX_input(Case,l,D,n_nodes,L)
4

5 %static displacemenet and seabed coordiantes (from RIFLEX/VIVANA)
6 [seabed_VIVANA, static_config, free_span_length] = read_input(Case);
7

8 %for square seabed and no static displacement (linear case)
9 [sea_bottom] = seabed(l,n_nodes,L,free_span_length,D);

10

11 %static gap as given by RIFLEX time domain analysis
12 [static_gap] = staticGap(static_config,seabed_VIVANA);
13

14 end
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A.4 read_input

1 function [seabed, static_config, free_span_length] = read_input(Case)
2

3 %load static configuration from RIFLEX-files
4 if Case == 1
5 static_config = load('project_thesis\static_XZ_configuration.txt');
6 elseif Case == 2
7 static_config = load('omae2004\static_XZ_configuration_omae04.txt');
8 elseif Case == 3
9 static_config = load('Case3\static_XZ_configuration_case3.txt');

10 elseif Case == 4
11 static_config = load('Case4\static_XZ_configuration_case4.txt');
12 elseif Case == 5
13 static_config = load('Case5\static_XZ_configuration_case5.txt');
14 elseif Case == 6
15 static_config = load('Case6\static_XZ_configuration_case6.txt');
16 elseif Case == 7
17 static_config = load('Case7\static_XZ_configuration_case7.txt');
18 end
19

20 %load 3D-bottom from RIFLEX
21 if Case == 1
22 seabed = load('project_thesis\seabed_XZ_configuration.txt');
23 elseif Case == 2
24 seabed = load('omae2004\seabed_XZ_configuration_oma04.txt');
25 elseif Case == 3
26 seabed = load('Case3\seabed_XZ_configuration_case3.txt');
27 elseif Case == 4
28 seabed = load('Case4\seabed_XZ_configuration_case4.txt');
29 elseif Case == 5
30 seabed = load('Case5\seabed_XZ_configuration_case5.txt');
31 elseif Case == 6
32 seabed = load('Case6\seabed_XZ_configuration_case6.txt');
33 elseif Case == 7
34 seabed = load('Case7\seabed_XZ_configuration_case7.txt');
35 end
36

37 if static_config(1,1) == seabed(1,1)
38

39 if seabed(1,1) 6= 0
40

41 %starting both seabed and static configuration on z = 0
42 static_config(:,1) = static_config(:,1) - static_config(1,1);
43 seabed(:,1) = seabed(:,1) - seabed(1,1);
44

45 end
46

47 else
48

49 disp('static configuration and seabed configuration do not match');
50
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51 end
52 %% %finding the length of the free-span considering the static configuration
53 %and seabed as used in RIFLEX
54

55 res2 = [];
56 for i = 1 : length(seabed(:,1))
57

58 if static_config(i,2) > seabed(i,2)
59

60 res = seabed(i,1);
61 res2 = [res2; res];
62

63 end
64

65 end
66

67 free_span_length = max(res2) - min(res2);
68

69 end
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A.5 seabed

1 %function producing a square seabed
2 function [sea_bottom] = seabed(elem_length,num_nodes,model_length, ...
3 free_span_length,D)
4

5 %depth of seabottom relative to the pipe
6 Depth = - 5*D;
7

8 %defining coordiantes of sea-bottom (end nodes not included)
9 sea_bottom = zeros(num_nodes-2,2);

10

11 %z-coordinates to the seabottom
12 sea_bottom(:,2) = [elem_length : elem_length : model_length - elem_length];
13

14 %% coordinates matching the free_span_length
15

16 for k = 1:num_nodes - 2
17

18 if sea_bottom(k,2) < 0.5 * (model_length - free_span_length) ||...
19 sea_bottom(k,2) > 0.5 * (model_length + free_span_length)
20

21 sea_bottom(k,1) = 0;
22

23 else
24

25 sea_bottom(k,1) = Depth;
26

27 end
28

29 end
30

31

32 end
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A.6 staticGap

1 %function calculating the static gap
2 function [static_gap] = staticGap(static_config,seabed_VIVANA)
3

4 static_gap = static_config(2:length(static_config(:,1))-1,2) - ...
5 seabed_VIVANA(2:length(seabed_VIVANA(:,1))-1,2);
6

7 end
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A.7 FE_model

1 %function estabilshing FE-model (stiffness, damping and intertia)
2 function [Ksys,Csys,Msys,Ksys_initial,Csys_initial] = ...
3 FE_model(EI,l,T,m,n,n_dof,alpha1,alpha2)
4

5 %element matrices:
6

7 %bending stiffness
8 Ke = EI*[12/(l^3) -6/(l^2) -12/(l^3) -6/(l^2);
9 -6/(l^2) 4/l 6/(l^2) 2/l;

10 -12/(l^3) 6/(l^2) 12/(l^3) 6/(l^2);
11 -6/(l^2) 2/l 6/(l^2) 4/l];
12

13 % geometric stiffness
14 Kg = T*[6/(5*l) -1/10 -6/(5*l) -1/10;
15 -1/10 2*l/15 1/10 -l/30;
16 -6/(5*l) 1/10 6/(5*l) 1/10;
17 -1/10 -l/30 1/10 2*l/15];
18

19 K = Ke + Kg;
20

21 %mass matrix
22 M = m*l/420*[156 -22*l 54 13*l;
23 -22*l 4*l^2 -13*l -3*l^2;
24 54 -13*l 156 22*l;
25 13*l -3*l^2 22*l 4*l^2];
26

27 %system matrices
28 Ksys = zeros(n_dof);
29 Msys = zeros(n_dof);
30

31 %Assemble system matrices
32 for i = 1 : n
33 j = 2*i - 2;
34 for x = 1 : 4
35 for y = 1 : 4
36 Ksys(j+x,j+y) = Ksys(j+x,j+y)+K(x,y);
37 Msys(j+x,j+y) = Msys(j+x,j+y)+M(x,y);
38 end
39 end
40 end
41

42 %introduce BCs
43 Ksys(1,:) = [];
44 Ksys(:,1) = [];
45 Msys(1,:) = [];
46 Msys(:,1) = [];
47

48 Ksys(n_dof-2,:) = [];
49 Ksys(:,n_dof-2) = [];
50 Msys(n_dof-2,:) = [];
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51 Msys(:,n_dof-2) = [];
52

53 %damping matrix
54 Csys = alpha1*Msys+alpha2*Ksys;
55

56 %% Initial stiffness and damping used in non-linear analysis
57 Ksys_initial = Ksys;
58 Csys_initial = Csys;
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A.8 linear_analysis

1 %linear analysis
2 function [y,ytrans,dy,dytrans,ddy,ddytrans,phi_exc,Qy,Qytrans,time,Ay0,Ay1,...
3 dymax,ddymax,N, MATLAB_f0] = ...

linear_analysis(Ksys,Msys,Csys,k_s,c_s,sea_bottom,...
4 transdofs,gamma,beta,h,rho_sw,D,l,Tsim,U,static_gap)
5

6 %% adding soil stiffness to global stiffness matrix
7 [Ksys] = soil_stiffness(Ksys,sea_bottom,k_s,l,transdofs);
8

9 %% adding soil damping to global damping matrix
10 [Csys] = soil_damping(Csys,sea_bottom,c_s,l,transdofs);
11

12 %% eigenfrequencies when seabed is included
13 MATLAB_f0 = (1/(2*pi)) * sqrt(eig(Ksys,Msys));
14

15 %% inverting effective stiffness matrix:
16 Khat=Ksys+gamma/(beta*h)*Csys+1/(beta*h^2)*Msys;
17 Khatinv=Khat\eye(size(Khat));
18

19 %% linear time domain integration
20 [y,ytrans,dy,dytrans,ddy,ddytrans,phi_exc,Qy,Qytrans,time,Ay0,Ay1,dymax,...
21 ddymax,N] = ...

linear_time_domain(Tsim,h,transdofs,Ksys,U,rho_sw,D,l,beta,gamma,...
22 Msys,Csys,Khatinv,static_gap);
23

24 end
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A.9 soil_stiffness

1 %adding vertical soil stiffness where we have bottom contact
2 function [Ksys, k_soil] = soil_stiffness(Ksys,sea_bottom,k_s,elem_length,...
3 transdofs_id)
4

5 %% linear stiffness matrix
6

7 %defining size of stiffness matrix
8 k_soil = zeros(size(Ksys));
9

10 for i = 1:length(transdofs_id)
11

12 if sea_bottom(i) == 0
13

14 k_soil(transdofs_id(i),transdofs_id(i)) = k_s*elem_length;
15

16 end
17

18 end
19

20 %new global stiffness matrix including vertical springs at translation dofs
21 Ksys = k_soil + Ksys;
22

23 end
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A.10 soil_damping

1 %adding vertical soil damping where we have bottom contact
2 function [C] = soil_damping(Csys,sea_bottom,c_s,elem_length,transdofs_id)
3

4 %defining size of stiffness matrix
5 c_soil = zeros(size(Csys));
6

7 for i = 1:length(transdofs_id)
8

9 if sea_bottom(i) == 0
10

11 c_soil(transdofs_id(i),transdofs_id(i)) = c_s*elem_length;
12

13 end
14

15 end
16

17 %new global damping matrix including vertical dampers at translation dofs
18 C = c_soil + Csys;
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A.11 linear_time_domain

1 %linear time domain procedure
2 function [y,ytrans,dy,dytrans,ddy,ddytrans,phi_exc,Qy,Qytrans,time,Ay0,Ay1...
3 ,dymax,ddymax,N] = ...

linear_time_domain(Tsim,h,transdofs,Ksys,U,rho_sw,D,l,beta,...
4 gamma,Msys,Csys,Khatinv,static_gap)
5

6 N=ceil(Tsim/h); %number of time steps
7

8 %preallocate space
9 y=zeros(size(Ksys,1),N);

10 ytrans=zeros(length(transdofs),N); %translation
11 dy=zeros(size(Ksys,1),N);
12 dytrans=zeros(length(transdofs),N); %translation velocity
13 ddy=zeros(size(Ksys,1),N);
14 ddytrans=zeros(length(transdofs),N); %translation acceleration
15 phi_exc=zeros(length(transdofs),N); %(only for translation dofs)
16 phi_exc(:,1)=2*pi*rand(length(transdofs),1); %random phase angle
17 Qy=zeros(size(Ksys,1),N);
18 Qytrans=zeros(length(transdofs),N);
19 time=h*[0:N];
20 Ay0=zeros(length(transdofs),1);
21 Ay1=zeros(length(transdofs),1);
22 dymax=zeros(length(transdofs),1);
23 ddymax=zeros(length(transdofs),1);
24

25 Ui=0; %start with zero current speed
26 nramp=0.1*N; %use 10 % of sim time to ramp up current velocity
27 for i=1:N
28 if i>nramp
29 Ui=U;
30 else
31 Ui=Ui+U/nramp; %ramping up current speed
32 end
33

34 %External (hydrodynamic) forces
35 [Qytrans(:,i+1), phi_exc(:,i+1)] = hydroforce(h, rho_sw,...
36 U*ones(length(transdofs),1), D, Ay0, dytrans(:,i), dymax, ...

ddytrans(:,i),...
37 ddymax, phi_exc(:,i));
38 Qytrans(:,i+1)=Qytrans(:,i+1)*l;
39

40 %putting in zero values at moment dofs
41 for k = 1 : length(transdofs)
42

43 Qy(transdofs(k),i+1) = Qytrans(k,i+1);
44

45 end
46

47 %hydrodynamic force initially at seabottom equal to zero
48 [Qytrans(:,i+1)] = hydro_force_soil(Qytrans(:,i+1),static_gap);
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49

50 %% Initial conditions to use in linear Newmark-beta integration
51 y0 = y(:,i);
52 dy0 = dy(:,i);
53 ddy0 = ddy(:,i);
54 Qy1 = Qy(:,i+1);
55

56 [y1, dy1, ddy1] = linear_newmark_beta(beta,gamma,h,Msys,Csys,Khatinv,...
57 i,y0,dy0,ddy0,Qy1);
58

59 %displacement, velocity and acceleration assigned to the matrices
60 y(:,i+1) = y1;
61 dy(:,i+1) = dy1;
62 ddy(:,i+1) = ddy1;
63

64 %extract translations
65 ytrans(:,i+1) = y(transdofs,i+1);
66 dytrans(:,i+1) = dy(transdofs,i+1);
67 ddytrans(:,i+1) = ddy(transdofs,i+1);
68

69 %check for new value of maxima:
70 ind3=find(abs(dytrans(:,i)>dymax));
71 for j=ind3
72 dymax(j)=abs(dytrans(j,i));
73 end
74 ind4=find(abs(ddytrans(:,i)>ddymax));
75 for j=ind4
76 ddymax(j)=abs(ddytrans(j,i));
77 end
78

79 %check for zero-crossing (y)
80

81 indx1=find(dytrans(:,i).*dytrans(:,i+1) < 0);
82 %if zero crossing, store current amplitude, and start over
83 for j=indx1
84 % Ay0(j)=Ay1(j);
85 % Ay0(j)=0.5*(Ay0(j)+Ay1(j)); %average
86 Ay0(j)=0.9*Ay0(j)+0.1*Ay1(j); %weighted average
87 Ay1(j)=0.5*abs(dytrans(j,i+1))*h;
88 end
89 indx2=find(dytrans(:,i).*dytrans(:,i+1) > 0);
90 %if no zero crossing, continue integration
91 for j=indx2
92 Ay1(j)=Ay1(j)+0.5*abs(dytrans(j,i+1))*h;
93 end
94 end
95 end
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A.12 hydroforce

1 function [ Fy, phi_exc] = hydroforce(dt, rho, U, D, Ay, dy, dymax, ddy, ...
2 ddymax, phi_exc)
3

4 %find phase of velocity
5 cos_phi_dy=dy./abs(dymax+eps);
6 sin_phi_dy=-ddy./abs(ddymax+eps);
7 phi_dy=angle(complex(cos_phi_dy,sin_phi_dy));
8

9 %syncronize
10 theta=phi_dy-phi_exc; %phase difference
11 theta=angle(complex(cos(theta),sin(theta))); %get phase between +-pi
12 omega_exc=2*pi*fhat(theta).*U./D; %instantaneous angular frequency
13

14 %update excitation force phase
15 phi_exc=phi_exc+omega_exc*dt;
16

17 Cdy=0.3092+0.8929.*(Ay./D); %damping coefficient
18 %total cross-flow force
19 Fy=0.5*rho*D.*U.^2.*cv(Ay./D).*cos(phi_exc)-0.5*rho*D*Cdy.*abs(dy).*dy;
20 end
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A.13 cv

1 function [ out ] = cv(a)
2

3 x=[0
4 0.1000
5 0.1500
6 0.2000
7 0.3000
8 0.4000
9 0.5000

10 0.6000
11 0.7000
12 10.0000];
13

14 f=[0.3500
15 0.5976
16 0.6990
17 0.7855
18 0.9138
19 0.9824
20 0.9629
21 0.5181
22 0
23 0];
24

25

26 out=interp1(x,f,a);
27

28 end



116 APPENDIX A. MATLAB PROGRAM

A.14 fhat

1 function [ out ] = fhat( theta )
2 %Synchronization function, returns non-dim freq. as function of phase diff.
3

4 x=[-3.141592654
5 -2.857316679
6 -2.744445104
7 -2.680010174
8 -2.654550274
9 -2.604040705

10 -2.526906076
11 -2.424547672
12 -2.329159971
13 -2.253277243
14 -2.160905352
15 -2.028886016
16 -1.835893451
17 -1.570796327
18 -1.451609617
19 -1.420379807
20 -1.367983441
21 -1.327209309
22 -1.249466124
23 -1.115005502
24 -0.905834291
25 -0.650842092
26 -0.380828285
27 -0.142440673
28 0
29 0.284275975
30 0.397147549
31 0.461582479
32 0.48704238
33 0.537551949
34 0.614686578
35 0.717044982
36 0.812432683
37 0.88831541
38 0.980687302
39 1.112706638
40 1.305699203
41 1.570796327
42 1.689983037
43 1.721212847
44 1.773609212
45 1.814383345
46 1.892126529
47 2.026587151
48 2.235758362
49 2.490750561
50 2.760764369
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51 2.99915198
52 3.141592654];
53

54 f=[0.2082
55 0.2040
56 0.1997
57 0.1955
58 0.1870
59 0.1785
60 0.1700
61 0.1615
62 0.1530
63 0.1445
64 0.1275
65 0.1190
66 0.1105
67 0.1020
68 0.1063
69 0.1080
70 0.1105
71 0.1148
72 0.1190
73 0.1275
74 0.1360
75 0.1403
76 0.1428
77 0.1462
78 0.1487
79 0.1530
80 0.1573
81 0.1615
82 0.1700
83 0.1785
84 0.1870
85 0.1955
86 0.2040
87 0.2125
88 0.2295
89 0.2380
90 0.2465
91 0.2550
92 0.2507
93 0.2490
94 0.2465
95 0.2422
96 0.2380
97 0.2295
98 0.2210
99 0.2168

100 0.2142
101 0.2108
102 0.2082];
103

104 out=interp1(x,f,theta);
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105

106 end
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A.15 hydro_force_soil

1 %function making hydrodynamic force at initital contact point between pipe
2 %and soil equal to zero
3 function [Qytrans] = hydro_force_soil(Qytrans, static_gap)
4

5 for i = 1:length(Qytrans(:,1))
6

7 if static_gap(i) < 0
8

9 Qytrans(i,1) = 0;
10

11 end
12

13 end
14

15 end
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A.16 linear_newmark_beta

1 %Linear Newmark-beta
2 function [y1, dy1, ddy1] = ...

linear_newmark_beta(beta,gamma,h,Msys,Csys,Khatinv,...
3 i,y0,dy0,ddy0,Qy1)
4

5 %solve for y, dy, ddy (Newmark-B)
6 a=1/(beta*h^2)*y0+1/(beta*h)*dy0+(1/(2*beta)-1)*ddy0;
7 b=gamma/(beta*h)*y0+(gamma/beta-1)*dy0+(gamma/(2*beta)-1)*h*ddy0;
8 Qhat=Qy1+Csys*b+Msys*a;
9 y1=Khatinv*Qhat;

10 dy1=gamma/(beta*h)*y1-b;
11 ddy1=1/(beta*h^2)*y1-a;
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A.17 nonlinear_analysis

1 %nonlinear analysis
2 function [y,ytrans,dy,dytrans,ddy,ddytrans,phi_exc,Qy,Qytrans,time,Ay0,Ay1,...
3 dymax,ddymax,N] = nonlinear_analysis(Ksys_initial,...
4 Csys_initial,Ksys,Msys,Csys,k_s,c_s,sea_bottom,transdofs,gamma,beta,h,rho_sw,...
5 D,l,Tsim,U,static_gap,static_config,mdry,seabed_VIVANA,n,g)
6 %% Time domain analysis begins
7

8 N=ceil(Tsim/h); %number of time steps
9

10 %preallocate space
11 y=zeros(size(Ksys,1),N);
12 ytrans=zeros(length(transdofs),N); %translation
13 dy=zeros(size(Ksys,1),N);
14 dytrans=zeros(length(transdofs),N); %translation velocity
15 ddy=zeros(size(Ksys,1),N);
16 ddytrans=zeros(length(transdofs),N); %translation acceleration
17 phi_exc=zeros(length(transdofs),N);
18 phi_exc(:,1)=2*pi*rand(length(transdofs),1); %random phase anlge
19 Qy=zeros(size(Ksys,1),N);
20 Qytrans=zeros(length(transdofs),N);
21 time=h*[0:N];
22 Ay0=zeros(length(transdofs),1);
23 Ay1=zeros(length(transdofs),1);
24 dymax=zeros(length(transdofs),1);
25 ddymax=zeros(length(transdofs),1);
26

27 Ui=0; %start with zero current speed
28 nramp=0.1*N; %use 10 % of sim time to ramp up current velocity
29 for k=1:N
30 if k>nramp
31 Ui=U;
32 else
33 Ui=Ui+U/nramp; %ramping up current speed
34 end
35

36 %% nonlinear stiffness and damping matrix due to varying contact...
37 %between pipe and soil bottom
38 [Ksys, Csys, k_soil] = nonlinear_soil(Ksys_initial,Csys_initial,...
39 ytrans,static_config,seabed_VIVANA,k,n,c_s,k_s,transdofs,l,D,rho_sw,...
40 mdry,g);
41

42 %% External (hydrodynamic) forces
43 [Qytrans(:,k+1), phi_exc(:,k+1)] = hydroforce(h, rho_sw, ...
44 U*ones(length(transdofs),1), D, Ay0, dytrans(:,k), dymax, ...
45 ddytrans(:,k),ddymax, phi_exc(:,k));
46 Qytrans(:,k+1)=Qytrans(:,k+1)*l;
47

48 %hydrodynamic force initially at seabootom equal to zero
49 [Qytrans(:,k+1)] = hydro_force_soil(Qytrans(:,k+1),static_gap);
50



122 APPENDIX A. MATLAB PROGRAM

51 %putting in zero values at moment dofs
52 for p = 1 : length(transdofs)
53 Qy(transdofs(p),k+1) = Qytrans(p,k+1);
54 end
55

56 %% Initial conditions to use in nonlinear Newmark-beta integration
57 y0 = y(:,k);
58 dy0 = dy(:,k);
59 ddy0 = ddy(:,k);
60 Qy1 = Qy(:,k+1);
61

62 %% Nonlinear Newmark-beta time integration
63 [y1, dy1, ddy1] = nonlinear_newmark_beta(gamma,beta,h,Msys,Ksys,...
64 Csys,k,y0,dy0,ddy0,Qy1);
65

66 % displacement, velocity and acceleration assigned to the matrices
67 y(:,k+1) = y1;
68 dy(:,k+1) = dy1;
69 ddy(:,k+1) = ddy1;
70

71 %extract translations
72 ytrans(:,k+1) = y(transdofs,k+1);
73 dytrans(:,k+1) = dy(transdofs,k+1);
74 ddytrans(:,k+1) = ddy(transdofs,k+1);
75

76 %%
77 %check for new value of maxima:
78 ind3=find(abs(dytrans(:,k)>dymax));
79 for j=ind3
80 dymax(j)=abs(dytrans(j,k));
81 end
82 ind4=find(abs(ddytrans(:,k)>ddymax));
83 for j=ind4
84 ddymax(j)=abs(ddytrans(j,k));
85 end
86

87 %check for zero-crossing (y)
88

89 indx1=find(dytrans(:,k).*dytrans(:,k+1) < 0);
90 %if zero crossing, store current amplitude, and start over
91 for j=indx1
92 % Ay0(j)=Ay1(j);
93 % Ay0(j)=0.5*(Ay0(j)+Ay1(j)); %average
94 Ay0(j)=0.9*Ay0(j)+0.1*Ay1(j); %weighted average
95 Ay1(j)=0.5*abs(dytrans(j,k+1))*h;
96 end
97 indx2=find(dytrans(:,k).*dytrans(:,k+1) > 0);
98 %if no zero crossing, continue integration
99 for j=indx2

100 Ay1(j)=Ay1(j)+0.5*abs(dytrans(j,k+1))*h;
101 end
102

103 end
104
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105 end
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A.18 nonlinear_soil

1 %nonlinear stiffness matrix and damping matrix
2 function [Ksys, Csys,k_soil,c_soil] = ...

nonlinear_soil(Ksys_initial,Csys_initial...
3 ,ytrans,static_config,seabed_VIVANA,time_step,num_elements,c_s,k_s,...
4 transdofs_id,elem_length,D,rho_sw,mdry,g)
5

6 %submerged weight per meter [N/m]
7 w_s = (mdry - pi*((D^2)/4)*rho_sw)*g;
8

9 %function finding the node number of the two nodes on each side which are
10 %closest to the free span
11 [left_side_node, right_side_node] = last_penetration_node(static_config,...
12 seabed_VIVANA,transdofs_id);
13

14 %defining size of soil stiffness matrix and put equal to zero for each
15 %time-step
16 k_soil = zeros(size(Ksys_initial));
17 c_soil = zeros(size(Csys_initial));
18

19 if num_elements + 1 6= length(seabed_VIVANA(:,1))
20

21 disp('number of elements do not match VIVANA results');
22

23 else
24

25 for count = 1:length(transdofs_id) %do not look at first and last node
26

27 %section 1: the pipe is initially penetrating the seabed, so we can
28 %have tensioning in the soil springs
29 if static_config(count+1,2) - seabed_VIVANA(count+1,2) < 0 &&...
30 (count 6= left_side_node && count 6=right_side_node)
31

32 if ytrans(count,time_step) + static_config(count+1,2) - ...
33 seabed_VIVANA(count+1,2) < (w_s/k_s)
34

35 k_soil(2*count,2*count) = k_s*elem_length;
36 c_soil(2*count,2*count) = c_s*elem_length;
37

38 end
39

40 %section 2: the last nodes on each side with initial pipe penetration
41 %can have 0.5*tension in the soil springs
42 elseif count == left_side_node || count == right_side_node
43

44 if ytrans(count,time_step) + static_config(count+1,2) - ...
45 seabed_VIVANA(count+1,2) < 0.5*(w_s/k_s)
46

47 k_soil(2*count,2*count) = k_s*elem_length;
48 c_soil(2*count,2*count) = c_s*elem_length;
49
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50 end
51

52 %case 3: nodes in the inital free span can not have tension in the
53 %soil springs
54 elseif static_config(count+1,2) - seabed_VIVANA(count+1,2) > 0
55

56 if ytrans(count,time_step) + static_config(count+1,2) - ...
57 seabed_VIVANA(count+1,2) < 0
58

59 k_soil(2*count,2*count) = k_s*elem_length;
60 c_soil(2*count,2*count) = c_s*elem_length;
61

62 end
63

64 end
65

66 end
67

68 end
69

70 Ksys = Ksys_initial + k_soil;
71 Csys = Csys_initial + c_soil;
72

73 end
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A.19 last_penetration_node

1 %function finding the node number of the two nodes on each side which are
2 %closest to the free span
3 function [left_side_node, right_side_node] = ...
4 last_penetration_node(static_config,seabed_VIVANA,transdofs_id)
5

6 for count = 1:length(transdofs_id)
7

8 A(count) = static_config(count+1,2) - seabed_VIVANA(count+1,2);
9

10 end
11

12 for i = 2:length(A)
13

14 if A(i-1) ≤ 0 && A(i) > 0
15

16 left_side_node = i-1;
17

18

19 elseif A(i-1) ≥ 0 && A(i) < 0
20

21 right_side_node = i;
22

23 end
24

25 end
26

27 end
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A.20 nonlinear_newmark_beta

1 %Nonlinear Newmark-beta integration, based on procedure in Dynamic analysis
2 %compendium
3 function [y1, dy1, ddy1] = ...

nonlinear_newmark_beta(gamma,beta,h,Msys,Ksys,Csys...
4 ,k,y0,dy0,ddy0,Qy1)
5 %% Initial calculations
6

7 a1 = gamma/(beta*h);
8 a2 = 1/(beta*h^2);
9 a3 = 1/(beta*h);

10 a4 = (1/(2*beta)) - 1;
11 a5 = gamma/beta;
12 a6 = ( (gamma/(2*beta)) - 1)/h;
13 a7 = a5 - 1;
14 a8 = (1 - gamma)*h;
15 a9 = gamma*h;
16

17 %mass contribution to effective stiffness
18 M_hat = a2*Msys;
19

20 %% For each time step
21

22 ak = a3*dy0 + a4*ddy0;
23 bk = a5*dy0 + a6*ddy0;
24

25 K_hat = Ksys + a1*Csys + M_hat;
26 ∆Q_hat = Qy1 + Csys*bk + Msys*ak - Csys*dy0 - Ksys*y0;
27

28 %% Solve wrt displacement increment
29

30 %inverting K_hat
31 K_hat_inv = K_hat\eye(size(K_hat));
32

33 %displacement increment
34 ∆_y = K_hat_inv*∆Q_hat;
35

36 %% acceleration, velocity and displacement at time i+1
37

38 ddy1 = a2*∆_y - ak;
39 dy1 = dy0 + a8*ddy0 + a9*ddy1;
40 y1 = y0 + ∆_y;
41

42 end
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A.21 POSTproc

1 %all post-processing functions
2 function [stress_amp, stress_rms,stress_std,fp] = ...

POSTproc(ytrans,l,L,D,E,N,...
3 n,h,Tsim,c_s,k_s,type,sea_bottom,seabed_VIVANA,static_config,Case)
4

5 %% Finding stress amplitude
6 [stress_amp, stress_rms,stress_std] = STRESSamp(ytrans,l,D,E,N);
7

8 %% Fiding response frequnecy
9 [fp ang] = fpeak(ytrans(ceil(n/2),:),[0:h:Tsim]);

10

11 %% save stress results for different damping coefficients and ...
linear/non-linear

12 %analysis in text-files
13 write = ...

write_to_file(stress_amp,c_s,type,ytrans,N,Case,stress_rms,stress_std);
14

15 %% post-processing, plotting results
16 post = plots(n,N,ytrans,stress_amp,stress_rms,stress_std,l,L,D,sea_bottom,...
17 seabed_VIVANA,static_config,c_s,Case,type,k_s);
18

19 end
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A.22 STRESSamp

1 %Calculate stress using curvature
2

3 function [stress_amp, stress_rms, stress_std] = ...
STRESSamp(ytrans,elem_length, ...

4 diameter, E_module, num_timesteps)
5

6 %calculate spatial derivative
7 y_z = diff(ytrans)/elem_length;
8

9 %calculate 2nd derivative
10 y_zz = diff(y_z)/elem_length;
11

12 %strain (adding zero at both ends due to BCs)
13 strain = [zeros(1,num_timesteps+1); (diameter/2)*y_zz;...
14 zeros(1,num_timesteps+1)];
15

16 %stress
17 stress = E_module*strain;
18

19 %% find stress envelope
20

21 %only use last part of analysis
22 count = ceil(0.9*num_timesteps);
23 stress_red = stress(:,[count:num_timesteps+1]);
24

25 for j = 1:length(ytrans(:,1))
26

27 stress_amp(j) = 0.5*(max(stress_red(j,:)) - min(stress_red(j,:)));
28

29 end
30

31 %% find root mean square of stress amplitudes
32

33 for j = 1:length(ytrans(:,1))
34

35 stress_rms(j) = rms(stress_red(j,:));
36 stress_std(j) = std(stress_red(j,:));
37

38 end
39

40 end
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A.23 fpeak

1 function [fp phi] = fpeak(x,t)
2 %INPUT:
3 % x: signal
4 % t: time vector assoiciated with the signal, i.e x(t(i))=x(i)
5 %
6 % timestep must be constant!
7 %
8 %OUTPUT:
9 % res: Peak frequency (Hz) of the signal and associated phase (rad)

10 %
11 %Programmed by Mats Joergen Thorsen
12 %April, 2012
13

14 Fs=1/(t(2)-t(1));
15 xdft=fft(x);
16

17 [¬,index] = max(abs(xdft(1:floor(length(x)/2+1))));
18 freq = 0:(Fs/length(x)):Fs/2;
19

20 fp=freq(index);
21 phi=angle(xdft(index));
22

23 end
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A.24 write_to_file

1 %function writing to text-files that can be used in post-processing
2 function write = ...

write_to_file(stress_amp,c_s,type,ytrans,N,Case,stress_rms,stress_std)
3

4

5 if Case == 1 %project thesis
6

7 if type == 1 %linear case
8 if c_s 6= 0
9

10 %stress amplitude
11 fid1 = fopen...
12 ('Case1_try3\linear\stress_amp_nonzero_damping_lin.txt','w');
13 formatspec = '%f \n';
14

15 for i = 1:length(stress_amp)
16

17 fprintf(fid1,formatspec,stress_amp(i));
18

19 end
20

21 fclose(fid1);
22

23 %response amplitude
24 FID1 = fopen...
25 ('Case1_try3\linear\response_amp_nonzero_damping_lin.txt','w');
26 formatspec = '%f \n';
27

28 [maxVAL indx] = max(max(abs(ytrans(:,[ceil(0.9*N):N+1]))));
29

30 for i = 1:length(ytrans(:,1))
31

32 fprintf(FID1,formatspec,ytrans(i,indx + ceil(0.9*N)-1));
33

34 end
35

36 fclose(FID1);
37

38 else
39

40 fid2 = fopen...
41 ('Case1_try3\linear\stress_amp_zero_damping_lin.txt','w');
42 formatspec = '%f \n';
43

44 for i = 1:length(stress_amp)
45

46 fprintf(fid2,formatspec,stress_amp(i));
47

48 end
49
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50 fclose(fid2);
51

52 %response amplitude
53 FID2 = fopen...
54 ('Case1_try3\linear\response_amp_zero_damping_lin.txt','w');
55 formatspec = '%f \n';
56

57 [maxVAL indx] = max(max(abs(ytrans(:,[ceil(0.9*N):N+1]))));
58

59 for i = 1:length(ytrans(:,1))
60

61 fprintf(FID2,formatspec,ytrans(i,indx + ceil(0.9*N)-1));
62

63 end
64

65 fclose(FID2);
66

67 end
68

69 %% nonlinear
70 elseif type == 2 %nonlinear case
71 if c_s 6= 0
72

73 fid1 = fopen...
74 ('Case1_try3\nonlinear\stress_amp_nonzero_damping_nonlin.txt','w');
75 formatspec = '%f \n';
76

77 for i = 1:length(stress_amp)
78

79 fprintf(fid1,formatspec,stress_amp(i));
80

81 end
82

83 fclose(fid1);
84

85 %response amplitude
86 FID1 = fopen...
87 ('Case1_try3\nonlinear\response_amp_nonzero_damping_nonlin.txt','w');
88 formatspec = '%f \n';
89

90 [maxVAL indx] = max(max(abs(ytrans(:,[ceil(0.9*N):N+1]))));
91

92 for i = 1:length(ytrans(:,1))
93

94 fprintf(FID1,formatspec,ytrans(i,indx + ceil(0.9*N)-1));
95

96 end
97

98 fclose(FID1);
99

100 else
101

102 fid2 = fopen...
103 ('Case1_try3\nonlinear\stress_amp_zero_damping_nonlin.txt','w');
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104 formatspec = '%f \n';
105

106 for i = 1:length(stress_amp)
107

108 fprintf(fid2,formatspec,stress_amp(i));
109

110 end
111

112 fclose(fid2);
113

114 %response amplitude
115 FID2 = fopen...
116 ('Case1_try3\nonlinear\response_amp_zero_damping_nonlin.txt','w');
117 formatspec = '%f \n';
118

119 [maxVAL indx] = max(max(abs(ytrans(:,[ceil(0.9*N):N+1]))));
120

121 for i = 1:length(ytrans(:,1))
122

123 fprintf(FID2,formatspec,ytrans(i,indx + ceil(0.9*N)-1));
124

125 end
126

127 fclose(FID2);
128

129 end
130

131 end
132

133 elseif Case == 2
134

135 if type == 1 %linear case
136 if c_s 6= 0
137

138 %stress amplitude
139 fid1 = fopen...
140 ('Case2_try2\linear\stress_amp_nonzero_damping_lin.txt','w');
141 formatspec = '%f \n';
142

143 for i = 1:length(stress_amp)
144

145 fprintf(fid1,formatspec,stress_amp(i));
146

147 end
148

149 fclose(fid1);
150

151 %response amplitude
152 FID1 = fopen...
153 ('Case2_try2\linear\response_amp_nonzero_damping_lin.txt','w');
154 formatspec = '%f \n';
155

156 [maxVAL indx] = max(max(abs(ytrans(:,[ceil(0.9*N):N+1]))));
157
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158 for i = 1:length(ytrans(:,1))
159

160 fprintf(FID1,formatspec,ytrans(i,indx + ceil(0.9*N)-1));
161

162 end
163

164 fclose(FID1);
165

166 else
167

168 fid2 = fopen...
169 ('Case2_try2\linear\stress_amp_zero_damping_lin.txt','w');
170 formatspec = '%f \n';
171

172 for i = 1:length(stress_amp)
173

174 fprintf(fid2,formatspec,stress_amp(i));
175

176 end
177

178 fclose(fid2);
179

180 %response amplitude
181 FID2 = fopen...
182 ('Case2_try2\linear\response_amp_zero_damping_lin.txt','w');
183 formatspec = '%f \n';
184

185 [maxVAL indx] = max(max(abs(ytrans(:,[ceil(0.9*N):N+1]))));
186

187 for i = 1:length(ytrans(:,1))
188

189 fprintf(FID2,formatspec,ytrans(i,indx + ceil(0.9*N)-1));
190

191 end
192

193 fclose(FID2);
194

195 end
196

197 %% nonlinear
198 elseif type == 2 %nonlinear case
199 if c_s 6= 0
200

201 fid1 = fopen...
202 ('Case2_try2\nonlinear\stress_amp_nonzero_damping_nonlin.txt','w');
203 formatspec = '%f \n';
204

205 for i = 1:length(stress_amp)
206

207 fprintf(fid1,formatspec,stress_amp(i));
208

209 end
210

211 fclose(fid1);
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212

213 %response amplitude
214 FID1 = fopen...
215 ('Case2_try2\nonlinear\response_amp_nonzero_damping_nonlin.txt','w');
216 formatspec = '%f \n';
217

218 [maxVAL indx] = max(max(abs(ytrans(:,[ceil(0.9*N):N+1]))));
219

220 for i = 1:length(ytrans(:,1))
221

222 fprintf(FID1,formatspec,ytrans(i,indx + ceil(0.9*N)-1));
223

224 end
225

226 fclose(FID1);
227

228 else
229

230 fid2 = fopen...
231 ('Case2_try2\nonlinear\stress_amp_zero_damping_nonlin.txt','w');
232 formatspec = '%f \n';
233

234 for i = 1:length(stress_amp)
235

236 fprintf(fid2,formatspec,stress_amp(i));
237

238 end
239

240 fclose(fid2);
241

242 %response amplitude
243 FID2 = fopen...
244 ('Case2_try2\nonlinear\response_amp_zero_damping_nonlin.txt','w');
245 formatspec = '%f \n';
246

247 [maxVAL indx] = max(max(abs(ytrans(:,[ceil(0.9*N):N+1]))));
248

249 for i = 1:length(ytrans(:,1))
250

251 fprintf(FID2,formatspec,ytrans(i,indx + ceil(0.9*N)-1));
252

253 end
254

255 fclose(FID2);
256

257 end
258

259 end
260

261 elseif Case == 3
262

263 if type == 1 %linear case
264 if c_s 6= 0
265
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266 %stress amplitude
267 fid1 = fopen...
268 ('Case3_try2\linear\stress_amp_nonzero_damping_lin.txt','w');
269 formatspec = '%f \n';
270

271 for i = 1:length(stress_amp)
272

273 fprintf(fid1,formatspec,stress_amp(i));
274

275 end
276

277 fclose(fid1);
278

279 %response amplitude
280 FID1 = fopen...
281 ('Case3_try2\linear\response_amp_nonzero_damping_lin.txt','w');
282 formatspec = '%f \n';
283

284 [maxVAL indx] = max(max(abs(ytrans(:,[ceil(0.9*N):N+1]))));
285

286 for i = 1:length(ytrans(:,1))
287

288 fprintf(FID1,formatspec,ytrans(i,indx + ceil(0.9*N)-1));
289

290 end
291

292 fclose(FID1);
293

294 else
295

296 fid2 = fopen...
297 ('Case3_try2\linear\stress_amp_zero_damping_lin.txt','w');
298 formatspec = '%f \n';
299

300 for i = 1:length(stress_amp)
301

302 fprintf(fid2,formatspec,stress_amp(i));
303

304 end
305

306 fclose(fid2);
307

308 %response amplitude
309 FID2 = fopen...
310 ('Case3_try2\linear\response_amp_zero_damping_lin.txt','w');
311 formatspec = '%f \n';
312

313 [maxVAL indx] = max(max(abs(ytrans(:,[ceil(0.9*N):N+1]))));
314

315 for i = 1:length(ytrans(:,1))
316

317 fprintf(FID2,formatspec,ytrans(i,indx + ceil(0.9*N)-1));
318

319 end
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320

321 fclose(FID2);
322

323 end
324

325 %% nonlinear
326 elseif type == 2 %nonlinear case
327 if c_s 6= 0
328

329 fid1 = fopen...
330 ('Case3_try2\nonlinear\stress_amp_nonzero_damping_nonlin.txt','w');
331 formatspec = '%f \n';
332

333 for i = 1:length(stress_amp)
334

335 fprintf(fid1,formatspec,stress_amp(i));
336

337 end
338

339 fclose(fid1);
340

341 %response amplitude
342 FID1 = fopen...
343 ('Case3_try2\nonlinear\response_amp_nonzero_damping_nonlin.txt','w');
344 formatspec = '%f \n';
345

346 [maxVAL indx] = max(max(abs(ytrans(:,[ceil(0.9*N):N+1]))));
347

348 for i = 1:length(ytrans(:,1))
349

350 fprintf(FID1,formatspec,ytrans(i,indx + ceil(0.9*N)-1));
351

352 end
353

354 fclose(FID1);
355

356 else
357

358 fid2 = fopen...
359 ('Case3_try2\nonlinear\stress_amp_zero_damping_nonlin.txt','w');
360 formatspec = '%f \n';
361

362 for i = 1:length(stress_amp)
363

364 fprintf(fid2,formatspec,stress_amp(i));
365

366 end
367

368 fclose(fid2);
369

370 %response amplitude
371 FID2 = fopen...
372 ('Case3_try2\nonlinear\response_amp_zero_damping_nonlin.txt','w');
373 formatspec = '%f \n';
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374

375 [maxVAL indx] = max(max(abs(ytrans(:,[ceil(0.9*N):N+1]))));
376

377 for i = 1:length(ytrans(:,1))
378

379 fprintf(FID2,formatspec,ytrans(i,indx + ceil(0.9*N)-1));
380

381 end
382

383 fclose(FID2);
384

385 end
386

387 end
388

389 elseif Case == 4
390

391 if type == 1 %linear case
392

393

394 %stress std
395 fid1 = fopen...
396 ('Case4\linear\stress_std_lin.txt','w');
397 formatspec = '%f \n';
398

399 for i = 1:length(stress_std)
400

401 fprintf(fid1,formatspec,stress_std(i));
402

403 end
404

405 fclose(fid1);
406

407 %stress rms
408 FID1 = fopen...
409 ('Case4\linear\stress_rms_lin.txt','w');
410 formatspec = '%f \n';
411

412 for i = 1:length(ytrans(:,1))
413

414 fprintf(FID1,formatspec,stress_rms(i));
415

416 end
417

418 fclose(FID1);
419

420

421 %% nonlinear
422 elseif type == 2 %nonlinear case
423

424 %stress std
425 fid1 = fopen...
426 ('Case4\nonlinear\stress_std_nonlin.txt','w');
427 formatspec = '%f \n';
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428

429 for i = 1:length(stress_std)
430

431 fprintf(fid1,formatspec,stress_std(i));
432

433 end
434

435 fclose(fid1);
436

437 %stress rms
438 FID1 = fopen...
439 ('Case4\nonlinear\stress_rms_nonlin.txt','w');
440 formatspec = '%f \n';
441

442 for i = 1:length(ytrans(:,1))
443

444 fprintf(FID1,formatspec,stress_rms(i));
445

446 end
447

448 fclose(FID1);
449

450 end
451

452 elseif Case == 5
453

454 if type == 1 %linear case
455 if c_s 6= 0
456

457 %stress amplitude
458 fid1 = fopen...
459 ('Case5\linear\stress_amp_nonzero_damping_lin.txt','w');
460 formatspec = '%f \n';
461

462 for i = 1:length(stress_amp)
463

464 fprintf(fid1,formatspec,stress_amp(i));
465

466 end
467

468 fclose(fid1);
469

470 %response amplitude
471 FID1 = fopen...
472 ('Case5\linear\response_amp_nonzero_damping_lin.txt','w');
473 formatspec = '%f \n';
474

475 [maxVAL indx] = max(max(abs(ytrans(:,[ceil(0.9*N):N+1]))));
476

477 for i = 1:length(ytrans(:,1))
478

479 fprintf(FID1,formatspec,ytrans(i,indx + ceil(0.9*N)-1));
480

481 end
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482

483 fclose(FID1);
484

485 else
486

487 fid2 = fopen...
488 ('Case5\linear\stress_amp_zero_damping_lin.txt','w');
489 formatspec = '%f \n';
490

491 for i = 1:length(stress_amp)
492

493 fprintf(fid2,formatspec,stress_amp(i));
494

495 end
496

497 fclose(fid2);
498

499 %response amplitude
500 FID2 = fopen...
501 ('Case5\linear\response_amp_zero_damping_lin.txt','w');
502 formatspec = '%f \n';
503

504 [maxVAL indx] = max(max(abs(ytrans(:,[ceil(0.9*N):N+1]))));
505

506 for i = 1:length(ytrans(:,1))
507

508 fprintf(FID2,formatspec,ytrans(i,indx + ceil(0.9*N)-1));
509

510 end
511

512 fclose(FID2);
513

514 end
515

516 %% nonlinear
517 elseif type == 2 %nonlinear case
518 if c_s 6= 0
519

520 fid1 = fopen...
521 ('Case5\nonlinear\stress_amp_nonzero_damping_nonlin.txt','w');
522 formatspec = '%f \n';
523

524 for i = 1:length(stress_amp)
525

526 fprintf(fid1,formatspec,stress_amp(i));
527

528 end
529

530 fclose(fid1);
531

532 %response amplitude
533 FID1 = fopen...
534 ('Case5\nonlinear\response_amp_nonzero_damping_nonlin.txt','w');
535 formatspec = '%f \n';
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536

537 [maxVAL indx] = max(max(abs(ytrans(:,[ceil(0.9*N):N+1]))));
538

539 for i = 1:length(ytrans(:,1))
540

541 fprintf(FID1,formatspec,ytrans(i,indx + ceil(0.9*N)-1));
542

543 end
544

545 fclose(FID1);
546

547 else
548

549 fid2 = fopen...
550 ('Case5\nonlinear\stress_amp_zero_damping_nonlin.txt','w');
551 formatspec = '%f \n';
552

553 for i = 1:length(stress_amp)
554

555 fprintf(fid2,formatspec,stress_amp(i));
556

557 end
558

559 fclose(fid2);
560

561 %response amplitude
562 FID2 = fopen...
563 ('Case5\nonlinear\response_amp_zero_damping_nonlin.txt','w');
564 formatspec = '%f \n';
565

566 [maxVAL indx] = max(max(abs(ytrans(:,[ceil(0.9*N):N+1]))));
567

568 for i = 1:length(ytrans(:,1))
569

570 fprintf(FID2,formatspec,ytrans(i,indx + ceil(0.9*N)-1));
571

572 end
573

574 fclose(FID2);
575

576 end
577

578 end
579

580 elseif Case == 6
581

582 if type == 1 %linear case
583 if c_s 6= 0
584

585 %stress amplitude
586 fid1 = fopen...
587 ('Case6\linear\stress_amp_nonzero_damping_lin.txt','w');
588 formatspec = '%f \n';
589
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590 for i = 1:length(stress_amp)
591

592 fprintf(fid1,formatspec,stress_amp(i));
593

594 end
595

596 fclose(fid1);
597

598 %response amplitude
599 FID1 = fopen...
600 ('Case6\linear\response_amp_nonzero_damping_lin.txt','w');
601 formatspec = '%f \n';
602

603 [maxVAL indx] = max(max(abs(ytrans(:,[ceil(0.9*N):N+1]))));
604

605 for i = 1:length(ytrans(:,1))
606

607 fprintf(FID1,formatspec,ytrans(i,indx + ceil(0.9*N)-1));
608

609 end
610

611 fclose(FID1);
612

613 else
614

615 fid2 = fopen...
616 ('Case6\linear\stress_amp_zero_damping_lin.txt','w');
617 formatspec = '%f \n';
618

619 for i = 1:length(stress_amp)
620

621 fprintf(fid2,formatspec,stress_amp(i));
622

623 end
624

625 fclose(fid2);
626

627 %response amplitude
628 FID2 = fopen...
629 ('Case6\linear\response_amp_zero_damping_lin.txt','w');
630 formatspec = '%f \n';
631

632 [maxVAL indx] = max(max(abs(ytrans(:,[ceil(0.9*N):N+1]))));
633

634 for i = 1:length(ytrans(:,1))
635

636 fprintf(FID2,formatspec,ytrans(i,indx + ceil(0.9*N)-1));
637

638 end
639

640 fclose(FID2);
641

642 end
643
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644 %% nonlinear
645 elseif type == 2 %nonlinear case
646 if c_s 6= 0
647

648 fid1 = fopen...
649 ('Case6\nonlinear\stress_amp_nonzero_damping_nonlin.txt','w');
650 formatspec = '%f \n';
651

652 for i = 1:length(stress_amp)
653

654 fprintf(fid1,formatspec,stress_amp(i));
655

656 end
657

658 fclose(fid1);
659

660 %response amplitude
661 FID1 = fopen...
662 ('Case6\nonlinear\response_amp_nonzero_damping_nonlin.txt','w');
663 formatspec = '%f \n';
664

665 [maxVAL indx] = max(max(abs(ytrans(:,[ceil(0.9*N):N+1]))));
666

667 for i = 1:length(ytrans(:,1))
668

669 fprintf(FID1,formatspec,ytrans(i,indx + ceil(0.9*N)-1));
670

671 end
672

673 fclose(FID1);
674

675 else
676

677 fid2 = fopen...
678 ('Case6\nonlinear\stress_amp_zero_damping_nonlin.txt','w');
679 formatspec = '%f \n';
680

681 for i = 1:length(stress_amp)
682

683 fprintf(fid2,formatspec,stress_amp(i));
684

685 end
686

687 fclose(fid2);
688

689 %response amplitude
690 FID2 = fopen...
691 ('Case6\nonlinear\response_amp_zero_damping_nonlin.txt','w');
692 formatspec = '%f \n';
693

694 [maxVAL indx] = max(max(abs(ytrans(:,[ceil(0.9*N):N+1]))));
695

696 for i = 1:length(ytrans(:,1))
697
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698 fprintf(FID2,formatspec,ytrans(i,indx + ceil(0.9*N)-1));
699

700 end
701

702 fclose(FID2);
703

704 end
705

706 end
707

708 elseif Case == 7
709

710 if type == 1 %linear case
711 if c_s 6= 0
712

713 %stress amplitude
714 fid1 = fopen...
715 ('Case7\linear\stress_amp_nonzero_damping_lin.txt','w');
716 formatspec = '%f \n';
717

718 for i = 1:length(stress_amp)
719

720 fprintf(fid1,formatspec,stress_amp(i));
721

722 end
723

724 fclose(fid1);
725

726 %response amplitude
727 FID1 = fopen...
728 ('Case7\linear\response_amp_nonzero_damping_lin.txt','w');
729 formatspec = '%f \n';
730

731 [maxVAL indx] = max(max(abs(ytrans(:,[ceil(0.9*N):N+1]))));
732

733 for i = 1:length(ytrans(:,1))
734

735 fprintf(FID1,formatspec,ytrans(i,indx + ceil(0.9*N)-1));
736

737 end
738

739 fclose(FID1);
740

741 else
742

743 fid2 = fopen...
744 ('Case7\linear\stress_amp_zero_damping_lin.txt','w');
745 formatspec = '%f \n';
746

747 for i = 1:length(stress_amp)
748

749 fprintf(fid2,formatspec,stress_amp(i));
750

751 end
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752

753 fclose(fid2);
754

755 %response amplitude
756 FID2 = fopen...
757 ('Case7\linear\response_amp_zero_damping_lin.txt','w');
758 formatspec = '%f \n';
759

760 [maxVAL indx] = max(max(abs(ytrans(:,[ceil(0.9*N):N+1]))));
761

762 for i = 1:length(ytrans(:,1))
763

764 fprintf(FID2,formatspec,ytrans(i,indx + ceil(0.9*N)-1));
765

766 end
767

768 fclose(FID2);
769

770 end
771

772 %% nonlinear
773 elseif type == 2 %nonlinear case
774 if c_s 6= 0
775

776 fid1 = fopen...
777 ('Case7\nonlinear\stress_amp_nonzero_damping_nonlin.txt','w');
778 formatspec = '%f \n';
779

780 for i = 1:length(stress_amp)
781

782 fprintf(fid1,formatspec,stress_amp(i));
783

784 end
785

786 fclose(fid1);
787

788 %response amplitude
789 FID1 = fopen...
790 ('Case7\nonlinear\response_amp_nonzero_damping_nonlin.txt','w');
791 formatspec = '%f \n';
792

793 [maxVAL indx] = max(max(abs(ytrans(:,[ceil(0.9*N):N+1]))));
794

795 for i = 1:length(ytrans(:,1))
796

797 fprintf(FID1,formatspec,ytrans(i,indx + ceil(0.9*N)-1));
798

799 end
800

801 fclose(FID1);
802

803 else
804

805 fid2 = fopen...
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806 ('Case7\nonlinear\stress_amp_zero_damping_nonlin.txt','w');
807 formatspec = '%f \n';
808

809 for i = 1:length(stress_amp)
810

811 fprintf(fid2,formatspec,stress_amp(i));
812

813 end
814

815 fclose(fid2);
816

817 %response amplitude
818 FID2 = fopen...
819 ('Case7\nonlinear\response_amp_zero_damping_nonlin.txt','w');
820 formatspec = '%f \n';
821

822 [maxVAL indx] = max(max(abs(ytrans(:,[ceil(0.9*N):N+1]))));
823

824 for i = 1:length(ytrans(:,1))
825

826 fprintf(FID2,formatspec,ytrans(i,indx + ceil(0.9*N)-1));
827

828 end
829

830 fclose(FID2);
831

832 end
833

834 end
835

836 end
837

838 write = 1;
839

840 end
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A.25 plots

1 %post-processing creating plots
2 function post = plots(n,N,ytrans,stress_amp,stress_rms,stress_std,l,L,D,...
3 sea_bottom,seabed,static_config,c_s,Case,type,k_s)
4 %% plot/animation of response
5

6 %updating y_trans including zero at ends (for plotting)
7 y_plot = zeros(n+1,N+1);
8 y_plot(1,:) = 0;
9 y_plot(n+1,:) = 0;

10 y_plot(2:n,:) = ytrans(:,:);
11

12 %% animation of response shapes
13

14 % figure;
15 % for i = ceil(0.9*N):N
16 % plot(y_plot(:,i),[0:l:L]);
17 % xlim([-2*D 2*D]);
18 % title('VIV Response');
19 % xlabel('displacement [m]');
20 % ylabel('length of structure [m]');
21 % grid on
22 % F(i) = getframe;
23 % end
24 %
25 % fps = 100; %frames per second
26 % num = 2; %number of times to play the animation
27

28 %% Snapshots of response curves
29

30 dN = 30; %number of time steps between each response
31

32 figure;
33

34 for i = ceil(0.9*N) : dN : (N+1)
35

36 hold on;
37 plot([0:l:L],y_plot(:,i));
38 title('Snapshots of response amplitudes');
39 xlabel('z (m)');
40 ylabel('y (m)');
41 grid on;
42

43 end
44

45 %% Snapshots of response curves + seabed
46

47 dN = 50; %number of time steps between each response
48

49 figure;
50
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51 for i = ceil(0.9*N) : dN : (N+1)
52

53 hold on;
54 plot([0:l:L],y_plot(:,i) + static_config(:,2));
55 title('Snapshots of response amplitudes relative to seabed');
56 xlabel('z (m)');
57 ylabel('y (m)');
58 ylim([-1010 -990]);
59 xlim([0 L]);
60 grid on;
61

62 end
63

64 hold on;
65 %plot([0:l:L],seabed(:,2),'k','lineWidth',2);
66 area(seabed(:,2),-1010);
67 grid on;
68

69 %% plot of maximum response amplitude
70

71 k = 0;
72 for i = ceil(0.9*N):N+1
73

74 k = k + 1;
75

76 val(k) = max(abs(y_plot(:,i)));
77

78 [val2 indx] = max(val);
79

80 end
81

82 tot_indx = indx + ceil(0.9*N)-1;
83

84 figure;
85 plot([0:l:L],abs(y_plot(:,tot_indx)));
86 xlabel('z (m)');
87 ylabel('y (m)');
88 title('Maximum response amplitude');
89 grid on;
90

91 %% plot of maximum response amplitude compared to VIVANA and to
92 %linear/nonlinear model
93

94 if Case == 1
95 %OBS! works only for 180 elements
96 Mat = load('project_thesis\response_amplitudes_CF_VIVANA.txt');
97 L_VIVANA = Mat(:,1);
98 amp_VIVANA = Mat(:,2);
99 figure;

100 plot([0:l:L],abs(y_plot(:,indx + ceil(0.9*N)-1)),L_VIVANA,amp_VIVANA);
101 grid on
102 title('VIV response amplitudes');
103 legend('Ulveseter linear model','VIVANA');
104 xlabel('z [m]');
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105 ylabel('y [m]');
106 elseif Case == 2
107 %OBS! works only for 380 elements
108 Mat = load('omae2004\response_amplitudes_CF_VIVANA_omae04.txt');
109 L_VIVANA = Mat(:,1);
110 amp_VIVANA = Mat(:,2);
111 figure;
112 plot([0:l:L],abs(y_plot(:,indx + ceil(0.9*N)-1)),L_VIVANA,amp_VIVANA);
113 grid on
114 title('VIV response amplitudes');
115 legend('Ulveseter linear model','VIVANA');
116 xlabel('z [m]');
117 ylabel('y [m]');
118 end
119

120

121 %% plot of stress amplitude if c_s = 0
122 %%% LINEAR SOLUTION %%%%%%%%%%%%%%%%%%
123 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
124 if c_s == 0 && type == 1
125 figure;
126 plot([0:l:L-2*l],10^-6*stress_amp);
127 grid on;
128 xlabel('length of structure [m]');
129 ylabel('\sigma [MPa]');
130 title('VIV Stress amplitdes');
131 end
132

133 %% plot of stress amplitude for Thorsen and VIVANA
134

135 if c_s == 0 && type == 1
136

137 if Case == 1
138 %OBS! only for 180 elements
139 Mat = load('project_thesis\stress_amplitudes_VIVANA.txt');
140

141 L_VIVANA = Mat(1:length(Mat(:,1))-2,1);
142 stress_amp_VIVANA = Mat(1:length(Mat(:,1))-2,2);
143 figure;
144 plot([0:l:L-2*l],10^-6*...
145 load('postproc\stress_amp_zero_damping_lin.txt'),L_VIVANA,...
146 stress_amp_VIVANA);
147 grid on;
148 legend('Ulveseter linear model','VIVANA');
149 title('VIV stress amplitudes');
150 xlabel('z [m]');
151 ylabel('\sigma [MPa]');
152 elseif Case == 2
153 %OBS! only for 381 elements
154 Mat = load('omae2004\stress_amplitudes_VIVANA_omae04.txt');
155 L_VIVANA = Mat(1:length(Mat(:,1))-2,1);
156 stress_amp_VIVANA = Mat(1:length(Mat(:,1))-2,2);
157 figure;
158 plot([0:l:L-2*l],10^-6*...
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159 load('case2\linear\stress_amp_zero_damping_lin.txt'),L_VIVANA,...
160 stress_amp_VIVANA*10^-3);
161 grid on;
162 legend('Ulveseter linear model','VIVANA');
163 title('VIV stress amplitudes');
164 xlabel('z [m]');
165 ylabel('\sigma [MPa]');
166 end
167

168 end
169

170

171

172

173 %% plot of stress amplitude if c_s = 0
174 %%% NONLINEAR SOLUTION %%%%%%%%%%%%%%%
175 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
176 if c_s == 0 && type == 2
177 figure;
178 plot([0:l:L-2*l],10^-6*stress_amp);
179 grid on;
180 xlabel('length of structure [m]');
181 ylabel('\sigma [MPa]');
182 title('VIV Stress amplitudes, nonlinear');
183 end
184

185 %% plot of stress amplitude for Thorsen and VIVANA
186

187 if c_s == 0 && type == 2
188

189 if Case == 1
190 %OBS! only for 180 elements
191 Mat = load('project_thesis\stress_amplitudes_VIVANA.txt');
192 L_VIVANA = Mat(1:length(Mat(:,1))-2,1);
193 stress_amp_VIVANA = Mat(1:length(Mat(:,1))-2,2);
194 figure;
195 plot([0:l:L-2*l],10^-6*load...
196 ('postproc\stress_amp_zero_damping_nonlin.txt'),L_VIVANA,...
197 stress_amp_VIVANA);
198 grid on;
199 legend('soil damping = 0, Thorsen','stress amplitudes VIVANA');
200 title('VIV stress amplitudes, nonlinear');
201 xlabel('z [m]');
202 ylabel('\sigma [MPa]');
203 elseif Case == 2
204 %OBS! only for 381 elements
205 Mat = load('omae2004\stress_amplitudes_VIVANA_omae04.txt');
206 L_VIVANA = Mat(1:length(Mat(:,1))-2,1);
207 stress_amp_VIVANA = Mat(1:length(Mat(:,1))-2,2);
208 figure;
209 plot([0:l:L-2*l],10^-6*load...
210 ('case2\nonlinear\stress_amp_zero_damping_nonlin.txt'),L_VIVANA,...
211 stress_amp_VIVANA);
212 grid on;
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213 legend('soil damping = 0, Thorsen','stress amplitudes VIVANA');
214 title('VIV stress amplitudes, nonlinear');
215 xlabel('z [m]');
216 ylabel('\sigma [MPa]');
217 end
218

219 end
220

221 %% COMPARISON BETWEEN LINEAR AND NONLINER SOLUTION %%
222 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
223

224 if Case == 1
225 figure;
226 plot([0:l:L-2*l],10^-6*load('postproc\stress_amp_nonzero_damping_lin.txt'),...
227 [0:l:L-2*l],10^-6*load('postproc\stress_amp_nonzero_damping_nonlin.txt'));
228 legend(['linear case, soil damping = ' num2str(c_s)],...
229 ['nonlinear case, soil damping = ' num2str(c_s)]);
230 grid on;
231 title('VIV stress amplitudes');
232 xlabel('z [m]');
233 ylabel('\sigma [MPa]');
234 end
235

236

237 %% plot rms of stress-envelope
238

239 figure;
240 plot([0:l:L-2*l],10^-6*stress_rms,[0:l:L-2*l],10^-6*stress_std);
241 legend('stress rms','stress std');
242 grid on;
243 xlabel('length of structure [m]');
244 ylabel('stress amplitude [MPa]');
245 title('VIV Stress Response');
246

247

248 %% plot seabed
249

250 % figure;
251 % plot(sea_bottom(:,2),sea_bottom(:,1));
252 % grid on;
253 % xlabel('z [m]');
254 % ylabel('y [m]');
255 % title('Geometry of seabottom');
256 % ylim([-10 10]);
257

258 %% plot seabed from VIVANA-analysis in project work + static config
259

260 figure;
261 plot(seabed(:,1),seabed(:,2),static_config(:,1),static_config(:,2));
262 grid on;
263 legend('seabed','static configuration');
264 xlim([0 L]);
265 ylim([-1010 -990]);
266 xlabel('z [m]');
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267 ylabel('y [m]');
268

269 %% POSTER%%
270 %plot seabed from VIVANA-analysis in project work + static config
271

272 figure;
273 %plot(seabed(:,1),seabed(:,2),'LineWidth',2,'Color',[0 0 1]);
274 %hold on;
275 area(seabed(:,2),-1010);
276 hold on;
277 %area()
278 plot(static_config(:,1),static_config(:,2),'LineWidth',3,'Color',[0 1 1]);
279 grid on;
280 legend('seabed','pipeline');
281 xlim([0 L]);
282 ylim([-1010 -990]);
283 xlabel('z [m]');
284 ylabel('y [m]');
285

286 %% plot
287 post = 1;
288 end



Appendix B

Algorithm for nonlinear Newmark-β time
integration

The inspiration for the time integration procedure used in Ulveseter’s nonlinear model is based
on the following algorithm. It is presented in (Langen and Sigbjörnsson, 1979).
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