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Summary

In this master thesis, the natural frequencies of a disk and a reversible pump
turbine have been explored. The focus for the work has been to test how a nearby
rigid surface in�uences these natural frequencies when submerged in water. The
experiments produced good results for the disk, and the in�uence was determined.
This was not the case for the turbine. The turbine tests were not able to identify
the modes in water, and it was therefore not possible to determine the in�uence
from a nearby rigid surface for the turbine.

Two methods of mode identi�cation have been presented. The methods were able
to identify some of the modes in air, but some of the modes had behaviour which
can not be explained by these methods. Further research is needed to identify
these modes.

Three methods of excitation have been tested, two of the methods use piezoelectric
patches and the third was an impact excitation. They gave almost identical results,
the largest deviation observed was only 1 Hz. Impact excitation was shown to be
the most time e�cient method. Improvement proposals for the hammer have also
been presented.

Sammendrag

I denne oppgaven har egenfrekvensene til en sirkulær plate og en reversibel pum-
peturbin blitt utforsket. Det har blitt testet hvordan de endrer seg i vann med fokus
på hvordan avstanden til en stiv over�ate påvirker egenfrekvensene. Forsøkene ga
gode resultater for platen, og påvirkningen fra en nærliggende stiv over�ate ble
kartlagt. Forsøkene ga derimot ikke gode resultater for turbinen. Eksperimentene
klarte ikke å identi�sere de forskjellige egenfrekvensene i vann, og det var der-
for ikke mulig å avdekke påvirkningen som en nærliggende stiv over�ate har på
turbinen.

To metoder for å identi�sere egenfrekvensene er presentert. Ved å bruke disse
ble noen av egenfrekvensene til turbinen avdekket i luft. Det oppstod noen egen-
frekvenser som ikke lot seg forklare, og det er nødvendig med videre forskning for
å identi�sere disse.

Tre eksiteringmetoder ble testet. To av metodene brukte piezoelektriske lapper og
i den tredje ble det brukt en hammer for å eksitere. Alle tre metodene ga nesten
identiske resultater, avviket mellom dem var på kun 1 Hz. Å eksitere med hammer



viste seg å være mest praktisk for slike forsøk. Forslag for å forbedre hammeren
er presentert.
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Introduction

High head hydraulic turbines have in recent years experienced vibration problems
due to changed operation conditions. These problems manifest them self in either
high noises or increased fatigue, which leads to cracks in the material and eventu-
ally rupture. The operating conditions have changed in the last 25 years in Norway,
from turbines running for a long period of time uninterrupted to turbines being
stopped and started many times a day. Under start up and shut down turbines
are likely to experience forces with frequencies matching the natural frequency of
the runner. This creates resonance which is believed to be the main cause for the
increased fatigue. It is important to be able to predict these frequencies.

Calculating the natural frequencies of the runner is complex, since it is not only
depending on the geometry and material properties of the turbine. It is also a
function of the boundary conditions, like; surrounding �uid, rotation, distance
to rigid surfaces, �ow conditions, vibration mode shape and vibration amplitude.
Numerical simulations need to take into account these e�ects. Experimental data
is required to validate and improve the numerical calculations. This work is a
small contribution to the validation basis needed.
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1 Literature study

The following is a summary of the most important publications concerning struc-
tural vibration having focus on turbines and plates.

Yuji Kubota et al. published a paper called Vibration of Rotating Bladed Disc

Excited by Stationary Distributed Forces in 1983 [5]. This paper is one of the �rst
to provide analytical equations to estimate the vibrations and de�ection caused
by the Rotor-Stator interaction (RSI), this lead to the exciting condition. Exper-
iments were conducted to verify his assumptions. He found that resonance will
not occur if the exciting condition is not met, even if the natural and exciting fre-
quencies coincide. He looked exclusively on diametrical mode shapes. The exciting
condition is show in eq 1, and will is discussed in section 2.2.1.

nZg ± k = mZr [−] (1)

Tanaka H. studied, in 1990, the vibrations and stresses on a high head reversible
pump turbines [6]. A scaled model were used in the experiments. The paper
covers a broad spectre of interesting factors that in�uence the runner vibration,
like: axial distance between head cover and runner, runner seal clearance, radial
distance between guide vanes and runner blades, phase di�erence between crown
and band, and details how to scale a runner for modal testing.

In 2006 C.G. Rodriguez did an experimental investigation on the added mass e�ect
on a Francis runner submerged in still water [2]. He suspended the runner with a
rope into a tank �lled with water, where he preformed several impact test to obtain
the added mass and added dampening for the turbine. In his studies he found a
non dimensional submergence depth for where the the added mass is stable, and
that the a�ect from the added damping from water, on the natural frequency, is
neglectable in comparison with the added mass.

In 2008 X. Escaler et al. presented, under the 24th Symposium on Hydraulic Ma-
chinery and Systems, his paper Experimental Modal Analysis of a Francis Model

Runner [14]. They studied the natural frequencies of the runner both in air and
water. They excited the turbine using an impact hammer, and found that the
added mass increased considerably along with the number of nodal diameters. His
main results are presented in table 1. The frequency reduction ratio, fwater

fair
, varied

from 0.71 for 2ND to 0.36 for 7ND. In other words the largest frequency reduction
was 64%.
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Table 1: Main results from X. Escaler

Shape
Frequency [Hz] FRR1

Air Water fwater/fair
0ND 658 568 0,86
1ND 1056 643 0,61
2ND 511 365 0,71
3ND 801 420 0,52
4ND 869 404 0,46
5ND 965 383 0,40
6ND 979 365 0,37
7ND 989 355 0,36

In 2014 David Valentin et al. published a paper on disk vibrations [1]. He did a
thorough study on how the added mass and dampening is e�ected by the boundary
conditions. He used an experimental and numerical approach to investigate this.
His studies are limited to plates. The added mass were studied with varying
distances to a rigid surface, both in axial and radial direction. The main results
are presented in �gure 1. His experiments show that the added mass is larger for
the modes with few nodal diameters. This is contradicting to what X. Escaler
found in 2008. Plates and turbines therefore have di�erent behaviour.

Figure 1: E�ect from nearby rigid surface. Where h2 is the
distance to a rigid surface normalized against the disk thickness.

1Frequency Reduction Ratio (FRR) is the ratio between a natural frequency in water over
the natural frequency in air.
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In 2015 A. Presas et al. studied the e�ect rotation has on the natural frequencies
[16]. They conducted experiments, on a rotating disk in air and water, and com-
pared the results with an analytical model. Their main �nding was that rotation
is almost negligible when the surrounding �uid is air, but is important to consider
when the �uid is dense, i.e. water. From a stationary reference point will a natural
frequency measured with no rotation be transformed into two natural frequencies
when measured with rotation. The frequency distance between the peaks increases
with increasing rotational speed.
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2 Theory

This chapter gives a rough introduction to the nature of structure vibrations. The
theory will cover the basics of circular plate vibration. Analytical solutions for a
whole turbine does not exist due to the complex geometry of the object. Numerical
methods are necessary to solve systems like that.

2.1 Natural frequencies and resonance

The natural frequencies of an object are the frequencies the object will vibrate at
if there is no external forces acting on the object. All objects have unique natural
frequencies. If an external force is applied to an object it will vibrate with the same
frequency as the external force [4]. If the frequency of the external force coincide
with the natural frequency of the object, it will increase the vibration amplitude
multiple times, and decrease the life of the object. This is known as resonance.

The equation (2) describing the fundamental simple mass-spring system gives a
good foundation for understanding the behaviour of vibrations.

my′′ + cy′ + k̂y = 0 [N ] (2)

Here m is the mass of the system, c is the damping and k̂ 2 is the spring constant.
This equation was solved a long time ago together with the natural frequency.

fvacuum =
1

2π

√
k̂

m
[Hz] (3)

The frequency is determined by the mass and sti�ness. This solution holds for
simple undamped systems with one degree of freedom, but do not take the ambient
�uid into account, which will contribute with added mass and damping.

2.1.1 Added mass

If an object is accelerated relative to a surrounding �uid it appears to have an
additional mass. This is known as added mass, and is a key factor to consider
for turbine designers. To account for the added mass designers previously relied
on "rules of thumbs" [11], which were grounded on experimental experience. In

2A hat is used to set it apart from the number of nodal diameters.
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recent years a combination of CFD and FEM has become the "state of the art"
for calculating the added mass [10].

It is a complex task to analytically predetermine the added mass of an object,
because it is a function of body geometry, mode-shape, submergence, nearby rigid
structures, vibration amplitude and �ow conditions [2].

A vibrating object immersed in a �uid has to move the surrounding �uid, and this
adds an additional mass to the object, mA. Since all �uids are viscous, some of
the energy will be dissipated. This e�ect adds an extra dampening coe�cient, cA,
to equation (2). These e�ects are barely noticeable in �uids with low density and
viscosity, such as air, but will have a large in�uence in denser and more viscous
�uids like water. Added mass can lower the natural frequencies by 64 % in extreme
cases, referring to table 1.

The �uid force, Ffluid, acting on a vibrating object is mainly created by the pressure
drag. This force can be expressed by the Navier-Stokes equations if the �uid is
considered to be incompressible, newtonian and if the nonlinear terms are neglected
[1]. Introducing the �uid force in equation (2) leads to the following equation:

my′′ + cy′ + k̂y = Ffluid = −mAy
′′ − cAy′ [N ] (4)

Rearranging gives:

(m+mA)y′′ + (c+ cA)y′ + k̂y = 0 [N ] (5)

This leads to the following expression for the undamped natural frequency:

ffluid =
1

2π

√
k̂

m+mA

[Hz] (6)

Frequencies are lowered due to the inertia of the water. There is also a reduction
contribution from the damping:

fd = ffluid
√

1− ζ2 [Hz] (7)

where: ζ is the damping ratio, and fd is the damped natural frequency. The value
of ζ can be determined experimentally by equation 8, where the frequencies fB
and fA, whose amplitudes correspond to half the power (-3 dB) of the frequency
response function (FRF) at f = fd [2], see �gure 2.

ζ =
fB − fA

2fd
[−] (8)
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Figure 2: Half power bandwidth.

The frequency reduction ratio (FRR) and added mass factor λ are two commonly
used values to quantify the added mass.

λ =
mA

m
=

(
fa
ff

)2

− 1 [−] (9)

FRR =
fwater
fair

[−] (10)

2.1.2 Nearby rigid structures

The presence of a rigid surface in�uences the natural frequencies as seen in �gure
1. If the distance from a vibrating object to a rigid surface decreases the added
mass will increase, thus lowering the natural frequency. This happens because the
wall surface imposes velocity constraints on the water, both the no slip constraint
and no normal velocity component.

Y. Kubota and T. Suzuki provided a simple model to calculate the added mass for
diametrical modes on an annular disk [9]. In equation (11) λ represent the added
mass factor, ρ the density, hD disc thickness, k the number of nodal diameters,
r0 =

√
rinnerrouter the average radius, H1 distance between the plate and water
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surface and H2 the distance between plate and a rigid surface. These equations
are only valid for k > 0 and for r0 where no nodal circles are present [1].

λ(H1, H2) =
ρfr0

kρDhD

[
tanh

(
k

r0

H1

)
+ coth

(
k

r0

H2

)]
[−] (11)

The presence of nearby rigid structures lowers the natural frequencies. Valentin
showed in his paper that both the axial and radial distance to a rigid surface
in�uences the added mass e�ect[1]. Decreasing the distance increases the added
mass e�ect. The radial contribution is not taken into account in equation (11).

2.1.3 Mode shapes

There are several di�erent ways a structure can vibrate: torsional (twisting), �ex-
ural (bending) and translational (dilatation and compression). Translational and
torsional vibrating will not be presented here, since it is not believed that these
modes are the main cause of the vibration problems.

When a system is excited it will not just vibrate with one frequency, it will vibrate
with in�nite many frequencies [6]. Each frequency corresponds to an unique mode
shape. Flexural mode shapes are de�ned by nodal lines, these are lines with
zero de�ection. There are two fundamental types of nodal lines for plates: the
circular and the diametrical lines. An example of nodal diameters can be seen in
�gure 3. Vibration patterns with circular nodal lines have typically higher natural
frequencies than those without [8]. They are therefore less likely to be excited
under operation, and are therefore of less interest for an engineer.
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Figure 3: Nodal diameters [7].

2.2 Rotor-Stator Interaction and Fatigue

After each guide vane there is a wake with lower velocity, thus higher pressure,
than the surrounding water. When a runner blade passes this wake it experience
rapid pressure �uctuations. This e�ect is known as the Rotor-Stator interaction
(RSI), and is the main source of turbine excitation for high head turbines.

The RSI frequency is calculated by:

fr = n · Zg · fn [Hz] (12)

Where fr is the RSI frequency, Zg is the number of guide vanes, fn is the rotational
speed of the runner and n is the n-th harmonic order of vibration. Resonance will
occur if the natural frequencies of the runner coincidence with these frequencies,
given that the exciting condition is met, ref. section 2.2.1.

2.2.1 Theoretical calculations

When an external force is applied to the runner, it will vibrate with the same
frequency as the exciting force. The RSI is the main contributor for external
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forces.

Kubota and Tanaka provided equations, for diametrical modes, to calculate the
vibration de�ection induced by the RSI, in [5] and [6].

fr = n · Zg · fn [Hz] (13)

Xk =
A

2

(
C1 sin

[
(2πfrt− kφ) + π(Zr − 1)

(nZg + k))

Zg

]
+C2 sin

[
(2πfrt+ kφ) + π(Zr − 1)

(nZg − k))

Zg

])
[−] (14)

where:

C1 =
sin
(
π(nZg + k)

)
sin
(
π(nZg+k)

Zr

) [−] (15)

C2 =
sin
(
π(nZg − k)

)
sin
(
π(nZg−k)

Zr

) [−] (16)

The numerators in constants C1 and C2 are zero, since nZg ± k = integer. There-
fore there will be no vibration unless the denominator are also zero. This gives
us the exciting-condition. Where m is an arbitrary integer and k is the number of
nodal diameters in the vibration.

nZg ± k = mZr [−] (17)

When equation 17 is ful�lled the values of C1, C2 = ±Zr, the equation for de�ection
becomes:

Xk =
AZr

2

(
sin(2πfrt− kφ) + sin(2πfrt+ kφ)

)
[−] (18)

The consequences of eq.(17), the exciting condition, is remarkable. It states that
resonance will not occur even if the exciting frequency is equal to the natural
frequency, unless the equation is ful�lled. This was proved in [5].

For example: There are 28 guide vanes in our laboratory francis rig and the
reversible-pump turbine has 6 runner blades. With this con�guration it is im-
possible to excite mode shapes with an odd number of nodal diameters, since m
and n are integers.
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2.3 Excitation

The following excitation methods are utilized in this study.

Impact excitation

Applying a short force impulse to a system will excite all natural frequencies
and mode shapes. If a hammer is used, it is important that is has a hard tip.
The excited frequency range will be wider as the hardness of the hammer tip
is increased [12].

Noise excitation

This method continuously excite all frequencies with the same amplitude.

Sweep excitation

This is a continuous signal which start at one frequency and continuously
increases the frequency until it reaches the end frequency.

Stepwise sweep excitation

This di�ers from sweep excitation since it increases the frequency stepwise
instead of continuously.

2.4 Measurement and processing

2.4.1 Sampling rate

According to Nyquist�Shannon's sampling theorem the sampling frequency have
to be larger than twice the frequency measured, Fs > 2f . This is done in order to
avoid alias frequencies [3].

In this thesis the dynamic signal acquisition module NI-9233 is used to log the
measurements. This module has limitations in its sampling frequency (Fs), only
certain values for Fs is acceptable. These values are determined by equation (19),
where fm = 12.8 MHz.

for Fs ≤25.65 kS/s

Fs =
fm

256n
, n = 2, 3, ..., 25 (19)

for Fs >25.65 kS/s

Fs =
fm

128n
, n = 2, 3 (20)
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The module automatically corrects the sampling frequency if it does not satisfy
the above equations. It chooses the nearest higher value for Fs in order to avoid
aliasing. It is important to be aware of this since a wrong sample frequency value
will give a wrong time step between data points, which in turn will lead to incor-
rect frequencies in the frequency domain when preforming Fourier transformations
(FFT).

2.4.2 Dimaterical mode identi�cation

Phase di�erence

The phase shift between two sensors which is placed on the same radius, can be
used to determine the mode shape. The mode shape is determined by the spatial
angle between the sensors and phase shift [16], see equation (21). This method is
only valid for diametrical modes.

k =
∆α

∆θspatial
[−] (21)

where k is the number of diametrical lines, ∆θspatial is the spatial angle between
the sensors and ∆α is the phase shift between the sensors.

Impact method

The positions of nodal lines are determined on the excitation location. Impacting
an object all around its circumference will make each nodal line pass a reference
point exactly two times. If an accelerometer is placed at this reference point, it will
be passed by four nodal lines for a 2ND mode. Using FFT on the measurements
from all impact points gives the frequency spectrum. Since natural frequencies do
not change with impact location, it is possible to identify a mode shape from the
amplitude variations along the impacts given a constant excitation force. Plotting
the amplitude against the impacts for a given mode will result in a sinusoidal curve.
The number of valleys is twice the number of nodal lines. The valleys will not have
zero amplitude, since the nodal lines are in�nitesimal whereas the accelerometers
are not. This method is only able to detect diametrical modes.

2.4.3 Spectral leakage and windowing

All Fourier transforms, like FFT, assumes that the sampled data is periodic, and
continuous at the beginning and the end. If the data is not, a smearing of its
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spectrum will occur when it is transformed into the frequency domain. This is
known as leakage[13].

Windows reduces the spectral leakage by forcing the samples to be periodic by mul-
tiplying each sample element with the window function. There are many di�erent
windows, all with their own area of application. If a sample is already periodic,
then windows actually generates more leakage. Below is a description of the two
used windows in this thesis.

Hanning

The most common and widely used window is the Hanning window. This
window works very well if the signal is composed of several sine waves. This
window is applied on measurements done by sweep and noise excitations.
The de�nition is seen below and an illustration is shown in �gure 4.

w(n) = 0.5

(
1− cos

(
2πn

N − 1

))
[−] (22)

where n = 0, 1, . . . , N − 1, N is the length of the sample and w(n) is the
window value.

Exponential

This window is appropriate for analysing decaying transient responses which
are longer than the window. This window adds arti�cial damping on all
modes ensuring that the periodicity is reached.

w(n) = e
n ln(f)
N−1 = f

n
N−1 [−] (23)

where n = 0, 1, . . . , N − 1, N is the length of the sample, f is the �nal value
and w(n) is the window value.

If the response signal in an impact test decays to zero (or near zero) before
the end of the sampling window, there will be no leakage, and no special
windowing is required [13].
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Figure 4: Illustration of the Hanning window [18].

2.4.4 Frequency Response Function

Frequency Response Functions (FRF) describes how systems respond to excita-
tions, they are basically the same as FFTs. A FRF is made up by two signals:
the stimulus and the response signals. The FRF is the ratio between the response
signal and stimulus signal, where the response and stimulus signals are in the
frequency domain.
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3 Method

3.1 Experimental setup and instrumentation

The accelerometers used in the experiments are the Dytran 3006A They are very
light, so the mass is assumed to have a negligible in�uence on the frequencies.
They are mounted to the disk by screws, but glued on the pump turbine in order
not to damage the turbine.3 The sensor signals are collected by a National Instru-
ment (NI) 9233 module.

A piezoelectric patch P-876.A15 is glued to the plate using an strong epoxy adhe-
sive. This patch has an operating range from -250 V to 1000 V. A NI 9263 module
is used to generate the voltage signal, this module can generate electrical signals
with amplitude of -10 V to 10 V. The signal is ampli�ed with a voltage ampli�er
(E-385 DuraAct Piezo driver Module) which has a voltage gain of 25. A NI 9239
module monitors the output from the ampli�er.

The modules are connected to a computer through a cDAQ-9172 chassis. The
signals are later processed in LabView.

3.1.1 Plate

The experimental rig is the same that was used in [7], only with a slight modi�-
cation. In order to investigate the added mass the plate was equipped with a new
threaded shaft, allowing for distance variation between the plate and the bottom
of the tank. The accelerometer was placed at the outer rim of the plate, and the
piezoelectric patch was placed between the accelerometer and the shaft. The patch
has to be placed on the same θ-coordinate (±180◦) as the accelerometer in order
to ensure that all nodal modes are excited.

The investigation started in air to �nd the most suitable and e�cient method of
excitation. The stepwise sweep, noise and impact excitation methods were tested.
Averaging the results will reduce the random uncertainties, so each excitation is
repeated �ve times each. The program that generates the stepwise sweep signal
is constructed in such a way that each frequency is sent for one second before it

3The accelerometers are placed in the outlet of the blades. The blades are very thin, so
it would be nearly impossible to repair the blades if holes were drilled in order to mount the
accelerometers.
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increments. Noise excitation has non of these constrains, and can be run for a short
time. The sample frequency (FS) for each method is 5000 Hz, and the logging times
for sweep, noise and impact are 22 minutes4, 60 seconds and 8 seconds respectively.

To investigate how the added mass changes with distance (H2) to a rigid surface,
the plate is impacted eight times for each value ofH2 to ensure good average results.
Impact excitation were chosen on basis of the experimental results obtained in air,
see section 4.1.1 and 5.1.1. The depth (H1) is kept constant during the test in
order to isolate the e�ects from H1. The depth is chosen to be H1 = 16 cm, since
the added mass contribution from depth is stabilized at this value [1]. A hole in
the plate was drilled and the accelerometer was �xed with a screw.

Figure 5: Drawing of the test rig.

Table 2: Test rig parameters

Parameter Variable Value [mm]
Disc outer radius router 250
Disc inner radius rinner 20
Disc thickness hD 20
Tank diameter d 800
Tank height ht 490

4Excited frequency range: 400 Hz - 1700 Hz, this results in 1300 seconds which are ca 22
minutes.
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3.1.2 Turbine

Two accelerometers are glued on the outlet of two neighbouring blades, see �gure
6a. This was recommended after discussions with co-supervisor Petter Østby. It is
believed that the blades will have the largest de�ection, and this will make it easier
for the sensors to measure the vibration. By using two accelerometers it is possible
to use the Phase di�erence method to identify the mode shapes, see section 2.4.2
for justi�cation. The turbine has 6 blades, so the spatial angle (∆θspatial) between
them is 60◦.

The turbine must be excited around its circumference to enable the impact method

of mode detection. Sweep excitation would be too cumbersome since the piezo-
electric patch must be glued in order to work, and impact excitation is therefore
the only viable option left. A simple rig was built in order to drop the hammer
from a constant height, ensuring constant impact force during the test, see �gure
6b. The hammer do not impact the turbine directly, it hits a mandrel which in
turn excite the turbine. A mandrel has to be used since the hammer tip is very
wide and soft. The mandrel is able to excite a wider frequency range and makes
it easier to control the impact location.

An improvised impact hammer was made by gluing a third accelerometer to the
back end of a hammer, see �gure 6b. If it works properly it might negate the
need to impact the turbine with a constant force, since the response signal can be
normalized against the stimulus signal by creating a FRF-curve.

The runner dimensions and properties are summarized in table 3. The runner was
designed by former PhD Grunde Olimstad [17].

Table 3: Reversible pump turbine characteristics

Parameter Value
Inlet diameter 0,631 [m]
Outlet diameter 0,349 [m]
Inlet height 0,059 [m]
Number of blades 6 [-]
Q∗ed 0,133 [-]
N∗ed 0,223 [-]
n∗ 10,8 [Hz]

Material5 CuAl10Fe5Ni5
Density 7850 [kg/m3]
Young's Modulus 110-115 [GPa]
Poisson's ratio 0,3 [-]

5The material properties was given by the turbine manufacturer, since it was not included
in [17].
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(a) Accelerometer position (b) Hammer rig

Figure 6: Experimental setup

Air

The turbine is suspended in air with a rope. The natural frequency of the rope
is very low compared with the turbine and therefore the support will have an
imperceptible e�ect on the runner response. The runner is excited with 171 equally
spaced impact points around the circumference.

Water

When analysing the results from the impact tests done in air, it was revealed that
the impact hammer did not work properly. It is therefore not possible to identify
mode shapes with the impact method without exciting the turbine with a constant
force. Several di�erent new rigs were built in order to get constant impact force,
but non were able to satisfactorily excite the runner. The walls of the tank made
it di�cult to get a clean impact on the turbine. A better rig could of course have
been built, but time did not allow for it.

The turbine was instead impacted 21 times6 at the same spot on the opposite side
of the accelerometer. These impacts gave a phase di�erence and a response curve.

The turbine was submerged in water suspended with a rope. The distance from
the water surface down to the turbine was chosen to be 12 cm according to C.G

6This is way more than necessary.
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Rodriguez et al. This distance is su�cient to have a stable added mass, H1/Dm =
12cm

63.1cm
= 0.19 > 0.17 [2]. The distance H2 from the bottom of the tank to the

turbine was 6.5 cm. It was planned to study the added mass as a function of H2,
but this was not done since it was not possible to identify the mode shapes. This
is discussed in section 5.2.2.
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4 Results

4.1 Plate

In the following sections the values of H1 and H2 have been normalized against
the plate thickness hd.

4.1.1 Sweep, noise and impact excitation

Two test were conducted on the plate with the same setup, one with stepwise
sweep and one with noise. Additionally tests with a hammer were carried out in
order to see how impact excitation compared with sweep and nose excitation. The
results are presented in �gure 7 and in table 4.

Figure 7: FRF for noise and stepwise sweep, while the impact
excitation is a FFT. The experiment is done in air.

The curves for sweep and noise are identical in all manners, apart from a constant
magnitude di�erence. Any di�erences seen in the �gure are due to poor image
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Table 4: Frequencies from each excitation method

Method [Hz] 2ND 3ND 4ND
Noise 417 964 1673
Stepwise sweep 417 964 1673
Impact 418 964 1672

quality.

4.1.2 Added mass a�ected by distance to a rigid surface

Experiments were carried out to see how the added mass changes with the distance
to a rigid surface. Results can be found in table 5 and �gures 8 and 9. The results
are compared with the analytical equation (11).

Table 5: Results from test compared with calculated frequencies

h2 2ND [Hz] 3ND [Hz] 4ND [Hz]
[-] Experiment Calculated Experiment Calculated Experiment Calculated
0,38 not tested 233 not tested 675 not tested 1313
0,50 263 261 635 727 1310 1382
0,75 275 279 672 758 1356 1419
1,00 294 301 719 792 1402 1457
1,50 317 313 766 809 1419 1475
2,00 328 327 774 825 1426 1490
2,50 334 333 778 831 1427 1494
3,00 346 337 790 834 1439 1496
3,50 336 339 792 835 1432 1497
4,00 337 340 789 836 not observed 1497
4,50 345 340 777 836 not observed 1497
5,00 343 341 785 836 not observed 1497
Air 417 - 964 - 1671 -
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(a) Frequencies in water divided by air

frequency

(b) Added mass factor λ(h2)

Figure 8: Added mass as a function of h2

Figure 9: Added mass factor λ using eq. (11). The value h2 =
0.38 is included in the calculations, but not in the experiments.

4.2 Reversible pump-turbine

4.2.1 Mode shape determination

The turbine was excited with 171 hammer blows around the perimeter with a con-
stant force. The FFT is created in LabView, with an exponential window on the
accelerometer.

All tests are conducted with a sample rate of 6250 Hz on each accelerometer and
a logging time of 8 seconds. A rather long logging time was chosen to let the
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vibration die out. This reduces the spectral leakage, referring to section 2.4.3.

All FFT-curves are plotted in �gure 10. The equivalent electrical noise �oor of
the Dytran 3006A accelerometer is -100 dB. This is why the amplitudes are not
smooth below -100 dB.

Figure 10: All impact points and their FFT

The di�erent modes are better shown by taking the average of all impact curves
and condensing them into one graph, see �gure 12. The mode shapes are not yet
identi�ed. The amplitude of each impact point corresponding to the frequency of
each peak in �gure 12 is plotted in order to identify the mode shape. The results
are shown in the �gure 13.



4.2 Reversible pump-turbine 33

Figure 11: All impact points and their FFT

Figure 12: Average of all impacts
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(a) 680 Hz, 2ND behaviour (b) 903 Hz, 2ND behaviour

(c) 1110 Hz, 3ND behaviour (d) 1141 Hz, 3ND behaviour

(e) 1160 Hz, 3ND behaviour (f) 1190 Hz, 3ND behaviour

(g) 1265 Hz, 3ND behaviour (h) 1493 Hz, 1ND behaviour

Figure 13: Results from the impact method of mode detection.
The red line is an approximation of the amplitudes around the
circumference.
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The phase di�erence between the two sensors is calculated and transformed from
angle to the number of nodal lines for each peak (k = ∆α

Θspatial
· 360◦

2π
). The nodal

number k for both identi�cation methods are presented in table 6.

Table 6: Mode identi�cation results, in air

Frequency [Hz] 680 903 1110 1141 1160 1190 1265 1493
Phase method 2,86 2,20 2,96 2,86 2,96 2,96 2,67 0,95
Impact method 2 2 3 3 3 3 3 1

4.2.2 Improvised Impact Hammer

The presented �gures in this section are FRFs, they are generated by the hammer
and accelerometer signals.

Figure 14: FRF composed by the average of all impact points
in air.

The graph in �gure 15 is taken from the FRF curve made up by the hammer
(stimulus signal) and one accelerometer. Only the graph for the peak around 1110
Hz is presented, since the other curves are equally useless. The trend seen in �gure
13 is not observed in any of the modes.
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Figure 15: Result from the impact method. It is made up by the
amplitudes in the FRF curve.

4.2.3 Submerged in water

The presented results are made by the 21 impacts. The results from the phase

identi�cation method is presented in table 7. The runners response is shown in
�gure 16.

Table 7: Phase identi�cation method

Frequency [Hz] 430 620 682 731 960 1075 1351
Phase method 1,62 3,43 3,34 2,48 1,72 1,24 2,48
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Figure 16: FFT of the average response, in water.
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5 Discussion

5.1 Plate

5.1.1 Noise, stepwise sweep and impact

Truls Aarønes stated in his thesis [7] that the averaging method used to create
the FRF curves for sweep excitation is theoretically wrong. This can be stated
because the program divides the measurement sample into segments and creates
a FRF based on each segment which span the whole frequency spectrum. Then it
averages them to get a smooth curve in the end. In theory this is wrong for sweep
excitation, since each segment does not contain the whole frequency range.

He generated a sweep signal that increased its frequency continuously. The dif-
ferences between noise and sweep can be seen in �gure 6 in [7]. This thesis uses
a new sweep program with discrete frequency incrementation. If the problem was
still persistent it would have manifested itself in di�erent frequency peaks and/or
damping, but since noise and sweep curves in �gure 7 are identical, the problem
is practically non existing.

Impact excitation has the smallest logging time, but it is interesting to notice that
it gives the smoothest curve and the clearest peaks. Additionally, the frequency
deviation between noise and impact excitation for the 2ND and 4ND modes is only
±1 Hz, see table 4. Impact excitation is found to be the most reliable and the
quickest method of excitation. It is therefore the preferred method for the added
mass e�ect investigation on plates and runners.

5.1.2 Added mass and rigid surfaces

The results in section 4.1.2 clearly demonstrates that the added mass increases as
the distance to a nearby rigid surface decreases and that the added mass is in-
versely proportional to that distance. These results are consistent with the results
obtained by Valentin, see �gure 1.

There are some uncertainties in these results. The plate and bottom of the tank
were not parallel as the distance from the plate to the bottom varied around the
circumference of the disk. The added mass is therefore not evenly distributed. How
this a�ects the results is unknown, but the plate was twisted such that h2 was the
approximate average height. The distance directly below the accelerometer is used
to calculate h2.
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The frequencies calculated by equation (11) are fairly accurate for the 2ND mode,
but it underestimates the added mass for the higher modes. This tendency of
underestimating the added mass was also observed in [1].

It is hard to identify correct explanations for these deviations as everything from
input values, measurements and the equation itself might not be su�ciently accu-
rate. However, the calculated frequencies show the same trend as the experimental
ones.

5.2 Turbine

The identi�cation methods

The methods did not converge to the same shape for some modes. Both methods
use the same number of impact points, and thus get equally many measurements.
For the impact method it does not matter if some measurements are bad, since
the trend will still be evident. On the other hand, the phase method utilizes two
accelerometers, and it is possible that one sensor is getting a good measurement
while the other does not. If this is the case it might lead to an incorrect phase
di�erence. However, this uncertainty is taken into account by using the median of
all the di�erences at a given peak. By doing so, the end result should be reliable.

From this it can be seen that it is not possible to conclude on which method is
the better or the more correct, both methods are equally good. Therefore if the
two methods are in disagreement, it implies that the mode cannot be de�ned by
purely diametrical nodal lines.

5.2.1 Air

In the following discussions, the phase di�erence is taken from table 6 and the
impact method is taken from the sub �gures in �gure 13.

Mismatch between the identi�cation methods

Two di�erent methods for mode detection were used. In most cases they are in
agreement, but there are larger di�erences in the peaks at 680 Hz and 1265 Hz.

This might indicate that these modes are not purely nodal diameters modes, they
might be either torsional, �exion or modes with nodal circles. It is not possible to
identify modes with these characteristics from the experiment that were conducted.
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Modes with nodal circles might have been identi�ed by impacting the turbine in
the radial direction compared to impacting in the angular direction as done in my
experiments. This is to be regarded as a personal theory only since the author
has a limited understanding on the behaviour of these modes. The main focus in
previous research papers have been on diametrical modes.

Modes at: 1110, 1141, 1160 and 1190 Hz

The observation of four modes having 3ND behaviour is unexpected. The author
has not seen this in any of the reviewed papers, and has no good explanations for
this phenomenon. The following is a discussion of this behaviour:

It can be assumed that the peak at 1110 Hz is the fundamental 3ND mode, since
both detection methods converge to the same conclusion, and additionally this
peak is the strongest of the observed 3ND modes. With this assumption it is
possible to correct the value for ∆θSpatial, which then becomes 59.2 degrees7, and
not 60◦ as used in the calculations for phase di�erence. This is the reason why the
phase angle is a little bit o� for phase angles.

The modes at 1141, 1160 and 1190 Hz can not be harmonics of the 3ND mode, even
though both detection methods implies that these are 3ND modes. Harmonics are
usually observed around an integer multiple of the principle frequency, ref. results
in [8][14]. This is not necessarily correct for a submerged turbine[15], but since
the turbine was suspended in air this can not be the explanation.

It is possible that the peaks with lower amplitudes are caused by spectral leakage.
To test this hypothesis an exponential window was applied to the measurements,
but this was found not to have any e�ect. The peaks were still present, and no
change had occurred. The sample time was eight seconds, allowing the vibrations
to die before the end of the measurements. The measurement samples are therefore
periodic, and no spectral leakage should be present, ref. section 2.4.3. However,
it is still possible that the peaks to the right of 1110 Hz are caused by spectral
leakage, although this is not likely.

Since the turbine is held together by screws, it is possible that the screws were
not correctly tightened, and this might have resulted in some play between the
crown/band and blades. The other peaks might arise from such a play, but this
cannot be documented. However, the screws were checked and found to be cor-
rectly tightened both before and after the experiments, so it is not very likely that
the peaks originates from such a possible play. Nevertheless it would be interesting
to explore the in�uence a play like this could have on the runner response.

7∆θspatial = 2.96·60◦
3
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Mode at 1493 Hz

Both identi�cation methods converge to the same answer, and it should be safe to
conclude that this is the 1ND mode.

Mode at 903 Hz

The phase di�erence is a bit o� an integer number, and even more when correcting
for the new spatial angle between the accelerometers. However, since this is the
dominant peak in �gure 12 and the impact method is indicating that this is a 2ND
mode, it can be concluded that this is the fundamental 2ND mode.

5.2.2 Water

Identifying the modes proved to be hard because the impact method was not
carried out and the phase di�erence between the accelerometers is useless. None
of the phase di�erences are close to a natural number, which indicates the mode
shape, except for the phase di�erence of the peak at 1075 Hz. This is unexpected
since the test setup has not been changed from air, and the phase di�erence is not
a�ected by the added mass, ref. equation (21). There were also 21 impacts which
should result in a reliable median value. The phase di�erence for the peak at 1075
Hz cannot be trusted since the phase di�erence for other peaks have changed, and
it might just be a coincident that the di�erence was close to 1.

Without any identi�cation methods it is not possible to determine the mode shapes
with certainty. But it is possible to identify one mode with the assumption that
the shape of both curves in �gure 12 and 16 should have similar shapes, but where
the curve for water is o�set to lower frequencies. In both �gures there is one
dominant peak which has the same shape, namely at 903 Hz in air and at 620 Hz
in water. This implies that the 2ND mode has a frequency reduction ratio, fwater

fair
,

of 0.68. This method of mode determination is highly speculative, and the results
from using it should not be trusted.

5.2.3 Improvised impact hammer

The results from 4.2.2 partially invalidates the improvised impact hammer since
no clear variation of magnitude along the impact points is observed. But the
average of each impact point results in an usable FRF, ref. �gure 14. The FRF
is slightly more jagged compared with the pure FFT curve in �gure 12, but each
peak corresponds to the same frequency.
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It is remarkable that the hammer method was not able to detect the variation of
amplitude along the circumference of the runner, considering that both methods
give curves having the same peaks. Apart from any post processing errors there
are two possible causes for this. The plastic tip may provide too much damping
due to the density di�erence between plastic and steel, which decreases the force
on the hammer accelerometer. Additionally the mandrel is held by hand, and the
hand will act as additional inertia resulting in a reduction of the impact force on
the turbine. Both these problems can be avoided by improving the hammer design.
As an example use a ball-peen hammer and make a threaded hole for mounting
the accelerometer. This hammer will not experience the same damping and should
not need a mandrel since the hammer ball will have a su�ciently small and hard
impact area.
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6 Conclusion

The aim of this thesis has been to experimentally investigate the added mass e�ect.
Experiments have been carried out with a disk and a reversible pump turbine with
the purpose of determining the relationship between added mass and distance to a
nearby rigid surface. The experiments were done with the objects placed in air and
with the objects submerged in water. The experiments with the disk gave good
results and the added mass was found for di�erent distances to the rigid surface.
For the runner no such relationship was found.

The results from the disk experiments can be used to improve and validate numer-
ical simulations.

Two methods have been used in the experimental modal analysis of the runner.
The runner was impacted around its circumference to check how the mode am-
plitudes were varying, and the phase shift between two accelerometers have been
used to determine the mode shapes. Two modes were identi�ed in air, but in wa-
ter the methods were not able to determine the shapes. Further experiments are
needed to �nd the relationship between added mass and a nearby rigid surface. It
is suggested to make a better impact hammer to enable better excitations of the
runner.
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7 Further work

A logical way to proceed this work will be to identify the modes in water to enable
the determination of the added mass. It is recommended to build a better impact
hammer and test di�erent locations for placements of the accelerometers. This
might be a good starting point for new experiments.

Also, it would be of great interest to investigate the e�ect from rotation on the
natural frequencies. These experiments should be done on a simple disk to simplify
the test set up.
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