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Preface  

They say the devil is in the details. A problem as intricate as climate change has many details 

and many devils. But this problem has another devil also – a big one, I believe – that sits not in 

any particular detail, but in the totality of the problem. That is, in the whole that all the details 

form when they combine and interconnect in subtle ways. What may be needed to bring the devil 

to light is generally a more holistic view of the problem and proposed solutions. It is my hope 

that this thesis can contribute to this end. The thesis includes three papers examining the 

environmental costs and benefits of wind power, and one paper evaluating indirect, 

countervailing effects of greenhouse gas-mitigating measures.  

I wish to thank my supervisor, Edgar Hertwich, for his continued confidence in my abilities 

over several years and for providing me with the opportunity to pursue a doctoral degree. During 

the course of the work I have appreciated his solution-oriented view of difficult situations, his 

open-mindedness to my ideas and his supervision style which has helped me develop as an 

independent researcher. Another thank you goes wholeheartedly to my partner, Liv Ragnhild, for 

her support in times of stress and frustration and for giving me reasons to smile when I get home. 

I thank Liv Ragnhild and Kjartan for their comments on an early version of the Norwegian 

abstract for the thesis. 

Now some technicalities: The thesis is submitted in partial fulfilment of the requirements for 

the degree of philosophiae doctor at the Department of Energy and Process Engineering, 

Norwegian University of Science and Technology (NTNU). The work has been carried out at the 

Industrial Ecology Programme at NTNU and during a four-month visit at the Swiss Federal 

Institute of Technology Zurich. The research was funded by the Research Council of Norway 

(project number 186952). The work has been conducted over a four-year period (2008-2012), for 

which three year-equivalents of work have been allotted to the doctoral education and one year to 

teaching assistantship and other work. The doctoral education programme involved a research 

component and a course work component (one academic semester). 
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Abstract 

A fundamental change in the ways in which we provide energy to run our economies, an 

energy transition, is needed to mitigate climate change. Wind power is an important part of future 

global energy supply in most energy scenarios. This thesis aims to contribute to a better 

understanding of the environmental implications of energy transitions, primarily by examining 

the case of wind power. This involves new investigations of both potential negative impacts of 

wind power and the positive role of the technology in emission reduction, as well as a critical 

review of past research. Three papers on wind power are presented: a comprehensive literature 

review of life cycle assessments (LCA) of wind power, a scenario-based LCA of large-scale 

adoption of wind power, and an LCA of an offshore wind farm. A hybrid LCA methodology is 

employed in the scenario-based LCA and LCA of an offshore wind farm. Another paper is 

presented which is not concerned with wind power in particular, but takes the form of an 

evaluation of limitations of climate change mitigation literature. It helps to achieve the aim stated 

above by bringing together knowledge of indirect effects of mitigation measures, and by 

elucidating how these effects may influence the viability of proposed mitigation strategies. 

The literature review aims to take stock of insights from past research, with a particular view to 

identifying remaining challenges. A survey of results indicates 0.063 (±0.061) and 

0.055 (±0.037) kWh energy used and 20 (±14) and 16 (±10) CO2e emitted per kWh electricity for 

onshore and offshore cases. Evidence suggests strong positive effects of scale in the lower end of 

the turbine size spectrum, but is inconclusive for the megawatt range. LCAs tend to assume 

higher capacity factors than current real-world averages. Limitations of existing research are 

discussed; this includes poorly understood toxicity and resource depletion impacts, cut-off errors 

and seemingly inconsistent modelling of recycling benefits in analyses, lack of detailed 

considerations of installation and use phases, and lack of future-oriented assessments. 

The scenario-based LCA is an initial attempt to integrate global energy scenario analysis and 

LCA in order to assess the economy-wide environmental costs and benefits of wind power. The 

study estimates aggregated global emissions caused by wind power toward 2050, following the 
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International Energy Agency’s BLUE scenarios. It takes into account replacement at end-of-life 

and changing electricity mix in manufacturing, and distinguishes emissions occurring prior to, 

during and after the useful life of wind turbines. Results indicate emissions of 2.3 

(3.5) gigatonnes CO2e from wind power in 2007-50 in a scenario with 12% (22%) share of wind 

in electricity supply in 2050. A second key element of the analysis is that life cycle inventories 

for fossil fuel-based electricity are used to evaluate emissions savings from wind power; the 

evaluation is performed on the assumption that additional wind electricity, compared with a 

baseline, displaces fossil fuel electricity. Results suggest that emissions savings grossly exceed 

emissions caused by wind power, and thus confirm emission benefits of wind power. Uncertainty 

and limitations in scope of analysis need to be borne in mind when interpreting results.   

The LCA of an offshore wind farm places special emphasis on marine vessel activities and 

supply of spare parts. The proposed Havsul I wind farm, Norway is used as a model. Total carbon 

footprint is estimated to 34 grams CO2e per kWh. Results indicate greater contributions from 

vessels and spare parts than has previously been thought: Offshore activities during installation 

and use phases contribute 25-35% to totals for several impact categories (e.g., climate change, 

acidification) and 43% for photochemical oxidant formation. Supply of spare parts causes 7% of 

climate impacts and 13% of freshwater ecotoxicity.  

Assembling evidence from different research fields, the discussion paper identifies important 

simplifying assumptions in current climate change mitigation assessments. An argument is 

presented that because simplifying assumptions represent a systematic neglect of indirect, 

countervailing effects of greenhouse gas-mitigating measures, they lead to overly optimistic 

assessments, which then become a basis for unrealistic technology optimism in climate policy.  

For the thesis as a whole, the most significant contribution may be the contribution to moving 

beyond a single-minded concentration on static, unit-based assessments in wind power LCA 

research; another main contribution is the use of a hybrid LCA methodology to assess the 

environmental impacts of large-scale adoption of wind power and an offshore wind farm. By 

means of LCA studies of wind power and a wider evaluation study of indirect effects of climate 

change mitigation measures, the thesis illustrates the significance of taking a holistic view in 

evaluating the environmental implications of energy technologies and transitions.
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Utvidet sammendrag  

[in Norwegian] 

Klimaproblemet fordrer en radikal omlegging av den globale energiforsyningen. Vindenergi er 

fornybar og av mange regnet som en viktig del av løsningen. Med denne avhandlingen håper jeg 

å bidra til økt forståelse av hvilke konsekvenser store energiomlegginger kan ha for miljøet. 

Bidraget jeg tar sikte på å gi består primært i å utforske miljøfordeler og -ulemper ved vindkraft. 

Med «fordeler» tenker jeg her på den positive rollen vindkraft kan spille i reduksjon av utslipp; 

«ulemper» innbefatter negative miljøbelastninger gjennom hele livsløpet til vindkraftanlegg. 

Avhandlingen inneholder fire delstudier, presentert hver for seg i fire artikler. Tre av disse 

omhandler vindkraft: en sammenfattende framstilling av tidligere livsløpsvurderinger av 

vindkraft, en framtidsorientert livsløpsvurdering av global vindkraftutbygging og en 

livsløpsvurdering av en havvindpark. Den siste (fjerde) delstudien vurderer miljøaspekter ved 

store energiomlegginger generelt; den knytter sammen kunnskap om bivirkninger av klimatiltak 

med det mål for øyet å si noe om klimapolitiske følger av at bivirkninger i liten grad tas hensyn 

til i rådende modeller og tenkemåter. 

Første delstudie 

Den sammenfattende framstillingen kartlegger og sammenstiller omfang av, antagelser i og 

resultater fra tidligere studier, vurderer kvaliteten og relevansen av funn og gir anbefalinger for 

videre forskning. En kartlegging av resultater indikerer, for vindparker til henholdsvis lands og 

havs, at 0,063 (±0,061) og 0,055 (±0,037) kWh energi blir brukt og 20 (±14) og 16 (±10) CO2e 

sluppet ut for hver kWh strøm levert. Effektstørrelse < 100 kW per turbin gir størst 

miljøbelastning per kWh; kartleggingen viser imidlertid ingen tydelig skalaeffekt for > 1 MW. 

Livsløpsvurderinger antar generelt høyere utnyttelsesgrad av installert effekt enn samlet 

utnyttelsesgrad for faktiske vindparker. 
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Potensielle mangler ved den eksisterende forskningen inkluderer: i) sannsynligvis betydelig 

undervurdering av miljøbelastninger i de fleste studier (fordi studiene ikke bruker hybride 

inventarregnskap); ii) tilsynelatende inkonsekvent modellering av materialgjenvinning i flere 

studier; iii) vurderinger av installasjons-, drifts- og vedlikeholdsfaser kan være overforenklete; iv) 

framtids-/endringsorienterte studier er sjeldne, men kan gi nye innsikter; og v) aspekter ved 

utslipp av miljøgifter og bruk av ikke-fornybare mineralressurser er i liten grad undersøkt og 

forstått.  

Andre delstudie 

Den framtidsorienterte livsløpsvurderingen tar initiativ til å løfte livsløpsanalyse fra mikro- til 

makronivå. Studien utforsker to hovedspørsmål: Hvor store utslipp vil en storstilt global 

utbygging av vindkraft medføre? Og hvordan kan livsløpsperspektivet virke inn på forventninger 

om kutt i utslipp på grunn av vindkraft? Analysen anvender hybride inventarregnskap og tar 

hensyn til framtidige endringer i strømsammensetning, mer effektiv vindutnyttelse og at 

utbygging i økende grad skjer til havs. Utskifting av komponenter etter endt levetid er inkludert.  

Resultatene indikerer at 2,3-3,5 milliarder tonn CO2e vil slippes ut som følge av bygging og 

drift av vindkraftanlegg sammenlagt i perioden 2007-2050, i scenarioer der vindkraft leverer 12-

22 % av global elektrisitet i 2050. 

Reduserte utslipp er beregnet ut fra en 

antakelse om at ekstra vindkraft, 

sammenlignet med en referansebane, 

erstatter en årsspesifikk miks av kraft fra 

fossile brensler og gir utslippsreduksjon. 

Ifølge resultatene tilsvarer de totale 

klimagassutslippene forårsaket av 

vindkraft (lilla kurve i figur) 5 % av de 

direkte utslippene fra termiske kraftverk 

som blir erstattet (blå kurve) – dette gjelder altså utslipp som finner sted på selve kull-, gass- og 

oljekraftverkene. Videre er klimagassutslippene fra utvinningen og bearbeidingen av fossile 

brensler som erstattes (grønn kurve) større enn de totale utslippene fra vindkraft. De samme 
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hovedkonklusjonene kan trekkes for NOx, gasser med forsurende effekt og gasser som fører til 

bakkenær ozon. 

Resultatene bekrefter at det vil være miljøfordeler ved at vindkraft erstatter fossil kraft. 

Usikkerhet og analysens begrensete omfang må imidlertid tas i betraktning.  

Tredje delstudie 

Livsløpsvurderingen av havbasert vindkraft vier spesiell oppmerksomhet til bruken av marine 

fartøyer ved installasjon, drift og vedlikehold, og behov for å erstatte deler; dette fordi 

behandlingen av disse aspektene i tidligere forskning vurderes som mangelfull. Studien anvender 

hybrid inventaranalyse. Den planlagte havvindparken Havsul I i Møre og Romsdal brukes som 

modell.   

Resultatene tilsier at for hver kWh som leveres vil 34 g CO2e slippes ut; av denne mengden 

bidrar selve vindturbinene med 32 %, fundamentene 18 % og kabling 7 %. Analysen leder fram 

til større relative bidrag fra marine fartøyer og utskifting av deler enn hva som er funnet i 

tidligere studier: Operasjoner som foregår til havs forårsaker 25-35 % av den totale 

miljøbelastningen for flere av indikatorene (inkludert klimagassutslipp og gasser med forsurende 

effekt) og 43 % for kildene til bakkenær ozon. Produksjon av utskiftingsdeler forårsaker på sin 

side 13% av utslippene av miljøgifter til ferskvann. Mer forskning er nødvendig for å klarlegge 

hvilken betydning skip og erstatningsdeler har for miljøkonsekvensene av vindkraft. En 

sammenligning mellom vindkraft og gasskraft med karbonfangst og -lagring antyder at vindkraft 

er mer klimavennlig. Vindkraft ser på den annen side ut til å medføre mer utslipp av miljøgifter. 

Fjerde delstudie 

Delstudien samler kunnskap om indirekte virkninger av klimatiltak ved hjelp av et bredt 

litteratursøk – litteratursøket spenner over flere forskningsfelt, inkludert livsløpsvurderinger, 

energitilbakeslag og utslipp innbakt i internasjonal handel. Kunnskap om indirekte effekter av 

klimatiltak evalueres og brukes til å belyse svakheter i rådende teknologimodeller og studier av 

energiframtider, slik som klimavernscenarioene til Det internasjonale energibyrået (IEA). Ett 

eksempel på en slik svakhet er at modellene bare i begrenset grad fanger opp tilbakeslagseffekter: 
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Økt energieffektivitet fører typisk til redusert pris for en energitjeneste, og dermed økt 

etterspørsel etter tjenesten og/eller mer penger tilgjengelig for annet forbruk. Slik kan 

effektivitetsforbedringer indirekte stimulere til nytt forbruk og nye utslipp. Et annet eksempel er 

at modellene ikke fanger opp at energiomlegginger i seg selv medfører utslipp: Andre delstudie i 

denne avhandlingen kommer eksempelvis fram til anslagvis 2-3 milliarder tonn CO2e på grunn av 

vindkraft i 2007-2050.  

Studien påstår at modellberegninger leder til overoptimistiske beskrivelser fordi forenklinger i 

rådende teknologimodeller representerer en systematisk utelatelse av indirekte, gjerne skjulte 

effekter som de facto vanskeliggjør klimatiltak eller oppveier direkte gevinster av klimatiltak. 

Beskrivelsene gir grobunn for urealistisk teknologioptimisme i global klimapolitikk.  

Vitenskapelig betydning 

Det mest betydelige tilskuddet til forskningen som omhandler miljøkonsekvenser av 

energiteknologier er kanskje den framtidsorienterte livsløpsvurderingen av vindkraft presentert i 

den andre delstudien. Studien løfter, under gitte forutsetninger og forenklinger, livsløpsanalyse av 

vindkraft fra mikro- til makronivå, og inkluderer også en integrert livsløpsvurdering av 

forurensning som unngås. Etter min vurdering er dette originale bidrag til forskningslitteraturen 

som studerer miljøeffekter av vindkraft i livsløpsperspektiv, da tidligere arbeider nesten 

utelukkende studerer miljøbelastning forbundet med én enhet elektrisitet på mikronivå og i et 

statisk rammeverk. Ved å ta omfang av utbygging og enkelte endringer over tid (især 

strømsammensetning i produksjon) med i vurderingen, bidrar studien med nye innsikter om 

miljøfordeler og -ulemper ved vindkraft. Et annet vesentlig tilskudd er bruken av en hybrid 

metode for inventaranalyse til å studere miljøkonsekvenser av storstilt vindkraftutbygging (andre 

delstudie) og havbasert vindkraft (tredje delstudie). Tidligere studier anvender i overveiende grad 

ikke-hybride metoder. 

Avhandlingen som et hele illustrerer, ved hjelp av livsløpsevalueringer av vindkraft og en 

diskusjonsartikkel som tydeliggjør relevansen av indirekte effekter av miljøtiltak, betydningen av 

helhetlige tilnærminger til miljø- og ressursproblemer. 

 



 

1 Introduction 

A fundamental change in the efficiency and composition of energy supply and demand is 

needed to address some of the greatest environmental and resource concerns of today, notably 

man-made climate change and security of energy supply. Some basic facts about what such a 

transition to a different energy supply will look like can be stated already: We know the transition 

must involve a gradual shift away from fossil fuels and towards renewable energy sources, and 

must deliver a drastic reduction in energy-related carbon dioxide emissions. What is too little 

understood, however, are the real-world environmental consequences of proposed energy 

transitions, taking into consideration the entire life cycles of technologies. To take an example: 

Despite that wind turbines need no other fuel than the wind – that is, a renewable energy flux that 

exists in ample quantities – to operate, fossil fuel-burning occurs in producing the steel that goes 

into the wind turbines, and in numerous other activities needed to manufacture, install and 

maintain the operation of wind power plants. Furthermore, harmful emissions occur that are not 

necessarily due to fossil fuel use; one example is releases of toxic substances in connection with 

mining. Keeping a life cycle perspective is pivotal in trying to understand the environmental costs 

and benefits of wind power, and in allowing for consistent comparisons between wind power and 

alternatives.  

This thesis aims to contribute to a better understanding of the environmental implications of 

energy transitions. In order to achieve this aim, the thesis presents three papers exploring the 

environmental costs and benefits of wind power in a life cycle perspective. The three papers, 

referred to by the roman numerals I-III in this thesis, comprise an in-depth literature review of 

life cycle assessments of wind power (paper I), a scenario-based life cycle assessment of large-

scale deployments of wind power (paper II), and an LCA of an offshore wind farm with a 

detailed investigation of the role of ships and spare parts (paper III). In addition, and as a 

secondary means to achieve the aim stated above, a fourth paper is presented which evaluates 

important limitations of contemporary climate change mitigation assessments (paper IV). This 

last paper helps to achieve the aim stated above by bringing together knowledge of indirect 
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effects of mitigation measures, and by elucidating how these effects may influence the viability 

of proposed mitigation strategies. 

The remainder of this introduction chapter is structured as follows: Section 1.1 introduces the 

challenge of achieving sustainability, while section 1.2 introduces wind power as a potentially 

important part of sustainable energy supply. In section 1.3 I argue that holistic environmental 

assessments are required to obtain a sound basis for developing energy strategies. Research aims 

and objectives of the current work are described in section 1.4. 

1.1 The challenge of sustainability 

Human activities are altering the planet Earth. We are transforming land (Haberl et al. 2007; 

Vitousek et al. 1997), changing the abundance and distribution of species (Butchart et al. 2010; 

MEA 2005), and interfering with biogeochemical cycles (Vitousek et al. 1997) to such an extent 

that some scientists speak of the ‘Anthropocene’ as a new geological era (Crutzen 2002; 

Zalasiewicz et al. 2010). It is now abundantly clear that human-induced global environmental 

change threatens to fundamentally change the climatic conditions to which the human civilization 

is adapted, and to deteriorate the ecological and physical basis on which all human activities rely. 

The consequences for human life, health and prosperity if problems go unabated are likely to be 

grave or – given the risk of encountering abrupt and unpredictable global environmental change – 

even catastrophic (Barnosky et al. 2012; Hansen et al. 2008; IPCC 2007a, 2007c; MEA 2005; 

Richardson et al. 2009; Rockström et al. 2009a; Rockström et al. 2009b; Steffen et al. 2005).  

Perhaps chief among the environmental concerns is the concern about man-made climate 

change. Human activities are causing the build-up of carbon dioxide and other gases absorbing 

infrared radiation in the atmosphere, thus altering the planetary energy balance. The result is 

global warming: Reportedly, nine of the ten warmest years since the year 1880 have occurred 

after the year 2000 (Hansen et al. 2012), and a global temperature rise of 6 °C or more above pre-

industrial level does not seem an unlikely scenario under a business-as-usual development (IEA 

2011a). Potential impacts of global warming include an overall increase in human morbidity and 

mortality due to increased number of extreme weather events (e.g., heat waves, storms), an 
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overall increase in the number of people exposed to water stress, reduced quantity and quality of 

food supply (due to, among other factors, loss of coastal wetlands and increase in areas affected 

by drought), and degradation of vulnerable ecosystems (Richardson et al. 2009; IPCC 2007c). 

Carbon dioxide emissions from the combustion of fossil fuels contribute about 60% of total 

global emissions of greenhouse gases (IEA 2011a; IPCC 2007b); mitigating energy-related 

carbon dioxide emissions is a prime motivation for shifting away from conventional fossil and 

towards low-carbon energy systems. 

Another major concern is degradation of ecosystem services and loss of diversity of life on 

Earth. Humans are largely dependent on functioning ecosystems to exist and thrive, owing to the 

services ecosystems provide, such as food supply, water purification and climate regulation 

(MEA 2005). Of the 24 categories of ecosystem services examined in the Millennium Ecosystem 

Assessment, 15 are being degraded or used unsustainably (MEA 2005). The current species 

extinction rate is probably at least two orders of magnitude higher the natural background rate, 

and the future extinction rate (due to pressures occurring up to 2050) are expected to be at least 

one order of magnitude higher than current rate (MEA 2005). Butchart et al. (2010) find that 

most indicators of global biodiversity are in decline, the rates of decline are generally not 

decreasing, and pressures on biodiversity are increasing. Barnosky et al. (2011) warn that a new 

mass extinction event – the sixth in 540 million years – may be under way. Energy use is 

currently not a dominant driver for pressures on biodiversity – these pressures are more related to 

food supply and agriculture – but future increased utilization of biomass for energy purposes will 

interface with the biodiversity loss problem (MEA 2005; UNEP 2010a). Biodiversity loss is not 

addressed as an impact category in this thesis, but is relevant as part of the context – for 

discussions in paper IV in particular, and also because linkages exist between types of pressures 

or impacts that are addressed in the thesis and biodiversity loss (for example, climate change is 

anticipated to become a more important driver for biodiversity loss in the future).  

Concerns about an array of other environmental problems exist as well (MEA 2005; UNEP 

2010a; Steffen et al. 2005; Rockström et al. 2009b). Many of these concerns are related to 

releases to the environment of substances that cause toxic effects to humans or organisms; 

examples include emissions of smog-forming gases, heavy metals and persistent organic 

pollutants, and nuclear wastes. Other concerns arise from pollution (of nitrogen or phosphorus) 
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that basically fertilizes natural ecosystems, generally with undesirable effects. If we include also 

availability of natural resources in the account, important concerns include depletion of abiotic 

resources (fossil fuels, metals) and biotic resources (in particular, fish and wood). Many of these 

problems are connected, in one way or the other, with energy use or energy technologies: 

Sometimes there is a direct and easy identifiable connection, such as between nuclear energy and 

nuclear waste, or between coal-fired power plants and emissions of mercury; other times the 

connections are more subtle or difficult to identify, such as when mining of steel that goes into a 

wind turbine entails leakages of heavy metals to ground water. Environmental impact categories 

that are (variably) addressed in the life cycle assessment studies of wind power presented in this 

thesis cover a fair share of the environmental concerns outlined here. 

1.2 Energy solutions: the case of wind power 

Over the past decades, wind power has established itself as a steadily growing and spreading 

source of electricity (figure 1; Kaldellis and Zafirakis 2011), recently surpassing bio to become 

the second most important source, next to hydro, of world renewable electricity (IEA 2011b). 

What is more, current expectations are that the growth in wind power markets seen so far is only 

a beginning and that in coming decades there will be a massive expansion, especially under 

scenarios involving significant reductions in greenhouse gas emissions: For example, EU 

member states’ action plans project wind power capacity will increase from 40 GW in 2005 to 

214 GW in 2020, providing 13% of EU combined electricity in 2020 (figure 2a; Beurskens et al. 

2011). At the global level, a survey of results from climate change mitigation scenarios produced 

by energy-economic and integrated assessment models suggest a share of wind to total world 

electricity of 10% (5-24%) in 2030 and 13% (6-25%) in 2050, looking at the median values 

(interquartile ranges) of surveyed results for the most stringent mitigation scenarios (Krey and 

Clarke 2011) – the corresponding real number in 2007 was 0.9% (IEA 2010a). 

Figure 2b shows the electricity production from wind in one long-term climate change 

mitigation scenario, the BLUE Map scenario of the International Energy Agency (IEA). In this 

scenario, which is the least-cost mitigation alternative in IEA (2010a), wind supplies 12% of 
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world electricity in 2050. Another alternative in IEA’s BLUE scenarios family, BLUE hi REN, 

includes more renewables and may be more representative if ambitious carbon capture and 

storage deployment pathways in BLUE Map are not achieved in practice. In BLUE hi REN, wind 

power provides 22% of world’s electricity needs in 2050 (IEA 2010a) (not shown in figure 2).  

 Figure 1. Global cumulative installed wind power capacity by region for the years 2006-2011. 
Note: Based on data from GWEC (2007-2011, 2012). Figures for the year 2011 are provisional. Caution is needed in 
interpreting capacity figures for China, as about 25% (IEA 2011b) or 30% (Yang et al. 2012) of installed capacity by 
the end of 2010 and 28% by the end of 2011 (Qi 2012) was not connected to the grid.  

 
Figure 2. Scenarios of electricity production from onshore and offshore wind power for (a) European Union member 
states (according to policy action plans; years 2010-2020) and (b) world (BLUE Map scenario; 2010-2050). 
Note: European Union (a): figures represent the aggregate of projections published by individual member states in 
conjunction with the Renewable Energy Directive (Beurskens et al. 2011). World: figures for the years 2030 and 
2050 are from the least-cost climate mitigation scenario (BLUE Map) in IEA (2010a). Numerical values in stacked 
columns (white font colour) give the relative shares of onshore and offshore production respectively.  

Given a limited availability of suitable space on land and vast wind resources offshore (Wiser 

et al. 2011), in the future wind power development is expected to increasingly take place in ocean 
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waters. This is illustrated by figure 2 by the examples of EU policy action plans (towards 2020) 

and IEA’s global BLUE Map scenario (towards 2050). In the case of BLUE Map, one third of 

electricity supply from wind in 2050 comes from offshore installations (figure 2b).  

1.3 A need for holistic assessments 

To study something holistically means to study wholes rather than parts, or systems rather than 

system components. At the core of holistic thinking lies a recognition that parts are 

interconnected, and an idea that the whole is only explicable – or can be made more explicable – 

if firstly, all relevant parts are considered, and secondly, if interconnections between parts are 

properly identified and understood. Consider, for example, that numerous activities or operations 

(parts) are necessary to facilitate the delivery of a certain product, and that together these 

activities and operations may be viewed as comprising a product system (whole). The 

environmental implications of using a product cannot be fully understood without considering the 

product system as a whole, and fair comparisons between products cannot be made without 

consistent evaluations of the respective product systems. In another interpretation, a number of 

environmental impact indicators (parts) can together determine overall sustainability performance 

(whole) of a product. Environmental evaluations that do not take into consideration all types of 

environmental concerns are incomplete. Other interpretations can be made as well: The use and 

development of different technologies (parts) over time are intimately interconnected, forming 

clustered developments (whole), and behavioural factors and technological factors (parts) mix 

and contribute to determining the use of technologies (whole). 

In the context of energy transitions and the environment, holistic assessments may be valuable 

by providing a fuller picture of environmental implications of proposed solutions, and in 

illuminating causality relations which might otherwise escape attention. In more concrete terms, 

holistic assessments are important for or can be put to use in: i) making fair and consistent 

comparisons between technologies; ii) developing system designs and strategies at technology or 

industry levels as well as on a macro (societal) level; and iii) identifying barriers to, or factors 

that are prerequisite for, wanted developments. One could say that, ultimately, the goal is to avoid 



Section 1.3   A need for holistic assessments 

7 
 

problem shifting – which may occur, inter alia, from one part of a product system to another, 

from point in time to another, or from one environmental pressure to another – and instead: to 

realize true problem solving at a system-wide level. 

As I see it, four factors underline the importance of taking a holistic approach to evaluating 

energy technologies and transitions, and may be summarized in four words: depth, breadth, 

severity and urgency. Depth points to that many of the problems are deep-rooted, in the sense that 

they are fundamentally linked with dominant technologies, long-lived infrastructures and human 

needs and lifestyles in modern societies (Grübler et al. 1999; Hertwich and Peters 2009; Lenzen 

et al. 2012; Moe 2010; Steinberger et al. 2012; UNEP 2010a; Unruh 2000, 2002), and as such 

cannot easily be solved by quick technological fixes. Breadth refers to the range of energy-related 

global environmental problems, severity to the potentially grave consequences on the lives and 

well-being of humans (section 1.1). Urgency is a reference to the failure to address important 

problems so far (notably, climate change and biodiversity loss), and the need to achieve real 

mitigation soon if the risk of large and unpredictable environmental change is to be kept at an 

acceptable low level (Barnosky et al. 2012; Meinshausen et al. 2009; Rockström et al. 2009a; 

UNEP 2010b). 

Industrial ecology 

Industrial ecology is one research field which takes a holistic view of environmental concerns. 

The term ‘industrial ecology’ was first used by Frosch and Gallopoulos (1989), envisioning 

future ‘industrial ecosystems’ that function in the same way as biological ecosystems: the waste 

of one industrial process (in biological ecosystems: organism) serves as raw material for another 

process (organism), and this principle is implemented universally so that useful materials 

(nutrients) circulate internally in the system, and exchanges with the external environment are 

minimized. 

In my interpretation, industrial ecology is the study of the human appropriation and 

transformation of Earth’s resources, of the discharges to the environment resulting from such 

transformations, and of the effects on Earth’s life-supporting systems. Industrial ecology seeks 

system-wide solutions to environmental problems, recognizing that consumer activities, industrial 

activities, environmental pressures and environmental impacts are interconnected through 
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complex causality chains. A central feature of industrial ecology is that aspects of environmental 

problems are approached from different disciplinary perspectives, using elements of engineering, 

natural and social sciences. Life cycle assessment is a central method in industrial ecology 

research and is introduced in chapter 2.  

1.4 Research aims 

In the preceding sections I have attempted to introduce part of the concerns about human-

induced global environmental changes, chief among which in my eyes is the problem of man-

made climate change. Further, I have briefly explained why an energy transition – that is, a 

fundamental change in the ways in which we provide energy to run our economies – is needed to 

mitigate climate change, and I have noted that wind power is an important part of future global 

energy supply in most energy scenarios. Finally, I have made the case that a holistic view of 

energy technologies and how those technologies relate to environmental change needs to be part 

of the basis on which energy strategies are developed. This brings me to the overall aim of this 

thesis, which is to contribute to a better understanding of the environmental implications of 

energy transitions by, primarily by examining the environmental impacts caused by wind power 

technology and large-scale deployments of wind power (papers I-III), and secondarily by means 

of a general evaluation of limitations of climate change mitigation literature (paper IV). 

Individually, the papers set out the following aims:  

i) To take stock of insights from recent life cycle assessment studies of wind power, with 

a particular view to identifying potentials for improvement and specific needs for 

research, by means of an in-depth literature review (paper I; treated in section 3.1). 

ii) To make an initial attempt to reconcile top-down integrated assessment scenario 

analysis and life cycle assessment in order to assess economy-wide environmental costs 

and benefits of wind power expansion (paper II; section 3.2). 

iii) To assess the life cycle environmental impacts of an offshore wind farm, and to include 

in the assessment a detailed investigation of the importance of ships and spare parts 

(paper III; section 3.2). 
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iv) To evaluate important simplifying assumptions in climate change mitigation 

assessments in the literature, and present part of the case that assessments are the basis 

of unfounded technology optimism in world climate policy (paper IV; chapter 4). 

An explanation is warranted on the use of the term ‘case studies for wind power’ to describe 

papers I-III. Merriam-Webster’s (2008) dictionary defines a case study as: 

an intensive analysis of an individual unit (as a person or community) 

stressing developmental factors in relation to environment 

When describing papers I-III as case studies, I think of wind power technology or wind power 

system as the individual unit defining a case study – I do not mean to refer to individual projects 

or applications. Indeed, wind power is one technology (one case) in the set of proposed 

technological solutions to the problem of man-made climate change.  

1.5 Structure of thesis 

In the remainder of the thesis, I first present background theory of LCA in terms of conceptual 

basis and prevailing methodological approaches (chapter 2). Next in chapter 3, I give summaries 

and discussions of each of papers I-III. These papers share a common topic, the life cycle 

environmental impacts of wind power, but approach the topic differently. Paper IV takes the form 

of a wider evaluation and argument that unrealistic technology optimism exists in assessments 

that support world climate policy; a précis of the main points of the argument is provided in 

chapter 4. Presentations in chapters 3 and 4 draw on material presented in the papers, but also 

give new substance in terms of elaborations of selected issues, and new discussions. The final 

discussion presented in chapter 5 includes an evaluation of the research contribution of the thesis 

as a whole, and a discussion of the environmental credentials of wind power in light of the 

current work. Chapter 5 also serves the function of concluding the thesis. Papers I-IV, together 

with supplementary notes and information, are included in the appendices.   





 

2 LCA: conceptual basis and 

methods 

Life cycle assessment (LCA) may be defined as the quantification of environmental pressures 

instigated by the delivery of or demand for a product or service, and the assessment of this 

product or service based on the quantified environmental pressures. For the criteria assessment in 

LCA to be meaningful and credible, LCA analysts must strive to achieve extensive coverage of 

activities arising from or necessitated by the product or service throughout its lifetime, from raw 

material acquisition through to waste handling. Together these activities make up a product 

system.  

LCA usually comprises two quantitative stages. In the inventory analysis stage, the practitioner 

makes a systematic mapping of relevant activities and the environmental loads directly generated 

in these activities (with reference to the matrix representation introduced later in section 2.1, 

construct A, y and F). Also part of the inventory analysis is the calculation of environmental 

pressures attributable to the product or service under study (section 2.1: calculate e). In the 

impact assessment, inventory analysis results at the level of environmental pressures are 

converted into environmental impact category indicators (calculate d). As is typical of assessment 

work, LCA should also include a proper definition of the goal and scope and critical 

interpretation of results. A broad review of LCA methods and practices is provided in Finnveden 

et al. (2009); other useful background literature includes Hauschild (2005), ISO (2006),  

Pennington et al. (2004), Rebitzer et al. (2004), and Suh and Huppes (2005).  

In the following sections, I first introduce the basic mathematical framework for LCA using 

matrix representation of product system (section 2.1). Next, in section 2.2 I give a brief 

description of prevailing techniques for life cycle inventory quantification.  
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2.1 Mathematical framework 

I here limit the presentation to the case where all interrelationships between activities in the 

product system, as well as between activity levels and environmental loads and impacts, are 

assumed to be linear – this is a typical assumption in LCA (Pennington et al. 2004; Rebitzer et al. 

2004). Under the assumption of linearity, the product system may be represented by a set of 

matrices and analysed through matrix operations. I here use the matrix notation of input-output 

analysis (Miller and Blair 1985; UN 1999) to describe the LCA model mathematically, following 

Strømman and colleagues (Strømman et al. 2006; Strømman et al. 2009). 

In an LCA model, interrelationships between activities that make up a product system can be 

expressed mathematically by 

x Ax y  (1) 

where y is a column vector representing the demand that is imposed on the system (e.g., to 

deliver one unit of electricity from wind power), and x a column vector giving the total activity 

levels induced by the demand (e.g., total combustion of coal in coal-fired power stations that 

occur as a consequence of the demand for one unit of wind electricity). The direct requirements 

matrix A holds information on relations between activities. In A, the element in row i and column 

j represents the direct requirement for activity i needed for every unit of activity j; for example, 

direct requirement for electricity (i) in steel manufacturing (j). There are no principal restrictions 

on mixing of physical and monetary units in A (Weisz and Duchin 2006).   

Further, let F be a matrix of environmental load intensities (e.g., carbon dioxide directly 

emitted by a coal-fired power plant) and C a matrix of characterization factors (e.g., global 

warming potential of carbon dioxide). Solving equation (1) with respect to x and left multiplying 

with C and F yields a column vector d of total impact indicator values: 

1( )d Ce CFx CF I A y  (2) 

e is a column vector containing life cycle inventory analysis results in terms of environmental 

pressures (loads). I is the identity matrix. 



Section 2.2   Methods for life cycle inventory 

13 
 

2.2 Methods for life cycle inventory 

This section is divided into three subsections. The first two subsections treat the two prevailing 

approaches to life cycle inventory (LCI) analysis of product systems, process-based LCI and 

input-output-based LCI. Both approaches have a fairly long history of application in resource and 

environmental assessments: the emergence of process-based LCA may be traced back to energy 

analyses of industrial systems in the 1970s (e.g., Boustead and Hancock 1979), and input-output 

analysis began to be used at around the same time to study the energy required to supply goods 

and services (e.g., Bullard and Herendeen 1975). The combination of the two techniques in a 

hybrid approach is dealt with in the last subsection. 

Process-based LCI 

Process-based LCI models are constructed using a bottom-up type of thinking, and generally 

define and describe activities in physical terms – in this context, ‘activities’ in the direct 

requirements matrix A may be thought of as processes. As is characteristic of bottom-up 

modelling approaches, process-LCI facilitates the use of data that are specific to the individual 

operations that are modelled; hence it has the potential to support detailed analyses and achieve 

high levels of specificity. The one big disadvantage, on the other hand, is that process-LCI 

models are generally very incomplete representations of real product systems (Lenzen and Dey 

2000; Majeau-Bettez et al. 2011; Strømman et al. 2006; Suh and Huppes 2005); essentially, this 

issue occurs because there is a natural limit to how many individual operations that can be taken 

into account in a bottom-up approach. Literature that attempts to quantify the cumulative 

importance of missing elements in process-LCIs is inconclusive, but tends to find that process-

based approaches fail to account for 30% or more of total inventories (Majeau-Bettez et al. 2011). 

Research suggests that typical process-LCAs of renewable power generation underestimate 

impacts with 50% or more (Crawford 2009; Wiedmann et al. 2011; Zhai and Williams 2010).  

Input-output-based LCI 

Input-output (IO) based LCI models are top-down representations of economies, holding 

information on transactions between economic sectors and, variably, pollution and resource use 
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that occur in the sectors (Miller and Blair 1985; UN 1999). IO-based models operate at the level 

of economic sectors; ‘activities’ in the direct requirements matrix A may be thought of as sectoral 

activities. While the sector resolution is generally too coarse for making product-level 

assessments, input-output modelling has found extensive application in studying how different 

types of final demand can be linked with pollution or resource use at a macro level (e.g., 

Hertwich and Peters 2009, Lenzen et al. 2012; literature reviews are available in Hertwich 2011 

and Wiedmann 2009). Another application is in hybrid LCI modelling, which is dealt with next. 

Hybrid LCI 

Hybrid LCI models aim to combine process-LCI and IO-based LCI in such a way that the 

advantages of both approaches – that is, the high precision level of process-LCI and the extensive 

coverage of product systems facilitated by IO-based LCI – is exploited. In order to achieve this, 

process-LCI should be used to model important activities, and IO-based LCI to model activities 

that would otherwise be omitted. Different techniques have been proposed or used in the 

literature to fuse together process-based and IO-based perspectives in a way that leads to 

compatible interaction, such as tiered (Strømman et al. 2009), input-output-based (Suh et al. 

2004), integrated (Suh et al. 2004), waste input-output (Nakamura and Kondo 2002; Kondo and 

Nakamura 2004) and path exchange (Lenzen and Crawford 2009; Treloar 1997) hybrid analysis.  

Differences among hybrid LCI techniques is outside the scope of this presentation, but it may 

be noted that the unit-based analyses performed in papers II and III fall into the category of tiered 

hybrid analysis. In essence, this means that process-based and IO-based models are linked by 

adding IO-based inventory elements to selected processes in the process-based model (Anf in 

equation 3). The decomposition of the direct requirements matrix A into sub-matrices in 

equation (3) reveals the structure of the tiered hybrid LCA model employed in this work 

(Strømman et al. 2006).  

0 0
0

0

ff

pf pp

nf nn

A
A A A

A A
 (3) 
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Index f denotes ‘foreground’; Aff represents linkages between processes that are specific for the 

present work. Index p denotes ‘process-LCA database’; App represents linkages between generic 

processes defined in an LCA database. Index n denotes ‘input-output’; Ann represents linkages 

between economic sectors described in an IO-based model. Accounts of methods used in 

papers II and III are provided in the actual papers and supplementary information. 

 





 

3 Environmental implications of 

wind power deployment 

Here I present papers I-III, all of which are concerned with the life cycle environmental 

impacts of wind power. The papers are dealt with in turn in sections 3.1-3.3.  

3.1 Paper I: Literature review 

Rationale 

The literature abounds with LCAs of wind power. It is known that results differ appreciably 

across studies, and the reasons for the variability are often difficult to disentangle (Kubiszewski 

et al. 2010; Raadal et al. 2011; Wiser et al. 2011). The large availability of studies combined with 

large and often unexplained variability in results pose a challenge for those who seek to orientate 

themselves in the literature, and may ultimately limit the real or perceived value of the research. 

In such circumstances the need for literature reviews is particularly apparent. 

Previous literature reviews (Lenzen and Munksgaard 2002; Kubiszewski et al. 2010; Raadal et 

al. 2011; Wiser et al. 2011) present comprehensive surveys of energy and greenhouse gas 

emissions estimates, but also have limitations. Firstly, there are gaps to be filled by considering 

results for other impact categories, capacity factor and lifetime assumptions, contribution 

analysis, turbine size and method for life cycle inventory, and secondly recent review papers only 

to a limited degree discuss future research directions. Finally, owing to strong developments in 

wind power technology as well as LCA methods and databases, a seminal review paper by 

Lenzen and Munksgaard (2002) may be partially out-dated. 
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Aims and objectives 

The principal aim of the study can be formulated as to take stock of insights from recent LCA 

studies of wind power, with a particular view to identifying potentials for improvement and 

specific needs for research. With this aim in mind, the following objectives are outlined in the 

paper: 

i) To synthesize and critically review current state of knowledge about the life cycle 

environmental impacts of wind power, taking a broader view of environmental impacts 

than in past review papers. 

ii) To analyse and discuss aspects of data, methods and results that are not sufficiently 

considered in past LCA reviews, including capacity factor assumptions, modelling of 

recycling benefits, contribution analysis and method for life cycle inventory 

quantification. 

iii) To identify remaining challenges and suggest directions that future research may take 

in order to advance knowledge. 

Method 

A total of 44 studies are surveyed for the purpose of review, and 34 of these are selected for 

quantitative analysis. The set of studies surveyed is largely comprised of work published in 

academic journals, but also includes a (non-exhaustive) selection of grey literature. The studies 

surveyed are shown in table 1 with information on methods and assumptions, selected results, 

impact category coverage and temporal scope. Paper III, which is presented later in section 3.2, is 

included in table 1 as well, even though it is not part of the literature database used in paper I. 

Results 

I here distinguish two broad categories of findings: results of literature survey, and critical 

evaluation of present knowledge and research needs. The first category, results of literature 

survey, includes the following elements and findings: 
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i) LCA studies generally assume lifetimes of 20 years, but sometimes longer for offshore. 

On average, studies assume capacity factor values of 31% for MW-sized wind turbines 

onshore and 43% offshore. 

ii) Energy and climate change stand out as the most studied impact categories. The survey 

of results indicates 0.063 (±0.061) and 0.055 (±0.037) kWh energy used and 20 (±14) 

and 16 (±10) CO2e emitted per kWh of electricity for onshore and offshore cases. For 

all impact categories, results vary considerably across studies. 

iii) The wind turbine is generally a dominant contributor to emissions for onshore systems; 

for offshore systems, emissions caused by the foundation may be comparable to that of 

the wind turbine. If the avoided burden method is employed, the end-of-life stage may 

yield significant emissions reductions. 

iv) Evidence support the notion of strong positive effects of scale in the lower end of the 

turbine size spectrum, but is inconclusive for the megawatt range. 

v) Wind power LCA research typically assesses impacts associated with one (small) 

reference unit in a static framework, but a handful of studies with broadened scopes are 

identified.  

vi) Studies predominantly employ process-LCA methodologies. If on the other hand 

hybrid LCA is used, impact indicator results are generally significantly higher. 

The paper concludes that the current body of LCAs “provides a fairly good overall 

understanding of fossil energy use and associated pollution”, but also identifies several remaining 

challenges. A recap of selected issues is given below. 

i) Toxicity impacts and aspects of mineral resource depletion are poorly understood. 

ii) Applications of the avoided burden method generally either use inappropriate 

methodologies or the use of an appropriate methodology cannot be verified because 

studies fail to report key assumptions. 

iii) There appears to be a general tendency of wind power LCAs to assume higher capacity 

factors than current, real fleet-wide averages1. 

iv) Due to the use of process-LCA methods, the majority of studies are likely to suffer 

from significant cut-off errors.  

                                                 
1 A supplementary note on capacity factor values is in appendix A.3. 
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v) Certain assumptions are generally not referenced and/or their validity is yet to be 

verified. This includes assumptions that support modelling of replacement of parts and, 

for offshore wind farms, operations that take place in ocean waters. It also includes 

assumptions that generic materials in LCA databases are representative for the actual 

materials that go into the systems.  

vi) As a rule, current LCA literature falls short of examining network integration of 

variable wind power, temporal aspects and the absolute magnitude of emissions2.  

Uncertainty and limitations 

As is noted in the paper, the observations included in the survey do not comprise a random 

sample: the observations were not selected in a formal, randomized manner, some observations 

are known to be not independent, and the survey involves some subjective choices (notably, 

concerning how multiple observations from single studies are accounted). These factors may 

have influenced results to some extent. Another limitation is that while a survey is performed for 

impact indicator values in terms of energy, greenhouse gas emissions and nine individual 

pollutants, results from impact assessments by other categories (acidification, eutrophication, 

etc.) are not surveyed – the reason for this that different characterization methods and units of 

measurement among studies hamper proper comparisons. Finally, I note that a proper meta-

analysis could provide additional and more robust insights3; with very few exceptions however, 

extant research does not provide accounts of data, assumptions and results at the level of detail 

required for meta-analyses – this conclusion is also drawn by Price and Kendall (2012).  

Potential impact of study 

 I believe the review may be useful in providing an overview of what has been done in the field 

of wind power LCA research, in conveying insights that emerge from this research and shedding 

light on some of the reasons why results differ across studies, and in pointing to remaining 

challenges that future research may address. The paper makes an original contribution owing to: 

                                                 
2 See also later discussions in section 3.2 and third subsection in section 5.3.  
3 The term meta-analysis was coined by Glass (1976) and described as “the analysis of analyses”. While paper I 

presents some limited analysis of assumptions and results, it does not provide any detailed analysis of analyses.  
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i) new surveys and simplified analyses, for example of results by several impact 

categories, relative contributions from components and life cycle stages, and effects of 

wind turbine size and method for life cycle inventory; 

ii) critical appraisal of scope of analysis (e.g., impact category coverage, micro- and static-

minded assessments), data and assumptions (e.g., uncertainty surrounding emissions 

embodied in materials, seemingly unverified basis for modelling installation and use 

phases) and methods (e.g., seemingly inconsistent use of avoided burden method, 

system boundary issues in process-LCA).  

Owing to these attributes, I anticipate the study may assist those who seek to distil key insights 

from and understand limitations of the voluminous wind power LCA literature. Furthermore, the 

work can hopefully provide inputs to future analysts as they seek and decide on new research 

directions. Three concrete implications that can be drawn from the paper are that future research 

should avoid inconsistent modelling of recycling benefits, should attempt further to move beyond 

static, unit-based assessments, and should employ hybrid LCA methods.   

3.2 Paper II: System-wide emission costs and benefits 

Rationale 

Among the existing methods for sustainability assessments of power generation technologies, 

large-scale integrated assessment models investigate energy transitions at the economy-wide 

level (IEA 2010a; Krey and Clarke 2011), but do not consider environmental effects caused by 

the act of building power plants – in general they lack a life cycle perspective. Conversely, as is 

noted in section 3.1 and paper I, conventional, unit-based LCAs do not address aspects of scale 

and time. Thus, while scenario analyses and conventional LCAs generate useful insights, 

individually they are also missing important elements; combining the two perspectives could 

provide additional insights and help create a more solid basis for evaluating energy strategies. A 

similar point is made by Sathaye et al. (2011): 
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By extending scenario analyses to include lifecycle emissions and the energy 

requirements to construct, operate and decommission the different 

technologies explicitly, integrated models could provide useful information 

about the future mix of energy systems together with its associated lifecycle 

emissions and the total environmental burden. (p. 729) 

Aims and objectives 

The study aims to make an initial attempt to integrate scenario analysis and LCA in order to 

assess the economy-wide environmental costs and benefits of wind power expansion. To achieve 

this aim the following primary objectives must be met: 

i) To quantify and assess global environmental impacts due to the act of building, 

operating and dismantling wind power plants toward 2050, following energy scenarios 

achieving a substantial degree of climate change mitigation. 

ii) To include in the analysis an integrated LCA modelling of emission reductions thanks 

to wind power expansion. 

In addition, secondary objectives that help to achieve the aim are:  

iii) To develop life cycle inventories, using a hybrid LCA approach, for hypothetical 

onshore and offshore wind farms meant to represent average conditions. 

iv) To adjust, year by year, the electricity mix used in the LCA scenario model. 

Method 

The unit-based analysis falls into the category of tiered hybrid analysis (section 2.2). The 

scenario analysis, which follows two of the International Energy Agency’s BLUE climate change 

mitigation scenarios (IEA 2010a), includes additional elements: The quantification of aggregated 

life cycle inventory results consists, in essence, of scaling inventories for generic onshore and 

offshore wind farms to match future capacity requirements. The scenario analysis includes 

replacement of components at their end-of-life, and distinguishes emissions occurring prior to, 

during and after the useful life of the wind turbines. A year-by-year global mix of electricity 
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sources, which change with time according to the BLUE scenarios, is assumed. A second key 

element of the scenario analysis is the quantification of emissions savings from wind power, 

which is performed on the assumption that additional wind electricity, compared with a baseline, 

displaces the current-year mix of electricity from fossil fuel power stations.  

Results4 

According to the results, cumulative emissions of 2.3 Gt CO2e may be ascribed to wind power 

development in 2007-2050 in a scenario where 12% of world electricity comes from wind in 

2050. The figure for a 22% contribution from wind in 2050 is 3.5 Gt. As a result of increased 

capacity factor and cleaner electricity mix, the greenhouse gas emission intensity is reduced from 

around 22 g CO2e/kWh in 2007 to 14 g CO2e/kWh in 2050; thus, decarbonizing electricity supply 

is not sufficient to make wind power close to CO2-free – an elimination of other pollution sources 

than fossil fuel-fired power stations is required as well. The sensitivity analysis demonstrates that 

changing the assumed lifetimes changes emissions estimates significantly. 

Moving on to the evaluation of the positive role of wind power in emission reduction, the 

following are true for all impact categories: i) Direct (in-plant) emissions of replaced fossil-fuel 

power plants grossly exceed the total emissions of wind power (broken blue and dotted purple 

lines in figure 4 in the paper); and ii) indirect (fuel-chain) emissions of replaced fossil-fuel power 

plants also exceed the total emissions of wind power (broken green and dotted purple lines). 

Uncertainty and limitations 

The modelling of technological changes is limited, both when it comes to manufacturing and 

other activities in the background economy (which changes only in terms of the electricity mix) 

and design of wind energy systems (which changes only through increased load factors and a 

shift towards offshore development). Future research may replace simplifying assumptions about 

technological change with more sophisticated reasoning in order to reduce uncertainty and offer 

additional insights.  

                                                 
4 Due to an error in the model used to compute results for the originally published paper, a corrigendum was 

published with corrected results. Figures given in this thesis are the corrected results. 
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Another important limitation is that network integration is not considered. In reality, large-

scale adoption of wind power will not take place in isolation of background energy supply and 

distribution systems, but will require upgrades in electricity infrastructure, may need to be 

supplemented by additional energy storage, and may lead to a less optimal operation of thermal 

and hydro power plants5. As environmental implications of such effects may not be trivial, I can 

see that one possible critique of the paper is that it does not fully live up to the promise of 

“estimat[ing] aggregated emissions caused by global wind power development” (introduction in 

the paper). At the same time, I would argue that in any LCA at some point you need to draw your 

system boundary and say ceteris paribus – all else being equal. This is in principle true for this 

scaled-up LCA as it is true for a unit-based LCA, although, admittedly, the high penetration of 

wind power is made more explicit in the former case. 

Based on subsequent work (paper III), emissions arising from production of spare parts and, 

for the offshore wind farm, operations by ships are probably underestimated in paper II. 

Limitations also arise from weaknesses in the materials and methods for the input-output 

inventory modelling. Firstly, the breakdown of costs by individual processes is subject to 

considerable uncertainty. Secondly, the manner in which the problem of double counting is dealt 

with is not optimal: Instead of subtracting monetary equivalents of physical flows (Strømman et 

al. 2009), entries in the input-output system that include flows covered in the process-based 

system are zeroed out. The former approach is preferable to the latter, but requires additional and 

perhaps higher-quality data. Thirdly, the input-output data set covers eight air pollutants; this 

limited set allows meaningful impact characterizations for four impact categories only. 

In general, moving from a static, unit-based study to a futures study introduces new sources of 

uncertainty and increases the overall uncertainty of results formidably. 

Potential impact of study 

As I have previously argued, static, unit-based LCAs are, while useful, inadequate for 

evaluating future energy transitions; therefore, it is of importance that the field moves beyond a 

purely unit-based focus. The present paper may be viewed as an early research attempt in this 

                                                 
5 See also note on grid expansion and network integration of renewables in third subsection of section 5.3. 
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direction. The primary research contributions lie in the original modelling approach and analysis 

used to assess the environmental implications of wind power development, and in the new 

insights provided on the environmental costs and benefits of wind power expansion. 

Previous attempts to compare the environmental performance of wind power vis-à-vis fossil 

fuel-based power – such attempts occur in original LCA research publications (e.g., Wagner et al. 

2011) as well as in broader evaluations or literature reviews (e.g., Jacobson 2009, Kaldellis and 

Zafirakis 2011, Raadal et al. 2011, Sathaye et al. 2011) – have juxtaposed emissions per unit of 

electricity for different technologies. Such inquires typically offer the observation that the life 

cycle emissions of wind power are comparatively very small or negligible. In comparison, the 

current assessment incorporates additional elements: i) the time lag between emission costs 

(which occur in large part during the production of plant stage) and emission benefits (which are 

distributed over the useful life); ii) the absolute magnitude of wind power expansion; and iii) 

hybridized inventories, which lead to more complete system descriptions than in most previous 

work. Moreover, the assessment is performed on the assumption that only additional wind power 

substitutes fossil power. Despite that all of these elements pull in the direction of a less positive 

evaluation for wind power, the present study concludes that emission costs appear low in 

comparison with emission benefits. In this respect, the study may be viewed as confirming the 

emission benefits of wind power. At the same time, the connection with a planetary boundary of 

680 gigatonnes CO2 in 2010-2049 (see discussion section in the paper) suggests that emissions 

caused by wind power are too large to be neglected. 

3.3 Paper III: The importance of ships and spare parts 

Rationale 

The motivation for investigating the environmental impacts of offshore wind power is twofold. 

Firstly, the relative importance of offshore projects in wind power development is expected to 

increase in the future (section 1.2). Secondly, there are weaknesses and gaps in current 

knowledge about the environmental effects of offshore wind farms, and more research is needed 
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to clarify potential differences between onshore and offshore wind power generation (section 3.1 

and paper I). Here I wish to highlight two issues: 

i) Existing LCAs do not consider sea-based activities for installation or maintenance of 

offshore wind farms in any detail, or they lack transparency in the reporting of 

assumptions for modelling such activities (for a fuller account and references, see the 

literature review in the paper). The legitimacy of such practices may be questioned, as 

installation and maintenance contribute significantly to the overall costs of offshore 

wind energy projects (Blanco 2009; EWEA 2009a), and pollution from ships is a 

significant and growing concern in the general case (Eyring et al. 2005; IMO 2009).  

ii) Existing LCAs do not justify or provide references for assumptions supporting the 

modelling of production of replacement parts. A comparison of replacement rates 

typically assumed in LCAs with corresponding data or assumptions in other sources 

(Echavarria et al. 2008; Rademakers and Braam 2002) suggests that LCAs tend to 

assume too low replacement rates (section 1.1 in the paper and section 2 in the 

supporting information for the paper). 

In addition, most published LCAs of offshore wind power employ process-LCA methodologies 

known to suffer from systematic underestimation of impacts, and few studies address impact 

categories other than energy use and greenhouse gas emissions (section 3.1 and paper I).  

Aims and objectives 

The aim of the paper is to address the identified weaknesses and gaps in knowledge in order to 

advance understanding of the environmental impacts of offshore wind power in general, and the 

role of ships and spare parts in LCAs of offshore wind power in particular. More specifically, the 

main objectives are: 

i) To quantify and assess the life cycle environmental impacts of a Scandinavian offshore 

wind farm by a range of impact categories and using a hybrid LCA methodology. 

ii) To include in the model representations of marine vessel activities at a higher level of 

detail and with greater transparency than in previous studies, and to evaluate the 

importance of such activities in LCAs of offshore wind power. 
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iii) To make an initial attempt to reconcile assumptions about replacement rates in LCAs 

with operational experiences, and to evaluate the role of replacement production in 

LCAs of wind power. 

Method 

A tiered hybrid method for life cycle inventory is employed (section 2.2). The proposed 

Havsul I wind farm in Norway is used as a model. The LCA model incorporates a detailed 

representation of offshore operations connected with the installation, operations and maintenance, 

and decommissioning of the wind farm. ReCiPe is chosen as method for impact assessment 

(Hegger and Hischier 2010; ReCiPe 2009) and is applied for twelve impact categories. 

Results 

According to the results, every kWh of electricity delivered will bring about greenhouse gas 

emissions of 34 g CO2e; this falls in the upper range of values given in the existing literature 

(paper I). As is evident from figure 3, installation and maintenance activities are responsible for 

significant shares of the total carbon footprint (15% and 13%). Production of replacement parts is 

typically responsible for 5-10% of total impact potentials and 13% at the most (freshwater 

ecotoxicity). These findings may not be wholly consistent with the notion that “emissions from 

the manufacturing stage dominate overall lifecycle [greenhouse gas] emissions” (Wiser et al. 

2011) (p. 571), and contradicts the perception that greenhouse gas emissions from the use phase 

are “almost negligible” (Raadal et al. 2011) or “negligible” (IEA Wind 2002). Moreover, direct 

emissions of nitrogen oxides, sulphur dioxide and particulates from ships cause considerable 

impact potentials in the categories of marine eutrophication, particulate matter formation, 

photochemical oxidant formation and terrestrial acidification (figure 1 in the paper). 

A comparison of offshore wind power and natural gas power with carbon capture and storage 

(Singh et al. 2011) indicates that offshore wind power exhibit several times lower greenhouse gas 

emissions, but offshore wind power appears as the less environmentally friendly option by human 

toxicity, freshwater ecotoxicity and freshwater eutrophication impact categories (discussion 

section in the paper and figure S3 in the supporting information of the paper).
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Figure 3. Climate change impact indicator results for offshore wind farm by eight main components and nine stressor sources (a), and 
breakdowns into sub-categories for selected main components (b-e).  
Note: Stacked bars represent reference scenario results. Negative error bars give total values in Optimistic scenario and positive error bars 
in Pessimistic scenario. Panel (b) shows a breakdown of contribution from wind turbines (32% of total emissions); similarly, (c) shows a 
breakdown of installation (15%), (d) of electrical connections (7%), and (e) of maintenance (13%). For installation and maintenance, 
disaggregated results are not available for emissions elicited in the IO subsystem; hence the IO system contribution is represented by a 
single bar in panels (c, e). The stressor source categories stacked horizontally within each bar are the same as in figure 1 in the paper. 

(a) Main components and phases (all emissions covered)

(c) Installation

(b) Wind turbines

(e) Maintenance

(d) Electrical connections

0 2 4

IO system, all

Other

Vessel, inspection of cables

Vessel, maintenance, inspection WTs

g CO2-Eq/kWh

0 2 4 6 8 10 12 14

End-of-life

Spare parts

Maintenance

IO system, other

Installation

Electrical connections

Foundations

Wind turbines

g CO2-Eq/kWh

Electricity Heat Transportation

Fossil fuels production and supply Metals extraction and processing Waste management and treatment

Other IO, Europe region IO, rest-of-world region

0 2

Internal cabling

Substation, incl. transformer

External cabling

CO2-Eq/kWh

0 2 4

Assembly, misc.

Rotor blades

Hub, incl. nose cone

Bed frame/plate

Generator

Gearbox

LV transformer

Main shaft

Cover

Tower

g CO2-Eq/kWh

0 2 4

IO system, all

Other

Onshore transport

Cable laying

Jack-up, crane vessels, tugboats: installation

Preparation seabed: stone bed, scour protection

g CO2-Eq/kWh



Section 3.3   Paper III: The importance of ships and spare parts 

31 
 

Uncertainty and limitations 

Uncertainty is an inherent feature of many aspects of LCA, manifesting itself both at the 

inventory analysis and impact assessment stages (Finnveden et al. 2009; Lloyd and Ries 2007). 

The paper explores uncertainty by considering multiple scenarios reflecting different assumptions 

and through qualitative discussions, but does not attempt to quantify all uncertainty (e.g., through 

Monte Carlo analysis). 

The estimated emissions from offshore activities are subject to considerable uncertainty. 

Firstly, uncertainty stems from a lack of certain knowledge about which activities that are needed 

and what are the associated work times; in this regard, the analysis relies in large part on 

assumptions made in Ramboll (2009) based on a survey of current practices. In reality, strategies 

for installing and maintaining offshore wind farms differ depending on project-specific 

conditions (e.g., distance from shore, foundation concept), and the individual developer or 

contractor. Secondly, significant uncertainty exists in the assumed operating mode data 

determining fuel consumption rates. There is also large uncertainty surrounding the rates at which 

parts require replacement, as little empirical evidence on exchange rates is publicly available 

(Echavarria et al. 2008; Faulstich et al. 2011; Ribrant and Bertling 2007). Further research is 

needed to test the robustness of the results for installation and maintenance. From the perspective 

of the LCA analyst, access to better and more comprehensive information on real-world work 

times and operating modes of marine vessels, and replacement rates for individual components, 

would be beneficial. 

The weaknesses in materials and methods used for the input-output inventory modelling noted 

in section 3.2 for paper II apply here as well, but are to some degree alleviated by the use of an 

improved environmentally extended input-output database in this work. The improved database 

has a higher level of disaggregation and covers more – albeit still a limited number of – stressor 

types. Due to the limited set of stressors, the assessment becomes, de facto, a process-based LCA 

for some of the impact categories. 

The general lack of spatial specificity – both in connection with stressor source characteristics 

(e.g., pollution emitted from sea vessels versus onshore sources) and receiving environment 

sensitivity (e.g., ecosystems relatively more susceptible to acidification effects versus ecosystems 
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less susceptible) – is a recognized limitation of prevailing impact assessment methods (Finnveden 

et al. 2009; Hauschild 2005; Pennington et al. 2004). The current analysis uses generic 

characterization factors from ReCiPe (Hegger and Hischier 2010; ReCiPe 2009); however, with 

Norway-specific characterization factors for terrestrial acidification, for example, results for this 

impact category may have looked different (Posch et al. 2008; Seppälä et al. 2006), and I am not 

certain that the utilized characterization factors are really applicable to activities offshore.  

Owing to the very large number of chemicals involved and complex effect chains (Hauschild 

2005; Pettersen and Hertwich 2008; Rosenbaum et al. 2008), characterization models are 

probably less developed – and thus uncertainty is higher – for toxicological impacts than for most 

other impact categories. Analogously, mineral resource depletion impacts also involve a very 

large number of minerals and complex effect chains. There is no agreed upon method to measure 

mineral resource depletion in LCA; competing methods approach the problem from different 

angles and may lead to different results (De Schryver and Goedkoop 2008; Steen 2006). 

Complicating factors include current diversifying trends in non-fuel minerals use (Graedel and 

Erdmann 2012), the need to consider future availability and usability of secondary materials 

(Graedel et al. 2011; Müller et al. 2006; Pauliuk et al. 2012), the trend of declining metal ore 

grades (Mudd 2010; Norgate and Jahanshahi 2010; Prior et al. 2012), and linkages that occur 

because minerals are mined together or used together in, for example, metal alloys (Graedel 

2011; Yellishetty et al. 2011). With these factors in mind, indicators of mineral resource 

depletion seem somewhat arbitrary and may be unable to properly gauge the problem of mineral 

resource depletion. 

Potential impact of study 

The main contribution of the paper lies in the original investigation of environmental effects of 

installation and use phases of offshore wind power, and the new insights generated by this 

investigation. Previous LCAs give only cursory consideration to operations required by sea-based 

activities and to the need to replace parts and – implicitly or explicitly – suggest that these 

elements of the product system of wind power are unimportant or negligible when it comes to 

total environmental impacts. By providing new analysis and discussion on aspects of installation 

and use phase, the paper addresses a significant weakness in existing knowledge. The results 
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indicate greater contributions from offshore activities and supply of replacement parts to total 

impacts than has previously been thought. Furthermore, it is conceivable that the relative 

importance of offshore operations increases in the future as developments increasingly take place 

in deeper and more distant waters. This indicates a need for future LCA research on offshore 

wind power to give more consideration to installation and use phases. The issue of production of 

spare parts is not exclusive to the offshore case, but is also relevant for assessments of onshore 

wind farms. 

In addition, the research fills a gap in the literature by studying a range of impact categories, 

and by presenting results that illuminate differences among impact categories with respect to 

which components lead to environmental pressures and in which types of activities pressures 

occur. To the extent that cut-off errors are avoided, the use of a hybrid LCA methodology 

arguably gives the results more credibility compared to most previous assessments of offshore 

wind farms. 

In a broader context, the study can perhaps provide a useful perspective for undertaking 

environmental assessments of activities in coastal and marine areas – activity levels in such areas 

are generally increasing due to a number of uses, including offshore wind power and other ocean 

energies, subsea power transmission, maritime transport, oil and gas extraction, commercial and 

recreational fisheries, aquaculture and port development. Incorporating detailed representations 

of installation and use phases in environmental assessments may be important for some of these 

other technologies also, similarly as for wind power. 

 





 

4 Paper IV: Evaluation of limitations 

in mitigation assessments  

Rationale 

An underlying premise of world energy and climate policy is that technology can solve energy-

related global environmental problems, even under scenarios of continued strong growth in 

economies and populations. Consequently, the climate policy arena is devoid of attempts to 

seriously confront resource intensive lifestyles, population growth and fundamental economic 

structures. Suggested portfolios of solutions (e.g., IEA 2010a, 2010b, IPCC 2007b, Jacobson and 

Delucchi 2011, McKinsey 2009, Pacala and Socolow 2004) are commonly perceived to 

demonstrate the feasibility of solving the problem of climate change, but rests on many 

simplifications. The nature of the climate change problem is such that we cannot afford 

fundamental biases in the knowledge base that support policy: Either the technology optimism 

permeating current policies can withstand objective scrutiny, or it must be replaced by a more 

nuanced view. 

Aims and objectives 

The prime aim of the paper is to evaluate important simplifying assumptions in policy-

supporting climate change mitigation assessment literature, and present part of the case that 

assessments are the basis of unfounded technology optimism in world climate policy. In order to 

achieve this aim, the paper brings together evidence from different fields of literature, for 

instance life cycle assessment, energy rebound, and carbon lock-in literature.  

Results 

The paper presents six arguments that, arguably, are underappreciated in the climate policy 

arena. The overarching theme of the arguments is that incomplete coverage of side effects of 
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mitigation measures, and neglect of many interlinkages between physical and social sub-systems, 

lead to overly optimistic assessments. A brief summary of the arguments is provided below.  

- A transition to low-carbon energy supply will in itself cause emissions of greenhouse 

gases. Current knowledge about the absolute magnitude of these emissions is poor, but total 

emissions are probably too large to be neglected (section 3.1 in the paper). 

- The real ability of energy efficiency measures to deliver emissions reductions is generally 

overrated. There are two reasons for this. Firstly, as market failures and non-market failure 

factors hinder energy efficiency investments in practice, full technical potentials are not 

utilized easily. Secondly, successful strategies to implement energy efficiency measures 

may to some degree rebound on society: Through higher-order effects, efficiency may 

stimulate more energy consumption (section 3.2 in the paper). 

- Implementing carbon capture and storage (CCS) on a large scale means preserving forces 

that add to a lock-in of fossil fuel-based energy systems, while not implementing CCS on a 

large-scale implies a probably significant increase in overall mitigation costs. In other 

words: Proposed least-cost pathways (that is, pathways where large-scale development of 

renewable energy run in tandem with large-scale modifications and extensions of fossil 

energy systems) may have large problems with lock-in barriers in the long-term, while 

dedicated renewable energy pathways are more costly in conventional terms – in either 

case, realizing mitigation at such low overall costs as indicated by least-cost scenarios may 

prove difficult in practice (section 3.3 in the paper). 

- Examples of absolute decoupling of global environmental impacts or resource use from 

economic growth are rare; to my understanding, past experiences provide little support for 

the notion that greenhouse gas emissions, total material extraction and biodiversity loss can 

be reduced as income grows (section 3.4 in the paper; see also UNEP 2011). 

- Linkages between environmental pressures and impacts are likely to complicate mitigation 

(section 3.5 in the paper). 

- It is conceivable that the future may hold surprises in terms of unanticipated growth in 

demand for energy. Firstly, entirely new categories of demand may emerge that are not 
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foreseen by energy analysts today6. Secondly, more energy may be needed to extract, 

process and transport natural resources (water, minerals) in an ever more resource-

constrained world (section 3.6 in the paper). 

Uncertainty and limitations 

One fundamental limitation of the paper is that while it brings together evidence from different 

research fields and points to gaps in knowledge, and makes a preliminary evaluation of potential 

implications, it does not present new research findings or evidence, and thus does not contribute 

to filling knowledge gaps about the environmental implications of energy transitions as such. In 

more concrete terms, the paper is limited by the exclusive focus on energy; the important role of 

agriculture as a driver for global environmental problems, including climate change, biodiversity 

loss and water use (MEA 2005; UNEP 2010a), is not treated. The conflict between crop-based 

bioenergy development on the one hand and food production and biodiversity on the other hand 

is not explicitly considered either, but is nevertheless an important concern (Creutzig et al. 2012; 

UNEP 2009; van der Voet and Graedel 2010). According to Creutzig et al. (2012), current large-

scale integrated assessment models underexplore the issue of indirect land use change due to 

biofuels.  

The intermittent nature of renewable energy is not noted in the paper as a fundamental barrier 

to a transition towards a renewable energy future, primarily because I for my part am unsure 

about the degree to which it may be solved by managed demand responses, energy storage, 

diversified production and other measures. The academic literature seems to be divided on this 

question (compare, for example, Trainer 2010 and Delucchi and Jacobson 2011). Williams et al. 

(2012) couple climate change mitigation scenarios with a security-constrained electricity market 

dispatch algorithm, and find that renewables can supply a maximum of 74% of California’s 

electricity in 2050 if grid operability is to be maintained, even under optimistic assumptions such 

as perfect power generation forecasting, radical innovations in storage technologies and a major 

shift in demand curves. 

                                                 
6 For example: Global air transport is presumably included in current large-scale assessment models, but would 

analysts of the 1930s include aviation in global energy scenarios? Correspondingly, do energy scenarios of today 
include space tourism as a demand category? – if not, do they miss out on some of the potential growth? 



Chapter 4   Paper IV: Evaluation of limitations in mitigation assessments 

38 
 

Potential impact of study 

While the idea that innovations in technology – coming face-to-face with long-term growth in 

populations or economies – will fall short of creating truly sustainable societies is not new (e.g., 

Daly 2005, Ehrlich and Holden 1971, Hardin 1968, Jackson 2009, Malthus [1798] 2001, 

Meadows et al. 1972, Speth 2008), the paper presents an original contribution by bringing 

together evidence from different research fields in a way that has not been done before. I believe 

the paper may be seen as valuable because it pinpoints important gaps in knowledge, and 

connects dots that have not been connected in such a way before. The paper strives to be concrete 

on what exactly is amiss in the technology optimism that permeates current policies. Finally, it is 

my hope that the paper may contribute to raising awareness on the issue that simplifying 

assumptions systematically lead to biased assessments – and here a distinction must be made 

between biased assessments and uncertainty in assessments: bias is an inclination to go in one 

direction. 
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5 Final discussion and conclusions 

In previous chapters I have presented four papers. Papers I-III are concerned with the life cycle 

environmental impacts of wind power, and may, in the larger setting of “understanding the 

environmental implications of energy transitions” indicated by the main title of this thesis, be 

regarded as case studies for wind power. The last paper, paper IV, is more broad in scope, 

treating also other issues than life cycle environmental impacts, and not focusing on wind power 

in particular. The need for and pursuit of a better and more complete understanding of the 

environmental implications of energy transitions is a unifying theme for all the papers. 

In previous chapters 3 and 4 I have already discussed the research contribution of the papers 

individually. Next in section 5.1, I discuss the contribution of the thesis as a whole, before 

revisiting the environmental performance of wind power in section 5.2. Suggestions for further 

work are provided in section 5.3. Sections 5.1-5.3 also serve the function of concluding the 

thesis. 

5.1 Research contribution 

Here I discuss the research contribution of the thesis as a whole. The discussion is meant to 

supplement, not to give an extensive summary of, discussions presented previously in chapters 3 

and 4 on the individual contribution of the papers. 

Moving beyond static, unit-based LCAs 

For the thesis as a whole, the most significant contribution may be the initial attempt to move 

beyond static, unit-based LCAs of wind power. Given the almost single-minded concentration in 

existing wind power LCA literature on assessing impacts associated with one (small) reference 

unit in a static framework, I believe the analysis presented in paper II may be regarded as novel, 

and as an early research attempt in the direction of reconciling LCAs and macro-level energy 
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scenarios. I can see a conceptual element to paper II’s contribution in that the paper demonstrates 

one (simplified) approach which may be taken to perform macro-level LCAs of emerging energy 

technologies, and illustrates some dynamics at play in the emergence of an energy technology 

(the absolute scale of the expansion, the need for replacement systems at end-of-life, effects of 

cleaner electricity mix in manufacturing). I can also see an empirical element to the contribution 

in that paper II quantifies and assesses emissions caused and avoided by large-scale adoption of 

wind power, thus providing new quantitative insights into the environmental costs and benefits of 

wind power deployment. 

At the same time, paper II is clearly limited by simplifying assumptions made for the scenario 

analysis; the paper does not present any detailed modelling of technological change. Challenges 

connected with incorporating technological change in similar analyses could be a point of 

departure for future research (see also discussions in section 3.2 and in the paper). Moreover, 

wind power is but one proposed technological solution to the problem of man-made climate 

change; in the future, wider and more comprehensive studies may address whole portfolios of 

technologies. 

Related to the research contribution of paper I noted above are the discussions of the need for 

LCA research to address aspects of scale and time presented in papers I and IV. Both papers 

point to limitations of static, unit-based assessments. Paper I identifies a limited number of 

existing future-oriented wind power LCAs, and calls for future research to focus more attention 

on consequential effects, temporal aspects and the absolute magnitude of impacts. Paper IV 

discusses the importance of real-world life cycle impacts of energy transitions and contextualizes 

the issue in such a way that the need for research on this topic is highlighted. Owing to these 

attributes of papers I and IV, the papers can perhaps help to motivate and instigate a broadened 

focus of attention – one which encompasses both conventional and future-oriented approaches – 

in future (wind) energy LCA research. 

Using a hybrid LCA methodology 

Another main contribution of the thesis is the use of a hybrid LCA methodology to assess the 

environmental impacts of large-scale adoption of wind power (paper II) and an offshore wind 

farm (paper III). As is discussed in section 3.1 and paper I, existing LCA studies of wind power 



Section 5.1   Research contribution 

41 
 

predominantly employ process-LCA methodologies, but the use of a hybrid LCA methodology 

facilitates more complete system coverage. While cut-off errors due to the use of process-LCA 

may not be equally problematic for all applications of LCA7, they are potentially highly 

problematic when impact indicator values are meant to accurately reflect real-world 

environmental damages, or when results are used for comparing technologies that serve the same 

functions but have differently structured product systems (Majeau-Bettez et al. 2011). Limitations 

arise from weaknesses in the materials and methods used for the input-output inventory 

modelling in the current work, however, as is discussed in sections 3.2 and 3.3. 

Illustrate the significance of taking a holistic view 

By means of LCA studies of wind power and a wider evaluation study of indirect effects of 

climate change mitigation measures, the thesis illustrates the significance of taking a holistic 

view in evaluating the environmental implications of energy technologies and transitions. The 

significance of holistic views is made clear, I believe, by several perspectives and findings 

presented in the current work; most notable are perhaps the preliminary findings that the carbon 

footprint of large-scale adoption of wind power is, in the aggregate, probably too large to be 

neglected, but at the same time emissions stemming from wind power appear low when 

contrasted with emission savings that occur if wind power displaces fossil fuel-based power. In 

the results presented in paper II, even the indirect emissions of displaced fossil fuel power exceed 

the total emissions of wind power, which perhaps more than anything else is illustrative of how 

polluting conventional fossil fuel-based electricity really is in a life cycle perspective. 

A central tenet of holistic environmental assessments is to seek to identify – or conversely: rule 

out – potential cases of problem shifting from one impact category to another (section 1.3). 

Papers I and III identify increased toxicity and mineral resource depletion impacts as two 

potential cases of problem shifting if wind power is deployed instead of fossil fuel power.  

Another element which may help to illustrate the significance of holistic assessments is the 

identification of indirect, countervailing effects of greenhouse gas-mitigating measures in 

paper IV; also important is the framing of the discussion of indirect effects in the paper, which, at 

                                                 
7 It may be relatively less problematic for comparative LCAs of products with similar product systems (Majeau-

Bettez et al. 2011). 



Chapter 5   Final discussion and conclusions 

42 
 

least by intention, makes clear the need for research to evaluate mitigation in a broad, system-

wide perspective.  

Other remarks 

In contrast with nearly all previous wind power LCAs (paper I; Price and Kendall 2012), 

complete accounts of inventory data are provided for the current work (see also supporting 

information for the papers) in order to ensure transparency and allow for informed comparisons 

across studies, and to assure better reproducibility of results. I believe this may be seen as a 

positive attribute of the current work. Making process-level input data available may be one key 

to alleviating confusion due to unexplained variability in results from wind power LCA studies, 

and enhancing the real and/or perceived usefulness of LCA research. 

Some further limitations of the current work may be noted here that have not been noted 

previously. On a general level, the wind power LCAs presented in papers II and III do not 

incorporate detailed technology descriptions; for example, the wind turbine model used in 

paper III includes nine components made up of five generic materials, whereas a real-world wind 

turbine reportedly contains up to eight thousand parts (EWEA 2007). Besides introducing 

uncertainty, the rather cursory technology representations make the LCAs not suitable for 

detailed product design considerations. Essentially, this problem stems from a disconnect 

between the LCA analysts and industry; standing in academia, access to more detailed data from 

the industry would be beneficial.  

As for the merit of the present work in describing the environmental credentials of wind power, 

it needs to be emphasized that the types of environmental impacts explored do not exhaust all 

environmental concerns associated with wind power, which include also bird and bat collision 

fatalities, impact on local climate, habitat change and negative impacts on visual amenity (Wiser 

et al. 2011). The omission of such impact categories from the current assessment and papers I-III 

does not imply that they are considered to be unimportant, but is rather a result of firstly, a need 

to limit the scope of the work, and secondly, difficulties in assessing such impacts quantitatively 

(difficulties arise from the case-specific and sometimes subjective nature of the impacts, and lack 

of coverage in prevailing impact assessment methods used in LCA). 
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5.2 Environmental performance of wind power 

So, is wind power environmentally benign? My short answer would be: It depends. In 

attempting to extend the answer, or at least provide some basis for making a longer, partial 

answer, below I revisit and discuss further some of the lessons learned from the current work, 

before presenting a note on displacement of fossil fuels. Fossil fuel displacement is given special 

attention here because I see it as a crucial aspect in evaluating the net environmental benefits of 

wind power, and because the degree to which wind displaces fossil fuels is a central assumption 

in the evaluation of emission reductions in paper II. 

A revisit of some lessons learned 

As we have seen, results from unit-based LCAs suggest that the greenhouse gas emissions of 

wind power are very low in comparison with that of fossil fuel-based electricity (papers I and III). 

Studies employing hybrid LCA methodologies, such as papers II and III, generally show 

significantly higher emissions than conventional assessments, but emissions of fossil fuel power 

are much higher still. Furthermore, and as I have previously argued in section 3.2, the evaluation 

of net emission benefits of wind power expansion presented in paper II incorporates additional 

elements that are not considered in unit-based evaluations, and besides assumes that only 

additional wind power substitutes fossil fuel power. These factors all pull in the direction of a less 

positive evaluation for wind power. Nevertheless, the figures for net emission benefits in paper II 

put wind power in a favourable light, and thus – notwithstanding the considerable uncertainty and 

limitations in scope of analysis – I see them as a confirming the emission benefits of wind power, 

for climate change and the three other impact categories addressed in the paper. 

 Potentially, if mitigation strategies in themselves cause substantial emissions, society may find 

itself in a bit of a catch-22 situation where measures that by intention reduce emissions in reality 

lead to more emissions, again leading to a requirement of more (and maybe even less effective) 

measures, and so on. Findings presented in this thesis do not support the notion that large-scale 

deployments of wind power will be responsible for creating such a negative, reinforcing spiral. 

At the same time, there is reason to be concerned that cumulative greenhouse gas emissions 

instigated by massive expansions of wind power markets in the future may not be insignificant – 



Chapter 5   Final discussion and conclusions 

44 
 

and this is more about the scale of typically foreseen expansions than the emission intensity of 

wind electricity, which by relative measures may appear low.  

A further element which may be noted is that it is the reliance on fossil fuels today which is the 

reason why wind power is not CO2-free, and thus one could argue that fossil fuel-related 

emissions are not inherent characteristics of wind power systems as such (Pehnt 2006; Hillman 

and Sandén 2008). Fossil fuel-burning in thermal power plants – exactly the plants that wind 

parks are meant to replace – causes 20-29% of the unit-based impacts in paper II. Using fossil 

energy systems of today for the purpose of developing energy systems for tomorrow cannot be 

avoided entirely; what we should be concerned about is the degree to which such use takes place, 

and in a broad context, to seek designs and strategies that maximize net environmental benefits.   

There may be a need to manage trade-offs between climate change mitigation delivered by 

wind power on the one hand and increased toxicity and/or mineral resource depletion impacts 

induced by wind power on the other hand (papers I and III; see also Uncertainty and limitations 

subsection in section 3.3). Besides the very tentative conclusions that can be drawn about toxic 

and mineral resource depletion impacts of wind power based on papers I and III, in a long-term 

perspective I see some further potential grounds for concern. This includes generally declining 

metal ore grades (Mudd 2010; Norgate and Jahanshahi 2010; Prior et al. 2012), the possibility 

that geopolitical factors and regional differences in resource endowments affect real resource 

availability in the future (Erdmann and Graedel 2011; Habert et al. 2010; Yellishetty et al. 2010), 

and the possibility that public resistance due to local environmental impacts (water use, toxic 

releases from mining activities or waste deposits, land transformation) hinder future resource 

exploitation in practice (Prior et al. (2012); see also UNEP 2010a). 

Concerning displacement of fossil power 

The perspective taken in paper II that only additional wind electricity displaces fossil fuel 

electricity differs from conventional thinking about benefits of wind power, which takes for 

granted, often implicitly, a one-to-one correspondence between wind electricity supplied and 

fossil fuel electricity saved: LCA studies (e.g., Chen et al. 2011, Jacobson 2009, Tremeac and 

Meunier 2009), the wind industry (e.g., EWEA 2009c) and the Intergovernmental Panel on 

Climate Change (Wiser et al. 2011) either explicitly use the difference in life cycle emissions of 
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wind and fossil fuel electricity as a measure of the net emission savings of wind power, or give 

the impression that the difference can be used as a measure of such savings8. Wiser et al. (2011) 

(p. 570) claim, for example, to show that the life cycle emissions of wind power and emission 

penalties due to variability “are modest compared to the net [greenhouse gas emission] reduction 

benefits of wind energy”, where the implicit assumption is a one-to-one displacement with fossil 

fuel electricity – many other similar statements are made in Wiser et al. (2011) as well.  

Analysts may assume that one unit of wind power delivered implies one saved unit of fossil 

fuel power if this helps to illustrate a point or provide an insight. At the same time, I see the one-

to-one displacement perspective as potentially problematic for two principal reasons: 

i) The assumption that one unit of wind power always displaces one unit of fossil fuel 

power implies that all growth in electricity, or new electricity demands, is supplied by 

fossil fuel-fired power plants, while wind power plants supply none of the growth in 

demand (wind power cannot support growth in demand, because the assumption is that 

it displaces fossil fuel power). This seems not realistic. Historically, renewable energy 

markets have grown even in absence of climate mitigation policies, and baseline 

scenarios for the future suggest that renewable energy markets will grow significantly 

(IEA 2010a; Krey and Clarke 2011), again in absence of strong mitigation policies. 

ii) It is an artificial premise that wind power competes solely with conventional fossil fuel 

power. It is conceivable that if wind power is not employed to satisfy demand, other 

renewable or low-carbon technologies would contribute to filling the gap or there 

would be more energy conservation investment, especially under scenarios with high 

carbon prices. 

Owing to these two principal reasons, I see the perspective that each unit of wind power 

displaces one unit of fossil fuel power as unrealistic at a macro level – it does not accurately 

reflect any real-world relationship. I would describe the crux of the matter as follows: A fraction 

of wind farms may indeed displace fossil fuel power stations and analysts may assume, a priori 

or based on some evidence, that electricity from a specific wind farm displaces fossil fuel 

electricity. Further, comparisons of life cycle emissions of wind power with that of conventional 

                                                 
8 Similar references to ’conventional thinking’ and one-to-one displacement as an underlying premise of reports 

by the Intergovernmental Panel on Climate Change are made by York (2012). 



Chapter 5   Final discussion and conclusions 

46 
 

forms of power generation do indicate a significant mitigation potential of wind power. All the 

same, a one-to-one displacement ratio is not a meaningful assumption at a macro level, because 

in practice a portion of electricity from wind will support new demands (point i above) or replace 

other non-fossil electricity (ii above), and not displace fossil fuel electricity. 

It may also be noted here that a regression analysis of energy data for 132 countries from 1960 

to 2009 suggests that in the past it has taken 11-13 units of non-fossil electricity to displace one 

unit of fossil fuel electricity (York 2012). Nuclear and hydro power have been more effective in 

displacing fossil fuel power than other renewable power generation, the analysis suggests (York 

2012). The results are identified as statistically significant in York (2012), but still there may be 

issues associated with data inconsistencies and lack of detailed control variables in the analysis. 

And of course, a picture that emerges from historical records may change in the future. 

Nonetheless, I think it is important to recognize that wind power employment may not 

automatically reduce fossil energy use, and, again, the perspective that every unit of wind 

electricity displaces one unit of fossil electricity is unrealistic at a macro level. 

Returning to the question presented at the outset of this chapter – is wind power 

environmentally benign? – a slightly longer answer than “it depends” could be: It depends on 

many factors, but above all it depends on the extent to which wind power actually replaces fossil 

fuel-based power. Policies that are effective in phasing out fossil fuels are prerequisite for good 

environmental performance for wind power. 

Not a full picture 

As was noted in section 5.1, the types of environmental impact categories considered in this 

work are only part of the full picture: Environmental concerns about bird and bat collisions, 

modifications to ecosystems (may be positive or negative) and negative impacts on visual 

amenity are subjects of significant public interest and relevant for decision-making processes that 

concern wind power (Wiser et al. 2011), but are not addressed in the current work. All of these 

impact types are inherently site-specific. Availability of global wind resources (de Castro et al. 

2011; Jacobson and Archer 2012; Wiser et al. 2011) is not treated in this work either; according 

to Wiser et al. (2011) however, it is unlikely that limitations in technical potentials will in itself 

restrict global deployment of wind power.  
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5.3 Further work 

Recommendations for future research in the area of LCA of wind power are provided in 

section 3.1 and paper I, and the points of these discussions will not be extensively reiterated here. 

Here I will limit the discussion to three topics, the reconciliation of global energy scenario 

analysis and LCA (first subsection) material implications of large-scale wind power deployment 

(second subsection) and electricity network-related issues (third subsection).  

Integrating global energy scenario analysis and LCA 

In section 5.1 I named the initial attempt to move beyond static, unit-based LCAs of wind 

power (cf. paper II) as perhaps the most significant research contribution of the current work. 

However, as was also noted in section 5.1, wind power is but one proposed technology to 

mitigate energy-related greenhouse gas emissions. In the future, wider and more comprehensive 

studies may address system-wide environmental costs and benefits of the large-scale adoption of 

whole portfolios of technologies. Such studies may be valuable in at least three respects. Firstly, 

they can potentially contribute to a more solid basis for evaluating the real effectiveness of 

proposed climate change mitigation strategies (by means of comparisons of economy-wide 

environmental burdens and benefits). Secondly, and related to the previous point, quantifications 

of total environmental impacts caused by of a whole set of mitigation options may facilitate a 

much more interesting connection with planetary boundaries than that offered by paper II based 

on an analysis of wind power only (cf. discussion section in paper II; see also section 3.1 in 

paper IV). Thirdly, scenario-based and macro-oriented assessments spanning an array of 

mitigation alternatives may shed new light on comparative advantages and disadvantages of 

individual options (because dynamic aspects that may differentiate technologies are incorporated 

in the assessments), potentially providing a better basis for performance benchmarking than that 

offered by comparisons of unit-based impact potentials as typically found in existing literature 

(e.g., Sathaye et al. 2011, Varun et al. 2009, Wagner et al. 2011). The last point warrants that 

technologies are analysed and assessed in a consistent framework.  

 As is briefly discussed in section 3.2 and paper II, large-scale integrated assessment models 

(IEA 2010a; Krey and Clarke 2011) and life cycle assessment models have some complimentary 
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characteristics: strengths of the former may supply lacks of latter, and vice versa. What the 

integrated assessment models are lacking is the ability to capture causality relations that occur in, 

to use the terminology of LCA, product systems – one such relation is that steel is needed to 

manufacture a wind turbine. What conventional LCA models are lacking are notions of scale and 

time. For example – to keep to the example of steel-making and wind turbines – changes in the 

share of recycled content, efficiency gains, fuel switching and deployment of carbon capture and 

storage in the iron and steel sector are taken into consideration in the International Energy 

Agency’s energy scenarios (IEA 2009, 2010a), but the effects of such changes are not studied in 

LCAs of wind power. 

The full integration of a large-scale integrated assessment model and LCA model represents a 

substantial methodological challenge and may be approached from different analytical angles. A 

detailed discussion of this lies outside the province of this thesis, but two elements that may be 

relevant to consider are noted here, as follows. The first element is that, if the goal is to quantify 

future aggregated impacts of technology deployments, large-scale integrated assessment models 

and conventional LCA models may not fill out each other’s lack completely. This is because in 

general both types of models lack, to my understanding, detailed representations of future 

technological design changes. Technological change is included in integrated assessment models 

(e.g., IEA 2010a, 2011a) through changes in basic parameters such as cost and efficiency, but 

design configurations are typically not considered in detail (Martinsen 2010). Hence, in addition 

to combining the perspectives of integrated assessment models and LCA models, one may need 

to incorporate the perspective of technology foresight and evolution studies as well (e.g., for wind 

power, Cohen et al. 2008, NEEDS 2008). Existing research attempts to study future technological 

design developments in a life cycle framework includes Singh et al. (2012) for fossil-fuel power 

with carbon capture and storage and Viebahn et al. (2011) for concentrated solar power. 

The second element is that caution needs to be exercised so that integrated models (i.e., models 

integrating global energy scenario analysis and life cycle analysis) do not double-count emissions 

that arise from building and operating power plants. While the engineering-economic models 

behind, for example, (IEA 2010a, 2011a) do not explicitly take into account that as wind power 

markets grow, more steel is needed for wind turbine manufacturing, they do incorporate overall 

growth in steel demand, and wind turbine supply chains are part of this picture. An integrated 
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global energy scenario model and LCA model thus may need to be able to properly identify the 

wind turbine supply chain component of overall steel demand growth in order to avoid 

miscounting. For the same reason, while at a cursory glance the emissions caused by wind power 

in paper II may be seen as representing a type of ‘negative stabilization wedge’9 that will undo 

part of the anticipated emission reduction, this interpretation is not necessarily valid. Again, this 

is because wind turbine supply chain growth is, at least to some degree, already part of the 

baseline trend below which the stabilization wedges are conceptualized. 

Material implications and consequent environmental impacts 

Here I briefly introduce one further planned research article (Arvesen and Hertwich 2012c) on 

environmental implications of large-scale adoption of wind power. This work has been initiated, 

but it was not feasible to generate extensive results or produce a paper manuscript in publishable 

form in time to be included in this thesis.  

Two broad categories of concern form the rationale underpinning the planned study (Arvesen 

and Hertwich 2012c). Firstly, in the general case use of materials is an important driver for 

environmental and resource pressures, including pollution, waste deposition, extraction of 

mineral resources and land transformation (UNEP 2010a). Total human use of materials has 

grown exponentially over the past one hundred years, while the composition has changed towards 

more use of non-renewable materials (Fischer-Kowalski et al. 2011; Krausmann et al. 2009). In 

the case of wind power systems, requirements for steel, copper, concrete and other materials give 

rise to environmental and resource pressures – the degree to which this occurs under different 

circumstances is an active area of research (e.g., Kleijn et al. 2011, paper II). 

 The second category of concern is that availability issues may threaten the viability of 

proposed energy transitions. In recent years there has been a growing research interest in the 

vulnerability of global energy strategies to disruptions in the supply chains of key materials 

(Erdmann and Graedel 2011; Graedel 2011); for evaluations of wind energy, particular interest is 

devoted in the literature to the supply of the rare earth elements (e.g., Alonso et al. 2012, DOE 

2010, Du and Graedel 2011, Jacobson and Delucchi 2011, Kleijn and van der Voet 2010). 

                                                 
9 cf. the stabilization wedge analogy of Pacala and Socolow (2004). 
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The planned study intends to present a scenario-based analysis of material inflows (materials 

that go into physical components of wind power systems) and outflows (wastes) associated with 

large-scale adoption of wind power, following BLUE scenarios of the International Energy 

Agency, as in paper II. In addition, the study intends to assess environmental impacts induced by 

the material requirements using ReCiPe (2009) impact assessment method, including breakdowns 

of impacts by material types. The analysis should incorporate several basic wind power 

technology configurations (e.g., conventional generator or rare earth permanent magnet 

generator, concrete or steel foundation), and should at a minimum cover the materials aluminium, 

concrete, composites, copper, iron and steel, and rare earth elements. Potential problems with 

mineral resource availability are intended to be evaluated. 

Grid expansion and network integration of renewables   

In the general literature, costs of integrating variable renewables are calculated region by 

region (IEA 2010b; Wiser et al. 2011), and as far as I know case studies are available for 

European countries and US states only (e.g., Pehnt et al. 2008, Valentino et al. 2012)10. The 

additional costs associated with accommodating variable renewables in the electric system can be 

grouped into the categories listed below (IEA 2010b; Wiser et al. 2011).  

i) Increased balancing costs: These relate to matching electricity supply with demand over 

seconds to days, which becomes more demanding with higher shares of intermittent 

supply. Hence, renewable deployment may lead to more sub-optimal operation of 

thermal power plants. The relative change in emissions from fossil power plants with 

increasing wind penetration may be different for different air pollutants (Katzenstein 

and Apt 2009; Valentino et al. 2012). 

ii) Increased capacity adequacy costs: The contribution of a wind power plant to (peak-

load) capacity adequacy is typically smaller than for conventional power generation 

technologies in the system. Simulations of European and North American power 

systems indicate that wind power’s contribution to overall system capacity adequacy 

amounts to 5-40% of the installed nominal wind power capacity (Holttinen et al. 2011).  

                                                 
10 That 25-30% of installed wind power capacity in China is not connected to the grid (IEA 2011b; Yang et al. 

2012; Qi 2012) is suggestive of significant challenges connected with network integration in China, however.  
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iii) Costs of power transmission: These arise from the need to transfer electric power from 

the wind farms to the load centres. In contrast to many power generation technologies, 

infrastructure for electricity transmission (and distribution) has received attention in the 

peer-reviewed LCA literature, though recent publications have started to fill this gap 

(e.g., Bumby et al. 2010, Jorge et al. 2012a, Jorge et al. 2012b). 

While not addressed in any systematic or comprehensive manner, the issue of network 

integration of intermittent renewables is touched upon several times in this thesis: For example, 

the neglect of emission penalties due to network integration in the analysis in paper II is noted as 

one major limitation of the paper (section 3.2). Paper I encourages future research in the direction 

of integrating life cycle inventory analysis and network integration considerations for wind 

power, and notes that this would be congruent with the prevalent view that LCA should strive to 

provide holistic assessments. Besides, environmental impacts associated with power transmission 

and distribution is an interesting topic of investigation in itself, and one that is probably 

underexplored in existing LCA literature (Jorge et al. 2012a) – substantial investments in 

electricity networks will be needed in the future to replace or refurbish old components and 

accommodate higher demands, irrespective of increasing shares of intermittent supply (IEA 

2011a). 

It is my hope that I may contribute to a future planned LCA study (Nes et al. 2012) of a subsea 

power grid in the North Sea facilitating the integration of offshore wind farms and 

interconnecting Northern European countries. Expansion of North Sea electricity grid has 

received significant interest in several spheres in recent years (academia, industry organisations, 

policy; e.g., EWEA 2009b, Greenpeace 2008, Veum et al. 2011). Subsea power transmission in 

Northern Seas is identified as one of four “priority corridors for the transport of electricity” in EU 

energy and climate policy (Carvalho 2012). I see the research topic of LCA of a North Sea power 

grid as being complimentary to the environmental assessment of an offshore wind farm presented 

in paper III.  
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Assessing the life cycle environmental impacts of wind 

power: A review of present knowledge and research 

needs 

Anders Arvesen* and Edgar G. Hertwich 

Industrial Ecology Programme and Department of Energy and Process Engineering, Norwegian 

University of Science and Technology 

* Corresponding author. Email address: anders.arvesen@ntnu.no 

ABSTRACT 

We critically review present knowledge of the life cycle environmental impacts of wind power. 

We find that the current body of life cycle assessments (LCA) of wind power provides a fairly 

good overall understanding of fossil energy use and associated pollution; our survey of results 

that appear in existing literature give mean values (± standard deviation) of, e.g., 0.060 (±0.058) 

kWh energy used and 19 (±13) g CO2e emitted per kWh electricity, suggesting good 

environmental performance vis-à-vis fossil-based power. Total emissions of onshore and offshore 

wind farms are comparable. The bulk of emissions generally occur in the production of 

components; onshore, the wind turbine dominates, while offshore, the substructure becomes 

relatively more important. Strong positive effects of scale are present in the lower end of the 

turbine size spectrum, but there is no clear evidence for such effects for MW-sized units. We 

identify weaknesses and gaps in knowledge that future research may address. This includes 

poorly understood impacts in categories of toxicity and resource depletion, lack of empirical 

basis for assumptions about replacement of parts, and apparent lack of detailed considerations of 

offshore operations for wind farms in ocean waters. We argue that applications of the avoided 

burden method to model recycling benefits generally lack transparency and may be inconsistent. 

Assumed capacity factor values are generally higher than current mean realized values. Finally, 
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we discuss the need for LCA research to move beyond unit-based assessments in order to address 

temporal aspects and the scale of impacts.  

Keywords: LCA, carbon footprint, sustainability assessment, wind energy, electricity 

1 Introduction 

Electric power generation by wind turbines is commonly regarded as a key technology in 

addressing some of the greatest environmental and resource concerns of today, namely man-made 

climate change and other negative effects of air pollution, and security of energy supply. Among 

other factors, strong growth in today’s markets and prospects of exploiting vast resource 

potentials at offshore sites contribute to the anticipation that wind power will play a significant 

role in achieving a shift away from fossil-based power generation towards renewables in coming 

decades [1, 2]. Wind power likewise features prominently in the current body of climate change 

mitigation scenarios produced by large-scale integrated assessment models [3, 4]. Even though 

wind power is driven by a renewably energy flux (that is, the kinetic energy in air streams), in a 

life cycle perspective there are non-renewable resource demands and harmful emissions 

associated with it. These environmental and resource pressures can be quantified and assessed by 

the method of life cycle assessment (LCA).  

Surveying LCA studies published from the year 2000 on, this paper synthesizes and critically 

reviews current state of knowledge about the life cycle environmental impacts of wind power. 

The work was carried out with the goal of contributing to a wider, comparative study of the 

environmental and resource impacts of low-carbon energy technologies by the International 

Resource Panel for the United Nations Environment Programme.  

Several literature reviews of wind power LCAs are already available. Lenzen and Munksgaard 

[5] survey 72 energy and CO2 analyses of wind power systems published between 1977 and 

2001. Kubiszewski and colleagues [6] and Raadal and colleagues [7] extend the work of Lenzen 

and Munksgaard [5], adding additional analyses, focusing on energy demand and greenhouse gas 

(GHG) emissions, respectively. In another review in the IPCC Special Report on Renewable 

Energy Sources and Climate Change [1, 8], 126 estimates from 49 studies are surveyed. The 

present LCA review aims to supplement the previous assessments, providing new surveys and 
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analyses of results as well as qualitative discussions. In particular, we attempt to make the 

following original contributions: i) taking a broader view of environmental impacts, focusing not 

only on cumulative energy demand and GHG emissions [5-7], but on a wider set of impact 

categories assessed in the LCA literature; ii) discussing important aspects that are not sufficiently 

treated in previous LCA reviews, including capacity factor assumptions, modeling of recycling 

benefits, techniques for calculating life cycle inventories (process-LCA or hybrid LCA), and 

static versus future-oriented LCA; iii) critically assessing the scope and quality of existing 

studies, identifying areas that are well understood as well as important knowledge gaps; and iv) 

proposing directions that future research may take in order to gain a more complete and solid 

understanding of the environmental implications of wind power.   

The following section briefly introduces the conceptual basis of LCA and the two prevailing 

methodological approaches to life cycle inventory analysis. Next, Section 3 describes the 

construction of the literature database which forms the basis of the survey and review. Results of 

the literature survey are presented in two sections: Scope, assumptions and methodologies of 

existing LCA research on wind power are dealt with in Section 4, while Section 5 presents 

stressor and impact indicator results. A critical evaluation of present knowledge and research 

needs is given in Section 6. Finally, Section 7 provides concrete recommendations for future 

research.  

2 LCA: conceptual basis and calculation techniques 

LCA is a method to explore how the delivery of or demand for a specific product or service 

(e.g., the delivery of one unit of electricity from wind) initiates processes that may cause 

environmental impacts. Through a systematic mapping of operations and associated 

environmental pressures along a product’s life cycle, LCA strives to give a complete picture of 

the environmental burdens caused by one product [9].  

Two approaches to quantifying life cycle inventories are in use. In conventional LCA 

methodology, henceforth referred to as process-LCA, a bottom-up approach is taken to define 

and describe operations in physical terms. This approach makes possible the use of data that are 

specific for the operations under consideration, meaning that results can potentially be generated 

at high levels of detail and accuracy. On the downside, there is a need to apply cut-off criteria to 
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exclude operations that are not expected to make significant contributions. It is known, however, 

that added together the excluded contributions are significant [10, 11].  The second approach, 

environmentally extended input-output analysis (EEIOA), is a top-down technique in which 

inventories are quantified using monetary data at the level of economic sectors. As EEIOA does 

not require cut-offs to be made, it does not have the same problem with truncation as process-

LCA. However, EEIOA operates at a high aggregation level; the sector resolution in EEIOA is 

generally too coarse for making LCAs of specific products. Hybrid methods – where process-

LCA is used to model important operations, and EEIOA is used to model operations that would 

otherwise be omitted – can potentially exploit advantages of both approaches, but is more 

challenging to employ [10-12]. Also, depending on the method of hybridization and quality of 

data [12], most hybrid models may offer limited support for following material flows through 

product systems. 

LCA results may be presented as inventories of individual stressors, or as environmental 

impact category indicators at ‘midpoint’ or ‘endpoint’ levels of aggregation. Midpoint indicators 

allow for environmental effects of several individual stressors to be assimilated into a single 

impact category. Endpoint indicators measure impact potentials by endpoints in the effect chain; 

human health, ecosystem health and natural resources are typically regarded as three such 

endpoints, but sometimes even one single indicator of environmental damage is used [13, 14].  

3 Literature survey 

In surveying published LCA research, priority was given to cover publications in peer-

reviewed journals, and for the most part, studies were identified through searches in common 

scientific databases. However, when found appropriate other types of publications (e.g., 

environmental reports by manufacturers, documentation of LCA databases) that have been 

known to the authors were included as well. The LCA survey presented here differ from that of 

past reviews in that studies published prior to 2000 are excluded. The primary reason for this is 

the strong developments in wind power technologies, LCA methodologies and databases, and 

background economy characteristics in previous decades. Furthermore, the set of studies 

reviewed was judged to be large enough to provide interesting insights.  



 

 

Table 2. Overview of assumptions, methods and scope of reviewed LCA studies. Site: Ons = Onshore; Off = Offshore. Size: S = Small 
(< 100 kW); M = Medium (100 kW-1 MW); L = Large (> 1 MW). Lifetime: ‘*’ means longer lifetimes for some components. Credits: 
‘x’ means system is credited with indicator values that are perceived to be avoided through recycling at end-of-life; ‘(x)’ means system is 
credited, but results without credits are also presented. Temporal scope: A blank means static assessment under assumptions of present 
technologies; non-blank entries indicate future-oriented assessments. Method: Pro = Process-LCA; Hyb = Hybrid LCA; IOA = Analysis 
that relies fully or in large part on input-output multipliers. Impact categories: C = CO2 emissions; CC = Climate change; 
E = Cumulative energy demand; R = Resource requirements, abiotic depletion; A = Acidification; O = Stratospheric ozone depletion; 
HT = Human toxicity; P = Particulate matter formation, dust; ET = Ecotoxicity; PO = Photochemical oxidation (smog); N = Nutrient 
enrichment, eutrophication; W = Solid waste generation; L = Land use, land transformation; h = human health endpoint; e = natural 
environment endpoint; r = natural resources endpoint; s = single score endpoint; α = non-toxic emissions that provide additional 
information; τ = toxic emissions that provide additional information (‘additional’ with regards to the impact categories that are accounted 
in this table column). Characters are underlined if results are presented in generic units only (e.g., ‘points’).  
Citation Site Size Lifetime 

(years) 
Cred

its 
Geographical 

scope 
Temporal 

scope 
Met
hod 

Impact categories 

[15] - - -  Global 2009-2100 - C 
[16] Ons S M 25 x Canada  Pro CC E A PO 
[17] Ons L 20  Germany Denmark 

China 
 Pro CC E 

[18, 19] Ons Off L 20 (Ons) 
25 (Off) 

 Europe/Global 2007-2050 Hyb C CC A PO N 

[20] Ons L 20 x China  IOA CC E 
[21] Ons L 20 x Denmark  Pro CC E R A P ET PO N W 
[22] Off L 20  Germany  Pro CC E A HT PO N 
[23] Off L 20  UK  Hyb C CC 
[24] Ons M 20 (x) Europe  Pro CC E R A O HT ET L 
[25] - - 20  Brazil 20 years - E 
[26] Mix L 20  Northern-Europe  Pro C CC A O P PO N W τ  
[27] Ons M L 20  Australia  Hyb CC E 
[28] Ons S 20  Canada  Pro CC 
[29] Ons - 30  Denmark  Pro L 
[30-32] Ons L 20 (x) Spain  Pro CC E R A O HT ET PO N L s 
[33] Ons L - x New Zealand 100 years Pro C E 
[34] Ons S L 20 (x) France  Pro CC E h e r 
[35] Off L 20 (x) Norway  Pro CC E R A HT ET PO N 
[36] Ons M 20  Italy  Pro C CC E A O P PO N W τ 
[37] Ons - 20  Taiwan  Pro C E 
[38] Off L 20*  Denmark 2005-2050 Pro C P L α τ 
[39] Off L -  Germany 2005-2020 Pro C 
[40-42] Ons Off S M L 20  Switzerland/Europe  Pro C CC E R A O HT P ET PO N 

W L h e r s 
[43] Ons S 25  Turkey  Pro C CC E 
[44] Ons Off L -  Germany 2010 Pro C CC E A P N α τ 
[45] Ons S 20 (x) UK  Pro C E 
[46] Ons Off L 20 (Ons) 

20* (Off) 
x Denmark  Pro C CC E A O HT ET PO N W 

[47] Ons L 20 x Denmark  Pro C CC E A O HT ET PO N W 
[48] Ons M 20-30  US  Pro C E 
[49] Ons M 30  Japan  Pro CC 
[50] Ons M 20  Canada  Pro CC E 
[51] Ons Off L 20 (Ons) 

20* (Off) 
x Denmark  Pro C CC E A O HT N W α  

[52] Ons M -  Germany Brazil  Hyb C E 
[53] Ons M L 20  Germany  Pro E 
[54] Ons Off M L 20  Europe  Pro C α 
[55] Off L 20*  Denmark  Pro CC A HT ET PO W 
[56] Ons M 15  Japan  Pro C E 
[57] Ons M 20  US 40 years IOA CC 
[58] Ons Off M 20  Denmark  Pro C E α s 
[59] Ons M 20  Belgium  Pro 

IOA 
CC E 
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An overview of the reviewed LCA studies on wind power systems is given in Table 1. Of the 

44 reviewed studies (Table 1), 34 were selected for quantitative analysis. In general, the 

following guidelines were followed in constructing the set of observations used for quantitative 

analysis: i) Only original LCA research was included. ii) Studies of integrated wind power 

generation and energy storage systems were excluded in the cases where the contribution from 

the actual wind power system could not be extracted from the inventories presented. iii) For 

studies presenting a number of results that apply to different systems (e.g., onshore and offshore 

wind farms, differently sized turbines), all reported results were included. iv) For studies 

presenting a number of results for one specific system, but with differing methods or assumptions 

(e.g., different capacity factors, different approaches to modeling benefits of recycling), the 

default (reference) scenario was surveyed if such a scenario was defined. Conversely, if a default 

scenario was not defined, an average of reported values was surveyed. Table S1 in the 

supplementary information provides the raw data for the quantitative analysis in terms of system 

characteristics, and emission and impact indicator results.  

Finally, we note that the set of observations included in the quantitative analysis is not a 

random sample. The identification of studies did not follow a formal, randomized procedure, and 

the studies that were identified are sometimes not independent, as they utilize common sets of 

assumptions or data. Also, the survey involved some subjective choices (e.g., regarding how 

multiple observations from single studies should be inventoried) that may to some extent have 

influenced quantitative analysis results.  

4 Scope, assumptions and methodologies 

The LCA literature covers the whole spectrum of available wind turbine sizes, from hundreds 

of watts sized units [28, 34] to multi-MW turbines in onshore and offshore locations. As is 

evident from Table 1, analyses of wind farms operating on land form a vast majority, and there is 

a predominance of analyses with Europe countries as their reference locations. A fair number of 

analyses (13) of ocean-based systems were also identified. With exceptions, LCAs of offshore 

wind power study bottom-fixed wind turbines in relatively shallow waters. Two studies analyze, 

respectively, a hypothetical wind farm comprised by floating units [35] and an operational wind 

farm at a water depth of 30 m [22].  



Appendix A   Paper I and associated content 
 

A8 
 

Manufacturing of the actual wind turbines is the only life cycle stage that is common to all 

analyses. In addition, all assessments based on wind turbines with capacities of hundreds of 

kilowatts and more include the manufacturing of foundations, and the majority model electrical 

connections (internal cables within wind farm, external cabling and sometimes transformer 

stations) needed to connect a wind farm to an existing grid. Most studies also take into 

consideration – though variably –the operation and maintenance of the system, as well as 

transportation activities. A number of assessments [28, 39, 43, 50, 56] address integrated systems 

where wind energy converters are supplemented with other power generation technologies and/or 

technologies for energy storage. 

The manner in which the end-of-life phase is modeled varies. Some studies make assumptions 

to model transport and disposal of waste, others omit this part. End-of-life is unique among the 

life cycle phases in that it may reduce emissions and resource use: Negative contributions occur 

when analysts deduct indicator values that are perceived to be avoided when, after the operating 

lifetime, system components are recycled or incinerated to produce valuable outputs. In this way, 

the system is credited for returning usable resources (e.g., recyclable steel) to the technosphere – 

in the LCA literature this is referred to as substitution by system expansion or avoided burden 

method [13]. LCA studies that employ the avoided burden method are in minority, but 

nevertheless represent a significant share (Table 1) Decommissioning of a wind farm after the 

service lifetime is typically modeled as identical to installation. 

LCAs of wind power generally assume lifetimes of 20 years, for onshore and offshore wind 

farms alike (Table 1). Fig. 1 displays capacity factor assumptions by region as a function of 

power rating. Three overall trends may be observed from Fig. 1, in overall terms consistent with 

general knowledge and expectations [60, 61]: i) performance in terms of capacity factor increases 

with wind turbine nominal capacity; ii) offshore wind farms exhibit greater energy capture than 

onshore farms; and iii) for a given power rating, sites in North America tend to show higher 

capacity factors than European sites. Across all regions, the assumed capacity factor mean value 

(± standard deviation) is 18% (±5.4%) for onshore wind turbines with nameplate capacity below 

100 kW, 22% (±5.1%) for onshore with capacity 100 kW - 1 MW, 31% (±7.5%) for onshore with 

capacity > 1 MW, and 43% (±8.4%) for offshore (Table S2 in the supplementary information).   
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Fig. 1. Capacity factor by location as a function of power rating. 

Energy demand and GHG emissions have historically been the main focus of attention for 

LCA research on wind power [5], and still dominate the impact assessments in recent literature 

(Table 1; also, compare the sample sizes of energy, GHG and CO2 versus other air pollutants in 

Fig. 2). Estimates of climate change indicator values are often comprised of contributions from 

CO2, CH4 and N2O, but in some cases (e.g., [23, 41]) fluorinated GHGs (SF6, HFC, PFC) are also 

taken into account. Of the studies cited in Table 1, more than half include impact categories other 

than energy and GHGs. In general, environmental stressors of high coverage are air pollutants 

associated with production and combustion of fossil energy carriers: CO2, CH4, CO, NH3, 

NMVOC, N2O, NOx, particulates and SO2. Such a set of pollutants facilitates meaningful impact 

assessments in the categories climate change, acidification, eutrophication and photochemical 

oxidation (smog). In comparison to fossil fuel-related air emissions, other kinds of pollution have 

received little attention; only 10 studies cited in Table 1 quantify characterized toxicity indicator 

results. Apart from fossil energy carriers, resource requirements and non-renewable resource 

depletion are scarcely addressed in detail. A handful of studies [21, 24, 31, 35] address non-

renewable resource depletion; others [26, 46] display life cycle inventories for individual mineral 

resources without applying any impact assessment. One publication [29] was identified that 

examines in some detail direct and indirect land use of power generation technologies, including 

wind. Some studies quantify life cycle water use, but water use is generally not highlighted or 
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discussed in detail. Fthenakis and Kim [62] review previous studies and evaluate life cycle use of 

water in electricity supply by different technologies.  

As is evident from Table 1, process-LCA studies dominate the wind power LCA literature, and 

few studies employ hybrid LCA methodologies. As a final point regarding methodology, we note 

that different kinds of future-oriented LCAs of wind energy have started to emerge in the 

literature, but are yet to gain widespread employment (cf. ‘temporal scope’ column in Table 1). 

Methodological approaches and results of future-oriented LCAs are discussed in Section 5.3. 

5 Stressor and impact indicator results 

Fig. 2 presents literature survey results with respect to total emissions and impact indicator 

values, and the numbers of estimates and studies that were surveyed; numerical results in 

tabulated form are provided in the supplementary information. For onshore and offshore wind 

power respectively, the mean energy intensity value is 0.063 (±0.061 standard deviation on either 

side of the mean) and 0.055 (±0.037) kWh/kWh; mean GHG emissions are 20 (±14) and 16 

(±9.6) g CO2e/kWh; and mean CO2 emissions 16 (±14) and 12 (±7.3) g/kWh. These relatively 

large standard deviations, and the broad ranges that can be observed for all categories displayed 

in Fig. 2, illustrate that results vary considerably. For example, reported energy intensity values 

across all wind power system categories form an interval of 0.014-0.333 kWh/kWh. If analyses 

of wind turbines with nameplate capacity less than 100 kW are excluded, however, the interval 

narrows to 0.014-0.137 kWh/kWh – this exemplifies a general pattern that the by far highest 

emissions and indicator values are observed for small wind turbine sizes (< 100 kW). Offshore 

wind power systems show comparable or slightly higher emissions than onshore systems 

comprised of large wind turbines (Fig. 2), despite the systematically higher wind capacity factors 

assumed for offshore systems (Fig. 1). This is due to the higher resource requirements of wind 

power systems located offshore. Another observation that can be made from Fig. 2 is a tendency 

for estimates to concentrate in the lower part of the observed intervals (note from Fig. 2, for 

example, that the mean values lie systematically above median values). 



 

 

 
Fig. 2. Stressor and impact indicator results by 5 wind power system categories and 11 impact categories. Box: range from first to third 
quartile; Horizontal bar within box: median value; Diamond: mean value; Upper and lower fences (whiskers): maximum and minimum 
values. ‘S’ means small wind turbine (< 100 kW) at onshore site; ‘M’ means medium wind turbine (100 kW - 1 MW) at onshore site; ‘L’ 
means large wind turbine (> 1 MW) at onshore site; ‘Offs’ means offshore wind power (any wind turbine size); ‘Tot’ denotes total 
sample. Ns = Number of studies; Ne = Number of estimates. Ne > Ns if more than one estimate was surveyed from one study. In some 
cases total sample size slightly exceeds the sum of the sub-sample sizes; this is because estimates for wind farm portfolios were not 
assigned a system type, but were included in the total sample. If Ne < 5, interquartile ranges (boxes) are not shown; If Ne = 1, the one 
value is shown as a diamond. Energy indicator value refers to the ratio between life cycle energy demand and electricity generated over 
the lifetime. GHG = Greenhouse gases; CO2 = Carbon dioxide; CH4 = Methane; CO = Carbon monoxide; NH3 = Ammonia; 
NMVOC = Non-methane volatile organic compounds; N2O = Nitrous oxide; NOx = Mono-nitrogen oxides; SO2 = Sulfur oxides.
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Releases of individual toxic substances in the life cycle of wind power systems are in some 

cases reported, but to synthesize these findings is difficult due to differences in what chemicals 

are reported and a lack of transparency on calculation methods and assumptions. Table 2 

compares human toxicity and freshwater and terrestrial eco-toxicity indicator results from five 

studies. Marine aquatic eco-toxicity is not included due to weaknesses in current impact 

assessment methods [63], and because two of the cited studies [22, 35] do not address this impact 

category. One of the publications [21] cited in Table 2 report results that are up to three orders of 

magnitude smaller than those from the other studies. The reason for this discrepancy is unknown, 

but could possibly be a consequence of different impact characterization methods.  

Table 2. Overview toxicity indicator results by three impact categories, as quantified by five studies. HT = Human 
toxicity. FET = Freshwater eco-toxicity. TET = Terrestrial eco-toxicity. DCBe = 1,4-dichlorobenzene equivalents.  
Citation Wind turbine size, site Stated impact 

characterization method 
Results (g 1,4-DCBe/kWh) 

 HT FET TET 
[21] 1.85 MW, onshore USETox (2008) 0.83 0.03 0.03 
[22] 5 MW, offshore - 69 - - 
[31] 2 MW, onshore CML (2000) 16 2.8 0.16 
[35] 5 MW, offshore CML (2000) 83 12 0.23 
[41] 800 kW, onshore CML (2001) 54 10 0.16 
[41] 2 MW, offshore CML (2001) 53 10 0.18 

5.1 Contribution analysis 

Looking at the relative contribution from different life cycle stages to total energy use and 

climate change indicator result, manufacturing of components dominates, and is sometimes of the 

order 90% of total impact indicator values (Fig. 3; see also discussion in previous LCA reviews 

[5, 7]). Fig. 3 compares breakdowns of energy use and GHG emissions by components and life 

cycle stages. It should be noted that ambiguity exists in the categories shown in Fig. 3; for 

example, some studies separate transportation as an individual category, while other studies 

subsume transportation activities within other categories. Nevertheless, it is clear from Fig. 3 that 

for onshore wind power systems, the wind turbine is the most important single component with 

regards to energy use and GHG emissions, followed by the substructure (i.e., the foundation). 

The tower may hold a share of 30-70% of total wind turbine indicator values. For offshore wind 

farms, the substructure becomes relatively more important. 

Generally, emissions associated with transportation are found to be negligible or of minor 

importance, though they sometimes are relatively more important for NMVOC and NOx 
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emissions. The results of [34] (not included in Fig. 3) stand out with large relative contributions 

from transportation (34% of GHG emissions are due to transportation) – this could possibly be 

related to the choice of concrete as tower material in [34], as opposed to (lighter) tubular steel 

towers modeled in most other studies. Emissions of heavy metals in manufacturing processes is 

the primary cause of toxicity indicator results [21, 22, 35].  

 
Fig. 3. Breakdown of energy intensity (EI) or greenhouse gas emission intensity (GHG) by main components or life 
cycle stages according to 8 onshore and 3 offshore estimates. In some cases interpretation of results and/or reading 
off charts in the cited publications was necessary. Shown positive indicator shares from [20, 31] do not include 
recycling credits. 

If the avoided burden method is applied, the end-of-life phase typically yields considerable 

emissions reductions: Recycling credits approximately halve the energy or GHG emissions 

embodied in the wind turbine and lower total indicator values by 26-27% in [20, 31] (Fig. 3). In 

another study, recycling credits lead to around 20% (4.5 MW wind turbine) and 40% (250 W) 

reductions in GHG emissions [34]. In total, the end-of-life phase contributes -19% to GHG 

emissions in [35].  
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5.2 Effects of wind turbine size and method for life cycle inventory 

Previous reviews of wind power LCA studies maintain economies of scale in the life cycle 

environmental impacts of wind power systems. Lenzen and Munksgaard [5] report that a 1 MW 

wind turbine appears to require only one third of the life cycle energy per unit output needed for a 

1 kW sized unit. Kubiszewski and colleagues [6] and Raadal and colleagues [7] show evidence of 

energy use and GHG emissions decreasing with growing wind turbine size, but in the former case 

it remains unanswered to what extent the trend continues when moving into the MW size 

spectrum, and in both cases it appears that the practice of surveying old and, arguably, outdated 

analyses (going all the way back to the late 70s) on a par with recent analyses obscures the 

picture. Moving on to the results of the present survey, Fig. 4 depicts GHG emissions with 

increasing wind turbine nameplate capacity. The figure confirms the presence of strong 

economies of scale for power ratings up to 1 MW or so, but a downward trend is not readily 

discernible for larger turbine sizes. 

 
Fig. 4. Total GHG or CO2 emissions as a function of wind turbine power rating by 4 combinations of methods 
(hybrid LCA and EEIOA versus process-LCA) and sites (onshore versus offshore). When available, total GHG 
emissions estimates were included in the figure. If GHG emissions estimates were not available, CO2 emissions 
estimates were included. For estimates for offshore wind farms, markers are filled with grey. The trend line 
represents the sample characterized by a process-LCA method and onshore site, and power rating ≤ 1800 kW. Trend 
line equation: y = -4.9ln(x) + 47.7. R2 = 0.72. 

Theory and empirical evidence from the broader LCA literature foretell that hybrid LCA and 

EEIO-based assessments give systematically higher impacts (cf. Section 2), and Fig. 4 gives 
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some confirmation of this. Total contributions from economic input-output sectors amount to 23-

26 g CO2e/kWh (74% of totals) in Crawford [27], 19 g CO2e/kWh (57% of totals) in Wiedmann 

et al. [23] and 10-13 g CO2e/kWh (45-61% of totals) in Arvesen and Hertwich [18, 19]. The size 

of the sample representing hybrid LCA in Fig. 4 is too small to admit a robust assessment 

comparing results of hybrid LCA and process-LCA, however.  

5.3 Future-oriented assessments 

In a forward-looking study for Germany, Pehnt et al. [39] couple life cycle inventories with a 

stochastic electricity market model to study the life cycle CO2 emissions of wind power, grid 

expansion, energy storage by means of compression of air, and balancing requirements, in an 

integrated framework. Results for the year 2020 show only negligible emissions from storage and 

grid upgrades, but a relatively large emission penalty of 18-70 g CO2/kWh arising from the 

balancing of variable wind electricity by fossil-fueled power stations. A global scenario-based 

assessment is presented by Arvesen and Hertwich [18, 19], who estimate 3.5 Gt CO2e emitted 

due to the act of building and operating wind power plants in the time period 2007-2050 to 

supply 22% of worldwide electricity in 2050. The same study includes an integrated life cycle 

modeling of cumulative avoided emissions; results suggest emissions avoided by wind power 

grossly exceed emissions caused by wind power. Lenzen and Schaeffer [15] analyze caused and 

avoided climate change impacts of eight energy technologies towards 2100, the primary objective 

being to illustrate differences between emissions and temperature-based indicators for climate 

change mitigation potential (the authors argue that indicators of avoided temperature are more 

relevant for decision-making than avoided emissions). In yet another study, Gonçalves da Silva 

[25] proposes a mathematical framework for simulating the time dynamics in net and gross 

energy balances of renewable energy technology deployments; computational results are 

favorable for wind power. Finally, the report on offshore wind technology in the NEEDS project 

[38] makes assumptions on design changes and economies of scale in wind electricity 

technologies to establish life cycle inventories for future offshore wind power systems. For all 

scenario assessments cited above, there are important simplifying assumptions and thus careful 

interpretations of results are required – indeed, this point is also emphasized by the authors of the 

original publications.   
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6 Current state of knowledge and research needs: a discussion 

6.1 Capacity factor and lifetime assumptions 

The strong influence of assumed capacity factors and lifetimes on results is obvious, as 

emissions per unit of electricity (in units of grams of CO2 per kWh, or similar) scale in inverse 

proportion with the amount of electricity generated over the lifetime – this is analogous to 

calculations of generation costs (in units of Euro per kWh, or similar).  

With respect to capacity factor, one interesting comparison to make is that of assumptions 

made in LCAs (Fig. 1) versus real-world experiences. The average realized capacity factor in 

EU15 in 2003-2007 is reported at 20.8%, with country-level averages ranging from a low 18.3% 

(Germany) to a high 26.1% (UK) [60]; these real-world performances are significantly lower than 

the overall picture emerging from the assumed values shown in Fig. 1 for onshore wind turbines 

in the range of 1 MW and above, but relatively more consistent with assumptions for smaller 

turbine sizes. As regards capacity factors in the US, there are conflicting reports of real-world 

average values of around 26% [60] and 30% [61], while average capacity factors for China are 

reported at 16-17% in [64] and 23% in [65]. Data points representing North America and Asia in 

Fig. 1 are mostly in the lower end of the turbine size spectrum, however, not providing a good 

basis for comparison. Turning to the offshore case, LCA studies often assume capacity factors 

above 40% and even 50% (Fig. 1), which also appears somewhat optimistic in comparison with 

currently available measurements data: One study [66] concludes from a survey that “a typical 

offshore installation has an utilization time of 3000 hours or more” (i.e., capacity factor 34% or 

more); while, based on experiences from early Danish and Dutch wind farms, [67] generally 

expects a 35% capacity factor value for UK offshore wind farms, but finds that the real average 

value for UK round 1 offshore wind farms is 29.5%. Finally, we note that [66] proposes a 

constant 37.5% average capacity factor for offshore wind power to be used in scenario analysis 

towards 2050, while more optimistic scenarios are derived in [18] from IEA data [4], leading to 

an average offshore load 43% in 2050.  

Based on the above information, there appears to be a general tendency of wind power LCAs 

to assume higher capacity factors than current averages from real-world experiences. At the same 
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time, it needs to be emphasized that many LCAs make assumptions that are specific to one 

technology or wind farm site and as such not intended to be representative for overall trends. 

Unlike capacity factor, real-world empirical evidence on the lifetimes of modern wind turbines 

is lacking; assumptions on lifetimes thus need to be guided by wind turbine specialists’ 

evaluations and design lifetimes set by manufacturers. While LCAs typically assume lifetimes of 

20 years for onshore and offshore systems alike (Table 1), Blanco [68] find that current economic 

assessments of wind power generally set lifetimes to 20 years onshore and 25-30 years offshore. 

On this basis, it appears that assumptions regarding lifetimes in the LCA literature are less 

favorable for offshore wind power, compared with equivalent assumptions underlying economic 

assessments. 

6.2 Impact category coverage 

The current survey shows that life cycle energy demand and GHG emissions of wind power are 

extensively covered in the extant literature. Also, there is a fairly large set of quantifications on 

air pollutants typically connected with the burning of fossil fuels (e.g., NOx, SO2) and associated 

impact categories (acidification, eutrophication, photochemical oxidant formation, and to a lesser 

extent, particulate matter). In our view, given the material intensive nature of wind power 

compared to fossil alternatives [69], and that toxic releases to the environment are known to 

originate from materials manufacturing [21, 22, 35], the most serious gap in knowledge is the 

insufficient understanding of toxic emissions generated in the life cycle of wind power systems. 

From the viewpoint of the LCA practitioner, assessing toxic effects may be difficult because: i) 

emissions data on toxic substances is missing or is incomplete, and ii) current impact assessment 

methods for toxicity produce contradictory results and hence lack robustness [13, 70]. The 

neglect or incomplete modeling of toxicity is not a problem specific to wind power LCAs, 

however, but applies to the LCA literature in general [13]. For marine ecological impacts from 

emissions to water, robust impact assessment methods are in the early stage of development (in 

the general case, unresolved issues may be exemplified by contradictory results for toxic effects 

of long-term metal releases, as discussed in [63], and effects of particle emissions [71]) – this is 

unfortunate for LCA research on offshore wind power, for which there are operations taking 

place in ocean waters which need to be modeled.  
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Another significant gap in knowledge is that represented by a lack of comprehensive 

evaluations of non-renewable (abiotic) resource demands. As with toxicity, this is a much 

debated impact category in the LCA community for which there is no consensus on impact 

assessment methods [13]. In the broader literature (e.g., [72, 73]), concerns have been raised 

about future shortage of supply of neodymium, a metal belonging to the group of rare-earth 

elements that is increasingly employed in permanent magnets in wind turbine generators. At the 

same time, the in-use stocks of neodymium have been found to be significant, suggesting that 

recycling may to some extent alleviate future constraints on primary resource supply [74].  

Sustainability assessments of wind power need also adequately consider site-specific impacts, 

such as visual impacts, habitat change, and bird and bat collisions (see, e.g., Sections 7.6.2 and 

7.6.3 in [1] for a summary). There is, however, little tradition for including such impact 

categories in LCA, and they are more frequently assessed using other environmental impact 

assessment methods (e.g., cost-benefit analysis, as in [75]).  

6.3 Life cycle phases: research coverage, research agreement and quality of knowledge 

Table 3 summarizes our overall judgments of the current knowledge about potential 

environmental burdens associated with four life cycle phases of wind power systems. The 

evaluation builds on previous sections of this paper and discussions provided in Sections 6.3.1-

6.3.3. Extended life cycles (e.g., with respect to network integration or re-powering of systems) 

are discussed in Section 6.5.   

6.3.1 Production of components 

Production of system components forms a natural part of any wind power LCA. Discrepancies 

concerning values for embodied energy and emissions in materials contribute to differences in 

impact indicator results. In some cases, values for the emissions embodied in materials are meant 

to be different across studies; this may be, for example, because the assumed energy mix in 

production is different (see, e.g., [17, 52]). In other cases, discrepancies may be due to different 

LCA databases being utilized, or arise because, in the face of uncertainty about the exact types of 

materials that go into the components, analysts make different assumptions about material types 

(e.g., steel alloys).  
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Table 3. Authors’ overall judgments regarding research coverage of life cycle phases in existing studies (the number 
of asterisks indicates the degree to which we find studies include the life cycle phase in their scope), the degree to 
which research results are in agreement (low number of asterisks indicates research do not agree and that the reasons 
for the disagreements are hard to establish; more asterisks indicates higher level of agreement or that reasons for 
disagreements are well understood), and quality of knowledge (the number of asterisks indicates the degree to which 
we judge current knowledge to be sound and transparent). The latter indicator (quality of knowledge) depends on the 
research coverage and agreement, but also our (qualitative) evaluations of level of uncertainty and transparency.  
Life cycle 
phase 

Covera
ge 

Agree
ment 

Quality Remarks 

Production of 
components 

****** **** **** Complete coverage (Section 4). Uncertainty about emissions 
embodied in materials. Detailed material compositions are often 
not known. Toxic emissions from manufacturing are poorly 
understood; issues of mineral resource pressures are not well 
understood (Section 6.2). Studies assuming European energy 
systems dominate. Few studies of very large wind turbines and 
offshore wind turbines in deep waters and/or far from shore 
(Section 4).  

Transportatio
n to site, on-
site 
construction 

**** *** *** Coverage is variable (Section 4). Onshore: not important 
according to most studies (results of [34] disagree; Section 5.1). 
Offshore: possibly important; modeling appears simplistic; NOx 
from fuel oil-burning may be significant. Few studies of wind 
turbines in deep waters and/or far from shore (Section 4). 

Operation and 
maintenance 

**** *** *** Coverage is variable (Section 4). Offshore transportation and on-
site activities: modeling appears simplistic; NOx from fuel oil-
burning may be significant. Empirical basis for assumptions about 
replacement of parts seems to be lacking. Few studies of wind 
turbines in deep waters and/or far from shore (Section 4). 

End-of-life *** **** ** Scarcely assessed in detail (Section 4). Future waste handling 
practices for rotor blades are unknown. Assessments using the 
avoided burden method are often lacking in transparency and may 
be inconsistent. 

A general problem is that detailed material compositions of components are typically not 

available (by detailed we mean specifications of exact material type, e.g. steel alloy), and 

furthermore, that LCA databases provide life cycle inventories for only a limited selection of 

generic materials. This creates uncertainty, which we illustrate here using a simple calculation 

exercise: In one study [40], ferrous metal content in the wind turbine (800 kW onshore; 

foundation is excluded here) is comprised by 7% cast iron, 78% low-alloy steel and 15% high-

alloy (chromium) steel; while in a second study [31], the corresponding shares are 16% cast iron 

and 84% reinforcing steel (2 MW onshore wind turbine). Both studies utilize the Ecoinvent LCA 

database to model materials manufacturing; we find the relevant GHG emission intensities in 

Ecoinvent are 1.48 kg CO2e/kg (cast iron), 1.45  kg CO2e/kg (reinforcing steel), 1.72 kg CO2e/kg 

(low-alloy steel), and 4.50  kg CO2e/kg (chromium steel) [41]. Hypothetically, assuming a 2 MW 

wind turbine contains 200 tonnes ferrous metals, has a lifetime of 20 years and capacity factor 

25%, these values translate to either 4.9 g CO2e/kWh (if adopting the ferrous metal shares of 
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[40]) or 3.3 g CO2e/kWh (if adopting the shares of [31]) caused by the production of ferrous 

metals for the wind turbine. This exemplifies how modeling choices concerning material types – 

choices that are often not justified and scarcely discussed in LCA studies – may significantly 

influence total impact indicator values. Another potentially important, poorly understood factor is 

the composite materials used in the rotor blades and nacelle.  

6.3.2 Transportation, on-site construction, and operation and maintenance 

The overall picture emerging from the current LCA literature is that emissions associated with 

transportation and on-site construction are small or negligible (cf. Section 5.1). While this 

conclusion appears to be fairly well documented with respect to the energy use and GHG 

emissions for onshore wind farms, one could question to what extent it is valid also for offshore 

projects (for which installation is more complicated than onshore), and perhaps especially for 

NOx emissions (largely as a result of NOx, transportation and construction activities are 

dominant contributors to marine eutrophication and photochemical oxidant formation impact 

indicator values for the offshore wind farm modeled by [18]). The same argument may apply to 

transportation and construction activities associated with maintenance. To our understanding, 

existing LCAs of offshore wind farms rely on rather simplistic and theoretical calculations for 

modeling on-site operations, and consistency with real-world conditions has not yet been 

demonstrated.  

LCA studies either neglect replacement of parts (e.g., [37, 40]) or variably assume that certain 

shares of components must be replaced (e.g., [27] assumes 50% gearbox replacement during 

lifetime, [36] one blade and 15% generator replacement, and [35] 5% complete wind turbine 

replacement). One study develops a high-maintenance scenario in which 1 generator, 1 gearbox 

and 1 set of blades requires replacement [32]. While assumptions are not uniform across studies, 

one can discern that gearboxes, generators and rotor blades are expected to be most susceptible to 

failure and replacement. An empirical basis for assumptions about replacement seems to be 

lacking, however (a similar point is made by [32]). One central question is how the assumed 

replacement rates relate to past experiences from operational wind farms [76]; another question is 

how to extrapolate information from past experiences to modern wind turbines and more 

immature application areas (e.g., wind farms in marine environments [77]). In our judgment, 

these questions are not adequately addressed in the LCA literature.  
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6.3.3 End-of-life 

Since LCAs typically assume the bulk of materials contained in wind power systems will either 

remain in situ or be recycled to be returned to usage as raw materials, waste disposal is generally 

not an important contributor to emissions. Excluding ‘new’ lifecycles that are created when 

materials are recycled is common practice in LCA (cf. the cut-off allocation principle in open-

loop recycling; see, e.g., [78]).  

There is considerable uncertainty surrounding the fate of fiber-reinforced plastic materials used 

in the rotor blades: Unlike the well-established processes of recycling basic metals, recycling 

fiber-reinforced plastic composites represents a technological challenge, and little practical 

experience exists [79, 80]. While there is a consensus that the traditional practice of landfilling 

reinforced plastics is unsatisfactory, and regulatory measures to phase out landfilling of these 

materials are coming into place  [80, 81], which waste treatment strategies that are viable and 

should be chosen remains an open question [79]. There are concerns about toxic emissions 

occurring in cutting the blades (which may be needed to ease transport) [81], from waste 

treatment if the materials are landfilled [24], and from flue gas and ashes if the materials are 

incinerated [79, 80]. Future LCA research may have to address waste handling of rotor blades in 

order to ensure environmentally sound end-of-life phase for wind turbines.  

 A significant number of studies credit the system with perceived emissions reductions from 

end-of-life recycling (avoided burden method; Table 1; Sections 4 and 5.1). However, 

applications of the avoided burden method sometimes use inappropriate methodologies and are 

generally lacking in transparency. The root of the problems appears to be that it is not widely 

recognized that the two issues of 1) including recycled content as input materials in the 

production phase and 2) crediting the system with prevented environmental burdens at the end-

of-life cannot be viewed independently. The share of secondary inputs in the production phase 

should always be zero for the materials for which avoided burden is calculated; otherwise one 

would use one perspective to model benefits of recycling in the production phase, and a different 

(and inconsistent) perspective to model benefits of recycling at the end-of-life – effectively, one 

would double-count benefits of recycling. The crux of the issue is that analysts must decide 

whether benefits of recycling should belong to systems that use recycled materials (as is the 

implicit assumption if secondary materials are used as inputs in an LCA) or make available 



Appendix A   Paper I and associated content 
 

A22 
 

recyclable materials (as is the assumption if avoided burden method is applied), and not mix 

these two perspectives.  

We are aware of one study [35] that uses the avoided burden method appropriately, assuming 

no secondary resources as inputs in production when the avoided burden method is applied. 

(Another study [21] in which the avoided burden method is used also assumes only virgin 

resource inputs in production, but the stated reason is lack of data on recycled content, and the 

assumption is inappropriately described as “very conservative”.) One apparently inconsistent 

assessment is [31], where materials containing significant amounts of recycled content (i.e., cast 

iron, reinforcing steel and copper Ecoinvent processes [82]) are stated to be used in the 

production phase, while simultaneously, recycling credits are given for avoided production. Other 

LCAs use the avoided burden method while not specifying that only virgin resources are used in 

production. 

6.4 Method for life cycle inventory and system boundary issues 

In 2002, Lenzen and Munksgaard [5] recommended that future wind power LCA research 

employs hybrid LCA methodologies “in order to achieve system completeness while dispensing 

with the problem of selecting of a boundary for the production system”.  However, the current 

survey demonstrates that hybrid LCA studies on wind power are still relatively scarce – this fits 

into a general trend that despite its acknowledged advantages, hybrid techniques have not yet 

become standard practice in LCA [10]. Hybrid LCA is more challenging to conduct and requires 

additional data, which may be an explanation for its lack of use. Moreover, it is interesting to 

note that Wiedmann et al. [23] employ two hybrid LCA calculation techniques separately, and 

find that while the total emission estimates obtained by the two techniques are comparable, there 

are considerable differences in the relative contribution from IO sectors. This points to yet 

unresolved issues with IO-based calculations techniques. 

Notwithstanding the data and methodological challenges of hybrid methods, hybrid LCA is the 

only technique that offers both process-level detail and a nearly complete coverage of the entire 

product system. While there is no consensus in the LCA community on how to measure the 

truncation bias of process-LCA, in all explorations into this issue surveyed by Majeau-Bettez et 

al. [10] it is found that process-LCA fails to account for 30% or more of total indicator values. 



Section A.1   Paper I 

A23 
 

This predicates that the employment of hybrid LCA methodologies should be a goal of future 

LCA research on wind power; and that if hybrid techniques on the other hand are not applied, the 

problem of cut-off errors should at the least be recognized – in existing literature this is not the 

case.  

6.5 Aspects of scale, temporal evolutions and network integration 

In recent years, analysts have remarked on the insufficiency of static, unit-based analyses for 

evaluating implications of future wind energy developments [18, 25, 39, 44]. One shortcoming of 

existing research is the general failure to address the magnitudes of aggregated impacts: A 

transition away from conventional and towards lower-carbon energy systems in coming decades 

– as envisaged for example by contemporary climate change mitigation scenarios [3, 4] – will in 

itself cause harmful emissions. Due to the sheer scale of the transition, total emissions and 

resource use brought about by ‘clean’ energy technologies may be significant in the aggregate, 

even if unit-based assessments (i.e., assessments where indicator values are measured per kWh) 

indicate low impacts. In the literature, climate change mitigation scenario analyses explore 

energy transitions at the economy-wide level [3, 4], but do not consider emissions arising from 

building and operating non-fossil power plants; while conversely, LCAs of power generation 

predominantly have a purely micro-level focus. The integration of these two perspectives could 

potentially provide valuable new insights on the economy-wide effects of large-scale energy 

transitions (a similar point is made by [8]). Ideally, such scenario calculations incorporate some 

projections of future technological changes, as discussed below. 

Inventories for wind power systems are not static, but change over time as new technological 

configurations are adopted, and due to economies of scale and changes in background economies. 

Projections of impacts of research and scientific developments on future technological designs – 

based on technology forecasting studies or learning curve studies [38, 83] – may provide LCA 

analysts with a basis for modeling future inventory changes, as demonstrated by Viebahn et al. 

[84] for concentrated solar power. Besides changes in wind power technology configurations, 

impact indicator values are influenced by the characteristics of background economies through 

relatively clean or dirty manufacturing; indeed, it is the current economies’ preoccupation with 

fossil fuels which is the very reason why electricity from wind is not CO2-free. The importance of 
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background energy system characteristics is illustrated by the results of [52], where the embodied 

CO2 is a factor of five lower for a wind turbine produced in Brazil compared to Germany; the 

difference stems entirely from the higher portion of renewable sources (hydro, biomass) in 

Brazil’s energy supply. It is not just the energy mix as such which is important, however, but also 

the energy efficiency. Another important factor are the environmental impacts of metals supply 

which will change due to combined effects of technological advances in mining and 

manufacturing, changes in the portion of secondary to primary materials used, and reduction in 

ore grade [85-87]. Future research may address the effects of such changes through scenario 

analyses. 

The final type of scaling or temporal aspect discussed here relates to the variable and (partly) 

unpredictable nature of wind power. Higher shares of intermittent electricity supply, such as 

electricity from wind, increase the overall costs of short-term balancing in the system (i.e., 

matching electricity supply with demand over seconds to days), reduce overall peak-load system 

adequacy (because the contribution of a wind power plant to peak-load capacity adequacy is 

smaller than for conventional technologies), and may require upgrades in the electricity 

transmission infrastructure to admit transfer of electric power to the load centers (see, e.g., 

Section 7.5.4 in [1] and p. 321-326 in [88]). In the literature, life cycle emissions of wind power 

and emission penalties due to the variability of wind power [89-91] are generally analyzed 

separately and lead to separate evaluations of emissions connected with wind power deployment; 

in a sense, these two areas of research form two independent departures from the notion that wind 

power is ‘emissions-free’, both aiming to provide a more complete picture. The potential exists to 

combine the assessments in these two research fields, as exemplified by the study by Pehnt et al. 

[39] discussed in Section 5.3 – this would indeed be congruent with the often stated goal of LCA 

to provide holistic assessments, but on the other hand it involves substantial methodological and 

data challenges. In any case, when interpreting results of current LCA studies it is important to 

bear in mind the failure of LCA research to account for emission penalties due to intermittency. 

6.6 Comparison with competing technologies 

A detailed exploration of how life cycle emissions for wind power compare with that of other 

power-generation technologies falls outside the scope of this paper, although a few points are 



Section A.1   Paper I 

A25 
 

noted here. In the LCA survey presented in Sathaye et al. [8], the interquartile range (i.e., the 

range between 25th and 75th percentile levels) for life cycle GHG emissions for wind power are 

8-20 g CO2e/kWh (median value 12 g CO2e/kWh). The corresponding ranges (median values) for 

competing technologies are 8-45 (16) g/kWh for nuclear, 3-7 (4) g/kWh for hydro, 14-32 (22) 

g/kWh for concentrating solar, and 29-80 (46) g/kWh for solar photovoltaic power. Life cycle 

GHG emissions of electricity from coal and natural gas with carbon capture and storage (CCS) 

are estimated to 180-220 g CO2e/kWh and 140-160 g/kWh, respectively, in [92]; the 

corresponding numbers without CCS are around 1000 g/kWh for coal and 500-600 g/kWh for 

natural gas [8, 92]. Judging from these figures, the carbon footprint of wind power is significantly 

lower than that of fossil-based power with CCS, and is comparable or lower than that of other 

important non-fossil power generation technologies. Likewise, comparisons of life cycle 

emissions of NOx, SO2, NMVOC and particles of multiple power generation technologies in 

Sathaye et al. [8] suggest good environmental performance for wind power. 

Some research suggests that toxicity impacts may be of relatively high importance. Two 

studies of offshore wind power find, respectively, that a wind farm scores 2-6 times worse in 

toxicity impact categories than a natural gas combined cycle plant [35], and that wind electricity 

is slightly worse than the average German electricity with respect to human toxicity [22]. A 

different picture is presented by other publications, whose findings suggest that wind power 

grossly outperforms European [46] and Spanish [31] average electricity mixes with respect to 

human toxicity. 

7 Final remarks and recommendations 

Despite the considerable variability in results, and the limitations of current knowledge that 

have been mentioned, we conclude that existing LCA research provides many insights into and 

gives a fairly good overall understanding of the life cycle environmental impacts of wind power 

in terms of cumulative fossil energy demand and associated pollution. Discrepancies between 

studies can likely be explained by a combination of actual differences in the systems studied 

(e.g., small versus large wind turbines), key assumptions (e.g., capacity factor and lifetime), data 

inconsistencies (e.g., emission intensities of materials), and differences in methodologies and 

approaches (e.g., process-LCA or hybrid IO-LCA, accounting of recycling benefits). Previous 
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LCA reviews [1, 5, 7] have duly noted that the large gap between low and high values limit the 

usefulness of results to decision-makers, and that compliance with some standardized sets of 

methods and assumptions in future analyses would be advantageous. 

The problems of confusion and uncertainty due to variability in results, and 

incomprehensibility due to the complex networks of operations that are studied and many 

assumptions that are made, need to be given due attention. One measure that can be taken to 

alleviate these problems – in conformity with the guiding principle that LCAs should be 

transparent [9] – is to make process-level inventory input data available together with LCA 

publications: Such a step would increase the transparency as to how results are obtained and help 

give clarity on why results differ across studies, and allow for proper meta-analyses of wind 

power LCAs [93]. Furthermore, making inventory input data at the level of unit processes 

available can contribute to a cumulative build-up of knowledge, rather than having efforts going 

into repetitions of sometimes cumbersome data collection processes.  

This review has shown that to date, the largest research efforts have been devoted to studying 

typical onshore wind turbines or wind farms in European locations, placing most emphasis on the 

production life cycle stage. Future research may focus attention on system types or life cycle 

phases for which research is still relatively scarce or robust assessments are lacking. This may 

include: 

• Systems that are produced and operated under conditions of other regions than Europe.  

• Large wind turbines (> 3 MW) and offshore systems in deep waters and/or far from shore. 

• Installation and operation and maintenance phases, in particular for offshore systems. 

Wind power LCAs have traditionally had their domain in assessing potential environmental 

impacts caused by one small reference unit (1 kWh of electricity), have primarily focused on 

fossil energy-related emissions, and have predominantly employed a process-LCA methodology. 

Such assessments have proved valuable in the past and are likely to continue to play a role in 

future research. At the same time, given the sizeable number of published studies that are similar 

with regards to goal and scope, one could wish that research had made further strides in analyses 

with different or broader scopes, or more sophisticated methodologies. In this respect, we call for 

future research efforts to be directed into: 
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• The employment of hybrid LCA methodologies. 

• Broadening the scope with regards to environmental impacts, as far as available impact 

assessment methods allow it. In particular, we call for more detailed explorations of 

toxicity and mineral resource depletion. 

•  Exploring technology evolution through scenario analyses, addressing for example the 

scale of environmental burdens at regional or global levels, changes in life cycle 

inventories as key technologies or background economies change, or emission penalties 

due to intermittency.  

In all cases, future studies should avoid inconsistent modeling of recycling benefits. 
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A.2 Supplementary content for paper I (published 

electronically in online version) 

Description of content 

The supplementary information contains 13 tables. Table S1 provides the raw data of the 

quantitative analysis in terms of system characteristics and impact indicator and emission 

estimate results. In some cases, results reported in the original publications were processed (e.g., 

to convert units, or to calculate greenhouse gas emission intensity from reported CO2, CH4, and 

N2O emissions). Table S2 shows results in terms of assumed capacity factor values for five wind 

power system categories. Tables S3-S13 provides impact indicator results for five wind power 

system categories, corresponding to Fig. 2 in the main article. In Tables S2-S13, the number of 

estimates exceeds the number of studies if more than one estimate was surveyed from one study. 

In some cases, the total sample size (represented by the column “Total” in Tables S2-S13) 

slightly exceeds the sum of the shown sub-sample sizes; this is because estimates for wind farm 

portfolios were not assigned a specific wind power system type, but were included in the total 

sample. 

Tables S1-S13 

Tables S1-S13 are shown below. 
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Table S2. Capacity factor assumptions (%) and number of estimates and studies surveyed for 5 wind power system 
categories. 

< 100 kW 
(onshore) 

100 kW - 1 MW 
(onshore) 

> 1 MW 
(onshore) Offshore Total 

Minimum 8.0 9.5 20.8 30.0 8.0 
25th percentile 17.4 20.0 24.8 39.3 22.4 
Mean 18.2 22.2 31.2 43.3 28.9 
Median 19.5 22.8 30.0 45.7 28.5 
75th percentile 21.5 25.1 33.9 46.2 33.6 
Maximum 23.0 28.6 45.7 54.2 54.2 
Std. deviation 5.4 5.1 7.5 8.4 10.6 
No. studies 2 7 10 7 28 
No. estimates 6 17 16 10 51 

 

Table S3. Energy intensity results (kWh/kWh) and number of estimates and studies surveyed for 5 wind power 
system categories. Energy intensity refers to the ratio between total life cycle energy demand and electricity 
generated during the lifetime.  

< 100 kW 
(onshore) 

100 kW - 1 MW 
(onshore) 

> 1 MW 
(onshore) Offshore Total 

Minimum 0.062 0.020 0.020 0.028 0.014 
25th percentile 0.118 0.035 0.025 0.034 0.030 
Mean 0.169 0.053 0.035 0.055 0.060 
Median 0.139 0.045 0.032 0.049 0.042 
75th percentile 0.193 0.067 0.033 0.052 0.065 
Maximum 0.333 0.117 0.083 0.137 0.333 
Std. deviation 0.103 0.027 0.017 0.037 0.058 
No. studies 5 14 11 7 27 
No. estimates 5 16 13 7 42 
 

Table S4. Greenhouse gas emissions (g CO2e/kWh) and number of estimates and studies surveyed for 5 wind power 
system categories.  

  
< 100 kW 
(onshore) 

100 kW - 1 MW 
(onshore) 

> 1 MW 
(onshore) Offshore Total 

Minimum 25.1 7.3 6.6 7.8 6.6 
25th percentile 42.7 14.9 7.2 8.6 8.9 
Mean 43.1 19.5 12.0 16.2 18.9 
Median 45.7 18.2 9.3 11.5 15.0 
75th percentile 46.4 23.0 12.5 21.6 23.8 
Maximum 55.6 35.0 31.6 33.4 55.6 
Std. deviation 11.2 8.9 7.1 9.6 12.6 
No. studies 5 11 13 11 28 
No. estimates 5 12 14 11 43 
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Table S5. Carbon dioxide emissions (g CO2/kWh) and number of estimates and studies surveyed for 5 wind power 
system categories.  

  
< 100 kW 
(onshore) 

100 kW - 1 MW 
(onshore) 

> 1 MW 
(onshore) Offshore Total 

Minimum 51.6 7.2 3.0 5.2 3.0 
25th percentile 10.2 6.0 7.7 7.6 
Mean 52.4 16.5 8.9 12.5 14.8 
Median 52.4 14.2 7.6 9.2 10.7 
75th percentile 18.8 11.3 15.8 17.3 
Maximum 53.2 34.4 19.9 29.2 53.2 
Std. deviation 1.1 8.7 4.9 7.3 11.9 
No. studies 2 9 9 10 21 
No. estimates 2 11 10 10 35 

 

Table S6. Methane emissions (g CH4/MWh) and number of estimates and studies surveyed for 5 wind power system 
categories. 

  
< 100 kW 
(onshore) 

100 kW - 1 MW 
(onshore) 

> 1 MW 
(onshore) Offshore Total 

Minimum 6 4 6 4 
25th percentile 13 7 10 
Mean 129 43 22 34 35 
Median 129 40 15 13 16 
75th percentile 17 46 45 
Maximum 88 77 115 129 
Std. deviation 34 23 40 37 
No. studies 1 3 8 8 13 
No. estimates 1 4 8 8 22 
 

Table S7. Carbon monoxide emissions (g CO/MWh) and number of estimates and studies surveyed for 5 wind 
power system categories. 

  
< 100 kW 
(onshore) 

100 kW - 1 MW 
(onshore) 

> 1 MW 
(onshore) Offshore Total 

Minimum 63.8 4.7 19.9 4.7 
25th percentile 11.7 26.0 26.0 
Mean 337.4 94.6 69.6 91.3 100.6 
Median 337.4 87.3 24.5 51.5 76.9 
75th percentile 79.3 76.9 120.0 
Maximum 140.1 259.2 282.2 337.4 
Std. deviation 33 99 109 101 
No. studies 1 3 5 5 12 
No. estimates 1 4 6 5 17 
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Table S8. Ammonia emissions (g NH3/MWh) and number of estimates and studies surveyed for 5 wind power 
system categories. 

  
< 100 kW 
(onshore) 

100 kW - 1 MW 
(onshore) 

> 1 MW 
(onshore) Offshore Total 

Minimum 0.69 0.005 0.009 0.005 
25th percentile 0.03 
Mean 5.36 1.22 0.80 1.12 1.30 
Median 5.36 1.03 0.02 0.67 0.69 
75th percentile 1.95 
Maximum 1.95 3.17 3.14 5.36 
Std. deviation 0.6 1.6 1.4 1.7 
No. studies 1 2 4 4 9 
No. estimates 1 3 4 4 13 
 

Table S9. Non-methane volatile organic compounds emissions (g NMVOC/MWh) and number of estimates and 
studies surveyed for 5 wind power system categories. 

  
< 100 kW 
(onshore) 

100 kW - 1 MW 
(onshore) 

> 1 MW 
(onshore) Offshore Total 

Minimum 1.5 2.1 1.0 1.0 
25th percentile 2.3 1.4 2.3 
Mean 39.4 9.5 12.7 12.1 12.8 
Median 39.4 8.4 3.3 3.2 4.0 
75th percentile 15.5 7.4 15.0 
Maximum 19.8 48.3 55.8 55.8 
Std. deviation 7.7 17.9 21.6 17.1 
No. studies 1 3 7 6 10 
No. estimates 1 4 7 6 19 
 

Table S10. Nitrous oxide emissions (g N2O/MWh) and number of estimates and studies surveyed for 5 wind power 
system categories. 

  
< 100 kW 
(onshore) 

100 kW - 1 MW 
(onshore) 

> 1 MW 
(onshore) Offshore Total 

Minimum 0.002 0.18 0.17 0.002 
25th percentile 0.20 0.20 0.20 
Mean 1.31 0.61 0.63 0.93 0.76 
Median 1.31 0.55 0.23 0.36 0.44 
75th percentile 0.35 1.72 1.31 
Maximum 1.32 2.18 2.39 2.39 
Std. deviation 0.5 0.9 1.0 0.8 
No. studies 1 3 4 6 12 
No. estimates 1 4 5 6 17 
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Table S11. Mono-nitrogen oxides emissions (g NOx/MWh) and number of estimates and studies surveyed for 5 wind 
power system categories. 

  
< 100 kW 
(onshore) 

100 kW - 1 MW 
(onshore) 

> 1 MW 
(onshore) Offshore Total 

Minimum 15 14 14 14 
25th percentile 27 23 21 21 
Mean 159 41 32 35 40 
Median 159 35 26 22 28 
75th percentile 52 31 50 54 
Maximum 77 61 82 159 
Std. deviation 22 17 23 31 
No. studies 1 5 8 9 16 
No. estimates 1 6 9 9 26 
 

Table S12. Total particulates or particles/dust emissions (g/MWh) and number of estimates and studies surveyed for 
5 wind power system categories. 

  
< 100 kW 
(onshore) 

100 kW - 1 MW 
(onshore) 

> 1 MW 
(onshore) Offshore Total 

Minimum 8 6 11 6 
25th percentile 36 7 11 11 
Mean 171 51 15 18 34 
Median 171 58 12 12 14 
75th percentile 67 14 14 42 
Maximum 84 42 40 171 
Std. deviation 30 14 13 41 
No. studies 1 4 6 5 9 
No. estimates 1 5 6 5 18 
 

Table S13. Sulfur oxides emissions (g SOx/MWh) and number of estimates and studies surveyed for 5 wind power 
system categories. 

  
< 100 kW 
(onshore) 

100 kW - 1 MW 
(onshore) 

> 1 MW 
(onshore) Offshore Total 

Minimum 20 16 22 16 
25th percentile 25 22 23 22 
Mean 172 52 40 35 46 
Median 172 44 40 30 35 
75th percentile 78 58 39 57 
Maximum 98 81 76 172 
Std. deviation 33 22 17 34 
No. studies 1 5 8 9 16 
No. estimates 1 6 9 9 26 
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A.3 Note concerning capacity factor values 

(supplementary note added in this thesis) 

The finding in section 3.1 and paper I that LCAs tend to assume higher capacity factor values 

than indicated by realized wind power generation could be conceived as fitting into a broader 

pattern of too optimistic capacity factor assumptions in the literature: Boccard (2009) argues that 

while capacity factors of 30-35% are generally assumed, the fleet-wide average for Europe is 

below 21%, and similar discrepancies exist for offshore wind power, according to Boccard 

(2009).  

In some respects the presentation of current evidence on realized wind power generation in 

paper I may appear not entirely consistent with a similar presentation given in IPCC’s recent 

Special Report on Renewable Energy Sources and Climate Change Mitigation (Wiser et al. 

2011). However, I would argue that several issues in Wiser et al. (2011) in sum cause the 

presentation to be overly positive:  

i) While Boccard (2009) reports a mean realized value for EU in 2003-2007 of 20.8%, 

with numbers ranging from 18.3% (Germany) to 26.1% (UK), Wiser et al. (2011) 

inappropriately cite Boccard (2009) on that “European country-level average capacity 

factors range from 20 to 30%”. A later study (Kaldellis and Zafirakis 2011) presents 

EU capacity factor figures where the total mean for the years 2003-2007 appears to be 

approximately 19% (> 20% for the single year 2007) (figure 11 in the reference), which 

also appears not consistent with the 20-30% range maintained by Wiser et al. (2011). 

ii) Wiser et al. (2011) state that “the average capacity factor for US (...) is above 30%”, 

citing Wiser and Bolinger (2010), but refrain from citing Boccard (2009) here despite 

that Boccard (2009) reports a US value of 25.7% and remarks that he is unable to 

reproduce results from work by Wiser and Bolinger using the same original data 

source.  

iii) Wiser et al. (2011) cite Lemming et al. (2009) on a claim that offshore projects 

typically show capacity factors of 35-45%. However, as far as I can see Lemming et al. 

(2009) provide little support here, but states that “a typical offshore installation has an 

utilization time of 3000 hours or more” – that is, a capacity factor 34% or more. The 
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value 34% or more is roughly in line with a general expectation of 35% deduced in 

Feng et al. (2010) based on experiences from early offshore wind farms. Wiser et al. 

(2011) add that “some offshore plants in the UK (...) have experienced capacity factors 

of roughly 30%...”, where 29.5% is an average value for UK round 1 offshore wind 

farms (Feng et al. 2010).  

iv) Wiser et al. (2011) state that “average capacity factors in China are reported at roughly 

23%”, a number which may be traced to an interview in Cyranoski (2009). Yang et al. 

(2012) (published after Wiser et al. 2011) estimate 16-17% for China. It is reported that 

25% (IEA 2011) or 30% (Yang et al. 2012) of installed capacity in China by the end of 

2010 and 28% by the end of 2011 (Qi, 2012) is not connected to the grid, in part 

explaining the very low mean realized capacity factor value (Yang et al. 2012). 

As for average global capacity factor values, Jacobson (2009) reports a current average of 

20.5%, Kaldellis and Zafirakis (2011) report about 20% for the year 2007, and Arvesen and 

Hertwich (2011) (paper II) 23.8% for the year 2007. Lenzen (2010) reports 24.5% for 2008, but 

appears to use the end-of-year capacity value as opposed to the mid-year value or similar to 

calculate the capacity factor; if this is so, the capacity factor should be higher than 24.5%. 
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B.1 Paper II 

Environmental implications of large-scale adoption of 

wind power: a scenario-based life cycle assessment 

Anders Arvesen* and Edgar G. Hertwich 

Industrial Ecology Programme and Department of Energy and Process Engineering, Norwegian 

University of Science and Technology 

* Corresponding author. Email address: anders.arvesen@ntnu.no 

ABSTRACT 

We investigate the potential environmental impacts of a large-scale adoption of wind power to 

meet up to 22% of the world’s growing electricity demand. The analysis builds on life cycle 

assessments of generic onshore and offshore wind farms, meant to represent average conditions 

for global deployment of wind power. We scale unit-based findings to estimate aggregated 

emissions of building, operating and decommissioning wind farms towards 2050, taking into 

account changes in the electricity mix in manufacturing. The energy scenarios investigated are 

the International Energy Agency’s BLUE scenarios. We estimate 2.3-3.5 Gt CO2-eq climate 

change, 2.9-4.5 Mt N-eq marine eutrophication, 16-24 Mt NMVOC photochemical oxidant 

formation, and 13-20 Mt SO2-eq terrestrial acidification impact category indicators due to global 

wind power in 2007-50. Assuming lifetimes 5 years longer than reference, total climate change 

indicator values are reduced by 8%. In the BLUE Map scenario, construction of new capacity 

contributes 64%, and repowering of existing capacity 37%, to total cumulative greenhouse gas 

emissions. Total emissions of wind electricity range between 5% and 23% of the direct emissions 

of replaced fossil-fueled power plants. For all impact categories, indirect emissions of displaced 

fossil power are larger than total emissions caused by wind power. 

Keywords: carbon footprint, hybrid life cycle assessment, renewable energy scenario, 

environmental management, climate mitigation scenario 
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1 Introduction 

In recent years, increasing concerns over security of energy supply and harmful climate change 

have fuelled interest in the development of renewable energy technologies. Electric power 

generation by wind turbines is a fast-growing technology, with global installed capacity growing 

at an average annual rate of around 25% over the past ten years [1]. Furthermore, typically 

foreseen paths to renewable energy supply and climate stabilization imply a massive expansion of 

the wind power industry and its supply network in coming decades. Despite the renewable nature 

of wind energy conversion, non-renewable resource inputs and emissions occur in the life cycle 

of wind energy systems. The potential environmental impacts generated throughout a product’s 

life cycle can be quantified and assessed by the method of life cycle assessment (LCA). 

In the literature, climate change mitigation scenario analyses explore pathways leading to de-

carbonized energy supply at the economy-wide level, but do not take into account the greenhouse 

gas emissions in the production of the power plants; while conversely, conventional, unit-based 

LCAs of power generation do not address aspects of scale and time. In the broader context of 

climate change mitigation an integration of the two perspectives can be valuable in establishing a 

more complete understanding of the environmental effects of proposed transitions away from 

fossil and towards lower-carbon energy systems. Examining the economy-wide environmental 

costs and benefits of wind power, the current study represents an early research attempt in this 

direction. 

In the present study we estimate aggregated emissions caused by global wind power 

development towards 2050, following energy scenarios by the International Energy Agency 

(IEA) [2]. The analysis builds on the LCAs of generic onshore and offshore wind farms, meant to 

represent average conditions for global onshore and offshore wind power development. We 

employ a hybrid LCA methodology, that is, we combine physical, process-based inventories and 

monetary, input-output based inventories. Utilizing the extensive set of life cycle inventories for 

fossil-based power generation technologies in the Ecoinvent database, the scenario analysis 

includes an integrated LCA modeling of emissions reduction due to increased global wind power 

employment. The scenario analysis incorporates the temporal distribution of emissions and 

replacement of components at their end-of-life, as well as changing electricity mix in 

manufacturing. 
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2 Hybrid LCA: methods and data 

In an LCA, a systematic mapping of emissions generated throughout a network of operations 

allows one to evaluate potential environmental impacts associated with or necessitated by a 

product or service throughout its lifetime. Two approaches to LCA prevail: process-LCA, a 

bottom-up technique defining and describing operations in physical terms, and environmentally 

extended input-output analysis (EE-IOA), utilizing monetary data at the level of economic 

sectors. Process-LCA facilitates the use of physical data specific for the operations under 

consideration, but may suffer from significant cut-off errors. EE-IOA, on the other hand, has the 

advantage of more complete system coverage, but it comes at the expense of precision level. 

Hybrid methods combining process-LCA and EE-IOA can potentially exploit advantages of both 

approaches. 

An LCA model can be expressed mathematically by  

1( )d Ce CF I A y  (1) 

where the vector d represents total impact indicator values, and the vector e contains life cycle 

inventory analysis results, such as emissions values. C is a matrix of characterization factors, F is 

a matrix of stressor intensities, and I is the identity matrix. In a product system, outputs of 

processes/sectors serve as inputs supporting the production of new outputs. Relations between 

physical processes and economic sectors are described by the direct requirements matrix, A, 

where each element in A represents the flow from one producing process/sector to a consuming 

process/sector. Ultimately, all activities serve to satisfy a demand given by the vector y. 

The direct requirements matrix reveals the structure of the hybrid LCA model employed [3]: 

0 0
0

0

ff

pf pp

nf nn

A
A A A

A A
 (2) 

We distinguish between three types of processes and sub-systems: 1) processes defined 

specifically for this study, together comprising the foreground system (index f); 2) processes 

defined in an LCA database, together comprising the LCA database background system (index 

p); and 3) processes represented by economic sectors in an input-output (IO) dataset, together 
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comprising the IO background system (index n). Linkages among processes in the foreground 

system are described in the matrix Aff. Similarly, App and Ann describe internal linkages within the 

LCA background and IO background systems, respectively. Inputs to the foreground system from 

the LCA and IO background systems are accounted for in Apf and Anf. Table 1 gives a summary of 

activities and the sub-systems in which they are modeled.  

Table 1. Distribution of activities by modeling sub-system. 
Activity Sub-system Physical/monetary 

Final manufacturing and assembly of main components Foreground Physical 
Operation and maintenance  Foreground Physical 
Installation and decommissioning  Foreground Physical 
Supply of electricity to foreground system LCA database background Physical 
Supply of selected materials and material processing to 
foreground system LCA database background Physical 

Supply of all other inputs to foreground system IO database background Monetary 

As the LCA database background system we use a matrix representation of the Ecoinvent 

database [4]. The IO background system is a two-region (Europe, rest of world) environmentally 

extended IO model for the year 2000, constructed using input-output tables from Eurostat [5] and 

GTAP 6 [6], and air emissions data from World Resources Institute [7] and Eurostat [8]. All 

inputs from the IO background system to foreground processes are made from the Europe region. 

The matrix representing inputs to the foreground system from the IO background system (Anf) 

is constructed in the following step-wise approach: 1) Each foreground process is assigned to an 

IO sector. The foreground processes are assigned the same input distributions as their belonging 

IO sectors. 2) Inputs are scaled according to the costs (with value added deducted) apportioned to 

the specific foreground processes. 3) Inputs from the IO background that are already covered by 

the LCA database background system are removed. 

We alter the relative shares of power generating technologies in the LCA database and IO 

background systems to match the global electricity mix in 2007 (unit-based analysis). The 

alteration is performed consistently in the matrices Apf, Anf, App, and Ann. In the scenario analysis, 

the procedure is repeated for every year, so that the electricity mix used in the entire LCA 

database and IO background systems is always consistent with the IEA scenarios. 
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3 Life cycle inventories 

We model hypothetical 120 MW (onshore) and 250 MW (offshore) wind farms. The lifetime 

of the onshore wind power system is assumed to be 20 years, for offshore it is 25 years. For the 

unit-based analysis, we assume onshore and offshore average wind load factors of 23.6% and 

37.5%, respectively, which correspond with values for the reference year 2007 in the scenario 

analysis (table 3). Our system of analysis comprises the wind turbines with foundations, internal 

electrical connections, and cabling and a high-voltage transformer for connection to the 

electricity grid. In addition, the analysis covers installation, operation and maintenance, and 

decommissioning. For the electrical connections, we utilize data gathered by Jorge et al. [9]. 

Our data set covers eight air pollutants: ammonia (NH3), carbon dioxide (CO2), carbon 

monoxide (CO), methane (CH4), mono-nitrogen oxides (NOx), nitrous oxide (N2O), non-methane 

volatile organic compounds (NMVOC), and sulfur oxides (SOx). The relevant impact assessment 

categories for these stressors are: climate change, marine eutrophication, photochemical oxidant 

formation, and terrestrial acidification. ReCiPe 1.03 characterization factors are used [10]. 

Emissions data for NH3 are missing for the rest-of-the-world region of the IO background system.  

In the following, we outline life-cycle inventory data collection. Metal requirements for all 

components, as well as composites used in the rotor blades and nacelle, concrete used in the 

foundations, and electricity used by foreground processes, are modeled in the LCA database 

background system. Other inputs to the foreground are covered by inputs from the IO background 

system. In cases where emissions values are not known for foreground processes, we estimate 

them based on consumption of gas and oil. Further accounts of inventories and assumptions are 

provided in the supplementary information.  

3.1 Wind turbine and foundation 

Total weights of rotor blades, hub, and nacelle, respectively, are obtained for 2 MW and 3 MW 

wind turbines by the manufacturer Vestas [11]. We take averages for the two turbines to model a 

hypothetical 2.5 MW wind turbine, which is used both onshore and offshore. The tower mass is 

78 t/MW for onshore (hub height 105 m), for offshore it is 52 t/MW (hub height 80 m), 

consistent with tower weights used in an LCA by Vestas [12]. We model the tower as made of 
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low-alloy steel, and the rotor blades as consisting of glass-reinforced plastics. To achieve a higher 

resolution for the nacelle with respect to components and material types, we utilize relative shares 

(by component and material type) of [13] together with own assumptions (Tables S5-S10 in 

supplementary information). Wire drawing for copper content in the generator and transformer, 

and sheet rolling of steel content in the tower are included. 

Direct energy requirements (electricity, heat, gas, and oil) and emissions of CO2 for a wind 

turbine manufacturer are established from Vestas reports. We take the averages of values 

reported for the years 2007, 2008, and 2009 [14], and adjust to take into account that around 80% 

of the towers are supplied to Vestas rather than manufactured in-house. The adjustment builds on 

data in [15] and causes energy use to increase by 3-10% from non-adjusted values. We model 

onshore gravity-based foundations made of reinforced concrete (1000 t), and offshore 

foundations made of steel (300 t at water depth 20 m), with aluminum anodes to prevent 

corrosion. 

3.2 Electrical connections 

Based on a survey of wind power projects, we assume 0.4 km of internal cabling and 0.3 km 

cabling for connection to grid is required per MW wind farm capacity. Submarine cables are steel 

armored. Material and energy requirements are derived from manufacturer data and previous 

LCAs [16-19]. Because data on energy use in manufacturing of infield cables is missing, we 

assume equal energy per weight ratios for internal and external cables. Each wind farm is 

connected to a high-voltage transformer, for which material composition and direct energy inputs 

during manufacturing we derive from reports by manufacturers [20, 21]. The offshore 

transformer platform is modeled as one wind turbine foundation. 

3.3 Installation and decommissioning 

The installation phase includes transportation to site and on-site construction activities. Diesel 

consumption for on-site activities for an onshore wind farm comes from reported measurements 

[22]. We convert reported life cycle energy to direct energy equivalent. When shifting to offshore 

sites, it is assumed that on-site diesel consumption scale proportional to the installation costs. 

Transportation of one wind turbine is modeled as 10 lorries (32t capacity) with pilot cars 
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traveling 600 km; and onshore and offshore foundations, respectively, as 40 and 10 lorries 

traveling 50 km and 200 km. Electrical connections travel 200 km by lorry. For the offshore case, 

transportation with barge (30 km) comes in addition. 

Demolition is modeled as identical to installation. Composite materials in the rotor blades and 

nacelle are assumed to be 50% incinerated and 50% recycled. Apart from this, waste disposal is 

not taken into consideration, as it is assumed that most other materials contained in the system 

will be returned to the technosphere for recycling or remain in situ without causing further 

environmental burdens.  

3.4 Operation and maintenance 

A case study [22] indicates that around 50 kg of diesel will be consumed per year per MW for 

inspections. Helicopter operation (100 hours per wind turbine) is added for the offshore wind 

farm.  Based on the presumption that the gearbox is the component most vulnerable to failure, we 

assume 50% (onshore) and 70% (offshore) of gearboxes will have to be replaced during the 

lifetime. Replacement parts are transported by lorry (600 km) and barge (offshore). 

3.5 Level and distribution of costs 

To determine the inputs from the IO background system to the foreground (that is, to establish 

Anf), cost numbers must be assigned to each of the processes in the foreground. We assume total 

capital cost is 1250 Euro/kW (onshore) and 2200 Euro/kW (offshore), and that variable costs 

amount to 1.2 Eurocent/kWh (onshore) [23]. Figures for the variable costs of offshore wind farms 

are scarce in the public domain, though they are known to substantially exceed the variable costs 

of onshore wind projects [23]. We set variable costs of offshore wind power to 1.6 

Eurocent/kWh. Cost numbers are converted from 2007 to 2000 prices using average annual 

inflation rate. 

A breakdown of costs by foreground processes is established by synthesizing data from 

different sources. For the capital costs of the onshore wind farm, as a starting point we take the 

cost distribution of a wind project in Europe, as estimated by [23]. Then, we disaggregate the 

costs of the actual wind turbine into main wind turbine components [23]. The cost breakdown for 
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the offshore wind turbine is identical to that of the onshore unit, except for the wind turbine 

tower, which is assigned a lower cost offshore to reflect lower height (we scale costs for the 

offshore tower in proportion to the tower mass). For capital expenditures other than wind turbine 

costs, we use the cost breakdown of [24] for the offshore wind farm. Further disaggregations are 

based on [25] and own assumptions. We add costs for decommissioning (equal to costs of 

installation). Service and spare parts constitute 26% of the variable costs for an onshore wind 

farm [26], for an offshore wind farm 60% (own assumption).  

4 Scenario modeling 

The IEA has produced a series of scenarios describing ways in which global energy-related 

CO2 emissions can be reduced by 50% by 2050, relative to 2005. Of these, the BLUE Map 

scenario represents the least-cost alternative. The BLUE hi REN scenario has an additional 

assumption of 75% renewable electricity supply by 2050 (table 2) [2]. 

Table 2. Selected characteristics of IEA’s Baseline, BLUE Map, and BLUE hi REN energy scenarios [2]. 

  2007 
Baseline  
2050 

BLUE Map  
2050 

BLUE hi  
REN 

Global electricity production from wind (TWh) 173 2149 4916 8193 
Share of renewables in electricity production (%) 18 22 48 75 
Share of wind in electricity production (%) 0.9 4.7 12.2 21.8 
Average generation cost increase from baseline (2050) (%) 19 31 
Total energy-related CO2 emissions (Gt/yr) 28.9 57.0 14.0 12.9 

In essence, our scenario analysis consists of scaling onshore and offshore unit-based findings 

to match future developments given in the BLUE Map and BLUE hi REN scenarios, using time 

series modeling. Table 3 summarizes future wind power developments towards 2050. For the 

BLUE hi REN scenario, only 2007 and 2050 values are given; therefore, linear interpolation is 

used to establish intermediate values. For both scenarios, we use linear interpolation to determine 

intermediate data points not reported in table 3.  

  



Appendix B   Paper II and associated content 

B10 
 

Table 3. Global wind power development by BLUE Map and BLUE hi REN scenarios [2]. Numbers without 
superscripts are obtained from [2, 27]. 1Calculated by authors based on an annual onshore production of 173.1 TWh 
in 2007 [2, 27], and by assuming mid-year onshore capacity was (94.7+73.2)/2, where 94.7 GW is the onshore 
capacity at the end of 2007 according to [2, 27] and 73.2 GW the onshore capacity at the end of 2006 according to 
[1]. 2Calculated by authors from production and capacity numbers in [2, 27]. 3Assumed by authors. 4Calculated based 
on onshore and offshore load factors and capacity numbers. 5Based on linear interpolation. 6Assuming equal average 
load, and equal onshore and offshore shares, in BLUE hi REN as in BLUE Map. 

  2007 2030 2050 
BLUE Map scenario  
Annual electricity production (TWh) 173 2933 4916 
Cumulative capacity at end of year (GW) 96.3 1134 1737 
   of which offshore (GW) 1.6 214 444 
Average load onshore (%) 23.61 27.42 29.02 
Average load offshore (%) 37.53 41.72 43.22 
Average load (%) 23.84 30.14 32.64 

BLUE hi REN scenario 
Annual electricity production (TWh) 173 44635 8193 
Cumulative capacity at end of year (GW) 96.3 16916 28696 
   of which offshore (GW) 1.6 3206 7336 

We incorporate changes in electricity mix by altering the relative shares of power generation 

technologies in the direct requirements matrix, A, consistent with the IEA scenarios (see table 

S21 in the supplementary information for electricity mix towards 2050). Simplifying assumptions 

are necessary to deal with incomplete coverage of futuristic power generation technologies in the 

LCA and IO data sets. We assume fossil power with carbon capture and storage eliminates 90% 

of in-plant CO2 emissions. Non-fossil energy technologies accounting for small percentages of 

total generation in 2007-2050 are only partly modeled (biomass, waste) or not modeled 

(geothermal, ocean). As the IO background system lacks a proper representation of solar power, 

solar power in the IO background (Europe region) is moved to the LCA database system. 

To allow for the temporal distribution of emissions to be taken into account, the demand vector 

y for the wind power system is broken down into three components: 

start oper endy y y y  (3) 

where ystart represents direct requirements prior to operation (construction; t’=0), yoper annual 

average operation and maintenance direct requirements, and yend direct requirements at the end-

of-life (decommissioning; t’=τ). The elements of ystart and yend are measured on a per added 
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capacity basis (e.g., t/MW), while yoper is measured per capacity per year (e.g., t/MW/year). τ is 

the lifetime, and t’={1, . . . , τ} the age of a wind power system.   

Denote by Knew(t) and Krepow(t) added capacities and repowering of existing capacities, 

respectively, in year t, and by Koper(t) average total capacity in operation over year t. With end-of-

year onshore and offshore operating capacity values for the years 2007, 2030 and 2050 (table 3) 

together with end-of-year capacity values for 2006 [1], and assuming linear growth in cumulative 

capacity in 2007-2030 and 2030-2050, we establish Knew and Koper for 2007-2050. We assume 

constant lifetimes (τ) of 20 years (onshore) and 25 years (offshore); longer lifetimes are 

considered in the sensitivity analysis. Statistics on annual added capacities from 1996 and 

onwards (onshore) and for 2006 (offshore) [1] are used to determine Krepow values for 2017-2027 

(onshore) and 2032 (offshore); for succeeding years Krepow equals Knew with a time lag of τ. 

Implicit in Knew, Krepow and Koper are changes in load factors (table 3). Time series data for Knew, 

Krepow and Koper values used in the scenario analysis are provided in the supplementary 

information (table S22). 

While equation 3 separates requirements occurring prior to, during and after the operating 

lifetime, it does not incorporate time as a variable; nor does it reflect scale or the need for 

repowering. We express the economy-wide direct requirements of building, operating and 

decommissioning wind power systems in year t as   

( ) ( ) ( ) ( )start new start repow oper oper end repowy y K t y K t y K t y K ty y Kstart ny Kt t  (4)

where the first term on the right-hand side represents construction of new capacity and the 

second term construction of replaced capacity. The third and fourth terms express, respectively, 

direct requirements associated with operating and decommissioning wind farms. Absolute 

emissions ( )( )e t  are then calculated year-by-year as 

1( ) ( ) ( )e t F I A t y t
1( ) ( ) ( )1

e( ) ( ) (( 1 , for t={2007, . . . , 2050} (5)

Because we take into account changes in the electricity mix, A is a function of time. The 

calculation is performed separately for onshore and offshore wind power.  

Finally, utilizing the set of life cycle inventories for coal, natural gas, and oil-fired power 

stations in the Ecoinvent database, a life cycle approach is taken to evaluate economy-wide 
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greenhouse gas emissions savings from wind power. The evaluation is performed on the 

assumption that additional wind electricity (measured in TWh) in the BLUE Map scenario, 

compared with IEA’ baseline scenario, replaces fossil-based power. The quantifications of direct 

and indirect reduced emissions are done year-by-year in the scenario analysis, taking into account 

temporal evolutions in additional wind electricity in BLUE Map compared with the baseline, 

relative shares of onshore and offshore wind power, and relative shares of energy carriers (coal, 

natural gas, oil) in fossil power generation towards 2050. Only conventional fossil power is 

replaced; wind power is not assumed to displace power plants with carbon capture. 

5 Results 

 
Figure 1. Life cycle emissions of onshore and offshore wind power in the reference year 2007 by main components. 
Impact categories: CC = Climate change; ME = Marine eutrophication; POF = Photochemical oxidant formation; TA 
= Terrestrial acidification.  

According to our unit-based analysis results, the delivery of 1 kWh of electricity from onshore 

wind energy conversion causes 22.5 g CO2-eq climate change, 0.024 g N-eq marine 

eutrophication, 0.128 g NMVOC photochemical oxidant formation, and 0.123 g SO2-eq 

terrestrial acidification impact potentials. The corresponding values for offshore wind power are 

21.2 g CO2-eq, 0.032 g N-eq, 0.157 g NMVOC, and 0.129 g SO2-eq. For the onshore case, the 

wind turbine is the most important single component, contributing 57-64% to total emissions 

(figure 1). Of this, the tower holds shares of 31-38%, the nacelle 28-39%, and the rotor (including 

hub) 24-29%. The wind turbine is a much less dominant contributor to the emissions of ocean-

based systems (20-30%), for which installation and decommissioning become more important 

(22-46%). The foundation contributes 6-10% (onshore) and 12-21% (offshore). 
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Figure 2 shows the breakdown of the contribution of electricity, materials and manufacturing 

processes to the total emissions of components of the wind park. For climate change and 

terrestrial acidification category indicators, significant portions (27-29%) of total emissions are 

caused by fossil-fuel burning in the power sector, reflecting the need to use fossil-based 

electricity of today to develop the renewable energy systems of tomorrow. Manufacturing of 

metals and metal products is responsible for 8-29% of total emissions. Transportation causes 22-

23% of eutrophication, but only 6% of climate change impact potential. 

 
Figure 2. Life cycle emissions of onshore and offshore wind power in the reference year 2007 by main emissions 
source. Impact categories: CC = Climate change; ME = Marine eutrophication; POF = Photochemical oxidant 
formation; TA = Terrestrial acidification. Manuf. = Manufacture of. 

Our scenario analysis yields cumulative greenhouse gas (GHG) emissions due to wind power 

development of 2.3 Gt and 3.5 Gt CO2-eq, for the BLUE Map and BLUE hi REN scenarios 

respectively, in the time period 2007-2050 (figure 3). Corresponding values for other impact 

categories are 2.9 (4.5) Mt N-eq, 16 (24) Mt NMVOC, and 13 (20) Mt SO2-eq for the BLUE Map 

(BLUE hi REN) scenario. Looking at GHG emissions, construction of new capacity dominates 

(64% of cumulative emissions in 2050 in BLUE Map scenario), although repowering becomes 

increasingly important (37% in 2050). Due to the combined effects of increased load factor, shift 

from land to ocean sites, and cleaner electricity mix in manufacturing, the GHG emission 

intensity, as calculated with the unit-based analysis with current-year technologies, is reduced to 

less than 14 g/kWh in 2050 (figure 3). Assumed lifetimes and future capacity factors are two 

important sources of uncertainty and are addressed in the sensitivity analysis (section 6). 
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Figure 3. Cumulative GHG emissions due to the construction, operation and demolition of wind power systems and 
GHG emission intensity of current-year wind electricity (2007-2050) for the BLUE Map (a) and BLUE hi REN (b) 
scenarios. 

 
Figure 4. Cumulative gross (broken blue line) and net (solid red line) reduced emissions of wind power 2010-2050 
by four impact categories for the BLUE Map scenario. 

Figure 4 compares the cumulative emissions from wind power to the reduction of emissions 

from fossil power plants replaced by the additional wind power capacity (2010-2050). Gross 

reduced emissions is the direct emissions of fossil-fueled power plants replaced by the additional 
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wind electricity in the BLUE Map scenario, compared with IEA’s baseline scenario. Net reduced 

emissions is the difference of the life cycle emissions of the replaced fossil fuel power stations 

(assuming a mix of fossil energy carriers as modeled year-by-year in the scenario analysis) and 

the total life cycle emissions caused by wind power. Indirect emissions are the part of the life 

cycle emissions not occurring directly at the power plant. At the most, emissions of wind energy 

amount to 23% of gross reduced emissions (photochemical oxidant formation); at the least 5% 

(climate change). For all impact categories investigated, our measure of net reduced emissions 

exceeds gross reduced emissions because the fuel-chain emissions of displaced fossil power are 

larger than the total life cycle emissions of wind power. 

Numerical results in tabulated form are available in the supplementary information. 

6 Sensitivity analysis 

Table 4. Combinations of total capacity factor value (%) and lifetime (years) assumptions used in sensitivity analysis 
for the years 2007, 2030 and 2050. Lifetime is constant over the modeling period. CF = Capacity factor. LT = 
Lifetime. Reference case assumptions are consistent with results reported in section 4. 

Scenario Capacity factor (%) Lifetime (years) 
  2007 2030 2050  
Low CF 23.8 28.3 30.0 20 (onshore), 25 (offshore) 

Reference 23.8 30.1 32.6 20 (onshore), 25 (offshore) 

Reference + Long LT 23.8 30.1 32.6 25 (onshore), 30 (offshore) 

High CF 23.8 31.9 35.2 20 (onshore), 25 (offshore) 

High CF + Long LT 23.8 31.9 35.2 25 (onshore), 30 (offshore) 

The sensitivity analysis investigates the influence of capacity factors and lifetimes on estimated 

cumulative GHG emissions of wind power. In addition to the reference case, four scenarios are 

constructed to represent more pessimistic and optimistic assumptions, respectively, as 

summarized in table 4. As shown in table 5, the alternative capacity factor scenario assumptions 

yield changes of 5-8% in cumulative emissions, compared with the reference case. Table 5 

illustrates that prolongation of system lifetimes can potentially reduce emissions significantly. 

Returning to the emissions trends depicted in figure 3, it can be noted that assuming longer 

lifetimes effectively reduces the contribution from repowering (red striped area in figure 3), but 

does not affect emissions that are caused by new capacity additions (blue solid area); an 
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elimination of emissions caused by repowering thus determines an upper limit of the reductions 

that can be achieved through lifetime extensions.  

Table 5. Results of sensitivity analysis: total cumulative GHG emissions results for BLUE Map and BLUE hi REN 
scenarios in 2030 and 2050. Reference case results are consistent with results reported in section 5.  Results are in 
units of Gt CO2-eq. Numbers in parentheses give relative change compared with reference.  

 BLUE Map BLUE hi REN 
 2030 2050 2030 2050 
Low CF 1.1 (+5.0%) 2.5 (+6.7%) 1.6 (+4.7%) 3.7 (+6.4%) 
Reference 1.1 2.3 1.5 3.5 
Reference + Long LT 0.96 (-10%) 2.1 (-7.8%) 1.4 (-9.3%) 3.3 (-7.5%) 
High CF 1.0 (-6.7%) 2.1 (-7.7%) 1.4 (-7.0%) 3.2 (-8.0%) 
High CF + Long LT 0.90 (-16%) 2.0 (-15%) 1.3 (-16%) 3.0 (-15%) 

7 Discussion and conclusions 

The climate change impact indicator value of 22.5 g CO2-eq/kWh for an onshore wind farm is 

comparatively high; other recent estimates for onshore wind farms consisting of multi-megawatt 

turbines are in the range of 5-16 g CO2-eq/kWh [12-13, 28-29]. The estimated GHG intensity of 

21.2 g CO2-eq/kWh for offshore wind electricity (with assumed lifetime of 25 years) compares 

with 5 g CO2/kWh in [12], 12 g CO2-eq/kWh in [30], 22 g/kWh in [31], and 32-33 g/kWh in [32, 

33]  (generally assuming lifetimes of 20 years). Differences in results across studies may stem 

from differences in the types of wind power systems that are studied (e.g., offshore wind farms in 

either shallow [12] or deep [32, 33] waters), assumed values of key parameters (capacity factor 

and lifetime), background system characteristics (e.g., relatively dirty or clean manufacturing), 

and scope and methodologies (e.g., process-LCA or hybrid LCA) [33, 34]. 

We identify four factors that are of relevance when comparing the emission intensity estimates 

of this study with that of previous research. One, we assumed a relatively low average load of 

23.6% for the onshore wind farm. Correspondingly, [12-13, 28-29] assume 30%, 23%, 33%, and 

30%, respectively, for onshore wind electricity. Realized values during 2003-2007 have been 

estimated to average at 20.8% for Europe and 25.7% for the US [35]. Two, the lifetime of the 

offshore wind farm is set to 25 years in the present study, as opposed to the 20 years typically 

chosen in previous LCAs. Three, unlike most previous studies we employ a hybrid LCA 

methodology, thereby achieving a more complete system definition. In our analysis, which has a 

fairly simple physical foreground system, the IO background system generates 45% and 61% 
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(climate change), 51% and 47% (marine eutrophication), 67% and 66% (photochemical oxidant 

formation), and 46% and 55% (terrestrial acidification) of onshore and offshore total emissions, 

respectively. Finally, in the current study benefits of recycling are incorporated by having a mix 

of primary and secondary materials as inputs into materials production, instead of crediting the 

system with emissions that are perceived to be avoided through future recycling of materials 

contained in the system. 

Considerable uncertainty exists in the results of the scenario analysis, among other reasons 

because of the long time frame considered. Hence, results of the scenario analysis should be 

interpreted with care. Some uncertainties relate to assumed values of input parameters – notably, 

capacity factors and lifetimes (cf. the sensitivity analysis). Uncertainties also arise from 

simplifications that were necessary for the scenario analysis. Two simplifications may be 

replaced by more sophisticated modeling in the future: One, technological improvements were 

captured only through a shift towards development in ocean waters, and an improved capacity 

factor. Technology foresight and evolutions studies based on current research and design work or 

learning curves studies may provide a better basis for modeling design changes. Two, the 

background economy modeled here changes only in terms of the energy mix it uses. 

Improvements in efficiency or increased effort to extract ever-more scarce resources are not taken 

into account. Also, for reasons of data availability, our model is skewed towards European 

technology, not fully mirroring a globalized production network.  

Evaluating emission penalties due to intermittency is outside the scope of this article, but is 

nevertheless an important concern for wind power. High wind power penetration requires an 

upgrade in electricity infrastructure, may need to be supplemented by energy storage 

technologies, and may lead to altered operation of thermal and hydro power plants. Ideally, 

environmental implications of such effects are included in LCAs of wind power, yet this is not 

done in the extant literature. The exception is [31], whose results suggest additional CO2 

emissions from fossil-fired power stations of 18-70 g per kWh electricity from wind (assuming a 

wind electricity penetration of 12% in Germany in 2020) [31]. However, such results are 

inherently region-specific and sensitive to characteristics of the electricity systems. 

Our quantification of emissions reductions due to increased use of  wind power should be 

interpreted in light of the assumption that additional wind power in the BLUE Map scenario 
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substitutes fossil power. The reason for making this assumption is to achieve consistency and 

comparability with IEA’s own reported reductions from their baseline emission trend. 

Essentially, the quantifications of reduced emissions presented here are means to enhance 

understanding; they are not attempts to establish ‘true’ values for emissions savings from wind 

power as such. On average over the modeled time period, 725 g direct fossil CO2 is reduced per 

additional kWh generated from wind energy, consistent with IEA’s [2] reported contributions by 

wind power to CO2 reductions in the BLUE Map scenario, relative to the baseline.  

By one account [36], global CO2 from fossil-fuel burning, cement production and land use in 

2000-2049 should not exceed 1000 Gt, if we are to limit global warming to 2 °C above pre-

industrial levels. With 320 Gt already emitted in 2000-2009 [37] the remaining budget for 2010-

2049 is 680 Gt. In this perspective, emissions caused by wind power expansion may seem not 

insignificant, considering that they represent life cycle emissions of one technology only. 

Besides, the BLUE scenarios are unlikely to be consistent with the 2 °C target; thus even more 

wind electricity may be needed. 

The present work advances current state of knowledge by aggregating unit-based findings to 

study economy-wide environmental costs and benefits of large-scale adoptions of wind power. 

Despite the real-world load factors and hybrid LCA methodology, and despite incorporating 

repowering of wind electricity systems as well as the temporal distribution of emissions in a 

scenario-based assessment, we find that emissions of wind power are low when contrasted with 

the emissions of fossil-based power. For climate change in particular, reduced emissions grossly 

exceed the emissions caused by wind power expansion. For the assessed impact categories, it 

appears that the true environmental benefits of wind power largely depend on the extent to which 

electricity from wind actually leads to a phase-out of fossil-based electricity without carbon 

capture.  
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B.2 Supplementary data associated with paper II 

(published electronically in online version) 

 

Content 

- A: Supplementary accounts of methods and data 

- B: Supplementary accounts of results 

 

The supporting information contains 31 tables. 

A Supplementary accounts of methods and data 

A.1 IO sector classifications 

Table S1 lists the economic sectors of the Europe-region of the input-output (IO) background 

system. Assumptions were made to disaggregate the original sector “Electricity, gas, steam and 

hot water supply (40)” into six sectors (sectors 32-37 in table S1), according to energy source. 

Table S1. Sector classification of input-output background system (Europe region). 

 Sector name 
1 Agriculture, hunting and related service activities (01)' 
2 'Forestry, logging and related service activities (02)' 
3 'Fishing, operating of fish hatcheries and fish farms; service activities incidental to fishing (05)' 
4 'Mining of coal and lignite; extraction of peat (10)' 

5 
'Extraction of crude petroleum and natural gas; service activities incidental to oil and gas extraction excluding 
surveying (11)' 

6 'Mining of uranium and thorium ores (12)' 
7 'Mining of metal ores (13)' 
8 'Other mining and quarrying (14)' 
9 'Manufacture of food products and beverages (15)' 
10 'Manufacture of tobacco products (16)' 
11 'Manufacture of textiles (17)' 
12 'Manufacture of wearing apparel; dressing and dyeing of fur (18)' 
13 'Tanning and dressing of leather; manufacture of luggage, handbags, saddlery, harness and footwear (19)' 

14 
'Manufacture of wood and of products of wood and cork, except furniture; manufacture of articles of straw and 
plaiting materials (20)' 

15 'Manufacture of pulp, paper and paper products (21)' 
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16 'Publishing, printing and reproduction of recorded media (22)' 
17 'Manufacture of coke, refined petroleum products and nuclear fuels (23)' 
18 'Manufacture of chemicals and chemical products (24)' 
19 'Manufacture of rubber and plastic products (25)' 
20 'Manufacture of other non-metallic mineral products (26)' 
21 'Manufacture of basic metals (27)' 
22 'Manufacture of fabricated metal products, except machinery and equipment (28)' 
23 'Manufacture of machinery and equipment n.e.c. (29)' 
24 'Manufacture of office machinery and computers (30)' 
25 'Manufacture of electrical machinery and apparatus n.e.c. (31)' 
26 'Manufacture of radio, television and communication equipment and apparatus (32)' 
27 'Manufacture of medical, precision and optical instruments, watches and clocks (33)' 
28 'Manufacture of motor vehicles, trailers and semi-trailers (34)' 
29 'Manufacture of other transport equipment (35)' 
30 'Manufacture of furniture; manufacturing n.e.c. (36)' 
31 'Recycling (37)' 
32 Electricity, gas, steam and hot water supply from hard coal' 
33 Electricity from nuclear power' 
34 Electricity from natural gas' 
35 Electricity from petroleum' 
36 Electricity from hydro' 
37 Electricity from wind' 
38 'Collection, purification and distribution of water (41)' 
39 'Construction (45)' 
40 'Sale, maintenance and repair of motor vehicles and motorcycles; retail sale services of automotive fuel (50)' 
41 'Wholesale trade and commission trade, except of motor vehicles and motorcycles (51)' 
42 'Retail trade, except of motor vehicles and motorcycles; repair of personal and household goods (52)' 
43 'Hotels and restaurants (55)' 
44 'Land transport; transport via pipelines (60)' 
45 'Water transport (61)' 
46 'Air transport (62)' 
47 'Supporting and auxiliary transport activities; activities of travel agencies (63)' 
48 'Post and telecommunications (64)' 
49 'Financial intermediation, except insurance and pension funding (65)' 
50 'Insurance and pension funding, except compulsory social security (66)' 
51 'Activities auxiliary to financial intermediation (67)' 
52 'Real estate activities (70)' 
53 'Renting of machinery and equipment without operator and of personal and household goods (71)' 
54 'Computer and related activities (72)' 
55 'Research and development (73)' 
56 'Other business activities (74)' 
57 'Public administration and defence; compulsory social security (75)' 
58 'Education (80)' 
59 'Health and social work (85)' 
60 'Sewage and refuse disposal, sanitation and similar activities (90)' 
61 'Activities of membership organisation n.e.c. (91)' 
62 'Recreational, cultural and sporting activities (92)' 
63 'Other service activities (93)' 
64 'Private households with employed persons (95)' 
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A.2 Life cycle inventories 

Tables S2-S18 account for physical and monetary inventories for the onshore and offshore 

wind power systems. The monetary inventories are used to scale inputs from the IO background 

system to the foreground system (matrix Anf; see also tables S19 and S20). For the onshore wind 

farm, total capital costs is 1250 Euro/MW, and variable costs 1.2 Eurocent/kWh (2007 prices). 

For the offshore wind farm, the corresponding numbers are 2200 Euro/kW and 1.6 

Eurocent/kWh. In addition, we add costs for decommissioning (equal to costs of installation), 

assuming that decommissioning is excluded in the initial numbers (cf. section 3.5 in main article). 

All prices are in 2007 Euro (tables S2-S18).  

Table S2. Inventories: product system 
Product system summary 1 kWh 
 Onshore Offshore  
Foreground process inputs per kWh    
Wind turbine, misc. 9.69E-9 4.87E-9 unit 
Rotor blades 9.69E-9 4.87E-9 unit 
Hub, incl. nose cone 9.69E-9 4.87E-9 unit 
Bed frame/plate 9.69E-9 4.87E-9 unit 
Generator 9.69E-9 4.87E-9 unit 
Gearbox 9.69E-9 4.87E-9 unit 
Low-voltage transformer 9.69E-9 4.87E-9 unit 
Nacelle other 9.69E-9 4.87E-9 unit 
Tower 9.69E-9 4.87E-9 unit 
Foundation 9.69E-9 4.87E-9 unit 
Electrical collection system 4.88E-8 8.70E-8 t 
High-voltage transformer 2.02E-10 4.87E-11 unit 
Connection to grid 2.57E-7 2.45E-7 t 
Installation 9.69E-9 4.87E-9 unit 
Dismantling 9.69E-9 4.87E-9 unit 
Operation and maintenance 9.69E-9 4.87E-9 unit 
Other capital costs 1.68E-9 3.56E-9 106 Euro 
Other variable costs 5.75E-9 4.38E-9 106 Euro 
    
Comments    
The electrical collection system consists of 22 kV cables, and connection to grid 132 kV cables (measured in metric 
tonnes of cable).  Monetary inputs to the categories “Other capital costs” and “Other variable costs” are established 
from own evaluation of cost breakdowns presented in Blanco 2009, EWEA 2009, ODE 2007 and DWI 2002.  “Other 
capital costs” and “Other variable costs” are modeled entirely in the IO background system. 
 
Sources  

- Blanco, M. I., The economics of wind energy. Renew. Sust. Energ. Rev. 2009, 13, (6-7), 1372-1382. 
- DWE. Studie zur aktuellen Kostensituation 2002 der Windenergienutzung in Deutschland [Study of the costs 

of wind energy in 2002 in Germany]; Deutsches Windenergie Institut: Germany, 2002; http://www.wind-
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energie-de. 
- EWEA. The Economics of Wind Energy; European Wind Energy Association: 2009; http://www.ewea.org. 
- ODE. Study on the costs of offshore wind generation. A report to the Renewables Advisory Board (RAB) & 

DTI; Offshore Design Engineering; URN Number 07/779: UK, 2007. 
 

Table S3. Inventories: wind turbine, misc. 
Wind turbine, misc. 1 unit 
 Onshore Offshore  
Technosphere inputs    
Electricity 113391 113391 kWh 
Heat, waste incineration  22388 22388 kWh 
Heat, cogeneration 22388 22388 kWh 
Gas * 12900 12900 kWh 
Diesel oil * 39221 39221 kWh 
    
Direct emissions    
CH4 0.62 0.62 kg 
CO2 1.92E4 1.92E4 kg 
N2O 0.40 0.40 kg 
NH3 0.07 0.07 kg 
NOx 146 146 kg 
CO 37.7 37.7 kg 
NMVOC 17.1 17.1 kg 
SOx 3.36 3.36 kg 
    
Comments    
* Direct emissions from burning fossil fuels are accounted for in the emission intensity matrix F, while indirect 
(supply-chain) emissions are assumed to be covered by inputs from IO-background system. 
 
“Wind turbine, misc.” should be interpreted as representing wind turbine assembly plus some unspecified 
manufacturing of wind turbine components (this concerns in particular the tower). Electricity, heat, gas, and oil use, 
as well as emissions of CO2, are derived from reports published by the wind turbine manufacturer Vestas (as 
explained in the main manuscript). We do not distinguish the manufacturing of onshore wind turbines from offshore 
wind turbines. As is noted in the main article, numbers are adjusted to take into account towers supplied to Vestas 
(only around 20% of towers were manufactured in-house by Vestas). The adjustment causes energy use to increase 
by 3-10% from non-adjusted values. 
 
Non-CO2 emissions are estimated from consumption of gas and oil. The assumption is made that 50% of heat 
consumption comes from waste incineration, and 50% from cogeneration.  
 
Sources  

- Vestas annual report 2009; Vestas: 2010; http://www.vestas.com.  
- Vestas Towers, Rudkøbing. Environmental and occupational health & safety statement 2009; Vestas: 

http://www.vestas.com. 
 

Table S4. Inventories: rotor blades 
Rotor blades 1 unit 
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 Onshore Offshore  
Technosphere inputs    
Glass-reinforced plastics 20.56 20.56 t 
IO background economy 0.536 0.536 106 Euro 
 
Comments 
The weight of the rotor blades is obtained from manufacturer product brochures (Vestas), as explained in the main 
manuscript. We assume the rotor blades are made of glass-reinforced plastics. Except for the tower, we do not 
distinguish onshore wind turbines from offshore wind turbines. Monetary inputs are derived from cost distributions 
presented in Blanco 2009. 
 
Sources  

- Product brochures V80-2.0MW and V90-3.0MW; Vestas: http://www.vestas.com. 
- Blanco, M. I., The economics of wind energy. Renew. Sust. Energ. Rev. 2009, 13, (6-7), 1372-1382. 

 

Table S5. Inventories: hub, incl. nose cone 
Hub, incl. nose cone 1 unit 
 Onshore Offshore  
Technosphere inputs    
Steel, low alloy 7.42 7.42 t 
Cast iron 12.5 12.5 t 
Glass-reinforced plastics 0.50 0.50 t 
IO background economy 0.127 0.127 106 Euro 
 
Comments 
The weight of the hub is obtained from product brochures (Vestas). The source is not clear what exactly is included 
in the “hub”. We make assumptions to disaggregate the total hub weight into steel, cast iron, and reinforced plastics 
portions. We assume the actual rotor hub, which serves the purpose of holding the blades in position, weighs 12.5 t 
and is made of cast iron. In addition come reinforced plastics for the nose cone. We model the remainder of the total 
hub weight as low-alloy steel. Except for the tower, we do not distinguish onshore wind turbines from offshore wind 
turbines. Monetary inputs are derived from cost distributions presented in Blanco 2009. 
 
 Sources 

- Product brochures V80-2.0MW and V90-3.0MW; Vestas: http://www.vestas.com. 
- Blanco, M. I., The economics of wind energy. Renew. Sust. Energ. Rev. 2009, 13, (6-7), 1372-1382. 
 

Table S6. Inventories: bed frame/plate 
Bed frame/plate 1 unit 
 Onshore Offshore  
Technosphere inputs    
Steel, low alloy 5.87 5.87 t 
Cast iron 10.6 10.6 t 
IO background economy 0.068 0.068 106 Euro 
 
Comments 
Total nacelle weight is obtained from manufacturer product brochures (Vestas). The bed frame constitutes 23% of 
the nacelle in terms of weight (Martínez et al., 2009). Main frames can be cast iron or steel fabrications. We assume 
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the main frame consists of cast iron (around 40%) and low-alloy steel (around 60%) parts. Except for the tower, we 
do not distinguish onshore wind turbines from offshore wind turbines. Monetary inputs are derived from cost 
distributions presented in Blanco 2009. 
 
Sources 

- Blanco, M. I., The economics of wind energy. Renew. Sust. Energ. Rev. 2009, 13, (6-7), 1372-1382. 
- Product brochures V80-2.0MW and V90-3.0MW; Vestas: http://www.vestas.com.  
- Martínez, E.; Sanz, F.; Pellegrini, S.; Jiménez, E.; Blanco, J., Life-cycle assessment of a 2-MW rated power 
wind turbine: CML method. Int. J. Life Cycle Assess. 2009, 14, (1), 52-63.  

 

Table S7. Inventories: generator 
Generator 1 unit 
 Onshore Offshore  
Technosphere inputs    
Silicon, metallurgical grade 0.31 0.31 t 
Steel, low alloy 6.70 6.70 t 
Copper 3.14 3.14 t 
Wire drawing, copper 3.14 3.14 t 
IO background economy 0.083 0.083 106 Euro 
 
Comments 
Total nacelle weight is obtained from manufacturer product brochures (Vestas). The generator constitutes 14% of the 
nacelle in terms of weight, and is made from electrical steel (modeled as silicon plus low-alloy steel) and copper 
(Martínez et al., 2009). We add wire drawing for copper content in the generator. Except for the tower, we do not 
distinguish onshore wind turbines from offshore wind turbines. Monetary inputs are derived from cost distributions 
presented in Blanco 2009. 
 
Sources 

- Blanco, M. I., The economics of wind energy. Renew. Sust. Energ. Rev. 2009, 13, (6-7), 1372-1382. 
- Product brochures V80-2.0MW and V90-3.0MW; Vestas: http://www.vestas.com.  
- Martínez, E.; Sanz, F.; Pellegrini, S.; Jiménez, E.; Blanco, J., Life-cycle assessment of a 2-MW rated power 
wind turbine: CML method. Int. J. Life Cycle Assess. 2009, 14, (1), 52-63. 

 

Table S8. Inventories: gearbox 
Gearbox 1 unit 
 Onshore Offshore  
Technosphere inputs    
Steel, high alloy (chromium) 12.56 12.56 t 
Cast iron 12.56 12.56 t 
IO background economy 0.312 0.312 106 Euro 
 
Comments 
Total nacelle weight is obtained from manufacturer product brochures (Vestas). The gearbox constitutes 35% of the 
nacelle in terms of weight, and is made from equal amounts of cast iron and high-alloy steel. Monetary inputs are 
derived from cost distributions presented in Blanco 2009. 
 
Sources 
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- Blanco, M. I., The economics of wind energy. Renew. Sust. Energ. Rev. 2009, 13, (6-7), 1372-1382. 
- Product brochures V80-2.0MW and V90-3.0MW; Vestas: http://www.vestas.com.  

 

Table S9. Inventories: low-voltage transformer 
Low-voltage transformer 1 unit 
 Onshore Offshore  
Technosphere inputs    
Silicon, metallurgical grade 0.24 0.24 t 
Steel, low alloy 5.18 5.18 t 
Copper 2.36 2.36 t 
Wire drawing, copper 2.36 2.36 t 
IO background economy 0.087 0.087 106 Euro 
 
Comments 
Total nacelle weight is obtained from manufacturer product brochures (Vestas). The transformer constitutes 11% of 
the nacelle in terms of weight, and is made electrical steel (modeled as silicon plus low-alloy steel) and copper 
(Martínez et al., 2009). Monetary inputs are derived from cost distributions presented in Blanco 2009. 
 
Sources 

- Blanco, M. I., The economics of wind energy. Renew. Sust. Energ. Rev. 2009, 13, (6-7), 1372-1382. 
- Product brochures V80-2.0MW and V90-3.0MW; Vestas: http://www.vestas.com.  
- Martínez, E.; Sanz, F.; Pellegrini, S.; Jiménez, E.; Blanco, J., Life-cycle assessment of a 2-MW rated power 
wind turbine: CML method. Int. J. Life Cycle Assess. 2009, 14, (1), 52-63. 

 

Table S10. Inventories: nacelle, other 
Nacelle, other 1 unit 
 Onshore Offshore  
Technosphere inputs    
Steel, low alloy 1.44 1.44 t 
Steel, high alloy (chromium) 8.14 8.14 t 
Glass-reinforced plastics 3.14 3.14 t 
IO background economy 0.287 0.287 106 Euro 
 
Comments 
Total nacelle weight is obtained from manufacturer product brochures (Vestas). “Nacelle, other” represents the main 
shaft plus the nacelle cover. Again, we adopt relative weight shares by component from (Martínez et al., 2009). The 
main shaft is expected to be made of high-grade steel or iron. We use a mix of 85% chromium steel (high alloy) and 
15% low-alloy steel to model the main shaft. The nacelle cover is modeled as reinforced plastics. Monetary inputs 
are derived from cost distributions presented in Blanco 2009. 
 
Sources 

- Blanco, M. I., The economics of wind energy. Renew. Sust. Energ. Rev. 2009, 13, (6-7), 1372-1382. 
- Product brochures V80-2.0MW and V90-3.0MW; Vestas: http://www.vestas.com. 
- Martínez, E.; Sanz, F.; Pellegrini, S.; Jiménez, E.; Blanco, J., Life-cycle assessment of a 2-MW rated power 
wind turbine: CML method. Int. J. Life Cycle Assess. 2009, 14, (1), 52-63. 
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Table S11. Inventories: tower 
Tower 1 unit 
 Onshore Offshore  
Technosphere inputs    
Steel, low alloy 196 130 t 
Sheet rolling, steel 196 130 t 
IO background economy 0.635 0.422 106 Euro 
 
Comments 
The tower mass is 78 t/MW for onshore (hub height 105 m), for offshore it is 52 t/MW (hub height 80 m), consistent 
with tower weights used in an LCA by Vestas (2006).We add sheet rolling for steel content in the tower. Monetary 
inputs are derived from cost distributions presented in Blanco 2009. The cost of the offshore tower is lower due to 
lower hub height (starting with the cost of an onshore tower, we scale costs for the offshore tower in proportion to 
the tower mass). The extension of the tower below surface is modeled as part of the substructure (Table S12). 
  
Sources 

- Blanco, M. I., The economics of wind energy. Renew. Sust. Energ. Rev. 2009, 13, (6-7), 1372-1382. 
- Life cycle assessment of offshore and onshore sited wind power plants based on Vestas V90-3.0 MW 
turbines; Vestas: 2006; http://www.vestas.com. 

 

Table S12. Inventories: substructure 
Foundation 1 unit 
 Onshore Offshore  
Technosphere inputs    
Concrete 970  t 
Steel, reinforcing 30  t 
Steel, low alloy  300 t 
Aluminum  2.5 t 
IO background economy 0.203 1.02 106 Euro 
 
Comments 
We model onshore gravity-based foundations made of reinforced concrete, and offshore substructures made of steel 
(water depth approximately 20 m). Assumptions for foundation weights (1000 t onshore and 300 t offshore) are 
made based on an overall evaluation of numbers reported in different sources (Onshore: Vestas, 2006; Ecoinvent, 
2007; Martínez et al., 2009; Ardente et al, 2009. Offshore: Vestas, 2006; Ecoinvent, 2007; Crown Estate, 2009; 
Talisman Energy, 2005). Submarine foundations have galvanic anodes (modeled as 2.5 t aluminum) to prevent 
corrosion. Monetary inputs are derived from cost distributions presented in Blanco 2009, EWEA 2009 and ODE 
2007. 
  
Sources 

- Blanco, M. I., The economics of wind energy. Renew. Sust. Energ. Rev. 2009, 13, (6-7), 1372-1382. 
- EWEA. The Economics of Wind Energy; European Wind Energy Association: 2009; http://www.ewea.org. 
- ODE. Study on the costs of offshore wind generation. A report to the Renewables Advisory Board (RAB) & 

DTI; Offshore Design Engineering; URN Number 07/779: UK, 2007. 
- Life cycle assessment of offshore and onshore sited wind power plants based on Vestas V90-3.0 MW turbines; 

Vestas: 2006; http://www.vestas.com. 
- Life cycle inventory database v2.1; Ecoinvent; Swiss Centre for Life Cycle Inventories: 2007; 

http://www.ecoinvent.ch/. 
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- Martínez, E.; Sanz, F.; Pellegrini, S.; Jiménez, E.; Blanco, J., Life-cycle assessment of a 2-MW rated power 
wind turbine: CML method. Int. J. Life Cycle Assess. 2009, 14, (1), 52-63. 

- Ardente, F.; Beccali, M.; Cellura, M.; Lo Brano, V., Energy performances and life cycle assessment of an 
Italian wind farm. Renew. Sust. Energ. Rev. 2008, 12, (1), 200-217. 

- Crown Estate. A guide to an offshore wind farm. Published on behalf of The Crown Estate; Crown Estate: 
2009; http://www.thecrownestate.co.uk/guide_to_offshore_windfarm.pdf 

- Talisman Energy. Beatrice Wind Farm Demonstrator Project. Environmental Statement; Talisman Energy: 
2005; http://www.beatricewind.co.uk/environmental_statement.pdf 

 

Table S13. Inventories: electrical collection system (internal cables) 
Electrical collection system (internal cables) 1 t 
 Onshore Offshore  
Technosphere inputs    
Copper 0.43 0.22 t 
Lead  0.19 t 
Steel, low alloy  0.46 t 
Zinc coating (galvanizing)  28.8 m2 
Electricity 1116 1116 kWh 
Gas * 213 213 kWh 
IO background economy 9.32E-3 3.56E-3 106 Euro 
    
Direct emissions    
CH4 1.5 1.5 g 
CO2 4.28E4 4.28E4 g 
N2O 0.07 0.07 g 
NH3 0 0 g 
NOx 13.7 13.7 g 
CO 1.6 1.6 g 
NMVOC 0 0 g 
SOx 0.42 0.42 g 
    
Comments 
* Direct emissions from burning fossil fuels are accounted for in the emission intensity matrix F, while indirect 
(supply-chain) emissions are assumed to be covered by inputs from IO-background system. 
 
Onshore cable: Data source for the material inventories for the onshore cable is Parker Scanrope AS (2008). The 
cable has total mass 5.03 t/km. In addition to copper (43% of total weight), the cable also contains HDPE sheets 
(31% of total weight), XLPE (18%), and filler yarns (8%). These materials are not modeled in the LCA database 
system, but are assumed to be covered by inputs from the IO background system. Steel armoring is assumed not to 
be required onshore.  
 
Offshore cable: Data sources for the material inventories for the offshore cables are Parker Scanrope AS (2008) and 
NEEDS (2008). We assume steel armoring is galvanized steel. We take the average of the material needs reported by 
the two sources to arrive at a hypothetical cable with a total mass of 18  t/km. In addition to metals (around 73% of 
total weight), the cables contain HDPE, XLPE, and filler yarns. These materials are not modeled in LCA database 
system, but are assumed to be covered by inputs from the IO background system. Crown Estate (2009) states that the 
mass of a typical cable used in electrical collection systems of offshore wind farms is around 20 t/km.  
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Monetary inputs are derived from cost distributions presented in Blanco 2009, EWEA 2009 and ODE 2007.  The 
numbers on energy use obtained from ABB (2008).  
 
Sources 

- Blanco, M. I., The economics of wind energy. Renew. Sust. Energ. Rev. 2009, 13, (6-7), 1372-1382. 
- EWEA. The Economics of Wind Energy; European Wind Energy Association: 2009; http://www.ewea.org. 
- ODE. Study on the costs of offshore wind generation. A report to the Renewables Advisory Board (RAB) & 

DTI; Offshore Design Engineering; URN Number 07/779: UK, 2007. 
- Technical specifications of 5 MW, 22kV, 70 mm2 copper conductor; Parker Scanrope AS 

(http:/www.scanrope.no); 2008; Personal communication. 
- Life cycle approaches to assess emerging energy technologies. Final report on offshore wind technology; 

New Energy Externalities Development for Sustainability consortium (NEEDS): 2008; http://www.needs-
project.org 

- A guide to an offshore wind farm. Published on behalf of The Crown Estate; Crown Estate: 2009; 
http://www.thecrownestate.co.uk/guide_to_offshore_windfarm.pdf 

- Miljörapport för år 2007 [Environmental report 2007]; ABB, High Voltage Cables: Sweden, 2008. 
 

Table S14. Inventories: high-voltage transformer 
High-voltage transformer 1 unit 
 Onshore Offshore  
Technosphere inputs    
Steel, low alloy 65.8 410 t 
Copper 14.5 24.2 t 
Aluminum 1.19 3.3 t 
Silicon, metallurgical grade 1.77 2.96 t 
Electricity 7.01E4 1.17E5 kWh 
Gas * 2.98E5 4.97E5 kWh 
IO background economy 1.44 21.5 106 Euro 
    
Direct emissions    
CH4 2147 3578 g 
CO2 6.01E7 1.00E8 g 
N2O 107.3 178.9 g 
NH3 0 0 g 
NOx 1.92E4 3.20E4 g 
CO 2254 3757 g 
NMVOC 0 0 g 
SOx 590.4 983.9 g 
    
Comments 
* Direct emissions from burning fossil fuels are accounted for in the emission intensity matrix F, while indirect 
(supply-chain) emissions are assumed to be covered by inputs from IO-background system. 
 
The transformer capacity is 150 MVA for the onshore wind farm, for the offshore wind farm it is 250 MW. 
Inventories are scaled according to the capacity. Electrical steel is modeled as silicon plus low-alloy steel. Monetary 
inputs are derived from cost distributions presented in Blanco 2009, EWEA 2009 and ODE 2007. 
 
Sources 
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- Blanco, M. I., The economics of wind energy. Renew. Sust. Energ. Rev. 2009, 13, (6-7), 1372-1382. 
- EWEA. The Economics of Wind Energy; European Wind Energy Association: 2009; http://www.ewea.org. 
- ODE. Study on the costs of offshore wind generation. A report to the Renewables Advisory Board (RAB) & 

DTI; Offshore Design Engineering; URN Number 07/779: UK, 2007. 
- Environmental product declaration. Power transformer 250 MVA ; ABB: 2003; http://www.abb.com. 
 

Table S15. Inventories: connection to grid (external cables) 
Connection to grid (external cables) 1 t 
 Onshore Offshore  
Technosphere inputs    
Copper 0.24 0.28 t 
Steel, low alloy 0 0.27 t 
Lead 0.39 0.29 t 
Zinc coating (galvanizing)  8.2 m2 
Electricity 1116 1116 kWh 
Gas * 213 213 kWh 
IO background economy 0.009 0.013 106 Euro 
    
Direct emissions    
CH4 1.5 1.5 g 
CO2 4.28E4 4.28E4 g 
N2O 0.07 0.07 g 
NH3 0 0 g 
NOx 13.7 13.7 g 
CO 1.6 1.6 g 
NMVOC 0 0 g 
SOx 0.42 0.42 g 
 
Comments 
* Direct emissions from burning fossil fuels are accounted for in the emission intensity matrix F, while indirect 
(supply-chain) emissions are assumed to be covered by inputs from IO-background system. 
 
Onshore cable: Data source for the material inventories for the onshore cable is Eltra (1999). The total cable weight 
is 36.1 t/km. We add zinc coating (galvanizing). In addition to metals, the cables also contain paper (11% of total 
weight), insulation oil (11% onshore), and miscellaneous (7% onshore). These materials are not modeled in 
Ecoinvent, but are assumed to be covered by inputs from the IO background system. 
 
Offshore cable: Data source for the material inventories for the onshore cable is NEEDS (2008) (132 kV steel-
armored cable). The total cable weight is 67 t/km. According to the source, in addition to metals, the cable also 
contains HDPE sheets. Crown Estate (2009) states that the mass of a typical cable used in transmission to shore is 
around 60 t/km. 
 
Monetary inputs are derived from cost distributions presented in Blanco 2009, EWEA 2009 and ODE 2007. The 
numbers on energy use obtained from ABB (2008).  
 
Sources 

- Blanco, M. I., The economics of wind energy. Renew. Sust. Energ. Rev. 2009, 13, (6-7), 1372-1382. 
- EWEA. The Economics of Wind Energy; European Wind Energy Association: 2009; http://www.ewea.org. 
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- ODE. Study on the costs of offshore wind generation. A report to the Renewables Advisory Board (RAB) & 
DTI; Offshore Design Engineering; URN Number 07/779: UK, 2007. 

- Miljörapport för år 2007 [Environmental report 2007]; ABB, High Voltage Cables: Sweden, 2008. 
- Ressourceoppgørelse for 132/150 kV oliekabel [Resource account for 132/150 kV oi-filled cable]; Doc nr. 

50810; Eltra: Denmark, 1999. 
- Life cycle approaches to assess emerging energy technologies. Final report on offshore wind technology; 

New Energy Externalities Development for Sustainability consortium (NEEDS): 2008; http://www.needs-
project.org 

- A guide to an offshore wind farm. Published on behalf of The Crown Estate; Crown Estate: 2009; 
http://www.thecrownestate.co.uk/guide_to_offshore_windfarm.pdf 

 

Table S16. Inventories: installation 
Installation 1 unit 
 Onshore Offshore  
Technosphere inputs    
Diesel, on-site activities * 6042 37912 kWh 
Transport passenger (pilot) car * 6000 6000 km 
Transport lorry (32 t capacity) * 8000 8000 km 
Transport lorry (16 t capacity) * 200 1000 km 
Transport barge *  18400 tkm 
IO background economy 0.163 1.02 106 Euro 
    
Direct emissions    
CH4 0.66 0.80 kg 
CO2 8011 1.15E4 kg 
N2O 0.30 13.0 kg 
NH3 0.07 0.07 kg 
NOx 78.4 2395 kg 
CO 15.9 23.7 kg 
NMVOC 2.23 6.08 kg 
SOx 0.38 1.20 kg 
 
Comments 
* Direct emissions from burning fossil fuels are accounted for in the emission intensity matrix F, while indirect 
(supply-chain) emissions are assumed to be covered by inputs from IO-background system. 
 
Diesel consumption for on-site activities for an onshore wind farm comes from reported measured data (Ardente et 
al. 2008). We convert reported life cycle energy to direct energy equivalent. When shifting to offshore sites, it is 
assumed that on-site diesel consumption scale proportional to the installation costs. Monetary inputs are derived 
from cost distributions presented in Blanco 2009, EWEA 2009 and ODE 2007. 
 
Sources 

- Ardente, F.; Beccali, M.; Cellura, M.; Lo Brano, V., Energy performances and life cycle assessment of an 
Italian wind farm. Renew. Sust. Energ. Rev. 2008, 12, (1), 200-217. 

- Blanco, M. I., The economics of wind energy. Renew. Sust. Energ. Rev. 2009, 13, (6-7), 1372-1382. 
- EWEA. The Economics of Wind Energy; European Wind Energy Association: 2009; http://www.ewea.org. 
- ODE. Study on the costs of offshore wind generation. A report to the Renewables Advisory Board (RAB) & 

DTI; Offshore Design Engineering; URN Number 07/779: UK, 2007. 
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Table S17. Inventories: operation and maintenance 
Operation and maintenance 1 unit 
 Onshore Offshore  
Technosphere inputs    
Gearbox replacement 0.5 0.7 unit 
Diesel, inspections (passenger car) * 2500 3125 kg 
Operation, helicopter *  100 h 
Transport lorry (16 t capacity) * 600 600 km 
Transport barge *  380 tkm 
IO background economy 0.319 1.664 106 Euro 
    
Direct emissions    
CH4 0.11 0.15 kg 
CO2 7793 1.64E4 kg 
N2O 0.30 0.37 kg 
NH3 0.20 0.25 kg 
NOx 29.3 36.5 kg 
CO 6.57 8.32 kg 
NMVOC 0.99 1.22 kg 
SOx 0.25 17.2 kg 
 
Comments 
* Direct emissions from burning fossil fuels are accounted for in the emission intensity matrix F, while indirect 
(supply-chain) emissions are assumed to be covered by inputs from IO-background system. 
 
We adopt the assumption of Ardente et al. 2008 that around 50 kg of diesel will be consumed per year per MW for 
inspections by car, and the assumption of NEEDS (2008) that 4 hours of helicopter operation is required per year of 
operation of each offshore wind turbine. 
 
Monetary inputs are derived from cost distributions presented in Blanco 2009, EWEA 2009 and DWE 2002. 
 
Sources 

- DWE. Studie zur aktuellen Kostensituation 2002 der Windenergienutzung in Deutschland [Study of the 
costs of wind energy in 2002 in Germany]; Deutsches Windenergie Institut: Germany, 2002; 
http://www.wind-energie-de. 

- Ardente, F.; Beccali, M.; Cellura, M.; Lo Brano, V., Energy performances and life cycle assessment of an 
Italian wind farm. Renew. Sust. Energ. Rev. 2008, 12, (1), 200-217. 

- Life cycle approaches to assess emerging energy technologies. Final report on offshore wind technology; 
New Energy Externalities Development for Sustainability consortium (NEEDS): 2008; http://www.needs-
project.org. 

 

Table S18. Inventories: decommissioning 
Decommissioning 1 unit 
 Onshore Offshore  
Technosphere inputs    
Same inputs as for installation (table S16), plus: 
Disposal, glass, municipal incineration 7.87 7.87 kg 
Disposal, plastics, mixture, municipal incineration 4.26 4.26 kg 
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Direct emissions    
Same as for installation (table S16)    
 
Comments 
Demolition is modeled as identical to installation. Composite materials in the rotor blades and nacelle are assumed to 
be 50% incinerated and 50% recycled. For the incineration of the composite materials, we assume shares of 35% 
plastics and 65% glass. 

Tables S19 and S20 provide key numbers that are used to link the foreground system with the 

input-output background system (that is, to construct matrix Anf). The upper panels give the cost 

shares apportioned to each of the foreground processes; the center panels specify which IO 

sectors are used to represent the specific foreground processes (the foreground processes are 

assigned the same input distributions as their belonging IO sectors); and the lower panels specify 

inputs from the IO background system that are removed to avoid double counting. 
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A.3 Scenario modeling 

Shown in table S21 is the global electricity supply mix in 2007, 2030 and 2050 used in the 

scenario analysis. The BLUE Map and BLUE hi REN scenarios are investigated in the current 

study. 

Table S21. Global electricity supply by source and scenario in 2007, 2030 and 2050 (IEA 2010). *For the BLUE hi 
REN scenario, only 2007 and 2050 values are given; linear interpolation has been used here to establish values for 
the year 2030. Source: IEA, 2010. International Energy Agency. Energy Technology Perspectives 2010. Paris.  

  2007 
Baseline 

2030 
Baseline 

2050 

BLUE 
Map 
2030 

BLUE 
Map 
2050 

BLUE hi 
REN 
2030 

BLUE hi 
REN 
2050 

Nuclear (%) 13.8 10.7 10.5 19.2 23.9 12.3* 11.6 
Oil (%) 5.7 1.9 0.7 2.6 0.6 2.1* 0.5 
Coal (%) 41.6 44.5 44.5 18.2 0.6 13.6* 0.9 
Coal + CCS (%) 0.0 0.0 0.0 5.2 11.8 1.7* 2.4 
Gas (%) 20.9 20.6 22.6 13.7 10.7 12.0* 7.9 
Gas + CCS (%) 0.0 0.0 0.0 0.8 4.5 1.4* 2.0 
Hydro (%) 15.6 13.6 11.6 17.6 14.3 15.9* 16.0 
Biomass/waste (%) 1.3 2.4 2.7 6.4 5.4 4.9* 6.6 
Biomass + CCS (%) 0.0 0.0 0.0 0.3 0.8 0.3* 0.4 
Geothermal (%) 0.3 0.5 0.6 1.1 2.5 2.7* 3.7 
Wind (%) 0.9 4.5 4.7 10.5 12.2 15.2* 21.8 
Ocean (%) 0.0 0.0 0.1 0.2 0.3 1.0* 1.5 
Solar (%) 0.0 1.2 2.0 4.2 12.4 16.9* 24.6 
Total production (TWh) 19756 34286 45970 27993 40135 29330* 37656 

Table S22 shows Knew, Krepow and Koper values used in the scenario analysis (see section 4 in 

main article for an explanation of the variables). The end-of-period Koper values shown in the 

table S22 are slightly lower than corresponding values in table 3 in the main article because Koper 

represents mid-year values, whereas capacity values shown in table 3 are measured at the end of 

the year. Comparing BLUE Map scenario values in table S22 and table 3 (main article), it can be 

observed, for example, that 96.3 + 45∙(2030-2008+1) = 1131, where 96.3 GW is the end-of-year 

total wind power capacity in 2007 (table 3), 45 GW/year is the total newly added capacity 

annually in 2008-2030 (table S22), and 1131 GW is approximately the total installed capacity at 

the end of 2030 (table 3) (a small deviation occurs due to rounding off in table 3 and table S22). 

Similar relationships hold for BLUE hi REN scenario values, for the period 2031-2050, and for 

separate onshore and offshore capacity values also.    
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Table S22. Values for Knew, Krepow and Koper used in BLUE Map and BLUE hi REN scenario analysis. 

Onshore Offshore Total 

  2007 
2008-
2030 

2031-
2050 2007 

2008-
2030 

2031-
2050 2007 

2008-
2030 

2031-
2050 

BLUE Map 
Knew (GW/year) 22 36 19 0.7 9.2 11 22 45 30 
Krepow (GW/year) 0 8.5 36 0 0 8.4 0 8.5 44 
Koper, end-of-period value (GW) 84 902 1284 1.3 210 438 85 1111 1722 

BLUE hi REN 
Knew (GW/year) 22 56 38 0.7 14 21 22 69 59 
Krepow (GW/year) 0 11 56 0 0 12 0 11 68 
Koper, end-of-period value (GW) 84 1344 2118 1.3 313 722 85 1656 2840 

B Supplementary accounts of results 

Table S23 and table S24 show, for the onshore and offshore wind farm, respectively, 

breakdowns of emissions by main categories. The results are the same as shown in figure 1 in the 

main article, with the wind turbine category in figure 1 disaggregated into nine sub-categories in 

tables S23 and S24. Offshore wind power systems are more resource demanding than their 

onshore counterparts. For greenhouse gas emissions, the gains in wind load factor and lifetime 

when shifting to offshore locations outweigh emissions incurred by higher resource requirements. 

In the other impact categories, the onshore wind power system exhibits the lowest impact 

indicator values.  

The higher emissions shares of installation and decommissioning for the offshore wind farm, 

compared with the onshore wind farm, stem in part from emissions from diesel burning in 

transportation and construction activities offshore, and in part from the offshore wind power 

system having higher inputs from the input-output background system. Because copper use drives 

up the impact potentials in the terrestrial acidification impact category, cabling contributes more 

to acidification impact potentials than to other impact indicators. It can be noted that the current 

data situation in the Ecoinvent LCA database for composite materials is unsatisfactory, leading to 

uncertain results for the rotor blades. 
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Shown in tables S25 and S26 are emissions by source (cf. figure 2 in main article). CO2 is the 

dominant contributor to climate change impact indicator values (around 90%). Nearly all marine 

eutrophication impact potentials are due to emissions of NOx, with a small contribution from 

NH3. SOx causes the bulk of acidification impact potentials (50-60%), but NOx also contributes 

significantly. Emissions in the photochemical oxidant formation category are for the most part 

caused by NOx and NMVOC. 

Table S27. Impact indicator values by system of origin (%) for onshore and offshore wind power systems. ROW = 
Rest of the world. Impact categories: CC = Climate change; ME = Marine eutrophication; POF = Photochemical 
oxidant formation; TA = Terrestrial acidification. 

Onshore Offshore 
  CC ME POF TA CC ME POF TA 

Foreground 2.0 5.2 2.7 1.5 1.7 30.7 16.2 11.1 
IO background (Europe) 27.0 24.8 23.8 21.4 39.5 24.6 25.4 27.0 
IO background (ROW) 17.6 26.2 42.8 25.0 21.6 22.4 40.9 27.5 
LCA database 53.4 43.7 30.7 52.1 37.2 22.2 17.4 34.4 

Table S27 shows the relative distribution of emissions by sub-system. The LCA database 

system generates 31-53% (onshore) and 17-37% (offshore) of total emissions. For the offshore 

case, the relatively high shares of foreground system emissions (except for climate change) are 

largely due to emissions of NOx from barge operation. It can be noted that the quantifications of 

emissions from offshore operations are uncertain, as they rely on rather simplistic assumptions on 

activities and equipment. The photochemical oxidant formation impact category stands out with 

relatively high emissions occurring in the rest-of-the-world region of the IO background system. 

This is due to NMVOC emissions in the sector representing extraction of crude petroleum and 

natural gas in the rest-of-the-world region. 

Total cumulative emissions caused by wind power in 2030 and 2050 are shown in table S28 for 

four impact categories; a breakdown of greenhouse gas emissions into contributions from 

construction of new capacity, construction of replaced capacity, operation, and decommissioning 

of wind farms is given in table S29 (corresponds with shaded areas in figure 3 in main article). 

Table S30 shows the emission intensity of current-year wind electricity, as calculated with the 

unit-based analysis with current-year mix of onshore and offshore wind power, capacity factors 

and electricity mix. Differences between BLUE Map and BLUE hi REN emission intensity 

values are due to differences in the electricity mix that is used upstream in the product systems. 
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Shown in table S31 are numerical values for measures of reduced emissions in 2030 and 2050 

(cf. figure 3 in the main article).   

Table S28. Cumulative emissions in 2030 and 2050 in BLUE Map and BLUE hi REN scenarios by four impact 
categories. Time period: 2007-2050. 

BLUE Map BLUE hi REN 
  2030 2050 2030 2050 
Climate change (Gt CO2-eq) 1.1 2.3 1.5 3.5 
Marine eutrophication (Mt N-eq) 1.3 2.9 1.8 4.5 
Photochemical oxidant formation (Mt NMVOC) 6.6 16 9.7 24 
Terrestrial acidification (Mt SO2-eq) 6.1 13 8.7 20 

Table S29. Cumulative greenhouse gas emissions (Gt CO2-eq) in 2030 and 2050 due to the construction, operation 
and demolition of wind power systems for the BLUE Map and BLUE hi REN scenarios. Time period: 2007-2050. 

BLUE Map BLUE hi REN 
  2030 2050 2030 2050 
Construction (new capacity) 0.85 1.29 1.26 2.07 
Construction (repowering) 0.14 0.75 0.17 1.06 
Operation 0.08 0.21 0.11 0.31 
Decommissioning 0.006 0.05 0.007 0.08 
Total 1.07 2.31 1.55 3.52 

Table S30. Emission intensity of current-year wind electricity in 2007, 2030 and 2050 by four impact categories for 
the BLUE Map and BLUE hi REN scenarios. The values shown are weighted averages of onshore and offshore wind 
power. Impact categories: CC = Climate change; ME = Marine eutrophication; POF = Photochemical oxidant 
formation; TA = Terrestrial acidification. 

BLUE Map BLUE hi REN 
  2007 2030 2050 2030 2050 
CC (g CO2-eq/kWh) 22.4 16.3 14.0 15.5 13.2 
ME (g N-eq/MWh) 24.2 20.8 19.6 20.1 18.8 
POF (g NMVOC/MWh) 129 111 105 108 102 
TA (g SO2-eq/kWh) 123 93.1 82.8 87.8 76.5 

Table S31. Cumulative gross and net reduced emissions in 2030 and 2050 by four impact categories for the BLUE 
Map scenario. Impact categories: CC = Climate change; ME = Marine eutrophication; POF = Photochemical oxidant 
formation; TA = Terrestrial acidification. Time period: 2010-2050. 

CC (Gt CO2-eq) ME (Mt N-eq) 
POF (Mt 
NMVOC) TA (Mt SO2-eq) 

  2030 2050 2030 2050 2030 2050 2030 2050 
a: Direct emissions reduced 14 43 7.9 22 24 65 55 131 
d = a + b - c: Net reduced emissions 15 46 8.8 25 25 74 57 143 
b: Indirect emissions reduced 1.5 5.0 2.0 5.8 7.5 24 8.2 24 
c: Total wind power emissions 0.97 2.2 1.15 2.8 6.1 15.1 5.5 12.9 
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Considering only first-order effects? How simplifications 

lead to unrealistic technology optimism in climate 

change mitigation 

Anders Arvesen*, Ryan M. Bright, Edgar G. Hertwich 

Industrial Ecology Programme and Department of Energy and Process Engineering, Norwegian 

University of Science and Technology 

* Corresponding author. Email address: anders.arvesen@ntnu.no 

ABSTRACT 

This article challenges the notion that energy efficiency and ‘clean’ energy technologies can 

deliver sufficient degrees of climate change mitigation. By six arguments not widely recognized 

in the climate policy arena, we argue that unrealistic technology optimism exists in current 

climate change mitigation assessments, and, consequently, world energy and climate policy. The 

overarching theme of the arguments is that incomplete knowledge of indirect effects, and neglect 

of interactions between parts of physical and social sub-systems, systematically leads to overly 

optimistic assessments. Society must likely seek deeper changes in social and economic 

structures to preserve the climatic conditions to which the human civilization is adapted. We call 

for priority to be given to research evaluating aspects of mitigation in a broad, system-wide 

perspective. 

Keywords: Sustainable development, climate policy, limits to growth. 

1 Introduction 

An underlying premise of world energy and climate policy is that energy efficiency increases 

and ‘clean’ energy technologies will, with appropriate policy support in place, be capable of 

delivering degrees of climate change mitigation consistent with the target of limiting global 

warming to 2° C above pre-industrial levels. Consequently, world policy to mitigate climate 

change remains somewhat superficial; underlying driving forces of the problem, that is – more 
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resource intensive lifestyles and larger populations (Hertwich and Peters, 2009; UNEP, 2010a) – 

remain largely unchallenged, and fundamental changes in economic structures are hardly being 

put on the agenda. 

Policy-supporting reports published by the International Energy Agency (IEA, 2010a, b) and 

the Intergovernmental Panel on Climate Change (IPCC, 2007) are commonly perceived to 

demonstrate the ability of technological solutions to deliver formidable degrees of climate change 

mitigation under scenarios of continued strong growth in the world economy. However, one 

insight which is too often overlooked in the debate is that the engineering-economic models 

behind studies such as IEA (2010a, b) rest on simplifications of complex and interacting physical 

and social systems, as well as intentionally optimistic assumption for the mitigation scenarios. In 

essence, what the engineering-economic models produce are extrapolations of first-order effect 

estimates under assumptions of well-functioning markets, neglecting linkages between climate 

change and other environmental pressures, and indirect effects of mitigation measures. By 

indirect effects we mean all effects of an action other than the action’s targeted effect. Hofstetter 

and colleagues (2002) explain the notion of indirect effects by means of an allegory of ripples in 

a pond: Dropping an object into the pond (metaphorically: implementing a mitigation measure) 

sends out patterns of ripples, where the water height symbolizes environmental effects and the 

patterns of ripples the spread of effects through economies. The water height is immediately 

reduced at the point where the object hits the water surface (that is, the measure is successful in 

achieving the targeted effect), but high(er) water levels may be found anywhere from the inner to 

the outermost ripples.  

In this article, we highlight some of the simplifying assumptions in current energy and climate 

change mitigation scenarios, as exemplified by IEA (2010a, b), and present a part of the case that 

it is premature to draw conclusions on the adequacy of technological solutions on the basis of 

such model results. Further, we argue that current, largely reductionist approaches to impact and 

mitigation assessments, where interacting problems and solutions tend to be assessed in isolation 

or with too narrow system boundaries, may lead to underestimation of environmental impacts on 

the one hand and are likely to cause overestimation of our ability to mitigate climate change on 

the other hand. As a result, mitigation assessments are the basis of unfounded technology 

optimism in world energy and climate policy. At the outset, however, it is important clarify that 
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our critique does not concern the development of impact and mitigation assessments under 

simplifying assumptions as such. Rather, the critique targets the specific interpretation of 

contemporary assessments that, in the words of Ausubel (1996), ‘technology can spare the earth’ 

and the neglect of results that point in a different direction. 

The next section introduces the challenge of achieving sustainability. In section 3, we 

challenge the premises for world energy and climate policy by six arguments which, in our view, 

have not been sufficiently acknowledged in the climate policy arena. The overarching theme is 

that incomplete knowledge of ‘ripple’ effects, and neglect of interactions between physical and 

social sub-systems, systematically leads to overly optimistic assessments. Section 4 concludes. 

2 Background: the challenge of sustainability 

According to current mainstream climate models, cumulative global carbon dioxide (CO2) 

emitted by fossil fuel-burning, cement production, and land use in 2000-2049 should not exceed 

1000 gigatonnes (Gt) if we are to have 75% confidence in reaching the 2° C target (Meinshausen 

et al., 2009). With 321 Gt already emitted in 2000-2009, we are left with a remaining budget of 

679 Gt for 2010-2049. Negative growth occurred in 2009 due to the financial upheaval and 

slowdown of the global economy, but positive emission growth is expected to return as economic 

growth is re-established (Friedlingstein et al., 2010). Thus, at the onset of the second decade of 

2000-49, we have not only emitted disproportionally high quantities of CO2, but face continued 

growth in emissions. Moreover, national emissions-reduction pledges submitted under the 

Copenhagen Accord (UNFCCC, 2009) are far from sufficient to reach the 2° C target, even under 

the optimistic assumptions that countries will meet the ambitious ends of their pledges and refrain 

from exploiting loopholes in the regulatory framework (Rogelj et al., 2010; UNEP, 2010b). Also, 

recent observations give rise to concerns that climate change is occurring more rapidly than 

expected (Richardson et al., 2009), and there is a real danger that the neglect of long-term 

feedback effects in mainstream climate models lead to significant underestimation. Even by 

aiming for less than 2° C warming, there is a risk of irreversible and abrupt changes in climate 

(Hansen et al., 2008; Rockström et al., 2009).  

In addition to climate change, an array of global environmental problems requires attention of 

policy makers. As an example, loss of biodiversity poses serious threats to life-supporting 
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ecosystem services. The current species extinction rate is estimated to be 100-1000 times greater 

than the natural background rate (MEA, 2005; Rockström et al., 2009). One recent study finds 

that most indicators of biodiversity are in decline with no significant reductions in the rate of 

decline, whereas pressures on biodiversity are increasing (Butchart et al., 2010). Reviewing 

existing assessments of environmental impacts and pressures, the International Panel for 

Sustainable Resource Management highlights the following pressures as prioritized (UNEP, 

2010a): Habitat change, greenhouse gas (GHG) emissions, over-fertilizing with phosphorus and 

nitrogen, pollution causing human and ecotoxic effects, depletion of abiotic resources (fossil 

energy carriers and metals), and depletion of biotic resources (in particular, fish and wood). 

Rockström and colleagues (2009) suggest nine indicators for evaluating the state of Earth 

systems. Of these, three indicator values (climate change, loss of biodiversity, and interference 

with nitrogen cycle) already transgress levels that can be regarded as ‘safe’, and four indicator 

values (global freshwater use, land use change, ocean acidification, and interference with 

phosphorus cycle) may soon be exceeding their safe levels. The remaining two indicators 

(atmospheric aerosol loading and chemical pollution) are yet to be determined (Rockström et al., 

2009). As is further discussed in the following chapter, it is often not meaningful to view climate 

change and its mitigation in isolation from other sustainability issues. It is important that 

sustainability in the broad sense is adequately considered in climate change mitigation. 

3 Six issues not sufficiently addressed in the climate policy arena 

In the following subsections, we provide six reasons why contemporary climate change 

mitigation assessments are, in the general case, likely to be overly optimistic. While these six 

reasons represent problems that are not necessarily independent, they are discussed separately for 

the sake of clarity (Sections 3.1-3.6).  

3.1 Transitioning to ‘clean’ energy supply will in itself cause climate impacts 

The absence of fossil fuel combustion in the operating phase of energy converters (e.g. 

photovoltaic solar cells, biomass-fueled motor vehicles) does not imply zero greenhouse gas 

(GHG) emissions. This is because emissions occur in a network of operations necessary to 

support the energy converting process, such as manufacturing of solar cells or production of 
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fertilizers to grow biofuel crops. Similarly, employment of carbon capture technologies in fossil 

fuel power stations does not remedy upstream emissions in the fuel-chain, which will rather 

increase due to lowered power plant efficiency. 

The method of life cycle assessment (LCA) is the preferred method for quantifying and 

assessing environmental impacts generated throughout a product’s life cycle. Surveying a number 

of LCA studies of proposed solutions to climate change, Jacobson (2009) finds that power 

generation technologies cause life cycle GHG emissions of 2.8-7.4 g CO2e/kWh (wind power), 

8.5-11.3 g/kWh (concentrated solar), 9-70 g/kWh (nuclear), 14 g/kWh (tidal), 15.1-55 g/kWh 

(geothermal), 17-22 g/kWh (hydro), 19-59 g/kWh (solar photovoltaic), and 21.7 g/kWh (wave). 

Another study estimates 180-220 g/kWh and 140-160 g/kWh, respectively, for coal and natural 

gas power generation systems with carbon capture and storage (CCS), which compares with 

around 1000 g/kWh and 580 g/kWh for world average coal and natural gas power without CCS 

(Singh et al., 2011). Judging from these findings, non-fossil power generation technologies are 

far superior to fossil-fueled power stations; employment of CCS produces substantial GHG 

emissions savings, though the life cycle reduction is significantly lower than the capture ratio 

(capturing 90% of the carbon from coal power yields 74-78% reduction in life cycle GHG in 

Singh et al., 2011), and life cycle GHG emissions from fossil power with CCS exceed those of 

non-fossil technologies with up to one order of magnitude. 

While the employment of LCA methodology is essential for making fair and consistent 

comparisons across technologies, it is important to recognize limitations to current LCA studies. 

First, conventional LCA methodology is known to suffer from systematic underestimation of 

impacts due to incomplete coverage of product systems: There is a limit to how many activities 

can be described in a bottom-up approach, hence unwanted exclusion of activities from the 

system of analysis will always be the case. There is no agreed upon methodology for quantifying 

the truncation bias of conventional LCA, and the results of existing inquiries are not uniform. 

Nevertheless, in all studies surveyed by Majeau-Bettez et al. (in preparation), it is found that 

conventional LCA misses out on 30% or more of total environmental impacts. Potentially, the 

problem of underestimation can be avoided by utilizing so-called hybrid LCA techniques, where 

economic input-output data is used to estimate missing inventories, and thereby complete the 

system (Suh et al., 2004). 
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Second, conventional LCA is dominated by ceteris paribus assumptions; it does not account 

for changes in the background economy in the case of widespread adoption of the product under 

study. A transition to de-carbonized energy supply will cause emissions in the background 

economy that are typically neglected in LCAs. For example, massive expansions of wind power 

necessitates updates in electricity infrastructure and/or energy storage technologies, and will, due 

to the fluctuating nature of wind power, lead to altered operation of hydro and thermal power 

plants. Additional CO2 emissions of fossil-fired power plants caused by high wind power 

penetration have been estimated to 18-70 g per kWh electricity from wind (Pehnt et al., 2008). 

The additional emissions result solely from an increased need to operate thermal power stations 

at (sub-optimal) part-load in order to accommodate the fluctuating inputs of wind power (Pehnt et 

al., 2008). It needs to be emphasized, though, that such results depend heavily on the assumed 

characteristics of background energy systems. 

Third, conventional LCA has its domain in assessing the impacts associated with the delivery 

of one (small) reference unit, but falls short of addressing the magnitudes of aggregated impacts. 

The aggregated impacts caused by adoption of energy solutions depend, among other things, on 

the pace of deployment, the temporal distribution of emissions, and replacement of existing 

systems at the end-of-life – factors that are not incorporated in conventional LCA. One study 

estimates GHG emissions brought about by a large-scale adoption of wind power to cover 22% of 

the world’s electricity demand in 2050 to 3 Gt CO2e (Arvesen and Hertwich, in preparation). 

Notwithstanding the important simplifying assumptions of this study (e.g., the calculation takes 

into account cleaner electricity mix in manufacturing with time, but not other changes in the 

background economy), it may serve as a first indication of the magnitude of aggregate life cycle 

emissions caused by global deployment of wind power. 

It is not known what will be the global life cycle climate impacts caused by transitioning to 

energy solutions perceived to be ‘clean’. It can be hypothesized, however, that the sum of all 

impacts is too large to be neglected.  
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3.2 Realized net climate change mitigation from energy efficiency is unlikely to live up to its 

expectations 

Energy efficiency measures are essential in typically foreseen paths to climate stabilization 

(IEA, 2010a, b; IPCC, 2007; Pacala and Socolow, 2004). However, the true costs and benefits of 

energy efficiency are complicated and opaque, due to a number of socio-technical interactions 

manifesting themselves in two apparent paradoxical issues. The first issue, dealt with in Section 

3.2.1, is linked with the fact that literature suggests that substantial amounts of energy can be 

saved at negative costs (IPCC, 2007; McKinsey 2009). This prompts the question that if there is a 

profit in reducing emissions, why does it not happen? The second issue, and the topic of Section 

3.2.2, is the postulation and observation that through higher-order effects, energy efficiency gains 

may stimulate more energy consumption.  

3.2.1 Negative costs 

In essence, the occurrence of negative costs in mitigation assessments stems from two principle 

factors: i) market failures hindering the implementation of energy efficiency measures in real 

markets (‘market failure factors’); and ii) discrepancies between what energy analysts assume to 

be optimal behavior and what is truly optimal from the point of view of individual end-users 

(‘non-market failure factors’). Market failure factors include incomplete information, misplaced 

incentives and transaction costs. Two examples of non-market failure factors are high discount 

rates in the face of the irreversible nature of investments and uncertainty about future energy 

prices, and qualitative properties that favor conventional technologies over more efficient ones 

(Jaffe and Stavins, 1994; Linares and Labandeira, 2010). 

Modeling results based on the utilization of negative-cost energy efficiency measures assumes 

that market failures and non-market failure factors can be easily overcome by climate policy. 

True, if, for example, policy measures such as information campaigns and appliance labels can 

create fully informed consumers or regulation removes inefficient alternatives, costs of gathering 

information will become zero once a successful new policy is in place. However, as long as 

conditions with incomplete information prevail, the costs are indeed ‘real’ in the sense that they 

must be borne – de facto hampering new investments. Misplaced incentives (landlord-tenant or 

principal-agent issues) and uncertainty in future energy (and carbon) prices are also likely to 

persist. Likewise, due to heterogeneity among end-users (Jaffe and Stavins, 1994; Linares and 
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Labandeira, 2010), individual end-users may be faced with costs that are indeed ‘real’ to them, 

even if corresponding costs do not exist for average user types modeled by energy analysts. 

While policies to utilize the tremendous energy efficiency potential are desirable, assessments 

that count on the easy utilization of full technical energy efficiency potential are overly 

optimistic. 

3.2.2 Rebound effects 

Rebound effects come into play when increased efficiency leads to reduced costs. On a micro-

level, increased energy efficiency will reduce the price of an energy service, and thereby: i) may 

create more demand for the energy service; and/or ii) may increase income available for general 

consumption. This applies to consumers and producers alike. On the macro-level, increased 

efficiency in the production and use of energy will result in a multitude of supply and demand 

adjustments occurring over time in a path-dependent development (Roehrl and Riahi, 2000). 

Because gains in energy efficiency favors energy over other factors of production (e.g., labor), 

and because efficiency contributes positively to overall economic productivity, the combined 

impact of the adjustments in supply and demand will be more energy consumption. The total 

economy-wide rebound effect is the sum of all micro- and macro-level effects (Hertwich, 2005; 

Sorrell, 2007; Jenkins et al., 2011). 

The main arguments to be made here are that economy-wide rebound effects are likely too 

large to be neglected, and furthermore, that rebound effects are underappreciated in contemporary 

climate change mitigation assessments.  Influential reports providing policy guidance on climate 

change mitigation (e.g., IEA (2010a, b), McKinsey (2009)) take little or no regard of rebound 

effects; thus, the net gains of energy efficiency measures are likely systematically overrated in 

such studies. We substantiate this position by briefly summarizing the current state of knowledge 

on rebound effects.  

Empirical estimates of ‘direct rebound effects’, understood here as the increase in consumption 

of an energy service due to an efficiency-induced price drop of acquiring that service, typically 

fall within a range of 10-30% of expected gains for consumer end-uses in developed countries 

(Greening et al., 2000; Sorrell et al., 2009). Owing to the higher price elasticities, larger direct 

rebound effects can be expected for developing countries – a limited amount of empirical 

evidence suggests 40-80% (Sorrell 2007; Jenkins et al., 2011). 
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Macro-level rebound effects are more difficult to ascertain empirically and model-based 

estimates vary widely. Proponents of large economy-wide rebound effects (‘backfire’) have 

historically relied on theoretical arguments and more indirect sources of evidence to support their 

case (Sorrell, 2009). Modeling attempts to quantify economy-wide rebound exist, but the 

methodologies are subject to criticism and the evidence remains inconclusive (compare, for 

example, the different positions of Schipper and Grubb, 2000 and Jenkins et al., 2011; summaries 

are provided by Sorrell, 2007, 2009).  

Macro-level rebound effects can be linked to the bigger question of what is driving economic 

growth: If it is so that energy is a major driver for economic growth, this strengthens the 

argument for large rebound effects (Sorrell, 2009). According to conventional growth theories, 

energy can only play a minor role in generating economic growth, since the costs of energy are 

low compared to capital and labor costs. This view is contested by the analyses of e.g. Kümmel et 

al. (2010) and Warr and Ayres (2010), which indicate that capital, labor, and energy are in fact 

interdependent inputs, and that high-quality energy is a major driver for economic growth 

(Sorrell, 2009; Madlener and Alcott, 2009). Sorrel (2009) acknowledges that the identified 

relationships between high-quality energy and economic activity do not represent sufficient 

evidence to conclude that causality runs from energy to growth, but argues that the observations 

are consistent with theoretical arguments offered earlier. 

Returning to our main argument, we see considerable grounds for concern that due to rebound 

effects, energy efficiency strategies will fail to live up to expectations as a contributor to climate 

change mitigation. There is universal agreement in the rebound literature that some rebound 

effect exists; thus, at the least, net gains of energy efficiency are smaller than suggested by simple 

engineering estimates. Furthermore, while the exact magnitude of economy-wide rebound 

remains unknown and disputed, our understanding of the current state of knowledge is that we 

take the ability of energy efficiency to deliver substantial reductions in greenhouse gas emissions 

for granted.  Even the possibility of ‘backfire’, i.e. that economy-wide rebound exceeds 100%, 

cannot be completely ruled out. 
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3.3 Developing fossil energy with CCS and renewable energy in parallel may lower system-

wide performance 

‘Carbon lock-in’ refers to a situation where, due to a variety of forces, a type of inertia is 

present whereby efforts to implement greenhouse gas-saving measures are hindered; and thus 

fossil-fuel dependencies are perpetuated. The forces adding to lock-in may be of technological, 

institutional or social nature (Unruh, 2000). Arguably, a condition of carbon lock-in may explain 

the seemingly paradoxical situation where, theoretically, technological fixes to the climate 

change problem appear to exist and be affordable, but in practice, the diffusion of the 

technologies is slow (Unruh, 2000; 2002). Similar arguments arise, independently, also in the 

political science literature on energy technology (Moe, 2010). 

Indeed, some of the arguments presented in the current paper are related to, and may be seen as 

part of, the concept of carbon lock-in, but an elaboration is beyond the scope of this paper. In this 

particular section, we discuss carbon lock-in in the context of one specific characteristic of 

typical climate change mitigation scenarios; namely, the future co-evolution of fossil energy with 

CCS and renewable energy. We point out that while envisaged least-cost pathways to climate 

stabilization involve fossil energy with CCS and renewable energy developing in tandem, 

system-wide performance is not maximized in such conditions. In short, this is because many of 

the forces that have created the carbon lock-in of today will continue to be exerted by fossil 

energy systems also in the future, even if these systems are combined with CCS. We elaborate on 

this argument below, after first briefly introducing factors that may lead to carbon lock-in and 

that are relevant for the present discussion. 

While recognizing that explanations for carbon lock-in may be sought at the micro or macro 

level, and that forces acting within individual firms can also contribute to lock-in (Unruh, 2000), 

we here focus on externalities in networks of inter-related technologies and institutions. In 

society, such network externalities give rise to groups of compatible components forming 

clusters, with positive externalities reinforcing compatible components’ competitiveness and 

viability, while negative externalities raise barriers for incompatible elements. One example from 

the historical record is the co-evolution of roads, petrol-fueled automobiles and oil pipelines, and 

an array of related public and private institutions (Grübler et al., 1999; Unruh, 2000; Moe, 2010). 

Unruh (2000) recognizes three types of macro-level network effects. The first relates to 
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connections and dependencies among industry actors, such as coordination to produce 

complimentary products and the introduction of standards and conventions. Such relationships 

create favorable conditions for complimentary industries, but create barriers for new solutions. 

The second type has to do with the way in which projects are financed: Profitable firms tend to 

direct financing back to their own core competencies, and risk-aversive lenders may have a 

similar preference towards existing solutions. Finally, externalities arise from private and public 

institutions with bonds to technological systems; some examples are user-created organizations, 

educational establishments and professionals representing certain disciplines, industry 

associations and regulatory frameworks (Unruh, 2000). 

Returning to the case of CCS, our concerns stem from two observations. First, comparative 

climate change mitigation model runs tend to find that scenarios with co-evolutions of fossil 

energy with CCS and renewable energy show significantly lower mitigation costs than scenarios 

with only non-fossil energy (IEA, 2010a; Krey and Clarke, 2010). In one assessment (IEA, 

2010a), excluding CCS from the set of available options raises overall costs to achieve 

stabilization by 70% (IEA, 2010a). The second observation is that implementing CCS on a large 

scale will prolong the life spans of systemic factors adding to carbon lock-in, compared with the 

case if only non-fossil solutions were implemented. For example, as investors into long-lived 

capital assets in connection with fossil fuels will expect returns on their investments, premature 

(in economic terms) efforts to phase out fossil fuels may be met with resistance. More broadly, 

policy-makers will have to withstand additional rounds of lobbyism and many other influences 

from groups disadvantaged by a phase-out of fossil energy (regardless of whether CCS is used), 

and, because industries facilitating the use of fossil energy resources are kept alive, the tendency 

for investments to be directed to fossil fuel-based technologies will to some degree persist.  

Our intent here is not to argue against CCS as such. Indeed, developing CCS may be beneficial 

for other reasons. From another viewpoint, due to CCS being more compatible with current 

systems than competing renewable power generation technologies, developing large-scale CCS 

may be regarded as a means to overcome lock-in barriers to climate change mitigation in the 

short-term (Unruh and Carrillo-Hermosilla, 2006; Praetorius and Schumacher, 2009). Also, one 

could argue that a pragmatic approach to climate policy warrants that an opportunity is kept open 

for the fossil fuel industry to radically reduce its emissions. This does not, however, alter the fact 
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that fossil energy with CCS will, in the overall picture, not exert synergistic effects on renewable 

energy deployment, but conversely, raise barriers. Similarly, renewable energy systems can raise 

barriers for CCS. Our main concern, and the key point of this discussion, is the imbalance 

between the envisaged least-cost pathways to climate stabilization (i.e., pathways in which fossil 

energy with CCS and renewable energy develop in parallel), and the pathways in which systemic 

forces (externalities) are aligned in such a way that system-performance is advanced (i.e., 

pathways in which fossil energy is phased out altogether). 

3.4 The notion of absolute decoupling is not supported by historical records 

The concept of decoupling lies at the heart of the technology optimism permeating current 

climate policies. Decoupling can refer either to a decline in environmental impact per unit of 

economic output (relative decoupling), or to an absolute decrease in environmental impact as 

income grows (absolute decoupling). If the latter measure is expressed in units of tonnes of CO2 

per year, the former would be in units of CO2 per dollar or similar. It is important to distinguish 

between these two interpretations (Jackson, 2009). Evidence of relative decoupling has been put 

out to justify an optimistic view on technological fixes to environmental problems (Ausubel, 

1996). However, as have been noted repeatedly (Arrow et al., 1995; Jackson, 2009; Speth, 2008), 

only limited conclusions can be drawn from relative measures; it is vital also to address 

absolutes. The historical records provide no evidence to suggest that sufficient absolute 

decoupling of climate change impact can take place in coming decades (Jackson, 2009). While 

this does not rule out the possibility that absolute decoupling can take place in the future, it does 

show that future developments in many aspects must be fundamentally different from historic 

developments.  

Furthermore, when studying decoupling trends of post-industrialized countries, shifting trading 

patterns obscure the picture and lead to too optimistic conclusions. This is because of a shift of 

dirty manufacturing activities to less wealthy nations. For example, in recent decades, CO2 

emitted in China to produce products for export has increased rapidly (Weber et al., 2008). 

Correspondingly, significant increases with time are evident in estimates of CO2 embodied in 

imports to wealthy nations from China (Reinvang and Peters, 2008; Weber and Matthews, 2007). 

From the results of Wiedmann and colleagues (2010), analyzing production and consumption 
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based emissions for the UK in the period 1992-2004, one may observe that an apparent 5% 

decline in CO2 (derived from domestic emissions inventories reported to UNFCCC), turns into a 

8% increase, if changes in emissions embodied in international trade are taken into consideration. 

A recent study by Peters et al. (2011) confirms the general validity of these anecdotal reports, 

estimating that the net emission transfer to post-industrialized countries increased from 0.4 Gt 

CO2 in 1990 to 1.6 Gt CO2 in 2008 – a growth that more than outweighs the wealthy nations’ 

emissions reductions commitments under the Kyoto Protocol.  

A further element which may be noted is that rooted in climate change mitigation scenarios 

(IEA, 2010a, b) is an assumption that sufficient capital can be made accessible to finance the 

(capital-intensive) transition away from conventional and towards lower-carbon energy systems. 

However, investments in renewable energy assets – and sustainability-focused investments in 

general – tend to bring long-term payoffs, not short-term profits (Jackson, 2009). The ability of 

current financial systems to foster sufficient long-term investments in sustainability is yet to be 

demonstrated. 

3.5 Linkages between environmental pressures are likely to complicate mitigation 

Due to incomprehensible complexities in biophysical and social systems, impact and 

mitigation assessments must to a large extent take a reductionist approach to understanding and 

addressing environmental problems, largely neglecting linkages between individual pressures and 

systems. As is pointed out by van der Voet and Graedel (2010), not only do linkages connect 

systems with strong dynamic behavior, but the linkages are in themselves dynamic – this 

contributes to the complexity.  

The notion that individual problems can be assessed and treated in isolation is problematic on 

at least two levels. First, there is a danger that interactions among different problems give rise to 

nonlinearities which go unaccounted for in impact assessments. For example, biodiversity loss 

may increase ecosystems vulnerability to climate change, and nitrogen-phosphorus pollution may 

weaken marine ecosystems so that less carbon is absorbed from the atmosphere (Rockström et 

al., 2009). Second, approaching many biophysical limits simultaneously implies a high risk of 

problem shifting, that is, solving one problem while generating another; and deployment of 

solutions to overcome one biophysical limit may be hindered by other physical constraints. In a 



Appendix D   Paper IV 

D15 
 

simpler world where GHG emissions were the only environmental pressure, one would not need 

to consider effects of renewable energy systems on ecosystems, impediments to development of 

new technologies due to mineral resource scarcity, and water demand following employment of 

new energy solutions. In reality, achieving sustainable energy supply requires technologies that 

can deliver sufficient degrees of de-carbonization in spite of, and without adding unacceptable 

momentum to, ecosystem degradation and resource scarcities. 

3.6 Future demands for energy services may be underestimated 

We here call attention to two reasons why the potential for future demand for energy services 

may be underestimated. First, current engineering-economic models are based on satisfying 

existing categories of energy demand. Even if demand in these categories is assumed to grow, 

there is a natural limit: upscaling demand for already known consumption categories cannot 

account for all growth in energy use in the long term, because in reality, new categories of 

demand arise and grow – sometimes to become important in the aggregate. This is what 

happened with rail transport in the 19th century, what may be happening with air transport in the 

20th and 21st centuries, and what may start to happen with space tourism in the 21st century. The 

issue of entirely new categories of demand emerging over time may be seen as special type of 

rebound effect (Sorrell 2009; Jenkins et al., 2011), and is thus related to the discussion in Section 

3.2.2.  

A second problem with contemporary energy scenarios is that linkages between energy 

requirements and other (non-energy) resource constraints (cf. Section 3.5) are not considered. It 

is conceivable that such linkages may give rise to unanticipated growth in already existing 

categories of energy demand. This is what may happen with energy use associated with pumping, 

treatment, and desalination of water as freshwater increasingly is becoming scarce in many places 

(UNEP, 2010a; UNESCO, 2009), and with energy requirements of primary metal extraction as 

the quality of available metallic ore resources deteriorate (Norgate, 2010; Norgate and 

Jahanshahi, 2010).  
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4 Final remarks 

Technological solutions are vital in solving global environmental problems, including climate 

change. However, the conception of technology as a panacea for global environmental problems 

lacks solid justifications. In this article, we have challenged the notion that energy efficiency and 

‘clean’ energy technologies can deliver amounts of climate change mitigation sufficient to deem 

fundamental changes in social and economic structures to be unnecessary. The famous wedge 

analogy introduced by Pacala and Socolow (2004), where, conceptually, different mitigation 

strategies add up to form a stabilization triangle, is, while intuitive, not accurate. In reality, often 

it is not reasonable to view climate change mitigation strategies in isolation from each other, as 

independent of the baseline trends below which the stabilization wedges are conceptualized, and 

without taking into consideration other environmental pressures not directly related to climate 

change. 

A thorough understanding of how ‘ripple’ effects of mitigation measures play out on a macro 

scale lies in the future, but, as is to some extent reflected in this article’s list of references, a fair 

amount of relevant research findings already exists for evaluating the system-wide effects of 

mitigation measures. The urgency of tackling climate change makes this a crucially important 

area of research. Equally important is research investigating how indirect, countervailing effects 

of mitigation measures may be addressed and how real mitigation at the system-wide level may 

be realized. If society becomes receptive to the idea that developed nations abandon growth-

oriented economies, researchers will be asked to investigate ways in which a new macro-

economy, which does not require growth to preserve economic stability, can be developed 

(Jackson, 2009; Victor 2010). Yet another salient issue is increasing the resiliency of financial 

institutions to reward sustainability-focused investments that bring long-term benefits.  

More profound changes in social and economic structures may render possible degrees of 

climate change mitigation beyond what can be achieved by technology within current 

frameworks. The importance of preserving the climatic conditions to which the human 

civilization is adapted, and restoring the ecological basis on which all human activities rely, can 

hardly be overstated. If the optimism on behalf of technological solutions is misconceived, 

scholars and policy makers must start now to explore ways in which mitigation can be realized 

also through alternative avenues. 
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