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 Abstract I 

ABSTRACT 

This thesis presents two experimental methods used to determine the natural 

frequencies of a disc in air and submerged in water, with the goal of showing the 

change in natural frequencies when the disc is submerged. In addition, analytical 

calculations and numerical simulations of the natural frequencies of the same disc are 

presented.  

The roving hammer experiment measures the disc’ vibration response to impacts on 

various positions. The frequency response experiment measures the vibration response to 

excitation from a piezoelectric patch glued to the disc. From these experiments the 

natural frequencies and the mode shapes are identified. The analytical calculations are 

based on table values of eigenvalues for an annular plate with clamped inside and free 

outside. The numerical simulations are performed in ANSYS with material properties 

of standard steel to simulate the disc in air, and with an increased density to simulate 

the disc submerged in water. The increased density is calculated based on results from 

the frequency response experiment. 

All methods gave similar results for the natural frequencies of the disc, with only minor 

differences. The roving hammer experiment found the natural frequencies of the disc 

in air, and indicated their mode shape. The frequency response experiment gave the 

frequency response function of the disc in air and submerged in water, and by 

comparing the functions the change in natural frequencies was shown. The analytical 

calculations and numerical simulations gave satisfactory results, but with slight 

over/under prediction of the natural frequencies. 





 Sammendrag III 

SAMMENDRAG 

 

Denne avhandlingen presenterer to eksperimentelle metoder benyttet for å bestemme 

egenfrekvensene av en disk i luft og nedsenket i vann, med mål om å vise endringene 

i egenfrekvenser når disken er nedsenket i vann. I tillegg er det analytiske beregninger 

og numeriske simuleringer av egenfrekvenser av samme disk presentert. 

Streifende hammer forsøket måler diskens vibrasjonsresponsen til slag på ulike 

posisjoner. Frekvensrespons forsøket måler vibrasjonsresponsen til eksitasjon fra en 

piezoelektrisklapp limt fast til platen. Fra disse forsøkene blir egenfrekvensene og 

normalmodene identifisert. Den analytiske beregningen er basert på tabellverdier av 

egenverdier for en ringformet plate med fastklemt innside og fri uteside. De numeriske 

simuleringer er utført i ANSYS med materialegenskapene til standard stål for å 

simulere platen i luft, og med en økt tetthet for å simulere platen nedsenket i vann. Den 

økte tettheten beregnes basert på resultatene fra de frekvensrespons forsøket. 

Alle metodene ga lignende resultater for egenfrekvensene til disken, med bare mindre 

forskjeller. Streifende hammer forsøket fant egenfrekvensene til disken i luft, og 

indikerte normalmodene deres. Frekvensrespons forsøket ga frekvensrespons 

funksjonen til disken i luft og nedsenket i vann, og ved å sammenligne funksjonene ble 

endringen i egnefrekvensene vist. De analytiske beregninger og numeriske 

simuleringer ga tilfredsstillende resultater, men med svak over / under prediksjon av 

egenfrekvensene. 
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 Nomenclature IX 

NOMENCLATURE 

ND
A   Amplitude of the mode shape with ND  nodal diameters m   

c   Damper N s m   

A
c   Added dampening N s m  

H
d   Disc support high (pipe) m   

L
d   Disc support low (shaft) m   

E   Elasticity, Young’s modulus Pa   

steel
E   Elasticity of steel Pa   

air
f   Natural frequency, in air Hz  

calc
f   Natural frequency, analytically calculated Hz  

f
f   Natural frequency, in fluid (theory) Hz  

g
f   Guide vane frequency Hz   

ham
f   Natural frequency, roving hammer experiment Hz  

n
f   Rotational speed Hz   

ND
f   Vibration frequency of mode shape with ND  nodal diameters Hz  

pred
f   Natural frequency, predicted simulation Hz  

den
f   Natural frequency, simulated with increased density Hz  



X Nomenclature 

s
f   Sample rate Hz  

sim
f   Natural frequency, simulated with standard steel Hz  

v
f   Natural frequency, in vacuum (theory) Hz  

water
f   Natural frequency, in water Hz  

h   Disc thickness m   

1
h   Disc submersion m  

2
h   Disc elevation m  

k   Spring constant N m   

  Parameter for prediction of natural frequencies 1 m   

2   Eigenvalues -   

m   Mass kg   

A
m   Added mass kg  

ND   Number of nodal diamteres -   

  Poisson’s ratio -   

R   Outer radius m  

r   Inner radius m  

  Density 
3kg/m   

steel
  Density of steel 3kg/m  

w
  Increased density 3kg/m  

t   Time s   

  Angular position   

x   Position m  

  Transverse deflection m  

g
Z   Number of guide vanes -   
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INTRODUCTION 

BACKGROUND 

Francis runners have experienced breakdowns in recent years [1-3]. Changes in grid 

operation has changed the loads turbines experience.  New manufacturing techniques 

and more powerful numerical tools, has made it possible to make turbines more 

efficient and with less steel. With more off design point operation, more power, and 

less steel, the Francis runners can experience serious vibrations that could cause failure. 

To avoid such damaging vibrations, it is important to determine accurately the natural 

frequencies and the dynamic behavior of the runner. However, the natural frequencies 

and the dynamic behavior of structures change when submerged in water and with its 

nearby structures.  

The dynamical behavior and natural frequencies of submerged structures has been 

studied by many. Lamb [4] studied analytically a disc clamped along its circumference 

and in contact with water on one side. He was able to make estimations of the natural 

frequencies using Rayleigh’s method [5] (§90), and found that the natural frequencies 

would be considerably reduced. Powell and Roberts [6] studied the case 

experimentally and found the results to be in good agreement with Lambs work.  

Later, Kubota et al. [7] modeled a Francis runner using a bladed disc. With this model, 

Kubota studied analytically and experimentally the vibration of the disc’ diametrical 

modes, when rotated and subjected to excitation simulating Rotor-Stator Interaction 

(RSI). Kubota et al. formulated a condition that had to be satisfied for a diametrical 

mode shape to be excited. Kubota and Suzuki [8] studied analytically and 

experimentally the added mass effect on disc’ vibrating in fluid. They found an 
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formulation to approximate the natural frequencies in fluid. Tanaka [3] built on 

Kubota’s studies, and investigated high head Francis runners analytically and 

experimentally. Tanaka found that the reduction of natural frequencies of a runner due 

to added mass effect was considerable, and further explored the dynamic behavior and 

stress in the runner. 

More recently, Center of Industrial Diagnostics and Fluid Dynamics (CDIF) in Barcelona 

(with Eduard Egusquiza as director) has studied the added mass effect on structures 

experimentally and numerically. Rodriguez et al. [9] studied experimentally the added 

mass effect on a Francis runner in still water. Rodriguez et al. [10] used structural-

acoustical FSI model to accurately determine the natural frequencies of a cantilever 

plate submerged in water. Valentin et al. [11] studied experimentally and numerically 

the added mass on a disc. The study also showed the importance of nearby rigid 

surfaces on the natural frequencies of submerged structures. 

THESIS STRUCTURE 

The work put into this thesis has mainly been focused on preparation and execution of 

experiments designed to determine the natural frequencies of a disc (simplified Francis 

runner). Yet, analytical calculations and numerical simulations has also been 

performed, and are presented in the thesis. 

The rotation of structures has been left out of this thesis, despite the problem 

description. Experimentally it would demand a more advanced setup. Meaning more 

time would be needed to setup the experiments. Therefore, to be sure results could be 

achieved given the limitations of this study, a decision was made to omit rotation from 

the thesis. 

Chapter 1 Theory introduces concepts used in the thesis, and some vibration theory. 

The theoretical basis for the analytical calculations of the natural frequencies are 

described in this chapter. In chapter 2 Methods, descriptions of the experimental setup, 

the different methods used to excite the disc to vibrate, how vibration is measured, and 

the post processing methods are presented. The setup of the numerical simulations are 

also presented in this chapter. The results from all methods are presented in chapter 3 

Results, with some interpretations. The methods of determining the natural 

frequencies are then evaluated in chapter 4 Discussion, and the major points are 

presented in the Conclusion chapter. Last, in the Further work chapter some thought 

of how the work in this thesis can be continued are presented. 
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1 THEORY 

1.1 ROTOR-STATOR INTERACTION AND FATIGUE 

Rotor-Stator Interaction (RSI) in Francis runners cause pressure pulsations. They occur 

each time a runner blade pass a guide vane, and will cause deflection and increased 

stress in the runner. This will force the runner to vibrate at the guide vane frequency g
f  

given by equation (1). Where g
Z  is the number of guide vanes, and n

f  is the rotational 

speed (rps) of the runner. 

 g g n
f Z f   [Hz]  (1) 

For a turbine with 28 guide vanes and rotating at 375 rpm the frequency is 175 Hz. This 

will cause a very high number of load cycles ( 910N ) during the lifetime of the 

turbine. To avoid fatigue it is therefore important to keep the amplitudes of the load 

cycles low. 

The amplitudes of the load cycles could be mitigated by either reducing the amplitude 

of the pressure pulsation, or by reducing the runners response to the pressure 

pulsations. To keep the runners response low, it is important to avoid resonance [2]. 

However, accurately predicting at which frequencies resonance occur is not trivial 

since a runners natural frequencies change when submerged and with its surrounding 

structures [3, 11]. 
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1.2 NATURAL FREQUENCIES AND ADDED MASS EFFECT 

A single degree of freedom system with a mass ( m ), a damper ( c ) and a spring ( k ) in 

vacuum is described by equation (2). The natural frequency in vacuum v
f  of this 

system is given equation by (3) (given 2 4k c m ). A system with multiple degree of 

freedom system will have as many natural frequencies as it have degrees of freedom.  

 0mx cx kx   [N]  (2) 

 
1

2v
f

k

m
  [Hz]  (3) 

If the system is then put into a fluid, some surrounding mass A
m  has to be moved 

when mass m is moved. In addition, when mass m  is moving some additional energy 

will be lost due to the viscosity of the fluid ( A
c ). The system can now be described by 

equation (4) with a natural frequency in fluid f
f  given by equation (5) (given 

2( 4(m m ))
A A

k c c ).  

 (( ) 0)
A A

x cm m x kc x   [N]  (4) 

 
1

2f

A

k
f

m m
  [Hz]  (5) 

As we can see, the natural frequency is lower when the system is submerged in a fluid. 

This is called added mass effect, and it can cause natural frequencies of a Francis runner 

to decrease by 40 % [3, 9]. 

1.3 DIAMETRICAL MODE SHAPES ON A DISC 

Discs diametrical mode shapes are described along the edge by cosines with maxima at 

the point of excitation, amplitude ND
A  and ND  periods around perimeter of the disc 

[3, 7]. Nodal diameters ( ND ) are lines intersecting the disc center where the mode 

shapes deflection amplitude is always zero. Each mode shape oscillate only 

transversely, meaning that the nodal diameters does not move relative to an excitation.  
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The transverse deflection  is a sum of the vibration of all mode shapes. Then, when 

each mode shape oscillate with its particular frequency ND
f , the transverse deflection 

of the perimeter of the disc is a function of time t   and position  given by (6) [7]. 

 
0

( cos(, ) ) sin(2 )
ND N

ND
D

A N tDt f   [m]  (6) 

In this thesis the name of the mode shapes will be the number of nodal diameter, e.g. a 

mode shape with two nodal diameters will be named ND2. The mode shapes studied 

in this thesis is presented in Figure 1. 

 
Figure 1: Diametrical mode shapes, ND2, ND3 and ND4. At the top, nodal diameters in dashed 

lines given impact/excitation at orange star. In the middle, 3D plot of the mode shapes. At 

the bottom, equation (6) plotted for each mode shape. 

Natural frequencies of mode shapes 

Each mode shape has its own natural frequency [12]. In [12] some general solutions for 

natural frequencies in vacuum are presented. The case studied in this thesis is 

described as an annular plate free on outside and clamped on inside. In Table 1 
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eigenvalues  for ND2 and ND3 is given for the ratio between inner and outer radius 

0.1r R .   

ND  2 [-] 

2 5.62 

3 12.4 
Table 1: Eigenvalues for an annular plate, free on outside and clamped on inside, for two mode 

shapes given the ratio between inner and outer radius 0.1r R . 

From the eigenvalues, the natural frequencies is calculated from equation (7) [13]. 

Here, R  is the outer radius, h  is the thickness of the plate, E  is the elastic modulus, 

 is Poisson’s ratio and  is the density of the plate. 

 
2 2

2 2

1

2 12(1 )
calc

Eh
f

R
  [Hz]  (7) 

1.4 EXCITATION OF VIBRATION 

In this thesis, three methods are used to excite vibration. Impact excitation is an impulse 

applied to the system. It excites instantaneously all frequencies, and will cause all mode 

shapes to vibrate with their natural frequency. Since the excitation is instantaneous, the 

vibration will be dampened with time. Noise excitation continuously excite all 

frequencies, by applying a white noise signal. A white noise signal is a random signal 

with a constant power spectral density, meaning in practical terms that it will excite all 

frequencies with the same amplitude. Sweep excitation start to excite at one frequency, 

and continuously increase the frequency over time until an end frequency. 

The response of the excited system will always have the same frequency as the 

excitation. However, it will have a phase shift depending on the system properties, and 

the response amplitude depending on the excitation amplitude and frequency, and 

system properties. 

1.5 MEASUREMENTS AND PROCESSING 

This thesis presents measurements of natural frequencies of a disc.  

Sampling rate, filtering and aliasing 

When measured, a continuous signal is reduced to a discrete signal of s
f  samples per 

second. If periodic signals are measured with a too low sample rate s
f , the 
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measurements might show unreal peaks when analyzed with spectral analyses (i.e. 

FFT). This is called aliasing. To avoid aliasing, the sample rate has to be more than two 

times the maximum frequency occurring in the measured signal [14]. 

Often the high frequent part of the measured signal is not of interest. Still, to avoid 

aliasing effects the sample rate has to be larger than two times the highest frequency 

occurring. This can make the data set acquired from measurements much larger than 

required for its intended purpose. To avoid this, filters can be applied in post 

processing to remove frequencies higher than the highest frequency of interest from 

the measurements. Then, the sample rate only need to be larger than two times the 

highest frequency of interest (highest unfiltered frequency) [14]. 

Fast Fourier transform (FFT) 

Fast Fourier transform (FFT) is a method of decomposing a discrete signal into sine 

waves. The method finds the amplitude and phase of the sine waves for frequencies 

up to half the sampling rate. Plotting the amplitudes versus the frequencies will reveal 

the significant frequencies occurring in the signal. This can be very useful to identify 

natural frequencies [14, 15]. 

Frequency response function (FRF) 

The frequency response function (FRF) describes how a system will respond to an 

excitation. If a system is subjected to an excitation with a certain amplitude and 

frequency, the system will start to vibrate at the same frequency as the excitation, but 

with a phase shift. The amplitude of the response depend on the amplitude and 

frequency of the excitation. The FRF give the ratio between the response and excitation 

amplitude, and the phase shift of the response for any frequency. The FRF is usually 

presented in a Bode plot. Natural frequencies will be clearly visible as peak in the Bode 

magnitude plot [14, 16]. 
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2 METHODS 

2.1 OVERVIEW 

Table 2 is a list of the methods used in this thesis to determine the natural frequencies 

of a disc attached to a shaft, in air and submerged in water. 

A. Analytical calculations 

B. Roving hammer, experimental identification of mode shapes 

C. Frequency response, experimental determination of natural frequencies 

1. In air 

1.a. Noise excitation 

1.b. Sweep excitation 

2. In water 

2.a. Noise excitation 

2.b. Sweep excitation 

D. Numerical simulations 

1. Simulation with standard steel 

2. Analytical prediction of simulation with increased density 

3. Simulation with increased density 
Table 2: Methods applied in this thesis  
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2.2 DESCRIPTION OF EXPERIMENTAL RIG 

The rig used in this thesis consist of an annular plate (disc) fitted on a shaft, both made 

of steel1. The disc is tightly fitted to the shaft, and is constrained between a flange on 

the shaft and a pipe. The pipe is tightened by a nut that is screwed on the shaft. The 

shaft is fixed vertically by wooden beams in a large tank (Figure 2). Table 3 lists the 

describing parameters of the rig.  

Parameter Variable Value [mm] 

Disc outer diameter  500 

Disc inner diameter  40 

Disc thickness  20 

Tank diameter  800 

Tank height  490 

Disc support low (shaft) L
d  60 

Disc support high (pipe) H
d  48 

Disc submersion (when in water) 1
h  ~100 

Disc elevation 2
h  280 

Table 3: Rig parameters. The four variables refer to Figure 2. 

 
Figure 2: Test rig showing shaft and disc inside the tank. Accelerometer (black cube) and 

piezoelectric patch (brown rectangle) is shown in the drawing. 

  

                                                           
1  Originally, the plate and shaft was part of a rig used to measure friction losses 

between a rotating disc and stationary discs in water. 
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Instrumentation 

A Dytran 3006A accelerometer is installed on the disc to measure vibration (Figure 2). 

The accelerometer is connected to a National Instruments (NI) 9233 module in a NI 

cDAQ-9172 chassis that is connected to a computer with the software LabVIEW 

installed. 

To excite vibration with specific frequencies, a piezoelectric patch (P-876.A15 DuraAct 

Patch Transducer) is installed on the disc (Figure 2). A piezoelectric patch works as an 

actuator, contracting or expanding proportionally to the voltage signal it receives. The 

patch is operated using a NI 9263 module to give a voltage signal ( 10 V ), and a 

voltage amplifier (E-835 DuraAct Piezo Driver Module, voltage gain: 25). A NI 9239 

module monitors the voltage output from the voltage amplifier. Both NI modules are 

connected to the NI chassis mentioned above. 

2.3 ROVING HAMMER 

The mode shapes of the disc are identified (connected to the disc’ natural frequencies) 

using the roving hammer method. Measuring and analyzing (FFT analysis) the response 

of the disc to an impact, will reveal the natural frequencies of the disc. However, the 

natural frequencies’ corresponding mode shape will not be clear. To identify the 

corresponding mode shapes, the disc is impacted on its edge by dropping a hammer 

from a constant height on various positions relative to the accelerometer. This will 

excite all mode shapes to vibrate at their natural frequencies. Since the mode shapes 

are defined by the impact position, the mode shapes’ amplitude measured by the 

accelerometer will vary with the impact position. The impact positions are set so that a 

particular mode shape’ amplitude is zero at the position of the accelerometer. This is 

done by setting the impact position so that the accelerometer is on a nodal diameter. In 

theory, one natural frequency will not appear in the analysis (FFT) of the measurements 

acquired from such an impact position. That natural frequency can then be identified 

as the natural frequency of the mode shape the impact position was set for. However, 

because of inaccuracies in the impacts, the natural frequencies will not disappear 

completely from the analysis’, but they will be clearly lower than they are for other 

impact positions.  



12 Methods 

For the mode shapes studied in this thesis (ND2, ND3 and ND4), the impact position 

are calculated using an equation derived from equation (6)2, and are shown in Table 4 

and in Figure 3. In addition to these positions, the disc is impacted at 180° from the 

accelerometer for reference. Measurements from this impact will make a good 

reference since all mode shapes will have amplitude maxima (or minima) at the 

position of the accelerometer. All impacts are repeated five times. The measurements 

(4 impacts, 5 repetitions) are made by the accelerometer with a sample rate of 25000 

Hz. When this experiment was performed, the disc was detached from the shaft and 

laying on a small cylinder. The piezoelectric patch was not glued on yet, and another 

accelerometer was used (Brül & Kjær DeltaTron 4397). 

 
Figure 3: Impact positions in roving hammer experiment. Accelerometer (black), 180° (orange), 

135° (red), 150° (green) and 157.5° (blue). 

Mode shape Impact position,  

ND2 135° 

ND3 150° 

ND4 157.5° 
Table 4: Impact position. Angular distance from hammer impact to accelerometer 

In post processing, all measurements are analyzed using Fast Fourier Transform (FFT). 

For each impact point, an average FFT result is calculated from the FFT results of the 

repetitions. The FFT results will show peaks at the natural frequencies of the disc. The 

magnitudes (amplitude) of these peaks will vary with impact position. For each of the 

three impact positions in Table 4 there should be one natural frequency that is 

significantly lower than it is for the other impact positions. This will indicate that the 

                                                           
2 Equation derived from equation (6): 180 arccos(0) 180 90ND ND . 
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frequency is the natural frequency of the mode shape the impact position was set for, 

see Table 4. 

2.4  FREQUENCY RESPONSE 

To determine the disc’ natural frequencies in both air and submerged in water, and 

showing the added mass effect, frequency response experiments are performed in both 

air and submerged in water.  

During the experiments, the disc is excited by the piezoelectric patch, and both the 

excitation signal (output from voltage amplifier) and the vibration (measured by the 

accelerometer) is measured. The excitation signal is created in LabVIEW as an analog 

output voltage signal. When noise excitation is used, the signal is a uniform white noise 

waveform with amplitude of 4 V3. When sweep excitation is used, the signal is an up-

chirp waveform with amplitude of 4 V3, start frequency of 100 Hz and a final frequency 

of 5000 Hz. In both cases, the sample rate is 12500 Hz. Both of the measurements are 

also made with sample rate of 12500 Hz. To get FRFs with proper resolution, the 

experiments using noise excitation is run for 60 seconds, while the experiments using 

sweep excitation is run for 600 seconds. The disc is set up as described in chapter 2.2. 

In post processing, both the excitation measurements and the vibration measurements 

are filtered and normalized. To create a FRF, excitation (stimulus) and vibration 

(response) measurements are used as input in a Frequency Response Function (Mag-

Phase) VI palette in LabVIEW. This palette give magnitude and phase of the FRF as 

output. Averaging is used to get a smooth FRF, without distortion. This is done by 

dividing both the excitation and the vibration measurements into segments. Then FRFs 

are created for each segment pair (i.e. first excitation segment and first vibration 

segment), and an average FRF is calculated from these4.  

2.5 NUMERICAL SIMULATIONS 

To determine numerically the natural frequencies of the disc, and their corresponding 

mode shapes, Finite Element Analysis’ are performed in ANSYS. A model of the disc 

                                                           
3 This was later found to be outside the operating limits of the voltage amplifier, and 

was the probable cause of failures of the amplifier. 1 V should be sufficient, and be 

inside the operating limits. 
4 This method of calculating the average FRF has later been found not suitable when 

sweep excitation is used, see chapter 4.3 for further discussion. 
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and shaft is drawn in ANSYS after parameters given in Table 3. It is made of two parts, 

the disc and the shaft. The shaft is drawn so it is clamping the disc as in the 

experimental rig. The disc is meshed using Sizing 5  on the edges, and Mapped face 

meshing5 on the faces. All four edges (inner/outer diameter, upper/lower face) is 

divided into 76 segments ( -direction). The edge and center faces are dived into 3 

segments (z-direction), and the upper and lower faces into 58 segments, creating 13224 

elements (see Figure 4). This was chosen as results changed little with more elements. 

The shaft is meshed with default ANSYS settings. All faces of the shaft are fixed with 

Fixed support. The analysis is performed with Modal analysis in ANSYS. This will finds 

both the mode shapes and their natural frequencies. 

  
Figure 4: Model used for numerical simulations 

Simulation with standard steel 

To determine numerically the natural frequencies of the disc in air, a simulation using 

the material properties of standard steel is performed in ANSYS. Table 5 shows the 

material properties of standard steel. 

Parameter Value Unit 
 7850 kg/m3 

E  200 GPa 

 0.3   
Table 5: Material properties of standard steel used to simulate the disc in air. 

Analytical prediction of simulation with increased density 

Based on results acquired from the simulation of the disc in air, a parameter  can be 

calculated for each mode shape from equation (8), which is derived from equation (7). 

Using the parameters  predictions of simulations using increased density are 

calculated from equation (9). Where 
pred

f  is the predicted natural frequency, and w  is 

the increased density used to simulate the disc submerged in water. 

                                                           
5 Meshing method in ANSYS 
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 steel
sim

steel

f
E

  [1 m]  (8) 

 
pred

w

steel
E

f   [Hz]  (9) 

Simulating with increased density 

The added mass effect of water is simulated using an increased density. This increased 

density is determined based on equation (9) and results from the frequency response 

experiment performed in water. The increased density is set to the value that minimize 

the root mean square ( RMS ) of the relative differences between experimental results 

and predictions, given by equation (10). 

 

2 2 2

2 3 4

water water water

water wate

pred pred

r waterN

pred

D ND ND

f f f f f f
RMS

f f f
  [-]  (10) 
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3 RESULTS 

3.1 ANALYTICAL CALCULATIONS 

Natural frequencies of ND2 and ND3 calculated from equation (7) are shown in Table 

7. The eigenvalues used are given for a ratio between inner and outer radius of 

0.1r R  [12]. Material properties of standard steel are used, and are given in Table 6 

together with the outer radius and thickness of the disc. 

Parameter Value Unit 
 7850 kg/m3  

E  200 GPa  

 0.3   

R   0.25 m 

h   0.02 m 
Table 6: Parameters used to calculate natural frequencies 

 ND2 ND3 
2  [-] 5.62 12.4 

calc
f  [Hz] 437 965 

Table 7: Analytical calculation of natural frequencies using (7)  and values from Table 6. 

3.2 ROVING HAMMER 

The results from the Roving Hammer experiment are presented in Figure 5. As we can 

see, there are three peaks occurring at the same frequencies for all impact positions. 
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Further we can see that the magnitude at each of the three frequencies change with the 

impact position.  

 
Figure 5: Averaged FFT of Roving Hammer measurements. Impact at 130° 

Identifying mode shapes 

The three frequencies and the magnitudes of these are given, for each impact position, 

in Table 8. We can see in Figure 5, and from the data in Table 8, that the magnitude of 

the lowest of the three frequencies ( 417 Hz ) has a clearly lower value when impacted 

at 135 . This indicates that this frequency is the natural frequency of mode shape  

ND2, since the impact position was set to achieve low magnitude for ND2 (see Table 

4). Further, the middle frequency ( 966 Hz ) has a clearly lower magnitude when 

impacted at 150 , and the highest ( 1675 Hz ) at 157.5 , indicating that they are the 

natural frequencies of mode shapes ND3 and ND4 (see  Table 4). 

 Magnitude when impacted at:  

 [Hz]
ham

f  180  135  150   157.5   Mode shape 

417 3.24 2.00 3.68 3.04 ND2 

966 4.38 4.46 0.20 1.28 ND3 

1675 0.48 1.28 0.14 0.00 ND4 
Table 8: Magnitude of averaged FFT of Roving Hammer measurements for the three peaks, and 

their corresponding mode shape. 



 Results 19 

3.3 FREQUENCY RESPONSE 

The results from the frequency response experiments in air and water, using both noise 

and sweep methods to excite vibration, are presented as a FRF in a Bode magnitude 

plot in Figure 6. 

Identifying natural frequencies of the mode shapes 

We can see that both methods of excitation give similar response in air. We also see 

clear peaks around the frequencies found in the roving hammer experiment, indicating 

the natural frequency of ND2, ND3 and ND4 (red, green, blue vertical lines in Figure 

6). 

In water, the two methods of excitation give response that is more different. The peaks 

are not as clear either. However, some features of the curves can be recognized from 

the response in air. The “camelback” between 400 Hz and 600 Hz in air, can be seen 

between 300 Hz and 500 Hz in water. ND2 is identified as the first maxima of the 

“camelback” (red vertical line). 

Looking at the magnitude in air, to the right of the “camelback” there is one minor 

maxima before a steep rise to the peak of ND3. In water, these features are not as clear, 

and the rise occur at different frequencies for the two methods. The natural frequency 

of ND3 is thought to be at the top of the steep rise of the noise method (green vertical 

line)6. 

Further to the right a “pulse” can be seen at the natural frequency of ND4 in air. The 

“pulse” can not be seen on the water curves, but there is a steep drop on the noise curve 

and a maxima on the sweep curve at the same frequency in water, indicating were on 

the curve the “pulse” should have been. The natural frequency of ND4 is then 

interpreted to be just before the drop in the noise curve (blue vertical line). 

                                                           
6 Deviation between the excitation methods are discussed in chapter 4.3. 
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Figure 6: Frequency Response Function (FRF) in air and water. Both excitation methods are shown. 

Vertical lines show the natural frequency of ND2, ND3 and ND4. 

The natural frequencies of ND2, ND3 and ND4 in air and water, as defined above are 

given in Table 9. 

 ND2 ND3 ND4 

air
f  [Hz] 420 965 1671 

water
f  [Hz] 353 834 1432 

Table 9: Natural frequencies of ND2, ND3 and ND4 in air and water. 
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3.4 NUMERICAL SIMULATIONS 

Simulation with standard steel 

Results from modal analysis in ANSYS using material properties of standard steel to 

simulate the disc in vacuum are presented in Table 10. 

 ND2 ND3 ND4 

sim
f  [Hz] 434 949 1644 

Table 10: Results from modal analysis in ANSYS, simulating the disc in vacuum. 

Analytical prediction of simulation with increased density 

The  parameters is calculated from simulation using standard steel and shown in 

Table 11. The increased density that gave the lowest RMS of the relative difference 

between predictions and experimental results is given in Table 12. The analytical 

predictions of simulations with increased density are shown in Table 11. 

 ND2 ND3 ND4 

 [1/m] 0.0859 0.1879 0.3257 

pred
f  [Hz] 370 809 1402 

Table 11: Predictions of natural frequencies using increased density, given k  parameters based on 

simulated results using standard steel. 

Parameter Value Unit 

w  10800 kg/m3  

E  200 GPa  

 0.3   
Table 12:  Material properties used for modal analysis in ANSYS, simulating the disc  

submerged in water. 

Simulation with increased density 

The results from the modal analysis in ANSYS using increased density (see Table 12) 

is shown in Table 13. 

 ND2 ND3 ND4 

den
f  [Hz] 370 809 1402 

Table 13: Results from modal analysis in ANSYS, simulating the disc submerged in water. 
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3.5 SUMMARY OF RESULTS 

Table 14 show the values of the natural frequencies of the mode shapes studied from 

all methods (except frequency response with sweep excitation). 

  Natural frequencies [Hz] 

Method  ND2 ND3 ND4 

Analytical calculations calc
f  437 965 - 

Roving hammer ham
f  417 966 1675 

Frequency response     

In air air
f  420 965 1671 

In water water
f   353 834 1432 

Numerical simulations     

Simulation with standard steel sim
f   434 949 1644 

Analytical prediction of increased density pred
f   370 809 1402 

Simulation with increased density den
f   370 809 1402 

Table 14: Summary of results. Yellow background indicates in water. 

Table 15 show the relative value of the methods compared to the values gotten from 

the frequency response experiments. 

 Relative value [%] 

Method ND2 ND3 ND4 

Analytical calculations 104.0 100.0 - 

Roving hammer 99.3 100.1 100.2 

Frequency response    

In air 100.0 100.0 100.0 

In water 
84.0 86.4 85.7 

100.0 100.0 100.0 

Numerical simulations    

Simulation with standard steel 103.3 98.3 98.4 

Analytical prediction of increased density 104.8 97.0 97.9 

Simulation with increased density 104.8 97.0 97.9 
Table 15: Relative values of results. Normal numbers are compared to frequency response in air. 

Italic numbers are compared to frequency response in water. Yellow background 

indicates in water. 
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4 DISCUSSION 

4.1 EVALUATION OF ANALYTICAL CALCULATIONS 

The results from the analytical calculations are quite similar to the results gotten from 

the other methods. Indicating that the analytical calculations are a good method of 

finding the natural frequencies of a disc. However, while the natural frequency of ND3 

is the same as the measurements from the frequency response experiment gave, the 

natural frequency of ND2 is notably higher than the experiment gave. This might 

indicate an inaccuracy in the analytical model.  

Material properties 

The material properties used in the analytical calculations were chosen independently 

of the properties of the disc. However, this cannot be cause of the observed inaccuracies 

in the analytical model. Higher density would in general give lower analytical results 

for the natural frequencies. The density would have to be 8500 kg/m3 for the natural 

frequency of ND2 to be the same as for the experimental results, but this would make 

the natural frequency of ND3 notably lower than the experimental results. Lowering 

the elasticity will have the same effect. 

Radius ratio 

In the experimental setup in this thesis, the disc is clamped from one side at 0.03 mr  

and at 0.024 mr  on the other, and the diameter of the disc is 0.25 mR . The 

radius ratio that would model this setup best is therefore not clear, but it should be 
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between 0.096 0.12r R . The ratio used in this thesis is 0.1r R . Using a lower 

ratio would give lower eigenvalues, and therefore lower natural frequencies [12].  

Eigenvalues 

In [12] there are three tables of eigenvalues for cases with clamped on the inside and 

free on the outside. The values are given for different mode shapes and for different 

radius rations. The eigenvalues vary somewhat from table to table, given a mode shape 

and a radius ratio. For ND2, two tables give values for the radios ratio used in this 

thesis. One of them also have eigenvalue for ND3 at this radius ratio, the values used 

in this thesis are taken from this table. If the eigenvalue for ND2 from the other table 

were used, the natural frequency of ND2 would be 428 Hz (101.9 %). This indicates that 

the eigenvalues might be the cause of the inaccuracies in analytical model. 

4.2 EVALUATION OF ROVING HAMMER 

The results from the roving hammer experiment is very similar to the results of the 

frequency response experiment. The small differences could be caused by roughness 

in the post processing of the frequency response measurements, or by the differences 

in setup. 

The roving hammer method worked well to identify the three mode shapes studied in 

this thesis. However, the measurements using roving hammer in this thesis was not 

very clear by them self. Only when analytical and numerical results showed the same 

natural frequencies for the mode shapes a conclusion could be given. By making more 

accurate impacts with the hammer, increasing both location and force precision, the 

results might be more conclusive by themselves.  

4.3 EVALUATION OF FREQUENCY RESPONSE 

Frequency response using noise excitation 

Acquiring a Frequency Response Function (FRF) using noise to excite vibration worked 

very well. The method was able to get results fast, acquiring adequate results from 

experiments run only for a few seconds. The results presented in Figure 6 are taken 

from a test run for 60 seconds, and are post processed to get a resolution of 5 Hz. To 

get better resolution, the experiment can be run longer. Alternately, a method could be 
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created to include separate response measurements, performed in the frequency range 

where better resolution is wanted. 

Unsuitable averaging of measurements using sweep excitation 

The FRFs acquired from experiments performed with noise and sweep methods in air, 

quite similar. However, the functions acquired from measurements done in water have 

clear differences (see Figure 6). The curve of the sweep method does not have the same 

features as the curve of the noise method. The cause of this is probably the averaging 

method used in post processing.  

The averaging method used in post processing for both noise and sweep excitation 

takes the first N  (i.e. 2500) measurements of the excitation and response, and creates a 

FRF. Next, it takes the N  measurements after and create a new FRF, and so on. Then it 

takes the average of the FRFs. This averaging method is suitable for noise excitation 

since the excitation is similar over time, therefore the response will be similar over time 

and an average can be taken to create a smooth FRF. However, this is not the case for 

sweep excitation. The excitation change with time, and therefore also the response. 

When excited at low frequencies, a FRF is created for all frequencies, but it will be 

inaccurate at high frequencies since these frequencies have not been properly excited. 

Similarly, when excited at high frequencies, the FRF will be inaccurate a low 

frequencies. Averaging the FRFs will therefore give an inaccurate final FRF. 

Proposed new method: stepwise sweep excitation 

Instead of changing the excitation frequency continuously and taking averages of FRFs, 

the excitation can be swept “stepwise” and the FRF can be made up by the response at 

each of these steps. Measurements made with constant excitation frequency for a time 

give the response at that frequency. The frequency is then changed and kept constant 

to give the response at that frequency. And so on. Together the responses at each step 

give a FRF curve. This should also make it possible to supplement the swept 

measurements with additional measurements done independently at specific 

frequencies, increasing resolution in frequency ranges of particular interest. 

4.4 EVALUATION OF NUMERICAL SIMULATIONS 

The numerical simulation performed for this thesis to determine the natural 

frequencies worked well. However, as with the analytical calculations, ND2 is notably 
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higher than the experimental results and ND3 and ND4 is notably lower. There seems 

therefore to be something in the model that is not completely correct. Perhaps a more 

accurate model were the weight and placement of the accelerometer and other details 

are included could give even more accurate results. However, as mentioned in the 

discussion on the analytical calculations, when using other eigenvalues to calculate the 

natural frequencies analytically, they became more accurate. It could then be that the 

numerical model has the similar problem. 

It should also be noted that the analytical calculation has performed just as well as the 

numerical simulations. The usefulness of the simulations on simple geometries like the 

one studied in this thesis, is therefore low.  

Increased density and predictions 

The simulation using increased density to fit experimental results in water worked 

satisfactory for all three mode shapes. However, the over prediction of the natural 

frequency of ND2, and the under prediction of the natural frequencies of ND3 and ND4 

has become larger. This can indicate that each mode shape has a different added mass, 

and should therefore have different increased densities. This has been noted by [9]. In 

addition, the usefulness of simulation with increased density is low. To calculate the 

increased density, experimental results has to be known already. Moreover, the 

analytical prediction of the simulation gave exactly the same results. 
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CONCLUSION 

Experimental, analytical and numerical methods to determine the natural frequencies 

of a disc in air and submerged in water has been presented. The natural frequencies of 

the disc studied have been found in air and submerged in water. The added mass effect 

has been shown by comparing the natural frequencies found in air to the ones found 

when the disc is submerged in water.  

The roving hammer experiment identified which mode shape corresponded to which 

natural frequency successfully. However, because of inaccuracies in the impacts 

position and force the results were not clear.  

The frequency response experiments performed with noise to excite vibration gave 

good results, both in air and submerged in water. The method gave smooth Frequency 

Response Functions (FRF) after running the experiment for only 60 seconds. The 

natural frequencies could then be identified from the FRF. However, the natural 

frequencies of the disc submerged in water was somewhat difficult to identify. The FRF 

did not have clear peaks, and conjectures had to be made. The post processing 

procedure used on experiments performed with both noise and sweep excitation, was 

unsuitable for experiment with sweep excitation and the results from that experiment 

were therefore inaccurate. 
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Analytical calculation for the natural frequencies in air gave results similar to the 

experimental results. The natural frequency of ND2 was a bit higher than found by the 

experiments. The cause of this seems to be inaccurate eigenvalues, since eigenvalues 

from other sources gave better results. 

Numerical simulations gave good results for the natural frequencies. The simulation 

of the disc in air, using standard steel, slightly over predicted the natural frequency of 

ND2 and slightly under predicted the natural frequency of ND3 and ND4. When 

simulating the disc submerged in water, by increasing the density of the disc, the errors 

increased. This is probably because each mode shape has its own added mass, and can 

therefore not be modeled well with a globally increased density. 
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FURTHER WORK 

This thesis has been a small step towards estimation of dynamic behavior and natural 

frequencies of Francis runners in operation. Methods to find the natural frequencies of 

a disc has been presented. The next step would be to improve these methods, as 

discussed in this thesis, and then apply them on model runners. 

The experiment using sweep excitation presented in this thesis, should be replaced by 

an experiment using stepwise sweep excitation, as described in this thesis. A method 

of creating frequency response functions (FRF) from such an experiment would have 

to be developed, but there are examples of this in LabVIEW. 

After making the improvements to the experimental methods, they can be applied on 

model runners. Then the natural frequencies of the mode shapes that are excited by 

Rotor-Stator Interaction (RSI) should be studied. The model runners are very stiff, 

measurements will therefore be challenging, making accuracy important. 

The Structural-acoustical numerical model used by Rodriguez et al. [10], should be 

studied, and applied on a disc and Francis runners. This has been shown to be capable 

of modeling the added mass effect of water. 

There are analytical methods of estimating the natural frequencies and dynamic 

behavior of structures not studied in this thesis. A study of such methods would enable 

a further understanding of the important factors describing the dynamic behavior of 

structures in air and submerged in water. 
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