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Work description 
 
The shipyard Umoe Mandal is currently (as of February 2015) testing their newest SES design, the 
Wave Craft. Featuring a large Ride Control Capacity, i.e. large fan capacity and large variable leakage 
areas, combined with narrow side hulls, to minimize the hydrodynamic forces. The yard is now 
thinking about developing a concept meant for offshore purposes, where a SES could be used for 
large-scale transportation of crew and equipment to offshore oilrigs. For operations near oil-related 
installations this vessel would have to feature some sort of dynamical positioning system. The large 
fan capacity already installed in the vessel can hypothetically be used to provide lateral thrust, 
inducing translations and/or rotations on the vessel. The aim for this thesis is to investigate the 
possibilities of using the already existing ‘hardware’ to implement horizontal control in the vessel, and 
combine it with the vertical control showed in my project thesis. 
 
Scope of work 

• Describe the concept of Surface Effect Ships and the background for this project 

• Do a literature review of relevant literature and previous work on the subject of 
horizontal and vertical SES control.  

• Formulate a mathematic model for the system, including: 

o An accurate representation of the cushion pressure dynamics. 

o Fludmechanical analysis of the thrust provided by the airflow, and 
optimization. 

o 6 DOF dynamics including kinematics in surge, sway, heave and yaw 

o Low Frequency Dynamics for the horizontal problem 

o Qualitative model of environmental loads 

• Derive a control scheme based on pressure and directional leakage area where you 
combine the individual desires for vertical and horizontal actuator displacements. This 
should include 

o Control objective 

o Maneuvering and station keeping control 

o Wave Frequency motion damping using air-cushion actuators 
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o Thrust allocation using combined air thrust and water jets 

o Actuator capacites/saturations 

o Thrust Control of air-thrust and water jets. 

• Do simulations where Dynamic Positioning and wave frequency motion damping 
capacities are demonstrated. 

 
The report shall be written in English and edited as a research report including literature survey, 
description of mathematical models, description of control algorithms, simulation results, model test 
results, discussion and a conclusion including a proposal for further work. Source code should be 
provided on a CD with code listing enclosed in appendix. It is supposed that Department of Marine 
Technology, NTNU, can use the results freely in its research work, unless otherwise agreed upon, by 
referring to the student’s work. The thesis should be submitted in two copies within June 10th. 
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Abstract

The offshore wind industry is requesting high annual accessibility to wind-turbines. The turbines

are located increasingly further from the shore. Simultaneously, operations & maintenance costs

are to be minimized, therefore innovation is needed for the turbine service vessels which transfer

crew and equipment. Surface Effect Ships (SESs) are fast and fuel-efficient when sailing long

distances. Active damping of vertical motions means that low motion levels can be achieved even

for small vessels in high seas. However, safe interaction with fixed offshore installations necessitates

automatic control of the horizontal vessel motions. Such control has never been implemented on a

SES before, and was therefore investigated for the work of this thesis. We derived the necessary

dynamics, describing both the horizontal- and vertical states of the plant. Since conventional bow

thrusters are hard to fit in SESs we derived a model for the lateral thrust capabilities obtainable

by controlling the direction of the out flow from the SES air cushion. To successfully simulate the

derived plant for somewhat realistic conditions, the model was augmented to include the effects

of environmental disturbances. The control problem was dual: While the main objective was to

investigate the possibilities for dynamic positioning of the plant. Due to the fast dynamics of the

air cushion actuators, we also wanted to check the potential for damping of horizontal and vertical,

1st order wave induced motions. The latter controller was derived by an augmentation and slight

alteration of an already existing control scheme based on optimal control, while the former was a

simple PID controller solely intended to prove the potential of dynamic positioning of the derived

plant. Due to large levels of saturation and mutually inflicting control desires, much care was given

in ensuring that the phases of the wave frequency motion damping control signals where tuned to

minimize the degree of infliction. The simulations show strong performance of the controllers, while

the derived model seems to provide accurate indications regarding the behaviour of the real plant.

For moderate sea states, we obtained almost 80% damping of the heave motions while we reduced

the wave frequency motions in sway by as much as 50%. The two wave frequency controllers was

also run simultaneously, where the controller achieved a damping in sway and heave of 32- and 60%,

respectively, for 0.5m high waves. The DP controller also performed well, and the vessel seemed to

maintain position, by the means of water jets and airflow thrust, in 15m/s wind, 1m/s current and

regular waves of 2m. We also performed simultaneous station keeping and vertical motion damping,

which revealed a strong dependency between the airflow thrust demand and heave compensation

capacity of the vessel, but still indicated that such simultaneous operation was indeed possible.
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Abstract - Norwegian Version

For å gjøre offshore produksjon av elektrisitet lønnsomt er man avhengig av lite nedetid og lave

operasjons- og vedlikeholdskostnader. Siden slike vindmøllefelt blir plassert stadig lengre fra land,

kreves det nytenkning rundt fartøyene som frakter service-personell og utstyr ut til feltene. Sur-

face Effect Ships (SESs) er raske, og bruker relativt lite drivstoff p̊a lange distanser. Ved hjelp

av aktiv dempning av vertikal-bevegelsene kan man ogs̊a oppn̊a gode sjøegenskaper i relativt sm̊a

fartøyer ogs̊a i høye sjøtilstander. Skal man gjennomføre sikre operasjoner nær faste offshore in-

stallasjoner er man avhengig av automatisk posisjonsregulering, noe som aldri før har blitt imple-

mentert p̊a et SESs fartøy. Motivasjonen bak arbeidet med denne hovedoppgaven var å undersøke

mulighetene for slik regulering, og utvikle et reguleringssystem til oppgaven gjennom matematisk

modellering av fartøyet og dynamikken i luftpute-trykket. I tillegg til automatisk regulering av

de horisontale frihetsgradene ønsket vi å undersøke mulighetene for å dempe s̊a mye som mulig

av førsteordens-bølgeeffekt-induserte bevegelser. P̊a grunn av den smale baugkonstruksjonen i SES

fartøyer med stor kapasitet for demping av vertikalbevegelser, er det vanskelig å installere konven-

sjonelle baugpropellere. I stedet undersøkte vi muligheten for å benytte den kraftige luftstrømmen

fra løfteviftene som erstatning. P̊a grunn av den raske dynamikken i aktuatorene relatert til reg-

ulering av luftputen kan denne luftstrømmen, hypotetisk sett, ogs̊a benyttes til å kompensere for

førsteordens bølgeeffekt-induserte bevegelser i fartøyet, b̊ade horisontalt og vertikalt. Dette ble kalt

bølgefrekvensproblemet, og ble, sammen med systemet for dynamisk posisjonering, en del av det

todelte reguleringsobjektivet i oppgaven. Vi utledet en matematisk modell for systemets dynamikk,

inkludert sidekreftene fra luftstrømningen ut av luftputen og effekten av eksterne forstyrrelser fra

bølger og vind. Bølgefrekvens-regulatoren ble utviklet ved å utvide eksisterende teknologi til å

inkludere optimal tilbakekobling av lufttrykk og sidebevegelser, mens DP-regulatoren var en enkel

PID regulator. Aktuatorene til luftputen n̊ar metning relativt fort, derfor brukte vi mye tid p̊a å tune

parametrene i LQR-algoritmen for å oppn̊a korrekt fase mellom signalene. Resultatene viser, ved

simulering, at vi kan oppn̊a s̊a mye som 80% dempning av vertikal bevegelsene og 50% dempning av

førsteordens horisontalbevegelser. Ved kombinert regulering i bølgefrekvens-problemet oppn̊adde vi,

henholdsvis, 32- og 60% dempning av horisontal og vertikal bevegelsene ombord i fartøyet, i en halv

meter høye bølger. DP systemet viste seg å fungere bra, og fartøyet holdt seg stødig p̊a referansepo-

sisjonen selv i 15 sekundmeter vind, 1 sekundmeters strøm og 2 meter høye bølger. Vi undersøkte

ogs̊a mulighetene for å kombinere demping av vertikalbevegelsene med dynamisk posisjonering, noe

simuleringene indikerte et stort potensiale for.
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Nomenclature

Constant unit Definition

b m Width of air cushion
Ac m2 Area of air cushion
L m Length of air cushion
Vc0 m3 Equilibrium volume of air cushion

c m/s Speed of sound at 20
◦

C
g m/s2 Acceleration of gravity
p0 [Pa] Equilibrium pressure inside air cushion
pa [Pa] Atmoshpheric pressure
ρc0 [Kg/m3] Density of air in cushion at cushion equi-

librium pressure p0

ρw [Kg/m3] Density of sea water
γ [-] Heat capacity ratio
K [-] Wave number
λ [m] Wave length
xcp [m] Longitudinal distance between COG and

Centre of Pressure
A0 [m2] Total equilibrium bias opening of vent

valve louvers
uvvy [N ] Net lateral thrust from vent valves

upy,wj [N ] Lateral thrust from port water jet

upx,wj [N ] Longitudinal thrust from port water jet

usby,wj [N ] Lateral thrust from starboard water jet

usbx,wj [N ] Longitudinal thrust from starboard water
jet

lvvx [m] Longitudinal distance between Vent
Valves and COG

lwj,px [m] Longitudinal distance between port water
jet and COG

lwj,py [m] Lateral distance between port water jet
and COG

lwj,sbx [m] Longitudinal distance between starboard
water jet and COG

lwj,sby [m] Lateral distance between starboard water
jet and COG

Table 1: Table of important constants used in the thesis
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Variable Unit Definition

ωw [rad/s] Frequency of incoming waves at a fixed
observation point

ωe Frequency of wave encountering
pu(t) [Pa] Uniform cushion gauge pressure
ρc(t) [Kg/m3] Density of air at pressure pu(t)
Vc(t) [m3] Volume of air cushion
µ(t) [-] Normalized uniform pressure

V̇w(t) [m3/s] Wave volume pumping
ξ(x, t) [m] Surface elevation
Qi,in(µ) [m3] Inflow from lift fan i
Afp(η) [m2] State dependent bow seal (passive) leak-

age area
Aap(η) [m2] State dependent aft seal (passive) leakage

area
τ(t) [N] ([Nm]) Body fixed forces and moments
Vw(t) [m/s] Wind speed
Vc(t) [m/s] Current speed
τpid(t) [N] ([NM]) Output from DP-controller
ulc(t) WF control output
ηs(t) Seakeeping state vector
ηlin(t) Control plant state vector
e(t) Set point error in {n}
uc Vector of decomposed thrust components

from each individual thruster
Al(t) [m2] Total leakage area
Alsb(t) [m2] Starboard vent valve leakage area
Alp(t) [m2] Port vent valve leakage area

∆Alvert(t) [m2] Vertical motion damping control output
uvvc (t) [N] Lateral motion damping control output
∆Allat(t) [m2] Corresponding lateral leakage area
αa,i(uc) [rad] Azimut angle of water jet i
drev,i(uc) [-] State of deflector shield of water jet i

Table 2: Table of important variables used in the thesis
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Acronym/abreviation Definition

SES Surface Effect Ship
BCS Boarding Control System
RCS Ride Control System
DP Dynamic Positioning
WF Wave Frequency
LF Low Frequency
MCMV Mine countermeasures vessel
OSV Offshore Supply Vessel
PSV Platform Supply Vessel
LQR Linear Quadratic Regulator
GPS Global Positioning System
NED Nort-East-Down
DOF Degree of Freedom
LTI Linear Time Invariant

Table 3: Table of Acronyms and abbreviations used in the thesis
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Chapter 1

Introduction and Motivation for Work

1.1 Motivation for Work

The shipyard Umoe Mandal, located in the most southern part of Norway, has played a leading

role within construction and development of Surface Effect Ships (SESs) since the early 90s. The

adventure began when the yard, then named Kværner Mandal, got awarded the contract of building

a series of 9 Mine Countermeasure Vessels (MCMVs), the Oksøy- and Alta-class, respectively, for

the Royal Norwegian Navy. Following the successful delivery of the MCMV-series, the yard started

development of the new series of Norwegian Coastal Corvettes, the Skjold-class, figure 1.1.

Figure 1.1: The Skjold-class

The prototype vessel, Skjold, was commissioned April 1999, and a series of 5 additional vessels

was ordered in 2002, where the last one, Gnist, was delivered in December 2007. These vessels
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features stealth-properties, 4 Pratt & Whitney gas turbines, with a total power output of 12,170

Kilowatts and 2×MTU 735Kw diesel engines powering the lift fans. They are the worlds fastest

military vessels in active service, with a top speed of more than 60 knots, and a 800nm range at 46

knots. After the two successful military programs, Umoe Mandal turned to the civilian marked. A

report given by the European Environment Agency (EEA, 2008) indicates that there, in 2020, will

be 30-40 times the installed wind turbine capacity there was in 2008, as illustrated by the histogram

in figure 1.2.

Figure 1.2: Annual and cumulative offshore wind installations

Due to this expected growth in the offshore wind-industry, in 2012, Umoe Mandal started devel-

opment of a 25m, narrow-side-hull SES with high lift fan capacity, intended to serve as a crew

transport- and service vessel for offshore wind turbines. One of the most important cost driving

terms for offshore wind farms is downtime due to sea states preventing technicians and main-

tenance personnel from boarding the turbine. The new vessel features a new Boarding Control

System (BCS), developed by (Auestad et al., 2014) and (Auestad et al., 2015), which damps the

vertical motions significantly at zero forward velocities, thus improving accessibility to the turbines

and widening the operational window. The vessel is called the Wave Craft, and the simulation

results presented in this thesis is based on a generic SES ship with the same size as the Wave Craft.

However, let it be clear, the results presented do not represent the design or performance of the

Wave Craft series. The Wave Craft is a 25m long SES, with a top speed of 40+ knots and supplied
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with airflow capacity higher than a traditional SES. A one-sider, intended for advertising purposes,

containing the main dimensions and properties of the Wave Craft is included in Appendix E. While

conventional service vessels in the offshore wind industry are unable to perform safe crew transfers

for significant wave heights any higher than 1.5m, the Wave Craft increases this limit to close to

2.5m, which, according to (OWA, 2010), corresponds to an annual increase in ”safe sea state days”

from 54- to 79%.

The trend in the wind industry is also that the fields are located further and further from the

shore, making them challenging, or even impossible, for conventional small service vessels to reach

in a work day. This necessitates the use of larger platforms with accommodation capacities to

perform the crew transfers. These vessels are called Offshore Service Vessels (OSVs), and are much

similar to conventional Platform Supply Vessels (PSVs), often equipped with motion compensated

gangways to enable safe transfers. These are expensive, slow vessels with small operational win-

dows and relatively large levels of motions causing discomfort for the crew members. There are

indications that a large SES would be a strong alternative to such traditional OSVs. Due to their

large width, SESs exhibit good stability properties and they are also able to travel nearly twice

as fast, with the same propulsive power as conventional OSVs. Further, the strong results from

the zero speed vertical motion damping done in (Auestad et al., 2015) suggests that a SES could

be made significantly smaller than a conventional OSV, while still maintaining strong seakeeping

properties. There are, however, a couple of un-investigated obstacles. Interaction of large vessels

with fixed offshore structures requires some sort of automated control over the horizontal motions.

A SES is, in theory, fully actuated in the horizontal plane, thus it should be possible to implement

a Dynamic Positioning system to perform station keeping. This has never been done, and there are

a few features of the plant that complicates this process. If we want to utilize the airflow through

the vent valves for thrust, there will be strong limitations in capacity compared to conventional bow

thrusters. The latter is, unfortunately, impossible, or at least; highly impractical, to fit in the Wave

Craft due to the extremely narrow bow construction. The fast dynamics of the actuators related to

the cushion control of a SES does, on the other hand, imply entirely new possibilities for 1st order

motion damping, and this thesis will investigate the possibilities of, in fact, using the vent valves

as bow thrusters, in combination with the water jets, for implementation of a dynamic positioning

system. We will also investigate an augmentation of the excisting BCS, (Auestad et al., 2015), to

include cushion pressure feedback and, as far as possible, damping of the 1st order motions in sway.
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1.2 Surface Effect Ships

Surface Effect Ships (SESs), also known as sidewall hovercrafts, are vessels with a twin hull con-

figuration and an air cushion which is enclosed laterally by rigid side hulls and longitudinally by

the flexible rubber bow- and stern seals. The rigid side hulls differ these vessels from conventional

hovercrafts and allow for water jet propulsion, but also ensures sufficient directional stability, as

opposed to the hovercrafts where the latter is a major problem. A set of one or more lifting fans

provides an inflow of air to the air cushion, which increases the uniform cushion pressure to provide

lift. The main channel for out flow of air is through the vent valves, which is controlled by the vent

valve louvers, illustrated in figure 1.3.

Figure 1.3: Key SES structure

The excess pressure inside the air cushion can account for the lift of as much as 80% of the total

displacement, and, because of this, only a minor part of the side hull surface will be submerged

and subject to hydrodynamic- and hydrostatic loads. This means that the SESs exhibit extremely

low water resistance, which enables them to achieve high velocities with relatively low propulsive

power. The stern seal bag, illustrated in figure 1.4 for a three lobe-configuration, is pressurized by

an individual fan, to ensure sufficient sealing from the atmosphere. These fans are called booster

fans and supplies the bag with a higher (delta) pressure than the pressure found in the cushion.

The desired delta pressure is typically 5-15%.
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Figure 1.4: Stern seal of SES, from (Faltinsen, 2005)

The bow seal fingers, in figure 1.5, are of a ”self sealing nature”, thus the excess pressure inside the

cushion should ensure sufficient ambient sealing by ”blowing themselves up” or expanding them-

selves toward the neighbour finger. There will be leakages through these seals, however, around

equilibrium and in calm sea- conditions these leakages are negligible compared to the flow through

the vent valves. The leakages beneath the stern- and bow seals, and underneath the side hulls in

severe conditions is denoted passive leakages, while the airflow through the louvers is called louver

leakage. The latter will, in most conditions, be significantly larger than the former.

Figure 1.5: Bow seal comprised of individual fingers, from (Faltinsen, 2005)

This thesis will concern a SES with extremely narrow side hulls, and an installed lift fan capacity

around twice of what you normally find on SESs of comparable size. By changing the angle of the

Vent Valve Louvers, the leakage area Al can be adjusted, in turn controlling outflow of air and,

thus, the pressure inside the cushion. The possible pressure variation is a function of lift fan capac-

ity, total vent valve leakage area, vertical hull height and seal design. Typically, the bag geometry

should allow the propulsion system to stay submerged while the bottom point of the fingers should
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be close to the baseline. In higher seas, the relative motion between the vessel and the free surface

can induce rather large pressure variations.

The United States Navy launched a 10-ton test craft called the XR-1 in 1963, and, by that, intro-

duced the modern SES concept. The US navy introduced more experimental crafts, among these

the SES-100b which could achieve a speed of 91.9 knots (Butler, 1985). The SES vessel type has

later been used in several applications, spanning from military use to high-speed passenger vessels.

In Norway, production of the first commercial SESs began in the 1980s, by the shipyard Brødrene

Aa (Yun and Bliault, 2012). They produced a series of 17 passenger SESs, which mostly ended up

serving in the Mediterranean- and the Caribbean ocean. With top speeds close to 50 knots, these

SESs proved themselves serious competitors to the conventional high speed passenger ferries.

Unless controlled, all SESs suffers from vertical accelerations in the heave-cushion pressure resonance

frequencies. When the encountered wave frequencies approaches the resonance domain, the ”Cob-

blestone effect” occurs, and active control of the cushion becomes necessary. The Cobblestone effect

is more thoroughly described in section 2.2.1 and found negligible for the scope of this thesis due to

the low vessel velocities. This effect is, in short, uniform and spatially varying pressure fluctuations,

acoustic modes, occurring at resonant frequency, thus able to induce rather large vertical motions.

Figure 1.6: Illustration of the Wave Craft when docked,
courtesy of Umoe Mandal

The first Ride Control Systems

(RCS), designed to compensate for

these effects allowed small amounts of

air to escape the cushion, and some

of the first literature work on the

field was done by (Kaplan and Davis,

1974). Sørensen and Egeland (1995)

described and solved the problem us-

ing partial differential equations and

a dissipative control approach. A

Boarding Control System (BCS) for

vertical, zero forward speed, motion damping was introduced by (Auestad et al., 2015) for the

Wave Craft, figure 1.6, and the theory and assumptions behind his work makes the basis for some

of the vertical motion damping presented in this thesis, which is developed to concern horizontal

motion damping as well and cushion pressure feedback as well. Both Auestads and the work of

this thesis is done in cooperation with the shipyard Umoe Mandal and The Norwegian University
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of Science- and Technology (NTNU).

1.3 Dynamic Positioning

According to Det Norske Veritas (, DNV), a Dynamically Positioned vessel is a vessel which auto-

matically maintains its position and heading exclusively my means of active thrusters. Modern DP

systems are normally comprised of the blocks illustrated in figure 1.7

Figure 1.7: Main DP-components, from (Sørensen, 2013), exemplified for a Semi-Submersible
drilling rig

The respective blocks will be thoroughly explained in chapter 3, and a mere short introduction to

the functionality will be given here. Modern DP systems are based on the use of vessel observers in

separating the low frequency- and the wave frequency motions from each other as well as estimat-

ing unmeasured states. E.g., a source of position measurements could be through the means of a

GPS sensor, a taut-wire or a hydro-acoustic-system. The heading angle of the vessel can be easily

measured by a gyrocompass. The respective velocities, however, are hard to measure accurately

and should be estimated by the use of an observer in combination with the available sensor data.

Due to the nature and slow dynamics of common DP actuators, i.e. azimuth thrusters, tunnel

thrusters, diesel engines etc, the system is only able to compensate for the slowly varying forces
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affecting the system. The total motion of the vessel is comprised of both a high frequency- and a

low frequency component, where it is highly unfavourable to send information regarding the former

in to the controller, as this will only harm the performance. Therefore, by using a mathematical

model of the vessel dynamics, an appropriately tuned observer should separate these components

so that only the slowly varying signals are sent to the controller.

The controller compares the actual earth-fixed position of the vessel with a reference position and

generates an output based on the difference between thefse two. This output is a vector containing

the desired forces and moments necessary to move the vessel towards the reference position or keep

it stationary at it. This output is sent to the thrust allocation block, which distributes the desired

thrust among the available thrusters in a manner such that the resulting forces made by the individ-

ual thruster forces equals the desired output from the controller. Several methods and algorithms

have been investigated for this process, and one based on optimization is presented and derived for

the SES in chapter 3. The output from the controller can also be overridden by the DP-operator,

and the result of the above is that the vessel moves as desired by the DP system or the operator, or

performs station keeping, i.e. it does not move, at all. This enables several operations in sea states

that would have made them impossible without automatic thruster control.

1.4 Previous Work

1.4.1 SES Dynamics and Motion Control

The unique coupling between thermodynamics and hydrodynamics in SESs generates some spe-

cial phenomenons that has been studied ever since the very first vessels where launched in the

early 1960s. The following section will present a short, somewhat chronological presentation of

the different work done within the field. Kaplan and Davis (1974) provided the first mathematic

model of the vertical plane dynamics of SESs, which set the foundation for most of the following

work within the field together with the work done in (Kaplan et al., 1981). Thorough investiga-

tions of these dynamics were necessitated by the Cobblestone oscillations, which, hypothetically,

are able to induce rather large vertical motions causing uncomfortable conditions on board the

vessel. In order to achieve comfort and crew workability, these motions must be damped. Ka-

plan et al. (1981) based their work on the assumption that the majority of the induced motions

are due to the forces from the dynamic, uniform cushion pressure, and used the coupled equa-

tions of motion to derive a ride controller which did reduce the vertical vibrations on board the
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vessel. Sørensen and Egeland (1995) and (Steen, 1993) extended this work to include the effect

of both the uniform- and spatially resonant pressure components, the Cobblestone oscillations.

They derived the dynamics of the spatially varying pressure components as acoustic resonances

and developed a control system that provided active damping of both the uniform pressure and

the acoustic modes. Full-scale tests were performed on a 35m long test craft, with highly sat-

isfying results. Ulstein and Faltinsen (1995) extended the work to include an analysis contain-

ing the dynamics of the flexible stern seal bag, and its effect on the cobblestone oscillations.

Figure 1.8: Vent Valves of the Oksøy-class, courtesy of
Umoe Mandal

The Oksøy- and Alta class MCMV-

vessels features the first examples we

could find of utilizing the potential en-

ergy in the cushion to provide lateral

thrust, however we can not seem to

find any published articles concern-

ing this subject. The system featured

by the MCMVs is quite simple, and

based on fully opening or closing ei-

ther of the two vent valves, shown as

the small dark rectangle in the bow in

figure 1.8. This directs the entire air-

flow in one direction, thus producing

a net thrust as will be explained in

chapter 2.2.5. The system was developed by Maritime Dynamics (MDI) and Kongsberg Maritime.

There is no gain control of this system, and the lateral thrust is thus either 0% or 100%. Despite its

simplicity, experiences shared by the crew on board the vessels reveals that this is a highly valued

feature and an important tool, which, in special, simplifies the process of docking the vessel. Until

late 2000s, most of the work done on SESs concerned damping of motions at medium/high forward

velocities, by feedback of the dynamic pressure components. Basturk and Krstic (2013) proposes a

method for adaptive wave cancellation by acceleration feedback, for ramp-connected SESs at low-

to zero speed. The motivation was to reduce the relative motions between the SES and an LMSR

(Large, medium-speed, roll-on/roll-off-vessel) to simplify cargo transfer between the two. Auestad

et al. (2015) developed the Boarding Control System (BCS) which, based on state-feedback control,

performed significant damping of the vertical motions of a free-floating- and wind-turbine column
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docked SES, figure 1.6. The work was done in cooperation with Umoe Mandal, and full-scale testing

of the Wave Craft vessel during sea trials in March 2015 proved the effect of the controller.

1.4.2 Dynamic Positioning

Faÿ et al. (1990) provides a thorough description of the early history of automatic position con-

trol of marine vessels. As for so many other technological revolutions, this invention came as a

result of a desire to extract more oil. The first underwater oil wells were drilled in quite close

proximity to the shore. These wells were drilled from fixed installations, connected to land by

wood- or steel constructions. As the oil exploration moved further offshore, the need for station-

ary, floating structures, in order to be able to perform drilling, was revealed. Until the 1950s,

this was done from moored platforms. However, as the water became deeper and the condi-

tions got worse, as the distance from land increased, the limitations behind mooring lines be-

came apparent. Not only did the moored vessels exhibit oscillatory motions of rather large am-

plitudes in hostile conditions, due to low hydrodynamic damping and the respective construction,

but the nature of the system also implied that even the slightest change in position necessitated

quite large operations in rising the mooring lines etc. Thus, in 1961, as a result of the Mohole-

project, the drilling vessel Cuss 1, figure 1.9, performed station keeping by the means of 4 man-

ually controlled thrusters and a hydro acoustic positioning system, within a 180m radius circle.

Figure 1.9: Cuss 1, (Faÿ et al., 1990)

Compared to todays standards, this barely

classifies as station keeping, however com-

pared to the state of the art in the

1950s, this was a technological leap. Later

the same year, the vessel Eureka, from

the Shell Oil Company, performed sta-

tion keeping by utilizing an automatic

control system and three years later the

Caldrill1 maintained position with four

300hp thrusters and a double taut-wire

positioning system. These three vessels

marks the start of the era of modern sta-

tion keeping. Simultaneously with the

American adventure, Gaz de France con-
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ducted experiments with the vessel Terebel, which by 1971 was able to perform station keeping,

install subsea wellheads, laying hoses and equipment on the seabed, etc, enabled by an analog,

automatic station keeping controller. The first DP systems used simple PID-controllers and notch

filters, or even a mere low-pass filter, in order to filter out noise and some high frequency motion

components from the position sensor signals. However, such filtering is not able to reconstruct un-

measured states, perform dead-reckoning nor do any effective wave filtering, as opposed to modern

observer theory. In the early 1960s, (Kalman, 1960) and (Kalman and Bucy, 1961) introduced the

Kalman filter, which in 1976 enabled (Balchen et al., 1976) to develop the modern DP system,

based on optimal filtering and control theory. This was further developed by (Balchen et al., 1980).

This was regarded a large breakthrough, and a significant contribution to other aspects of marine

control systems. Fossen (1994) provides a significant simplification of the notation related to the

mathematic modelling of such plants, with the vectorial form exemplified by equation (2.65), chap-

ter 2.3.1, later in this thesis. Strand and Fossen (1999) introduces a passive, nonlinear observer

with adaptive wave filtering, which reduces the complexity found in many traditional observers. In

the later years, much of the work on the field has been motivated by a desire to make operation in

new and harsher conditions possible. Lindegaard (2003) proposes the use of acceleration feedback

in order to enhance the performance of DP systems in severe seas, while (Nguyen et al., 2009) pro-

poses a model for dynamic positioning in ice conditions. There is not much work found regarding

DP operations of high-speed vessels, specifically, however (Hamilton, 2007) argues for the use of

water jet drives as a mean of main propulsion for DP operated vessels. The first example found of

utilizing the vent valve airflow for lateral thrust is by the MCMV Oksøy class, however we can not

seem to find any published work regarding this project.

1.5 Contributions

1.5.1 Nonlinear Cushion Pressure Model

Common practice within the field of vertical SES dynamics is to use a linear model describing

the pressure dynamics around the equilibrium working point of the system. This leads to several

simplifications, and yields a linear vessel model, which is useful in e.g. a control design setting.

This thesis, however, introduces a nonlinear model of the pressure dynamics, which should lead to

higher accuracy for larger pressure variations, and is to be used as a process plant model. We will

also present an in-depth study of the equations behind the cushion dynamics, by using Reynolds
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Transport Theorem and Eulers equations as a foundation, which we have not found presented in

any other published work.

The nonlinear model introduces a state dependency of the cushion air leakage (section 2.2.3). This

should account for the fact that the leakage beneath the bow- and stern seals of the cushion increases

at a very high rate as the vessel pitches and heaves above a given set point. Implementation of these

effects by saturating the pressure state was considered, but found to remove too much of the real-

life dynamics of the plant, where the pressure trajectory strongly depends on the vessel trajectory.

The effect of this state-dependent leakage area was implemented by a higher-degree polynomial, so

that the passive leakage became significant as the heave excitation exceeded -0.6m (according to

the sign convention defined in chapter 2) from the equilibrium state, ’on-cushion’. The tuning of

this polynomial was done by comparing the step responses of the system with experiences from the

model tests done by (Auestad et al., 2015).

1.5.2 Mathematical Modeling- and Control of Lateral Forces on a SES

For DP-applications, we are primarily concerned about counteracting the slowly varying 2nd order

loads. Due to relatively slow actuator dynamics and high inertial forces, these loads are the only

one traditional setups are able to handle. This thesis, however, concerns damping of 1st order heave

motions, and will also investigate the possibilities for utilizing the vent valve thrust to compensate

for 1st order motions in sway as well. This should be feasible due to the quick dynamics of the

hydraulic vent valve louver actuators, which means that the maximum thrust can be transferred

from fully port to fully starboard in about one tenth of a second. We present a model for these

forces, and a control scheme for computing the lateral leakage (ref chapter 3.6) corresponding to a

given lateral thrust.

1.5.3 Control of Total- and Lateral leakage of Vent Valves, With Saturation

Handling

Chapter 3.6 also derives a scheme for saturation handling of the above mentioned controller, which

can prioritize either of the two desires, total leakage area or lateral leakage area. This controller

also distributes the commanded leakage areas between the two vent valves, the port and starboard,

in a manner so that the different control desires are fulfilled as far as possible.
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1.5.4 Linear Thrust Region Representation of SES

Certain thrust-allocation methods, specially those based on quadratic programming, as used in this

thesis, necessitates a linear representation of the thruster capacities, the thrust− region. We could

not find any literature describing such a representation for a twin-hulled water jet propelled vessel,

nor for a SES where the vent valve ducts can be used as a source of lateral thrust. We will present

a linearized thrust envelope for each of the SES thrusters, including the vent valves, which are

described in section 3.5.2.

1.5.5 Thrust and Azimuth Control of Water Jets

Since there are DP systems in commercial use today that features water jets as main propulsors, it

is highly likely that there exists some algorithms for zero speed, 360◦ thrust- and azimuth control of

these. However, we could not seem to find any published articles or papers regarding the subject,

and we will therefore propose a method of obtaining the desired thrust- magnitude and direction

from a water jet drive, in section 3.7.

1.5.6 Dynamic Positioning and Horizontal WF Motion Damping of SES

The result of the derivations and findings in this thesis means that we have developed a control

system which, verified by simulations, should enable a SES to perform station keeping when subject

to rather severe environmental loads and also reduce the amplitudes of the lateral wave frequency

motions.

1.6 Thesis

This thesis will investigate the potential for utilizing the potential energy in the pressurised cushion

to provide lateral thrust, and how to apply this in combination with the water jets to obtain control

of the vessels in both the horizontal- and vertical plane. To do this, we need to derive an accurate

model for the cushion pressure dynamics, and an expression for the potential thrust it can provide.

To perform simulations, and investigate the validity of the model, it is also necessary with a set

of equations describing the dynamics of the vessel, both when subject to rapidly oscillating forces,

but also for a low frequency situation, such as the station keeping problem. We will also define the

necessary kinematics in order to simulate the vessel dynamics in an inertial, global reference frame.

We will develop and propose a control system, where the control outputs will be based on state- and
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state-derivative feedback. A method for thrust allocation is also necessary in order to distribute

the desires for body fixed forces among the different actuators, which in turn yields a demand for

local thrust/actuator control in order for the respective actuators to perform their assigned tasks.

The validity of the derived model, and the efficiency of the controller is illustrated by simulations

using MATLAB and Simulink.

1.6.1 Organization of Thesis

Chapter 2 - Mathematic Modelling derives a mathematic model for the system being in-

vestigated. We first define the regular kinematic equations necessary for analysis and control of

the maneuvering- and station keeping problem as well as the different reference frames and sign

conventions used in the thesis. We propose a nonlinear model for the cushion pressure dynamics

and a generic expression for the thrust provided by the airflow through the vent valves which will be

utilized later in the station keeping controller as well as the Wave Frequency motion damping. The

different mechanisms of a water jet propulsor, as well as a qualitative expression for the provided

thrust is presented, before we define the regular expressions for the vessel dynamics, for both the

low- and wave frequency problem. The chapter ends with a model for the environmental loads on

the system, which will be used to simulate the external disturbances in chapter 4.

Chapter 3 - Control System Design regards all the different aspects of the SES control system.

In the beginning of the chapter, the control objective is defined, and we differ between the Low-

and Wave Frequency problem. We will then derive the control plant model. Since the feedback

gains for the wave frequency motion compensation is model based, we need a linearized, simplified

model describing the dynamics of the system. The feedback gains are, in turn, computed using an

LQR-like synthesis, and the proper state trajectory weighting is calculated by a proposed method

based on a desired phase shift between two control signals. The simple PID-controller used for the

DP problem is then defined, before we propose a method for thrust allocation, based on quadratic

programming. This necessitates a linear representation of the thruster-capacities, which is then, in

turn, derived and implemented in the optimization problem in order to provide the necessary thrust

from each individual thruster so that the desire for body fixed linear forces and momentums from the

respective controllers are obtained. The chapter ends with two sections about thrust control, for the

vent valves and water jets respectively. The first of these two regards the problem of combining the

desires for lateral- and total leakage area in order to satisfy both the heave compensation problem
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and the desire for lateral force. The water jet section describes a method of obtaining a given

azimuth angle and thrust magnitude from a single water jet drive, by the means of engine speed,

the angle of the steering nozzle and the state of the deflector shield.

Chapter 4 - Results and Discussion This chapter is meant to show the effect and validity of the

previous chapters. The models derived in chapter 2 are tested for different inputs and disturbances,

and the controllers derived in chapter 3 are tested for various conditions in order to prove that they

are effective. In addition, the WF process plant is tested in an uncontrolled environment, subject to

different disturbances in order to obtain a qualitative understanding of its uncontrolled behaviour.

The respective controllers are also tested simultaneously, which, among other things, indicates that

the system is able to perform strong vertical motion damping and station keeping simultaneously.

The chapter is summed up in a discussion section, where we evaluate the results and comment on

any special findings.

Chapter 5 - Concluding Remarks provides a conclusion of the work done in the thesis, and

the findings from the simulations. We will evaluate the potential of this concept and also, in a

further work section, what needs to be done in order to present a working system.

Appendix, contains all relevant information about the parameters used in the simulations. We

have also included a one-pager with some key-facts about the Wave Craft.
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Chapter 2

Mathematic Modelling

2.1 Kinematics and Points of Reference

This thesis will investigate a 6 Degrees of Freedom (DOF) problem. The hydrodynamic equations,

the lift- and thrust from the uniform pressure inside the cushion and the thrust from the water

jets will be derived in a body fixed coordinate system {b}=(xb, yb, zb) with origin ob, while the

”global” orientation and position of the vessel will be described in an inertial reference frame, i.e.

the North-East-Down (NED) frame, {n}=(xn, yn, zn) with origin on. The oscillatory motions

around equilibrium, i.e. the wave frequency motions of the vessel will be described in a sea keeping

reference frame {s}, with origin os. The sign conventions and notations will be in compliance with

the proceedings of the Society of Naval Architects and Marine Engineers from 1950, (SNAME, 1952),

and are summarized in table 2.1, as given in (Fossen, 2011) but altered to include the displacements

in {s}.

DOF Forces
and mo-
ments

Linear and
angular ve-
locities

Positions
and Euler
angles

Position in
{s}

1 motions in the x direction (surge) X u x η1

2 motions in the y direction (sway) Y v y η2

3 motions in the z direction (heave) Z w z η3

4 rotation about the x axis (roll) K p φ η4

5 rotation about the y axis (pitch) M q θ η5

6 rotation about the z axis (yaw) N r ψ η6

Table 2.1: Summary of the SNAME convention
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The xb-axis is the longitudinal axis directed from aft to fore, positive y-axis is directed to the

starboard side of the vessel while the positive z-axis is the normal axis to the horizontal plane

pointing downwards. Thus, in compliance with the right-hand-screw rule, i.e. a right hand screw

advancing in the positive direction of the axis of rotation, positive pitch is defined as bow up while

positive yaw-motion is defined clockwise. The roll-motions of the vessel will not be given any

significant attention in this thesis, as they are uncontrollable with the actuators assumed available.

The body-relative orientation of {b} is illustrated in figure 2.1

Figure 2.1: Body-fixed coordinate system {b}

The Body-fixed linear-, and angular velocities given by table 2.1 are unified in the vectors V b
b/n and

ωbb/n, as given by equations (2.1) and (2.2).

vbb/n =
[
u v w

]T
∈ R3, (2.1)

ωbb/n =
[
p q r

]T
∈ R3. (2.2)

The notation used above, e.g. for V b
b/n indicates that we are investigating the velocity of {b} with

respect to {n}, expressed in {b}. The positions and Euler angles defined in table 2.1, are relative

to some fixed, inertial reference frame, in our case {n}, i.e., for the euler angle ψ, which represents
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the vessels yaw-motion, it is defined as the angle from the vertical plane znxn to the vertical plane

znxb, positive in the positive sense of rotation about the zn-axis according to the right-hand screw

rule. The NED frame is thoroughly described in (Fossen, 2011), and is the coordinate system we

refer to in our everyday life, thus, the reference frame {n} is defined as the tangent plane on the

surface of the earth. The x-axis of {n}, xn, points towards true north, yn points towards east while

zn points downwards normal to the earth’s surface. For a vessel at low speeds operating in a local

area, such as for the dynamic positioning problem, this frame can be regarded inertial. The NED

positions are unified by the vector pnb/n.

pnb/n =
[
N E D

]T
∈ R3 (2.3)

The attitude, i.e. the orientation of the vessel, is in a similar manner given by the vector Θnb, where

the subscript notation denotes the euler -angles between {n} and {b}.

Θnb =
[
φ θ ψ

]T
∈ S3, (2.4)

where the set S3 is a sphere. The angle ψ, illustrated in figure 2.2, is called the heading angle and

it denotes the orientation of the vessel in the horizontal plane, thus it is of great importance in

dynamical positioning. The variable θ denotes the pitch-angle and φ denotes the roll motions of

the vessel.

Figure 2.2: Definition of the quantity ψ
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We combine the displacements in {n} and velocities in {b} into two vectors, and define:

ηn =


p

n
b/n

Θnb


 ∈ R3xS3 and ν =


v

b
b/n

ωbb/n


 ∈ R6. (2.5)

The vector containing the states in {s} is defined as

ηs =
[
η1 η2 η3 η4 η5 η6

]T
, (2.6)

which follows the same sign conventions as given above. We will also define a vector f bb containing

the body fixed forces, running through the point ob and a moment vector mb
b, containing moments

about the point ob, in the respective planes, as in equation (2.7a) and (2.7b)

f bb =




X

Y

Z


 ∈ R3, (2.7a)

mb
b =




K

M

N


 ∈ R3. (2.7b)

The two vectors given by equations (2.46a) and (2.46b) can be further unified into the vector τ ,

defined in equation(2.8).

τ =


f

b
b

mb
b


 . (2.8)

Hence the general motion of the 6 DOF system is described by the vectors ηn, ν and τ . Further,

the following definitions are made:

1. The point ob is defined as the origin in the body fixed reference system {b}, and is placed in

the equilibrium water plane, on the line passing through the vessels centre of gravity.

2. on is defined as the origin of the inertial reference frame {n}. The translational exceptions, i.e.

in surge, sway and heave, are defined as the motions of ob, relative to on. In the equilibrium

state, on and ob will coincide.
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3. The point os is defined as the origin of the seakeeping reference frame. The WF motion study

of this thesis will investigate the motions of ob relative to os. This point is placed in the

equilibrium waterline, and coincides with ob in the equilibrium state.

The relationship between {b} and {n} will be described by the means of Euler angles. These

represent an intuitive relationship between the two frames, and are easily computed. Euler angles

as the mean of orientation representation implies a singularity in θ = π/2 (Ang Jr and Tourassis,

1987), however this is not relevant for the scope of this thesis as such pitch angles are (hopefully)

avoided and since we only will be looking at the horizontal problem in {n} we can safely neglect

these singularities. The transformation is done according to the method explained in (Fossen, 2011).

The transformation uses the Euler angles φ, θ and ψ to rotate the body-fixed linear velocity vector

vbb/n into {n}. From this, the linear velocities in {n} can be expressed as given by equation (2.9):

vnb/n = Rnb (Θnb)v
b
b/n, (2.9)

where Rnb (Θnb) is a rotation matrix. This is a product of three principal rotation matrices, where

each single one rotates the system around one of the inertial reference frames respective axis.

Expanded, this rotation matrix is given by:

Rnb (Θnb) =




cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ

sψcθ cψcφ+ sφsθsφ −cφsφ+ sθsψcφ

−sθ cθsφ cθcφ


 , (2.10)

where s(·), c(·) and t(·) denotes the sine, cosine and tangent of the given argument, respectively.

The angular transformations are done in a similar manner, through the relation given by equation

(2.11)

Θ̇nb = TΘ(Θnb)ω
b
b/n, (2.11)

were the transformation matrix TΘ(Θnb) is defined as

TΘ(Θnb) =




1 sφtθ cφtθ

0 cφ −sφ
0 sφ/cθ cφ/cθ


 . (2.12)
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Notice that

pnbn =

∫ t

0
vnb/n(τ)dτ, (2.13)

for some dummy-variable τ . We can then summarize equations (2.9) and (2.11) into the 6 DOF

kinematic equations expressed in vector form as

η̇n = JΘ(ηn)ν (2.14a)

m (2.14b)

ṗ

n
b/n

Θ̇nb


 =


R

n
b (Θnb) 03x3

03x3 TΘ(Θnb)




v

b
b/n

ωbb/n


 . (2.14c)

This allows us to derive the hydrodynamic equations for the body fixed reference frame {b} in a

regular manner. If we only look at a 3 DOF problem in the NED, i.e. the surge-, sway- and yaw

motions, the transformation can be simplified to

˙η3n = R3d(ψ)ν, (2.15)

where η3n =
[
x y ψ

]T
and

R3d(ψ) =




cψ −sψ 0

sψ cψ 0

0 0 1


 . (2.16)

2.2 Pressure Effects

This plant will exhibit a strong coupling between the state trajectories in heave and pitch, and

the excess pressure inside the cushion. By commanding different vent valve leakage areas on both

sides, the airflow is also able to induce significant levels of lateral thrust, which can be exploited for

control of the vessel in the horizontal plane as well.

For calm seas, the cushion pressure depends mainly on the leakage areas of the vent valve louvers

and the speed of the lift fan engine(s). In most real life sea states, however, the cushion pressure

will, in addition to the controlled leakage areas, be influenced by the excitations of the vessel in

the vertical DOFs and the experienced wave propagation. Experiences also show that there will be

leakages of air beneath the bow- and stern seals, which exhibits a strong dependency on the heave-

and pitch levels. The excess pressure in the cushion will be comprised of both a spatially varying
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component and a uniform component, both will be explained in the following.

2.2.1 Spatially Varying Pressure

In addition to the uniformly varying pressure, the vessel will exhibit spatially varying, resonant

pressure components, acoustic modes. These components are closely described in (Sørensen and

Egeland, 1995). This phenomena, which is part of the Cobblestone effect can, for the odd modes,

induce rapidly oscillating pitch motions due to non symmetries in the pressure relative to the ybzb

plane. Each acoustic mode corresponds to one of the spatially varying air cushion eigenfrequencies.

The eigenfrequency ωj for mode j is given by equation (2.17)

ωj = c
jπ

L
, j = 1, 2, 3, ...., (2.17)

where L denotes the length of the cushion and c is the speed of sound, roughly equal to 340m/s.

Excitations by high-energy waves in these frequencies can for the odd modes induce relatively

large pitch motions, oscillating at the given frequency, causing large levels of discomfort for the

crew. For the Wave Craft, by inserting numerical values, we find that the lowest spatially varying

eigenfrequency of the air cushion is ω1 ≈ 50[rad/s]. The sea states relevant for this thesis are mainly

with high-energy waves with periods between 5 and 10 seconds. Since we are only investigating

a low- to zero speed problem, only small ripples can possible occur at such high frequencies as

ω1. Since these carry far from enough energy to cause any large excitations we notice that the

Cobblestone effect will only be of concern for high velocities and/or long air cushions. For nonzero

velocities, the experienced frequency, i.e. the frequency experienced by an observer moving along

with the vessel, is given by the frequency of encounter, ωe, in equation (2.18).

ωe = ωw −
ω2
w

g
cos (βwa), (2.18)

where ωw is the frequency of the waves observed by a stationary observer in an inertial reference

frame, g is the gravitational acceleration and βwa is the angle of wave encountering relative to xb.

For instance, for the Skjold-class of coastal corvettes, illustrated in figure 1.1, with a cushion length

of around 40 meters, and wave periods of 2 seconds, the first acoustic mode will be significant

already at 42 knots, whereas the Wave Craft would have to travel at 89 knots for the given waves

to reach the eigenfrequency of its first acoustic mode. Thus, for the scope of this work we can safely
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neglect the effect of the spatially varying pressure components even at top speed, and luckily for

the operators of the Skjold-class, effective RCSs are invented to take care of the acoustic modes.

It should still be noted that the uniform pressure is also able to induce pitch motions, due to the

fact the centre of pressure (COP) and the centre of gravity (COG) of the vessel does not perfectly

coincide.

As a side-note: these spatially varying pressure components are actually of equal nature as regular

sound waves, however, they are normally of too low frequencies for humans to hear. Based on

equations (2.17) and (2.18) and the fact that humans are normally able to hear frequencies as low

as 20Hz; if we look at the third acoustic mode of the Wave Craft and hypothetically were able

to propel the vessel up to around 290 knots, you should theoretically be able to hear quite loud

humming from the air cushion. At that speed, however, the noise would not be your only concern.

2.2.2 Reynolds Transport Theorem

In the derivation of the uniform cushion pressure dynamics common practice in the field is to start

out with a relation commonly described as a global continuity equation. This derives from Reynolds

Transport Theorem (White, 1986), which states:

Reynolds Transport Theorem. By letting B be any property of a fluid being investigated (e.g.

energy, momentum, enthalpy, etc.), and βre = ∂B
∂m be the intensive value, or the amount of B per

unit mass in any small element of the fluid, we can define the total amount of B in the control

volume, V, as:

Bsys =

∫

CV
βredm =

∫

CV
βreρdV, (2.19)

where ρ is the density of the fluid under investigation. Any change in the amount of B in the control

volume must be due to one of three effects:

1. A change within the control volume, e.g. a density change in a mass conservation-study

∂
∂t

(∫
CV βreρdV

)
.

2. An inflow of β to the control volume:
∫
CS βreρV cos θredAin .

3. An outflow of β from the control volume:
∫
CS βreρV cos θredAout.

In these short derivations θre represents the relative angle between the unit normal vector of the

control surface and the fluid velocity vector, and must not be confused with θ, used to describe

the pitch-angle of the vessel. Ain represents the surface area of the control volume where there is
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a positive net flux of the fluid property of interest, while Aout represents the areas with negative

flux. CV denotes the Control Volume subject to investigation, while CS denotes the corresponding

Control Surface.

By summing up the effects listed above, and differentiating the total amount if B in CV, Bsys,

with respect to time we obtain an expression for the change in Bsys, which is known as Reynolds

transport theorem.

∂

∂t
(Bsys) =

∂

∂t

(∫

CV
βreρdV

)
+

∫

CS
βreρV cos θredAout −

∫

CS
βreρV cos θredAin. (2.20)

V is the fluid velocity vector. By defining n as the outward normal unit vector everywhere on the

control surface, then V·n=Vn (normal component of flow) for outflow and V·n=−Vn for inflow.

The expression can then be simplified to

∂

∂t
(Bsys) =

∂

∂t

(∫

CV
βreρdV

)
+

∫

CS
βreρ(V · n)dA. (2.21)

If leakages through the bow- and stern seals are neglected, some of the fluid-property fluxes for

CV can be simplified as one dimensional, and we only assume a flux at simplified inlets and exits

(fan inlet and vent valve outlet). This means that we assume that the flow properties are nearly

uniform over the cross section of the inlet and outlet ducts. This assumption must be justified

for the individual fluid property B being investigated. However, at moderate pressures, where the

leakages through the bow- and stern seals are nearly negligible, the simplifications will hold when

fluid mass is the property being investigated, which is the case in this thesis. By including a slight

modification, this simplification will also be valid when investigating the linear momentum of the

fluid flow, which will be done during the derivations of an expression for the lateral thrust, induced

by the fluid flow. If the uniform-flow property assumption holds, the in- and outflow terms can be

rewritten as a sum of product terms for each cross section, and equation (2.21) can be rewritten as

∂

∂t
(Bsys) =

∂

∂t

(∫

CV
βreρdV

)
+
∑

i

(βreρAiVi)out −
∑

i

(βreρAiVi)in, (2.22)

where Ai is the leakage area of effector i and Vi is the corresponding flow velocity.
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2.2.3 Nonlinear Uniform Pressure Equation

To derive the dynamics of the uniform pressure component in the air cushion we perform a mass-

conservation study, thus we replace the somewhat arbitrary B from the generic equation(2.22) with

m (mass), and β = ∂m
∂m = 1. One of natures fundamental laws is that mass must be conserved for

all control volumes. Equation (2.22) can therefore be rewritten:

∂m

∂t sys
= 0 =

∂

∂t

(∫

CV
ρdV

)
+
∑

i

(ρiAiVi)in −
∑

i

(ρiAiVi)out, (2.23)

where the control volume Cν is defined by the red dotted lines in figure 2.3, which shows a cross-

sectional view of a SES air cushion seen from the stern. Qout simply denotes that those are the main

channels for outflow. When deriving an expression for the lateral thrust, the lateral differences in

outflow are important. For the uniform pressure, however, the direction of the flow is irrelevant.

Figure 2.3: Control Volume used in the derivations of the pressure dynamics

As presented in (Sørensen and Egeland, 1995); by moving the last two terms on the right hand side

of equation (2.23) to the left side of the equality, we obtain a global continuity equation:

win(t)− wout =
∂

∂t

(∫ L
2

−L
2

ρc(x, t)Vc(t)dx

)
. (2.24)

Equation (2.24) states that the difference between the mass flow into- and out from the volume,

win and wout, should equal the variations of the air density, integrated over CV, from figure 2.3.

The right hand term is integrated over the cushion length L, ρc(x, t) is the density of the air inside

the cushion while Vc(t) is the total volume of CV. The space dependency on the right-hand side of

equation (2.24) is added to account for spatial variations of the pressure within the confined space
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of interest. If we neglect the spatial variations and expand the right hand term of equation (2.24),

we obtain

win(t)− wout(t) =
∂

∂t
ρ(t)Vc(t) = ρ̇(t)Vc(t) + ρ(t)V̇c(t). (2.25)

The first term on the right hand side of equation (2.25) can be derived from the adiabatic pressure-

density relation, which states that:

ρ(t) = ρc0

[
pa + pu(t)

pa + p0

] 1
γ

, (2.26)

where ρc0 is the density of the air at the equilibrium pressure p0, pa is the atmospheric pressure and

pu is the uniformly varying excess pressure component. γ is the heat capacity ratio. By defining:

µ(t) =
pu(t)− p0

p0
→ pu(t) = p0 + µ(t)p0, (2.27)

equation (2.26) can be rewritten

ρc(t) = ρc0

[
pa + p0 + µ(t)p0

pa + p0

] 1
γ

. (2.28)

It is common, when investigating small pressure fluctuations for similar plants, to linearize around

the equilibrium point µ = 0. Instead, to obtain a generic expression valid for larger pressure

fluctuations to be used in a process plant model, equation (2.28) is simply differentiated, and the

following relation is obtained:

ρ̇c(t) =
∂ρc
∂t

=
∂ρc(t)

∂U

∂U

∂t
=

ρc(t)

γ(pap0 + 1)

[
pa + p0 + µ(t)p0

pa + p0

] 1
γ
−1

µ̇(t). (2.29)

In the following derivations ρc will be assumed constant, which simplifies the notation. This can

be justified by plotting the adiabatic pressure-density relation, given by equation (2.28), as µ runs

from -1 to 1, which is a relatively long interval.
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Figure 2.4: Density of air as function of pressure

The plot shows that the variations in density of the air inside the cushion are of a small magnitude

and for the uniform pressure equation, ρc will cancel out, thus they will be neglected for the

derivation of the pressure dynamics. The atmospheric air density ρa , however, influences the

volumetric outflow of air, as will be shown later. The second right-hand term of equation (2.25), the

variations in the volume, are caused by vessel translations and rotations as well as the propagating

waves. The latter is given by:

V̇w = b

∫ L
2

−L
2

ξ̇(x, t)dx, (2.30)

where V̇w denotes the wave volume pumping due to propagating waves, and b is the width of the

air cushion. For regular, head seas, by evaluating the integral and assuming regular waves, i.e.

surface elevations on the form ξ(t) = ξa cos (ωwt), where ωw is the wave frequency and ξa is the

wave amplitude, the wave volume pumping can be rewritten:

V̇w = Acξaωe
sin kL

2

kL
cos (ωet), (2.31)

where k is the wave number k = 2π
λ , λ is the wave length and ωe is the frequency of encounter given

by equation (2.18). For zero forward velocity, ωe equals ωw. The volume pumping due to vessel

excitations are given by the following two relations:

V̇η5(t) = Acxcpη̇5(t), (2.32a)

V̇η3(t) = −Acη̇3(t), (2.32b)
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Where we recall the sign conventions defined in the beginning of the chapter, positive z-axis pointing

downwards and positive pitch defined as bow up. By summing up equation (2.31), (2.32a) and

(2.32b) the total volume pumping can be expressed as:

V̇c(t) = Acxcpη̇5(t)−Acη̇3(t) + b

∫ L
2

−L
2

ξ̇(x, t)dx. (2.33)

The left-hand side of equation (2.24) considers the mass flow into- and out of the volume. The inflow

is provided by the lift fans, and can be found as a function of the pressure by taking the inverse

of the fan characteristics, which would provide the airflow as a function of the excess pressure.

Given the fan characteristics, this function is known, and, for the process plant, there is really no

need to linearize it.

win(t) = ρc(t)

r∑

i=1

Qi(µ(t)). (2.34)

Qi is the airflow from lift fan number i. An example of a typical fan characteristic, for one lift fan

on a SES is shown in figure 2.5.

Figure 2.5: Example of fan-characteristics for a Surface Effect Ship, (Faltinsen, 2005)

As the figure above shows, it is important that the operating point of the system is located in a

steep declining region of the fan characteristics, which gives the system a strong self stabilizing
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effect as, e.g. an increase in the cushion pressure leads to a relative strong reduction in the mass

flow, thus the system will be stable around the equilibrium operating point. For an analytic proof

of the system stability, the keen reader is referred to (Auestad et al., 2015).

Recall from the introduction that the flow of air out of the cushion can be divided into two con-

tributions, i.e. passive leakage, and vent valve leakage. A common practice is to further divide

the vent valve leakage into the flow through a variable leakage area, and a fixed (equilibrium) bias

opening (the leakage area, at flat sea and for a stationary vessel, necessary to make the actual

cushion pressure equal to the desired equilibrium pressure). We denote this bias opening A0. The

out flow through the different orifices, i.e. leakage areas, can be derived from the simple Euler’s

equation, given by (2.35), by assuming the flow to be frictionless and the gravitational effects to be

negligible. The last assumption holds due to the low density of air, and the relatively small vertical

extent of the system being studied.

ρ
∂V

∂t
= −∆p. (2.35)

For the simplest one dimensional pressure-gradient case, equation (2.35) simplifies to

ρV dV = −dp. (2.36)

By integrating equation (2.36) between two points along a streamline, the following relation is

obtained:

(p1 − p2) = −(
ρ2

2
v2

2 −
ρ1

2
v2

1), (2.37)

where the first of ’the two points’ is located inside the air-cushion of the SES, and the other one is

located outside at atmospheric pressure. Thus p2 = patm and we can rewrite the equation

pc − patm = p0 + µ(t)p0 =
1

2
(ρav

2
2 − ρcv2

1), (2.38)

where pc is the absolute cushion pressure. Even though there will be a chaotic flow inside the air

cushion, for this study it is convenient to look at the air cushion as a pressure reservoir, we will

therefore assume the average lateral velocity of the air inside the cushion, V1, to be equal to zero,
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and obtain the following expression for the outflow escape velocity of the air:

v2 =

√
2(p0 + µ(t)p0)

ρa
[m/s]. (2.39)

Note that we, by using this equation, are assuming frictionless, i.e. inviscid, flow. In reality there

will be factors contributing to losses in this flow, such as duct-entrance effects (albeit small due to

low entrance velocity), friction losses etc. There will also be inertial effects, however the dynamics

of the airflow is most likely quick enough to be neglected. The volumetric out-flow is found by

multiplying the velocity of the escaping air with the leakage area and any loss-coefficients which

might apply. The following expressions for the mass flow are then obtained:

Wout,eq = cn(Aap(ηs) +Afp(ηs) +A0)ρc

√
2(p0 + µ(t)p0)

ρa
, (2.40a)

Wout,RCS = cn

r∑

i=1

∆Aiρc

√
2(p0 + µ(t)p0)

ρa
, (2.40b)

wout = Wout,eq + wout,RCS , (2.40c)

where Aap(ηs) and Afp(ηs) are the leakage areas related to the aft and bow seals, respectively. ηs

denotes the vessel state displacement vector in {s}, and the state-dependency is included due to

the fact the these leakage areas are strongly increasing as the vessel pitches or heaves. ∆Ai is the

variable leakage area of vent valve i around the bias opening. cn is an orifice coefficient describing

the losses in the flow through an orifice. This is a function of several factors, which includes the

ratio between size of reservoir and characteristic length of the orifice, imperfect flow, difference from

perfect nozzles etc. A conservative result can usually be found by setting this equal to 0.61, however

experiences from full scale testing suggests that the losses really are significantly smaller. A more

accurate expression could be found by a Computational F luid Dynamics (CFD) analyses, which

we recommend to do for the specific problem of investigation if one wishes to develop an accurate

process plant model.

The seal-leakage areas at the equilibrium states will be very small, proven by model tests to be

almost negligible, however they are, as mentioned, strongly state dependent. For large positive

values of heave, and large absolute values for pitch, a strongly increasing leakage area will be

revealed, limiting the maximum excitations in these DOFs. The increment of the total leakage

areas exhibits nearly discrete properties for the excitation levels were they occur, and should be
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included as they lead to strong limitations in the system capacity.

Combining equations (2.26) through (2.40c) into equation (2.25), yields the following relation:

r∑

i=1

Qi(µ(t))− (K2 + cn

r∑

i=1

∆Ai)

√
2(p0 + µ(t)p0)

pa
=

[
−Acxcpη̇5(t) +Acη̇3(t) + b

∫ L
2

−L
2

ξ̇(x, t)dx

]
+K1(t)(pa + µ(t)p0 + p0)

1
γ
−1
µ̇(t). (2.41a)

Where, K1 and K2 are, for convenience, defined as:

K1(t) =
V (t)

γ(pap0 + 1)(pa + p0)
1
γ
−1
, (2.42a)

K2(ηs) = cn(Aap(ηs) +Afp(ηs) +A0). (2.42b)

This relation can be defined on State-Space form as

µ̇(t) = f(x, t) + B(u, t) + G(x, t). (2.43a)

Where B(u,t) and G(x,t) are the input and disturbance functions, respectively. f(x,t) describes the

undisturbed system dynamics.

f(x, t) =

∑r
i=1Qi(µ)−K2

√
2(p0+µ(t)p0)

ρa

K1(pa + µ(t)p0 + p0)
1
γ
−1

(2.44a)

B(u, t) =
−cn

∑
i ∆Ai

√
2(p0+µ(t)p0)

ρa

K1(pa + µ(t)p0 + p0)
1
γ
−1

(2.44b)

and

G(x, t) =

−
[
Acxcpη̇5 −Acη̇3 + b

∫ L
2
−L
2

ξ̇(x, t)dx

]

K1(pa + µ(t)p0 + p0)
1
γ
−1

(2.44c)

The system input u corresponds to
∑

∆Ai. Notice that, in the equilibrium state of the undisturbed

system, the inflow from the fan and the outflow through the leakage areas will cancel each other

out.
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2.2.4 Effect of Pressure on System Dynamics

The excess pressure in the cushion will affect the dynamics of the vessel through the simple relation

P =
Force

Area
. (2.45)

In addition, the pressure will induce a pitch moment, where the arm xcp is the distance between

COP and COG, and the force is the same term as above. Since we’re looking for another term for

the total excitation forces, we solve for the force and moment and insert the terms from our specific

problem. Thus, we have:

Zc = P ·Area = −p0µ(t)Ac, (2.46a)

Mc = P ·Area · arm = p0µ(t)Acxcp, (2.46b)

where Zc and Mc denotes the heave force and pitch moment from the cushion, respectively. Only

the effect of the varying uniform pressure component is included in equation (2.46a) and (2.46b).

This is because the equilibrium component will be cancelled out by the gravity forces together with

the difference between the buoancy of the submerged volumes and the lift force from the equilibrium

pressure.

2.2.5 Lateral Thrust Forces - Conservation of Linear Momentum

To obtain an expression for the thrust provided by the accelerated airflow out of the cushion, we turn

to equation (2.22) and the control volume defined in figure 2.3. In this analysis the fluid property

of interest is the linear momentum, thus B=mV, and accordingly β = ∂(mV)
∂t = m∂V

∂t = Force. We

remember that V is the velocity vector of the fluid flow, thus we obtain the vector sum of all forces

acting on the system by evaluating the following equation:

∂

∂t
(mV) =

∑
F =

∂

∂t

(∫

CV
VρdV

)
+

∫

CS
Vρ(Vr · n)dA. (2.47)

Since this equation contains vector relations, the equation has three components which corresponds

to xb, yb and zb in {b}. For this case we are only interested in the yb-component of the flow, thus
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equation (2.47) can be rewritten:

∑
F =

∂

∂t

(∫

CV
VρdV

)
+

∫

CS
vρ(Vr · n)dA. (2.48)

Before we simplify this equation in a similar manner as was done to obtain equation (2.22), we must

remember that even in a relatively narrow duct such as the one featured in the SES, the flow will

not be perfectly uniform. Therefore the simple momentum flux calculation
∫
CS vρ(V ·n)dA = ṁV ,

where ṁ = ρV A, A being the area of the duct of interest, denotes the mass-flow, is somewhat in

error. A momentum flux correction factor must be introduced. Common convention, (White, 1986),

denotes this with the letter β, however this conflicts with the intensive value of the generic fluid

property defined earlier in this chapter. Therefore, this factor will be denoted α in the following

short justification of neglection. The factor α is to account for the variations in the velocity field

over the cross section of the ducts, and is defined by computing the exact momentum flux, and

equating it to a flux based on the average velocity in the duct:

ρ

∫

Aduct

u(x′, y′)2dAduct = αṁVav = αρAductV
2
av,

α =
1

Aduct

∫

Aduct

(
u(x′, y′)

Vav

)2

dAduct,

(2.49)

for some x’ and y’ axis defining the area of the duct. However, experiences show that the correction

factors for turbulent flow are so close to unity that they can be neglected. The flow through the

short vent valves of the SES will accelerate up to velocities higher than 50ms . With the definition

of Reynolds number

Re =
vDh

ν
, (2.50)

where Dh is the hydraulic diameter of the duct, v the velocity of the flow and ν the kinematic

viscosity of the fluid being studied, we find that the Reynolds number for this flow is at the mag-

nitude of 106, which is in the turbulent zone. Thus, for this qualitative study, the momentum flux

correction factor will be conveniently omitted. This allows us to rewrite equation (2.48) to

∑
F =

∂

∂t

(∫

CV
VρcdV

)
+
∑

i

(ṁiVi)out −
∑

i

(ṁiVi)in, (2.51)

where ṁi denotes the mass flow going into- or out from orifice i, while Vi denotes its velocity. Since

we’re only interested in the lateral components of this linear momentum flux, and know that the
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flux entering the control volume has zero lateral components, the lateral momentum flux going into

the volume equals zero. Further, we also assume that there will be an average of zero variations

in the linear momentum within the volume, illustrated in figure 2.6. Thus, the net force from the

airflow out of vent valve i can be written as

F vvi = ṁivi,out = cnρcA
l
i

√
2(p0 + µ(t)p0)

ρa

√
2(p0 + µ(t)p0)

ρa
, (2.52)

where Ali denotes the total leakage area of the respective vent valve, i.e. A0,i+∆Ai. The first terms

on the right hand side of equation 2.52 equals the mass flow going through the leakage area, while

the last term denotes it’s velocity. Clearly this can be rewritten to yield the net thrust from vent

valve i:

uvvi = −n · cn · ρcAli
2(p0 + µ(t)p0)

ρa
, (2.53)

where cn is some thrust-reduction coefficient and the normal vector of the leakage area Al, n, is

defined as positive for air flowing along the positive y-axis. For a vent valve pointing in the negative

y-direction, a positive thrust will be generated. For the typical SES setup, there are a total of two

vent valves. The thrust from the port and starboard vent valve will, in the following, be denoted

uport,vvy and usb,vvy , respectively. However, as the section concerning the thrust allocation problem

will show, these two thrust forces can be generalised as one thruster. The net force from the vent

valves will therefore be denoted uvvy , and allowed to take positive and negative values in compliance

with the defined sign convention. The assumed flow regime of CV is illustrated in figure 2.6.

Figure 2.6: Control volume flow velocities
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2.2.6 Waterjet Thrust

The most important parts of a water jet pump drive is the intake, drive-shaft, impeller, stator,

steering deflector and the reverse duct/deflector. The basic principle is illustrated in figure 2.7.

Figure 2.7: Illustration of the Basic Water Jet pump structure, from (Hamilton, 2007) but slightly
altered in notation

Water is sucked in through the intake, by the rotating impeller powered by the diesel propulsion

engines. The impeller accelerates the water, which is discharged at a high velocity through the

discharge nozzle (the steering deflector in figure 2.7). The stator is used to regain energy lost to

flow rotations induced by the impeller. According to Newtons 3. law, the accelerated water flow

must produce an equally sized, opposite acting, force, which is the propulsive force propelling the

vessel. To derive an expression for the thrust provided by the water jets, a similar approach as

for the lateral airflow thrust forces can be used, i.e. by starting out with the linear momentum

continuity equation (2.47). The amount of thrust provided by the jet flow will be influenced by

both frictional- and pressure losses, however at low speeds, and for the qualitative purposes of these

derivations, these various loss factors will be conveniently omitted. The derivation of the thrust

from the water jets will be done by neglecting any loss terms, and the three characteristic velocities,

as given by (Bulten, 2006):

1. Ship speed Vship(=u, ref table 2.1).

2. Mass averaged ingested velocit at duct inlet (Vin).
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3. Average outlet velocity at the nozzle (Vout).

Vin accounts for the boundary layer produced by the ships hull, and is defined as

Vin =
1

Qw

∫
vflow(z′) · vndA =

1

A

∫
vflow(z′)dA, (2.54)

Where v(z’) denotes the velocity distribution of the flow, as we move a distance z’ away from the

hull along the normal vector of the surface. Qw is the volumetric water flow through the system,

and vn is the normal flow through the area. Due to the boundary layer generated by the ship hull,

the mass averaged velocity of the ingested water is lower than the ship speed, and is defined by the

wake fraction w = 1− vin
vship

. For a flow along a flat plate, a power law describing the velocity profile

of the boundary layer is given by

vflow
U∞

=

(
z′

δ

) 1
n

, (2.55)

where U∞ is the flow far away from the plate, δ is the thickness of the boundary layer and n is

some curve-shaping integer often set equal to 7. Now, it is obvious that this boundary layer can

affect the average velocity of the flow going into the volume. However, as this thesis is to examine

a dynamic positioning application of the system, the low velocities of interest make these effects

safely negligible, specially if we add the fact that the outlet velocity of such water jet systems is

in the order of 102[m/s]. By neglecting the shape of the boundary layer, the inlet velocity can be

given by

Vin =
Qw

π
4D

2
inlet

. (2.56)

Similarily, the outlet velocity is given by

Vout =
Qw

π
4D

2
nozzle

. (2.57)

Now we return to the conservation of linear momentum. By defining a control volume cutting

through the water intake and the nozzle of the water jet, we can follow the simplifications from

equation (2.52) and assume somewhat uniform flow conditions over the cross section of the jet

37



stream. By neglecting any volumetric forces on the system, the total force is then given by:

∑
F = ρwQwVout − ρwQwVin. (2.58)

If we assume the inlet velocity to be close to zero, which holds for low speed maneuvering, the

expression can be further simplified to

Fwaterjet = ρwQwVout. (2.59)

This reveals a linear relationship between the force and the volumetric flow, which simplifies the

force vector decomposition when the reversing shield is applied. As the reversing deflector, figure

2.7, is lowered, it intercepts the jet stream after it has left the steering nozzle, and, partially or

totally, redirects it back underneath the hull to produce a reversed thrust component. Most such

reverse ducts has split passages, which can generate two reversed flow components, by directing

parts of the flow to either sides. The jet stream is split into the following three components:

1. The forward thrust component, which goes underneath the deflector. Its direction is only

affected by the angle of the steering nozzle, and the magnitude of the component will equal

zero when the deflector is fully lowered.

2. The starboard component flowing through the deflector, i.e. it provides a reverse thrust.

3. The port component flowing through the deflector, producing a backwardly directed thrust.

For deflector shields only pivoting in the vertical direction, the two reverse flow components can

only be affected in magnitude, not direction. Thus, when the deflector is fully lowered, the relative

size of the two reverse flow components can be adjusted by rotating the steering nozzle. Pointing

the nozzle to the far starboard side directs the entire flow through the starboard flow component

while, correspondingly, directing the nozzle to the far port will channel the entire flow through the

port component. If we augment equation (2.59) to consist of three mass flow components Qw,i, with

corresponding direction in the 3dimensional space denoted by the unit vector ni, the net force can

be obtained

|uwj | =
3∑

i=1

−ρwVoutniQw,i. (2.60)

Vout denotes the speed (not the vectorial velocity) of the flow component, which is assumed to be

equal for the three components. For a fixed diesel engine RPM, the variable in the net thrust is
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simply the distribution of the mass flow among the three components described in the list above.

From equation (2.60) we can sum up the different combinations of flow distributions to obtain the

thrust region of one single water jet. We denote the longitudinal- and lateral components of the

water jet thrust uwjx and uwjy , respectively. The water jet has two main modes, the deflector fully

lowered and fully opened, however the position can also be adjusted continuously between the two,

as illustrated in figure 2.8.

Figure 2.8: Operational modes of water jet drive, taken from (Commons, 2008)

The maximum magnitude of the thrust vector is denoted Uwj100%. A common design of water jets is

two use a deflector shield which does not rotate with the nozzle, thus the thrust in reverse can be

continuously distributed between a port and starboard component. We will assume the water jets

for this plant to be of this type. We also assume the deflector shield to direct the jet stream forwards

at a ±30◦ angle relative to positive xb, and 30◦ downwards relative to the xbyb-plane. The control

design chapter will derive a water jet thrust and azimuth controller where these angles are allowed

to take arbitrary values. If the deflector is only partially lowered the net forward thrust can equal

zero, and pure lateral net thrust components can be achieved. The different water jet/deflector

shield configurations are illustrated by figure 2.9.
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(a) Deflector up (b) Zero Speed (c) Deflector Down

Figure 2.9: Waterjet Configuration from (Hamilton, 2007)

By the assumptions above, the directional components of the maximal reversed port thrust vector

are given by:

urev,px = Uwj100% cos 30◦ cos 150◦ = −0.75Uwj100%,

urev,py = Uwj100% cos 30◦ cos 240◦ = −0.433Uwj100%.
(2.61)

If the equivalent is done for the starboard component, the two reversed thrust vectors and the set

of possible forward thrust vectors of the water jet are illustrated by figure 2.10.
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Figure 2.10: Horizontal Components of Waterjet Thrust Vectors

The colours in figure 2.10 are chosen to comply with figure 2.9. Remember that figure 2.10 describes

the resulting forces, while figure 2.9 illustrates the water flow. The two quantities will be acting

oppositely. From figure 2.10, we derive the full thrust region by looking at the resultant lateral

thrust component of one water jet with the deflector at an arbitrary position and the steering
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nozzle pointing as far as possible to port (we look at a combination of the blue and red region

in figure 2.10). We assume the diesel engine to be running fixed at its maximum RPM, thus the

thrust corresponding to the deflected horizontal water flow is uwj100%. If the reversing shield is fully

up, the resultant thrust vector will be pointed forwardly at an 30◦ angle to the zbxb-plane, it’s

lateral component equals Uwj100% sin 30◦. If we lower the reversing shield, a fraction of the flow will

be directed backwardly at an 30◦ angle relative to the zbxb-plane in the direction of negative xb,

but it will also be given a 30◦ angle relative to the ybxb-plane (downwards), so horizontal thrust is

lost. We let urev denote the magnitude of the backwardly directed flow component, and uf denote

the magnitude of the forwardly directed component. Since, as the shield is lowered, the thrust is

transferred from one component to another one, by assuming constant RPM equal to the maximum

RPM of the engine we can express the forwardly directed (blue) component as a function of the

backwardly directed (red) component in the following way.

uf (urev) = Uwj100% −
1

cos 30◦
urev. (2.62)

If we look at the resultant lateral force from these two components, it is given by (2.63)

uwjy = uf sin 30◦ + urev sin 60◦, (2.63a)

uwjy = (uf −
1

cos 30◦
urev) sin 30◦ + urev sin 60◦. (2.63b)

This can be rewritten:

uwjy (urev) = (sin 60◦ − sin 30◦

cos 30◦
)urev + Uwj100% sin 30◦, (2.64)

which is clearly an affine function in urev, i.e. the distribution between the forwardly- and the

backwardly directed component. This type of argument holds for the entire 360◦ region. Therefore,

the thrust region, i.e. the set of achievable longitudinal and lateral thrust components, obtainable

by dividing the flow in the different directions, can be found by drawing straight lines between

the directional maxima, given by figure 2.10. We obtain a resulting thrust envelope as the one

illustrated by figure 2.11. The red region illustrates the effect of reducing the engine RPMs, the

envelope is simply linearly scaled.
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Figure 2.11: Water jet thrust envelope

We notice that figure 2.11 implies that zero net thrust can be achieved even at maximum RPM. This

can e.g. be useful in a Power Management System (PMS) as part of a thruster-bias configuration

which allows for extremely quick load shedding, as described in (Veksler et al., 2012). The down-

wardly directed flow component will not be utilized in any useful applications for the scope of this

thesis, however, we should bear in mind the possibilities and limitations behind phenomenons such

as DP-induced pitch oscillations etc. for small water plane area vessels, as described by (Sørensen

and Strand, 2000).
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2.3 Vessel Dynamics

To derive expressions for the total motions of a marine vessel, it is common to divide the motions

into two components, i.e. a Low-Frequency (LF)- and a Wave-Frequency (WF) component, which

are, in turn, superposed and the total motion will be the sum of these two components, illustrated

by figure 2.12, from (Sørensen, 2013).

Figure 2.12: Total ship motion as sum of WF and LF components, from (Sørensen, 2013)
.

The subject for this thesis is to investigate the possibilities for combining control of the LF motions

(the dynamic positioning problem) with damping of WF motions in heave and sway. Our approach

to the problem is to regard this as two individual problems, derive the dynamics independently and

superpose the components to obtain the resulting motions. The WF motions are mainly due to first

order wave loads, while the LF motions are induced by slowly varying second order loads, as will

be explained in section 2.4. The LF motions will only be investigated for the horizontal problem

and derived in a similar manner as in (Sørensen, 2013), while the WF motions will be derived in

all 6 DOF, in a conventional manner using a linear model in the body-fixed reference frame {b}
which investigates the motions relative to the seakeeping frame {s}. We assume small amplitudes

of motion for the WF case.
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2.3.1 Low Frequency Vessel Model

A generic nonlinear LF vessel model, expressed in {b} can be written as follows

Mν̇r + Crb(ν)ν + CA(νr)νr +D(κ, νr) +G(ηn) = τ, (2.65)

where τ represents the forces defined in equation (2.8), and can be split into various components

such as forces originating from the vessel actuators, environmental loads, etc. G(ηn) represents

the generalised restoring forces, which, for this system mainly consists of the hydrodynamic forces

originating from Archimedes equations. For other systems, components such as mooring lines etc.

could provide restoring forces in the horizontal DOFs. Here, however, the restoring coefficients

are only related to the vertical DOFs, thus they will be disregarded for the LF problem. D(κ,νr)

contains the generalized damping and viscous part of the current forces, which are included in the

nonlinear term. νr denotes the relative velocity between the vessel and the current, according to

νr =
[
u− ucv − vcr

]
. (2.66)

The damping term can be divided into a nonlinear and a linear component, D(κ, νr) = Dl(κ, νr)νr+

dNL(νr, γr), whereas the nonlinear component becomes dominating as the speed increases. At low

velocities, however, the linear component given by equation (2.67) is dominant and can expressed

as:

Dlνr =




Xu 0 0

0 Yv Yr

0 Nv Nr


 . (2.67)

This linear LF damping can be regarded as the vessels added resistance when advancing in waves

and is proportional to the square of the significant wave height. This matrix can be rather hard

to compute, but approximations can be found by numerical computer programs. For this thesis,

ShipX will be used to estimate Dl. Yr, Yv respectively denotes the forces in sway due to the rotation

rate in yaw and the sway velocity, etc.

M ∈ R3×3 is the systems inertia matrix, given by

M = MRB −MA, (2.68)
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where MA is the systems added mass matrix. This is on the form

MA =




−Xu̇,0 0 0

0 −Yv̇,0 −Yṙ,0
0 −Nv̇,0 −Nṙ,0


 =




−Xu̇,0 0 0

0 −Yv̇,0 −Yṙ,0
0 −Yṙ,0 −Nṙ,0


 , (2.69)

where the coupled entries are equal, thus the matrix is symmetrical and the last equality holds. The

inputs Xu̇,0 etc. denotes the zero frequency added mass coefficients. u, v and r are the first, second

and last input on the vector ν, given by (2.5), which explains the subscripts in the zero frequency

added mass coefficient notation. MRB denotes the system mass matrix, and is given by

MRB =




m 0 0

0 m mxg

0 mxg Iz


 . (2.70)

xg is the arm from the longitudinal position of the centre of gravity, which equals zero if the origin

of the {b} frame is set to coincide with the centre of gravity of the body.

CRB(ν)ν denotes the forces on the system due to Coriolis and centripetal effects on the rigid body.

For the horizontal problem, CRB ∈ R3×3 is given by

CRB(ν) =




0 0 −m(v + xGr)

0 0 −mu
m(v + xGr) mu 0


 . (2.71)

CA(νr) accounts for the Coriolis and centripetal forces of the added mass including the potential

part of the current loads due to the relative velocity νr, and equals

CA(νr) =



0 0 Xv̇vr + Yṗp+ Yṙr

0 0 −Xu̇ur −Xẇw −Xq̇q

−Xv̇vr − Yṗp− Yṙr Xu̇ur +Xẇw +Xq̇q 0


 .

(2.72)

For low speed applications, such as dynamic positioning, , linear damping and inertial forces will

dominate the vessel mode, thus the coriolis and centripetal terms will become negligible for local

maneuvering (but should still be considered for a drifting vessel).
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2.3.2 Linear Wave Frequency Vessel Model

The WF-model assumes relatively small amplitudes of waves and motions, and calculates the ex-

citation forces with respect to the body fixed frame, however, a seakeeping frame {s} is necessary

to be able to examine the displacements of the WF motions. The WF motions can be described

according to

M(ω)η̈s +Dp(ω)η̇s +Gηs = τwave1 + τc. (2.73)

ηs ∈ 6 is the WF motion vector in the seakeeping frame {s}, τc is the actuator control inputs, τwave1

denotes the first order body fixed wave loads and will be explained in section 2.4.

D(ω) ∈ R6×6 is the wave radiation damping matrix. This will be computed using numerical software.

It can also be computed by the use of 2 dimensional damping coefficients, for zero forward speed,

as in (Faltinsen, 1993), exemplified in equation (2.74), where the diagonal and coupled terms,

respectively, are given by:

Dii =

∫

L
D2D
ii (ω, x)dx, (2.74a)

Dij = −
∫

L
xD2D

ii (ω, x)dx. (2.74b)

It is important to note the strong frequency dependency of the damping coefficients, thus the

computed values are only valid for a rather narrow frequency range. The same holds for the matrix

M(ω), given by:

M = MRB +MA, (2.75a)

=




m 0 0 0 0 0

0 m 0 −mzg mxg

0 0 m 0 −mxg 0

0 −mzg 0 Ix 0 −Ixz
mzg 0 −mxg 0 Iy 0

0 mxg 0 −Izx 0 Iz




+




Xu̇ . . . Xṙ

...
. . .

...

Nu̇ . . . Nṙ


 .

MA contains the strongly frequency dependant added mass coefficients, which explains the frequency

dependency of M in equation (2.73). The calculations of A will, as for the rest of the hydrodynamic

coefficients, be computed numerically by strip theory using the software ShipX. The calculation

of the coefficients based the corresponding 2 dimensional coefficients are done similarly as for the
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linear damping, as in(Faltinsen, 1993), for the generic added mass coefficients where subscript ii

denotes added mass in DOF i due to acceleration in i, while ij denotes added mass in DOF i due

to acceleration in j.

Aii =

∫

L
A2D

33 (ω, x)dx, (2.76a)

Aij = −
∫

L
xA2D

33 (ω, x)dx. (2.76b)

The restoring forces are given by the coefficients in the matrix G, and denote the hydrostatic loads

on the system due to excitations in the vertical DOFs. G is on the form

G =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 Zz 0 Zθ 0

0 0 0 Kφ 0 0

0 0 Mz 0 Mθ 0

0 0 0 0 0 0




. (2.77)

As for the other coefficient matrices, the name of the coefficient denotes the direction of the resulting

force, while the subscript denotes the DOF of the displacement that generates the force. The

restoring coefficients are given as:

Zz = ρwgAwp, (2.78a)

Zθ = Mz = −ρg
∫∫

Awp

xds, (2.78b)

Kφ = ρg∇GMT , (2.78c)

Mθ = ρg∇GML, (2.78d)

where Awp is the total water plane area, ∇ is the volumetric displacement and GMT and GML

is the transverse- and longitudinal initial metacentric height. ρw is the density of the seawater,

roughly equal to 1025[kg/m3]. The dependency on both frequency and time is strictly speaking not

quite trivial, as time series simulations of frequency dependent systems can be hard to generate.

This type of system is called a pseudo-differential equation. An important method for time-series

representation of frequency dependent added mass and wave radiation damping is the so-called
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fluid memory effects. To successfully simulate for irregular seas, these effects must be accounted

for, which can be done by convolution integrals as in (Cummins, 1962) which in turn can be used

to derive a linear state space model for the effect as done in (Fossen, 2011). We will limit our

simulations to regular sea states, thus omitting this problem.

2.4 Environmental Loads

This thesis is not meant to provide a thorough study of the aero- or hydrodynamic properties of

typical SESs. As far as possible, numerical programs will be used to calculate loads and/or load-

coefficients. Only a short introduction of the methods used to obtain and apply the environmental

loads for the simulation will be presented here. As we recall from section 1.7, traditional DP-

applications are typically concerned with 2nd order wave forces. However, due to some special

properties of the SES, we will investigate lateral control of first order motions as well. This is

possible due to the bandwidth of some of the SES actuators, which includes the WFs (typically 0.1s

to 15s). The WF controller will not be suitable for damping of motions of period much higher than

15s, due to the signal processing which notch-filters the accelerometer signal in order to avoid signal

drifting and noise. Waves of periods higher than 15 seconds will also, in general, imply sea states

far above the operational window of the vessel. This thesis does also investigate a DP problem,

which concerns higher period motions. However, this would, in its final implementation, be based

on GPS measurements, not accelerometer signals.

We assume that the wave-induced forces can be represented as the product of two transfer function,

as illustrated in figure 2.13

Figure 2.13: Wave-induced loads from sea state, taken from (Fossen, 2011)
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2.4.1 1st Order Wave Loads

The 1st order wave loads will be obtained using so called force Response Amplitude Operators

(RAOs), which for this thesis will be computed by the numerical seakeeping prediction program

ShipX, from MARINTEK, and implemented by the method described in (Fossen, 2011). This

approach assumes a linear relationship between the wave amplitude and the corresponding force

exerted on the vessel, expressed by the means of generalised wave-induced forces as the vector

τwave1 =




Xwave1

Ywave1

Zwave1

Kwave1

Mwave1

Nwave1




(2.79)

To simulate for irregular waves, the JONSWAP spectrum,(Hasselmann et al., 1973), can for instance

be used, and the amplitudes of each individual wave component, Ak, will be superimposed to obtain

the resulting response. The relation between the wave spectrum S(ωk) and the wave amplitude Ak

for wave component k can be given as the sum of N harmonic components:

1

2
A2
k = S(ωk)∆ω. (2.80)

Thus, the surface elevation, assuming long-crested seas, is found by:

ξ =
N∑

k=1

Ak cos (ωk + εk) =
N∑

k=1

√
2S(ωk)∆ω cos (ωk + εk). (2.81)

Where εk is the phase-angle of wave component k. This expression assumes zero craft speed in the

direction of the wave propagation, and is thus valid for this low/zero-speed problem. If that was not

the case the frequency component should be switched to the corresponding frequency of encounter,

given by equation (2.18).

The force RAOs are complex variables, and given by:

F dofwave1(ωk, βi) =

∣∣∣∣∣
τdofwave1(ωk, βi)

ρwgAk

∣∣∣∣∣ e
j∠τdofwave1(ωk,βi), (2.82)
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for wave directions βi, and dof ∈ {1, 2, 3, 4, 5, 6}. ∠τdofwave1(ωk, βi) denotes the angle of the phase of

the transfer function at the given frequency and wave direction. If we denote the imaginary and real

part of the transfer function: Imwave1{dof}(k, i) and Rewave1{dof}(k, i), we can find the amplitude

and phase of the transfer function according to:

∣∣∣F dofwave1(ωk, βi)
∣∣∣ =

√
Imwave1{dof}(k, i)2 +Rewave1{dof}(k, i)2, (2.83a)

∠F dofwave1(ωk, βi) = atan2(Imwave1{dof}(k, i), Rewave1{dof}(k, i)), (2.83b)

where atan2 denotes a function that computes the arctangent of two arguments. From this, we can

express the wave-induced forces for all 6 DOF in the time-domain, denoted by the vector τwave1,

from the following expression:

τdofwave1 =
N∑

k=1

ρwg
∣∣∣F dofwave1(ωk, βi)

∣∣∣Ak cos (ωkt+ ∠F dofwave1(ωk, βi) + εk). (2.84)

Implementation of fluid memory effects in the vessel state-space model was beyond the scope of the

thesis and has not been done. Therefore, we will limit our simulations to regular waves, and only

one wave component is necessary in the sea surface realisation of equation (2.81)

2.4.2 Current Loads

The current loads will be simulated in the simplest possible form, 2 dimensional-, non-rotational

flows. They will be implemented in the model through the damping matrix, and assumed sufficiently

slow so that the linear model still show some validity. We denote the current velocity Vc and the

current direction βc. Thus the components of the current in {n} are given as

vnc =




Vc cosβc

Vc sinβc

0


 . (2.85)

The velocity of the curren, Vc, will be modeled as the sum of a constant term and a fluctuating

term modeled as a random, gaussian walk, thus Vc is given according to:

Vc = Vcc + Vgc, (2.86)
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where

V̇gc = −Vgc + wc, (2.87)

where wc is gaussian white noise. The velocities in {n}are transformed to {b} by the relation

ubc = R3d(ψ)T vnc . (2.88)

Since we assume the rotational components of the current to be negligible and the velocity to be

without large variations, it suffices to include the relative velocity in the damping term of the LF-

vessel model in order to implement the current effects in the simulation model. The relative velocity

is given by

νr = ν − ubc. (2.89)

The state space model given by equation (2.65) and, in particular, the damping term from equation

(2.67) already accounts for relative velocity effects, thus this is easily implemented in the model.

2.4.3 Wind Loads

The wind loads on the vessel will be modeled in a similar manner as in (Fossen, 2011). For vessels

that are symmetric with respect to the xbzb-plane, the wind loads can be written as:

Xwind = −1

2
ρaV

2
rwcx cos (γrw)AFw,

Ywind =
1

2
ρaV

2
rwcy sin (γrw)ALw,

Nwind =
1

2
ρaV

2
rwcn sin (γrw)ALwLoa.

(2.90)

AFw and ALw are the frontal and lateral projected areas, respectively, and Vrw is the effective

wind speed. cx, cy and cn are the wind load coefficients, which should be carefully determined for a

quantitative analysis. For the qualitative station keeping analysis in this thesis, however, we will set

these coefficients equal to the middle values of the rough intervals given by (Fossen, 2011), namely

cx ∈ {0.5, 0.9}, cu ∈ {0.7, 0.95} and cn ∈ {0.05, 0.2}. γrw is the winds angle of attack, given by

γrw = −atan2(vrw, urw), (2.91)
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and vrw and urw are the relative x- and y-velocities are given by

vrw = v − vw = v − Vw cos (βw − ψ),

urw = u− uw = u− Vw sin (βw − ψ),
(2.92)

where ψ is defined in table 2.1 and βw is the wind direction, defined as the way the wind is heading

(not where it is coming from which might be common in other fields). As for the current loads,

the windspeed Vw will, in the simulations, be given as a constant value but also as the sum of a

constant velocity and a fluctuating component modeled by a gaussian random walk according to:

Vw = Vcw + Vgw, (2.93)

where

V̇gw = −Vgw + ww, (2.94)

where w is gaussian white noise. The effective wind velocity, Vrw, is given by

Vrw =
√
u2
rw + v2

rw. (2.95)

2.5 Conditional Parametric Sensitivity

Due to the nature of SESs, there are several factors that influence the parameters of the vessel

dynamics. The fact that the equilibrium cushion pressure can be chosen within a wide inter-

val and the corresponding variations in equilibrium draft implies that hydrodynamic-, hydrostatic

and aerodynamic coefficients are highly sensitive to the operational modes. To obtain reasonable

simulation results, it is important to be aware of these differences. If the draft is increased, the

hydrodynamic and hydrostatic loads will be larger, while the wind loads will be reduced due to the

reduced above-water surface area. Similarly will a reduction of the draft increase the wind loads,

with a corresponding reduction in the hydrostatic and hydrodynamic loads induced on the vessel.

The variations in pressure will also determine the behavior and relative influence of the cushion

dynamics. At maximum pressure, more than 80% of the displacement will be lifted by the cushion

pressure which thus, to a large degree, will dominate the vertical behavior of the plant, while the

vertical dynamics will rely solely on hydrodynamic- and hydrostatic effects when the fans are turned

off. These variations will strongly affect the added mass- and damping terms, and it is therefore
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important to specify the actual conditions used in simulations and other quantitative studies.

Further, we would like to pay some attention to the loss factor related to the airflow out of the air

cushion, namely cn. This is a recurring factor in the literature regarding the vertical dynamics of

SESs, and is usually set to a fixed value equal to 0.61, as in (Sørensen and Egeland, 1995), (Kaplan

et al., 1981) and (Faltinsen, 2005), and believed to be conservative. In the derivations earlier in

this chapter we wanted to do a thorough investigation of the dynamic equations of the cushion

pressure, and started out with Reynolds Transport Theorem and Euler’s equations to derive an

accurate nonlinear model of the cushion dynamics to be used in the process plant. Doing so, we

investigated what we could find of relevant literature regarding the subject and, rather than a value

of cn = 0.61, we found indications that this factor, in reality, is a lot closer to unity. This makes the

value of 0.61 indeed conservative, but perhaps unnecessarily conservative, at least if the motivation

is to investigate the thrust delivering- and heave compensating capabilities of the cushion dynamics.

Liepmann (1961) suggests that a value of cn equal to 0.85 would be more accurate, while (Kurita,

1988) suggests an even higher value of 0.98 for round edged orificies or short tubes in high Reynolds

numbers. cn = 0.61 might be a suitable level for sharp edged orifices, but such geometry can easily

be omitted in the design of a SES. There will probably be larger losses than the one suggested by

Kurita, mostly due to the Vent Valve Louvers, however experiences from the full-scale tuning of

the Wave Craft motion damping system indicated that they will still be significantly smaller than

the losses implied by cn = 0.61. Auestad et al. (2015) concludes that the value of cn = 0.61, used

in the simulations, was too small. Full scale testing gave significantly better results than what was

expected by simulations and model tests, mostly since the increased outflow meant that the pressure

could be decreased quicker. In real life, a lower loss coefficient would increase the dynamic pressure

operational range, and should therefore also increase the vertical motion damping capabilities. It

would also mean that we could expect significantly more thrust from a given directional leakage

area at a given pressure, according to equation (2.53).
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Chapter 3

Control System Design

3.1 Control Objective

This thesis concerns two main control objectives. The first objective is to use the Dynamical

Positioning (DP) algorithm in combination with the different thrusters and actuators in the vessel

so that station keeping can be performed. The second objective is to utilize the cushion pressure and

the potential airflows related to it in order to, as far as possible, minimize the first order motions.

This control objective is denoted the Wave Frequency (WF) motion damping. The problem is

illustrated by the flow chart in figure 3.1.

Figure 3.1: Generic marine control problem
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The block called ’Process plant’ contains the equations derived in chapter 2, and will be used to

verify and test the behavior of the DP- and WF motion damping controller, as well as the thrust

allocation and thrust control. Note that the vertical part of the WF motion damping controller

will be similar, but not identical to the BCS control law presented in (Auestad et al., 2015), as it

will feature cushion pressure feedback and different computation of the feedback gains. The signal

processing block could typically be used to avoid sensor drifting and to remove noise, by applying a

cascaded high- and low pass filter. The observer block usually contains a Kalman algorithm or some

nonlinear passive observer, (Strand and Fossen, 1999). These are used to reconstruct unmeasured

states and/or perform dead-reckoning when or if a sensor measurement drops out. However, these

two blocks are beyond the scope of this thesis and will not be discussed any further. This chapter

will concern the remaining three blocks, i.e. the DP/WF motion damping, thrust allocation and

thrust control, i.e. the process of going from sufficient information about the states of the plant

to an actual output from each individual actuator, as illustrated by figure 3.2. We will not discuss

local servo feedback loops, but assume these to be perfect.

Figure 3.2: Specific control problem

The control laws will be given in Section 3.3 and 3.4, the control allocation problem is described in

section 3.5, while the actuator/thrust control is solved in the two last sections of the chapter, i.e.,

section 3.6 and 3.7. If we summarize the control objective, we wish to obtain full control over the

low frequency (LF) horizontal motions, i.e. surge, sway and yaw, which makes up the DP problem.

For the WF problem, we wish to damp the motions in heave and sway as far as possible. Further

development of the system could probably perform effective damping of the WF trajectories in pitch
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and yaw as well, however we will limit the scope of the work to only contain the two translational

trajectories for now. The system is defined in all 6 DOF, thus the size of the configuration space,

n, equals 6. The order of the system equals 13 since a number of two differential equations are

needed to describe the motions in each DOF and the fact that we regard the pressure trajectory

as an individual state. We look at the WF and LF as two individual problems. The focus on the

LF problem will be limited to show the capacity and potential of such a system on a SES, and

the focus here will thus not be on any form for optimal control etc. We denote the size of the LF

working space, the space in where the control objective is defined, mlf . We denote the number of

independently controlled actuators relevant for this problem rlf=5, by regarding the lateral and

longitudinal components of the water jets as individual actuators, and notice that the system is

over-actuated in the horizontal plane. I.e., rlf > mlf . Strictly speaking, this implies a certain

level of redundancy in the system, as full actuation would be achieved even if one of the water

jets or the vent valves/lift fans were to fail. For the WF problem, we can reduce the size of the

configuration space to a working space of size mwf=3, which includes the cushion pressure state. We

have two inputs, leakage area and the vent valve thrust, which control the heave and sway motions,

respectively, thus rwf = 2. We must remember that, dependent on the longitudinal position of the

vent valves relative to the COG, the Vent Valve thrust will induce yaw moments if this distance is

different from zero, however this motion is not subject to feedback, and will not be controlled for

now. For the existing Wave Craft, the vent valves are located at midships, thus the yaw moment

induced will be very small if the controller was to be applied on that system. The DP section

assumes the vent valves to be located in the bow. This discrepancy in assumptions is okay due

to the fact that horizontal WF motion damping will never be applied simultaneously with the DP

controller, and we can therefore simulate for the conceptual effect of both controllers individually.

For the WF problem we have rwf ≤ mwf and, the problem is therefore under actuated. This implies

that full control over all DOFs will be very hard to achieve, however damping of the trajectories

is still possible. There is a strong coupling between the vent valve thrust and the cushion pressure,

which complicates the problem significantly, and makes perfect control nearly impossible. This will

be discussed in section 3.3, and the simulation chapter will show that the WF controller performs

large degrees of motion damping on the system. We denote the commanded force vector for the LF
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problem (see table 2.1):

τpid =




Xlf

Ylf

Nlf


 ∈ R3. (3.1)

For the WF problem, the commanded control signal will consist of a commanded total leakage area

from the vent valves and a lateral thrust in newtons from the vent valves, which in turn will be

”translated” to a lateral leakage area, by equation (3.70). We denote this WF control vector ulc,

where

ulc =



∑

∆Ali

uvvc


 , (3.2)

where
∑

∆Ali from now on will be replaced by ∆Alvert, for better compliance with common conven-

tions of notation. We choose the last input as the commanded force and not a lateral leakage area

because the leakage area depends on the pressure, which would have made the control input matrix

time- and state dependent, and severely complicated the linearization. Instead the transformation

will be regarded as a thrust control problem, and solved later.

3.2 Control Plant Model

The control problem in the thesis is dual, i.e. it can be divided into the dynamic positioning problem

and the WF motion compensation problem. The DP controller will feature a simple PID controller

to demonstrate the DP capabilities of the vessel. The WF motion damping algorithm, however,

will feature a controller derived by linear quadratic minimisation methods, thus the WF-dynamics

must be on linear form. The WF vessel dynamics were derived in a linear manner, and need no

further alterations. The equations describing the dynamics of the uniform pressure, however, are of

a nonlinear nature and must be linearized in order to perform the LQR synthesis.

3.2.1 Linearization

The common convention for linearizing non-linear systems, is to use the second term in the Taylor

expansion, and, due to equilibrium arguments, neglect the constant term. The generic system of

investigation will be given by

ẋ = f(x, u, t). (3.3)
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The multivariate Taylor approximation of the k times differentiable function f(x,u,t) of n-coupled

differential equations, at the operating point a, is given by:

f(x) =
∑

|a|≤k

Daf(a)

a!
(x− a)a +

∑

|β=k+1

Rβ(x)(x− a)β, (3.4)

where the last term is the remainder, and should, together with all terms of second or higher order,

be neglected in the approximation. Daf is defined as

Daf =
∂|a|f

∂xa11 . . . ∂xann
. (3.5)

This approach yields an undisturbed linearized system on the form

ẋ = Ax+Bu,

y = cx.
(3.6)

Where A and B at the operating point xp, are given as in (Balchen et al., 1999):

A(t)|xp =




∂f1(x,u,t)
∂x1

. . . ∂fn(x,u,t)
∂xn

...
. . .

...

∂fn(x,u,t)
∂x1

. . . ∂fn(x,u,t)
∂xn


 , and B(t)|xp =




∂f1(x,u,t)
∂u
...

∂fn(x,u,t)
∂u


 . (3.7)

The time dependency can obviously be neglected for time-independent systems. The DOFs that are

of concern for the WF motion damping controller are sway and heave, where the vertical trajectories,

in turn, are closely related to the uniform pressure, which therefore must be included.

3.2.2 Linear Uniform Pressure Equation - WF motion

The uniform pressure equation is given by

V (pa + p0 + µ(t)p0)
1
γ
−1

γ(pap0 + 1)(pa + p0)
1
γ
−1

µ̇(t)−
∑

Qi + . . .

· · ·+ cn(A0 +Afp(ηs) +Aap(ηs) + ∆Alvert)

√
2(p0 + µ(t)p0)

ρa
=

−xcpAcη̇5(t)+Acη̇3(t) + b

∫ L
2

−L
2

ξ̇(x, t)dx.

(3.8)
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We notice the control input ∆Alvert and the environmental disturbance in the last term on the right

hand side of the equation. By Taylor expanding the nonlinear terms around the operating point

µ = 0, we obtain the linearized uniform pressure equation given as

V0

γ(pap0 + 1)
µ̇−Q0−µ

∂Q

∂P
|µ=0 +Qout|µ=0 + p0µ

∂Qout
∂P

|µ=0 + . . .

. . .+ cn
∑

∆Ai

√
2(p0 + µp0)

ρa
= −xcpAcη̇5 +Acη̇3,

(3.9)

where Q0 is the flow from the lift fans at equilibrium and ∂Q
∂P |µ=0 is the slope of the inverse fan

characteristics at equilibrium. The linearized flow of air out of the volume is given as

Qlinout(t) = Qout|µ=0 + µ(t)
∂Qout
∂P

|µ=0, (3.10)

where Qout|µ=0 is given by:

Qout|µ=0 = cn(A0 +Afp(ηs) +Aap(ηs))

√
2p0

ρa
. (3.11)

Thus, ∂Qout
∂P |µ=0 equals

∂Qout
∂P

|µ=0 =
cn
2

(A0 +Afp(ηs) +Aap(ηs))

√
2p0

ρa
. (3.12)

At equilibrium
∑

∆A and p0µ
∂Q
∂P equals zero. It is therefore obvious that Q0 and Qout|µ=0 should

cancel each other out to maintain the equilibrium condition µ̇ = 0, (Faltinsen, 2005).

Qout = Q0(1 +
µ

2
). (3.13)

Summing up equations (3.9), (3.10), (3.12) and (3.13) yields the following linearized uniform pressure

equation

K lin
1 µ̇+K lin

3 µ+K lin
2

∑
∆Ai = −xcpAcη̇s5 +Acη̇3, (3.14)

where K lin
1 , K lin

2 and K lin
3 are given by

K lin
1 =

V0

γ(pap0 + 1)
, K lin

2 = cn

√
2p0

ρa
,

K lin
3 =

1

2
(Q0 − 2P0

∂Q

∂P
|µ=0).

(3.15)
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This linear model is similar to the model used in (Auestad et al., 2015), (Sørensen and Egeland,

1995) and (Faltinsen, 2005).

By including the controlled force from the vent valve louvers, the above derivations can be summed

up to the linear control plant model given by

η̇lin = Alinηlin +Blinu
l
c, (3.16)

where

ηlin =
[
η2 η3 η̇2 η̇3 µ

]T
, ulc =

[
∆Alvert uvvc

]T

Alin =




02×2 I2×2 02×1

−M−1G2×2 −M−1D(ω)2×2 L2×1

K1×5


 , Blin =




0 0

0 0

0 1

0 lvvx

−K2
K1

0




,

L =
[
−Acpp0 xcpAcp0

]T
and

K =
[
0 0 Ac

K1

−xcpAc
K1

−K3
K1

]
.

(3.17)

M is the total mass matrix, D is the frequency dependent linear damping matrix and G is the matrix

containing the restoring coefficients, the latter three terms are thoroughly explained in section 2.3.2.

Note also that Alin ∈ Rnlin×nlin and Blin ∈ Rnlin×rlin , where nlin = 5 and rlin = 2.

3.3 First Order Wave Load Compensation

This section will derive the WF control law, i.e., the mapping from the states of the system to

the control output vector. Later, in Section 3.6, we will show how to go from the commanded

signals from the control law to actual actuator commands, which will be regarded as a type of

thrust/actuator control, and is, due to saturations and control inflictions, not necessarily quite

trivial. Conventional dynamic positioning systems are mostly concerned about counteraction of the

slowly varying forces. Due to some very special features, however, SESs are, to a certain degree,

also able to counteract the first order wave induced motions. The vast amount of air constantly

delivered by the lift fans and the corresponding pressure reservoir provides the system with a

significant amount of potential energy, which due to the fast dynamics of their actuators, the vent

valve louvers, can be relased and redirected in the manner of one tenth of a second. This chapter
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will discuss how to utilize these features to, as far as possible, minimize the vessel WF motions.

The WF motion damping will be done solely by the means of the variable leakage areas of the vent

valves. As explained earlier, by commanding lateral differences in these leakage areas, significant

lateral thrust can be achieved in addition to the pressure variations which influences the vertical

state trajectories. Since there are a lot of different terms related to these leakage areas, the most

important ones will be summarized here, in table 3.1, and later classified.

Definition Notation

Actual, total leakage area Al = Alport +Alsb
Actual, lateral leakage area ∆Al = Alport −Alsb
Dynamic lateral leakage area from
sway motion damping controller

∆Allat

Commanded dynamic leakage area
of all vent valves i=1,2,3, from heave
controller

∑
∆Ali = ∆Alvert (the latter will be

used in the following)

Bias (equilibrium) leakage area A0

Commanded total leakage area Alc(t) = A0 + ∆Alvert
Commanded thrust level from sway
motion damping controller

uvvc

Lateral thrust from a given pressure
and lateral leakage

uvvy = −2n · cn · ρc∆Allat
pu(t)
ρa

Table 3.1: Summary of important notation regarding the leakage areas

The output from the WF controller will be the vector ulc, given by:

ulc =


∆Alvert

uvvc


 . (3.18)

The reason why we chose to use uvvc instead of the corresponding lateral leakage area, ∆Allat, as

the last input in ulc is the state dependency of the relation between them. The relation between

the lateral leakage area, ∆Allat, and the resulting net thrust, uvvy , depends on one of the system

states, µ(t), thus the subsequent derivations would have been made unnecessarily complicated by

this notation. Instead we regard the process of going from a demand for lateral thrust, uvvc , to the

corresponding lateral leakage, ∆Allat, as a thrust control problem, which will be discussed in section

3.6 where we also add a saturation handler. We will use a feedback controller as the main control
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scheme for this problem, thus we can assume the controller to be given on the following form:

ulc =


∆Alvert

uvvc


 = −


k11 k12 k13 k14 k15 k16 k17

k21 k22 k23 k24 k25 k26 k27




︸ ︷︷ ︸
k




η2

η̇2

η̈2

η3

η̇3

η̈3

µ




︸ ︷︷ ︸
ηfeedback

, (3.19)

where k, for the scope of this thesis, is a constant coefficient matrix containing the feedback gains.

ηfeedback is simply a vector featuring all the terms we have available for feedback in the plant, not

all of them will be used. We will assume that the trajectories of all states are available at any given

time, however we will not discuss any further the algorithms necessary to obtain this. We also

assume the horizontal motion damping to base its control output solely on the horizontal states,

while the vertical motion damping will utilize pressure feedback in addition to the velocity and

acceleration in heave. From the above, we set k11, k12, k13, k24, k25, k26 and k27=0. Neither will we

be using the positions for feedback in the WF-problem, thus we can also set k14 = k21 = 0. There are

multiple sources of motivation for the use of state derivative feedback. First of all, by integration

and proper filtering of accelerometer outputs, it is possible to obtain decent information about the

WF accelerations and velocities. It is, however, quite difficult to obtain accurate information about

the WF displacements, especially with the sensors that can be assumed available on a SES today.

WF position estimation could hypothetically be performed by some optical measurement system,

but these signals will be assumed unavailable for now. It is the WF forces we want to counteract,

and since the position trajectory has a 180◦ phase relative to these, even if accurate information

about the positions was available, it would still be a rather inefficient source of feedback given the

limited available actuator capacity. We assume that the state trajectories, for regular waves, can
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be given as

η2 = |η2| sin (ωwt+ ε2),

η̇2 = ωw |η2| sin (ωwt+ ε̇2),

η̈2 = ω2
w |η2| sin (ωwt+ ε̈2),

η3 = |η3| sin (ωwt+ ε3),

η̇3 = ωw |η3| sin (ωwt+ ε̇3),

η̈3 = ω2
w |η3| sin (ωwt+ ε̈3),

µ = |µ|sin(ωwt+ εµ),

(3.20)

where |η2| denotes the amplitude of the sway motion, |η3| is the amplitude of the heave motions ωw

is the angular wave frequency and ε2 denotes the relative phase of the heave displacement, etc. We

note that ε̇2=ε2 + 90◦. We will base the derivation of the feedback gains on an LQR-like synthesis,

however due to the fact that the phases between the various sources of feedback spans a large set

and the fact that only one actuator is used to control the trajectories of the entire plant, care must

be given in the controller tuning to ensure that the level of infliction between the different control

desires is minimized. The next section, 3.3.1, will show how to compute the optimal feedback gains

for an arbitrary, quadratic, optimization criterion, while section 3.3.2 will explain the method used

by us to ensure that the relative phase between the control signals contributes in minimizing the

level of mutual infliction between them.

3.3.1 Optimal State Derivative Feedback Gains

The WF motion compensation control scheme will use a Linear Quadratic optimization algorithm

to compute the feedback gains of the controller. Instead of using control action proportional to the

state feedback, the WF motion damping controller used in this thesis will feature a state-derivative-

feedback controller, derived according to a method proposed by (Abdelaziz and Valášek, 2005). The

system subject to control is the Linear Time Invariant (LTI) system given by equation (3.16), i.e.

η̇lin(t) = Alinηlin(t) +Blinu
l
c(t), (3.21)

where ηlin(t) ∈ R5 is the state vector and ulc(t) ∈ R2 is the controlled input vector. The two funda-

mental assumptions for this system in order to derive the state-derivative feedback gains is that it

is stabilizable and that the matrix Alin is of full rank, i.e. rank(Alin)=nlin=5, which is infact true.
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The first assumption, on stabilizability is also valid as will be showed later by the strictly negative

eigenvalues of the closed loop system. A full proof of stability for the vertical SES dynamics when

subject to state feedback is given by (Auestad et al., 2014).

Linear Quadratic Regulation, with both state- and state-derivative feedback, is a subset of optimal

control, and it is based on the idea of minimizing some criterion, or cost function, here denoted

JLQR. This is, in its most general form, given by

JLQR =

∫ ∞

0
η̇lin(t)′Qη̇lin(t) + ulc(t)

′Rulc(t)dt, (3.22)

where Q is a nlin×nlin positive semidefinite state-derivative weighting matrix and R is an mlin×mlin

positive definite symmetric control weighting matrix. R determines how strongly the controlled

input is to be weighted in the minimization. Large value of the inputs in R means that the most

effective way to decrease JLQR is to employ a small input, at the expense of a large controlled

output. In contrast, a relatively small value of R means that JLQR is most effectively decreased by

allowing a large control input, with a corresponding small controlled output. The solution to the

Linear Quadratic problem is a gain matrix klqr, which yields the controller

ulc = −klqrη̇lin. (3.23)

klqr ∈ Rrlin×nlin is the control input gain that minimizes the quadratic cost criterion. Substituting

(3.23) into (3.22) yields the updated cost function given by

JLQR =

∫ ∞

0
(η̇lin(Q+ kTlqrRklqr)η̇lin)dt. (3.24)

We then obtain the closed-loop dynamics given by

η̇lin(t) = Acηlin(t), Ac = (In +Blinklqr)
−1Alin. (3.25)

In ∈ Rnlin×nlin is the identity matrix. Rearranging the terms in equation (3.25) yields

ηlin = A−1
c η̇lin, A−1

c = A−1
lin(In +Blinklqr). (3.26)
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This requires Alin to be invertible, which is strictly speaking not the case due to the lack of restoring

forces in sway. We omitted this by slightly altering the dynamics to ensure that Alin was invertible.

We did this by adding a negligible small restoring coefficient in sway, with a relative order of

magnitude when compared to the restoring coefficient in heave of 10−5, thus the dynamics should

not have been severely affected. We note that the final result yielded a very strongly performing

controller. Now we assume that there exists some constant positive-semidefinite symmetric matrix

P, such that

η̇lin(Q+ kTlqrRklqr)η̇lin = − ∂

∂t
(ηTlinPηlin) = −η̇TlinPηlin − ηTlinP η̇lin. (3.27)

By inserting (3.27) into the original cost criterion, this can be evaluated as

JLQR =

∫ ∞

0
(η̇lin(Q+ kTlqrRklqr)η̇lin)dt = −ηTlinPηlin

∣∣∞
0

=

= −ηTlin(∞)Pηlin(∞) + ηTlin(0)Pηlin(0).

(3.28)

By the assumption of closed-loop stability, the first term on the right hand side of the last equality

will vanish, thus the cost criterion is given by the initial condition and the matrix P, and converges

to

JLQR = ηTlin(0)Pηlin(0). (3.29)

By equation (3.26), we rewrite equation (3.27) such that,

η̇Tlin(Q+ ktlqrRklqr)η̇
T
lin = −η̇Tlin(PA−1

c +A−1T

c P )η̇lin (3.30)

which yields the following relation

PA−1
c +A−1T

c P + kTlqrRklqr +Q = 0. (3.31)

This is recognized as the Lyapunov equation. By Lyapunovs method, which is thoroughly explained

e.g. in (Hespanha, 2009), (3.31) is solvable with respect to P if and only if the closed loop system

is stable, thus P should be found. By inserting (3.26) into (3.31), and noting that since R is a
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positive-definite symmetric matrix it can be written R=T TT , we rewrite equation (3.31) such that

PA−1
lin +A−1T

lin P + (Tklqr + T−1TBT
linA

−1T

lin P )T (Tklqr + T−1TBT
linA

−1T

lin P )− . . .

. . . PA−1
linBlinR

−1BTA−1T

lin P +Q = 0.
(3.32)

From this we note that the LQR criterion is minimized with respect to K by the minimization of

η̇Tlin(Tklqr + T−1TBTA−1T

lin P )T (Tklqr + T−1TBTA−1T

lin P )η̇lin, (3.33)

thus we obtain the optimal gain matrix klqr:

klqr = −R−1BTA−1T

lin P ∈ R2×5, (3.34)

which yields the following control law

ulc(t) = R−1BTA−1T

lin P η̇lin(t) ∈ R2×1. (3.35)

P is found as the solution to the algebraic Riccati equation (ARE), which is given by

PA−1
lin +A−1T

lin P − PA−1
linBlinR

−1BTA−1T

lin P +Q = 0. (3.36)

The conditions for existence of a symmetric matrix P, which satisfies the ARE are, in short, given

by the following statements:

1. The pair (Alin, Blin) is stabilizable

2. The pair (Alin, Q) is detectable

3. Ac is a stability matrix, i.e. for each eigenvalue λi of Ac, then Re[λi]<0

These conditions are further explained in (Hespanha, 2009). For a more thorough investigation of

the derivation of the optimal state derivative feedback gain, the reader is referred to (Abdelaziz and

Valášek, 2005).

For all reasonable parameter values used in the model, the above conditions hold. The stabilizability

of the pair (Alin, Blin) is implied by the exponential stability of the closed-loop dynamics given by

Ac, which in turn is proofed by the closed loop eigenvalues and the following equivalent statements

(Hespanha, 2009).

67



1. The system Ac is exponentially stable.

2. All the eigenvalues of Ac have strictly negative real parts

And the vector of the eigenvalues λc corresponding to the closed loop dynamics Ac, given below for

the parameters given in Appendix B.

λc =




−0.0000001255 + 0.0i

−0.000045 + 0.0i

−0.0000085 + 0.0i

−0.008344 + 2.39i

−0.0083447− 2.39i




(3.37)

We note that the eigenvalues have, even though some of them being close to the imaginary axis,

strictly negative real values. The detectability of the system is shown by the Popov-Belevitch-

Hautus [PBH] test for detectability which states:

PBH test for detectability 1. A continuous-time LTI system is detectable if and only if

rank


Alin − λI

Q


 = nlin, ∀λ : Re[λ] ≥ 0 (3.38)

which does hold for our linearized system, thus detectability is shown, and we know that the solution

P to the ARE exists, thus the optimal state derivative feedback gains can be computed, and will

be used for the WF motion damping. Note that these derivations are valid for linear systems only,

and the result will only be applied for the small perturbations occurring within the range of the

WF motions, where we assume the nonlinearities of the process plant to be somewhat restricted.

3.3.2 Control Signal Phase Shift by Proper Feedback Gains

The preceding section provides us with a set of feedback gains, optimal with respect to the different

weighting matrices used, i.e. Q and R. However, due to the nature of this plant we need a way in

determining what weighting matrices to use. This plant exhibit some quite unusual actuator prop-

erties, which were briefly explained in the beginning of section 3.3. Both the available lateral thrust

needed for sway motion damping and the vertical forces used for control of the heave trajectories
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depends on one of the system states, i.e. the pressure, normalized by µ(t). The only controlled

input for the pressure state is the total leakage area of the vent valves, Al, while the lateral thrust

is controlled by the means of the lateral difference in leakage area, i.e. ∆Allat, thus they are, strictly

speaking, controlled by the exact same set of actuators. If we look at the two WF control problems

individually, the conflict of interest which will be described in the following is irrelevant, however

since we also will investigate the potential in performing simultaneous motion damping of both

heave and sway motions, a problem arise. The desires for total- and lateral leakage areas will, if

not proper precaution is taken, strongly inflict on each other. Maximum total leakage, Almax, is ob-

tained by fully opening both vent valves, while maximum lateral leakage, A
l
max
2 , is achieved by fully

opening one vent valve, while fully closing the other one. Both of these desires can obviously not be

achieved at the same time, and if the system tries to achieve them simultaneously, the performance

of one or both of the control objectives will be severely harmed. Therefore, strong precaution must

be taken in the design of the system, so that proper weighting of the various state trajectories in the

feedback gains ensures the two control signals to be in such a phase relative to each other that the

conflict mentioned above is, as far as possible, avoided. To ensure that the phase of these control

signals is within the requirements, we derive a simple method to determine the relative weighting of

the lateral state trajectories, necessary in order to force the resulting lateral control signal to a 90◦

phase relative to the vertical motion damping control signal. The reason why we need 90◦ phase

becomes apparent by studying figure 3.3. In that way, the maximum absolute value of one signal

will coincide with the minimum absolute value of the other signal (since both ∆Alvert and ∆Allat

oscillates somewhat sinusoidal around 0), and the level of infliction is reduced.

We will assume all state trajectories, phases and amplitudes, to be known, and derive a set of

”phase-optimal” feedback gains which will be used for iteration of the state weighting matrix, Q,

in order to obtain the properties described above. By the gains from equation (3.19), we can find

the relative phase, εshift, due to superposition of two sinusoidal components of amplitude k22 |η̇2|
and k23 |η̈2|, and phase ε̇2 and ε̈2, given by

εshift = arctan
k22 |η̇2| sin ε̇2 + k23 |η̈2| sin ε̈2
k22 |η̇2| cos ε̇2 + k23 |η̈2| cos ε̈2

. (3.39)

We can also relate the feedback gains to the amplitude of the resulting control signal. The level we

choose for the resulting control signal amplitude should relate the known motion amplitudes with
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the maximum obtainable thrust levels, in a manner so that saturation is avoided. We must also

remember that as the controller is applied, the motion amplitudes should be reduced, thus the size

of the feedback gains can be increased, when compared to the undamped motion trajectories, while

still keeping the control signal within the saturation limits. Megretski (1996) presents interesting

work regarding motion damping of strongly saturated systems by a gain scheduling like scheme,

however their results will not be applied for the work in this thesis. We relate the state trajectory

amplitudes to the control amplitude by:

|uvvc | =
√
A2
amp +B2

amp, (3.40)

where

Bamp = [k22 |η̇2| cos ε̇2 + k23 |η̈2| cos ε̈2] and

Aamp = [k22 |η̇2| sin ε̇2 + k23 |η̈2| sin ε̈2].
(3.41)

From the above we now possess two equations relating the phase and amplitude of the state trajec-

tories with the phase and amplitude of the resulting control signal. It is the phase of this control

signal we want to ensure to be of the optimal value. By solving (3.39) and (3.40) for the two

respective feedback gains, k21 and k22, we obtain the ”phase-optimal” velocity feedback gain given

implicitly by:

A2
amp +B2

amp = k2
22

∣∣η̇2
2

∣∣ (sin2 ε̇2 + cos2 ε̇2)︸ ︷︷ ︸
=1

+k2
23

∣∣η̈2
2

∣∣ (sin2 ε̈2 + cos2 η̈2)︸ ︷︷ ︸
=1

+ . . .

· · ·+ k22 |η̇2| k23 |η̈2| (cos η̇2 cos ε̈2 + sin ε̇2 sin η̈2)︸ ︷︷ ︸
= cos (ε̇2 − ε̈2) = 0

⇓

k22 =

√
|uvvc |2 − k2

23 |η̈2|2

|η̇2|2
.

(3.42)
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The ”phase optimal” acceleration feedback gain is in turn found by inserting the expression from

(3.42) into (3.39), and solving for k23.

tan (εshift) =
k22 |η̇2| sin ε̇2 + k23 |η̈2| sin ε̈2
k22 |η̇2| cos ε̇2 + k23 |η̈2| cos ε̈2

=

√
|uvvc |2 − k2

23 |η̈2|2 sin ε̇2 + k23 |η̈2| sin ε̈2√
|uvvc |2 − k2

23 |η̈2|2 cos ε̇2 + k23 |η̈2| cos ε̈2

⇓

k23 = sign(εshift)

∣∣ulc
∣∣

|η̈2|
√(

1 +
[
− cos ε̈2 tan εshift+sin ε̈2
cos ε̇2 tan εshift−sin ε̇2

]2
) .

(3.43)

The process is now explained; By investigating the phases between the two WF control signals,

∆Alvert and uvvc , for some arbitrary state weighting matrix, Q, we can find a desired phase, εshift of

uvvc necessary in order for the relative phase between ∆Alvert and uvvc , to be ±90◦. The derivations

are only valid for a desired phase of −90◦ ≤ εshift ≤ 90◦, thus the signs above should by chosen

in order fulfill that and is not otherwise important as it is, for the sake of controller performance,

irrelevant in which direction the shift occurs. The desired shift is found by defining a phase scale,

relative to the phases of the lateral motion trajectories where ε2 = −90◦, ε̇2 = 0◦ and ε̈2 = 90◦,

and investigating the phase of the two control signals relative to this scale. This should reveal the

desired phase of the final lateral control signal in order to obtain the desired relative phase between

them. For instance, if we see that the phase of ∆Alvert, ∠∆Alvert, equals −30◦, then we would want

the phase of uvvc , ∠uvvc , to be −30◦ + 90◦ = 60◦, thus εshift = 60◦. This value is then set as εshift

in equation (3.43). In general, a positive phase shift would imply a relatively stronger weighting on

the acceleration signal. By using the updated state weighting matrix indicated by relative weighting

of the acceleration and velocity signals, given by the equations above, the phase of the resulting

signal should approach 90◦, perhaps after a few iterations. A perfect match with these valuees is not

necessary, however, the closer we are the smaller the degree of infliction of the two control signals

will be. The computed gains can also be used directly, which, by experiences from the simulations,

yields a strong performing controller. An example of the two control signals obtained by using the

gains computed above is given in figure 3.3 for regular seas of ωw = 0.78 and a generic, 25m SES.
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Figure 3.3: Timeseries of ulc, which illustrates the phase shift

We see that the relative phase between the two signals is a perfect 90◦ offset. Even though the

signal phase is as good as it gets, there will still be inflictions, which cannot be avoided. Due

to the relative low thrust of the vent valves, it must be performing consistently close to the edge

of its capacity to obtain decent motion damping. Therefore there will also be saturations in the

lateral thrust and an infliction in the performance of the vertical motion damping is, unfortunately,

inevitable. Because of this, the gains should be scaled according to the current sea states to avoid

too large saturation levels. Interesting work on automatic sea state-dependent, tuning of controller

gains is done by (Nguyen et al., 2007) who proposes a hybrid, sea state dependent control scheme

where the gains are chosen to comply with the current sea state.

3.4 Dynamic Positioning Control

The horizontal plane DP-controller used for the simulations and concept-proving in this thesis will

be a simple PID-controller, proportional to the low frequency vessel motions. The controller output

is given by the vector τpid, defined in equation (3.1). We define the error en as the difference between

a reference point in {n}, denoted ηd and the actual position η3n, so that

en(t) = R3d(ψ)(η3n(t)− ηd(t)). (3.44)
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The control law is then given by

τpid(t) = −kpen(t)− kdėn(t)− ki
∫ T

0
en(t)dt, (3.45)

where kp ∈ R3×3, kd ∈ R3×3 and ki ∈ R3×3 are the feedback gain matrices of the proportional,

derivative and integral term, respectively. These are chosen to be diagonal matrices and their

different inputs are given in the appendix for the simulations where they are relevant.

3.5 Control Allocation

Control allocation defines the process of going from a demand for directional thrust and/or, in

this case, leakage area of the vent valve louvers, given by the respective controllers, to an actual

commanded level sent to each individual actuator. In a fully actuated and unsaturated system,

i.e. the number of actuators equal the size of the working space, this process is trivial because

the number of possible ways to achieve the desired actuator states equals 1. For an over-actuated

system, such as the LF dynamical positioning problem of this plant, the number of possible solutions

increases the possible ways to solve the problem. As emphasized above, the WF motion control

allocation is also non-trivial as the different control desires potentially can conflict with each other

and saturation is reached quite often. The control allocation of the horizontal- and the vertical plane

will be treated individually. For the DP problem, the commanded thrust levels of each actuator,

expressed by the vector uc, is related to the commanded body fixed force/moment vector τhc through

the relation given by equation (3.46)

τlf =




Xlf

Ylf

Nlf


 = Ttcuc ∈ Rmh , (3.46)

where Ttc∈ Rm×r is the thrust-configuration matrix. Ttc will take the following form:

Ttc =




0 1 0 1 0

1 0 1 0 1

lvvx −lwj,px lwj,py −lwj,sbx −lwj,sby


 , (3.47)
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where lvvx is defined as the longitudinal distance (subscript x) of the vent valves (superscript vv)

from the centre of gravity, lwj,sby denotes the lateral distance (subscript y) of the starboard water jet

(superscript wj, sb). Superscript wj,p denotes port water jet pump. Normally, the actuator thrusts

are given on the form f = Kuc, where uc is the control input depending on the actuator considered

and K is some force coefficient matrix, whose nature depends on the type of thruster. However, such

a linear relationship between actuator control input and resulting force is not as easily achievable

for the pressure dependent thrust from the vent valves, thus this notation is omitted here.

We notice that the rank of Ttc ∈ Rmlf×rlf equals mlf < rlf , thus there are no unique solutions to

the problem, as it is under-determined, i.e. the number of equations, mlf , is less than the number

of variables, rlf . However, according to the Rouch-Capelli theorem, (Schrimpf, 2013), a system of

linear equations with rlf variables has a solution if and only if the rank, i.e. the size of the largest

collection of linearly independent columns or rows, of its coefficient matrix, here: Ttc, is equal to

the rank of its augmented matrix Taug =
[
T
mlf×rlf
tc : τ

rlf
lf

]
∈ Rmlf×(rlf+1).

For this case, we have

rank(Ttc) = rank(Taug) = 3, (3.48)

thus, we can guarantee that a solution exists and that the control allocation problem is solvable if

we neglect saturations and limitations in the actuators, i.e., there will still be maximum levels of

achievable thrust from the respective thrusters. The problem of thrust allocation has been subject

to strong investigation the last years. (Fossen and Johansen, 2006) provides a survey of some of the

different methods used. There are several methods to solve under-determined problems, and it is

often done with respect to some function, which is subject for minimization, which leads us to the

field of optimal thrust allocation. Since there are an infinite number of solutions, the most favorable

one is picked according to some criterions, e.g. a minimization of fuel consumption etc. De Wit

(2009) describes a method of fuel optimal thrust allocation based on Lagrange Multipliers. However,

this method fails to effectively and directly account for the different saturations and limitations

implied by the nature of this (or any) real system, as will be described in section 3.5.2. For this

thesis, we will solve the thrust allocation problem with a method based on quadratic programming,

which is generally described in (Johansen et al., 2004), as this method is highly effective in accounting

for the strong limitations in the magnitude and direction of the thrust from both the water jets and

the vent valves.
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3.5.1 Quadratic Programming

Quadratic programming is a subset of constrained optimization, where the latter concerns all prob-

lems where the aim is to minimize some function, say f for generality, called the objective function

with respect to some equality and inequality constraints. If we let the objective function be quadratic

then the problem is a quadratic program which can be stated on the following form:

min
uc∈Rrh

f(uc) subject to the constraints
Atcuc ≤ btc ∈ Rq

Ttcuc = τhc ∈ RmLF
, (3.49)

where q is the number of inequalities used to define the achievable thrust region of the different

actuators and uc is a vector containing the commanded thrust levels from each thruster, which are

sent to the thrust−control block. Atc and btc is a matrix and a vector, respectively, used to describe

the thrust constraints as will be explained in section 3.5.2. Ttc is the thrust-configuration matrix

defined in section 3.5, τpid is the commanded body-fixed thrust levels from the DP controller and

mlf is the size of the LF-working space. For a quadratic program, the objective function f (x) can

be on the form:

f(uc) = uTc Guc + uTc c. (3.50)

Where G ∈ RrIf×rlf and c ∈ Rrlin are the weighting matrices/arrays of the objective function.

If a linear function would suffice for the objective function, a linear programming solver could be

used, which normally demands less computational power. Dependent on what is the objective of

minimization, f(uc) could be designed in several ways, e.g. to reduce power consumption or to

reduce the use of specific thrusters. For this problem, the use of the vent valves as the source

of thrust would imply less fuel consumption than if the same thrust was provided by the water

jets, as the fans has to run at a fixed RPM anyways to provide the necessary lift. Therefore,

channeling the airflow to either directions does not lead to any extra fuel consumption. For the

water jets, however, the fuel consumption is nearly an affine function of the thrust, with minimum

equal to the zero thrust idle consumption, given that RPM control is used to regulate the thrust

magnitude, as will be thoroughly explained in section 3.7. Therefore, to reduce fuel consumption,

the minimization objective could weight the thrust from the water jets heavily, through the matrix

G, thus forcing the algorithm to reduce the use of these as far as possible. A reasonable starting

point of implementing this is to start out with the matrix G on diagonal form, and weight the

inputs appropriately. All parameters used in the thrust allocation will be given in the Appendix
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and referred to in the simulations where it is appropriate. Since this is a thrust allocation problem,

the solution to the optimization problem will be a row vector uc, where the entries correspond to

the commanded longitudinal and lateral components of the different thrusters, i.e.

uc =




uvvy

uwj,px

uwj,py

uwj,sbx

uwj,sby




. (3.51)

The inputs in this vector are given in newtons. The method to achieve the desired levels of thrust

from the respective thrusters will be investigated in section 3.6 and 3.7. There are numerous

quadratic programming solvers available, based on different algorithms which will not be further

discussed in this thesis. Neither will there be much focus on different minimization objectives in

the following. For this thesis, the problem is solved using the built in quadprog solver in MATLAB.

3.5.2 Thrust Region - Inequality Constraints

The inequality constraints in the optimization problem are implemented because there are strong

saturations in the different thrusters, i.e. the water jets are unable to provide a larger volumetric

water flow than the one defined by the maximum RPM of the diesel engines and the maximum thrust

from the vent valves is limited by the cushion pressure. There are 3 thrusters relevant for the DP

problem, where the two water jets can be decomposed into longitudinal and lateral components. To

ensure that the solutions of the problem do not demand thrust levels which exceeds the capacities,

we implement the restrictions as a set of linear inequalities describing the achievable thrust regions.

For the vent valves, this process is quite trivial as the thrust is one-dimensional and only limited

by the maximum thrust. For the two water jets, however, the thrust region spans 360◦, where the

maximum thrust magnitude is dependent on its azimuth (angular direction). The thrust region of

the vent valves is of a purely unidirectional nature, and will be modeled much similar to conventional

tunnel thrusters. Strictly speaking, as for the traditional set up with one vent valve on each side

of the vessel, the vent valves will act as two individual thrusters. However, if we do not look at

the individual thrust from each single vent valve, but rather consider the net force, we can assume

them to be located at the same longitudinal distance from the COG, and instead regard them as

one unidirectional, thruster. However, there are a couple of important differences, which must be
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remembered. One is the limited thrust capacity. The maximum thrust force is a function of the

pressure inside the cushion and the maximum lateral leakage areas. It is also only for the thrust

allocation the similarities between the vent valves and conventional tunnel thrusters are valid. For

the thrust control, for instance, the approach should be quite dissimilar. Dependent on maximum

available thrust force Tmax, the vent valve thrust region can be illustrated by figure 3.4.
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Figure 3.4: Vent valve thrust region in percents of maximum

The numeric value of the maximum thrust force can be found from equation (2.53).

uvvy (t) = −ncnρc∆Allat(t)
2(p0 + µ(t)p0)

ρa
[Newtons], (3.52)

from section 2.2.5, where the different parameters are defined. If we, as a case-study, assume that

a vessel has a maximum total leakage area of x[m2], then the maximum lateral leakage area, from

equation (3.67), equals x
2 [m2], which, in a matter of total leakage areas, corresponds to a 50% bias

opening. If we assume the equilibrium cushion overpressure to be y[Pa], then the lateral thrust

force can be computed directly according to (3.52). However, as the will be shown in the following,
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the maximum constant vent valve thrust force made available for the thrust allocation will have a

large impact of the heave compensating capacities of the system, dependent on how the two desires

are weighted, and the priorities should be weighted thereafter.

The thrust region of the water jets will be implemented in the thrust allocation algorithm by

describing it with a set of linear inequalities, i.e., on the form Ax ≤ b. As the thrust envelope

of the water jets is nonlinear, due to the rotatable discharge nozzle, it has to be linearized. The

linearization is done by constructing multiple polygons to comprise the entire thrust region. By

defining points around the periphery of the thrust region, which will make up the vertices of the

polygons used to linearize the regions, we can obtain a set of linear implicit inequalities which will

describe the region. Each inequality will describe a region beneath or above some line, running

between two of the vertices. These can be found by starting with a generic expression for a straight

line through two points (x1, y1) and (x2, y2).

(y − y1) =
y2 − y1

x2 − x1
(x− x1) (3.53)

We will use a thrust region much similar to the one illustrated in figure 2.11. By defining vertices

around the periphery of the thrust region, and in a clockwise manner labeling them (x1, y1), (x2, y2)

etc. as illustrated in figure 3.5, we can obtain the linearized region.
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Figure 3.5: Labelling of vertices

To do so, we start out with equation (3.53), and solve it for the two variables, now ux and uy, which

in this case, and here care must be given, corresponds to the y- and x-axis in figure 3.5, respectively.

(y − y1)(x2 − x1) ≤ (x− x1)(y2 − y1) (3.54a)

y(x2 − x1)− x(y2 − y1) ≤ y1(x2 − x1)− x1(y2 − y1) = y1x2 − x1y2 (3.54b)

a1y + a2x ≤ b (3.54c)

a1ux + a2uy ≤ b (3.54d)

Where a1 = x2−x1, a2 = y2−y1 and b = y1x2−x1y2. If we apply the fact that, x = uy and y = ux,

and assume that the N polygon vertices are ordered clockwise, the hyperplanes defining the thrust

region are given by

[ak,1ak,2]


ux
uy


 ≤ bk (3.55)

79



Where

ak,1 = (xk+1 − xk) (3.56a)

ak,2 = (yk+1 − yk) (3.56b)

bk = xk+1yk − yk+1xk (3.56c)

Note that if we want a closed polygon, then (xN , yN ) = (x1, y1). If we apply the above to all

the vertices defined in figure 3.5 we obtain the thrust region for a single water jet defined by the

following set of inequalities 


a1,1 a1,2

a2,1 a2,2

...
...

aN,1 aN,2





ux
uy


 ≤




b1

b2
...

bN




(3.57)

Which defines the region illustrated in figure 3.6, for N=8.
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Figure 3.6: Linearized thrust region

Figure 3.7 illustrates the error obtained by approximating the circle-sector shaped water jet thrust

region for N=8.
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This resolution (number of vertices) should, by far, suffice for our applications, and we notice that

the result will be conservative because the linearized thrust region is smaller than the real one, as

illustrated in figure 3.7. The computational time needed for most of the common Quadratic Pro-

gramming solvers depend on the number of inequality constraints implemented, thus it is favorable

to keep these at a minimum. If we include the limitations of the vent valve thrusters, and look at the

global system with two water jets and the Vent Valve Thruster, equation (3.57) can be augmented

to:



1 0 0 0 0

−1 0 0 0 0

0 a1,1 a1,2 0 0

0 a2,1 a2,2 0 0
...

...
...

...
...

0 0 aN,1 aN,2 0

0 0 0 0a1,1 a1,2

...
...

...
...

...

0 0 0 aN,1 aN,2




︸ ︷︷ ︸
Atc




uvvy

uwj,px

uwj,py

uwj,sbx

uwj,sby




≤




Tmax

Tmax

b1

b2
...

bN

b1

b2
...

bN




︸ ︷︷ ︸
btc

(3.58)

For a quadratic solver to be able to search for and find a solution within a set, that set must be

convex, i.e., the problem is a subset of convex optimization. A convex set is a set of points such
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that, given any two points A, B in that set, the line AB joining them lies entirely within that set.

Intuitively, this means that the set is connected and has no dents in its perimeter. Thus, you can

pass between any two points within the set, without ever leaving it. As we can se, the thrust region

of the water jets is indeed convex, and the inequality set need no further alterations. As all straight

line segments will be convex, the thrust region of the vent valves is also convex.

3.5.3 Equality Constraints

The equality constraints for this problem is given as in equation (3.46).

Ttcuc = τpid (3.59)

The relation equates the resultant thrusts and yaw momentum provided by the thrusters, with the

demanded levels from the DP-controller. τpid will thus contain the commanded levels of thrust in

surge and sway, and yaw momentum, and be on the form:

τpid = [Xlf Ylf Zlf ]T (3.60)

Where we refer to equation (2.7a), section 2.1. Subscript lf indicates that these are the commanded

levels from the LF-DP controller. Since each thruster, i, is decomposed into its longitudinal and

lateral components, uix and uiy, respectively, T must be on the form

Ttc =




0 1 0 1 0

1 0 1 0 1

lvvx −lwj,porty lwj,portx −lwj,sby −lwj,sbx


 (3.61)

In order to obtain an answer from the optimization algorithm, even if the demanded thrust levels

are infeasible due to actuator saturations, the system should be augmented by slack variables,

i.e., allowing the resulting thrust to deviate from the commanded levels by some variable which

is subject to heavy weigthing in the objective function, such as done by (De Wit, 2009). For the

conditions used in the simulations, however, we did not experience infeasible thrust vectors, thus

the problem was omitted.
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3.6 Thrust Control - Vent Valves

As shown in the mathematical modeling in chapter 2, the thrust from the air accelerating through

the vent valve ducts, due to the pressure drop, is proportional to both the overpressure inside the

cushion, pu(t), and the leakage area. If the difference between the lateral leakage areas through

starboard and port vent valve equals zero, there will be no net-thrust. A net thrust is obtained by

commanding a larger leakage area from one of the vent valves, as the pressure drop over both them

will be equal anyway. As for the heave compensation, the total pressure differences in the cushion

does not at all depend on the direction of air flowing out of it, but only on the total amount, i.e.

the total leakage area. For the following derivations we will define two more entities concerning the

leakage areas of the vent valves, where we will try to keep some of the similarities with common

practice for notation within the subject. First we recall the generic WF feedback control scheme

defined in Section 3.3, given by:

ulc =


∆Alvert

uvvc


 = −


k11 k12 k13 k14 k15 k16 k17

k21 k22 k23 k24 k25 k26 k27







η2

η̇2

η̈2

η3

η̇3

η̈3

µ




, (3.62)

The gain matrix klqr was derived by an LQR-synthesis, which yielded the feedback gain matrix

given by:

klqr = −R−1BTA−1TP ∈ R2×5, (3.63)

where the different terms are thoroughly explained in Section 3.3.1. This yields the final WF control

law, given by

ulc =


∆Alvert

uvvc


 = −klqrη̇lqr, (3.64)
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where ηlqr is given by ηlqr =
[
η2 η3 η̇2 η̇3 µ

]T
. From table 3.1, we remember that the WF

control law signals implies the commanded total- and lateral leakage areas given by:

Alc(t) = A0 + ∆Alvert

∆Allat =
ρau

vv
c

−2ncnρcpu(t)

(3.65)

We note that this control law strictly speaking yields an algebraic loop, however by using the

values from the preceding time step this problem is omitted in the simulations. For the actual

plant, the state derivative signals in (3.64) are taken from onboard accelerometer signals which

are appropriately filtered. Thus, for instance, η̈2 will then correspond to the y-values from the

accelerometer sensor, while η̇2 is the integral of η̈2. Now, this section will concern how to actually

obtain the commanded leakage areas from the vent valve louvers, from equation (3.65) and (3.64),

and propose a saturation handler to cope with the situations where the desires can not be achieved.

First we will define the total leakage area Al as the sum of the leakage areas of the port and

starboard vent valves, i.e.

Al = Alsb +Alport (3.66)

Then we define a lateral leakage area ∆Al, so that

∆Al = Alport −Alsb (3.67)

These are the actual levels. The commanded levels are given by ∆Allat. The sign convention is

chosen in such a way that a positive ∆Al corresponds to a positive net thrust, which is noticed by

the fact that a larger port leakage area will provide a net thrust in the positive y-direction (positive

y is directed to starboard side), we refer to equation (2.53). The lateral leakage area, ∆Al does not

affect the heave compensation directly, neither is there an explicit relationship between the total

leakage area Al and the lateral thrust. Therefore, the problem boils down to satisfying two desires,

which are the commanded levels of lateral- and total leakage area, ∆Allat and Alc, respectively. We

refer to table 3.1 for the definitions behind this notation. The commanded lateral leakage area is

found from equation (2.53) from section 2.2.5, which gives the thrust from an arbitrary leakage area

Ai.

uvv,iy (t) = −2n · cn · ρcAi(t)
pu(t)

ρa
(3.68)
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If we use the fact that the normal vector along the y-axis of the port leakage area is equal to negative

1, and that the corresponding normal vector of the starboard vent valve equals 1, we can obtain

the net force from the airflow through the port and starboard vent valves.

uvvy = 2cnρc(Aport(t)−Asb(t))
pu(t)

ρa

= 2cnρc∆A
l
lat(t)

pu(t)

ρa

(3.69)

We combine this with equation (3.67), and solve for the commanded lateral leakage area ∆Alc.

∆Alc =
ρau

vv
c

2cnρcpu(t)
, (3.70)

where uvvc (t) denotes the commanded thrust level from the vent valves. The actual leakage area is

controlled by a hydraulic linear actuator, which in turn is controlled by an internal feedback loop

and a PID-controller. This internal loop has a very low time-constant, far below the dynamics of

the global system, thus these actuator dynamics can safely be neglected here.

As the above definitions result in two equations with two unknowns, given by equation (3.67) and

(3.66), the problem should be easily solvable. However, the nature of this plant makes this a bit more

complicated. The actuators for this system are the leakage areas, which in turn are controlled by a

linear hydraulic actuator. The problem with this is that the actuators reach saturation quite fast,

as they can neither be more than fully opened nor less than fully closed. In addition to the physical

limitations, we must also keep in the back of our minds the fact that the thrust is proportional to

the excess cushion pressure as well, which is not at all constant. The maximum total leakage area is

denoted Almax, and we add the extra conditions which must be fulfilled, i.e. due to the limitations

in the design they are physically impossible to circumpass. We assume the vent valves of both sides

to be of equal size.

0 ≤ Alsb +Alport = Al ≤ Almax (3.71a)

0 ≤ Alsb ≤
Almax

2
(3.71b)

0 ≤ Alport ≤
Almax

2
(3.71c)

By solving the set of inequalities defined by equations (3.67), (3.66) and (3.71), we obtain the

following relations between the leakage area of each individual vent valve, and the total- and lateral
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leakage area.

Alport =
Alc + ∆Allat

2
(3.72a)

Alsb =
Alc −∆Allat

2
(3.72b)

This is in compliance with the sign convention of the lateral leakage area. If we combine equation

(3.72) with equation (3.71), an explicit expression for the saturation conditions of the system arise

by equation (3.73):

0 ≤ Alc + ∆Allat ≤ Almax,

0 ≤ Alc −∆Allat ≤ Almax.
(3.73)

This shows that even if the system should be able to handle both the desires for heave compensation

and lateral thrust, individually, it does not necessarily have enough capacity to satisfy both the

demands at the same time. This suggests that, when the capacity is exceeded, some kind of weighting

between the two desires is necessary. The approach we will use is to, when saturated, let one of the

desires, either the total- or the lateral leakage area, determine the distribution. I.e., if saturation is

reached, totally neglect one of the desires and as far as possible prioritize the other. To do so we

must add a saturation handler to the expressions in equation (3.72). We define opening saturation

as the situation where the leakage areas computed by (3.72) exceeds the maximum leakage area,

Almax, of the system, and closing-saturation as the counterpart where the leakage computed by

(3.72) is lower than the minimum leakage area, 0. We correct the leakage areas computed by (3.72)

by adding or subtracting the amount of m2 the capacity would have been exceeded by, according

to equation (3.73), if the leakage areas were as given by (3.72). We only show the derivations for

the port vent valves, but the expressions for the starboard vent valves follow somewhat similarly.

In the case of opening saturation, we must reduce the commanded leakage area by subtracting the

amount exceeding Almax equally from each of the commanded areas. We denote the ”excess area”

Alδ, and the corrected leakage signal, which is the one that will be sent to the hydraulic actuator
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loop (this is beyond the scope of this thesis), Alport,c.

0 ≤ Al+∆Allat ≤ Almax
⇓

Alδ = Al + abs(∆Allat)−Almax

Alport,c = Alport −
Alδ
2

=
Al + ∆Allat

2
− Al + abs(∆Allat)−Almax

2

⇓

Alport,c =
∆Allat − abs(∆Allat) +Almax

2

(3.74)

The corrected term for the case of closing saturation is given as:

0 ≤ Al+∆Allat ≤ Almax
⇓

Alδ = −Al − abs(∆Allat)

Alport,c = Alport −
Alδ
2

=
Al + ∆Allat

2
− −A

l − abs(∆Allat)
2

⇓

Alport,c =
∆Allat + abs(∆Allat)

2

(3.75)

By a similar synthesis, the expressions for the starboard vent valve correction term can also be

found. We assume that the signals in, i.e., Al and ∆Allat, are already saturated so that they are

within the intervals [0, Almax] and [−Almax
2 , A

l
max
2 ], respectively. By those assumptions the controller

prioritizing the lateral leakage areas, denoted Controller 1, can be summarized by:

Alport,c1 =





Al+∆Allat
2 ∀(Al,∆Allat) ∈ [0 , Almax]× [−Almax

2 , A
l
max
2 ] : 0 ≤ Al + ∆Allat ≤ Almax

∆Allat−abs(∆A
l
lat)+A

l
max

2 ∀(Al,∆Allat) ∈ [0 , Almax]× [−Almax
2 , A

l
max
2 ] : Al + ∆Allat ≥ Almax

∆Allat+abs(∆A
l
lat)

2 ∀(Al,∆Allat) ∈ [0 , Almax]× [−Almax
2 , A

l
max
2 ] : Al + ∆Allat ≤ 0

,

(3.76)
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Alsb,c1 =





Al−∆Allat
2 ∀(Al,∆Allat) ∈ [0 , Almax]× [−Almax

2 , A
l
max
2 ] : 0 ≤ Al + ∆Allat ≤ Almax

−∆Allat−abs(∆A
l
lat)+A

l
max

2 ∀(Al,∆Allat) ∈ [0 , Almax]× [−Almax
2 , A

l
max
2 ] : Al + ∆Allat ≥ Almax

−∆Allat+abs(∆A
l
lat)

2 ∀(Al,∆Allat) ∈ [0 , Almax]× [−Almax
2 , A

l
max
2 ] : Al + ∆Allat ≤ 0

,

(3.77)

Controller 1 bases the saturation handling on adjusting the total leakage area when the capacity

is exceeded. Now we will present a vent valve controller which instead bases the correction on

adjusting the lateral leakage area. This controller is denoted Controller 2, and is based on letting

the total leakage area signal from the vertical motion damping controller get priority, and then

distribute remaining leakage area capacity in a manner such that the desire for lateral leakage area

is fulfilled as far as possible. We do this by correcting the lateral leakage term in equation (3.72) in

the following manner for opening saturation, of the port vent valve.

0 ≤ Al+∆Allat ≤ Almax
⇓

Alδ = −Al − abs(∆Allat)

Alport,c = Alport −
Alδ
2

=
Al + sign(∆Allat)(∆A

l
lat −Alδ)

2

⇓

Alport,c =
Al + sign(∆Allat)(A

l
max −Al)

2

(3.78)

The expression for starboard vent valve follows by changing the sign in front of the sign(·)-function,

while closing saturation is done by adding, instead of subtracting, the correction term in the last

parenthesis, where Almax is replaced by Almin = 0. Controller 2 can be summarised as follows:

Alport,c2 =





Al+∆Allat
2 ∀(Al,∆Allat) ∈ [0 , Almax]× [−Almax

2 , A
l
max
2 ] : 0 ≤ Al + ∆Allat ≤ Almax

Al+sign(∆Allat)(A
l
max−Al)

2 ∀(Al,∆Allat) ∈ [0 , Almax]× [−Almax
2 , A

l
max
2 ] : Al + ∆Allat ≥ Almax

Al+sign(∆Allat)A
l

2 ∀(Al,∆Allat) ∈ [0 , Almax]× [−Almax
2 , A

l
max
2 ] : Al + ∆Allat ≤ 0

,

(3.79)

Alsb,c2 =





Al−∆Allat
2 ∀(Al,∆Allat) ∈ [0 , Almax]× [−Almax

2 , A
l
max
2 ] : 0 ≤ Al + ∆Allat ≤ Almax

Al−sign(∆Allat)(A
l
max−Al)

2 ∀(Al,∆Allat) ∈ [0 , Almax]× [−Almax
2 , A

l
max
2 ] : Al + ∆Allat ≥ Almax

Al−sign(∆Allat)A
l

2 ∀(Al,∆Allat) ∈ [0 , Almax]× [−Almax
2 , A

l
max
2 ] : Al + ∆Allat ≤ 0

,

(3.80)
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The differences between the two approaches are illustrated in figure 3.9 & 3.8. The thrust achieved

for a desired vent valve thrust signal of 6000N is plotted together with a time series of the heave

motions, which illustrates the heave compensation capabilities. The control is turned on at t=200s.

First for Controller 1, and secondly for Controller 2. The condition is a regular sea state with

wave amplitude of 0.75m, and some vessel which achieves an overpressure of 2200Pa at a 50% bias

opening of 2.5m2. Other relevant simulation parameters are given in Appendix A.2.

time[s]
100 120 140 160 180 200 220 240 260 280 300

m

1

0,5

0

-0,5

-1
Heave Displacement η3 [m]

time[s]
100 120 140 160 180 200 220 240 260 280 300

m

3000

3500

4000

4500

5000

5500

6000

6500

7000
Lateral vent valve thrust uvv

y [N ]

Figure 3.8: Timeseries in heave and thrust, controller 1
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Figure 3.9: Timeseries in heave and thrust, controller 2
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The time series shown in figure 3.8 and 3.9 illustrates the effect of fully prioritizing one of the control

objectives. We see that both the controllers fulfill the other objective to some degree; however in

this thesis it is the lateral thrust that is of greatest importance. The simulation chapter will show

that even by prioritizing thrust, significant vertical motion damping can be achieved. Due to the

relatively low thrust capacity, the system is more sensitive to losses in thrust than it is for losses

in total leakage area (vertical motion damping). The heave compensating capacity of controller

1 is somewhat adjustable through the means of the allocated lateral thrust, i.e. by reducing the

demanded thrust, more capacity can be used for total leakage area/vertical motion damping, which

is illustrated by the simulation in section 4.7. Section 4.5 and 4.7 will feature controller 1 for the

vent valve capacity allocation, while there is no need, in the remaining simulations, for such satu-

ration handling as none of them feature combined heave compensation and lateral vent valve thrust.

3.7 Thrust Control - Water Jets

Section 2.2.6 provides a qualitative description of the thrust providing mechanisms in a water jet

drive system. This section will be an extension of that, and explain, qualitatively, how to obtain a

desired thrust from a water jet system. By slightly rewriting equation 2.58, we find that the thrust

from a water jet drive is given by

uwj =
∑

i=1:3

(−niρwQw,ivout + ni,outρqQwvin), (3.81)

where ni and ni,out are unit vectors pointing in the direction of the water flow in- and out of the

jet drive, respectively. i spans from 1 to 3, which is the number of components the flow can be

divided into, as explained in 2.2.6. The signs differ from equation 2.58 due to the fact that the

equation is dependent on the direction of the water flow, whereas the resulting thrust is acting in

the opposite direction. If the vessel speed is restricted within a small region around zero, we can

safely assume the vessel wake to be insignificant and thus disregard the last term in the equation

above. We obtain the simplified expression:

uwj =
∑

i=1:3

−niρwQw,ivout. (3.82)
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This leaves us with only two parameters we are able to influence with the thrust control, the outlet

velocity vout and the flow distribution, Qw,i. Note that vout denotes the speed of the fluid flow

immediately after the stator, shown in figure 2.7, but before any fluid is redirected by the rotatable

nozzle and/or the deflector shield. We will disregard any losses in the deflector and stator, and

regard the vectorial fluid flow as a thrust potential we can distribute arbitrarily, within the mechanic

restrictions of the construction, and thereby obtain the desired thrust- magnitude and direction.

vout is mainly influenced by one variable factor only, i.e. the engine speed. The relation between

the engine speed and the outlet velocity further depends on the impeller characteristics, which

are known by the water jet manufacturer through experiments. This is a somewhat diffuse relation,

of which it is hard to obtain an analytic expression. Typical relations between boat speed and

provided thrust for different power outputs are shown in figure 3.10.

Figure 3.10: Thrust vs. boat speed, as in (Bulten, 2006)

We remember that due to the reversing deflector shield, the water flow is given a vertical component,

as illustrated by figure 2.8. This is done in order to avoid the water flow from hitting the transom.

We therefore denote the magnitude of the water jet thrust |uwj3d |, and it will be shown later why it is

important to differ between the horizontal and the 3-dimensional magnitude in the thrust control.

If we assume the mapping between impeller rpm, nwj , and the discharge velocity at a given vessel

speed to be a known function, denoted vout(nwj), we can combine this with equation (3.82), and

we obtain an expression for the rpm of the impeller necessary in order to obtain the desired thrust

|uwj3d |. If the machinery features a reduction gearbox, further mapping is necessary in order to find
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the desired engine speed.

|uwj3d | =
∣∣∣∣∣
∑

i=1:3

−ni,inρwAnozzlev2
out(nwj)

∣∣∣∣∣ ,

⇓

nwj = v−1
out



√

|uwj3d |
ρwAnozzle




(3.83)

We use the thrust magnitudes here, in order to specify that this expression is not related to the

direction of the desired thrust. The direction of the thrust is controlled solely through the means

of the angle of the discharge nozzle and the state of the deflector shield.

The thrust allocation algorithm provides the decomposed thrust from the water jets in their lat-

eral and longitudinal components, uwjy and uwjx respectively. The magnitude of the commanded

horizontal thrust is found by

|uwjc | =
√
uwjy

2
+ uwjx

2
(3.84)

The azimuth-angle αa is found from:

αa = tan−1

(
uwjx

uwjy

)
(3.85)

Due to the limited domain of the tan(·)-function, which spans the interval [−90◦, 90◦], we need to

know in which quadrant the resultant thrust is located, which is is easily found by the signs of the

lateral- and longitudinal components. The azimuth region of the water jet is divided in four. αa = 0

is set to be in the direction parallel with xb, and positive clockwise according to the right hand screw

rule. We denote the angle of the discharge nozzle αnozzle, and denote the mode of the deflector,

drev, 0 when it is fully open and 1 when it is fully lowered. drev is allowed to take any value within

this interval, which allows the thrust to be distributed arbitrarily in the two directions. To obtain a

generic expression for the thrust control, we will denote the maximum angle of the discharge nozzle

and the angle of the reversed flow component from the deflector αf and αrev, respectively. We will

assume the construction to be somewhat symmetric with respect to its longitudinal centerline, thus

the nozzle is able to turn equally much to both sides, and the two components of the divided reverse

flow from the deflector are discharged at the same angle relative to xb. We will also differ between

the port- and starboard components, thus αf,port = 360◦ − αf,sb, etc. The 4 regions are illustrated
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in figure 3.11, and explained below.

Figure 3.11: The four regions of the Water Jet thrust envelope

1. αf,port ≤ αa ≤ αf,sb: The direction of the thrust is, in this region, controlled solely by the

means of the discharge nozzle. drev=0.

2. αf,sb ≤ αa ≤ αrev,sb: In this region, the discharge nozzle is pointing at the angle αf,port. The

angle of the resultant thrust is controlled by partly-, or totally lowering the deflector in order

to distribute thrust between the outer line of the blue region and the red vector in figure2.10.

3. αrev,sb ≤ αa ≤ αrev,port: To provide a net thrust in this region, the deflector must be fully

lowered, i.e. drev=1. The angle is adjusted solely by the angle of the discharge nozzle, αnozzle.

4. αrev,port ≤ αa ≤ αf,port: Similar to region 2, only difference is that here, the angle of the

discharge nozzle αnozzle = αf,sb.

Summing up the above, the water jet control should satisfy two desires, the magnitude of the

horizontal thrust, |uwjc |, and the direction αa. As for the magnitude of the thrust, we remember

that the water jet thrust is of a 3-dimensional nature, as the flow going through the deflector has a

downwardly directed component, which complicates the control slightly. We denote, as before the

thrust in all three planes |uwj3d |, and this is the one that actually needs to be generated by the jet

pump and diesel engine. For generality we denote the downward angle of the water flow through

the deflector, relative to the xbyb-plane, αvert, however in the simulations and in most jet drives
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αvert ≈ 30◦. This means that in order to get the horizontal, reversed thrust component, commanded

from the thrust allocation, the 3-dimensional thrust actually produced by the water jet must be

slightly higher, to compensate for the fact that (1 − cosαvert) is lost in the downwardly directed

flow. For the flow which does not pass through the deflector, the process is more trivial, as this

flow is discharged strictly in the xbyb-plane. Therefore, in region 1, the thrust control process is

simply a matter of setting the angle of the discharge nozzle αnozzle equal to negative αa, and the

rpms of the engines equal to the revs computed according to equation (3.83). For the remaining

regions, it becomes slightly more complicated. We start out with region 2, and since the problem

is on vectorial form we denote the vectors coinciding with the right borderline of the blue region

and the red arrow in figure 2.10 ~uf and ~urev, respectively, in compliance with equation (2.63). The

respective subscripts are chosen to denote the forward and reversed thrust components. There are

two objectives that needs to be fulfilled by the thrust controller, the angle αa of the net thrust, and

the horizontal magnitude |uwj |. The thrust vectors can be written on the following form:

~uf =
[
uf,1 uf,2

]
,

~urev =
[
urev,1 urev,2

]
,

(3.86)

where the first and last entries correspond to the x- and y-components of the thrust, in compliance

with the definitions from the body-fixed reference frame {b}, thus uf,1 and uf,2 is the projections

along xb and yb respectively. The magnitude of these two vectors can be expressed by the means of

the magnitude of the 3-dimensional thrust:

|~uf | = |uwj3d |(1− drev)

|~urev| = |uwj3d |(drev) cosαvert.
(3.87)

The various inputs in (3.86) are given by:

uf,1 = cosαf,sb|~uf | = cosαf,sb|uwj3d |(1− drev)

uf,2 = sinαf,sb|~uf | = sinαf,sb|uwj3d |(1− drev)

urev,1 = cosαrev,sb|~urev| = cosαrev,sb cosαvert|uwj3d |drev

urev,2 = sinαrev,sb|~urev = sinαrev,sb cosαvert|uwj3d |drev

(3.88)
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The angle of the horizontal net thrust, αa, and its magnitude |uwj | is now related by:

αa = tan−1

(
uf,2 + urev,2
uf,1 + urev,1

)
, (3.89a)

|uwj | =
√

(uf,1 + urev,1)2 + (uf,2 + urev,2)2. (3.89b)

The two unknowns, drev and |uwj3d | necessary in order to obtain the thrust desires can now be found.

By inserting (3.88) into (3.89) we notice that the angle of the resultant thrust in region 2 and 4,

i.e. for a fixed nozzle angle, depends on the state of the deflector only. We solve equation (3.89a)

for the deflector state, and obtain:

tanαa =
|uwj3d |(sinαf,sb(1− drev) + sinαrev,sb cosαvertdrev)

|uwj3d |(cosαf,sb(1− drev) + cosαrev,sb cosαvertdrev)

⇓

drev =
sinαf,sb − tanαa cosαf,sb

tanαa cosαrev,sb cosαvert − cosαf,sb − sinαrev,sb cosαvert + sinαf,sb

(3.90)

Due to the fact that the tangent function is only valid in the interval (−90◦, 90◦), the entire system

must be shifted 90◦ in order to obtain valid results from equation (3.90). With the deflector state,

drev, known, we solve for the required 3-dimensional thrust uwj3d , by inserting equation (3.88) into

(3.89b).

|uwj3d | =√
|uwj |2

(c(αf,sb)(1− drev) + c(αrev,sb)c(αvert)drev)2 + (s(αf,sb)(1− drev) + s(αrev,sb)c(αvert)drev)2
,

(3.91)

where we denote the sine(·) and cosine(·)-functions s(·) and c(·), respectively, in order to save some

space. This approach is also valid for region number 4, however the angles used must be shifted

differently. Region 3 is less complicated. Since the deflector state, drev must equal 1 in this region,

the only unknown is the 3 dimensional thrust, which can be found by setting drev=1 in equation

(3.91). The angle of the discharge nozzle equals αnozzle = αa − 180◦ for region 3. This leaves us

with the answer to all the unknowns, and equation (3.91) can be used in combination with equation

(3.83) to obtain the necessary speed of the diesel engine. The simulations in this thesis will use the

angular values αf = 30◦, αrev = 150◦ and αvert = 30◦, which are realistic values roughly equal to
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what is being used in most commercial water jet drives nowadays. The states of the discharge nozzle

and the deflector shield as functions of the azimuth angle, computed according to the derivations

above are shown in figure 3.12.
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Figure 3.12: State of discharge nozzle αnozzle and deflector shield drev vs. αa
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Chapter 4

Results and Discussion

This chapter will present the results of the preceding work by simulations that illustrates the

behavior of the model and the derived controllers. The simulations are done in the time-domain,

and we will display time series of the quantities we find relevant for each plot. There is a set of

conditions which are used multiple times during the different simulations. We denote these runs,

and each of these will be explained in the next section. The various vessel- and control parameters

used are given in the appendix, and will be referred to when it is relevant. We will run simulations

illustrating the following: behavior of the uncontrolled WF- system, step responses of the vertical

plant and cushion pressure, performance of the heave compensation controller, performance of the

sway compensation controller, performance of simultaneous sway- and heave compensation, DP-

controller when subject for various disturbances and one run showing simultaneous station keeping

and heave compensation. The simulations are done for a generic SES vessel, which is similar sized,

but not identical to the Wave Craft, hence the results given does not represent the real Wave

Craft performance or design, but is, in some aspects, somewhat similar. In order to achieve high

performance for the lateral thrust controller, we choose a high total vent valve leakage area of 5m2.

Due to the sign conventions from chapter 2.1, positive heave motion is defined downwards. For the

WF motions, this represent a counter intuitive representation of the actual motions, thus the y-axis

will be inverted for the heave motions in the WF simulations. All hydrodynamic parameters are

calculated for a direction of wave propagation, βwa, of 5π/4 relative to xb.
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4.1 Simulation Conditions

The conditions and parameters of the different simulations are given by their corresponding run,

which will be explained individually in the following subsections.

4.1.1 Run 1

Run 1 is a sea state with wave frequency ωw = 0.785[rad/s] and wave period Tw = 8s. We use

regular waves, of amplitude 1m (significant wave height=2m). These conditions are higher than the

limiting sea state for most wind farms, i.e. in such conditions the operations are usually called off

for conventional, similar sized vessels. This run is meant to illustrate the capacity of the controllers

on the very border of their capacity, thus the damping ratio of the motion damping controllers is

slightly reduced. There are no other loads present than the wave loads acting on the system. The

hydrodynamic coefficients and control parameters used are given in appendix A.

4.1.2 Run 2

Run 2 has regular waves with angular frequency ωw = 1.25[rad/s], and amplitude=0.5m. These

conditions represent a lower wave height than in run 1, however, due to the high frequency of the

waves, the velocities and accelerations becomes larger relative to the wave height, thus the inertial

forces are still relatively high. As for run 1, the only loads acting on the system are due to 1st order

wave effects. The simulation parameters used are given in appendix B.

4.1.3 Run 3

The wave frequency in this run is similar to run 2, but the wave height is reduced further to

correspond to a significant wave height of 0.5m. This is done to show the effect of the sway compen-

sation controller when not subject to the large saturation levels of run 1 an 2. Since the frequency

is the same as for run 2, the hydrodynamic and hydrostatic coefficients will be similar, however the

controller feedback gains are altered thus the parameters for this run is given in Appendix C.

4.1.4 Run 4

Run 4 is a Dynamic Positioning run, with zero disturbing forces. This is only to show the effect

of the DP controller, and does provide any indications regarding the conditional capacity of the
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system. The relevant simulation parameters, including DP-feedback gains, are given in appendix

D.

4.1.5 Run 5

Run 5 is another station keeping run, differing from run 4 by the fact that there are external

disturbances present. We also simulate with regular waves, to illustrate the behavior of the vent

valve thrust while subject for non zero surface elevations. The waves are similar to those in run

2, and there is, in addition, a constant wind load, i.e., constant as in there are no fluctuating

components. At simulation start, the wind speed, Vw, is 10m/s, with direction βw = 5π/4. At

t=500s, the wind gradually turns to an angle of βw = 3π/4, and Vw = 15m/s. There is no current

present. The parameters used are the same as for run 4.

4.1.6 Run 6

This run will show the capacity of the system in conditions where normal operation of conventional,

similar sized vessel is usually called off. The windspeed is 12m/s and the velcoty of the current

is 1.5m/s. There is, in addition, a sea state similar to that of run 1, which is quite large for this

vessel type. The second order loads are pointing in the south-west direction. In addition to the

constant loads, the velocity of the wind and current is fluctuating, as modeled by a random walk,

gaussian process, described in section2.4.2. This run is meant to show that the vessel should be

able to handle quite severe conditions, within the accuracy of the derived model.
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4.2 Model Verification

This section will show that various inputs to the simulation plant generates intuitive outputs and

responses, both for the cushion- and the vessel dynamics. We will simulate for step responses in the

vent valve louver control signals, both for the total and the directional leakage area, for undisturbed

conditions, i.e. flat seas. We will also include an uncontrolled run in {s}, when the system is subject

to first order wave loads.
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4.2.1 Step Response of Heave- and Pressure Trajectory

We simulate for the Vessel Parameters given in Appendix A, to show qualitatively how the system

reacts to a step response in the total leakage area for zero seas. The simulation starts with a total

leakage area equal to Almax
2 , which will be the bias leakage for all runs unless otherwise stated. At

t=25s, the vent valves are fully closed, and at t=75s they are fully opened. The plot in figure 4.1

shows the response of heave- and pressure position and velocity, together with the corresponding

total leakage area.
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Figure 4.1: Response in Heave and Pressure Due to Step in Total Leakage Area
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We notice that there are transient effects in the pressure response due to the steps in the control

input. These are recurring and we can not seem to find any good explanations to them. However

they only occur for steps, and does not affect the system under regular conditions. We performed

some parameter tuning to find possible explanations; the transients are strongly reduced if the added

mass of the vessel is increased, however we chose to use the parameters given by the seakeeping

estimation program ShipX, as these were the most reasonable estimates of these parameters that we

could find. The transients are probably due to several, minor, simplifications or unmodeled dynamics

in the uniform pressure equation. Fluid inertia, for instance, is neglected, which, even though

extremely low, hypothetically could affect the response slightly. The remaining state trajectories

looks highly plausible. The heave position at minimum leakage equals, roughly, -1m, which indicates

that the polynomial used to simulate the state dependency of the passive leakage areas is reasonable

tuned as this corresponds well with experiences from model tests.
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4.2.2 Undamped Regular Waves in {s}

This is a WF simulation, without any controller action. The system is simulated for regular seas

of 0.5m amplitude and angular frequency ωw = 1.26[rad/s], i.e. the conditions given by run 2.

The relevant parameters are given in Appendix B. The initial conditions are the zero states, which

explains the transient behavior at simulation start as the velocities and positions would not be zero

at the same time for the steady state motions.
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Figure 4.2: Undamped WF Motions
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4.3 Heave Compensation

This section will demonstrate the effect of the vertical motion damping system for two runs, run

1 and 2, which are thoroughly explained in the beginning of the chapter, together with reference

to the relevant parameters. In run 1, the controller is switched on at t=200s while we apply it at

t=100s in run 2. We will only investigate the motions in {s}, in addition to the pressure trajectory,

which is presented by the uniform pressure component pu(t), which holds for all the simulations

done in this chapter.

4.3.1 Heave Compensation Run 1
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Figure 4.3: Heave displacement and acceleration + cushion pressure and leakage area, run 1
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4.3.2 Heave Compensation Run 2

time[s]
0 20 40 60 80 100 120 140 160 180 200

m

-0.5

0

0.5
Heave Displacement η3 [m/s]

time[s]
0 20 40 60 80 100 120 140 160 180 200

m
/s

-0.5

0

0.5
Heave Velocity η̇3 [m/s]

time[s]
0 20 40 60 80 100 120 140 160 180 200

P
a

0

1000

2000

3000

4000
pu

time[s]
0 20 40 60 80 100 120 140 160 180 200

m
2

0

2

4

6 ∆Al
vert

Figure 4.4: Heave- displacement and acceleration + Control Input run 2
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4.3.3 Discussion on Heave Compensation Performance

These simulations indicates that the heave controller will exhibit strong performance with the

feedback gains computed in chapter 3. Run 1 is simulated for higher seas, and we see that the

damping ratio in run 1 is lower than in run 2. This is due to saturations in the actuators, and we

can conclude that these sea states are close to the border of the system capacity. The damping is still

significant, however. Run 2 shows very strong performance, and there are almost no vertical motions

left when the controller is applied. The actuator displacements are well within the capacity for run

2, and the sea state could probably have been even higher, while still maintaining the high damping

ratio. This vertical motion controller feature feedback on the pressure state in addition to the two

vertical translative trajectories, as opposed to existing zero speed, vertical motion controllers, which

seems to work well.
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4.4 Sway Compensation

This chapter will show the effect of the sway motion damping controller, and will illustrate it by plots

of the velocity and acceleration in sway. We will show simulations for run 1, 2 and 3, in addition

to a parameter study where we investigate the behavior of the system if the loss coefficient cn is

increased to 0.9 (as recommended by (Liepmann, 1961) and (Kurita, 1988)). Note that this does

not necessarily allow the achieved thrust to be scaled linearly as the increased flow also leads to a

reduced pressure for given leakages. We did, however, achieve a significantly increased performance

of the sway motion damping, as will be shown in section 4.4.4.
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4.4.1 Sway Compensation - Run 1

Conditions are given in the beginning of the chapter. The controller is turned on at t=100s. The

waves are large in this run, and it is on the border of the sway damping capacity, thus the damping

ratio is rather low compared to the following runs. We achieved a motion damping of about

20%, which is, even though less significant than for the vertical motion damping, still a strong

contribution.
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Figure 4.5: Sway compensation, run 1
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4.4.2 Sway Compensation - Run 2

Similar conditions as described in the beginning of the chapter. The controller is turned on at

t=200s. We notice that the motion damping amounts to about 22%. The wave frequency is a lot

higher in this run compared to the previous one, which implies higher accelerations and velocities,

relative to the wave height, thus the damping levels are not that much higher than for run 1. The

damping is still significant.
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Figure 4.6: Sway compensation, run 2
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4.4.3 Sway Compensation - Run 3

The conditions are given in the start of the chapter. The controller is turned on at t=200s. The pre-

ceding conditions have had relatively large waves. To put them in context; operations are normally

called of for conventional wind service vessels if the sea states exceed 1.5m (0.75m amplitude). Here

we simulate the system behavior for 0.5m wave height, to illustrate the effect of the sway motion

damping when the saturation levels are lower.
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Figure 4.7: Sway compensation, run 3

We note that the damping levels are close to 50%, while saturation of the actuators is still avoided.
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4.4.4 Sway Compensation - Run 2 - Parameter Study

This run was done with the same simulation parameters as in chapter 4.4.2, with one difference;

cn is changed to 0.9. This is done to investigate how conservative the results done with cn = 0.61

really are. We found that the sway compensating capabilities are slightly improved, however the

decreased losses also means that the pressure will decrease more for a given leakage area. The

achieved damping levels amount to around 32%, which is a significant increase compared to run 2.

The controller is switched on at t=200s.
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Figure 4.8: Parameter study of loss coefficient cn = 0.9, for sway compensation
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4.4.5 Discussion on Sway Compensation Performance

Due to the relatively limited available thrust from the vent valves, the capacity for damping of the

first order sway motions is limited. However, we have still shown, by this section, that significant

reduction of the motions scan be achieved, albeit less than for the vertical motion damping problem.

High waves and/or high frequency waves imply large inertial- and first order wave induced forces,

which somewhat limits the achieved damping ratio. It is still above 20%, thus it is significant. For

run 3 we note that the damping amounts to as much as 50%, and the system would probably have

shown really strong performance in swells as well, however we did not simulate for such conditions.

We have, as mentioned earlier, found several factors suggesting that the value cn = 0.61 is too

conservative for the results to serve as good indications regarding the actual capacity of the system,

however this value seems to be the common convention within the field. Still, it is the authors

opinion, that more attention should be paid to the capacity indicated by figure 4.8, as we feel this

provides a better indication of the actual system performance.
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4.5 Combined Heave and Sway motion damping

WF motion damping scenarios were simulated for waves, in the conditions of run 2 and 3. The

controller is turned on at t=200s for both runs. The trajectories of the heave and sway motions

are presented as time series, together with the relevant control signals. In run 3 we also include

the positions in sway. The vessel parameters used are presented in appendix B for run 2 and C for

run 3. The feedback gains of the control input and the relevant parameters used in the derivations,

such as LQR weighting matrices etc. are also given there.

4.5.1 Combined WF Damping - Run 2
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Figure 4.9: Motions in heave- and sway + Control inputs for run 2
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4.5.2 Combined WF Damping - Run 3
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Figure 4.10: Motions in heave and sway + Control inputs for run 3
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4.5.3 Discussion on Combined Heave- and Sway Compensation

The simulations above indicate that the potential for damping the motions in both sway and heave,

simultaneously, is limited, due to the nature of the only actuator involved, i.e. the vent valve

louvers and the cushion pressure. There are simply too many dependancies, and if you reach

actuator saturation due to one of the control outputs, the other state will be strongly influenced.

To provide any significant sway damping, the lateral thrust needs to be at the limit of its capacity

all the time, which does not leave much room for the total leakage area, which in turn controls

the vertical motion damping. Even though the phase shifting approach proposed in chapter 3.3.2

improves the matter, there will still be some levels of mutual infliction between the two desires

which complicates the process. For the 0.5m wave run, in run 3, we did see significant damping of

both trajectories, and the sway motions were damped by, about, 32%, with the damped motions in

heave being of an almost negligible magnitude. The sway damping in run 2 amounts to about 18%,

where the corresponding heave motions are still damped by around 60%. The 1m wave height in run

2 does, after all, correspond to quite common condition in the areas the vessel is likely to operate,

thus, even though the potential of such simultaneous motion damping is limited, we have shown

that it is still, to some degree, possible, especially for the less severe environmental conditions. Even

though not crucial for normal operation, the motion damping shown in run 3 would still, most likely,

provide a significant simplification of a boarding process, and make the operation of the vessel a lot

more comfortable for the crew.
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4.6 Station Keeping

This section will feature simulations of run 4, 5 and 6, which are thoroughly elaborated in the

beginning of the chapter. The vessel parameters used in both the WF- and LF plants, when relevant,

are given in Appendix D, which also includes the feedback gains for all relevant controllers used.

Initial conditions, set points and further relevant information regarding the different simulations

are given in the respective subsections when relevant.

4.6.1 Station Keeping - Run 4

The initial conditions are η3d,0 =
[
0 0 0

]T
. The initial position reference is ηd =

[
1 1 π/4

]T
.

At t=100s the heading reference is changed from ψd = π/4 to ψd = −π/4. The plot will include

the three NED-coordinates as well as the thrust levels of all thruster components, including the

directional leakage area of the vent valves. The directional leakage area and the vent valve thrust

will be linearly proportional for this run as there are no external disturbances, thus the pressure

remains constant since the system will strive to maintain the equilibrium total leakage bias opening.

The station keeping plots given later in the chapter will not include the thrust components from

each individual thruster, as the qualitative nature of their behavior is illustrated good enough here.

The state of the discharge nozzle and the deflector shield of the water jets will not be presented

here, but the relevant mappings from the lateral- and longitudinal thrust components are given

chapter 3.7.
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Figure 4.11: Run 4 Station keeping
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4.6.2 Station Keeping - Run 5

We will investigate station keeping only, thus the initial conditions are the same as the initial

reference position and heading, η3d,0 = ηd = 0. This run will show the behavior of the system

when subject to non-fluctuating disturbances and nonzero surface elevations. The effect of the

integrator term in the controller is also verified. As explained in the beginning of the chapter, the

environmental loads will change direction at t=500s.
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Figure 4.12: Run 5 Station keeping
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4.6.3 Station Keeping - Run 6 - Constant Set Point

The conditions in this run is given by run 6, and the initial conditions are the same as the constant

DP-set points, given by ηd = [0 0 0]T . The loads and the simulation start at t=0, thus the initial

transient as the integrator is loading. The feedback gains used are the same as for the previous

simulation, and will be given in Appendix D.
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Figure 4.13: Run 6 Station keeping
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We notice that these gains might not be optimal for the conditions in this run, which are quite

severe, however they do work and we see that the system behaves nicely even when subject to

relative strong, fluctuating, environmental loads. It is also apparent that the allocated thrust to the

vent valves is above their capacity, by looking at the saturations in the lateral leakage area, which

implies that the vent valves have not delivered the commanded thrust. However this did not seem

to have any large inflictions on the system behavior, and could probably have been easily solved by

reducing the allocatable vent valve thrust in thrust allocation algorithm, thus transferring a larger

portion of the forces to the water jets.
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4.7 Combined Heave Compensation and Station Keeping

This single run is meant to illustrate the potential of performing station keeping and heave com-

pensation simultaneously. The WF conditions are the same as for run 1. The load in {n} is not

modeled as being induced by wind or current, but is simply a load of constant magnitude and

direction, 11000N and π/4, respectively. The reason we chose to just hardcode this load is to il-

lustrate the capacity of the system when subject to a known load/situation. The uncertainties in

the modeling of wind- and wave loads, as used above, are larger, which is why we feel this provides

a better illustration of the capacity. The simulation is done as follows; Initial conditions and set

points are η3d,0 = ηd = [0 0 −π/4]T . At t=100s the heave compensation controller is turned on,

at t=200s the heading set point is changed to ψd = 0, at t=400s the heading set point is changed

to ψd = π/4. The reasons for changing the set points is that as the vessel is pointing more in

the direction of the constant load, more thrust is transferred to the water jets and less to the vent

valves. The result is that the heave compensation is enhanced. Figure4.14 shows that there is some

sort of inverse proportionality between the heave damping ratio and the vent valve thrust, just as

expected. We also notice that the delivered thrust behaves more consistently immediately after

the heave compensation controller is applied. This is because of the corresponding rise in mean

pressure, and should be noted for further work.
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Figure 4.14: Combined Heave Compensation and Station Keeping
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4.8 Discussions

All in all, the derived controllers seems to exhibit strong performance, and the plant behaves well

in the simulated conditions. The potential for vertical motion damping has already been shown by

previous work, but the derived controller performs very well here, by using the variations in the

cushion pressure as an extra input. The damped motions are almost negligible for run 2, but even

in the conditions represented by run 1 we see strong vertical motion damping which should provide

a significant improvement on the onboard conditions. The potential for lateral motion damping is

limited as the maximum thrust obtainable by the vent valve thrusters is, shown by the simulations,

limited around 10,000N for the varying demands, the constant thrust delivering capacity is lower.

Even though this is a significant thrust, the forces related to WF motions and 1st order wave

loads are simply too large to be fully compensated for by the control system. Nonetheless, we

experience a reduction in the lateral motions of between 18- and 50%, which is, after all, significant.

The limitations lies in the conditions where significant damping is possible to obtain. For waves

reaching 2m, which is a lot compared to normal operational conditions of comparable vessels, the

achieved damping is only around 20%, however for smaller waves the relative damping increases

significantly and the system could, hypothetically, become a highly valued aid in the process of

docking the vessel to an offshore turbine. We must remember that this system does not require any

additional hardware compared to already existing vessels, and could, theoretically, be implemented

solely by the means of a software update. Neither will the usage of the system imply any significant

additional fuel consumption, and in that perspective, a lateral motion damping of between 20 and

50% could be well worth the effort.

The DP system performs well, and position is maintained even in the rough conditions given by run

6. The vent valve thruster seems to deliver the demanded thrust accurately even in relatively large

waves, and even if saturation is reached at some times the integrator in the controller increases

the demanded thrust so that the difference in demanded and delivered thrust is delivered by the

water jets instead. The last simulation shows that strong vertical motion damping can be obtained

even when performing station keeping, and subject to relatively large loads. The vertical motion

damping, in DP, can be enhanced by reducing the maximum allocatable vent valve thrust in the

thrust allocation algorithm, or by changing the heading angle so that the thrust can be provided

by longitudinal water jet thrust components instead.
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Chapter 5

Concluding Remarks

5.1 Conclusion

For offshore wind farms to be competitive compared to their land based counterparts, measures

must be taken in order to reduce the maintenance related costs and increase the accessibility of

such plants. SESs are fast and fuel efficient, and due to active motion damping, even smaller vessels

can be designed to feature the same seakeeping properties as much larger conventional OSVs. By

this thesis we have shown that automatic control of vent valves on a SES can control the motion of

the vessel in the horizontal domain. This is beneficial for a SES, since traditional bow thrusters has

negative effects such as increased transit resistance and installation difficulties arises due to narrow

side-hulls.

By the process plant model derived in chapter 2 and the control scheme derived in chapter 3,

verified by the simulations in chapter 4, we show that we can utilize the linear momentum from the

air flow driven by the potential energy in the air cushion in combination with the water jets to suc-

cessfully perform station keeping when subject to relatively severe environmental loads of first and

second order nature, and also damp the horizontal and vertical motions. Chapter 4 indicates that

the vessel should be able to perform significant damping of WF motions, and reduce them to quite

tolerable levels, even above the sea states defining the operational limit of comparable, similar sized

vessels. This also holds for the station keeping capacities indicated by the simulations in chapter

4.6.3 and 4.7, which shows that the vent valves could serve well as a substitute for conventional

bow thrusters, and exhibit strong performance even in relatively large sea states.

125



All the above can be achieved by the exact same set of actuators and sensors that can be as-

sumed available on these vessels today, and if we regard the findings in this thesis as possible to

achieve by the sole mean of a software update, this can become a significant contribution in making

operation of such vessels and offshore wind farms less expensive and a lot more convenient for the

crew and operators.

There are, off course, challenges left to solve. The consistency of the thrust delivered by the vent

valves must be regarded in context with the impact on the station keeping performance if there are

large deviations between delivered and commanded thrust. More thorough investigations also needs

to be performed in order utilize the full potential of the vent valve thrust, and truly exploit the

nature of the cushion pressure which exhibits a sinusoidal state trajectory in non-zero sea states.

However, despite this, we find it appropriate to conclude the work by stating that the operation

investigated for the scope of this thesis should be, indeed, feasible.

5.2 Further Work

The work in this thesis does serve as an indication that the desired operation of the plant is feasible.

However, in order to achieve optimal performance of the system and increase the capacity, some

issues should be addressed in the design of the control system.

For the WF motion damping problem, much care was given in ensuring that optimal phase was

obtained by the control signals. However, for the slowly varying thrust demands, implied by the

station keeping operation, another approach might be more optimal. By investigating figure 4.13

from chapter 4.7, we note that at the border of the vent valve thrust capacity, saturation is reached

quite often due to the pressure variations in the cushion. This means that the demanded thrust is

not achieved at these instants. If we implemented an idea of an averaged thrust in the thrust con-

trol, we could compensate for this thrust loss by exceeding the commanded levels immediately after

the thrust loss, during the pressure peaks, thus avoiding some of the consequences of the differences

between the commanded- and achieved thrust. Theoretically we should also be able to use the

information about the saturation levels in the vent valves to reduce the maximum allocatable vent

valve thrust, Tmax, in the thrust allocation algorithm from section3.5.2, to avoid the high saturation

levels. Note that all this is only able to improve the performance of the system at the very edge of
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its capacity, and would have zero effect during normal operation.

A subject that, on the other hand, could improve the operation during normal conditions is the

work presented by (Megretski, 1996), who addresses the problem of motion damping of highly sat-

urated systems. By utilizing state-dependent feedback gains, the degree of saturation is decreased

by reducing the magnitude of the feedback gains when large motion amplitudes are experienced,

e.g. during the transient phase after control appliance, but also during steady-state operation to

automatic choose the optimal gain levels. Nguyen et al. (2007) proposes a hybrid, sea state depen-

dent DP controller which features some ideas that also could be applicable for the SES plant in this

thesis in order to reduce the saturation levels of the vent valve actuators.

The equilibrium cushion pressure is strongly related to the bias leakage area, A0. An increased

pressure means that a larger vent valve thrust could be achieved at a smaller lateral leakage area.

More thourough studies of the optimal bias opening with respect to achieved thrust should be per-

formed, to find the optimal levels, but this must regarded as a mere optimization of the already

existing model. The pressure lift immediately after appliance of the vertical motion damping con-

troller in figure 4.14, and the following increased consistency in the lateral thrust serves as the

indication that this approach might increase the performance.
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Appendix A

Run 1

A.0.1 Various Parameters

• Wave frequency: 0.5[rad/s]

• Wave amplitude: 1m

• Equilibrium cushion pressure p0 = 2400Pa

• Vessel Draft: 1m

• ρc0: 1.23 kg/m3

• ρa: 1.24 kg/m3

• p0: 2400Pa

• γ=1.4

• cn=0.61

• Ac=160m2

• L: 20m

• xcp: 0.7m

• lvvx =0m

• lwj,px =-12.5m
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• lwj,py =-5m

• lwj,sbx =-12.5m

• lwj,sby =5m

A.0.2 Hydrodynamic Coefficients

Added Mass Matrix:

MA =




0.745e5 0 0 0 0 0

0 0.832e5 0 −0.274e5 0 −0.123e6

0 0 0.194e5 0 0.106e4 0

0 −0.274e5 0 0.336e6 0 0.107e6

0 0 0.106e4 0 0.554e6 0

0 −0.123e6 0 0.107e6 0 0.323e7




(A.1)

Rigid Body Mass Matrix:

MRB =




92000 0 0 0 0 0

0 92000 0 0 0 0

0 0 92000 0 0 0

0 0 0 920000 0 0

0 0 0 0 57600000 0

0 0 0 0 0 5760000




(A.2)

Linear Damping Matrix:

Dp(ω) =




0.413e4 0 0 0 0 0

0 0.799e4 0 0.5e4 0 −0.391e4

0 0 0.235e5 0 0.277e4 0

0 0.5e4 0 0.468e6 0 −0.508e4

0 0 0.227e4 0 0.67e6 0

0 −0.391e4 0 −0.508 0 0.269e6




(A.3)
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Restoring Coefficients:

GηRw =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 330000 0 251000 0

0 0 0 6440000 0 0

0 0 251000 0 10500000 0

0 0 0 0 0 0




(A.4)

A.0.3 Controller

Linear Quadratic State Derivative Regulator Weighting Matrices:

Q =




1/0.1 0 0 0 0

0 1/0.1 0 0 0

0 0 1/0.1 0 0

0 0 0 1/0.1 0

0 0 0 0 0




R =


0.01 0

0 0.0001




(A.5)
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Appendix B

Run 2

B.0.4 Various Parameters

• Wave frequency: 0.5[rad/s]

• Wave amplitude: 1m

• Equilibrium cushion pressure p0 = 2400Pa

• Vessel Draft: 1m

• ρc0: 1.23 kg/m3

• ρa: 1.24 kg/m3

• p0: 2400Pa

• γ=1.4

• cn=0.61

• Ac=160m2

• L: 20m

• xcp: 0.7m

• lvvx =0m

• lwj,px =-12.5m
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• lwj,py =-5m

• lwj,sbx =-12.5m

• lwj,sby =5m

B.0.5 Hydrodynamic Coefficients

Added Mass Matrix:

MA =




0.735e5 0 0 0 0 0

0 0.735e5 0 −0.2514e5 0 −0.114e6

0 0 0.273e5 0 −0.168e3e4 0

0 −0.251e5 0 0.496e6 0 0.964e5

0 0 −0.168e3 0 0.774e6 0

0 −0.114e6 0 0.964e5 0 0.228e7




(B.1)

Rigid Body Mass Matrix:

MRB =




92000 0 0 0 0 0

0 92000 0 0 0 0

0 0 92000 0 0 0

0 0 0 920000 0 0

0 0 0 0 57600000 0

0 0 0 0 0 5760000




(B.2)

Linear Damping Matrix:

Dp(ω) =




0.413e4 0 0 0 0 0

0 0.686e3 0 −0.251e5 0 −0.114e6

0 0 0.273e5 0 −0.168e3 0

0 −0.251e5 0 0.496e6 0 0.964e5

0 0 −0.168e3 0 0.774e6 0

0 −0.114e6 0 0.964e5 0 0.288e7




(B.3)
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Restoring Coefficients:

GηRw =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 330000 0 251000 0

0 0 0 6440000 0 0

0 0 251000 0 10500000 0

0 0 0 0 0 0




(B.4)

B.0.6 Controller

Linear Quadratic State Derivative Regulator Weighting Matrices:

Q =




1/0.00000033 0 0 0 0

0 1/0.1 0 0 0

0 0 1/0.00000001 0 0

0 0 0 1/0.01 0

0 0 0 0 0




R =


0.07 0

0 6.2




(B.5)
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Appendix C

Run 3

C.0.7 Various Parameters

• Wave frequency: 0.5[rad/s]

• Wave amplitude: 1m

• Equilibrium cushion pressure p0 = 2400Pa

• Vessel Draft: 1m

• ρc0: 1.23 kg/m3

• ρa: 1.24 kg/m3

• p0: 2400Pa

• γ=1.4

• cn=0.61

• Ac=160m2

• L: 20m

• xcp: 0.7m

• lvvx =0m

• lwj,px =-12.5m
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• lwj,py =-5m

• lwj,sbx =-12.5m

• lwj,sby =5m

C.0.8 Hydrodynamic Coefficients

Added Mass Matrix:

MA =




0.735e5 0 0 0 0 0

0 0.735e5 0 −0.2514e5 0 −0.114e6

0 0 0.273e5 0 −0.168e3e4 0

0 −0.251e5 0 0.496e6 0 0.964e5

0 0 −0.168e3 0 0.774e6 0

0 −0.114e6 0 0.964e5 0 0.228e7




(C.1)

Rigid Body Mass Matrix:

MRB =




92000 0 0 0 0 0

0 92000 0 0 0 0

0 0 92000 0 0 0

0 0 0 920000 0 0

0 0 0 0 57600000 0

0 0 0 0 0 5760000




(C.2)

Linear Damping Matrix:

Dp(ω) =




0.413e4 0 0 0 0 0

0 0.686e3 0 −0.251e5 0 −0.114e6

0 0 0.273e5 0 −0.168e3 0

0 −0.251e5 0 0.496e6 0 0.964e5

0 0 −0.168e3 0 0.774e6 0

0 −0.114e6 0 0.964e5 0 0.288e7




(C.3)
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Restoring Coefficients:

GηRw =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 330000 0 251000 0

0 0 0 6440000 0 0

0 0 251000 0 10500000 0

0 0 0 0 0 0




(C.4)

C.0.9 Controller

Linear Quadratic State Derivative Regulator Weighting Matrices:

Q =




1/0.00000033 0 0 0 0

0 1/0.1 0 0 0

0 0 1/0.00000001 0 0

0 0 0 1/0.01 0

0 0 0 0 0




R =


0.05 0

0 5




(C.5)
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Appendix D

Run 4

D.0.10 Various Parameters

• Wave frequency: 0.5[rad/s]

• Wave amplitude: 1m

• Equilibrium cushion pressure p0 = 2400Pa

• Vessel Draft: 1m

• ρc0: 1.23 kg/m3

• ρa: 1.24 kg/m3

• p0: 2400Pa

• cn=0.61

• Ac=160m2

• L: 20m

• xcp: 0.7m

• lvvx =12.5m

• lwj,px =-12.5m

• lwj,py =-5m
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• lwj,sbx =-12.5m

• lwj,sby =5m

D.0.11 Hydrodynamic Coefficients

Added Mass Matrix:

MA =




0.745e5 0 0 0 0 0

0 0.832e5 0 −0.274e5 0 −0.123e6

0 0 0.194e5 0 0.106e4 0

0 −0.274e5 0 0.336e6 0 0.107e6

0 0 0.106e4 0 0.554e6 0

0 −0.123e6 0 0.107e6 0 0.323e7




(D.1)

Rigid Body Mass Matrix:

MRB =




92000 0 0 0 0 0

0 92000 0 0 0 0

0 0 92000 0 0 0

0 0 0 920000 0 0

0 0 0 0 57600000 0

0 0 0 0 0 5760000




(D.2)

Linear Damping Matrix:

Dp(ω) =




0.413e4 0 0 0 0 0

0 0.799e4 0 0.5e4 0 −0.391e4

0 0 0.235e5 0 0.277e4 0

0 0.5e4 0 0.468e6 0 −0.508e4

0 0 0.227e4 0 0.67e6 0

0 −0.391e4 0 −0.508 0 0.269e6




(D.3)
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Restoring Coefficients:

GηRw =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 330000 0 251000 0

0 0 0 6440000 0 0

0 0 251000 0 10500000 0

0 0 0 0 0 0




(D.4)

Linearized nonlinear damping used in LF model

Dln =




226 0 0

0 500 0

0 0 200


 (D.5)

Zero frequency added mass

MA0 =




0.202e6 0 0

0 0.402e6 −0.212e6

0 −2.212e5 0.77e7


 (D.6)

Zero frequency linear damping

Dp =




0.140e0 0 0

0 0.200e0 −0.449e− 1

0 −0.449e− 1 0.482e1


 (D.7)
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D.0.12 Controller

Linear Quadratic State Derivative Regulator Weighting Matrices

Q =




1/0.1 0 0 0 0

0 1/0.1 0 0 0

0 0 1/0.1 0 0

0 0 0 1/0.1 0

0 0 0 0 0




R =


0.01 0

0 0.0001




(D.8)

DP PID Feedback Gains

ki =




230 0 0

0 350 0

0 0 2600




kp =




7000 0 0

0 17000 0

0 0 260000




kd =




100000 0 0

0 250000 0

0 0 4000000




(D.9)
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Quadprog parameters

Thrust inequality matrices:

Atc =




1 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 a11 a12 0 0 0 0 0

0 a21 a22 0 0 0 0 0

0 a31 a32 0 0 0 0 0

0 a41 a42 0 0 0 0 0

0 a51 a52 0 0 0 0 0

0 0 0 a11 a12 0 0 0

0 0 0 a21 a22 0 0 0

0 0 0 a31 a32 0 0 0

0 0 0 a41 a42 0 0 0

0 0 0 a51 a52 0 0 0




(D.10)

btc =




Tmaxvv

−Tminvv
b1

b2

b3

b4

b5

b1

b2

b3

b4

b5




(D.11)
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Where the different parameters used are given by

• a11 =40000

• a12 =-10720

• b1 =3200000000

• a21 =40000

• a22 =10720

• b2 =3200000000

• a31 =-5360

• a32 =89280

• b3 =3200000000

• a41 =-69280

• a42 =0

• b4 =1385600000

• a51 =-5360

• a52 =-89280

• b5 =3200000000

The quadratic weighting matrix from the objective function is given by

G =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 10000000000 0 0

0 0 0 0 0 0 10000000000 0

0 0 0 0 0 0 0 100000000000




(D.12)
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The linear term is given by

c =




1

1

1

1

1

100000000

100000000

100000000




(D.13)

We implemented slack variables to ensure that we did not reach infeasible problems. However, those

were never used/necessary in simulations and the values of the slack variables were 0 all the time,

thus we disregarded them for the scope of this thesis. These correspond to the last three inputs in

Atc, G and c.
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Appendix E

One-pager Wave Craft Information
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Appendix F

Conference Poster From Poster

Exhibition
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COMBINED DYNAMIC POSITIONING AND OPTIMAL WAVE
FREQUENCY MOTION DAMPING ON SURFACE EFFECT SHIP

PER SONDRE SODELAND

PERSONDR@STUD.NTNU.NO

NORWEGIAN UNIVERSITY OF SCIENCE- AND TECHNOLOGY

SUPERVISOR: PROF. ASGEIR J. SØRENSEN, CO-SUPERVISOR: ØYVIND F. AUESTAD, PHD
in co-operation with Umoe Mandal

INTRODUCTION
The trend in the offshore wind industry is that the farms are located
further and further from the shore. This necessitates larger plat-
forms, with accommodation capacities, in order to perform service
and crew transfers, since conventional offshore windmill service ves-
sels are not able to travel the distance in one work day. Conventional
Offshore Supply Vessels are slow, large and expensive vessels. A
SES could be a strong alternative to such vessels. They are faster,
cheaper, and due to active motion damping controllers they could be
made significantly smaller than conventional OSVs, while still main-
taining strong seakeeping properties. There are however some ob-
stacles. Interaction with fixed offshore structure necessitates auto-
matic control over the horizontal motion trajectories of the respec-
tive vessels. Conventional DP system are used in the oil industry
in order to perform safe station keeping and low speed maneuver-
ing. These feature bow thrusters, of the tunnel- or pod type, which
are hard to fit on a SES due to the narrow bow design, which is to
reduce water resistance and the hydrodynamic loads. Instead of
such thrusters, we will investigate the possibilities of utilizing the
potential energy in the air cushion of a SES as a source for lateral
thrust, by controlling the air flow in the favoured direction. The
quick dynamics of these systems makes them suitable for damping
and control of both 1st and 2nd order motions. This thesis will pro-
pose a control system, which utilizes control of this air flow to damp
first order motions and perform station keeping, simultaneously.

Figure 1: The Wave Craft from Umoe Mandal

WHAT IS A SES?
A SES is a vessel with a twin hull configuration in combination with
an air cushion which is enclosed laterally by rigid side hulls and lon-
gitudinally by the flexible rubber bow− and stern seals. This allows
for water jet propulsion, strong directional stability and high transit
speeds (the SES 100b reached 100 knots in 1963). The vertical dy-
namics are greatly influenced by the excess cushion pressure, pu(t),
which in turn can be controlled by the outflow Qout, through the
variable leakage area, ∆Alvert and the speed of the lift fans, which
provide the airflow into the cushion, Qin. By proper control of these
inputs, the cushion pressure can be influenced in a matter so that the
vertical motions are greatly reduced.

Figure 2: Key SES structure

MATHEMATICAL MODEL

The system dynamics is comprised of the regular linear seakeeping
equations, both wave- and low frequency, and the uniform pressure
equation which describes the behaviour of the cushion pressure when
subject to external disturbances and controlled inputs. We will derive
the dynamics based on Reynolds Transport Theorem.

∂

∂t
(Bsys) =

∂

∂t

(∫

CV
βreρdV

)
+

∫

CS

βreρ(V · n)dA. (1)

From this, by conservation of mass we derive a nonlinear repre-
sentation of the pressure dynamics, which includes state dependent
passive leakage areas to account for pressure effects of large vessel
displacements in the vertical DOFs, and the lateral thrust force by
conservation of linear momentum. The pressure dynamics is given
by

r∑

i=1

Qi(µ)− (K2 + Cn,RCS

r∑

i=1

∆Ai)

√
2(p0 + µ(t)p0)

pa
=

[
−Acxcpη̇5 +Acη̇3 + b

∫ L
2

−L
2

ξ̇(x, t)dx

]
+K1(pa + µ(t)p0 + p0)

1
γ−1µ̇(t).

Denoted by the normalization cushion pressure variable µ(t) =
pu(t)−p0

p0
. The lateral vent valve thrust is given by

∑
Uvv =

∑

i

−n · cn · ρcAli
2(p0 + µ(t)p0)

ρa
. (2)

The above equations provides the external loads and controlled in-
puts in the generic vessel dynamics, given by

Mν̇ + Crb(ν)ν + CA(νr)νr +D(κ, νr) +G(η) = τ (3)

Which contains the dynamics of the vessel, when subject to the ex-
ternal body-fixed force vector τ . This is comprised of the actuator
outputs and the environmental loads. The latter are modeled by the
use of force RAOs, for the wave frequency (WF) problem, i.e.
∣∣∣F dofwave1(ωk, βi)

∣∣∣ =
√
Imwave1{dof}(k, i)2 +Rewave1{dof}(k, i)2,

∠F dofwave1(ωk, βi) = atan2(Imwave1{dof}(k, i), Rewave1{dof}(k, i)),
(4)

where
∣∣∣F dofwave1(ωk, βi)

∣∣∣ and ∠F dofwave1(ωk, βi) denotes the magnitude
and phase of the excitation force, respectively. Imwave1 and Rewave1
denotes the imaginary and real part of the RAO, which is computed
by a the numeric seakeeping program ShipX, together with the re-
maining hydrodynamic and hydrostatic coefficients used in the sim-
ulations. The model is simulated by implementing it in MATLAB and
Simulink.

CONTROL SYSTEM DESIGN
The control design is dual, i.e. we want to perform station keep-
ing and WF motion damping simultaneously. The DP- and WF con-
trollers were designed individually, as linear state- and state deriva-
tive feedback controllers, respectively. The WF- controller is given
according to

ulc = −klqsdrηWF (5)

where ulc contains the commanded leakage areas for the heave- and
sway compensation respectively. The feedback gains are computed
by a linear quadratic synthesis, by minimization of

Jlqsd =
∫∞
0
η̇lqr(t)

′Qη̇lqr(t) + u(t)′Ru(t)dt. (6)

The challenge with the WF motion damping was the highly limited
actuator capacity. We derived a method to find the necessary relative
trajectory weighting in the cost function above, in order to obtain
a 90◦ phase difference between the two inputs in the control input
vector. This is to reduce the level of mutual infliction of the respective
control objectives. The DP controller is a simple PID-type, given by

τpid(t) = −kpe(t)− kdė(t)− ki
∫ T
0
e(t)dt. (7)

The thrust allocation, i.e. the mapping from commanded body fixed
forces to actual thruster outputs/displacements, is done by present-
ing the problem as a quadratic optimization problem, on the form:

minuc∈Rrh f(uc) subject to the constraints
Atcuc ≤ btc ∈ Rq
Tuc = τhc ∈ RmLF ,

(8)
where f(uc) is the objective function, subject to minimization. We
described the thrust envelope of the respective thrusters as set of lin-
ear, implicit inequalities, which are represented in the problem by
the matrices Atc and btc. The thrust control problem, which concerns
the process of going from control output signals to actual forces and
displacements of the various actuators was done by the relation

∆Alc =
ρau

vv
c

2cnρcpu(t)
, (9)

for the vent valves, and

nwj = v−1out

(√
|uwj3d |

ρwAnozzle

)
(10)

to find the required speed of the water jet impellers. The latter also
need control of the azimuth (angle of net thrust), which was con-
trolled by the state of the deflector shield and the discharge nozzle.

RESULTS AND SIMULATIONS

All simulations were done for a generic, 90 ton, SES design.The first
plot presents the station keeping capabilities of the vessel, when sub-
ject to a wind load and constant reference position being the zero
states. The wind starts out from north-east with a 10m/s velocity, and
turns more easterly at t=500s with an increase in windspeed to 15m/s.
Some y-axis’ have been normalized due to confidentiality issues.

time[s]
0 100 200 300 400 500 600 700 800 900 1000

m

-0.1

0

0.1

0.2

0.3 North Position of o
b
: x [m]

time[s]
0 100 200 300 400 500 600 700 800 900 1000

m

-1

-0.5

0

0.5 East Position of o
b
: y [m]

time[s]
0 100 200 300 400 500 600 700 800 900 1000

ra
d

-0.05

0

0.05

0.1

0.15
Heading Angle ψ [rad]

time[s]
0 100 200 300 400 500 600 700 800 900 1000

m
2

-0.5

0

0.5

1 Directional Leakage Area [m2]

time[s]
0 100 200 300 400 500 600 700 800 900 1000

N

-5000

0

5 000

10 000
Vent Valve Thrust [N]

Figure 3: Station Keeping

The simulations of the derived model indicates that the vessel
is able to perform station keeping and heave compensating si-
multaneously, as illustrated by the figure below where the ves-
sel is subject to a constant wind load in the North-East direc-
tion, with a windspeed of 10m/s. The heave compensation con-
troller is switched on at t=250s, the heading angle is changed to
ψref = π/4 at t=500s, and once more to ψref = π/6 at t=750s.

Figure 4: Combined heave compensation and station keeping

The heave motion damping is illustrated below
for regular waves of angular frequency ωo =
1.26[rad/s]. The controller is turned on at t=150s.

Heave displacement of η
3
 x

b
[m]

100 120 140 160 180 200 220 240 260 280 300

m

-1

-0.66

0.33

0

0.33

0.66
Heave Displacement of x

b
 [m]

time[s]
100 120 140 160 180 200 220 240 260 280 300

m
/s

-1

0

1

Heave velocity of x
b
[m/s]

time[s]
100 120 140 160 180 200 220 240 260 280 300

m
2

0

0.2

0.4

0.6

0.8

1 Total leakage area A
l
 [m

2
]

The sway motion damping capabilities of the vessel is illus-
trated in the next figure. The waves are relatively small to
illustrate the effect of the controller when not subject to too
large saturation levels. The controller is turned on at t=150s.
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Figure 5: Wave frequency motion damping in sway

We have shown that station keeping of a SES is indeed possible with
the actuators and thrusters already installed and available on such
vessels. We obtain good performance, for a variety of conditions. The
water jets, and their strong thrust capabilities, plays an important role
here, but we were quite satisfied with the thrust delivering capacities
of the vent valve, indicated by the simulations. We have also shown
that it is possible to perform damping of the vertical motions and
station keeping simultaneously, and that the motion damping perfor-
mance is significantly enhanced by pointing the vessel towards the
wind, to reduce lateral forces. The damping ratio of the sway-motion
is smaller compared to the heave damping. This is due to the large
inertial forces related to the WF motions and the relatively low thrust
levels obtainable from the vent valves. However, we have shown
that the motions can be reduced by between 20-30%, dependent on
the conditions.

CONCLUDING REMARKS AND FURTHER WORK
The results of the simulations indicates that the potential of perform-
ing station keeping by the current, available actuators on a SES is
indeed large. There are some issues that need attention before this
can be done, but they are minor and should be solvable. The next
step would be to perform model tests, as there will always be un-
certainties in a model like this, and it is not unlikely that there exists
unmodeled dynamics able to affect the results. Model- or full scale
tests of the vent valve thrust behaviour has never been performed,
thus the qualitative assumptions are based solely on the results from
these simulations.
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