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Abstract:

A wide range of offshore science and engineering applications utilize slender catenary-shaped structural elements in
their design. These applications include moorings and steel catenary riser designs. The susceptibility of these slender
catenary-shapes to vortex-induced vibrations remains the subject of theoretical, numerical and experimental studies.

This thesis studies the measured responses from the 2001 MARINTEK experiment with the purpose of trying to
understand the relation between analytical models, numerical models, and experimental measurements.

The time domain decomposition (TDD) method is implemented in a Matlab program, considering three velocity cases
of cross-flow displacements in the catenary plane. The results show that in each of the cases, one of the frequencies
has a higher degree of contribution than other frequencies. However, multiple frequencies are present throughout the
measurements. Also, the frequencies corresponding to each mode varies. According to the MAC-criterion, the obtained
mode shapes have a high degree of correlation with the numerically calculated mode shapes.

For verification of the TDD results, the poly-reference least squares complex frequency method and the data- and
covariance-driven stochastic subspace methods of operational modal analysis (OMA\) are used for studying the data in
the commercial Matlab toolbox MACEC. As for the TDD method, the mode shape estimates have high MAC-values,
and the corresponding natural frequencies vary. The damping estimates show a great amount of scatter. Also, there is
a varying degree of certainty in the results according to result processing guidelines.

The effect of accelerometer masses and first order added mass effects are studied using a numerical model in Matlab.
The effects of the masses are concluded to be negligible.

A comparison between the operational modal OMA obtained eigenfrequencies and the corresponding numerically
calculated modes show a great amount of agreement in how the natural frequencies increase with mode number.
However, for this case study, the analytical and numerical calculations appear to underestimate magnitudes of the
frequencies. Also, there is an indication that the frequencies corresponding to each mode shape vary, possibly resulting
from higher order added mass effects.
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Summary

A wide range of offshore science and engineering applications utilize slender catenary-shaped
structural elements in their design. These applications include moorings and steel catenary riser
designs. The susceptibility of these slender catenary-shapes to vortex-induced vibrations

remains the subject of theoretical, numerical and experimental studies.

This thesis studies measured responses from the 2001 MARINTEK experiment with the
purpose of trying to understand the relation between analytical models, numerical models, and

experimental measurements.

The time domain decomposition (TDD) method is implemented in a Matlab program,
considering three velocity cases of cross-flow displacements in the catenary plane. The results
show that in each of the cases, one of the frequencies has a higher degree of contribution than
other frequencies. However, multiple frequencies are present throughout the measurements.
Also, the frequencies corresponding to each mode varies. According to the MAC-criterion, the
obtained mode shapes have a relatively high degree of correlation with the numerically

calculated mode shapes.

For verification of the TDD results, the poly-reference least squares complex frequency method
and the data- and covariance-driven stochastic subspace methods of operational modal analysis
(OMA) are used for studying the data in the commercial Matlab toolbox MACEC. As for the
TDD method, the mode shape estimates have high modal assurance criterion (MAC) values,
and the corresponding natural frequencies vary. The damping estimates show a great amount
of scatter. Also, there is a varying degree of certainty in the results, as some modal frequencies

are more difficult to obtain due to signal noise or other sources of error.

Continuing, the effect of accelerometer masses and first order added mass effects are studied
using a numerical model in Matlab. There are limitations in the results because of the
simplification of the added masses. However, based on the minimal changes in mode shapes,
and the eigenvalues changing opposite to what they should in comparison with experimental
data, the effects of the masses are concluded to be negligible. This conclusion coincides with

original assumptions made for the analytical and numerical models.

A comparison between the OMA obtained eigenfrequencies and the corresponding numerically
calculated modes show that there is a great amount of agreement in how the natural frequencies

increase with mode number. However, for this case study, the analytical and numerical




calculations appear to underestimate magnitudes of the frequencies. Also, there is an indication
that the frequencies corresponding to each mode shape vary resulting from higher order added

mass effects, which are not considered in the numerical or analytical methods.




Sammendrag

Konstruksjoner bestdende av elementer som danner en hengende form mellom to
innfestningspunkter blir anvendt i mange offshore installasjoner og andre tekniske
innretninger. Blant bruksomradene finnes forankringer av flytende konstruksjoner og hengende
stigergr i stal. Disse strukturene er utsatt for virvelinduserte vibrasjoner, som fortsatt er et felt

som undersgkes bade teoretisk, numerisk og med eksperimenter.

Analysene utfart i denne hovedoppgaven er basert pa eksperimentelle resultater fra et prosjekt
som ble utfgrt ved MARINTEK i 2001. Hensikten er & fa en bedre forstaelse for ssmmenhengen
mellom de analytiske modellene, de numeriske modellene og observasjoner gjort under

forsgkene.

En dekomponeringsmetode for tidsdomenet (TDD) er brukt til systemidentifikasjon av
maledataen, og er implementert i et Matlab program. Her er tre hastighetstilfeller fra forsgket
er brukt, alle med malt bevegelse i konstruksjonsplanet. Resultatene av studiet viser at for alle
hastighetstilfellene vibrerer strukturen med én hovedfrekvens. Det finnes likevel flere
vibrasjonsfrekvenser i maledataene til enhver tid. I tillegg er det observert at enkelte frekvenser
kan endre modeform avhengig av stremningshastigheten strukturen er utsatt for. Mange av
modeformene som er funnet ved bruk av TDD metoden har ifglge MAC kriteriet en hgy grad

av korrelasjon med modeformene beregnet med elementmetoden.

For & kontrollere resultatene som er funnet med TDD metoden, er en minste kvadraters
kompleks frekvens metode (p-LSCF), en data drevet stokastiske Subspace-metode (DD-SSI)
og en kovarians drevet stokastiske Subspace-metode (Cov-SSl) ogsa brukt i analysene av
maledataene i Matlab verktgyet MACEC. Her har ogsa de estimerte modeformene god
overenstemmelse med modeformene beregnet med elementmetoden ifglge MAC kriteriet,
mens egenfrekvensene ogsa her har en tendens til & endre modeformene de tilharer. Det er stor
spredning i dempningsestimatene. Stay i signalet gjar at flere av de beregnede egenfrekvensene

og modeformene har stor usikkerhet.

Forste ordens innvirkning av akselerometrenes masse og tilleggsmasse er undersgkt i en
numerisk modell i Matlab. Resultatene fra denne undersgkelsen er kun anvendelige for enkle
sammenligninger ettersom tilleggsmassens innflytelse er meget forenklet. De beregnede
modeformene viser liten forandring sammenlignet med modeformene som er beregnet uten a

ta hensyn til akselerometermassene. Graden av endring gker med gkende modenummer. Det




viser seg at nar akselerometermassene er inkludert i elementmetodeberegningene gker ikke
egenfrekvensene like mye med modetall som det egenfrekvensene som er beregnet ved

systemidentifikasjon av maledataen gjar.

En sammenligning mellom egenfrekvensene som er funnet ved bruk av TDD, p-LSCF, DD-
SSI og Cov-SSI metodene og de som er beregnet ved bruk av elementmetoden uten
akselerometrenes masser viser at det er stor grad av overenstemmelse nar det gjelder hvordan
egenfrekvensene gker med modenummer. Det viser seg likevel at de egenfrekvensene beregnet
med elementmetoden er noe lavere enn frekvensene som er beregnet ved systemidentifikasjon,
spesielt i de hgyeste modetallene. | tillegg finnes det indikasjoner pa at frekvensene som
korresponderer til hver mode varierer, og dette kan veere et resultat av hgyere ordens effekter
av tilleggsmassene, som ikke er tatt hensyn til i numeriske eller analytiske metoder presentert

i denne oppgaven.
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Chapter 1

Introduction

1.1 Background

The oil and gas industry is one of the largest industries in the world, and was estimated to
provide 40.7% of the world’s energy demand in 2014 (IEA 2014). Although clean energy
solutions are preferable, they are not equipped to serve the world’s energy requirement in full
in the near future, so we will have to depend on fossil fuels for a while longer. As the lifetime
of the oil fields in production today is comparatively short, there is a need to explore reserves
in deeper and more complex locations. This puts a larger strain on systems both under
installation and operation, and leads to the required development of optimized solutions to

increase capacities without an inflation of cost.

One of the reasons why we do not have a clean energy solution providing a larger part of the
world’s energy demand is that most of them are not feasible in the near future. That is, the time
it takes for the extracted energy to pay off the installation cost is still too long. This calls for
major optimizations to lower prices. For example, floating wind turbines require better mooring

and electricity transport systems, which often take the shape of catenaries, see Figure 1.1.

Figure 1.1: Example of a catenary shaped structural element




Slender catenary-shaped structural elements are found in a wide range of on- and offshore
engineering applications, and are preferred due to their cost efficiency. They are found in
suspension bridges, transmission lines, in moorings of offshore structures, as well as steel and
flexible risers, pipelines under laying and free-spanning pipelines. However, this slender
structural shape is not without its disadvantages. Its susceptibility to vortex-induced vibrations
(VIV) results in a potential for fatigue damage, which in a worst-case scenario could lead to
failure. Therefore, it is important that the vibrations can be well estimated and understood, so
that the risk of failure by use of catenary shaped structures can be reduced.

To ensure the safe and optimal design of such structures, dynamic analysis is a must. This
requires the prediction of natural frequencies, mode shapes and modal damping before analysis
of the structures interaction with loading can be carried out. This can be done using either

analytical, numerical or experimental methods.

In 2001 an extensive model test program was carried out in order to better understand the
behavior of a steel catenary riser (SCR) subject to VIV at various angles. The experiments were
carried out by 2H Offshore Engineering, and subcontracted to MARINTEK. Following the
experiments, multiple studies have improved the understanding of the presented data, both
through system identification, and by trying to predict the observed responses analytically and

numerically.

One of the research groups that has been investigating the data consists of Geir Moe, Torbjarn
Teigen, John M. Niedzwecki, Raed Lubbad and Sam Fang. In their work, they have studied
displacement envelopes, frequencies, probability of exceedance distributions, effect of time-
series truncation and more (Moe et al. 2004; Niedzwecki & Moe 2005; Niedzwecki & Moe
2007). Fang and Niedzwecki have also investigated the data using operational modal analysis
techniques (OMA), more specifically the time domain decomposition (TDD) method that will
be introduced in Section 4.3.1, and some of their unpublished results have been obtained by

personal communication with the authors.

Additionally, inspired by the studies of experimental data, attempts have been made at
predicting natural frequencies and mode shapes of catenaries by analytical solutions. These
solutions are based on methods first presented in the 1980’s, but have been modified to better
suit steel catenary risers by modifying assumptions and input (Lubbad & Moe 2008; Lubbad
et al. 2011). They have also been compared with numerical solutions such as finite element

method analysis, seeking similarities and differences in the various solution methods.




Despite extensive studies showing good results, there is still a gap between the mode shapes
and natural frequencies of the analytical and numerical solutions in comparison with
experimentally obtained results. For example, there are clear eccentricities in the mode shape
shown to the left in Figure 1.2 in comparison with the one to the right. Note that the difference
in magnitudes of (a) and (b) in Figure 1.2 are consequences of normalization of the mode

shapes, but the anomalies result from other apparent, but unknown effects.
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Figure 1.2: (a) Mode shape obtained from TDD of experimental data excited at 1.20 Hz.
(b) Mode shape obtained from analytical and numerical solutions corresponding to an
eigenfrequency of 1.05-1.08 Hz

1.2 Motivation and scope of work

The above mentioned deviations are what inspired the work presented in this thesis. To bridge
the gap between the analytical or numerical solutions, and the experimentally obtained results,
an investigation is carried out into multiple possible causes of the eccentricities. Possible
sources of error are flaws in the system identification methods, or consequences of physical
effects that are neglected in the analytically obtained modes. The sources of error will be
investigated by a case study of the data from the MARINTEK experiment.

Firstly, the TDD method will be implemented and studied, altering the method of obtaining
natural frequencies and damping from what is called the half-power bandwidth method to a
correlation method presented in (Brincker et al. 2001).

Secondly, the experimental data will be studied applying other system identification methods
in the commercial Matlab toolbox MACEC, presented in Section 5.4, to get an understanding




of the applicability of the TDD method results and to investigate whether the other methods

can give a better understanding of the data.

Thirdly, the numerical methods of obtaining natural frequencies and mode shapes will be
modified to investigate the possible issue of inertia effects due to the masses and volumes of

the accelerometers.




1.3 Structure of thesis

Chapter 1 aims to give the reader insight into the background and motivation for conducting
the work associated with this thesis, along with giving an overview of the thesis structure and

potential readership.

Chapter 2 presents the general theory associated with vortex induced vibrations, including
some relevant dimensionless parameters, the concept of shedding frequencies, cross-flow and

in-line responses and more.

Chapter 3 follows from Chapter 2, describing the dynamics of slender structures resulting
from vibrations caused by vortices. Modal analysis solutions of un-damped systems are
presented for both time and frequency domain, as well as modal analysis solutions of damped
structural systems. Continuing, the static solution, i.e. catenary shape, is presented. This is
described by multiple solutions to the inertia and damping free equation of motion with various
assumptions. Finally, the chapter gives a presentation and discussion of the analytical and
numerical solutions to the equation of motion for un-damped and damped catenary shaped

structures.

Chapter 4 focuses on system identification methods, introducing relevant terminology and
relations in signal processing. The theory of the implemented TDD method is discussed, as
well as the applied methods available in the MACEC toolbox, showing their differences in

assumptions and derivations.

Chapter 5 opens with an introduction to the experiment conducted in 2001 at the MARINTEK
venue, including a description of the experiment setup, as well as general results. Subsequently,
the chapter presents the case study for this thesis, followed by the various methods and relevant
results. Following the results are discussions of observations made when comparing the results

with each other and theoretical facts.
Chapter 6 concludes the thesis, giving an overview of findings.

Chapter 7 gives recommendations for further work.




1.4 Readership

The main focus of this thesis is given to slender marine structures with a catenary shape, more
specifically SCRs. It highlights main concepts associated with vortex induced vibrations, as
well as multiple solution methods to the dynamics of SCRs subject to it. Also, the concepts of
system identification are brought forward as a method of studying experimental VIV
measurements. The readership of this thesis is, therefore, students seeking insight into
fundamental theories of VIV, dynamics and system identification, as well as engineers,
lecturers or scientists looking to extend their insight into the concepts, and use the results and

recommendations as inspiration for further work.




Chapter 2

Theory of Vortex Induced Vibrations

This chapter presents general principles necessary for the understanding of vortex induced

vibrations and its consequences.

2.1 The process of vortex shedding

Vortex-induced vibrations are caused by the shedding of vortices from the structure, and can
occur in air as well as in ocean currents. The vortices are caused by the fluid movement around
the structure, which again is driven by the conservation of mass, momentum and energy. The
Bernoulli equation, i.e. Egs. 2.1 and 2.2, are used to explain the mechanism of vortex shedding
(Faltinsen 1993).

1 p
2 2
Us = 2Usin0d (2.2)

U, Tangential velocity along the surface
U, Fluid velocity at a distance from object
P, Surface pressure at tangential point ¢
P,  Surface pressureatf = 0

Fluid density

6  Angular coordinate

As Equations 2.1 and 2.2 imply, the pressure at the volume surface reduces as the tangential
velocity increases. When the velocity passes its maximum at 8 = /2, the pressure will
increase towards the volume aft, as the velocity decreases. The fluid will seek towards the aft

of the object to regain kinetic energy.
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Figure 2.1: Cross-section subject to fluid flow and fluid separation

This idealized potential flow formulation of the Bernoulli equation and the tangential velocity
assumes laminar flow around the whole object. This is, however, rarely the case, and the
description of the flow behind 6 = /2 becomes dependent on the Reynolds number,
explained below. The fluid loses energy to friction force as it flows around the object. If the
loss of energy is large enough, the fluid will separate from the surface at what is called the

separation point, see Figure 2.1.

2.1.1 Reynolds Number

Reynolds number is a dimensionless number that relates the inertial forces of the fluid,
represented by the fluid velocity, U, and the effective diameter, D, to the kinematic viscosity.

The kinematic viscosity, v, defines the fluids shear resistance to density ratio.
Re = — (2.3)
Figure 2.2 shows the vortex patterns for a cylinder of diameter D as a function of Reynolds

number. As can be seen from the figure, for circular cylinders, the idealized equations for

potential flow are only valid for Reynolds numbers below about five.
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Figure 2.2 Vortex patterns as a function of Reynolds number (Blevins 1994)

The vortices will separate from the structure and produce vortex streets from Reynolds numbers
of about 40, but the most interesting Reynolds numbers for studying VIV are found for Re >

300. Here, the shedding frequency, f;, is more likely to reach the natural frequencies of

structures, inducing resonance.

2.1.2 Strouhal Number

Another useful dimensionless number when studying VIV is the Strouhal number, which is
directly related to the Reynolds number, and is defined as

D
S, = % (2.4)

The Strouhal number is nearly constant for the sub-critical flow regime (see Figure 2.2) for
circular cylinders, with a value of about 0.2, and returns to a near constant state value of 0.24
for the super-critical flow regime (Faltinsen 1993). In the transition flow regime the values of

the Strouhal number depends on the surface roughness number, which is defined as
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(2.5)

O] =

Here, k is the characteristic size of the roughness.

2.1.3 Vortices

The tangential particle velocity at a point along the objects surface is proportional to its radius.
As a result, as the fluid separates from the body, the difference in velocity causes shear in the
thin fluid layers, resulting in vortices.

At the point in time when a separation first occurs, the shedding of vortices will be symmetric
about the structure axis in the flow direction, but as there are instabilities in the vortices,
asymmetries will arise. These asymmetries will soon lead to the shedding of vortices
alternating between the two sides, creating a vortex street behind the object. As the vortices
shed from side to side, pressure variations along the aft of the structure create lift and drag
forces, applying thrust forces to the structure. The frequency at which the vortices alternation
runs a full circle is known as the shedding frequency, mentioned in the definition of the
Strouhal number. When the shedding frequency, reaches a magnitude close to the body’s
natural frequencies, the object will tend to oscillate. This phenomenon is called lock-in, where
the shedding frequency will be locked into the natural oscillating frequency of the structure
along its length.

The shedding of vortices and amplitude of oscillation is highly dependent on the shape and
surface of the structure cross-section. A circular cylinder is likely to oscillate with an
amplitude, A, close to its diameter, D, where % < 1.2. In this context, % is also known as the

dimensionless amplitude. Moreover, a half cylinder exposed to current hitting the flat side first
is likely to become unstable, with amplitudes escalating and ultimately ending in structural

failure.

10



2.1.4 In-line and cross-flow motions

Cross-flow motion

/ Idealized trajectory

Fluid flow direction

- 3 In-line motion
—_— >

Figure 2.3: Example trajectory of the mid-point of a structure subject to VIV

Directional and perpendicular motions due to VIV are called in-line (IL) and cross-flow (CF)
motions respectively. Figure 2.3 shows the idealized trajectory of the cylinder center as a result
of VIV, and as previously defined, the shedding frequency is the rate at which the center moves
the full trajectory. As can be seen from the figure, the IL motions will occur at twice this
frequency, while the CF motion frequency can be associated with the shedding frequency

directly.

The figure also displays the difference in magnitude of motions, where the IL motions are
usually much smaller than the CF motions. Hence, it is in the CF direction that the cylinder

dimensionless amplitude is limited to 1.2.

2.1.5 Reduced Velocity

The reduced velocity is often used to describe the path length travelled in the IL direction, UT,
relative to the cylinders diameter. When defining the lock-in velocities for fluid flow, the
reduced velocity definition connects the structural natural frequencies directly to the flow

velocity.

Ur=15=% (2.6)

11
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2.1.6 Hydrodynamic Loading

The steady IL force associated with fluid flow is described by Morison’s equation, i.e. Eq.2.7.

T pUZ

F;,  In-line thrust force
Cy  Coefficient of mass
Cp Coefficient of drag s

U, Fluid acceleration at a distance from
object

The formula is similar in both the IL and CF direction. However, the coefficient of drag will
be replaced by the coefficient of lift. VVortices add an oscillating part to the fluid flow force in
both IL and CF directions. As can be seen in Equation 2.7, the force consists of two separate
parts, the force due to the drag, where the drag-coefficient is determined empirically from
experiments, and the inertial part. The inertial-coefficientis C, = 1 + C, where Cy is the added

mass coefficient.

It is this added mass coefficients contribution to the loading that is of interest when considering
the accelerometer mass’ effect on the natural frequencies obtained in the experimental work.
Some example added mass coefficients for VIV on free-spanning pipelines in lock-in
frequencies are given in Section 4.5 of (DNV 2006). In reality, the added mass depends on the
frequency, and will vary along the length of the structure and in time. However, to simplify,

the added mass is assumed constant in the work presented in this thesis.

2.1.7 Vortex Suppression

In engineering practice, when designing offshore structures, the importance of minimizing the
fatigue damage by VIV suppression limits the choice of shapes and materials. The optimal
shape is one with reduced form drag, because it is the pressure variation due to drag that is the

main cause of separation.

A guide to the VIV mitigation strategies is given in (DNV 2010). It insists that reduction of
VIV can be done either by changing structural properties, by changing surface properties, or

12



by verifying the structure by model testing. The recommended practice (RP) subdivides the
surface modification methods in three categories; surface protrusions, shrouds and wake
devices, shown in Figure 2.4. Surface protrusions, such as helical strakes, wires and studs, aim
to hinder separation at the structure surface. Shrouds are placed a distance from the structure
and aim to divide the flow into many small vortices, while wake devices hinder the building of
a vortex street. Following from extensive experimental work on the subject, the RP gives

suggestions to modelling considerations when these devices are to be included.

-

{a) {b)

L=

te) () tg) )

Figure 2.4: Suppression devices.(a) and (h) are surface protrusions. (b) and (c) work like
shrouds. (d)-(g) are forms of wake devices.(Blevins 1994)

2.1.8 VIV Analysis

Blevins discusses methods of VIV analysis in (Blevins 1994). As he points out, the first step is
to identify structural modal characteristics, building the foundation for the model. This is
usually done using finite element methods (FEM). There are two means of VIV analysis
currently in use. Firstly, VIV can be studied by use of finite element solutions to Navier-Stokes
equations, by dividing the flow field into a mesh and including a turbulence model. This

method is also known as computational fluid dynamics (CFD). Secondly, empirical data

13
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resulting from extensive experimental work can be built into software capable of connecting
the structures characteristics to measured responses of similar experiments. An example of this
type of software is MARINTEKS’s VIVANA.

How modes and mode-shapes participate in vortex induced vibrations along a structure is
difficult to predict, and two models are typically used, see Figure 2.5. Firstly, mode shapes are
thought to be travelling waves, participating in the whole structure at separate time slots. This
model is called the time sharing model, and is shown to the right in Figure 2.5. The second
model assumes that multiple frequencies are present at the same time, but that each frequency
IS participating in a finite area along the structure, and these areas do not overlap. This model
is called space sharing, and is shown to the left in the figure below.

Space Sharing Time sharing
N NSNS

Zone for frequency one

[ Zone for frequency two

I Zone for frequency three

Zone for frequency four

7 | | | | |
I I I I I
to t ts ts t, ts
Time-slot Time-slot  Time-slot Time-slot
for for for for
frequency frequency frequency frequency
one two three four

Figure 2.5: Space sharing vs time sharing models of VIV analysis

Continuous improvements in computer’s computational capacities are allowing for more
complex and accurate VIV analysis tools. However, CFD modelling is still very resource
demanding, and the empirical tools are limited to structures consisting of beam elements, so

continuous work is needed to improve VIV analysis.
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Chapter 3

Structural analysis of slender catenary structures

The following chapter aims to provide general theory associated with the dynamic analysis of

slender catenary structures subject to vortex induced vibrations.

3.1 The equation of motion and solution methods

A structures response to dynamic loading, like vortex-induced vibrations, requires a solution

to the equation of motion.

my +cy +ky = p(t) (3.1)

Describing a structure as a single mass with a single stiffness, moving in a single direction is a
major simplification, and the system is therefore better described as a system of equations of

motion, as given in Eq.3.2.

[MI{7} + [CH{y} + [K{y} = {p(©)} (3.2)

where [M], [C] and [K] are the mass, damping and stiffness matrices respectively, and all of
size N x N. N denotes the systems number of degrees of freedom (DOF). Moreover, for Eq.
3.1 to transfer directly to Eq. 3.2, the mass, stiffness and damping would have to be described
by infinite degrees of freedom, N — oo. However, when using methods like the finite element
method, N is finite, and so the accuracy of the calculated responses to loads depends on the
chosen number of elements that describe the system. {ji}, {y¥}, {y} and {p(t)} are the
acceleration, velocity, displacement and applied force vectors respectively, and are of size N X

1. An idealization of a multi-degree of freedom (MDOF) system is shown in Figure 3.1.
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M(f),yl(f):)')l(r) YZ(T),}"Z(Y),J'}SU)
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Figure 3.1: A multi-degree of freedom system

Equation 3.2 describes coupled equations of motion, but the simultaneous solution to these
equations becomes inefficient as DOF increase. It is therefore more efficient to expand the
equation of motion in terms of modal contributions (Chopra 2007). Here, the response is
decoupled into a time-dependent part, the contribution factor, and a part describing the shape
of the response. The number of different shapes describing the response should also be infinite,
but is limited by the number of elements chosen to subdivide the system. Each of these shapes
can be viewed as responses of single degree of freedom (SDOF) systems to loading, and the

total response is a super-positioning of all of the SDOF responses.

The homogeneous solution to the MDOF system without damping, when {p(t)} = 0 and [C] =

0, has a solution on the form.

(®©} = {gn(OHPn} = ({An} cos wnt + {Bn} sin wpt){¢pn} (3.3)

where n denotes the DOF, g, is the time variation of displacements, ¢,, is the deflected shape,
{A,.} and {B, } are vectors of constants and w,, is a natural frequency. Substituting Equation 3.3

into Equation 3.2 gives

[~ [M{a) + (K}l (gn (D} = 0 (3.4)

The only non-trivial solution to Eq. 3.4 is found when

det[[K] — wz[M]] = 0 (3.5)

16



This equation is known as the characteristic equation of a system, and solving for w2 results in
N real and positive roots, known as the systems eigenvalues. When the natural frequencies, w,,
are known, the corresponding vectors, ¢,,, known as the mode-shapes, can be found using the

equation

[[K] — wi[M]]{¢} = 0 (3.6)

The resulting dynamic response, expressed in terms of modal contributions, is given in

Equation 3.7.

N
OO} = ) (6O} = [@a®) (37)
r=1

The matrix & is known as the modal matrix, where each column represents the mode-shape
corresponding to the eigenvalues of a spectral matrix containing the eigenvalues on the
diagonal. q,.(t) contains scalar multipliers for each DOF of the corresponding r'" modes with

time, and q(t) is a matrix containing the contributions of all modes.

Substituting for y(t) in equation 3.2, and multiplying by the transform of the modal matrix

results in the equation of motion in terms of modal contributions given by Equation 3.8.

[T [M][@]{G(D)} + [®IT[CI[@](G (D)} + [®]7[K][®]{q ()}
= [®]"{p(t)} (38)

3.1.1 Modal analysis using damped modes

Damping of a system is complicated, not only because it is difficult to predict or know for
certain, but also because it complicates the calculations and results of the characteristic
equation, given as Equation 3.5 for the un-damped case, and by Equation 3.11 for the damped
case. The damping can be categorized by two main groups, classical and non-classical
damping. In classical damping, which is usually an idealized form of damping (Chopra 2007),
the damping is symmetrically distributed throughout the whole system. For non-classically
damped systems, the energy dissipating areas are unevenly distributed, and more difficult to

identify.
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3.1.1.1 Rayleigh Damping

A method of predicting classical damping is with use of Rayleigh damping, Equation 3.9. It
assumes that the damping matrix is proportional to both the stiffness and mass matrix, and
visualized in Figure 3.2.

[C] = ao[M] + a4 [K] (3.9)
(a) (»)

Ao m Uy Uy
| = ¢ ak,
N anm mo k1 y { ’

oMMy 2 Uy / Uz
N ky | agz
| QM3 M3 Uz Uz
N 1= . : a ks :
~ ks |

7 7 7 7 7 7 77

Figure 3.2: Conceptual interpretation of Rayleigh damping, as interpreted from (Crowe
2009)

If the modal damping is known from experimental data, the coefficients a, and a, can be

obtained by Equation 3.10

ag = 2§y
2
- (310)
n

where &, is the damping ratio corresponding to the natural frequency w,.

3.1.2 Calculating Modal Parameters with Damping

[[K] + wp[C] + wi[M]]{¢,} = 0 (3.11)

As systems that are of interest for VIV are all under-damped, the solutions of Equation 3.11

will all be of complex form, and in complex conjugate pairs. The procedure of obtaining the

18



solutions to 3.11 without the use of major computational effort is done by reducing the second

order equation of motion to a system of first order equations (Hoen 2005).

y
X = [y]
- (3.12)
.Y
*= [y]
Where x is known as a state vector. This results in the equation of motion on the form
(11 [o]y,. [0] =[] _[ (0]
o1 1)@+ i piel @ =gl @
oy [0] [1] [0] (3.13)
= el @ ] @
(4] [B]

Here, A isa 2N by 2N matrix. Assuming free vibration, {p} = 0, and a solution on the form

{x()} = e*{x} (3.14)

where A are the eigenvalues of the system.

Equation 3.13 can be written as

[Al{x} = A{x} (3.15)

And also, because det(4) = det(AT).

[A]"{u} = A{u} (3.16)

Solving for A in both Equation 3.15 and 3.16 results in the same 2N eigenvalues, A, with 2N
corresponding eigenvectors, [X] = [xq, X3, X3, ..., Xon] @and [U] = [{uy}, {uz}, {us}, ..., {uan}l-
These are right and left column eigenvectors respectively, and are related by [U]T = [X]71.
The full derivation of this relationship is found in (Hoen 2005). A consists of N complex

conjugate pairs.
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Before attempting to plot the mode shapes spatially, it is practical to view the eigenvectors in
a complex plane plot. This is useful for determining if the element poles are in a straight line

or out of phase with each other, which result in normal or complex modes respectively.

As the response is assumed a linear combination of the 2N solutions of eigenvalues and

eigenvectors, following an initial state at t = t,, it can be written as Equation 3.17.

x(®)} = z{Xj}elj(t_t"){Uj}T{X(to)} + {xj}*el;(t_to){uj}*T{x(to)} (3.17)

J

Where 4; and 4; are complex conjugate pairs. As we are only interested in the displacement

solution of {x(t)} in this thesis, we can choose to keep only the first N elements of [X] and [U],

following from 3.12. On polar form the response can be written as

N
yr(t) = Z 2|ujT,kxk(t0)| |xj,k|e_“f(t_t°) cos (wj,D (t—to) + 6k
+ ¢j(t0))
where
aj = & w; Damping factor of mode j
|xj,k| Magnitude of state-space eigenvector j, element k
W; p Damped circular frequency of mode j
T Initial modal amplitude of mode j corresponding to the initial state

|uj,kxk(t0)|

x(to)
w; Un-damped circular frequency of mode j
¢ Damping ratio of mode j
0 k Modal phase corresponding to element k
¢;(ty) = . . )

Initial modal phase corresponding to mode j.
arg (U] i (t0)) P Poneing .

Where w; and &; are given by Equations 3.19 and 3.20 (Lallement & Inman 1995).
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wj = \/Re(ﬂj) + Im(%)) (3.19)

Re(%;)

'fj:—

(3.20)

In the case of proportionally damped systems, the modal phase corresponding to element K is
expected to be zero, meaning that the components of a mode lie on a straight line in the complex
plane. As a result, the mode shapes are similar to those found by normal un-damped modal
analysis, but the mode shapes occur when exposed to frequencies corresponding to the damped
natural frequencies, and the various shapes are phase-shifted relative to each other. This is
practical for trying to recreate a response of a system with structural damping, but does not

allow for the identification of mode shapes with phase-shifts between elements.

3.1.3 Modal Analysis in the Frequency Domain

Equation 3.2 can also be solved for a given harmonic loading, {p;(t)} = {po} - €'+, where

k links the amplitude to the frequency w. The response to this load is assumed to be

()} = {GiJe'r (3.21)

where {G,} is a vector of constants. Substituting for {y} in 3.2 with 3.21 results in the following

equation

{GiYe K (—wi [M] + iw, [C] + [K] = (pi ()} (3.22)

So as a result, the response to a given harmonic loading {p, (t)} is

(D} = (~3M] + iw[C] + KD e ®) = [Hw] (0} (3.29)

Where [H(wy)] is known as the frequency response to a given frequency w, (FRF). As this
same derivation can be given to any frequency, w, the frequency response function can be

generalized as
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[H(w)] = (—w?[M] + iw[C] + [K])* (3.24)

This is useful when the load and response are transformed to the frequency domain through
Fourier transformations, which will be presented in Section 4.1. The resulting link of the load
and response in the frequency domain is given by Equation 3.25.

[Y(w)] = [H(w)][P(w)] (3.25)

3.2 Static analysis of slender catenary structures

The catenary is defined as the shape a chain or a cable assumes under its own weight when
supported only at its ends, as shown in Figure 3.3. To find the characteristics of a catenary
shaped structure in terms of vibration response, it is necessary to model the shape of the
catenary in terms of tension, position and angle along its length. This requires solving the
equation of motion, Eq. 3.2, for the case of no inertia or damping terms. Multiple theories and
assumptions exist for the prediction of catenary configuration. First, one can distinguish
between solutions where the catenary is thought to be inelastic and flexible (also known as line
or cable theories), and solutions where the bending stiffness is thought to play a large role in
the shape (also known as beam formulations). Secondly, it is possible to determine the shape

either analytically or numerically using the finite element method (FEM).

In cable formulations of the catenary shape, the cables axial tension is thought to play a major
role in the shape that the line takes. As discussed in (Moe & Arntsen 2001), one must also
consider whether the cable is extensible or not. None of the presented theories allow for
interaction with the seabed in the prediction of shape, so the starting point in terms of x-
direction is taken from the catenaries touch-down-point (TDP), the point at which it first lifts

from its foundation.
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Figure 3.3: The catenary plane, and the catenary cross-section

3.2.1 Inextensible cable

The cable self-weight and tension are described in Equation 3.26 and 3.27 respectively. Here,

the wet-weight is simply the weight of the riser plus its content, subtracting the buoyancy. The

force in the catenary walls resulting from the self-weight, plus the force due to the external

pressure, subtracting the force due to the internal pressure, describe the tension.

where

W = psgAs + pig A; — pegAe

Teff =Twau + Pede — PA; =T,

Wet Weight

Structure material density

Internal content density

External fluid density

Tension in wall due to self-weight
Internal pressure

Area of material cross-section
Area of internal void

Total area of cross-section

Effective tension

External pressure

(3.26)

(3.27)
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When the axial stiffness is assumed large enough that the cable does not elongate due to its
own weight, the solution to the catenary shape is in accordance with inextensible theory.
Furthermore, the tension along the line can be decomposed into a vertical component V, and a
horizontal component H, see Figure 3.3. As the catenary is assumed to be loaded only by its
own weight, the horizontal component of the tension will be constant. Therefore, the vertical
component can be expressed as a function of the horizontal component and the variation of
profile along the length, Z—i. Introducing a suggested solution of this derivative, Equation 3.28,

Equation 3.29 is obtained from integration.

dz wX
= = sinn (%) (3.28)
z(X) = %(cosh (WFX) - 1) (3.29)
X =X — Xrpp (3.30)

where
x  Xx-directional coordinate
z  z-directional coordinate

H  Horizontal tension component

The height at which the riser is supported, that is z,,, is usually known. To describe the rest

of the catenary using Eq.3.28 and Eq.3.29 requires that an additional parameter is known. This

can be either the horizontal component of tension, H, the top angle, & = arctan (— sin (w-

XT%)) x-coordinate at the touch-down-point (TDP), xpp, Or the axial tension specified along

the full length.

3.2.2 Extensible cable

In catenaries where the density of the material outweighs the material strength, the inclusion
of the materials axial stiffness, EA, is needed. Here, E is short for the material Young’s
modulus, and A is the cross section area. An interpretation of this theory is presented in
(Triantafyllou et al. 1985), although the full derivation is not included in the article. However,

the basic principle is that the elongation due to tension, e = T /EA, results in an arc length L =
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Lo(1 + ¢€), where L, denotes the un-stretched arc length. Because the tension varies along the
line, the arc length will have to be estimated from an integration of the local elongations at

discrete points, dL = dLy(1 + €). The resulting formulas are given below.

Te(s) = (HZ + [V — w(L — 5)]?) (3.31)
x(s) = %(arcsinhw — arcsin v ;_IWZ> g (3.32)
H V—w(L-s)\* V — wly?
Z(s)=; \/1+<—H ) —\/1+< T ) (333)
Hs (V w L )
+oa s+ - ?)
tan(8(s)) = g — % (L—ys) (3.34)

where

s Lagrangian coordinate

@  Catenary’s angle with the horizontal
plane

x(s) x-coordinate at's

z(s) z-coordinate at s

As a practical example, the theories of inextensible and extensible catenary shapes are applied
to the case study catenary, which will be presented in Chapter 5, and the results are presented
in Figure 3.4 and 3.5. As can be seen, for this catenary the effective tension relative to the axial

stiffness has little or no effect on the resulting configuration, so either theory can be adapted.
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Figure 3.4: Catenary profiles calculated by ~ Figure 3.5: Catenary tension distribution
inextensible and extensible theory calculated using extensible and inextensible
cable theory

3.2.3 Beam formulations of the catenary shape

The above presented theories both rely on the assumption that the bending stiffness of the
catenary has no effect on the configuration of the catenary. Although there are studies in the
application of newer mathematical models to predict the catenary shape, (Hsu & Pan 2014),
they are still very complex, and to the authors knowledge not widely used and tested. Therefore,
the static equilibrium of a catenary including bending stiffness is assumed adequately described
using FEM.

Figures 3.6 and 3.7 show how the solutions using cable theory deviate from the FEM modelled
shape for the base case given in Chapter 5. Notice that the bending stiffness holds a lot of the
weight, lowering the effective tension, which leads to a larger sag of the catenary. Notice also
the effect of varying the TDP angle from 0° to 2°, the striped red and blue lines respectively,

and how this increases the effective tension along the line.

Lubbad concluded that for the experimental catenary model, the effects of bending stiffness
are relatively large, and it is recommended that this static profile should be used when
comparing the results of the experimental data with those from the numerical and analytical
calculations (Lubbad et al. 2011)
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3.3 Eigenvalue analysis of slender catenary structures

The following will present the various methods applied for solving the equation of motion, Eqg.
3.2, for slender catenary structures by means of natural frequencies and mode-shapes. It is
important when describing catenary motions to distinguish between in-plane and out-of-plane
motions. As pointed out by (Triantafyllou et al. 1985), the directional motions are uncoupled
for out-of-plane motions. Therefore, they can be idealized as a taut-string or straight beam with
varying tension along the length. The natural frequencies can then be described by Equation
3.35, assuming a near constant tension variation. This near constant tension variation can be

obtained using buoyancy devises along the length of the structure.

i (T ,
fi= _(E) ,i=1,2,3, ... (3.35)
where

Mean tension
m  Mass per unit length
L  Span between tie downs

fi Natural frequency of mode i

Eqg. 3.35 is applicable in many cases. However, as the length of catenaries increase, the
applicability of these buoyancy solutions may decline. As it is assumed that the axial tension
has a large influence on the calculated frequencies, the variation over the riser length should

have a profound effect.

The in-plane motions are even more complex, and are dependent on the angle of inclination as
well as the tension distribution. The transverse and axial motions are coupled, and it is
important to consider both in combination when estimating natural frequencies. Multiple
studies have focused on overcoming the difficulties in interaction between varying tension,

longitudinal and transverse motion, resulting in multiple derivations with varying assumptions.

Triantefyllou and his team gave an analytical, asymptotic solution to the eigenvalue problem

for inclined cables in 1984 (Triantafyllou et al. 1985). In mathematical analysis, asymptotic
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analysis is the practice of estimating limiting behavior. For solving differential equations, this
entails finding the singular points of the equation. However, one of the main limitations of the
solution presented in 1985 is its shallow-sag formulation. That is, the axial tension at the point
on the catenary where the inclination angle is the same as the angle of the total inclination of

the cable must be much larger than the cable weight, 0 < VTV—L < 1.
0

In 1983, Kim introduced the application of Wentzel-Kramers-Brillouin (WKB) method to
solving the differential equation of long slender beams, assuming that the tension varies slowly
along the beam (Kim 1983).

Modified asymptotic solutions were presented in 2008 by Lubbad and Moe (Lubbad & Moe
2008). The differential equation was solved using the “local analysis” method for cables,
neglecting bending stiffness, and the WKB method was used for solving the equation when
including the bending stiffness term. In the methods presented, the tension variation along the
length of the beam was considered linear, which is an assumption fit for estimation of nearly

vertical cables or beams.

In 2011, the “local analysis” and WKB techniques were extended to catenary shaped structures
by a change in the assumption of tension variation (Lubbad et al. 2011). The tension was
approximated by a non-linear function. Section 3.3.1 will present the solutions recommended
by this paper. The results from the modifications were compared with a Finite Element Method
(FEM) solution to the eigenvalue problem, and the implemented FEM solutions, along with

modifications made for this thesis will be discussed in Section 3.3.2.

3.3.1 Analytical Methods

3.3.1.1 Asymptotic Method of Cable or String

A catenary’s local displacement as a function of the time t and vertical distance from the TDP

is given by the equation of motion of 3.36.

0?2 EI(?ZY(Z, t) 0 TaY(z, t) N oY (z,t) N 0%Y(z,t)
972 922 dz 9z o Tt T ¢z (3.36)
= f(zt)
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The indexes used here are similar to those of Section 3.1 and 3.2. When considering Equation
3.36 for a cable or string, the term containing the bending stiffness, E1, is considered negligible,
along with the damping term containing c. The equation is solved for f(z,t) = 0. Now

assuming a tension variation given as

T = Hy1+tan26 = H/1 + a? (3.37)

where 6 is the local angle of the catenary to the horizontal, « = tan 8 and H is still the
horizontal tension component. Converting the vertical coordinates z to the Lagrangian
coordinates s, and with the displacement W (s, t) along the catenary assumed harmonic, so that
W(s,t) = w(s) cos w,t. After yet another change of variables, the resulting expected solution

is on the form

w(a) = e5@ (3.38)

Solving 3.38 with a second order solution, the natural frequencies must be found iteratively
using Equation 3.39.

T1+a?®) -3

Wy (%) \/% _ fOT(l + aZ)_%da + win (%) Sjijo 7 da =nn (3.39)
H

(14 a?)2

where 7 is the value of tan 8 at s = L and L. The corresponding mode-shapes are found by

wl@) =0 +a?)” ‘11'Sln a)n( f (1+a?)” 4da

(3.40)
T1+a?) -3 p \

wn ff (1+a2)4 a/

3.3.1.2 Asymptotic Solution for a Beam Model

When solving Equation 3.36 without a negligible bending stiffness, EI, the characteristics of

the catenary cannot be resolved by the previously presented local analysis technique.
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Therefore, assuming that the tension varies slowly but non-linearly along the catenary, the
problem is solved using the WKB method first presented for applications to long, slender
beams in (Kim 1983), and later improved by Lubbad and Moe (Lubbad & Moe 2008). The
solutions for the natural frequencies as given in (Lubbad et al. 2011) are the roots of Equation
3.41.

n1.5 ETn 2 _% Ent B
T(Ze —§e ) ; =nm (3.41)
Np
where
_HL2 b_(Tt—H)LZ :& El
“=Er T E " w @o = |73
.S o q,at bs _ . _ .
S = I $n = sinh o Sznb =$p(5=0) fnt =& =1)
n

and T; is the effective tension in the upper end of the catenary.

The corresponding mode-shapes are calculated by solving Equation 3.42.

én

es I'v15 f_n 2 _& fn
w, = sin (282 ——e 2 )
3 £
np

\/ (cosh &) b

(3.42)

3.3.2 Finite Element Solutions

When using FEM, the catenary is divided into a net of elements, and the equation of motion
given by Eq. 3.36 must be solved for each element separately. Each element is assumed to have
three DOF at each node, see Figure 3.8, so that both the CF directional movement and the axial

movement is accounted for.
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Figure 3.8: The degrees of freedom of a catenary element

3.3.2.1 Stiffness Matrix

The assumption of three DOFs at each node results in the local stiffness matrix similar to that
for a frame element given on page 26 of (Cook 2002). However, the Y;,Y,,Y; and Y,

components are modified to account for the effects of the axial tension as follows

X 0 0 -X 0 07pur;
O Yl YZ 0 _Y1 YZ ‘U1
K _ O YZ Y3 0 _YZ Y4_ d)l
“l-x o o x o o0 ||y (3.43)
O _Yl _YZ 0 Yl _YZ UZ
[0 Y, Y, 0 -V, VY;llg,l
_ 12E1 4 36T, N 36A4AT v, = 6E1 N Ty N AT
73 30L  60L 27 12 710 10
v, = 4E] N 2T, L 4 ATL v, = 2El T,L ATL
370 TT15 T30 +=7 730 60 (3.44)
_EA
L
where
T, Tension in lower end of element

AT =T, —T; Tension variation over the element
3.3.2.2 Mass Matrix

The mass matrix used for the original Matlab codes written by Lubbad is a consistent mass

matrix for a frame element. Chapter 11.3 of (Cook 2002) explains how this matrix is
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determined, and it is based upon the assumption that the shape functions describing the
displacements over the elements, which are used when determining the stiffness matrix given
in 3.43, are consistent with the variation of the acceleration field over the same element. This

mass matrix assumes that the mass is distributed evenly along the element.

However, when applying additional masses at locations throughout the catenary, the mass
matrix of the original codes cannot be used, as the total mass can no longer be assumed
distributed along the element. Therefore, the simpler mass matrix formulation, the lumped mass
matrix, has been implemented, as shown in Eq. 3.45. This formulation assumes that the total
mass of the element is divided in two, and placed at the two element nodes. With this
interpretation the accelerometer masses can be added at the node corresponding to its location,
but divided evenly between the two elements that share this node. The « of Equation 3.45 is
included to account for the associated mass moment of inertia, and should be given a value of
0 < a < 1/24, following from the formula for rotational inertia. In this thesis, the assumption

IS made that the rotary inertia has little effect on the calculation of natural frequencies, so a =

0.
[10 0 OOO]"ul‘
[0 1 0 0 0 0 ||
1o 0 2a2 0 0 0 ||®1
M=1"0"00 10 o0 |lu (3.45)
[000 0 1 koz
0 0 0 0 0 2al?llg,]

The lumped mass matrix is a much simpler matrix, and as Cook points out with a number of
examples, this mass matrix is expected to have larger errors in comparison with the true natural
frequencies of systems. In his examples, it is clear that the expected error is larger for higher
modes than in the lower modes. As a practical example, Table 3.1 shows the relative error of
the consistent and lumped matrices for the catenary system used for the case study.

Table 3.1: Comparison of lumped and consistent mass matrices for the case study catenary

Eigenfrequency of mode no. 1 2 3 4 5 6 7 8 9 10

Consistent mass matrix [Hz] 0,2256 0,5586 1,0593 1,7435 2,6168 3,6814 4,9382 6,3876 8,0297 9,8647
Lumped mass matrix [Hz] 0,2256 0,5586 1,0593 1,7435 2,6168 3,6814 4,9382 6,3875 8,0296 9,8646
Relative error [%] 0 0,0001 0,0001 0,0002 0,0003 0,0004 0,0006 0,0007 0,0009 0,0012
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As can be seen, the difference is of negligible magnitude, but increases slightly with mode
number. The relative error could be larger with lumped masses added at multiple locations, as
the total effect given by the masses should be larger. However, it is assumed that this difference
will still be relatively small. Therefore, the lumped mass matrix is considered sufficient for the

comparison of the subsequent added mass comparison.

3.3.2.3 The Global Stiffness and Mass Matrices

After the stiffness and mass matrices for each element have been constructed, they must be
systemized into a global mass and stiffness matrix for the total system. This is done by first
rotating the matrices to the global axis using Equation 3.46, and then adding the matrices using
indexes so that the influences of the DOFs that are shared between elements are summed in the

global matrix.
cosf8 sinf O 0 0 O ]
| —sin@ cos@ O 0 0 O |
_l o 0 1 0 0 0 I
r=] 0 0 O cos@ sin@ Ol (3.46)
ll 0O 0 O —sing cosf8 O l
0 0 O 0 0 1

3.3.2.4 Complex modes

Structures subject to dynamic loading do not necessarily experience large amounts of damping
effects, but are rarely without damping at all. For this reason, when attempting to recreate a
measured response using numerical or analytical methods, it may be of importance to
incorporate some form of damping. As mentioned in Section 3.1.1, a simple method of
incorporating the damping effects in the in-house Matlab formulated FEM codes is by use of
the theory of Rayleigh damping. The initial a, and a, values can be based on findings from
analysis of the experimental work, using Eq. 3.10. It is important to remember that these
calculations do not allow for identification of mode shapes with phases between elements, but

could identify the expected damping of each of the modes when recreating the responses.
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System Identification Methods

System identification methods, which are used for experimental modal analysis (EMA) and
OMA, aim to predict the structural properties of a system by studying the output of
experimental measurement. The practice of EMA and OMA is based on the assumption that
the dynamic behavior of any system can be expressed in terms of modal characteristics, as
explained in Section 3.1. In engineering disciplines, modal testing became more widely used
during the 1980’s (Ewins 2000). Since then, the colossal evolution in computer computational
capacities, and the introduction of the FEM, have led to even more robust and reliable tools

capable of validating numerical analysis of structures (Rainieri et al. 2014).

The distinction between OMA and EMA lies in the requirements of the input data. While EMA
requires that the input load must be known or at least estimated, the OMA techniques require

response measurements only. Assumptions made when using OMA are:

e Linearity: There is a constant link between an input and the corresponding output.

e Stationarity: The systems modal characteristics do not change in time.

e Observability: Sensors are located so that the modes of interest are possible to extract
from the data. It is important to avoid placing sensors at nodal points, and to have an

adequate number of sensors.

As the input loading is not known, the assumption is made that the combined system, that is
the excitation system and the structure of interest, are loaded with white noise, see Figure 4.1.
White noise is a zero mean random signal with a constant power spectrum. However, if enough
data is available, one can distinguish between the properties of the excitation system and the
structure system because the structures responses are expected to be narrow band and constant

with time, while the excitation system has a broadband response and can be time-invariant.
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Figure 4.1: Assumed system for OMA applications

OMA is ideal, as the identified modal parameters are found from actual behavior when the
system is exposed to actual conditions, and not to idealized artificial vibrations. Other reasons
for choosing to apply OMA is that it does not interfere with operational use of a structure, and

the input loads do not need to be known.

The methods of gathering measurement data for EMA and OMA are advancing. Structures or
models can be equipped with classical measurement systems like accelerometers,
extensometers, and strain or tilt gauges, but can now also be investigated with ultrasonic
sensors (Carullo & Parvis 2001), laser vibrometers (Giuliani et al. 2003) and fiber optics (Casas
et al. 2003). This leads to the attractive fact that the modal analysis can be carried out cheap
and fast, and more reliable. There is, however, a limitation in the sensitivity in the required
data, which could limit the application of OMA. Also, the assumption of broadband loading

does not hold for all cases.

To understand the concepts of system identification, an introduction to the fundamentals of
random processes and corresponding mathematical models is needed, and so is presented in
the following text. The OMA methods available in the commercial software MACEC
(Reynders et al. 2014) will also be introduced, as well as the TDD method (Kim et al. 2005)
formerly implemented on a similar catenary analysis (Fang 2014). Basics and concepts
presented may only touch the surface of the topics, so the interested reader is referred to

(Newland 2005) and (Rainieri et al. 2014) for more in-depth explanations.
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4.1 Random Processes

An output measurement from a structure subject to environmental loading will often look like
the time-series to the right in Figure 4.2. As is shown, the signal fluctuates profoundly in time

and it is difficult to see any regularities in the data.

Plot of harmonic process vs random process
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Figure 4.2: Sinusoid signal vs a random process signal.

A solution to describing the fluctuations is the use of Fourier transformations, Eq.4.1 and
Eq.4.2. They transform a signal in the time domain (TD) to a signal in the frequency domain

(FD), by decomposing the signal as a sum of sinusoids with frequency f, as shown to the left

in Figure 4.2.
X(H = | x@e e @)
N-1
_i2mkn
Xk = Z Xie N k= 0,12,..,N—1 (42)
n=0
v = [ x(peemrar 43)
where
f Frequency
x(t) Measured signal
t Time
X(f) Fourier coefficients
Xy Discrete Fourier coefficients
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N T /At

The Fourier coefficient magnitude |X,| relates to the magnitude of the sinusoid of frequency

fi, and the signal phase is described by 6,, Eq.4.4.

Im(X
0, = arctan( ( k)>

4.1.1 Power Spectral Density

The power spectral density (PSD), is used to describe how the present frequencies are
distributed in terms of powers, or magnitudes. As the Fourier transform of Eqg.4.1 is integrated
from —oo to oo, the power spectral density will cover both the positive and corresponding
negative frequencies. However, the spectral densities are mirrored about the y-axis, and so for

practical applications, it is more common to consider only the positive frequencies, given by

Gy ().

1
ny(f) =2 'Sxy(f) = }I_EEOE[TX;(]‘" DY (f,T)] (4.5)

where

Sy(f)  Two-sided PSD
Gxy(f) One-sided PSD
X, (f,T) Complex conjugate of X,

Here, the x and y of S,,,(f) and G, (f) denote that the spectrum for the relationship between
variables x and y, also called the cross-spectrum, while a subscript containing only one
variable, or two of the same, represents the auto-spectrum. Generally, these spectrums are
complex, where the real part is often called the co-spectrum, and the imaginary part is called

the quad-spectrum.

Sey () = Coxy(f) — iQuy, () (4.6)
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4.1.2 Convolution

To express how much one function, a, overlaps another function, b, as it is shifted over it, one
can use a convolution integral, Eq.4.7. A convolution integral can be difficult to solve
numerically. However, convolutions in TD correspond to multiplication in FD, so it may be
practical to consider signals in FD by Fourier transformations before calculating convolutions,
Eq.4.8. Also, the same goes for convolution in FD, which corresponds to multiplication in TD.
This is as a result of the relationship between Equations 4.1 and 4.3.

c(t) = fooa(r) “b(t — t)dt = (a(t) = b(t)) 4.7

C(f) =A(f) B() (4.8)
4.1.3 Covariance

The consequence of equation 4.7 and 4.8 is widely used in signal processing, as it allows us to
interpret the relationships between signals with ease in both domains. In describing a structures
dynamics, an important factor is how far a load or response, or a relationship between two
signals, is from being constant in time. This can be described using the covariance, which
measures how much two measurement time-series change together, subtracting the mean or

constant offset. The equation for covariance is shown in 4.9.

oy = Bl = )0 = )] = || G = (0 = ) p )y (49

where

p(x,y) Joint probability density

Xy Random variable x
Uy Mean of x
Vi Random variable y
Uy Mean of y
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In OMA, one of the main assumptions is that the signals are stationary. Stationary signals come
from processes where the mean and variance do not change in time, so consequently the joint
probability distribution is constant, even when the signal is shifted in time. Equation 4.10
follows from this relationship, and shows that the covariance is only dependent on the lag of

one variable in relation to the other in time.

Cay (T) = E[(xx (6) = ) e (£ + 7)) — p1y)] (4.10)
where
t Time
T Time lag

4.1.4 Correlation

Covariance is a good way of describing how two signals move together. One can determine
whether one increases at the same time as the other increases, positive covariance, or that one
increases while the other decreases, negative covariance. However, it does not say to what
degree the signals change with one another. This degree of variance is achieved by using the
correlation function, Equation 4.11.

Ryy (@) = E[xx (Oyi(t + 7)] (4.11)

As for PSDs, the x and y represent covariance and correlation between two variables, the cross-

covariance, and two identical variables represent auto-covariance or auto-correlation functions.

When the means of the variables are zero, or set to zero by subtracting the actual values, the

correlation function and the PSD are related by

Sey(f) = J Oony(T)e‘iZ”der (4.12)

Equation 4.12 shows that they are Fourier transform pairs. This relationship is practical for
identifying the phase between two signals, which represents the concurrence of the signals.

This phase is found by using the parts of the PSD as shown in Eq.4.6, and applying Eq.4.13.
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Quyy (f)) (4.13)

¢xy = arctan ( Cory ()

When ¢,,, = 0, the displacements are in the same direction. If on the other hand ¢,,, = =, the
signals are perfectly phased in the opposite direction to one-another. When the signals are not
in phase at frequencies corresponding to a predicted natural frequency, it is likely that the

reason is presence of damping in the structure.
4.1.5 Application of the Fundamental Theories

4.1.5.1 Aliasing

An important repercussion of applying the Discrete Fourier Transforms (DFT), Eq.4.2, is that

the number of sinusoid frequencies describing the signal is limited by half of the sampling

frequency, fr = 1t. The limiting frequency is called the Nyquist frequency, fy. This leads to

A
the possibility of aliasing. If data points in a signal can correspond to multiple sinusoids of
different frequencies, it is important to have a high enough sampling frequency so that all of
the frequencies in the signal will be present in its power spectrum. If f; is too low, the
magnitudes of the lower frequencies will erroneously show as larger in relation to other

frequencies present in the signal.

4.1.5.2 Filtering

Even though it is important to have a high sampling frequency, so that the magnitudes of the
frequencies in the spectrum are accurately characterized, this does not mean that all frequencies
present in the data are of importance. Therefore, it is often of interest to remove excessive
frequencies using so called band-pass filtering before analysis. This is done by applying a
window function in the frequency domain, which means multiplying all frequencies of interest
by one, and setting the redundant frequencies to zero. This concept is often used in the SDOF
system identification methods, where the goal is to isolate frequencies that correspond to the

natural frequency and mode-shape of the system as a whole.

41



Chapter 4

4.1.5.3 Windowing

Filtering can also be applied in TD. Here it is often called windowing, and sets measurements
at time instances that are not of interest to zero. This can, however, not be done without caution.
The reason for this lies in the fundamentals of the transformation from time to frequency
domain. Windowing can be understood as multiplying the signal with a function that is only
defined as one in the time window of interest, and zero elsewhere. Following from the
relationships of Eq.4.3, 4.7 and 4.8, the operation can be viewed as convolution in the FD. The
window function is a finite function of ones, and the Fourier transform will experience what is
called leakage, as it will not be represented accurately by one single frequency, see Figure 4.3.
Multiple frequencies will be present, and the convolution will result in the magnitude of
frequencies to be spread over the frequency range. This problem can be resolved by using
window functions, like for example the Hanning window, which approximately represent only
one frequency in FD. It is, however, important to rescale the transformation to avoid loss in

magnitude in the represented frequencies.

wHIt

YaVAN

f

Figure 4.3: A Fourier transform of a rectangular window function

4.2 Singular Value Decomposition

A mathematical algorithm used in many of the OMA analysis methods is single value

decomposition (SVD). It redefines a matrix as a combination of three matrices

A=USV" (4.14)

Where the matrix S is a diagonal matrix containing the non-zero real or complex singular

values, or eigenvalues, of the matrix A. A is a m X n real or complex matrix, and so U will be
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a m x m real or complex matrix, and V* will be a n X n matrix containing the conjugate
transpose or transpose of V. The m columns of U will contain the left-singular vectors of A
corresponding to the m*" diagonal value of S, while similarly the n columns of V contain the
right-singular vectors of A. The algorithm of singular value decomposition can be found in
Chapter 8 of (Golub & Van Loan 1996).
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4.3 Operational Modal Analysis Techniques

4.3.1 Time Domain Decomposition Method

The TDD method is a simple system identification technique that relies on reducing the system
to a SDOF system before identifying the natural frequencies, damping and participation factors.
The reduction of the system is done by filtering the data around peaks in the spectral densities
of the output. As a result, the method requires that the modes are excited to an extent so that
they can be identified as peaks in the PSD. But if the modes are adequately identifiable, the
method has the advantage of requiring less computational effort than similar methods like the

frequency domain decomposition method (FDD) (Kim et al. 2005).
4.3.1.1 The Process

The first step in the TDD method is to identify the peaks of the PSD signal. The PSD can be
found using direct Fourier transforms of the correlation functions, or by Welch procedure,
resulting in smoothed densities. The Welch procedure is less computationally demanding
(Rainieri et al. 2014). The example PSD shown in Figure 4.4 is averaged in segments of 500

elements, overlapping by 50.

Averaged PSD of output from sensor 3
segment length: 500, overlap: 50

Magnitude [dB]
=3

10 20 30 40 50
Frequency [Hz]

Figure 4.4: Example PSD from a sensor of the experimental data presented in Chapter 5.

After identifying the frequencies of the peaks, band-pass filters have to be designed to filter
out all other frequencies that are not part of the peaks. The article that first proposed this method
uses a third order Butterworth filter for this process (Kim et al. 2005), and the fit of this filter
is vital for the accuracy of the results.
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Using the assumption that the total displacement can be decomposed into modal participations,

as in Equation 3.7 of Section 3.1, the filtered signal can be written as

i)} = {c; () Hpi} + {er ()} (4.15)

where k denotes the discrete time instance, y; is the filtered response of peak i, c; is the modal
participation,¢; is the mode shape corresponding to mode i. & is the error of this mode

resulting from noise or the accuracy of the band-pass filtering, and which can also be

decomposed into a sum of shapes and contributions in time, 1; and d; respectively.

When the filtered time-series is ready, the cross-correlation matrix of the signals from all of
the sensors is calculated, resulting in what the literature calls the energy matrix. Here, Y; is the

N X p matrix of p discrete time instances and N sensors.

El=[viy] =]+ =~ (4.16)

Applying the assumptions of Equation 4.15 to the energy matrix, results in Equation 4.17.

p—1

[£] = {pHed (e + (e Z{d )"
p—1p-1

Sl s s 3 Smial wnr

j=1k=

p—1
[E] = {p:}ai{e:i}" + Z{llfj}aj{lpj}T
=

Here, q; and o; denote the scalar representing the physical energy at the modes. Now, using

4.17, E can be written as

[E] = [A][2][A]" (4.18)

Solving Equation 4.18 for [A] and [Q] requires applying an SVD process, as presented in

Section 4.2. The resulting matrix [A] will contain the mode-shape of the mode in the first
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column, and the mode-shapes of the noise in the other columns. Q contains the energy of the
i*" identified mode, g;, in the first number on the diagonal, and the remaining numbers on the
diagonal represent the energy of the noise, o;. If the identified peak represents an actual mode,

q; » 0y > 0, >...> 0,_1, and in noise free data, all the sigma values should be zero.

The next step in the process of TDD is to identify the natural frequencies and damping based
on the identified mode shapes, and the modal contributions, which can be calculated based on

Equation 4.15 using Equation 4.19.

T 1 T
{ci} =m{¢i} [¥:] (4.19)

This modal participation is now assumed noise free, as Equation 4.19 extracts the time-series
of the identified mode shape only. Kim and his team recommend that the damping and natural
frequencies are extracted from the spectrum of the participation using either peak-picking or
the half-bandwidth method, or by use of ERADC (Kim et al.). In (Fang 2013) the author has
chosen to use the half-power bandwidth method. However, this method has shown to have
large errors (Rainieri et al. 2014), so the method proposed for this thesis is based on the
framework presented in (Brincker et al. 2001).

Utilizing the fact that

[Ryy (D] = [®][Ryp(D][®]" (4.20)

where R, (7) is the auto-correlation of the out-put time-series and R,,(7) is the auto-
correlation of the modal participation. The auto-correlation function of the modal participation
time-series, which is also called the free decay time domain function, is found first for all time
lags. The damped natural frequencies can then be found by extracting the period of the zero-
up-crossings of this function. Then, the peaks of the function are identified, and the damping
is found by the logarithmic decrement of the peaks. By writing the decrement on the form
shown in Equation 4.21, the decrement can be found by identifying the slope of a linear
regression of the first points of the function.
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kS, = In (2
k= n(a) (4.21)

N (4.22)
where
O The logarithmic decrement
k Peak number
7o Magnitude of the first peak
Ty Magnitude of the k" peak
& Damping ratio

4.3.2 The Macec Methods

4.3.2.1 The Poly-Reference Least Squares Complex Frequency Method

As a consequence of some limitations found in the original Least Squares Complex Frequency
method (LSCF) in prediction of closely spaced modes and other conversion problems, the Poly-
reference Least Squares Complex Frequency method (p-LSCF) was presented in 2003 by
(Guillaume et al. 2003). This method is a frequency domain method, see Section 3.1.3, utilizing
the fact that the Fourier transform of a time-series has poles in all four quadrants of the complex

plane, so that the FRF can be written as

*

[H(w)]=sz ’l 1R

r=1lw — A,  iw—A;

. . . 4.23
_y G i) )7 (423)
= . +—
r=1 1w —A, iw— A
where

N, The number of modes

{p,} The mode-shape corresponding to mode r

[R,] The residue matrix

Q, Holds information about the modal scaling factor

A = 0, +iwg, The pole of the v mode holding information
about the damped frequency and ratio of damping
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Continuing, the FRF is also written on a Matrix Fraction Description (MFD), which is a ratio

of two matrix polynomials, the numerator polynomial and the common-denominator

polynomial.
B(w)] _ Xj-o[Bj (@)1 (w)
()] = O _ 2ol - (4.24)
A((t)) j=0 (XJQ ((1))
where
[Bj(w)] Unknown matrix of complex parameters to be
estimated
a; Unknown complex parameters to be estimated
Q}{ = pliwpat)j — Z]{ Complex polynomial basis function
n = 2N, /N, Order of the polynomial
N, Number of sensors
Then, by considering that
[Syy(@)] = [H(w)]" [Spr(w)][H ()] (4.25)
the positive PSD for any out-put sensors, 0, can be written as
n J
i=0[Bo,j1€ 1
[Gyy(w7)] = "= [B, (0, [6])][4(2., [6])] (4.26)
n_ [A;]19]
J=0L0JA%%F

where

[Bo,j]. [Aj] Unknown complex parameters to be estimated

[0] A vector of all the unknown complex parameters of
[Bo,i]. [ 4/]
Q]{ Generalized transform variable

The least squares formulation is a result of minimizing the error [E,(wy, 8)] of the predicted

cross-power spectrums of Equation 4.26 to the measured power spectrums

[Eo (w7, 8)] = [Bo(2, 61)] ~ [Gu ()] A(2 [61)] @27)
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where

[Go(wf)]  Measured Power Spectrum

This is done by minimizing the cost-function of Equation 4.28.

2([6]) = Z,;Z; tr([Eo (wy, 01 [Eo ;. )1) (4.28)
where

tr(-) = E[(-)] Trace, the sum of diagonal components
of (1)
2([6]) Cost function of variables [6]

Minimizing 4.28 requires expressing £([8]) in terms of a Jacobian matrix J so that

16} ~ 0 (4.29)

This process is further explained in (Guillaume et al. 2003). The solutions of polynomials are
sorted in what are called stabilization diagrams, with examples given in Chapter 5, where only
the imaginary solutions are considered stable. One of the main reasons why the p-LSCF has
become very popular is that the stabilization diagrams have very distinct stable poles, and the

method is therefore considered valuable for automation purposes.

After the unknown parameters, 6, are estimated, the natural frequencies are found by

transforming the z]Z solutions back to TD by

7. = et | ) = lniztr) (4.30)
£ = ';;' (4.31)
Re(4;)
= (4.32)
T
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4.3.2.2 Stochastic Subspace Identification

The Stochastic Subspace Identification methods (SSI) are considered parametric TD methods.

They aim to identify the stochastic state-space model from out-put data only. The state-space

relation is a result of the reduction of order of the equation of motion using state vectors

{r(®}

s} = [{y(t)}

Resulting in a state-equation on the form

(o = [ M1 KD (M)1(5)
soy="" by @+ M By

[Ac] [Bel
where {B} is a vector containing the force locations.
The resulting observation equation is written as
{y(®O} = [CJ{s(O} + [DI{f (£)}
[Cc] = [[C,] = [Ca]IMI[C] [Cal = [Cal[M][K]]

[Dc] = [Cal[M]™*{B}

where

(4.33)

(4.34)

(4.35)

Ca Cpy, Cy Output location matrices for accelerometers, velocimeters and displacement

transducers respectively

Since the input is not known in stochastic subspace methods, the discrete versions of Equations

4.33 and 4.34 reduce to the Equations of 4.36.

{1} = [Al{si} + {wi}

i} = [Clsi} + {vi}

(4.36)
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where {w;} and {v,} are vectors containing noise, which is assumed to be a zero-mean
Gaussian, stationary white noise process. The covariance of the noise for two arbitrary time

instances p and q is given by

[@""] [s*"] _
E l{{Wp}} {{Wq}T{vq}T}l _ [[Swv]T [le]] ’ p=q (4.37)
) O, p+g
And
[4] = elAclAt
(4.38)

Determining [Q""], [S""] and [R""] is part of the system identification process of SSI, and
this premise of white noise loading is the fundamental part of the proof of the method. A
number of manipulations of the state-equations lead to the fundamental relations for Equation
4.39.

[Z] = [A][Z][A]" + [Q"™] = E[{si}si}]

[Ro] = [CI[Z][C]" + [R*"]
(4.39)
[G] = [AI[Z][C]" + [S*"] = E[{sk+1}{yi}"]

Here, [G] is known as the one-step ahead covariance matrix. This is practical, as the output
covariance matrix, [R;], is found directly from the output data. So, the one-step ahead vector
can be found by decomposing [R;], making the prediction of the state-space matrix possible.
Therefore, an optimal predictor can be found by minimizing the error between the predicted

and actual measured response, assuming that the predicted response is in the form

{yx} = [Cl{sx} (4.40)

This is done by the introduction of Kalman-filters and the Ricatti equation, which are explained

in Section 4.2.2 of (Rainieri et al. 2014). When the error is minimized, the equations are solved
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for [A], and as for the p-LSCF method, the natural frequencies and damping ratios are found
by use of Equations 4.30 and 4.31.

Two predictor formulations are based on solving for the state-equations presented above, the
covariance-driven SSI (Cov-SSl) and the data-driven SSI (DD-SSI) methods. The derivations

of these two methods can be found in the referenced literature.

4.3.3 Processing of Mode-Shape and Natural Frequency Estimates

After the modes and mode-shapes have been estimated by means of the methods presented
above, they have to be compared in some sort of way. As the exact solutions are not known,
the comparison will not be in terms of accuracy, but rather by terms of precision. A critical
factor in the effectiveness of the comparisons of results is the correct pairing of modes. This is
mainly done manually by observations of the mode shapes. A major concern with manual
pairing of modes by mode shape observations is the possible presence of spatial aliasing due
to insufficient sensor positioning (Ewins 2000).

Natural frequencies are simply compared by their relative scatter in percent by Equation 4.41,
where (1) and (2) are two arbitrary techniques of obtaining the frequencies. The methods are
either numerical, analytical or experimental, but the comparison between numerical models
and experimental results is principally of interest only if the experimental results are in good

agreement with each other.

_ f@on — foom )

Af
f(l),n

100 (4.41)

Similarly, the mode-shapes are compared in terms of the degree of linearity between two mode-

shapes, also known as MAC-values, shown in Equation 4.42.

o) {?)
{00} (600 ({0} {#2)

2

(4.42)

mac (e} {o: })=(

The calculated complex mode-shapes are first plotted in the imaginary plane. This allows for
analyzing the phase of the modes. When the phases are within +10° of either 0° or 180°, the

phases are considered adequately small so that the modes can be interpreted by the real part of
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the modes alone, Section 4.8.1 of (Rainieri et al. 2014). Otherwise, the mode shapes must be

interpreted by use of Equation 3.18.

Other measures of how close the modes are to being normal (real) modes are the mean phase
deviations (MPD) and the modal phase collinearity (MPC). For normal modes, the MPC value
should be one, while the MPD should be zero.
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Chapter 5
Case Study

This chapter presents a case study to illustrate, discuss and compare the different methods
described in Chapters 3 and 4. Experimental data of a SCR model subjected to VIV is used to

define the case study.

5.1 Description of the Experiment

The experimental data used for the case study of this thesis originates from a test project that
was part of the joint industry project STRIDE Phase 4, administrated by 2H Offshore
Engineering Ltd and subcontracted to MARINTEK. The experimental tests were carried out
during the course of 2001, and a summary of the results was presented in the report by Halvor
Lie (Lie 2001). Main objectives of the tests were

e Tostudy VIV for a generic catenary riser configuration subject to various current
velocities, with a varying incident angle between the riser and the current flow.
e To create input data for fundamental studies of VIV and improvements of theoretical

models.

5.1.1 The Test Facility

The test facility used for the towing of the SCR model was Towing Tank No.lll at
MARINTEK, with an overview shown in Figure 5.1.

The dimensions of the towing tank are given in Table 5.1. The SCR was towed by a towing

carriage with a constant speed that could be adjusted to reach the desired uniform current speed.

Table 5.1: Dimensions of MARINTEK Towing Tank No.3

Length (m) Breadth (m) Depth (m)
80 10.5 10
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Model store () Carpenter workshop
Drawing office (19 Propeller model
(3) Reception manufacturing shop
Tank II (1) Cavitation laboratory
(5) Ship model manufacturing 12 Dock gate
Shf)P ) (13 Wave absorber, Tank T+ 111
6) Trimming tank (4 Wavemaker, Tank ITI and
NC milling machine for Tank I+IIT
model production (13 Wave absorber, Tank ITT
Instrumentation workshop

Figure 5.1: Overview of the MARINTEK test facility (Lie 2001).

5.1.2 The Experimental Setup

Figures 5.2 and 5.3 present the experimental setup of the catenary in the MARINTEK tank.
The top of the brass catenary was attached to a horizontal beam, while the lower end was

attached to a truss-structure.

Carriage directions

& - Backwards

e (pos.flow) f

2

oAl Forwards

E- ) (neg.flow)

i :

é | ~
Radius arm 9.253 m i

Figure 5.2: View of catenary setup from Figure 5.3: Vertical setup of catenary (Lie

above (Lie 2001). 2001).
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In order to reduce vibration loading on the horizontal arm, the upper riser end was mechanically
isolated from the carriage by applying a 50 kg mass near the riser end, connecting the arm end
to the carriage by thin, pre-tensioned wires. The lower end of the truss-frame was also pre-

tensioned to the carriage using thin wires.

5.1.3 The Catenary Riser Model

With a length to diameter ratio of about 890, the model riser is not representative of typical
installed risers offshore, but is still sufficient for the comparison of numerically calculated
modes to experimentally estimated ones. The catenary outer diameter was 14 mm, and it had a

length of 12.5 meters. Additional model characteristics are given in Table 5.2.

Table 5.2: Catenary properties used as input for static configurations and modal
calculations (Lie 2001).

Total length between pinned ends 125m

Mass per unit length including content 0.357 kg/m

Outer diameter 14 mm

Wall thickness of riser 0.45 mm

Density of brass 8980 kg/m? (nominal)
Youngs modulus for brass 1.05 - 10**N/m? (nominal)
Axial stiffness, EA 2.01-10° N (nominal)
Bending stiffness, El 46.2 Nm? (nominal)
Percent relative damping in air, ¢ 0.2-0.6 (measured)

Horizontal distance between riser ends 9.253 m
Vertical distance between riser ends 7.130 m

Vertical height of upper end fixture 0.050 m
(rotating point) above water surface

Tension, upper end 22.55 N (Calculated by RIFLEX)
Tension, lower end 8.44 N (Calculated by RIFLEX)
Angle from vertical, upper end 26 degrees (Calculated by RIFLEX)
Angle from vertical, lower end 88 degrees (Calculated by RIFLEX)
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Force transducers were used to weigh the total structure in air, and this gave the resulting mass
per unit length including content. Structural damping estimates were found using free-decay

tests in air.

As the brass tube used as the catenary could not be delivered in its full length, separate pieces
of 5 meters were joined together by hard soldering sleeves of 20 mm length. These sleeves had
an outer diameter of about 18 mm, and were located at 4.042 and 8.396 meters from the lower
end. The same type of sleeve was used to house the accelerometers, as shown in Figure 5.4.

Locations of the accelerometers are found in Table.5.3.

Table 5.3: Accelerometer
locations (Lie 2001).

Accelerometer Distance from
lower end (m)

1.137
2.272
3.408
4.544
5.682
6.817

7.953

Figure 5.4: Accelerometers with casing (Lie 2001).

9.090

© o0 N o o B~ w N

10.224
10 11.364
Upper joint 12.500

The accelerometers were placed in pairs normal to the longitudinal axis and perpendicular to
each other. The cables from each pair were threaded through holes in the catenary, and passed
through the pipe. To avoid differences in masses, dummy cables were used so that the amount
of cable throughout the pipe was the same, and it was assumed that the sleeves solved the
problem of local differences in axial and bending stiffness resulting from the cable holes.

Accelerometer pair no. 7 failed during the experiments, so results from this sensor are not
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included in this thesis. However, it was assumed that 6-8 pairs of accelerometers would be

sufficient to serve the scope of the experiment.

The surface roughness of the catenary model was not documented during the experimental
campaign. However, the surface was painted to enhance visibility in the recorded video images,
and thus the surface is assumed rather smooth. The straightness of the model was measured in
air, with a maximum deviation of about 2/3 of the catenary diameter.

Before carrying out the experiment, natural frequencies for the first 10 modes were found using
string, beam and frame theory. Based on the natural frequencies of the frame FEM, the
velocities that are expected to excite the various frequencies were calculated, using a Strouhal
number of 0.2. The results from the preliminary calculations are found in Table 5.4. The
excitation velocities to the right in this table show that the modes that are most likely to be
present in the signals are modes 4-6, as these velocities lie within the applied towing velocities,
presented in Section 5.1.5.

Table 5.4: Preliminary calculations of natural frequencies
and excitation velocities (Lie 2001).

Mode  String Beam  Frame U= wf%?:z)
number  (Hz) (Hz) (Hz) (m/s)
1 0.282  0.099 0.299 0.021
2 0563 0.397 0.690 0.048
3 0.845 0.893  1.230 0.086
4 1.127 1.588 1.947 0.136
5 1410 2481  2.853 0.200
6 1.692 3573  3.953 0.247
7 1.974 4.863 5.248 0.367
8 2255 6351  6.740 0.472
9 2537 8.039 8429 0.590
10 2819 9924 10.317 0.722
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5.1.4 The Coordinate Systems

Three different right handed Cartesian coordinate systems were used for the presentation of

results from the experiment.

e One system is the global, assumed inertial coordinate system, x, y and z. As shown in
Figure 5.5, y is the axis pointing in the towing direction of the pool and x points in
the breadth direction.

e The second system is the local catenary coordinate system, x,., y;- and z,, with x,. and
z,- denoting the catenary plane, and y, going out of the catenary plane.

e The last coordinate system is the riser cross-section coordinate system, x., y. and z..
X, s in the catenary plane, and y, is orthogonal to the catenary plane, both aligned
with an accelerometer pair. z, is tangential to the riser cross-section midpoint angle

with the horizontal plane.

X

Ye
| Riser upper end

Towing angle

Riser cross-section

Towing direction, negative current direction

Figure 5.5: Coordinate systems used for experimental work and results, modified image
from (Lie, 2001).
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5.1.5 The Test Program

The catenary model was towed at velocities ranging from 0.12 to 0.34 m/s at 0.02 m/s steps.

These towing velocities represent uniform currents of the same magnitudes.

During the test, the angles of inclination were varied from 0 to 90 degrees at 30-degree
intervals. The duration of each run depends on the towing velocity, and is limited by the pool

length. Average run durations were about 2 minutes.

Lie (2001) commented on the influence of the towing carriage on the 0° towing angle data
series, as it was found that the wake effects behind the carriage could reduce the experienced
current velocities to about a factor of 0.8 or 0.9 of the reference speeds.

Displacement time-series from the experiment are obtained by integrating the acceleration
measurements twice in the frequency domain. Other measurements, like the catenary end

forces and the test rig accelerations are not considered in the following case study.

5.2 Experimental results and discussion

Before continuing on to system identification and numerical analysis in the case study of this
thesis, the data set itself is studied and discussed in the following text. The displacement results
from both IL and CF directions obtained from the perpendicular sensors at location 5 are plotted
in Figures 5.6 and 5.7. As is expected, the displacements are larger for the CF direction for

both velocities, and the larger velocity results in larger displacements.

Also notice the transient state at the beginning of each time-series, in the carriage acceleration
phase, where the displacement magnitudes are larger for both current velocities. This will affect
the displacement envelopes of the raw-data series, and may erroneously affect observations
that are linked to the various current speeds. (Niedzwecki & Moe 2007) discusses the effect of
removing this transient phase when studying the resulting PSDs. In this thesis, to avoid possible
noise resulting from these effects, the first twenty seconds of the time-series are removed from
the analysis. This has consequences on the remaining time-series length, but should give a
better representation of the responses resulting from the specific current velocities under

investigation.
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Time-series response of accelerometer pair at location 5
Cross-flow response

Time-series response of accelerometer pair at location 5
Cross-flow response
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Figure 5.6: Displacement time-series from sensor 5 at
0.12 m/s current velocity.

Figure 5.7:Displacement time-series from sensor 5 at
0.34 m/s current velocity

The PSDs calculated by a Welch-procedure using a Matlab function with two non-overlapping
segments of the displacements measured at sensor 5 in the CF direction are shown below, in
Figures 5.8 and 5.9.

For both velocities, the largest peaks are concentrated about a relatively narrow band of
frequencies, mainly in the range from 0-5 Hz. Comparing this observation with the calculated
modal excitation velocities shown in Table 5.4, the largest peaks seem to match relatively well
with the calculations in the preliminary work. The peaks are gathered around 1-2 Hz for the
0.12 m/s flow speed, and the largest observed peak for 0.34 m/s flow speed is at about 4-5 Hz.

Based on Table 5.4, frequencies higher than that of the seventh mode are not likely occur.
Although they are of magnitudes much smaller than in the 0-5 Hz range, there are peaks present
above this mode. However, as they were not considered likely in the planning of the
experiment, the accelerometer spacing and number limits the identification of possible mode
shapes corresponding to these potential natural frequencies. Nonetheless, as the magnitudes of
the peaks are relatively small, it is likely that they are due to measurement noise, such as

vibrations from the carriage or sensor flaws.
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Figure 5.8. PSD of displacements measured at

accelerometer 5 in the cross-flow direction, with a 0.12

m/s flow velocity.
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Figure 5.9: PSD of displacements measured at
accelerometer 5 in the cross-flow direction, with a
0.34 m/s flow velocity.

Displacement envelopes of the truncated time-series are shown in Figures 5.10 and 5.11. The

envelopes show the maximums and minimums at each of the accelerometer locations over the

whole time-series, which do not necessarily occur simultaneously. For this thesis, the

displacement extremes at accelerometer seven are estimated by linear interpolation between

accelerometers six and eight.

Displacement envelope Displacement envelope
cross flow in-line
11 - 11
10 10 o\
.5 8 ,5 8 [+] \)
& 7 3 7 ° ¢
j=1 j=1 |
T 6 o 6 o 4
© ©
E 5 E 5 o {
e o .
@ 4 2 4 )
2 2 j
<8 <8 73
2 2 & J%
1 1 oj-
40.:.02 0.02 3.02 0 0.02
Displacement (m) Displacement (m)

Figure 5.10: Displacement envelopes of the 0.12 m/s
current flow velocity.
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Figure 5.11: Displacement envelopes of the 0.34 m/s
current flow velocity.
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Notice that there are larger differences between nodes for the 0.12 m/s current flow than for
the 0.34 m/s flow. This could be a result of the fact that there are more active modes for the
higher velocity case, so if an accelerometer location is a nodal point for one mode shape, it
could still have large displacements resulting from other active modes.

5.2.1 Case Study

As the CF displacement cases are of most interest for the scope of this thesis, the experimental
data from the 90 degree towing angle is used. For this towing angle, the measurements from
the accelerometer placed in the x. direction will be in the riser plane.

Table 5.5: Towing results selected for the Case Study.

Towing angle
Curren(tmv/il)ocities 0 degrees 90 degrees
X, Ve Xc Ye
0.12 X
0.24 X
0.34 X

OMA methods adopted for the case study are the TDD method, the p-LSCF method, the Cov-
SSI method and the DD-SSI methods.

To investigate the similarities between the experimental results and the numerical models
discussed in Section 3.3, the model characteristics of Table 5.2 are used as input in the static
and dynamic analysis. Table 5.6 compares the eigenvalues obtained using the FEM solutions
to dynamic analysis to those obtained using the WKB method by use of Eq.4.41. Figure 5.12
presents the correlations in terms of MAC values of the mode shapes resulting from FEM and
WKB. The correlations on the diagonal represent the MAC values calculated from mode shape
¢; of FEM and mode shape ¢; of WKB, when the mode numbers i = j. These correlations
should be as close to one as possible, and a value of one indicates perfect unity. The correlations
off the diagonal are MAC values of mode shape ¢; and ¢;, when i # j. These correlations are

expected to be as close to zero as possible, indicating that the calculated mode shapes are
independent of mode shapes corresponding to other modes. As can be seen from Table 5.6 and
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Figure 5.12, the solutions are relatively similar. The deviations in eigenfrequencies are
relatively small. Also, the diagonal of Figure 5.12 are all equal to one, while the values off the
diagonal are close to zero for all modes, indicating that the calculated mode shapes are similar.
Therefore, when comparing results from experimentally obtained modes and mode shapes with
the FEM method’s results, it is assumed that the conclusions drawn would also be applicable

to a similar comparison to the WKB method solutions.

Table 5.6:Eigenvalue comparison of FEM solutions relative to the WKB method solutions

Mode no. 1 2 3 il 5 6 7 8 9 10

Eigenvalue
deviation[%] -433 -418 -277 -1.78 -1.16 -0.77 -050 -0.32 -0.19 -0.10

AutoMAC matrix of the FEM vs WKB

WKB, BEKOl 0.04 000 003 001 000 003 001 001 003
WKB, | 0.02 000 003 002 001 004 001 001 004 09
2 0.8
WKB, | 0.00 000 000 000 000 000 000 000 07
WKB, | 0.03 003 001 004 001 001 003 0'6
WKB,| 0.01 002 0.00 002 000 000 002 0'5
WKB,| 000 001 000 000 001 BEKEGM 001 000 000 0.01 0'4
WKB.| 004 003 000 005 002 000 BEKEM o001 002 006 '
WKB,| 001 001 000 001 001 000 000 0.01  0.01 03
WKB,| 001 001 000 001 000 000 002 001 KM o0.01 02
WKB, | 003 004 000 003 001 001 007 001 000 KL o1

FEM, FEM2 FEM3 FEM, FEMI5 FEM6 FEM7 FEM8 FEI’\II9 FEM10

Figure 5.12: AutoMAC comparison of the WKB mode shapes relative to the FEM method
mode shapes
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5.3 Application of the Time Domain Decomposition method

The TDD method is implemented, following the discussion from Section 4.3.1, with the
algorithm flow chart shown in Figure 5.13. Un-damped frequencies and damping are found
from auto-correlations of the modal participation factor using the logarithmic decrement
technique presented in Section 4.3.1.

Input

Truncated experimental data
ii(s, t)or u(s,t), Fs,t

Find next mode Find PSD
TN |
Find &, w, = Identify peak in PSD \
W
Yes /\ No. Next peak Apply filter around peak
\‘|
Plot c and ¢ . Likely mode? v
R Multiply filter data by transpose
Calculate modal participation .
|
N A
E
®p P

=~ ApplySVD toE <«—

Figure 5.13: Flow-chart of implemented TDD method in Matlab

The codes allow for keeping or discarding plotted mode-shapes at identified PSD peaks, to help
eliminate erroneous mode-shape identification due to data noise or closely spaced modes, using
the identification window, Figure 5.14 (a). The slope of the decrement used for determining

the damping is identified by the first, nearly linear, slope of Figure 5.14 (b).
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Figure 5.14: (a) The identification window of the implemented TDD codes. (b)The identification window for
determining the decrement slope for damping.

5.3.1 Results
Appendix C shows all the identified modes, their corresponding frequencies, mode shapes and
damping according to the TDD method. By visual inspection, and by studying AutoMAC
matrices (Figure 5.15) we can organize the results into the identified natural frequencies as in
Tables 5.7, 5.8 and 5.9. Note that there is a possibility of failure in our visual inspection due to
spatial aliasing as we are using a spline fitting function in Matlab, and as the values at
accelerometer location 7 are linearily interpolated. Identified frequency peaks may also be a
result of noise in the data resulting from the measurement equipment, the catenary carriage or
other hydrodynamic effects. Hence, the corresponding identified mode shapes may resemble
mode shapes, but will not correspond to actual modes. These false frequencies must be
identified by comparisons between results from the various cases and methods, and are only

ruled out where MAC values and eigenvalue deviation are distinctly weak.

5.3.1.1 0.12 m/s case
Figure 5.15 shows a matrix containing MAC-values of each identified mode shape by TDD

method, ¢;, to each of the numerically calculated mode shapes, ¢ ;. Here, the values of i do not

necessarily correspond to the i*® mode, but represents the sequential step when the mode shape
67




Chapter 5

was obtained. Values larger than 0.9 are considered relatively good values, but as the
measurements are relatively noisy, lower values are included in the Tables 5.7, 5.8 and 5.9 for

the sake of comparison, as the natural frequencies may match better than the mode shapes.

AutoMAC matrix of the TDD 0.12 m/s solutions vs FEM solutions
TDD12,1 0.00  0.01 0.00 000 000 000 000 0.0 09
TDD12,| 0.00 005 0.00 0.01 007 0.01 002 0.03 0.8
TDD12,| 0.04 000 0.00 0.02 001 000 0.01 0.7

0.02

TDD12,| 001 000 0.01 003 0.0 000 002 0.06 0.6

TDD12.| 001 009 000 005 0.2 001 0.7 0.5

TDD12,| 000 003 0.00 005 0.0 0.02 001  0.00 0.4

TDD12.| 037 017 002 009 001 000 000 008 038 0.00 0.3

TDD12,| 014 012 001 001 000 000 003  0.00 0.20 0.2

TDD12,| 004 010 000 007 001 001 003 004 003 01
FEM, FEM, FEM, FEM, FEM_ FEM_ FEM_ FEM_, FEM  FEM,

Figure 5.15: AutoMAC matrix from the comparison of the 0.12 m/s data using the TDD method and the
FEM solutions

Notice that there are frequencies present in the 0.12 m/s signal starting from mode number 3,
Table 5.7. As the observable mode shapes are limited due to the number of accelerometers, the
mode shapes of the higher observed frequencies for this flow velocity could not be readily
predicted. According to Table 5.4, modes higher than the 4" mode should not be excited, as a
0.12 m/s velocity is not supposed to excite modes higher than the 3@ mode. However, although
the magnitudes of these frequencies in the PSD are of relatively negligible size, their mode

shapes are still observed to have MAC-values relatively close to unity.

Modes 3, 4, 5 and 7 are the modes with the least amount of noise relative to the numerical
solutions, and as can be seen, their deviations in terms of natural frequencies do not seem to

have any noticeable trend.
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Table 5.7: Identified natural frequencies using the TDD method on 0.12 m/s flow velocity results

Mode Natural Damping [%]  Eigenvalue deviation MAC-FEM
no. frequency [HZz] from FEM [%]

1-2 - - - -

3 1.19 1.22 12.40 0.98
4 1.72 0.25 -1.11 0.97
5 2.70 1.84 3.30 0.98
6 3.57 0.09 -2.99 0.88
7 5.26 0.21 6.58 0.97
8 6.67 0.27 4.37 0.93
9 9.09 1.03 13.22 0.58
10 10.00 0.79 1.37 0.83

5.3.1.2 0.24 m/s case

As could be expected, Table 5.8 shows that the 0.24 m/s case seems to have more problems
with identifying the lower modes, but predicts the higher modes better than for the 0.12 m/s
case in comparison with numerical results. The AutoMAC plot can be found in Appendix C.
Again the, eigenfrequencies carrying the larges magnitudes in the PSD predict the mode shapes
well in comparison with the numerical solutions, although their eigenvalues differ by a

relatively large amount.

Also, modes 8 and 9 are difficult to classify, as there are spurious modes or spatial aliasing
present. However, in comparison with the 0.12 m/s case, it is more likely that the 8" mode has
a frequency of about 6.67 Hz. The 9" mode is seemingly found at 8.33 Hz, as it is closer to the

numerical calculations in MAC and eigenvalues.
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Table 5.8: Identified natural frequencies using the TDD method on 0.24 m/s flow velocity results

Mode Natural Damping [%]  Eigenvalue deviation MAC-FEM
no. frequency [Hz] from FEM [%]

1-2 - - - -

3 1.11 0.73 4.89 0.69

4 1.79 2.32 2.45 0.58

5 2.86 0.10 9.19 0.97

6 4.17 1.16 13.19 0.98

7 5.88 0.07 19.12 0.83

8 6.67/7.69 0.22/0.11 4.37/20.43 0.95/0.95

9 8.33/9.09/

10.00 0.23/1.01/0.02  3.78/13.22/24.54 0.99/0.85/ 0.79

(=Y
o
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5.3.1.3 0.34 m/s case

For the 0.34 m/s case, a larger number of modes seem to be excited. Although the frequency
identified as mode no. 6 has the largest magnitude in the PSD, in agreement with the calculated
modes of Table 5.4, it seems that modes 7 and 8 are also well defined in the measured response.
It seems that modes 1 and 2 are difficult to identify due to large amounts of noise in the lower
frequencies, so the frequency shown in Table 5.9 corresponding to mode 2 is not expected to

be an actual mode.

Table 5.9: Identified natural frequencies using the TDD method on 0.34 m/s flow velocity results

Mode Natural Damping [%]  Eigenvalue deviation MAC-FEM
no. frequency [Hz] from FEM [%]

1 - - - -

2 0.95 4.01 70.62 0.32

3 1.79 0.88 68.59 0.93

4 1.39 3.16 -20.30 0.83

5 2.70 1.26 3.29 0.86

6 4.35 0.45 18.10 0.95

7 5.56 0.68 12.50 0.99

8 6.67/7.69 0.82/0.53 4.37/20.43 0.99/0.85
9 9.09 0.16 13.22 0.88

10 10.00 0.61 1.372 0.40
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5.4 OMA investigations using MACEC

As part of the verification of the implemented TDD method in this thesis, the commercial
software MACEC is used, which is a Matlab toolbox software. With its graphical user interface
(GUI) it is very intuitive, but requires a user’s basic knowledge of the OMA approaches
available, and introduced in Section 4.3. The MACEC program was first coded as a part of a
Master thesis project in 1997-1998. The code was then modified during Ph.D work between
1998 and 2001, and finally got a face-lift and new features as part of a Ph.D study between
2006 and 2011. Accompanying the software itself is a thorough User Manual, which provides
tutorials on example cases relevant to a number of applications of the software (Reynders et al.
2014).

The input loading is unknown for the case studies relevant to this thesis. However, MACEC
also includes methods for reference-based means of system identification, where a reference
could be, for example, a load time-series at a specific node or many nodes. In the absence of
input information, the modes and mode-shapes must be estimated using the output-only

techniques. This limits the available methods to:

e Nonparametric PSD* using the correlogram and periodogram methods. Here, Peak
Picking or CMIF/FDD can be selected.

o Reference-based data-driven stochastic subspace idendtification (DD-SSI)

e Reference-based covariance-driven stochastic subspace identification (Cov-SSI)

e Operational poly-reference Least Squares Complex Frequency identification

Because the Peak Picking method is much simpler than the TDD method, and the FDD method
shares most of its features with the TDD method, the non-parametric methods are not adopted

for this thesis.

A schematic step-by-step procedure of the MACEC investigations carried as part of this thesis

can be found in Appendix B.

Output files from MACEC contain valuable information about natural frequencies, mode-
shapes and damping, and the Cov-SSI method also returns information about the standard

deviations of the output.

As the methods used in MACEC are not SDOF methods like the TDD method, the methods

allow for identification of complex modes with phase shifts between elements. However, for
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this case study, the mode shapes are expected to be normal, and it is, therefore, assumed that

the large spreads in the complexity plots, see Figure 5.16 (b), are due to noise.

The plotted mode shapes are the real parts of the complex modes. Complex plots, mode shapes
and AutoMAC matrices of all the MACEC obtained data can be found in Appendix D, and in
the following the results are sorted in tables according to the modes they correspond to. The
same limitations related to spatial aliasing or spurious frequencies as for the TDD method in

Section 5.3.1 also apply to these methods.

. . . Compass plot no. 2 . Compass plot no. 1
identified using p-LSCF at 0.12 m/s flow velocity identified using p-LSCF at 0.34 m/s flow velocity

90 90
1

(@) (b)

Figure 5.16: Complexity plots of (a) A very normal mode, the 4" mode found by 0.12 m/s
velocity p-LSCF. (b) A relatively complex mode, the 3" mode found by 0.34 m/s velocity p-
LSCF

5.4.1 Results

5.4.1.1 Poly-reference Least Square Complex Frequency method

As this method has a stricter convergence criteria than the TDD method, less frequencies are
identified as natural frequencies for the system. An example of a stabilization diagram used for
the identification of modes using the p-LSCF method on 0.12 m/s current flow is shown in
Figure 5.17. As can be seen, only one pole is stable throughout the model orders. This is due
to the pole having the largest magnitude in the PSD, and supports the theory that vortex induced
vibrations principally only contain one frequency, the lock-in frequency. However, it is clear
that multiple frequencies are present nonetheless, and a few have been identified and compared

with the FEM solutions in terms of MAC-values. Note that the stabilization criteria are altered
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for all of the methods due to a large amount of noise in the data, and this must be considered

when comparing results.
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Figure 5.17: Stabilization diagram for the p-LSCF 0.12 m/s case

For the 0.12 m/s case the identified modes are found in Table 5.10. Notice the two stable poles
with frequencies of 6.63 and 6.93 Hz respectively, both identified as mode 8, the 6.63 Hz
frequency is closer to the numerical solutions, while the 6.93 Hz solution has a lower damping

and mean phase deviation, supporting its selection.
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Table 5.10: Identified natural frequencies using the p-LSCF method on 0.12 m/s flow velocity
results

Mode Natural Damping MPC[-] MPD][-] Eigenvalue deviation MAC-FEM
no. frequency [Hz] [HZz] from FEM [%] [-]

-3 - - - - - -

4 1.75 7.42 0.99 1.49 0.28 0.97

5 - - - - - -

6 3.47 0.03 0.97 3.36 -5.64 0.93

7 5.19 0.12 0.94 2.75 5.06 0.59

8 6.63/6.93 0.06/0.02 0.97/0.97 1.47/0.48 3.76/8.56 0.97/0.91
9 - - - - - -

10 10.37 0.03 0.97 -2.98 0.05 0.93

The three identified modes in the 0.24 m/s current velocity, Table 5.11, all have good MAC,
MPC and MPD values, but they all have a deviation of about 10% in comparison to the FEM
eigenvalues.

Table 5.11: Identified natural frequencies using the p-LSCF method on 0.24 m/s flow velocity
results

Mode Natural Damping MPC[-] MPD[-] Eigenvalue deviation MAC-FEM
no. frequency [Hz] [HZ] from FEM [%] [-]

1-4 - - - - - -

5 2.89 0.06 0.99 2.61 10.60 0.96

6 4.07 0.09 0.91 -0.27 10.55 0.97

7-8 - - - - - -

9 8.69 0.01 0.96 2.32 8.16 1.00

10 - - - - - -

Notice in Table 5.12 that the mode identified as the 3" mode using the p-LSCF method and the
0.34 m/s flow velocity measurements has a very large deviation to the 3" modes identified
using the 0.12 m/s and 0.24 m/s velocity results and the TDD method, and to the numerical
solution. It is supported by the results of the TDD analysis of the 0.34 m/s measurements, but
its stabilization diagram did not contain a very stable pole, so this result must be considered

with caution. Also, its corresponding complexity plot, found in Figure 5.16 (b) suggests that
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there is either a large amount of noise or un-proportional damping present, so the mode should

not have been plotted as a real mode, and therefore shows an erroneously large MAC-value.

Table 5.12: Identified natural frequencies using the p-LSCF method on 0.34 m/s flow velocity

results

Mode Natural
no.

1-2

3

frequency [HZz]

1.83

3.15
4.28

8.92
10.67

Damping MPC [-]

[Hz]

0.27

1.40
2.34

0.18
0.17

0.55

0.95
0.97

0.94
0.94

MPD [-]

3.88

0.20
-0.84

0.00
-0.45

Eigenvalue deviation
from FEM [%]

72.95

20.42
16.15

11.09
8.18

MAC-FEM
[-]

0.95

0.72
0.99

0.91
0.98
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5.4.1.2 Covariance Driven Stochastic Subspace method

The results of the Cov-SSI method analysis all produced very few identified modes, but the
identified modes all have relatively stable poles in the stabilization diagrams, see Figure 5.18.

Modifying the stabilization criteria further did not produce more stable poles.
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Figure 5.18: Example stabilization diagram for the Cov-SSI 0.34 m/s case.

Notice that all of the identified natural frequencies in Tables 5.13 to 5.15 except mode no.5 in
the 0.12 m/s flow velocity have deviances to the numerical solutions of about 10 % or more.
The largest deviation determined by the Cov-SSI method, is found in the 6" mode in the 0.34
m/s case, Table 5.15, which also has a relatively low MAC-value, even though it is the mode
that is excited the most. The complexity plot for this mode, found in Appendix C, looks

relatively normal, so the deviation could more likely be a result of measurement error or noise.
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Table 5.13: Identified natural frequencies using the Cov-SSI method on 0.12 m/s flow velocity
results

Mode Natural Damping MPC[-] MPD[-] Eigenvalue deviation MAC-FEM
no. frequency [Hz] [HZ] from FEM [%] [-]

1-3 - - - - - -

4 1.20 1.96 0.99 1.86 13.32 0.98

5 1.73 0.04 1.00 1.50 -0.83 0.97

6-10 - - - - - -

Table 5.14:1dentified natural frequencies using the Cov-SSI method on 0.24 m/s flow velocity
results

Mode Natural Damping MPC[-] MPD][-] Eigenvalue deviation MAC-FEM
no. frequency [Hz] [HZz] from FEM [%] [-]

1-4 - - - - - -

5 2.90 0.04 0.93 2.50 10.76 0.96

6-8 - - - - - -

9 8.69 0.04 0.94 3.24 8.28 0.99

10 - - - - - -

Table 5.15: Identified natural frequencies using the Cov-SSI method on 0.34 m/s flow velocity
results

Mode Natural Damping MPC[-] MPD[-] Eigenvalue deviation MAC-FEM
no. frequency [Hz] [Hz] from FEM [%] [-1

1-5 - - - - - -

6 4.48 0.06 0.96 -1.15 21.59 0.83

7-8 - - - - - -

9 8.89 0.56 0.96 2.85 10.74 0.90

10 - - - - - -
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5.4.1.3 Data-Driven Stochastic Subspace Identification method

According to Table 5.16, the 3™, 4" and 8" mode are identified to a large degree of certainty
under the assumption of normal modes, as the MPC and MAC values are both close to unity.
The eigenvalue deviations do not suggest any clear trends, which would be useful for
identifying the reasons behind the discrepancies between measured and numerically predicted
results. The other identified modes for this velocity case and method have slightly lower MPC
values, and are therefore either complex modes, spurious modes or contain larger amounts of
noise.

Table 5.16: Identified natural frequencies using the DD-SSI method on 0.12 m/s flow velocity
results

Mode Natural Damping MPC[-] MPD][-] Eigenvalue deviation MAC-FEM
no. frequency [Hz] [Hz] from FEM [%] [-]

1-2 - - - - - -

3 1.20 1.28 0.99 2.02 13.50 0.98

4 1.73 0.02 0.99 1.48 -0.84 0.97

5 - - - - - -

6 3.51 0.79 0.84 -0.40 -4.58 0.92

7 5.20 0.27 0.86 -10.90 5.34 0.96

8 6.80 0.18 0.98 2.82 6.49 0.97

9-10 - - - - - -

Notice that Table 5.17 shows close to the same value for mode 5 as the other 3 methods do,
supporting its identification. Also, the MPC and MAC values are relatively good. Modes 3 and
4 contain large amounts of damping, likely from noise, but the 3™ mode looks likely in terms
of MPC and MAC value. The higher modes also behave well. However, when investigating
some of the frequencies outside of the assumed identifiable mode range, it was noticed that the
10" mode shares linearity with the 12" mode as well as the 10", so it may contain large amounts
of noise, see Figure 5.19.
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Table 5.17: Identified natural frequencies using the DD-SSI method on 0.24 m/s flow velocity
results

Mode Natural Damping MPC[-] MPD][-] Eigenvalue deviation MAC-FEM
no. frequency [Hz] [Hz] from FEM [%] [-]

1-2 - - - - - -

3 1.1528 7.9148 0.9169 -5.0306  8.82 0.89

4 1.8037 12.8815 0.8458 4.2817 3.45 0.29

5 2.8991 0.0401  0.9328  2.5798 10.79 0.97

6-7 - - - - - -

8 7.4071 1.3887  0.9212  -3.6506  15.96 0.95

9 8.6981 0.0194 0.9429 3.0497 8.32 0.99

10 10.3978 0.5496 0.9581 0.4672 5.40 0.91

AutoMAC matrix of the DDSSI 0.24 m/s solutions vs FEM solutions
DDSSI24,| 0.08 0.00 BEEEN 0.02 001 000 000 0.00 000 001 0.00 0.01 09

DDSSI24,1 0.04 021 0.15 029 0.16 003 0.13 003 002 006 002 0.06 0.8

0.7
DDSSI24,| 0.03 0.00 0.01 0.00 001 0.01 001 001 003 000 0.03 06

DDSSI24,| 0.00 0.00 0.00 0.02 0.00 0.02 0.01 003 004 019 000 || {05
DDSSI24,| 0.02 0.01 0.00 0.02 0.00 000 0.2 0.00 0.00 0.03 0.13 g:
DDSSI24,1 0.00 0.03 0.00 0.05 0.01 0.01 0.3 0.01 0.0 0:2
DDSSI24 Feisi 0.06 0.03 0.02 0.01 000 0.05 002 000 034 028 028 0.1
FEM, FEM, FEM, FEM, FEM_ FEM, FEM_ FEM, FEM, FEM FEM_ FEM, o

Figure 5.19: AutoMAC matrix of the DDSSI 0.24 m/s and FEM solution

The DD-SSI method 0.34 m/s case, Table 5.18, also identified the highest modes better than
the lower modes. Notice that the 6" mode has a large deviation in eigenfrequency, although it
has a higher MAC-value than the Cov-SSI method.
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Table 5.18: Identified natural frequencies using the DD-SSI method on 0.34 m/s flow velocity

results
Mode Natural Damping MPC[-] MPD[-] Eigenvalue deviation MAC-FEM
no. frequency [Hz] [HZ] from FEM [%] [-]
1 - - - - - -
2 1.1562 20.65 0.8982 1.7498 9.15 0.51
3 - - - - - -
4 1.9261 11.9707  0.9296 -3.1908  10.48 0.75
5 3.1159 2.9477 0.9479 0.1501 19.07 0.78
6 4.4592 0.4871 0.9544 -1.4217  21.13 0.89
7 5.1531 6.3966 0.939 -0.2869 4.35 0.99
8 6.6952 4.552 0.9694 7.1751 4.82 0.98
9 8.9013 0.469 0.9639 2.8836 10.85 0.90
10 - - - - - -
The 7" and 8" modes both have very good MAC values and MPC, but the 8" mode has a

surprisingly large MPD. Still, a closer look at the complexity plot (Figure 5.20) reveals that the

mode shape poles are still almost in a straight line, but are all deviating by values of about 10

degrees. Hence, the mode may still be normal and reliable.

Compass plot no. 7
identified using DD-SSI at 0.34 m/s flow velocity

90
1
120 80

08

06
150 30

210 330

270

Figure 5.20: Complexity plot of the 8th mode using the DD-SSI method and 0.34 m/s
current flow.
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5.5 Numerical investigations of the accelerometers effects on the

solution of the eigenvalue problem

The discussion of the deviation in mode-shapes and eigenvalues led to the hypothesis of the
accelerometer mass and added mass influencing the experimental data. To investigate these
effects, the codes used by Raed Lubbad in the numerical example presented in his doctoral
thesis are modified for this thesis to account for masses at the accelerometer locations. The
reason for this is to see if the assumption that the masses do not affect the experienced mode

shapes is insufficient.

5.5.1 DNV DeepC and Riflex for Static Analysis

Because the closed-form solutions for the static configuration and tension variation is limited
to strings, without bending stiffness, and the incorporation of local masses would deem a
computationally heavy iterative process, the static configurations have been found using the
DNV Deep C software module RIFLEX.

RIFLEX is a state-of-the-art software capable of analyzing flexible, metallic and steel catenary
systems subject to hydrodynamic loading, and loading due to vessel-catenary interaction. The

DeepC user interface makes the modelling easy and intuitive.

For the catenary case under investigation in this thesis, the line object of the software is used,
connected to fairleads at points with a specified distance. Boundary conditions are applied at
the ends so that the catenary is fixed from translational motion, but free to rotate in the catenary

plane, see Table 5.19. The line characteristics used in the analysis are found in Table 5.2.

Table 5.19: Boundary conditions of the modeled catenary

Direction Translation Rotation
X Fixed Fixed
Y Fixed Free
Z Fixed Fixed

Lumped buoys are placed at the accelerometer locations, with the sizes and masses as presented

in Table 5.20. The masses are not exact accelerometer masses, but likely masses of varying
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size according to a similar study of accelerometer masses on a plate structure (Baharin & Abdul

Rahman 2009). Figure 5.21 shows a 2D view of the catenary profile.

Figure 5.21:Static configuration using DeepC/RIFLEX

Table 5.20: Mass and dimensions of 6 accelerometer cases

1 2 3 4 5
Mass (kg)
0.00584 0.01584 0.02584 0.03584 0.04584
Dimensions  Length Breadth Height

Extreme
1
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5.5.2 Natural Frequency and Mode-Shape Investigation Using Matlab

The flow chart of the modified Matlab-scripts is found in Figure 5.22. The original codes are
implemented based on techniques presented in Chapter 8.10 of (Kwon & Bang 2000).

Input
Catenary Specifications
D, t,m, Ri, Rw, g, z_top, L, theta b, EA, EI l
¥ S — Y Identify accelerometer
nodes
Riflex external files, stamod.mpf «— SCR_Static Inextensible cable.m |
Indexing DOF nodes
get matrixm | SCR._Static Extensible cable.m | feeldofl.m
) ) ) ) | Compute element stiffness and mass
SCR_Static Mass Riflex.m SCR_Static AR Riflex.m matrix
\ R — [ feframe2.m — no lumped masses
Wz top H.x, s 2 zd theta, T feframe3.m — lumped mass on node 2
- feframed.m — lumped mass on node 1
2 ¥ Assemble system matrix
{ SCR_Beam NonLinearT Fun.m SCR Beam LinearT Funm | SCR Beam FEM Funm <+ feasmbll.m
t 1 ! Apply boundary conditions
SCR_Eigenvalues.m Feaplycs.m
'
Output Solve matrix characteristic equation
Natural Frequencies cigm
eig B .. eig B Non, eig B FEM
1 Dashed boxes indicate - L - ‘

i solutions that donot consider | Mode Shapes
| accelerometer mass UBL UB Non, UB FEM

_____________________________________

Figure 5.22: Flow-chart of matlab script for investigation of accelerometer effects

The resulting modes and mode-shapes are firstly compared with the numerically and
analytically calculated values without loading, as presented in (Lubbad et al. 2011), primarily
considering the solutions from the FEM code and non-linear tension variation of cables and
beams, as discussed in Section 3.3. The comparison of the two methods for the case of
catenaries without specific accelerometer loading is shown in Section 5.2.1. The comparison
between the accelerometer mass loaded catenary with the pure catenary is given terms of MAC
values for mode-shapes and percentage difference for natural frequencies. It is important,
however, to remember that these values do not reveal anything about the accuracy of the

solutions, but can give an indication of the precision of the solution.
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5.5.3 Results

Static profile of catenary

X-coordinate [m]

Static tension in catenary

X-coordinate [m]

Figure 5.23: Static profile of accelerometer mass
loaded catenary

Figure 5.24: Tension profile of accelerometer mass
loaded catenary

Figures 5.23 and 5.24 show the static profiles and tensions variation along the catenary
obtained from the static analysis in RIFLEX. Noticeably, the profile does not change as a result
of masses 1-5, while mass 6 is large enough to modify the profile. The tension along the
catenary increases with increasing mass, and the discontinuities of the curves in the diagram of

Figure 5.24 are results of the lumped masses.

Catenary natural frequencies,w_ Mode shape no. 3 identified

70 : . : ; using FEM, including accelerometer masses
——Mass1 ! e
£ ——Masst| T —
Mass2 209} |——Mass2 Tm—
60 Mass3 = Mass3 -
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s 304f T
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: —
Eoz2 —
tof 5 P
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Figure 5.25: Calculated eigenfrequencies of
accelerometer loaded catenary

Figure 5.26: A plot of the 3rd mode shape obtained from
FEM analysis of the accelerometer loaded masses
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Figures 5.25 and 5.26 present the resulting eigenfrequencies and mode shape number 3 of the
FEM analysis including accelerometer masses. The comparison of the results in Figure 5.25 to
the solutions without accelerometer masses in terms of Eq.4.41 are presented in Table 5.21. As
iIs shown, masses 1-6 increase the eigenfrequencies of the lower modes, and reduce the

eigenfrequencies of the higher modes, but mode 3 seems to be kept almost constant.

Table 5.21:Eigenfrequencies of accelerometer loaded catenary relative to original FEM solution

Mode no.
1 2 3 4 5 6 7 8 9 10
Mass no.
1 073 028 -002 -019 -028 -0.33 -0.36 -0.39 -0.43 -0.49
2 073 028 -002 -019 -0.28 -0.33 -0.36 -039 -043 -0.49
3 316 127 -002 -0.7/5 -115 -136 -150 -1.63 -1.81 -2.10
4 430 174 -002 -102 -157 -18 -205 -2.23 -2.48 -2.90
5 539 219 -002 -1.28 -197 -234 -259 -2.82 -3.14 -3.70
6 39.99 1714 -0.30 -1145 -1853 -23.29 -26.96 -30.35 -34.61 -40.86

All the mode shapes obtained from the accelerometer loaded analysis are compared with the
pure catenary results in terms of MAC-values in Figure 5.27. Figure 5.12 shows that there is
little or no cross-correlation of the mode shapes associated with different mode numbers
obtained numerically. Therefore, the correlations shown in Figure 5.27 are the MAC-values of
mode shape ¢; obtained from the accelerometer mass influenced analysis with ¢; from the
pure catenary analysis, where i = j, and i and j are mode numbers. Notice that the smallest
mass has the largest effect on the shape of the higher modes, while the lower modes seem to
be unaffected. Mass 6 seems to affect modes 2-5 the most, while the higher modes have

increasing MAC-values.
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Figure 5.27: MAC matrix of eigenfrequencies 1-10 of mass loaded mode shapes vs original

FEM mode shapes
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5.6 Discussions

The following sections compare and discuss the results presented in Sections 5.3, 5.4, and 5.5,

with additional information attached in Appendices C and D.

5.6.1 System identification and FEM comparison

The results presented in Sections 5.3 and 5.4 using the various OMA methods are plotted with
their corresponding mode numbers in Figure 5.28. The solid line represents the numerically
calculated natural frequencies using FEM, and not considering accelerometer masses. With
observations based on this figure it is tempting to conclude that the FEM solutions, and
therefore also the WKB solutions, predict the natural frequencies of the catenary quite well.
However, notice that modes 7-10 are seemingly underestimated compared with all of the

methods and current flow cases.

Catenary natural frequencies, w,

12
o TDD0.12
o TDDO0.24
1ol TDDO.34 °
o pLSCFO0.12
pLSCF0.24 .
= pLSCF0.34 8
T 8 L o] COVSS|0.12 ,
= o CovSSl0.24 .
& o CovS58I0.34
< DDSSI0.12 g
S 6L| o DDSSI0.24 o
T DDSSI0.34 o
= FEM >
c a
S 4f
] g
=]
2+ P o
i~
0 & & & i '
0 2 4 6 8 10

Mode number, n
Figure 5.28: Experimental and FEM natural frequency results

The underestimation of natural frequencies can result from a range of faulty assumptions or
errors in the system identification methods. An increase in tension along the catenary stiffens

the structure, resulting in reduced frequencies for the higher modes. Therefore, one possible
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reason for the underestimation of frequencies is an overestimation of the mass per unit length

or constant added mass of the catenary.

Another potential source of error is the overestimation of complexity in the modes, resulting in
overestimation of damping. However, as can be observed from Figure 5.29, the damping
estimates for the highest considered modes are relatively low, deeming this source of error less

likely.

The relative scatter of frequencies in each mode is difficult to explain. Especially the fact that
a natural frequency can correspond to different mode shapes, e.g. 1.79, which is calculated to
be the fourth mode using the TDD method with the 0.24 m/s current data, and the third mode
using the TDD method with the 0.34 m/s current data. This could of course be a result of
computational error, spurious frequencies and noise. However, in a note about VIV obtained
by personal communication with Carl M. Larsen, he mentioned the possibility of the added
mass effects on the preferred mode shape by the natural frequencies. This observation was also
made in a VIV experiment investigating VIV in a shearing current of a rotating rig at
MARINTEK (Lieetal. 1997). If this is the case, the analytical and numerical models describing
the catenary equations of motion, Section 3.3, would have to be altered to include higher order

added mass effects.

Figure 5.29 shows the scatter of damping estimates related to each of the mode numbers in all
the current velocity cases. Clearly, there are large deviations, especially in the mode range with
the largest participations in the various current flow cases. It is difficult to determine the reason
for this large amount of error, and this is something that should be given more attention in

further work. A possible reason is the amount of noise present, which can result from:

e The data not accurately being modelled by a state-space model
e Measurement noise due to sensor inaccuracies
e Computational noise due to the finite precision of the data series

e The finite number of data points
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Figure 5.29: Modal damping estimate comparison

In comparison with FEM, MAC values calculated for the OMA obtained mode shapes are
recognized to be very high, and for some cases even unity. Based on this observation and
assuming that the complexities calculated in some of the modes are due to noise, a conclusion
could be drawn that the potential for un-proportional damping in this case study riser is not

very likely.

This observation also questions the assumption of the “space sharing” model of VIV analysis,
and strengthens the reasoning for using a “time sharing” model, which assumes a travelling
wave, as observed in most of the predicted mode shapes of this thesis. However, notice that in
Figure 5.30 the mode with the largest participation is present for most of the time-series, while
the other participating modes fluctuate more. But there is no clear tendency that one mode dies
out as another increases. Therefore, by use of the “time sharing” method of VIV modelling, the

responses are likely to be underestimated.
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Figure 5.30: Time-series of modal participaition of the 5 first identified modes usind TDD
with the 0.24 m/s measurements

5.6.2 Accelerometer added mass effects

The results of the numerical investigations presented in Section 5.5.3 show that the first order
added mass effect due to the mass and volume of the accelerometers are not likely to be the
reason for the deviations of the numerical solutions from results of preliminary studies of the
experimental results. The results of the system identification studies in this thesis show that the
deviations in mode shapes were more likely a result of noise and spline fitting errors in
preliminary studies. The number of high MAC values supports this reasoning. Adding a
reasonable amount of mass at the accelerometer locations did not alter the mode shapes

noticeably, and did not create the expected damped mode shape effect.

Additionally, adding masses at the accelerometer locations increased the tension along the riser
length. This resulted in the higher modes having lower natural frequencies than the catenary
without lumped masses, conflicting with the observations shown in Section 5.6.1. A source of
error in these calculations is the fact that the riser mass per unit length was kept constant, and
should have been reduced to maintain a constant total weight, as measured by MARINTEK.

This should be incorporated in further studies of this effect.
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Concluding remarks

In this thesis, general theories concerning vortex induced vibrations and their consequences in

terms of dynamic responses in slender catenary structures have been presented and discussed.

Operational modal analysis techniques for system identification of measured responses

resulting from VIV are introduced and discussed.

Following from the theory of dynamic analysis of catenary structures subject to VIV, results

from the 2001 MARINTEK experiment were used for the case study, with the purpose of trying

to understand the relation between the presented analytical and numerical models, and observed

measurements. The major conclusions of this study are as follows:

Firstly, the TDD method is implemented in a Matlab program, considering three
velocity cases of cross-flow displacements in the catenary plane. The results show
that in each of the cases, one of the frequencies has a higher degree of contribution
than other frequencies, but multiple frequencies are present throughout the
measurements. Also, the frequencies corresponding to each mode varied. The
obtained mode shapes have a relatively high degree of correlation with the
numerically calculated mode shapes.

Secondly, the poly-reference least squares complex frequency method and the DD-
and Cov-SSI methods of OMA were used for studying the data in the commercial
Matlab toolbox MACEC. As for the TDD method, the mode shape estimates have
high MAC-values, and the corresponding natural frequencies vary. The damping
estimates show a great amount of scatter. Also, there is a varying degree of certainty
in the results, as some modal frequencies are more difficult to obtain due to signal
noise or other sources of error.

Continuing, the effect of accelerometer masses and first order added mass effects are
studied using a numerical model in Matlab. There are limitations in the results
because of the simplification of the added masses. However, based on the minimal
changes in mode shapes, and the eigenvalues changing opposite to what they should

in comparison with experimental data, the effects of the masses are concluded to be
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negligible. This conclusion coincides with original assumptions made for the
analytical and numerical models.

A comparison between the OMA obtained eigenfrequencies and the corresponding
numerically calculated modes show that there is a great amount of agreement in how
the natural frequencies increase with mode number. However, for this case study, the
analytical and numerical calculations apparently underestimate magnitudes of the
frequencies. Also, there is a possibility that the frequencies corresponding to each
mode shape vary resulting from higher order added mass effects, which are not
considered in the numerical or analytical methods.
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Chapter 7 Recommendations for future work

It is recommended that further investigations into the dynamic responses of slender catenary
structures subject to vortex induced vibrations are attempted. Areas that may be of interest in

the continuation of this work are:

e Investigations of the reliability of the mass estimates resulting from the measurements
done at MARINTEK in 2001. If the mass estimates are found to be higher than they
should be, the numerical result would likely obtain a better fit with the results from
the experimental study.

e In order to analytically or numerically reconstruct the measured responses, the
incorporation of modal damping is necessary, as structural damping is present to a
certain extent in the measurements. Investigations using a Rayleigh damping matrix in
a finite element model could of interest. However, better experimental damping
estimates would be preferable in order to give better estimates of the weighting
coefficients of Eq.3.10.

e As the observable range of modes is limited due to the number of accelerometer and
their spacing, it would be preferable to obtain new measurements to verify or improve
the results of this thesis. According to (Rainieri et al. 2014), the preferable record
length for OMA is about 1000-2000 times the natural period of the fundamental
mode, and this should be taken into account for future experiments. Improved
equipment could also serve to obtain better quality observations, lowering noise levels
in the measurements.

e New experimental data could also be used to study the damping estimates. This could
better understanding of the large scatter in damping estimates shown in this thesis.

e Investigations of the possibility of multiple natural frequencies corresponding to the
same mode shape, or changing mode shape due to higher order added mass effects.

e It would be interesting to investigate the actual observability of the presented

experimental data. This could for example be done my use of an observability matrix.
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Appendix A

Task Description

Background

A wide range of offshore science and engineering applications utilize slender catenary-shaped
structural elements in their design. These applications include moorings and steel catenary riser
designs. The susceptibility of these slender catenary-shapes to vortex-induced vibrations

remains the subject of theoretical, numerical and experimental studies.

Task

The research for this Master thesis will start by analyzing experimental data selected from a
model test program of a towed catenary model. The multi-modal cross-flow response behavior
of the catenary model will be investigated. The natural frequencies and the corresponding
mode-shapes of the catenary model will be calculated analytically and numerically. The
accuracy of the eigenvalue calculations will be established through comparison with
experimental data. Finally, modal analysis techniques will be applied in an attempt to
analytically reconstruct the measured response of the catenary model.

Task description

e Literature study
e Numerical modelling of catenary dynamics
e Validation of numerical model with available measurement data

e System identification
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Appendix B
Step-by-step MACEC procedure

The following presents the step-by-step method used to analyze the case study data in the
commercial Matlab toolbox MACEC.

e Import acceleration or displacement measurements. Convert to mcsignal.

e Process the data by applying necessary Borcrosiss . e

Fie  |posxi2_80_conv... =

filters, windows or detrending. A Hanning ™. - ()

label X2

Square displacement [(m)?]

window is used to remove any transient

— Visualizetion

Show data from

£
parts of the time-series. el
Autocorrel JetionPSD 24
g
D B
Deox  Cllogy 52
20
[=h) 5 10 15 20 25 30 35 40 45
“Window type Frequency [Hz]
- HEE B Save Resume.
Window length Time window | Apply
0] % Selected channels (2.9. 3 58]

I Oufne /B meamenent ot =y > |

e Create a geometry by producing a grid of
nodes. The positions of the nodes are based
on the node geometry found by the static

analysis in DeepC.

Dol siave DOFs.

e Specify slave nodes. For this thesis this [B="* B

implies specifying that nodes 1 and 12 are

fixed in all directions by slaving to

neighboring nodes with amplification 0.
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e Define beams or surfaces between nodes.

e Specify connection between signal and
nodal DOFs.

[ Deine / Edit beam: or surfaces

ckd bmam or surfaze fa et

Connoctod nodes
rods {0 B
rose 2 0

Wode3 0 riorsufoces oty
List

o s 1, )
(]
2

FT

P

H

‘

7 8

0

1
Remave

u Add channel specifications

Select a channel  — Mode and DOF infarmation

[ollE ]

- Label: x5

Data type: @
disp -

®

Dy
Mode Oz
4 1

Save

(R e

azimuth |

elevation o

-

Save Cancel

A mcsignal proc file is now ready to follow steps of the signal processing techniques

Processing of the data is based on the theory of the methods given in Section 4.3.

e pLSCF
Specify the output channels to be used for
the calculation of auto- and cross PSDs.
of the
polynomials. Run the modal analysis using

Specify the expected order

the method, and identify the modes in the
stabilization diagram. The stabilization
criteria may be too strict, and can be
modified to allow for more stable poles.

B Poly-referance Least-Squares Camplex frequency Darmein (pLSCF) 1dentification

— FRF andior PSD+ estimati

— Select Channe:

Analysis type: () deterministic ©) stochastic

FRF estimation (H1 estimator)
’7 Apply Show FRFs

References(e.g. 3.5.7)

ha Apply | | Show PSD+'s

’7%3“2 Power Spectral Density estimetion

Freguency range: 0 Hzto 50/ Hz

Polynomial orders:

Right Matrix Fraction Polynomial estimation —————————
’7 Calculate

Inpuds

Ch.1- 1 (disp)
Ch.2-x2 (disp)
Ch.3-x3 (disp)
Ch. % - x4 (disp)
Ch.5 - x5 (disp)
Ch. - x6 (disp)
Ch.7- x5 (disp)
Ch.&- %9 (disp)
Ch. 8- x10 (disp)

PSO* [mmtiz]
8
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DD-SSI/ Cov-SSI

Select all channels to be used. Specify
expected model order, which is the
expected number of singular values. For
the example SVD diagram shown to the
right, a natural number of system order
would be about 50, but a higher order
could be specified to increase the solutions
of the algorithms. The two methods of
calculating poles are run separately, and
their resulting stabilization diagrams are
used to identify natural frequencies. As for
p-LSCF, the stabilization criteria can be

modified if needed.

[ T e—

: - P
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o e s . =
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v N . e
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. . N . e
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v 1 m I« » "
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— o= ‘: W ™
=R L wi |(YEla b =
s I -
wfffl * " L3
bt |55 P -
W g beund 7] 90| -
PO e ity |0
g i 0 % £l
ecmncy i
Show dete wem 3 i Show sheotes | Show oy tutle modes [ Show PSDWFRFS | Cokulste | e

=Sr=n |

u Stochastic Subspace Identification

— Algorithm selection — Select Channels

@ data-driven () covariance-driven

[ reference-based 1:9

— QIR of data block Hankel matrix + SY0 of projection matrix

Half the number of block rows i:

=] [20

Mumber of blocks: |1

Expected system order:

Estimate covariances

Calculate QR + SWD

Remark: Thearetically the system order equals the number
of pon-2ere singwiar valies

Showe singular values

— Calculation of system matric

System orders: 2260 Caloulate
Cancel Ok
7
B
5
o
=
w4
=
&
&3
w
2
1
]
1] a0 100 1580 200 250 300
number
[ Ee—— e
— i i
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Appendix C

The TDD Method Results

This appendix summarizes the results obtained by the TDD method with the three different

flow velocity cases. The results are sorted by the sequential step that they were identified, and

show the estimated natural frequency, estimated damping ratio and a spline fit mode shape.

The values at accelerometer location no. 7 are linearly interpolated values.

C.10.12m/s

Table C 1: Results from TDD method, 0.12 m/s flow velocity

Identified as
number

Natural
frequency [HZz]

Damping [%]

Mode Shape

Accelerometer locations

Identified as
number

Natural
frequency [Hz]

Damping [%]

1

1.1906

1.2208

Mode shape no. 1

1.7241

0.2491

Mode shape no. 2

= o ~ @ @ = =
T T T T

(s/L normalized co-ordinates)

- W

identified using TDD at 0.12 m/s flow velocity

-

e
.

e

~ o @ = =

Accelerometer locations
(s/L normalized co-ordinates)
T

- W

identified using TDD at 0.12 nvs flow velocity

-1 05 ~ a 0.5 1
Modeshape - Normalized amplitude

2.7032

1.8400

-1 -D‘B — o 0:5 1
Modeshape - Normalized amplitude

3.5714

0.0860
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Mode Shape

Identified
number

as
Natural

frequency [Hz]
Damping [%]

Mode Shape

Identified
number

as
Natural

frequency [Hz]
Damping [%]

Mode Shape

Accelerometer locations
(s/L normalized co-ordinates)

Accelerometer locations

(s/L normalized co-ordinates)

Accelerometer locations
(s/L normalized co-ordinates)

Mode shape no. 3

identified using TDD at 0.12 m/s flow velocity

_
TTe—
"“‘_;}
B s -
-
o
<
e TE—
—
e
/7_/4&"’;:;;;;;

1.5 -1 05 o 0‘5 1 15
Modeshape - Normalized amplitude
5
5.2632
0.2100
Mode shape no. 5
identified using TDD at 0.12 m/s flow velocity
15 -1 7_—;5_7_ a D‘E “| 15
Modeshape - Normalized amplitude
7
8.3333
0.3501
Mode shape no. 7
identified using TDD at 0.12 m/s flow velocity
' ' >
-
— -
<
T
<
,\q_r_‘\/
1.5 15

I1 -0'.5 Dr. . 0‘5 ;
Modeshape - Normalized amplitude

Accelerometer locations
(s/L normalized co-ordinates)

Accelerometer locations

(s/L normalized co-ordinates)

Accelerometer locations
(s/L normalized co-ordinates)

Mode shape no. 4
identified using TDD at 0.12 nvs flow velocity

R —

-1 05 0 0:5 ;
Modeshape - Normalized amplitude

6.6667

0.2664

Mode shape no. 6

identified using TDD at 0.12 nvs flow velocity

——
_
<
T
-
e
—
L“Sr—,_f_f_f Bl
=
B e
-
~~—
—e—
—
e

-1 05 l]. DI5 ‘I\
Modeshape - Normalized amplitude

9.0913

0.9720

Mode shape no. 8
identified using TDD at 0.12 mv/s flow velocity

<
\‘H\\\|
- 7
/
\ﬂ\.
~
L g i
el
T
-
—
< i{_!

-1 05 0 0:5 ;
Modeshape - Normalized amplitude
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Identified as 9

number
Natural
frequency [Hz] 10.0003
Damping [%] 0.7247
Mode shape no. 9
identified using TDD at 0.12 Irnls flow velocity
Mode Shape %.Ej _

(s/L normalized co-ordinates)
a\

o

-1 05 - a D‘E “|
Modeshape - Normalized amplitude

Identified peaks with irregular mode-shapes (possible modes with unfortunate accelerometer

spacing.
1 2 3 4 5
0.5714  7.6922 11.1111 14.2858 16.6668

Figure C 1 shows the correlations between mode shapes according to the description given in
section 5.3.1.1.

AutoMAC matrix of the TDD 0.12 m/s solutions vs FEM solutions
TbD12,1 0.00  0.01 000 000 000 000 000 0.00 0.9
TDD12,| 0.00 005 0.00 003 001 007 001 002 003 0.8
TDD12,| 0.04 000  0.00 001 002 001 000 0.01 07

0.02

w

ToD12,| 0.01 000 001 003 0.00 0.02 0.06 0.6
TDD12_| 0.01 009 000 005 0.02 0.01 0.07 0.5
TDD12,| 0.00 003 000 005 0.00 0.01  0.00 0.4
TDD12_| 037 0.17 002 009 0.1 0.00 000 008  0.38 0.00 0.3
TOD12,| 014 012 001 001 000 000 003 000 0.20 0.2
TbD12,1 004 010 000 007 001 001 003 004 003 o

FEM1 FEM2 FEM3 FEM4 FEM5 FEM6 FEM7 FEM8 FEM9 FEM10

Figure C 1: MAC matrix for TDD method obtained mode shapes, 0.12 m/s current velocity
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C.20.24 m/s

Table C 2: Results from TDD method, 0.24 m/s flow velocity

Identified as
number

Natural
frequency
[Hz]

Damping

1

1.1111

0.7282

Mode shape no. 1

Mode Shape

Accelerometer locations
(s/L normalized co-ordinates)

identified using TDD at 0.24 m/s flow velocity
" : — T :

~—

Identified as
number

Natural
frequency
[Hz]

Damping [%]

-1 05 L] 0:5 1
Modeshape - Normalized amplitude

2.8572

0.1011

Mode shape no. 3

Mode Shape

Accelerometer locations
(s/L normalized co-ordinates)

identified using TDD at 0.24 m/s flow velocity

\\“m.
/,7,3
o
P
S
T

//J/
T
\.

g 5 b os i
Modeshape - Normalized amplitude

Accelerometer locations
(s/L normalized co-ordinates)

Accelerometer locations
(s/L normalized co-ordinates)

1.7862

2.3154

Mode shape no. 2

identified using TDD at 0.24 m/s flow velocity

™

-1 -DI.5 0 D‘E 1
Modeshape - Normalized amplitude

4.1670

1.1641

Mode shape no. 4
identified using TDD at 0.24 m/s flow velocity

=
<
>
<
>

-1 05 0 D‘E ;
Modeshape - Normalized amplitude
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Identified as
number

Natural
frequency
[Hz]

Damping [%]

Mode Shape

Identified as
number

Natural
frequency
[Hz]

Damping [%]

Mode Shape

Identified as
number

Natural
frequency
[Hz]

Damping [%]

Accelerometer locations
(s/L normalized co-ordinates)

Accelerometer locations
(s/L normalized co-ordinates)

5.0026

3.2423

Mode shape no. 5

identified using TDD at 0.24 nm/s flow velocity

\/

-l

-1 05 — E DIE 1
Modeshape - Normalized amplitude

6.6667

0.2212

Mode shape no. 7

identified using TDD at 0.24 m/s flow velocity

-1 05 G 0:5 1
Modeshape - Normalized amplitude

8.3333

0.2371

Accelerometer locations
(s/L normalized co-ordinates)

Accelerometer locations
(s/L normalized co-ordinates)

5.8824

0.0695

Mode shape no. 6
identified using TDD at 0.24 m/s flow velocity

<
—
D
™y
‘.\“@«.‘
>
- o
e
< -

-1 05 EI D‘E 1
Modeshape - Normalized amplitude

7.6922

0.1071

Mode shape no. 8
identified using TDD at 0.24 m/s flow velocity

Ll
— .
_
o
—
e
)
- —e ;
<
T

-1 05 El D‘E 1
Modeshape - Normalized amplitude

10

9.0913

1.0120
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Mode Shape

Identified as
number

Natural
frequency
[HZ]

Damping [%]

Mode Shape

Mode shape no. 9

identified using TDD at 0.24 nm/s flow velocity

e —
<
10 —
i -
2% S
8 e
oc —
®e —
< L
i -
g >
L5 .
[T
£ S <
g -
o E 4 —
[T .
2 — - —
8¢ a -
“3 —
— 2 _13
T ,_7————ﬁ——————7—7_,_
(:i

-1 05 G . 0:5 . 1‘
Modeshape - Normalized amplitude

11

10.0000

0.0180

Mode shape no. 11

identified using TDD at 0.24 m/s flow velocity

—_—

Accelerometer locations
(s/L normalized co-ordinates)
/
/
I

-1 -D‘S - L] . 0:5 . 1‘
Modeshape - Normalized amplitude

Accelerometer locations
(s/L normalized co-ordinates)

Mode shape no. 10

identified using TDD at 0.24 m/s flow velocity

-1 05 El B D‘E N ;
Modeshape - Normalized amplitude

Identified peaks with irregular mode-shapes (possible modes with unfortunate accelerometer

spacing)

1

12.5000 14.2858 16.6668

2 3
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TDD24
TDD24
TDD24
TDD24
TDD24
TDD24
TDD24
TDD24
TDD24
TDD24,
TDD24,

© 00 N OO ;AW N =

AutoMAC matrix of the TDD 0.24 m/s solutions vs FEM solutions

0.24 0.00 0.08 0.00 0.01 0.01 0.00
0.04 0.01 0.12 0.22 0.00 0.12 0.01
0.03 0.00 0.01 0.00 0.01 0.01 0.01
0.02 0.00 0.01 0.01 0.02 0.00 0.00
0.11 0.04 0.00 0.31 0.01 0.00 0.04
0.02 0.03 0.03 0.04 0.01 0.00 0.02
0.00 0.02 0.00 0.03 0.00 0.01 0.02

0.00 0.00 0.00 0.02 0.00 0.02 0.02

0.02 0.01 0.00 0.02 0.00 0.00 0.02 0.00
0.05 0.00 0.01 0.01 0.02 0.00 0.04 0.01
0.00 0.05 0.01 0.03 0.03 0.00 0.06 0.07
FEM, FEM, FEM3 FEM, FEM_. FEM, FEM, FEM8

0.9
0.8
0.7
0.6
0.5
10.4
0.3
0.2
0.1

Figure C 2: MAC matrix for TDD method obtained mode shapes, 0.24 m/s current velocity
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C.30.34 m/s

Table C 3: Results from TDD method, 0.34 m/s flow velocity

Identified as
number

Natural
frequency [Hz]

Damping [%]

0.9531

4.0056

Mode shape no. 1
identified using TDD at 0.34 m/s flow velocity

w 3 =

Mode Shape

Accelerometer locations
(s/L normalized co-ordinates)

C_\
\\
N
S
i‘//ﬁ
\\~ -

R

Identified as
number

Natural
frequency [HZz]

Damping [%]

£ s o 05 1
Modeshape - Normalized amplitude

1.7858

0.8758

Mode shape no. 3
identified using TDD at 0.34 m/s flow velocity

o 3

Mode Shape

Accelerometer locations
(s/L normalized co-ordinates)

—

T )

Identified as
number

Natural
frequency [Hz]

Damping [%]

‘1 05 o D‘E 1‘
Modeshape - Normalized amplitude

4.3479

0.4468

Accelerometer locations

Accelerometer locations
(s/L normalized co-ordinates)

R - R R

1.3896

3.1552

Mode shape no. 2
identified using TDD at 0.34 m/s flow velocity

J
/

(s/L normalized co-ordinates)

gANuawqqm
\ \
4 |

1 05 — EI. 05 1
Modeshape - Normalized amplitude

2.7029

1.2588

Mode shape no. 4
identified using TDD at 0.34 m/s flow velocity

/e \

- —DI57_ — EI D‘E 1‘
Modeshape - Normalized amplitude

5.5557

0.6812
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Mode Shape

Identified as
number

Natural
frequency [Hz]

Damping [%]

Mode Shape

Identified as
number

Natural
frequency [Hz]

Damping [%]

Mode Shape

Accelerometer locations
(s/L normalized co-ordinates)

Accelerometer locations

(s/L normalized co-ordinates)

Accelerometer locations
(s/L normalized co-ordinates)

Mode shape no. 5
identified using TDD at 0.34 m/s flow velocity

-1 25 — o 0.5 1
Modeshape - Normalized amplitude

6.6669

0.8195

Mode shape no. 7
identified using TDD at 0.34 m/s flow velocity

-1 25 = o 0.5 1
Modeshape - Normalized amplitude

9.0909

0.1590

Mode shape no. 9

identified using TDD at 0.34 m/s flow velocity

-1 05 - :‘l D‘E 1‘
Modeshape - Normalized amplitude

Mode shape no. 6

identified using TDD at 0.34 m/s flow velocity

-

Accelerometer locations
5

(s/L normalized co-ordinates)

o

ne

E 5 g o5 1
Modeshape - Normalized amplitude

7.6924

0.5254

Mode shape no. 8

identified using TDD at 0.34 m/s flow velocity

-

Accelerometer locations
5

(s/L normalized co-ordinates)

o

ne

E 5 g o5 1
Modeshape - Normalized amplitude

10

10.0001

0.6119

Mode shape no. 10

identified using TDD at 0.34 m/s flow velocity

P R - -

Accelerometer locations
»

(s/L normalized co-ordinates)

n

‘1 —DIS 0 D‘E 1‘
Modeshape - Normalized amplitude
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Identified peaks with irregular mode-shapes (possible modes with unfortunate accelerometer

spacing)

1

2

3

4 5 6

11.1111 12.5000 14.2858 16.6668 20.0003 25.0006

TDD34,
TDD34
TDD34
TDD34
TDD34
TDD34
TDD34
TDD34
TDD34
TDD34,

© 0 N O O ~ W N

AutoMAC matrix of the TDD 0.34 m/s solutions vs FEM solutions

0.09 0.32 0.46 0.04 0.02 0.02 0.11 0.01 0.00 0.01
0.00 0.30 0.00 0.83 0.01 0.00 0.04 0.00 0.00 0.00
0.02 0.02 0.93 0.01 0.01 0.00 0.01 0.00 0.01 0.01
0.01 0.00 0.00 0.22 0.02 0.00 0.00 0.00 0.00
0.00 0.05 0.01 0.04 0.00 0.00 0.00 0.00 0.00
0.05 0.03 0.00 0.02 0.03 0.01 0.01 0.07
0.00 0.01 0.00 0.02 0.00 0.01 0.01
0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00
0.07 0.00 0.00 0.00 0.00 0.01 0.02 0.06
0.34 0.17 0.01 0.12 0.00 0.00 0.01 0.08 0.03 0.40
FEM, FEM, FEM3 FEM, FEM_, FEM, FEM, FEM8 FEM9 FEM,

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Figure C 3: MAC matrix for TDD method obtained mode shapes, 0.34 m/s current velocity
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Appendix D
The MACEC Method Results

This appendix summarizes the results obtained by the methods available in the Matlab toolbox
MACEC using the three different flow velocity cases. The results are sorted by the sequential
step that they were identified, and show the estimated natural frequency, estimated damping
ratio and a spline fit mode shape. The values at accelerometer location no. 7 are linearly

interpolated values.
D.1 Covariance driven SSI

D.1.1 0.12 m/s

Table D 1: Results from Cov-SSI method, 0.12 m/s flow velocity

Identified as 1 2
number
Compass plot no. 1 Compass plot no. 2

identified using Cov-SSI at 0.12 m/s flow velocity identified using Cov-SSl at 0.12 m/s flow velocity
Complex plot e —=>
Natural 1.2004 1.7290
frequency [HZz]
Damping [%] 1.9587 0.0431
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Mode shape no. 2 identified using Cov-SSI
at 0.12 m/s flow velocity

Mode shape no. 2 identified using Cov-SSI
at 0.12 m/s flow velocity

~_
-
>

1 e 11
10 e ] 100
Id
g o See ] g 9
0= — 5=
S< 8 - 1 5< 8f
58 , . 5T .
Q0 o q oo Tt
8a . 83
—~ QO gl P 4 = O gl
Mode Shape 23 §%
p EN 5 Pt 1 EN 5f
5% L ST
BE 4 < I SE 4
D5 —_ T 5
§j 3 —— 4 Ej 3r
22 T 1 & ol
3 2 J il
-
— [y
5 15 15

-1 0.5 0 0.5 1
Modeshape - Normalized amplitude

Identified as

number £

Compass plot no. 3
identified using Cov-SSl at 0.12 m/s flow velocity
20
120 ! 60
08

08

Complex plot

240 300

Natural

frequency [Hz] 4.3263

) 10.0640
Damping [%]

Mode shape no. 3 identified using Cov-SSI
at 0.12 m/s flow velocity
. ! - " v

-
=

-
=)

Mode Shape

Accelerometer locations
(s/L normalized co-ordinates)

R L )

\

w

-1 -0.5 0.5
Modeshape - Normalized amplitude

1 5 0 0.5 1
Modeshape - Normalized amplitude
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AutoMAC matrix of the CovSSl 0.12 m/s solutions vs FEM solutions

0.9
0.00 0.00 0.00 0.00 0.00 0.8
0.7
0.6
0.01 0.07 0.01 0.02 0.03 05
0.4
0.3

CovSSI2, B 020 001 004 000 001 004 000 0.00 0.0 0.2
0.1

Cov8Sl12,| 0.00  0.01

CovSSI122 0.00 0.05

FEM, FEM, FEM3 FEM, FEM5 FEM, FEM, FEM8 FEM9 FEM10

Figure D 1:MAC matrix for Cov-SSI method obtained mode shapes, 0.12 m/s current velocity
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D.1.20.24 m/s

Table D 2: Results from Cov-SSI method, 0.24 m/s flow velocity

Identified
number

as

Complex plot

Natural
frequency [Hz]

Damping [%]

Mode Shape

Identified
number

as

Complex plot

Natural
frequency [Hz]

Accelerometer locations
(s/L normalized co-ordinates)

Lo = N W R N ®© ©
: T

R
o =

1

Compass plot no. 1

identified using Cov-SSlI at 0.24 m/s flow velocity
20

120 80
08

180 0

240 300
270

1.1603

16.1109

Mode shape no. 1 identified using Cov-SSI

at 0.24 m/s flow velocity

-

Accelerometer locations
(s/L normalized co-ordinates)

-1 0.5 0 0.5 1 1.5
Modeshape - Normalized amplitude

3

Compass plot no. 3

identified using Cov-SSI at 0.24 m/s flow velocity

180 Z:;}Zﬁ 0

270

8.6945

2

Compass plot no. 2
identified using Cov-SSI at 0.24 m/s flow velocity
920

120 60

150 30

270

2.8984

0.0391

Mode shape no. 2 identified using Cov-SSI
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Figure D 2: MAC matrix for Cov-SSI method obtained mode shapes, 0.24 m/s current velocity
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D.1.3 0.34 m/s

Table D 3: Results from Cov-SSI method, 0.34 m/s flow velocity
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number
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Complex plot
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Figure D 3: MAC matrix for Cov-SSI method obtained mode shapes, 0.34 m/s current velocity
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D.2 Data-driven SSI

D.2.1 0.12 m/s

Table D 4:Results from DD-SSI method, 0.12 m/s flow velocity
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number
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Identified as
number

Complex plot

Natural
frequency [Hz]

Damping [%]

Mode Shape
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Mode shape no. 5 identified using DD-SSI
at 0.12 m/s flow velocity
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Figure D 4: MAC matrix for DD-SSI method obtained mode shapes, 0.12 m/s current velocity
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D.2.20.24 m/s

Table D 5: Results from DD-SSI method, 0.24 m/s flow velocity

Identified as 1 9

number
Compass plot no. 1 Compass plot no. 2
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Identified
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Figure D 5: MAC matrix for DD-SSI method obtained mode shapes, 0.24 m/s current velocity
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D.2.3 0.34 m/s

Table D 6: Results from DD-SSI method, 0.34 m/s flow velocity
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Complex plot
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Figure D 6: MAC matrix for DD-SSI method obtained mode shapes, 0.34 m/s current velocity
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D.3 p-LSCF

D.3.10.12 m/s

Table D 7: Results from p-LSCF method, 0.12 m/s flow velocity
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Figure D 7: MAC matrix for p-LSCF method obtained mode shapes, 0.12 m/s current velocity
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D.3.2 0.24 m/s

Table D 8: Results from p-LSCF method, 0.24 m/s flow velocity
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AutoMAC matrix of the pLSCF 0.24 m/s solutions vs FEM solutions
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Figure D 8: MAC matrix for p-LSCF method obtained mode shapes, 0.24 m/s current velocity
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D.3.30.34 m/s

Table D 9: Results from p-LSCF method, 0.34m/s flow velocity
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AutoMAC matrix of the pLSCF 0.34 m/s solutions vs FEM solutions
pLSCF34. 1 0.01  0.00 002 000 000 000 000 001 0.01

0.01 0.00 0.00 0.00

pLSCF34,| 003 000 028 0.2 0.02

PLSCF34,| 000 002 000 002 0.0 000 000 000 0.0

pLSCF34,| 008 000 000 000 000 001 002 0.01 0.04

pLSCF34_| 0.01 0.04 000 004 002 000 003 0.01
pLSCF34.| 005 001 000 003 002 000 004 0.00

pLSCF34.| 006 001 000 002 001 000 002 0.04

FEM, FEM, FEM3 FEM, FEM_ FEM, FEM, FEM8 FEM9 FEM,,

Figure D 9: MAC matrix for p-LSCF method obtained mode shapes, 0.34 m/s current velocity
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Appendix E
List of Matlab Scripts

The following codes are included in the zip-folder submitted with this thesis.

For TDD analysis:

e TDD_method.m: The program used for identifying modes, plotting mode shapes and
calculating MAC matrices.

e MAC_func.m: Calculates the MAC value of two vectors of same length.

e MZerocross.m: Calculates the damped period of the participation time series.

e TDD_fnat_damp.m: Calculates the natural frequencies and mode shapes.
For importing and viewing static configuration obtained from RIFLEX:

e Static_Analysis_Beam_Mass.m: Imports RIFLEX files and gives an output .mat file
containing static analysis results used for modal analysis.

e get_matrix.m: Transforms mpf file data to matrices.

For numerical investigations of the accelerometer effects on the solution of the eigenvalue

problem:

e SCR_Eigenvalues.m: Used to select mass case to be investigated, number of modes to
calculate and which mode shape to plot. Gives a .mat file containing identified natural
frequencies and mode shapes at the accelerometer locations as output. Output is used
for calculation of MAC values and frequency deviations.

e SCR_Beam_ FEM_Fun.m: Creates global mass and stiffness matrices, calculates
natural frequencies and mode shapes, sorts the calculated modes and outputs the
requested number of modes and modeshapes.

o feaplycs.m: Applies boundary conditions to the global mass and stiffness matrices.

o feasmbll.m: Assembles local element mass and stiffness matrices into global mass
and stiffness matrices according to indexing.

o feeldofl.m: Creates indexes for the DOFs associated with each local element mass

and stiffness matrix for use when assembling global matrices.
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o feframe2.m: Creates local element mass and stiffness matrices for elements without
accelerometer masses.

o feframe3.m: Creates local element mass and stiffness matrices for elements with
lumped mass at the second node.

o feframe4.m: Creates local element mass and stiffness matrices for elements with

lumped mass at the first node.
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