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Abstract: 
This thesis presents the validation of irregular wave generation and propagation using the numerical wave 
tank in the open-source CFD model REEF3D. The numerical model has been extensively used to study 
wave hydrodynamics and interaction with structures using regular waves. The numerical model solves the 
Reynolds-Averaged Navier Stokes (RANS) equations in three dimensions. A conservative finite differ-
ence scheme is employed on a staggered grid. Convective terms are discretized using the WENO scheme 
and time discretization is done using the third-order TVD Runge Kutta Scheme. The adaptive time step-
ping technique is used to ensure the stability of the solution. The projection method is used to compute 
the pressure term in the RANS equation. Turbulence modelling is done using the k – ω model. The level 
set method is employed for the modelling of the free surface. Waves are generated using the relaxation 
technique. The ghost cell immersed boundary method is used to implement complex geometries in the 
numerical model. The numerical code is parallelized to make the numerical model faster and more effec-
tive. The Message Passing Interface (MPI) is used for the exchange of the ghost cell values. 
In the present work, irregular waves are generated and validated in REEF3D. In the model, irregular 
waves are based on the either on the Pierson-Moskowitz (PM) spectrum or the Joint North Sea Wave 
Observation Project (JONSWAP) spectrum. The effect of the grid size, the number of wave components 
and the length of the simulation on the generated wave spectrum in the wave tank is investigated. In addi-
tion, the influence of the spectral peak period on the requirements for the grid size and the length of the 
simulations is also studied. The numerical model is also validated with experimental observations to study 
the wave hydrodynamics of irregular waves for a submerged bar (Beji and Battjes, 1993). Two cases, 
breaking waves and non- breaking waves, are investigated. The numerical model shows a good agreement 
with the experimental results. 
The next section of the study deals with the study of wave forces for a horizontal and a vertical sub-
merged cylinder. For the horizontal cylinder case, numerical simulations are performed with different grid 
sizes to study the effect of grid sizes and then comparison is made with experimental data. Numerical 
tests are also done for different KC numbers. A simulation for a case with regular waves is also run and 
compared with the experiments. (Chaplin and Subbiah, 1997). For a vertical circular cylinder, different 
grid sizes are tested. Later, the effect of the peak time period Tp on the wave forces is also studied. 
This study is concluded with a comparison between the regular and the irregular wave force spectra for 
the vertical cylinder case. It illustrates that the longer waves tend to have a higher force on submerged 
horizontal and vertical cylinders. Regular waves with the same wave height, H and time period, T corre-
sponding to the significant wave height Hs and peak wave period Tp for the irregular waves have a higher 
peak value in the force spectrum. 
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Chapter 1

Introduction

1.1 Wave Hydrodynamics and Computational Fluid

Dynamics

Marine civil engineering involves the study of irregular and regular wave propagation
and hydrodynamics, study of wave interaction with structures, wave propagation over
submerged and emerged structures, study of phenomenon like shoaling, refraction,
diffraction and reflection during the wave-structure interaction. Wave propagation is
the way in which waves travel. The particles in the water execute a circular motion as
the wave passes without significant net advance in their position. The motion of the
water is forth and back with the crest and trough of the wave, respectively. Experi-
ments show a slight advance of the water in wave direction, but that advance is small
compared to the overall circular motion (Von Arx, 1962). Bascom (1964) described
the wave tank experiments in which the circulation of the water was studied.
Various wave theories are used to represent wave and understand hydrodynamics by
various researchers namely linear wave theory, 2nd-order, 3rd-order and 5th-order
Stokes theory, cnoidal wave theory and solitary wave theory to study regular waves.
Linear wave theory is the earliest and simplest wave theory. The linear wave theory
is based on the assumption that the wave amplitude is small and the waveform is
invariant in time and space. Higher-order non-linear wave theories like Stokes wave
theory given by Stokes (1846) overcome some limitations of the linear wave theory.
It can be used directly for intermediate and deep water for practical applications.
2nd-order Stokes wave theory can be used for slightly steeper waves. For the fur-
ther increase in wave steepness, 3rd-order and 5th-order Stokes theory can be used.
Cnoidal wave theory is a non-linear wave theory which describes shallow water waves,
where the wavelength is fairly large compared to the water depth. These wave theories
describe the periodic waves and help in understanding the various wave propagation
and interaction problems. In reality, the sea state is random, consisting of waves of
different periods, amplitudes and directions. A complete 3D representation of the
ocean waves requires the consideration of the sea surface as an irregular wave train
with the random characteristics. The random sea surface using Fourier theory can be
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transferred into the summation of simple sine waves and then wave characteristics in
terms of its spectrum are defined. This allows treatment of the variability of waves
with respect to the period and the direction of travel. Irregular waves are defined by
frequency spectra like the Pierson Moskowitz (PM) and the Joint North Sea Wave
Observation Project (JONSWAP) wave spectra. A wave frequency spectrum repre-
sents the distribution of wave energy with respect to the wave frequency. Within
certain approximations, all the required properties of the wave can be computed by
the spectrum for the fully developed and the young sea state (Arntsen and Krogstad,
2000).
Physical modelling of irregular waves is time consuming and expensive. To study such
a complex phenomenon, another option available is numerical modelling. With the
aid of numerical modelling real life phenomena can be simulated. Thus, numerical
simulations are practical for calculating and studying the wave hydrodynamics. The
recent advancements in the computational power of computers, have made it possible
to carry out 3D simulations in an acceptable amount of time. There are many nu-
merical models available. The choice of the model depends on the required detail and
accuracy. Spectral wave model like SWAN are used for modelling of the large scale
processes. The modelled waves are phase averaged in spectral wave models. This
describes the wave spectrum evolution in space and time based on the wave energy
balance. Rogers et al. (2007) and Xu et al. (2007) have used these models in the
past to study the coatsal engineering problems. Numerical models detailing phase
information are also available, these models are based on the Boussinesq equations
(Nwogu, 1993) and (Madsen et al., 1991). These models can model hydrodynamic
phenomena like reflection and diffraction. Fully Nonlinear Potential Flow Models
(FNPF) models are also available in the literature. Here, the Laplace equation for
the potential flow is solved. This methods neglects the viscosity and rotational flow
effects. This has been used in the past by Dommermuth et al. (1988) to study of
wave propagation in deep water.
But for studying complex phenomena like the breaking waves or the flow around a
cylinder, more detailed solutions are required in order to capture the flow properties.
Solving the Navier-Stokes equation in 3D gives a more detailed solution. In this ap-
proach, hydrodynamics can be studied by calculations based on the 3D flow field by
employing suitable interface capturing techniques for the free surface. Computational
fluid dynamics cover the range from the automation of well-established engineering
design methods to the use of detailed solutions of the Navier-Stokes equations as
substitutes for the experimental research into the nature of complex flows. Several
successful investigations are done to use a CFD program as numerical tank. Higuera
et al. (2013) and Jacobsen et al. (2011) used the CFD based numerical model Open-
FOAM, which calculates the free surface with a Volume-of-Fluid approach based on
convection of the fraction function and interface compression. Such CFD based nu-
merical models were applied to laboratory experiments and they showed that with
today’s available computational resources, complex wave propagation simulations can
be performed (Paulsen et al., 2014),(Seiffert et al., 2014).
The present study uses the open-source model REEF3D (Chella et al., 2015) to study
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the irregular wave propagation. The appropriate numerical techniques are used in
REEF3D in order to ensure a good performance with a focus on the numerical stabil-
ity and accuracy criteria. REEF3D uses a staggered Cartesian grid and the Weighted
Essentially Non-Oscillatory (WENO) scheme for convection discretization (Jiang and
Peng, 2000). Time discretization is done using a high-order method with third-order
total variation diminishing (TVD) Runge-Kutta scheme (Shu and Oscher, 1988). The
Level Set method is used for computing the free surface. Waves are generated using
the relaxation method. Ghost cell immersed boundary method is used to imple-
ment complex geometries in the numerical model. The numerical code is parallelized
to make numerical model faster and more effective. The Message Passing Interface
(MPI) is used for the exchange of the value of a ghost cell. As a result, REEF3D
can calculate the wave propagation and transformation throughout the wave steep-
ness range up to the point of wave breaking and beyond, with no artificially high air
velocities impacting the quality of free surface.
Some experimental and numerical investigations have been carried out in the past
to understand the irregular wave propagation and their behaviour during the inter-
action with the structures. Wheeler (1970) calculated the irregular wave force for
risers. Goda and Suzuki (1976) used FFT analysis for random wave experiments. In
their study, the amplitudes of the incident and the reflected wave components were
estimated from the Fourier components. Later, Rainey (1989) calculated irregular
wave loads on offshore structures. An equation for the potential-flow wave loading
on a lattice-type offshore structure partially immersed in waves was derived. The
incident and reflected wave spectra were constructed by smoothing the estimated
periodograms. Beji and Battjes (1993) studied the hydrodynamics of the irregu-
lar wave propagation over a submerged bar. The experiments with irregular waves
in shallow water depth for the design wave height estimation were carried out by
J. William Kamphuis (1996). Attempts have also been made to calculate the wave
force on cylinder due to irregular waves apart from the study of irregular wave hydro-
dynamics. Chaplin and Subbiah (1997) carried out experiments to calculate the wave
forces on a horizontal rectangular submerged cylinder. Suryanto (2006) estimated
the incident and the reflected waves in with irregular waves. The decomposition of
the irregular waves was performed by comparing the general solution of the linear
wave equation and the wave elevation measured at some fixed positions. Goullet and
Choi (2011) did a numerical and an experimental study on the nonlinear evolution of
long-crested irregular waves. Later, in the same year, remote sensing study of irregu-
lar waves was also done by Harry et al. (2011). Recently, Shekari and M. (2013) did
an experimental study on the reshaping of berm breakwaters under irregular wave
attacks.
Little work has been done in the past to study the irregular waves using CFD mod-
els. As mentioned above, CFD gives a more detailed and accurate solution of the
water wave dynamics. The present thesis work uses an open-source numerical model
REEF3D to study the irregular waves. The present study is focused on the validation
of irregular wave generation and propagation in REEF3D. The numerical results are
compared with experimental observations in chapter 3 to study the wave propagation
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over a submerged bar. Later, in chapters 5 and 6, wave forces are computed on a
horizontal and a vertical cylinder, respectively.

1.2 Objectives of the study

• The first objective of the present work is to test and validate irregular wave
generation and propagation in the numerical model REEF3D, by varying the
various hydrodynamic and numerical parameters like the grid size, dx, the peak
time period, Tp, the number of linear wave components, N , the length of simu-
lation duration, t and to study their effect on the results.

• The second objective is to study the irregular wave propagation over a sub-
merged bar and then to compare the numerical results with the experimental
results for JONSWAP spectra for different cases.

• The last objective of the present work is to study the wave forces on a horizontal
and a vertical cylinder due to irregular waves for different KC numbers and to
validate the calculated numerical force spectrum with the experimental force
spectrum results.
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Chapter 2

Numerical Model

2.1 Governing Equations

2.1.1 Navier-Stokes Equations

The Navier-Stokes equations are the governing equations of Computational Fluid
Dynamics (CFD). These are based on the basic equations of the fluid mechanics like
the mass and the momentum conservation. The Navier-Stokes equations are defined
with the assumption of an incompressible fluid. The mass conservation equation
under this assumption is given by the continuity equation:

∂Ui
∂xi

= 0 (2.1)

The momentum conservation together with the continuity equation leads to the
Navier-Stokes equations which provides a description of the flow (Batchelor, 1967):

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1

ρ

∂P

∂xi
+

∂

∂xj

[
ν

(
∂Ui
∂xj

+
∂Uj
∂xi

)]
+ g (2.2)

where, U is the velocity averaged over time t, ρ is the fluid density, p is the pressure, ν
is the kinematic viscosity, i and j denote the indices in x and y direction, respectively
and g is the acceleration due to gravity.
Equation 2.2 has the following terms:

• The left hand side of the equation has a transient term given by a time deriva-
tive.

• The left hand side of the equation has a set of convection terms involving first
order derivatives of the velocity components in the three coordinate directions.

• The right hand side of the equation has a diffusive term that involves a second
derivative in all space dimensions of the per-unit-mass quantity in the balance
equation. It is associated with the processes that tends to smooth out gradients
in the flow.
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• The right hand side of the equation contains terms, such as source and sink
terms.

2.2 Numerical Methodology

2.2.1 Discretization Methods

There are many analytical techniques available for deriving solutions of partial dif-
ferential equations. Most differential equations that model physical processes cannot
be solved directly. This is due to non-linearity of coefficients, time-dependence of
the coefficients or the higher-order of the equations. To solve these equations, ap-
proximation methods are used. These methods are used in such a way that most of
the global/continuous information of the original problem and more importantly, the
inherent structure, is retained.
The different discretization schemes address the task of replacing the partial differ-
ential equation system with algebraic ones. This is done using the finite difference
method, the finite element method or the finite volume method.

• Finite Volume Method: The finite volume method was first used by Harlow
and Evans (1957) and it makes use of the conservation laws in integral form.
It subdivides the domain into cells and evaluates the field equations in integral
form on these cells. The concepts and implementation are simple for different
dimensions and different types of cells. For the finite volume method the domain
is first subdivided into non-overlapping control volumes of a cell. In each control
volume an integral conservation law is imposed (Barth and Ohlberger (2004)).

• Finite Element Method: The finite element method is based on the projection
of a given domain onto a consistent finite cell complex. Finite element method
(FEM) was first used by Courant (1943). It is also used in the solid mechanics
of rigid bodies, e.g., by Johnson (1987). A good approximation is obtained by a
residual formulation where the residum is the difference of the unknown exact
solution and the calculated approximate solution. This residuum is weighted
over the simulation domain and integrated with the requirement that the inte-
gral vanishes with a set of linearly independent weighting functions.

• Finite Difference Method: The finite difference discretization scheme is one of
the simplest forms of discretization given by Richardson (1910). A classical finite
difference approach approximates the differential operators constituting the field
equation locally. Therefore, a structured grid is required. For each of the points
of the structured grid the differential operators appearing in the main problem
specification are rendered in a discrete expression. The order of the differential
operator of the original problem formulation directly dictates the number of
nodes to be involved. The present study uses the finite difference method, in a
conservative way, giving the same conservation properties as the finite volume
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method. Also, this method is more straight forward to apply for higher order
schemes. This way, finite difference method overcomes the drawbacks of the
above mentioned methods. The derivatives in the partial differential equation
are approximated by linear combinations of function values at the grid points.
The domain is partitioned in space and in time and approximations of the
solution are computed at the space or time points. The finite difference method
optimizes the approximation for the differential operator in the central node of
the considered patch.

Grids can be of two types: staggered grid and collocated grid. In a collocated grid
arrangement, all of the variables are stored in the same positions, while in a staggered
grid the scalar variables (pressure, density, total enthalpy etc.) are stored in the cell
centers of the control volumes, whereas the velocity or momentum variables are lo-
cated at the cell faces. A staggered storage is mainly used on structured grids for
compressible or incompressible flow simulations. Using a staggered grid arrangement
is a simple way to avoid odd-even decoupling between the pressure and velocity and
thus, leads to a tight pressure-velocity coupling. Odd-even decoupling is a discretiza-
tion error that can occur on collocated grids and which leads to checkerboard patterns
in the solutions. Morinishi et al. (1998) analyzed the conservation properties of several
finite-difference schemes for both staggered and collocated grid arrangements. By re-
stricting the analysis to Cartesian uniform meshes, it was shown that staggered-mesh
methods can be made fully-conservative, whereas collocated-mesh methods will al-
ways contain an energy conservation error. The following properties of the numerical
solution should be satisfied for applicability to a particular problem:

• Stability: Stability of a numerical solution ensures that the error caused by a
small perturbation in the numerical solution remains bounded. A stable method
should not diverge with the time.

• Convergence: The finite-difference solution approaches the true solution to the
partial differential equation as the increments ∆x,∆t go to zero. A solution
is convergent if for any solution to the partial differential equation u(t, x) and
solutions to the finite difference scheme, vin, such that vi0 → u0(x) as i∆x→ x,
then vi0 → u(t, x) as (n∆t, i∆x)→ (t, x) as ∆x,∆t→ 0.

• Consistency: A finite difference scheme or operator is consistent if the operator
reduces to the original differential equation as the increments in the independent
variables vanish. Given a partial differential equation Pu = f and a finite
difference scheme, P (∆t,∆x)v = f , we say that the finite difference scheme
is consistent with the partial differential equation if for any smooth function
φ(x, t):

Pφ− P∆t,∆xφ→ 0, when∆x,∆t→ 0 (2.3)
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2.2.2 Convection Discretization

As, discussed before, the Navier-Stokes equation consists of the convective terms.
These terms are discretized first. The number of points used in the approximation
schemes defines the order of accuracy and the nature of the scheme. The geomet-
rical representation of these numerical points is called a stencil. A higher order of
accuracy is obtained from a wider stencil. There are different types of the convection
discretization schemes available:

• First Order Upwind (FOU) Scheme: This scheme given by Courant et al. (1952)
is based on the solution-sensitive finite difference stencil to numerically simu-
late the flow information in the direction of the flow propagation. With such
schemes shock waves can be captured without oscillations. Thus, a success-
ful artificial dissipation model for a central-difference scheme should imitate an
upwind scheme in the neighbourhood of shocks. It is desirable to develop nu-
merical schemes that preserve monotonicity. Since the waveform propagates in
one direction, it is appropriate to use an upwind one-sided finite difference for
the spatial derivative. Stencil can be seen in the Figure 2.1. An example of
FOU scheme is:

∂U

∂xj
=

(Ui − Ui−1)

∆xj

i-1 i i+1
Figure 2.1: Stencil for the FOU scheme

∆xj represents spatial discretization in the direction perpendicular to velocity.
This scheme is first order accurate in space and time. It also produces large
numerical diffusion in case of large gradients. Thus, this scheme does not give
good results when the flow direction is skewed relative to the grid lines.

• Central Difference Scheme (CDS): This method uses the points downstream
and upstream of the point at which the values are calculated. It can be written
as:

∂U

∂x
=
Ui+1 − Ui−1

2∆x
∆x represents spatial discretization. The truncation error of this scheme is
of second order, thus this scheme is a second-order accurate scheme. This
scheme is simper to program and needs less computational time per time step,
and it is less dissipative as compared to FOU scheme. But, this scheme is
unconditionally unstable for the damped systems and in case of large gradients
making it impractical for the use in CFD codes..
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• High-Resolution Schemes: These schemes uses flux limiters to avoid spurious
oscillations in the results (Van Leer, 1979). This is used in higher-order spatial
discretizations to overcome wiggles which might be introduced due to shocks or
discontinuities in the solution domain. Flux limiters limit the spatial derivatives
to their realistic values. They are used in the high resolution schemes and used
in the case of sharp wave fronts or discontinuities. Flux limiter together with
appropriate high resolution scheme leads to Total Variation Diminishing (TVD)
properties. The major drawback of this scheme is that it does not work for the
waves.
For the present study which is focused on the irregular waves, none of the
above techniques are able to give good numerical solutions. Thus, Weighted
Essentially Non-Oscillatory (WENO) Scheme explained below is used in the
present study. WENO scheme gives good results for discretizing the convective
terms of the Navier-Stokes equation for the present kind of study.

• Weighted Essentially Non-Oscillatory (WENO) Scheme: The Weighted Essen-
tially Non-Oscillatory (WENO) scheme is an extension of the Essentially Non-
Oscillatory (ENO) Scheme. The first ENO scheme is given by Harten et al.
(1987). The ENO scheme is an adaptive stencil scheme to obtain a non-mesh
size dependent parameter, uniformly high order accurate yet essentially non-
oscillatory interpolation for piecewise smooth functions. Later, Liu et al. (1994)
introduced a scheme of choosing multiple stencils and assigning the weight fac-
tors, accordingly using a convex combination of all candidate stencils instead of
just one as in the original ENO. ENO and WENO schemes for Hamilton-Jacobi
type equations were designed and applied in Osher and F. (1996), Osher and
Sethian (1988a) and Osher and Shu (1991). The third and fifth-order finite dif-
ference WENO schemes in a multi space dimensions were constructed by Jiang
and Peng (2000), with a general framework for the design of the smoothness
indicators and the nonlinear weights. A key idea in the WENO schemes is a
linear combination of the lower order fluxes or the reconstruction to obtain a
higher order approximation. Here, a nonlinear adaptive procedure is used to
automatically choose the locally smoothest stencil, hence avoiding crossing the
discontinuities in the interpolation procedure as far as possible. An example of
the implementation of this scheme in the Hamilton-Jacobi form to the level set
function, φx in x-direction is presented as:

φx =


φ−x if U1 > 0

φ+
x if U1 < 0

0 if U1 = 0

(2.4)

The WENO approximation for a given level set function might be a combination
of three possible approximations:

φ±x = ω±1 φ
1±
x + ω±2 φ

2±
x + ω±3 φ

3±
x (2.5)
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The three ENO stencils defined for φ are

φ1±
x =

q±1
3
− 7q±2

6
+

11q±3
6

φ2±
x = −q

±
2

6
+

5q±3
6

+
q±4
3

φ3±
x =

q±3
3

+
5q±4
6
− q±5

6

(2.6)

with,

q−1 =
φi−2 − φi−3

∆x
, q−2 =

φi−1 − φi−2

∆x
, q−3 =

φi − φi−1

∆x
,

q−4 =
φi+1 − φi

∆x
, q−5 =

φi+2 − φi+1

∆x

(2.7)

and

q+
1 =

φi+3 − φi+2

∆x
, q+

2 =
φi+2 − φi+1

∆x
, q+

3 =
φi+1 − φi

∆x
,

q+
4 =

φi − φi−1

∆x
, q+

5 =
φi−1 − φi−2

∆x

(2.8)

the weights are written as:

ω±1 =
α±1

α±1 + α±2 + α±3
, ω±2 =

α±2
α±1 + α±2 + α±3

, ω±3 =
α±3

α±1 + α±2 + α±3
, (2.9)

and

α±1 =
1

10

1(
ε̃+ IS±1

)2 , α±2 =
6

10

1(
ε̃+ IS±2

)2 , α±3 =
3

10

1(
ε̃+ IS±3

)2 (2.10)

with the regularization parameter ε̃ = 10−6 in order to avoid division by zero
and the following smoothness indicators:

IS±1 =
13

12
(q1 − 2q2 + q3)2 +

1

4
(q1 − 4q2 + 3q3)2 ,

IS±2 =
13

12
(q2 − 2q3 + q4)2 +

1

4
(q2 − q4)2 ,

IS±3 =
13

12
(q3 − 2q4 + q5)2 +

1

4
(3q3 − 4q4 + q5)2

(2.11)

The WENO scheme is successfully used to simulate shock turbulence interac-
tions by Adams and Shariff (1996), Shu and Oscher (1989), Shu et al. (1992);
to the direct simulation of compressible turbulence by Shu et al. (1992), Wal-
steijn (1994), Ladeinde et al. (1995); to relativistic hydrodynamics equations by
Erlebacher et al. (1997); to shock vortex interactions and other gas dynamics
problems by Erlebacher et al. (1997), Jiang and Shu (1996); to incompressible
flow problems by Weinan and Shu (1994) etc.

10



2.3 Time Discretization

In wave hydrodynamics, the flow properties change over small time scales, making a
good time discretization scheme necessary. The time discretization is done through
integration over time on the general discretized equation. The time integral of a
given variable is equal to a weighted average between current and future values. It
can be implicit and explicit. When a direct computation of the dependent variables
can be made in terms of known quantities, the computation is said to be explicit.
When the dependent variables are defined by coupled sets of equations, and either
a matrix or an iterative technique is needed to obtain the solution, the numerical
method is said to be implicit. Implicit schemes are stable over a wider range of time
steps as compared to explicit schemes. REEF3D has the Adam-Bashforth, the third
and the fourth order TVD Runge-Kutta schemes included in the code for the purpose
of higher accuracy, as flow characteristics change rapidly over the time. The present
study uses the third order TVD Runge-Kutta scheme.

• Third Order Total Variance Diminishing (TVD) Runge Kutta Scheme: This
is an explicit 3rd order scheme which rules out the spurious oscillations by
suppressing the local extrema (Harten et al., 1987). An example of a such
implementation is the third order TVD Runge Kutta scheme over a time step
∆t (Shu and Oscher, 1988):

φ(1) = φn + ∆tL (φn)

φ(2) =
3

4
φn +

1

4
φ(1) +

1

4
∆tL

(
φ(1)
)

φn+1 =
1

3
φn +

2

3
φ(2) +

2

3
∆tL

(
φ(2)
) (2.12)

2.4 Adaptive Time Stepping

In order to obtain a good numerical solution, the numerical scheme should be stable.
To ensure stability, the movement of the fluid is restricted to a one computational
cell per time step. This is also called the Courant Condition (Courant et al., 1967):

U∆t

∆x
≤ C (2.13)

where, ‘C’ is a dimensionless constant depending on the scheme of discretization.
While using temporal discretization schemes, limitation of size of time step is to be
kept in mind. A larger time step might cause instability, a too small time step might
cause inappropriate weighing on computations. In such situations, the most efficient
way of obtaining good numerical solution is adaptive time stepping. The adaptive
time stepping scheme (Griebel et al., 1998) uses the maximum values of the velocity,
the viscosity, the volume forces and the surface forces for computing the time step
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size:

δt ≤ 2

( |U |max
δx

+ V

)
+

√(
|U |max
δx

+ V

)2

+
4 |Smax|
δx

−1

(2.14)

with

V = max (ν + νt) ·
(

2

(δx)2 +
2

(δy)2 +
2

(δz)2

)
(2.15)

where, ‘V’ is the maximum viscosity and ‘Smax’ is the source term contribution from
the surface and the volume forces.

2.5 Solution of the Navier Stokes Equation

There are certain challenges in solving the Navier Stokes equations. The momentum
conservation terms also contain a contribution from the pressure. It may be regarded
as a source term (Peric and Ferziger, 2001). The pressure can not be determined
directly. The involvement of non-linear terms makes the solution computationally
expensive and implicit methods need to be used. The numerical model REEF3D
offers different pressure solvers. They are projection method, projection method with
pressure correction, Semi Implicit Method for Pressure Linked Equations (SIMPLE),
SIMPLEC and PISO. The major difference between the various Projection Methods
and the various SIMPLE techniques is that, former works well with explicit time
advancement schemes, while latter works well with implicit time stepping schemes.
The present study uses the Projection Method for solving the pressure.

• Projection Method

The solution for the pressure in the Navier Stokes equations is obtained from
the projection method given by Chorin (1968). The advantage of using this
method is that it decouples the velocity and pressure field. An intermediate
value of the velocity U∗i is obtained by first neglecting the pressure gradient.
An intermediate velocity is calculated using transient equation:

∂(U∗ − Un
i )

∂t
+ Un

j

∂Un
i

∂xj
=

∂

∂xj

[
ν(φn)

(
∂Un

i

∂xj
+
∂Un

j

∂xi

)]
+ gi (2.16)

The calculated intermediate velocity does not fulfil the continuity requirements.

∂(Un+1
i − U∗i )

∂t
+

1

ρ(φn)

∂P n+1

∂xi
= 0 (2.17)

The pressure term, P n+1, is unknown in above equation. This unknown is
calculated by using a divergence operator such that divergence of Un+1

i is zero
is applied. The Poisson pressure equation is written as:

∂

∂xi

(
1

ρ(φn)

∂P

∂xi

)
= − 1

∆t

∂U∗i
∂xi

(2.18)
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Using the new value of the pressure and enforcing the continuity equation, the
divergence-free value of the velocity for the next time step is determined.

2.6 Iterative Solver

To solve the above mentioned Poisson’s equation (2.31) , different types of techniques
are available. Direct methods are for example Gaussian elimination and iterative
methods. But, it should be kept in mind that direct methods are computationally
too expensive, thus iterative techniques are more efficient in such cases. There are var-
ious iterative techniques available like the Jacobi method, the Gauss-Seidel method,
the Successive Over- Relaxation method, the Conjugate Gradients method, the Bi-
Conjugate Gradient method, and the Multigrid method.

The Conjugate Gradient Method given by Hestenes and Stiefel (1952) is an iterative
method for solving sparse systems of linear equations. In this technique, minimization
of a function is done with respect to many directions simultaneously while search-
ing in one direction at a time. It can be extended to non-quadratic unconstrained
minimization. This works for a particular system of equations, where the matrix is
symmetric and positive definite. But for non-symmetric equations like convection-
diffusion equations, this method can not be applied.
The Bi Conjugated Gradient (BiCG) method was developed by Fletcher (1976). Un-
like the Conjugated Gradient Method, this method can be used for non-symmetric
equations. It does not require the matrix to be self-adjoint, but instead the con-
jugated transpose matrix is used. Thus, this method first converts non-symmetric
systems into symmetric systems. It is twice as expensive as the Conjugated Gradient
Method, but the convergence rate is about the same. The present study utilises the
Bi Conjugate Gradient Stabilized (BiCGstab) method, which is a modified approach
of BiCG. It is given by Van der Vorst (1992), it converges faster and produces more
stable solutions. The present study utilises this approach for solving Poisson equation.

2.7 Turbulence Modelling

Wave-structure interaction gives rise to the turbulence in the flow. Turbulence is
rotational and three dimensional. Turbulent flows are highly unsteady. Turbulent
flows are always dissipative, generally more dissipative than laminar flows. Much
of the energy is lost in viscous dissipation in the eddies of the smallest scales. The
energy present in the turbulent motions is supplied by the mean flow. The length
and time scales on which turbulent fluctuations play a role are far larger than the
molecular scale. Turbulence will appear in flows where the energy can be transferred
from the mean motion to the turbulent fluctuations. A turbulent fluctuation will
induce a turbulent shear stress in the presence of a velocity gradient providing the
conditions for energy transfer. The turbulence might produce the vortices in the flow
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downstream of the structure. This phenomena effects the wave-structure interaction.
In order to represent turbulence, the Navier-Stokes equations should be solved and
all the details of the flow down to the smallest length scales should be represented
on the numerical grid. Direct Numerical Simulation (DNS) can only be used as a
research tool to study the details of low Reynolds number flows in simple geometries.
For flows with a higher Reynolds number, several million grid points are needed in
DNS which is practically not feasible.
An alternative approach in finding a solution is to average in space and in time. The
large scale motion shows a strong anisotropy and contains the greater part of the
turbulent kinetic energy. Once the large structures are broken up into the smaller
scales via the energy cascade, they become more isotropic and lose their energy in
self-similar processes that are not much affected by the large scale geometry. To be
able to resolve the large-scale part of the energy spectrum on the numerical grid, the
remaining isotropic small scale turbulence is less of a problem to model. The small
scale motion is filtered out of the equations by filtering them over the volume of one
or several grid-cells. The resulting filtered equation applies only to the large scale
eddies and such modelling is called Large Eddy Simulation (LES). But, for real life
flows, it is still computationally too expensive.
Another approach is the Reynolds-Average Navier-Stokes (RANS) equation. The
small scales of turbulence are modelled with a subgrid scale model. For example.
the smagorinsky model Peric and Ferziger (2001). This approach is less expensive
because of the averaging and is suitable for the numerical modelling of the large scale
processes. RANS equation after ensemble averaging is given by:

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1

ρ

∂P

∂xi
+

∂

∂xj

[
(ν + νt)

(
∂Ui
∂xj

+
∂Uj
∂xi

)]
+ gi (2.19)

where U is the time averaged velocity, ρ is the density of the fluid, P is the pressure,
ν is the kinematic viscosity, νt is the eddy viscosity and g the acceleration due to
gravity.
The eddy viscosity, νt is calculated using k − ω model as explained below in next
section. The present study uses the Wilcox’s k − ω model (Wilcox, 1994) along with
Reynolds Averaged Navier Stokes (RANS) equation. REEF3D also has provision for
k − ε model (Launder and Sharma, 1974), EARSM (Wallin and Johansson, 2000),
SST (Menter, 1993) and LES model.

• k − ω Model

The k − ω model is a two-equation model based on the energy transport equa-
tions. One of the variables transported is the turbulent kinetic energy, k and the
other is the turbulent dissipation, ω. Then the eddy viscosity, νt is calculated
using the turbulent kinetic energy k and the turbulent dissipation ω (equation
2.16). The transport equations for k and ω are given as :

∂k

∂t
+ Uj

∂k

∂xj
=

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
+ Pk − βkkω (2.20)
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∂ω

∂t
+ Uj

∂ω

∂xj
=

∂

∂xj

[(
ν +

νt
σω

)
∂ω

∂xj

]
+
ω

k
αPk − βω2 (2.21)

νt = min(
k

ω
,

√
2

3

k

|S|
) (2.22)

where, Pk is the production rate and the closure coefficients σk = 2, σω = 2,
α = 5/9, βk = 9/100, β = 3/40. |S| is the mean strain rate, which can be large
in the case of oscillatory flow motion. The eddy viscosity νt is limited using
equation 2.34 to avoid overproduction of turbulence in strained flow outside
the boundary layer. Increased turbulent dissipation takes place in the vicinity
of the free surface due to reduced turbulent length scales. Damping of the
turbulent fluctuations also occurs normal to the surface leading to redistribution
of intensity parallel to the interface. Due to a high value of |S| near the air-water
interface, standard RANS turbulence closure will give inaccurate results. Thus,
additional turbulence damping is required. The specific turbulent dissipation
at the free surface is given as:

ωs =
c
− 1

4
µ

κ
k

1
2 ·
(

1

y′
+

1

y∗

)
(2.23)

where, cµ = 0.07 and κ = 0.4. y′ is the virtual origin of the turbulent length scale
and has a value 0.07 times the water depth found empirically by Hossain and
Rodi (1980). y∗ is the distance from the nearest wall for a smooth transition to
wall boundary value of ω. The specific turbulent dissipation is activated around
the interface by multiplying it with the Dirac delta function δ (φ):

δ (φ) =

{
1
2ε

(
1 + cos

(
πφ
ε

))
if |φ| < ε

0 else
(2.24)

2.8 Modelling of the Free Surface

In marine civil engineering, the cases involving ocean wave propagation are usually
multiphase flows because they involve more than one phase, i.e., air and water. The
free surface of water is modelled using a two-phase flow approach. There are various
methods available as given below:

• Marker and Cell (MAC) Method: This approach is used to discretize functions
for fluid flow with a free surface. It was developed by Harlow and Welch (1965).
The MAC method is a finite difference solution technique for investigating the
dynamics of an incompressible viscous fluid. It employs the primitive variables
for the pressure and the velocity. It uses the Lagrangian virtual particles, whose
coordinates are stored and which move from from a cell to the next according
to the latest computed velocity field. The drawback of this method, is that for
3D problems, simulations become computationally too expensive.
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• Volume of Fluids (VOF) Method: This method belongs is an Eulerian approach.
It is characterised by a mesh stationary. It was published by Hirt and Nichols
(1981). It is a scalar function, defined as the integral of a fluid’s characteristic
function in the control volume, namely the volume of a computational grid
cell. The volume fraction of each fluid is tracked through every cell in the
computational grid, while all fluids share a single set of momentum equations.
With this method, the free-surface is not defined sharply, instead it is distributed
over a the height of a cell. To avoid smearing of the free-surface, the transport
equation have to be solved without excessive diffusion. Thus, the success of
a VOF method depends heavily on the scheme used for the advection of the
fraction function. Whereas a first order upwind scheme smears the interface,
a downwind scheme of the same order will cause a false distribution problem
which will cause erratic behaviour in cases, where the flow is not oriented along
the grid lines. Another drawback of this scheme is that the free surface tends
to get smeared over two to three cells due to the numerical diffusion and a local
refinement is needed to represent the free surface accurately.

• Level Set Method (LSM): The level set method tracks the motion of an interface
by embedding the interface as the zero level set of a signed distance function.
The motion of the interface is matched with the zero level set. In this setting,
curvatures and normals may be easily evaluated, topological changes occur in
a natural manner, and the technique extends trivially to three dimensions. In
the present study, the Level Set Method given by Osher and Sethian (1988b)
is used to model the free surface. It is defined such that φ(~x, t) = 0 at the
interface. Away from the interface, the closest distance of the point from the
interface defines its value and the sign represents the phase. The function can
be written as:

φ(~x, t)


> 0 if ~x is in phase 1

= 0 if ~x is at the interface

< 0 if ~x is in phase 2

(2.25)

The movement of the level set function is given by an equation with a convective
term.

∂φ

∂t
+ ~u∇φ = 0 (2.26)

Numerical instability might rise because of a jump across the interface. Smoothen-
ing is carried out in that thickness of 2ε by a Heaviside function H(φ).

ρ(φ) = ρ1H(φ) + ρ2(1−H(φ))

ν(φ) = ν1H(φ) + ν2(1−H(φ))
(2.27)
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where,

H(φ) =


0 if φ < −ε
1
2

(
1 + φ

ε
+ 1

π
sin
(
πφ
ε

))
if |φ| ≤ ε

1 if φ > ε

(2.28)

ρ1 and ρ2 represent the densities of the two fluids. Generally, the thickness of
the smoothed out interface is taken as ε = 2.1 on both sides of the interface.
In the second step, simple averaging of the density at the two neighbouring cell
centres is typically done to calculate the density at the cell faces (Croce et al.,
2010). The two-step technique can lead to small scale oscillations of the free
surface, while for other types of flows like open-channel flows this phenomenon
is not observed. To overcome this drawback, a modified single step approach is
used for computing density at the cell face with smoothed Heaviside function:

ρi+ 1
2

= ρ1H
(
φi+ 1

2

)
+ ρ2

(
1−H

(
φi+ 1

2

))
, (2.29)

The level set function at the cell face is calculated through averaging:

φi+ 1
2

=
1

2
(φi + φi+1) (2.30)

2.8.1 Reinitialization

As the simulation progresses, the interface moves and the signed distance property of
level set function might not be maintained. In further time steps, it has to be updated
without changing the zero level set location. This approach is called reintialization.
This is done after every time step in the present study. Reinitialization can be done
in two different ways: the partial differential equation (PDE) approach and the Fast
Marching Method (FMM). The present study uses PDE approach. This approach is
developed by Sussman et al. (1994).

∂φ

∂τ
+ S(φ)

(∣∣∣∣ ∂φ∂xj
∣∣∣∣− 1

)
= 0 (2.31)

where S(φ) is the smooth signed function by Peng et al. (1999)

S(φ) =
φ√

φ2 +
∣∣∣ ∂φ∂xj ∣∣∣2(∆x)2

(2.32)

Equation 2.43 is solved until the steady state is reached.

2.9 Immersed Boundary

The numerical model REEF3D uses a Cartesian grid in order to use higher order dis-
cretization schemes. But in the case of complex geometries, this approach is inflexible
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and it cannot represent the complex geometries in a defined domain. To overcome this
drawback, a ghost cell immersed boundary method (GCIBM) is used. (Berthelsen
and Faltinsen, 2008). In this approach, the values for the fictitious ghost cells are
computed across the boundary in the direction of the coordinate axis, as shown in
Figure 2.2.

Ghost Cell

Ghost Cell

Figure 2.2: Ghost Cell Immersed Boundary

In this way, boundary conditions are enforced implicitly. The original local directional
approach was a 2D application, but the present model employs an extended 3D ap-
proach. The local directional GCIBM is employed instead of the original GCIBM,
because the original GCIBM can be a problem at sharp corners as given by Tseng
and Ferziger (2003) and Mittal et al. (2008).

2.10 Parallelization

Parallelization means that computations are carried out using multiple processors
simultaneously. The main benefit of parallelization is the faster execution of the
numerical model. The easiest way to parallelize a code is to use a compiler that au-
tomatically detects the parallelism of the program and generates the parallel version
employing open MP. There are several ways to parallelize a program this way contain-
ing input/output operations but one of the most important challenges is to parallelize
loops because there the most CPU time is spent. In REEF3D, parallelization is done
by decomposing the domain into smaller parts, which communicate with each other
through ghost cells. This is easier to code as the numerical model already uses the
ghost cell approach. The Message Passing Interface (MPI) is used for the exchange
of value of ghost cell, as shown in the Figure 2.3. MPI is structured in a way that it
can be used on both shared memory and distributed memory architectures.
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Figure 2.3: Exchange of data between inter-processor ghost points
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Chapter 3

Numerical Wave Tank

For a CFD based study of the wave propagation and the hydrodynamics, a numerical
wave tank is used to simulate the waves. Numerical wave tank in the CFD study
has the same employability as the wave flume in the experiments. There has been
a significant development in past few years in the application field of the numerical
wave tank because of the increasing computational power of the computers. There
are various methods available, some of them are:

• RANS with VOF approach: The CFD open-source software OpenFOAM uses
this approach (Afshar, 2010). Spatial discretization is carried out using finite
volume approach. The free surface is calculated with a Volume-of-Fluid ap-
proach based on convection of the fraction function and interface compression.
The governing equations are solved on a collocated unstructured grid with a
second-order accuracy for the spatial and temporal discretization. Later, a
wave generation toolbox was developed for OpenFOAM with a new method for
wave generation and absorption in the wave tank (Jacobsen et al., 2011).

• RANS with the LSM method: In the present study, the RANS equations in
combination with the LSM is used. It uses domain discretization method for
implementation of wave tank and level set method for capturing the free sur-
face. High-order temporal and spatial discretization can be used for the level
set function, which avoid unphysical damping of the propagating water waves.
Staggered grid is used to solve the governing equations in order to ensure a
tight velcoity-pressure coupling. Kamath (2012) and Afzal (2013) have used
this approach before.

• Combination of the Potential Theory and RANS: The combination of both the
methods is a possible research area as reported by Clauss et al. (2005). It has
been reported that the use of potential theory with the method of finite elements
results in a fast and accurate solution, though RANS equations are preferred
for the simulation of wave-structure interactions.
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3.1 Relaxation Method

Typical inlet boundaries for free surface flows are of Dirichlet type, but because of
a moving free surface and changing flow directions, Dirichlet type wave generation
does not give good numerical waves. Thus, the relaxation method is used as the wave
generation and the dissipation boundary in the wave (Larsen and Dancy, 1983). Re-
laxation Zone is used for the wave generation with the typical size of one wavelength.
The values for the velocities and the free surface are ramped up from the computa-
tional values obtained from wave theory (Eq. 3.1). The generated waves are free from
any disturbances occurring at the interfaces. Also, the reflected waves which travel
back towards the inlet are absorbed with this method. A numerical beach is needed
at the end of a wave flume in order to dissipate waves and avoid reflections. In the
relaxation method, a gradual shift is made from the analytical to the computational
solution.

u(x̃)relaxed = Γ(x̃)uanalytical + (1− Γ(x̃))ucomputational

w(x̃)relaxed = Γ(x̃)wanalytical + (1− Γ(x̃))wcomputational

p(x̃)relaxed = Γ(x̃)panalytical + (1− Γ(x̃))pcomputational

φ(x̃)relaxed = Γ(x̃)φanalytical + (1− Γ(x̃))φcomputational

(3.1)

This way, the function Γ(x̃) changes gradually depending on the zone and thus trans-
forming the values from the analytical to the computational ones. The initially com-
putational values of the velocity and the free surface are transitioned from the ana-
lytical values, calculated from the linear wave theory. In the beach zone, the trans-
formation of the values again takes place from the computational to the analytical
values such that they become zero at the beach.

A rule of thumb as mentioned by Engsig-Karup (2006) is to extend the relaxation zone
over 1-2 times the wavelength of the wave being simulated. The present study uses
the relaxation functions being given by Jacobsen et al. (2012) for the wave generation
and the absorption, given by:

Γ(x̃) = 1− e(x̃3.5) − 1

e− 1
for x̃ ∈ [0; 1] (3.2)

x̃ is scaled to the length of the relaxation zone. In this method, the numerical wave
tank consists of two relaxation zones: at the inlet and the outlet, as shown in the
Figure 3.1. The Figure 3.1 also illustrates the shapes of the relaxation functions in
their respective zones. The wave generation zone for this study has the length of one
wavelength, the numerical beach extends over two wavelengths.

3.2 Wave Theories

Water waves are caused by the external forcing such as the wind, the gravity, the cy-
clone etc. The other field parameters like the water depth, the bottom slope also plays
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Wave Generation
Zone

Working
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Numerical Beach

Figure 3.1: Shapes of Relaxation Functions in different zones of NWT

a key role in the formation of the waves. Wind waves in the ocean are called ocean
surface waves. Wind waves have a certain amount of randomness: subsequent waves
differ in the height, the duration, and the shape with a limited predictability. They
can be described as a stochastic process, in combination with the physics governing
their generation, growth, propagation and decay, as well as governing the interdepen-
dence between the flow quantities such as: the water surface movements, the flow
velocities and the water pressure. There are various theories available explaining the
waves and their propagation.

3.2.1 Linear Wave Theory

Linear wave theory considers the two fundamental equations, the mass and the mo-
mentum balance equations. The linear wave theory gives a linearised description
of the propagation of gravity waves. The application of the linear wave theory is
rather limited due to the small amplitude assumption made in the governing equa-
tions. Other assumptions are inviscid, incompressible and irrotational flow. The
linear wave theory simplifies the kinematic and the dynamic boundary conditions
with the approximations respectively as shown in equation 2.51 and equation 2.52,
given as (Arntsen and Krogstad, 2000):

∂η(x, t)

∂t
= w(x, 0, t) (3.3)

∂Φ(x, 0, t)

∂t
+ gη(x, t) = 0 (3.4)

The linear wave theory defines, level set function, φ, the horizontal and vertical
particle velocities, u and w, respectively given as:

u(x, z, t)analytical =
πH

T

cosh [k (z + d)]

sinh (kd)
cosθ

w(x, z, t)analytical =
πH

T

sinh [k (z + d)]

sinh (kd)
sinθ

φ(x, z, t)analytical =
H

2
cosθ − z + d

(3.5)
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The wave number k and the wave phase θ are defined as follows:

k =
2π

L
θ = kx− ωt

(3.6)

where, H is the wave height, L the wavelength, T the wave period, ω the angular
wave frequency and z the vertical coordinate with the origin at the still water level.
In the numerical model, the pressure is not prescribed in the wave generation zone, so
as not to over-define the boundary conditions. At the numerical beach, the pressure
is always set to the hydrostatic values based on the water depth d, independent of
the wave input.

3.3 Irregular Waves

The study of irregular waves is of great practical interest, because of the waves found
in the nature. Regular waves are seldomly found in the field. Irregular waves can be
viewed as the superposition of a number of regular waves (wave components) with
the different frequencies and the amplitudes. Irregular waves can be of two types:
long-crested and short-crested. In long-crested waves, all the wave components are
in the same direction, they are also called uni-directional irregular waves. In short-
crested waves, the wave components are often multi-directional.

Analysis of the irregular waves is different from regular waves, as in an irregular wave
train, the wave heights and the wave periods are not uniform. In spite of the random
character, the short-term variations can be described in a statistical way by taking
the average parameters. It is seen that statistics can be considered stationary in time.
In order for the averages to be representative of the given sea state, the record should
be short enough to be statistically stationary, while at the same time. the record
should be long enough to get the reliable averages. In practice, one recording is done
for instance 20 minutes every three hours, then this record is representative for the
entire time period of the three hours. There are two ways to characterize a wave
record in terms of its short term statistics:

• Based on direct analysis of the time series and considering it as a sequence of
individual waves, each with their own wave height and wave period, also called
wave-by-wave analysis.

• Through a spectral analysis using the fact that the free surface can be seen as
a summation of an infinite number of linear waves with different hydrodynamic
parameters like the wave height, the time period, the direction etc.
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3.3.1 Direct analysis of the irregular waves

The mean and the standard deviation are important statistical parameters that can
be derived from the time series. For a wave-by-wave analysis the mean water level
should be subtracted from the record so as to have a purely oscillatory signal about
the mean. When the signal is demeaned, individual wave can be defined as waves with
wave heights equal to the difference in elevation between the crest and the trough.
The wave length and the wave period are the distance and the period respectively,
between two subsequent downward or upward zero-crossings.
The significant wave height is denoted as Hs or H1/3. The significant wave height is
defined as the average height of the highest one third of the waves.

H1/3 =
1

N/3

N/3∑
j=1

Hj (3.7)

where, Hj is the wave height of j-th wave and N is the total number of waves
It is called significant wave height because it approximately corresponds to the visual
estimates of observers at sea of a representative wave height. Another used parameter
is the root mean square wave height, which is obtained by taking the square root of
the mean of the wave heights squared:

Hrms =

√√√√ 1

N

N∑
i=1

H2
i (3.8)

It can also be related to the wave energy, as the wave energy is related to the wave
height squared. The mean of all the wave periods is called the mean-wave period or
zero-crossing wave period. It is given as:

T0 =
1

N

N∑
i=1

Ti (3.9)

Similar to the significant wave height, the significant wave period is defined as the
average wave period of the highest one-third of the waves. However, it has less
physical relevance because it is not related to visual estimates. It is given as:

T1/3 =
1

N/3

N/3∑
j=1

Tj (3.10)

3.3.2 Spectral analysis of the irregular waves

Spectral analysis is an alternative way of the statistical representation of the sea
state, it uses the fact that the surface elevation at a location can be unravelled into
the various sine waves with different frequencies. Fourier analysis can be carried out
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to determine the amplitude and phases (Tucker and Pitt, 2001). From the amplitudes
of the various components, the spectrum of the wave energy can be calculated. It can
be easily seen that for one harmonic component the variance is equal to a2

n/2. Then,
for the sum of the harmonic components, the variance is given by:

σ2 =
N∑
n=1

a2
n/2 (3.11)

The variance density spectrum gives the variance density per unit frequency interval
for each frequency and is constant for ∆f converges to zero:

lim
∆f→0

a2
n/2

∆f
= E(fn) (3.12)

The integral of the spectrum gives the total variance:∫ ∞
0

E(f)df = η̄2 = σ2 (3.13)

Thus, in the spectrum the variance density is the contribution of one component of
the total variance. The standard deviation, σ can be estimated from the area under
the spectrum. An important parameter defined in the spectral analysis is the peak
wave period, Tp which corresponds to the E(f)max.

The narrower the spectrum, the more regular the waves are. This means that spec-
trum has a short range of frequencies, while a broader spectrum indicates more ir-
regularity and a wider range of frequencies. Other characteristic parameters can be
expressed in terms of spectral moments:

mn =

∫ ∞
0

fnE(f)df for n = ....,-3,-2,-1,0,1,2,3.... (3.14)

m0 gives the area under the spectrum as evident from the above equation. Thus,
standard deviation,σ can be written as:

σ =
√
m0 (3.15)

The zero-crossing period can be determined from the spectral moments and is given
by:

T2 =

√
m0

m2

(3.16)

3.3.3 Rayleigh Distribution

The Rayleigh distribution relates the parameters determined by the wave-by-wave
analysis and the spectral analysis. As, the surface elevation can be considered as
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the sum of a large number of components with the random phases, a short term
distribution of the wave heights also known as the Rayleigh distribution is defined:

p(H) =
H

4σ2
e
H
8σ2 (3.17)

where, p(H) is the probability density function. It can be seen from the above equa-
tion, the probability that an individual wave heightH ′ exceeds a specified wave height,
H is given as:

p(H ′ > H) = 1− p(H ′ < H) = 1−
∫ H

0

P (H)dH = e
H
8σ2 (3.18)

Using the Rayleigh distribution, the significant wave height Hs is given as:

Hs = 4σ (3.19)

The probability of exceedance of the wave heights according to the Rayleigh distri-
bution can be written as:

p(H ′ > H) = e−2( H
Hs

)2 (3.20)

So, it can be stated that the short-term distribution of the wave heights in irregular
waves exhibit some characteristic relations which can be used for their analysis and
the data processing.

3.4 Irregular Wave Generation

In the numerical model REEF3D, irregular waves are generated using the fundamen-
tals of irregular waves as mentioned in the previous section. First-order irregular
waves are obtained by the simple super-positioning of the linear regular waves com-
ponents. The free surface, η is defined as:

η =
N∑
i=1

Aicosθi (3.21)

where, the amplitude of the each component,

Ai =
√

2Spm,i∆ωi (3.22)

where Si is the spectral density and θi is the phase of the each component

θi = kix− ωit+ ε (3.23)

where ε is a random number between 0 and 2π and ki is the wave number of a
component given by:

ki =
2π

λi
(3.24)
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where λi is the wavelength of a component.
Similarly, the horizontal velocity u and the vertical velocity w are defined as the sum
of the values for these parameters for the individual components in the irregular wave
train.

u =
N∑
i=1

Aiωi
cosh(ki(z + d))

sinh(kd)
cosθi (3.25)

w =
N∑
i=1

Aiωi
sinh(ki(z + d))

sinh(kd)
sinθi (3.26)

There are different kinds of spectra available in the literature for the analysis of
irregular waves. REEF3D employs the two most widely used spectra, the Pierson-
Moskowitz (PM) spectrum and the JONSWAP spectrum. The Pierson-Moskowitz
(PM) spectrum is used to describe the fully developed sea state for the irregular
waves. This spectrum is defined for the unidirectional seas in the North Atlantic
Ocean for fully developed local wind with an unlimited fetch, while the JONSWAP
spectrum is used to describe a partially developed sea state. The measured spectrum
in the sea can be approximated by the various semi-empirical forms, which correspond
to the locally generated waves, and the swell waves can be included as an additional
contribution to the low frequencies. The required significant wave height Hs, the peak
angular frequency ωp and the number of components N are given as input values to
the PM spectrum. The spectral density for each component is calculated as:

Spm,i(ω) =
5

16
∗H2

s ∗ ω4
p ∗ ω−5

i ∗ exp((
−5

4
) ∗ (

ωi
ωp

)−4) (3.27)

where ωp is the peak frequency of the spectrum and wi covers the range of frequencies
in the spectrum.

The JONSWAP spectrum is given as:

Sjs,i(ω) =
5

16
∗H2

s ∗ ω4
p ∗ ω−5

i ∗ exp((
−5

4
) ∗ (

ωi
ωp

)−4) ∗ exp(−(ω − ωp)2

2 ∗ σ2 ∗ ωp2 ) (3.28)

The frequency spectrum, Spm(ω) and Sjs(ω) gives the distribution of the wave energy
as a function of angular frequency ω.
σ = 0.07, when ω < ωp
σ = 0.09, when ω > ωp
The frequency interval, dw is given as:

dw =
ws − we
N

(3.29)

where, ws and we are the lower and the upper limits of the angular frequency range.
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3.5 Conversion of free surface elevation to spec-

trum

All the data obtained in the ocean with the help of wave buoys, experimental data
and even the numerical model give a measure of wave heights with a given time series.
For the spectral analysis of the obtained irregular waves time series, this data is first
converted into a spectrum. This is done by using the Fourier Transformation. There
are various kinds of Fourier Transformations available in literature (Tucker and Pitt,
2001)

• Finite Fourier Transformation refers to the Fourier transformation of a contin-
uous finite length of the record.

• Infinite Fourier Transformation deals with the integration notionally taken from
−∞ to ∞, but it is relevant with cases of a limited duration like transients.

• Discrete Fourier Transformation (DFT) is the finite Fourier transformation
adapted for the use of discretely sampled data, and is used to analyse the wave
data.

• Fast Fourier Transformation (FFT) is an algorithm for carrying out DFT. The
present study utilises the FFT for the analysis.

• Direct Fourier Transformation is used to specify that the Fourier transformation
is performed via time series, unlike Fourier transforming the autocorrelation
function, which used to be the standard procedure until FFT was invented.

3.5.1 Fast Fourier Transformation

The Fourier theorem states that a continuous variable, τ(t) measured over a finite
duration T , then in interval t = −T/2 to T/2, it may be represented as the sum of
number of the sinusoidal components, each with an integral number of waves in the
time T :

τ(t) =
a0

2
+
∞∑
n=1

(ancos(2πnt/T ) + (bnsin(2πnt/T )) (3.30)

where, n is an integer. In its digital form, it can be thought of transforming a set
of M numbers into another set of M numbers which carry the identical information.
The Fourier theorem further states that:

an =
2

T

∫ T/2

−T/2
τ(t)cos(2πnt/T )dt (3.31)

bn =
2

T

∫ T/2

−T/2
τ(t)sin(2πnt/T )dt (3.32)
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The set of values of an and bn is referred as the Fourier transform of τ(t). The stan-
dard procedures involves the calculation of all an and bn for a wave record using the
above equations. If the variable τ(t) is sampled at regular intervals ∆t, then the
value of n in the above equations becomes T

∆t
. The values of an and bn obtained are

generally different from those, when computed by the transformation of a continuous
variable. But, the difference is insignificant, if any components of τ(t) with the fre-
quencies above 1

2∆t
, also called Nyquist frequency have negligible amplitudes.

In terms of complex number, τ(t) can be written as:

τ(t) =
∞∑
−∞

Ane
iωnt (3.33)

where,

ωn =
2πnt

T
(3.34)

and,

A0 =
1

2a0

(3.35)

An =
1

2
(an − ibn) (3.36)

A−n =
1

2
(an + ibn) (3.37)

A−n is also represented as the complex conjugate A∗n of An. Here, the amplitude of
the nth complex component is |An|, while the amplitude of the nth real component
is
√
a2
n + b2

n = 2|An| = 2
√
AnA∗n. The spectral density S(f) is obtained by summing

the variances of all the Fourier components within the chosen spectral resolution, ∆f
:

S(f)∆f = 2
∑
∆f

AnA
∗
n (3.38)

where, the sum is taken over the components in the frequency interval ∆f with n
positive only.

Sea actually consists of a continuous spectrum of the waves. Thus, for the component
wavelength, whose frequency is not exactly the same as harmonic of T , most of the
energy goes to the nearest harmonics, but a proportion also goes to more distant
ones. This leaked energy can be significant in some cases. For example, to analyse
the records in 400 s sub-sections, the leakage is often serious, thus windowing is
required to avoid the leakage. When data is analysed in the lengths of 1000s or more,
the leakage is usually insignificant. The present study uses a Matlab code to carry
out the FFT for the spectra analysis. A Matlab predefined function pwelch is used for
the FFT of the free surface elevation data to spectrum. The value of the windowing
is defined in each case depending on the length of the data.
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Chapter 4

Validation for irregular waves in
the numerical wave tank

In this chapter, the numerical model is tested and validated for the generation and
the propagation of irregular waves. Then, the case of irregular wave propagation over
a bar is simulated. The numerical results are compared to the experimental data.

4.1 Setup of the Numerical Wave Tank

Simulations are carried out in a 2D numerical wave tank, 42 m long and 1 m high
with a water depth d of 0.5 m and a significant wave height, Hs = 0.02 m. The length
of the wave generation zone is 5 m and length of the numerical beach is 10 m. Wave
gauges are placed in the numerical wave tank for measuring the free surface elevations
at x = 5 m, 10 m, 15 m, 20 m and 25 m, respectively. The simulations are run for
the different grid sizes, the different peak wave periods, a different number of wave
components and the different lengths of simulation time to validate the numerical
model. This is done to test the numerical accuracy and convergence of the model.
The empty wave tank can be seen in the Figure 4.1

Beach

5.0 5.0 5.0

WG1

 Generation Zone

all dimensions are in m

42.0

5.0 5.0

Zone 1

Working Zone

Zone 2WG2 WG3 WG4 WG5

x

z

Figure 4.1: Setup of the Numerical Wave Tank
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4.1.1 Study with the different grid sizes

Simulations are carried out with grid sizes of dx = 0.05 m, 0.025 m and 0.01 m to study
the effect of the grid size on the generated wave spectrum at different locations in the
wave tank. The wave parameters chosen are: significant wave height Hs=0.02 m, peak
time period Tp =1.18 s, the number of waves N = 25. The numerical parameter, the
length of the simulation t is chosen to be 500 s. The numerical results from REEF3D
are compared with the theoretical PM spectrum. The Figure 4.2 shows the results
with a grid size, dx = 0.05 m. It illustrates that the numerical results for the wave
gauge at x = 5 m, match reasonably well with the theory. But, the numerical results
do not show a good agreement with the theoretical wave spectrum for the wave gauges
located at the farther locations int the NWT. For the wave gauges located at x =
15 m, 20 m and 25 m, the generated wave spectrum has more energy in the higher
frequency range, the possible reason is the numerical damping. The reason is that
the wave gauge at x = 5 m shows the incident spectrum and is located in the wave
generation zone, so the waves generated at this location have not yet propagated.
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Figure 4.2: Tp = 1.18 s, N = 25, Hs = 0.02 m, dx = 0.05 m

The wavelength corresponding to the peak frequency, fp = 0.85 Hz is 1.99 m for all
the wave gauge locations because the location of the peak of spectrum is not affected
by the wave gauge location. However, the value of the peak slightly changes for every
wave gauge location. The frequency range on both sides of the fp corresponding to
Sp/3 is 0.55 Hz to 1.28 Hz for the wave gauge at location, x = 5 m. This frequency
range becomes 0.55 Hz to 1.31 Hz for the wave gauge at location, x = 15 m. For,
the the wave gauge at location, x = 20 m , the value of the Sp is also higher, thus
frequency range corresponding to Sp/3 is 0.58 Hz to 1.38 Hz. And, at the wave gauge
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at x= 25 m, the frequency range is 0.55 Hz to 1.38 Hz. This clearly shows that
spectrum gets wider as the wave propagates through the NWT. The match between
the numerical and the theoretical spectrum in the wave generation zone, at x = 5 m
proves that the numerical model generates irregular waves of a good quality even for
the coarser grids. The number of the cells available per wave length is 40 in this case.

The Figure 4.3 shows the results for the grid size, dx = 0.025 m. A good agreement
between the numerical and the theoretical results for the incident wave spectrum at
the wave gauge located at x = 5 m shows a good wave generation by the numerical
model. As, the wave propagates, it is clearly seen that more wave energy is distributed
to the higher frequency range = 1.2 Hz to 2.3 Hz as compared to the theoretical
spectrum. The frequency range corresponding to Sp/3 is 0.55 Hz to 1.38 Hz for the
wave gauge at location, x = 15 m. The value of the peak is also slightly higher than
the theoretical value for this wave gauge location. For the wave gauges located at x =
20 m and x = 25 m, the frequency range is 0.55 Hz to 1.37 Hz and 0.55 Hz to 1.42 Hz
respectively. The values of the frequency range corresponding to Sp/3 clearly show
that the spectrum gets wider as the wave propagates. However, the match between
both the spectra is not acceptable for the farther locations of the wave gauges in the
NWT. The number of cells available per wave length is 80 in this case.
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Figure 4.3: Tp=1.18 s, N = 25, Hs =0.02 m, dx = 0.025 m

The Figure 4.4 shows the results for the fine grid, dx =0.01. The numerical results
match well with the theoretical spectra for all the wave gauges. The numerical results
give a high quality spectrum for the wave gauges located in the working zone of the
numerical tank. The frequency range corresponding to Sp/3 is 0.55 Hz to 1.28 Hz for
the incident wave gauge at location, x = 5 m and at location, x = 15 m . The value of
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the peak is maintained and is agreeable with the theoretical spectrum. For the wave
gauges located at x = 20 m and x = 25 m, the frequency range is the same = 0.55
Hz to 1.28 Hz. The values of the frequency range corresponding to Sp/3 for the wave
gauges located at the farther locations in the NWT is very close to the wave gauges
located in the vicinity of the wave generation zone. It is clearly observed that the
numerical results show a good agreement with the theoretical spectrum. The number
of cells available per wavelength in this case is 199.
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Figure 4.4: Tp = 1.18 s, N = 25, Hs= 0.02 m, dx = 0.01 m

The Figures shown above depict that for the coarse grid results, at dx = 0.05 m and
0.025 m, as the wave propagates, the numerical spectrum deviates from the theoretical
spectrum. This deviation increases, in a way that it is least for the wave gauge located
in the wave generation zone and maximum for the wave gauge located at the end of
the working zone of the numerical wave tank. However, it should be noted that the
peak of the spectrum is still maintained in each of the case. For the fine grid case,
the sufficient number of grid points per wavelength are available to give the good
results for all the wave gauge locations. Thus, a grid size dx = 0.01 m is chosen for
the further calculations.

4.1.2 Effect of number of waves

In this subsection of the chapter, the effect of number of waves, N on the irregular
wave generation is tested. Other parameters such as the grid size dx = 0.01 m, the
significant wave height Hs = 0.02 m, the peak time period Tp = 1.18 s, the length
of simulation time = 500 s are kept constant. Simulations are carried out by varying
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the number of linear wave components N = 25 and 100 as shown in the Figures 4.5
and 4.6 respectively.
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Figure 4.5: Tp = 1.18 s, dx = 0.01 m, Hs = 0.02 m, N = 25
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Figure 4.6: Tp = 1.18 s, dx = 0.01 m, Hs = 0.02 m, N = 100

As mentioned before, the irregular waves are generated as a superimposition of linear
wave components, thus the generated waves are short-crested. The Figure 4.5 for N
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= 25, shows a reasonable agreement with a slight amount of the spurious energy in
the higher frequency range, from 1.5 Hz to 2.5 Hz. The Figure 4.6 for N = 100 shows
that a slight amount of spurious energy in the higher frequency range is still present,
though a bit lesser than for N = 25. Thus, it can be inferred that on increasing the
number of wave components, the generated spectra shows a better agreement with the
theoretical spectrum but the improvement in the numerical results is not significant.
It is also noted that the energy contained in the spectrum for both the cases is same,
and the peak of the spectrum is about the same. Thus, it can be concluded that the
number of wave components N does not play a significant role in the simulations.

4.1.3 Generation of different peak periods

In this section, the numerical model is tested for different values of the peak wave
period. Other parameters such as grid size dx = 0.01 m, significant wave height Hs

= 0.02 m, number of waves N= 25, length of the simulation time = 500 s are kept
constant. The simulations are run for peak periods Tp = 2.50 s, 2.00 s, 1.18 s and
0.80 s. The free surface elevation for the wave generation zone with the time series
for the wave gauge at x = 5 m for Tp = 2.50 s, 2.00 s, 1.18 s and 0.80 s is seen in the
Figure 4.7.
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Figure 4.7: dx = 0.01 m, Hs = 0.02 m, N = 25

It is observed from the Figure 4.7 that the spreading of waves becomes less as Tp
decreases. This is proven by the fact that as expected for a higher value of the peak
wave period, the surface elevation is dominated by the longer waves, while for a lower
value of the peak period, the surface elevation is dominated by the shorter waves.
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When the value of Tp decreases, more irregularity and peaks are also observed. The
Figures 4.8, 4.9 and 4.10 show the spectrum for the different peak periods. It is
observed from the Figures that the results with a higher peak period have a relatively
narrower spectrum and the peak also has a higher value. As the peak wave period
becomes lower, the spectrum becomes broader and the value of the peak becomes
less. This may be attributed to the fact that the total energy, which is given by the
area under the curve, remains same.
It is also seen that for the higher peak periods, Tp = 2.50 s, 2.00 s and 1.18 s, the
numerical results are in a good agreement with the theoretical results. However, the
numerical results do not show a good agreement with the theoretical spectrum in
Figure 4.11 for Tp = 0.80 s. The numerical results show multiple peaks and do not
form the shape of spectrum as per shown by the theoretical spectrum. This is because
the waves are relatively short in this case and they need a higher grid resolution for
a good representation. This means that for the case with Tp = 0.80 s, the number of
grid points available per wave length are not sufficient. It can also be observed from
the Figures that the numerical results for the higher peak wave periods do not differ
significantly. Further testing is continued with a peak wave period Tp =1.18 s.
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Figure 4.8: N = 25, dx = 0.01 m, Hs = 0.02 m, Tp = 2.5 s

Figures 4.12 and 4.13 show a scaled up free surface elevation with horizontal velocity
contours for generated irregular waves of Tp = 2.5 s and Tp = 1.18 s. It is seen from
Figure 4.12 that the longer waves dominate the free surface elevation for a higher
value of Tp = 2.5 s, whereas Figure 4.13 for a lower value of Tp = 1.18 s shows
that the free surface elevation is dominated by shorter waves. This is because for
Tp= 2.5 s the wave spectrum is dominated by longer wave periods and thus longer
wavelengths appear in the numerical wave tank. For a lower value of Tp = 1.18 s, the
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spectrum consists of shorter wave periods and hence the free surface in the wave tank
is composed of the correspondingly shorter wavelengths, giving it the appearance of
a short-crested wave field.
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Figure 4.9: N = 25, dx = 0.01 m, Hs = 0.02 m, Tp = 2.0 s
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Figure 4.10: N = 25, dx = 0.01 m, Hs = 0.02 m, Tp = 1.18 s
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Figure 4.11: N = 25, dx = 0.01 m, Hs = 0.02 m, Tp = 0.8 s

Figure 4.12: Scaled up free surface elevation with horizontal velocity contours in
NWT for N = 25, dx = 0.01 m, Hs = 0.02 m, Tp = 2.5 s

Figure 4.13: Scaled up free surface elevation with horizontal velocity contours in
NWT for N = 25, dx = 0.01 m, Hs = 0.02 m, Tp = 1.18 s

4.1.4 Effect of length of simulation time

This section of paper studies the effect of the length of simulation time on the numer-
ical results. The other parameters such as the grid size dx = 0.01 m, the significant
wave height Hs = 0.02 m, the number of waves N= 25 and the peak wave period =
1.18 s are kept constant. The simulations are run for a duration of of 60 s, 120 s, 240
s, 500 s, 1000 s and 3600 s. It is observed that the results with the lower durations
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do not agree well with the theoretical results. It is seen from the Figure 4.14 that the
higher frequencies are under represented as the wave propagates through the wave
tank. This is because with a shorter duration of the simulation there are not a signif-
icant number of waves being evolved. It takes some time for the waves to evolve fully
and propagate. Also, the spurious peaks can be clearly observed in the spectrum as
the wave propagates.
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Figure 4.14: N = 25, Tp = 1.18 s, dx = 0.01 m, Hs = 0.02 m, Simulation time = 60 s

Figure 4.15 shows the results for the simulation duration = 120 s. It is clearly ob-
served that for the incident spectrum for the wave gauge at x = 5 m, results are
significantly better than the previous case. This depicts that with a higher duration
of the numerical simulation, the incident wave spectrum is in a better agreement with
the theory. Also for the wave gauge at x = 15 m, which is the first wave gauge in the
working zone of the numerical tank, the numerical spectrum still under represents the
higher frequency range waves from 1.1 Hz to 2.0 Hz. Some spurious peaks are also
observed for the wave gauges at the farther locations in the NWT. The Figure 4.16
shows that for a simulation duration = 240 s, the results for the wave gauge at x = 5
m and 15 m are a good match with the theoretical results. But, for the wave gauges
at x = 20 m, for the frequency range of 1.15 Hz to 1.45 Hz and for the wave gauge
at x = 25 m, for the frequency range of 0.60 Hz to 1.00 Hz, the numerical spectrum
does not agree well with the theory.
Figure 4.17 shows the results for a duration time of simulation = 500 s. It is clearly
observed that the incident wave spectrum for the wave gauge at x = 5 m, matches
perfectly with the theoretical wave spectrum. For the wave gauge locations in the
wave tank, the results agree well with the theoretical predicted results for all of them.
There are no spurious peaks observed and the wave propagate undamped through

39



Numerical
Theory

S(
f) 

(m
2 /H

z)

0

2

4×10−5

f (HZ)
0 1 2

(a) Wave Gauge at x = 5 m

Numerical
Theory

S(
f) 

(m
2 /H

z)

0

2

4×10−5

f (HZ)
0 1 2

(b) Wave Gauge at x = 15 m

Numerical
Theory

S(
f) 

(m
2 /H

z)

0

2

4×10−5

f (HZ)
0 1 2

(c) Wave Gauge at x = 20 m

Numerical
Theory

S(
f) 

(m
2 /H

z)
0

2

4×10−5

f (HZ)
0 1 2

(d) Wave Gauge at x = 25 m

Figure 4.15: N = 25, Tp = 1.18 s, dx = 0.01 m, Hs = 0.02 m, Simulation time = 120
s
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Figure 4.16: N = 25, Tp = 1.18 s, dx = 0.01 m, Hs = 0.02 m, Simulation time = 240
s

the wave tank and the waves in all frequencies are represented properly. The Figures
4.18 and 4.19 show the results for a duration of 1000 s and 3600 s, the quality of
results is improved but the improvement is not significant.
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Figure 4.17: N = 25, Tp = 1.18 s, dx = 0.01 m, Hs = 0.02 m, Simulation time = 500
s
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Figure 4.18: N = 25, Tp = 1.18 s, dx = 0.01 m, Hs = 0.02 m, Simulation time =
1000 s

The comparison between the Figures shows that for a lesser simulation duration
= 60 s, 120 s and 240 s, the numerical spectrum does not represent the waves in
a higher frequency range well for the wave gauges located at the farther locations
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Figure 4.19: N = 25, Tp = 1.18 s, dx = 0.01 m, Hs = 0.02 m, Simulation time =
3600 s

in the NWT. On comparing the Figures 4.14, 4.15 and 4.16 it is clearly observed
that the wave spectra for the farther wave gauge locations shows spurious peaks and
under representation of the higher frequency waves which start disappearing when
the simulation duration increases. Figure 4.17 shows that for a simulation duration
= 500 s, spurious peaks and under representation disappears to an acceptable extent.
However, results for the simulation with the duration = 3600 s are the best, but it
should be kept in mind that this is computationally expensive. Here it is more of a
trade-off between accuracy and computational time. So, a simulation of duration =
500 s is considered to be sufficient to obtain a good representation.

4.2 Irregular wave propagation over a submerged

bar

This section of the chapter is an application of the study in the previous section.
After the verification of the irregular wave generation, this section deals with the
study of irregular wave hydrodynamics when they interact with a submerged bar. To
study their behaviour, the results from the numerical model are compared with the
experiments by Beji and Battjes (1993).
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4.2.1 Experimental Setup

In the experimental setup by Beji and Battjes (1993), the length of the wave flume
is 37.70 m, the width is 0.8 m and the height is 0.75 m. The still water level over the
horizontal bottom is set to 0.4 m. A piston type wave maker is used for generating
irregular waves. A submerged trapezoidal bar with a weather side slope of 1:20 and
2 m horizontal crest followed by a 1:10 lee side slope is constructed at a distance of
6 m from the wave board. A beach with a weather side slope of 1:25 is used and
its function is to act as wave absorber. Eight wave gauges are installed along the
length of the flume in the experimental setup to measure the surface elevation. The
JONSWAP spectrum is used for the irregular wave generation.

4.2.2 Numerical Setup

A 2D numerical wave tank is used to simulate the experiment described above and the
numerical results are compared with the experimental data. The relaxation method as
mentioned in chapter 3 is used to generate and to absorb the waves in the numerical
wave tank. Similar to the experiments, irregular waves are used in the numerical
model and the JONSWAP spectra is used for the analysis. The numerical setup is
illustrated in the Figure 4.20.
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Figure 4.20: Numerical setup with the wave gauge positions for a submerged bar in
the numerical wave tank

Two cases are tested, case 1 with a significant wave height Hs = 0.022 m and case 2
is with a significant wave height Hs = 0.05 m. Peak period Tp = 2.5 s is used in both
the cases. Numerical results are compared with the experimental results for case 1
for testing. A grid size dx=0.01 m, simulation duration t= 500 s, peak time period
Tp= 2.5 s are used for simulations for both cases.

43



4.2.3 Case 1: Non-breaking Irregular Waves

This subsection deals with the study of case 1. Here, a significant wave height, Hs =
0.022 m is used, the rest all parameters being kept same.

The Figure 4.21 show the results for the different waves gauges. The Figure 4.21a
illustrates that for the first wave gauge before the bar, the incident wave spectrum
is narrow and the wave energy is concentrated in the lower frequencies between = 0
Hz to 1.3 Hz. For the second wave gauge shown in the Figure 4.21b, the shoaling
is expected due to the decrease of the water depth, which results in an increase of
wave energy. Also, it is observed that the wave spectrum becomes slightly wider as
compared to the incident wave spectrum and the frequency range for the wave energy
distribution becomes 0 Hz to 1.9 Hz. Figures 4.21c and 4.21d show the wave spectrum
for the wave gauges located over the horizontal crest. It is observed that the wave
spectrum tends to become wider and the wave energy spreads over a wider range of
the frequency between 0 Hz to 2.8 Hz. However, the major portion of the wave energy
is still concentrated in the lower frequency range from 0 Hz to 1 Hz. The peak value
of the spectrum is reduced, as the total energy should remain the same. And, the
Figure 4.21e shows the result for the wave gauge located on the downslope of bar. It
is observed that now energy is more concentrated in the higher frequencies from 0.8
Hz to 1.6 Hz unlike the incident wave spectrum. This is evident from the fact that
area under curve for the higher frequencies is significantly more than the area under
curve for the lower frequencies. Some secondary peaks can also be observed for this
location of the wave gauge for both the experimental and numerical results.
However, it is clearly seen that the numerical results for all the wave gauges are
in good agreement with the experimental results. The numerical model is able to
simulate all the hydrodynamic phenomena as in the experiment.

4.2.4 Case 2: Breaking Irregular Waves

In this subsection the significant wave height, Hs = 0.05 m is chosen and the rest
of the numerical and hydrodynamic parameters are kept the same. The numerical
results for case 2 for the different wave gauges are shown in the Figure 4.22 below.
Wave breaking is observed in case 2, as seen from the Figure 4.23. The Figure 4.22a
shows the incident wave spectrum for the wave gauge at x = 6 m, the wave energy
is limited to lower frequency range from 0 Hz to 1.3 Hz. The Figure 4.22b shows the
wave spectrum for the wave gauge at x = 11 m, which is located on the weather side
slope of the bar. It is seen that wave energy spreads over a wider frequency range
between 0 Hz to 2.8 Hz and some secondary peaks are observed. The Figure 4.22c and
Figure 4.22d show that the amount of energy being distributed to the higher frequen-
cies, between 0.8 Hz to 2.8 Hz increases gradually. A significant difference between
the values of the peaks can be seen in the Figure 4.22d and Figure 4.22e. Due to the
breaking some energy is dissipated, while the spectrum is also significantly wider as
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(a) Wave Gauge at x = 6 m (b) Wave Gauge at x = 11 m

(c) Wave Gauge at x = 12 m (d) Wave Gauge at x = 13 m

(e) Wave Gauge at x = 16 m

Figure 4.21: Tp = 2.5 s, dx = 0.01 m, Hs = 0.022 m, Simulation time = 500 s

compared to the incident spectrum with a more amount of energy being distributed
to the higher frequencies between 1 Hz to 2.3 Hz.

Since, the wave energy is directly related to the wave height, the peak of the spectrum
is higher in the case 2 as compared to the case 1. For the incident wave spectrum,
all the wave energy is limited to the lower frequencies similar to case 1. As the waves
propagate over the bar, the spectrum becomes wider and energy gets distributed to a
wider range of frequencies similar to case 1. It should be noted that in this case some
small secondary peaks are observed unlike case 1 for the wave gauge at the crest of
the bar.

Figure 4.23 show the wave propagation over the bar. Figure 4.23a shows the wave over
the weather side slope of the bar. Incident waves generated in the wave generation
zone propagate over the weather side slope, where their wave heights tend to increase
due to a decreasing water depth, this phenomena is called as the shoaling. Figure
4.23b shows the wave over the crest of the bar, where the waves have already shoaled
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Figure 4.22: Tp = 2.5 s, dx = 0.01 m, Hs = 0.05 m, Simulation time = 500 s

and they tend to have a breaker tongue on this part. The wave crest becomes unstable
and starts breaking when the particle velocity exceeds the velocity of the wave crest.
The breaking condition corresponds to an angle of 120 degrees (Bosboom and M.J.F.,
2011). The breaker point, the point where the wave height suddenly decreases because
the largest wave in the wave field starts breaking is achieved here. It is clearly depicted
in the Figure 4.23b. The Figure 4.23c shows that the wave breaking has already taken
place and energy is already been dissipated. Figure 4.23d shows the dissipated wave
after the breaking.
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(a) Wave over the upslope of bar tending to shoal

(b) Wave over the flat crest of bar with a breaker tongue

(c) Wave over the flat crest of bar just after breaking

(d) Wave propagation after energy dissipation has taken place during breaking

Figure 4.23: Tp = 2.5 s, dx = 0.01 m, Hs = 0.05 m, Simulation time = 500 s
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Chapter 5

Wave forces on a horizontal
cylinder

5.1 Different kinds of the wave forces on the struc-

tures

This chapter deals with the behaviour of irregular wave forces on a submerged hori-
zontal cylinder. The wave forces experienced by the structure depends on the various
parameters like the type of the structure, the type of the waves, the type of flow, etc.
Then, there are various dimensionless parameters which determine the type of flow
like the Reynolds number, the Strouhal number and the Keulegan-Carpenter number.
In this study, the last parameter is the most important one.
The Keulegan-Carpenter number (KC), gives an indication of the flow type when the
flow is oscillatory depending on the amplitude of flow velocity Um, the time period
Tand the diameter D, as shown below:

KC =
UmT

D
(5.1)

The other parameter is the Strouhal Number S0. This is taken into account when
phenomena like the flow separation and the vortex formation are occuring. It takes
into account the shedding frequency f0, the diameter D and the flow velocity U .

S0 =
f0D

U
(5.2)

When the structure is in an undisturbed wave field, the force exerted by the fluid on
the structure is computed by the integration of the pressure around it. This force
is called the Froude-Krylov Force fFK . This is defined for the fluid density ρ, the
cylinder diameter D and the flow acceleration u̇

fFK = ρ

(
πD2

4

)
u̇ (5.3)
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Another force exerted on the cylinder in the wave field is called the form drag force,
this force is an analogy to the frictional force. A structure perpendicular to the flow
experiences the frictional force often termed as the form drag force fd, expressed in
terms of per unit length usually as:

fd =
1

2
ρCdDu|u| (5.4)

where, Cd is the drag coefficient, D is the cylinder diameter and u is the flow velocity

5.1.1 Morison Formula

In the cases involving the flow separation, the vortex shedding, forces on the cylinder
becomes even more complex. Apart from the flow field it also depends on the flow
history of the flow. In these conditions the Morison equation is used to calculate the
force f . The Morison Equation is given as:

f =
1

4
CmπD

2ρu̇+
1

2
CdρDu|u| (5.5)

where, Cm is the inertia coefficient and u̇ is the flow acceleration. The forces men-
tioned in the above equation gives the force per unit length.

5.2 Force Calculation in REEF3D

In REEF3D (Alagan et al., 2015), the forces are calculated by integrating the pressure
around the cylinder. With the help of the numerical model, the surface is accurately
determined and then pressure is calculated around it. The surface normal vectors
are produced first, and the sum is then integrated over the surface for calculating the
force. It can be expressed as:

F =

∫
Γ

(−np+ n.τ)dΓ (5.6)

where, p represents pressure vector and τ is the stress tensor

5.3 Numerical wave tank setup

The numerical force calculated from REEF3D and the experimental force results are
compared to test and to validate REEF3D for the wave forces on a horizontal cylinder.
The numerical simulations are carried out with the same parameters as done in the
experiment by Chaplin and Subbiah (1997). A fully submerged horizontal circular
cylinder of diameter = 0.21 m fully is considered. The depth of numerical wave tank
is 5 m. The cylinder is located 1.75 m under the still water level. The total length of
the numerical wave tank is 190 m. The length of the wave generation zone is 38 m
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and the beach is 76 m long. The experimental test is done for a cylinder of diameter
= 0.21 m.
The numerical wave tank is tested and validated for the diameter of 0.21 m by com-
paring the numerical force spectrum with the experimental force spectrum. Tests are
done with irregular waves with a significant wave height Hs = 1.5 m and a peak time
period Tp = 5.9 s. The corresponding KC number is 11.12. A grid size dx = 0.05 m
is chosen for the numerical simulations. The simulation duration is chosen to be 500
s. The numerical wave tank setup is shown in the Figure 5.1 below:
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Figure 5.1: The Numerical Wave Tank setup of a horizontal cylinder

5.4 Validation with regular waves

Simulations are also carried out for the regular waves. The numerical wave forces
are compared with the experimental wave forces (Chaplin and Subbiah, 1997). The
regular wave tests are done with the waves of wave height, H = 1.08 m and time
period, T = 3.5 s. The other parameters are kept same as the case with irregular waves
and they are: cylinder diameter, D = 0.21 m, grid size, dx = 0.05 m. The simulations
are run for a duration = 500 s. The free surface elevations for the wave gauges
WG3 and WG4, which are located just before and after the cylinder respectively, are
compared in order to study the behaviour of the regular waves during their interaction
with a structure. Figure 5.2 shows the comparison for both:
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Figure 5.2: Free surface elevation before and after the cylinder for the regular waves
at WG3 and WG4 respectively, for D = 0.21 m, dx = 0.05 m, H = 1.08 m, T = 3.5
s, Simulation time = 500 s

It is observed from the Figure 5.2 that the regularity and the shape of the waves is
maintained before and after the interaction. However, the WG4 shows slightly higher
peaks as compared to WG3. This might be due to the possible shoaling. Figure 5.3
presents the wave spectra for the regular waves before and after the wave-cylinder
interaction. Bell’s shaped curve is observed for the regular wave spectrum unlike the
irregular waves. The spectrum for WG3 shows a peak value = 0.42 m2/Hz at the
frequency = 0.29 Hz, while the spectrum for WG4 shows a peak value = 0.46 m2/Hz
at the frequency = 0.29 Hz. Both spectra are smooth and symmetric. However, it
should be noted that the wave spectrum for WG4 is slightly narrower as compared to
WG3. After the hydrodynamic study for the wave-cylinder interaction, a wave force
study is also performed in order to understand the behaviour of the wave forces on a
horizontal submerged cylinder.
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Figure 5.3: Wave spectra before and after the cylinder at WG3 and WG4 respectively,
for D = 0.21 m, dx = 0.05 m, H = 1.08 m, T = 3.5 s, Simulation time = 500 s

51



The Figure 5.4 shows the comparison between numerical and experimental wave
forces:
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Figure 5.4: Comparison between experimental and numerical results for regular waves
with D = 0.5 m, dx = 0.05 m, H = 1.08 m, T = 3.5 s

It can be observed from the Figure 5.4 that the numerical and the experimental re-
sults are in a good agreement. However, the negative force peaks for the experimental
results have a slightly higher absolute value than the numerical results. The numer-
ical results show a uniform force pattern with the time, which is confirmed by the
experimental results. The average value for the numerical force for the positive half
is 43 N/m, while this value for the experimental force is 41.4 N/m. Thus, the two
values are very close. However, in the negative half of the wave force plot, numerical
peaks have an average absolute value of 48 N/m, while for experimental results this
value is 58 N/m. The wave force behaviour is exactly simulated by the numerical
model as shown by the experimental observations. Thus, REEF3D can be used as a
good tool to simulate the wave forces for a horizontal cylinder.

5.5 Irregular Waves

5.5.1 Validation with the experiment and grid convergence
tests

The JONSWAP spectrum is used for the wave generation. The numerical model
and the experiment measure the force with time series. For the spectral analysis,
the force-time series measurements are converted into force spectrum, the spectral
analysis is done using the technique explained in chapter 3 by employing FFT. The
numerical model is validated for the force results by comparing the numerical results
with the experimental results for a cylinder diameter,D = 0.21 m. The numerical
simulations are done for the three different grid sizes, dx = 0.25 m, 0.10 m and 0.05
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m. The Figure 5.5 shows the comparison of the numerical results for the different
grid sizes with the experimental results.
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Figure 5.5: Grid convergence in comparison with experimental results for D = 0.21
m, Tp = 5.9 s, Hs = 1.5 m, KC number = 11.12, Simulation time = 500 s

It is illustrated from the Figure 5.5 that the numerical results with a grid size dx
= 0.05 m are in a good agreement with the experimental results. The results with
a grid size dx = 0.25 m show the peak value at the frequency fp = 0.14 Hz. The
frequency range corresponding to Fp/3 is 0 Hz to 0.38 Hz. The results with a grid
size, dx = 0.10 m show that the peak of the spectrum is at frequency fp = 0.24 Hz.
The spectrum is wider, proven by the frequency range corresponding to Fp/3 which
is 0 Hz to 0.65 Hz. The results with grid size dx = 0.05 m show that the peak of the
numerical force spectrum matches well with the experimental peak of the spectrum
at fp = 0.18 Hz. At the higher frequencies, a similar behaviour is shown by both
spectra. Thus, it can be clearly inferred from the Figure 5.5 that the results with
a coarser grid sizes do not give a good results. The peak shown by the numerical
results for coarser grid sizes dx = 0.1 m and dx = 0.25 m do not match with the
experimental peaks. Also, the shape of the spectrum for grid size dx = 0.25 m is
different than the shape of the experimental spectrum. The results with grid size dx
= 0.05 m are in a very good agreement with experimental wave force results.

The free surface elevation with time is shown in the Figure 5.6 for the wave gauges
WG3 and WG4, which are located before and after the cylinder, respectively. It is
clearly observed that the free surface elevation has slightly higher peaks for the WG4
located just after the cylinder. It can also be seen that the spread of the waves and
shape of the waves remains unchanged after their interaction with the cylinder.
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Figure 5.6: Free surface elevation before and after the cylinder at WG3 and WG4
respectively, for D = 0.21 m, dx = 0.05 m, Hs = 1.5 m, Tp = 5.9 s, KC number =
11.12, Simulation time = 500 s

Figure 5.7 presents the wave spectra just before and after the wave-cylinder interac-
tion.
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Figure 5.7: Wave spectra before and after the cylinder at WG3 and WG4 respectively,
for D = 0.21 m, dx = 0.05 m, Hs = 1.5 m, Tp = 5.9 s, KC number = 11.12, Simulation
time = 500 s

It is inferred from Figure 5.7 that the wave spectrum for the WG3, which is located
just before the cylinder, shows a peak value of 0.81 m2/Hz at the frequency fp = 0.17
Hz. WG3. It is located just after the cylinder and shows a peak value of 0.93 m2/Hz
at the frequency fp = 0.17 Hz. The spectrum peak for the WG4 has a higher value
than the spectrum peak for WG3. The locations of the peaks remains unchanged,
spectra in the both cases show a peak value at 0.17 Hz. Also, the shape and spread
of the wave spectra remain the same. This illustrates that no distortion of the wave
spectrum takes place in this case as it propagates over the cylinder. For both cases,
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the wave energy is limited between the frequency range from 0 Hz to 0.5 Hz. This
also further states the fact that the spread of the waves remains the same before and
after their interaction with the cylinder. This might be due to the fact that since the
cylinder is submerged, slight shoaling of the waves takes place due to the overtopping.

5.5.2 Testing with different KC numbers

As inferred from above section that the numerical model gives a good match with
the experimental wave force results for the irregular waves for a horizontal submerged
cylinder. Numerical simulations are done for KC numbers = 5.02 and 15.02. The
peak wave period, Tp is varied to 3.2 s and 7.5 s, respectively in order to vary the KC
number, keeping the diameter of cylinder, D and significant wave height Hs constant.
The force spectrum for all the KC numbers is compared in the Figure 5.8 for the
cylinder diameter D = 0.21 m.
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Figure 5.8: Numerical results with the different KC numbers, D = 0.21 m, dx = 0.05
m, Hs = 1.5 m, Simulation time = 500 s

It is observed that the value of the peak of the force spectrum is higher with a higher
KC number. It signifies that waves with a higher value of peak time period, Tp exert
more force on a submerged horizontal cylinder. The force spectrum for the longer
waves with Tp = 7.5 s with a KC number = 15.02 has the peak value, Fp at frequency
fp = 0.13 Hz. The shape of the spectrum is not symmetric. The frequency range
corresponding to Fp/3 is 0 Hz to 0.41 Hz. It can be observed that the spectrum
attains its peak sharply and then it decays gradually as compared to the beginning.
Thus, it can be inferred that for the lower frequency range between the frequency
range of 0 Hz to 0.1 Hz, the force spectrum rises sharply and for the higher frequency
range between 0.1 Hz to 0.8 Hz the spectrum decays gradually. Also, it is more con-
centrated towards the higher frequency range. The force spectrum for the waves with
a peak time period, Tp = 5.9 s, with a KC number = 11.12, has a peak value at
frequency, fp = 0.18 Hz. The frequency range corresponding to Fp/3 is 0 Hz to 0.44
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Hz. It is observed that the force spectrum rises sharply in the lower frequency range
from 0 Hz to 0.14 Hz and then decays smoothly in the higher frequency range from
0.14 Hz to 0.8 Hz with a more concentration of values towards the higher frequency
side. The spectrum for the waves with peak time period, Tp = 3.2 s with a KC
number = 5.02 peaks at the frequency fp = 0.31 Hz. The initial rise of the spectrum
in the frequency range 0 Hz to 0.07 Hz is sharp, while the spectrum rises smoothly
in the range from 0.07 Hz to 0.31 Hz and then decays in the range of 0.31 Hz to 0.8
Hz. The comparison between the three spectra shows that the shape of the spectrum
is maintained in all the cases. The spectrum with a lower value of KC number is
relatively wider and more percentage of the force spectrum values are concentrated to
the higher frequency side as compared to the spectrum with the higher KC numbers.

(a) Numerical wave tank coloured with velocity for the irregular waves with a horizontal
submerged cylinder for the time step = 650 s

(b) Zoomed view of the numerical wave tank around cylinder for the time step = 650 s

(c) Zoomed view of the numerical wave tank around cylinder for the time step = 682 s

Figure 5.9: Tp = 5.9 s, dx = 0.05 m, Hs = 1.5 m, Simulation time = 500 s

The Figure 5.9 illustrates the interaction of waves with the horizontal cylinder for
the waves with peak time period, Tp = 5.9 s, with a KC number = 11.12. Figure
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5.9a shows the numerical wave tank coloured with velocity. The irregular free surface
of the numerical wave tank is shown. The horizontal submerged cylinder can also
be seen in the Figure. Since the diameter of the cylinder is very small as compared
to the size of wave tank, a zoomed view of hydrodynamics around cylinder is shown
in the Figure 5.9b. It is observed in the Figure 5.9c that just after the interaction
with the cylinder, the wave height has increased due to the overtopping. This is also
in agreement with Figure 5.7 where the wave spectrum observed for WG4 which is
located just after the cylinder shows a higher peak than WG3 which is located just
before the cylinder. Also, some little flow contraction can be observed around the
cylinder.

Figure 5.10a demonstrates the wave interaction with the horizontal cylinder for the
waves with peak time period Tp = 3.2 s, with a KC number = 5.02. It is evinced
from the free surface of the numerical wave tank that it is dominated by the shorter
waves. The horizontal submerged cylinder can also be observed in the wave tank. A
zoomed view around the cylinder can be seen in the Figure 5.10b for the same time
step to study the hydrodynamics around the cylinder. The Figure 5.10c shows that
waves are shoaled a bit while overtopping over the cylinder. Thus, the wave spectrum
just after the wave gauge has a higher peak than just before the cylinder.
It is observed from the Figures 5.9 and 5.10 that the waves tend to shoal while
overtopping over the cylinder. A similar behaviour is observed for the peak periods.
However, it should be noted that the free surface for, Tp = 5.9 s is dominated by the
longer waves while the free surface for Tp = 3.2 s is dominated by the shorter waves.
A little amount of flow contraction round the cylinder is also observed in the both
cases.
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(a) Numerical wave tank coloured with velocity for the irregular waves with a horizontal
submerged cylinder for the time step = 650 s

(b) Zoomed view of the numerical wave tank around cylinder for the time step = 650 s

(c) Zoomed view of the numerical wave tank around cylinder for the time step = 682 s

Figure 5.10: Tp = 3.2 s, dx = 0.05 m, Hs = 1.5 m, Simulation time = 500 s
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Chapter 6

Wave forces on a vertical cylinder

The study of wave forces on a vertical cylinder is important because of its applications
in the offshore and the wind energy sector. Offshore structures, for example, an oil
rig with a vertical plies platform and a wind turbine with the vertical pile foundation
experience the irregular wave forces on the piles standing under the influence of
waves. This chapter of the present work, deals with the calculation of the irregular
wave forces on a single vertical cylinder using the numerical model REEF3D. The
numerical wave force results for a vertical cylinder are first validated for the regular
waves by comparing them with the Morison’s formula and later irregular wave forces
are computed for the same setup.

6.1 Numerical Wave Tank Setup

A vertical circular cylinder of diameter D = 0.5 m is placed in a 3D numerical wave
tank. The cylinder is placed at the centre of the wave tank. The total length of the
numerical wave tank is 18 m. The width and depth of the numerical wave tank is 5
m and 1 m respectively. The wave generation zone is 2.5 m long and the length of
the beach is 5 m. The setup of the numerical wave tank is illustrated in the Figure
6.1. Four wave gauges are placed along the length of the numerical wave tank at x =
3 m, 9.72 m, 10.26 m and 11.98 m, to study the hydrodynamics around the vertical
cylinder under the irregular waves. The numerical simulations are done for the waves
with the significant wave height Hs = 0.03 m. Tests are done with irregular waves
with three different peak periods Tp = 1.0 s, 1.2 s and 1.4 s. For the case with Tp =
1.2 s, simulations are carried out for three different grid size, dx = 0.1m, 0.05 m and
0.025 m. The simulation duration is chosen to be 500 s in each case.

59



B
ea

ch

W
av

e 
G

en
er

at
io

n
all dimensions are in m

 0
.5

10.5

0.5

2.5 5.0

Ve
rti

ca
l C

yl
in

de
r

z
x

WG1 WG2 WG3 WG4

3.0 6.72 0.27 0.27 1.725

Figure 6.1: Numerical Wave Tank Setup for Vertical Cylinder

6.2 Validation with the regular waves

The numerical simulations are also done for the regular waves to validate the numeri-
cal model. The numerical force results are compared with theoretical force calculated
using the Morison’s formula. The Morison’s formula computes the maximum and
minimum value of force as 141.12 N/m and -141.12 N/m respectively. Figure 6.2
shown below demonstrates a good agreement between the theory and the numerical
results. The force-time series results calculated using numerical model lie well within
the force envelope calculated by the Morison’s formula.

Theory Numerical

F(
N
/m
)

−200
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200

t(s)
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Figure 6.2: Comparison of numerical force with Morison’s force for a vertical cylinder
of D = 0.5 m for T=1.2s, dx = 0.025 m, H = 0.03 m

6.3 Irregular waves: grid convergence study

In this section of the chapter, a grid convergence study is performed. Simulations are
run for the different grid sizes, dx = 0.05 m, 0.1 m and 0.25 m. The other parameters,
the significant wave height Hs = 0.03 m, the peak time period Tp = 1.2 s, the cylinder
diameter D = 0.5 m are kept constant. The simulations are run for a duration of
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500 s. The Figure 6.3 shows the results for a force spectrum for the different grid
sizes. It is observed from the Figure that the results with a grid size, dx = 0.25 m
has two peaks, first peak has value, Fp1 = 1152 N2/Hz at the frequency, fp1 = 0.73
Hz. Second peak has the higher value, Fp2 = 1315 N2/Hz at the frequency, fp2 =
0.81 Hz. The frequency range corresponding to the higher Fp2/3 on both sides of the
spectrum is 0.66 Hz to 0.88 Hz. Results with a grid size, dx = 0.1 m has the first peak
with a value, Fp1 = 1410 N2/Hz at the frequency, fp1 = 0.73 Hz. Second peak has
the higher value, Fp2 = 1756 N2/Hz at the frequency, fp2 = 0.83 Hz. The frequency
range corresponding to the higher Fp2/3 on both sides of the spectrum is 0.62 Hz to
0.89 Hz. The force spectrum plot for a grid size, dx = 0.05 m shows the first peak
with value, Fp1 = 1297 N2/Hz at the frequency, fp1 = 0.73 Hz. Second peak,Fp2 has
a higher value of 1782 N2/Hz at the frequency, fp2 = 0.83 Hz. The frequency range
corresponding to Fp2/3 is 0.60 Hz to 0.91 Hz. The spectrum plot is very smooth for
this grid size.

dx = 0.25 m
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dx = 0.05 m
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Figure 6.3: Grid Convergence Study for a Vertical Submerged Cylinder with D = 0.5
m, Tp = 1.2 s, Hs = 0.03 m

It can be inferred from the Figure 6.3 that coarser grid sizes do not have sufficient
number of cells per wavelength to give good results, thus they show the wiggles and a
lower value of peak. For the grid size, dx = 0.05 m, the number of cells per wavelength
is between 50 to 70. The spectrum with finer grid is relatively broader as compared
to the coarse grid spectra. Also, for this grid size, the spectrum plot is very smooth.
It should be noted that, the spectra for all the grid sizes show two peaks. Their most
of the spectrum values are concentrated around the two peak values. However, the
decay of spectrum after the peak frequency is slightly more steeper than the rise of
spectrum before the peak frequency.

The Figure 6.4 demonstrates the irregular wave propagation around the vertical cylin-
der. Figure 6.4a shows the wave propagation at time step = 500 s, free surface is
coloured by the velocity contours.
It is clearly observed that the free surface of the wave tank consists of the waves with
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(a) Numerical wave tank with free surface coloured with velocity contours for the
irregular waves with a vertical cylinder for the time step = 500 s

(b) Zoomed view of the numerical wave tank around vertical cylinder with free
surface coloured with velocity contours for the irregular waves for the time step
= 500 s
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(a) Zoomed view of the numerical wave tank around vertical cylinder with free surface
coloured with velocity contours for the irregular waves for the time step = 870 s

(b) Zoomed view of the numerical wave tank around vertical cylinder with free surface
coloured with velocity contours for the irregular waves for the time step = 880 s

Figure 6.4: D = 0.5 m, Tp = 1.2 s, dx = 0.05 m, Hs = 0.03 m, Simulation time =
500 s
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different velocities. This is due to the fact the irregular waves are superposition of
regular waves of different time periods and wave heights. It can also be noted that at
the end of the wave tank, the numerical beach absorbs all the waves. Thus, no velocity
is observed towards the end of the wave tank. To understand the hydrodynamics
around the cylinder, Figure 6.4b shows a zoomed view of the section around the
cylinder for the same time step. The Figure 6.4c illustrates the hydrodynamics around
cylinder for the time step = 870 s. The waves with positive velocity interacts with the
cylinder and during this interaction slight concentration of the velocity takes place
around the cylinder. This is also true for the Figure 6.4d which shows the time step
= 880 s, when the waves with negative velocity interacts with the cylinder. Also,
it can be observed in the Figure 6.4d that for the next wave with positive velocity,
a concentration of the velocity occurs close to the cylinder before interacting with
it. This is due to the flow contraction which happens around the cylinder when the
waves pass around it. Also, an increase in turbulence takes place around the cylinder,
which contributes to the increase in velocity around the cylinder as well.

6.4 Different Peak Periods

This section deals with study of the wave forces for a vertical cylinder under irregular
waves with different peak periods. The simulations are performed for the peak wave
periods, Tp = 1.0 s, 1.2 s and 1.4 s. The other parameters, significant wave height,
Hs = 0.03 m, grid size, dx = 0.05 m, cylinder diameter, D = 0.5 m are kept constant.
The Figure 6.5 shown below presents the wave force spectra for different peak wave
periods. The wave force spectrum for a peak wave period, Tp = 1.4 s shows the
peak value, Fp 2860 N2/m at the frequency, fp = 0.72 Hz. The frequency range
corresponding to Fp/3 is 0.67 Hz to 0.78 Hz. Wave force spectrum plot for Tp = 1.2
s shows two peaks. The first peak, Fp1 is lower and has value of 1297 N2/Hz at the
frequency, fp1 = 0.73 Hz. Second peak,Fp2 has a higher value of 1782 N2/Hz at the
frequency, fp2 = 0.83 Hz. The frequency range corresponding to Fp2/3 is 0.60 Hz to
0.91 Hz. The waves with a peak period, Tp = 1.0 s are relatively shorter. The wave
force spectrum for this period shows a peak value, Fp of 1670 N2/m at the frequency,
fp = 1.00 Hz. The frequency range corresponding to Fp/3 is 0.89 Hz to 1.11 Hz.
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Figure 6.5: Study with different peak wave periods, Tp for a vertical cylinder with D
= 0.5 m, dx = 0.025 m, Hs = 0.03 m

The above figure clearly illustrates that the waves with a lower value of peak period,
Tp have a lower value of the peak in the force spectrum. This means that shorter
waves exert less force on the vertical submerged cylinder as compared to the longer
waves. The force spectrum for the waves with lower Tp = 1.0 s is relatively wider. It
should also be noted that waves with Tp = 1.0 s and 1.4 s show a single prominent
peak for the force spectrum, while waves with Tp = 1.2 s show two peaks. One peak
with a lower value and the second peak with a higher value.

6.5 Comparison between irregular wave force and

regular wave force

A comparison for the force spectrum is made between the regular and the irregular
waves for the different cases with the different peak wave periods. In the current study,
the numerical simulations are done for the two regular wave cases for a cylinder with
diameter D = 0.5 m. Case 1 is with a wave height H = 0.03 m and a time period
T = 1.2 s. The force spectrum for this case is compared with the force spectrum
of irregular wave case with a significant wave height Hs = 0.03 m and a peak wave
period Tp = 1.2 s. The Figure 6.6 shown below compares the wave spectrum for case
1 before and after the interaction with a vertical cylinder.
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Figure 6.6: Comparison of wave spectra before and after the interaction with vertical
cylinder of D = 0.5 m for T=1.2s, dx = 0.025 m, H = 0.03 m

It is observed that before the wave interaction with a vertical cylinder, the wave
spectrum is single peaked at 0.83 Hz and the wave spectrum is spread between the
frequency range of 0.42 Hz to 1.43 Hz. But after the interaction with cylinder, the
peak value of the wave spectrum is reduced and also it shows a secondary peak at
0.69 Hz before the peak frequency. Also, the wave spectrum is relatively narrower
limited to the frequency range between 0.42 Hz to 1.32 Hz. This is due to the fact
that dissipation of wave energy has occurred during the interaction.
Case 2 is with a wave height H = 0.03 m and time period T = 1.0 s. The force
spectrum for this case is compared with the force spectrum of the irregular wave case
with a significant wave height Hs = 0.03 m and a peak wave period Tp = 1.0 s. A
grid size dx = 0.05 m is chosen for the both cases. Simulations are run for a duration
of 500 s. The Figure 6.7 shown below shows a comparison between the regular wave
forces and the irregular wave forces for the both cases.
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(a) Irregular Waves with Tp = 1.2 s, Hs = 0.03 m
and Regular Waves with T = 1.2 s, H = 0.03 m
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(b) Irregular Waves with Tp = 1.0 s and Regular
Waves with T = 1.0 s

Figure 6.7: Comparison between Regular and Irregular Wave Force Spectra with D
= 0.5 m, dx = 0.05 m

The Figure 6.7 shows that the regular waves exert more force as compared to the
irregular waves. It is seen in Figure 6.7a that for the case with the values of Tp and
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T = 1.2 s, the regular wave force spectrum has a single peak at frequency fp = 0.83
Hz and the peak has value of 2350 N2/Hz. The shape of the spectrum is symmetric
and similar to the Bell’s curve. On the other hand, the irregular wave force has two
peaks. The first peak with value Fp1 = 1297 N2/Hz at the frequency fp1 = 0.73
Hz and the second peak Fp2 has a higher value of 1782 N2/Hz at the frequency fp2
= 0.83 Hz. The irregular wave force spectrum is asymmetric. It should be noted
that the second peak frequency fp2 for the irregular wave case matches with the peak
frequency fp of the regular wave case. The Figure 6.7b demonstrates that for the case
with the values of Tp and T = 1.0 s, the force spectrum with the regular waves show
a higher peak value as compared to the force spectrum under the irregular waves.
The force spectrum with regular waves is very smooth and shows a peak value Fp =
2570 N2/Hz at fp = 1.0 Hz. This spectrum is very smooth and free from any kind
of the secondary peaks. The irregular wave force spectrum on the other hand, shows
a lower peak value Fp = 1670 N2/m at the frequency fp = 1.0 Hz. The spectrum
for the irregular wave force is slightly wider as compared to the regular wave spectrum.

The Figure 6.7 clearly shows that for both the cases, the regular wave force spectrum
has a higher peak value. This might be due to fact that under the irregular waves, the
significant wave height Hs as mentioned in chapter 3, represents the highest of one-
third of the wave heights. So, remaining two-third components of the spectrum have
a wave height lower than the Hs = 0.03 m, thus in turn have a lower energy. While,
for the regular wave spectrum, all the waves are uniform with same wave height H =
0.03 m. All the waves in the regular wave spectrum have the same energy and tend
to exert a higher force. Thus, the regular wave force spectrum shows a higher peak
as compared to the irregular wave force spectrum.
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Chapter 7

Conclusions and outlook

7.1 Conclusions

In this study, the irregular wave generation using the numerical model REEF3D is
tested and validated. The testing for the empty wave tank is done in order to test
the irregular wave generation and the propagation. The influence of the different
numerical and hydrodynamic parameters on the results is studied. The parameters
varied are the grid size, the peak wave period, the number of linear wave components
and the length of simulation duration. Grid convergence test shows that for a coarser
grids dx = 0.05 m and dx = 0.025 m, the numerical wave spectrum does not show a
good match with the theory. The results with a grid size dx = 0.01 m show a very
good agreement with the theoretically predicted spectrum. Thus, the grid size of dx
= 0.01 m is chosen for the further testing.

Effects on the results by changing the number of linear wave components are also
studied. Tests are performed for the linear wave component, N = 25 and 100. But,
effects by changing the value of N do not seem to be significant. For the further test-
ing, a value of N = 25 is chosen. Testing is also done for the different peak periods
Tp = 2.50 s, 2.00 s, 1.18 s and 0.80 s. It is observed that for a higher value of the
peak period, the wave spectrum is relatively narrow and all the energy is limited to
the lower frequencies. As the peak wave period becomes less, the wave energy tends
to spread over a wider range of the frequencies, and value of the spectrum peak is
also reduced because of the widening of the spectrum. The numerical results show a
good match for the higher peak wave periods but for a peak wave period Tp = 0.80
s, the results do not match with theory. This is due to the fact that the waves are
shorter in this case and the grid points per wavelength are not sufficient for a good
simulation. Thus, a higher grid resolution is required for this peak wave period.
Tests with a different length of simulation time show that the length of simulation
affects the results as well. Tests with a shorter duration show that the waves need
some time to evolve fully and to give good results. The tests with the simulation du-
ration = 60 s, 120 s and 240 s show that the waves with higher frequencies are under
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represented for the wave gauges located at the farther locations in the working zone
of the flume. Simulation duration = 500 s gives good results for all the wave gauges.
Testing is also done for the simulation duration of 1000s and 3600 s, but the results
show that the improvement is not very significant and they are computational very
expensive. So, for a good optimization between the accuracy and the computational
time, a simulation duration of 500 s is chosen.
In the next section, the irregular wave propagation over a submerged bar is simulated.
The numerical results are compared with the experimental observations. Simulations
are performed for the two cases. One non-breaking wave case with a significant wave
height, Hs = 0.022 m and second breaking wave case with a significant wave height,
Hs = 0.05 m. Simulations with case 1 shows that the numerical model predicts accu-
rately the hydrodynamical phenomena as observed in the experiment. The incident
wave spectrum for the wave gauge located before the bar, shows that the spectrum
is narrow with a single peak and most of the energy is restricted to a lower frequency
range. Shoaling is expected as the wave propagates over the upslope due to decreasing
water depth, this is clearly shown in the results by both experimental and numerical
results. As, the wave propagates the wave spectra tends to spread over a wider range
of frequencies and for the wave gauge located on the downslope of the bar, results
show that the energy gets distributed more towards the higher frequencies than the
lower frequencies. Also, some secondary small peaks disappear, this is shown both
by the numerical and the experimental results. Simulations with case 2 show that
breaking occurs, due to a larger wave height as compared to the water depth. Rest
all hydrodynamic phenomena is same as in the case 1 apart from the breaking. Com-
parison of the last two wave gauges, which are located on the flat crest before the
breaking occurs and on the downslope, respectively that the dissipation of energy
takes place while breaking. This is shown by the lowering of the primary peak, also
more energy is distributed to the higher frequency range.

The next section of this study validates the numerical model for the wave force on
a horizontal submerged cylinder. The numerical model is first validated with the
regular waves. The numerical wave forces for regular waves are compared with the
experimental results for the same setup. Numerical model is tested for the cylinder
with a diameter, D = 0.21 m. The simulations are performed for the grid sizes, dx =
0.05 m. The numerical force results show a very good agreement with the experimen-
tal force results. In the next section, a study is made for the irregular wave force. The
simulations are performed for the grid sizes, dx = 0.25 m, 0.10 m and 0.05 m. The
results with a grid size, dx = 0.25 m show a peak value much before than observed by
the experiments and after that the spectrum decays very steeply. For the grid size, dx
= 0.10 m the numerical force spectrum has a lower peak value than the experimental
force spectrum. Also, the numerical spectrum is wider as compared to the experimen-
tal spectrum. Results with a grid size, dx = 0.05 m show a very good match with the
experimental results. Thus, a grid size, dx = 0.05 m is chosen for the further study.
Later, testing is done by varying the KC numbers by changing the value of the peak
wave period, Tp. Results show that the wave spectrum with a higher value of Tp have
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a higher peak value as compared to the wave spectrum with lower value of Tp. Also,
the spectrum is relatively narrow for higher value of Tp. Thus, it can be concluded
that the longer waves tend to exert a higher wave force on a horizontal submerged
cylinder. It can be inferred that the numerical model REEF3D is able to simulate the
similar behaviour as shown by the experiments for the horizontal submerged cylinder.

In the last section, a study is done on the behaviour of wave force on a vertical
cylinder of diameter, D = 0.5 m for both the regular and the irregular waves. Firstly,
the validation is done with the regular waves by comparing the regular wave forces
with the force calculated using the Morison formula. Next, the numerical simulations
are run for the irregular waves with the significant wave height, Hs = 0.03 m, the
peak wave period, Tp = 1.2 s. Tests are run for the three different grid sizes, dx =
0.25 m, 0.10 m and 0.05 m. A similar shape of the spectra is shown by all the cases.
Two peaks are observed in the wave force spectrum. First peak observed at lower
frequency has a lower value than the second peak observed at the higher frequency.
The simulation with the coarse grid, dx = 0.25 m show significantly lower peaks as
compared to the fine grid results. Results with the finer grids, dx = 0.10 m and 0.05
m tend to converge and show almost the similar peaks and a similar behaviour. A
grid size, dx = 0.05 m is chosen for the further study.
Numerical simulations are run for different values of peak period, Tp. Three values
of Tp =1.0 s, 1.2 s and 1.4 s are chosen. The results show that the waves with a
higher value of Tp tend to have a higher peak value of the force spectrum. It can be
inferred from this study that the longer waves will exert a higher value of force on a
vertical cylinder. A study is also done to compare the regular and the irregular wave
force spectrum keeping other parameters same. Two cases are studied, case 1 with
the regular waves of H = 0.03 m and T = 1.2 s, which is compared with the irregular
waves of Hs = 0.03 m and Tp = 1.2 s. Case 2 with the regular waves of H = 0.03
m and T = 1.0 s which is compared with the irregular waves of Hs = 0.03 m and Tp
= 1.2 s. The results show that for both the cases, the regular wave force spectrum
shows a higher peak value than the irregular wave force spectrum. The shape of the
regular wave force spectrum is symmetric and similar to the Bell’s curve. While, a
irregular wave spectrum is asymmetric.
The present study concludes that the numerical model REEF3D can be successfully
used to generate and study the irregular waves propagation, their interaction with
a structure, the wave force calculations on the horizontal and the vertical cylinder.
The numerical model is able to simulate the similar behaviour as observed in the
experiments. Thus, the REEF3D can be used as a good tool to make numerical
simulations for irregular waves.

7.2 Outlook

Above study shows that REEF3D has shown promising results for the wave interaction
with the structures. However, it can be concluded that REEF3D is an effective tool to
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make the first hand predictions, and is effective over the small spatial and the temporal
domains. The potential of the model can thus be further enhanced to study a more
complex wave-structure interaction for offshore wind turbine substructures, the more
finer grid simulations, the cases with more cylinders with the different arrangements.
And, in future with some more development, REEF3D can prove as a very efficient
tool to cater with the real life wave hydrodynamics problems.
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