
Submitting FLUENT6 and CFX5 Jobs to the
Center for Parallel Computers (PDC), KTH

Pedro Costa
Stockholm, January 2006
pedro.costa@energy.kth.se

Introductory Note
It is expected that the reader is familiar with the basics of the EASY Scheduler (queue system on
PDC), Kerberos (telnet client) and has read through necessary documentation available on the
PDC web site, namely the “Guided Tours” http://www.pdc.kth.se/support/tours.html
Basic UNIX and shell scripting knowledge is required.
The procedures described in this report are subject to modifications. The information provided here
is relative to CFX 5.7.1 and Fluent 6.1.22 and the current environment setup at PDC. The Lucidor
cluster blumino.pdc.kth.se was used in all simulations.

This report is a first step in helping those who will be running CFD programs on PDC. The
procedures described in this report are flexible and different submitting procedures can be
considered. Contributions to this document and to the scripts presented here are more than
welcome and can be sent to the author’s address.

A few minor corrections/additions have been made by PDC staff members ulfa and haba. The
original front page was lost when converting from Word to OpenOffice.

Happy computing!

Table of Contents

I. PDC 3
I.1 Connecting to PDC………………………………………………………... 4

II. FLUENT 6 5
II.1 Fluent Journal File………………………………………………………... 6

 II.1.1 Convergence Issues…………………………………………….. 7
 II.1.2 Fluent Text Inputs for Journal Files (Scheme)........................ 8

II.2 Running FLUENT on Dedicated Nodes – Batch Run (esubmit)…... 8
II.3 The fluentpdc.esy Script……………………………………………
……... 11
II.4 Fluent Summary…………………………………………………………... 13

III. CFX 5 14
III.1CFX Definition File……...…..…………………………………………….
III.2 14
III.2 The cfxpdc.esy Script………………………………………………
……… 14
III.3 Running CFX on Dedicated Nodes – Interactive Use (spattach)... 16
III.4 Running CFX on Dedicated Nodes – Batch Run (esubmit)….…
…. 17
III.5 CFX Summary……………………………………………………………. 18

IV. Reminders 19

V. Notes. Suggestions 20

2

I. PDC1

The Center for Parallel Computers operates leading-edge, high-performance computers as easily
accessible national resources. These resources are primarily available for Swedish academic
research and education. A couple of the major computers available at PDC are presented in the
following table.

Name Type Description
Lenngren Intel Xeon Cluster A 442 node Intel Xeon cluster.
Lucidor HP Itanium2 Cluster A 90 node HP Itanium2 cluster with 180 64-bit processors. The processors

are running at 900MHz giving a peak performance of 7.2GFlop/s per node (2
CPUs per node and 4 flops per clock cycle). Each node has 6Gbyte memory.

Most of the procedures described in this report are relative to the Itanium Processor Family, cluster
Lucidor at PDC, but they are easily extended to other systems running Fluent and CFX. Before
running a program on Lucidor you will have to allocate a "resource" in the system to run on, i.e.,
you will need to "book" one or more nodes on the system to run on. You can book two types of
resources:

Interactive nodes
Interactive nodes are shared pretty much in the same way as the login-node is. This means that at
any one moment more than one user is running on each interactive node and also when you
allocate several interactive nodes to run a parallel program you will find that you are running
several instances of your job on each interactive node, i.e,. the interactive nodes are used as
pseudo-nodes. A five way parallel job when run interactively may actually run as 3 instances on
interactive node no. 1 and two instances on interactive node no. 2. Interactive nodes are intended
for short tests.

Dedicated nodes
Dedicated nodes or batch nodes are used as unique nodes in the parallel execution. On a
dedicated node you are guaranteed to be the only user on the node. Commonly you will run one
instance of your parallel program on each dedicated node you have allocated giving possibility to
use 100% of the computing power of each node to your program.

In this report, only the procedures relative to the dedicated nodes will be described.
__
1 information extracted from PDC website http://www.pdc.kth.se

3

I.1 Connecting to PDC

Log on to whatever cluster you are using on PDC, for example Lucidor where the login node is
called blumino.pdc.kth.se. Log in with rxtelnet from your workstation according to the
instructions in the Kerberos Tour on the PDC webpages. Assuming you are using the bash shell,
in your home directory, alter your .bashrc file with the -vi editor, so that the necessary modules
will always be loaded. A sample of the .bashrc file:

Note that the i-compilers version used with CFX has to be the one indicated in this list. The most
recent i-complier version (default) did not work properly at the time of this report. This is probably
because 7.1-47 was the default compiler when cfx was installed (ulfa, PDC).

If you do not have a .bashrc file, create one in your Public directory and do

cd .
ln –s Public/.bashrc .

Note that your login files must not contain stuff that causes error messages. Putting the stuff above
in your .bashrc will cause failure when submitting batch jobs on Lenngren. (ulfa, PDC staff)

4

--
Add necessary modules for running CFX and Fluent on Lucidor:
--
module add heimdal
module add X11/R6
module add easy
module add fluent
module add cfx
module add i-compilers/7.1-47
module add mpich
--

II. FLUENT 6

Description
Fluent is a leading computer program for modeling fluid flow and heat transfer in complex
geometries and is a Finite Volume based code. Fluent provides complete mesh flexibility, solving
flow problems with unstructured meshes that can be generated about complex geometries with
relative ease.
Fluent can be used for:

- analysis of incompressible or compressible, steady-state or transient, inviscid, laminar,
and turbulent flows

- flows with Newtonian as well as non-Newtonian behavior
- analysis of convective (natural and forced), coupled conduction/convective and radiation

heat transfer
- simulations using multiple moving reference frames, including sliding mesh interfaces and

mixing planes for rotor/stator interaction modeling
- flows chemical species mixing and reaction, including combustion sub models and surface

deposition reaction models
- flows with arbitrary volumetric sources of heat, mass, momentum, turbulence, and

chemical species
- Lagrangian trajectory calculations for a dispersed phase of particles/droplets/bubbles,

including coupling with the continuous phase (drag, lift-forces on particles)
- flow through porous media
- two-phase flows, including cavitation
- free-surface flows with complex surface shapes
- one-dimensional fan/heat-exchanger performance simulations

In order to solve the CFD problem in parallel, the grid generated is partitioned and distributed
among a set of tasks started on a given set of processors. Then during the solution phase, these
processes perform iterative computation and cooperate with each other in arriving at the final
solution. Check out http://www.fluent.com/about/news/newsletters/03v12i2_fall/pdfs/nl41.pdf for
more information.

5

Procedure
The steps involved in setting up a Fluent run are very similar to those that will be presented for
CFX. Typically, you can read your mesh (generated in ICEM, for example) into Fluent on your local
machine and setup all the necessary parameters interactively (directly using the GUI). You can
then save this as a case file (something.cas.gz), FTP it to PDC and then prepare the journal file
using a text editor on PDC (-vi , -emacs or -nedit are examples of text/script editors you can
use). A small script must also be written to deal with the parallelization of Fluent on PDC.

Since the case file is compressed, it occupies less disk space on PDC (an important issue) and
several parameters have already been setup in this file (the boundary conditions, basic
discretization schemes, fluid and turbulence models, etc.). This strategy greatly simplifies the
writing of the journal file and avoids syntax errors.

II.1 Fluent Journal File
The journal file is the equivalent of the definition file in CFX. It is written in a dialect of Lisp called
Scheme and contains all the instructions that are to be executed during the run. A basic form of
this file, using the –vi editor, is as follows:

Save the journal file as something.jou.
In this simple example, we read in the something.cas.gz file, which we had previously prepared
(includes all the boundary conditions and models). We then initialized the flowfield in order to start
the iterations and we solved for 100 iterations. After 100 iterations had been performed, the data
generated was written to the file something.dat.gz. We are assuming here that 100 iterations will
suffice for a converged solution.

6

SAMPLE JOURNAL FILE
#
read case file (*.cas.gz) that had previously been prepared
file/read-case something.cas.gz

initialize flowfield
solve/initialize/initialize-flow

run 100 iterations
solve/iterate 100

write data
file/write-data something.dat.gz

exit fluent
exit yes
#--

II.1.1 Convergence Issues
Up to here everything seems quite straightforward. However, imagine that during the run the
solution diverged, i.e., it would arrive at iteration 100 and we would not have a converged solution
or, the simulation would crash sometime in between. There are several ways to perform a more
stable simulation. For example, start off with simpler turbulence models (or/and fluid models or/and
more relaxed discretization schemes) and perform n number of iterations. Then change to more
elaborate models a perform m iterations.
An example of this strategy would look something like this (we assume here that
something.cas.gz had been setup with the “simple” standard k-epsilon turbulence model):

Check Fluent documentation for further information on convergence strategies.

7

SAMPLE JOURNAL FILE (attempt to avoid some convergence issues)

read case file (*.cas.gz) that had previously been prepared with standard # k-epsilon
turbulence model
file/read-case something.cas.gz

solve/initialize/initialize-flow

solve/iterate 50
file/write-data something-50.dat.gz

change to a more elaborate turbulence model
define/model/viscous/ke-realizable yes

run another 50 iterations
solve/iterate 50

write case and data files to current directory
file/write-case-data something-100.dat.gz

exit fluent
exit yes
#---

II.1.2 Fluent Text Inputs for Journal Files (Scheme)
If you are not familiar with the nomenclature of the Fluent text inputs, do the following:
Open the GUI version of Fluent. Once loaded, press <enter> and you will see the text version of
the “main menu”. Type file and press <enter>. Type read-case and press <enter>. You get the
picture…Type q and press <enter> to exit the submenus.
In a journal file, this would look something like this:

> file/read-case/

or (in condensed notation)
> f/rc/

Furthermore, the scheme language is programmable. An experienced user can easily automate
several functionalities within the journal file.

II.2 Running FLUENT on Dedicated Nodes–Batch Run (esubmit)
Only the submission process for batch runs on dedicated nodes will be described here (for CFX,
the interactive use of dedicated nodes will also be described - spattach). Do not confuse
interactive nodes with interactive use of dedicated nodes, as I did for some time!

Connect to whatever cluster you will be using on PDC, using Kerberos telnet. Load the necessary
modules. Once you have your journal file prepared, you will need to prepare a script to parallelize
your Fluent run. Let us first look at the syntax involved in submitting a Fluent parallel simulation
from the command line:

8

Warning!
Careful when using the condensed notation. There may be several options for
the same condensed notation, which makes it sometimes rather umbiguous.
Test your journal files out before submitting your jobs to PDC.

fluent <version> -g -p<comm> -t<N> -cnf=<host list> -i <journal file>

Important
When referring to interactive nodes, we are submitting the jobs via spattach –i, meaning that at any one moment
more than one user can be running a program on the same nodes (shared spattach). When referring to interactive
use of dedicated nodes, we are submitting our jobs to dedicated nodes via the esubmit command (and thus we are
the only users of the nodes) and then running our program via spattach (non-interactive spattach).
Note that PDC clusters have a variable amount of interactive and dedicated nodes. Take care not to spawn large jobs
on the interactive nodes, and to remove processes should your execution terminate not-normally. They should be used
only to confirm if your submission process has been set up appropriately.

Description
Options/
Example Notes

<version> Solver version 2d 2 dimensional solver
2ddp 2 dimensional double precision solver
3d 3 dimensional solver
3ddp 3 dimensional double precision solver

<comm> Network communicator used to
pass data among processors

net Socket communicator
nmpi MPICH (distributed memory MPI)
smpi MPICH (shared memory MPI only)
vmpi Vendor MPI

<N> Number of CPU’s to be used (not
the number of nodes). Note that 1
node may contain several
processors.

- - - Depends on cluster and on the number of nodes that have
been allocated to you once you have submitted a job. A
script must be written to deal with this. For example, Lucidor
blumino.pdc.kth.se has 2 CPU’s per node, and 90 nodes =
180 CPU’s. If you were to submit a job on 8 nodes and
wanted to take advantage of the 2 processors per node, the
variable N would be 2 x 8 =16

<host list> text file containing list of hosts something.hosts Care must be taken to format this file properly when
submitting Fluent jobs. For example, if you want to run a
Fluent job on 4 nodes using only 1 processor per node, this
file would have to look something like this:

node1.pdc.kth.se:1
node2.pdc.kth.se:1
node3.pdc.kth.se:1
node4.pdc.kth.se:1

However, if you want to take advantage of the 2 processors
per node, then the host list must look like this:

node1.pdc.kth.se:2
node2.pdc.kth.se:2
node3.pdc.kth.se:2
node4.pdc.kth.se:2

The script presented in the following section deals with
getting this syntax correct, so don’t worry….

<journal file> text file that contains the
instructions for the Fluent run

something.jou Dealt with in section II.1

At this point, lets have a look at some questions that may be bothering you:

9

Now that I know the syntax involved in submitting a parallel fluent job from the command
line, how do I know which hosts will be allocated to me?
The EASY scheduler system takes care of this. Once you type the esubmit command, several
environment variables are generated, specific to the job you just submitted. One of these
variables, the SP_HOSTLIST, contains a list of the hosts that have been allocated to you.
Lets suppose that you have requested 4 nodes esubmit –n4 …. then the SP_HOSTLIST would look
something like this (one node per line):

node1.pdc.kth.se
node2.pdc.kth.se
node3.pdc.kth.se
node4.pdc.kth.se

OK, so now I know which nodes will be allocated to me (SP_HOSTLIST). However, I’ve noticed
that I must put this file in the correct format for Fluent, depending on how many CPUs per
node I want to use. How do I do this?
This is where your shell scripting knowledge comes into scene. We know that if you request 4
nodes and you want to take advantage of the 2 CPU’s per node, then your Fluent host file will
have to look something like this:

node1.pdc.kth.se:2
node2.pdc.kth.se:2
node3.pdc.kth.se:2
node4.pdc.kth.se:2

For this case, the fluent argument –t must have the number 8 in front of it (you will be running 4 x
2 = 8 processes (or tasks). All these adjustments can be done by writing a shell script, presented
in the next section. Basically, the script just generates the Fluent syntax with the arguments in the
correct format.

10

II.3 The fluentpdc.esy Script
A script has been prepared called fluentpdc,esy and presented on the following page. Note that
this script does not include all the arguments that you can supply to fluent, but you can/should
add/replace whatever you want. As it is, it will work fine for your simulations if you follow the
notation properly. You can copy this script to your home directory on PDC and save it as
fluentpdc.esy. Make sure its permissions are set to executable. The fluentpdc.esy script
handles all the arguments for fluent and puts them in the correct format

So, in order to run a fluent parallel job on PDC, and once you have created your journal file, all you
have to do is type the following:

> esubmit -n4 -t120 –c CAC fluentpdc.esy 2 3ddp /home/journalfiles/case1.jou

In this example, we requested 4 nodes for 120 minutes (esubmit). Then the lrt.esy script comes
into action and we choose to take advantage of the 2 CPUs per node (that Lucidor has, for
example) to run the fluent 3d double precision solver. Instructions are given to the Fluent solver
via the journal file /home/journalfiles/case1.jou
To confirm if Fluent is actually running on the requested nodes, log on to one of them using
rxtelnet and type top. Check the list to see if the Fluent executable appears and the CPU
usage. Type q to exit top.

Once the job has finished, you will receive an email with the output. If you wish, you can
automatically generate output files in a certain location (if you are familiar with shell scripting this
should be easy for you to incorporate into fluentpdc.esy).
A help menu has been incorporated into the script, so just type fluentpdc.esy –h to access it if
you need to be remembered of something.

The script fluentpdc.esy is available on Lucidor in /pdc/vol/fluent/6/Fluent.Inc/bin/fluent/

11

12

#!/bin/bash
fluentpdc.esy script
----------------------- HELP MENU ---
mail="pedro.costa@energy.kth.se"
help()
{
 cat <<HELP
fluentpdc.esy -- run fluent on a PDC cluster. This script must always be
 preceeded by the esubmit script and its respective arguments.
USAGE:

fluentpdc.esy [-h] -ppn -solver -journalfile

 Note that the order in which these arguments appear must be the one
specified here

 -h help text (this is an option)
-ppn number of processes to run on each node (1 or 2, for Lucidor)
-solver version of solver (2d, 2ddp, 3d, 3ddp)
-journalfile journal file (include path, if necessary)

EXAMPLE:
esubmit -n4 -t120 –c CAC fluentpdc.esy 2 3ddp /home/journalfiles/case1.jou

Here we requested 4 nodes for 120 minutes (esubmit). We chose to take
advantage of 2 CPUs per node to run the fluent 3d double precision
solver. Instructions will be given to the solver via the file
/home/journalfiles/case1.jou

BUGS/SUGGESTIONS:
 $mail
HELP
 exit 0
}

error()
{
 echo "$1"
 exit 1
}
--------------------------- READ USER SUPPLIED OPTIONS ------------------------------
while [-n "$1"]; do
case $1 in
 -h) help;shift 1;;
 -*) echo "error: no such option $1. -h for help";exit 1;;
 *) break;;
esac
done
PPN=$1; # nr of processors per node
SOL=$2; # version of solver
JOU="$3"; # path to journalfile
test $SP_PROCS || exit 255
------------------------- RUN FLUENT (PARALLELIZATION) ------------------------------
if [$SP_PROCS -gt 1]; then
 #put SP_HOSTFILE in correct format and rename it
 sed 's/ *$/:'"$PPN/" $SP_HOSTFILE > $SP_JID.hosts
 #use distributed network MPI -- nmpi
 FLUENTARGS="-t`expr $PPN * $SP_PROCS` -cnf=$SP_JID.hosts -pnmpi"
elif [$PPN -gt 1]; then
 # use shared memory MPI only -- smpi
 FLUENTARGS="-t$PPN -psmpi"
fi
echo "Executing fluent in directory `pwd`"
echo "fluent $SOL -g $FLUENTARGS -i $JOU"
fluent $SOL -g $FLUENTARGS -i "$JOU"

II.4 Fluent Summary

The steps required to submit a Fluent batch job on dedicated nodes to PDC are as follows:
1) Generate a mesh (in ICEM, for example). Save as something.msh
2) Open Fluent. Read in mesh and setup parameters (boundary conditions, models,

discretization schemes, etc.). Save as something.cas.gz and FTP it to your working
directory on PDC.

3) Login to whatever server you will be using on PDC. Confirm the lifetime of your tickets and
increase it if necessary. Load necessary modules. Open the –vi editor and write your
journal file. Save as something.jou

4) Copy the fluentpdc.esy script to your working directory. Make sure its permissions are
set to executable and submit your job to PDC using the esubmit command.

5) Once the nodes requested have been allocated to you, confirm if everything is running
properly by connecting to one of the nodes and typing top.

6) Once your convergence criteria has been met (or if the job crashes!) you will receive an
email with the respective output

13

III. CFX 5

Description
CFX is a powerful finite-volume-based program package for modeling general fluid flow in complex
geometries. The main components of the CFX package are the flow solver cfx5solve, the
geometry and mesh generator cfx5pre, and the postprocessor cfx5post.
CFX implements a wide spectrum of physical models and numerical solution algorithms
comparable to those of FLUENT.
Check out http://www.ansys.com for more information.

III.1. Solver Definition File
If you have only a couple of runs to prepare, you can set them up in CFX-Pre interactively on your
local machine (the other option would be batch – see CFX documentation for details).
Open CFX-Pre. Load mesh and setup solver definitions (boundary conditions, turbulence models,
solver parameters, etc.). Save definition file for solver as example.def. The files generated with
CFX-Pre (example.cfx, example.gtm and example.def) should then be FTP’d to your working
directory at PDC.

III.2 The cfxpdc.esy Script
The syntax involved in submitting a CFX parallel simulation from the command line can be found in
the CFX documentation, namely the “Solver Manager” manual. The main difference compared to
Fluent is the format of the host file, in which the hosts must be separated by commas. Also, when
running more that 1 process per node, the hosts must appear multiplied by the number of
processes. So again, we need to prepare a script to deal with this.

As previously mentioned you can submit your jobs on dedicated nodes for interactive use
(spattach) or dedicated use (esubmit). The script cfxpdc.esy will deal with both situations. So
lets have a look at it:

14

15

#!/bin/bash
script cfxpdc.esy
------------------------- HELP INFORMATION -------------------------------------
mail="pedro.costa@energy.kth.se"
help()
{
 cat <<HELP
cfxpdc.esy -- run CFX on a PDC cluster. This script must always be
 preceeded by the esubmit script (dedicated use) or/and the

 spattach script (interactive use) and there respective arguments.
USAGE:

cfxpdc.esy [-h] [-i] <ppn> <precision> <definitionfile>

 Note that the order in which these arguments appear must be the one
specified here

 -h help text (this is an option)

-i activate this option if you will be running this script
interactively, i.e., interactive use on dedicated nodes
(this is an option; default value is set to dedicated use
only)

<ppn> number of processes to run on each node (1 or 2, for
Lucidor)

<precision> precision of solver [single, double]
<definitionfile> definitionfile (include path, if necessary)

EXAMPLE (interactive use):
esubmit -n6 -t120 -T 2005-01-01/10:00:00

 rxtelnet node1.pdc.kth.se
spattach -j <JID> -k cfxpdc.esy -i 2 double /home/definitionfiles/case1.def

Here we requested, in advance, 6 nodes for 120 minutes (esubmit). We then
logged on to one of the nodes (in this case node1.pdc.kth.se). We then
chose to take advantage of 2 CPUs per node to interactively run the CFX double
precision solver. Instructions will be given to the solver via the file /
home/definitionfiles/case1.def

EXAMPLE (dedicated use):
esubmit -n4 -t120 cfxpdc.esy 2 double /home/definitionfiles/case1.def

Here we requested 4 nodes for 120 minutes (esubmit). We chose to take
advantage of 2 CPUs per node to run the CFX 3d double precision
solver. Instructions will be given to the solver via the file
/home/defintionfiles/case1.def

BUGS/SUGGESTIONS:
 $mail
HELP
 exit 0
}
--
error()
{
 echo "$1"
 exit 1
}
read OPTIONS and ARGUMENTS that user introduced --------------------------------
INT=0
while [-n "$1"]; do
case $1 in
 -h) help;shift 1;;
 -i) INT=1; shift 1;;
 -*) echo "error: no such option $1. -h for help";exit 1;;
 *) break;;
esac
done
--- script CONTINUES on next page ...

Confused? Don’t worry. For now, just save it to your working directory on PDC and remember to
set it to executable. Read on and then come back to the script to see if you understand it better. A
help menu has been created inside the script, so type cfxpdc.esy –h for help.

III.3 Running CFX on Dedicated Nodes - Interactive Use (spattach)
Just follow these 3 steps. Reserve dedicated nodes in advance for interactive use. You are
guaranteed to be the only user of the nodes:
> esubmit -n6 –t120 –c CAC -T 2005-01-01/10:00:00

Once you have been granted access to the nodes, logon to one of them:
> rxtelnet node1.pdc.kth.se

16

--- ... CONTINUATION of cfxpdc.esy
PPN=$1; # nr of processes per node
PRE=$2; # precision of solver
DEF=$3; # path of definition file

------------------ CFX for interactive use ------------------------------------
if [$INT -eq 1]; then
 type_use="interactive"
 cat $SP_HOSTFILE | sort -u > i-hosts1.tmp
 # include the login node
 echo "ONLY VERY SHORT AND SMALL JOBS MAY BE ISSUED WHEN LOGIN NODE IS INCLUDED"
 echo "It is better to issue spattach –I on an interactive node"
 hostname >> i-hosts1.tmp
 # put SP_HOSTFILE in correct format (comma separated list)
 sed 's/ *$/*'"$PPN/" i-hosts1.tmp > i-hosts2.tmp
 awk '{ printf ",%s", $1; }' i-hosts2.tmp > i-hosts3.tmp
 cut -c 2- i-hosts3.tmp > $SP_JID.hosts

------------------ CFX for dedicated use --------------------------------------
elif [$INT -eq 0]; then
 type_use="dedicated"
 # put SP_HOSTFILE in correct format (comma separated list)
 sed 's/ *$/*'"$PPN/" $SP_HOSTFILE > hosts1.tmp
 awk '{ printf ",%s", $1; }' hosts1.tmp > hosts2.tmp
 cut -c 2- hosts2.tmp > $SP_JID.hosts
fi

note: pipes were not working properly, thus the excessive number
of *.tmp files (these can all be deleted after simulation)

------------------ run CFX ---
echo "Executing CFX - $type_use use in directory `pwd`"
echo "cfx5solve -def $DEF -$PRE -par-dist `cat $SP_JID.hosts`"
cfx5solve -def $DEF -$PRE -par-dist `cat $SP_JID.hosts`
--

Now that you are on the node, run the cfxpdc.esy script as indicated below (note that you should
also already have prepared the definition file). <JID> refers to the job number you were issued
when you reserved the nodes.

> spattach –j <JID> -k cfxpdc.esy –i 2 double /home/definitionfiles/case1.def

Here we requested, in advance, 6 nodes for 120 minutes (esubmit). Once they had been
allocated, we then logged on to one of the nodes (in this case node1.pdc.kth.se). We then chose
to take advantage of 2 CPUs per node to interactively run the CFX double precision solver.
Instructions will be given to the solver via the file /home/definitionfiles/case1.def

Voilá…it should be running. To confirm if CFX-Solver is actually running on the requested nodes,
log on to one of them using rxtelnet and type top. Check the list to see if the CFX executable
appears and the CPU usage. Type q to exit top.
Once the solver has finished, results will be saved to your working directory, unless otherwise
specified.

III.4 Running CFX on Dedicated Nodes – Batch Run (esubmit)
The difference between an spattach onto dedicated nodes and an esubmit is that the esubmit
command is never reading any key stroke input. Instead it assumes all its input (if there is any) to
come from a batch script. Once the batch script has been prepared and submitted, the job should
run automatically after the nodes have been allocated.

Having already prepared your journal file, all you have to do is type:

> esubmit -n4 -t120 –c CAC cfxpdc.esy 2 double /home/definitionfiles/case1.def

Here we requested 4 nodes for 120 minutes (esubmit). We chose to take advantage of 2 CPUs
per node to run the CFX double precision solver. Instructions will be given to the solver via the file
/home/defintionfiles/case1.def

Again, to confirm if CFX is actually running on the requested nodes, log on to one of them using
rxtelnet and type top. Check the list to see if the CFX executable appears and the CPU usage.
Type q to exit top. A help menu has been included, so just type cfxpdc.esy –h to access it if you
forget something.

17

III.5 CFX Summary
The steps required to submit a CFX job on dedicated nodes with interactive use are as follows:

1) Generate a mesh (in ICEM, for example). Save as something.msh
2) Open CFX-Pre. Read in mesh and setup parameters (boundary conditions, models,

discretization schemes, etc.). Create definition file something.def and FTP it to your
working directory on PDC, along with the *.cfx and *.gtm files.

3) Login to whatever cluster you will be using on PDC. Confirm the lifetime of your tickets
and increase it if necessary. Load necessary modules.

4) Copy the cfxpdc.esy script to your working directory. Make sure its permissions are set
to executable.

5) Reserve nodes for interactive use in advance with the esubmit command. Once they
have been allocated to you, logon to one of them with rxtelnet and perform the
spattach of the cfxpdc.esy script.

6) Confirm if everything is running properly by logging on to one of the nodes and typing top.
7) Once your convergence criterion has been met an output file will be saved to your working

directory, unless otherwise specified.

The steps required to submit a CFX batch job on dedicated nodes are as follows:
1) Generate a mesh (in ICEM, for example). Save as something.msh
2) Open CFX-Pre. Read in mesh and setup parameters (boundary conditions, models,

discretization schemes, etc.). Create definition file something.def and FTP it to your
working directory on PDC, along with the *.cfx and *.gtm files.

3) Login to whatever cluster you will be using on PDC. Confirm the lifetime of your tickets
and increase it if necessary. Load necessary modules.

4) Copy the cfxpdc.esy script to your working directory. Make sure its permissions are set
to executable and submit your job to PDC using the esubmit command.

5) Once the nodes requested have been allocated to you, confirm if everything is running
properly by connecting to one of the nodes and typing top.

6) Once your convergence criterion has been met an output file will be saved to your working
directory, unless otherwise specified.

18

IV. Reminders
Life time of tickets
Always confirm the lifetime of your current tickets prior to submitting jobs:
Check the life time of your current tickets:
> klist -f

If tickets have short valid time, increase it:
> kinit -f -l <timetolive>

The <timetolive> must include both the queue waiting time and the execution time.

Disk space
Make sure you have enough disk space on PDC. Both CFX and Fluent files tend to be rather
large, and results will not be written if enough disk space is not available. Refer to PDC online
documentation for further information regarding disk storage options.

Rules of thumb
The following rules of thumb for parallel computations using both CFX and Fluent can be drawn:

• runs below 50 000 nodes should not be considered for parallel computation

• runs between 50 000 and 100 000 nodes can use up to 2 to 4 processors

• runs between 100 000 and 500 000 nodes can use up to 4 to 6 processors

• runs between 500 000 and 1 000 000 nodes can use up to 6 to 12 processors

Environment variables (EASY)
When writing your scripts, the following environment variables will come in handy:
SP_JID job ID
SP_EASY_HOME home directory of EASY
SP_SUBMIT_HOST node from which job was submitted
SP_PROCS number of allocated nodes
SP_NODES allocated nodes
SP_HOSTFILE file that contains all allocated host names. There is one allocated host on each row

19

V. Notes. Suggestions
The PDC staff is extremely helpful and quick regarding problems that might appear, so contact
them if things get ugly. I am extremely grateful to Ulf Andersson from PDC, for helping me with the
initial scripting. Thank you.
I was (and still am) rather UNIX-ignorant but things have been improving. Nevertheless, I am sure
you will be able to add new and improved features to the scripts presented here. Please
communicate them so others can benefit. The PDC website http://www.pdc.kth.se is frequently
updated (at least the “flash news” section) and contains loads of must-read information, so make
sure to check it out before asking around.

CFD computations will surely be more and more common in the future at PDC. The KTH energy
department, PDC (and others) will surely benefit from the following suggestions:

1 - perform benchmarking with Fluent and CFX (and other programs) on several clusters and
report findings on website. This information will help future users to run there programs in a more
efficient manner and at the same time provide PDC staff with valuable information regarding there
cluster setups.

2 – Most computing centers provide some information on how to run the programs they have
installed. The PDC website contains a section with the software available on PDC computers1,
and some basic information, but lacks a lot of important specifics. Fluent and CFX do not appear in
this section.
Researchers who have no scripting knowledge whatsoever waste too much time figuring out things
that a priori they should not need to worry about. Short seminars/courses on UNIX and shell
scripting would benefit a lot of people. Setting up a Forum for PDC users on the PDC website also
sounds like an interesting idea and would avoid always having to bother the PDC staff. Also,
researchers should be encouraged to report there submission procedures for the different
programs they run on PDC (as is done here) since most submission procedures are specific to the
programs involved. A standard report format should be discussed and the reports published on the
PDC website.
__
1 http://schelly.pdc.kth.se/pdc/systems_support/software/

20

