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A Computational Geometry for the 
Blades and Internal Flow Channels 
of Centrifugal Compressors 

A new computational geometry for the blades and flow passages of centrifugal 
compressors is described and examples of its use in the design of industrial com­
pressors are given. The method makes use of Bernstein-Bezier polynomial patches 
to define the geometrical shape of the flow channels. This has the following main 
advantages: the surfaces are defined by analytic functions which allow systematic 
and controlled variation of the shape and give continuous derivatives up to any 
required order: and the parametric form of the equations allows the blade and 
channel coordinates to be very simply obtained at any number of points and in any 
suitable distribution for use in subsequent aerodynamic and stress calculations and 
for manufacture. The method is particularly suitable for incorporation into a 
computer-aided design procedure. 

Introduction 

The design of centrifugal compressor impellers usually 
assumes two distinct stages. A preliminary design, making use 
of one-dimensional flow analysis based on previous ex­
perience, is sketched out to specify the inlet and outlet blade 
angles and the "skeletal" dimensions (such as inlet and outlet 
diameters, axial length, and impeller tip outlet width). This is 
followed by a detailed design in which the complete blade and 
channel geometry is specified and then subsequently refined 
by means of successive aerodynamic and stress analyses. 

During the detailed design stage the designer repeatedly 
adjusts the shape of the blades and flow channels until he 
finds a suitable geometry that combines acceptable 
aerodynamic performance with low stress levels and is 
economic to manufacture. This process of continual 
refinement of the shape can be expensive, tedious, and time-
consuming, since at each stage the geometrical data for the 
necessary aerodynamic or stress analysis must be prepared. 
The task is greatly simplified when a simple flexible system of 
geometry definition for the components of a compressor is 
available. 

The definition of compressor geometry is especially 
complicated for industrial centrifugal compressors, where 
three different types of impeller are to be found (Fig. 1): 

• High flow coefficient impellers ($>0.1) with three-
dimensional twisted blade surfaces, axial inlet flow, and a 
radial leading edge (similar to modern supercharger impellers) 

• Intermediate flow coefficient impellers (0.1 >$>0.04) 

with three-dimensional twisted blade surfaces, radial inlet 
flow, and an inclined leading edge 

• Low flow coefficient impellers ($<0.04) with two-
dimensional curved blades, comprised of purely axial 
elements, radial inlet flow and an axial leading edge 

It is the purpose of this paper to describe a method of 
computational geometry that has proved extremely useful for 
the definition of component geometry in industrial cen­
trifugal compressors. The method can be used to specify each 
of the impeller types mentioned above and, in addition, is 
capable of defining the complete flow passage through the 
compressor. For example, the geometry of the hub and 
shroud contours, including inlet, diffusor, crossover channel 
and return channel, as well as all of the vaned cascades of the 
compressor, such as inlet guide vanes, diffusor vanes and 
return channel de-swirl vanes, can be defined using the 
present method. 

MAIN TYPES OF IMPELLER IN 
INDUSTRIAL CENTRIFUGAL COMPRESSORS 

4 * 0.005 - 0.05 
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Fig. 1 Sketch of main types of impeller in industrial centrifugal 
compressors 
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Fig. 2(a) Example of Bezier curve, degree 1 

Fig. 2(b) Example of Bezier curve, degree 2 

Geometry Definition Methods 

Several methods for the definition of the shape of impeller 
blades have been previously published. These are briefly 
reviewed below. 

An early choice of many designers for the definition of 
impeller geometry was conic sections (for example, circular 
arc, ellipse, etc.), for both the hub and shroud contours and 
the impeller blades. A general description of the blade surface 
geometry using conic sections is, for example, 

rd = ar2 + 2brz + cz2 + 2dr + 2ez +f (1) 

where the parameters a,b,c,d,e, and/determine the inlet and 
outlet angles and the blade curvature. Examples of elliptical 
bladed impellers which fall into this class are quoted by 
Moore [1] and by Eckardt [2]. An alternative procedure was 
suggested by Whitfield, Atkey, and Wallace [3]. This made 
use of Lame ovals of the general form 

IW+mr- (2) 

where <p is either r or d to define the blade surface shape. A 
more complex equation was suggested by Krain [4], who 
proposed the following formula to define the mean blade 
surface for "through flow" calculations 

d = (a + be-r+c(Tr/2-tan~[(r)). 

(1 + e tan " ' (z) +/tanh(z) + g sinh(z)) (3) 

All of these methods allow considerable freedom of shape 
through adjustment of the parameters a,b,c, etc., but are 
clearly unsuitable for a general method. 

An early general method was described by Jansen and 
Kirschner [5]. The blade shape was specified by straight-line 
elements from hub to shroud which were distributed from the 
inlet to the outlet of the impeller to provide a specified blade 
aerodynamic loading or a specified blade camber angle ((3) 
distribution. No equations, however, were developed for the 
blade surface. Smith and Merryweather [6] and Came [7] 
described a similar computer-aided design method in which 
the impeller blade is represented by a system of three-
dimensional analytic equations, following the method of 
Coons [8] for surface geometry definition. Fister and 
Eikelmann [9] described another method that was also based 
on the interpolation formulae of Coons [8]. 

These last two methods are quite similar to the procedure 
adopted here. The fundamental difference in the present 
work, however, ft that the interpolation formulae due to 
Bezier [10] are used. The methods of both Coons and Bezier 
fall into a new class of geometries that have been recently 
developed for numerical controlled machining and 
manufacturing. Both methods are given in some detail by 
Faux and Pratt [11]. The particularly elegant technique 
developed by Bezier has been adopted in the present work for 
the following reasons: 

• The definition of the geometry of any surface is relatively 
simple. 
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Fig. 3(a) Properties of Bezier curves, radius of curvature end point 

Fig. 3(b) Properties of Bezier curves, point of most influence 

• Both the flow passages and the blade surfaces can be 
defined by equations of the same type. 

• The shapes produced are general enough to be used in the 
design of new compressors and in approximation of the 
geometry of existing ones. 

• The defining equations are particularly suitable for 
incorporation into a computer-aided design (CAD) procedure 
for compressors. 

• The surfaces are defined by algebraic functions which 
allow systematic and controlled variation of the shape and 
which provide continuous derivatives up to any required 
degree. 

• The parametric form of the equations allows the coor­
dinate geometry of blades and flow passages to be very simply 
obtained at any number of points and in any suitable 
distribution for aerodynamic and stress calculations and for 
manufacture. 

A brief and simple description of the method follows. 

Bernstein-Bezier Surfaces 

Bezier Curves. A Bezier curve is a parametric represen­
tation of a space curve. The curve is specified by the coor­
dinates of a series of points in space of which only the first 
and last lie on the curve they define. The points are known as 
the polygon points of the curve, and the figure constructed by 
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connecting these polygon points with straight lines is known 
as the Bezier polygon of the curve. 

The simplest example is a Bezier curve of degree 1 which 
can be written as 

R=--(l-u)P0+uPl (4) 
where R is a vector of a point on the curve with coordinates 
(x,y,z), and P0 and Pl are vectors of the polygon points 0 and 
1 with coordinates (x0, y0, z0) and (xu yx, Z\), u is a 
parameter that is constrained to vary from 0 to 1 alongthe 
curve. Note that when u = 0, R = P0 and when u = 1, R = 
Pi. For values of u between 0 and 1, the vector R describes a 
straight line from point 0 to point 1, as shown in Fig. 2(a). 
The Bezier curve of degree 2 requires three polygon points to 
define it and can be written as follows 

R = (\-u)2P0+2u(l-u)Pl +u2P\ (5) 

An example is given in Fig. 2(b). It can be seen that the 
second polygon point, P{, does not lie on the curve, but that 
the tangents to the curve at the starting point (u = 0) and end 
point (w = 1) are in the direction of this point. 

The Bezier curve of degree 3 requires four polygon points to 
define it and can be written as follows 

R = (1 - u)3P0 + 3K(1 - u)2 Pt + 3w2(l - u)P2 + u3 P3 (6) 
From the form of these equations it can be seen that the 

Bezier curve is, in some sense, the weighted average of the 
polygon points defining the curve. The weighting functions 
are the Bernstein polynomials B£ (u) where 

B2(«)=( "k )«*(1 -«)""* (7) 

The general form of the Bezier polynomial of degree n is 
given by 

R = (l-u)"P0+n(\-u)"luPl + 

+ (" \uk(\-u)"~kPk+u"Pn 

n 

= E p**Uu) (8) 

Some important properties of Bezier curves are listed 
below, without proof: 

(a) Degree of polynomial. A polynomial of degree n is 
defined by n + 1 points in space. 

(b) Tangents at end points of curve. The tangent at the 
beginning (u — 0) of a Bezier polynomial is in the direction of 
the second polygon point. Similarly, at the end point (u = 1), 
the tangent is in the direction of the last but one point. This 
can be easily proved by differentiating equation (8) with 
respect to u and setting u = 0 or 1. 

(c) Second derivatives at end point. The second derivative 
of the curve at the end points depends only on the first three 
points P0, Px, and P2. The radius of curvature at the end 
point is given by the construction shown in Fig. 3(a). This 
simple construction can be used to ensure that a polynomial 
will have a certain radius of curvature at its ends. For 
example, if a curve is needed which has zero curvature at the 
end then the first three points must form a straight line (b - 0 
in Fig. 3(a)). 

(d) Points of most influence. If the point, Pk, of an nth 
degree Bezier polynomial is moved by a vector, a, then this 
movement has most influence at the point on the curve, where 
u = kin. The point of most influence moves by ap­
proximately a/3. This is demonstrated in Fig. 1{b). This 
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Fig. 4(a) Examples of Bezier surfaces, a cubic linear patch 
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Fig. 4(b) Examples of Bezier surfaces, a string of patches 

property can be used to produce controlled modifications to 
the shape of the curve. 

(e) Increasing the degree of a Bezier curve. It is usually 
possible to obtain a Bezier curve of low degree that gives 
approximately the required shape. Sometimes, however, it 
may be necessary to increase the degree of the curve in order 
to obtain more freedom of shape. The degree, n, of a curve 
can be increased in the first instance without changing the 
shape by following some elementary geometrical rules (see 
Forrest [12]. This enables the degree of a curve to be 
systematically increased until it can represent the appropriate 
shape. 

if) Derivative with respect to u. The following identities 
can be used to calculate the derivatives with respect to u 

du 
where 

[Buu)}=nmz\M-B'rlm 

B"_-j'(w) = 0 and Bn„~l{u) = 0 

(9) 

Bezier Surface. A simple three-dimensional curved surface 
can be defined by a series of straight lines joining points of 
constant, u, of two adjacent Bezier curves, as shown in Fig. 
4(a). A second parameter, v, can be introduced which varies 
from 0 to 1 as one proceeds along the straight lines between 
the two curves. Thus any point on this surface can be referred 
to by the parametric coordinates (t/,f). The three-dimensional 
surface (x,y,z) is mapped onto a two-dimensional plane (u,v) 
by the equations 

PATCH BOUNDARY 
POLYGON POINT 

Fig. 5 Definition of meridional channel by means of Bezier surfaces 

BLADE SURFACE DEFINITION 

O 1 1 3 4 S 6 , u 

Fig. 6 Definition of blade surfaces 

R(x,y,z) = R{u,v) 

£} l(\-v)P°k + (v)Pl}BUu) (10) 

where P°k are the vectors of the polygon points along the v = 0 
curve and the P[ are those along the v = 1 curve. 

In the present method, it is only possible to construct 
surfaces which are linear in the u-direction. Such surfaces are 
considered to be aerodynamically acceptable and clearly 
greatly simplify the manufacture of the surface. 

Bezier Patches. The segment of the surface shown in fig. 
4(o) is known as a cubic-linear patch as it is third degree in the 
w-direction and first degree in the y-direction. More com­
plicated surfaces can be obtaned by increasing the degree of 
the Bezier curves in the u-direction, or, alternatively by 
connecting several curved patches together. An example of a 
surface comprising three patches and its mapping onto the 
(u,v) plane is shown in Fig. 4(b). 
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The curves u = constant and v = constant can be mapped 
onto the surface to form a net, as shown in Fig. 4(b). Thus the 
parametric representation of the surface provides a simple 
method of referring to any point on the curved surface. 

Implementation of Bezier Patches to Describe 
Geometry of a Compressor 

The Meridional Channel (M). The meridional channel is 
defined by a string of Bezier patches in the x-z-plane, thus 
giving a plane surface that is a meridional section through the 
compressor. The mathematical rotation of this plane surface 
around the z-axis defines the internal flow channel of the 
compressor. The blades are defined separately, and there is no 
distinction between moving and stationary parts of the 
channel. 

A representation of a meridional channel defined in this 
way is shown in Fig. 5. The channel includes an inlet section, 
an impeller section, and a diffusor section. It comprises four 
patches and the polygon points of these patches are shown. 
The consecutive patches are of degree 1,4,4, and 1. The line v 
= 0 represents the hub side contour, and the line v = 1 
represents the shroud side contour. 

The meridional channel can be specified by expressly 
defining the polygon points themselves. This procedure is, 
however, rather inconvenient, and in the present method 
various subprograms are used to determine the polygon points 
from data that is more readily available to the designer. For 
example, the channel shown in Fig. 5 has been specified with 
the following data: 

(a) Radii of patch corner defining points 
(b) Axial spacing between patch corner defining points, 

that is inlet and outlet channel widths, axial length of inlet, 
and axial length of impeller section 

(c) Additional data to position the internal polygon points 
of each patch, in general expressed as fractions of the length 
of the sides of the polygon, so that the shape of the shape of 
the channel walls can be simply adjusted 

Various subprograms have been developed for different 
types of compressor channels. These subprograms are usually 
written to provide: 

(a) Continuity of derivatives across patch boundaries 
(b) Sufficient free parameters that the designer can readily 

specify the "skeletal" dimensions of the channel and easily 
change the shape of the curved portions of the channel 

The use of these subprograms allows the designer to specify 
the hub and shroud contours as one of a family of related 
shapes. 

Blade Surfaces (B, S and P). The method of this paper can 
be used to define all the vaned cascades of a compressor, that 
is, inlet guide vanes, impeller vanes, diffusor vanes and return 
channel deswirl vanes. For each vane three separate strings of 
patches are used to define three blade surfaces, as in the 
method of Smith and Merryweather [6]. 

The first surface, known as the blade camber surface (B), is 
the three-dimensional equivalent of the two-dimensional 
camber line used in the traditional aerofoil design methods. 
The other surfaces are the suction surface (S) and the pressure 
surface (P) of the vane. These are spaced equal distances on 
either side of the camber surface, as shown in Fig. 6. 

In the present method the three blade surfaces (B, S, and P) 
can be defined as single patches of high polynomial degree or 
as strings of patches of lower degree. Each surface must, 
however, have the same number of patches of the same 
degree, and the variation of the parameters («, v) on adjacent 
points must be the same. With this formulation only one 

coordinate value of the parametric variables (u, v) refers to 
equivalent points on these three surfaces. 

The most convenient method for determining the polygon 
points of the blade is by means of a subprogram which 
calculates the polygon points from data provided by the 
designer, such as blade camber angle (/3) and thickness (8) 
distributions. Various subprograms have been developed 
which, in general, utilize the following procedure: 

(a) A meridional channel (M) is defined within which the 
blade is to be specified. 

{b) The position of the blade within the channel M is 
defined by specifying four values of parameter u 
corresponding to the leading and trailing edge on the hub and 
shroud. 

(c) The distribution of camber line angle (/3) is specified as 
a function of the meridional distance (m) along the hub and 
shroud. The shape of the camber line along the hub and 
shroud is then calculated by integration along the meridional 
channel. 

*=\^dm (ID 

(d) The blade thickness distribution (5) is specified as a 
function of the meridional distance (m) along the hub and 
shroud. The suction and pressure surfaces are placed an equal 
distance either side of the camber line to give the required 
thickness distribution. 

(e) The blade shape along the hub and shroud contours is 
fully specified by the operations a, b, c, and d, outlined 
above, but the coordinates of the Bezier patches for this shape 
have yet to be found. The first step is to select a certain 
spacing of the patch boundary points along the hub and 
shroud contours. The patch boundaries can, for example, be 
spaced equidistant along the blade surface or equidistant 
along the projection of the blade surface onto the meridional 
channel. The choice of position for patch boundary points 
influences the final shape of the blade as it determines the 
orientation of the straight line elements from hub to shroud. 
Having selected the required number of patches and the 
required patch distribution along the blade, the polygon 
points at the junctions between the patches are then suitably 
interpolated. 

(/) It now remains to calculate the position of the internal 
polygon points within each patch, such that the shape 
produced is a close approximation to that specified by 
operations a, b, c, and d above. Experience has shown that 
sufficient accuracy is obtained if each patch is chosen to be of 
degree 3 in the u-direction, giving rise to cubic-linear patches 
that resemble the patch shown in Fig. 4(a). For each cubic-
linear patch there are four internal polygon points so that if 
the surface has n patches there are An points whose coor­
dinates must be determined. Conditions of continuity of slope 
and curvature across n-\ patch junctions provide 4(n-l) 
equations for the unknown points. The remaining four 
equations are obtained by the specification of the blade angles 
at the leading and trailing edges on the hub and shroud. This 
algebraic problem is exactly equivalent to fitting parametric 
cubic splines through the patch corner defining points on the 
hub and shroud, and is explained in detail in the Appendix. 

(g) In order to improve the aerodynamics of the blade a 
final modification to the end patches at the leading and 
trailing edges may be made in order to produce rounded 
shapes, much in the same way suggested by Smith and 
Merryweather [6]. 

This procedure produces blade shapes that are defined by 
means of a string of cubic-linear patches for each of the blade 
surfaces (B, S, and P). The cubic curves lie in streamwise 
direction, and the straight line elements lie roughly normal to 

292/Vol. 105, APRIL 1983 Transactions of the ASME 

Downloaded 20 Feb 2012 to 129.241.69.190. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



LOW FLOH COEFFICIENT IMPELLER 

MERIDIONAL CHAKMEl 
R 

HIGH FLOW COEFFICIENT IMPELLER 

"ESIDIONJL CHANNEL 

^ 
X 

, / it15ELL£« 

~~~>\""" 

\f\ 
z 

GFOHEI 

Y 

(a) 

INTERMEDIATE FLOW COEFFICIENT IMPELLER 

KERIDIONAL CH»M€L 

RETURN CHANNEL AND DE-SWIRL VANES 

(b) <<0 

Fig. 7 Examples of channels and blades defined by the present 
method (a) low flow coefficient impeller, (b) intermediate flow coef­
ficient impeller, (c) high flow coefficient impeller, (d) return channel and 
deswirl vanes 

the stream lines from hub to shroud. The generated blade 
shapes are restricted to having trapezoidal thickness 
distributions, i.e., constant taper along any line element 
between hub and shroud. The orientation of the straight line 
blade elements can be controlled to give rise to the following 
blade surfaces: 

(a) An arbitrary blade surface in which the elements have 
no particular preferred orientation, but lie roughly normal to 
the channel walls 

(b) An axial element blade surface in which all blade 
elements are straight lines in the axial directions 

Examples of Use 

Definition of Compressor Geometry. Impellers and blades 
of almost any geometrical form can be defined by this 
method. Some examples of impellers for high, intermediate 
and low flow coefficients are shown in Fig. 7(a), 1(b), and 
7(c), respectively. A further example of the flexibility, is 
shown in Fig. 1(d), which represents a return channel and 
deswirl vane. In each of these diagrams the patch boundaries 
are shown, and in Fig. 1(d) the channel polygon points are 
also given. Typical computer run times for these problems are 
of the order 1-3 s on an IBM 3033 computer, depending on 
the amount of output and the number of plots. 

Blade Sections. The use of analytic equations for the blade 
definition makes geometrical operations, such as rotation or 
intersection with a specified plane, relatively straightforward. 
An example is shown in Fig. 8, where cross sections of a blade 
with planes normal to the axis are delineated. In this example, 
the sections through the blade are very nearly radial lines, 
which produces low bending stresses at the blade root. If these 
lines were not radial, the designer might wish to modify the 
blade by introducing a rake angle at the trailing edge or by 
changing the blade angle distribution along the hub or 
shroud. 

Automatic Net Generation for Flow and Stress 
Calculations. The great advantage of using a parametric 
description for all of the surfaces is that the coordinates of 
points on the surface can then be very simply obtained by 
specifying the values of the parametric coordinates (u, v). By 

AXIAL CROSS-SECTIONS THROUGH A BLADE 

Z Y 

Fig. 8 Axial cross-sections through an impeller blade 

this means the geometric data of the channel walls and blade 
surfaces can be generated at any number of points and in any 
suitable distribution for subsequent aerodynamic and stress 
calculations or for manufacture. 

Any point on a Bezier surface can be referred to by its 
appropriate (u,v) coordinate. Normally, however, the 
coordinates of many points on the surface are required and it 
would be extremely tedious to have to specify all of the in­
dividual u, v coordinates. In the present method, this problem 
is solved by using supplementary parameters to set up an 
array of points in the u, v plane at which the geometrical 
details are to be calculated. An example is shown in Fig. 9, 
where the blade and channel parametric coordinates (u, v) are 
specified to set up a suitable grid for a streamline curvature 
"throughflow" calculation. A further example is given in Fig. 
10, where a grid for a three-dimensional stress calculation is 
generated. 

This aspect of the method has proved extremely useful in 
the computer-aided procedure, since the interface between the 
geometry definition and the subsequent aerodynamic or stress 
calculations can be made extremely general. The differing 
distributions of coordinate data needed by different flow and 
stress programs can be very simply obtained. The net 
generation method has shown itself to be extremely well 
adapted for flow calculations, as it automatically produces a 
grid of "body-fitted" coordinates. 

Standarization of Impellers. In the standarization of in­
dustrial centrifugal compressor, it is often the case that a 
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Fig. 9 Automatic net generation for streamline curvature flow 
calculation 
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Fig. 10 Automatic net generation for a finite element stress 
calculation 

particular blade shape is used in combination with different 
meridional channels in order to adapt the blade to different 
aerodynamic conditions. The original blade may be modified 
by removing (or adding) a section on the shroud side (shroud-
cut) or a section on the hub side (hub-cut). The present for­
mulation allows this standardization to be carried out in the 
following way: 

(a) The impeller blade surfaces (B, S, and P) are originally 
defined to lie within a meridional channel (M ')• 

(b) A new meridional channel (M) is then defined which 
may be narrower or wider than the original channel (M'). 

(c) The new flow channel between the blades is then 
redefined by the intersection of the new meridional surface 
(M) with the blade surfaces (B, S, and P). 

(d) The net of u, u-coordinates that refers to the blade 
surfaces (ub, vb) is then suitably modified so that the values 
are truly confined to that part of the blade within the flow 
channel. The use of algebraic equations makes the 
mathematics of the rotation and intersection relatively simple. 

Fig. 11 Use of Bezier surfaces in the standarization of impellers 

The definition of the blade surface is extrapolated linearly 
outside the range 0 < v < 1, if the new meridional channel 
(M) is wider than the blade in question. 

An example of this procedure is given in Fig. 11. 

Manufacture of Impellers. The use of equations to define 
the shape of impeller blades enables the coordinates required 
for manufacture to be easily generated. The impeller can then 
be machined by any conventional method. This method of 
geometry description is particularly well adapted for 
manufacture by a five-axis numerically controlled milling 
machine. The straight line generators of the blade surface 
focus approximately on a common point and are nearly 
normal to the hub wall and this allows the impeller to be flank 
milled on a numerically controlled machine. 

Concluding Remarks 

An extremely flexible computational geometry for the 
shape definition of various components in centrifugal 
compressors has been put forward. In addition to its use in the 
definition of impeller geometry, the method can be used to 
define the complete flow passages in a compressor. The 
method has been including in a computer-aided design system 
and offers the following advantages over earlier methods: 

• Blade and flow channels of almost any required shape 
can be designed. 

• The coordinate data for flow or stress calculations or for 
manufacture can be readily obtained. 

By using this method the designer is able to get a better 
"feel" for the geometry during the design process, he spends 
less time on mundane data preparation, and he has more 
freedom to make full use of his creativity to design a better 
machine. 
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A P P E N D I X 

In this appendix we illustrate some aspects of the algebra 
required to determine the polygon points of the blade surface 
Bezier patches. For the sake of clarity we describe only the 
equations for the .^-coordinates of the polygon points in 
detail. 

On both the hub and shroud of each blade surface (B, S, 
and P) we determine a set of n+ 1 patch corner defining points 
with x-coordinates, .*,, x2 . . . . xn + ]. A curve in space 
between these points is interpolated with a cubic parametric 
spline of the form 

x = aj(l-u)3+bj3u(l-u)2 + 

Cj 3w2(l -u) + dju3 (Al) 

where u varies from 0 to 1 along each curve between two 
adjacent defining points andy taken values from 1 to n for the 
n intervals between the points. If we now compare equation 
(Al) with the Bezier curve of degree 3 as given in equation (6) 
we see that the two equations are identical, whereby the 
parameters «,, bj, Cj and dj are the x-coordinates of the 
polygon points and j is'the number of the patch. 

If we differentiate equation (Al) with respect to u and 
apply the conditions for continuity of x, dx/du and d2x/du2 

at the junction between patchy and patchy + 1 we obtain the 
following relationships 

bJ + , = Idj-cj 

Cj + , = bj+4dj-4Cj 

d j + i = xj+\ 

In addition we can also derive that at the leading edge (where 
u = Oandy = 1), 

dx 
= -3a, +3b. (A3) 

1 andy 

-3c„+3ef„ (A4) 

du 

and at the trailing edge (where u = 1 andy = n), 

dx 

du 

The values of parameters aJt bJt cjt and dj are fully defined by 
the recurrence relationship given in equation (A2), the set of 
defining points X\, x2, • . • x„ + l and two additional items of 
information. In the present method it is convenient to specify 
the derivatives at the leading and trailing edges as additional 
information, as this ensures that the inlet and outlet angles of 
the blading are exactly as specified. The required derivatives 
are determined from the known geometry of the blade by the 
following equations 

dx ds 
• (sin/3. sint9 +cos/3, sine, cost?) du du 

dy_ 

du 

dz 
du 

ds 

du 

ds 

du 

• (-sin/3, cost? + cos/3, sine, sint?) 

• (cos/3, cose) (A5) 

where s is the length along the camber line of the blade, /3 is 
the blade camber angle, e is the meridional pitch angle of the 
hub or shroud 

= tan \dm )) 
and t? is the circumferential coordinate. 

(A2) 

The parameters «, and dj are easily obtained from equation 
(A2) as these are identical to the defining point coordinates, 
but parameters c, and bj must be calculated. This is done in 
the following way. Parameter bx is determined from 
equations (A3) and (A5). The value of c{ is then taken as C\ = 
0, and the recurrence relations (A2) are successively applied at 
each patch junction until a value of c„ is determined. This 
precedure is repeated for c, = 1, and another value for c„ is 
established. The correct value of cx is then chosen by linear 
extrapolation such that equation (A4) gives the correct slope 
at impeller outlet. Equations (A2) are then applied once more 
to each patch successively to fully determine the polygon 
point coordinates. 
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