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En eksperimentell undersokelse av vindturbin vaker

In wind turbine parks space is normally quite restricted. Although the turbines are normally
distributed to reduce the interaction between neighboring turbines, turbine interactions can not be
avoided for certain wind directions, There are two main effects. The first is due to the wake
behind the turbine. Hence the energy available to downstream turbines is reduced compared to
the upstream turbine due to the wind energy consumed by the first. The second effect affecting
the downstream turbine is turbulence generated by the upstream turbines. This consists partly of
the random turbulence caused by the drag effect from the upstream turbines and partly by the
swirl generated from the upstream rotors.

While the wake effect primarily influences the energy output available, the second effect may
produce severe dynamic loads on the downstream turbines. The random turbulence will in
general produce rather rapid fluctuations that may have a length scale of the order of the chord of
the turbine blade and is therefore not very critical since it is likely to have a frequency content
which is much higher than the eigenfrequency of the blade. The length scale of the swirling
motion is however of the order of the diameter of the rotor and is therefore much more critical
for the dynamic behavior of the blade and may cause material fatigue.

The Department of Energy and Process engineering posesses two fully operational model
turbines with a rotor diameter of the order of 1m. The turbines are instrumented to allow the
power production to be measured directly through the torque and rpm measured off the rotor
shaft. In addition the models are equipped with strain gauges to measure the load on the blades.

In this study we like to focus on parameters characterizing the downstream development of the
turbine wake. For example: The turbine rotor induces swirl that propagates downstream with the
turbine wake, and the turbine tower induces a wind “shadow” that mixes and propagates
downstream with the turbine wake and causes asymmetries in the cross-sectional profiles of the
wake velocity components.
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Abstract

In the present study the wake behind a scaled; Horizontal Axis Wind Turbine (HAWT)
has been investigated. The experiments were performed at the Department of En-
ergy and Process Engineering, at the Norwegian University of Science and Technology,
NTNU.

The turbine was installed in the wind tunnel at the department and measurements
were performed at several distances behind the turbine to examine the development of
the flow. A five-hole pitot probe was applied as measurement instrument. The instru-
ment made it possible to calculate both size and direction of the velocity components.

Through the experiments, characteristic curves of the turbine and grid measure-
ments over the cross-section of the wind tunnel, were obtained.

The power and thrust coefficients were measured against the local velocity ratio at
the tip of the blade, the "Tip Speed Ratio’ (T'SR). The power coefficient had a peak at
TSR =5,5. The maximum value at this point was 0,45. The highest measured thrust
coefficient was 1,15, achieved at TSR = 10,3. During the experiments the turbine
operated at optimal conditions, at the highest obtained power coefficient.

Measurements behind the turbine found that the axial velocity distribution devel-
oped as expected. A significant velocity deficit was measured in the wake behind the
turbine, which gradually decreased with increased distance to the turbine. Due to the
presence of the hub and tower, the middle of the wake was characterized by distur-
bances. Moving down the wake the profile got more symmetric. The tangential profile
was almost symmetric about the origin, right behind the turbine, but drifted to the left
at increased distance downstream. Contribution from the tangential components were
gradually reduced further down the wake.

The tower shadow moved with the rotation of the wake, in clockwise direction, as
a region of lower velocities than the prevailing wake. Further downstream the tower
shadow merged with the surrounding wake.

The rotational axis relocated in the wake behind the turbine. Downstream, measure-
ments showed that the center of rotation moved to the left of the origin. To investigate
if the tower was responsible for the experienced downshift, an additional tower was
mounted to the tunnel roof, above the turbine. The additional tower created symme-
try about the hub and gave a symmetric development of the flow field. Thus, it was
concluded that the tower was responsible for the relocation of the rotational axis.
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Sammendrag

I dette forsgket er vaken bak en skalert, horisontalakset vindturbin undersgkt. Forsgket
ble utfgrt ved Institutt for Energi Prosess og Stremningsteknikk, ved Norges Teknisk -
Naturvitenskaplige Universitet, NTNU.

Vindturbinen ble plassert i vindtunnelen ved instituttet og malinger ble gjennomfert
ved forskjellige avstander bak turbinen, for & undersgke utviklingen av strgmmen. Et
fem-huls pitotrgr ble benyttet som maleinstrument. Instrumentet gjorde det mulig &
beregne bade stgrrelse og retning pa hastighetskomponentene.

Gjennom forsgkene ble karakteristiske kurver malt og det ble utfgrt grid malinger
over tverrsnittet av vind tunnelen.

Den Aerodynamiske virkningsgraden og drivkrafts koeffisienten ble malt mot den
lokale hastighetsraten ved tuppen av bladet, "Tip Speed Ratio’ (T'SR). Den Aerody-
namiske virkningsgraden nadde et hgydepunkt ved T'SR = 5,5. Den maksimale verdien
i dette punktet var 0,45. Den storste drivkrafts koeffisienten ble malt til 1,15, opp-
nadd ved T'SR = 10,3. Under forsgkene kjorte turbinen ved optimale forhold, pa den
maksimale virkningsgraden.

Den aksiale hastighets fordelingen utviklet seg som forventet. En betydelig hastighet-
sreduksjon ble malt i vaken nedstrgms for turbinen, som gradvis ble mindre med gkende
avstand til turbinen. Midten av vaken var preget av forstyrrelser i omradet like bak
turbinen, grunnet pavirkning fra tarnet og navet. Videre nedstrgms ble profilen mer
symmetrisk. Den tangentielle hastighets profilen var tilnaermet symmetrisk om origo,
rett bak turbinen, men forflyttet seg mot venstre ved gkende avstand. Den tangentielle
komponenten ble gradvis redusert nedover vaken.

Tarnskyggen forflyttet seg i vaken bak turbinen. Nedstrgms viste malingene at
senteret for rotasjon forflyttet seg til venstre for origo. For & undersgke om tarnet
var arsaken til forflytningen av rotasjonsaksen, ble et ekstra tarn montert til taket i
tunnelen, over turbinen. Det ekstra tarnet skapte symmetri om navet og forte til en
symmetrisk utvikling av strgmningsfeltet. Med dette resultatet, ble det konkludert at
tarnet var arsaken til forflytningen av rotasjonsaksen.
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Nomenclature

a Angle of attack [—]

V' Volumetric flow rate [m?/s]

I' Total circulation [—]

A, Local velocity ratio [—]

Q0 Angular velocity [rpm = 1/min]

Angular velocity transferred to airflow [rpm = 1/min]

Velocity vector [m/s]

o o €

Yaw angle [—]
Pi []

)

p Density [kg/m?]

6 Roll angle [—]

Apeontr Contraction pressure [N/m?]

AT Circulation generated at each blade [—]
A Area [m?]

a Induction factor [—]

a’ Tangential induction factor [—]

Ay Area at inlet of contraction [m?]

Ay Area at outlet of contraction [m?]
B Systematic uncertainty

C, Power coefficient [—]



Cr Thrust coefficient [—]

D Drag force [N]

D Diameter [m]

E Kinetic energy [m?/s?]

F Function of n measured variables
g Acceleration of gravity [m/s?|
haiconor  Height of alcohol [m)]

K Number of blades [—]

L Lift force [N]

M Pitching moment [Nm)]

m Mass [kg]

N Number of samples [—]

P Power [Nm/s]

p Pressure [N/m?]

p1 Pressure at inlet of contraction [N/m?]
p2 Pressure at outlet of contraction [N/m?]
Poo Pressure in free stream [N/m?|
Patm Atmospheric pressure [N/m?|
pa Pressure behind disc [N/m?|

py Pressure in front of disc [N/m?]
@ Torque [Nm]

R Radius at tip of blade [m)]

r Radius [m)]

Rpesific Gas constant [Nm/kgK]
rms Root Mean Square [—]

S; Standard deviation



T Thrust force [N]

Tiemp Temperature [K]

TSR Tip Speed Ratio [—]

U Velocity [m/s]

U; Velocity at inlet of contraction [m/s]
Uy Velocity at outlet of contraction [m/s]
Us Free stream velocity [m/s]

U; Velocity i [m/s]

Un Mean velocity [m/s]

U, Velocity at hole n at the five-hole pitot probe [m/s]
U; Tangential velocity [m/s]

U, Velocity in wake [m/s]

&

Velocity in x direction [m/s]

=

Velocity in y direction [m/s]

=

Velocity in z direction [m/s]

S

Uncertainty intervall






Chapter 1

Introduction

In search of new and renewable sources of energy, wind production is one of the most
promising areas of development. Arrangements of wind turbines in wind farms increase
the energy production. The first wind farm was developed in 1970 in California, United
States. In Europe the development of wind farms started in 1980 in Denmark. Today
Denmark, Germany, Spain and the Netherlands are the leading European countries in
the wind industry [17]. At times energy produced by wind, in Western Denmark and
parts of Germany, exceeds power demand and they are able to export power produced
by wind [24]. Since wind is both a clean, free and practically unlimited source of
energy, production of energy by wind farms is one of the cheapest forms of renewable
technologies available today [20].

In a wind farm turbines are placed in defined structures to produce the greatest
amount of energy. Across a wind farm the different turbines will experience different
wind conditions which results in different power production. The first row of turbines
will experience the best premises because they are not disturbed by the wakes from other
turbines. Turbine wakes affect the power production in two different ways; by velocity
deficits and increased turbulence intensity [10]. Wind turbines utilize the kinetic energy
in the wind to produce energy. In the presence of velocity deficits, less energy will be
produced by the downstream turbines [17].

To optimize the power production in a wind farm the objective is to obtain a layout,
with respect to array losses, that produce the highest amount of energy [10]. The
question is where to locate and how close to space the turbines. Optimizing the siting
can make a great difference to the total power production. Due to interaction between
the neighboring turbines, it is desirable to understand the development of the wake to
achieve the best possible performance. The wake is a complex structure and consists of
several unknown parameters, such as the velocity components with respect to size and
direction and the turbulent behavior. Several studies have focused on the development
of the wake downstream of a turbine, e.g. Bartl [5]|, Blomhoff [6], Nygard [22], Talmon
[28, 29] and Maeda et al. [16]. The results from these studies assume that the center of
rotation moves below the rotational origin, moving further away from the turbine. A
proposed explanation for the relocation of the rotational axis is contribution from the



tower.

The objective of this experimental study is to investigate the development of the
wake, with emphasis on the experienced downshift of the rotational axis and the de-
velopment of the tower shadow. The aim is to figure out if the tower is the reason
for the downshift and how strong the contribution from the tower shadow is further
downstream of the turbine:

e Cross-sectional measurements behind a single turbine, at different distances down-
stream, are performed to investigate the propagation of the tower wake. The
performance of the turbine is also examined.

e An additional tower, equal to the turbine tower, is mounted to the tunnel roof
to create symmetry about the hub. Measurements over the cross-section are
performed at different distances downstream of the rotor, to investigate the con-
tribution of the turbine tower to the relocation of the rotation.

e To examine the strength of the tower shadow, measurements across the wake
are accomplished at a lower wind turbine velocity and at a lower wind tunnel
rotational speed. The experiments are performed both with and without the
additional tower and the turbine is operating at optimal conditions.

The experiments are performed in the large wind tunnel at The Department of En-
ergy and Process Engineering, at the Norwegian University of Science and Technology,
NTNU. The development behind a scaled; Horizontal Axis Wind Turbine (HAWT) is
examined with a five-hole pitot probe as measurement instrument. This instrument
makes it possible to evaluate the flow pattern with velocity components in axial, radial
and tangential direction.

In the first part of this paper, theory about the aerodynamics of wind turbines and a
description of the experimental set-up are introduced. In the second part of the thesis,
results from the experiments and discussion of the obtained results are presented.

The results from this experimental study will hopefully give a better understanding
of the development of the wake and contribute to future planning and improvement of
wind farm technology.



Chapter 2

Aerodynamics of Wind turbines

In this chapter, theory about the aerodynamics of wind turbines will be presented.
Forces acting on the turbine, performance characteristics, expected development of the
flow downstream of the turbine and arrangement of wind turbines in wind farms will
be looked into.

A wind turbine produces energy by utilizing the kinetic energy in the wind:

E = 1/2mU? (2.1)

As the air approaches the rotating blades the velocities decreases. The airflow not
passing the rotating area is slightly influenced by the rotation. Surrounding the affected
airflow an imaginary control volume, with a circular cross-section, can be constructed.
The actuator disc theory is a simplified model explaining the forces acting on the
turbine, the power produced and the effect of the rotor on the development of the
airflow downstream of the turbine.

Some assumptions for the actuator disc theory to be valid, according to Manwell et
al. [17] are:

e homogenous, incompressible, steady flow
e no frictional drag

e an infinite number of blades

e uniform thrust over the rotor area

e no rotation in the wake

e the pressure far upstream and far downstream is equal to the atmospheric pressure

Figure 2.1 below, illustrates the actuator disc theory.



Control volume

e

____ Velocity U
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Air

Figure 2.1: Simplified actuator disc model [7] (modified)

Because the disc obstructs the airflow, the pressure increases as the flow approaches
the disc, p,. This results in a decrease in velocity before the air passes the turbine
blades. The velocity in this area U, is lower than the free stream velocity, Uy. To
obtain the assumption of steady state flow, (pAU)s = (pAU),, the cross-sectional
area must expand.

When the air passes the disc the static pressure, p,, will drop below atmospheric
pressure, P, as can be seen in figure 2.1. The velocity development will not experience
this abrupt change past the disc, but will gradually be reduced as the pressure drop
recovers. The area behind the rotating blades is referred to as wake, U,,.

2.1 Axaal Forces

By assuming constant density, neglected viscosity, smooth, frictionless and incompress-
ible flow, Navier Stokes equation is simplified to Bernoulli’s equation [33]. The equation
is used to evaluate the pressure distribution over the rotor and to calculate the pressure
in the wake. Continuity and conservation of mass assumes that the pressure in the free
flow, before interaction with the rotor area, is equal to the pressure further downstream
of the turbine where stable conditions are reestablished.

Under these idealized assumptions the following relationship is determined:

Poo + 1/2U§O =pp + 1/2U2 (2.2)
Do + 1/2U2 = Poo + 1/2U3) (2.3)

The thrust force, T', acts on the rotating disc as a counter force to the forces in the
wind. By using equation 2.2 and 2.3 above, the thrust force is expressed as:

T = (pp—pa) x A=1Y2p(UL —U,) x A (2.4)
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The axial induction factor is defined as the relationship between the decrease in
velocity towards the rotating disc and the velocity in the free flow:

Loo U
== 2.5

The relationship between the induction factor and the velocity in the wake is:

Uy = Use(1 — 2a) (2.6)

Combining 2.5 and 2.6 we get the following expression for the thrust force:

T = 1/2pAUZ (4a(1 — a)) (2.7)

The thrust force acting on a small element of the blade, dr, can be described as:

dT = pUZ (4a(1 — a)mrdr) (2.8)

2.2 Rotational Forces

Figure 2.1 shows the idealized actuator disc concept with the assumption of a non-
rotating wake. In reality the airflow passing the rotor area creates a torque on the
blades. Due to the torque, the blades move with an angular velocity, €2, about an axis
normal to the disc and parallel to the free stream. This is illustrated in figure 2.2. A
counter force is created with equal strength, but in opposite direction, on the wind |[7].
This counter force makes the airflow, after passing the disc, move in opposite direction
of the blades. The velocity of the air particles gets a tangential and radial component.
The rotation maintains further down the wake.

Figure 2.2: Rotor disc with angular velocity, €2, and local radius, r |7|

The angular velocity increases over the blades and the angular velocity alters to
Q + w, while the axial velocity remains the same [17]. w is the velocity transferred
to the airflow. Change in tangential velocity can then be expressed with a tangential
induction factor:

11
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The blades rotate with a local velocity of Qr. The thrust force acting on an element

of the blade is expressed as:

a (2.9)

dT = 4d' (14 ) pQ*r’ndr (2.10)
Combining equation 2.8 and 2.10 we get the local velocity ratio:

Qr
A = i (2.11)
The local velocity ratio for the tip of the blade is referred to as the Tip Speed Ratio
(T'SR). The Tip Speed Ratio is defined as the relationship between the velocities at
the tip of the blade, where the radius is the length of the blade, R, and the velocity in

the free flow:

QR
TSR= — 2.12
SR =2 (2.12)

oo

2.3 Performance characteristics

A way to classify the performance of a wind turbine is by the power coefficient, C,. The
power coefficient describes the relationship between the power extracted by the turbine
and the power available in the wind through the rotor area:

_ RotorPower P
P PowerInTheWind — 1/2pU3 A

(2.13)

Betz limit is the maximum power a wind turbine can extract from the wind under
idealized conditions, i.e. the actuator disc theory previously described. The Betz
limit was derived by Albert Betz in 1919 and is a number to compare with the actual
performance of real wind turbines, C), = % = 0,593 [10]. Due to rotation of the wake,
a finite number of blades, related tip losses and non-zero aerodynamic drag the C,value
of operating turbines will not be able to reach the value of Betz limit [17].

The power produced by the rotor is determined as: P = Q) . (@ represents the
torque on the element. Plotting the C, against the Tip Speed Ratio (T'SR), equation
2.12, we obtain the turbine performance curve: a typical example is illustrated in figure

2.3.

12
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Figure 2.3: C)- T'SR curve

In the figure the optimal operating condition is given at a certain T'S R value. Here
the energy efficiency is evenly distributed and the power production is optimized. It
is desirable to let the turbine work in this area. If the value is lower than optimal the
angle of attack is high, which results in stalled conditions. In this T'S R region the wind
will pass the rotor with less interaction with the turbine blades. The power is reduced
and the power coefficient will decrease as a result. At higher rotational speed the power
coefficient decreases, due to a low angle of attack and resulting drag effects [7]. The
highest achieved T'SR value is called the 'runaway T'SR’. At this value the turbine is
no longer able to produce power.

Another parameter used to evaluate the performance of the turbine is the thrust
coefficient. The thrust coefficient is defined as the axial thrust force divided by a
dynamic force, both acting on the rotor area.

ThrustForce T
- , . (2.14)
DynamicForce — 5pU?A

Cr

A typical development of the thrust coefficient is sketched in figure 2.4.

124
1,0+
0,81

CI’
0,6

0,4+

Figure 2.4: Cp- TSR curve

With increasing Tip Speed Ratio the value of the thrust coefficient grows. At

13



higher rotational speed the disc becomes more “solid” and the air will not be able to
flow through the rotor. Instead the air will flow around the disc and there will be
separation behind the rotor, similar to the behavior behind a solid disc. This results in
a higher thrust force acting on the turbine [7]|. In figure 2.4 there is a slightly inflection
of the curve. This is experienced because the turbine is working in the transition area
between stalled and optimal conditions.

2.4 Aerodynamics of the blade

The blades of a wind turbine are designed to utilize the kinetic energy in the wind. The
goal in the design process is to maximize the energy capture of the rotor, to achieve a
maximum power coefficient [7]. The shape of the cross-section of the blade is equal to
the form of an airfoil.

There are two main forces and one moment acting on the turbine blade: lift, L,
and drag, D, forces and pitching moment, M. The lift force acts perpendicular to the
direction of the airflow and is due to the different pressure distribution between the
top and the bottom of the airfoil surface. The drag force acts parallel to the direction
of the airflow. The drag force is a result of the pressure distribution on the surface,
toward and away from the oncoming flow, and the viscous friction forces acting at the
surface of the airfoil. The pitching moment acts about an axis perpendicular to the
cross-section of the airfoil |17]. The forces and the moment, as well as the angle of
attack are shown in figure 2.5. The angle off attack, «, is the angle which the air strikes
the blade.

Airflow

e | el Z

Chord

Figure 2.5: Lift, drag and pitching moment acting on airfoil [17] (modified)

The pressure gradient may be directed in the same, or in the opposite direction of
the airflow. The flow in the boundary layer is slowed, either by the pressure gradient
or the surface friction. Stalled conditions are attained if the boundary layer is stopped
or reversed. In this case the boundary layer is separated from the airfoil, the lift force
decreases and the drag force increases. Stall occurs when the angle of attack exceeds a
certain value, resulting in separation of the boundary layer at the upper surface of the
airfoil. This condition may happen at certain blade locations or when the wind turbine
is operating at certain conditions, such as too high or two low rotational speed (see
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chapter 2.3). An airfoil acting under stalled conditions is sketched in figure 2.6. In the
figure the boundary layer is no longer attached to the airfoil at the upper surface.

Figure 2.6: Airfoil acting at stalled condition [7]

2.5 Wake development

The wake can be divided into two sections. The near and the far wake. The transition
area between the two divisions is approximately one rotor diameter downstream of the
rotor [26]. The geometric properties of the rotor determine the flow field in the near
wake. In the far wake, the shape of the rotor is less important.

The actuator disc theory assumes that the control volume, surrounding the wake,
separates the free flow from the flow in the wake entirely. In reality this is not the case.
In the transition area between the wake and the free flow, a shear layer is created due
to the velocity difference. The shear layer expands until it reaches the wake axis, as
illustrated in figure 2.7. This point represents the end of the near wake. In the shear
layer, turbulent eddies are formed when the kinetic energy in the wind is separated into
thermal energy. Turbulence in the wake mixes the lower velocities in the wake with
the higher velocities in the free stream and transfers momentum into the wake. This
contributes to the expansion of the wake and a reduction in the velocity deficit [26].

mixing |

near wake far wake

Figure 2.7: Transition between the near and far wake [26] (modified)
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In the far wake the velocity deficit gradually decreases and the turbulent level is
predominant. Here the wake is fully developed.

The axial velocity, parallel with the free stream, is close to symmetric across the
rotational axis. The velocity distribution in the wake is considerably lower than the
velocity in the free stream. This is due to the pressure reduction over the rotating plane,
previously described. A potential axial velocity distribution is illustrated in figure 2.8.
Here the velocity, U, is non-dimensionalized by the velocity in the free flow, U..
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Figure 2.8: Axial velocity distribution

Rotation in the wake contributes to the tangential velocity distribution. Each blade
generates a radial, uniform circulation with strength AI'. This tip vortex is created
due to the pressure difference between the upper and lower side of the blade. A helical
vortex is then generated from the tip of each blade, with equal strength, moving down
the wake with the local velocity. In the center of rotation, a root vortex of strength
I' = K x AT, is formed. K is determined by the number of blades. The circulation
maintain downstream of the turbine and is the main contributor to the tangential
velocity profile. Figure 2.9 demonstrates how the circulation evolves downstream of a
turbine that rotates clockwise, with the airflow rotating counter clockwise.
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Figure 2.9: Circulation in the wake |7] (modified)

The dimensions of the tangential velocity components are reduced with increased
radius and get close to zero at the outer edge of the control volume. There is almost no
circulation in the center of rotation, resulting in small tangential components. However,
the tangential velocity enhance with reduced radius. Thus, in close distance to the
rotational axis, the contribution from the circulation is severe and large tangential
components are formed. Figure 2.10 shows the expected tangential velocity distribution
over the cross-section, at hub height, when the wake rotates in clockwise direction.

Figure 2.10: Tangential velocity distribution

The radial components point towards the center of rotation to balance the centrifugal
forces on the rotating flow. Consequently, measurements in hub height are assumed to
have small radial components. This is because the velocity vectors are expected to have
almost vertical components in this area.
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2.6 Wind farms

When arranging wind turbines in wind farms the question is how to place the turbines
to get the best power output available. There will be interaction between the different
turbines due to turbulence, rotation and wake development. Array losses will occur
because the wake of the upstream turbines will influence the power produced by the
downwind turbines.

Velocity deficits and generation of turbulence are the most important contributors
to losses of energy production [20]. The wake consists of velocity deficits and swirling
vortices due to interaction between the wind and the rotor surface and different flow
patterns over the surface of the blade [17]. Down the arrays in a wind farm the level of
turbulence increase, resulting in better turbulence mixing in the wake of the downstream
turbines. Consequently, the wake of a downstream turbine recovers more quickly than
the wake of a turbine further upstream [26].

In a wind farm, the first row will produce the greatest amount of energy compared
to the turbines further down the arrays. The performance of the downstream turbines
will be reduced due to extraction of energy upstream. An extensive investigation of the
Horns Rev Offshore Wind Farm was performed by Méchali et al. [18]. The wind farm
is located close to Denmark, in the North Sea. The study found that: “The general
tendency is a large drop from turbine 1 to turbine 2 and a steadily decreasing power
output along the line of turbines” [18]. Bartl [5| performed a wind tunnel experiment
where the performance of a second turbine, placed downstream of another, was inves-
tigated. The experiment found that the obstructed turbine produced only 31% of the
power produced by the unobstructed turbine.

Another result of higher turbulence intensity is higher wind velocities and more ex-
treme wind changes over shorter periods. Increased turbulence creates random fluctua-
tions in the load, power output and stresses the entire turbine structure. Consequently,
the life of the downstream turbines is reduced.

Energy production by wind turbines, in an economic perspective, is a tradeoff be-
tween space and power output. The objective is to obtain a layout producing the highest
amount of annual energy, while taking constrains such as wake losses into account. An
improved ability to predict wake losses and the wake development, may improve the
design of large wind farms significantly.

Experiments in real wind farms are difficult to perform due to vulnerability to
atmospheric turbulence, wind shear from the ground effect, wind directions that change
both in time and space and effects from the wake of surrounding turbines [30]. Thus,
it is difficult to capture all the different parameters in a real wind farm. However, a
wind tunnel experiment will give a good indication of the development of the different
parameters, even though the experiments are performed under idealized conditions.
Consequently, reproduction of several aspects in real situation of the atmospheric and
environmental conditions, are problematic.
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Chapter 3

Experimental set-up

This chapter contains an introduction of the equipment’s used in the experiments and
a description of the different set-ups.

3.1 Equipments

3.1.1 Wind Tunnel

The wind tunnel used in the present study is a low-speed, closed return wind tunnel
that consists of an 11m long test section with height 1,9m and width 2, 7m. In figure
3.1 an illustration of the wind tunnel is shown, with a caption on the test section where
the experiments were performed.

: . Test section
Contraction section

Figure 3.1: Wind tunnel [13] (modified)

A 220kW fan produces the wind in the tunnel. Wind velocities in the test section can
be adjusted up to 30m/s. Through a contraction section the velocities are determined.
The velocity profile at the inlet is uniform, with a low degree of turbulence [1|. In
addition to the contraction section, the tunmnel is provided with a force balance and a
traverse system.
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3.1.1.1 Inlet contraction

The wind tunnel contains a contraction section, before the air enters the test section.
As the cross-sectional area decreases, the static pressure is reduced and the velocity at
the outlet increases. Pressure holes are encircling the airflow at the inlet and at the
outlet of the contraction area, measuring the static pressure at these points. Figure 3.2
gives a schematic representation of the contraction section.

Inlet Outlet
— [——— Test section
Pa, Ag_. UZ
™. AlJ Ul

Figure 3.2: Inlet contraction

With known areas and pressures, the velocity at the outlet of the contraction area
can be calculated. This is the same velocity as the inlet velocity to the test section. Us
can be measured from the relationship between the volumetric flow rate through the
contraction, equation 3.1, and Bernoulli’s relationship, equation 3.2:

V =UA; = Uy Ay (3.1)
_ P2 2

pP1—DP2 = §(U2 - U7) (3.2)

v, = | Ap—pa) (3.3)

p(1- (%))

The ratio between the inlet and the outlet area of the contraction section of the

present wind tunnel is:
Ao 1
R 3.4
A (4, 36) (34)

3.1.1.2 Force balance

A six-component force balance is located underneath the test section of the wind tunnel.
When measuring the thrust force acting on the turbine, the turbine was fixed to the
balance. The force balance can be rotated 180 degrees in both directions, according
to the direction of the airflow. In every set-up the turbine was aligned with the flow.
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Consequently there was only need for calibrating one component. To calibrate the force
balance, weights were added to the respective component and force values were logged.
A relationship between the additional weights [N] and volt signals [V], recorded in
LabVIEW, was created.

3.1.1.3 Traverse system

To be able to take measurements over the cross-section, a traverse system is fitted in
the tunnel. The traverse system is computer controlled and provided with three axes,
which makes it possible to take measurements at almost any position in the tunnel.
A LabVIEW routine developed by Schiimann [27] makes the traverse system move
automatically, taking measurements at a given grid. The grid expands from —820 to
+820 in z-direction and —800 to +800 in y-direction as shown in figure 3.3. The grid
is refined in areas where steep velocity, turbulence and pressure gradients are expected
[27]. The traverse moves into position when the program is started, a sample is taken
before the traverse moves to the next measuring point. It is also possible to move the
traverse manually from the computer, deciding the next position of the measurements.

800
6001
400 |-

200

—200}
—400}:

— 600} :

—800}:

Figure 3.3: Grid of cross-section

3.1.2 Scaled; Horizontal Axis Wind Turbine

A scaled; Horizontal Axis Wind Turbine (HAWT) was applied in the experiments. The
rotational diameter of the blades is 0,9m and the hub has a diameter of 0,09m. The
turbine tower is 0, 95m high with a non-uniform diameter.

The rotational velocity is adjusted by a SIEMENS MICROMASTER . 440 frequency
inverter connected to a 0, 37kW SIEMENS DC electric motor, placed at the wind tunnel
floor. At the end of the shaft of the rotor, a belt is mounted to operate the rotor from
the electric motor. The frequency inverter is placed on the outside of the tunnel and
the rotational velocity is controlled from here.
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In figure 3.4 the turbine is shown from the front, figure 3.4a, and from the back,
figure 3.4b. Here the belt mounted to the end of the shaft is visible.

o

(a) Turbine from the front

Figure 3.4: Scaled, Horizontal Axis Wind Turbine

3.1.2.1 Torque transducer

A HBM T20W N/2Nm, torque transducer is connected to the rotor shaft on the model
turbine, measuring the torque produced by the turbine. When calibrating the torque
transducer, a clamp was fastened at the end of the rotor shaft creating a torque at the
front of the shaft. Weights of fixed sizes were attached to one of the turbine blades
at a defined distance from the center of rotation. The weights generated a torque of
defined values [Nm]. The measured values were related to volt signals [V] in LAbVIEW,
creating a linear relationship.

3.1.3 Instruments

In the experiments a five-hole pitot probe was used as measuring instrument, to evaluate
the development of the wake. A thermocouple was used to measure the density during
the experiments.

22



3.1.3.1 Five-hole pitot probe

A five-hole pitot probe makes it possible to measure the magnitude and direction of
the velocity components in an unknown airflow. The head of the probe, used in this
experiment, is shaped as a sphere and the five holes are distributed about the center
of the head. By Bernoulli’s equation a relationship between the pressure, measured
in each hole, and the velocity distribution in the flow can be constructed [21]. The
relationship between a position in the free stream and a point at the probe’s head is
determined by the following expression:

p—pn="12xpU; —U?) (3.5)

An advantage with a five-hole pitot probe is the possibility to measure angles of
the velocity vectors. This makes it possible to evaluate the flow pattern with direction
and magnitudes. The distribution of the five holes are illustrated in figure 3.5. The
relationship between the yaw, ¢, and roll, #, angles and the velocity components are
placed in a coordinate system in figure 3.6.

ol
%J\@j

Figure 3.5: Distribution of the five holes on the surface of the five-hole pitot probe [11]
(modified)

8 — yaw angle
p—rollangle [, ¥

Figure 3.6: Five-hole pitot probe in coordinate system [11] (modified)
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When the velocity vectors, ﬁ, and the yaw and roll angles are identified, it is possible
to find the velocity components in x, y and z direction by the following expressions:

U, = Ucosfcosi (3.6)
U, = UcosOsing; (3.7)
U, = Usinfk (3.8)

At the five-hole pitot probe used in this study, the pressure holes were not completely
symmetrical distributed about the center hole. However, a comprehensive calibration
technique, described below, corrected for asymmetries.

Calibration of the five-hole pitot probe There are two procedures to accomplish
measurements with a five-hole pitot probe: the nulling technique and the non-nulling
technique. The nulling technique assumes a very accurate traverse system, where the
probe is perfectly aligned with the flow in every measuring point [19]. This proce-
dure requires a long time response and accuracy unobtainable for the purpose in this
experimental study. Therefore the non-nulling technique was applied.

Schiimann [27] performed the calibration for the five-hole pitot probe utilized in
this experiment. A three dimensional curve-fit analysis program was developed in
MATLAB for the calibration, using a modified routine of the approach presented by
Morrison et al. [19]. The calibration was carried out in a circular test rig, with 0, 185m
in diameter and 14m in length. The velocity in the wind tunnel during calibration was
U = 8,8m/s. The value was between the free stream velocity, U, in the wind tunnel
during the experiments and the expected lowest velocity in the wake [27]. The probe
was mounted at the outlet of the wind tunnel and yaw and roll angles were traversed.
From the measured results, non-dimensional calibration constants were developed. This
was done to convert the pressure difference between the stagnation and static pressure
to magnitude and direction of the velocity components in the flow (see equation 3.6,
3.7 and 3.8).

To reduce the effect of bad calibration points and the effect of the slightly asymmetric
distribution of the pressure holes, a cubic interpolation was used between the data
points.

3.1.3.2 Thermocouple

During the experiments, a thermocouple was mounted to the wind tunnel wall to record
the temperatures in the tunnel. The registered values were used to calculate the air
density in the wind tunnel by the relationship:

Patm
p=_—rtetm 3.9
Rspesific,-rtemp ( )
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Where pgn, is the atmospheric pressure, Rgesific is the gas constant of air and Tiep,,
is the measured temperature in the tunnel. The thermocouple was connected to the
PC through a data-acquisition board and the temperatures were logged in LabVIEW.

3.1.3.3 Pressure Transducer

The five-hole pitot probe and the inlet contraction section were attached, with sili-
con tubes, to pressure transducers. The pressure transducer transformed the pressure
signals, recorded in the flow, to volt signals [V]. The transducers were connected to
a data-acquisition board which was attached to the PC. The signals were logged in
LabVIEW. In all, seven pressure transducers were used in the experiment.

Calibration of the pressure transducers During calibration, the pressure trans-
ducers were connected to a manually controlled manometer with silicon pipes. By
adjusting the pressure in the pipes, using clamps, the height of alcohol in the alcohol
column of the manometer and the volt signal logged in LabVIEW were varied. A rela-
tionship between the pressure, p, and the height of alcohol in the manometer, hyiconor
[m], is determined by:

pP= halcahol XgXp (310)

In the equation g represents the acceleration of gravity [7/s2] and p, the density
of the alcohol [k9/m3]. Methylated spirit with a density of 810k9/m3 was applied in the
manometer.

The pressure values were plotted against volt signals and a linear relationship was
created. In figure 3.7 the calibration curve of one of the pressure transducers is shown.
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Figure 3.7: Calibration curve of pressure transducer

The offset values were slightly varied and the pressure constant was not persistent.
Thus, it was necessary to calibrate the pressure transducers before every experiment.
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3.2 Set-up

During the experiments the same arrangement of the measuring instrument was utilized.
Measurements behind the turbine were performed with two different set-ups. The first
experiments were performed with the original model turbine in the wind tunnel, while
the other part of the experiments were performed with an additional tower mounted
above the turbine.

3.2.1 Arrangement of measuring instruments

The set-up of the measuring instrument is shown in figure 3.8. The five-hole pitot
probe was fastened with a steel arrangement, adjustable in several directions to make
the probe in line with the flow at all time. The arrangement was mounted to the traverse
system, which made it possible to take measurements over the entire cross-section.

Figure 3.8: Arrangement of measuring instrument

3.2.2 Set-up: Single turbine in tunnel

The velocity profiles and the performance characteristics were measured by placing the
turbine in the tunnel, with equal distance to the tunnel wall and with a distance of
4,5D to the entrance. The turbine was mounted to the force balance. The traverse,
with the measuring arrangement, was moved to the desired distance behind the turbine
and measurements were performed. The set-up is shown in figure 3.9.
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Figure 3.9: Model turbine in wind tunnel with measurement instrument

3.2.3 Set-up: Turbine with additional tower

To evaluate the influence of the tower, an additional cylinder equal to the tower of the
turbine was mounted to the roof. The set-up is shown in figure 3.10. The additional
cylinder was made of steel and wood. Close to the hub, a part of wood was added to
be able to fit the supplementary tower to the hub. The distance between the hub and
the tower was approximately 5mm. The cylinder did not touch the hub because it was
not desirable to influence the force balance with additional weight.

Figure 3.10: Turbine with additional tower
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Chapter 4

Results and Discussion

4.1 Measurements behind turbine

Measurements were performed behind the turbine at different distances downstream.
During the experiments the turbine was operating at zero pitch and yaw angles. First
performance curves were obtained by collecting signals from the force balance and
torque transducer, at different loads and rotational speeds. A five-hole pitot probe was
used to measure the velocity components behind the turbine, to investigate the evolution
throughout the wake. Measurements without tower were carried out at 0,5D, 1D, 1,5D),
2D and 3D to investigate the development of the tower shadow. Measurements with
the additional tower were performed at 0,5D and 3D behind the turbine to examine
the influence of the tower on the wake by creating symmetry about the hub. During
the experiments the free stream velocity was 11m/s. In addition, it was desirable to
examine the influence of the free stream velocity on the turbine behavior. The same
measurements were therefore performed at a free stream velocity of 7,5m/s, at 0,5D
downstream of the turbine, both with and without the additional tower. The free
stream velocity was monitored and kept constant throughout all the experiments by
controlling the contraction velocity measured at the inlet section of the tunnel. In this
chapter the results from the measurements will be presented.

4.1.1 Measurements behind single turbine
4.1.1.1 Characteristic curves

The performance of the turbine is the net energy output, non-dimensionalized over the
available power from the free stream. During the energy extraction process, the wind
applies a thrust force and a torque on the turbine rotor. The thrust force was measured
by positioning the turbine on the force balance, while the torque was estimated by
means of the torque transducer connected to the shaft of the turbine. By adjusting the
rotational velocity of the turbine and measuring for every single working condition, the
performance coefficients were obtained. In figure 4.1 the power coefficient, C,, of the
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turbine is presented against the Tip Speed Ratio, T'SR, and in figure 4.2, the thrust
coefficient, C7, is presented.

While obtaining thrust and power coefficients, the contraction velocity of the wind
tunnel was U, = 11m/s. Performance characteristics for the present turbine were
previously investigated by Loland [15], Adaramola and Krogstad [1| and Bartl [5].

Analyzing figure 4.1, the results indicates that the turbine operated at optimal when
the T'SR value was 5,5 at the free stream velocity. The peak power coefficient turned
out to be 0.45. Here the turbine operated at ideal conditions. The curve developed as
expected from the theoretical results, described in chapter 2.3. The power coefficient
increased until it reached a maximum value at 5,5. With further increase in TSR, the
power coefficient decreased, as anticipated. The experiment should contain some more
points at higher T'S R values, to include the maximum 7T'SR value where power could
be extracted. This was not feasible because of technical problems which arose during
the experiment.
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Figure 4.1: Power coefficient

Adaramola and Krogstad [1| performed a comprehensive study of the performance
characteristics and near wake of the same turbine as the present experiment, in yawed
conditions. The experiment was performed in the same wind tunnel at a free stream
velocity of about 10m/s. The maximum power coefficient in their experiment was found
to be C}, = 0,45, when the turbine was operating at zero pitch and yaw angles. The
corresponding Tip Speed Ratio at this point was TSR = 6. In this experiment the
‘runaway T'SR’ was about 11,2 [1]. Bartl [5], performed a similar experiment with the
same equipment’s. At an inflow speed of Uy, = 11,5m/s, a power coefficient of 0,47
was obtained. The highest T'SR value achieved, during the experiment, was 11,6 [5].
From the tendency which can be extrapolated from the last acquired points, it can
be inferred that the runaway point of the present experiment was located somewhere
between 11,2 and 11,6. The structure of the curve and values obtained in figure 4.1,
were in agreement with the results acquired by [1, 5, 15].

The thrust coefficient is presented in figure 4.2 below. To calculate the thrust
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induced by the rotor, the thrust of the tower and nacelle had to be subtracted from the
total measured drag force. For this reason, measurements were performed on the tower
and the nacelle when the blades were taken off.

14

12

0,8 &=

06 L&

0.4 £

0,2 =

TSR

Figure 4.2: Thrust coefficient

With growing T'S R, the rotational speed got higher. The disc became more “solid”
and the thrust force acting on the turbine increased. The maximum thrust coefficient
was obtained at 1,15. This occurred at a T'SR value of 10, 3. Between approximately
TSR =3 and TSR = 5,5 there was a steeper increase in the Cp curve. This was due
to the transition from the stalled region to optimal operation, also experienced in the
development of the C), curve. At 5,5 the turbine was no longer working under stalled
conditions. The value of the C'r measurements exceeded one. This was probably due
to the blockage effect from the wind tunnel walls, contributing to increase the local
velocity which resulted in a higher thrust force acting on the turbine. Compared to
the experiments previously mentioned, [1] and [5], it was expected that the Cp value
would reach 1,2 at higher T'SR values. Due to technical problems, measurements in
this region were not performed.

However, the results coincide with the results recorded by [1, 5, 15].

4.1.1.2 Wake development

In figure 4.3, the mean velocity distribution is shown for 0,5D, 1D, 2D and 3D down-
stream of the turbine. The values are non-dimensionalized over the free stream velocity
Un/Us. The measurements were taken horizontal over the cross-section of the tunnel,

at hub height. During the experiments the turbine was operating at optimal conditions
at TSR =5,5.
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Figure 4.3: Axial velocity profile at 0,5D, 1D, 2D and 3D

As expected, a deep velocity deficit was present, in agreement with theory presented
in chapter 2.5. At 0,5D and 1D downstream of the turbine the profiles were charac-
terized by considerable variations in the middle of the wake. The close distance to
the hub and tower contributed to these irregularities in the wake development. Strong
root vortices also caused the asymmetric behavior in this area. At 0,5D the lowest
velocity was Um/u,, = 0,54 and at 1D the lowest velocity was measured Unm/u,, = 0, 43.
Further downstream, the profile got flatter and the velocity deficit was reduced. At 2D
downstream the minimum velocity was Un/u. = 0,45 and at 3D Um/u., = 0, 5.

The velocity 0,5D downstream from the rotor was averagely higher than the velocity
at 1D, as expected from the actuator disc theory (see figure 2.1). The velocity decreased
gradually as the pressure drop recovered and increased again because of the turbulent
mixing and wake expansion.

As the wake propagated downstream the wake width increased. The turbulence
in the wake mixed the lower velocities in the wake with the higher velocities in the
free stream. At 0,5D the width of the wake was A(#/r) = 2,3. At 3D downstream,
the wake expanded to A(#/rR) = 2,6. At close distance behind the turbine, influence
from the tip vortices created a sharp velocity gradient between the wake and the free
stream, #/r = +1,16, at 0,5D. At 2D and 3D the transition was smoother because the
turbulent diffusion smeared out the velocity gradients further behind the turbine. As
a result the wake became broader and the velocity deficit decreased.
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Movement of tower shadow Figure 4.4 shows full area profiles of the mean velocity
of the wake development, at different distances downstream of the turbine. The profiles
are non-dimensionalized by the free stream velocity, Um/u...
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Figure 4.4: Full area velocity profiles at 0,5D, 1D, 1,5D, 2D and 3D
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Figure 4.4a shows the mean velocity profile 0,5D downstream from the turbine
rotor. The tower shadow was clearly visible to the left of the center of rotation, as a
region of lower velocities than the surrounding flow. In the middle of the figure there
was an open region where no valid measurements were available: here the five-hole
pitot probe was not able to capture the different components of the flow due to the
presence of the nacelle, which induced backflow and other disturbances. In figure 4.4b
and figure 4.4c the tower shadow was still evident, drifting in clockwise direction as
the wake propagated further downstream. At 2D downstream (see figure 4.4d), the
outline of the tower was less pronounced, but present at a nine o’clock position. At 3D
downstream (see figure 4.4¢), the tower shadow merged with the surrounding airflow.
Barber et al. [4] investigated the wake behind a single turbine using a five-hole pitot
probe. Their measurements discovered a: “significant asymmetry caused by the tower,
as the surrounding flow migrates into the lower-pressure region of the tower’s wake”
[4]. Kress et al. [12] also discovered asymmetries due to the presence of the tower.
Nygard [22| investigated the influence of the tower wake on the rotor wake, at different
operating conditions. He observed that: ”As the wake propagates downstream the tower
wake is displaced due to a clockwise rotation of the wake” [22]. This is in accordance
with the results found in figure 4.4.

Due to the presence of the nacelle the energy extraction was lower in the area behind
the hub, contributing to a region of higher velocities. In figure 4.4a the area of higher
velocity was located behind the rotor center, creating a velocity difference between the
inner and outer part of the wake. At the center the velocity was theoretically zero.
Moving downstream the higher velocity region relocated, influencing the movement of
the tower shadow as well. The tower wake rotated faster at the center and slower at
the outer part of the wake. In figure 4.4e the area of higher velocities had drifted down
and to the left of the origin. Barber et al. [4] noticed a similar development in their
study.

Close to the top of figure 4.4b, 4.4c and 4.4d an area of lower velocities was visible.
These disturbances were probably due to the presence of the traverse system and the
close distance to the roof. The traverse system was mounted to the tunnel roof creating
a blockage effect in this area that influenced the free stream velocity. Observing the
overall wake development in figure 4.4 it was clear that the wake expanded more in
the horizontal direction than in the vertical direction. Referring to figure 4.3, the wake
expanded, at 3D, from #/r = —1,3 to #/r = 1, 3 in horizontal direction, while in vertical
direction it only grew to ¥/r = 1,2 above the rotor axis. Bartl [5] and Adaramola and
Krogstad [2| also experienced influence from the roof in their experiments, since the
hub was located only 1, 1D below the roof.

Development of rotation The Arrows in figure 4.5, are velocity vectors projected
on the cross-sectional plan y-z, at 0,5D and 3D downstream of the turbine. The wake
rotates in clockwise direction. In figure 4.5a the arrows revolve about the origin at 0,5D.
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Further downstream, the rotational axis seemed to move. At 3D (see figure 4.5b) the
center of rotation moved approximately ¥/r = —0,25 and #/r = —0, 1. A dislocation of
the rotation was also evident in figure 4.4 where the area of higher velocities moved, as
previously described.
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Figure 4.5: Vectorial velocity components at 0,5D and 3D
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Previous studies [5, 6, 9, 23, 28, 29, 16] also highlighted a certain downshift of the
rotational axis. Blomhoft [6], Eriksen [9] and Pierella [23] performed their experiments
in the same wind tunnel, behind the same turbine as the present study, under similar
conditions. Maeda et al. [16] investigated the interaction between two turbines under
different flow patterns. The study discovered that: “The axial velocity distribution is
distorted, and a weak velocity area appears below the center of the rotor axis” [16].
The paper suggested that the reason for the displacement could be the influence of the
tower wake. Bartl [5] also assumed that a lower pressure region behind the tower could
cause the experienced downshift. Talmon [28, 29| investigated the effect of the tower,
the nacelle and the ground, on the wake. The experiment showed a certain downshift of
the velocity deficit [30]. These findings were further examined by Crespo et al. [8] who
ascribed the results to the effect of the ground and the shear of the incoming flow [30].
However, the turbine hub was centered closer to the roof than to the floor in the present
experiment. Consequently, if the tunnel walls were responsible for the downshift, the
rotational axis should have shifted upwards. Accordingly, the presence of the ground
was unlikely to be the reason for the downshift experienced in this study. Furthermore,
Bartl [5], who performed a similar experiment in the same wind tunnel as the present
study, stated that: “there is no shear in the inlet flow field” [5]. Thus, the shear could
not be the reason for the downshift of the rotational axis.

Figure 4.6 shows the development of the tangential velocity components at 0, 5D and

3D downstream of the turbine. The measurements were taken across the cross-section,
at hub height.
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Figure 4.6: Tangential velocity profile at 0,5D and 3D

At 0,5D the components had a maximum value at #/r = —0, 36 and #/r = 0, 36, the
corresponding tangential velocities in these points were |Vt/u.| = 0,13 and |Ut/u.| =
0,16. Compared to figure 4.5a, the rotation was located near the origin and the devel-
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opment was expected to be close to symmetric through the wake. At 3D the profile
was less symmetric and the tangential components were clearly reduced. Here the max-
imum velocities at each side of the axis were found at 2/r = —0,93 and #/r = 0, 27 with
values of |Vt/u.| = 0,1 and |Vt/u.| = 0,09. The wake moved to the left of the origin,
with zero tangential velocity components at approximately #2/r = —0,1. This result
was in accordance with the information found in figure 4.5b. The strong tangential
components at approximately #/r = —1 could also be seen at the almost vertical arrows
in figure 4.5b.

4.1.2 Measurements behind turbine with additional tower

Measurements with additional tower, as described in chapter 3.2.3, were performed at
0,5D and 3D downstream of the turbine. In figure 4.7 the mean velocity distribution
is shown, Um/u.

(a) 0,5D

Figure 4.7: Full area velocity profiles with additional tower at 0,5D and 3D

The shadow of the additional tower was clearly visible at 0,5D (see figure 4.7a). The
wake was well defined at close distance behind the turbine, with an abrupt transition
to the free stream with higher velocities. The tip vortices were clearly visible in the
transition area, under form of a steep velocity gradient. Moving downstream the outline
of the wake became more diffuse (see figure 4.7b). The lower velocities in the wake mixed
with the higher velocities in the free stream, resulting in expansion and a broader wake.
At 0,5D the velocity right behind the hub was not captured, as it had happened in
the measurements without additional tower. The velocity components were outside the
interval of the calibration area of the five-hole pitot probe, and the results were not
reported. At 3D the profile was more uniform over the cross-section compared to the
case without an extra tower (see figure 4.4e).
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At 0,5D the area of higher velocities, also registered in the measurements without
the additional tower (see chapter 4.1.1.2), due to the presence of the nacelle, was still
present. At 3D this contribution was still evident, albeit less visible, right on the origin.

In figure 4.8 transversal velocity vectors describe the rotation of the flow at 0,5D
and 3D downstream of the turbine, with additional tower.
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At 0,5D downstream from the rotor, comparing figure 4.8a to figure 4.5a, the rota-
tion with additional tower did not deviate strongly from the case without tower. The
rotation shown in figure 4.8a was close to symmetric across the wake. At 3D the ad-
ditional tower contributed to the development of the wake. In figure 4.5b the center
of rotation was significantly shifted down. With the additional tower (see figure 4.8b),
the center of rotation was located right at the origin and the rotation was close to
symmetric about the axes.

In figure 4.9 and 4.10 the axial and tangential velocity profiles with additional tower,
at 0,5D and 3D, are shown.
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Figure 4.9: Axial velocity profile with addditional tower at 0,5D and 3D

At 0,5D the profile was dominated by disturbances in the middle of the wake. Here
contribution from the towers and the presence of the hub, as well as root vortices, in-
fluenced the development of the wake. This was also noticeable in figure 4.3 at close
distance from the turbine. However, the disturbances evened out further downstream
and were less visible 3D downstream. The velocity deficit gradually recovered at in-
creasing distance from the rotor. At 0,5D the lowest velocity was found at 2/r = —0, 93.
Here the velocity in axial direction was Un/v., = 0,47. At 3D the velocity minimum
increased to Um/u. = 0,48 at #/r = —0, 4.

Moving downstream the wake expanded from Az/r = 2,4 at 0,5D to A#/r = 2,8
at 3D. This was slightly broader than the measurements without the additional tower.
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Figure 4.10: Tangential velocity profile with additional tower at 0,5D and 3D

The tangential distribution is shown in figure 4.10. At 0, 5D the maximum velocities
were found at #/r = —0,4 and #/r = 0,53. The corresponding tangential velocities were
approximately |Ut/u.| = 0,14 and |Ut/u.| = 0,15. Zero velocity was found slightly to
the right of the origin. Moving downstream, the profile was almost symmetric. The
maximum tangential velocity, 3D behind the turbine, was found at z2/r = £0,9, the
velocity in these points was |Ut/u.| = 0,09. In both cases the point of zero velocity was
found at #/r =0, 1.

4.1.3 Comparison with and without tower

Comparing measurements with and without the additional tower it was clear that the
tower influenced the experienced downshift. Figure 4.5b showed a significant downshift
of the rotational axis. Adding the extra tower, creating similarity about the hub, the
downshift was no longer noticeable (see figure 4.8b).

In figure 4.11 the axial and tangential velocity profiles, at hub height, 0,5D and 3D
downstream of the turbine, both with and without the additional tower, are plotted
against each other.

42



12 12
) Ak ok =) ;
gy Frhﬁ: i b & & 2o g‘i‘i’-ﬂ *
[ . ¥
| ! A,
! h ¥y
0,8 ‘l: :, 0,8 » f
\ /
A /
B AlcA, } X ”
U/u. 06 ‘ 2 1A J U/u. 06 W a‘«a{
), ¥ e ), 4
= A Al L s By B 2P
Ay ik Ry e TR VoY
04 04
02 — & —0,5D without tower || s ~ & =30 without tower
— & —0,5D with tower — & —3Dwith tower
o ] ] o ! !
-2 1 o 1 2 -2 -1 o] 1 2
/R z/R
(a) 0,5D - axial velocity distribution (b) 3D - axial velocity distribution
e : 02 T
— & —0,5D without tower = & = 3D without tower
0,15 = & =0SDwithtower | o1 — & - 3D with tower
01 .:_:zk\ 01 a
¢ A
R }i ;‘e" 3{:0 ‘o,
0,05 A== o 0.05 T TAEA
!-;— 3 Aé( ‘iil e
e & - A Ay -, I — e
ut/y 0 eskpohol i ;;._;iﬁ-n—-u-* utfu_ O el v 3‘ Py ’, »
il 5 i \
005 \ Ll . -0,05 g\\ &'!
\ L 12“ = ‘_\“'XEA“
- g X ,‘ -0,1 A
01 4 :
L] Aap 7
\ Yy J
-0,15 Ay -015
AA
0.2 0,2
2 = o 1 2 -2 -1 o 1 2
z/R z/R
(c) 0,5D - tangential velocity distribution (d) 3D - tangential velocity distribution

Figure 4.11: Axial and tangential development with and without tower at 0,5D and
3D

The velocity deficit in figure 4.11a and 4.11b was in both cases larger with the
additional tower mounted above the turbine. This is because the extra tower created
supplementary resistance in the tunnel. At the same inlet velocity, this turned out
in lower non-dimensionalized axial velocity in the case with an additional tower. At
0,5D both with and without tower, the central part of the wake was characterized
by disturbances. As previously mentioned this was due to the close distance to the
hub, creating a non-uniform profile across the wake. 3D downstream of the turbine
(see figure 4.11b) the profiles were more constant through the wake. The plot of the
velocity with the additional tower, had almost no disturbances in the center of the wake
and the profile was close to symmetric about the origin. Without the tower the profile
had more disturbances and was less symmetric.
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The wake with additional tower was slightly broader than the measurements without
additional tower. This could possibly be because the supplementary tower generated ex-
tra turbulence, which contributed to an increased wake and to an increased momentum
loss.

Figure 4.11c and 4.11d shows the tangential velocity distribution at 0,5D and 3D
downstream of the turbine. The somewhat asymmetric development at 0,5D could be
ascribed the close distance to the nacelle and influence from the tower, also noticeable in
figure 4.9. However, at 3D downstream of the turbine the profile was almost symmetric
across the wake with the additional tower. Both at 0,5D and 3D the profiles were
oriented slightly to the right of the origin, compared to the measurements without
tower, where the profiles shifted more to the left. Overall the tangential distribution
seemed more symmetric with the additional tower compared to measurements without
the tower.

The symmetric development of the flow with the additional tower, makes it adequate
to assume that the tower was the reason for the experienced downshift of the rotational
axis.

4.1.4 Measurements at lower velocities

To investigate if the movement of the tower shadow would be influenced by a lower
free stream velocity, the contraction velocity was set to 7.5m/s. It was desirable to let
the turbine operate at optimal conditions, so the rotational speed was adjusted. Figure
4.12 shows the measurements at 0, 5D downstream of the turbine, figure 4.12a without
tower and figure 4.12b with additional tower.

/R 2R

(a) 0,5D without tower (b) 0,5D with tower

Figure 4.12: Full area velocity profiles at Uy, = 7,5m/s without and with additional
tower at 0,5D and 3D
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Compared to figure 4.4a and figure 4.7a the tower shadow did not moved noticeably
different with a lower wind speed. Here as well, the measurements were not able to
capture the components in the center of the wake. Analyzing figure 4.12 the velocity
across the cross-section was less uniform than with a higher free stream velocity. With
a free stream velocity of Uy, = 11m/s the velocity distribution was almost constant
across the blade. Working at optimal conditions the greatest amount of energy could
be extracted. Krogstad and Lund [14]| performed a Reynolds independent test on the
same turbine in the same wind tunnel as the present study. According to their study:
“It was found that the power coefficient curves were virtually independent of velocity for
Uso > 9m/s” [14]. This indicates that the turbine was operating in a Reynolds dependent
area in the present study, with a free stream velocity of Uy, = 7,5m/s. The velocity
distribution across the blades was non-uniform and less energy was extracted, because
the blades did not work under optimal conditions. However, measurements could be
taken further downstream to investigate if the tower shadow would move differently at
other positions behind the turbine.

4.2 Measurement Uncertanties

There are several sources of uncertainties influencing the accuracy of the measurements
during an experiment. American Society of Mechanical Engineers, ASME [3], suggests
five classes to arrange these uncertainties: “Calibration uncertainties, data-acquisition
uncertainties, data-reduction uncertainties, uncertainties due to methods and other
uncertainties” [32].

Calibration of the measurement instruments is performed to minimize the uncer-
tainty and to increase the reliability of the instruments. Nevertheless, some deviation
will occur due to uncertainties in standards, uncertainties in the calibration process
and other randomness [32]. During the calibration of the pressure transducers, the
instruments were connected to a manually controlled manometer where the height of
the alcohol column was read. The height of the column was not entirely constant and
some deviation may influence the results. To minimize the errors, several points were
taken when calibrating the pressure transducers.

Through the process of data-acquisition, errors arise due to uncertainties when a
specific measurement is made. When collecting the velocity components behind the
turbine, mean values were registered. In each measurement 450 points were measured
at 30H z through 15 seconds. This was assumed to be sufficient enough, but an increased
number of points could reduce the error. A mean velocity for each point was registered

by:

Un = zleUi (4.1)
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The data varied about this value and was therefore a source of uncertainties. In
each point, a rms - 'root mean square’ value was registered. This corresponds to the
deviation in each point [31]. With these measured values a confidence interval can be
constructed.

While acquiring velocity components calibration curves where obtained, assuming a
linear relation between volt signals recorded by the pressure transducers and the heights
read from the alcohol column at the manually controlled manometer. Nonlinearity in
the measurements could cause a source of data-reduction uncertainties.

Uncertainties due to methods are uncertainties attached to the techniques or meth-
ods applied in the process. An example is if the five-hole pitot probe was not properly
aligned with the flow. If the angle was too large, the results would get inaccurate.
However, during experimentation, a lot of effort were put into aligning the instrument
with the flow. Furthermore, while calibrating the five-hole pitot probe, a refined cal-
ibration technique was applied to reduce the effect of bad calibration points [19] (see
chapter 3.1.3.1). Another source of uncertainties to the methods applied, is due to
spatial effects. During the experiments the temperature and the atmospheric pressure
varied. To reduce this influence on the measurements, atmospheric pressure was read
every day and the temperature was logged at each measurement point. A thermocou-
ple was utilized to log the temperature in the wind tunnel. If the temperature at the
wall was lower than the air temperature in the tunnel, due to thermal radiation, the
thermocouple would read too low values and errors could arise [32].

Other sources of uncertainties might occur because of uncontrolled variables in the
measurement process and absence of repeatability in the output of the measuring system
[32].

In Appendix A an analysis of the uncertainties in the measurements is attached.
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Chapter 5

Conclusion and Future work

5.1 Conclusion

Through this experimental study, wind tunnel experiments were performed to investi-
gate the wake behind a scaled; Horizontal Axis Wind Turbine (HAWT). The measure-
ments were performed to examine the experienced downshift of the rotational axis and
the development of the tower shadow.

Characteristic curves The performance tests of the turbine showed that the turbine
efficiency had a peak at TSR = 5,5. The maximum power coefficient at this point was
C, = 0,45. The runaway T'S R value was not measured due to technical problems which
arose during the experiment, but was expected to be between 11,2 and 11,6. The thrust
coefficient exhibited a monotone behavior and the highest measured Cr value was 1, 15,
achieved for a TSR of 10, 3.

Wake development Comparing the axial distribution at several distances behind
the turbine, the wake developed as expected. A slightly higher velocity deficit was
discovered at 0,5D, compared to the profiles further downstream. The velocity de-
creased gradually before the deficit started to recover. The lowest measured mean,
non-dimensionalized velocity at 0,5D was Um/u., = 0,54 and at 1D the value was
Un/Us, = 0,43. At 3D the velocity increased to Um/u., = 0,5. At close distance behind
the turbine, the middle of the profiles were dominated by disturbances ascribed the pres-
ence of the nacelle and tower. At greater distances from the turbine the disturbances
evened out.

The tangential velocity components were reduced downstream of the turbine and
the point of zero velocity drifted to the left of the origin.

Propagating downstream of the turbine the wake expanded in horizontal direction,
as the turbulence in the wake mixed the lower velocities with the higher velocities in
the free stream. Between 0,5D and 3D the wake expanded from A(2/r) = 2,3 to
A(?/r) = 2,6.
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Movement of tower shadow Evaluating the development of the wake, the contri-
bution from the tower shadow was examined. Downstream of the turbine the wake
rotated in clockwise direction. The lower pressure region behind the tower followed the
wake movements, with a lower velocity than the prevailing wake. Due to a lower energy
extraction behind the nacelle the velocity in this area was slightly higher than in the
remaining part of the wake. Thus, the velocity distribution across the wake was not
homogenous. Consequently the tower shadow moved faster at the center of rotation
than at the outer part of the wake, creating an asymmetric velocity distribution across
the wake. Moving downstream from the turbine the influence of the tower became less
pronounced. At 3D the outline of the tower shadow was no longer noticeable.

Due to the close distance to the roof and the presence of the traverse system, a
blockage effect prevented the wake to expand equally in horizontal and vertical direction.
In horizontal direction the wake expanded to 2/r = £1, 3, while in vertical direction it
only grew to ¥/r =1, 2.

Development of rotation Measurements at different distances downstream of the
turbine showed a relocation of the rotational axis. At 3D downstream of the turbine the
rotation moved approximately ¥/r = —0,25 and #/r = —0, 1, to the left of the origin.

Measurements with additional tower The same measurements were accomplished
modified with an additional tower, creating symmetry about the hub. Analyzing the
results it can be concluded that the tower was responsible for the experienced downshift.
The rotational axis was no longer rifting with the tower shadow, but was centered
about the origin. The development of the axial and tangential velocity components
behaved more symmetric about the origin than the profiles without the additional
tower. However, at close distance behind the turbine the profile was still dominated by
disturbances in the middle of the wake, caused by the presence of the tower and the
hub as well as root vortices.

The wake with an additional tower expanded more than the wake without the extra
tower, from A(%/r) = 2,4 to A(%/r) = 2,8. Due to the extra tower supplementary tur-
bulence was generated, resulting in increased wake expansion and increased momentum
loss.

Measurements at lower velocities At a free stream velocity of 7, 57/s the turbine
operated in a Reynolds dependent area. Because the turbine was not working at op-
timal conditions the velocity distribution across the wake was uneven and less energy
was extracted from the turbine. Measurements were performed at 0,50 downstream
of the rotor, both with and without additional tower. The movements of the tower
shadow were not perceptible different compared to measurements at higher free stream
velocities.
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5.2 Future work

During the experiment questions asked in the beginning of the process were answered.
The experiment found that the reason for the downshift of the rotational axis can be
addressed the presence of the tower. However, there is some problems that would be of
interest to investigate further.

For instance, it would be interesting to examine how strong the downshift influences
the performance of the turbines further downstream in a wind farm arrangement. A
wind tunnel experiment containing two turbines with additional tower, could be per-
formed. C), and Cr curves for the second turbine could be calculated and compared
with equivalent experiments without the additional tower.

Turbulence measurements could probably capture the movement of the tower wake
even better than velocity measurements. Thus, a similar experiment as the present
could be performed, for example with Hot Wire as measurement instrument.

To be able to further investigate the influence of the free stream velocity, mea-
surements at greater distances down the wake, at low wind tunnel speeds, could be
performed. The experiment should be accomplished in a velocity range of independent
Reynolds numbers.
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Appendix A

Uncertainty Analysis

To validate the results, it is necessary to perform an uncertainty analysis |25|. With
certainty, the results must be located within a specific interval.

For each measurement 450 points were registered at 30Hz over 15 seconds. Besides
the mean value, a rms value was also noted. This corresponds to the standard deviation
of the mean velocity in each point [31]. Below, a procedure to calculate the uncertainty
interval is present:

F' is a function of n measured variables, which the uncertainty will vary about:

F = f(x1,29....7y) (A.1)

From the measured values an uncertainty interval can be constructed, £W, where
the mean value, by 95% certainty is located. W is defined as:

W =1/B?+ (29)° (A.2)

B represents the systematic uncertainty attached to the individual measurement
instrument and S represents the random uncertainty of the measured results.
The systematic uncertainty of the mean velocity component is calculated as:

B=(U"-U") (A.3)

Where =+ represents the upper and lower limit of the measured mean velocity com-
ponent.
The random uncertainty, S, attached to the measurements is determined from:

-2 ()

S; is the standard deviation of each measured result, determined by the measured

rms value, and gf is the sensitivity coefficient of the measurement of result F' with

respect to variable x;.

(A4)
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The velocity components in the wake are determined from several instruments, hence
the procedure of evaluating the uncertainty for each component is a comprehensive
process. The systematic uncertainty for each instrument must be located and the
random uncertainty for each measured point must be determined before an uncertainty
interval can be constructed. Thus, an uncertainty analysis will only be performed for
the free stream velocity, U,,, about a certain measurement point.

A.1 Uncertainty analysis of the free stream velocity,
Uso

The free stream velocity in the tunnel is calculated from equation 3.3. The upper and
lower limit of the velocity in the free stream are then determined from:

+
+ _ 2 X Apcontr (A5)

UOO
2
+ _ (A2
px (1 (%) )
The systematic uncertainty of the pressure transducer is assumed to be in the range
Of Apcontr + 1% X Apcontr-

The upper and lower limit of the density in the tunnel are calculated from values
measured by the thermocouple, attached to the wind tunnel wall (see equation 3.9):

+ DPatm
Rspesificj—;%mp ( )

Where the systematic uncertainty related to the thermocouple is assumed to be
Tremp £ 1% X Tiemyp-

Calculating the upper and lower limit of the velocity value (equation A.5), the
systematic uncertainty is (equation A.3): B = 0, 24m/s.

The random uncertainty of the contraction velocity is determined by the pressure
transducer. The different terms in equation A.4 are calculated by the following expres-
sions:

giw _ ! : (A7)
p 2><Apxpx<1—(2‘f)>
Sap = 58,26 X rMScontr (A.8)

The constant, 58, 26, is determined by the calibration of the pressure transducer, at
the contraction section.

The random uncertainty is then calculated (equation A.4): S = 0,062

Finally, equation A.2 gives a 95% confidence interval about the free stream velocity:
Uso = (11 £0,27)m/s.

o4



Appendix B

Risk assessment

35



®NTNU SINTEF

Risk Assessment Report

Offshore Wind Tunnel

Project name An experimental investigation of wind turbine wakes
Project leader Lars Seetran
Unit NTNU

HMS-coordinator Bard Aslak Brandastrg

Head of department | Olav Bolland

Placement Stremningsteknisk laboratoriet
Room number 101C

Responsible for rig | Lars Saetran

Risk assessment Hedda Blomhoff, Lars Saetran

performed by
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1 INTRODUCTION

In the present study, the wake behind a scaled horizontal axis wind turbine was
investigated. The measurement instrument used in the experiments was a five-hole
pitot probe. The experiments were performed at the Department of Energy and
Process Technology, at the Norwegian University of Science and Technology, NTNU.
A total risk assessment of the wind tunnel has previously been performed.

2 EVACUATION FROM THE EXPERIMENT AREA

Evacuate at signal from the alarm system. Evacuation from the laboratory takes
place through the marked emergency exits to the meeting point, (corner of Old
Chemistry, Kjelhuset or parking 1a-b.)

Action on rig before evacuation:
By evacuation, the wind tunnel shall be turned off by pressing the emergency stop

button. All socket outlets, attached to the experiments, should be out before the
operator returns to safety at the meeting point.

3 ASSESSMENT OF TECHNICAL SAFETY

3.1 HAZOP
The experiment set up is divided into the following node:

| Node 1 | Wind Tunnel

Attachments, scheme: Hazop mal

4 ASSESSMENT OF OPERATIONAL SAFETY

Assessment of operational safety ensures that established procedures cover all
identified risk factors. It also ensures that the operators and technical performance
have sufficient expertise.

4.1 Operation and emergency shutdown procedure

The operating procedure is a checklist that must be filled out for each experiment.
Emergency procedure should attempt to set the experiment set up in a harmless
state by unforeseen events.

Attachments: Procedure for running experiments
Emergency shutdown procedure:
If any risk events occur, the wind tunnel shall be turned off by pressing the

emergency stop button. All socket outlets attached to the experiments, should be out
before the operator returns to safety at the meeting point.
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4.2 Training of operators

Before the experiments | learned about safety connected to the laboratory in
general. | learned how to use the equipment’s in a safe way and accomplished an
HMS course online and by a guided tour in the laboratory.

Attachments: Training program for operators
4.3 Technical modifications
¢ Technical modifications made by the Operator

© The instruments placed outside the wind tunnel can be changed by the
operator.

»  Technical modifications that must be made by Technical staff:

© Changes besides instrumentation placed outside the wind tunnel must
be accomplished by technical personnel

What technical modifications give a need for a new risk assessment

© [f changes affects the integrity of the wind tunnel a new risk assessment
must be accomplished

5 QUANTIFYING OF RISK - RISK MATRIX

The risk matrix will provide visualization and an overview of activity risks so that

management and users get the most complete picture of risk factors.
ID nr | Activity-occurrence Frequency- | Consequences | RV
probability
1 The rotor of the wind turbine comes | 1 B | W
off
Conclusion:

The wind turbine is mounted in the wind tunnel. The tunnel is closed and the operator
is placed outside the unit and is not exposed fo risk.

6 CONCLUSION

The wind tunnel is a safe construction and a risk assessment report is already
accomplished on the rig. The experiments were performed in controlled terms and no
risk related events occurred.
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Attachment to Risk
Assessment report

Offshore wind tunnel

Project name An experimental investigation of wind turbine wakes
Project leader Lars Saetran
Unit [SINTEF/NTNU]

HMS-coordinator Bard Aslak Brandastre

Head of department | Olav Bolland

Placement Stremningsteknisk laboratoriet

Room number 101C

Responsible for rig | Lars Saetran
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ATTACHMENT A - HAZOP MAL

S.2002

No flow Power out Experiment Restore power Fekd,
delayed Blonhotl
Reverse flow N/A I
More flow Increase in flow Damage to Put up a sign Put up a sign
velocity equipment B
Less flow Decrease in flow Damage to Put up a sign Put up a sign
velocity equipment b
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ATTACHMENT B - PROCEDURE FOR RUNNING
EXPERIMENTS

Experiment, name, number: Date/

An experimental investigation of wind turbine wakes Sign

Project Leader: 326X 2O

Lars Saetran 5 >

Experiment Leader: 3l.06. 202

Hedda Blomhoff Hedldon Bom ol

Operator, Duties:

Hedda Blomhoff s
Conditions for the experiment: Completed
Experiments should be run in normal working hours, 08:00-16:00 X
during winter time and 08.00-15.00 during summer time.

Experiments outside normal working hours shall be approved.

One person must always be present while running experiments, and X

should be approved as an experimental leader.

An early warning is given according to the lab rules, and accepted by X

authorized personnel.

Be sure that everyone taking part of the experiment is wearing the X

necessary protecting equipment and is aware of the shutdown

procedure and escape routes.

Preparations Carried
out

Post the “Experiment in progress” sign. X

Startup procedure (Wind tunnel) X

During the experiment

Control of temperature, pressure e.g. X

End of experiment

Shut down procedure X

Remove all obstructions/barriers/signs around the experiment. X

Tidy up and return all tools and equipment. X

Tidy and cleanup work areas. X

Return equipment and systems back to their normal operation settings X

(fire alarm)

To reflect on before the next experiment and experience useful for

others

Was the experiment completed as planned and on scheduled in X

professional terms?

Was the competence which was needed for security and completion of X

the experiment available to you?

Do you have any information/ knowledge from the experiment that you ) 4

should document and share with fellow colleagues?
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ATTACHMENT C - TRAINING OF OPERATORS

Experiment, name, number:

Date/

An experimental investigation of wind turbine wakes Sign
Project Leader: 30,65 2012
Lars Saetran K e e
Experiment Leader: T2eS. 20
Hedda Blomhoff bed ol o R -
Operator o {
Hedda Blomhoff \

Knowledge to EPT LAB in general

Knowledge about access, routines and rules and working hours in the Lab W

Knowledge about the evacuation procedures W

Knowledge about the activity calendar for the Lab W\

Knowledge to the experiments

Knowledge about procedures for the experiments W

Knowledge about emergency shutdown W

Knowledge about the nearest fire and first aid station W

Date 3\.65. 70(2 Date

Operator HMS responsible

S [0S~ Zal L

Signature

Mﬁﬂp\ %\OW\\/\_OH:- Signature i g@kg(?
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ATTACHMENT D - FORM FOR SAFE JOB ANALYSIS

HMS aspekt Ja |Nei|lkke |Kommentar/ tiltak Ansv.
aktuelt

Dokumentasjon, erfaring,

kompetanse

Kjent arbeidsoperasjon? X ﬁ‘ B

Kjennskap til erfaringer/ugnskede b

hendelser fra tilsvarende I\

operasjoner?

Nedvendig personell? X W

Kommunikasjon og koordinering

Mulig k.onflikt med andre X I

operasjoner?

Handtering av en evnt. hendelse X

(alarm, evakuering)? 4

Behov for ekstra vakt? X W

Arbeidsstedet

Uvante arbeidsstillinger? X W

Arl?eid i tanker, kummer X I

el.lignende?

Arbeid i grafter eller sjakter? X W\

Rent og ryddig? X "

Verneutstyr ut over det personlige? X 1

Vaer, vind, sikt, belysning, X

ventilasjon? Iy

Bruk av stillaser/lift/seler/stropper? X 1

Arbeid i h@yden? X W\

loniserende straling? X "

Remningsveier OK? X n

Kjemiske farer

Bruk av X

helseskadelige/qgiftige/etsende I

kjemikalier?

Bruk av brannfarlige eller X

eksplosjonsfarlige kjemikalier? .

Ma kjemikaliene godkjennes? X n

Biologisk materiale? X 0

Stgv/asbest? X "

Mekaniske farer

Stabilitet/styrke/spenning? X u

Klem/kutt/slag? X 1

Stay/trykk/temperatur? X Th_e wind tunnel produced a lot of . 0

noise, therefore earplugs were applied

Behandling av avfall? X W

Behov for spesialverktgy? X I

Elektriske farer

Stram/spenning/over 1000V? X 0\

Stat/krypstrem? X Y|

Tap av stremtilfarsel? X 0

Omradet

Behov for befaring? X




@NTNU

SINTEF

Merking/skilting/avsperring?

Experiment in progress sign was
applied

\

Miljgmessige konsekvenser?

1

Sentrale fysiske
sikkerhetssystemer

Arbeid pé sikkerhetssystemer?

W

Frakobling av sikkerhetssystemer?

"\

Annet
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« VebLeGG J APPARATURKORT UNITCARD

Apparatur/unit
Dette kortet SKAL henges godt synlig pd apparaturen!This card MUST be posted on a visible place on the unit!
Faglig Ansvarlig (Scientific Responsible) Telefon mobil/privat (Phone no. mobile/private)
Lars Szetran 48408998
Apparaturansvarlig (Unit Responsible) Telefon mobil/privat (Phone no. mobile/private)
Lars Smtran 48409999

Sikkerhetsristkoer (Safety hazards)
No safety hazards as long as doors are closed properly

Sikkerhetsregler
Operate rig only after doors are properly closed. If it is necessary to be inside the wind-tunnel during operation the
minimum safety precaution is Safety-glasses.

Ngdstopp prosedyre
Emergency stop is located right next to the fan. Push emergency stop when necessary.

Her finner du (Here you will find):

Prosedyrer (Procedures) In manual next to test rig.

Bruksanvisning (Users manual) in manual next to test rig

Nzarmeste (nearest)

Brannslukningsapparat (fire extinguisher) In hall

Ferstehjelpsskap (first aid cabinet) in hall

NTNU SINTEF Energi
Institutt for energi og prosessteknikk Avdeling energiprosesser

|

Dato r'L/}O_’Ze “ Dato

o Wﬂﬂm/ o
/
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