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Aerodynamic Shape Design and Optimization:
Status and Trends

George S. Dulikravich*
Pennsylvania State University, University Park, Pennsylvania 16802

A limited number of aerodynamic shape design concepts have been surveyed and an attempt has been made
to classify them. Characteristics, both positive and negative, of the more prominent methods were outlined.
Future research is expected to concentrate on the use of Navier-Stokes equations and applications to three-
dimensional configurations. Interdisciplinary constrained optimization is expected to play a more prominent
role in the immediate future. Adjoint operator/control theory and its variations are the most promising concepts
for interdisciplinary aerodynamic shape design which involves a large number of variables. This theory is
expected to constitute the major development area in future research.

Introduction

I N the general field of aerodynamics, as with any field
theory, we are faced with two problems, analysis and de-
sign. In the case of analysis (direct problem) we are asked to
predict the details of a flowfield if the geometry of the object
is specified. In the case of a design (inverse or indirect) prob-
lem we are asked to predict the geometry of the object, which
must be compatible with the desired features of the flowfield.
Although the words *‘design” and “inverse” have the same
meaning in the present context, it has become customary to
use the expression “‘inverse design” instead. Thus, aero-
dynamic shape design involves the ability to determine the
geometry of an aerodynamic object that will satisfy the gov-
erning cquations for the flowfield and the desired boundary
conditions. For example, it is possible to determine the co-
ordinates of an airfoil if a surface pressure distribution is
specified. The resulting designs can be subject to certain spec-
ified constraints. Examples that include such constraints, may
entail finding acrodynamic configurations that are compatible
with entirely shock-free transonic flowficlds, or obtaining shapes
of objects that produce flowfields with minimum entropy gen-
eration, minimum noise generation, desired surface heat flux
distribution, etc.

Depending on the prescribed features of the flowfield, de-
sign (inverse) methodologies can be grouped into two general
categories, 1) surface flow design. and 2) flowfield design.
Surface flow design involves specifying certain flow param-
eters (pressure, Mach number, etc.) on the surface of the
flying object. then finding the shape that will generate these
surface conditions without regard for the rest of the flowfield.
Flowfield design approach, on the other hand, enforces cer-
tain global flowfield features (shock-free flow, minimal en-
tropy generation, etc.) at every point of the flowfield by de-
termining the shape that will satisfy these constraints locally.
A large number of methods for performing surface flow design
have been developed, whereas only a few methods for flow-
field design are known to exist.

Although numerous methods'-* for performing inverse de-
sign and optimization of acrodynamic configurations have been
devised, these methods are not routinely used by the engi-
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neering community. Since there are no comprehensive text-
books covering this field (except for a few publications in the
form of survey articles), these methods have not been taught
in engineering programs. Consequently, present and future
engineers are inadequately trained in this rapidly growing
field. In other words, future aerodynamicists are not taught
how to achieve the mathematically optimal aerodynamic con-
figurations most economically by means of inverse design and
optimization. Instead, cut-and-try design based on repetitive
analysis and intuition, is still widely practiced in the aerospace
industry. Needless to say, this classical inefficient approach
cannot survive the rigors of the competitive global world mar-
ket. This fact has been recognized by a few leading companies
where these methods are being developed and implemented
by a few highly specialized individuals. These efforts, although
resulting in actual hardware, have been mostly covered by a
veil of undue secrecy. This concise survey article is an attempt
to classify and briefly evaluate the most prominent aerody-
namic design methods available in the open literature.

One of the reasons for the slow acceptance of inverse design
and optimization methodologies in the field of aerodynamics
has been the notion that these methods are hard to compre-
hend and difficult to mathematically formulate. The fact is
that most of the design methods are as complex analytically
and numerically as their direct (analysis) counterparts. A typ-
ical inverse design computer code needs a single run to gen-
erate a new shape that duplicates the desired surface flow
parameters. An advanced constrained optimization code might
require computer time that is equivalent to a few dozen anal-
ysis runs in order to arrive at a mathematically optimal con-
figuration, rather than just an improved shape that the cut-
and-try approach would be able 10 provide.

Most of the methods that will be mentioned in this article
have been available for quite some time. It was the author's
deliberate decision to write this survey article by quoting only
the methods that have either found their acceptance in in-
dustry or that could be further perfected. Details of each
methodology could be found by reading the original papers
quoted in the concise list of references. The author would
like to apologize for not being able to quote all the publica-
tions available because of the page limitations.

Mathematical models used in aerodynamic shape design are
based on partial differential equations, integral equations, and
algebraic equations. Detailed reviews have been presented at
specialists meetings'~* in the form of survey articles.®-** For
example, Zhukovskii conformal mapping is actually a tech-
nique for designing a class of airfoil shapes with a specified
pressure distribution at the surface that corresponds to a flow
around a rotating circular cylinder. Here we are dealing with
a simple algebraic expression, but that expression is based on
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a general solution of an integral equation formulation (a point-
dipole and a point vortex) or a Laplace operator (a partial
differential equation) governing the flowfield. Thus, many
global conformal mappings can be viewed as very special
methods for designing certain simple shapes in a steady, planar,
irrotational, inviscid flowfield. Moreover, global conformal
mapping is the only example that comes to mind as a method
that combines the surface flow design concept and the flow-
field design concept. It guarantees that the resulting airfoil
shapes have the specified surface distribution of the flow pa-
rameters while maintaining the irrotationality of the flowfield.
In a more general situation, the arbitrary distribution of
the surface flow parameters, or an arbitrary field distribution
of the flow parameters, could result in shapes that are not
physically meaningful and cannot be manufactured. For ex-
ample, the lower surface and the upper surface of an airfoil
could either cross over (fish tail shapes) or never meet (open
trailing edge shapes), although these solutions are mathe-
matically acceptable. Obviously, the problem rests in choos-
ing an appropriate surface distribution of the flow parameters
that satisfies certain global flow field constraints.! Certain
constraints on the geometry are needed since the final aero-
dynamic design is often incompatible with heat transfer, struc-
tural dynamics. acoustics, or manufacturing requirements.
The main objection raised by designers when discussing
inverse (design) methodologies is that these methods create
strictly point-designs rather than range-designs. In other words,
an aerodynamic shape designed by using a surface flow design
method will have the desired characteristics only at the design
conditions.'® If the operating conditions (angle of attack, free
stream Mach number, etc.) vary from the design conditions,
then the configuration will have to be changed (Fig. 1) in
order to main the desired surface-flow parameters. For ex-
ample, when designing transonic shock-free shapes with any
of the surface-flow design methods, the resulting configura-
tion could have a mildly concave surface, locally covered by
the supersonic flow. As a result, a “hanging shock” or a
“loose-foot™ shock' will form even at the design conditions.
At off-design, the hanging shock reattaches itself to the airfoil
surface causing a rapid increase in drag due to boundary-layer
separation. Consequently, it is more appropriate to design an
almost shock-free shape, even at the design conditions. Such
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Fig. 1  Airfoil shapes'® (y-axis magnified five times) having identical
surface pressure distributions at different freestream Mach numbers.

shapes could have a weak family of shocks'® that do not in-
crease appreciably in strength at off-design conditions.

Surface Data Specification

Prevention of uncontrolled flow separation over a wider
range of angles-of-attack, Mach numbers, and Reynolds num-
bers, is the most important goal of an aerodynamic design.
We must now face the question, what is the best surface
pressure distribution? It might not be an appropriate question
in light of the fact that the surface pressure distribution alone
is not indicative of potentially hazardous flowfield features,
such as an unexpected hanging shock. A number of
researchers'’-' have entertained this issue using an approach
based on boundary-layer information. A different (aithough
somewhat speculative) fast method, for detection of flow
separation®™ from a given surface pressure distribution, uti-
lizes a concept of minimal kinetic energy rate from fracture
mechanics. All these methods leave the designer with an im-
portant feeling that he is still in command, although realizing
that all of his experience is inadequate when compared to a
true mathematically constrained optimization.

Among the large number of publications using various
surface flow designs, applications to single airfoils, -2
multicomponent airfoil,* cascades of airfoils,*-37 ducts, ro-
tors,*-*8 jsolated wings,**" wing-body combinations,5!:52
complete airplanes,™ nozzles,*-* inlets,"** and axisymmet-
ric bodies™ can be found. Some of these methods have re-
ceived wider acceptance than others. The general conclusion
is that methods that are more economical, versatile, robust,
and easier to comprehend and implement are more widely
used. There are even instances in which three-dimensionat
aircraft configuration® have been aerodynamically optimized
on personal computers.

Inverse Design Using Analysis Codes

This general approach to aerodynamic shape design is be-
coming quite popular since it requires only a simple master
code that can call any available flowfield analysis code as a
subroutine. Thus, as more sophisticated analysis codes be-
come available, they can be directly substituted in the master
code that computes corrections to the input geometry. The
surface motion is often modeled as an elastic membrane that
moves according to an instantaneous difference between the
specified and the computed local surface pressures.?2-* This
is quite effective in enforcing a relatively smooth convergence
of the surface geometry (Fig. 2). A more thorough study on
the stability of the surface motion model is necessary, since
the choice of coefficients in the model** can affect the con-
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Fig. 2 Example of the convergence history using a master code method*
and a surface panel analysis code; initial shape was a NACA0010
airfoil; and target pressure distribution was for a 15%-thick cambered
Zhukovski airfoil.
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An even more efficient method® is based on an equivalent
surface transpiration concept.

Stream Function-Based Methods

A very interesting concept, termed stream-function-as-a-
coordinate (SFC), is based on a transformed stream function
formulation where the vertical coordinate of each streamline
is treated as the unknown. Thus, the SFC formulation3¢-61.62
directly solves the unknown geometric coordinates that are
the coordinates of the streamlines (Fig. 3). A three-dimen-
sional version of the SFC formulation remains to be devel-
oped. A similar concept derived from the boundary element
integral method® gives a fully converged solution for an airfoil
design on a personal computer in 10-20 iterations. Another
method that is based on the interplay of two stream functions,
and the potential function in irrotational subsonic inviscid
flows,3”-3 is capable of generating fascinating configurations
of channels and three-dimensional ducts subject to a specified
surface pressure along the duct walls (Fig. 4).

Taylor Series Expansion Method

An extremely fast and simple (although approximate) method
of preliminary design can reportedly be used on a pocket
programmable calculator. The method is based on prescrib-
ing, e.g., a Mach number distribution along the midpassage
streamline, and then deducing values of the Mach number on
the top and bottom of the passage by expanding the prescribed
data in the vertical direction, using the Taylor series. With
more terms in the Taylor series, a larger gap-to-chord cascade
can be designed. Errors in this method rapidly increase to-

Fig. 3 SFC method* generates streamline shapes directly as its so-
lution; example of a turbomachinery cascade designed simultaneously
with a splitter blade in a single computer run.

W
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Fig. 4 Stream function—potential function inverse design method,>*
can generate complex realistic three-dimensional configurations.

method is equally applicable to a preliminary design of axial
and radial turbomachinery.*?

Three-Dimensional Formulations

Highly sophisticated computer codes have been developed
and successfully applied in the design of three-dimensional
coaxial nozzles** and turbomachinery blading.* The model
includes a complete set of the three-dimensional Euler equa-
tions of gas dynamics. Although complex, the method con-
verges quickly, since the geometry corrections are calculated
using information that propagates along the characteristic lines.
Several new methods**-* for quasi-three-dimensional and fully
three-dimensional turbomachinery design, using inviscid flow-
ficld formulations, are analytically novel and interesting. The
main drawback of these approaches is that the basic model
does not take into account either viscosity or turbulence.

The general concept of using a small master code to call
any available flowfield analysis code, as a subroutine in the
process of surface flow design, can be made to converge rel-
atively quickly if a suitable formulation is used to evaluate
and distribute the local geometry (Fig. 5). Recently, inverse
designs of isolated shock-free transonic wings have been re-
ported by using a full potential analysis code and a geometry
correction redistribution algorithm based on an integro-dif-
ferential formulation.*® A typical design process would re-
quire less than 10 flowfield analysis runs. Inverse designs of
wing-body combinations were successfully performed using
the surface transpiration concept and a small perturbation
transonic potential flow equation,™ full potential transonic
equation,’ and higher-order surface panel methods,’23 to-
gether with a gradient search optimization code.

Transonic Shock-Free Design

Probably the best known method for flowfield design is a
hodograph-based method®*-* for designing transonic, shock-
free shapes. Actually, the method is a combination of both
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Fig. 5 Inverse design of an entirely shock-free transonic transport
wing using a master code based on an integral method* requires only
10 flowfield analysis runs.
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surface flow design (the surface Mach number can be specified
on a point-by-point basis) and flowfield design formulations
(it can be guaranteed that no shocks occur in the flowfield).
Consequently, the method suffers from the problems previ-
ously mentioned (open trailing edges and fish-tail shapes) that
are associated with both general approaches to design. The
method was well publicized in the seventies and the resulting
software® found its way into industry. Nevertheless, methods
based on the hodograph transformation are not applicable to
general three-dimensional configurations. Since the hodo-
graph method is based on an elliptic continuation approach -
*7 it requires two real and two imaginary characteristics. Need-
less to say, it is a highly complicated method and the resulting
software is not easy to modify.

An alternative design method is known as the fictitious
gas**” method. This concept is based on the fact that shocks
can form only in supersonic flow, i.e., if the governing partial
differential equation is locally hyperbolic. Consequently, if
the conditions for possible shock formations are to be elim-
inated, the governing partial differential equations should never
be allowed to become hyperbolic. This can be ensured by
switching from an isentropic expression for density and local
speed of sound, to an appropriate analytical fictitious density
relation at every point in the field, and on the boundary where
the flow is likely to become supersonic. Computational results
are acceptable in the subsonic regions (where the isentropic
relations are used), but are not acceptable in the supersonic
regions (where the fictitious gas relations are used). The re-
sulting sonic line that separates the two regions, is compatible
with both the isentropic and fictitious gas relations. Hence,
the sonic line values of the stream function and the potential
function, can be used as initial data for integration of the
purely supersonic domain underneath the sonic line. We can
now use the isentropic relations in this region so that the
governing equations will be locally strictly hyperbolic. More-
over, the system becomes linear if transformed to a rheograph
plane® characterized by the Prandtl-Meyer function and the
local velocity vector angle. The new shape coordinates will
be determined from the condition that the stream function
should maintain a constant value at every point of the airfoil
surface. This method is fairly simple to comprehend and im-
plement in existing full potential codes. Nevertheless, the
fictitious gas method does not allow us the freedom to specify
surface values of flow parameters. It only guarantees that if
our choice for the fictitious gas density—Mach number re-
lation is not too restrictive, the supersonic bubble will become
shallow and stretched along the surface, that results in an
entirely shock-free flowfield. The method is suitable for rede-
signing existing airfoils,* ¢’ cascades of airfoils,*-™ quasi three-
dimensional rotors,”" and transonic wings’”* without having
to worry about surface crossover, fish-tail shapes and hanging
shocks.

Optimization Attempts

Due to the fact that aerodynamic shape design represents
only a part of the overall design of a flying vehicle, the need
for interdisciplinary optimization arises. Simultaneously, op-
timization algorithms are rapidly finding applicability in pure
aerodynamic design.’#%3-57.73-9! Presently, optimization algo-
rithms are often used to minimize the difference between the
specified and the computed surface flow data. It should be
pointed out that such use of an optimizer has nothing to do
with optimizing the aerodynamic shape. Noteworthy excep-
tions involve maximizing lift-to-drag ratio for isolated heli-
copter blade airfoils” and multicomponent airfoils,”® mini-
mizing the total pressure loss across the shock waves ir
supersonic inlets®? and around nonaxisymmetric hypersonic
vehicles,® minimizing the total pressure loss in an incom-
pressible viscous flow inside an S-shaped duct,* optimizing
airfoils over a range of operating conditions,* and minimizing
induced drag®%3% of an entire three-dimensional airplane
(Fig. 6). Recent publications®”-% expose interesting and po-

Fig. 6 Entire business jet configuration can be optimized* on a per-
sonal computer using surface transpiration concept and a panel method
a) before and b) after three optimization cycles. Notice improvements
in aerodynamic coefficients.

tentially promising sensitivity analysis formulations for eval-
uation and optimization at off-design conditions. Neverthe-
less, sensitivity analysis is a very costly process requiring a
large number of analysis runs. Single cycle optimization® is
therefore, welcome, since it allows for a stable iterative al-
gorithm where an optimizer is used on each updated config-
uration even before the flowfield has fully converged to the
new geometry. As a consequence, a typical airfoil design in-
volves an equivalent of 5-10 fully converged flowfield solu-
tions. A very readable and thorough comparative analysis of
optimization-based approaches® confirms that more econom-
ical approaches are possible with the gradient-based algo-
rithms. Besides a wide variety of the gradient-based optimi-
zation algonthms, it should be pointed out that truly remarkable
results were obtained using an evolution type algorithm? that
seems to be less sensitive to local minimums. Initial appli-
cations of neural networks to aerodynamic design are also
encouraging.®’

Adjoint Operator/Control Theory

Control theory has recently been applied to systems of par-
tial differential equations governing fluid flow.92-% In this
context, control theory can be thought of as a minimization
process performed in a continuous function space, that is
beneficial when optimizing a large number of variables. This
approach requires derivation of adjoint systems of partial dif-
ferential equations and their appropriate boundary condi-
tions. The adjoint operators must be separately derived for
each new system of flow governing equations. The method-
ology is explained in the articles mentioned in the list of
references which appear to be the mcst complete®>* and
readable®® texts on this subject to date. They also provide
convincing results (Figs. 7 and 8) for the design of nozzles
and ducts with maximum pressure rise and minimum total
pressure drop. These preliminary results dispel earlier res-
ervations that these formulations might not be computation-
ally efficient since they involve the solution of an additional
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Fig. 7 Two-dimensional nozzle designed using laminar incom-
pressible Navier-Stokes equations and adjoint operator/control
theory*’-**: iteration histories for a) the surface shear stress and b)
the nozzle geometry. Inlet-to-exit pressure rise was maximized while
minimizing total pressure loss.
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Fig. 8 Three-dimensional curved duct designed using Navier-Stokes
equations and adjoint operator/control theory™; initial duct had con-
stant radius; and inlet-to-exit pressure rise was maximized while min-
imizing total pressure loss.

set of adjoint equations and several more intertace equations.
Typically, the adjoint operator approach requires 5-15 anal-
ysis runs.

Conclusions

Realistic, aerodynamic shapes, can be designed using meth-
odologies from computational fluid dynamics and optimiza-
tion. Two basic categories of the inverse (design) formulation
are 1) surface flow design, and 2) flowfield design. A number
of methods, in both categories, including novel methods based
on flow control theory, have been discussed and critically
evaluated. Many issues remain unresolved. They include:
specification of a more appropriate set of design constraints,

DESIGN AND OPTIMIZATION

acceleration of iterative algorithms, minimization of artificial
dissipation, increased versatility and robustness of the design
methods, and direct use of existing and future flowfield anal-
ysis software.
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