
Programming turbulence models in
FORTRAN

Eirik Helno Herø

Master of Science in Mechanical Engineering

Supervisor: Reidar Kristoffersen, EPT

Department of Energy and Process Engineering

Submission date: June 2015

Norwegian University of Science and Technology

Preface

This report is written at the Department of Energy and Process Engineering, NTNU,
spring semester 2015 as my master thesis in Mechanical Engineering. It is designed to
give me an insight into programming in Fortran and turbulence models.

My deepest thanks to Reidar Kristoffersen for the continued opportunities to work on
the exiting field that is computational fluid dynamics. Your expertise and knowledge is
always available and your motivation is a big inspiration.

Eirik Herø
Trondheim, June 2015

iii

Abstract

The two-equation turbulence models Wilcox k-omega and Menter k-omega SST are pro-
grammed in FORTRAN and tested on the cases channel flow and backward-facing step.
A short time step and a good initial field is required to obtain a solution. Results are ad-
equate for most engineering purposes with a 15 % error in predicted reattachment length.
Gain from parallel programming is only found on the elliptic equation solver.

Sammendrag

To-ligning turbulens modellene Wilcox k-omega og Menter k-omega SST er programmert
i FORTRAN og testet p̊a channel flow og backward-facing step. For å f̊a en løsning
er det nødvendig med et kort tidssteg og et godt initialfelt. Resultatene er tilfredsstil-
lende for de fleste ingeniør bruksomr̊adene med 15 % feilestimat p̊a reattachment length.
Tidsbesparing fra parallell programmering ble bare funnet p̊a elliptisk ligning løseren.

iv

Contents

Preface iii

Abstract iv

1 Introduction 1

1.1 Hardware and Software . 1

2 Background Theory 3

2.1 The Projection Method . 3

2.2 Law of the Wall . 3

2.3 The Eddy Viscosity Hypothesis . 4

2.4 Two-Equation Turbulence Models . 5

2.4.1 Wilcox K-Omega . 5

2.4.2 Menter K-Omega SST . 5

2.5 Discretization and Boundary Conditions 6

3 Multi -processor and -thread Programming 9

3.1 Introduction to MP . 9

3.2 OpenMP . 9

3.3 Results and Discussion for MP . 10

3.4 Conclusion for MP . 11

4 1D Channel Flow 13

4.1 Introduction to 1D Channel Flow . 13

4.2 Problem Setup for 1D Channel Flow . 13

4.2.1 Turbulence Models . 14

4.3 Results and Discussion for 1D Channel Flow 15

4.3.1 Results Reτ = 180 . 15

4.3.2 Results Reτ = 590 . 17

4.3.3 Eddy Viscosity . 18

4.3.4 Attempt to use MATLAB’s bvp-solver 20

4.4 Conclusions for 1D Channel Flow . 21

5 K-Epsilon on 1D-Channel Flow Reτ = 590 23

5.1 Results, Discussion and Conclusion for K-Epsilon 24

v

6 Backward-Facing Step 25
6.1 Introduction to Backward-Facing Step . 25
6.2 Problem Setup for Backward-Facing Step 25
6.3 Results for Backward-Facing Step . 25
6.4 Conclusion for Backward-Facing Step . 27

7 Investigation of Functions and Switches in Menter SST 29

8 Thesis Summary 31
8.1 Process . 31
8.2 Conclusions . 31
8.3 Further Work . 32

Appendices 33

Appendix A Functions Used 33
A.1 Fortran Intrinsic Functions . 33

A.1.1 Shape . 33
A.1.2 Reshape . 33
A.1.3 Norm2 . 33

A.2 NAG Library Functions . 33
A.2.1 X05AAF . 34
A.2.2 F11DAF . 34
A.2.3 F11BDF . 34
A.2.4 F11BEF . 34
A.2.5 F11XAF . 35
A.2.6 F11DBF . 35
A.2.7 Key NAG Variables . 35

Appendix B FORTRAN 95 Code for 2D Backward-Facing StepWithWilcox
K-Omega Model 37

vi

Chapter 1

Introduction

With computational power and memory increasing, computational fluid dynamics, CFD,
is increasingly used in engineering. This demand is supplied with software where turbu-
lence models, especially two-equation models, are an already integrated part. All the user
needs to do is check a box and the turbulence is simulated, but are the models really that
simple? With turbulence being an advanced three dimensional transient phenomena, it
appears a large amount of faith is placed in the models and the implementation into the
software.

Working with CFD without commercial CFD software requires a large understanding
of fluid dynamics and programming, an uncommon and challenging combination. Without
the understanding of the physics the results are hard to interpret correctly, and the large
amount of programming makes it a challenge for beginners. Although programming is
integrated into most engineering educations, it is nowhere near the level needed to create
a complete CFD program.

The goal of the thesis is to learn about two-equation turbulence modeling, as well
as programming with FORTRAN. To accomplish this the 2D laminar program from the
project work will be expanded to include turbulence models and tested on the backward-
facing step case. The elliptic pressure equation solver BiCGSTAB is kept and the grid will
be uniform for ease of programming. There will also be a 1D program solving channel flow
to test the models on a simple problem and an investigation into possible multiprocessor
programming to shorten simulation time. The Reynolds numbers covered are low to
medium, allowing to compare with perfectly smooth walls from DNS results. The two-
equation turbulence models covered in this paper is:

• Wilcox k-omega

• Menter k-omega SST

• k-epsilon

1.1 Hardware and Software

The simulations are run on a ASUS G75VW with Ubuntu 14.04.1 LTS, 16 GB of memory
and a Intel Core i7-3630QM processor at 2.40 GHz. The programs are written in gedit
Text Editor 3.10.4 and compiled by NAG Fortran Compiler 6.0. Double precision, the

1

CHAPTER 1. INTRODUCTION

NAG working precision, must be set on all real variables used by the NAG Fortran Library
Mark 24 (64-bit) for Linux, FLL6A24D9L. For chapter 3 only quadruple precision is used.

2

Chapter 2

Background Theory

2.1 The Projection Method

The projection method, as presented by Kristoffersen[1], solves the Navier-Stokes Equa-
tion in three steps:

u∗i − uni
∆t

+ unj
∂uni
∂xj

= −β 1

ρ

∂pn

∂xi
+

∂

∂xj
[(ν + νnt)

∂uni
∂xj

] (2.1)

∂2

∂xj∂xj

pn+1 − βpn

ρ
=

1

∆t

∂u∗i
∂xi

(2.2)

un+1
i − u∗i

∆t
= −1

ρ

∂

∂xi
(pn+1 − βpn) (2.3)

Here u∗ is a tentative velocity and the constant β is a switch between zero and one. When
β is set to one, more information from pn is transfered to U∗, while for β set to zero, pn is
not used in the tentative flow-field. In this paper β set to zero, that way the old pressure
field provides an excellent guess for the solution of equation 2.2.

2.2 Law of the Wall

The law of the wall describes the average velocity in the boundary layer of a turbulent
flow. For y+ values below 5, the viscous sublayer, the u+ is equal to y+. The log layer is
named after the logarithmic relation between y+ and u+;

u+ =
1

κ
ln y+ + C+ (2.4)

where, for a smooth wall, C+ ≈ 5.0 and κ ≈ 0.41. At 5 < y+ < 30, the buffer layer,
neither of the equations hold.

3

CHAPTER 2. BACKGROUND THEORY

Figure 2.1: Law of the wall

2.3 The Eddy Viscosity Hypothesis

The eddy viscosity concept was introduced in 1887 by Boussinesq, and is widely used when
modeling turbulence. It states that the turbulent Reynolds stresses are proportional to
the gradients of the mean strain-rate tensor [2]:

τij = µt(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij)−
2

3
ρkδij (2.5)

This eddy viscosity is not a physical property, but varies with local flow conditions
and geometry. Although the eddy viscosity hypothesis is not completely correct, it can
provide an adequate estimate of turbulent flows[3]. In its simplest description the eddy
viscosity can be characterized by a velocity q, which is based on k, and a length scale L,
often based on the dissipation and production ratio of k;

µt = CµρqL (2.6)

the modeling of q and L then decides the final expression of µt.

4

CHAPTER 2. BACKGROUND THEORY

2.4 Two-Equation Turbulence Models

The two-equation turbulence models are derived from the long time averaged Navier-
Stokes equation using the eddy viscosity theorem. The only change to the Navier-Stokes
equation is the addition of the eddy viscosity to the molecular viscosity. Two other tur-
bulent quantities are introduced, the mean turbulent kinetic energy, k, and the quantity
describing the dissipation of the turbulent kinetic energy. The dissipation is often sym-
bolized by ε and the specific dissipation by ω. The turbulent kinetic energy is defined
as:

k =
1

2
u′ju

′
j (2.7)

Both k and ω, or ε, have their own transport equations and, although they change from
model to model, contain terms for rate of change in a fluid element in mean motion,
production, diffusion and dissipation. Other terms may be included to account for specific
physical and geometrical mechanisms.

2.4.1 Wilcox K-Omega

The Wilcox k-omega model, introduced by Wilcox in the late 1980s, uses the specific dis-
sipation and is one of the few models that are able to resolve the boundary layer without
damping functions[4]. According to Menter[4], the Wilcox k-omega of 1988 is as accurate
as any other two-equation model in predicting the mean flow and have better numeri-
cal stability. The model have been modified somewhat over the years, and the current
standard is the 2006 version[5]. However, the 1988 model is valued for its simplicity:

Dρk

Dt
= τij

∂ui
∂xj
− β∗ρωk +

∂

∂xj
[(µ+ σkµt)

∂k

∂xj
] (2.8)

Dρω

Dt
=
γω

k
τij
∂ui
∂xj
− βρω2 +

∂

∂xj
[(µ+ σωµt)

∂ω

∂xj
] (2.9)

µt =
ρk

ω
(2.10)

The boundary conditions at the wall are µt|wall = 0 kwall = 0 and ωwall = 60ν
βd2

, where
d is the distance to the first cell center. Wilcox initially suggests a different boundary
condition for ω, ωwall → 6νwall

βd2
as d → 0, but Menter later claims the one used to be

superior[4]. The constants in the model are:

σk = 0.5 σω = 0.5 β∗ = 0.09
γ = 5

9
β = 3

40

2.4.2 Menter K-Omega SST

In a 1994 paper, reference [4], Menter presented one of the pillars in two-equation turbu-
lence modeling by combining the original k-epsilon and Wilcox k-omega models. In broad
strokes, the model uses Wilcox k-omega in the boundary layer and k-epsilon in the outer
region and free shear flows. The Menter k-omega Shear-Stress Transport was empirically
derived from the two others and uses several functions.

5

CHAPTER 2. BACKGROUND THEORY

Dρk

Dt
= τij

∂ui
∂xj
− β∗ρωk +

∂

∂xj
[(µ+ σkµt)

∂k

∂xj
] (2.11)

Dρω

Dt
=

γ

µt
τij
∂ui
∂xj
− βρω2 +

∂

∂xj
[(µ+ σωµt)

∂ω

∂xj
]

+ 2(1− F1)σω2ρ
1

ω

∂k

∂xj

∂ω

∂xj

(2.12)

µt =
a1ρk

max(a1ω,ΩF2)
(2.13)

where Ω is the magnitude of the vorticity. The boundary conditions are the same as for
Wilcox k-omega and the constants are a combination of constants related to the original
models, defined as:

Φ = F1Φ1 + (1− F1)Φ2 (2.14)

The functions and constants are:

F1 = than(arg4
1) (2.15)

arg1 = min[max(

√
k

0.09ωd
;
500ν

d2ω
),

4σω2k

CDkωd2
] (2.16)

CDkω = max(2σω2
1

ω

∂k

∂xj

∂ω

∂xj
, 10−20) (2.17)

F2 = tanh(arg2
2) (2.18)

arg2 = max(2

√
k

0.09ωd
;
500ν

d2ω
) (2.19)

where d is the distance to the closest surface.

σk1 = 0.85 σω1 = 0.85 β1 = 0.075
a1 = 0.31 β∗ = 0.09 κ = 0.41
σk2 = 1.0 σω2 = 0.856 β2 = 0.0828

γ1 = β1
β∗
− σω1κ2√

(β∗)

γ2 = β2
β∗
− σω2κ2√

(β∗)

2.5 Discretization and Boundary Conditions

The problems are discretized with forward Euler scheme in time and second order central
differencing for all spacial derivatives. In Figure 2.2 the local positioning used in both
this report and the programs is shown.

6

CHAPTER 2. BACKGROUND THEORY

Figure 2.2: MAC grid cell, picture from [1]

For the velocity the boundary conditions are handled with ghost cells, as shown in
Figure 2.3, they are zero at all walls. The inlet values are given, while the outlet values
are derivatives equal to zero. Boundary conditions for the pressure are derivatives equal
to zero at walls, and given or derivatives equal to zero at inlet and outlet.

Figure 2.3: Global grid, picture from [1]

Using the described discretization and conservative form for equation 2.1, the equations
2.1, 2.2 and 2.3 gives the following equations:

7

CHAPTER 2. BACKGROUND THEORY

u∗i,j − uni,j
∆t

= −
(uni+1,j − uni,j)2 − (uni,j − uni−1,j)

2

4 ·∆x

−
(uni,j+1 + uni,j) · (vni+1,j + vni,j)− (uni,j + uni,j−1) · (vni+1,j−1 + vni,j−1)

4 ·∆y

− β
pni+1,j − pni,j

∆x
+

1

Re
(
uni+1,j − 2 · uni,j + uni−1,j

(∆x)2
+
uni,j+1 − 2 · uni,j + uni,j−1

(∆y)2
)

(2.20)

v∗i,j − vni,j
∆t

= −
(vni,j+1 − vni,j)2 − (vni,j − vni,j−1)2

4 ·∆y

−
(uni,j+1 + uni,j) · (vni+1,j + vni,j)− (uni−1,j+1 + uni−1,j) · (vni−1,j + vni,j)

4 ·∆x

− β
pni,j+1 − pni,j

∆y
+

1

Re
(
vni+1,j − 2 · vni,j + vni−1,j

(∆x)2
+
vni,j+1 − 2 · vni,j + vni,j−1

(∆y)2
)

(2.21)

Writing pn+1 − βpn as Φ for discretization of 2.2 and 2.3:

Φi+1,j − 2 · Φi,j + Φi−1,j

(∆x)2
+

Φi,j+1 − 2 · Φi,j + Φi,j−1

(∆y)2
=

1

∆t
· (
u∗i,j − u∗i−1,j

∆x
+
v∗i,j − v∗i,j−1

∆y
)

(2.22)

un+1
i,j − u∗i,j

∆x
= −Φi+1,j − Φi,j

∆x
(2.23)

vn+1
i,j − v∗i,j

∆y
= −Φi,j+1 − Φi,j

∆y
(2.24)

The boundary conditions for the tentative velocity field is difficult to interpret phys-
ically, also affecting the boundary conditions of Φ in equation 2.22. It can be shown, as
by R. Kristoffersen[1], that the solution of Un+1 at the boundaries are independent of the
boundary values of U∗. R. Kristoffersen further shows that if these are set as Dirichlet
conditions, the boundary conditions for Φ is Neumann conditions. Therefore the bound-
ary condition for U∗ is the same as for U , while Φ has the same as P , coded directly for
the numerical solver.

8

Chapter 3

Multi -processor and -thread
Programming

3.1 Introduction to MP

To investigate the gain of multiprocessor, or multi thread programs, compared to single
thread programs in FORTRAN the sum

∞∑
n=0

1

n2
= 2 (3.1)

is considered.
CPU time is a good measure of the workload required to run a program. It is available

as a function or subroutine, intrinsically, as well as in most libraries. On one thread it is
possibly the best way to measure time spent, as it returns the actual time spent on the
program by the processor. For several processors it returns the sum of all the individual
times, resulting in a far larger number than the real time, and is therefore not a good
measure on the efficiency of a multiprocessor program. Therefore the real time is used to
test the efficiency, with the system clock intrinsic subroutine.

3.2 OpenMP

OpenMP is a specification for a set of compiler directives, library routines, and environ-
ment variables that can be used to specify high-level parallelism in Fortran and C/C++
programs[6]. As OpenMP 3.1 and 3.0 is supported by NAG FORTRAN Compiler 6.0,
its simplicity and availability makes it a natural choice for this report. It is simply im-
plemented by commands written with the prefix !$ and, in NAG FORTRAN Compiler,
the option -openmp when compiling. The command !$PARALLEL is used to declare a
parallel region, while the next command define how the work should be shared between
the threads. The relevant commands for this project is shown in the following list.

• !$DO

• !$SECTIONS

• !$WORKSHARE

9

CHAPTER 3. MULTI -PROCESSOR AND -THREAD PROGRAMMING

3.3 Results and Discussion for MP

With quadruple precision floating point variables in equation 3.1, n equal to 150 or higher
gives underflow, and so the sum is run from 0 to 149. It is also run from 149 to 0, to
ensure no information is lost when adding a small number to a large number. Both loops
return the same sum for the same value of n, and the correct sum of 2.0 for n & 94. This
may seem like a contradiction, but is simply due to the fact that numbers and arithmetics
on a computer is never accurate. This may further be shown by the intrinsic functions
tiny(x), returning the smallest positive number representable by the same kind as x, and
epsilon(x), returning the smallest positive number of the same kind as x that may be
added to 1 and give an answer larger than 1. For quadruple precision the ratio between
the two numbers are; tiny(x)

epsilon(x)
' 8.12987 · 10−261.

The first test was to execute the two sums on a single tread compared to executing
them on two threads, one thread for each sum. It was also placed inside a loop for
computing the sums 15 or 25 ·105 times. All programs executed 15 times with the results,
mean and variance of time, shown in table 3.1. From this it is visible that parallelization
comes with a cost of extra computations. Without the loop the task is not measurable at
millisecond precision, but sheared on two threads it is just visible. Comparing the results
from the longest loop, the total increase in computational time amounts to approximately
15% and a substantial increase in variance, 220 times higher.

Nr of loops Mean [ms] Variance [ms2]
Single thread 1 0 0

15 0.4667 0.2667
25 · 105 3593 26.43

Two threads 1 6.6 7.114
15 7.818 6.442

25 · 105 4131 5825

Table 3.1: Table of real time spent during program execution

Splitting the 25·105 iteration loop in two and allowing it to run on two different threads
gives a time of 2704 ms, resulting in a gain of 25%. However, the variance is increased
to 180 times higher at 4685 ms2, further showing the uncertain overhead computations
added by parallelization.

Table 3.2 shows the effect of entering and leaving the parallel region on every compu-
tation compared to only create and leave the parallel region once. The effect of entering
and leaving the parallel region more than once amounts to increasing the computational
time to 11 times higher, a result underlining the difficulties one can meet during parallel
programming.

10

CHAPTER 3. MULTI -PROCESSOR AND -THREAD PROGRAMMING

Nr of loops Mean [ms] Variance [ms2]
Parallel command 15 7.818 6.442

outside loop 25 · 105 4131 5825
Parallel command 15 32.87 228.1

inside loop 25 · 105 45540 2023000

Table 3.2: Table of real time spent during program execution depending on position of
!$OMP PARALLEL

The final test was to utilize all processors on the loop using to !$OMP DO construct,
resulting in a time of 1319, a gain of 63%. This construct is very easy to use and a good
choice when possible.

3.4 Conclusion for MP

To use several threads efficiently it is important to identify a large amount of computations
that may be carried out in parallel. If the workload is too low, there is no gain and possibly
a loss in parallelization of the code. Yet, with OpenMP, parallel programming may be
both beneficial and easy to implement. The biggest challenges is identifying possible
parallel regions and the optimal parallelization method.

11

CHAPTER 3. MULTI -PROCESSOR AND -THREAD PROGRAMMING

12

Chapter 4

1D Channel Flow

4.1 Introduction to 1D Channel Flow

The steady state of the simple problem of a pressure driven incompressible flow be-
tween two plates provides an excellent study case for turbulence models. Its simplicity
and the large number of DNS data available from the simulations of Kim, Moin and
Mansour[7],hereafter KMM, makes for easy implementation and comparison.

4.2 Problem Setup for 1D Channel Flow

The domain of 1x1 is discretized on a 1x600 grid which is simplified by a symmetry plane
to 1x300. All values are saved in the cell center, except the pressure, which is prescribed
at the inlet and outlet. The streamwise boundary conditions are the derivative equal to
zero and the boundary condition at the wall shown in table 4.1.

Variable BC at wall
u u=0
k k=0
µt µt = 0
ω ω = 10 6ν

β1(∆y1)2

Table 4.1: The boundary conditions at the wall. ∆y1 is the distance to the closest surface.

Second order central differencing is used on all spacial derivatives and first order Euler
scheme for time, using the time as an iterative dimension. With:

∂unj
∂y

=
uj+1 − uj−1

2∆y
(4.1)

and for any A and Φ;

∂

∂y
[(µ+ Aµt)

∂Φj

∂y
] =

1

(∆y)2
[Aj+0.5(µ+ µtj+0.5)(Φj+1 − Φj)

− Aj−0.5(µ+ µtj−0.5)(Φj − Φj−1)]

(4.2)

Aj+0.5 = 0.5 · (Aj+1 + Aj) (4.3)

13

CHAPTER 4. 1D CHANNEL FLOW

Then by defining the pressure at the inlet to be P
ρ

= 1 and 0 at the outlet, ∂P
∂x

= −1, the
Navier-Stokes equation reduces to:

un+1
j − unj

∆t
= 1 +

1

∂y
[(ν + νnt)

∂unj
∂y

] (4.4)

The system is run with ∆t = 1E− 6 and considered converged when the second norm
of the vector u(t)− u(t− 1) is less than 1E − 4.

As the shear stress is known by balance of the forces, the shear velocity in the system
is the square root of 0.5. Then, with Reτ defined by half the channel height and uτ , as
in KMM, the problem formulation allows Reτ to be chosen by choosing the kinematic
viscosity.

4.2.1 Turbulence Models

The equations in the different turbulence models are greatly simplified by the boundary
conditions and discretization, as shown below:

Wilcox K-Omega

Turbulent kinetic energy:

ρ
kn+1
j − knj

∆t
= µnt (

∂unj
∂y

)2 − β∗ρωnj knj +
∂

∂y
[(µ+ σkµ

n
t)
∂knj
∂y

] (4.5)

Specific dissipation:

ρ
ωn+1
j − ωnj

∆t
= ργ(

∂unj
∂y

)2 − βρ(ωnj)2 +
∂

∂y
[(µ+ σωµ

n
t)
∂ωnj
∂y

] (4.6)

Menter K-Omega SST

Turbulent kinetic energy:

ρ
kn+1
j − knj

∆t
= µnt (

∂unj
∂y

)2 − β∗ρωnj knj +
∂

∂y
[(µ+ σkµ

n
t)
∂knj
∂y

] (4.7)

Specific dissipation:

ρ
ωn+1
j − ωnj

∆t
= γρ(

∂unj
∂y

)2 − βρ(ωnj)2 +
∂

∂y
[(µ+ σωµ

n
t)
∂ωnj
∂y

]

+ 2(1− F1)σω2ρ
1

ωnj

∂knj
∂y

∂ωnj
∂y

(4.8)

1

ωj

∂kj
∂y

∂ωj
∂y

=
1

ωj

(kj+1 − kj−1)(ωj+1 − ωj−1)

4(∆y)2
(4.9)

14

CHAPTER 4. 1D CHANNEL FLOW

4.3 Results and Discussion for 1D Channel Flow

Two Reτ numbers were investigated. To obtain Reτ = 590, corresponding to Reumean ≈
13400, ν was set to 6 ·10−4, and for a less turbulent case, Reτ = 180 and Reumean ≈ 3300,
ν was set to 2 · 10−3. The same results were obtained on a twice as fine grid, implying
grid independence.

Although this should be a straight forward 1D case the models appear to be numer-
ically unstable, demanding a time step in the order of one percent of the laminar case.
They also need an adequate initial guess for the turbulent variables, in this case obtainable
from the DNS data.

The complex Menter k-omega SST uses significantly more time compared to the sim-
pler Wilcox k-omega. Keeping in mind the simplification of the Navier-Stokes equation,
it may not be noticeable in more advanced cases, but it is apparent in this simple case.

4.3.1 Results Reτ = 180

Figure 4.1: Logarithmic plot of velocity versus y+

The mean velocity, as shown in Figure 4.1, is adequately predicted for most purposes with
both models, compared to both law of the wall and the DNS solution of KMM. While
Menter k-omega SST predicts close to the DNS values, revealing the empirical approach

15

CHAPTER 4. 1D CHANNEL FLOW

Uc/UcDNS Uc/UcLotW
Menter k-omega SST 0.972 1.010

Wilcox k-omega 0.952 0.989

Table 4.2: Comparison of center channel velocities

when designing the model, Wilcox k-omega predicts closer to the law of the wall, an
important part in the deduction of the model.

Table 4.2 shows a comparison of the center channel velocities from Figure 4.1. As the
law of the wall is technically inapplicable to the center of the channel the DNS solution
is the most interesting comparison, meaning the error is in the 3.0-5.0 % area.

Both models fail to predict the sharp gradient after the sublayer, resulting in an error
none of the models manage to compensate for. As can be seen from both table 4.2 and
figure 4.1, Menter k-omega SST provides the velocity field closest to the solution.

Figure 4.2: Logarithmic plot of turbulent kinetic energy versus y+

Figure 4.2 shows the turbulent kinetic energy distribution in the channel. The value
close to the wall is severely off the DNS solution, as expected[4], but the two models
provides practically the same solution. For more than the upper half of the channel the
values are similar to the DNS solution.

16

CHAPTER 4. 1D CHANNEL FLOW

4.3.2 Results Reτ = 590

Figure 4.3: Logarithmic plot of velocity versus y+

The models predict better values for this higher Reynolds number, with the error in the
range 1.5-2.5 %, see table 4.3. This is expected, as higher Reynolds numbers are easier to
predict. Further, as with lower Reynolds number, Menter k-omega SST has the closest
prediction for the center channel velocity and the average velocity.

The turbulent kinetic energy, figure 4.4, has the same tendency as the Reτ = 180.

17

CHAPTER 4. 1D CHANNEL FLOW

Uc/UcDNS Uc/UcLotW
Menter k-omega SST 0.984 1.018

Wilcox k-omega 0.977 1.012

Table 4.3: Comparison of center channel velocities

Figure 4.4: Logarithmic plot of turbulent kinetic energy versus y+

4.3.3 Eddy Viscosity

The eddy viscosity is an important parameter as it shows the effect of the different models
on the mean flow. It is the only turbulent parameter directly effecting the equations for
the mean velocities, and subsequently it is the only parameter the turbulence models
need to predict correctly in order to produce the correct velocity field. When comparing
the models one could expect that the average difference in the eddy viscosity would be
directly related to the average difference in the velocity, but as table 4.4 implies this is
not the case. Instead the figures 4.5 and 4.6 suggests that the difference in the cells close
to the wall effects this more as figure 4.5 shows a bigger difference in the first 150 cells
compared to figure 4.6. This is an interesting point, especially considering the description
of the eddy viscosity as ”varying with local flow conditions and geometry” and the extra
effort to model this property made in the Menter k-omega SST.

18

CHAPTER 4. 1D CHANNEL FLOW

Norm2(
u+W−u

+
M

max(u+M)
) Norm2(νtW−νtM

max(νtM)
)

Re180 0.366 1.61
Re590 0.171 1.88

Table 4.4: Numerical comparison of velocity and νt field

Another point towards advanced modeling of the eddy viscosity is the strange shape of
the Wilcox k-omega model in the center of the channel. While the Menter k-omega SST
model behaves as expected with a maximum in the middle of the channel, the Wilcox
k-omega predicts a local minimum. Although strange and unexpected, perhaps even
unphysical, this does not seem to have a large effect on the solution of the problem.

Figure 4.5: Reuτ = 180, Logarithmic plot of eddy viscosity versus y+

19

CHAPTER 4. 1D CHANNEL FLOW

Figure 4.6: Reuτ = 590, Logarithmic plot of eddy viscosity versus y+

4.3.4 Attempt to use MATLAB’s bvp-solver

A natural way to solve this case would be as a boundary value problem and it was
attempted to do this for the Menter k-omega SST model in MATLAB using the inherent
and powerful bvp4c function. The results were unsuccessful for grids and initial guesses
later found to yield a solution with the method described in the problem setup of this
chapter.

The online documentation for MATLAB states:
bvp4c is a finite difference code that implements the three-stage Lobatto IIIa formula.

This is a collocation formula and the collocation polynomial provides a C1-continuous
solution that is fourth-order accurate uniformly in [a,b]. Mesh selection and error control
are based on the residual of the continuous solution.[8]

The following could be possible reasons to why the bvp4c fails:

1. The system is too stiff or otherwise numerically unstable.

2. The bvp4c routine changes the grid continuously and the BC for ω is dependent on
the first grid size.

3. The derivative of the viscosity is needed, but it is not defined in the model. The
treatment of this may be incorrect.

20

CHAPTER 4. 1D CHANNEL FLOW

The Equation System

The reduced equations for velocity, turbulent kinetic energy and dissipation in the Menter
k-omega SST gives the following system:

u′1 = u2 =
∂u

∂y
(4.10)

u′2 =
∂2u

∂y2
=
−1

ν + νt
(1 +

∂νt
∂y

∂u

∂y
) (4.11)

k′1 = k2 =
∂k

∂y
(4.12)

k′2 = (
−1

ν + σkνt
)(νt(

∂u

∂y
)2 − βωk + σk

∂νt
∂y

∂k

∂y
) (4.13)

ω′1 = ω2 =
∂ω

∂y
(4.14)

ω′2 = (
−1

ν + σωνt
)(
γ

νt
(
∂u

∂y
)2 − βω2 + σω

∂νt
∂y

∂ω

∂y
) + 2(1− F1)σω2

1

ω

∂k

∂y

∂ω

∂y
(4.15)

νt =
a1k

max(a1ω; ΩF2)
(4.16)

and ∂νt
∂y

is defined using the standard rule (f
g
)′ = fg′−f ′g

g2
, where f = a1k and g =

max(a1ω; ΩF2)

4.4 Conclusions for 1D Channel Flow

Simulating the mean flow in a simple turbulent case is possible with both Menter k-omega
SST and Wilcox k-omega as the models are presented in their respective papers. For both
low and medium Reynolds numbers the results are adequate for most engineering pur-
poses. The parameter effecting the mean flow, the eddy viscosity, appears to be best with
the treatment of Menter k-omega SST, suggesting the extra computations are well worth
it. It also suggests the treatment of this parameter as a relation between turbulent kinetic
energy and dissipation only may not be correct for certain flow patterns or geometry. In
addition the results imply that if the wall interaction is of little importance, very good
mean flow may be obtained with wall functions, effectively skipping the sublayer where
the models are furthest from predicting the correct solution.

The encountered challenges when simulating are mainly related to running the simu-
lation due to the numerical instability of the models. With the small time step needed,
even this simple problem takes time solving. There is also the issue of obtaining a good
initial field before the simulation even starts.

The turbulent kinetic energy is an important part of the models, it is the only turbulent
variable that has an obvious physical interpretation and definition. Yet the models fail
entirely to predict its value near the wall, while the other values are adequate at best.
From this three questions arise; ”does it matter?”, ”is the turbulent kinetic energy in the
model the same as the theoretical turbulent kinetic energy?” and ”how does this effect
the eddy viscosity?”.

21

CHAPTER 4. 1D CHANNEL FLOW

22

Chapter 5

K-Epsilon on 1D-Channel Flow
Reτ = 590

K-Epsilon is perhaps the most famous two-equation model and widely used in the industry.
Because it is known to fail in the lower regions of the boundary layer most implementations
of the model use wall functions and demand the first cell to be at y+ > 30, effectively
neglecting the most interesting part of this problem. As it also is known to work poorly
with adverse pressure gradients, it was decided to compute it as a worst case scenario of
the case in chapter 4, using it exactly as Wilcox k-omega and Menter k-omega SST. This
version of the model is taken from Ferziger[3];

Pk = (µt(
∂ui
∂xj

+
∂uj
∂xi

)− 2

3
ρδijk)

∂ui
∂xj

(5.1)

Dρk

Dt
= Pk − ρε+

∂

∂xj
[(µ+

µt
σk

)
∂k

∂xj
] (5.2)

Dρε

Dt
= Cε1

ε

k
Pk − ρCε2

ε2

k
+

∂

∂xj
(
µt
σε

∂ε

∂xj
) (5.3)

µt = ρCµ
k2

ε
(5.4)

Boundary conditions: εwall = ν ∂
2k
∂y2
|wall and kwall = 0

σk = 1.0 σε = 1.3 Cµ = 0.09
Cε1 = 1.44 Cε2 = 1.92

The discretized equations then becomes;

Pk = µtj(
∂unj
∂y

)2 (5.5)

ρ
kn+1
j − knj

∆t
= Pk − ρεj +

∂

∂y
[(µ+

µtj
σk

)
∂k

∂y
] (5.6)

ρ
εn+1
j − εnj

∆t
= Cε1

εj
kj
Pk − ρCε2

ε2j
kj

+
∂

∂y
(
µtj
σεj

∂εj
∂y

) (5.7)

23

CHAPTER 5. K-EPSILON ON 1D-CHANNEL FLOW REτ = 590

µtj = ρCµ
k2
j

εj
(5.8)

εwall = ν
2kj=1

(0.5∆y)2
(5.9)

5.1 Results, Discussion and Conclusion for K-Epsilon

Attempts to use the solution from chapter 4, with ε = ω, failed at first. However, using
ε = ω · k was enough to get a solution.

As expected, the k-epsilon fails to predict the mean flow completely, as seen in figure
5.1. Furthermore it seems to predict an adequate gradient from y+ ≈ 30, suggesting it is
an adequate model if used with a wall function and first cell in this range.

Figure 5.1: Comparison of velocity

This case demonstrates the dangers misusing turbulence models, underlining the need
of understanding the theory behind.

24

Chapter 6

Backward-Facing Step

6.1 Introduction to Backward-Facing Step

The backward-facing step case is a natural choice for testing the models as it is a simple
geometry and it has an adverse pressure gradient, which some two-equation models are
known to struggle with. In addition the reattachment length is a great case parameter.
A DNS by Le, Moin and Kim[9] is used to compare with other results.

6.2 Problem Setup for Backward-Facing Step

A domain of 30h x 6h consists of a inlet section of 10h x 5h which expands in the y
direction to a 20h x 6h section. The whole domain is discretized as explained in chapter
2 on a 900x300 grid, leaving a 10h x h section of unused cells. The pressure solver is
coded to skip these cells, while the other equations solves every cell and later updates the
unused cells. The inlet values are taken from a 1D case with Reh = U0h

ν
= 5100, where

U0 is maximum inlet velocity and h is the step height, and ∂P
∂x

= 0. The outlet values are
derivatives equal to zero and P = 0. The 1D case is also used as an initial field of all
values.

Due to long simulation time steady state is considered reached when the second norm
of change in the horizontal velocity at x = 23h over 1E − 2 seconds is less then 1E − 6.

6.3 Results for Backward-Facing Step

As for the 1D channel flow both models predict largely the same solution, with an average
difference in the stream function at 0.0018. Therefore the solution from the Wilcox k-
omega will mainly be used for comparison with the DNS. Figures 6.1 and 6.2 show the
streamlines, from the simulation and from the DNS respectively. While similar, the two-
equation models fail to predict the second small vortex close to the step. They also predict
a substantially longer reattachment length, as seen in table 6.1.

25

CHAPTER 6. BACKWARD-FACING STEP

Figure 6.1: Streamline plot from Wilcox k-omega model

Figure 6.2: Streamline plot from DNS[9]

Reattachment length [h] h
hDNS

DNS 6.28 1.0
Wilcox 7.2 1.147
Menter 7.23 1.151

Table 6.1: Comparison of predicted reattachment length

Although figures 6.3 and 6.4 show the pressure fields are significantly different, this
probably is due to the error in the velocity field. The figures are included to give a better
understanding of the accuracy of the solution. The reference pressure P0 is at x/h = −5.0.

Figure 6.3: Contours of pressure field from Wilcox model, P−P0

ρU2
0

26

CHAPTER 6. BACKWARD-FACING STEP

Figure 6.4: Contours of pressure field from DNS[9], P−P0

ρU2
0

6.4 Conclusion for Backward-Facing Step

Due to long solution time these results might not be fully converged. Still, the solution was
regularly checked during simulation and it does not appear to be far from the converged
solution. While some care must be taken using this solution, at least a 10 % error must
be expected on the reattachment length. The solution time of this case presents an
interesting problem, while the models demand a short time step, the pressure equation
takes considerable time solving. As the field approaches steady state the time step may
be larger and the pressure equation is quicker, but if steady state is almost found there is
no point simulating. If one can bypass this problem, a larger grid could be an interesting
test.

27

CHAPTER 6. BACKWARD-FACING STEP

28

Chapter 7

Investigation of Functions and
Switches in Menter SST

The Menter k-omega SST model switches between the Wilcox k-omega and k-epsilon
models based on flow conditions and geometry. As this is an important part of the
behavior of the model, some graphics of F1, F2 and νt is discussed. While in the 1D case
the model always uses Wilcox, the 2D case is more interesting.

Figure 7.1: Contours of F1

Figure 7.1 shows the values taken by F1 across the domain, largely being one until
the step. Which means it uses the Wilcox k-omega, consistent with the results from 1D.
After this, in a region with much turbulence, F1 becomes very small, F1 ≈ 0.01, using
k-epsilon. The regions with low turbulence, like close to the wall or close to the top,
still uses Wilcox. A strange region quite high above the step also has a lower F1, about
F1 = 0.5, but this seems to have little effect on the flow and νt. The fact that the model
switches this much is a bit surprising, keeping in mind the results in chapter 6 are very
similar, one would expect seeing more Wilcox in this case. Another interpretation is that
both Wilcox and k-epsilon are two-equation models, and switching between them does
not greatly alter the solution.

29

CHAPTER 7. INVESTIGATION OF FUNCTIONS AND SWITCHES IN MENTER
SST

Figure 7.2: Contours of F2

While the effect of F2 may be a little difficult to interpret due to being inside a max()
condition, when it is zero, the eddy viscosity is defined exactly like in Wilcox. Figure 7.2
shows that in the most turbulent and interesting region, just off the step, F2 has the value
zero. This implies that the advanced eddy viscosity definition is designed to change the
effect of less turbulent regions on the mean flow.

Figure 7.3: Contours of νt field

Finally, figure 7.3 is included to show that the distribution is even and as expected
from the results in chapter 6. The region of low F2 seems to coincide with a region of low
νt.

30

Chapter 8

Thesis Summary

8.1 Process

In the beginning, chapter 3 was quite quickly done, as openMP is easy to use. Turning
out be a dead end, focus was moved on to the 1D turbulent case, which was thought to be
a relatively simple task. The combination of high numerical instability, need of adequate
initial field and low FORTRAN knowledge proved it to be very difficult. After a long
period of trial and error, a solution was obtained for both low and medium Reynolds
number. Instead of the natural choice of a high Reynolds number case it was decided to
move on to the backward-facing step case, as the deadline was approaching.

A 2D repeating boundary conditions channel flow program was made to confirm the
2D implementation of the models, before creating the backward-facing step program. It
took some time to create the sparse matrices needed for the pressure solver, but most of
the time went to simulate the first backward-facing step solution. After a failed attempt
at a too coarse grid the simulation on the final grid went on for days.

As it is common, the model k-epsilon was put to the test to show some dangers when
using turbulence modeling. With solution field and comparable data available, this was
readily done.

8.2 Conclusions

It was intended to shorten the simulation time with the use of parallel programming, but
the algorithm needs to be run sequentially. The only sequence where gain is possible is
the elliptic pressure equation, but the library routine is already running in parallel.

Wilcox k-omega and Menter k-omega SST provides very similar solutions results,
although Wilcox k-omega appears a little better at the backward-facing step case while
Menter k-omega SST appears better at the channel flow case. With an error in the 5 %
region in a 1D case, the error in the 10-15 % region is both expected and acceptable. It
is well within acceptable limits for most engineering purposes for both cases.

Looking into the near-wall treatment of the models shows a discrepancy between the
predicted turbulent kinetic energy and the DNS value. While there is no direct connection
between the turbulent kinetic energy and the mean flow, this region does coincide with
the region where the gradient of the mean flow is under predicted. This may warrant
further investigation. For larger cases, where the near-wall flow is of secondary interest,

31

CHAPTER 8. THESIS SUMMARY

wall functions may be a better choice then resolving the complete boundary layer. With
this in mind, k-epsilon may have some usefulness.

A big surprise was to find all the models to be very numerically unstable and require
a initial field close to the solution. It would be very interesting to know how this is solved
in CFD software!

In light of the goals to learn more about the nature of two-equation models and
FORTRAN programming, this thesis must be seen as a success. Although having been
difficult and leaving some questions unanswered, a thesis like this is an excellent way to
dive into theory only glanced at through NTNU.

8.3 Further Work

There are some natural ways to continue this work;

1. High Reynolds number channel flow and high Reynolds number backward-facing
step.

2. Investigate wall functions for k, ω and ε.

3. Investigate different cases.

4. Investigate effect of different modeling of the equations in near-wall regions.

5. If not using a library function to solve the pressure equation, investigate multipro-
cessor programming with MPI or openMP.

Despite this, the author would suggest nobody continues this work. The systems are
touchy and simulation takes a very long time. Deeper investigation of the theory of models
may be to advanced for a regular masters degree. It is then imperative that the student is
strongly familiar with the programming language and at least have programmed a laminar
CFD program.

32

Appendix A

Functions Used

This appendix aims to give an overview of the Fortran functions used in the project.

A.1 Fortran Intrinsic Functions

A.1.1 Shape

Syntax :
result = shape(source)
Description:
Returns the shape of an array. Result is an integer array of rank one with as many
elements as source has dimensions.

A.1.2 Reshape

Syntax :
result = reshape(array,shape)
Description:
Changes the shape of an array to correspond to the shape argument
Hint :
Shape may be the shape function with a valid argument

A.1.3 Norm2

Syntax :
result = norm2(array)
Description:
Returns the second norm of the array. Result = ||array||2

A.2 NAG Library Functions

For more information see the online manual at:
http://www.nag.com/numeric/fl/nagdoc fl24/html/FRONTMATTER/manconts.html

33

APPENDIX A. FUNCTIONS USED

A.2.1 X05AAF

Syntax :
x05aaf(result)
Description:
Returns result as an integer array with seven entries. Result = [year, month(1-12), day(1-
31), hour(0-23), minute(0-59), second(0-59), millisecond(0-999)]

A.2.2 F11DAF

Syntax :
f11daf(n, nnz, a, la, irow, icol, lfill, dtol, pstrat, milu, ipivp, ipivq, istr, idiag, nnzc, npivm,
iwork, liwork, ifail)
Description:
Setup and optional preconditioner of sparse matrix. Compresses the matrix and performs
incomplete LU-decomposition.
Variables :
integer: n, nnz, la, irow(la), icol(la), lfill, ipivp(n), ipivq(n), istr(n+1), idiag(n), nnzc,
npivm, iwork(liwork), liwork, ifail
real(kind=nag wp): a(la), dtol
character(1): pstrat, milu

A.2.3 F11BDF

Syntax :
f11bdf(method, precon, norm, weight, iterm, n, m, tol, maxitn, anorm, sigmax, monit,
lwreq, work, lwork, ifail)
Description:
Setup for f11bef for the iterative solution of a real sparse general system of simultaneous
linear equations. Method defines the method used, here BiCGSTAB, while tol and norm
decides the termination.
Variables :
integer: iterm, n, m, maxitn, monit, lwreq, lwork, ifail
real(kind=nag wp): tol, anorm, sigmax, work(lwork)
character: method, precon, norm, weight

A.2.4 F11BEF

Syntax :
f11bef(irevcm, u, v, wgt, work, lwork, ifail)
Description:
Iterative solver for real sparse general system of simultaneous linear equations, Au=v,
which calls for other functions to compute matrix/vector-operations.
Variables :
integer: irevcm, lwork, ifail

34

APPENDIX A. FUNCTIONS USED

real(kind=nag wp): u(*), v(*), wgt(*), work(lwork)

A.2.5 F11XAF

Syntax :
f11xaf(trans, n, nnz, a, irow, icol, check, x, y, ifail)
Description:
Computes a matrix-vector or transposed matrix-vector product. Both used, but no check-
ing.
Variables :
integer: n, nnz, irow(nnz), icol(nnz), ifail
real(kind=nag wp): a(nnz), x(n), y(n)
character(1): trans, check

A.2.6 F11DBF

Syntax :
f11dbf(trans, n, a, la, irow, icol, ipivp, ipivq, istr, idiag, check, y, x, ifail)
Description:
Solves a system of linear equations, Mx = y, involving the incomplete LU preconditioning
matrix generated from calling f11daf. Never used transposed or checked.
Variables :
integer: n, la, irow(la), icol(la), ipivp(n), ipivq(n), istr(n+1), idiag(n), ifail
real(kind=nag wp): a(la), y(n), x(n)
character(1): trans, check

A.2.7 Key NAG Variables

To get the wanted method, the variable for F11BDF must in this case be set as Method =
’BiCGSTAB’. It is also important that precon is set as precon = ’P’ when preconditioning
is used. To obtain the termination criteria used in this paper, variables norm and iterm
must be set as norm = ’I’ and iterm = 1.

35

APPENDIX A. FUNCTIONS USED

36

Appendix B

FORTRAN 95 Code for 2D
Backward-Facing Step With Wilcox
K-Omega Model

1 MODULE field

2 IMPLICIT NONE

3 INTEGER :: iter ,itmax ,i,j

4 INTEGER :: ibar ,jbar ,ip ,jp ,imax ,jmax ,im ,jm ,ist ,jst ,istm ,jstm ,istp ,jstp

5 INTEGER :: starttime (7),endtime (7),timespent (7)

6 REAL(KIND =2) :: delt ,t,tmax ,delx ,dely ,epsi ,relax ,xmax ,ymax ,rdx ,rdy ,beta

,rdt ,rdxx ,rdyy ,ny

7 REAL(KIND =2), ALLOCATABLE , DIMENSION (:,:) :: u,v,p,dp ,uo ,vo ,po

8 END MODULE field

9

10 MODULE turbf

11 IMPLICIT NONE

12 REAL(KIND =2) :: sigk ,bettas ,sigom ,betta ,gamm

13 REAL(KIND =2), ALLOCATABLE , DIMENSION (:,:) :: d1 ,nyt ,k,om

14 END MODULE turbf

15

16 MODULE nag_values

17 IMPLICIT NONE

18 INTEGER :: iterm , n, m, maxitn , monit , lwreq , lwork , ifail

, irevcm , ifail1 , &

19 nnz ,la,lfill ,nnzc ,npivm ,liwork

20 INTEGER , ALLOCATABLE :: irow (:),icol (:),ipivp (:),ipivq (:),istr (:),idiag

(:),iwork (:)

21 REAL(KIND =2) :: tol , anorm , sigmax , dtol

22 REAL(KIND =2), ALLOCATABLE :: work (:),x(:),b(:),wgt (:) ,a(:)

23 CHARACTER (8) :: method

24 CHARACTER (1) :: precon , norm , weigth ,pstrat ,milu

25 END MODULE nag_values

26

27 PROGRAM sola2d

28 !---

29 ! Solves the navier -stokes equations on the backward -facing

30 ! step case with Wilcox k-omega turbulence model

31 ! Version June 2015, Eirik Heroe

32 !--

33 USE field

37

APPENDIX B. FORTRAN 95 CODE FOR 2D BACKWARD-FACING STEP WITH
WILCOX K-OMEGA MODEL

34 IMPLICIT NONE

35 INTEGER :: ii ,tid ,iii ,itercount ,itermax

36 REAL(KIND =2) :: checkValue =1.0E-6,norm

37 REAL(KIND =2), ALLOCATABLE , DIMENSION (:) :: ucheck

38

39 timespent = 0

40 CALL x05aaf(starttime) !Start time

41 CALL setvelval !Define several important parameters

42 CALL precon_pressure !Ready the pressure solver

43 CALL init !Define initial velocity and pressure fields.

44 CALL bcvel !Boundary conditions

45 CALL setturbval

46 CALL inputfromlastitr

47 !CALL inputfrom1D

48

49 ! ==== start of global loop ====

50 WRITE (*,*) ’ Checkvalue = ’, checkValue

51 tid = (INT (((1.0)/delt)))

52 itermax = 20

53

54 itercount = 0

55 ucheck = u(700 ,2:jp)

56 DO ii = 1,tid

57 !Velocity iterations

58 CALL tentvel

59 CALL bcvel

60 CALL congrad_nag_pres

61 CALL calvel

62 CALL bcvel

63 !Turbulence iterations

64 CALL turbitr

65 t = t + delt

66 END DO

67 WRITE (*,*) ’ t = ’,t

68 norm = (NORM2(u(700 ,2:jp)-ucheck))

69 WRITE (*,*) ’ Norm = ’,norm

70 CALL output

71 itercount = itercount + 1

72 WRITE (*,*) ’ Iteration ’,itercount , ’ of ’,itermax

73

74 DO ii = 1,(itermax -1)

75 ucheck = u(700 ,2:jp)

76 DO iii = 1,tid

77 !Velocity iterations

78 CALL tentvel

79 CALL bcvel

80 CALL congrad_nag_pres

81 CALL calvel

82 CALL bcvel

83 !Turbulence iterations

84 CALL turbitr

85 t = t + delt

86 END DO

87 WRITE (*,*) ’ t = ’,t

88 norm = (NORM2(u(700 ,2:jp)-ucheck))

89 WRITE (*,*) ’ Norm = ’,norm

38

APPENDIX B. FORTRAN 95 CODE FOR 2D BACKWARD-FACING STEP WITH
WILCOX K-OMEGA MODEL

90 CALL output

91 itercount = itercount + 1

92 WRITE (*,*) ’ Iteration ’,itercount , ’ of ’,itermax

93 IF (norm <= checkValue) THEN

94 WRITE (*,*)’ Found steady state ’

95 EXIT

96 END IF

97 END DO

98

99 ! ==== end of global loop ====

100

101 CALL x05aaf(endtime) !Time after iterations

102 timespent = endtime - starttime

103 CALL output

104

105 WRITE (*,*)’simulation finished.’

106 END PROGRAM sola2d

107 !--

108 SUBROUTINE setvelval

109 ! purpose:

110 ! to define most of the parameters

111 USE field

112 IMPLICIT NONE

113 REAL(KIND =2) :: h

114

115 h = 0.1

116 xmax = 30.0*h

117 ymax = 6.0*h

118

119 ibar = 900

120 jbar = 300

121 ip=ibar+1

122 jp=jbar+1

123 imax=ibar+2

124 jmax=jbar+2

125 im = ibar -1

126 jm = jbar -1

127

128 ist = 300

129 jst = 50

130 istp = ist + 1

131 jstp = jst + 1

132 istm = ist - 1

133 jstm = jst - 1

134

135 delx = REAL(xmax)/REAL(ibar)

136 dely = REAL(ymax)/REAL(jbar)

137

138 t = 0.0

139 delt = 1.0E-5

140

141 beta = 0.00

142

143 rdx = 1.0/ delx

144 rdxx = rdx **2.0

145 rdy = 1.0/ dely

39

APPENDIX B. FORTRAN 95 CODE FOR 2D BACKWARD-FACING STEP WITH
WILCOX K-OMEGA MODEL

146 rdyy = rdy **2.0

147 rdt = 1.0/ delt

148

149 ny = 3.1175E-4

150

151 ALLOCATE(u(ibar+2,jbar +2),v(ibar+2,jbar +2),p(ibar+2,jbar +2),dp(ibar+2,

jbar +2),uo(ibar+2,jbar +2),vo(ibar+2,jbar +2),po(ibar+2,jbar +2))

152

153 RETURN

154 END SUBROUTINE setvelval

155 !--

156 SUBROUTINE bcvel

157 ! purpose:

158 ! to give boundary conditions to the velocities around the domain

159 USE field

160 IMPLICIT NONE

161

162 u(ip ,1: jmax) = u(ibar ,1: jmax) ! Outlet

163 v(imax ,2:jp) = v(ip ,2:jp) ! Outlet

164

165 u(ist ,2:jst) = 0.0 ! Vertical "stepwall"

166 v(ist ,1: jstm) = -v(istp ,1: jstm) ! Vertical "stepwall"

167

168 v(1:imax ,jp) = 0.0 ! Symmetry wall

169 u(1:ip,jmax) = u(1:ip,jp) ! Symmetry wall

170

171 v(istp:imax ,1) = 0.0 ! Lower wall

172 u(istp:ip ,1) = -u(istp:ip ,2) !lower wall

173

174 u(2:istm ,jst) = -u(2:istm ,jstp) ! Horizontal "stepwall"

175 v(2:ist ,jst) = 0.0 ! Horizontal "stepwall"

176

177 RETURN

178 END SUBROUTINE

179 !--

180 SUBROUTINE setturbval

181 ! purpose:

182 ! to set turbulent values

183 USE field

184 USE turbf

185 IMPLICIT NONE

186

187 ALLOCATE(nyt(ibar+2,jbar +2),k(ibar+2,jbar +2),om(ibar+2,jbar +2))

188

189 !Usually overwritten:

190 om = 0.01

191 nyt = 1.0E-7

192 k = 0.01

193

194

195

196

197 !Verdier , "k-omega"

198 bettas = 0.09

199 sigk = 0.5

200 sigom = 0.5

40

APPENDIX B. FORTRAN 95 CODE FOR 2D BACKWARD-FACING STEP WITH
WILCOX K-OMEGA MODEL

201 betta = 0.075

202 gamm = 5.0/9.0

203

204 END SUBROUTINE

205 !--

206 SUBROUTINE init

207 ! purpose:

208 ! to initiate the velocity and pressure fields , usually

209 ! overwritten

210 USE field

211 IMPLICIT NONE

212

213 u=0.01

214 v=0.0

215 p=0.0

216 dp = 0.0

217

218 RETURN

219 END SUBROUTINE

220 !--

221 SUBROUTINE tentvel

222 ! purpose:

223 ! to compute the tentative velocity fields

224 USE field

225 USE turbf

226 IMPLICIT NONE

227 REAL(KIND =2),DIMENSION(im ,jbar) :: visux ,visuy

228 REAL(KIND =2),DIMENSION(ibar ,jm) :: visvx ,visvy

229

230 uo = u

231 vo = v

232

233 visux = rdxx *((ny+nyt(3:ip ,2:jp))*(uo(3:ip ,2:jp)-uo(2:ibar ,2:jp)) -(ny+

nyt(2:ibar ,2:jp))*(uo(2:ibar ,2:jp)-uo(1:im ,2:jp)))

234 visvy = rdyy *((ny+nyt(2:ip ,3:jp))*(vo(2:ip ,3:jp)-vo(2:ip ,2: jbar)) -(ny+

nyt(2:ip ,2: jbar))*(vo(2:ip ,2: jbar)-vo(2:ip ,1:jm)))

235

236 visuy = rdyy*(&

237 & (uo(2:ibar ,3: jmax)-uo(2:ibar ,2:jp)) * &

238 & (ny +0.25*(nyt(3:ip ,3: jmax)+nyt(3:ip ,2:jp)+nyt(2:ibar ,3: jmax)+nyt

(2:ibar ,2:jp))) &

239 & - (uo(2:ibar ,2:jp)-uo(2:ibar ,1: jbar)) * &

240 & (ny +0.25*(nyt(3:ip ,2:jp)+nyt(3:ip ,1: jbar)+nyt(2:ibar ,2:jp)+nyt(2:

ibar ,1: jbar))) &

241 &)

242

243 visvx = rdxx * (&

244 & (vo(3:imax ,2: jbar)-vo(2:ip ,2: jbar)) * &

245 & (ny +0.25*(nyt(3:imax ,3:jp)+nyt(3:imax ,2: jbar)+nyt(2:ip ,3:jp)+nyt

(2:ip ,2: jbar))) &

246 & - (vo(2:ip ,2: jbar)-vo(1:ibar ,2: jbar)) * &

247 & (ny +0.25*(nyt(2:ip ,3:jp)+nyt(2:ip ,2: jbar)+nyt(1:ibar ,3:jp)+nyt(1:

ibar ,2: jbar))) &

248 &)

249

250 u(2:ibar ,2:jp) = uo(2:ibar ,2:jp) + delt*(&

41

APPENDIX B. FORTRAN 95 CODE FOR 2D BACKWARD-FACING STEP WITH
WILCOX K-OMEGA MODEL

251 & rdx*beta*(p(2:ibar ,2:jp)-p(3:ip ,2:jp)) &

252 & -0.25*rdx*((uo(2:ibar ,2:jp)+uo(3:ip ,2:jp))**2.0 -(uo(2:ibar ,2:jp)+uo

(1:im ,2:jp))**2.0) &

253 & -0.25*rdy*(&

254 & (vo(2:ibar ,2:jp)+vo(3:ip ,2:jp))*(uo(2:ibar ,2:jp) +uo(2:ibar ,3:

jmax))- &

255 & (vo(2:ibar ,1: jbar)+vo(3:ip ,1: jbar))*(uo(2:ibar ,1: jbar)+uo(2:ibar

,2:jp)))&

256 & + visux + visuy &

257 &)

258

259 v(2:ip ,2: jbar) = vo(2:ip ,2: jbar) + delt*(&

260 & rdy*beta*(p(2:ip ,2: jbar)-p(2:ip ,3:jp)) &

261 & -0.25*rdy*((vo(2:ip ,2: jbar)+vo(2:ip ,3:jp))**2.0 -(vo(2:ip ,1:jm)+vo

(2:ip ,2: jbar))**2.0) &

262 & -0.25*rdx*(&

263 & (uo(2:ip ,2: jbar) +uo(2:ip ,3:jp))*(vo(2:ip ,2: jbar) +vo(3:imax ,2:

jbar))- &

264 & (uo(1:ibar ,2: jbar)+uo(1:ibar ,3:jp))*(vo(1:ibar ,2: jbar)+vo(2:ip ,2:

jbar)))&

265 & + visvy + visvx &

266 &)

267

268 u(1:istm ,1: jstm) = 0.0

269 v(1:istm ,1: jstm) = 0.0

270

271 RETURN

272 END SUBROUTINE

273 !---

274 SUBROUTINE calvel

275 ! purpose:

276 ! to update the tentative velocity field to the correct field

277 USE field

278 IMPLICIT NONE

279

280 u(2:ibar ,2:jp) = u(2:ibar ,2:jp) + delt*rdx*(dp(2:ibar ,2:jp)-dp(3:ip ,2:jp

))

281 v(2:ip ,2: jbar) = v(2:ip ,2: jbar) + delt*rdy*(dp(2:ip ,2: jbar)-dp(2:ip ,3:jp

))

282

283 RETURN

284 END SUBROUTINE

285 !--

286 SUBROUTINE turbitr

287 USE field

288 USE turbf

289 IMPLICIT NONE

290 REAL(KIND =2),DIMENSION(ibar ,jbar) :: prod ,dudy ,dudx ,dvdx ,dvdy ,viskx ,

visky ,visox ,visoy ,velk ,velom ,dkdx ,dkdy ,domdx ,domdy

291

292

293 dudx = (u(2:ip ,2:jp)-u(1:ibar ,2:jp))*rdx

294 dudy = ((u(2:ip ,3: jmax)+u(1:ibar ,3: jmax))-(u(2:ip ,1: jbar)+u(1:ibar ,1:

jbar)))*0.5*(0.5* rdy)

295

42

APPENDIX B. FORTRAN 95 CODE FOR 2D BACKWARD-FACING STEP WITH
WILCOX K-OMEGA MODEL

296 dvdx = ((v(3:imax ,2:jp)+v(3:imax ,1: jbar))-(v(1:ibar ,2:jp)+v(1:ibar ,1:

jbar)))*0.5*(0.5* rdx)

297 dvdy = (v(2:ip ,2:jp)-v(2:ip ,1: jbar))*rdy

298

299 dkdx = (k(3:imax ,2:jp)-k(1:ibar ,2:jp))*0.5* rdx

300 dkdy = (k(2:ip ,3: jmax)-k(2:ip ,1: jbar))*0.5* rdy

301

302 domdx = (om(3:imax ,2:jp)-om(1:ibar ,2:jp))*0.5* rdx

303 domdy = (om(2:ip ,3: jmax)-om(2:ip ,1: jbar))*0.5* rdy

304

305 velk = dudx*k(2:ip ,2:jp) + dkdx*(u(2:ip ,2:jp)+u(1:ibar ,2:jp))*0.5 &

306 + dvdy*k(2:ip ,2:jp) + dkdy*(v(2:ip ,2:jp)+v(2:ip ,1: jbar))*0.5

307

308 velom = dudx*om(2:ip ,2:jp) + domdx *(u(2:ip ,2:jp)+u(1:ibar ,2:jp))*0.5 &

309 + dvdy*om(2:ip ,2:jp) + domdy *(v(2:ip ,2:jp)+v(2:ip ,1: jbar))*0.5

310

311 prod = &

312 & dudx*(nyt(2:ip ,2:jp)*(2.0* dudx -(2.0/3.0) *(dudx+dvdy)) -(2.0/3.0)*k(2:

ip ,2:jp)) +& ! 11

313 & dvdy*(nyt(2:ip ,2:jp)*(2.0* dvdy -(2.0/3.0) *(dudx+dvdy)) -(2.0/3.0)*k(2:

ip ,2:jp)) +& ! 22

314 & dvdx*nyt(2:ip ,2:jp)*(dvdx+dudy) + & ! 21

315 & dudy*nyt(2:ip ,2:jp)*(dudy+dvdx) ! 12

316

317 viskx = &

318 & ny*rdxx*(k(3:imax ,2:jp)+k(1:ibar ,2:jp) -2.0*k(2:ip ,2:jp)) & !ny

ddk/ddx

319 & + 0.5* rdxx*sigk*(& !d/dx(sig nyt(dk/dx)) (

320 & (nyt(3:imax ,2:jp)+nyt(2:ip ,2:jp))*(k(3:imax ,2:jp)-k(2:ip ,2:jp)) &

! ---

321 & -(nyt(2:ip ,2:jp)+nyt(1:ibar ,2:jp))*(k(2:ip ,2:jp)-k(1:ibar ,2:jp)) &

! ---

322 &) !)

323

324 visky = &

325 & ny*rdyy*(k(2:ip ,3: jmax)+k(2:ip ,1: jbar) -2.0*k(2:ip ,2:jp)) & !ny

ddk/ddy

326 & + 0.5* rdyy*sigk*(& !d/dy(sig nyt(dk/dy)) (

327 & (nyt(2:ip ,3: jmax)+nyt(2:ip ,2:jp))*(k(2:ip ,3: jmax)-k(2:ip ,2:jp)) &

! ---

328 & -(nyt(2:ip ,2:jp)+nyt(2:ip ,1: jbar))*(k(2:ip ,2:jp)-k(2:ip ,1: jbar)) &

! ---

329 &) !)

330

331 visox = &

332 & ny*rdxx*(om(3:imax ,2:jp)+om(1:ibar ,2:jp) -2.0*om(2:ip ,2:jp)) & !ny

ddom/ddx

333 & + 0.5* rdxx*sigom *(& !d/dx(sig nyt(dom/dx)) (

334 & (nyt(3:imax ,2:jp)+nyt(2:ip ,2:jp))*(om(3:imax ,2:jp)-om(2:ip ,2:jp))

&! ---

335 & -(nyt(2:ip ,2:jp)+nyt(1:ibar ,2:jp))*(om(2:ip ,2:jp)-om(1:ibar ,2:jp))

&! ---

336 &) !)

337

338 visoy = &

43

APPENDIX B. FORTRAN 95 CODE FOR 2D BACKWARD-FACING STEP WITH
WILCOX K-OMEGA MODEL

339 & ny*rdyy*(om(2:ip ,3: jmax)+om(2:ip ,1: jbar) -2.0*om(2:ip ,2:jp)) & !ny

ddom/ddy

340 & + 0.5* rdyy*sigom *(& !d/dy(sig nyt(dom/dy)) (

341 & (nyt(2:ip ,3: jmax)+nyt(2:ip ,2:jp))*(om(2:ip ,3: jmax)-om(2:ip ,2:jp))

&! ---

342 & -(nyt(2:ip ,2:jp)+nyt(2:ip ,1: jbar))*(om(2:ip ,2:jp)-om(2:ip ,1: jbar))

&! ---

343 &) !)

344

345 k(2:ip ,2:jp) = k(2:ip ,2:jp) + delt*(&

346 & - velk &

347 & + prod &

348 & -bettas*om(2:ip ,2:jp)*k(2:ip ,2:jp) &

349 & + viskx + visky)

350

351 om(2:ip ,2:jp) = om(2:ip ,2:jp) + delt*(&

352 & - velom &

353 & + (gamm/(nyt(2:ip ,2:jp)))*prod &

354 & - betta*om(2:ip ,2:jp)**2.0 &

355 & + visox + visoy)

356

357

358 !Outlets

359 k(imax ,2:jp) = k(ip ,2:jp)

360 om(imax ,2:jp) = om(ip ,2:jp)

361

362 !Symmetry wall

363 k(2:ip,jmax) = k(2:ip,jp)

364 om(2:ip,jmax) = om(2:ip ,jp)

365

366 !Vertical "stepwall"

367 k(ist ,2:jst) = -k(istp ,2:jst)

368 om(ist ,2: jst) = -om(istp ,2: jst) + 60.0*ny/(betta*(delx /2.0) **2.0)

369

370 !Horizontal "stepwall"

371 k(2:istm ,jst) = -k(2:istm ,jstp)

372 om(2:istm ,jst) = -om(2:istm ,jstp) + 60.0*ny/(betta*(dely /2.0) **2.0)

373

374 !Lower wall

375 k(istp:ip ,1) = -k(istp:ip ,2)

376 om(istp:ip ,1) = -om(istp:ip ,2) + 60.0*ny/(betta*(dely /2.0) **2.0)

377

378 ! nyt

379 nyt (2:ist ,jstp:jp) = k(2:ist ,jstp:jp)/(om(2:ist ,jstp:jp)) !Part1

380 nyt(istp:ip ,2:jp) = k(istp:ip ,2:jp)/(om(istp:ip ,2:jp)) !Part2

381

382 nyt (2:ip ,jmax) = nyt(2:ip ,jp) !Symmetry wall

383 nyt (2:istm ,jst) = -nyt(2:istm ,jstp) !Horizontal "stepwall"

384 nyt(istp:ip ,1) = -nyt(istp:ip ,2) !Lower wall

385 nyt(ist ,2: jst) = -nyt(istp ,2:jst) !Vertical "stepwall"

386 nyt(imax ,2:jp) = nyt(ip ,2:jp) !Outlet

387

388 k(1:istm ,1: jstm) = 0.0

389 om(1:istm ,1: jstm) = 1.0

390

391 END SUBROUTINE

44

APPENDIX B. FORTRAN 95 CODE FOR 2D BACKWARD-FACING STEP WITH
WILCOX K-OMEGA MODEL

392 !--

393 SUBROUTINE congrad_nag_pres

394 ! purpose:

395 ! solve the pressure equation

396 USE field

397 USE nag_values

398 IMPLICIT NONE

399 INTEGER :: nm ,np

400

401 nm = (ip-ist)*(jstm)

402 np = nm +1

403 ifail = 0

404 CALL f11bdf(method ,precon ,norm ,weigth ,iterm ,n,m,tol ,maxitn ,anorm ,sigmax ,

monit ,lwreq ,work ,lwork ,ifail)

405 lwreq = lwork

406

407 b(1:nm) = RESHAPE (&

408 ((u(istp:ip ,2: jst)-u(ist:ibar ,2: jst))*rdx +((v(istp:ip ,2: jst)-v(istp:

ip ,1: jstm))*rdy))&

409 ,(/nm/))

410 b(np:n) = RESHAPE (&

411 ((u(2:ip ,jstp:jp)-u(1:ibar ,jstp:jp))*rdx +((v(2:ip ,jstp:jp)-v(2:ip ,jst

:jbar))*rdy))&

412 ,(/n-nm/))

413

414 irevcm = 0

415 ifail = 1

416

417 loop: DO

418 CALL f11bef(irevcm ,x,b,wgt ,work ,lwreq ,ifail)

419 IF (irevcm /=4) THEN

420 ifail1 = 0

421 SELECT CASE (irevcm)

422 CASE (-1)

423 CALL f11xaf(’T’,n,nnz ,a,irow ,icol ,’N’,x,b,ifail1)

424 CASE (1)

425 CALL f11xaf(’N’,n,nnz ,a,irow ,icol ,’N’,x,b,ifail1)

426 CASE (2)

427 CALL f11dbf(’N’,n,a,la ,irow ,icol ,ipivp ,ipivq ,istr , &

428 idiag ,’N’,x,b,ifail1)

429 END SELECT

430 IF (ifail1 /=0) THEN

431 irevcm = 6

432 END IF

433 ELSE IF (ifail /=0) THEN

434 EXIT loop

435 ELSE

436 EXIT loop

437 END IF

438 END DO loop

439

440 dp(istp:ip ,2: jst) = RESHAPE(x(1:nm) ,(/(ip -istp),(jstm)/))

441 dp(2:ip,jstp:jp) = RESHAPE(x(np:n) ,(/ibar ,(jp -jstp)/))

442

443 ! BC at ends

444 dp(1,2:jp) = dp(2,2:jp)

45

APPENDIX B. FORTRAN 95 CODE FOR 2D BACKWARD-FACING STEP WITH
WILCOX K-OMEGA MODEL

445 dp(imax ,2:jp) = 0.0!p(2,2:jp)

446

447 !BC at top/bottom

448 dp(2:ip,jmax) = dp(2:ip ,jp)

449

450 dp(2:istm ,jst) = dp(2:istm ,jstp)! Horizontal step

451 dp(istp:ip ,1) = dp(istp:ip ,2) ! Lower wall

452 dp(ist ,2: jst) = dp(istp ,2: jst) ! Vertical step

453

454 po = p

455 p = po*beta + dp

456

457 ! BC at ends

458 p(1,2:jp) = p(2,2:jp)

459 p(imax ,2:jp) = 0.0

460

461 !BC at top/bottom

462 p(2:ip,jmax) = p(2:ip,jp)

463

464 p(2:istm ,jst) = p(2:istm ,jstp)! Horizontal step

465 p(istp:ip ,1) = p(istp:ip ,2) ! Lower wall

466 p(ist ,2:jst) = p(istp ,2:jst) ! Vertical step

467

468

469 RETURN

470 END SUBROUTINE congrad_nag_pres

471 !---

472 SUBROUTINE output

473 USE field

474 USE turbf

475 IMPLICIT NONE

476 INTEGER ,PARAMETER :: uout=13,vout=14,pout=15,kout=16, omout=17, nytout

=18,tout=19, u2out =20

477 REAL(KIND =2) :: totaltime

478 CHARACTER(LEN =12) :: frmt

479

480 !’hours spent , minutes spent , seconds spent , millisecnds spent ’

481 !timespent (4),timespent (5),timespent (6),timespent (7)

482 totaltime = timespent (4)*60 + timespent (5)*60 + timespent (6)! +

timespent (7) /1000

483

484 WRITE(frmt ,’(A1,I3,A8)’) ’(’,imax ,’E15.5E2)’

485 PRINT*,’frmt = ’,frmt

486

487 OPEN (UNIT=tout ,FILE=’time.dat’,STATUS=’unknown ’,FORM=’formatted ’)

488 WRITE(tout ,’(F15.5)’) totaltime

489 CLOSE(tout)

490

491 OPEN (UNIT=uout ,FILE=’u.dat’,STATUS=’unknown ’,FORM=’formatted ’)

492 WRITE(uout ,frmt) u(:,:)

493 CLOSE(uout)

494

495 OPEN (UNIT=vout ,FILE=’v.dat’,STATUS=’unknown ’,FORM=’formatted ’)

496 WRITE(vout ,frmt) v(:,:)

497 CLOSE(vout)

498

46

APPENDIX B. FORTRAN 95 CODE FOR 2D BACKWARD-FACING STEP WITH
WILCOX K-OMEGA MODEL

499 OPEN (UNIT=pout ,FILE=’p.dat’,STATUS=’unknown ’,FORM=’formatted ’)

500 WRITE(pout ,frmt) p(:,:)

501 CLOSE(pout)

502

503 OPEN (UNIT=kout ,FILE=’k.dat’,STATUS=’unknown ’,FORM=’formatted ’)

504 WRITE(kout ,frmt) k(:,:)

505 CLOSE(kout)

506

507 OPEN (UNIT=omout ,FILE=’om.dat’,STATUS=’unknown ’,FORM=’formatted ’)

508 WRITE(omout ,frmt) om(:,:)

509 CLOSE(omout)

510

511 OPEN (UNIT=nytout ,FILE=’nyt.dat’,STATUS=’unknown ’,FORM=’formatted ’)

512 WRITE(nytout ,frmt) nyt(:,:)

513 CLOSE(nytout)

514

515 OPEN (UNIT=u2out ,FILE=’u2.dat’,STATUS=’unknown ’,FORM=’formatted ’)

516 WRITE(u2out ,’(E15.5)’) u(51,:)

517 CLOSE(u2out)

518

519 END SUBROUTINE output

520 !

521 SUBROUTINE inputfromlastitr

522 USE field

523 USE turbf

524 IMPLICIT NONE

525 INTEGER ,PARAMETER :: uin=99,vin=98,pin=97,kin=96,omin=95, nytin =94

526 CHARACTER(LEN =12) :: frmt

527

528 WRITE(frmt ,’(A1,I3,A8)’) ’(’,imax ,’E15.5E2)’

529 PRINT*,’frmt = ’,frmt

530

531 OPEN (UNIT=uin ,FILE=’u.dat’,STATUS=’unknown ’,FORM=’formatted ’)

532 READ(uin ,frmt) u(:,:)

533 CLOSE(uin)

534

535 OPEN (UNIT=vin ,FILE=’v.dat’,STATUS=’unknown ’,FORM=’formatted ’)

536 READ(vin ,frmt) v(:,:)

537 CLOSE(vin)

538

539 OPEN (UNIT=pin ,FILE=’p.dat’,STATUS=’unknown ’,FORM=’formatted ’)

540 READ(pin ,frmt) p(:,:)

541 CLOSE(pin)

542

543 OPEN (UNIT=kin ,FILE=’k.dat’,STATUS=’unknown ’,FORM=’formatted ’)

544 READ(kin ,frmt) k(:,:)

545 CLOSE(kin)

546

547 OPEN (UNIT=omin ,FILE=’om.dat’,STATUS=’unknown ’,FORM=’formatted ’)

548 READ(omin ,frmt) om(:,:)

549 CLOSE(omin)

550

551 OPEN (UNIT=nytin ,FILE=’nyt.dat’,STATUS=’unknown ’,FORM=’formatted ’)

552 READ(nytin ,frmt) nyt(:,:)

47

APPENDIX B. FORTRAN 95 CODE FOR 2D BACKWARD-FACING STEP WITH
WILCOX K-OMEGA MODEL

553 CLOSE(nytin)

554

555 WRITE (*,*) ’ Loaded last iteration ’

556

557 END SUBROUTINE inputfromlastitr

558 !

--

559 SUBROUTINE inputfrom1D

560 USE field

561 USE turbf

562 IMPLICIT NONE

563 INTEGER ,PARAMETER :: uin1=89,kin1=88, omin1=87, nytin1 =86,uin2=85,kin2

=84,omin2 =83, nytin2 =82

564 INTEGER :: ij

565 REAL(KIND =2),DIMENSION (250) :: u250 ,k250 ,om250 ,nyt250

566 REAL(KIND =2),DIMENSION (300) :: u300 ,k300 ,om300 ,nyt300

567 CHARACTER(LEN =12) :: frmt=’(E15.5)’

568

569 !------- 250

570 OPEN (UNIT=uin1 ,FILE=’u250.inp’,STATUS=’unknown ’,FORM=’formatted ’)

571 READ(uin1 ,frmt) u250 (:)

572 CLOSE(uin1)

573

574 OPEN (UNIT=kin1 ,FILE=’k250.inp’,STATUS=’unknown ’,FORM=’formatted ’)

575 READ(kin1 ,frmt) k250 (:)

576 CLOSE(kin1)

577

578 OPEN (UNIT=omin1 ,FILE=’om250.inp’,STATUS=’unknown ’,FORM=’formatted ’)

579 READ(omin1 ,frmt) om250 (:)

580 CLOSE(omin1)

581

582 OPEN (UNIT=nytin1 ,FILE=’nyt250.inp’,STATUS=’unknown ’,FORM=’formatted ’)

583 READ(nytin1 ,frmt) nyt250 (:)

584 CLOSE(nytin1)

585

586 DO ij = 1,ist

587 u(ij,jstp:jbar) = u250 (:)

588 u(ij,jp) = u(ij,jbar)

589 k(ij,jstp:jbar) = k250 (:)

590 k(ij,jp) = k(ij,jbar)

591 om(ij ,jstp:jbar) = om250 (:)

592 om(ij ,jp) = om(ij ,jbar)

593 nyt(ij ,jstp:jbar) = nyt250 (:)

594 nyt(ij ,jp) = nyt(ij ,jbar)

595 END DO

596

597 !-------- 300

598 OPEN (UNIT=uin2 ,FILE=’u300.inp’,STATUS=’unknown ’,FORM=’formatted ’)

599 READ(uin2 ,frmt) u300 (:)

600 CLOSE(uin2)

601

602 OPEN (UNIT=kin2 ,FILE=’k300.inp’,STATUS=’unknown ’,FORM=’formatted ’)!!!

This is bad

603 READ(kin2 ,frmt) k300 (:)

604 CLOSE(kin2)

48

APPENDIX B. FORTRAN 95 CODE FOR 2D BACKWARD-FACING STEP WITH
WILCOX K-OMEGA MODEL

605

606 OPEN (UNIT=omin2 ,FILE=’om300.inp’,STATUS=’unknown ’,FORM=’formatted ’)!!

This is bad

607 READ(omin2 ,frmt) om300 (:)

608 CLOSE(omin2)

609

610 OPEN (UNIT=nytin2 ,FILE=’nyt300.inp’,STATUS=’unknown ’,FORM=’formatted ’)!!

This is probably bad

611 READ(nytin2 ,frmt) nyt300 (:)

612 CLOSE(nytin2)

613

614 DO ij = istp ,imax

615 u(ij ,2:jp) = u300 (:)

616 k(ij ,2:jp) = k300 (:)

617 om(ij ,2:jp) = om300 (:)

618 nyt(ij ,2:jp) = nyt300 (:)

619 END DO

620

621 !------- BC

622 u(ip ,1: jmax) = u(ibar ,1: jmax) ! Outlet

623 v(imax ,1: jmax) = v(ip ,2: jmax) ! Outlet

624

625 u(ist ,2:jst) = 0.0 ! Vertical "stepwall"

626 v(ist ,1: jstm) = -v(istp ,1: jstm) ! Vertical "stepwall"

627

628 v(1:imax ,jp) = 0.0 ! Symmetry wall

629 u(1:ip,jmax) = u(1:ip,jp) ! Symmetry wall

630

631 v(istp:imax ,1) = 0.0 ! Lower wall

632 u(istp:ip ,1) = -u(istp:ip ,2) !lower wall

633

634 u(2:istm ,jst) = -u(2:istm ,jstp) ! Horizontal "stepwall"

635 v(2:ist ,jst) = 0.0 ! Horizontal "stepwall"

636

637 !Outlets

638 k(imax ,2:jp) = k(ip ,2:jp)

639 om(imax ,2:jp) = om(ip ,2:jp)

640

641 !Symmetry wall

642 k(2:ip,jmax) = k(2:ip,jp)

643 om(2:ip,jmax) = om(2:ip ,jp)

644

645 !Vertical "stepwall"

646 k(ist ,2:jst) = -k(istp ,2:jst)

647 om(ist ,2: jst) = -om(istp ,2: jst) + 60.0*ny/(betta*(delx /2.0) **2.0)

648

649 !Horizontal "stepwall"

650 k(2:istm ,jst) = -k(2:istm ,jstp)

651 om(2:istm ,jst) = -om(2:istm ,jstp) + 60.0*ny/(betta*(dely /2.0) **2.0)

652

653 !Lower wall

654 k(istp:ip ,1) = -k(istp:ip ,2)

655 om(istp:ip ,1) = -om(istp:ip ,2) + 60.0*ny/(betta*(dely /2.0) **2.0)

656

657 ! nyt

658 nyt (2:ist ,jstp:jp) = k(2:ist ,jstp:jp)/(om(2:ist ,jstp:jp))!Part1

49

APPENDIX B. FORTRAN 95 CODE FOR 2D BACKWARD-FACING STEP WITH
WILCOX K-OMEGA MODEL

659 nyt(istp:ip ,2:jp) = k(istp:ip ,2:jp)/(om(istp:ip ,2:jp)) !Part2

660

661 nyt (2:ip ,jmax) = nyt(2:ip ,jp)!Symmetry wall

662 nyt (2:istm ,jst) = -nyt(2:istm ,jstp) !Horizontal "stepwall"

663 nyt(istp:ip ,1) = -nyt(istp:ip ,2) !Lower wall

664 nyt(ist ,2: jst) = -nyt(istp ,2:jst) !Vertical "stepwall"

665 nyt(imax ,2:jp) = nyt(ip ,2:jp) ! Outlet

666

667

668 WRITE (*,*) ’ Read input from 1D solution ’

669

670 END SUBROUTINE inputfrom1D

671 !---

672 SUBROUTINE precon_pressure

673 ! purpose:

674 ! set values connected to the NAG library and precondition the

matrix

675 USE field

676 USE nag_values

677 IMPLICIT NONE

678 INTEGER :: row_leng , row_leng_step , prev_leng , runde

679 REAL(KIND =2) :: ap ,apc ,apv ,aph

680

681 ap= -2.0*(rdxx+rdyy)

682 apc=-(rdxx+rdyy)

683 apv=-(rdxx +2.0* rdyy)

684 aph = -(2.0* rdxx+rdyy)

685 ! Parameters for f11daf:

686 n = (istm)*(jbar -jstm)+(ibar -istm)*(jbar)

687 nnz = 5*n - 2*(ibar+jbar)

688 la = 3*nnz

689 ALLOCATE(a(la),irow(la),icol(la))

690 a = 0.0

691 !======== Create a ============

692 row_leng = 5*(ibar -2) + 8

693 row_leng_step = 5*(ibar -istm -2) + 8

694 !First row

695 a(1) = apc

696 irow (1) = 1

697 icol (1) = 1

698 a(2) = rdxx

699 irow (2) = 1

700 icol (2) = 2

701 a(3) = rdyy

702 irow (3) = 1

703 icol (3) = 1 + (ibar -istm)

704

705 runde = 1

706 DO i = 5,(ibar -istm -2) *4+3 ,4

707 runde = runde + 1

708 a(i) = aph

709 irow(i) = runde

710 icol(i) = runde

711 a(i-1) = rdxx

712 irow(i-1) = irow(i)

713 icol(i-1) = icol(i)-1

50

APPENDIX B. FORTRAN 95 CODE FOR 2D BACKWARD-FACING STEP WITH
WILCOX K-OMEGA MODEL

714 a(i+1) = rdxx

715 irow(i+1) = irow(i)

716 icol(i+1) = icol(i)+1

717 a(i+2) = rdyy

718 irow(i+2) = irow(i)

719 icol(i+2) = icol(i) + (ibar -istm)

720 END DO

721 i=4*(ibar -2-istm)+3+2

722 a(i) = aph

723 irow(i) = (ibar -istm)

724 icol(i) = (ibar -istm)

725 a(i-1) = rdxx

726 irow(i-1) = irow(i)

727 icol(i-1) = icol(i)-1

728 a(i+1) = rdyy

729 irow(i+1) = irow(i)

730 icol(i+1) = icol(i) + (ibar -istm)

731

732 !Row 2 to stepheight -1

733 DO i = 2,(jstm -1)

734 runde = 0

735 prev_leng = row_leng_step *(i-2) +4*(ibar -istm -2)+6

736

737 a(2+ prev_leng) = apv

738 irow (2+ prev_leng) = (ibar -istm)*(i-1)+1

739 icol (2+ prev_leng) = (ibar -istm)*(i-1)+1

740

741 a(1+ prev_leng) = rdyy

742 irow (1+ prev_leng) = irow(prev_leng +2)

743 icol (1+ prev_leng) = icol(prev_leng +2) - (ibar -istm)

744

745 a(3+ prev_leng) = rdxx

746 irow (3+ prev_leng) = irow(prev_leng +2)

747 icol (3+ prev_leng) = irow(prev_leng +2) + 1

748

749 a(4+ prev_leng) = rdyy

750 irow (4+ prev_leng) = irow(prev_leng +2)

751 icol (4+ prev_leng) = icol(prev_leng +2) + (ibar -istm)

752

753 DO j = 7,(ibar -2-istm)*5+3 ,5

754 runde = runde + 1

755 a(prev_leng+j) = ap

756 irow(prev_leng+j) = runde + (ibar -istm)*(i-1)+1

757 icol(prev_leng+j) = runde + (ibar -istm)*(i-1)+1

758

759 a(prev_leng+j-1) = rdxx

760 irow(prev_leng+j-1) = irow(prev_leng+j)

761 icol(prev_leng+j-1) = icol(prev_leng+j)-1

762

763 a(prev_leng+j-2) = rdyy

764 irow(prev_leng+j-2) = irow(prev_leng+j)

765 icol(prev_leng+j-2) = icol(prev_leng+j) - (ibar -istm)

766

767 a(prev_leng+j+1) = rdxx

768 irow(prev_leng+j+1) = irow(prev_leng+j)

769 icol(prev_leng+j+1) = icol(prev_leng+j)+1

51

APPENDIX B. FORTRAN 95 CODE FOR 2D BACKWARD-FACING STEP WITH
WILCOX K-OMEGA MODEL

770

771 a(prev_leng+j+2) = rdyy

772 irow(prev_leng+j+2) = irow(prev_leng+j)

773 icol(prev_leng+j+2) = icol(prev_leng+j) + (ibar -istm)

774 END DO

775 a(prev_leng+row_leng_step -1) = ap

776 irow(prev_leng+row_leng_step -1) = runde + (ibar -istm)*(i-1)+2

777 icol(prev_leng+row_leng_step -1) = runde + (ibar -istm)*(i-1)+2

778

779 a(prev_leng+row_leng_step) = rdyy

780 irow(prev_leng+row_leng_step) = irow(prev_leng+row_leng_step -1)

781 icol(prev_leng+row_leng_step) = icol(prev_leng+row_leng_step -1)+(

ibar -istm)

782

783 a(prev_leng+row_leng_step -2) = rdxx

784 irow(prev_leng+row_leng_step -2) = irow(prev_leng+row_leng_step -1)

785 icol(prev_leng+row_leng_step -2) = icol(prev_leng+row_leng_step -1) -1

786

787 a(prev_leng+row_leng_step -3) = rdyy

788 irow(prev_leng+row_leng_step -3) = irow(prev_leng+row_leng_step -1)

789 icol(prev_leng+row_leng_step -3) = icol(prev_leng+row_leng_step -1) -(

ibar -istm)

790 END DO

791

792 ! row stepheight

793 prev_leng = row_leng_step *(jstm -1) +4*(ibar -istm -2)+6

794

795 a(2+ prev_leng) = apv

796 irow (2+ prev_leng) = (ibar -istm)*(jstm -1)+1

797 icol (2+ prev_leng) = (ibar -istm)*(jstm -1)+1

798

799 a(1+ prev_leng) = rdyy

800 irow (1+ prev_leng) = irow(prev_leng +2)

801 icol (1+ prev_leng) = icol(prev_leng +2) - (ibar -istm)

802

803 a(3+ prev_leng) = rdxx

804 irow (3+ prev_leng) = irow(prev_leng +2)

805 icol (3+ prev_leng) = irow(prev_leng +2) + 1

806

807 a(4+ prev_leng) = rdyy

808 irow (4+ prev_leng) = irow(prev_leng +2)

809 icol (4+ prev_leng) = icol(prev_leng +2) + (ibar)

810

811 runde = 0

812 DO j = 7,(ibar -2-istm)*5+3 ,5

813 runde = runde + 1

814 a(prev_leng+j) = ap

815 irow(prev_leng+j) = runde + (ibar -istm)*(jstm -1)+1

816 icol(prev_leng+j) = runde + (ibar -istm)*(jstm -1)+1

817

818 a(prev_leng+j-1) = rdxx

819 irow(prev_leng+j-1) = irow(prev_leng+j)

820 icol(prev_leng+j-1) = icol(prev_leng+j)-1

821

822 a(prev_leng+j-2) = rdyy

823 irow(prev_leng+j-2) = irow(prev_leng+j)

52

APPENDIX B. FORTRAN 95 CODE FOR 2D BACKWARD-FACING STEP WITH
WILCOX K-OMEGA MODEL

824 icol(prev_leng+j-2) = icol(prev_leng+j) - (ibar -istm)

825

826 a(prev_leng+j+1) = rdxx

827 irow(prev_leng+j+1) = irow(prev_leng+j)

828 icol(prev_leng+j+1) = icol(prev_leng+j)+1

829

830 a(prev_leng+j+2) = rdyy

831 irow(prev_leng+j+2) = irow(prev_leng+j)

832 icol(prev_leng+j+2) = icol(prev_leng+j) + ibar

833 END DO

834

835 a(prev_leng+row_leng_step -1) = ap

836 irow(prev_leng+row_leng_step -1) = runde + (ibar -istm)*(jstm -1)+2

837 icol(prev_leng+row_leng_step -1) = runde + (ibar -istm)*(jstm -1)+2

838

839 a(prev_leng+row_leng_step) = rdyy

840 irow(prev_leng+row_leng_step) = irow(prev_leng+row_leng_step -1)

841 icol(prev_leng+row_leng_step) = icol(prev_leng+row_leng_step -1) + ibar

842

843 a(prev_leng+row_leng_step -2) = rdxx

844 irow(prev_leng+row_leng_step -2) = irow(prev_leng+row_leng_step -1)

845 icol(prev_leng+row_leng_step -2) = icol(prev_leng+row_leng_step -1) -1

846

847 a(prev_leng+row_leng_step -3) = rdyy

848 irow(prev_leng+row_leng_step -3) = irow(prev_leng+row_leng_step -1)

849 icol(prev_leng+row_leng_step -3) = icol(prev_leng+row_leng_step -1) -(ibar

-istm)

850

851 ! row stepheight

852 prev_leng = row_leng_step *(jstm -2) +4*(ibar -istm -2)+6

853

854 a(2+ prev_leng) = apv

855 irow (2+ prev_leng) = (ibar -istm)*(jstm -1)+1

856 icol (2+ prev_leng) = (ibar -istm)*(jstm -1)+1

857

858 a(1+ prev_leng) = rdyy

859 irow (1+ prev_leng) = irow(prev_leng +2)

860 icol (1+ prev_leng) = icol(prev_leng +2) - (ibar -istm)

861

862 a(3+ prev_leng) = rdxx

863 irow (3+ prev_leng) = irow(prev_leng +2)

864 icol (3+ prev_leng) = irow(prev_leng +2) + 1

865

866 a(4+ prev_leng) = rdyy

867 irow (4+ prev_leng) = irow(prev_leng +2)

868 icol (4+ prev_leng) = icol(prev_leng +2) + (ibar)

869

870 runde = 0

871 DO j = 7,(ibar -2-istm)*5+3 ,5

872 runde = runde + 1

873 a(prev_leng+j) = ap

874 irow(prev_leng+j) = runde + (ibar -istm)*(jstm -1)+1

875 icol(prev_leng+j) = runde + (ibar -istm)*(jstm -1)+1

876

877 a(prev_leng+j-1) = rdxx

878 irow(prev_leng+j-1) = irow(prev_leng+j)

53

APPENDIX B. FORTRAN 95 CODE FOR 2D BACKWARD-FACING STEP WITH
WILCOX K-OMEGA MODEL

879 icol(prev_leng+j-1) = icol(prev_leng+j)-1

880

881 a(prev_leng+j-2) = rdyy

882 irow(prev_leng+j-2) = irow(prev_leng+j)

883 icol(prev_leng+j-2) = icol(prev_leng+j) - (ibar -istm)

884

885 a(prev_leng+j+1) = rdxx

886 irow(prev_leng+j+1) = irow(prev_leng+j)

887 icol(prev_leng+j+1) = icol(prev_leng+j)+1

888

889 a(prev_leng+j+2) = rdyy

890 irow(prev_leng+j+2) = irow(prev_leng+j)

891 icol(prev_leng+j+2) = icol(prev_leng+j) + ibar

892 END DO

893

894 a(prev_leng+row_leng_step -1) = ap

895 irow(prev_leng+row_leng_step -1) = runde + (ibar -istm)*(jstm -1)+2

896 icol(prev_leng+row_leng_step -1) = runde + (ibar -istm)*(jstm -1)+2

897

898 a(prev_leng+row_leng_step) = rdyy

899 irow(prev_leng+row_leng_step) = irow(prev_leng+row_leng_step -1)

900 icol(prev_leng+row_leng_step) = icol(prev_leng+row_leng_step -1) + ibar

901

902 a(prev_leng+row_leng_step -2) = rdxx

903 irow(prev_leng+row_leng_step -2) = irow(prev_leng+row_leng_step -1)

904 icol(prev_leng+row_leng_step -2) = icol(prev_leng+row_leng_step -1) -1

905

906 a(prev_leng+row_leng_step -3) = rdyy

907 irow(prev_leng+row_leng_step -3) = irow(prev_leng+row_leng_step -1)

908 icol(prev_leng+row_leng_step -3) = icol(prev_leng+row_leng_step -1) -(ibar

-istm)

909

910 ! row stepheight +1

911 prev_leng = row_leng_step *(jstm -1) +4*(ibar -istm -2)+6

912

913 a(prev_leng +1) = apc

914 irow(prev_leng +1) = (jstm)*(ibar -istm) + 1

915 icol(prev_leng +1) = (jstm)*(ibar -istm) + 1

916

917 a(prev_leng +2) = rdxx

918 irow(prev_leng +2) = irow(prev_leng +1)

919 icol(prev_leng +2) = icol(prev_leng +1)+1

920

921 a(prev_leng +3) = rdyy

922 irow(prev_leng +3) = irow(prev_leng +1)

923 icol(prev_leng +3) = icol(prev_leng +1) + ibar

924

925 runde = 1

926 DO i = 5,(istm -1) *4+3,4

927 runde = runde + 1

928 a(prev_leng+i) = aph

929 irow(prev_leng+i) = (jstm)*(ibar -istm) + runde

930 icol(prev_leng+i) = (jstm)*(ibar -istm) + runde

931

932 a(prev_leng+i-1) = rdxx

933 irow(prev_leng+i-1) = irow(prev_leng+i)

54

APPENDIX B. FORTRAN 95 CODE FOR 2D BACKWARD-FACING STEP WITH
WILCOX K-OMEGA MODEL

934 icol(prev_leng+i-1) = icol(prev_leng+i)-1

935

936 a(prev_leng+i+1) = rdxx

937 irow(prev_leng+i+1) = irow(prev_leng+i)

938 icol(prev_leng+i+1) = icol(prev_leng+i)+1

939

940 a(prev_leng+i+2) = rdyy

941 irow(prev_leng+i+2) = irow(prev_leng+i)

942 icol(prev_leng+i+2) = icol(prev_leng+i) + ibar

943 END DO

944 DO i = 3+(istm -1) *4+3 ,3+(istm -1) *4+(ibar -istm -2) *5+3 ,5

945 runde = runde + 1

946 a(prev_leng+i) = ap

947 irow(prev_leng+i) = (jstm)*(ibar -istm) + runde

948 icol(prev_leng+i) = (jstm)*(ibar -istm) + runde

949

950 a(prev_leng+i-1) = rdxx

951 irow(prev_leng+i-1) = irow(prev_leng+i)

952 icol(prev_leng+i-1) = icol(prev_leng+i)-1

953

954 a(prev_leng+i-2) = rdyy

955 irow(prev_leng+i-2) = irow(prev_leng+i)

956 icol(prev_leng+i-2) = icol(prev_leng+i) - ibar

957

958 a(prev_leng+i+1) = rdxx

959 irow(prev_leng+i+1) = irow(prev_leng+i)

960 icol(prev_leng+i+1) = icol(prev_leng+i)+1

961

962 a(prev_leng+i+2) = rdyy

963 irow(prev_leng+i+2) = irow(prev_leng+i)

964 icol(prev_leng+i+2) = icol(prev_leng+i) + ibar

965 END DO

966 prev_leng = (ibar -istm -2)*4 + 6 + row_leng_step *(jstm -1) + (istm -1)*4 +

3 + (ibar -istm -1)*5

967 a(prev_leng +3) = ap

968 irow(prev_leng +3) = runde + (jstm)*(ibar -istm) + 1

969 icol(prev_leng +3) = runde + (jstm)*(ibar -istm) + 1

970

971 a(prev_leng +4) = rdyy

972 irow(prev_leng +4) = irow(prev_leng +3)

973 icol(prev_leng +4) = icol(prev_leng +3) + ibar

974

975 a(prev_leng +2) = rdxx

976 irow(prev_leng +2) = irow(prev_leng +3)

977 icol(prev_leng +2) = icol(prev_leng +3) - 1

978

979 a(prev_leng +1) = rdyy

980 irow(prev_leng +1) = irow(prev_leng +3)

981 icol(prev_leng +1) = icol(prev_leng +3) - ibar

982 ! row stepheight +2 to row jbar -1

983 DO i = (jstm +2) ,(jbar -1)

984 runde = 0

985 ! prev_leng = (i-jstm -2)*row_leng + ((ibar -istm -2)*4 + 6) + (

row_leng_step *(jstm -1)) + ((istm -1)*4 + 7 + (ibar -istm -1)*5)

986 prev_leng = (ibar -istm -2)*4 + 6 + row_leng_step *(jstm -1) + (istm -1)*4

+ 7 + (ibar -istm -1)*5 + (i-(jstm +2))*row_leng

55

APPENDIX B. FORTRAN 95 CODE FOR 2D BACKWARD-FACING STEP WITH
WILCOX K-OMEGA MODEL

987 a(2+ prev_leng) = apv

988 irow (2+ prev_leng) = jstm*(ibar -istm) + ibar + ibar*(i-jstm -2) + 1

989 icol (2+ prev_leng) = irow (2+ prev_leng)

990

991 a(1+ prev_leng) = rdyy

992 irow (1+ prev_leng) = irow(prev_leng +2)

993 icol (1+ prev_leng) = icol(prev_leng +2) - ibar

994

995 a(3+ prev_leng) = rdxx

996 irow (3+ prev_leng) = irow(prev_leng +2)

997 icol (3+ prev_leng) = irow(prev_leng +2) + 1

998

999 a(4+ prev_leng) = rdyy

1000 irow (4+ prev_leng) = irow(prev_leng +2)

1001 icol (4+ prev_leng) = icol(prev_leng +2) + ibar

1002

1003 DO j = 7,(ibar -2) *5+4 ,5

1004 runde = runde + 1

1005 a(prev_leng+j) = ap

1006 irow(prev_leng+j) = runde + irow(prev_leng +2)

1007 icol(prev_leng+j) = irow(prev_leng+j)

1008

1009 a(prev_leng+j-1) = rdxx

1010 irow(prev_leng+j-1) = irow(prev_leng+j)

1011 icol(prev_leng+j-1) = icol(prev_leng+j)-1

1012

1013 a(prev_leng+j-2) = rdyy

1014 irow(prev_leng+j-2) = irow(prev_leng+j)

1015 icol(prev_leng+j-2) = icol(prev_leng+j) - ibar

1016

1017 a(prev_leng+j+1) = rdxx

1018 irow(prev_leng+j+1) = irow(prev_leng+j)

1019 icol(prev_leng+j+1) = icol(prev_leng+j)+1

1020

1021 a(prev_leng+j+2) = rdyy

1022 irow(prev_leng+j+2) = irow(prev_leng+j)

1023 icol(prev_leng+j+2) = icol(prev_leng+j) + ibar

1024 END DO

1025 a(prev_leng+row_leng -1) = ap

1026 irow(prev_leng+row_leng -1) = runde + irow (2+ prev_leng)+1

1027 icol(prev_leng+row_leng -1) = irow(prev_leng+row_leng -1)

1028

1029 a(prev_leng+row_leng) = rdyy

1030 irow(prev_leng+row_leng) = irow(prev_leng+row_leng -1)

1031 icol(prev_leng+row_leng) = icol(prev_leng+row_leng -1) + ibar

1032

1033 a(prev_leng+row_leng -2) = rdxx

1034 irow(prev_leng+row_leng -2) = irow(prev_leng+row_leng -1)

1035 icol(prev_leng+row_leng -2) = icol(prev_leng+row_leng -1) -1

1036

1037 a(prev_leng+row_leng -3) = rdyy

1038 irow(prev_leng+row_leng -3) = irow(prev_leng+row_leng -1)

1039 icol(prev_leng+row_leng -3) = icol(prev_leng+row_leng -1) - ibar

1040 END DO

1041

1042 !row jbar , last row

56

APPENDIX B. FORTRAN 95 CODE FOR 2D BACKWARD-FACING STEP WITH
WILCOX K-OMEGA MODEL

1043 prev_leng = (jbar -(jstm +2))*row_leng + ((ibar -istm -2)*4 + 6) + (

row_leng_step *(jstm -1)) + ((istm -1)*4 + 7 + (ibar -istm -1)*5)

1044

1045 a(prev_leng +2) = apc

1046 irow(prev_leng +2) = (ibar -istm)*jstm + ibar*(jbar -jstm -1)+1

1047 icol(prev_leng +2) = irow(prev_leng +2)

1048

1049 a(prev_leng +1) = rdyy

1050 irow(prev_leng +1) = irow(prev_leng +2)

1051 icol(prev_leng +1) = icol(prev_leng +2)-ibar

1052

1053 a(prev_leng +3) = rdxx

1054 irow(prev_leng +3) = irow(prev_leng +2)

1055 icol(prev_leng +3) = icol(prev_leng +2) + 1

1056

1057 runde = 0

1058 DO i = 6,(ibar -2) *4+3,4

1059 runde = runde +1

1060 a(prev_leng+i) = aph

1061 irow(prev_leng+i) = (ibar -istm)*jstm + ibar*(jbar -jstm -1) +1+ runde

1062 icol(prev_leng+i) = irow(prev_leng+i)

1063

1064 a(prev_leng+i-1) = rdxx

1065 irow(prev_leng+i-1) = irow(prev_leng+i)

1066 icol(prev_leng+i-1) = icol(prev_leng+i)-1

1067

1068 a(prev_leng+i+1) = rdxx

1069 irow(prev_leng+i+1) = irow(prev_leng+i)

1070 icol(prev_leng+i+1) = icol(prev_leng+i)+1

1071

1072 a(prev_leng+i-2) = rdyy

1073 irow(prev_leng+i-2) = irow(prev_leng+i)

1074 icol(prev_leng+i-2) = icol(prev_leng+i) - ibar

1075 END DO

1076

1077 i=prev_leng + 4*(ibar -2) +3+3

1078

1079 a(i) = aph

1080 irow(i) = (ibar -istm)*jstm + ibar*(jbar -jstm -1)+runde+2

1081 icol(i) = irow(i)

1082 a(i-1) = rdxx

1083 irow(i-1) = irow(i)

1084 icol(i-1) = icol(i) - 1

1085 a(i-2) = rdyy

1086 irow(i-2) = irow(i)

1087 icol(i-2) = icol(i) - ibar

1088

1089

1090 a=a*delt

1091

1092 ! Set values for NAG functions

1093 lfill = 0

1094 dtol = 0.0

1095 pstrat = ’C’

1096 milu = ’N’

1097 ALLOCATE(ipivp(n),ipivq(n))

57

APPENDIX B. FORTRAN 95 CODE FOR 2D BACKWARD-FACING STEP WITH
WILCOX K-OMEGA MODEL

1098 !ipivp for pstrat = ’U’

1099 !ipivq for pstrat = ’U’

1100 ALLOCATE(istr(n+1),idiag(n))

1101 !nnzc on exit

1102 !npivm on exit

1103 liwork = 7*n+2

1104 ALLOCATE(iwork(liwork))

1105 ! Done parameters for f11daf

1106

1107 ! Parameters for f11bdf

1108 method = ’BICGSTAB ’

1109 precon = ’P’

1110 norm = ’I’

1111 weigth = ’N’

1112 iterm = 1

1113 m = 1!not ref for Method CGS

1114 tol = 1.0E-8!10* EPSILON(dtol)

1115 maxitn = 3000

1116 anorm = -1 !To be fixed by f11bef

1117 !sigmax not ref for iterm = 1

1118 monit=maxitn !No monitoring

1119 lwork = 100+(2*n+m)*(m+2)+0

1120 ALLOCATE(work(lwork))

1121 ! Done parametere for f11bdf

1122

1123 ifail = 0

1124 CALL f11daf(n,nnz ,a,la ,irow ,icol ,lfill ,dtol ,pstrat ,milu ,ipivp ,ipivq ,istr

,idiag ,nnzc ,npivm ,iwork ,liwork ,ifail)

1125

1126 ALLOCATE(x(n),b(n),wgt(n))

1127

1128 RETURN

1129 END SUBROUTINE precon_pressure

58

Bibliography

[1] Kristoffersen, R. A Navier-Stokes Solver Using The Multigrid Method. Trondheim:
NTNU; 1994. MTF-Report 1994:106(A).

[2] Wilcox, D.C. Reassessment of the Scale-Determining Equation for Advanced Turbu-
lence Models. AIAA Journal. 1988;26(11):1299-1310

[3] Ferziger, J.H., Perić, M. Computational Methods for Fluid Dynamics. 3rd ed. Berlin:
Springer; 2002

[4] Menter F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Ap-
plications. AIAA Journal. 1994;32(8):1598-1605

[5] Rumsey, C. The Wilcox k-omega Turbulence Model[Internet]. [Langley Research Cen-
ter: NASA]; [updated: 4. August 2014; cited: 18. February 2015] Available from:
http://turbmodels.larc.nasa.gov/wilcox.html

[6] OpenMP ARB Company. FAQ OpenMP [Internet]. [place unknown: publisher un-
known]; [updated: 12. November 2013; cited: 20. January 2015] Available from:
http://www.openmp.org

[7] Moser M.D., Kim J., Mansour N.N. Direct numerical simulation of turbulent channel
flow up to Reτ=590. Physics of Fluids. 1999;11(4):943-945

[8] MATLAB. Solve boundary value problems for ordinary differential equa-
tions - MATLAB bvp4c. Place Unknown: Publisher Unknown; Date
Unknown[Updated Unknown; cited 4. June 2015], Available from:
http://se.mathworks.com/help/matlab/ref/bvp4c.html

[9] Le, H., Moin, P., Kim, J. Direct Numerical Simulation of Turbulent Flow Over a
Backward-Facing Step. J. Fluid Mech. 1997;330:349-374

59

