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Abstract

Analytical solutions of structural reliability problems are often tedious or im-
possible to obtain. The task is further complicated when the safety margin,
i.e. the relation between variables and response, is implicit. Such is the case
for many practical problems, where structural response is obtained from finite
element models and/or by semi-analytical equations. This thesis describes a
practical approach to solution of such problems by response surface methods,
i.e. ways of approximating the analytical safety margin by sampling at discrete
points. If each such sample is computationally demanding, it is necessary to
limit the number of sampling points without introducing unacceptable lack-
of-fit. Theoretically, once the response surface is given, an accurate approx-
imation of failure probability can then be found by the Crude Monte Carlo
method. However, with low probabilities of failure and/or high dimensional-
ity, this method becomes computationally unfeasible.

Two response surface methods are tested for a stiffened panel, where the ef-
fects of distribution types are investigated by comparing between more realistic
models and corresponding gaussian approximations. The evaluations are per-
formed for a stiffened panel based on three different limit states; von-Mises
stress in the plate along the midspan, axial capacity and a check according rel-
evant classification guidelines. For von-Mises stress and ultimate capacity limit
states, finite element software ABAQUS is used to sample the safety margin.
The third is modelled from Det Norske Veritas recommended practice for buck-
ling of stiffened panels, corresponding to a check for plate side at midspan. A
purely quadratic response surface as suggested by Bucher and Buorgund [4],
along with a hyperplane based on vector projection as suggested by Kim and
Na [15] are employed. From the quadratic response surface, probability of
failure is evaluated by Crude Monte Carlo, Importance Sampling and a First
Order Reliability method (FORM).

The response surface obtained by vector projection yields similar results as the
quadratic response surface in combination with simulation methods, but with
some deviations. These differences are generally larger for the non-gaussian
case than for the gaussian distributions. From the results, it can not be con-
cluded whether the differences are method-specific or caused by underlying
calculations, e.g. variable transformations.
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Effects of probability distributions are important, and the results with all vari-
ables taken from the gaussian distribution is highly conservative compared to
using more relevant probability densities.

It is shown how the structural reliability problem can be solved for implicit
limit states in a sensible manner. The procedures shown are efficient from a
computational perspective, and the results from both approaches are equiva-
lent. A difference between the two methods in terms of applicability is noted.
The purely quadratic, "Bucher-Buorgund", response surface samples the safety
margin using two iterations with enough sampling points in each to uniquely
determine the polynomial description, and simulations are used to find the
most accurate probability of failure measure. The Vector Projection approach
samples the safety margin by continuously establishing a hyperplane approxi-
mation and shifting the sampling points until a convergence criteria is met. The
probability of failure is evaluated simultaneously by FORM, which is highly ef-
ficient compared to Monte Carlo. This leads to an unknown, potentially fairly
large, number of safety margin samples but swift probability of failure calcu-
lations. If the results are considered equivalent, it can then be recommended
to use the Bucher-Buorgund approach for problems where the safety margin
samples are computationally demanding but the failure probabilities are mod-
erate, whereas the Vector Projection approach is feasible for any probability of
failure when the safety margin sampling is fast.

The results in terms of failure probabilities are not thought of as directly appli-
cable to design but are deemed valid in the sence of highlighting some impor-
tant considerations and show the essence of solving similar problems. A valid
starting point for further analysis and design purposes would be to extend the
model with respect to boundary conditions, imperfections and an increased
number of basic variables along with correlation effects.
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Sammandrag

En analytisk lösning av pålitlighetsproblemet för konstruktioner är ofta svår
eller omöjlig att finna. Om säkerhetsmarginalen, d.v.s. relationen mellan de in-
gående variablerna och dess inverkan på respons, är okänd eller implicit blir
utmaningen än större. I många praktiska problem är fallet just sådant, då man
bara känner till relationen mellan variabel och respons genom exempelvis en
FE-modell. Det här examensarbetet visar två olika tillvägagångssätt för lösning
av dylika problem genom användning av responsyte-metoder, vilket innebär
en tillnärmning av den analytiska säkerhetsmarginalen. Det finns ett antal så-
dana metoder, där alla går ut på att minimera antalet regressionspunkter som
används men ändå bibehålla tillräckligt god representation av den analytiska
säkerhetsmarginalen i det mest intressanta området. Anledningen till att det
är intressant att minimera antalet provtagningspunkter är att dessa medför en
beräkning som ofta är krävande, som i fall av omfattande FE-modeller.

Två responsyte-metoder är testade genom ett exempel som representeras av
tre olika definitioner av svikt. I beräkningarna ingår dessutom en jämförel-
se av fördelningstyper, genom att använda både de sannolikhetsfördelningar
som anses mest praktiskt relevanta, och normalfördelningen med motsvaran-
de förväntning och standardavvik. Anledningen till detta är att det är avsevärt
enklare att genomföra beräkningarna när alla variabler kommer från normal-
fördelningen, därför är det intressant att se vilken skillnad denna förenkling
medför. Exemplet består av en förstyvad panel, vilket är en vanlig beståndsdel i
marina konstruktioner. De tre gränstillstånden är definierade som flytspänning
i plåten, överskridelse av axiell kapacitet samt kontroll enligt rekommendatio-
ner för buckling av dylika strukturer från Det Norske Veritas, motsvarande
kontroll i panelens mitt. Den ena responsytemetoden är en rent kvadratisk
tillnärmning enligt Bucher och Buorgund [4] med två iterationer. Den andra
föreslås av Kim och Na och baserar sig på en linjär tillnärmning som itereras
fram tills ett konvergenskriterium är nått. Med den förstnämnda beräknas san-
nolikheten för svikt med hjälp av FORM, direkt Monte Carlo och Importance
Sampling.
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Resultaten visar att bägge metoder ger motsvarande resultat, men med vissa
skillnader som är större för de mer realistiska sannolikhetsfördelningarna än
för normalfördelade variabler. Det kan således inte fastslås om det finns sig-
nifikanta resultatmässiga skillnader mellan metoderna eller om skillnaderna
beror på de underliggande beräkningarna, kanske framförallt transformatio-
ner och simuleringarnas omfattning.

För den kvadratiska responsytan gav direkt Monte Carlo och Importance Samp-
ling nära identiska resultat medan FORM som regel avviker en del. Om man
antar att simuleringsmetoderna ger det svar som ligger närmast det analytiska,
kan man i så fall fastslå att denna metod i regel ger en god representation av
säkerhetsmarginalen i det mest intressanta området men att responsytans de-
signpunkt avviker från den faktiska. Sannolikhetesfördelningens form visade
sig vara av stor vikt, då normalfördelade variabler gav stora skillnader åt det
konservativa hållet jämfört med de mer realistiska fördelningsfunktionerna.

En praktisk iakttagelse är att Bucher och Buorgunds responsyta itereras två
gånger, varifrån sannolikheten för svikt med fördel simuleras fram. Kim och
Na’s förslag baseras på en linjär tillnärmning, där sviktsannolikheten räknas ut
med FORM. Denna process upprepas tills ett konvergenskriterium är uppnått.
Alltså ger den ena metoden ett bestämt antal testpunkter varifrån responsy-
tan skapas. Den andra metoden ger ett okänt antal testpunkter men en snabb
beräkning av sviktsannolikhet. Därav är Kim och Na’s metod lämplig när pro-
verna för säkerhetsmarginalen innebär snabba beräkningar, och är oberoende
av nivån för sviktsannolikhet. Bucher och Buorgunds metod är snarare att fö-
redra när varje provtagning är mer omfattande, eftersom man vet hur många
punkter som skall testas och därmed kan förutspå omfattningen av analysen.
Om man däremot misstänker låg sviktsannolikhet och har många variabler,
blir de påföljande simuleringarna krävande.

Resultaten i sig är inte direkt applicerbara för dimensionering på grund av ett
antal förenklingar som bör undersökas närmare. En lämplig utgångspunkt för
vidare arbete är att expandera modellen med fler variabler för tvarsnittsdimen-
sioner och materialegenskaper, tillsammans med korrelationseffekter av dessa
samt för laster. En annan effekt som bör ses närmare på är inspänningarna, då
dessa visar stort utslag på panelens kapacitet. Vidare undersökning av formfel
samt dess inverkan är också relevant.
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Nomenclature

Abbreviations

CDF cumulative distribution function

CMC crude monte carlo (direct sampling)

FORM first order reliability methods

FSA formal safety assessment

IMO international maritime organization

IS importance sampling

LSF limit state function

PDF probability density function

POD probability of detection

vi



Methods of Reliability Analysis for Marine Structures • June 2015 •

Symbols

β safety index

E elastic modulus

εu ultimate strain

f sample spread factor

g safety margin

γm model uncertainty factor

λ̄ reduced slenderness

µ mean or dimensionless imperfection coefficient

p f probability of failure

p f ,CMC probability of failure, crude Monte Carlo

p f ,HL probability of failure from Hasofer-Lind safety index

p f ,IS probability of failure, Importance Sampling

plat lateral pressure load

sax axial stress

sE Euler buckling stress

s f yield strength

su ultimate strength

σ standard deviation

tp plate thickness
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Chapter 1

Introduction

1.1. Scope of Work

This thesis aims to present the fundamental theory of Structural Reliability,
with emphasis on marine and offshore structures. The calculations are focused
on response surface methodology, which is highly relevant from a practical
perspective due to the possibility of implementing different models, including
Finite Element models and classification requirements. Two different response
surface methods are tested and compared using a relevant example. In partic-
ular, the following questions will be addressed:

• Which detailed steps are required to solve the reliability problem given a
mechanical model?

• Will the tested response surface methods yield different results?

• Are there differences between the tested response surface methods in
terms of applicability to different problems?

• If the gaussian distribution is employed as an approximation for all vari-
ables, will this have a significant impact on the results?

Effects of sampling procedure, differences between reliability methods and the
effect of probability distributions are also investigated. The limit states are
chosen so that the implications of different probability of failure levels can be
seen.

1
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1.2. Background

This section aims to describe the context of which structural reliability plays
an important part, and to address its relevance for the design of ships and
offshore structures.

1.2.1. Rules-Based vs Risk-Based design

The common design procedure of ships and offshore structures today can be
attributed the Rules-Based Design, meaning that the ship is designed with func-
tional requirement and cost effectiveness as the overall goals while staying
within the regulatory framework. Thus, the safety perspective is captured by
the underlying rules, and so forms a design constraint.

Figure 1.1: High level explanation of Rules-Based Design, as shown by Vassalos
in [26]
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Risk is generally acknowledged as the product:

(Probability of an event)× (Consequences of the event)

In the wider sense, risk can be defined on any activity that leads to a potential
loss of human life, property, revenue or cause of environmental damage.

So-called Risk Based Design aims to shift the safety perspective from a constraint
to a design objective [26]. Thus, risk can be considered as part of the design
process rather than a limiting factor. The purpose of such a shift is meant as
an incentive to reduce risk and promote innovation, by prescribing acceptable
risk levels instead of design parameters or technology as in a rule-based ap-
proach. Obviously, detailed design regulations exist to minimize risk and are
still highly applicable to standard designs. However, if risk can be minimized
using other solutions there would be more room for innovation.

Figure 1.2: High level explanation of Risk-Based Design, as shown by Vassalos
in [26]

3
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1.2.2. Formal Safety Assessment-FSA

In 1988, disaster struck the Piper oilfield in the North Sea. The Piper Alpha
production production platform exploded, causing the death of 167 persons
including 2 crewmen from the rescue vessel Sandhaven.

While risk assessments where mandatory in the norwegian offshore industry
since 1986 [26], the chain of events leading up to the Piper Alpha disaster is
considered as one of the drivers for the implementation of risk assessments
in the UK and the rest of the world [23]. A specific procedure that is widely
applied today is the Formal Safety Assessment, FSA, meant as a tool in the rule-
making process (initially for the IMO regulations) by establishing a link be-
tween risk, safety and cost. The process can be roughly divided into five steps
of the following order [26]:

• Identification of hazards

• Assessment of the risks arising from these hazards

• Identification of risk-control options

• Cost/benefit assessment of such measures

• Recommendations for decision making

A Formal Safety Assessment, as may be noted from the above description, is
a complex and substantial procedure that requires large effort. Thus, an FSA
is more of a high-level tool suitable for regulatory changes rather than specific
projects.
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1.2.3. Goal-Based Standards

In 2002, the Bahamas and Greece suggested that IMO should be more involved
in setting the construction standards for marine vessels. Following the dis-
cussion of Risk-Based Design, IMO [24] issued the Goal-Based Standards main
principles as:

• "Broad, over-arching safety, environmental and/or security standards that
ships are required to meet during their lifecycle"

• "The required level to be achieved by the requirements applied by class
societies and other recognized organizations, administrations and IMO"

• "Clear, demonstrable, verifiable, long standing, implementable and achiev-
able, irrespective of ship design and technology"

• "Specific enough not to be open to differing interpretations"

The detailed objectives of the Goal-Based standards are ready to be applied un-
der SOLAS to the design of oil tankers and bulk carriers over 150m in length
with building contracts signed after the end of June 2016. The IMO Assembly
of November 2011 decided in their strategic plan for 2012-2017, to plan for a
new GBS concerning oil tankers and bulk carriers, as well as for other types of
ships [24].

The Goal Based Standards will thus act as the framework for new guidelines
and regulations, where Formal Safety Assessments and Structural Reliability
Analysis will supply the supporting arguments for their establishment.

5



Chapter 2

Structural Reliability Theory

2.1. Level I - Partial factors

A common way to evaluate structural safety is the Limit State Design. The
general meaning is that the loads on the structure are found from a chosen
limit state, forming the basis for strength or operability calculations. If the
load on a structural member is denoted S and the corresponding resistance to
such a load is R, then a safety factor F is found from:

F =
S
R

(2.1)

Clearly, F ≤ 1 implies that the load is larger than resistance, and thus failure
for the considered limit state. Such a general analysis, however, is insufficient
by mainly two reasons. First, it would be difficult to say what the sufficient
factor should be. Furthermore, the structural rules should be applicable to a
range of structures within a defined interval of designs. An overall factor as
above would show little consideration to the details that differ two designs
contained in the same requirement. Also, the weighing of safety measure be-
tween different components would probably be unbalanced.

To overcome these issues, the concept of Partial Factors are introduced. Here,
each key component of the structure has its own requirement, so that the as-
sembly of components fulfill the total structural safety demand. If the yield
strength of steel is taken as an example, a partial factor γs, f would be defined
by:

s f ,des =
s f ,sp

γs f

(2.2)
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Where s f ,des is the value used for design and s f ,sp the specified value. By
this, the partial factor (if larger than one) lowers the design strength of the
material thus making the strength calculations more conservative. The reason
for introducing such a factor would be to compensate for the stochastic nature
of the actual yield strength i.e setting it lower than it "probably" is so that
deterministic calculations can be withheld. If the actual yield stress belongs to
a gaussian distribution with µs f = 235 MPa and σs f = 15 MPa, its probability
density is in accordance with the curve of figure 2.1.

Figure 2.1: Probability density for a gaussian yield stress

If the specified value is taken at the mean, a partial factor of 1.2 correspond to
a design yield stress as indicated in figure 2.1. For a load variable, the relation
of eq. 2.1 would be inversed in order to be conservative. The requirement for
the ith structural member when subject to k load variables would then be:

Rsp,i

γi
≤

k

∑
j=1

θjSsp,j (2.3)

Where θj denotes the partial safety factor for the corresponding load. An alter-
native approach would be to use safety factors smaller than unity for resistance
variables and larger than unity for loads. The design value would then be the
specified value multiplied by its partial factor for both load and resistance.

7
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It can be noted that due to the continous distribution of most stochastic vari-
ables, as in the case of yield strength, there will be a slight probability that the
actual value is below the design value, no matter how large the partial factor.
On the other hand, this probability might be so low that it is negligable. Such
high factors would bring additional costs e.g. in material use, fuel consump-
tion, fabrication cost etc.

An important consequence of the method of partial factors is the lack of invari-
ance, implying that these factors have different physical meaning depending on
the formulation used when defining the load and resistance [17]. An example
is the above discussion on whether to divide by a safety factor larger than one
or multiply by a factor smaller than one for resistance scaling. Caution is thus
required so that definitions used in design correspond to those of the rules
from which the factors are taken.

Apart from mentioned restrictions, the method of partial factors provides an
efficient basis for the designer in the sense that the factors are easily applied
to the calculations. Due to the straight-forward implementation, verification
procedures are easily performed.

8
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2.2. Level II - Safety index Methods

The basis for all Level II-approaches is the notion of a limit state function, "LSF".
Recall that a safety factor could be written as in equation 2.1. Now, instead of
considering the relation between resistance, R, and load, S, as a factor, a safety
margin is defined as:

g (R, S) = R− S (2.4)

When load is greater than resistance, the structure is prone to failure. Thus,
failure is expected for g < 0. The limit state function is defined as the limit
between failure and safe domains, i.e. g = 0. A measure of the probability
of failure is now introduced as the safety index. Consider the limit state, and
that resistance and load consist of one or more random variables. The limit
state function can hence be graphically interpreted as a line, curve or surface,
depending on the number of dimensions (variables) included and the formu-
lation of the limit. This surface (or curve/line) splits the total domain into a
safe region and a failure region.

9
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If the safety margin consists of two independent standard gaussian variables,
z1 and z2, the limit state becomes a curve. This curve along with probability
density of the variables fZ1,Z2(z1, z2) is shown in figure 2.2.

Figure 2.2: Graphical interpretation of the design point and the correspond-
ing safety index. Circles represents contours of the joint standard Gaussian
probability density.
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2.2.1. Cornell Safety Index

Consider a safety margin as of equation 2.4. Assume that load effect and resis-
tance are two independent normal random variables, R and S. They are thus
characterized by their mean values µR and µS with variances σ2

R and σ2
S. Hence,

the safety margin will also be a normal random variable with µg = µR − µS
and variance σ2

g = σ2
R + σ2

S.

As any normally distributed random variable, g can be transformed into the
standard normal distribution, giving it zero mean and standard deviation
equal to one. If the transformed variable is g′, the transformation is given
by:

g′ =
g− µg

σg
(2.5)

The probability of failure in terms of the safety margin can be written as p f =
P[g ≤ 0]. Inserting g = 0 into equation 2.11 gives:

g′ (0) =
−µg

σg
(2.6)

Failure probability can then be written as:

p f = P
[
g′ (0) ≤ 0

]
= Φ

(−µg

σg

)
(2.7)

Where Φ is the cumulative distribution for a standard gaussian variable. The
Cornell Safety Index, βC =, was suggested in 1969 as:

βC =
µg

σg
(2.8)

Combining this safety index with the probability of failure as expressed by
equation 2.11 gives the relation:

Pf = Φ(−βC) = 1−Φ(βC) (2.9)

It can be shown that this relation holds for normal random load and resis-
tance variables when the safety margin is linear. It can also be used as an
approximation when the limit state function is non-linear by Taylor-expansion
about a point on the failure surface and including only the 1st order terms.
The drawback of using the Cornell Safety index in these cases is that the safety
index depends highly on the choice of linearization point and the choice of fail-
ure function [29]. The consequence becomes that different safety indices will
be attained for the same structure when using different but equivalent safety
margin definitions.
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2.2.2. Hasofer-Lind Safety Index

In the previous section, the safety margin was denoted g = R− S. To general-
ize, it is now written as g(x1, x2, . . . xn) where the variables xi are normally
distributed and independent. The failure limit is defined as g = 0. As men-
tioned previously, a failure surface can be described by many different, but
equivalent, safety margins. How can the design point and the safety index be
accurately approximated so that the results are equal for all equivalent limit
state functions? Hasofer and Lind proposed a geometrical interpretation, stat-
ing that the design point and the corresponding safety index is approximated
directly from the point on the failure surface closest to the origin (in standard-
ized coordinates). Mathematically, the design coordinates , z?i , at the design
point is thus expressed as in equation 2.10.

[z?1 , z?2 , . . . z?n] = min

(
n

∑
i=1

z2
i

)
(2.10)

where zi is the standardization of the ith random variable Xi. Such a standard-
ization is of the form (equivalent to eq. 2.5):

zi =
xi − µXi

σXi

(2.11)

The solution of equation 2.10 is now a question of optimization so that the
RHS is sufficiently minimized. There are many different procedures for such
problems. Thoft-Christensen & Baker [29] suggest the following algorithm:

αi =
− dg

dzi
(βᾱ)√

n
∑

k=1

(
dg
dzk

βᾱ
)2

, i = 1, 2, . . . n (2.12)

where ᾱ = [α1 α2 . . . αn] represents a unit vector in the direction of the approx-
imated design point so that z̄? = βᾱ. The individual components, αi of this
unit vector are commonly abbreviated sensitivity factors since they represent
the relative importance of the corresponding random variable when consider-
ing failure. To be able to solve for all vector components and the safety index,
one more equation is needed. Fortunately, the demand that the safety margin
is equal to zero on the failure surface is yet to be utilized. By re-writing all the
standardized variables on vector form, it can be solved for the safety index β.

f (z?1 , z?2 , . . . , z?n) = g(βα1, βα2, . . . , βαn) = 0 (2.13)

Equations 2.12 and 2.13 are now to be evaluated at a "guessed" design point.
A new design point is found, which will be used as input for the next iteration
step. With the safety index sufficiently converged, the approximate probabil-
ity of failure can now be found as in equation 2.9, even for non-linear safety
margins.
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2.3. Concluding remarks on Level II methods

It should be noted that all preceding subjects of this chapter are approxima-
tions based on linear approximation of the failure curve/surface. I.e the theory
is based on a Taylor expansion of the full limit state function where only the
first-order terms are included in the calculations. Hence they belong to the
category "First Order Reliability Methods", or FORM.

Indeed, for a curved surface these approximations might be questionable. Sec-
ond Order Reliability Methods (SORM) are based on the same concepts, but
uses a quadratic approximation which would then follow a curve/curved sur-
face more closely than a tangential line. This method will not be described
further in this thesis. However, the Level III-methods in the following chapter
can still be applied with sufficient accuracy to such problems.

It has been shown how the design point and the corresponding safety index
can be found (or approximated) for most cases of practical relevance. As can
be noted, all Level II methods are, in essence, easily computed. However, for
complex safety margins and variables of different distributions, the necessary
transformations and differentiations might be tedious.

The results are subjected to optimization errors, especially in the case of non-
linear safety margins. It must also be considered that the Hasofer-Lind safety
index and it’s associated computation algorithms does not necessarily give
the correct design point, only local minima in the region of the first guessed
sampling points. Hence, for failure surfaces with more than one such "local
design point", it can be difficult to ensure that the global design point is found.
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2.4. Level III - Transformations

2.4.1. Non-normal independent random variables

Until this point, it has been assumed that all random variables used in the
safety margin are normally distributed. This is rarely the case in reality. En-
vironmental loads, material properties and other governing circumstances can
belong to a wide range of probability distributions.

However, as long as the distribution of all participating variables are known (or
can be approximated in a sensible way), the Hasofer-Lind safety index can still
be applied if some steps are added to the process, as described by Rackwitz and
Fiessler [27]. First, the original distribution must be mapped onto the normal
space. Let xi be a random variable belonging to any non-normal distribution.
xi is now thought of as normally distributed about the design point and will
maintain it’s original value exactly at the design point. As any normal random
variable, Xi can also be standardized:

z′i =
zi − µ′i

σ′i
(2.14)

The unknowns here, to be treated later, are the mean (µ′i) and variance (σ′i )
of this approximate normal distribution . If FXi is the true distribution of the
original variable, the approximation becomes:

FXi(xi) ≈ Φ(z′i) = Φ(
xi − µ′i

σ′i
) (2.15)

By the inverse of eq. 2.15, the approximation of xi as a standard gaussian
variable is given by eq. 2.16.

z′ ≈ Φ−1 [FXi (xi)
]

(2.16)

Differentiation of both sides of eq. 2.15 yields:

d
dxi

(
FXi (xi)

)
=

d
dxi

(
Φ
(

xi − µ′i
σ′i

))
→ fxi (xi) =

1
σ′i

φ

(
xi − µ′i

σ′i

)
(2.17)

The right hand term of the above equation along with 2.15 gives two useful
relations containing the unknown approximative values for mean and variance.
The solutions become:

σ′Xi
=

φ
(
Φ−1 (FXi (xi)

))
fXi (xi)

(2.18)

µ′Xi
= xi −Φ−1 (FXi (xi)

)
σ′Xi

(2.19)

With the exception that µ′ and σ′ must be updated for each iteration step, the
procedure described by equations 2.12 and 2.13 can now be applied.
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2.4.2. Correlated variables

It has been shown how the safety index can be found for independent vari-
ables belonging to any distribution. In a practical sense, correlation can easily
be motivated as a common fact among both load and resistance variables.

How can the same be achieved when such correlation between the variables
exists? Indeed, to be able to use the Hasofer-Lind Safety index, even the cor-
related random variables must be transformed to the space of standardized,
independent normal random variables. There are two main ways to achieve
this [13]:

• Rosenblatt transformation-When the full scope of joint probability dis-
tributions are explicitly known.

• Nataf transformation-When only marginal distributions and correlation
matrices are known.

The knowledge of the full joint probability distribution is not very common
in practical applications. And, when it is known, it somewhat reduces the
benefits of using level II methods on behalf of level III, which are yet to be
described. Thus, the focus of this section will be on the transformation method
of Nataf. Consider the correlated set of random variables x = [x1 x2 . . . xn],
with mutual correlation coefficients ρij. These coefficients are then assembled
in the n× n-matrix ρX:

ρX =


1 ρX,12 . ρX,1n

ρX,12 1 . ρX,2n
. . . .

ρX,1n ρX,2n . 1

 (2.20)

As discussed in section 2.4.1, these sets of variables are approximated by
z = [z1 z2 . . . Zn] in the space of standardized normal random variables. The
correlation coefficients of the substituted variables are denoted ρ′ij. The trans-
formation becomes:

FX(x) = Φ(z)→ z = Φ−1 [FX(x)] (2.21)

The approximate joint density function becomes:

fx(x) = φ(z,ρ′ij) |J| (2.22)

There is now a need for the explicit expression of φ(zi, zj; ρ′ij). According to the
definition of a standard normal PDF, it is written:

φ2(z1, z2, ρ′ij) =
1

2π
√

1− ρ′
2

ij

exp

z2
i − 2ρ′ijzizj + z2

j

2
(

1− ρ′
2

ij

)
 (2.23)
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To find the value of ρ′ij, one can consult tabulated semi-empirical formulas
developed for this purpose by Liu and Der Khiureghian [14]. Alternatively,
the following integral can be solved iteratively.

ρij =
∫ ∞

−∞

∫ ∞

−∞

(
xi −mi

σi

)(
xj −mj

σj

)
φ2(z1, z2, ρ′ij)

fXi(xi) fXj(xj)

φ(zi)φ(zj)
dxidxj

=
∫ ∞

−∞

∫ ∞

−∞

(
xi −mi

σi

)(
xj −mj

σj

)
φ2(z1, z2, ρ′ij)dzidzj

(2.24)

To create the final vector of standardized, uncorrelated normal RV’s (denoted
Y), Liu and Der Khiureghian [14] states the following relation, based on Cholesky
decomposition:

Y = Γ0D′
−1 (

X−M′
)

(2.25)

Where Γ0 is the lower triangular of ρ′, M′ = [µ′1 µ′2 . . . µ′n] and D′
−1

= diag
[
σ′i
]

are the vector of equivalent means and the diagonal matrix of equivalent stan-
dard deviations. These are solved for using equations 2.18 and 2.19.
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2.5. Level III - Probability of failure methods

Until now, different approaches for approximation of the probability of failure
has been discussed. What it boils down to, are different ways to work around
the full probability of failure problem depending on what information is avail-
able and how the safety margin and its participating variables are expressed.
In this chapter, approximate solutions to the exact probability problem shall be
discussed. The safety margin (eq. 2.4) is described by main components, Load
(S) and Resistance, (R). The probability of failure is defined as:

p f = P (R− S ≤ 0) = P (R ≤ S) (2.26)

If the load and resistance are two joint, random variables with marginal distri-
butions distributions fR(r) and fS(s) and joint distribution fRS(r, s), eq. 2.26
becomes:

p f =
∫∫

D
fRS(r, s)drds (2.27)

It has been argued that both load and resistance can be composite functions of
one or more random variables. If the safety margin contains n such variables
X = x1 x2 . . . xn, it is denoted g(x) and the complete problem becomes:

p f =
∫
· · ·

∫
g(x)≤0

fX (x) dx (2.28)

As might be suspected, the solution of such an n-dimensional integral will
swiftly become impossible to solve with reasonable effort as n increases. And,
since n for a complex structure will often be larger than what the integral can
be solved for (analytically or numerically) refuge must be taken to numerical
methods.
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2.5.1. Monte Carlo Simulation -Direct Sampling

To find the probability of failure, we could use a sample of N structures and
count the number of failures η that occur within the sample. The value of η/N
would then be an approximation of the probability of failure. As N increases,
the approximation will become better and better so that:

η

N
→ p f as N → ∞ (2.29)

Of course, such samples are never physically available. However, using Monte
Carlo-methods they can be simulated with reasonable accuracy. Melchers [17]
proposes an indicator function:

I [g(x) ≤ 0] =

{
1 if g(x) ≤ 0
0 else

(2.30)

Knowing the probability distributions of the acting variables, each of them
can be simulated. Using a random number generator to attain a vector of
uniformly distibuted numbers r of the same length as x. Denote a sample of
the ith variable xi. x̂i. This estimate can then be found by the inverse probability
density of xi:

x̂i = F−1
Xi

(ri) (2.31)

Having established a sample of all random variables, x̂, the safety margin can
be evaluated. Consequently, a value of either zero or one for the indicator
function is attained. By repeating the process N times, an estimate of p f is
found in analogy to (2.29) :

p̂ f ≈
1
N

N

∑
j=1

I [g(x) ≤ 0] (2.32)

According to sample statistics, the variance of such a sample of I is given as:

Var [I] =
1

N − 1

N

∑
j=1

[
Ij −

1
N

(
N

∑
j=1

Ij

)]2

(2.33)

The variance of the approximated probability of failure is thus:

Var
[
p̂ f
]
=

1
N2 Var [I] (2.34)

From eq. 2.32 and 2.33, it can be noted that the variance of p̂ f decreases pro-
portional to

√
N and directly with the variance of I. Melchers [17] refers to

Broding et al [3] whom suggests the following first approximate for the p̂ f -
confidence level C [%]:

N >
−ln (1− C)

p̂ f
(2.35)
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Regardless of the accuracy of the above equation, it is obvious that the sample
size will be large for accurate simulations. Considering the complexity of the
equations associated with each "test", the computational efforts will therefore
prove to be unmanageable [20] for complex structures and/or low probability
of failures. Another important drawback of the procedure is that the design
point is not explicitly found.
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2.5.2. Importance Sampling

The indicator function from eq. 2.30 can be used to represent the limits in the
integral of equation 2.28 as:

p f =
∫
· · ·

∫
g(x)≤0

fX (x) dx =
∫
· · ·

∫
I [g(x) ≤ 0] fX (x) dx (2.36)

The consequence becomes that the integration is taken over the whole domain
of the variables as opposed to the failure surface, by letting only the combina-
tions of variables leading to failure contribute to the total sum. Now, a vector
of numbers from an importance-sampling probability density function, hV(v),
is incorporated to the integrand:

p f =
∫
· · ·

∫
I [g(x) ≤ 0]

fX (x)
hV(v)

hV(v)dx (2.37)

According to basic probability theory, the integral in 2.37 is the n-dimensional
first moment (expected value) of I [g(v) ≤ 0] fX(v)

hV(v)
. Thus, the probability of

failure can now be approximated as a mean of a sample of this product:

p f ≈
1
N

N

∑
i=1

{
I [g(v̂i) ≤ 0]

fX (v̂i)

hV(v̂i)

}
(2.38)

As for the direst sampling, equation 2.38 can now be evaluated by generating a
series of random number vectors, v̂i, of the uniform distribution and evaluate
for the distributions fX and hV. Since fX is the distibutions of the random
variables, it is known. hV however, must be chosen. The steps of the procedure
are as follows:

• Locate "shift-point": This point is found as the point of maximum likeli-
hood of fX on the failure surface.

• Define importance sampling function: According to Melchers [17], an
appropriate distribution of hV is the n-dimensional standard normal prob-
ability density function about the "shift-point".

• Run simulation: Generate the sequence of random numbers and evaluate
eq. 2.38.
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If the non-linearity of the limit state is low, with gaussian pdf as sampling func-
tion, the generated points will be shared almost equally between failure and
safe domain invariant of the failure probability. This is the essential benefit of
importance sampling, since it means that very low probabilities of failure can
be simulated by small sets. As compared to direct sampling where the extent
of the simulation grows fast with decreasing p f . The method can, if necessary,
be made more efficient. What determines the computational efficiency is the
degree of proportionality between fX and hV in the failure domain [17]. Draw-
backs of this method are that the point of maximum likelihood on the failure
surface might be tedious to find and require preparatory numerical analysis, if
at all identifiable. Also, similar to direct sampling, it does not give an explicit
design point.
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2.5.3. Directional Simulation

The integral given by eq. 2.28 descibes the reliability problem analytically. x is
as before the vector of variables involved in the limit state function, g(x) ≤ 0.
These can be transformed into standard gaussian space, xi → zi. It was stated
in section 2.2.2 that the design point is located at the point on the LSF that
minimizes the problem of equation 2.10. We can write the sum on the RHS of
this equation in terms of a new random variable, u:

u2 = z2
1 + z2

2 + z2
3 . . . z2

n (2.39)

where n is the length of x, i.e the dimension of the reliability problem. u2 is
now χ2- distributed with n degrees of freedom [22].

Considering an idealistic case where the LSF in standard space (g?(z) = 0) is
a hypersphere of radius R, the probability of failure for the problem becomes:

p f = P [g?(z) ≤ 0] = P
[

R2 − u2 ≤ 0
]
= 1− χ2

(
R2
)

(2.40)

The contribution of failure probability from the jth subdomain, when the failure
domain is split in to m contributions then becomes:

p f ,j =
[
1− χ2

(
R2
)]

/m (2.41)

The method of directional simulation describes how the failure probability can
be approximated when the LSF is no longer a hypersphere, by utilizing the
above subdomains as approximations to the actual failure surface for a set of
points, "directions", on g?(z) = 0. For each point, the radius to the hypersphere
is written Rj. A visualization of the procedure, taken from Nie et. al [22] is
shown in figure 2.3.
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Figure 2.3: 2D-vizualization of Directional Simulation, from Nie et. al [22]

For each of these points, a new subdomain is found as:

p f ,j =
[
1− χ2

(
R2

j

)]
/m (2.42)

Again, m is the number of subdomains/points. The total failure probability
now becomes:

p f =
1
m

m

∑
j=1

[
1− χ2

(
R2

j

)]
(2.43)

It was discussed that reliability index methods in general can converge to a
false design point, since for complex failure surfaces there might be many local
minima. The procedure of Directional Simulation, i.e that the failure surface
is approximated over a region that can be chosen, eliminates this discrepancy.
On the other hand, as for the other level III-methods described here, the design
point is not found explicitly.
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2.5.4. Particle Swarm Optimization

The Particle Swarm Optimization("PSO") algorithm can be applied to any op-
timization problem for continous functions. It was developed to model the
behaviour of animal flocks or fish schools, where the individual benefit from
fellow food search (and information sharing) is weighed against that any food
found must be shared with the rest of the group.

The design point is, again, given by the set of coordinates in the standard gaus-
sian space that minimizes eq. 2.10, with the restricition that this point must be
on the Limit State surface. It will now be shown how PSO can be used to sim-
ulate the search of this point. To begin with, PSO is an algorithm that solves
maximization problem, so the optimization mentioned must be rewritten to
such a form. There are numerous approaches to achieve this. It will not be
discussed in detail here, hence we will assume a transformation so that the
problem now consists of maximizing H(x)

As before, the reliability problem is of n dimensions. Now a set of Tpop in-
dividuals will be generated to manouver this n-dimensioned space until they
"find" the design point. To perform this, two parameters will be assigned to
each individual; fitness and velocity. Fitness, in this case, ranks the individuals
depending on their distance from origo. For two individuals, xa and xb, and a
fitness function H, this means that xa is better then xb when H(xa) > H(xb).
The velocity is calculated for each of the j = 1, 2, 3, . . . n dimensions, and
each of the i = 1, 2, 3, . . . Tpop individuals. For the hth iteration step it is
calculated from:

V(h+1)
ij = wV(h) + c1r1

(
P(h)

ij − I(h)ij

)
+ c2r2

(
P(h)

gj − I(h)ij

)
(2.44)

where r1 and r2 are samples from a uniform distribution on the interval (0,1),
refreshed at each iteration. c1, c2 are deterministic parameters and w is the in-
ertia parameter. Furthermore, I0 is a matrix of size

(
n, Tpop

)
. Each row contain

uniform random numbers on the interval that defines the search interval for
the ith parameter. In words, I(h) is then the matrix that holds the coordinates
of each individuals position. P(h)

ij is the best position that each individual has

taken so far. P(h)
gj is the best position any individual has taken.

The LHS of eq. 2.44 is composed of three terms. The first can be thought of
as the inertia term. It states how much inertia is carried from the previous
step, i.e the ability for the individuals to change direction upon retrieval of
new information. Small w means good "maneuverability", large w means a
larger contribution from velocity history. By these reasons, small and large w
optimizes the algorithm to search for local and global maxima, respectively. A
tradeoff is often suggested so that w is in the region between 0.8 and 0.9 [10].
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The next term, as described by Elegbede [10], is the "individual experience".
It states how the individual has improved it’s position throughout the simula-
tion. The last term is the "group experience", where the entire set of individuals
are compared to the best result so far.

c1 and c2 have a typical optimal value for each problem, but as a reference
Elegbede [10] suggest a value below half of the search space domain. Other-
wise, the particles tend to leave the search domain regularly.

The term velocity in this case becomes a bit misleading and should rather be
seen as the change of position from one step to the next according to:

I(h+1)
ij = I(h)ij + V(h+1)

ij (2.45)

The procedure is now repeated until a given convergence criteria is met.

Comparing to the other level III-methods described here, PSO is the only one
giving an explicit design point. When compared to FORM, a first-order algo-
rithm, PSO requires no differentiations and should thus be easier to implement.
In addition, it recovers the global solution whereas FORM might only give a
local (false) design point. For the typical population sizes, ranging from 20
to 100 [10], this method requires small computational efforts due to the small
matrix sizes and the fact that only a few random numbers have to be drawn
for each iteration. Also, the typical number of iterations required is relatively
small.
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2.5.5. Optimized Fitting

The method of optimized fitting, suggested by Naess et. al [19], is based upon
the introduction of a variable λ that can take any number between zero and
one. The safety margin is then rewritten to take account of this parameter as:

g(λ) = g− µg (1− λ) 0 ≤ λ ≤ 1 (2.46)

Thus, the original safety margin is given as g(1). The failure probability is then
suggested as:

p f (λ) ≈ q (λ) exp
{
−a (λ− b)c} as λ→ 1 (2.47)

Where q is a function that varies slowly with λ compared to the exponential
term. The method of optimized fitting is then based on the assumption that this
failure probability has a regularity in λ. This implies that the simulations can
be done in a certain interval of lambda, and interpolated towards higher values.
Higher values of λ, i.e in the region of 1, gives a low probability of failure.
Low failure probabilities requires a larger computational effort to converge as
compared to the same system with higher failure probability. Hence, effort
will be saved if the simulations can be restricted to the regions of high failure
probability. Since q (λ) is a slowly-varying function, and the region of interest
is when λ approaches unity, it is approximated as a constant that fits well with
the tail values of λ. The coefficients q, a, b, c are now found from log-level
mean square minimaziation of the following expression:

F (q, a, b, c) =
M

∑
j=1

wj

[
log
(

p̂ f
(
λj
))
− log (q) + a

(
λj − b

)c
]

(2.48)

Here, wj is a weight factor that puts more emphasis on the more "certain" data
points, whereas λ0 ≤ λ1 < . . . < λM are points where the failure probability
is empirically estimated. Writing yj = log

(
p̂ f
(
λj
))

and xj =
(
λj − b

)c with
b and c as constants, the optimal values of a and q can be found from linear
regression as:

a? (b, c) = −
∑M

j=1 wj
(
xj − x̄

) (
yj − ȳ

)
∑M

j=1 wj
(
xj − x̄

) (2.49)

and
log (q? (b, c)) = ȳ + a? x̄ (2.50)

These values can now be used in a Levenberg-Marquardt solution of eq.2.48
[19].

The simulations as such are, as mentioned, done for the points mentioned
above, i.e λ0 ≤ λ1 < . . . < λM which forms the basis for the fitting. Also, the
weight points must be determined. This can be done in different ways and will
not be explained in detail here. When these steps are performed, a relation is
attained that can be used to find approximate failure probability in the upper
tail of λ without actually having to simulate it.
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2.6. Response Surface Methods

In many physical problems, an explicit expression for the limit state is not
known. Other times, it exists but is not on closed form or has a complexity
that makes it inconvenient or impossible to evaluate e.g the partial derivatives
required for Hasofer-Lind reliability index computation as described by sec-
tion 2.2.2.

Commonly, structural behaviour is evaluated through commercial finite ele-
ment codes. In such cases, the response is not known but can be evaluated at
discrete points for combinations of the random variables. From these samples,
an expression for the safety margin can be formed by regression or interpola-
tion so that the probability of failure can be evaluated from any of the methods
described previously. The approximate polynomial for the structural response
in terms of the random variables in such a way is commonly abbreviated re-
sponse surface.

It must often be considered that each of the sampling points require some
extent of computational effort, depending on model and solution techniques,
which might act highly restrictive on the number of points that can be ob-
tained within reasonable cost. It is often stated in the literature that the safety
margin can be described by a second order polynomial due to generally low
curvatures, especially in the vicinity of the design point [17], [5]. Even so, the
regression of a full second order polynomial requires a large set of samples.
For n random variables, the size v of the set of samples required for unique
determination of all coefficients becomes v = 1 + n + n(n + 1)/2.

Any reliability method is highly sensitive to the description of the limit state
in the region of the design point, since this is where the density of failure
probability is at its largest. Thus, the polynomial should accurately model the
safety margin especially in this part of the n-space of random variables. When
this location is not known beforehand, and the fact that each sampling point
is computationally demanding, it becomes obvious that sampling the safety
margin arbitrarily for a full second-order polynomial is highly inefficient. A
more suitable approach would be to incorporate some a priori knowledge into
the sampling procedure to make it more efficient and minimize the lack of fit
from the regression close to the design point. A vast number of such improved
response surface methods has been developed, from which a selection will be
presented in the following sections.
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2.6.1. Bucher-Bourgund Response Surface

The following technique was suggested by Bucher and Bourgund [4]. Here,
cross-terms are excluded from the second order polynomial description of the
safety margin, decreasing the number of coefficients to be determined substan-
tially. The suggested polynomial thus become:

ḡ(x) = a +
n

∑
i=1

bixi +
n

∑
i=1

cix2
i (2.51)

where ḡ is an approximation of the safety margin. a, bi and ci are coefficients
of corresponding variable xi It follows that a set of v = 2n + 1 sampling points
are required for determination of all coefficients. The sampling procedure is
based on variables expressed as uncorrelated, normally distributed with mean
and standard deviation µi and σi respectively. A spread factor fi is assigned
each variable. A sample is then taken at a central point located at the mean
for all random variables, and support points are calculated at xi = x̄i ± fiσi.
The resulting sample size becomes 2n + 1 which correspond to the required
number of samples for unique determination of the polynomial of equation
2.51. Once ḡ is established, a first estimate of the design point can be searched
e.g by FORM. The actual safety margin,g, is now evaluated at the approximate
design point and a linear interpolation is performed to set the new center point:

xm = x̄ + (xD − x̄)
g(x̄)

g(x̄)− g(xD)
(2.52)

The reason for this interpolation, rather than just setting the design point as
the new center point, is to ensure that it is taken sufficiently close to the actual
limit state. Sampling is now repeated to form a new response surface, which is
used as the basis for reliability analysis by any suitable method. An example
of the exact limit state, along with the response surface and the corresponding
sampling points is shown in figure 2.4.

Figure 2.4: Response surface approach of Bucher-Bourgund, figure from [4].
Left side shows the limit state for sample set centered about the means, right
hand side indicates the final result.
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The resulting number of sampling points required for the reliability analysis
becomes 4n + 3. If the description of the safety margin using expression 2.51
is deemed inaccurate, it can be expanded by including cross terms:

ḡ(x) = a +
n

∑
i=1

bixi +
n

∑
i=1

∑
j 6=i

cijxixj +
n

∑
i=1

dix2
i (2.53)

Expanding the polynomial as above has the consequence of more sampling.
The polynomial description above would require 1

2 n(n − 1) additional sam-
pling points as compared to 2.51. If necessary, also the second order cross
terms could be included to attain a full quadratic polynomial.

Response surfaces found according to the method described in this section
gives relatively small samples sets and still sufficient accuracy in the region of
the design point, especially if the pure quadratic polynomial description (eq.
2.51) is deemed accurate. An obvious drawback of uniquely determined poly-
nomials is that eg. ANOVA (Analysis of Variance) of the regression coefficients
cannot be performed. It should also be noted that the accuracy of the response
surface will be problem-dependent.

The method as described in the original article relies on the factors controlling
the sampling point distance from the center point, fi, that are somewhat ar-
bitrary. Their values must be considered for each individual problem, which
might lead to further uncertainty in the results. According to Rajashekhar and
Ellingwood [28], experience shows that setting fi = 2 for the first iteration and
fi = 1 for the second gives sufficient accuracy for most problems. This leads to
a large coverage for the first sampling set, and a second set with more narrow
spread about the design point. Thus, the important region (in the vicinity of
the design point) will be described more accurately.
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2.6.2. Improved Response Surface by Vector Projection

Kim and Na [15] argues that the procedure of section 2.6.1 might not guarantee
convergence towards the correct design point and that the exact safety margin
might have any shape, so that a second order approximation might not repre-
sent the curvature correctly. Instead, a perturbation technique based on vector
projection of the limit state is suggested, which can be used as an expansion
of the FORM-algorithm for cases when nonlinearity is suspected to influence
the results. The basic idea is to use a strictly linear response surface, and shift
the sampling points at each iteration so that the distance between approximate
and analytical design point decreases for each step.

The method will now be briefly described. A first sampling set is taken at
points µi ± fiσi. From this set, a linear response surface is found according to:

ḡ(x) = a +
n

∑
i=1

bixi (2.54)

The design point is evaluated and defines the center point for the next sam-
ple set. The algorithm is started by finding the new sampling set based on
projected unit vectors for each basic variable, δi. These are defined as:

δi
j =

hi
j√

∑n
k=1
(
hi

k

)2
(2.55)

where hi are found from:

hi = ui − ∆g′
(

∆g′
T
ui
)

(2.56)

Vectors ui are defined as:

ui = [e1 e2 ... en]
T

{
ek = 1 if k = i
ek = 0 if k 6= i

(2.57)

∆ḡ is the vector of partial derivatives at the design point:

∆ḡ =

[
dḡ
dx1

dḡ
dx2

. . .
dḡ
dxn

]
xD (2.58)

The new, perturbed sampling set is then found from:

xi
S = xD ± fiσi

√
n− 1εiT

δi (2.59)

The vector εi contains the perturbation weights:

εi =

{
1 if k = i
0.9 if k 6= i

(2.60)
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The process described above can now be repeated until acceptable convergence
is achieved.

The only term that remains to be discussed are the sample spread, controlled
by the factor fi. These should be chosen with consideration of the curvature.
Kim and Na suggests that the safety index is evaluated for f = 1.0 and f = 1.5.
The following relation is then evaluated:

∆ =
|β1.0 − β1.5|

n− 1
(2.61)

Where ∆ is the nonlinearity index, which indicates the level of curvature on
the analytical limit state. A final analysis (if necessary) is then performed by
choosing fi according to:

f =


1.0 if ∆ ≤ 0.03
1.2 if 0.03 < ∆ < 0.06
fopt else

(2.62)

fopt is found from the following figure:

Figure 2.5: Spread factors for the vector projection algorithm, figure from Kim
and Na [15]
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If the original sampling points were chosen as µi ± fiσi it can be shown that
equation 2.59 perturbs the sampling points towards/away from the origin in
standardized coordinates.
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2.7. Time-Dependent Reliability

All theory presented previously is based on so-called time-invariant reliability,
implying that the probabilistic descriptions of structural resistance and applied
loads are constant over time. However, these properties might be subject to
changes over the service life. Structural resistance can be affected by fatigue
deterioration (the occurence of cracks), corrosion or other effects. Loading can
vary both discretely (e.g sudden changes in loading conditions for ships and
offshore structures) or continuously as with waves and wind. The general
expression of time dependent failure and corresponding safety margin can
thus be written as:

p f (t) = P [R(t) ≤ S(t)] (2.63a)

G(t) = R(t)− S(t) (2.63b)

In terms of stochastic processes, the problem can be described by the safe
domain D and the vector of time-dependent random variables, X(t):

p f (t) = 1− P[N(t) = 0|X(t = 0) ∈ D]P [X(0) ∈ D] (2.64)

where N(t) defines the number of outcrossings of the vector X from D into the
failure domain.

An assumption used previously in this thesis is that failure probabilities in
structural reliability problems are generally small. When failures are rare, the
outcrossings from the safe domain D are expected to be few and separated in
time. The failure events can then be assumed as mutually independent and
approximated by the Poisson distribution. It can also be noted that the only
interesting outcrossing is the one that occurs first in time, a fact that becomes
very beneficial. By the Poisson distribution, the probability of zero outcrossing
in the time interval [0, t] is:

P [N(t) = 0] =
(vT)0

0
e−vt (2.65)

where p f (0, tL) is the probability of failure at initial loading and v is the failure
rate. It should be noted that this assumption becomes gradually less accurate
with time if resistance deterioration is included, since failure events will be-
come more and more common as t→ ∞.

Since the term P [X(0) ∈ D] in 2.64 is equivalent to 1− p f (0), the time variant
failure probability, with first-loading failure included, becomes:

p f (t) = 1−
[
1− p f (0)

]
e−vt (2.66)
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An upper bound for the failure probability can now be established by noting
that vt > 1− e−vt so that:

p f (t) ≤ p f (0) +
[
1− p f (0)

]
vt (2.67)

In order to apply formulas 2.66 and 2.67, the outcrossing rate, v, remains to be
determined.

If X(t) is a stationary vector process, the outcrossing rate from a domain D can
be found from:

v =
∫

D
E(Ẋn|X = x)+ fX(x)dx (2.68)

The above integral can be extended to cases where D varies with time as for
structural deterioration. However, it is not easily evaluated. By this reason,
it is commonly transformed into a time-invariant problem so that numerical
solutions as described by section 2.5 can be applied.

As mentioned, failures are usually rare. It follows that commonly occuring
load magnitudes cannot trigger an outcrossing. The first step in such a trans-
formation is thus to substitute each load process by a random variable from a
suitable extreme-value distribution.

2.7.1. Hazard rates

Time-dependent reliability, especially for aging structures, is commonly eval-
uated from the hazard function. First, a function that describes the cumulative
distribution of structural life T, the unconditional failure rate, [17] is defined:

FT(t) = P [T < t] (2.69)

The usefulness of the hazard rate lies in the ability to predict the failure prob-
ability in a given service interval in time, e.g the probability of failure in the
jth service year given that the structure has already survived j− 1 years. On
probability notation for a time interval dt:

P [(T ≤ t + dt) | (T > t)] (2.70)

Since P [T > t] = 1− P [T ≤ t], Bayes’ rule can be applied to 2.70 so that:

P [(T ≤ t + dt) | (T > t)] =
P [(T ≤ t + dt) ∩ (T > t)]

P [T > t]

=
P [t ≤ T ≤ t + dt]

1− P [T ≤ t]

(2.71)

The hazard rate function hT(t) can now be defined as the conditional failure
rate as:

hT(t) =
fT(t)

1− FT(t)
(2.72)
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2.8. System reliability

In the previous sections, component reliability has been discussed. Compo-
nent reliability relates the probability of failure to a particular failure mode
described by the safety margin g. A structural system, in the present context,
is defined as a structure (or a part of one) where failure can occur in m dif-
ferent ways described by the safety margins g1, g2, g3, . . . gm . The system
fails when one or more of these safety margins are less than zero depending
on how the system is defined.

It should be noted that these abbreviations are in conflict with the more phys-
ical interpretation, e.g a beam could be a structural component in the practical
sense whereas here, a beam with multiple possible failure modes is considered
a structural system. To separate the terms and avoid confusion, each failure
possibility will in this section be denoted a structural element.

When loads and/or structural resistance parameters are considered as stochas-
tic entities, different failure modes can be critical depending on the realiza-
tions of the contributing variables. Also, correlation between the correspond-
ing safety margins might exist. Thus, the system reliability problem can not
be reduced to finding the most probable failure mode and the corresponding
probabilities. Instead, tools that incorporate all limit states and their mutual
relations must be employed.
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2.8.1. Fundamental Systems

For system reliability, the failure of one element is not necessarily the same
as system failure. A definition of system failure is thus needed. First, the
behaviour of each element in terms of failure properties are required. Perfectly
brittle elements lose all load carrying capacity upon failure. Perfectly ductile
elements maintain their capacity after failure , although deformations increase.
More complex element types are commonly used but shall not be described
here.

Series systems

For series systems, also known as weakest-link systems, system failure occurs
when one or more elements fail so that failure in one element causes failure
in the whole structure. For a system of n independent elements with Mi, i =
1, 2, 3, . . . n being the safety margin of the ith element, the failure probability
can be written as:

p f = 1− P [(M1 > 0) ∩ (M2 > 0) ∩ (M3 > 0) ∩ . . . ∩ (Mn > 0)]

= 1−
n

∏
i=1

P [Mi > 0]

= 1−
n

∏
i=1

(1− P [Mi ≤ 0])

(2.73)

Figure 2.6: Series system of size n
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Parallel systems

Redundant systems are described by a parallel model. Here, system failure re-
quires the failure of all elements. In structural analysis, the parallel model can
also be used as a subsystem to describe a failure mode, considering that one
failure mode could require the simultaneous breakdown of many elements.

Figure 2.7: Parallel system of size n
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2.9. Ditlevsen Bounds

Ditlevsen [9], suggested a reliability measure for structural systems based on
so called Narrow Reliability Bounds, in the literature commonly abbreviated
Ditlevsen Bounds. The theory is based on random variables in the standard-
ized, uncorrelated, gaussian space.
A system is, as described in the introduction of this chapter, defined by a set
of safety margins, gj where i = 1, 2, 3, . . . m. The corresponding failure
domains are now denoted Fi and the safe domains Si. By this, the domain of
the participating random variables x is split into a safe part and a failure part.
The failure domain and the safe domain of the entire system, respectively, is F
and S.
For the evaluation of the Ditlevsen Bounds, two indicator functions are intro-
duced:

ISi =

{
1 if x ∈ Sj

0 else
(2.74a)

IFi = 1− ISj (2.74b)

The indicator function can thus take a value of zero or one, so that ISj is equal
to one if the jth safety margin is larger than zero. The opposite values are taken
by the failure indicator Fj. The indicators for the entire system are now given
the same properties and are denoted IS and IF. Since system failure has been
defined as the event where one or more failure modes are activated, the system
indicators can be found as:

IS = IS1 IS2 IS3 . . . ISm (2.75a)
IF = IF1 IF2 IF3 . . . IFm (2.75b)

This yields IF = 1 and IS = 0 in the event of any failure, and vice versa for the
event of a random variate composition in the safe domain i.e the structure do
not fail in any way.
Combining equations 2.74b and 2.75b gives, after some rearranging:

IF = IF1 + IS1 IF2 + IS1 IS2 IF3 + . . . IS1 IS2 IS3 . . . ISm−1 IFm (2.76)

According to fundamental probability theory, this equality holds also for the
expected values of the indicator functions:

E[IF] = E [IF1 ] + E
[
IS1 IS2 IF3

]
+ . . . + E

[
IS1 IS2 IS3 . . . ISm−1 IFm

]
(2.77)

With the properties of the indicator functions described by equation 2.74b, the
following relations holds true for all i ≥ 2 and j < i:

IS1 IS2 IS3 . . . ISi−1 ≤ ISj = 1− IFj (2.78a)

IS1 IS2 IS3 . . . ISi−1 ≥ 1−
(

IF1 + IF2 + . . . + IFi−1

)
(2.78b)
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As mentioned above, the indicator functions can be substituted for the cor-
responding expected values. Ditlevsen [9] now states that the probability of
failure is equal to the expected value of the corresponding indicator function.
From 2.78, when combined with 2.77, it can thus be shown that:

P (F) ≥ P (F1) +
m

∑
i=2

max

{
P (Fi)−

i−1

∑
j=1

P
(

Fi ∩ Fj
)

, 0

}
(2.79a)

P (F) ≤
m

∑
i=1

P (Fi)−
m

∑
i=2

max
j<i

P
(

Fi ∩ Fj
)

(2.79b)

Equations 2.79a and 2.79b, respectively, are now upper and lower bounds for
the system failure probability. These bounds have been shown to give very
narrow intervals for the failure probability when applied to highly reliable
examples [9], which is often the case when structures are considered.
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Chapter 3

Uncertainties in Marine Structural
Analysis

Accurate reliability analysis of ships and offshore structures requires that the
phenomena affecting the structural integrity throughout the lifetime is mod-
elled correctly. For deterministic problems absolute values is sufficient but
a probabilistic analysis requires more information, i.e. statistical data or hy-
potheses. The Joint Committee on Structural Safety [12], defines the following
types of uncertainties to be considered in a reliability analysis model:

• Intrinsic physical or mechanical uncertainty
-The aleatory uncertainty of the basic variables included in the model

• Statistical uncertainty
-Epistemic uncertainty, arising when the statistical properties of basic
variables is extrapolated from data sets.

• Model uncertainty
-How well the calculation model describes the actual relation between
load and response

This chapter will mainly describe the first of these three categories, i.e. ways
of adressing the stochastic nature of typical load and resistance phenomena
within marine/offshore structural engineering.
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3.1. Limit states and failure categories

How failure is defined is the basis for the reliability analysis and a large factor
in determining how accurate results will be. This definition is implemented
through safety margin, as defined in section 2.2, and can be formulated ac-
cording to which event one wishes to describe. To some extent, the limit state
itself can be considered an uncertainty, since its definition is often only an ap-
proximation of the physical event one wishes to control. Most limit states can
be prescribed to one of the following main categories [12], [8]:

• Serviceability limit states. Failure when the functional requirements are
no longer fulfilled, e.g when:
- Extent of deformations, vibrations, motions etc. disables the structure
from fulfilling its intend purpose.
- Local deformations/damages or fatigue cracking that requires repairs
leading to a halt of operations.

• Ultimate limit states. Failure when the structure encounters loads in ex-
cess of its maximum load-carrying capability. In general irreversible and
causes failure at the first limit state violation. Typical scenarios could be:
- Loss of equilibrium for the whole structure, e.g overturning.
- Exceedence of maximum load-carrying capacity for one or more mem-
bers that are critical for the structural integrity.

• Accidental Limit States. Failure due to accidental events, e.g
- Collisions
- Fire/explosions
- Operational errors

• Fatigue limit states. Failure due to repeated loading.
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3.2. Material

Material properties of structural steel will be subject to some degree of vari-
ability that should be considered. It is distinguished between three different
levels; macro, meso and micro-scale variability. At macro-scale, the variability
is accounted for between different structures or components but properties are
assumed constant within each subdomain. At meso-scale, variations in smaller
areas are considered. A degree of correlation between a property at one point
compared to another exist, which is high when these points are close and
small when far apart. Micro-scale variations are typically material impurities,
inhomogenities, pores and other deviations that fluctuate within ranges of cen-
timeters down to particle size [12].

For the purpose of this thesis, it will suffice with a description of how to
model the global (macro-scale) variations of the fundamental material proper-
ties. Suggested variabilities of these are shown in table 3.1. The corresponding
correlation matrix is shown in 3.2.

Table 3.1: Variability for material parameters under static loading, as suggested
by JCSS [12].

Property: s f su E ν εu

C.O.V 0.07 0.04 0.03 0.03 0.06

Table 3.2: Correlation matrix for macro-scale material propetry variability ac-
cording to JCSS [12].

sy su E ν εu

sy 1.00 0.75 0.00 0 -0.45

su 1.00 0.00 0 -0.60

E 1.00 0 0

ν sym 1.00 0

εu 1.00
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3.3. Geometry and Dimensions

3.3.1. Shape imperfections

When a structure is built, there is some degree of deviation from design to
actual product. This difference can be critical and should be accounted for
somehow. It is distinguished between three categories of geometrical eccen-
tricities in structures:

• Average eccentricity - Translation between design and actual location of
a member.

• Out of straightness - The curvature of a member which is designed to be
straight.

• Out of plumbness - Angular displacements.

For steel and concrete columns, the normal distribution with mean zero is sug-
gested by JCSS for all eccentricities. Recommended standard deviations are
0.001L for average eccentricity and out of straightness (measured at the point
of maximum deflection), while a standard deviation of 0.0015 radians is em-
ployed for out of plumbness. For comparison, DNV tolerance requirements [7]
are 0.0015L for out of straightness of bars, frames, stiffener web and stiffener
flanges. For pillars and vertical columns, allowed initial relative translation is
0.001L.

In DNV guidelines [6] for stiffened panels, imperfections are handled implicitly
by the dimensionless imperfection parameter µ, found as:

µ =

(
0.34 + 0.08

zp

ie

) (
λ̄− 0.2

)
(3.1)

for check at plate side, and:

µ =

(
0.34 + 0.08

zt

ie

) (
λ̄− 0.2

)
(3.2)

for check at stiffener side. zt and zp are distances from the neutral axis (for
the cross-section with effective plate width) to the middle of the plate and the
outermost fibre of the stiffener, correspondingly. λ̄ is the reduced slenderness
defined as the square root of the ratio between yield stress and Euler buckling
stress:

λ̄ =

√
s f

sE
(3.3)

The buckling length for calculation of the Euler buckling stress is corrected for
lateral pressure as follows:

Lk = L

(
1− 0.5

∣∣∣∣∣ plat
plat, f

∣∣∣∣∣
)

(3.4)
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Here, plat, f is the lateral pressure required to cause yield in outer fibre at sup-
port, adjusted by a material safety factor. ie is effective radius of gyration, given
by:

ie =

√
Ie

Ae
(3.5)

where Ie and Ae represents the moment of inertia and cross-section area for
the equivalent beam. The effective width is found from:

be

b
= CxsCys (3.6)

where b is the actual width between stiffeners. Cxs and Cys is the reduction
factor for stresses in the longitudinal and transverse directions. These are
found from a comprehensive set of equations given in [6] but will not be de-
scribed in detail here. The normalization of the imperfection coefficient is of
the form [16]:

µ =
wi Ae

We
(3.7)

where We is the bending resistance for effective cross-section and wi the imper-
fection magnitude.

3.3.2. Dimensional uncertainty

There is no guarantee that the dimensions of a member are exactly the same
as expected. There will be some extent of variation, throughout a member
and between different members. The JCSS suggests a standard deviation of 3.2
% for cross-section areas and less or equal to 1 mm for height, thickness and
width. These numbers are based on preliminary results from a study of beams
from IPE 80 to IPE 200 [12]. The Gaussian distribution is suggested.
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3.4. Environmental loads

3.4.1. Wave-induced loads

Ocean waves is a typical example of a stochastic process. Surface elevation at
any time instant for a given location is thus a random quantity. By consider-
ing the vast number of factors that affect the upraising of the sea surface at a
particular time instance, it follows from the central limit theorem that the gaus-
sian distribution could be a fair assumption for this phenomenon. At least, it
is widely utilized and considered a reasonably accurate model [21].

Factors such as wind, current, tide and temperature are all highly varying and
affect wave characteristics. As a consequence, the statistical properties of the
waves are not constant but varies over time in short time perspectives but also
over the day and throughout the seasons of a year. The implication is that the
surface elevation is a non-stationary process. To be able to statistically model
the wave characteristics, however, the process is divided into sequences of typ-
ically 3 hours. This interval is denoted a sea state, and the wave process within
each sea state is assumed to be stationary.

The assumptions of surface elevation as a stationary, gaussian process has been
discussed. A third assumption is necessary, that the process is narrow banded.
Narrow banded implies that each sea-state contains only a small interval of
wave frequencies, and that there will be one, and only one, positive maxima
between each crossing of the zero-level. If υ+x (x) denotes the expected number
of upcrossings of any level x, then the cumulative distribution of wave peak
height can be found as in equation 3.8

FXp = 1− P
[
Xp > a

]
= 1− υ+x (a)

υ+x (0)
(3.8)

For a zero-mean gaussian process, the probability density of 3.8 can be found
as:

fXp (a) =
a

σ2
X

exp

{
− a2

2σ2
X

}
a ≥ 0 (3.9)

This pdf belongs to the Rayleigh-distribution. From these results, it follows
that the CDF of maximum wave height within a given time interval, FM(T)(a)
is Gumbel-distributed [21] when a is large.

FM(T) (a) = exp

− exp

− a− σX

√
2 ln

(
υ+X (0) T

)
σX/

(√
2 ln

(
υ+X (0) T

))

 (3.10)

The above discussion is, as stated, based on the assumption of the wave pro-
cess as piecewise stationary and belong to the short-term description of the
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wave field, i.e the stochastic nature of waves within such a short interval. For
reliability analysis, statistics of waves and wave loads over longer time hori-
zons might be necessary.

Long-term descriptions are often based on samples from relevant areas over
large time intervals. The samples are then used to fit a distibution model. De-
pending on what the model should describe, different data can be extracted
from the set and used for the fitting. Either all data is used, alternatively some
extreme values can be extracted. Another common approach is the Peaks Over
Threshold, "POT",-method where only peaks exceeding a predetermined level
are used for the statistical inference. The trade-off to be considered when
choosing between the aforementioned procedures is that a utilization of all
data would give a larger sample for the inference, but could give a significant
lack-of-fit in the tail regions. Using extreme values or POT would model ex-
treme events better but the limited amount of data points introduces epistemic
uncertainty.
A common distribution for empirical purposes, especially for extreme values of
environmental phenomena, is the Weibull-model. The cumulative 2-parameter
Weibull distribution is given as:

FX(x) = 1− exp
{
−
(x

θ

)ξ
}

(3.11)

where θ and ζ denote location and shape parameters, correspondingly, and
Γ () is the Gamma-function. The mean and standard deviation of a Weibull
distribution are found from:

µ = θΓ
(

1 +
1
ξ

)
(3.12)

σ = θ

{
Γ
(

1 +
2
ξ

)
− Γ2

(
1 +

1
ξ

)}1/2

(3.13)

Other distributions commonly employed for extreme, long-term wave heights
are Gumbel, 3-parameter Weibull and, in cases of POT-data, the Generalized
Pareto distribution [12].

46



Methods of Reliability Analysis for Marine Structures • June 2015 •

3.5. Corrosion

When evaluating structural deterioration, corrosion becomes a crucial part of
the analysis. Especially so when the structure, as is the case for ships and
offshore structures, is exposed to highly corrosive environments. Traditionally,
corrosion is described by a material loss at constant rate throughout the service
life. This can be questioned. Effects such as quality of anti-corrosion measures
(e.g painting, anodic protection), exposure to weather, surface treatments, ma-
terial properties, hydro-chemical environment, etc. implies that a probabilistic
corrosion model would be preferable. Furthermore, it should be noted that
short-term and long term corrosion are predominately caused by anaerobic
and aerobic chemical phenomena, respectively. Thus, measurements and mod-
els of short term effects cannot be extrapolated to the long-term case [18]. As
might be suspected, accurate modelling of corrosion phenomena becomes a
complex task. In this paper, the aim is not to describe details but to give a brief
explanation of how corrosion can be introduced to the reliability analysis.

Generally, it is distinguished between two main types of corrosion. General
and pitting corrosion. General corrosion is described as a material loss acting
over the entire exposed surface so that the cross-sectional dimensions are de-
creased over time. Pitting corrosion, on the other hand, gives local material
loss in the shape of pits which arises at multiple locations on the surface. An
illustration is shown in figure 3.1.
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(a) General corrosion/Material loss

(b) Pitting

Figure 3.1: Corrosion

Studies have shown that the governing parameter for corrosion of submerged
structures is the water temperature, T. Based on this, models for general and
pitting corrosion have been suggested by Melchers [18]. These will be pre-
sented in the following sections.
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3.5.1. General Corrosion

The material loss (decrease of cross-section dimensions) due to general cor-
rosion is shown in figure 3.2. The parameters shown are described in table
3.3.

Figure 3.2: Melchers model for general corrosion of a submerged structure
over time, from Melchers [18].
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Table 3.3: Description of Melchers model for general (material loss) corrosion

Phase Description Governing parameters Correlation

0 Short term initial corro-
sion

- -

1 Linear corrosion governed
by oxygen diffusion

r0 = 0.076e−0.054T R = 0.963

2 Non-linear corrosion, oxy-
gen diffusion through cor-
rosion product layer

ta = 6.61e−0.088T R = 0.99

3 Anaerobic bacterial corro-
sion

ra = 0.066e0.061T R = 0.97

4 Near linear long-term
anaerobic bacterial corro-
sion

cs = 0.075 + 5678T−4 -

rs = 0.045e0.017T R = 0.71
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3.5.2. Pitting Corrosion

Pitting depth as a function of time is shown in figure 3.3, and the parameters
shown are given in table 3.4.

Figure 3.3: Melchers model for pitting corrosion of a submerged structure over
time, from Melchers [18].
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Table 3.4: Description of Melchers model for pitting corrosion

Phase Description Governing parameters

0 Short term initial pit
growth

-

1 - 2 Aerobic pit growth ta = 6.61e−0.088T

cap = 0.99e−0.052T

3 Rapid anaerobic pit
growth

rap = 0.596e0.0526T

4 Steady-state anaerobic pit
growth

csp = 0.641e0.0613T

rsp = 0.353e−0.0436T

3.5.3. Applications to Reliability Analysis

An appropriate procedure would be to compare corrosion models described in
the previous sections versus available data corresponding to the specific need.
From this, parameters in tables 3.3 and 3.4 are treated as random variables
from a suitable distribution. The example in [18] employs gaussian distribu-
tions for this purpose.

For exact treatment of corrosion phenomena, time-variant reliability is required.
The loss in strength due to corrosion could then be incorporated into the model
for time-dependent resistance, R(t) in eq. 2.63. An estimate could be found,
however, by time-invariant reliability analysis at discrete time points. This is
not exact since the probability of failure at one point in time is conditional with
respect to an earlier point. However, it is a valid estimate [18].
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3.6. Fatigue

Any marine structure will be subject to dynamic or repeated loading. Thus,
fatigue failure and crack propagations becomes important to consider. In the
following, a brief outline of the general equations and their applications to re-
liability analysis will be presented.

Fatigue life is defined as the expected time until failure for a given structure
under repeated loading. The impact of repeated loading is highly dependent
on the occurrence of local stress concentrations, which in turn could arise by
many reasons (e.g welding, geometry, applied loads). The response, in terms of
fatigue, to such oscillating stresses depend on several material parameters (e.g
modulus, impurities, yield stress, fracture toughness) that are to some extent
uncertain. A full picture becomes complex with many uncertainties, which
makes probabilistic analysis suitable. Typical class requirements for offshore
structures prescribes fatigue lives of three or ten years, depending on whether
the member is available for inspection or not [1]. Furthermore, probabilistic
modelling of repeated loading can be based on damage accumulation or crack
propagation (fracture mechanics).

3.6.1. Damage-accumulation models

The principle of damage accumulation is based on the well-known
Palmgren-Miner Rule:

D =
n

∑
i=1

Ni

N f ,i
(3.14)

where Ni is the number of cycles at a given stress amplitude and N f ,i the num-
ber of cycles to failure at this stress amplitude. D is the cumulative damage for
all n stress amplitudes. Failure is usually defined as D ≥ 1, but might typically
range from 0.9-1.5 [17]. The number of cycles to failure for a stress amplitude
sa with zero mean stress is commonly assumed to be on the following form:

N f = Ks−m
a (3.15)

Here, K and m are constants for a given material, typically found from exper-
iments and assigned a conservative value. In a probabilistic analysis, these
would rather be considered as random variables about the actual mean values.
Equation 3.15 gives a linear relationship between number of cycles to failure
and stress amplitude in log-log coordinates. Lately it has been found that this
relation can be refined by using a bi-linear relation (two sets of constants), to
better account for the material response at low stress amplitudes [30].

If the relation given by 3.15 is assumed, it could be combined with the Palmgren-
Miner rule to formulate a safety margin for fatigue failure as:
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G = Dcrit − X0

n

∑
i=1

K−1sm
a,i (3.16)

where X0 is a factor suggested by Melchers [17] to account for model uncer-
tainties. Furthermore, eq. 3.16 requires that all cycles are handled individually.
This becomes problematic since n would typically be treated as a random vari-
able. The procedure could be simplified by sorting the stress amplitudes into
l intervals, with the random variable Ni representing the number of cycles
within each. The safety margin would then be:

G = Dcrit − X0

l

∑
i=1

NiK−1sa, im (3.17)

3.6.2. Crack-Growth models

The fatigue problem can also be adressed using Fracture Mechanics. Fracture
Mechanics employs a crack growth criterion as opposed to the Palmgren-Miner
rule, so that cracks are assumed to grow under repeated loading until a critical
crack length, aF, is reached. Under a given loading, a crack of this length will
lead to fracture and thus failure of the component. Crack growth rate at any
number of cycles N is commonly described by the Paris’ law:

da
dN

= C (∆K)m (3.18)

where a is the crack length and ∆K stress intensity range. C and m are
constants. Stress intensity range is generally found from the stress range
∆S = Smax − Smin as:

∆K = F ∗ ∆S
√

πa (3.19)

where F is a coefficient depending on the geometry and the ratio of crack size
and cross-section dimension in the crack direction. As for the S-N curve, Paris’
law can be transformed to a linear relation by using logarithmic coordinates.
The constants C and m in e. 3.18 can then be found as the intersection and
slope of this line. A graphical representation of the basic fracture mechanics
phenomena is shown in fig. 3.4.
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Based on the Paris’ law, Wirsching et.al [31] suggest a probabilistic model for
the number of cycles required for a crack to grow from length a0 to length a as
given in eq. 3.20-3.21. The basic parameters involved are shown in figure 3.4.

N =
1

CBmSm
e

∫ a

a0

dx

G (x)Ym (x) (πx)m/2 (3.20)

where:

G(a) =
S̄m

0 (a)
Sm

e
(3.21a)

S̄m
0 =

∫ ∞

S0(a)
sm fs(s)ds (3.21b)

S0(a) =
∆Kth

Y(a)
√

πa
(3.21c)

Here, S̄m
0 is equivalent to E [Sm]. Sm

e is found from eq. 3.21b but with lower
integral bound taken as zero.

55



Methods of Reliability Analysis for Marine Structures • June 2015 •

When using a crack growth approach uncertainties are introduced. The method
cannot accurately describe crack initiation time , i.e. the part of fatigue life be-
fore cracks develop, or initial crack sizes/aspect ratios. These parameters are
affected by many contributing factors that are difficult to model. As remedy,
SN-curves and damage-accumulation data is used to calibrate crack growth
models. However, it is also argued that for fatigue problems of welded com-
ponents, initiation time is small so that it can be neglected which would then
be a slightly conservative approach.

Figure 3.4: Schematic representation of basic fracture mechanics (from
Wirsching et. al [31])
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3.6.3. Effects of inspection and repairs

Ayala-Uraga and Moan [2] argues that effects of inspection and repair can only
be modelled in an accurate way by the Fracture Mechanics approach. The rea-
son is that damage accumulation according to Palmgren-Miner rule does not
consider development of cracks and their characteristics.

When inspecting for cracks, it cannot be guaranteed that all cracks above a
given size are detected. Also, inherent measuring uncertainties can cause the
lower limit for detectable crack sizes to vary. By these reasons, a Probability
of Detection, POD-curve is of often employed. The POD-curve is equivalent to
a distribution function for detectable crack sizes during inspection, so that a
probabilistic approach even for the inspection procedure is possible.
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Chapter 4

Benchmark Study of Stiffened Panel

The example chosen for the calculations is a stiffened panel, which is per-
haps the most common component in a wide range of marine structures. In
ships, such panels form the basis for the hull and deck. Pontoons in semi-
submersibles, walls of subsea structures are other examples. Reliability com-
putations are preceeded by a benchmark study of the plate, in order to form a
basic understanding of the problem and a starting point for further analysis.

Figure 4.1: Stiffened panel.
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4.1. Stiffened plate failure - definitions

The theory of plate mechanics is widely described in the literature, with respect
to a vast variety of phenomena. This chapter aims to give a brief description of
the most relevant theory considering the calculations performed in this thesis.

For ships, stiffened panels typically form the deck, bottom and sides. Thus, the
stiffened panels are located on the extreme coordinates seen from the neutral
axis, which will make them vulnerable to global bending stresses. Also, wave
induced pressures, ice loads or impacts can cause high local lateral forces that
the plating should withstand. It follows that stiffened panel failure, either plas-
tic collapse, buckling or fatigue fracture, can be seen as the governing reason
for catastrophic structural failure.

Stiffened panel collapse is complex and requires consideration of multiple fail-
ure modes. According to Ultimate Limit State-design (ULS), Paik and Thayam-
balli [25] presents the following classification for panels under axial compres-
sion:

• Mode I: overall collapse of plating and stiffeners as a unit, often elastic
buckling. Common mode when stiffeners are weak relative to plating.

• Mode II: collapse due to biaxial compressive loads, causing yielding in
the plate at the plate-stiffener intersections close to the plate edges.

• Mode III: beam-column type collapse, can be expected when the stiffen-
ers are neither strong nor weak.

• Mode IV: local buckling of stiffener web, i.e the deformations in the plate
are transferred to the stiffeners so that they lose load-carrying capability.

• Mode V: stiffener tripping, also known as flexural-torsional buckling.
Similar to Mode III but the stiffener flange follows the deformations.

• Mode VI: gross yielding, requires a very stocky cross-section or tensile
stresses.

It is common that modes interact or occur simultaneously, especially when
there are other loads in addition to axial compression. To be able to ana-
lyze the ultimate strength, however, modes are often treated separately. The
strength of the panel in the mode with the smallest resistance is then taken as
the ultimate strength [11].

Formulations for analytical/semi analytical evaluation of these failure modes
exist, but differ from one another depending on which loads are applied to
the panel. To describe all possible load combinations is comprehensive, thus a
restriction is made to axial (parallel to stiffener axis) compression and lateral
pressure.
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4.2. Model description

4.2.1. FEM-Model

ABAQUS finite element software has been used to model the panel. The ele-
ment type is standard abaqus shell elements (S4R). The mesh, as indicated in
figure 4.1, is relatively fine. The reason for this choice is that a number of anal-
ysis types will be performed, some of which will be highly non-linear, thus a
relatively fine mesh hopefully reduces the risk of convergence problems. The
element size on stiffener web and flanges is reduced with respect to the plate,
in order to capture buckling and tripping of stiffeners in a sensible way.

Axial force and boundary conditions on transverse edges are handled by a
rigid body constraint, which enables the load and boundary conditions to be
applied to only one point per side. The physical interpretation is that all nodes
on the edge under consideration are fixed relative to one another, so that in
total a rigid body is formed. Thus, the edge cannot deform, only translate and
rotate. This rigid body is then pinned to a reference point, so that loads and
boundary conditions acting on this point acts on the whole edge, which is now
a rigid body. This reference point is set so that the acting point of the load and
boundary condition is through the neutral axis of the plate.
The material model is elastic-perfectly plastic with a yield stress of fy = 315
MPa, elastic modulus of E = 206 GPa and Poisson ratio ν = 0.3. The plate
thickness is tp = 20 mm, web thickness tw = 10 mm and flange thickness is
t f l = 16 mm. The height of the web is hw = 420mm and flange width h f l = 140
mm. Length of the panel in longitudinal (parallel to stiffener axis) is L = 4000
mm. The distance between stiffeners is s = 840 mm. In the FEM-model, five
stiffeners and a plate flange of 0.5s at each side is included.

4.2.2. DNV-RP-C201

Benchmarking, and subsequent reliability analysis, is also performed based on
the DNV recommended practice for buckling strength of plated structures [6].

The main modeling difference as compared to the previously described FEM-
model, is the boundary conditions. The equations used are taken from the case
of continous stiffeners which implies that the stiffeners are held by rotational
resistance from the girders. Also, imperfections are implicitly included, as
discussed in section 3.3.
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4.2.3. Boundary Conditions

Two cases of boundary conditions are tested for in the benchmark study. For
both cases, the longitudinal edges (parallel to stiffeners) are simply supported
and kept straight. Transverse edges are either fixed or simply supported.
Which one is more relevant can be discussed. The model in question should
be seen as one span out of many throughout a ship structure or similar. If the
lateral pressure on all adjacent spans are equal, it could be argued that fixed
short edges are more accurate due to symmetry in deflections (no rotation at
transverse supports). However, if the lateral pressure is varying over adjacent
spans, symmetry in the deflections could be lost so that a fixed boundary con-
dition is questionable. A third alternative would be to model the boundary
condition in rotation as a spring with stiffness corresponding to the rotational
stiffness of adjacent girders.

4.2.4. Imperfections

The global imperfection shape utilized in the FE-model is taken as a sinusoidal
half-wave, so that the initial lateral deflection is given by:

z(x) = z0 + w sin
(πx

L

)
(4.1)

where z0 is the vertical coordinate for a perfect panel.

To be exact, such a displacement would also cause some translation of a given
point in longitudinal direction. However, these displacements are small com-
pared to the vertical translation (due to the limited height of the panel) and
are hence neglected. The amplitude, w, is taken as scaled values of a standard
deviation σw = L/1000, which is equivalent to 4 mm in this case.

Effects of angular error on the stiffeners is tested in the non-linear analysis.
This procedure will be presented along with the results in section 4.3.3.

In the DNV-code, imperfections are handled implicitly as described under sec-
tion 3.3.
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4.3. Panel Capacity

4.3.1. DNV-Buckling Strength of Plated Structures

For a stiffened panel subject to axial stress and lateral pressure from the plate
side, the DNV recommended practices states four different interaction equa-
tions. These are semi-empirical formulations, where each equation checks one
corresponding critical location in the panel. If all are fulfilled, it is considered
adequately designed to resist:

• Plate yielding in bending due to lateral load

• Buckling of slender plates

• Panel buckling

• Stiffener buckling

• Local buckling of stiffener webs, flanges and brackets.

The interaction equations correspond to the following locations in the panel:

• Equation 1: Stiffener side at transverse supports.

• Equation 2: Plate side at transverse supports.

• Equation 3: Stiffener side at midspan.

• Equation 4: Plate side at midspan.

Each of these has to be fulfilled, i.e be smaller or equal to unity, in order for
the panel to pass the requirement. As a first step, the fulfillment of these are
checked for a range of lateral pressures, axial stresses, plate thicknesses and
yield stresses when all other parameters are kept fixed at the base-state levels.
The boundary conditions used for the evaluations correspond to continous
stiffeners. The results are shown in figure 4.2.
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Figure 4.2: Parameter study on the effect of different physical variables on the
DNV-RP-C201 requirements.

From the above figure, only the first and fourth requirement are violated. Non-
fulfillment of requirement 4 is found at high axial stresses (> 220 MPa) and
low values of yield stress (< 130 MPa). Equation 1 is not fulfilled for lateral
pressures larger than approximately 0.35 MPa, as well as for low values of
yield stress (< 90 MPa). Limit state corresponding to the fourth requirement
with respect lo lateral pressure and axial stress is shown in figure 4.3
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Figure 4.3: Limit state for lateral pressure and axial force interaction according
to DNV buckling code for check at midspan plate side
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4.3.2. Linear buckling analysis

A linear buckling analysis is performed in ABAQUS for lateral pressure mag-
nitudes of 0, 0.1, 0.2 and 0.3 MPa for both the perfect panel and the panel when
subject to a global imperfection shape. Imperfection shape is taken as a sinu-
soidal half-wave, with amplitude equal to L/1000. The critical linear buckling
loads for both geometry cases are shown in tables 4.1 and 4.1.

Table 4.1: Linear buckling loads for different lateral pressures without imper-
fection

B.C
Cr. load [MPa]

p=0.0MPa

Cr. load [MPa]

p=0.1MPa

Cr. load [MPa]

p=0.2MPa

Cr. load [MPa]

p=0.3MPa

S.S 259.1 252.9 253.5 257.3

Fixed 313.7 318.1 331.5 345.5

Table 4.2: Linear buckling loads for different lateral pressures with global im-
perfection equal to one half sine-wave with amplitude L/1000

B.C
Cr. load [MPa]

p=0.0MPa

Cr. load [MPa]

p=0.1MPa

Cr. load [MPa]

p=0.2MPa

Cr. load [MPa]

p=0.3MPa

S.S 257.5 252.1 253.2 257.6

Fixed 313.7 321.7 332.4 346.7

For the perfect panel when simply supported, there is a drop in critical load
when lateral pressure is applied. However, increasing lateral load further in-
creases capacity. When transverse boundaries are fixed, there is no drop in
capacity when pressure is applied. Instead capacity is increasing with lateral
pressure.

The effect of adding imperfection is small for both boundary conditions, and
effect of lateral pressure is similar to the perfect panel.

Critical buckling mode shapes for the panel with a lateral pressure of 0.1
MPa are different depending on boundary conditions. However, inclusion of
shape error does not change the buckling modes. Critical buckling patterns are
shown in figures 4.4 and 4.5 for simply supported and fixed transverse edges,
respectively.
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(a) plat = 0 (b) plat = 0.1 MPa

(c) plat = 0.2 MPa (d) plat = 0.3 MPa

Figure 4.4: 1st linear buckling modes for different pressure levels, without
initial imperfections. The panel is simply supported.

For simply supported boundary conditions, it is seen that the buckling pattern
is equal for plat = 0 and plat = 0.1 MPa. The two subsequent changes in lateral
pressure changes the buckling pattern compared to the previous pressure level.
This could explain the unexpected increase in buckling load with increased
pressure from table 4.1. The reason for the increase in capacity can be that
lateral pressure forces a change in buckling shape to a less critical one. When
the mode shape does not change, an increase in pressure lowers the capacity,
as seen when plat goes from 0 to 0.1 MPa.
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With fixed transverse edges, buckling pattern is equal for plat = 0 and plat =
0.1. A shift in shape is seen when pressure is increased to 0.2 MPa, but does
not change again with increase to 0.3 MPa. Still, capacity increases with pres-
sure for all levels. It is thus concluded, for fixed transverse edges, that lateral
pressure counteracts the linear buckling so that axial capacity increases with
pressure even though the buckling shape is constant. This could be explained
by the fact that plate deformation between stiffeners without axial force would
be different from the shapes in figure 4.5.

(a) plat = 0 (b) plat = 0.1 MPa

(c) plat = 0.2 MPa (d) plat = 0.3 MPa

Figure 4.5: 1st linear buckling modes for different lateral pressure levels, with-
out initial imperfections. Transverse edges are fixed.
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4.3.3. Nonlinear buckling analysis

The panel is now checked for axial capacity for both simply-supported and
fixed short-edges by ninlinear analysis. Capacity is tested for lateral pressures
of 0.1, 0.3 and 0.5 MPa in order to determine the effect of varying pressure.
Figure 4.6 shows the ultimate states for both boundary conditions at a pressure
level of 0.1 MPa. While the simply supported case renders a fairly uniform
deflection shape, fixed short edges gives considerable sideway deflection of the
stiffeners, which also reaches the yield stress to a large extent. This utilization
of the stiffeners raises the capacity compared to simply supported short edges,
as shown in table 4.3.

Table 4.3: Capacity with respect to axial load and end shortening for different
lateral pressure levels and simply supported (S.S)/Fixed boundary condition
on short transverse edges.

B. C. \ Lat. Pressure plat=0.1 MPa plat=0.2 MPa plat=0.2 MPa

sax, S. S [MPa] 240.7 210.3 104.3

sax, Fixed [MPa] -307.7 279.2 241.3

∆L, S. S [mm] -6.2 -5.9 -6.0

∆L, Fixed [mm] -6.1 -5.9 -5.9
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(a) Simply supported

(b) Fixed

Figure 4.6: Ultimate limit states for simply supported and fixed short edges
with plat = 0.1 MPa. Deformations are scaled by a factor of 20.
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The end-shortening versus axial load relation for three different pressure levels
(0.1, 0.2 and 0.3 MPa) is shown in figure 4.7.

Figure 4.7: Relation between applied axial load and end shortening for differ-
ent lateral pressures.

The panel in a failed state, taken at a load carrying capacity decrease of 50 %
as compared to ultimate capacity, is shown in figure 4.8. As for the ultimate
limit state, the fixed case shows more stiffener utilization. Longitudinals are
heavily deformed both in web and flange close to transverse boundaries. It
can also be noted that stresses are shifted, from yield level over practically the
entire plate surface in the ultimate capacity state, towards a concentrated stress
picture close to the midspan as failure progresses.
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(a) Simply supported

(b) Fixed

Figure 4.8: Panel (simply supported and fixed, respectively) in failed state, at
a load carrying capacity loss of 50 % compared to ultimate capacity. Deforma-
tions are scaled by a factor of 3.
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Effects of initial imperfections are now considered using the FE-model. Linear
buckling mode shapes, that would generally be a suitable choice as imperfec-
tion shapes are not considered, since these do not correspond to the global
failure mode as shown by figure 4.8. Instead, attention was focused on tilting
of stiffeners and a global sinusoidal initial shape error as described under sec-
tion 4.2.4.

For the upcoming reliability analysis, it is of interest to keep the number of ba-
sic variables at a minimum. Hence, tilt angles used here are of one magnitude
for all stiffeners. Three different imperfection regimes was tested.

The first one was found by considering the failure mode of figure 4.8b, i.e tilt-
ing stiffeners on each side of the central stiffener towards each another and
keeping the central stiffener straight. This gave practically no difference in
load-carrying capability for pressure levels of 0.1, 0.2 and 0.3 MPa at tilt angles
of 0.01 or 0.02 radians.

The next scenario that is tested tilts the stiffeners every other way i.e.
θk = [θ − θ θ − θ θ] for the kth stiffener where k=1 and k=5 are the stiffeners
closest to the longitudinal edges. Similar to the first scenario, no significant
difference in strength was noted.

The third imperfection shape tested is the tilting of all stiffeners the same way.
This also has a negligable effect on axial capacity for the tested pressures when
angles are small to moderate.

To summarize the effects of stiffener tilting, it is very small on the axial capac-
ity for all tested regimes. The effect is mainly seen for tilt angles above 0.03
radians (≈ 1.72◦), but even then capacity reduction is fairly small (5 % capacity
decrease for tilt angles of 0.04 radians when all stiffeners are tilted the same
way).
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A global imperfection shape is now considered. The effect on the load/end
shortening-relation is shown in figures 4.9 and 4.10 for positive and negative
values of w, respectively. The magnitudes of w for the tests are taken as scaled
values of standard deviation of such shape errors according to JCSS recom-
mendations, described in section 3.3.

It is noted that the axial capacity decreases with increasing imperfection mag-
nitude when transverse edges are simply supported. When transverse edges
are fixed, the effect is seen mostly in the post-buckling behaviour. For this
boundary condition, it is also seen that the difference when increasing imper-
fection magnitude from 1σw to 3σw is small.

Figure 4.9: Relation between applied axial load and end shortening for global
imperfections of positive magnitudes, at a lateral pressure level of 0.1MPa. σw
denotes the JCSS recommended standard deviation for such shape errors.
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For negative imperfection magnitudes, i.e. opposite to pressure direction, axial
capacity is somewhat raised and post-buckling capacity is larger for simply
supported boundary conditions. For fixed short edges, ultimate capacity is
close to identical for all levels of imperfections, but post-buckling capacity is
smaller.

Figure 4.10: Relation between applied axial load and end shortening for global
imperfections in the shape of a half sine-wave and lateral pressure 0.1MPa. σw
corresponds to an amplitude of L/1000.
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4.3.4. Linear vs Non-Linear Results

Results from linear analysis shows large discrepancies compared to non-linear
analysis. While non-linear analysis shows a decrease in axial capacity with
increasing lateral pressure, linear buckling loads are generally larger when lat-
eral pressure is increased.

If results from the non-linear analysis are considered, the bifurcation point is
preceeded by considerable yield in the plate, especially when lateral pressure
is high. This is typical for stocky cross-sections, and implies that geometrical
instability will be present only after yielding has occured. Effects of yielding
material are not captured by a linear analysis. A possible explanation to the
confusing results would thus be that yield is required to force the panel into
a global deflection shape. When material effects are neglected, overall panel
buckling is prevented and the critical mode becomes as in figure 4.4.

To investigate the validity of the above discussion, a non-linear analysis with
increased yield stress is performed . The load-end shortening relation for sim-
ply supported transverse edges and twice the original yield stress is shown in
figure 4.11. Lateral pressure is taken at 0.1 and 0.3 MPa. When compared to
figure 4.7, it is noticed that the capacity drop when increasing the pressure is
reduced significantly.

Figure 4.11: Relation between applied axial load and end shortening for lateral
pressure levels of 0.1 and 0.3 MPa when the yield stress is doubled, i.e s f = 630
MPa instead of 315 MPa. Transverse edges are simply supported.
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Deflection shape at the point of maximum utilization for panel with extreme
yield stress material and 0.1 MPa lateral pressure is shown in figure 4.12. The
fundamental shape is equal for 0.3 MPa. It is clear from this figure that raised
yield stress, and hence smaller material effects, introduces local plate buckling
in the failure mode.

Figure 4.12: Panel with extreme yield stress in the state of maximum utiliza-
tion. Color scalings shows the distribution of lateral deflection magnitudes.
Lateral pressure is 0.1 MPa and deformations are scaled by a factor of 20.
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Chapter 5

Reliability Analysis of Stiffened
Panel

This chapter presents a number of reliability computations for the stiffened
panel as presented in chapter 4. Emphasis is given to evaluation of reliabil-
ity by means of implicit limit states, which represents problems of practical
applicability. Comparison of response surface approaches and methods of de-
termining failure probabilities from them will be performed.
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5.1. Description of methods

5.1.1. Sampling source

Sampling will be performed using ABAQUS finite element code, and the model
presented in chapter 4. A third limit state and the corresponding safety margin
is tested for using the DNV guidelines for buckling of stiffened panels.

For the finite element model, boundary conditions has been set to simply sup-
ported, where all edges are kept straight. This choice is made based on DNV
recommendations, stating that the boundary conditions should be accurate
or conservative [8]. Fixed short edges, as shown in chapter 4, yields non-
conservative results and the accuracy could be argued (following the discus-
sion of section 4.2.3). The boundary conditions employed in the DNV-sampling
represents continous stiffeners, i.e. receiving rotational support from adjacent
girders.

5.1.2. Basic Variables

The selection of which parameters to take as variables, and which ones should
be deterministic has been made by considering the variability of the respective
parameter in relation to the sensitivity of structural capacity for this parame-
ter. An increase in the number of basic variables raises the computational effort
substantially. Thus, a trade-off has been attempted so that the number of basic
variables are large enough to demonstrate the differences between methods,
but small enough to enable multiple analysis for comparative reasons. For this
case, the number of basic variables was chosen equal to 5.

Effect of distribution choice for the basic variables will be checked by first us-
ing a simplified approach, where the gaussian distribution is employed for all
variables. Subsequently, a more realistic choice of distributions are used. Use
of gaussian, especially independent gaussian, variables simplifies the analysis,
it is thus interesting to see which consequences this shortcut gives. Means and
coefficients of variation for all variables are given in table 5.1, where C.O.V
denotes the coefficient of variation given by σ = C.O.V ∗ µ

Table 5.1: Data for basic variables

Parameters: tp sax [MPa] plat w s f

µi 20 mm 100 MPa 0.1 MPa 0 mm 315 MPa

σi 0.4mm 20 MPa 0.01 MPa 4 mm 22.05

C.O.V 0.02 0.2 0.1 - 0.07
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For the second analysis, the Weibull distribution is chosen for the loads. The
material parameters and plate thickness are taken from the recommended dis-
tributions of JCSS [12]. Thus, the plate thickness and shape error are normally
distributed and the yield strength is log-normal. All variables are assumed
mutually independent for both distribution regimes.

5.1.3. Bucher-Buorgund Response surface

An uncertainty regarding this method is the effect of sampling spread factors,
fi. Therefore, the arbitrary choice of fi = 3 for both steps is evaluated, as well
as the suggested regime of Rajashekhar and Ellingwood [28] with f (1)i = 2 and

f (1)i = 1 for the two response surface iterations, respectively. The polynomial
description of equation 2.51 is employed, i.e. a pure quadratic response surface.

5.1.4. Response Surface by Vector Projection

As suggested by the founders of the method, described in section 2.6.2, the
analysis will be performed with both fi = 1.0 and fi = 1.5. From these results,
the nonlinearity index, ∆, of the limit state will be evaluated. If necessary, a
third analysis is performed with corrected fi according to figure 2.5.

5.1.5. Monte Carlo

Two simulation methods are used on the response surfaces obtained by the
Bucher-Buorgund method, Crude Monte Carlo (direct sampling) and Impor-
tance Sampling. The Importance Sampling center point is taken at the approx-
imate design point found from FORM, and the sampling functions are taken
as the multivariate gaussian as discussed in section 2.5.2, with variances corre-
sponding to either the actual ones (for plate thickness and shape error, and for
all variables when gaussian distributions are employed) or the approximations
at the design point as found during the transformations in the FORM-analysis.

Simulations are performed in a sequence of totally 100 steps in order to see
the simulation history and thus the convergence rate. For Crude Monte Carlo
and Importance sampling, each set contains 106 and 103 samples respectively,
giving total sample sizes of 108 and 105.
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5.1.6. Assumptions and simplifications

The plate thickness does not affect the axial stress. In the true scenario, a
constant axial load distributed over the cross-section would yield a higher dis-
tributed load when the dimensionality increases. Here, the axial load is found
from a point load distributed over the cross-section with mean plate thickness.
Thus, the axial load does not change with the plate thickness during the sam-
pling.

When evaluating the probability of failure from the DNV buckling code, the
limit state is chosen from the fourth interaction equation, corresponding to
check of plate side at midspan. The reason for not including all four is to avoid
a systems formulation. Furthermore, it was found in section 4.3.1 that the
fourth equation was dominant over the others in terms of being prone to reach
the allowed limit. Also, the imperfections in these guidelines, as discussed in
section 3.3, are handled implicitly. Hence, the dimensionality is decreased by
one variable for this safety margin.
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5.2. Plate Yield in Midspan

Failure is defined as the von-Mises stress exceeding yield level in the plate at
midspan. The safety margin is normalized with respect to mean yield stress
and becomes:

g =
1

µs f

(
γms f − svM,max

)
(5.1)

where γm is a model uncertainty factor, which has been set to 0.8.

Gaussian variables

The design points and sensitivity factors when all variables are gaussian is
shown in table 5.2.

Table 5.2: Design point from evaluation of von-Mises stress, plate side at
midspan, with gaussian variables at two different spread factor regimes.

tp [mm] sax[MPa] plat[MPa] w s f [MPa]

x?i,33 19.711 137.53 0.1075 2.5779 284.55

x?i,21 19.746 139.94 0.1068 2.3429 285.27

αi,33 -0.2738 0.7129 0.2860 0.2448 -0.5246

αi,21 -0.2399 0.7542 0.2559 0.2212 -0.5092

The corresponding probabilities of failure are given in table 5.3, including
errors of FORM and Importance Sampling when compared to Crude Monte
Carlo.

Table 5.3: Failure probabilities from quadratic response surface evaluation with
gaussian variables along with errors compared to Crude Monte Carlo.

p f ,HL p f ,CMC p f ,IS eHL [%] eIS [%]

f (1)i = f (2)i = 3 4.24 ∗ 10−3 4.15 ∗ 10−3 4.17 ∗ 10−3 2.2 0.5

f (1)i = 2, f (2)i = 1 4.05 ∗ 10−3 4.32 ∗ 10−3 4.32 ∗ 10−3 -6.3 0
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Non-gaussian

For the more realistic models, the design point with sensitivity factors on the
quadratic response surface is found as in table 5.4.

Table 5.4: Design point from evaluation of von-Mises stress, plate side at
midspan, with non-gaussian variables at two different spread factor regimes.

tp [mm] sax[MPa] plat[MPa] w s f [MPa]

x?33 19.627 133.12 0.1080 3.2792 281.67

x?21 19.666 135.22 0.1075 3.0130 281.81

αi,33 -0.3298 0.6421 0.2758 0.2898 -0.5648

αi,21 -0.2924 0.6856 0.2530 0.2640 -0.5575

Failure probabilities were found from FORM (Hasofer-Lind safety index), crude
Monte Carlo-sampling and importance sampling were found as given in table
5.5.

Table 5.5: Failure probabilities from quadratic response surface evaluation with
non-gaussian variables along with errors compared to Crude Monte Carlo.

p f ,HL p f ,CMC p f ,IS eHL [%] eIS [%]

f (1)i = f (2)i = 3 2.33 ∗ 10−3 1.88 ∗ 10−3 1.88 ∗ 10−3 24 0

f (1)i = 2, f (2)i = 1 2.16 ∗ 10−3 1.89 ∗ 10−3 1.90 ∗ 10−3 14 0.5
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5.2.1. Vector Projection

Gaussian distributions

Results for gaussian basic variables and the two proposed sampling weights:

• β1.0 = 2.6205. for sampling weights fi = 1.0

• β1.5 = 2.7127. for sampling weights fi = 1.5

From this, the nonlinearity index is 0.0230. Since this is smaller than 0.03, there
is no need to update the sampling and the results from fi = 1.0 are taken as
final. The probability of failure is p f = Φ (−β1.0) = 4.39 ∗ 10−3. Design point
and sensitivity factors are given in table 5.6

Table 5.6: Design point and sensitivity factors for plate stress at midspan and
gaussian basic variables with vector projection response surface.

tp [mm] sax[MPa] plat[MPa] w s f [MPa]

x?i 19.75 139.62 0.1067 2.2914 285.66

αi -0.2394 0.7559 0.2564 0.2186 -0.5077

Non-gaussian distributions

With variables from non-gaussian distribution types, the analysis required 4
iterations for both sampling factors. The resulting safety indices are:

• β1.0 = 2.8184

• β1.5 = 2.9338

From this, the nonlinearity index becomes 0.0287, which is smaller than 0.03.
Hence, the final safety index is β1.0, corresponding to a failure probability of
2.41 ∗ 10−3. Final design point and sensitivity factors are found in table 5.7.

Table 5.7: Design point and sensitivity factors for plate yield at midspan and
non-gaussian basic variables using the vector projection method.

tp [mm] sax[MPa] plat[MPa] w s f [MPa]

x?i 19.671 134.91 0.1075 2.9530 282.24

αi -0.2920 0.6868 0.2541 0.2619 -0.5567
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Figure 5.1 shows the convergence rate, where the safety index found from each
iteration is normalized with the final result.

Figure 5.1: Convergence plot of the vector-projection algorithm, with the safety
index at each iteration normalized with the final result.
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5.3. Axial capacity

Reliability with respect to exceedence of axial capacity is now evaluated. Sam-
pling is performed through ABAQUS by evaluating the ultimate axial capacity,
sult, with respect to the other variables. This capacity is then compared to the
sampled axial load and normalized with respect to mean load according to:

guc =
1

µsax

(γmsult − sax) (5.2)

As before, γm is a model uncertainty factor set to 0.8.

5.3.1. Bucher-Buorgund Response Surface

Gaussian distributions

The design points and corresponding sensitivity factors obtained for both sam-
pling regimes and gaussian distributions for all variables is shown in table 5.8.

Table 5.8: Design point and sensitivity factors from evaluation of axial capacity
with gaussian variables at two different spread factor regimes.

tp [mm] sax[MPa] plat[MPa] w s f [MPa]

x?33 19.722 162.90 0.1035 1.3750 271.04

x?21 19.708 162.83 0.1033 1.3285 271.30

αi,33 -0.1818 0.8235 0.0905 0.0900 -0.5221

αi,21 -0.1913 0.8235 0.0877 0.0871 -0.5195

Probabilities of failure from different calculation techniques are shown in table
5.9.

Table 5.9: failure probabilities from quadratic response surface evaluation with
gaussian variables along with errors compared to Crude Monte Carlo.

p f ,HL p f ,CMC p f ,IS eHL [%] eIS [%]

f (1)i = f (2)i = 3 6.70 ∗ 10−5 7.08 ∗ 10−5 6.91 ∗ 10−5 -5.4 -2.4

f (1)i = 2, f (2)i = 1 6.82 ∗ 10−5 6.01 ∗ 10−5 6.04 ∗ 10−5 13 0.5
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Non-gaussian distributions

When the actual distribution types are employed, the resulting design point is
found as in table 5.10

Table 5.10: Design point from evaluation of ultimate capacity with non-
gaussian variables at two different spread factor regimes.

tp [mm] sax[MPa] plat[MPa] w s f [MPa]

x?33 19.551 153.26 0.1058 2.2570 259.28

x?21 19.540 153.27 0.1061 2.3674 259.74

αi,33 -0.2482 0.7286 0.1129 0.1249 -0.6158

αi,21 -0.2543 0.7287 0.1221 0.1310 -0.6101

Failure probabilities were found from FORM (Hasofer-Lind safety index), crude
Monte Carlo-sampling and Importance Sampling for both sampling regimes as
given in table 5.11.

Table 5.11: Failure probabilities from quadratic response surface and non-
gaussian variables. Results according to Hasofer-Lind Safety index (p f ,HL),
crude Monte Carlo (p f ,CMC) and Importance Sampling (p f ,IS)

p f ,HL p f ,CMC p f ,IS eHL [%] eIS [%]

f (1)i = f (2)i = 3 3.11 ∗ 10−6 2.69 ∗ 10−6 2.62 ∗ 10−6 16 -2.6

f (1)i = 2, f (2)i = 1 3.11 ∗ 10−6 2.42 ∗ 10−6 2.77 ∗ 10−6 29 14
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5.3.2. Vector Projection

Gaussian variables

For gaussian basic variables, 6 and 5 iterations for fi = 1.0 and fi = 1.5 re-
spectively were required to reach the convergence criteria. The obtained safety
indices for the two sampling weights are:

• β1.0 = 3.812

• β1.5 = 3.792

The nonlinearity index becomes 0.005. The results with sampling weights f =
1.0 are thus kept as final and is presented in table 5.12. No more sampling is
necessary so that the total number of sampling points is (6 + 5) ∗ 10 = 110.
The probability of failure is 6.89 ∗ 10−5.

Table 5.12: Design point and sensitivity factors for vector projection response
surface method with gaussian basic variables.

tp [mm] sax[MPa] plat[MPa] w s f [MPa]

x? 19.72 162.59 0.1034 1.3403 270.8

αi -0.1834 0.8209 0.0891 0.0879 -0.5261

Non-Gaussian variables

With the more realistic distribution set, the safety indices for fi = 1.0 and
fi = 1.5 were found as follows.

• β1.0 = 4.502

• β1.5 = 4.486

The nonlinearity index becomes is 0.0042, so the results using fi = 1 are taken
as final. Probability of failure is then 3.36 ∗ 10−6. For fi = 1.0, 17 iterations were
required to reach the convergence limit. For fi = 1.5, the required number of
iterations was 7. Design point data and sensitivity factors are given in table
5.13.

Table 5.13: Design point and sensitivity factors for vector projection response
surface method with gaussian basic variables.

tp [mm] sax[MPa] plat[MPa] w s f [MPa]

x? 19.564 152.95 0.1059 2.2673 259.1

αi -0.2418 0.7258 0.1167 0.1259 -0.6207
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The convergence rate in terms of ratio between temporary result and the final
safety index is shown in figure 5.2.

Figure 5.2: Convergence plot of the vector-projection algorithm, with the safety
index at each iteration normalized with the final result
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5.4. DNV-RP-C201-Plate side at midspan

The limit state is now chosen from the fourth interaction equation of DNV-RP-
C201 which controls plate side along the midspan. Again, a model uncertainty
factor γm is chosen equal to 0.8. Since acceptable values of the interaction
equation is less or equal to 1, the safety margin becomes:

g = γm − fDNV,4 (5.3)

where fDNV,4 denotes the value of the fourth interaction equation of DNV-RP-
C201, corresponding to a check for plate side at midspan.

5.4.1. Bucher-Bourgund response surface

Gaussian distibutions

The resulting design point and sensitivity factors for both sampling approaches
are given in table 5.14

Table 5.14: Design point from evaluation of DNV recommended practice for
plate side check at midspan with gaussian variables at two different spread
factor regimes.

tp [mm] sax[MPa] plat[MPa] s f [MPa]

x?33 19.897 164.46 0.1009 275.48

x?21 19.896 165.37 0.1009 276.83

αi,33 -0.0694 0.8716 0.0245 -0.4847

αi,21 -0.0701 0.8813 0.0247 -0.4667

Corresponding results for the failure probabilities are given in table 5.15.

Table 5.15: Failure probabilities from bucher-bourgund response surface eval-
uation with gaussian variables with error of FORM and IS compared to Crude
MC.

p f ,HL p f ,CMC p f ,IS eHL [%] eIS [%]

f (1)i = f (2)i = 3 1.09 ∗ 10−4 1.19 ∗ 10−4 1.21 ∗ 10−4 -8.4 -1.7

f (1)i = 2, f (2)i = 1 1.04 ∗ 10−4 1.16 ∗ 10−4 1.16 ∗ 10−4 -10 0
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Non-Gaussian distributions

When the more realistic distribution models are used, design points and sen-
sitivity factors are shown in table 5.16.

Table 5.16: Design point from evaluation of DNV recommended practice with
non-gaussian variables at two different spread factor regimes.

tp [mm] sax[MPa] plat[MPa] s f [MPa]

x?33 19.818 156.83 0.1027 259.23

x?21 19.813 157.64 0.1027 260.48

αi,33 -0.0994 0.7854 0.0347 -0.6100

αi,21 -0.1019 0.7980 0.0355 -0.5930

Proabability of failure according to the different methods and sampling proce-
dure are shown in table 5.17.

Table 5.17: Failure probabilities from quadratic response surface with non-
gaussian variables with errors from FORM and IS compared to Crude MC.

p f ,HL p f ,CMC p f ,IS eHL [%] eIS [%]

f (1)i = f (2)i = 3 2.48 ∗ 10−6 2.56 ∗ 10−6 2.34 ∗ 10−6 -3.1 -8.5

f (1)i = 2, f (2)i = 1 2.32 ∗ 10−6 2.05 ∗ 10−6 2.20 ∗ 10−6 13 7.3
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5.4.2. Vector Projection

Gaussian distributions

The analysis required 4 iterations to reach the convergence criteria of 0.001 with
respect to β for both sampling weights. Results for gaussian basic variables and
the two proposed sampling weights:

• β1.0 = 3.6923. for sampling weights fi = 1.0

• β1.5 = 3.6595. for sampling weights fi = 1.5

The corresponding nonlinearity index becomes 0.011 which implies that the
results with fi = 1.0 are final and p f = Φ (−β1.0) = 1.11 ∗ 10−4. Design point
and sensitivity factors are given in table 5.18

Table 5.18: Design point and sensitivity factors for DNV-check at plate side
midspan with gaussian basic variables.

tp [mm] sax[MPa] plat[MPa] s f [MPa]

x?i 19.897 165.82 0.1009 278.57

αi -0.0686 0.8913 0.0252 -0.4474

Non-gaussian distributions

Safety indices for fi = 1.0 and fi = 1.5 are now found as:

• β1.0 = 4.5439

• β1.5 = 4.4888

As before, a convergence limit was set at 0.001. The nonlinearity index becomes
0.0184, which is less than 0.03. Thus, the safety index becomes β = β1.0 =
4.5439 which correspond to a probability of failure of 2.76 ∗ 10−6. The design
point and sensitivity factors are given in table 5.19.

Table 5.19: Design point for plate stress at midspan and gaussian basic vari-
ables.

tp [mm] sax[MPa] plat[MPa] s f [MPa]

x?i 19.817 157.71 0.1027 261.73

αi -0.1005 0.8056 0.0359 -0.5827
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Convergence rate in terms of ratio between temporary and final safety index is
shown in figure 5.3.

Figure 5.3: Convergence plot of the vector-projection algorithm, with the safety
index at each iteration normalized with final result.
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5.5. Convergence Study and Comparison of Results

The accuracy of Monte Carlo simulations is relative and depending on whether
or not convergence has been achieved. It is therefore interesting to see how the
simulation results change as the number of samples increases, since this is an
indication on the level of convergence.

Figures 5.4 shows the percent-wise deviation from the final result over the
simulation from the response surface analysis with gaussian probability distri-
butions for Crude Monte Carlo and Importance Sampling.

When the other distribution types are employed, simulation histories for Crude
Monte Carlo and Importance Sampling in terms of percent-wise deviation are
shown in figure 5.5.

It can be seen how the von-Mises limit state has a fast convergence pattern
while the capacity and DNV-requirements are more fluctuating.

Taking the Crude Monte Carlo results from the quadratic approach with f (1)i =

2 and f (2)i = 1 as reference, the mean absolute errors for all limit states are
calculated. Results when compared to the other probability of failure methods
and the Vector Projection approach for non-gaussian variables are found as:

• Bucher-Buorgund, FORM: 18.7%

• Bucher-Buorgund, Importance Sampling: 7.3%

• Vector Projection: 33.7%

Even though the above numbers suggest a significant difference between the
two methods, it should be noticed that there might be other reasons for this
error. First, the possibility that Monte Carlo simulations are not sufficiently
converged must be considered. Furthermore, the transformations to standard
gaussian space are more influent on the results of the Vector Projection method
than for Crude Monte Carlo. For the gaussian distribution regime, correspond-
ing mean absolute error between Vector Projection and Bucher-Buorgund with
Crude Monte Carlo is 6.9%.
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(a) Crude Monte Carlo

(b) Importance Sampling

Figure 5.4: Plot of the simulation histories from the quadratic limit states with
gaussian distributions, where deviation is measured in terms of percent-wise
difference from the final result.
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(a) Crude Monte Carlo

(b) Importance Sampling

Figure 5.5: Plot of the simulation histories from the quadratic limit states with
non-gaussian distributions, where deviation is measured in terms of percent-
wise difference from the final result.
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Chapter 6

Discussion

6.1. General

It is recognized that both mechanical and probabilistic models applied here
are subject to numerous simplifications. The reliability results should thus not
be interpreted as directly applicable to design without further consideration.
Furthermore, probabilities of failure based on buckling code and FEM-model
should not be compared directly since different boundary conditions are used.

However, the example cases shows the work flow of a general reliability analy-
sis and how both FEM-softwares and classification requirements can be intro-
duced as a sampling source in a sensible manner.

When comparing results from both response surface methods, it is seen that
there are some differences. This difference is generally smaller for gaussian
distributions than for the non-gaussian case. The reason for this might be
that the gaussian cases has a higher failure probability so that the level of
convergence for the simulations are higher. It could also be that the transfor-
mations, which are approximate, causes this increased discrepancy. Following
this discussion, and the fact that both methods are approximate, it can not be
determined whether these differences are intrinsic in the methods or caused
by underlying calculations.
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6.2. Basic variables

The choice of basic variables is important, since it affects both the computa-
tional burden and the accuracy of the analysis. In the example case studied
in this thesis, the loads are perhaps the most obvious since they are generally
highly varying, and since a change in loading has direct impact on the safety
margin. An example of this effect is shown in figure 4.7, where the pressure
increase leads to a dramatic change in axial capacity. Furthermore, the plate
thickness is taken as a variable, along with yield stress and a global shape er-
ror. Yield stress is taken as one common variable for both the plate, and all the
stiffeners. This is an obvious simplification, since steel of different thicknesses
would probably origin from separate batches and because this property could
vary even within batches.

It is assumed that both longitudinal supports have the same imperfections and
that the panel follows this form. A more correct description might be to use
one variable for each side and some degree of correlation between the two. It
was found that tilt imperfections on the stiffeners had little or no effect on the
panel resistance. It cannot be excluded that other possible, but perhaps more
complex in a modelling sense, imperfections would give higher probabilities
of failure.

Distribution types has a profound impact on the results and is the most im-
portant factor among those studied in the examples. This is interesting since
means and variances are equal for both gaussian approximations and the more
physical models.
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6.3. Limit States

In the examples, results from three different safety margin formulations are
presented. The first is modelled with respect to yield stress in the plate along
the midspan, which was seen to be a critical location from the benchmark
study using both FE-model and the DNV framework. An alternative way of
sampling the von-Mises stress limit is to find a measure of displacement (e.g
end-shortening, lateral deflection) where yielding is seen to occur for most
load/resistance combinations and employ this as the limit. This way, a real-
istic material model can still be employed in the FE-analysis without risking
failed samples. On the other hand, this leads to inherent modelling errors if
the chosen deflection measure varies with load and resistance parameters.

An alternative safety margin formulation for axial capacity, as for the von-
Mises stress limit, would be to choose a geometrical quantity such as end-
shortening as the limit parameter. This would include non-linear terms for
axial load in the response surface. From the above mentioned figures, it is
seen that axial capacity for all pressures and imperfections are reached at end-
shortenings in the region of 6 mm which would then have been a suitable limit
for the safety margin. However, a complication arises when realising that it is
impossible to retrieve a result with an axial load above the capacity.
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6.4. Bucher-Buorgund Response Surface

It is seen that the effect of sampling spread factors is generally noticeable but
of the same order. This would support the thesis of low curvature in limit
states of the type evaluated here. There might be a reason to consider the
choice of sampling regime in light of which probability of failure method to
be performed and which distributions that are at hand for the basic variables.
The Hasofer-Lind safety index is based on finding one single point. Thus, this
technique would be more and more accurate only depending on how close
the distance is from this point at the response surface to the analytical design
point. Hence, the Hasofer-Lind safety index could arguably yield more accu-
rate results with more narrow sampling about this point. However, too narrow
sampling could endanger the whole analysis, since this could imply that a false
design point is found when the analytical limit state is of higher order.

Simulation techniques do not search one single point, but scatters safety mar-
gin samples based on the distributions of basic variables. The outcomes will
be focused in the region of the failure domain with most probability density,
i.e. in the vicinity of the design point. Thus, these techniques will increase in
accuracy with the polynomial description in the region of the design point and
not only of the design point itself. This is a significant difference, and perhaps
the reason to why Bucher and Bourgund suggest simulation techniques rather
than FORM-analysis in conjunction with their response surface approach.

In terms of computational effort, this response surface approach is question-
able in conjunction with a FEM-tool since the data found in the first iteration is
discarded. Thus, valuable information that required a fair amount of effort to
obtain is lost. If the FEM-model is comprehensive and the number of variables
is large, samples of great computational cost is only used for establishing a
center point for the next iteration but is not used as a contribution to regres-
sion of the final response surface.

A beneficial property compared to the Vector Projection approach is that the
number of safety margin samples is predetermined. If it is deemed that FORM
is unsuitable in conjunction with this response surface, Monte Carlo methods
are required. It can then be argued that the Bucher-Buorgund approach would
be a beneficial choice when safety margin sampling is demanding but failure
probabilities are moderate.
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6.5. Response Surface by Vector Projection

The Vector Projection algorithm shows a steady convergence, and the criteria is
generally reached after 4 repetitions with both distibution types for the DNV
limit state as well as for the linear von-Mises analysis. The exception is the
ultimate capacity check where more iterations are needed, particularly when
the realistic distribution regime is employed.

A drawback of the vector projection method when each sample point requires
a significant computational effort (e.g, a large FEM-model), is that the number
of required FE-runs is unknown. From the examples calculated in this the-
sis, it is found that anything between 4 and 17 iterations i s required. This
corresponds to sampling in the range of 40-170 FE-runs for 5 basic variables.
Considering that many practival problems might have a significantly larger
number of variables, and that the FE-calculations might be more comprehen-
sive, this would be a major uncertainty regarding cost and effort of an analysis.
The positive side of using a method that converges such as the vector projec-
tion method, is that underlying modelling errors can be picked up during the
analysis by lack of convergence as opposed to the method of Bucher-Buorgund
where the response surface is assumed sufficiently accurate after the second
iteration. Hence, it might be valid to question the results of the ultimate capac-
ity limit state. Especially so when considering that temporary safety indices,
as shown in figure 5.2, are found as smaller than the final result. This should
not be possible according to the definition of equation 2.10. However, small
deviations to the negative side during convergence, as in figure 5.3, could be
explained by the inherent inaccuracy of FORM when applied to curved limit
states.

A beneficial property of the vector projection method is that the procedure is
well defined by the article authors, so that inaccuracy following from e.g arbi-
trary sampling regimes is minimized. A drawback is the linear safety margin
approximation, which makes comparative analysis using e.g simulations in-
accurate for curved limit states. Also, as for the quadratic response surface
method, the sampling results are only used to position the response surface
for the following iteration, and is not used for regression of the new approxi-
mation.

Since this response surface utilizes only FORM, but requires an unknown num-
ber of safety margin samples, it can be argued that it is a suitable choice for low
probabilities of failure in conjunction with computationally light FE-models or
formulations such as the DNV-guidelines as applied in the examples.
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6.6. Reliability Methods

The response surface method as suggested by Bucher-Buorgund and employed
in the examples with a quadratic limit state approximation utilizes FORM to
locate the first design point. This location sets the center point for the final sam-
pling. Thus, the limit state itself is depending on FORM, so that Monte Carlo
simulations performed are not independent from the FORM-methodology. The
only thing that can be concluded from the Crude Monte Carlo-simulations are
thus the ability of FORM to locate an accurate design point given the polyno-
mial description at hand. This dependence is even stronger for the Importance
Sampling, which is centered at the design point found from FORM. It is there-
fore important to realize that the analytical limit state could be of higher order.
If so, this implies that there might be a global design point which is unidenti-
fied, so that the response surface describes the region about a local minimum
on the limit state rather than the analytical design point. This error is then
inherited by the simulation algorithms.

Although the above discussion of its weakness, FORM as applied in these ex-
amples is highly efficient and requires virtually no computation time once the
analysis is set up. The results are somewhat inaccurate compared to the simu-
lations. On the other hand, the ability to obtain approximate results in a matter
of short time is valuable in terms of comparison and validation of other meth-
ods.

A true Monte-Carlo simulation would be to sample the FE-model directly. This
might be possible for high probabilities of failure, and possibly more compu-
tationally economic FE-models than those created for this thesis. For sample
sources such as the DNV-requirements, direct Monte Carlo is generally bene-
ficial since each sample is computed swiftly.

From the convergence plots of section 5.5, the benefits of Importance Sampling
compared to Crude Monte Carlo can be noted in terms of convergence rate,
especially for the lower failure probabilities. However, it should be consid-
ered that each sample is associated with increased effort compared to Crude
Monte Carlo so that a direct comparison based on only required sample size is
somewhat misleading in terms of simulation time.
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6.7. Further work

Further analysis with more accurate modeling of basic variables and limit
states is a suitable starting point for further analysis. In particular, the effect
of boundary conditions in the FEM-model and a larger set of basic variables
could be investigated further. Regarding the basic variables, the model could
include more geometric and material uncertainties including also the stiffen-
ers. Correlation among these variables as well as for loads are also neglected
here but would be included in a more accurate analysis.

It was intended to address the applicability of reliability analysis to life time
extensions and inspection planning, but these themes were left out as the other
tasks were more comprehensive than anticipated. The related subjects of cor-
rosion and fatigue are adressed in theory but not applied in the examples.

Another interesting perspective is the reliability level in DNV guidelines versus
FEM-models. The examples here, as discussed previously, does not enable
such a comparison due to differences in boundary conditions, imperfections
and possibly other factors as well. An adjustment of these in the FEM-model
so that the panel is modelled on the same basis as the rules, along with a
system formulation including all interaction equations would make a direct
comparison of the reliability possible.
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Appendix A

Probability Distributions

Normal Distribution

fX(x) =
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Log-Normal distribution
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Weibull distribution

fX(x) =
ξ

θ

(x
θ

)ξ−1
exp

[
−
(x

θ

)ξ
]

106



Appendix B

Program Structures

B.1. Sampling from FE-Model

The reliability analysis based on FE-sampling from abaqus has a flow shown
in figure B.1. The Matlab scripts control the sampling and performs all the
reliability calculations. The general idea is that this main script generates a
sample which, through two subfunctions is printed to a text file and initi-
ates ABAQUS. The ABAQUS-script reads the variables, generates a model,
meshes and performs the FE-analysis. At the end of the script, a postproces-
sor is called, that access the output database file (.odb) generated from the
FE-analysis and prints the results needed for the current safety margin. The
MATLAB-subroutine controllign the sampling reads these results, stores them
and proceeds with the next sampling point. When all samples in the current
iteration are evaluated, the safety margin is passed to the main script which
proceeds with the response surface method.
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Figure B.1: General program flow for safety margin sampling through
ABAQUS.

B.2. Sampling from DNV Guidelines

The principle here is similar to the general idea of programmes sampling from
ABAQUS. The difference is that all data is treated inside MATLAB so that no
external files is necessary. The DNV guidelines are thus programmed as a
separate function package that can be called without passing of external files.
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