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Background and objective

Norwegian hydro power plants are subjected to thorough analyses with respect to governor
stability. There are several methods for performing simulations of governor stability. During his
project work, the student has established a model based on the Matrix Method where the conduit
system, turbine and governor are represented. The Master thesis will be a continuance and
refinement of the code established in the project work.

Topics to be addressed are turbine characteristics, alternative governor algorithms and frictional
damping.

The following tasks are to be considered:
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Incorporate a complete turbine model where the turbine characteristics are better
represented

Investigate alternative schemes for representing alternative frequency governors

Formulate and include a more precise friction model to better reflect the actual
frictional damping )

Develop the program code for more general conduit system geometry representation
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Abstract

Over the last few years Norway has seen an increasing number of hours where the grid
frequency exceeds the required limits (49.9-50.1Hz). To improve this situation one alternative is
to implement hydropower governing with quicker response time. However, long conduits and
oscillatory flow set strict requirements to the hydropower system stability and turbo set
governing. This thesis establishes a simulation program based on the structure matrix method
for stability analysis of hydropower systems.

The method is implemented in a Matlab program to study the oscillatory flow in the frequency
domain. Implementation of frictional influence, turbine characteristics, and alternative governing
has been given special attention. The program is validated through comparison with
measurements and previous analysis at Kongsvinger and Tafjord power plants. The program
simulations generally compare well with physical dynamics of the two systems. Further a
stability analysis of speed governing at Aldal power plant has been performed. Finally some

alternative control systems are discussed.
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Sammendrag

I de senere arene har det norske elektriske nettet operert med et okende antall timer utenfor det
tillatte frekvensomradet (49.9-50.1Hz). For 4 forbedre denne situasjonen kan regulerings-
systemer for vannkraft med raskere responstid implementeres. Lange vannveier og oscillerende
stromninger setter strenge krav til stabilitet og turbinregulering. Denne hovedoppgaven etablerer
et simuleringsprogram basert pa strukturmatrisemetoden for stabilitetsanalyser.

Metoden er implementert i Matlab for 4 undersoke oscillerende stromninger i frekvensplanet.
Implementeringen  av  friksjonsinnvirkning,  turbinkarakteristikker, = samt  alternative
reguleringsformer er viet spesiell oppmerksomhet. Programmet er validert gjennom
sammenligning av malinger og tidligere analyser av vannkraftanleggene Kongsvinger og Tafjord.
Simuleringsprogrammet samsvarer generelt godt med den fysiske dynamikken i de to systemene.
Videre er forholdene ved det foreslitte vannkraftverket Aldal undersokt ved 4 anvende
simuleringsprogrammet og generelle stabilitetskriterier. Noen alternative former for regulering er
avslutningsvis diskutert.
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1 Introduction

Over the last decade the Norwegian electrical power system has seen increasing
fluctuations in grid frequency (Lindeberg, 2010). A changing energy mix in Europe
increase the need of Norway’s vast energy capacity stored in hydropower systems. Thus a
closer connection to the european electrical grid is expected in the future. Grid frequency
fluctuations will as a consequence likely continue to give rise to concern (Eek, et al,
2006). Hydropower systems balance the grid power requirement and the available
hydraulic power while maintaining the rotational speed synchronous. Hydropower
systems provide quick power regulations on demand, but may often have complex and
long conduits. Oscillatory flow and resonance in the conduits set strict requirements to
the system stability analysis and turbo set governing.

To address this challenge a strong demand is placed on accurate mathematical modeling
of the physical system dynamics. This thesis is a continuance of the authors project thesis
(Vogt-Svendsen, 2011). The aim of this thesis is to develop and refine a simulation
program to investigate the dynamics and governing of hydropower systems. The
simulation program is based on the structure matrix model. The following approach is

taken:

Governing system equations - chapter 2
The equations describing the various sections of the system are established.

System model - chapter 3 and 4
Mathematical implementation of hydropower systems by the structure matrix
method in Matlab is outlined.

Modeling turbine and friction - chapter 4 and 5
Challenges related to including the turbine characteristics and system friction are

addressed.

Validation - chapter 6
The simulation results have been compared to measurements at the Kongsvinger and
Tafjord hydropower systems to validate the Matlab simulation program.

Application - chapter 7
A proposed hydropower system at Aldal is investigated with respect to layout and
frequency stability.

Alternative control strategies - chapter 8
Pressure compensator, water column compensator and Model Predictive Control have
been investigated as examples of alternative control strategies.



2 Hydropower model

A stability analysis of hydropower systems is based on the governing equations of the
system. Equilibrium balance equations based on principles of hydraulic continuity and
motion characterize the water conduits. Along with power transmission and inertial
equations for the power conversion, the systems physics are captured. In the following
are derivations of the differential and LaPlace transformed equations Of the system
structures. Some analytical equations are presented before the structure matrix model is
established and discussed in the subsequent chapter.

2.1 Governing equations

A study of dynamic hydro power systems can briefly be divided into four major units:
tunnels, surge shafts, turbine unit and governor. Each of these elements can be described
by individual characteristic equations. A simplified representation of a hydropower system
is displayed in figure 2.1 below. In the subsequent paragraphs the differential equations
for each element will be specified (Nielsen, 1990).

Figure 2.1 A basic hydropower system

If the height is defined as the hydraulic head and position relative to a reference, the pipe
flow can be described by the continuity equation and the equation of motion:

0H a?dv
at g 0x
J0H OJv v v B 2.2

LA | ~0
Yox T T

The speed of sound is an elementary quantity in the modeling of an elastic hydropower

system. The wave propagation speed is defined by 2 = /K /p where K is the modulus of
y propag P y
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compressibility and p is the mass density of water. A force applied to a section of water

will result in a compression analogous to a spring-mass system (elastic hydraulic system).

The model for hydraulic losses along the pipe is related to the volumetric flow rate
squared (Q?). Due to this relation the frictional damping vanishes close to stationary flow
conditions. This model also assumes fully developed, turbulent flow profile. This
assumption does not necessarily reflect the real water conduits and in general this
approach will underestimate the damping effect from the frictional forces. The tunnel
hydraulics take the equilibrium balance:

L, dQ, fL.Q? 23
— L L AH =0 :
g4, de T T 2gpaz

To simplify the equation, the variables can be non-dimensionalized or scaled:

ook M .= e ¢ = Juvi
M gA, Hy Qo Y 2gDH,

Applying the simplified entities above to the tunnel in equation 2.3 :

dq,

Similarly, for the penstock:

44,

T dt

+h—hs + K,,q=0 2.5

The continuity equation connecting the pipe and the surge shaft is mathematically given

by:

—g+ Q=g+ A gy oa 2.6
C=a+Q=q+ Ay =a+ 4-@Q—q)
Further, if the time constant is defined by:
AH
Tys = 500
Then equation 2.6 becomes:
dh
Tws—p = 4= 4, — 4 2.7



The equilibrium balance of the surge shaft can be represented by a differential equation in

a similar manner as the tunnel and penstock above:

d
Tos g+ hy + Keq, = 0
2.8

If Tws << 1 is assumed, the first term can be neglected. Equation 2.4, 2.5, 2.7 and
2.8 define the entire water conduit system. The turbine converts the hydraulic power it is
exposed to into rotating mechanical power. The hydraulic power is converted to electrical

power, acceleration of the rotating masses and losses arising from the energy conversion:

dw
]wa = P, — Py —loss 2.9

If the generator unit is included in the basic differential equation for turbine operation,
the power produced by a turbine is (Wylie & Streeter, 1993):

dw
P =npgQH = Ia)E + P; 2.10

Where 7 is the turbine efficiency, I is the polar moment of inertia (I=IWR2/g), w is the
rotational speed of the turbine and Pc is the power absorbed by the generator. If E, is set
to represent the statics of the generator, then the differential equation of the generator is:

dn
T“E-l_ E,-n=P 2.11
The governor controls the hydraulic system so that the rotational speed is maintained at
synchronous speed regardless of the grid power requirement. In order to efficiently
control the hydropower system a PID-governor can be applied. The intake valve opening
is controlled by a proportional, differential and integral term according to the PID-

equation (Nielsen, 1990):

dy B dn

2
K, — dn 2.12
dt Pdt

K
+ T_Z(Tlref - Tl) - KITNF

Where Y is the opening, n is the rotational speed, Kp is the proportionality constant, Ty is
the time constant for the integral term, T is the time constant for the derivative term.
The latter term must also be limited by a filter constant, Tz However, in classical
governing of hydro power systems the derivative term is normally not included.

The differential equations for each section of the system are summarized in Table 2.1. If
the systems differential equations are Laplace transformed the equations in the right



column of the table are obtained. The subscript 1 has been introduced to indicate that the

equations are applied to multiple individual sections of a system. The Laplace transformed

equations facilitate construction of transfer functions for the dynamic system.

Table 2.1 Governing system equations

Section Eqn

Differential equation

Laplace transformed
equation

Tunnel 2.4

Penstock 2.5

Surge shaft 2.7

Surge shaft

inertia

2.8

Generator 2.11

Governor 2.12

dq,

Twat

+h—hg+ K,,q=0

dq,

Twat

+h—hg+ K,,q=0

dq
Twsd_ts-l_hs-l_ qus = 0

d
Ta—rtl+ E,-n=P

day _ dn

Kp
E— —KPE‘F E(nref—n)— KI

thiqti s+ hg+ Ktiqti =0

T,q-s+h—hs;+K,q=0

Tsihgi - s+ qti_q=0

Tywsqg"s+ Ksiqsi + hg; =0

An AP 1
B T P Ts+E,
i K 1Tas
Y= Ty ps = thd-su

2.2 Analytical approach

During initial planning of hydro power systems, analytical equations are often applied in

order to study the system behavior. Some rules of thumb have been developed along with

the regarded equations. A selection of the most relevant approaches are presented in the
following section, which is based on references by Nielsen (1990) and Brekke (1999).



The time constant of the water conduit is an important quantity, which considers the

elements between two free water surfaces according to the relation:

2.13
L gH0 Z A

The inertia of the rotating masses (primarily turbine and generator) acts as a dampening
clement to alternating water flows. Thus for stable operation of the system, the inertial
time constant of the rotating masses (1,) should be significantly larger than the time
constant of the water conduit (T,):

Ta_ o 2.14

TW

If the ratio of the rotating masses to water conduit time constant is not achieved either
the pipes’ length-to-cross sectional area ratio can be altered or surge shafts introduced. Of
the two options the latter is generally the only practically feasible solution. When surge
shafts are introduced the water surface must fulfill the Thoma criterion, which is defined
as:

M2A°3 215

0

Ay = 0.0083 -

This identity is based on Newton’s second law, continuity and ideal governing!. In order
to ensure dampened oscillations between shaft and reservoir, a minimum free water
surface area in the surge shaft is required. The surge shafts free water surface has to be at
least equal to the Thoma-area for stable u-pipe oscillations?. The amplitude and frequency
of the u-pipe oscillations can be estimated by the following formulas:

L
Z_
Az = AQ A 2.16
gA;
w = J 2.17
= |— _
Askg

The frequency-value of the u-tube oscillations will be estimated and compared with the
simulations as they often appear in the Bode diagrams of hydropower systems. The
maximum pressure rise directly upstream the turbine can be estimated by equation 2.18.

! Derived in (Brekke, 1999, p. 52)
2 Usually 1.5-Ar is set as a guiding criterion



alAc T,

= — 2.18
g T
Where T, is the reflection time for the first harmonic defined by:
- 4L 2.19
d

These approximations are applied to validate some of the computational results.



3 The Structure Matrix Method

The structure matrix method was first introduced into hydropower system stability studies
by Brekke (Brekke, 1984). The method was later popularized and generalized by Li Xinxin
(Xinxin, 1988). This section is mainly based on these two references. Finally the
construction of complete system geometries is developed in order to illustrate the
approach and establish a numerical model.

The method is a mathematical model for stability study of hydro power systems. The
structure matrix approach has its origin in solid structural analysis. The method differs
only organizationally to the transfer or impedance method, but its computer-oriented
procedure is simpler. Matrix equations describing the individual components of the
system can with little effort be interconnected as the flow direction is defined out of each
component. Thus this building block arrangement has its obvious advantages in the data

structure for a computer assisted analysis.

The structure matrices involve element matrices, representing the individual valves, pipes,
surge shafts, turbines etc. Element matrices may be combined and interconnected into a
representation of a group of elements. This is known as a local structure matrix. By
incorporating the element and local structure matrices one can obtain the global structure
matrix, which represents the complete hydropower system. The element, local and global
matrices are represented by the system matrix A in the matrix equation on general form:

A(s)-h=q 3.1

Where A is a matrix (m by n) and h (nX1) and q (mX1) are vectors of length n and m
respectively. In this equation h is the “pressure head vector” and q the “flow vector”.
Chapter 3.1 will address how the governing equations are fomulated and included into
these matrices.

3.1 The governing element matrices

In order to construct the global structure matrix each element and local structure in the
system must be established. In this section the element matrices are derived and then
approximations of some of the physical behaviors are explained. The following section is
based on the theoretical derivation from Xinxin (1988) (1989) and Brekke (1999) (1984).
The element and local structure matrices will take the form of the differential equation

and are based on the governing equations of the relevant element.



3.1.1 Pipes and tunnels
The equation of motion and the continuity equation can be organized as follows:

doh Q0
= 3.2
T H (s + K)q

ax Q0a2

The damping coefficient, K, is linearized at steady state and defined as:

dhs(Q) 3.4
K=gA :
7 ( dQ )

It should be noted that a range of challenges arise due to the modeling of the damping
term K. These challenges will be studied closer in chapter 5. The identity z=(s2+Ks)!/2 can
now be introduced to obtain the differential equation :

aZh z?2 3.5
a2 @h=o

The general solutions of h and q then become:

x, _x,
h= a,ea” + a,e a 3.6

0= g1y (@t~ ae)

Whete by = Qoa/2AgHo, known as Allievis’ constant. The most common element matrix
is based on the equations for a pipeline section. If the boundary conditions for a pipe
section are set to specific pressure and flow values at both ends the matrix equation

describing the section can be expressed as:

5 Sl =l &

Where the flow is defined out of the pipe section and:

T = S - 3.9
2h,, stanh (E a)
s
- 2h,,ssinh (% a) 510



3.1.2 Throttles and valves
The matrix representation of the pressure and flow across a point element, such as a
throttle, is:

[_Kip Kip] h1 14, 3.11
[ 1 _1}'}1;3]_[%]
K K

K, is a function of the loss constant, steady state flow as well as the smaller and larger area
of the throttling point. This equation should typically be included for pipe intersections
and rapid changes in cross-sectional area. However this term will dampen the oscillations
and neglecting these throttling points will give a conservative stability simulation. The
throttling element equation is analogous to a locked valve. On the other hand the

complete valve matrix becomes somewhat more complex. The flow through the valve is:

Q = u(¥)(2gH)*® 3.12
Where Y is the valve opening, # the flow coefficient and H is the pressure difference over
the valve (Hg-Hp). If a Taylor expansion of Q is performed at Qp and the second and
higher order terms are neglected equation 3.73 is left.

0.5

90 9Qon\ 29 05 O

AQ = <ﬁ)0 AH + (aﬁ)OAY = 0.5uY, (H—O) AH + (2gHo)™ =7 AY 343
= 0.5(h, — hg) + ou
= 0.5(h,, R) aYy

By establishing the relationship K, = y/y. and using the notation gr=-gr=¢ the local
structure matrix for an oscillating valve becomes:

_Lo_op 19

2 i?y 2| w1 14,

0 — 0 fy|=[Vex 3.14
k
a hel  [4r

1 op 1

2 o9y 2

When the power and rotating speed outputs are not of interest this equation is also valid
for an open-loop excited Pelton turbine.
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3.1.3 Surge shafts
Surge shafts are often essential elements in a hydro power plant in order to ensure stable
operation. An element matrix representing a surge shaft can be expressed by the matrix

equation below:

[l =) 15

This equation also holds for enclosed surge shafts with enclosed air pockets, so called air

1 0
lo _ SHOAeqv
Qo

accumulators. A, = A for a free surface surge shaft, whereas in an air accumulator the
gas behavior has to be taken into account (Brekke, 1984).

1 nH
Aeqv = [E + V_Oa]

Where n is the polytropic compression constant, H, is the accumulator pressure head and

1"y is the air volume.

3.1.4 PID governor
PID-governors can be represented by various block diagrams. One representation
introduced by Kvaerner in the 70s is displayed in Figure 3.1 (Xinxin, 1988).

|

F 1+ Tys
S Iy
1+ 0.1T
0w g P C
nré + ,\14- 1 + TDS +\>\+ 1 HY
T_ b Tps Y (1 +T,5)
bp
A

Figure 3.1 Modified Kveerner Pl-governor
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bp Kps
A

Figure 3.2 Block diagram representation of a parallel PID-governor

From the block diagrams in Figure 3.1 and Figure 3.2 the two equations below are

obtained.
3.17
y y P
nref—nKn + (Pr—E)bp =§_E
1 Gb, + 1 518
Nper = nk, — (bp + E) P. + T

Note that if the derivative block is neglected the two figures are identical. This is made
apparent by the simplified governing block:

K, 1 Ky Tys+1

- _ 3.19
s b, Tys b:Tys

The configurations above can thus be described by the following governor structure
matrix equation:

P N R
n ( 14 G) GC . pT] = [pref] 3.20
0 1 0 y

Here K, is a constant that is used to include feed-back signal of the rotational speed. Thus
K,=1 for feed-back and K, = 0 for an open-loop system. T} is the time constant of the
electric hydraulic amplifier. Note that ps is often neglected as its responses are of less
importance as those to speed setting and load disturbances. When p.sis neglected in the

PI-governor equation the second row and column are reduced.
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3.1.5 Generator system
For the design of single machine generator systems two assumptions can often be made:

" The turbine and generator are the only rotational masses so that the electric load is
purely resistive.

" The transients of the hydropower system are much slower than the electric system
transient, rendering the latter negligible.

With these assumptions and neglecting generator power loss, the equation of motion (eqn
2.9) in dimensional matrix form becomes:

1 =)=l

The electric power load of the generator, p,, must not be confused with the reference
power setting pnr used in the PID matrix equation. The generator and governor matrices
will later be incorporated into the turbine equation. First the governing equations
characterizing the turbine will be established.

3.1.6 Permanent speed droop
The permanent speed droop 4 is often an important property of the turbine governing.

The permanent speed droop defines the change in frequency per change in turbine power
output, and is defined by (Nielsen, 1990):

b= ~(Am 322
S_Y nref '

When turbines are connected in a common grid, the frequency is the same for all power
plants, thus the load is determined by the permanent speed droop. However, if one
governor is set to 5,=0, the associated turbine must accept all load variations. If multiple
machines in the same grid are set to zero permanent speed droop load variations might
lead to power fluctuations between the turbines.

13



3.1.7 Turbine self-governing

For reaction turbines the rotational speed influences the volumetric flow rate through the
turbine. This relation affects the regulation of the dynamic system. The self-regulation
adds stability in the case of a Francis turbine, since the flow rate decreases when the
rotational speed increases. The self-regulation time constant bs is defined as:

bs = ! (AP) 3.23
S Py \Aw '
bs 1s negative and thus adds stability for Francis turbines, while it is positive for Kaplan
turbines.
3.2 Turbine

Involvement of turbine characteristics is essential for realistic modeling of hydropower
systems. The physics of hydropower turbines add complexity to the overall hydropower

system. Based on an analytical approach the following matrix equation can be

established3:

—B —Q 0 —-C 0 0 B17rhg] [Yr]
0 D —E F 0 0 0]||n]| [We
0o 0 1 0 0 H 0] /|p]| [Presr
J K o L M o —J||yl=]|o0 3.24
o N 0 0 1 0 o0]fp Py
0 0 0 0 0 1 0/]|hy| |k
B @ 0o ¢ o o -Bllpl lLg

3 See reference (Brekke, 1984, p. 79) for full derivation
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Table 3.1 Turbine Characteristics

Turbine .. Turbine ..
Charactristic Definition Characteristic Definition
B 0.5(1—Q,) K Qn + Ey
1+Eg
C
Qy L Qy
] 3_En_(l‘|'Eq)'Qn M B 1
2-(1+Ey) (1+Ey)

The turbine characteristics are presented in Table 3.1. These turbine characteristics have
to be established from the turbine characteristic/hill diagram for the relevant turbine. The
static turbine characteristics are assumed to be valid in the region from 0.005-6.0 rad/s,
which is a typical range for hydropower governing analysis (Brekke, 1984). Thus the
characteristics (Q, Q), E,and E;) of the matrix equation can be found by their respective
linearized equations*.

9o (aQ/ *Q>
= 3.25
0

" Qo 'm \dn/ n

_o% (99/°Q
Q, = 0 v \av/ v ) 3.26

3.27

o Qo H (077/ *77>
T JH, @ \9Q/ Q)

g - Moy H (677/ *n>
T JHy n \on/ "n)

3.28

Note that in some literature the two last equations are also multiplied by the efficiency
relation. The author has not included this ratio as it complicates the model and will have
little influence on the overall results (Brekke, 1984). Figure 3.3 illustrates how these values
can be extracted from the characteristic diagram of the turbine.

4 From reference (Sand, 1999). The subscript “*”” denotes best efficiency condition and the “0” subscript imply the
respective steady state values.
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Figure 3.3 Turbine characteristics diagram (Xinxin & Brekke, 1988)

The primary task involves the linearization and extraction of the differentials in the
characteristic equations. The hill diagram displays the dimensionless quantities #rp and
QEp, which are defined as follows:

Ny = -2 3.29
Vg H
Oy = —2 3.30
Dz [g-H

However, in the characteristic equations Q = Q/vVH, thus due to the fractions, the

constants will cancel. For valves and Pelton turbines QQ, = 0. It should be noted that when
E, = E; = 0 and the relation K; = y/y. is included, the turbine equation (3.24) becomes
equal to the valve equation (3.14). If the turbine guide vanes or valve is locked (y=0), the
central row and column of the matrix is cancelled, leaving only the throttling equation
(3.11) with K,=2. Based on these considerations it is obvious that the turbine equation
can be regarded as a complete representation of any linearized point obstacle in pipe flow.

Pelton turbines and valves with atmospheric pressure on one side have a flow rate
downstream that in principle is equivalent to water pouring into a surge shaft pond. If ¢,
represents the flow into the “pond” and the outflow of the Pelton equation /g = 0 (zero

16



pressure downstream), then the last column of the turbine/valve matrix must be zero.
Further, by flow continuity, the turbine inflow must equal the flow rate out of the turbine,
gr.=-q». If the surge shaft equation (eqn. 3.15) is included the flow rate out of the pond

becomes:

1 au SHoAeqy
— _hL _ —

_ __veqv — 3.31
> ayy 0, R — qr

Thus the matrix for a Pelton or valve with an atmospheric downstream pressure can be

represented by the local structure matrix equation (Brekke, 1984):

1 d 1
T
2 ay
1 hL qi
0 = 0 Ay | = [vex 3.32
q h‘R dr
1 ou SHyAqp
ay Q, |

The equations for the turbine, governor and generator were established in equation 3.24,
3.20 and 3.21 respectively. These can be integrated into one matrix equation. This local
system structure is composed of six nodes, which can be integrated in one structure
matrix (Xinxin, 1988):

—B —-Q 0 —C 0 B1rh1 T4 -
0 Kn E F 0 0 n Nyef
0 0 1 0 0 Of [pr|_ |Pres 3.33
J K o0 L M —j|ly 0 ’
0 -T,s 0 0 1 0]p Py

B @ o0 —-c o Bllnl Llgqg .

If an ideal turbine is considered and Pradjustments are neglected the equation is reduced

to:

B —Q —C 0 B7rh
0o K, F 0 0]]|n
Jj kK L M —||yl=]o0 334
0 -T,s 0 1 0]]|p

ls ¢ -c o Bllnl lg

The turbine characteristics applied are taken from best point measurements. For

ar

=<

completeness automatically updated linearized values from a turbine hill diagram should
be included in the simulations program.

17



3.2.1 The turbine characteristics algorithm

The turbine characteristics (Q, Q,, E, and E,;) must be determined in order to propetly
represent the system behavior. To the authors knowledge graphical methods are generally
applied in order to extract empirical values for these characteristics. The graphical method
is illustrated in Figure 3.3 for the mentioned characteristics. The operating point of the
turbine is partially linearized to determine the constants. This process requires extensive

data on the relevant turbine in addition to a manual procedure for each operating point.

An algorithm has been designed in order to extract the turbine characteristics more
efficiently. The algorithm is designed to take field or laboratory measurements and plot a
hill diagram before differentiating the surface with respect to various directions. Finally
the differentials at the steady state condition are determined. The procedure will now be
explained in further detail and it is displayed on the flowchart in Figure 3.4.

Start |

Define experimental turbine
flow, rotational and efficiency
values

Qed ¥

Med

Ly

run importdata.m > run importdata.m

v

run importdata.m

v

interpolate each line and
define nurb positions

Turbine_char_routine.m

Define operating settings

[n Qed Med] — turbine_data.td

Y

interpolate between lines

k 4

Define directional vectar

Y

Differentiate along the
directional vectors

Return turbine

characteristics

Figure 3.4 Turbine characteristics routine
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A text-file with turbine data for rotational speed (INuj), (Qu) and hydraulic efficiency (74,
at a range of guide vane openings (Y), is produced from turbine tests. A Matlab file then
incorporates this data into a set of matrices. The three dimensional lines are interpolated
and stored in the Matlab format for “Non-Uniform Rational B-Splines” (NURBS). The
routine applied for creating and manipulating the surfaces is named
“Turbine_char_routine.m” and is supplied in Appendix C.

The routine interpolates the measured points and creates surfaces between the various
constant guide-vane-angle lines. The plot of the surface between two guide vane angles is
shown in Figure 3.5. Since the interpolated characteristics are stored in nurb-format the
directional derivatives anywhere on the surfaces can be determined. The inputs are values
for N and Q. points to the position on the surface for each differential direction.
Vectors in the direction along each axis are then defined and the angle between the vector
and the derivative at the point is generated. The directional derivate for Q,, E, and E, can
then be determined. The author did not succeed in developing a consistent procedure to
define the derivative along different guide vane angles. The identity Q, is for that reason
not determined automatically with the current procedure. For the analysis in this thesis
turbine identities were available and application of the turbine characteristics routine was

not required.

W
\& I i \\w

\\$ \\w
\g\\\ W
)

%\\\ N
\ g&\\\\\\\\\\\\\\\\\\
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Figure 3.5 Surface plot, Y = 5-6deg
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4 Matlab program

A Matlab program was developed according to the structure matrix theory presented in
chapter 3. The algorithm layout is presented by the flowchart in Figure 4.2. The general
hydropower system modeled by the algorithm is shown in Figure 4.1 below.

@ Turbine
® T-joint
V' Free surface

——]
Figure 4.1 General hydropower system

4.1 General description

The program is general with respect to the system geometry. The response is plotted at
discrete frequencies throughout the spectrum relevant for hydropower systems (i.e. 0.001-
10 rad/s). In order to capture all details and create a continuous plot of the frequency
responses, ten thousand logarithmically spaced and discrete frequency disturbances are
simulated. This high number of discrete points was selected in order to avoid step
adaption or acceptance criteria in the friction routine (chapter 5). The overall simulation
algorithm is presented in Figure 4.2 and the inner loop determining the friction is
presented in Figure 5.2.

4.1.1 Input

The user has the option of including zero, one or two surge shafts upstream and zero or
one surge shafts downstream the turbine. Throttles can also be simulated at common
locations in the system. Dimensions and parameters of all elements must be entered prior
to running the program. However the geometry, turbine parameters and governor settings
of some hydropower systems are already included. These are initialized by the program
switches “system geometry” and “Turbine type”>. The response type and friction model

> Governor settings are included in the latter
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also have to be selected prior to initializing the program routine. For reasons that will be

discussed later inputs for adjustments of angles are also available for the user.

The disturbance amplitudes were chosen to be 5% of the nominal values of the flow rate
in order to justify the linear assumption in the frictional terms. This was implemented by
setting the vector input to 1, while reducing the flow rate in the iteration (Qpmios in Figure
4.2) to 5% of nominal flow. The disturbance is implemented to the variable in the flow
matrix (q) that is indicated by the switch “response type”.

4.1.2 Output

The switch “response type” in the input switches on the position of the pressure head
matrix (h) that is stored during the program iteration. The pressure, rotational speed and
power responses can be plotted. The gain and angle of the response is determined and
can be plotted in a Bode, Nichols, or frictional damping plot.
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Figure 4.2 Matlab program flowchart
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4.2 System stability

Some common definitions of the stability of a hydropower system must be established.
The system block diagram and the related transfer functions are important tools for this
purpose. A general block diagram representation of a hydropower system is supplied in

Figure 4.3.
Pe
Nref . An Go(x;z)nor Y Tiﬁig;i?d P S AP Ri(r){earttiizg n
C(s) )
D(s)

Figure 4.3 Block diagram of a hydropower system with feedback

An equation relating all blocks of the hydropower system is:

An 1

Moy 1+ G()C()I(s)D(s) +

N(s) =

For a simple hydropower system with an open loop (i.e. D is equal to zero), the transfer
function becomes:

1+ Tys 1-T,s 1

: : 4.2
b;.T;s 1+ 0.5T,s T,s+ by

A(s) = G(s)C(s)I(s) =

In this instance A(s) represents the systems isolated response. If a disturbance is
introduced into the system, it is of interest to investigate whether the system will stabilize

or if a continuous oscillation will establish (instable system).
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4.2.1 System stability criteria

The dynamic process can be modeled by analyzing the response to various system
disturbances. When the system is linearized around the steady state operational point the
transfer function of the system can be obtained. If a disturbance is applied over a range of
frequencies w/<w<w: the system response can be analyzed. A sine-wave disturbance on a

system with a magnitude of yo has the Laplace-transformed input:

(5= D9
P 43

If the process transfer function is given by H(s), the system frequency response is
u(s)=A(s)'y(s) and the inverse Laplace transform of u(s) returns:

u(t) = yolh(jw)lsin(wt) + 2h(jw) 4.4

The function h(jw) is the system frequency response and Zh(jw) is the phase shift (or
phase angle). The absolute values of h, |h(jw)| is the amplitude ratio of response to
disturbance, which is an important parameter in frequency analysis.

In Figure 4.3 the disturbance Pe from the electric grid will influence the stability of the
hydropower system. The bottom line connecting n to nrr and An is the feedback of the
system, which signifies that An is adjusted to compensate for a change in n. The aim is to
ensure that the response to a disturbance brings the system to equilibrium without over-
or undershooting. This implies that the M-block in the reduced system in Figure 4.4 takes

the value 1, so that neer= n.

fref n fref 1 a

A(s) M= A0 -

Figure 4.4 Simplified block diagram representation

The absolute stability criterion, known as the Nyquist criterion is given by:

¢th(jw) > —180and |h(jw)| < 1 4.5
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When the turbine’s guide vane opening is reduced to reduce the power by reducing the
flow rate, the pressure at the turbine is increased. Thus, if the turbine opening is reduced
too rapidly, the pressure might increase significantly, causing an increase in power. Thus,
rapid closing of the turbine might cause an increased hydraulic power, which is a result
opposite to the intention of the control action. This is a practical effect of the -180° phase
lag requirement.

A common method of stability visualization is to illustrate the system frequency response
in Bode-plots. A Bode plot graphs the transfer function of a linear time-invariant system
versus frequency. It is plotted with a log-frequency axis to display the frequency response.
In order to assure system stability phase and gain margins are notions that characterize
the stability of the system. The phase margin, ¥, signifies the separation from -180° of the
phase curve at the gain crossing frequency. The gain margin A& is the separation in dB
between 0 dB and the amplitude curve when the phase curve crosses -180°. A common
stability criterion is:

Y > 45° and Ak > 2 (= 6dB) 4.6

The closed loop system identity in Figure 4.4 can be simplified to M = |N|-|A]. For
frequencies below the crossing frequency M=1, while at high frequencies M=|A].
Around the crossing frequency the value of |N| often peaks, which implies inefficiency
in the control feedback. Thus, to ensure an efficient feedback response, the following
criterion applies:

IN|max <4 — 6dB 4.7

4.2.2 Transfer function program

A simple program solving the transfer function response and plotting it in a Bode plot
and root lotus was established. The basic program is based on transfer function solutions
and is thus inelastic and frictionless. The program utilizes the inherent Matlab functions
for plotting the mentioned graphs (Matlab, 2012). The program is used to study some
general stability phenomena more efficiently than the iterative simulation program. The
program is supplied in Appendix E.
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5 The frictional damping factor

The frictional damping factor is of great importance to the agreement between the model
and measurements. The aim of the model is to simulate an oscillatory behavior, which
complicates the frictional factor compared to steady state factors. Frictional damping is
generally a function of flow rate (g), frequency (w), cross-sectional area (A) and friction
factor (f) (Brekke, 1984). Obtaining a function that satisfactorily models the steady-state
and oscillatory damping factor is a challenging task. The theoretical friction equations
applied in this section are based on literature by Brekke, Jonsson and Swart (Brekke,
1984) (Brekke & Xinxin, 1987)°.

The Darcy-Weisbach head loss equation is commonly applied to calculate the steady-state

trictional influence in pipe flow:

_ fLv?
~ 2gD

An alternative to this equation is the Manning’s formula, which has traditionally been a

5.1

hy

preferred friction identity in open-channel flows:

2
hy = Q—i/ 5.2
MZR, 3A
In order to determine the Darcy-Weisbach friction factor (/) the Moody diagram can be
applied. The wall roughness (€/D) and Reynolds number are inputs and the friction
factor returned. The explicit Haaland formula is used to give an initial guess for the
friction factor:

1.11

1 E/D 6.9(rmuD)
Ny 1.8log (3.7> + 290,

£/D is the relative roughness (equivalent sand grain diameter) of the pipe or tunnel. Note

53

that the denominator of the last term on the right hand side the Reynolds number is made
explicit by an expression for Q»

¢ In Brekke’s doctoral thesis (Brekke, 1984) some of Jonsson (Jonsson, 1980) and Swart’s work is also summarized
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5.1 Browns Model

Brown established one of the many theories for expressing friction forces in oscillatory
turbulent flow (Brekke, 1984, p. 29). His theory is based upon the ratio of energy to
velocity flow distribution across a circular pipe. The proposed expression for the damping
constant K, is divided into a static and dynamic term, according to the following equation:

42Q,
D3

The ratio of energy to velocity distribution, C, is given by the equation in Figure 5.1

K = Kg + iK; =

+(C - Djw 5.4

below.
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Figure 5.1 The ratio C

The unsteady term Kj is not valid for low frequencies, thus it is set to zero for frequencies
below 0.1 rad/s. The ratio C is interpolated between the marked points in the graph of
Figure 5.1 in the Matlab code supplied in Appendix A. The frictional influence on large
pipes is reported to be too small with Brown’s theory (Brekke, 1984). In particular, the
additional friction arising in oscillatory flows at high Reynolds numbers is underestimated.
For the purpose of stability studies, Browns model will influence the system to be less
stable than it in reality is. Thus Brekke (1984) developed the model that is presented in

the next section.

27



5.2 Brekkes model

As in the previous friction model, the wall shear stress can be separated into two major
parts, one arising from steady-state flow, the other from dynamic oscillations:

T= Tgq+ T;
The dynamic shear stress is related to the shear force according to the following equation:

1
_ _fd Q0|CI|

According to both experiments and theory there exists a phase shift between flow

oscillations and frictional shear force:

fa = |fd|COS(T[/8) + ilfdlsin(”/B)

Now the theoretical expressions for dynamic frictional force can be established.
According to Swarts’ theory it can be expressed as:

5 977 0.194 W
= e > + 5.213 - (AK — ) if AK — < 0.64
fd TQO|Q| f rQ0|CI| 5.5
= 0.4725 (AK ) if AK, ——— > 0.64 5.6
Ja= o) Ao

Inverting the first equation, and applying the classical Darcy-Weisbach friction factor for
fa (.e. f==fpw), one can obtain an explicit equation for the “fictitious roughness”, K

K, = function(4, w, f, Q,|Gl)

Now, one can return to the initial equation to establish a complete model of the frictional
damping, K. Hermod Brekke proposed the two-term approach with a linearized steady-
state and oscillatory term super-imposed respectively as presented below (Brekke &
Xinxin, 1987):

D 1 1
K =Kp +iK; = F[Qtf + EQ0|qn_1|fdcos(7T/8) + iEQo|Qn—1|dein(n/8) 5.7

Here Q) is the steady state flow in the regarded pipe, A is the cross-sectional area and fis
the Darcy-Weisbach friction factor. It should be noted that f; is not equal to f in this

7 Presented in (Jonsson, 1980).
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equation (as it was assumed in the equation for K, above). The significance of the real and
imaginary parts can be explained as the phase shift between flow oscillations and
frictional shear force. The phase n/8 was applied as it proves to fit experiments well
(Brekke, 1984).

Brekke applied a refined frequency stepsize to avoid large jumps in the absolute flow
values. Another proposed approach is to use ¢,/ as long as it does not deviate more than
10% from g, For larger deviations an averaging of the two values is then introduced. The
first approach was applied in the program, as it mitigates iterations in this stage of the

procedure.

5.3 The frictional subroutine

The program routine was attempted with a direct explicit solution based on Haaland’s
formula alone, as well as the entire moody diagram routine. The moody program routine
(see Appendix A) iterates to find the Darcy-Weisbach friction factor, - The Haaland
formula (equation 5.3) is a direct method for determining the friction factor. The Haaland
formula was found to be more than two orders of magnitude faster than running the
entire moody diagram routine (e.g. 5ms compared to 0.02ms). However, since the number
of iterations applied in the program is fairly low, the complete Moody routine was applied
for better accuracy.

The author did not implement Brekke’s frictional model successfully in the computer
model. Thus Brown’s method was applied to the model and the effect of its
implementation will be discussed in chapter 6. The complete frictional subroutine is

organized according to the flowchart of Figure 5.2.
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Figure 5.2 Simulation flowchart for determining system damping




6 Program Validation

This chapter aims to validate the hydro power simulation program. A validation of an
catlier version of this program was performed by the author (Vogt-Svendsen, 2011). The
current validation is performed by comparing the simulation results to measurements and
externally produced simulations. Previously published results from hydropower systems at
Kongsvinger and Tafjord are compared to the results produced by the simulation
program. The two hydropower plants constitute significantly different systems.
Kongsvinger has a short water conduit, large flow rate and a Kaplan Bulb turbine. Tafjord
has a long water conduit, low flow rate and a Pelton runner unit. The measurements and

information on the two hydropower plants are based on Brekkes investigations (Brekke,
1984).

6.1 Kongsvinger hydro power plant

The Kongsvinger power plant utilizes a 9.5m net head in the river Glomma. Production
started in 1978, with one Kaplan Bulb turbine at a rated operating flow of 108.5m3/s,
delivering 9.2MW power (NVE, 2012). The author chose this power plant since it is one
of the few power plants with available frequency response measurement data for
comparison. Hermod Brekke also studied this power plant, thus his stability analysis is
also available for comparison (Brekke, 1984).
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Figure 6.1 Kongsvinger power plant layout®

8 (Brekke, 1984) The numbering of the original figure is modified.
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The layout of Kongsvinger power plant is depicted in Figure 6.1. The related dimensions
of the waterways are supplied in Table 6.1. The elements are incorporated in
correspondence to the elements and node numbering shown previously. In Table 6.2 the
turbine characteristics of the Kaplan Bulb turbine are given, along with characteristics

related to the governor.

Table 6.1 Main dimensions according to Figure 6.1

Element Nodes L (m) A (m?)

1 1 4 12 150
2+3 2 4 10 39

4 4 6 6 106
5 6 7 15 148
6 7 8 14 28.6
7 8§ 9 4 51

8 8§ 3 20.6 127
9 8 9 1 127

A frictionless simulation was run with the above inputs along with a plot of the reported
measurements in Figure 6.2. This is a plot of the power response to guide vane exitations
as the pressure response amplitudes are challenging to record. A large spike arises in the
Bode diagram at above 0.8 rad/s. This corresponds well with the theoretical rule-of-
thumb formula (eqn. 2.17) for the draft tube shaft, which returned a frequency of 0.896
rad/s. The oscillatory flow in the shaft was eliminated when the shaft surface area was
increased to around 950m?2.

Table 6.2 Turbine and governor settings

Turbine Governing
characteristics characteristics

Q. 055 Ta 15
Q, 046 T. 23
E, 0113 b 26
E. -0.18 by,  0.041
Ky 1.0 Ko 0
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Hermod Brekke (1984, p. 160) reported that the measurements showed somewhat larger
(negative) angles. This was explained by the flexibility between the guide vane blades and
the registered movement of one of the guide vane levers. This deviation was not apparent
when comparing the measurements to the current simulations and they are likely not

significant.
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Figure 6.2 ply plot and measurements for Kongsvinger

The Brown friction model was introduced in the second simulation. The damping
constant K is plotted with respect to the frequency in Figure 6.3. The damping influence
shows, as expected, increased frictional damping with increasing frequency. This is due to
the growing absolute value of the oscillatory term of the damping representation. It is also
apparent that the surge shaft damping holds a local peak at the surge shaft’s resonance
frequency. An increase of flow rate, and subsequently the Reynolds number, is expected
in the surge shaft at the resonance frequency. According to Browns equation, such an
increase will lead to a larger static friction. Thus, despite a small decrease of the ratio C'in
the unsteady frictional term, the damping factor will show an overall increased value at
this frequency. It should be noted that the frictional damping does not influence the pipe
flow significantly due to the large inertial forces of the mass flow.

The simulations include elastic effects. However no water hammer effect is apparent in
the stability study. Due to the relatively short water conduits, an inelastic model would
therefore also capture the mass oscillations. However, elastic effects should be included in
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general stability analysis since the elasticity has a strong destabilizing effect on high
frequency oscillations (Xinxin, 1989).

When the frictionless and the friction plots are compared the influence of the friction
model is most apparent at the resonance frequency. The response is dampened and the
overall response is in close agreement with the experimental results. The phase of the
response is pushed to slightly smaller angles (in absolute terms). In the gain response at
the resonance frequency the resonance peak is a dampened trough, not an elevated gain as
in the frictionless model. This is in line with the experimental values, which show a slight

trough at the resonance frequency.

15—

Frictional damping

05—

| | | R
10" 10 10
Frequency, Hz

Figure 6.3 The frictional damping constants in the draft tube gate shaft

% The elastic effects are appatent in the study of Tafjord (chapter 6.2) due to the long high head penstock.
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Figure 6.4 ply plot including the Brown friction model

Finally the stability analysis of the Kongsvinger plant is presented in Figure 6.5. There
were no experimental results for this analysis, thus it was compared to Hermod Brekkes
simulations!’. Note that to correct for the quadrant of the phase shift angles, n radians is
subtracted for certain plots. Matlab’s handeling of angles beyond * n radians made both
the unwrap function and an angle adjustment necessary in order to produce results
according to convention. The unwrap function corrects for angular jumps of 7 radians for
neighboring frequencies. The author has not identified a method that automatically
produces these adjustments. The same adjustments are often required in the post-
processing in SimulLink. Thus such adjustments are likely not manageable in Matlab.
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Figure 6.5 n/nref stability analysis

19 The plot from Brekke’s work is supplied in Appendix D for comparison.
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The Kaplan Bulb runner causes the system to have a negative self-governing. The
negative self-governing combined with zero permanent governing statics causes the phase
response to originate from -270 degrees. In the case of permanent statics the phase
response origin would be moved to -180 degrees. In Figure 6.6 a Nichols plot of the
stability analysis is presented. The Nichols plot shows, in a compact manner how the

governor is in effect up to fairly high frequencies. The stability margins are sufficient and
the crossing frequency is close to 2 rad/s.

|A| dB

g Lo e e T L \ o L

80 160 140 120 100 -80 -60 4 20
ZA deg

Figure 6.6 n/nref stability analysis
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6.2 Tafjord hydropower plant

Tafjord is a powerplant on the opposite end of the scale compared to the Kongsvinger
plant. The plant has a high head of Hyp = 816.2 and a small flow rate of Qo = 8.8m3/s
generating 64MW at a rotational speed of 500rpm (Brekke, 1984). In order to compare
the system dynamics simulated in the Matlab program to the measured values, some
simplifications must be made. The system layout is presented in Figure 6.7 below along
with tables supplying an overview of the most important system parameters. The intake
gate shaft was not included in the simulations. The frictional influence of expansions and

contractions in head race tunnel were simplified.

Figure 6.7 Tafjord power plant layout™

Table 6.3 Geometrical data related to Figure 6.7

Element Nodes L (m) A (m?)

1 1 4 7567 11
2 2 4 7 130"
3 2 4 50 17.6
+ 4 6 176 1.5
5 6 7 10 1.5
6 7 3 50 10
8 7 3 50 10

*Aeqv 1s given by eqn 3.16

1 Based on layout in (Brekke, 1984), numbering modified
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Table 6.4 Tafjord turbine and governor characteristics

Turbine Governing
characteristics characteristics
(Pelton)
Qn 0 Ta=Kp/K; 10
Qy 0.7 T, 7.19
Eq 0 be 0.332
Ea 0 bp 0
Kq 1.0 Ka 0

The equivalent area indicated in Table 6.3 is related to the air accumulator surge shaft in
Figure 6.7. An air accumulator is an enclosed surge shaft filled with pressurized air. The
equivalent area is estimated by equation 3.76:

m? = 0.0544m?

[ 1 1.25-734

A =
eav 130 * 50

In order to reduce the complexity of the system to the algorithm of the computer
simulation the tunnel area was estimated by a length-to-area weighted average of 10.94m?2.
The total tunnel length, from intake to the air accumulator is 7567m. The Pelton turbine
was modeled by introducing simple characteristics according to Table 6.4. The rotating
machinery has a time constant, T, = 7.19, as indicated in the same table. /s and T, were set
to 0.332 and 10 respectively to match the settings in the pressure response experiments.

The pressute response h/y is shown in Figure 6.8 and the experimental results are
included for comparison. The gain plots correspond well with the experimental results,
and are almost identical above 0.1rad/s. The overestimated amplitude of the simulations
below 0.1rad/s indicate that the friction has larger influence on the pressute response at
low frequencies. One noticeable characteristic in the plot is the corner that appears right
above 0.2rad/s, which cotresponds to a sharper peak in the phase plot at the same
trequency. The surge shaft “rule-of-thumb” frequency (equation 2.17) was calculated to
be at 0.51rad/s, which suggests that the rough calculation overestimates the frequency
somewhat in this case. Frictional damping in the long headrace tunnel is likely the main
reason for the poor coherence between the rough estimate and the

simulation/measurements.

The phase plot has the same characteristics as the measurements. However, the simulated

phase lag is overestimated throughout the entire frequency spectrum. Brekke reported
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deviations in phase angle compared to his theoretical results!?. This deviation was
explained by the small amplitudes used in the input signal to the servomotor.
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Figure 6.8 hfy response with Brown friction model*®

The frictional damping factor, K| is plotted in Figure 6.9. The real part of the friction
constant is highly influenced by the oscillations in the system and the magnitude oscillates
around fairly consistent values throughout the frequency spectrum. This is expected as
the real friction is primarily related to the flow rate in the surge shaft. The influence of the
imaginary part of the friction contributes to a total increased frictional damping at higher
frequencies as it is primarily frequency dependent. The frictional plot reflects the
trictional dependence on primarily flow rate, tunnel geometry, as well as frequency.

In the previous case at Kongsvinger an inelastic model would have been sufficient to
show the major system characteristics. However, for the high head and long conduits at
Tafjord the full elastic model is required to incorporate the physical water hammer effects

and high frequency dynamics of the system.

The n/n stability is plotted in Figure 6.10. The surge shaft is exceptionally important to
the hydropower system at Tafjord. Due to the surge shaft the crossing frequency is fairly
low, which will affect the possible stable transient response of the system. The phase
margin is well within the requirement; however it is defined by the air accumulator

12 (Brekke, 1984, p. 146), the measurements show a systematic error of 00-20° less negative phase shift compared
with expected values due to experimental details.
13 The phase plot is shifted by -180 degrees
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frequency. The phase margin will therefore likely depend highly on the condition of the

air accumulator. The n/n.f plot generated by Brekke is almost identical, with slightly

lower stability margins!4. It should be remarked that air accumulators are rare in

hydropower systems. The air accumulators often depend on quality rock and their

dynamic behaviour is not necessarily easily predicted.
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Figure 6.10 n/nref stability analysis

14 Brekke’s plot is supplied in Appendix D for comparison.
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6.2.1 The damping factor

The long water conduits of the Tafjord waterways are ideal for evaluating the frictional
model of the simulations. The frictional head loss was reported by Brekke at the Tafjord
power plant along with the Manning numbers for the water conduit (Brekke, 1984).
€/D= 0.007 and 0.0001 for the head race and pressure tunnel respectively was used in the
friction model, as a base for determining the friction factor (f).1> In order to tune the
frictional influence of the pressure response at Tafjord, the tuning parameters a,f and y
were added to equation 5.4

42 _
= +a(BfC+y—-1Djw 6.1

The effects of the three variables are shown in Figure 6.11. When the three variables in
equation 6.1 were increased, the gain of the response was flattened, while the phase
response was shifted up and to lower (absolute) angles. The shifted phase of the response
is mainly due to the earlier mentioned discrepancies in the physical measurements. The
magnitude of the resulting damping mainly influences the gain response.

The gain below 0.1 rad/s is overestimated by the simulation. However, if the steady state
frictional term in equation 6.7 is reduced by 30%, the gain follows the measurements
smoothly. The gain of the original frictional damping matches the experiments fairly well
and the adjustment would be purely empirically motivated. Such an adjustment would
depart from principles of conservative simulations and could only be valid for similar
systems. For these reasons the manipulation can hardly be justified if the program is to be
used to evaluate the stability of new hydropower projects. Thus the author decided to
persist using the Brown friction factor in its original form, despite the minor
discrepancies. This friction model analysis concludes the validation of the simulation

program.

15 This roughness was calculated by equation 5.1 and 5.2 based on the reported Manning numbers throughout the
tunnels.
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7 Model Application

The model validation was presented in the previous chapter. This chapter will attempt to
apply the simulations to the proposed new power plant at Aldal. Stud. Tech. Remi Stople
has been studying the time responses at the proposed new hydropower system for BKK
and has supplied the information about Aldal'c.

7.1 Aldal powerplant

Aldal powerplant is a proposed new powerplant in Aldalen 50 km from Bergen. A
complete new water conduit along with a powerhouse is proposed. A stability analysis of
the system layout is desired.

The tunnel at Aldal powerplant originates at Grendalsvannet (Hy=198,1) and is channeled
through a 30m? tunnel, 5700m down to Samnangerfjorden. A Francis turbine unit at
61MW, with a rated flow rate of 35m3/s is proposed. A surge shaft is proposed 1191m
upstream the Francis turbine unit. The system layout is shown in Figure 7.1.

L=150
A=20
~— _ As=102
~

Grondalsvatnet
1.=4470

A=30 Francis
L=1191 35m3/s
A=30 =50 ® =660 i Samnangerfjorden ‘
A=6.15 A=35

Figure 7.1 Simplified system layout of Aldal

Prior to modelling Aldal powerplant some simplifications and the key system parameters
must be determined. The stream intake, shown by dotted lines in Figure 7.1 above was
neglected. The intake will act as additional surface to the surge shaft and thus add system
stability despite the additional oscillation between the two branches. The water conduit

time constant, Tw=1,36s, and the Thoma citerion area is 16,04 m? (based on a 50% safety

16 The projecting by BKK at Aldal is still under progress and the information is thus based on preliminary work.
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factor and M=35). First an estimate of the governing was executed by applying Stein’s

empirical governing formulas to generate the Bode diagram plot in Figure 7.2 (Nielsen,
1990):

Ty=3-T, [
T

=262 7.2
be=2.6-7"

The stability margins based on Stein’s formulas do not fullfill the Nyquist criterion (eqn.
4.8). In particular the phase margin deviates significantly. However, from experience
(Brekke, 1999) it is reported that the criterion can be reduced to 30° and 3dB if the system
is connected to a seperate ohmic network (which is the case for Aldal). The governor has
to be adjusted in order to fullfil these limits. The 4 and Ty setting envelope is calculated
based on the transfer function output!” in equation 4.2 and Appendix E and presented in
Figure 7.3. It is apparent that the phase margin is the limiting identity in this case. T;/=8
and £~=0.8 were chosen and plotted together with the values from Stein’s formula in

Figure 7.2.

Notice that the self-regulating effect of the Francis turbine is included, as the phase lag
originates from -90 degrees. The self-regulation has a positive influence on the system
stability as the flow rate will decrease with increased rotational speed. Permanent speed
droop is however not included as it will only have a positive influence on the system
stability. The dotted lines represent the closed-loop response |N|. With the adjustments,
the blue line shows that the closed loop overshoot around the crossing frequency is
within the requirement of |N|max < 4dB. It should be noted that by implementing the
suggested governing parameters, the frequency of the open-to-closed loop crossing is
fairly low. The closed loop system governing is efficient below this asymptotic crossing
frequency. Above the crossing frequency N follows the 0 dB line and the open loop
identity M = | A].

17 'The stability margins based on the transfer functions at Aldal were calculated through a Matlab loop for the entire
range 0.1<b.<2 and 1<T4<14.
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The turbine characteristics are not available, thus the values available for the similar
powerplant at Jorundland are used to represent the turbine (Brekke, 1984). The choice of
characteristics is justified by the similar speed numbers of 0.41 and 0.43, at Jorundland

and Aldal respectively.

Table 7.1 Turbine characteristics (Jgrundland) and governing of Aldal

Turbine characteristics, Governing

Francis characteristics
55MW, 265m, 23m3/s

Qn -0.55 Te=Kp/Ki 8

Qy 0.9 Ta 6.5

Eq 0 by 0.8

Ea 0 bp 0

Ky 1.19 Ka 0

A stability study of Aldal was performed and is presented in Figure 7.4. The smoothening
“unwrap”’-function was found necessary for presenting the phase angles at high
frequencies, where the water hammer effects become significant!8. This disables the
presentation of waterhammer effects on the phase angle, which does not seem to
influence the stability and thus only crowds the presentation in this case. The surge shaft
appears at around 0.025rad/s, which matches the estimation by the rule-of-thumb

equation (eqn. 2.17) perfectly.

The full-friction simulation is compared with a frictionless simulation in the same figure.
The stability margins of the two simulations do not differ significantly and both are well
within the stable region with the governing characteristics of Table 7.1. The gain and
phase margin of the full frictional model is 17 dB and 67 degrees, respectively. The
friction model show some oscillatory behaviour in the asymptotical region at the surge
shaft resonant frequency. This effect arises from both the real and imaginary part of the

trictional damping (K) where the surge shaft level has the highest amplitude fluctuations.

18 In simulations without the “unwrap” function, the phase response alternate between -180 and 180 degrees due to
the rapid changes arising from the waterhammer effects. As this is only a matter of convention, the function was
utilized. Information about the function is available in Matlab’s documentation (Matlab, 2012).
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The effect of waterhammers are apparent on the gain plot and do not influence the

stability of the system.

The surge shaft stability boundary with respect to surge shaft surface area with the
proposed governing settings was found to be around 1 m?2. This stability boundary is well
below the Thoma criterion (Ar=16 m?), which is expected as the criterion is conservative.
Based on the simulations the location and surface area of the surge shaft is well within the

stability bounds for the proposed power plant.

The lowest frequency where the waterhammer appears is just above 1 rad/s, which is
close to the estimated frequency of 1.02 rad/s based on the reflection time (1,=6.15s).
The crossing frequency with the proposed governor is well below the waterhammer

frequency. Thus the waterhammer will not destabilize the system control.

In Figure 7.5 the rotational speed response upon load variations is shown. The response
is dampened, but the ratio is about -1.6 dB at the crossing frequency. The requirement for
stable operation is often set to 0 dB. Nonlinear movements, friction and uncertainties in
the control mechanisms are not accounted for, but can easily be included through
experiments. As the information available and the geometries supplied are limited this
concludes the application of the developed simulation program. In chapter 8 the control

system of hydropower systems will be investigated closer.
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8 Hydropower governor control

Hydro-electric power plants are multivariable, non-linear and non-stationary systems
often exposed to unpredictable load. The characteristics of the system vary significantly,
requiring an efficient and reliable controller for stable operation. The task of adequately
solving the challenges related to hydropower governing is still progressing. This section
will present some of the proposed approaches and their application. The review is based
on the research overview in (Kishor, et al., 2007) and transfer function analysis.

Methods for improving stability of hydropower systems have been discussed in several
publications!®. One possibility is to dampen or eliminate the governor. However, within
the scope of practically possible values of T, and &, this approach will actually worsen the
situation. For power plants connected to large interconnected grids, the surge shafts will
always be stable. Some systems have even applied surge shafts below the Thoma criterion
for this reason (Xinxin, 1989, p. 101). In the following paragraphs some alternative
approaches to hydropower system governing will be investigated.

8.1 Classical control approach

The classical approach in linear controller modeling is primarily based on single-input and
single -output (SISO) control. The classical controls are mostly based on PID-governing
and graphical or tuning guidelines to set the parameters. The more advanced classical

methods are based on variable gain control through the root-locus method (Kishor, et al.,
2007).

A range of modern approaches to hydro power control have been proposed. The modern
approaches are often also suited for multiple inputs and outputs (MIMO). Some of these
are optimal control, adaptive control, projective control, robust control and nonlinear

control.

19 The publications discussed in this thesis are exerts from reference (Kishor, et al.,, 2007), (Xinxin, 1989), (Xinxin,
1989), (Herron & Wozniak., 1991), (Imsland, 2010).
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8.1.1 Water column compensator

In a few prior articles additional compensators have been investigated to extend the
governing stability. Such a compensator can be integrated as shown in Figure 8.1. The
compensator transfer function can take various representations in the block diagram.

Shen suggested this simple transfer function for a water column compensator (Xinxin,
1989):

—T,s
K(s) =
() (14 0.5T,,s + 0.1T?s?) 8.1
Compensator
B K(s) P
Nref E Governor Turbine.and P | AP R.otati.ng a
S‘ G(s) conduits O inertia
/ CE) 1(s)
D(s)

Figure 8.1 Water column compensator

An open-loop transfer function is established in equation 8.2. The transfer function is
based on general reduction of block diagrams and is derived in Appendix E.

(1+ Tzs)(1+ 0.5T,s + 0.1T)*s*) — b, T, Tys* p 1

P, 8.2
(beTys + b,)(1 + 0.5T,,s + 0.1T?s2) y T,s + b,

A(s) =

If the p/y-fraction is replaced by the conduit equation in Appendix E, the Aldal
hydropower plant can be represented by the root locus shown in Figure 8.2.20

20 The plot is generated by the code supplied in Appendix E
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Figure 8.2 Effect of water level governor on Aldal

Xinxin (Xinxin, 1989) mentions that the water column compensator should not be used
for hydropower systems with £,<0.6. At Aldal /,=0.3 and the system has a pair of
complex conjugates poles close to the imaginary axis. This cleatly affects the stability of
the system and adding a water column governor is in this case not advisable. In order to
implement this extra control feature to the simulation program equation 8.3 could be

applied.

K; 1+ Tys(1+ bK,y)
=K, +—+K,y=
Y P s wY b.Tys 8.3

8.1.2 Pressure compensator

Some authors have suggested that adding a pressure compensator to the control system
will improve the governing (Kishor, et al., 2007) (Xinxin, 1989) (Herron & Wozniak.,
1991). Herron and Wozniak proposed the layout in Figure 8.3, with an observer block in
the compensator feedback loop. This approach will be simplified somewhat to study the
effect of a pressure compensator at Aldal.
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Figure 8.3 Governor with integrated compensator

Xinxin (Xinxin, 1989) suggests that the general compensator filter transfer function
should take the form of:

—T15

8.4
(T,s + 1)(Tys + 1)

K(s) =

This transfer function of K(s) will act as a band pass filter, filtering out high frequency
and dc components. An important consideration is the interaction between the n-ner
teedback and the compensator feedback. The compensator must have a response that is
significantly quicker than the n-n.r feedback in order to avoid “competing” control

signals. The pressure feedback will add a term in the governor equation:

14 Tys(1 + b,Kyh)
thdS

8.5

K;
y=Kp+?+Khh=

The Bode plot and root locus of Aldal with standard governing and with a pressure
compensator is shown in Figure 8.4.21

2l The figures are generated by implementing the inelastic transfer functions presented in Appendix E Transfer
functions.
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Figure 8.4 Effect of pressure compensator on Aldal

The pressure compensator has little influence on the stability at Aldal. However, the root
locus in Figure 8.2 shows that the pressure compensator add an additional pole and zero
on the left half plane on the real axis. This will improve the transient response of the
system. The improvement shown by the root loci follows the observed improvements
reported by (Herron & Wozniak., 1991). Equation 8.5 can be included in the simulation
program by storing the value of the pressure head vector (h) at the turbine from the
previous frequency and applying it directly to the governor.

8.2 Optimal control (LQR og MP(C)

A large compromise with classical approaches is often the general parameter settings.
Optimal control seeks to find a “performance cost equation” and minimize its index
based on the internal set of performance objectives. The technique allows for flexible
creation of a performance equation which is well suited for MIMO systems. Two optimal
control strategies are Linear Quadratic Control (LQR) and Model Predictive Control

(MPC).

Linear Quadratic Control (LQR) is a simple approach for optimal control. No model is
required and a cost function with an infinite horizon is established. LQR is incorporated
with the same block diagram as presented earlier. It is a proportional control, but the
system is modeled based on the established function. The proportional matrix ensures
stable operation at all operating points.
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MPC is able to ensure that the control parameters stay optimal through an extended range
of operating conditions. MPC is also referred to as the constrained LQR and is organized
as shown in the block diagram of Figure 8.5. MPC is an optimal control design that takes
into account constraints on the system signals. MPC is a widely used technique in process
control, but has not been studied extensively for hydropower applications (Kishor, et al.,
2007).

Setpoints,
, . Measurements
constraints .
Governor u Turbine .and ) Estimator
conduits y
y
N AT N
| 3 8 o
I3 8zl |8
I Q..I n © A
IS S < 8
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Figure 8.5 Model Predictive Control (Imsland, 2010)

The model is typically obtained by linearization or by establishing system identification
based on measured data (Imsland, 2010). The method offers a prediction of a finite
system response and optimizes the future behavior at each time step.

One main source of inaccuracy in the controller is the linearization of nonlinear systems
(Herron & Wozniak., 1991). The sometimes significant uncertainties arising are related to
parameter changes, unmodeled dynamics, unmodeled time delays, sensor noise and
unpredicted disturbance inputs. The estimator seeks to filter noise from the measurement
by application of for example Kalman filters. System states that are not measured can also
be estimated by a feedback sequence between the estimator and model. The system model
processes the measurements and estimates the optimal settings. The final control action is
performed upon predictions after feedback between the governor and system model.

While requiring a customly made model, MPC is an intuitive control method. The
proportional control actions are based on interaction between the model and governor
optimization. Refering to Figure 8.5, ur = K-x; if K is a proportionality input and t refers
to the time step. The constraint settings are straightforward compared to most other
control methods. Boundary or “box” constraints are applied directly to u and x. Thus
MPC allows optimal system settings close to the operational boundaries. MPC can
thereby obtain satisfactory stability and optimal turbine performance is maintained over a

wide set of operating conditions.
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MPC requires a thorough understanding of the process in order to model the system and
define the cost function. Further investigations is beyond the scope of this thesis. MPC
control has not yet been studied extensively in hydropower plants (Kishor, et al., 2007).
However, with increasing issues related to hydropower governing, the method might
constitute a part of the future solution.
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9 Discussion

The simulation program validation and application has been discussed throughout the
previous chapters. The supereminent objective of the validation is to describe the abilities
and limitations of the simulations. Some last remarks on the simulations are therefore in
its place.

The Simulations of the Kongsvinger power plant showed excellent correspondence with
the experimental results. The n/ne.f response was close to equivalent to the results
produced by Brekke’s simulations. Thus it can be argued that the current simulation
program models the dynamics of short conduits well.

The Tafjord powerplant has a long and somewhat complicated water conduit. Some
simplifications where made to simulate the pressure response. The simplifications might
have influenced the resulting Bode plot to a certain degree. The major simplifications are
however conservative as the friction in bends and contractions are not included. The
deviations in phase response are to a large degree explained by the previously mentioned
systematic error in the measurements. A range of uncertainties related to the experimental
mechanics, the air accumulator interactions and unlinearities are not captured by the
simulations. The frictional damping of the model underestimates the real frictional
influence as it has been purposely held conservative. Overall, the simulations do however
capture the trend of the physical measurements. Viewed against this background the
open-loop stability analysis also reflects the dynamic situation at Tafjord well.

The proposed powerplant at Aldal is not compared to other sources and the mentioned
limitations should be regarded. The simulations suggest that the power plant is sufficiently
stable with the proposed governor settings and turbine characteristics. Since the turbine
characteristics at Aldal are not available the dynamical analysis is limited to operation at
the steady-state point.

The suggested alternative governing methods are limited to previously established control
strategies. The investigation suggest that the water column compensator is not adviceable
at Aldal, while the pressure compensator might give improved transient responses. Since
the modeling of these control strategies were limited to transfer function analysis these
results should only be considered as preliminary suggestions. The risk of relying on the
governor alone to obtain system stability has not been discussed in this thesis.
Considering the possible concequenses of severe instabilities this risk might on its own
motivate the design of inherently stable hydropower systems.
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10 Conclusion

A system model based on the structure matrix method has been implemented in a Matlab
simulation program. The program allows for simulation of hydropower systems with up
to two upstream and one downstream surge shafts. A method to incorporate the turbine
characteristics more efficiently compared to manual inputs was developed. Further a
frictional damping model based on Brown’s theory was included and the effect

investigated.

The simulation program was validated through comparison of measurements and prior
simulations at Kongsvinger and Tafjord power plants. The program generally showed
good coherence to the physical dynamics of the two systems. The frictional influence is
slightly underestimated, rendering the program a conservative measure of system stability

and dynamics.

The simulation program was applied to investigate frequency stability at a proposed new
power plant at Aldal. Based on the geometry and an estimated turbine model the
governor setting for a PI governor was proposed. System stability is achieved with the

proposed geometry at operation around the steady state point.

Three alternative control strategies have finally been suggested. In the case of Aldal, a
water column compensator is not adviceable, while a pressure compensator will likely
yield improved transient responses. Optimal control is an interesting alternative that,

while requiring more investigation, likely will give improved hydropower governing.
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11 Further work

In future development of the simulation program, the following should be considered:

Include a flexible matrix algorithm for complete geometrical freedom in the
implementation of hydropower systems.
Improve the user interface of the simulation program

Incorporate a more complete and complex electrical-hydraulic interface of the
system simulation.

Simulate dynamics of multiple hydropower systems on an interconnected grid.

Implement some of the investigated alternative control system designs and
investigate their effect on hydropower system stability.
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Appendix A (hydropower model)

systemmodel.m

o

% System definitions
clear all;

clc;

$%%%%%%%%%%% choose system geometry and configurations $5%%%5%5%%%%%%5%%%%

system geometry='aldal'; % "case2", "case3", "froland", "aldal" or
"tyinoset", "kongsvinger","tafjord"

turbine='francis (joerundland)'; % "pelton", "francisl" or
"francis (joerundland)"

response_type='n/nref'; % "n/nref", "p/pref", "h/y", "p/y" or
"original"

angle handling='plain'; % "plain", "unwrap" or "unwrap upper"
angleadjustment=0; % angle asjustment for plotting

friction model=1; % 1 for no friction, 2 Brown, 3 for Brekke84

and 4 for Brekke88
friction scaling=1; % scaling of the friction models

%governor settings
KP = 1.25;%10;
KI = 0.15625;%1;

KD = 0;

bt = 0.332;

Td = KP/KI;

bp = 0.00;

Tp = 0.00;
value=[1 1 1];

countvalue=1000;

R9=zeros (countvalue, length (value)) ;
theta9=zeros (countvalue, length (value));
omega=logspace (-3, 1, countvalue) ;

%System constants
g=9.81;
a=1200;

switch system geometry
case 'case2'

00=20;
HO0=100;
Qinit=[Q0 QO0];
area=[20 20 20 20 20 20 20];
L=[2586 500 10 10 10 10 10 1;
ed=0.0001;

getg=zeros (countvalue, 2) ;
getQ=ones (countvalue, 2) ;
double (getq) ;

case 'case3'
Q0=124;
HO0=580;
Aeqv2=680;
Aeqv9=0.001;
Qinit=[Q0 0 Q0 Q0 Q0 Q0 QO QO 01];
area=[56.7 Aeqv2 50 60 20 80 20 20 Aeqgv9];
L=[6120 200 904 520 50 400 5 5 5];
pipe el=[ 1 90 45 45 0 0 90 0 90 ];
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case

case

case

getg=ones (countvalue, 2, length (L)) ;
getQ=getqg;

'tafjord'
% Sectional geomtrical constants for Tafjord
00=8.8;
H0=816.2;
Aeqv2=0.0544;
Aeqv9=0.0000001;
A drafttube=100;
Qinit=[Q0 0 Q0 Q0 Q0 Q0 Q0 Q0 0];
area=[ 11 Aeqv2 17.6 1.5 1.5 A drafttube 0.0001 A drafttube Aeqv9 ];
L=[ 7567 7 50 176 5 50 1 50 1 ];
pipe el=[ 0 90 90 0 0 0 90 0 90 1;

getg=zeros (countvalue, 2, length (L)) ;
getQ=getq;

'kongsvinger'
% Sectional geomtrical constants for Kongsvinger
00=108.5;
H0=9.5;
Aeqv2=39;
Aeqv9=127;
Qinit=[Q0 0 Q0 Q0 Q0 Q0 QO QO 01;
area=[ 150 Aeqgqv2 39 106 148 286 51 127 Aeqv9 ];
L=[ 12 10 10 6 15 14 4 20.6 1 1;
pipe el=[ 0 90 90 0 0 0 90 0 90 1;

% M=[ 32 32 32 32 32 32 32 32 32 1;
getg=zeros (countvalue, 2, length (L)) ;
getQ=getqg;

'tyinoset'
% Sectional geomtrical constants for Tyinoset
Q0=30;
HO=30;
Aeqv2=20;
RAeqv9=0.0001;
Qinit=[Q0 0 Q0 QO Q0 Q0 QO QO 01];
area=[ 19.8 Aeqv2 19.8 7 19.8 19.8 19.8 19.8 RAeqv9 ];
L=[ 2586 10 20 75 5 30 90 10 5 1;
pipe el=[ 0 90 90 30 0 0 90 0 90 ];

M=[ 32 32 32 32 32 32 32 32 32 1;
getg=zeros (countvalue, 2, length (L)) ;
getQ=getqg;

case 'froland'

)

% Sectional geomtrical constants for Frgland

00=30;

HO=158; $Lowest waterlevel minus lower reservoir head
Aeqv2=20;

Aeqv9=0.001;

Qinit=[Q0 0 Q0 Q0 Q0 Q0 QO QO 07];

area=[ 30 Aegv2 30 30 30 30 30 20 Aeqgv9 ];

L=[ 5600 100 50 1500 50 5 100 200 50 1;

pipe el=[ 0 11 11 30 0 0 90 0 90 ];

M=[ 32 32 32 32 32 32 32 32 32 1;
getg=zeros (countvalue, 2, length (L)) ;
getQ=getq;

case 'aldal'

% Sectional geomtrical constants for Aldal
00=35;
HO0=198;
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Aeqv2=102;

Aeqv9=156;

Qinit=[Q0 0 Q0 QO Q0 QO QO Q0 01;

area=[ 30 Aeqv2 20 30 6.15 6.15 20 35 Aeqv9 ];
L=[ 4000 150 200 1000 10 50 70 450 10 1;

pipe el=[ 0 11 90 30 0 0 90 O 90 1;

% M=[ 32 32 32 32 32 32 32 32 32 1;
getg=zeros (countvalue, 2, length (L)) ;
getQ=getq;

case 'complex'
% Sectional geomtrical constants for Tyinoset

Q0=35;

HO=198;

Aeqv2=1;

Aeqv9=1;

Qinit=[Q0 0 0 0 QO 0 0 0 Q0 QO QO QO01;

area=[ 30 Aeqv2 30 30 30 Aegv9 30 30 30 30 30 30 30 30 30 1;

L=[ 1500 100 100 15 6000 5 100 460 50 1;

pipe el=[ 0 45 45 30 0 0 90 0 90 ];

% M=[ 32 32 32 32 32 32 32 32 32 1;
getg=zeros (countvalue, 2, length (L)) ;
getQ=getq;

hwbar = waitbar (0, 'Please
wait...','CreateCancelBtn', 'setappdata (gcbf, ''cancelling'',true)');
setappdata (hwbar, 'cancelling', false)

for count=1l:1:length (value)
%$governor settings

KP = KP;
KI = KI;
KD = KD;
bt = bt;
Td = Td;
bp = bp;

Tp = Tp; Stime constant in electric hydraulic amplifier
$friction scaling=value (count);

$SFREQUENCY ANALYSIS ROUTINE
for counter=2:countvalue

walter=waiter
if getappdata (hwbar, 'cancelling');
delete (hwbar)
break

+
=

s=1li*omega (counter) ;
switch system geometry
case 'case2'
if counter==
getQ (counter-1,:)=0init (1) ;

getQ (counter, :)=0Q0init (1) ;
end
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o©

1,1,num)

1,1,num)

end

for num=1:length (L)

K (num) =damping (area(l),ed,Q0,omega (counter-1)
z (num) =( (s"2)+ (K (num) *s))"0.5;
hw (num) = (Q0*a) / (2*area (num) *g*HO) ;
T (num) =s/ (2*hw (num) *z (num) *tanh ( (L (num)
S (num) =s/ (2*hw (num) *z (num) *sinh ( (L (num) *
end
case {'case3', 'tyinoset',6 'aldal', 'froland', 'kongsvinger'

%$Surge shaft values

HO2=HO;

H09=0;

Aeqgv2=area(2) /sin(pipe el (2));
Aegv9=area (9) /sin (pipe el (9));
Q02=Q0;

Q09=Q0;

ed hr=0.01;

ed pt=0.0001;

ed=
friction scaling=value (count) ;

if counter==
getQ (counter-1,:,:)=0init (1) ;
getQ (counter, :, :)=Qinit (1) ;
end

for num=1:length (L)
K (num) =damping (area (num) , ed (
,friction model, friction scaling); %!

num)
|
*s))70.5;

Aeqgv2=area(2) /sin(pipe el (2));
Aegvb6=area (6) /sin (pipe el (6));
Q02=Q0;

006=00;

ed=0.00001;

if counter==2
getQ (counter-1,:,:)=0Qinit (1) ;
getQ (counter, :, :)=0Qinit (1) ;
end

for num=1:length (L)

K (num) =damping (area (num) , ed, Q0, omega (counter)
,friction model); %!

z (num)=((s"2)+ (K (num) *s))"0.5;

hw (num) = (Q0*a) / (2*area (num) *g*HO) ;

T (num) =s/ (2*hw (num) *z (num) *tanh ( (L (num) *z (num) )

S (num) =s/ (2*hw (num) *z (num) *sinh ( (L (num) *z (num) )

Kres (num)=0.0002; %

end

% a PI-governor has the characteristics:

s G=

(1+Td*s) / (bt*Td*s) ;

G=KP+KI/s+KD*s;
C=1/(1+Tp*s) ;
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,Q0, omega (counter)

,getQ (counter-1,1));

, 'tafjord'}

[ed hr ed hr ed hr ed pt ed hr ed hr ed hr ed hr ed hr];

,getQ (counter-

z (num)=((s"2)+ (K (num)
hw (num) = (Q0*a) / (2*area (num) *g*HO) ;
T (num) =s/ (2*hw (num) *z (num) *tanh ( (L (num)
S (num) =s/ (2*hw (num) *z (num) *sinh ( (L (num) *z (num) ) /a) ) ;
end
case 'complex'
3Surge shaft values
HO02=HO;
HO9=HO;

,getQ (counter-

/a
/a

));
));



E=-bp-(1/G) ;
F=(G*bp+1) / (G*C) ;

Kn=0;

o

% Turbine equations

switch turbine

case

case

case

case

case

end

B5=0.5*(
C5=Qy;

'peltonl’
On=0;
Eg=0;
En=0;
Qy=1;
Kg=1;
Ta=6;

On=0;
Eg=0;
En=0;
Qy=0.7;
Kg=1;
Ta=7.19;

'kaplan'
eta = 0.913;
n0 500;

On = 0.55;
Qy 0.46;
Eqg 0.113;
En = -0.18;
kg = 1.0;
Ta= 4.8;

'francis'
eta = 0.928;
on = -0.62;
Qy = 1.0;

Eq -0.045;
En = 0;

kg 1.16;
Ta = 6.0;

o)

'pelton(tafjord)’

sefficiency
$rev per min

% open(0)/closed (1)

loop

%Kongsvinger kaplan turbine used

%$Driva Francis turbine used

%efficiency

'francis (joerundland)'

eta =
On = -0.55;
Qy 0.9;
Eg = 0;

En =
kg =
Ta =

0.94;

19;
.5;

o O

1-Qn);

sefficiency

J5=(3-En- (1+EqQ) *Qn) / (2* (1+EQ) ) ;

K5=0Qn+En
L5=Qy;
M5=-1/(1
Q05=0n;

switch system geometry

)

case

/(1+Eq) ;

+Eq) ;

% Matrix definitions

'casel'

%$inititalize the matrices

g=zeros(2,1);

q(l)=1;
A=[Kn E F;

01 01];

%$Driva Francis turbine used
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case 'case2'

g=zeros(7,1);

q(3)=1;

A=[-T (1) S(1) 0 0 0 O O;
S(l1) -T(1)-B5 -Q5 0 -C5 0 B5;
0 0O Kn EF 0 O0;
000100 0;
0 J5 K5 0 L5 M5 -J5;
0 0 -Ta*s 0 0 1 0;
0 B5 Q5 0 -C5 0 B5];

case {'case3','tyinoset',6 'aldal', 'froland', 'kongsvinger', 'tafjord"'}
g=zeros(9,1);

switch response type
case {'n/nref','original'}
q(9)=1;
Kn=0;
case 'p/pref'
q(8)=1;
Kn=1; %closed(l) loop
case 'p/y'
q(3)=1;
Kn=1; $closed(l) loop
case 'h/y'
q(3)=1;
Kn=1; $closed(l) loop
end

A=[-T(3)-(s*H02*Aeqv2)/Q02 S(3) 0 0 0 0 O
S(3) -T(3)-T(4)-T(1) 0 S(4) 0 0 0 0 O;

0 L5 -J5 J5 0 0 M5 K5;

S(4) C5 -B5-T(4) B5 0 0 0 Q5;

-C5 B5 -B5-T(6) S(6) 0 0 -Q5;

0 0 S(6) -T(6)-T(7)-T(8) S(7) 0 0;

0 00 S(7) -T(7)-((s*HO9*Aeqv9)/Q09) 0 0

000 1 -Ta*s

000 0 Knl;

0 0;

oNoNeoNoNeoNoNe]
O OO oo

7
0 0
F 0
case 'complex'

g=zeros (15,1);

switch response type
case {'n/nref','original’'}

q(l1l)=1;

Kn=0;
case 'p/pref'

q(l2)=1;

Kn=1; %closed (1) loop
case 'p/y"'

q(1l3)=1;

Kn=1; %closed (1) loop
case 'h/y'

q(10)=1;

Kn=1; %closed (1) loop

end
A=[ 1 00O000O0O0OO0OO0OOOO0ODO0;

01 000O0O0OODOO0COOOO0OO;
0 0 -T(3)-(s*HO02*RAeqv2)/Q02 S(3) 00 0O 0OOOOO0OOO0 O;
0 0 S(3) -T(3)-Kres(4) Kres(4) 0 0 0 0 0O 0 OO0 O 0y
0 0 0 Kres(4) -T(1)-Kres(4)-T(5) 0 0 S(5) 00 0 0 0 0 O;
00000 -T(7)-(s*HO6*Reqvb6)/Q06 S(7) 0 0 0O 0 O 0 O O;
0 0 0O0O0 S(7) -T(7)-Kres(8) Kres(8) 0 0 0 0 0 0 0;
0 0 0 0 S(5) 0 Kres(8) -T(5)-Kres(8)-T(9) S(9) 0 0 0 0 0 O;
00 0O0O0O0O0 S(9) -T(9)-Kres(10) Kres(10) 0 0 0 0 0;
00 0O0O0O0O0O0 Kres(10) -Kres(10)-B5 Q5 0 -C5 0 B5;
0000O0O0O0OOOKnNETFDOO;
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000O0O0O0OOOO 100 0O;
000O0O0O0OOOJ5 KS 0 L5 M5 -J5;
000O0O0O0OOOGO=-Ta*s 0 O 1 07
000O0O0O0O0OOOB5 Q50 -C5 0 -B5-T(12)];

end

switch system geometry
case 'casel'
% Get n/nref system response
h=A\q;
nspeed (counter)=h(1l);
frequency (counter) =omega (counter) ;

case 'case2'
% Get n/nref system response
h=A\qg;
nspeed (counter)=h(3);
frequency (counter) =omega (counter) ;

% get the updated flow rates
h upd=[h(1) h(2)];
A_upd= [-T(1) S(1);
S(1) -T(1)1;
getqg(counter, :)=A upd*h upd';
getQ (counter, :)=[Qinit (1) Qinit (2)].*getg(counter, :)+[Qinit (1)
Qinit(2)1;

case {'case3', 'tyinoset', 'aldal', 'froland', 'kongsvinger', 'tafjord'}
% Get system response
h=A\qg;
dampingfactor (counter)=abs (K (1)) ;
dampingfactorimag (counter)=imag (K (1)) ;
dampingfactorreal (counter)=real (K(1));
dampingfactor2 (counter)=K(3);
dampingfactor2imag (counter)=imag (K(3));
dampingfactor2real (counter)=real (K(3))
switch response type
case {'n/nref','original'}
nspeed (counter)=h(9); % measuring point n
case {'p/pref','p/vy'}
nspeed (counter)=h(8); % measuring point p
case 'h/y'
nspeed (counter)=h(4); % measurement point at 6

’

end
frequency (counter)=omega (counter) ;

% get the updated flow rates

h upd=ones (length(L),2);
A upd=ones (2,2, length (L)) ;

h upd(1,:)=[h(1) h(2)];

Aiupd(:lzll): [_T(3) 5(3)1
S(3) -T(3)1;

h upd(4,:)=[h(2) h(4)];

A upd(:,:,4)= [-T(3) S(3);
S(3) -T(3)1;

h upd(6,:)=[h(3) h(7)];

A upd(:,:,6)= [-T(6) S(6);
S(6) -T(6)];

h upd(7,:)=[h(3) h(7)]1;

A upd(:,:,7)= [-T(6) S(6);
S(6) -T(6)]1;

getg(counter, :,1)=A upd(:,:,1)*h upd(1l,:)"';
getqg(counter, :,4)=A upd(:,:,4)*h upd(4,:)";



getg(counter,
getg(counter,

:,6)=A upd(:

getQ (counter, :,1)=[Qinit (1)

Qinit (2)];

getQ (counter, :,4)=[Qinit (2)
Qinit (4)];

getQ (counter, :,6)=[Qinit (5)
Qinit(6)];

getQ (counter, :,7)=[Qinit (6)

Qinit (7)];
case 'complex'
h=A\q;
dampingfactor (counter)=K (1
dampingfactor2 (counter) =K (
switch response type
case {'n/nref','original’'}
nspeed (counter)=h(11);
case {'p/pref','p/y'}
nspeed (counter)=h(12);
lh/yl
nspeed (counter)=h(10) ;

);
9);

case

end

,1,0)*h upd(6,:)";
:,7)=A upd(:,:,7)*h upd(7,:)";

Qinit(2)].
Qinit (4)].
Qinit(e6)].

Qinit(7)].

*getqg (counter,

*getg(counter, :

*getqg (counter,

*getqg (counter,

% measuring point n

measuring point p

measurement point at 6

frequency (counter)=omega (counter) ;

% get the updated flow rates

h upd=ones (length(L),2);
A upd=ones (2,2, length(L));

h upd(l,:)=[h(1) h(7)];
A upd(:,:,1)= [-T(1) S(1);
S(1) -T(1)]1;
h_upd(5,:)=[h(5) h(8)];
A upd(:,:,5)= [-T(5) S(5);
S(5) -T(5)1;
h_upd(9,:)=[h(8) h(9)]1;
A upd(:,:,9)= [-T(9) S(9);
S(9) -T(9)];
h_upd(7,:)=[h(6) h(7)];
A upd(:,:,12)= [-T(7) S(7);
S(7) =T(7)1;
getqg(counter, :,1)=A upd(:,:,1)*h upd(1l,:)"';
getqg(counter, :,2)=A upd(:,:,5)*h upd(5,:)";
getqg(counter, :,3)=A upd(:,:,9)*h upd(9,:)";
getqg(counter, :,4)=A upd(:,:,12)*h upd(12,:)"';
getQ (counter, :,1)=[Qinit (1) Qinit (7)].*getg(counter, :
Qinit (7)1
getQ (counter, :,5)=[Qinit (5) Qinit (8)].*getg(counter, :
Qinit (8)];
getQ (counter, :,9)=[Qinit (10) Qinit(11)].*getg(counter,
Qinit (11)1;
getQ (counter, :,7)=[Qinit (8) Qinit (9)].*getg(counter, :
Qinit (9)1;
end
x=10"-3:1:10"1;
yl=zeros (l,length (x));
y2=-ones (1, length(x)).*180;
end
$5%5%%%%%5%5%5%5%%%%%%%%%% gain and phase values $%%%%%%%%%%%%%%%%%%%
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R9 (:, count) db (abs (nspeed) ) ;

in dB (20*log (abs (nspeed))

switch

sadjustment for Matlabs handling of angles

case 'unwrap'
theta9 (:, count)

angle in degrees

(180/pi) *unwrap (angle (nspeed)) ;

case 'unwrap upper'
for index=1:countvalue/2
theta9 (index, count)

%get phase angle in degrees
end
for index=countvalue/2:countvalue

theta9 (index, count)

%get phase angle in degrees

end

case 'plain'

theta9 (:, count) (180/pi) * (angle (nspeed) ) ;

990000000000000000000000000000000000000000000000000000000000000009

o)

///////////////// 9999990000000 000
° ]

% Find gain and phase margins
valu index phasemarg] min (abs (R9 (2:end
[valuetheta9, index gainmarg] min (abs (theta

[«
o}
et

if min(theta9(2:end, count)+180)<0 && max (theta9(2:end, count)+180)>0
gainmargin (count)=-R9 (index gainmarg, count);

else
gainmargin (count)=NaN;

end

if min(R9(2:end,count))<0 && max (R9(2:end,count))>0
phasemargin (count)=180+theta9 (index phasemarg, count) ;
else
phasemargin (count)=NaN;

close (hwbar)

SPLOTS
switch response type
case 'original'
%$BODE PLOT
figure (1)
subplot(2,1,1)

semilogx (frequency,R9(:,1), 'b', frequency,R9(:,2),

angle handling

%get phase

(180/pi) * (angle (nspeed (index))) ;

(180/pi) *unwrap (angle (nspeed (index))) ;

'g', frequency,R9(:,3),'r', 'LineWid

-50 0 50 100 150 200])

th',2)
hold on;
plot (x,vyl, 'black"),grid;
set (get (1, 'CurrentAxes'),'YTick', [-200 -150 -100
set (get (1, 'CurrentAxes'), 'YLim', [-200 2007])
title ([’ Kn=", num2str (Kn), ', b p=',num2str (bp), "',

b t=',num2str(bt),', T d=',num2str(Td),"',
legendl=legend([" K P=',num2str
K P=',num2str(value(3))]);

KI=',num2str (KI), "',
T p=',num2str (Tp)], 'FontSize',16)
(value(1))],[" K P=',num2str (value(2))], ['

set (legendl, 'Location', '"NorthEast"')

ylabel ('Gain(dB) ', '"FontSize',16)
subplot (2,1, 2)
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semilogx (frequency, theta9(:,1), 'b', frequency, thetad9(:,2), 'g', frequency, thetad(:,3),
'v','LineWidth',2), grid;

set (get (1, 'CurrentAxes'),'YTick', [-270 =225 -180 -135 -90 -45 0 90])

set (get (1, 'CurrentAxes'),'YLim', [-270 90])

legendl=legend ([’ K P=",num2str(value(l))], [’ K P=',num2str(value(2))], [’
K P=',num2str (value(3))]);

set (legendl, 'Location', '"NorthEast"')

hold on;

plot (x,vy2, 'black")

ylabel ('Phase (deg) ', '"FontSize',16)

$NICHOLS PLOT
figure (2)
% hold on;
plot (theta9(:,1),R9(:,1),'b",theta9(:,2),R9(:,2),"'g',thetad9(:,3),R9(:,3),"'r")
ngrid
hold on;
title ([’ Kn=", num2str (Kn), ', b p=',num2str(bp), ', KI=',num2str (KI), "',
b t=',num2str(bt),', T d=',num2str(Td),', T p=',num2str(Tp)])
legend2=legend ([’ K P=",num2str(value(l))], [’ K P=
K P=',num2str (value(3))]);
set (legend2, 'Location', 'SouthEast")
xlabel ('Phase (deg) ', "FontSize',16)
ylabel ('Gain(dB) ', '"FontSize',16)

', num2str (value(2))], [

case 'n/nref'
$BODE PLOT
figure (1)
subplot (2,1,1)

semilogx (frequency,R9(:,1),'b', frequency,R9(:,2), 'g', frequency,R9(:,3),"'r', 'LineWid
th',2)

hold on;

plot(x,yl, 'black"),grid;

set (get (1, 'CurrentAxes'), 'YTick', [-200 -150 -100 -50 0 50 100 150 2001)

set (get (1, 'CurrentAxes'),'YLim', [-200 200])

title({['Plant: ',num2str (system geometry),' Turbine:
', num2str (turbine), ' (n/nref response) ']; [ Kn=", num2str (Kn), ',
b p=',num2str(bp),', KI=',num2str(KI),', b t=',num2str(bt),', T d=',numZ2str(Td),"’,
T p=',num2str(Tp)]}, 'FontWeight', 'bold', 'FontSize',10)

legendl=legend ([’ ed="',num2str (value(l)), "',
\DeltaK=",num2str (gainmargin(l))], [’ ed="',num2str (value(2)) ',
\DeltaK="',num2str (gainmargin(2))1, [ ed="',num2str (value (3)) ',
\DeltaK=",num2str (gainmargin(3))]);

set (legendl, 'Location', 'Northeast')

ylabel ('Gain(dB) ', "FontSize',16)
subplot (2,1, 2)

semilogx (frequency, theta9(:,1), 'b', frequency, thetad(:,2), 'g', frequency, thetad9(:,3),
'r','LineWidth',2), grid;

set (get (1, 'CurrentAxes'), 'YTick', [-360 -270 -225 -180 -135 -90 -45 0])

set (get (1, 'CurrentAxes'),'YLim', [-360 0])

legendl=legend([" ed=',num2str (value(l)), "',
\Psi="',num2str (phasemargin(1l))], "' ed=",num2str (value(2)) ',
\Psi=',num2str (phasemargin(2))],["' ed="',num2str (value (3)) !

3))1

\Psi=',num2str (phasemargin(3))]);

set (legendl, 'Location', '"NorthEast"')

pmargin=legend (["' \Psi=',num2str (phasemargin(1))], [’
\Psi=',num2str (phasemargin(2))],[' \Psi=',num2str (phasemargin(3))1]);

set (pmargin, 'Location', 'SouthEast"')

hold on;
plot(x,y2, 'black")
ylabel ('Phase (deg) ', 'FontSize',16)

$NICHOLS PLOT
figure (2)
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plot (theta9(:,1),R9(:,1),'b',theta9(:,2),R9(:,2),"'g',thetad9(:,3),R9(:,3),"'r")

ngrid

hold on;

title ([ Kn=", num2str (Kn), ', b p=',num2str (bp), "', KI=',num2str (KI), "',
b t=',num2str(bt),', T d=',num2str(Td),', T p=',num2str(Tp)])

legend2=legend ([ K P="',num2str (value(l))], [' K p="'
K P=',num2str(value(3))]);

set (legend2, 'Location', 'SouthEast"')

xlabel ('Phase (deg) ', '"FontSize',16)

ylabel ('Gain(dB) ', "FontSize',16)

hold off;

,num2str (value(2))], [

$FRICTIONAL DAMPING PLOT

figure (3)

semilogx (frequency,dampingfactor, 'b'")

hold on;

semilogx (frequency,dampingfactorreal, '--r'")

hold on;

semilogx (frequency,dampingfactorimag, '--g'")
title('Frictional damping, K','FontWeight', 'bold', 'FontSize',16)
xlabel ('Frequency, Hz', 'FontSize',16)

ylabel ('Frictional damping', 'FontSize',16)
legendl=legend (' Total', 'Real', 'Imaginary', 'FontSize',8);
set (legendl, 'Location', 'NorthEast"')

hold off;

case 'p/pref’
$BODE PLOT
figure (1)
subplot(2,1,1)

semilogx (frequency,R9(:,1),'b', frequency,R9(:,2), 'g', frequency,R9(:,3),"'r', 'LineWid
th',2)

hold on;

plot(x,yl, 'black"),grid;

set (get (1, 'CurrentAxes'), 'YTick', [-200 -150 -100 -50 0 50 100 150 2001])

set (get (1, 'CurrentAxes'),'YLim', [-200 200])

title({['Plant: ',num2str (system geometry),' Turbine:
', num2str (turbine), ' (p/pref response) '1; [ K n=',num2str (Kn),'
b p=',num2str(bp), ', KI=',num2str(KI),', b t=',num2str(bt),', T d=',numZ2str(Td),
T p='",num2str(Tp)]}, 'FontWeight', 'bold', 'FontSize',10)

%$legendl=legend ([" ed="',num2str (value(l)),"',
\DeltaK="',num2str (gainmargin(1l))], [' ed="',num2str (value (2)) ',
\DeltaK="',num2str (gainmargin(2))]1, [' ed="',num2str (value (3)) ',
\DeltaK="',num2str (gainmargin(3))], 'FontSize', 8);

%set (legendl, 'Location', '"Northeast"')
ylabel ('Gain(dB) ', "FontSize',16)
subplot(2,1,2)

semilogx (frequency, theta9(:,1), 'b', frequency, thetad(:,2), 'g', frequency, thetad(:,3),
'r','LineWidth',2), grid;

set (get (1, 'CurrentAxes'),'YTick', [-270 -225 -180 -135 -90 -45 0 90])

set (get (1, 'CurrentAxes'), 'YLim', [-270 90])

%legendl=legend ([" ed="',num2str (value(l)),"',
\Psi="',num2str (phasemargin(1l))], [' ed="',num2str (value(2)) ',
Al

\Psi="',num2str (phasemargin (3 , 'FontSize',8);
%set (legendl, 'Locatlon , "NorthEast"')
hold on;
plot (x,vy2, 'black")
ylabel ('Phase(deg) ', "FontSize',16)

1
\Psi="',num2str (phasemargin (2 ) 1, 0" ed="',num2str (value (3))
)]

figure (2)
semilogx (frequency, abs (dampingfactor), 'b'")
title('Frictional damping, K','FontWeight', 'bold', 'FontSize',16)
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xlabel ('Frequency, Hz', 'FontSize',16)
ylabel ('Frictional damping', 'FontSize',16)

hold off;

figure (3)

semilogx (frequency (20:1000) , abs (dampingfactor2(20:1000)), 'b")
title('Frictional damping at downstream surge shaft,

K', 'FontWeight', 'bold', 'FontSize', 16)
xlabel ('Frequency, Hz', 'FontSize',16)
ylabel ('Frictional damping', 'FontSize',16)
hold off;

case 'p/y'
$BODE PLOT
figure (1)
subplot (2,1,1)

semilogx (frequency,R9(:,1), 'b', frequency,R9(:,2),'g', frequency,R9(:,3), 'r', 'LineWid
th',2)

hold on;

plot(x,yl, 'black"),grid;

set (get (1, 'CurrentAxes'),'YTick', [-200 -150 -100 -50 0 50 100 150 2007])

set (get (1, 'CurrentAxes'),'YLim', [-200 200])

title({['Plant: ',num2str (system geometry),' Turbine:
', num2str (turbine), ' (p/y response) ']; [’ Kn="', num2str (Kn), ',
b p=',num2str(bp), ', KI=',num2str(KI),', b t=',num2str(bt),', T d=',num2str(Td),’
T p=',num2str(Tp) ]}, 'FontWeight', 'bold', 'FontSize',10)

~

legendl=legend ([ ed="',num2str (value(l)), "',
\DeltaK="',num2str (gainmargin(1l))], [' ed="',num2str (value (2)) ',
\DeltaK=",num2str (gainmargin(2))], [’ ed="',num2str (value (3)) ',
\DeltaK=",num2str (gainmargin(3))]);

set (legendl, 'Location', '"Northeast', 'FontSize', 8)
ylabel ('Gain(dB) ', "FontSize',16)
subplot (2,1,2)

semilogx (frequency, theta9(:,1), 'b', frequency, thetad(:,2), 'g', frequency, thetad(:,3),
'r','LineWidth',2), grid;

set (get (1, 'CurrentAxes'),'YTick', [-270 -225 -180 -135 -90 -45 0 90])

set (get (1, 'CurrentAxes'), 'YLim', [-270 90])

legendl=legend([' ed="',num2str (value(l)), "',
\Psi=',num2str (phasemargin (1 ed="',num2str (value(2)) ',
\Psi=',num2str (phasemargin (2 ! ed="',num2str (value (3)) '
\Psi=',num2str (phasemargin (3

set (legendl, "Locatio

hold on;

plot(x,y2, 'black")

ylabel ('Phase (deg) ', '"FontSize',16)

L
L
)

)1
)]
)1
', '"NorthEast', 'FontSize', 8)

)
)
)
n

figure (2)

semilogx (frequency,dampingfactor, 'b'")

title('Frictional damping, K','FontWeight', 'bold', 'FontSize',16)
xlabel ('Frequency, Hz','FontSize',16)

ylabel ('Frictional damping', 'FontSize',16)

hold off;

case 'h/y'
$BODE PLOT
figure (1)
subplot(2,1,1)

semilogx (frequency,R9(:,1), 'b', frequency,R9(:,2),"'g', frequency,R9(:,3), 'r', 'LineWid
th',2)

hold on;

plot(x,yl, '"black"),grid;

hold on;

set (get (1, 'CurrentAxes'),'YTick', [-200 -150 -100 -50 0 50 100 150 2007])

set (get (1, 'CurrentAxes'),'YLim', [-200 200])
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title({['Plant: ',num2str (system geometry),' Turbine:
', num2str (turbine), ' (h/y response) ']; [’ Kn="', num2str (Kn), ',
b p=',num2str(bp),', KI=',num2str(KI),', b t=',num2str(bt),', T d=',num2str(Td),"’,
T p=',num2str(Tp)]}, 'FontWeight', 'bold', 'FontSize',10)

legendl=legend ([ ed="',num2str (value(l)), "',
\DeltaK=",num2str (gainmargin(1l))], [' ed="',num2str (value(2)) ',
\DeltaK=",num2str (gainmargin(2))], [’ ed="',num2str (value (3)) ',
\DeltaK=',num2str (gainmargin(3))], 'FontSize', 8);

set (legendl, 'Location', 'Northeast"')

ylabel ('Gain(dB) ', '"FontSize',16)

subplot(2,1,2)

semilogx (frequency, theta9(:,1), 'b', frequency, thetad9(:,2), 'g', frequency, thetad(:, 3),
'v','LineWidth',2), grid;

set (get (1, 'CurrentAxes'), 'YTick', [-360 -270 -225 -180 -135 -90 -45 0])

set (get (1, 'CurrentAxes'), 'YLim', [-360 901])

legendl=legend ([ ed="',num2str (value(l)), "',
\Psi=',num2str (phasemargin(l))],["' ed="',num2str (value(2)) ',
\Psi=',num2str (phasemargin(2))],["' ed="',num2str (value (3)) '
\Psi=',num2str (phasemargin(3))], 'FontSize', 8);

set (legendl, 'Location', 'NorthEast"')

hold on;

plot(x,y2, 'black")

ylabel ('Phase (deg) ', 'FontSize',16)

figure (2)
subplot (2,2, [1 31)
semilogx (frequency,dampingfactor, 'b")

hold on;
semilogx (frequency,dampingfactorreal, '--r'")
hold on;
semilogx (frequency,dampingfactorimag, '--g'")

set (get (1, 'CurrentAxes'), 'XLim', [107-3 10"11])

title ('Head race channel', 'FontWeight', 'bold', 'FontSize',16)
xlabel ('Frequency, Hz','FontSize',16)

ylabel ('Frictional damping', 'FontSize',16)

legendl=legend(' Total', 'Real', 'Imaginary', 'FontSize',16);
set (legendl, 'Location', '"NorthWest"')

subplot (2,2, [2 4])
semilogx (frequency,dampingfactor2, 'b")

hold on;
semilogx (frequency,dampingfactor2real, '--r')
hold on;
semilogx (frequency,dampingfactor2imag, '--g')

set (get (1, 'CurrentAxes'), 'XLim', [107-3 1071])
title('Surge shaft channel', 'FontWeight', 'bold', 'FontSize',16)
xlabel ('Frequency, Hz', 'FontSize',16)
ylabel ('Frictional damping', 'FontSize',16)
legendl=legend (' Total','Real', 'Imaginary', 'FontSize',16);
set (legendl, 'Location', '"NorthWest"')
hold off;
end

legendl=legend ([" b p=',num2str(value(l))], ["' b p=',num2str(value(2))], ['
_p='",num2str (value(3))]);
set (legendl, 'Location', '"NorthEast"')
hold on;
plot(x,y2, 'black--")
ylabel ('Phase (deg) ')

de oo do oo T oe

Q

% Waitbar closing
switch system geometry
case 'kongsvinger'
switch response type
case {'p/pref', 'p/y'}
run kongsvinger fregresponse
end
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case 'tafjord'
switch response type
case {'p/pref', 'p/v','h/y'}
run tafjord freqresponse
end
end

F = findall (0, 'type', 'figure', 'tag', 'TMWWaitbar") ;
delete (F) ;

damping.m

% Find the damping factor

function K = damping(area, ed, QO0,omega,q previous, friction model, friction scaling)
Input:

- Ai, Area of each section

- epsilon/D, Roughness factor for each section

- Q0, mean reference flow rate

oC o o°

oo

o

o

Output:
- K, Damping factor

oo

oo

constants:

= 9.81;

rho = 1000;

mu = 1.519*10"-3; % at 5 deg
q_previous=abs (g previous); % [q]

Q

%Variables

D = sqgrt(4*area/pi());

Ot = Q0*g previous;

% Get the friction factor from the Moody diagram:
Reynolds = (rho * Qt * D)/ (area * mu);

for Reynolds=NaN
Reynolds=10"6;
end

$ £ =1/(1.8%1ogl0(6.9/Reynolds + (ed/3.7)"1.11))"2;
f=moody (ed, Reynolds) ;

$%5%5%%5%5%5%%5%5%%5%5%5%%%5%5%%5%553N0O FRICTION MODEL%%%%%%%%%5%5%%%5%5%%%5%5%%%%5%%

$555%%%%%%%%%5%%5%%%5%%%5SSBROWNS MODELS%$%%%%%%%%%%%%%%%%%%%%%%%%%%%
damping factors (according to ref. 11)
$friction variable

(0]
et

if friction model==

$Define table and interpolate to find frictional value:
Re=[1250 2500 1074 1075 1076 1077 10781];

fric h=[4/3 1.113 1.049 1.020 1.012 1.008 1.000];

fric varl=interpl (Re, fric_h,Reynolds);

lambda=4*f;
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K_S=friction_scaling*(4*lambda*Qt)/(pi()*DA3);

cut off=0.01;
if omega<=cut off
K I=0;
else if omega>cut off
K I=friction scaling* (fric varl-1);

end
end
K I=1i*omega*K I;
End
5555555555555 %5%5%5%5%5SSBREKKES MODEL 1984%%%%%%%%5%5%%%%%%%%%%%%%%%%%%%%

% Calculate damping factors (according to ref. 11, egn 67b):
if friction model==3
lambda=4*f;

fric var2=(Q0*q previous)/ (area*D*omega) ;

if fric var2<0.1446535
tau=(2.665-7.3*fric_var2) *rho*sqrt (omega* (mu/rho)) * (Q0*q_previous) /area;
else
tau=0.85*rho* ((D*omega) "~ (1/3)) * (sqrt (omega*mu/rho)) * (Q0*q_previous/area) " (2/3);
end

K= (4*lambda*Qt)/ (pi*D"3) + ((pi*D*tau)/ (rho*Q0*q previous)) ;return

end

5555555555555 %5%5%SSBREKKES MODEL 1988%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate damping factors (according to ref. 18):

if friction model==4

lambda=4*f;

% Nikuradze's roughness:
K_r=sqrt(area/pi)*lOA—(((0.5*(lambdaA—O.5))—O.86));
fric_var3=(QO*q_previous)/(area*K_r*omega);

if fric var3>1.57
f d=exp(-5.977)+(5.213* (1/fric_var3)"0.194);
else
f d=0.4725/fric_var3;
end
f d=abs(f_d)*cos(pi/8) + li*abs(f d)*sin(pi/8);

tau_s=(2*lambda*rho*q previous*Q072)/ (8*area”2);
K _S=(tau_s*pi*D)/ (rho*Q0*q previous);

tau_d=0.5*f_d*((QO*q_previous)/area)A2;
K I=1i*(tau d*pi*D)/ (rho*Q0*g previous);

end

end

moody.m

function f = moody(ed,Re)

% Input: ed = relative roughness = epsilon/diameter

o\

Re = Reynolds number

o\

oe

Output: £ = friction factor

o\

oe

Note: Laminar and turbulent flow are correctly accounted for
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if Re<O

error (sprintf ('Reynolds number = %f cannot be negative',Re));

elseif Re<2000

f = 64/Re; return $ laminar flow

end

if ed>0.05

warning (sprintf ('epsilon/diameter ratio = $f is not on Moody chart',ed)):;
end

if Re<4000, warning('Re = %f in transition range',Re); end

oe

--- Use fzero to find f from Colebrook equation.

coleFun is an inline function object to evaluate F(f,e/d,Re)

fzero returns the value of f such that F(f,e/d/Re) = 0 (approximately)

fi = initial guess from Haaland equation, see White, equation 6.64a
Iterations of fzero are terminated when f is known to whithin +/- dfTol
coleFun = inline('1.0/sgrt(f) + 2.0*1logl0( ed/3.7 + 2.51/( Re*sqgrt(f)) )',...
'f','ed','Re');

fi = 1/(1.8*1ogl0(6.9/Re + (ed/3.7)71.11))"2; % initial guess at f

dfTol = 5e-6;

f = fzero(coleFun, fi,optimset ('TolX"',dfTol, 'Display', 'off'),ed,Re);

% —--- sanity check:

if £<0, error(sprintf('Friction factor = %£f, but cannot be negative',f)); end

o 00 o°

oe
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Appendix B (General Matrix Representation)

One upstream and one downstream surge shaft
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Appendix C (Turbine Characteristics)

Turbine_char_routine.m

[

3% Turbine characteristics routine:

oe

Run Rawdataimport.m and import the desired text-file.
Remember to add the nurbs toolbox folder to the file path.

o

oe

Ned value=0.20;
Qed value=0.15;

o oP
oe

First run "rawdata import.m" and open "Tokketurbindata.txt"
for ii=3:9

tokke{ii-2,1}=ans{ii};

end

tokke{8,1l}=ans{11};

figure (1)
[c,knots]=spline interpolation (3, tokke{l} (l:end-1,:));
crv{l}=nrbmak(c', knots);

crv{l}=nrbreverse(crvi{l});

[c,knots]=spline interpolation(3,tokke{2}(l:end-1,:));
crv{2}=nrbmak(c', knots) ;

srfl=nrbruled(crv{l},crv{2});

nrbplot (srfl, [50 50])

o0
o0

nrbplot (crv{1l},100)
nrbplot (crv{2},100)
plot3(tokke{2} (:,1),tokke{2}(:,2),tokke{2}(:,3),'0o")

o0
o0

o0
o0

hold on;

[c,knots]=spline interpolation(3,tokke{3}(l:end-1,:));
crv{3}=nrbmak(c', knots) ;
[c,knots]=spline interpolation (3, tokke{4}(l:end-1,:));
crv{4}=nrbmak (c', knots) ;

srf3=nrbruled(crv{3},crv{4});

nrbplot (srf3, [50 507)

hold on;
srf2=nrbruled(crv{2},crv{3});
nrbplot (srf2, [50 507)

hold on;
[c,knots]=spline interpolation (3, tokke{5} (l:end-1,:));
crv{5}=nrbmak (c', knots) ;

crv{5}=nrbreverse (crv{5});
[c,knots]=spline interpolation (3, tokke{6} (l:end-1,:));
crv{6}=nrbmak(c', knots) ;

crv{o6}=nrbreverse (crv{o6});

srfS5=nrbruled (crv{5},crv{6});

nrbplot (srf5, [50 507)

hold on;
srfd=nrbruled(crv{4},crv{5});
nrbplot (srf4, [50 507])

hold on;
[c,knots]=spline interpolation (3, tokke{7} (l:end-1,:));
crv{7}=nrbmak(c', knots) ;

crv{7}=nrbreverse (crv{7});
[c,knots]=spline interpolation (3, tokke{8} (l:end-1,:));
crv{8}=nrbmak(c', knots) ;

srf7=nrbruled(crv{7},crv{8});
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nrbplot (srf7, [50 50])

hold on;

srfo=nrbruled(crv{6},crv{7});

nrbplot (srf6, [50 50])

dlinel=nrbderiv(crv{l})

tt = linspace (0.0, 1.0, 100);

[pntl, jacl] = nrbdeval(crv{l}, dlinel, tt);
indl=searchclosest (fliplr (pntl(1,:)),Ned value);
derivativel=jacl(l,indl)

o©

for linenumber=1:8

dline=nrbderiv (crv{l});

tt = linspace (0.0, 1.0, 100);

[pntl, jacl] = nrbdeval (crv{linenumber}, dline, tt);
ind=searchclosest (fliplr (pntl (1, :)),Ned value);
derivative (linenumber)=jacl (1,ind);

end

derivative

o 0 o° o° o° o o o
oe

©
©
©
©

o)

$%%%%%dsurfacel=nrbderiv (crv{l})

o

o

tt = linspace (0.0, 1.0, 100);

[pntl, jacl] = nrbdeval (crv{l}, dlinel, tt)
indl=searchclosest (fliplr(pntl(1l,:)),0.16);
derivativel=jacl(1l,indl)

o o0 oo o°

o

Find the first derivative of the relevant operating point:
tt = linspace (0.0, 1.0, 9);
dcrv = nrbderiv(crv);
[pnts,jac] = nrbdeval (crv, dcrv, tt);

00 o

oo
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Appendix D Stability plots

n/nref plot of Kongsvinger power plant as it is presented in (Brekke, 1984, Figure 159f).
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n/nref plot of Tafjord power plant as it is presented in (Brekke, 1984, Figure 143f) .
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Appendix E Transfer functions

For a simple hydropower system with an open loop (i.e. D is equal to zero), the transfer function
becomes:

1+ Tys 1-T,s 1
b.Tys 1+ 0.5T,s T,s+ bg

A(s) = G(s)C()I(s) =
Where:
p_ 1-Tys
y 1+05T,s

Represents the system, with only a penstock directly from the reservoir to the turbine. If a tunnel
and surge tank is included, the water conduits can be represented by (Xinxin, 1989):

p _TWSTWL'TWS3 + (Twsth - KTwsTw)S2 + (KTws - th - Tw)s +1-K

Y 0.5TsTeTs® + (TsTue + 0.5KT,s T, )s% + (KTyys + 05T, + 0.5T,)s + 1 + K/,

Where:
_ AgHy
ws Qo
LV

T _1zL

With Shen’s transfer function for water level governor (Xinxin, 1989):

(1 + Tgs)(1 + 05T,s + 0.1T72s%) — b, T, Tys* p 1

A(s 2.
) (thds + bp)(l + 0.5T,s + 0.1T;?s?) y T,s+ bg
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The proposed pressure compensator will have the transfer function:

1+ Tys)(1+ Tps)(1+ T3s) p— b T Tys% -y 1
(thds + bp) ¥y (14 Tys)(1 + T3s) Tys + by

A(s) =

A Matlab program that calculates the Bode plot, Root locus and Nichols plot of transfer functions was
developed by the author and the code is supplied below.

Hydropowersystem.m

governor='self-regulation';

compensator='waterlevel'; %none, araki, waterlevel or pressure
water conduits='complete'; %penstock or complete

bode=1; %1 for ON, 0 for OFF

rootlocus=0; %1 for ON, for OFF

nichols=0; %1 for ON, for OFF

altbode=0; %1 for ON, for OFF

O O O

$CONSTANTS
Q0=35;
H0=198;
A=30;
M=32;
g=9.81;
a=1200;
As=102;
Lt=4470;
V0=Q0/A;
At=0.0083* ((M"2) *A™(5/3)) /HO;

$CALCULATIONS

Tw=Q0/ (g*H0) * ((660/35)+(50/6.15)+(1191/30)+(201/20)+(150/20)) ;
Tws= (As*HO0) /Q0;

Twt= (Lt*V0) / (g*HO) ;
K=0.00001; %°

Tr=(4/a)* (1191+201+150) ;
Fn=1;

Td=4.08;

bt=0.544;

Ta=6.5;

bs=0.6; % self-regulation
bp=0.0; % statics
as=As/At;

hw=(Q0*a) / (2*A*g*HO) ;

hw=Tw/Tr

$%Compensator control parameters:

Tl=1;

T2=100;

T3=10;

$%% PID regulation tuning (Hagihara et al (1979):
% KP = (4*Ta)/ (5*Tw) ;

o0

KP/KI=Tw/3;
KP/KD=3/Tw;

oe

o

$%Stein empirical regulation formulas:
PI

Gain=zeros (10,10);

Phase=zeros (10,10) ;

variablel=1:1:10;
% variable2=0:0.2:2;

00 o0 oo

o
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o

for counterl=l:length(variablel)

for counter2=l:length(variable2)
Td=variablel (counterl) ; $*Tw;
bt=variable?2 (counter2) ;%* (Tw/Ta) ;

o° oP

o©

o©

PID

Td=3*Tw;
TN=0.5*Tw;
KP=1.5* (Tw/Ta);

o° oo

o

switch water conduits
case 'penstock'
p=[-Tw 1];
y=[0.5*Tw 1];
case 'complete'
p=[-Tw*Tws*Twt (Tws*Twt-K*Tws*Tw) (K*Tws-Twt-Tw) 1-K];
y=[0.5*Tws*Twt*Tw (Tws*Twt-0.5*K*Tws*Tw) (K*Tws-0.5*Twt-0.5*Tw) 1-0.5*K];
end

switch governor

case 'pi'

KP=Ta*bt*Td;

TF_num=(1/KP)*conv([Td 11, [-Tw 171);

TF denom=conv ([0.5*Tw 1],[1 0 0]);
case'pid'

TF num=conv ([Td 1], [-Tw 1]);

TF denom=conv ([0.5*Tw*Ta Ta 0], [bt*Td bp]);
case 'self-regulation'

switch compensator

case 'araki'
TF denom=conv ([0.5*Tw 1], [Ta Fn]);

case 'pressure'
compensator=conv ([Td 1],conv(p,conv([T2 1],[T3 1])))-conv ([0

bt*T1*Td 0 0],vy);

TF num=compensator;
TF denom=conv (conv ([T2 1], [T3 1]),conv([Ta bs],conv(y, [bt*Td

bpl))):
case 'waterlevel'
compensator=conv ([Td 1], [0.1*Tr"*2 0.5*Tw 1])+[0 bt*Tw*Td 0 0];
TF num=conv (compensator,p) ;
TF denom=conv ([0.1*Tr"2 0.5*Tw 1],conv([Ta bs],conv (y, [bt*Td
bpl)));
case 'none'
TF num=conv ([Td 1],p);
TF denom=conv ([Ta bs],conv(y, [bt*Td bp]))
end
end

hd = tf(TF num, TF denom) ;
w=logspace (-3,1,1000) ;

%%plot

if bode==

figure (2)

subplot (2,2, [1 31)

[Gm, Pm,Wg,Wp] = margin (hd);

% Gain (counterl, counter?)=db (Gm) ;
% Phase (counterl, counter?2)=Pm;
margin (hd)

hold on;

$N=feedback (hd, 1)

% ltiview('step',T)
end

$ N=1/(1+hd);
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o©

% [Closedloop Gm,Closedloop Pm,CLWg,CLWp] = margin(N);
margin (N)

5 hold off;

if rootlocus==1
figure (2)
subplot (2,2,4)
rlocus (hd) ;
hold on;

zero (hd) ;

% hold off;

end

o

o

if nichols==

figure (4)

nichols (hd)

end

w=logspace (-3,1,1000) ;

% %%%Alternative plotting algorithm%$%%
if altbode==

figure (5)

x=10"-3:1:10"1;

yl=zeros (l,length(x));
y2=-ones (1, length(x)) .*180;

subplot (2,1,1)

[amp0 phase(O]=bode (TF num, TF denom, w);

semilogx (w,20*1ogl0 (amp0), 'LineWidth',2),grid;

hold on;

plot(x,yl, 'black")

set (get (1, 'CurrentAxes'),'YTick', [-50 -40 -30 -10 0 10 20 30 40 50 60 701])
set (get (1, 'CurrentAxes'), 'YLim', [-50 70])

hold on;

ylabel ("Magnitude (dB) ")

title ({[" b {p}= ',num2str (bp),"' b {s}= '",num2str(bs)];['T {w}= ',num2str(Tw),'
T {a}l= ",numZ2str(Ta),’ T {d}= '",num2str(Td), "' b {p}= ',numZstr (bp), "' b {s}=
', num2str (bs), ' b {t}= ',num2str (bt),"' T {d}=

', num2str (Td) ]}, 'FontWeight', "bold")

N=1/ (1+hd) ;

% [Closedloop Gm,Closedloop Pm,CLWg,CLWp] = margin (N) ;
[ampl phasel]=bode (N,w) ;

amp2=zeros (size(w));

semilogx (w,20*1ogl0 (ampl (1,:)),"'-.r', 'Linewidth', 2)
hold off;

subplot(2,1,2)

semilogx (w,phase0-360, 'LineWidth',2),grid

hold on;

plot(x,y2, 'black")

set (get (1, 'CurrentAxes'), 'YTick', [-270 -180 -135 -90 -45 0 90])
set (get (1, 'CurrentAxes'),'YLim', [-270 90])

ylabel ('Phase (deqg) ")

end
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Appendix F Plots

Some of the plots in the thesis are supplied in full size.
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