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Abstract:

The purpose of the following work is to explain numerous methods of interpretation of CPT
(Cone Penetration Test) and to find the most practical one for the soft soils. Due to the complex
nature of the problem and strict requirement of credible results, following parameters have been
taken into account: pore pressure measurement (CPTU) and resistivity (RCPTU). Clay deposits
are frequently found on numerous construction sites in Norway. Presence of the weak clays or
quick clays tremendously increases possibility of a failure due to extremely weak and unstable
structure of particles. The results obtained from the soundings have been compared to the
laboratory investigations on proper samples, which have given leading parameters of the soils.
Data mining models were constructed on the basis of four databases from three different
investigation sites. With soundings readings and laboratory results combined some hidden
correlations are seek between them. In addition, a background of CTP technology including
history, development and possible applications in civil engineering is presented in the thesis.
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Preface

Geotechnical investigation is essential in every advanced project in civil
engineering. The primary objective is to ensure stability of a object during the
construction stage and in a long-term perspective. To achieve that, an in situ
geotechnical survey must be conducted. A necessary condition for a
successful design is to obtain high-quality data, which will allow to assess soil
conditions and setting of layers in a precise manner.

The core issue is the lack of ability to classify quick clay by direct methods
- in this case by Cone Pressuremeter Tests. To distinguish quick clay deposits
a sampling and laboratory research is required or futher in situ tests. Such
solution generates additional costs, requires more time and labour.

The purpose of the following work is to explain numerous methods of
interpretation of CPT (Cone Penetration Test) and to find the most practical
one for soft soils. Due to the complex nature of the problem and the needs of
acquiring credible results following parameters have been taken into account:
Pore Pressure Measurement (CPTU) and Resistivity Module (RCPTU). Clay
deposits are frequently found on construction sites in Norway, which should
be dealt with caution and care. Presence of the weak clays or quick clays
tremendously increases possibility of a failure due to extremely weak and
unstable structure of particles. The results obtained from the soundings have
been compared to the laboratory investigations on proper samples, which
have given leading parameters of the soils. Data mining models were
constructed on the basis of four databases from three different investigation
sites. With soundings readings and laboratory results combined some hidden
correlations are seek between them. In addition, a background of CTP
technology including history, development and possible applications in civil
engineering is presented in the thesis.
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Summary

The purpose of the following work is to explain numerous methods of
interpretation of CPT (Cone Penetration Test) and to find the most practical
one for soft soils. Due to the complex nature of the problem and the needs of
acquiring credible results following parameters have been taken into account:
pore pressure measurement (CPTU) and resistivity (RCPTU).

The present master's thesis focuses on comparison of post-processed results
from different interpretation methods with laboratory data. In the beginning
most popular approaches for sensitive soils are presented: soil classification
charts, undrained shear strength, sensitivity and resistivity measurements from
RCPTu.

Further, an experimental method of machine learning is explained. Three
solutions has been choosen with different classifying algorithms. This ensures
separate origin of the calculated results, which should simplify overall
analysis of the models. The data mining software called WEKA is used for
the calculations. Possible combinations of testing, verification process and
modeled soil profiles are presented in the process.

All the research is concluded in final comparison of obtained results to labora-
tory data and most accurate predictions are selected.
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Nomenclature

a, —valueof nattribute in neural network algorithm
A —areaof cross — section of ef fective resistive unit
A. —areaof acone

A; —areaof a friction sleeve

B —diameter of the cone

B, —pore pressure parameter

c

— cohesion
¢, — classifying value,usually nominal
d —depth as an attribute in data mining techniques
fs  —unit sleeve friction resistance
E.  —mnormalized friction ratio

G  — shear modulus

[  —inclination of rods

L  —pathlenght
N. —Terzaghi's bearing capacity factors

Nq
N, —cone factors
Npe
Nke
N,; — constant related to friction ratio
NAu
q. — coneresistance
qe. — effective cone resistance
q: — corrected cone resistance
Q; —normalized cone resistance
R —measured resistance
Ry — frictionratio
S;  —wvalue of sample in a decistion tree algorithm
S — sensitivity
Sy —undrained shear strength
Sy — remoulded undrained shear strength
t, — threshold value in neural network algorithm
U, — insitu pore water pressure
u, — porewater pressure,directy taken from CPT data
Au,. — excess pore water pressure behind the cone
w, —weight for nattribute in neural network algorithm
Xj; —Jattribute of the sample in a decistion tree algorithm
z —depth

Zewr — depthof ground water level

NTNU Page 25



Master's Thesis Stanislaw Puakowski

— cone apex angle

— calibration coef ficient, individual per probe

— angle used in the solution by Janbu and Senneset (1974)

— total unit weight

— cone roughness indicator (1 = rough cone, 0 = smooth cone)
— resistivity

— vertical ef fective stress on the surface of the cone

0,0 — vertical initial total stress

g  —effective friction angle

ST =™K
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1. Introduction

1.1. Objective of the thesis

The goal of the following thesis is to present and review various methods for
interpretation of data obtained by CPT - Cone Penetration Test. The main
idea is to differ layers of soil, define its properties and detect sensitive clays
with quick clays in particular. With usage of different ways of interpretation it
Is possible to examine and choose, which one of them is most accurate for this
kind of purpose. One of the methods presented in this thesis is special owing
to interdisciplinary and experimental approach: data mining. One of the
chapters is fully dedicated to techniques and tools of machine learning. As an
author of this thesis | hope, that the Reader will find following paper useful
and interesting.

1.2. Motivation

The CPT sounding is a worldwide popular in situ method of sounding for soil
investigation. It allows collecting data in continuous manner - it is easy to be
processed and presented in form of graph or in any linear manner. It is an
easy, fast and efficient tool, which every geotechnical engineer should be
familiar with. This work was written to explain and discuss basic rules,
technical issues (like equipment or testing procedures) and to present different
methods of interpretation of CPT results. Geotechnical investigation is always
an important issue for engineering projects, no matter the class or scale of
those. Thereby every civil engineer should acquaint him or herself with
following work.

Moreover, also aspects of familiarizing Reader with unique soils was taken
into account. Norway is one of a few northern areas, where quick clay occurs
- a type of soft clay, sensitive and unstable. In appropriate conditions, deposits
of quick clay may liquefy and cause massive displacement of higher placed
soil layers. One of the most famous and well-documented cases of quick clay
liquefaction was landslide in 1978 at Rissa. Rising awareness of such peculiar
soil and showing possible methods of detecting is also intended by the author.

1.3. Use of materials

Following thesis is continuation of work from the same author; course TBA
4510 - geotechnical engineering specialization project, which was finished in
autumn semester 2015 at NTNU.

Moreover, chapter 7 would be impossible to complete without using book
"Data mining - practical machine learning tools and techniques™ by lan. H.
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Witten, Eibe Frank and Mark. A. Hall. Large amount of quotes was taken
from that volume, because of plain and clear explanations of machine learning
techniques. The mentioned book is basically a manual for data mining
software called WEKA, which was used in the following research.

1.4. History of CPT

The very first cone penetrometer was invented
in 1932 by Peter Barentsen - a civil servant at
Department of Public Works in Holland. A
steel rod of 19 mm diameter with 10 cm?® cone
with 60° angle was initially in use and was
operated manually by single man. When body-
weight was applied, rod was pushed into the
soil to depths of maximum 10-12 meters and
readings of penetration resistance . were red
with use of manometer. Due to fact, that
achieveable cone resistance values were
limited by the weight of operator, this method
was generally used for determing thickness of
weak sendimental soils like peats and clays.

In consideration of extending CPT range in
more consistent layers of soils the pushing Figure 1.1 The first manual
force was increased. In 1935, the director of the CPT apparatus
"Laboratorium voor Grondmechanica™ in Delft

- T.K. Huizinga has developed deep CPT apparatus with reaction force of 10
tons. It took about 3 days to complete the test, because of method of applying
the ballast. It required to dig a hole filled with 6m® sand with wooden floor at
the bottom, which was connected to the device on the ground surface. It was a
time consuming method, though for the first time in history it allowed to
compute bearing capacity of wooden piles, instead of driving test piles.
Subsequent upgrades improved shape and type of cone: Vermeiden in 1948
added a conical mantle to the jacket cone; Begemann in 1953 connected so
called "adhesion jacket", which lately was transformed into friction sleeve.
Significant progress happened in 1965, when H.K.S. Begemann classified
soils and their relation with friction ratio (fs/qc). Next step for upgrading the
equipment was introducing in order: pushing rigs with greater force, hydraulic
jacks instead of gravity load and replacement mechanical cones with electric
ones.

NTNU Page 28



Master's Thesis Stanislaw Puakowski

1.5. CPTu

Piezocone is essentially a standard electrical CPT cone with built-in module
for measuring in situ pore water pressure Uo during the penetration. Armed
with stainless steel porous tip, the conventional probe measured pore
pressures in the vicinity of CPT sounding. It was developed by Norwegian
Geotechnical Institute in 1974 and utilized by Nilmar Janbu and Kare
Senneset in their research. Year later Swedish scientist Tortensson performed
dissipation test with piezocone developed by himself. Development of CPTU
gathered pace in 1980ies all around the globe: Canada, Netherlands, United
States and of course Scandinavia. Furthermore, adding next parameter in
Cone Penetration Test allowed to interpret data with tremendously greater
accuracy than before and determine soil types with more characteristics.

1.6. RCPTu

For electrical resistivity (or conductivity)
measurement of soil a piezocone with |
resistivity module was combined in the mid
1970ies in Holland. Initially this method was
developed to detected contamination of §
groundwater. However, evaluation of [N\
density, porosity and corrosive properties of
soil become another reason to use this
technique.

There are two types of resistivity probes:
operating in soil or in water. Soil type probe
consist of standard 10 cm® cone, friction
sleeve and additional module mounted in the
back. It is equipped with the set of two or
four isolated electrodes with insulating
collar. First outer electrode conducts current
and the second outer is grounded. With the
voltage applied, the two inner measure
resistivity of a soil. The resistivity module
with a set of 4 electrodes with plastic

insulation is in total about 350 mm long. Figure 1.2 Connected
Data used in my thesis was obtained from resistivity module
RCPTu soundings with the use of resistivity  to piezocone, photographed
module with 4 electrodes. by S.P.
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2. Analytical models for CPT

The key factor in determining soil properties is their relation with CPT
measurements. For validation of those correlations, many theories has been
developed since 1960ies. Relationship between cone resistance and soil
properties may be treated in two ways. At the beginning assumptive soil
properties are used to calculate cone resistance - this solution is used for
determining end-bearing capacity of piles or estimating process of
liquefaction. On the other hand, process of calculation can be back tracked.
Given measured cone resistance as an input the soil properties are back-
calculated.

There can be differed an abundant number of correlations and, what is worse,
not a single one is precise nor universal due to complex nature of a problem.
As a result of high stresses and strains caused by cone penetration, initial soil
conditions are unidentified. Each of available methods should be used
accordingly with caution. Moreover, every experienced engineer should bear
this fact in mind and choose a method of interpretation to the appropriate
circumstances - whether probed soil is cohesive or cohesionless; conditions
are drained or undrained; boundary conditions are fitting or mismatched.
Following project describes briefly few of the most popular methods.

2.1. Bearing capacity theory

This is one of the first and most recognizable theory used for CPT data
analysis. The cone tip is treated as circular, deep foundation, whereas cone tip
resistance (. defines ultimate load in subsoil during the failure. Analytical
approach is based on classic equation of bearing capacity (Terzaghi 1943,
Meyerhof 1951, Brinch Hansen 1970):

YBN.
2y=qt—u2=qe (1)

cN. + oy,N, +
c — cohesion
N, Ny, N, — Terzaghi's bearing capacity factors
o, — vertical ef fective stress on the surface of the cone
y — total unit weight
B — diameter of the cone

q: — corrected cone resistance
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u, — pore water pressure, directy taken from CPT data
qe. — ef fective cone resistance

With given a relatively small cone diameter to the other parameters the third
term of the equation can be assumed as minimal and thus neglected. Next
assumption describes failure, which develops under undrained conditions.
Assumptions for the cohesive soils:

e angle of internal friction is zero ¢ = 0°

e undrained shear strength is equal to cohesion s,, = ¢
( from Mohr-Coulomb criterion)

e parameter N, is neglected - influence of depth is already taken into
account by N, coefficient, making undrained shear strength a primary
factor of effective cone resistance

The simplified equation is formed as following:

ge = SulNc + 0y
0,0 — vertical initial total stress

Next step in calculations is choosing or calculating cone factor accordingly to
selected methods:

Table 1 - Bearing capacity solutions

Authors Cone factor or main conclusions
Cohesive soils
a
Meyerhof (1961) N; =1,15- (6,28 + a + cot E)

Nc = 1,2+ (2,443 + 3,303

Durgunoglu and Mitchell (1975) +sin[(1 - 1)
2

Houlsby and Wroth (1982) qc increases indefinitely with depth

is constant if depth is greater
Koumoto and Kaku (1982) qc than the cone (ﬁamet‘ir

Cohesionless soils

1 ng'
Janbu and Senneset (1974) _ _feng exp [(m — 2B)tang’]

1 1-sing'
Durgunoglu and Mitchell (1975) _ _ ,
Chen and Juang (1996) Ny = 0,194 - exp (7,629tang’)

Cone factors for plane strain cases are
Di Simone and Golia (1988) much less than for axisymmetric cases.

Koumoto (1988) Cone roughness has great influence on
the value of N,
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There are two methods for analyzing bearing capacity approach:

e limit equilibrium method: basic assumption is that cone resistance is
treated as deep, circular foundation, which is about to fail. Similarity to
Terzaghi assumptions is essential. Initially, the failure mechanism is
assumed; afterwards the global equilibrium is analyzed and in the end
the critical load is calculated.

e slip - line method: this solution combines equations of equilibrium
with yield criterion. As an effect a set of differential equations of
plastic equilibrium is obtained, which allows to plot a slip line.
Multiple slip lines create a network and critical load is possible to be

calculated.
A iy e
| |
: |
L)
' %
q|Il q,
(73] Tt
Lo L Berszantzey ol al. (1981 Blacsz et al. (161)
Terzaghi (1843} mmﬂr Veabc [ 1943) Hu (1984}

Figure 2.1 Assumed failure mechanism for deep foundation

Figure 2.2 Slip line network for Wedge and cone penetration analysis

Limitations for bearing capacity methods:

1. Influence of soil deformation is ignored on the cone resistance - its
value relies on soil stiffness and compressibility

2. "The bearing capacity approach ignores the influence of the cone
penetration process on the initial stress states around the shaft. In
particular, the horizontal stress tends to increase around the cone shaft
after cone penetration and the influence of this change [...] is not
considered in bearing capacity analysis." (Yu and Mitchell, 1998)
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2.2. Cavity expansion

In 1945 Alan W. Bishop has connected cavity expansion theory with CPT: he
noticed, that the pressure required to create a deep hole in elasto-plastic soil is
proportional to pressure, which expands cavity of the same value under
equivalent conditions. Two conditions must be fulfilled for calculating cone
resistance:
e theoretical limit pressure solutions of cavity expansions must be
established in given soil conditions
e relationship between cavity expansions limit pressures to cone
resistance must be found
This theory was extended by Vesic (1972) by following Mohr-Coulomb
criterion. Accuracy of results depends on vyield criterias and stress-strain
models of a soil (cohesive or non-cohesive). Large number of researchers
linked limit pressure solutions to more practical values like cone resistance or
pile end bearing. Figure below represents expansion of a cavity between soil
particles.

Figure 2.3 Expansion of cavity radius from initial value to limited by
ultimate internal cavity pressure

Limitations for cavity expansion theory:
1. Influence of dilatancy is neglected, causing a tendency towards
undervaluation of cone resistance.
2. "All cone factors N, derived from cavity expansion solutions depends
on the rigidity index I,. of soil" (Salgado, Prezzi, Kim, 2006)
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Table 2 - Cone factor Ny derived using different cavity expansions methods
(after Yu et al. 1998)

Ligﬁxlggd Vesic Baligh Yu Yu
(1977) (1975) (1993) (1993)
(1974)
G/Sy
Partly
rough cone rough rough Smooth rough
cone cone cone
cone
50 8,3 9,1 15,9 8,5 10,4
100 9,2 10,0 16,6 9,3 11,2
200 10,1 10,9 17,3 10,1 12,0
300 10,6 11,5 17,7 10,6 12,5
400 11,0 11,9 18,0 10,9 12,8

Su

Figure 2.4 Model of plasticized soil in the vicinity of cone at the state of
failure

2.3. Steady state deformation

In this method penetration of cone is "treated as steady state flow of soil past
fixed cone penetrometer”. Most of the models assume soil as a ideally plastic
matter, yet other include strain hardening critical state. Steady state
deformation method is still under development and at the moment its usage is
restricted to undrained clays. Obtaining initial conditions of flow field for
frictional soils proved to be quite problematic.
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2.4. Incremental finite elements

Incremental displacement FEM is used for analyzing cone penetration test in
two approaches:

e Small Strain Models. Cone is modeled in pre-bored hole and the soil
has initial undisturbed properties. Then an incremental plastic collapse
is calculated with following assumption: cone resistance is equal to
failure load. De facto situation is quite different: the shaft of a cone
tends to buildup high lateral stresses during the penetration. Thus, value
of cone resistance will be greater than calculated by this model.

e Large Strain Models. In this case stress increase around the cone shaft
in included, because it is possible to model vertical displacements
generated from the penetration of a cone and simulate changes of initial
stress conditions. Models for cohesive soils presented by Budhu and
Wu in 1991-92 include elements without given thickness and frictional
interfaces on surface of a cone.

Despite of rapid development of Finite Elements Methods there still doubts
about the accuracy of the cone factors, especially in clays. For example,
results acquired from van den Berg (1994) model of a circular footing on
undrained clays were about 23% higher than the exact solution.

2.5. Calibration chamber testing

For years enormous calibration chambers
were used to establish empirically values
of cone penetration factors. There are
three types of factors, divided by their
correlation with leading parameter of soil:

e relative density

e friction angle

e state parameter
Next parameters, which have major
influence, are: size of a chamber and
assumed type of boundary conditions.
"For example, if a flexible boundary (i.e.
constant pressure applied) is used in the
chamber testing, then the cone resistance
measured in the chamber will be lower
than what would be measured in the field
for the same soil at same initial conditions.
On the other hand, if a rigid boundary (I.e.  Fijgure 2.5 Scheme of calibration
zero displacement) is used in the chamber chamber

@« Clamp

—'0O' Ring seal

willl

LI

Pressure
] ¢ line
l)

1T E§
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testing, the cone resistance measured in the chamber would be higher than
that measured in the field." (Analysis of cone resistance: review of methods,
by H. S. Yu and J. K. Mitchell).
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3. Soil classification and measurement of properties

3.1. Normalized parameters

A standard CPTu cone measures cone tip resistance, sleeve friction and pore
water pressure. However, study on solely raw data from sounding can give
false results. For instance, vertical stresses increases with depth, as well as
cone tip resistance tends to rise at the same time. Interpretation of such
readings could cause errors - increase of mentioned parameters can change of
their supposed classification. This problem was very visible in deep
soundings especially: like in a thick, normally consolidated soil deposits or
offshore test. In order to specify soil stratigraphy, evaluate parameters of sub-
soil material in geotechnical design and evaluate soil-behavior in a rational
manner, obtained data from soundings must be post-processed.

Following equations represent step by step calculations:

e normalized cone resistance Q;:

G = qc +(1—a)-u, ©)
Opo = Vsoil " Z (4)
0'vo = Oy = Ug (5)
Uo = Yw (2 = Zew1) (6)
Q=52 (7

q. — directly taken from CPT data
a — calibration coef ficient, individual per probe
u, — directy taken from CPT data
Uy — pore water pressure in situ
z — depth
Zew1 — depth of ground water level

e normalized friction ratio F, :

E=—L_x100% (8)

dt—0yo
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fs — directy taken from CPT data

e pore pressure parameter B :

Up = Yw (2 — Zgwy1) 9)

qc = qc +(1—a)-u, (10)

Oyo = Vsoil "2 (11)
Uz—Ug __ Auy

Bq dt—0vo an ( )

u, — directy taken from CPTU data

Au,. — excess pore water pressure behind the cone

3.2. Undrained shear resistance

Due to numerous empirical and theoretical researches there is a wide variety
of possible calculations of undrained shear resistance. Multiple parameters
must be taken into account, such as:

e stress history,

e soil anisotropy,

e type of failure,

e strain rate.
Strength anisotropy is very influential factor for sensitive clays. However, for
all types of soils the most crucial of all is assumption of a design problem,
which affects final value of s,. Analytical approaches were described in
chapter 2 of this thesis. To calculate undrained shear resistance a theoretical
cone factor can be taken - usually its value is already defined. In this case a
Karlsrud et al. (1996) approach was choosen. Most common values are
Ny: € (6,18) and mentioned cone factor is related to pore-pressure ratio:

S-u_ — Qtl;l:;vo (13)
Ny = 18,7 — 12,5 - B, (14)

Most common values are N, € (1,10) and mentioned cone factor is
influenced by pore-pressure ratio:
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sy = e = ft (15)
Ny = 13,8 — 12,5 B, (16)

Most common values are N,,, € (6,8) and mentioned cone factor is not linked
with pore-pressure ratio:

)
u Nay B Nay (17)
Ny, = 1,8+ 7,25 B, (18)

3.3. Sensitivity

This parameter defines the ratio of undrained shear strength in undisturbed
conditions and totally remolded undrained shear strength. Weak clays and
quick clays in particular are marked by high value of this ratio, due to low
sleeve friction. Vane testisan efficient method for measuring sensitivity in situ:

_Ns

S, = » (19)

iy

de

Ry — friction ratio

N; — assumed constant

3.4. Resistivity

In this method resistivity of soils is measured indirectly - by the use of two or
four electrodes at the constant supplied current. If we assume that soil is
homogenous and isotropic medium and is "plugged” in a perfect electrical
source, then we obtain following equation of soil resistivity:

‘R (20)
L — path lenght

A — area of cross — section of ef fective resistive unit

R — measured resistance
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With the probes dimensions given, the
parameters L and A are calculated. The
only variable left is soil resistance R. It
is influenced by pore water pressure
and presence of ions - which indicates
concentration of chemical compounds
like salts, acid etc. Nowadays, RCPTU |
is used for detecting marine clays

(which characterize high salinity) and

for determining soil and ground water  Figure 3.1 Disconnected resistivity
contamination. module

3.5. Robertson classification chart

One of most popular and recognizable solutions include usage of all three
parameters from CPTu data. System, which was initially designed by Peter K.
Roberston in 1986, consist of two graphs represented in Figure 3.1. One
common feature is similarity of vertical axis, which represents value of
normalized friction ratio Q, in logarithmic scale. Different marked areas
allows to classify approximately type of soil:

e sandy soils - relatively high Q;, low F. and very low B,

e softclays - low Q, , high F. and moderate B,

e organic peat - minor Q. , very high F. and high B,

e sensitive soil - low @, , low E. and very high B,

e soils with high OCR (horizontal stresses) - tendency towards high Q;,
high E. and low B,

In sands and non-cohesive soils tip resistance lowers with diameter of
particles. Fine-grained material has relatively higher sleeve resistance at the
expense of pore pressure. Impermeable or saturated soils do indicate high
values of pore water pressure parameter.

"Generally, soils that fall in zones 6 and 7 represent approximately drained
penetration, whereas, soils in zones 1,2,3 and 4 represent approximately
undrained penetration. Soils in zones 5,8 and 9 may represent partially
drained penetration. An advantage of pore pressure measurements during
cone penetration is the ability to evaluate drainage conditions more directly"
(T. Lunne, P.K. Robertson, John J.M. Powell, 1997).
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Figure 3.3 Soil behaviour type classification chart based on normalized
cone resistance and pore pressure parameter (after Robertson, 1990)

Table 3 - Soil classification for Robertson charts

Soil , : . .
Zone| behaviour Zone Soil btehgwour Zone Soll tieh:wour
Sensitive Silt mixtures Gravelly sand
1 : . 4 | clayey silt to silty 7 y
fine grained to sand
clay
. Sand mixtures; .
2 Qrganlc 5 |[silty sand to sand 8 Very stiff sand
soils-peats silty to clayey sand
Clays-clay to Clean sands to Very stiff fine
3 : 6 . 9 :
silty clay silty sands grained
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3.6. Senneset classification chart

This chart was developed in response to older classification solutions, which
based on sleeve friction and cone resistance only. It was a new answer to
undependable and inaccurate measurements, caused by the effect of water
pressure on unequal end areas of differently designed cones. Moreover, many
CPTu test and studies have shown, that analysis of sleeve friction is
sometimes discrepant with pore water pressure and cone resistance.

Initial version of chart proposed by Senneset and Janbu (1985) used measured
cone resistance g, instead of total cone resistance g; in the new one.

It is the only chart plotted in non-logarithmic scale, thus vertical axis starts
from initial value equal to zero.

16000
14000 HARD
STIFF
SOIL (OC)
12000 By>0
_. 10000
©
a.
= 8000 DENSE
d., SAND
6000
4000 LOOSE
SAND e
2000 o
I SOFT
0 H_n%vmvsm
-0,60 -0,40 -0,20 0,00 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60
B, (-)

Figure 3.4 CPTu classification chart (Senneset, 1989)

Table 4 - Soil classification for Senneset chart

Clay Silt Sand

Soil ; ; ,
a tang a tang a tang

state (KN/m?] ] [KN/m?] [-] [KN/m’] []

Soft-loose | 5-10 | 0,35-0,45 0-5 0,50 - 0,60 0 0,55-0,65

Medium | 10-20 | 0,40-0,55 | 5-15 | 0,55-0,65 | 10-20 | 0,60-0,75

S, | 20-50 | 0,50-0,60 | 15-30 | 0,60-0,70 | 20-50 | 0,70 -0,90
dense
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3.7. Eslami and Fellenius classification chart

This particular chart was invented for investigating data from CPT and CPTu
in pile design. Original data base, which was used for defining following
graph, included cone penetrometer data correlated with sampling, laboratory
data and borings from 20 investigation sites in 5 countries. For soil
classification more basic parameters are used: sleeve friction f; and effective
cone resistance q,, which proved to be more reliable for plotting boundaries
of soil types than cone resistance q.. It is a simple chart for quick profiling
analysis of CPT data.
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Figure 3.5 CPTu classification chart
(Eslami and Fellenius, 1989)

Table 5 - Soil classification for Eslami and Fellenius chart

Zone

Soil type

Sensitive and collapsible clay and/or silt

Clay and/or silt

Silty clay and/or clayey silt

Sandy silt and/or silty sand

g WIN|F

Sand and/or sandy gravel
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3.8. Schneider classification chart

This method was developed in 2008 and is based on Robertson's charts.
During his theoretical studies James K. Schneider has taken into account few
analytical problems: influence of initial yield stress ratio and degree of
consolidation on soil behaviour during loading. "Increases in YSR and degree
of consolidation during loading tend to result in an increase in normalized
cone tip resistance and decrease in pore pressure parameter, which are
typically used for soil classification by piezocone." His research proved, that "
for many cases the influence of YSR and partial consolidation have opposite
effects when plotting data as Q against Au,/c'o (=BQ-Q). Therefore, charts of
Q plotted against Au2/c'vO are more useful for evaluation of soil type than
conventional plots of Q against Bg." (Schneider, 2008)

Proposed system eliminates use of net cone resistance g, = q; — 0, IN
both axes of charts, thus data are not plotted by function of its own self
parameter, which reduces distortion in soil classification.

1000

T LR

I

I

I

I

|

| }
-2 0 . 4 6 8 10
.é-.uzfc:'w

Figure 3.6 CPTu classification chart (Schneider, 2008)
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Figure 3.7 CPTu classification chart (Schneider, 2008) with classic
normalized parameters used by e.g. Robertson

Table 6 - Soil classification for Schneider charts

Zone Soil type
la Silts and low [, clays
1b Clays
1c Sensitive clays
2 Esentially drained sands
3 Transitional soils

3.9. Summary on classification charts

The data from CPTu and RCPTu soundings, which were conducted in
investigation sites in Sen-Trendelag, Norway, produced comparable outcome
of soil profiles. It is possible to recognize a linear layout of results on graphs
and familiar formation of layers in the profile. For best visualization and
formulation of conclusions a representative sounding was choosen from all
available data.
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Figure 3.8 Exemplary results for S1 RCPTu sounding from Klett
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Based on results from analyzed and presented classification charts following
conclusions are formed:

1.

Only two methods do not plot cone resistance versus its own value in
different forms: Eslami & Fellenius (1997) and Schneider (2008).
These profiling charts gave better results in cohesive soils: clays, silty
clays and sensitive clays, which deposits are common in researched
area.

Except for Eslami & Fellenius (1997) method, all of specified
classification charts requires adjustments for estimating effective stress
o,, and total stress o,, due to usage of basic non-normalized
parameters.

Utility of Senneset (1989) classification chart is more complicated in
this case. The reason for disputable classification of soils is visible after
visual comparison to the other solutions: in this single chart a great
amount of data is plotted on non-classified area. Furthermore,
boundaries of classified soils outline less than 40% of whole graph.
Even more, the results are plotted in a natural scale instead of
logarithmic - this solution causes lesser dispersion of data in the chart.
Highest density of data points was obtained by Elsami & Fellenius
(1997) method - however, it was caused by MPa instead of kPa for
effective cone resistance ge. Moreover, logarithmic scales used for both
axes. On the other hand, alternative solutions represent transition of
layers in a more visible manner - Schneider (2008) in particular.

The best performance system for sensitive soils include usage of
Qt versus Au2/c'vO parameters. A newly proposed chart by Schneider
detected and distinguished sensitive layers in more effective way. This
graph with Robertsons classic solutions were choosen for data
representation of soundings.
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4. Equipment and testing site
4.1. Description of an equipment

A whole set of CPT consist of a series of rods with cone penetrometer
installed at the end, pushing equipment and finally system for data collection
and storage. Standard cone has tip with inclination of 60°, 10cm? area of base,
diameter of 35,7 mm and 150 cm? area of friction sleeve. Both intermittent
and continuous data can be collected of following parameters:
1) q. - cone resistance; calculated by total pushing force on a cone Q
divided by projected area of a cone A,
2) fs - sleeve friction; total force acting on the friction sleeve divided by
surface area of the friction sleeve Aq
3) u, - pore water pressure; available only in CPTU piezocones; can be
measured by numerous sensors, leading one is located behind the cone
4) i - inclination; best quality data is retrieved from vertical CPT, non-
vertical requires correction of data; 1 degree of deflection is normally
acceptable, rapid deflection with magnitude greater than 5 may result in
damage of the equipment

Figure 4.1 Scheme of piezocone

For CPTU tests was used type TE2 cone with u, sensor), section area 10cm?
and diameter equal to 35,7mm. Geotech AB set, probe type Nova.

Measuring accuracy was regulated according to:

Revised NGF Message 5 (juni 2010); EN-ISO standard 22476-1
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4.2. Fallan investigation site

Fallan is located in Ser-Trendelag, Melhus community, about 35 kilometers
south from Trondheim. It is located about 110 meters above the sea level.
Local terrain is most diversified among other investigation sites. Steepness in
the vicinity of soundings In this project data from soundings 2,5,7 and 4 were
used. Area was investigated for prospective project of a new expressway,
which would decrease the amount of traffic on European route E6. Vertical
axis of road is perpendicular to the indicated row. According to map from
Berggrunnsgeologidata base (Figure 4.2) there are sedimentary soils in the
area - origin of them is linked to last glacial period.

At the end of Vistulian glaciation, about 10'000 years ago ice sheets begun to
shrink. Massive amount of soil materials, which had been trapped in the
glacier, has been released. Clay and silt particles has retained in the maritime
waters, which had deeply penetrated inland. With a salty water as a bonding
agent, they are formed in layers under the topsoil. As a result, quick clays are
not usually placed at the surface and they are likely located in thin deposits.
Area of occurrence is strictly limited by the highest sea level.

More detailed localization of borings and soundings along with topographic
map can be found in appendixes A and B.
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Figure 4.2 Risk map of Fallan for quick clay slides developed by NVE
(www.skrednett.no)
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4.3. Klett testing site

Klett is located in Ser-Trendelag, Heimdal community, approximately 13 km
south from Trondheim. It is located about 30 meters above the sea level. In
south from Klett there is intersection of European routes E6 and E39. In the
southeastern region a construction site is planned for motorway expansion.
According to NGU data moraine, marine sedimentary and organic soils are
present in the vicinity of area.

More detailed localization of borings and soundings along with topographic
map can be found in appendixes C and D.

Midtre
[FE-E39(Klett
; E39 Vg by

§
#
Nordre ’?,t;
C Jaktaya / D Middels
) f
, . I piene [:l Lav
2000t X: . . .
|500rr T Blly Q Investigation site

A

Figure 4.3 Risk map of Klett for quick clay slides developed by NVE
(www.skrednett.no)

4.4. Tiller investigation site

The Tiller site (sometimes also referred as Kvenild due to the name of local
village) is about 10 km south from city center of Trondheim. It is located at
about 125 m above the sea level. Local clay deposits are very well
investigated - from early 1980's this place was tested by numerous variants of
ground investigation techniques. Most of the research was undertaken by
NTNU with cooperation of NGI.
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This site is also worth considering of historical events: in 1816 a major
landslide occurred causing massive displacement of soil and leaving 15
casualties.

In relatively small proximity there is Klett test site; it is expected to receive
similar results from both sites. Thanks to vast amount of collected data and
experience on Tiller investigation site it is a great opportunity to check
credibility of obtained results from methods referred in the following thesis.

[ middels
D Lav

Q) Investigation site

Figure 4.4 Risk map of Tiller for quick clay slides developed by NVE
(www.skrednett.no)

Moreover, author of this thesis
supervised R-CPTu soundings
on 18th March 2015. For
mentioned tests a heavy type
geo-rig was used, equipped
with two different resistivity
modules. In the test participat-
ed: Jonland Jan, Senior Engi-
neer and Winther Gunnar, Staff
Engineer - technical personnel
from NTNU. Pre-drilling on
site was performed to 1,5 m.

Figure 4.5 Heavy geo-rig, photo by S.P.
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Objectives of the investigations were:
e acquire data for soil profile and to complete database for Tiller investi-
gation site
o verify newly calibrated resistivity module, which belongs to
Multikonsult company, with one from the university
Two soundings were performed in a close vicinity to ensure comparable data.
Results showed a layer of sensitive soil below 6-7 meter depth. Collected
resistivity values are in 94 % similar - which proves a proper calibration of
module. Unfortunately, readings of pore water pressure are imprecise, thus
using them in the following thesis would be unsuitable. For data analysis
results from first soundings were taken into account.

Figure 4.6 Dismantling a rod from the resistivity module after sounding,
photo by S.P.
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5. Interpretation of data

5.1. Fallan BP 2 - RCPTU

5.1.1. Plan of the investigation site

This section presents data from Fallan investigation site. Laboratory data are
available for soundings 2 and 4. Results are discussed in chapters 8 and 9.

- Plottet av: alm, Dako: 2014.11.20 kL 1236

- Borplan Fallan.dwg, - Layout: [BORPLAN];

559-01 RIGN415559-04 TEGNINGER\Feltstudium’\Fallant415559-RIG-TEG-003

TEGNFORKLARING:

@& DREIESONDERING © PRAVESERIE = PORETRYKKMALING

O ENKEL SONDERING [0 PREVEGROP <2 KJERNEBORING

v RAMSONDERING © DREIETRYKKSONDERING £x FJELLKONTROLLBORING

V' TRYKKSONDERING X SKRUPLATEFORSEK A2 BERG | DAGEN

> TOTALSONDERING -+ VINGEBORING

Egg;uﬁlilﬂ\wsﬁfw: Bﬁf aslznfgz\f,” fidligere opparag oo  TERRENGKOTE/S JABLNNKOTE
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Figure 5.1.1 Borings and soundings at Fallan investigation site
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5.1.2. Classification charts
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Figure 5.1.2 Robertson classification charts (1990) for Fallan BP2
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Figure 5.1.3 Schneider classification charts (2008) for Fallan BP2

Comment:

The soil profile for this investigation site is verified with laboratory data -
samples were taken from BP2 and BP4 points. Initial 4-6 meters layer is non-
sensitive clay (St = 10), then it transits into sensitive and finally to quick clay.
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Figure 5.1.4 Sounding parameters with interpreted profiles for Fallan BP2
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5.1.3. Undrained shear resistance
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Figure 5.1.5 Undrained shear resistance - interpreted and laboratory
results for Fallan BP2
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5.1.4. Sensitivity
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Figure 5.1.6 Sensitivity with different parameters and laboratory results
for Fallan BP2

Comment:

From Schmertman research Ns is equal to 15, however this value is for
mechanical type CPT. Rad and Lunne suggested assuming range of parameter
from 5 to 10. In graph the average was taken into account Ns = 7,5.
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5.1.5. Resistivity
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Figure 5.1.7 Resistivity results in relation to N, Ry and B, for Fallan BP2

Comment:
Marked areas are related to soil classification tables, which are discussed in
Chapter 10 of this project. Highlights represents values for quick clay.
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5.2. Fallan - CPTU 2

5.2.1. Classification charts

After calculations following types of soils and profiles were acquired:
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Fiaure 5.2.1 Robertson classification charts (1990) for Fallan CPTu2
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Figure 5.2.2 Schneider classification charts (2008) for Fallan CPTu2

Comment:
Sounding was ceased after encountering an obstacle at approx. depth of 35m.
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Figure 5.2.3 Sounding parameters with interpreted profiles for Fallan CPTu2
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5.2.3. Undrained shear resistance
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Figure 5.2.4 Undrained shear resistance for interpreted results for Fallan
CPTu2 results
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5.2.4. Sensitivity
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Figure 5.2.5 Sensitivity with different parameters, results for Fallan
CPTu2

Comment:

From Schmertman research Ns is equal to 15, however this value is for
mechanical type CPT. Rad and Lunne suggested assuming range of parameter
from 5 to 10. In graph the average was taken into account Ns = 7,5.
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5.3. Fallan - RCPTU 4

5.3.1. Classification charts

After calculations types of soils and profiles were acquired:

Figure 5.3.1 Robertson classification chart (1990) for Fallan RCPTu4
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Figure 5.3.1 Robertson classification chart (1990) for Fallan RCPTu4
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Figure 5.2.2 Schneider classification charts (2008) for Fallan RCPTu4

Comment:

Sounding was ceased after encountering an obstacle at approx. depth of 29m.
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5.3.2. Undrained shear resistance

Undrained shear strength, ¢, (kN/m?)
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Figure 5.3.4 Undrained shear resistance for interpreted results for Fallan
RCPTu4 results
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5.3.3. Sensitivity
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Figure 5.3.5 Sensitivity with different parameters, results for Fallan
RCPTu4

Comment:

From Schmertman research Ns is equal to 15, however this value is for
mechanical type CPT. Rad and Lunne suggested assuming range of parameter
from 5 to 10. In graph the average was taken into account Ng = 7,5.
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5.3.4. Resistivity
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Figure 5.3.6 Resistivity results in relation to N, Rf and B for Fallan

Comment:
Marked areas are related to soil classification tables, which are in Chapter 9 of
this project. Highlights represents values for quick clay.
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5.4. Fallan - CPTUS5

5.4.1. Classification charts after Robertson

After calculations types of soils and profiles were acquired:
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Figure 5.4.1 Robertson classification charts (1990) for Fallan CPTu5
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Figure 5.4.2 Schneider classification charts (2008) for Fallan CPTu5
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5.4.2. Undrained shear resistance

Undrained shear strength, c . (kN/m?)
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Figure 5.4.4 Undrained shear resistance for interpreted results for
Fallan CPTu5 results

NTNU Page 74



Master's Thesis Stanislaw Puakowski

5.4.3. Sensitivity
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Figure 5.4.5 Sensitivity with different parameters, results for Fallan
CPTu5

Comment:

From Schmertman research Ns is equal to 15, however this value is for
mechanical type CPT. Rad and Lunne suggested assuming range of parameter
from 5 to 10. In graph the average was taken into account N = 7,5.

NTNU Page 75



Master's Thesis Stanislaw Puakowski

5.5. Fallan - CPTU 7

5.5.1. Classification charts

After calculations types of soils and profiles were acquired:
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Figure 5.5.1 Robertson classification charts (1990) for Fallan CPTu?
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Figure 5.5.2 Schneider classification charts (2008) for Fallan CPTu7

Comment:
Sounding was ceased after encountering an obstacle at approx. depth of 35m.
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5.5.2. Undrained shear resistance

Undrained shear strength, ¢ (kN/m?)
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Figure 5.5.4 Undrained shear resistance for interpreted results for
Fallan CPTu7 results
NTNU Page 78



Master's Thesis Stanislaw Puakowski

5.5.3. Sensitivity
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Figure 5.5.5 Sensitivity with different parameters, results for Fallan
CPTu7

Comment:

From Schmertman research Ns is equal to 15, however this value is for
mechanical type CPT. Rad and Lunne suggested assuming range of parameter
from 5 to 10. In graph the average was taken into account Ng = 7,5.
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5.6. Klett - RCPTU S1

5.6.1. Boring location plan

This section presents data from Klett investigation site. Laboratory data are
available only for soundings S1 and S2. All acquired results will be discussed
in chapters 8 and 9.
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Figure 5.6.1 Borings and soundings at Klett investigation site
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5.6.2. Classification charts

After calculations following types of soils and profiles were acquired:
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Figure 5.6.2 Robertson classification chart (1990) for Klett RCPTu S1
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Figure 5.6.3 Schneider classification charts (2008) for Klett RCPTu S1

Comment:

Results plotted on classification charts presents a gradual change of soil with
the depth in the profile - few initial readings indicates layer of sandy clay near
the surface. Soil profile for this investigation site is verified with laboratory
data - samples were taken from S1 and S2 points. Initial 4-8 meters layer is
silty clay (St = 5), then it transits into sensitive and finally to quick clay.
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Figure 5.6.4 Sounding parameters with interpreted profiles for Klett
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5.6.3. Undrained shear resistance

Undrained shear strength, ¢, (KN/m?)
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Figure 5.6.5 Undrained shear resistance for interpreted results results for
Klett RCPTu S1
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5.6.4. Sensitivity
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Figure 5.6.6 Sensitivity with different parameters, results for Klett RCPTu
S1

Comment:

From Schmertman research Ns is equal to 15, however this value is for
mechanical type CPT. Rad and Lunne suggested assuming range of parameter
from 5 to 10. In graph the average was taken into account Ns = 7,5.
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5.6.5. Resistivity
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Figure 5.6.7 Resistivity results in relation to N, Rf and By for Klett
RCPTu S1
Comment:

Marked areas are related to soil classification tables, which are in Chapter 9 of
this project. Highlights represents values for quick clay.
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5.7. Klett - RCPTU S2

5.7.1. Classification charts

After calculations types of soils and profiles were acquired:
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Figure 5.7.1 Robertson classification chart (1990) for Klett RCPTu S2
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Figure 5.7.2 Schneider classification charts (2008) for Klett RCPTu S2

NTNU Page 86



Master's Thesis

Stanislaw Puakowski

Qi-Au,/a’g

Q:-B,

SaCl

Sensitive

50il

siCl

Bensitive)

s0il

siCI/Cl

Bensitive

s0il

Sensitive

50il

siCl/CI

al =10

(L) 2 - (plufne) &

OE

g9z

0g

e

ok

ooz

054+

ili=4]

aszh

ooolk

0gd
nos

053

ok Sk

(i) = (zlurnp) En

0z

52

oe

EE

op

—1

e e ———

B

P 'l_...—cl.w.-ur

9

al gl

LU) RN T PR

oz

4z

Ge

ar

Figure 5.7.3 Sounding parameters with interpreted profiles for Klett
RCPTu S2
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5.7.2. Undrained shear resistance

Undrained shear strength ¢ . (KN/m?)
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Figure 5.7.4 Undrained shear resistance for interpreted results results for
Klett RCPTu S2
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5.7.3. Sensitivity
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Figure 5.7.5 Sensitivity with different parameters, results for Klett RCPTu
S2

Comment:

From Schmertman research Ns is equal to 15, however this value is for
mechanical type CPT. Rad and Lunne suggested assuming range of parameter
from 5 to 10. In graph the average was taken into account Ns = 7,5.
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5.7.4. Resistivity
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Figure 5.7.6 Resistivity results in relation to Ny, Rf and B, for Klett
RCPTu S2
Comment:

Marked areas are related to soil classification tables, which are in Chapter 6 of
this project. Highlights represents values for quick clay.
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5.8. Klett - CPTU 1502

5.8.1. Classification charts

After calculations types of soils and profiles were acquired:
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Figure 5.8.1 Robertson classification chart (1990) for Klett CPTu 1502
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Figure 5.8.2 Schneider classification charts (2008) for Klett CPTu 1502
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5.8.2. Undrained shear resistance
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Figure 5.8.4 Undrained shear resistance for interpreted, results for Klett

CPTu 1502
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5.8.3. Sensitivity
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Figure 5.8.5 Sensitivity with different parameters, results for Klett CPTu
1502

Comment:

From Schmertman research Ns is equal to 15, however this value is for
mechanical type CPT. Rad and Lunne suggested assuming range of parameter
from 5 to 10. In graph the average was taken into account N = 7,5.

In this case, sleeve friction was so minimal, that sensitivity values could not
be plotted (see Eq. 19 in chapter 3). Scale for horizontal axis was changed for
more comprehensible view.
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5.9. Klett - CPTU 1503

5.9.1. Classification charts

After calculations types of soils and profiles were acquired:
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Figure 5.9.1 Robertson classification chart (1990) for Klett CPTu 1503
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Figure 5.9.2 Schneider classification charts (2008) for Klett CPTu 1503
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Figure 5.9.3 Sounding parameters with interpreted profiles for Klett
CPTu 1503
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5.9.2. Undrained shear resistance

Undrained shear strength c . (KN/m?)
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Figure 5.9.4 Undrained shear resistance for interpreted results for Klett
CPTu 1503
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5.3.3. Sensitivity
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Figure 5.9.5 Sensitivity with different parameters, results for Klett CPTu
1503

5

40

Comment:

From Schmertman research Ns is equal to 15, however this value is for
mechanical type CPT. Rad and Lunne suggested assuming range of parameter
from 5 to 10. In graph the average was taken into account N = 7,5.

Scale for horizontal axis was changed for more comprehensible view due to
disturbances of sleeve friction on a depth 10 m. Average value for sensitivity
below 20 m is about 30 for Schmertmann and 15 for Rad and Lunne.
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5.10. Klett - CPTU 1504

5.10.1. Classification charts

After calculations types of soils and profiles were acquired:
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Figure 5.10.1 Robertson classification chart (1990) for Klett CPTu 1504
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Figure 5.10.2 Schneider classification charts (2008) for Klett CPTu 1504
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Figure 5.10.3 Sounding parameters with interpreted profiles for Klett
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5.10.2. Undrained shear resistance

Undrained shear strength c . (KN/m?)
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