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Abstract

An investigation of how di�erent levels of turbulence modelling tackle the
e�ects of system rotation has been performed. Ranging from simple one-
equation models to large-eddy simulations, di�erent approaches have been
considered by means of a literature study and numerical calculations of
turbulent �ow over a backward-facing step subjected to spanwise rotation.
The computed results were compared with results from direct numerical
simulations.

The literature study revealed that simple linear eddy-viscosity turbulence
models are unable to predict any e�ects on the turbulence �eld due to system
rotation. Eddy-viscosity models may be sensitised to rotation, but this has
been done with a varying degree of success. The Reynolds stress equation
models inherently respond well to system rotation, but a more costly eddy
simulation will yield the most accurate result.

Numerical calculations con�rmed what was found in the literature. A linear
eddy-viscosity model was una�ected by system rotation, while the sensitised
model exhibited some e�ects on the mean �ow �eld. The Reynolds stress
model managed to predict all essential e�ects related to system rotation,
although one separation bubble was oversized. This defect was attributed
to a �aw in the modelling of the Reynolds stress redistribution process.
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Sammendrag

Oppgavens formål er å undersøke hvordan ulike fremgangsmåter for
turbulensmodellering med varierende kompleksitet reagerer på system-
rotasjon. Alt fra enkle modeller med én transportligning til storevje-
simuleringer har blitt undersøkt ved hjelp av et litteraturstudium og nu-
meriske beregninger. Beregningene ble utført for turbulent strømning i en
roterende kanal med plutselig tverrsnittsøkning. Resultatene har blitt sam-
menlignet med data fra direkte numeriske simuleringer.

I litteraturstudiet kom det frem at turbulensmodeller med en lineær
sammenheng for turbulensviskositet ikke kan forutsi virkningen av system-
rotasjon. Modeller basert på turbulensviskositet kan modi�seres slik at de
påviser virkninger av rotasjon, men dette har blitt gjort med varierende
resultater. Modeller basert på transportligningen til Reynolds-spenningene
vil på grunn av deres opprinnelse i stor grad påvise e�ekter av system-
rotasjon. Likevel vil en mer ressurskrevende storevje-simulering gi et mer
presist resultat.

Numeriske beregninger bekreftet i stor grad resultatene fra litteraturstudiet.
Løsningen gitt av en modell med lineær sammenheng for turbulensviskositet
var uberørt av systemrotasjon, mens den modi�serte modellen påviste en-
kelte fenomen knyttet til systemrotasjon. En Reynolds-spenning-modell
klarte å påvise alle de viktige e�ektene av systemrotasjon. Én resirkulasjons-
sone var likevel altfor stor, noe som ble tilskrevet en ufullkommen model-
lering av trykk-tøynings-leddet.
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Chapter 1

Introduction

1.1 Background

Whether it be wind blowing in a storm or water �owing through pipes,
most �uid �ows found in nature and in engineering problems are turbulent.
The complex turbulent state is well illustrated in a waterfall, where the
structure of the �ow is clearly chaotic. Predicting such a �ow seems to be
extremely di�cult. Still, the equations describing the turbulent motions
have been known for over a century. They are however too complex to be
solved analytically. For many years, physical experiments were the only way
of conducting research on these �ows, which have been necessary in order
to optimise e�ciency and design in engineering problems.

As available computational resources increased, it became possible to solve
the equations of �uid �ow numerically. Computational �uid dynamics
(CFD) has become very popular in the industry during the last few decades,
mainly through the simplifying approach of turbulence modelling. CFD was
�rst introduced in the aerospace industry, but have more recently spread to
areas such as the motor vehicle industry and wind power assessment. The
widespread popularity is due to the many advantages of CFD compared
to experiments, as it is cheaper, applicable to otherwise impossible or
dangerous scenarios and provides very detailed results. It is however
important to bear in mind that CFD is not a substitute for experiments,
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it is rather an additional problem solving tool. CFD results are at best as
good as the underlying physics embedded in the code, and at worst as good
as its operator. They need to be compared with experimental data from a
similar setup in order to be validated. A skilled operator who can make the
correct modelling choices and evaluate the results is therefore essential.

Rotating turbulent �ows appear in both geophysical and engineering �uid
mechanics. Earth's rotation a�ects the wind blowing in the atmosphere,
as well as ocean currents. Turbomachinery products depend on system
rotation as a part of their design concept. It is therefore important to
understand how rotation a�ects turbulent �ows in order to e.g. forecast the
weather or design a pump.

1.2 Previous work

The present work has its foundation in a project work [19] by the author
during the autumn of 2010. The project work provided an introduction
to CFD through the commercial software ANSYS Fluent and Gambit. A
grid study was conducted and several turbulence models were tested for
the turbulent �ow over a backward-facing step. Results were compared
with DNS data from Barri et al. [7]. The project provided the author with
important experience necessary in order to approach the current thesis in
an e�cient manner.

1.3 Purpose of the study

A wide range of CFD approaches have been presented throughout the years
and many have been adopted by the industry and research community.
Turbulence modelling is involved in most of them. Accuracy, e�ciency and
simplicity are the main criteria one strives for when a new approach is
proposed. It is reasonable to assume that these criteria are related such
that, in general, the simplest and most e�cient methods yield the least
accurate solutions. For rotating turbulent �ows, this would imply that
di�erent approaches manage to account for the e�ects of rotation in a
varying degree, depending on their complexity. The purpose of this study
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is to explore how the di�erent approaches involving turbulence modelling
tackle the e�ects of system rotation. ANSYS Fluent will be used to perform
some CFD calculations on a massively separated turbulent �ow exposed to
system rotation.

1.3.1 Outline of the report

Chapter 2 will cover theory relevant to the calculations in the present
study. A short introduction to system rotation, turbulence modelling
and other aspects of CFD is given. The mathematical formulation of
the computational models used in the present study are given in detail.
Additionally, basic theory for the large-eddy simulation (LES) approach is
covered as a basis for parts of chapter 3.

Chapter 3 will provide an overview of how di�erent CFD approaches
involving turbulence modelling respond to system rotation. Approaches
ranging from a simple one-equation model to the computationally costly
LES will be covered and compared. Examples of relevant research conducted
within the �eld will be reviewed and references given.

The �ow case, turbulent �ow over a backward-facing step subjected to
spanwise rotation, will be introduced in chapter 4. The grid and boundary
conditions used in the calculations will also be presented, along with a short
text concerning the precursor calculations.

Results from the calculations will be presented in chapter 5. They are
analysed and compared with data from Barri & Andersson [6]. Concluding
remarks and suggestions for further work will subsequently be given in
chapter 6.
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Chapter 2

Theory

2.1 Fluid �ow

Fluid �ow can be described by equations based on conservation of mass,
momentum and energy. We de�ne the position vector x = (x, y, z) and the
corresponding velocity vector U = (U, V,W ). Then, for an incompressible
Newtonian �uid, the continuity equation can be written, using Cartesian
tensor notation, as

∂Ui
∂xi

= 0. (2.1)

Neglecting the gravity force, the Navier�Stokes equations can similarly be
written as

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1

ρ

∂P

∂xi
+ ν

∂2Ui
∂xj∂xj

+
Fi
ρ
, (2.2)

where ρ is the density, P is the pressure and ν is the kinematic viscosity
of the �uid. Fi is external body forces acting on the �uid particle, e.g.
centrifugal forces and the Coriolis force.
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r
r

Rfv0

Rf*

Figure 2.1: A position in the moving reference frame Rf is de�ned by the
position vector r. Rf moves relative to the stationary reference frame Rf*
with a translational velocity v0 and an angular velocity Ω.

2.2 System rotation

Most engineering problems are analysed in a stationary coordinate system.
We may name this absolute (inertial) reference frame Rf*. Some problems
are however easier to work with in a moving coordinate system which is
�xed to a relevant physical object in the problem. The moving reference
frame Rf may, for instance, be rotating with the same angular velocity as a
shaft or a duct in a given problem. Primary sources for the current section
are Andersson [2] and Kundu & Cohen [29, sec. 4.12].

A general dynamical problem is to be considered in the moving reference
frame Rf, as seen in �gure 2.1. Rf moves with a velocity v0 and accelerates
with a0 relative to Rf*. Rf is also rotating with the an angular velocity,
where the rotation rate and direction are given by Ω.

The absolute velocity v∗ in Rf* can be related to the relative velocity v at
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a given place r in Rf by

v∗ = v0 + Ω× r + v. (2.3)

Similarly, the acceleration a∗ in Rf* can be expressed as

a∗ = a0 + Ω̇× r + Ω× (Ω× r) + 2Ω× v + a, (2.4)

where Ω̇ is the angular velocity vector di�erentiated with respect to time
and a is the acceleration seen in Rf. 2Ω× v is the Coriolis acceleration.

The linear momentum within a volume V is q =
∫
V vρdV. Euler's �rst

axiom states that f = q̇ ⇒ f =
∫
V v̇ρdV =

∫
V aρdV, where f is the forces

acting on the mass ρdV. If we apply this to the moving reference frame and
utilise equation (2.4), we get an expression for the forces acting in Rf:

f =

∫
V
a∗ρdV+

∫
V
−(a0+Ω̇×r+Ω×(Ω×r))ρdV+

∫
V
−2Ω×vρdV (2.5)

Equation (2.5) shows that �ctitious forces must be introduced in order to
make the equations of translational motion valid in a moving coordinate
system. These forces are �ctitious in the sense that they do not obey
Newton's third law, there are no counter forces.

∫
V −2Ω × vρdV is the

Coriolis force and −
∫
V Ω× (Ω× r)ρdV is the centrifugal force.

Ω× (Ω×r) may be written in terms of the vector r⊥, perpendicular to the
rotation axis. As seen in �gure 2.1, Ω× r = Ω× r⊥ and Ω · r⊥ = 0. Using
this together with the vector identity A× (B×C) = (A ·C)B− (A ·B)C,
we obtain a simpler expression for the centripetal acceleration:

Ω× (Ω× r) = −(Ω ·Ω)r⊥ = −Ω2r⊥ (2.6)

The equation of motion for incompressible �uid �ow (eq. (2.2)) can now be
transformed to account for rotation in a frame of reference Rf. We simplify
and assume constant rotation speed, Ω̇ = 0, in addition to no acceleration
of Rf relative to Rf*, a0 = 0. By using (2.5) together with (2.6), we get:

∂U

∂t
+ (U · ∇)U = −1

ρ
∇P + ν∇2U + Ω2r⊥ − 2Ω×U (2.7)

The centrifugal force may be modi�ed, Ω2r⊥ = ∇(1
2Ω2r2

⊥), making it
possible to combine this term with the pressure force to de�ne the e�ective
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UU

Ω‐2Ω x U

Figure 2.2: The Coriolis force de�ects a bullet to the right (westwards) if
shot horizontally from the North pole. The stapled line represents the initial
velocity.

pressure Peff = P− 1
2ρΩ2r2

⊥. The centrifugal force is hereby not dynamically
signi�cant. The Navier�Stokes equation in a rotating reference frame
becomes:

∂U

∂t
+ (U · ∇)U = −1

ρ
∇Peff + ν∇2U − 2Ω×U (2.8)

2.2.1 The Coriolis force

The e�ect of the Coriolis force can be illustrated by looking at the rotating
Earth from a stationary reference frame Rf*. In the northern hemisphere,
the angular velocity vector Ω points out of the ground. A particle with
a given velocity U will then be de�ected to the right of its direction by
the Coriolis force −2Ω × U . Similarly, the de�ection is to the left in the
southern hemisphere, as Ω points into the ground. A speci�c example is a
bullet which is shot horizontally from the north pole with a speed U , see
�gure 2.2.
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The speed of the bullet will remain constant (neglecting drag), as the
Coriolis force 2ΩU acts perpendicular toU at all times. When the bullet has
travelled a forward distance of Ut in time t, it has been de�ected ΩUt2. The
angular de�ection becomes ΩUt2/Ut = Ωt, which corresponds to Earth's
rotation in time t. Hence, the bullet does actually travel in a straight line,
seen from the inertial outer space (Rf*). The de�ection seen on Earth is due
to the increasing peripheral speed of the Earth as the bullet moves south. In
the rotating reference frame, we need an imaginary force to account for this
apparent de�ection. However, in general industrial engineering problems,
we do not need to account for the Coriolis force due to Earth's rotation.
This is because the length scales of such a problem are normally very small
compared to the length scales of Earth. Thus, the Coriolis force becomes
negligible. Further physical explanation of the Coriolis force, including
relevant applications to mechanics, is given by Stommel & Moore [72].

2.2.2 Flow characterisation

A rotating �ow is characterised by two dimensionless quantities, the
Reynolds number Re and the rotation number Ro. By introducing a velocity
scale U , and a length scale L, we de�ne the Reynolds number as

Re =
ρLU
µ

. (2.9)

The Reynolds number is the ratio of inertial forces to viscous forces, such
that viscous e�ects become increasingly important as Re is reduced.

The Coriolis force a�ects �ows in rotating reference frames to a certain
extent, depending on the amount of system rotation. This can be quanti�ed
with the rotation number Ro, where the angular velocity is normalised with
a time scale:

Ro =
ΩL
U

(2.10)

Additionally, the in�uence of the Coriolis force due to imposed system
rotation depends both on the magnitude and the orientation of the system
vorticity 2Ω, relative to the local mean �ow vorticity ω ≡ ∇ × U in a
rotating reference frame. In simple shear �ows (e.g. plane Poiseuille �ow),
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ω is perpendicular to both the mean �ow direction and the wall-normal
direction. If Ω is in the same or opposite direction as ω, we may look at
the local rotation number S to e�ectively distinguish between di�erent �ow
regimes.

S =
2Ω

ω
(2.11)

The sign of S depends on whether the �uid vorticity is parallel (S > 0) or
anti-parallel (S < 0) with the system vorticity. The �rst case, with S > 0,
corresponds to cyclonic rotation, meaning that the �uid rotates in the same
direction as the system. For S < 0, we have anti-cyclonic rotation, where
the �uid rotates in the opposite direction of the system rotation.

2.3 The RANS equations

Equation (2.1) and (2.8) are valid for all laminar and turbulent �ows.
It is possible to solve these equations by direct numerical simulation
(DNS), but when a �ow is turbulent, the �uid motion is disordered, time-
dependent and three-dimensional. The scales of turbulent motion vary
from the geometric constraints of the �ow case, down to the small scales
determined by viscous action. Hence, a high resolution is required in
both space and time for all scales to be resolved in a DNS. This is very
computationally demanding, especially for high-Reynolds number �ows.
A simpler description of turbulent �ow is required for solving practical
engineering problems.

Using Reynolds decomposition, we write the instantaneous velocity as
U = u+u′, where u is the mean (time-averaged) component and u′ is the
�uctuating component. By inserting this into the continuity equation and
Navier�Stokes equations and then averaging in time (denoted by overbar),
we can utilise the statistics of turbulence (u′ = 0) to get the so-called
Reynolds-averaged Navier�Stokes (RANS) equations for the mean �ow:

∇ ·u = 0 (2.12)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇peff + ν∇2u− 2Ω× u−∇ ·u′u′ (2.13)
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peff is the e�ective mean pressure. The new supposed stress tensor, u′iu
′
j ,

seen in equation (2.13) represent the e�ect of turbulence on the mean �ow.
It comes from the non-linear convective derivative in equation (2.8), so its
components actually represent the averaged e�ect of turbulent convection.
This may be seen as di�usion of momentum by turbulence, analogous to
di�usion by viscosity which appears as viscous stress in the momentum
equations. This explains why the tensor is often called the Reynolds stress
tensor.

2.4 Eddy-viscosity turbulence models

If we want to solve the RANS equations, we encounter a closure problem.
Solving for the mean, or �rst moment, requires knowledge of the second
moment (Reynolds stresses), as seen in (2.13). This is due to the quadratic
nonlinearity in the Navier�Stokes equations. As we will see later, the
second-moment equation will contain third moments, so further statistical
manipulation of the equations will obviously not lead to closure. Hence,
semi-empirical modelling is required in order to obtain a solution.

Following the analogy between the Reynolds stresses and viscous stresses,
one simple modelling approach is to introduce an eddy viscosity. More
speci�cally, we assume that there is a tensorally linear relation between
stress and strain in the mean �ow. Viscous stresses and Reynolds stresses
are both linked to the rate of deformation of �uid elements (rate of strain) by
the eddy viscosity. The most widely used turbulence models today employ
this technique, referred to as the Boussinesq hypothesis. Introducing the
turbulent kinetic energy

k ≡ 1

2
u′iu
′
i, (2.14)

the Reynolds stresses are given by

ρu′iu
′
j =

2

3
ρkδij − µt

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.15)

where µt is the eddy viscosity and δij is the Kronecker delta. The eddy
viscosity is then de�ned in di�erent ways in various turbulence models. The
assumptions which the eddy-viscosity hypothesis is founded on can lead to
inaccurate predictions and will be discussed later.
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2.4.1 The k�ε model

In modern CFD analysis, the k�ε model is the most used and validated
turbulence model. It has been developed and improved over the years, but
Jones & Launder [25] are often credited as the developers of the standard
k�ε model. As a two-equation model, it allows both the turbulent velocity
and length scales to be determined independently. The two equations solved
are the transport equations for the turbulent quantities k and ε, where ε
is the rate of dissipation of turbulent kinetic energy in dimensions m2/s3.
We can de�ne a velocity scale U = k1/2 and a length scale L = k3/2/ε. The
eddy viscosity is then speci�ed as

µt = ρCµUL = ρCµ
k2

ε
, (2.16)

where Cµ is a constant. The transport equation for k is mathematically de-
rived and originates from the second-moment equation, while the transport
equation for ε is best viewed as entirely empirical. They can be written
as [3, sec. 4.3.1]

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
+ P − ρε, (2.17)

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xj

[(
µ+

µt
σε

)
∂ε

∂xj

]
+ C1ε

ε

k
P − C2ερ

ε2

k
. (2.18)

The production of k, P, is de�ned as

P ≡ −ρu′iu′j
∂uj
∂xi

, (2.19)

and is evaluated as
P = 2µtsijsij (2.20)

through the Boussinesq hypothesis. The mean strain-rate tensor is given as

sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.21)

The dissipation is de�ned as ε = 2νs′ijs
′
ij , where s

′
ij is the �uctuating rate-

of-strain tensor, s′ij = 1
2

(
∂u′i
∂xj

+
∂u′j
∂xi

)
. Following Launder & Spalding [33],
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standard values for the model constants are:

C1ε = 1.44, C2ε = 1.92, Cµ = 0.09, σk = 1.0, σε = 1.3 (2.22)

Equation (2.13) is now closed and can be solved by (2.17), (2.18) and
(2.16). Within the eddy viscosity hypothesis lies an assumption of a balance
between production and dissipation. This is only reasonable when the mean
velocity gradients and turbulence characteristics evolve slowly. In any case,
the standard k�ε turbulence model is a simple and well validated model
which performs well in several industrially relevant �ows.

2.4.2 The Realizable k�ε model

The Realizable k�ε model was developed by Shih et al. [59] and yields
improved results over the standard k�ε model in �ow cases involving
rotation, vortices, recirculation and separation [3, sec. 4.3.3]. Comparing
with the standard k-ε model, the transport equation for ε is now derived
from the vorticity �uctuations. Also, a new de�nition for the eddy
viscosity is introduced based on the realisability constraints; that the normal
Reynolds stresses cannot be negative, and the Schwarz' inequality for
turbulent shear stress. As in all k�ε turbulence models, the eddy viscosity
is computed from equation (2.16), but now Cµ is no longer a constant. It is
rather a function of the mean strain and rotation rates, the angular velocity
of the system rotation, and k and ε. The transport equations for k and ε
can be written as [3, sec. 4.3.3]:

∂

∂t
(ρk) +

∂

∂xj
(ρkuj) =

∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
+ P − ρε (2.23)

∂

∂t
(ρε)+

∂

∂xj
(ρεuj) =

∂

∂xj

[(
µ+

µt
σε

)
∂ε

∂xj

]
+ρC1

√
2sijsijε−ρC2

ε2

k +
√
νε

(2.24)
Where

C1 = max

[
0.43,

η

η + 5

]
and η =

√
2sijsij

k

ε
. (2.25)

The standard model constants are:

C2 = 1.9, σk = 1.0, σε = 1.2 (2.26)

13



Cµ is computed from

Cµ =
1

A0 +As
kU∗

ε

, (2.27)

where

U∗ ≡
√
sijsij + Ω̃ijΩ̃ij , Ω̃ij = Ωij − 3εijkΩk. (2.28)

Ωij is the mean rate-of-rotation tensor,

Ωij =
1

2

(
∂uj
∂xi
− ∂ui
∂xj

)
, (2.29)

εijk is the alternating symbol and Ωk is the angular velocity of Rf. A0 and
As are constants, given as A0 = 4.04, As =

√
6 cosφ,

φ =
1

3
cos−1(

√
6B), B =

sijsjkski
s̃3

, s̃ =
√
sijsij .

2.5 Reynolds stress equation models

The Reynolds stress equation models (RSMs) are probably the most general
of all classical turbulence models and have proven to yield very accurate
predictions of mean �ow properties in several cases. The models are however
complex, as all the Reynolds stresses are computed independently. On the
other hand, this is exactly what gives RSMs an advantage over simpler
turbulence models. In the k�εmodels for instance, turbulence is represented
with a scalar quantity k. This makes them unable to simulate the anisotropy
of the normal Reynolds stresses, u′2 6= v′2 6= w′2, which exists in all real
�ows. Anisotropy e�ects may not be important in some industrially relevant
�ows where simple and e�cient models have been preferred. But in �ow
cases featuring complex strain �elds or signi�cant body forces, it is necessary
to account for the directional e�ects of the Reynolds stress �eld. This is
done by abandoning the isotropic eddy-viscosity hypothesis, and closing the
RANS equations (eq. (2.12) and (2.13)) by solving transport equations for
the Reynolds stresses. The downside to it all is that RSM simulations are
computationally expensive and lengthy. In two-dimensional simulations,
�ve "extra" transport equations have to be solved, and without the aid
of numerically stabilising eddy viscosities, convergence is slow and may be
hard to reach at all. The models are also not widely validated and the
results are not �awless, due to the unavoidable modelling.
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2.5.1 Transport equations

The equation for the second moment may be derived from the equation
for the �uctuating velocity. Third moments and other unknowns appear in
this process, which means that modeling is required in order to close the
equations. Launder et al. [31] is credited for deriving the foundation of the
RSM, and the transport equations are given in Fluent [3, sec. 4.8.2] as:

∂

∂t

(
ρu′iu

′
j

)
︸ ︷︷ ︸

Time derivative

+
∂

∂xk

(
ρuku

′
iu
′
j

)
︸ ︷︷ ︸
Cij ≡ Convection

= − ∂

∂xk

[
ρu′iu

′
ju
′
k + p′

(
δkju

′
i + δiku

′
j

)]
︸ ︷︷ ︸

DT,ij ≡ Turbulent diffusion

+
∂

∂xk

[
µ
∂

∂xk

(
u′iu
′
j

)]
︸ ︷︷ ︸
DL,ij ≡ Molecular diffusion

−ρ
(
u′iu
′
k

∂uj
∂xk

+ u′ju
′
k

∂ui
∂xk

)
︸ ︷︷ ︸

Pij ≡ Stress production

+ p′
(
∂u′i
∂xj

+
∂u′j
∂xi

)
︸ ︷︷ ︸
φij ≡ Pressure strain

− 2µ
∂u′i
∂xk

∂u′j
∂xk︸ ︷︷ ︸

εij ≡ Dissipation

−2ρΩk

(
u′ju
′
mεikm + u′iu

′
mεjkm

)
︸ ︷︷ ︸
Fij ≡ Production by system rotation

(2.30)

Models for di�usion DT,ij , redistribution φij and dissipation εij are required
in order to close (2.30).

2.5.2 Modelling di�usion

The di�usion term DT,ij can be modelled by assuming that the rate of
transport of Reynolds stresses by di�usion is proportional to gradients of
Reynolds stresses. See the hypothesis by Daly & Harlow [10]. Due to
numerical instabilities, the model is often simpli�ed to a isotropic model by
introducing the eddy viscosity µt [74, chapter 3.7.3]. Fluent uses the scalar
turbulent di�usivity given in Lien & Leschziner [37]:

DT,ij =
∂

∂xk

(
µt
σk

∂u′iu
′
j

∂xk

)
(2.31)

Here, the Prandtl number for turbulence energy is σk = 0.82, derived on
basis of planar homogeneous shear �ow. As in the standard k�ε model, µt
is given by equation (2.16) with Cµ = 0.09.
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2.5.3 Modelling dissipation

Dissipation of the Reynolds stresses, εij , is modelled by assuming isotropy
of the small dissipative eddies. In practice, this can be done by relating εij
to the isotropic ε, the dissipation rate of turbulent kinetic energy.

εij =
2

3
ρεδij (2.32)

This is accurate for high-Reynolds-number �ows, but some anisotropy do
occur when the �ow has a moderate Reynolds number [66]. We may however
account for this by absorbing the anisotropic component εij − 2

3εδij into
the model for the pressure-strain term φij . In the region near walls the
dissipation is anisotropic, calling for other models, which will be discussed
later.

The transport equation for ε is

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xj

[(
µ+

µt
σε

)
∂ε

∂xj

]
+

1

2
Cε1

ε

k
Pii−Cε2ρ

ε2

k
, (2.33)

where σε = 1.0, Cε1 = 1.44 and Cε2 = 1.92.

2.5.4 Modelling redistribution

The pressure-strain term φij is di�cult to model accurately. The e�ects
on Reynolds stresses by pressure-strain interactions is that energy is
redistributed between the normal Reynolds stresses (i = j), making them
more isotropic, and that Reynolds shear stresses (i 6= j) are reduced.
In the modelling process, the �ow is taken to be homogeneous and the
redistribution is usually decomposed into a slow part and a rapid part:

φhij = φslow
ij + φrapid

ij (2.34)

The slow part of the model is also known as the return-to-isotropy term,
and covers the terms that are not dependent on ∂ui

∂xj
. When the mean

shear is not involved, there is no turbulence production and anisotropy is
gradually reduced. The rapid part of the model contains terms involving
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velocity gradients, which causes them to change instantaneously when the
mean �ow is altered.

The Linear Pressure-Strain Model in Fluent has its foundation in the
Gibson�Launder model [17] (see also [30]) and employ a linear model [58]
for φij . The terms in equation (2.34) are given as [3, sec. 4.8.4]:

φslow
ij ≡ −C1ρ

ε

k

[
u′iu
′
j −

2

3
δijk

]
(2.35)

φrapid
ij ≡ −C2

[
(Pij + Fij − Cij)−

1

3
δij(Pkk − Ckk)

]
(2.36)

Pij , Fij and Cij are de�ned as in equation (2.30). C1 and C2 will be given
in the next section, by (2.39) and (2.40), respectively.

Non-homogeneous e�ects

Equations (2.35) and (2.36) are derived on basis of the assumption of
homogeneous turbulence. Even though no real �ow is homogeneous, they
are still applicable to regions where variables are functions of position.
The variables cannot however, vary rapidly in space. (Quasi-homogeneous
conditions.) In some regions this condition is violated, such as in the vicinity
of walls. The e�ect of such non-homogeneities must be added explicitly to
the model. [15, sec. 7.3]

Close to a wall, there is a region of strong shear and large rates of turbulent
production. The shear and the solid wall itself causes the wall-normal
component of turbulence to be suppressed relative to the other components.
There are nonlocal e�ects where pressure �uctuations are enhanced because
of the re�ected pressure waves (pressure echo), and the wall boundary
conditions cause kinematic blocking (see [22]). Such nonlocal kinematics
a�ect the properties of the �ow. This is a region where viscous e�ects are
dominant, and the �ow is inhomogeneous up to a certain distance relatively
far from the wall.

As the suppression of the wall-normal component of turbulence is not
captured in the homogeneous part of the model, a correction term is clearly
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needed. A wall-echo contribution, or wall-re�ection term, is added to the
model for redistribution:

φij = φhij + φwall
ij = φslow

ij + φrapid
ij + φwall

ij (2.37)

φwall
ij is a function of the unit wall normal and the distance to the nearest

wall.

φwall
ij ≡C ′1

ε

k

(
u′ku

′
mnknmδij −

3

2
u′iu
′
knjnk −

3

2
u′ju
′
knink

)
C

3
4
µ k

3
2

κεd

+ C ′2

(
φrapid
km nknmδij −

3

2
φrapid
ik njnk −

3

2
φrapid
jk nink

)
C

3
4
µ k

3
2

κεd

(2.38)

Here, nk is the xk component of the unit normal to the wall. d is the
normal distance to the wall, κ is the von Kármán constant κ = 0.4187
and Cµ = 0.09. The empirical C1, C2, C ′1 and C ′2 are functions of the
Reynolds stress invariants and the turbulent Reynolds number Ret. They
have been selected on basis of comparison with experiments, and are de�ned
as suggested by Launder & Shima [32]:

C1 = 1 + 2.58AA
1/4
2

{
1− exp

[
−(0.0067Ret)

2
]}

(2.39)

C2 = 0.75
√
A (2.40)

C ′1 = −2

3
C1 + 1.67 (2.41)

C ′2 = max

[
2
3C2 − 1

6

C2
, 0

]
(2.42)

Ret =
ρk2

µε
(2.43)

A ≡
[
1− 9

8
(A2 −A3)

]
, A2 ≡ bikbki, A3 ≡ bikbkjbji (2.44)

bij is the Reynolds-stress anisotropy tensor,

bij =
u′iu
′
j −

2
3δijk

k
. (2.45)

18



2.6 Discretisation

A problem needs to be discretised if it is to be solved numerically. To do this,
Fluent uses the so-called �nite volume method. This involves discretisation
in space, and in time if the problem is transient. Spatial discretisation is
done by dividing the �ow domain into several discrete control volumes, or
cells. A node is placed in the center of each control volume. This allows
us to integrate the governing equations over the control volume to get a
discretised equation at its node [74, chapter 4]. If this is done for each node
in the �ow domain, we get a system of linear equations which can be solved
in order to obtain a given property at the nodal points. When discretised
equations for all nodal points in the �ow domain have been set up, the
resulting system of linear equations can be solved by iteration.

If the problem involves convection, the �ux at the cell faces needs to be
known, and a �ux balance for each cell is introduced. Convection in�uences
the �ow properties only in the �ow direction, and it is therefore expected
that the property value depends heavily on the corresponding upstream
value, rather than the downstream value. The central di�erencing scheme
is thereby not a good option for interpolation, as it does not identify
the �ow direction. Several schemes which account for upstream in�uence
have consequently been developed, where the simplest one is the upwind

di�erencing scheme. Here, the convected value of the property at the cell
face is taken to be equal to the value at the upstream node.

Representing �uid �ow equations in a discrete form will inevitably lead to
errors. Numerical di�usion arise from truncation errors occurring during
interpolation. The upwind di�erencing scheme is only �rst-order accurate
in terms of truncation errors, and higher-order schemes have therefore been
developed in order to reduce the e�ect of numerical di�usion on the solution.
These include the second-order upwind scheme, the QUICK scheme and
the third-order MUSCL scheme. The second-order upwind scheme achieve
higher-order accuracy at cell faces through Taylor series-expansion. Higher
order schemes are more accurate, but also more exposed to numerical
divergence than the upwind di�erencing scheme. The latter is therefore
often useful in initial calculations in CFD analysis.
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2.7 Boundary conditions

At the �ow boundaries it is necessary to de�ne boundary conditions in
order to close the equations, as there is no cell adjacent to the cell face. It
is crucial to de�ne physically realistic and well-posed boundary conditions,
since the solution of the �ow domain can be seen as an extrapolation of the
data de�ned on the boundary surfaces. Selecting unrealistic values at the
boundaries may also cause the simulation to diverge. There are many types
of boundaries in di�erent �ow cases, and the treatment of them depends
on the speci�c case which is subject to modelling. Boundary conditions
relevant to the calculations performed in the present work will be discussed
in the following subsections.

2.7.1 Inlet and outlet

At the inlet, �ow variables like velocity and turbulence properties must be
speci�ed. The turbulence properties can be given in terms of e.g. k and ε,

and turbulence intensity I = (2/3k)1/2

u = u′rms
u . Values can be found from

experimental and DNS data, or by empirical relations. For the RSM, the
Reynolds stresses must also be de�ned at the inlet.

An outlet surface should be placed far away from geometrical obstacles to
the �ow, where the �ow have reached a fully developed state. The reason
for this is that the gradient of all �ow variables, except pressure, are de�ned
to be zero in the �ow direction at the outlet. Zero gauge pressure is usually
speci�ed at the outlet.

2.7.2 Walls

At solid walls, the no-slip condition U = 0 is applied, leading to the
formation of a so-called boundary layer where the mean velocity is less
than the mean free-stream velocity. Both the mean velocity �eld and
the turbulence quantities in the �ow are thus a�ected. By considering a
Reynolds number Rew = uy

ν based on the wall-normal distance y from the
wall, we see that Rew will decrease with decreasing y, and viscous forces will
eventually become signi�cant compared to the inertia forces. We call this
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part of the �ow the near-wall region, and we may state that the �ow within
this region is independent of the free stream parameters. The mean �ow
velocity will only depend on y, ρ, µ and the wall shear stress τw. Dimensional
analysis now allows us to introduce the non-dimensional groups u+ and y+,

u+ =
u

uτ
= f

(
ρuτy

µ

)
= f(y+) (2.46)

where the velocity scale uτ = (τw/ρ)1/2 is the so-called friction velocity.
The near-wall region may now be divided into three sublayers by means
of y+. Next to the wall we have the viscous sublayer where the �ow is
dominated by viscous e�ects. This layer is extremely thin, y+ < 5, and
may be regarded as nearly laminar. For values of y+ between 5 and about
50, we �nd the bu�er layer where e�ects of viscosity and turbulence are
equally important. For a distance outside the bu�er layer, the �ow is fully
turbulent, but viscosity e�ects are still signi�cant. The region may be called
the fully turbulent layer, and ranges from y+ ≈ 50 to y+ ≈ 500, depending
on the free stream Reynolds number.

As most turbulence models primarily are valid for turbulent core �ows, the
modelling within the near-wall region needs special attention. Equation
(2.46) is the foundation for the classical semi-empirical wall functions
derived for the di�erent divisions of the boundary layer. If the inner region
is not resolved with a �ne grid, these may be used in the modelling process.
This is cost-e�cient, but the functions are unfortunately not accurate for
low-Reynolds number �ows and become invalid in the case of separation.

There is however another approach where the inner region (viscous sublayer
and bu�er layer) is resolved with a two-layer model [8]. This is a part of the
enhanced wall treatment in Fluent, involving new equations for the eddy
viscosity µt and dissipation ε. The new equations are blended with the
standard model equations which apply in the fully turbulent region. This
two-layer model is used in both the k�ε models and in the RSM. De�ning
a turbulent Reynolds number

Rey ≡
ρy
√
k

µ
, (2.47)

based on the distance to the nearest wall y, the fully turbulent region is
de�ned as Rey ≥ 200. Closer to the wall, for Rey < 200, the transport
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equation for ε is replaced with the algebraic formula

ε =
k3/2

`ε
, (2.48)

where the dissipation length is calculated as

`ε = yC∗`

(
1− e−Rey/Aε

)
. (2.49)

The eddy viscosity µt is similarly replaced by µt,i,

µt,i = ρCµ`µ
√
k, (2.50)

where the length scale `µ is calculated as

`µ = yC∗`

(
1− e−Rey/Aµ

)
. (2.51)

The constants in (2.49) and (2.51) are given as:

C∗` = κC−3/4
µ , Aε = 2C∗` , Aµ = 70 (2.52)

In order to avoid instabilities around Rey = 200, we need to blend the two
de�nitions of µt. If µt,o is the eddy viscosity in the fully turbulent region,
de�ned in the turbulence model, µt is blended as follows:

µt = λεµt,o + (1− λε)µt,i (2.53)

The blending function λε = λε(Rey) is designed such that it is unity away
from walls and zero in the vicinity of walls.

When resolving the inner region with the two-layer model, one should use a
structured grid since the �ow in a boundary layer mainly moves parallel to
the wall. It is also recommended that the value of y+ at the wall-adjacent
cell is close to 1 [3, sec. 4.13.4].

2.8 Large-eddy simulation

As mentioned earlier, equation (2.1) and (2.8) can be solved explicitly by
resolving all turbulent scales in a three-dimensional and time-dependent
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DNS. But since the computational cost of such a simulation increases as
the cube of the Reynolds number, they are only feasible for simple low-
Reynolds-number �ows. Turbulence modelling (mainly RANS models) on
coarser grids has been the solution in many cases. Anyhow, nearly all of
the computational e�ort in a DNS is expended on the small dissipation-
range eddies, even though the bulk of energy and anisotropy are contained
in the larger scales of motion. Thus, a compromise can be made, where only
the large eddies are computed explicitly, while the small eddies are omitted
and their in�uence is represented by a model. In other words, a DNS is
performed on a coarse grid and a model accounts for the small eddies that
are not resolved. This is the concept of the large-eddy simulation (LES)
approach, where Smagorinsky [63], Lilly [38] and Deardor� [11] did much of
the pioneering work. LES should apparently be accurate for a wide range of
�ow problems, since the large-scale motions are geometry dependent, while
the in�uence of the smaller scales is less �ow dependent.

The so-called �ltering process cuts o� small scales and retains the large
scale motions by means of a �lter function G(x,x′,∆). Filtered variables
are denoted by a hat, and the �ltered (resolved) velocity Û is

Û(x, t) =

∞∫∫∫
−∞

G(x,x′,∆)U(x′, t)dx′dy′dz′, (2.54)

where ∆ is the cuto� scale which indicates the scale of the smallest retained
eddies. Filtering is thus an integration in space and the �lter function G
may be de�ned in several ways. The most common �lter functions for LES
computations are the box �lter, the Gaussian �lter and the spectral cuto�
method. The box �lter is used in �nite volume implementations of LES,
while the other two are more common in research computations. The cuto�
scale, or �lter width, can be chosen freely, but in �nite volume computations
it is pointless to choose a value smaller than the grid size. Often the cuto�
scale is determined as the cube root of the grid cell volume. [74, sec. 3.8]

The �ltered continuity and Navier�Stokes equations can be written as

∂Ûi
∂xi

= 0, (2.55)

∂Ûi
∂t

+
∂ÛjÛi
∂xj

= −1

ρ

∂P̂eff

∂xi
+ ν

∂2Ûi
∂xj∂xj

− 2εijkΩjÛk −
∂τSGS

ij

∂xj
. (2.56)
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The new term
τSGS
ij = ÛiUj − ÛiÛj (2.57)

is called the subgrid stress (SGS) tensor and needs to be modelled in order to
close the equations. The modelling task in LES is less demanding than the
corresponding modelling in RANS. In LES, the main purpose of the subgrid
model is to account for dissipation by the small eddies that were cut o�,
while the �ltered Navier�Stokes equations are responsible for capturing the
development of the �ow. There is even one implicit LES approach where no
subgrid model is used at all [18]. The most popular SGS model however,
is the relatively simple Smagorinsky model [63], which is an eddy-viscosity
model similar to equation (2.15). The subgrid stresses are given as

τSGS
ij = −2

ρ
µSGSŜij , (2.58)

where µSGS is the SGS eddy viscosity and the resolved strain-rate tensor is

Ŝij =
1

2

(
∂Ûi
∂xj

+
∂Ûj
∂xi

)
. (2.59)

The eddy viscosity µSGS is further expressed by means of a velocity scale U
and a length scale L,

µSGS = ρUL = ρL2
√

2|Ŝ|2, (2.60)

where |Ŝ|2 = ŜijŜij . An obvious choice of a length scale is a scale
proportional to the cuto� scale. We obtain

µSGS = ρ(cs∆)2
√

2|Ŝ|2, (2.61)

where the Smagorinsky constant cs is an empirical constant. Closure is thus
achieved, but later studies have revealed that the Smagorinsky constant is
�ow dependent. Ranging from 0.1 for plane channel �ow to 0.2 for isotropic
turbulence [15, sec. 13.1.2.1], a dynamic cs seems more appropriate. Several
SGS models have been proposed over the years, and some of them will be
discussed in the subsequent chapter.
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Chapter 3

Modelling Coriolis-force e�ects

3.1 Introduction

When we consider �ows in rotating coordinate systems, the momentum
equations are transformed by adding the Coriolis acceleration. In order to
understand how the �ow is a�ected by this, we may consider the transport
equations for the individual Reynolds stress components (2.30). The mean
shear production Pij and rotational production Fij of Reynolds stresses are
given as:

Pij
ρ

= −u′iu′k
∂uj
∂xk
− u′ju′k

∂ui
∂xk

(3.1)

Fij
ρ

= −2Ωk

(
u′ju
′
mεikm + u′iu

′
mεjkm

)
(3.2)

For parallel shear �ows (e.g. channel �ow) in the xy plane, where the axis
of rotation Ω is in the z direction, the components of (3.1) and (3.2) can
be written out as in table 3.1.

The Reynolds shear stress u′v′ and the mean shear ∂u/∂y are usually
of opposite signs. Independent of any system rotation, interactions
between them will cause production of streamwise velocity �uctuations.
The production terms for the other normal Reynolds stresses due to
mean shear are zero, but some of the energy associated with streamwise
velocity �uctuations is redistributed to v′2 and w′2 through pressure-strain
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ij 11 22 33 12
Pij/ρ −2u′v′du/dy 0 0 −v′2du/dy
Fij/ρ 4Ωu′v′ −4Ωu′v′ 0 −2Ω(u′2 − v′2)

Table 3.1: Components of Reynolds stress production terms due to mean
shear (Pij) and rotation (Fij) in parallel shear �ow rotating about the
spanwise axis z.

interactions in φij . The redistribution tends to make the turbulence more
isotropic since, usually, φ11 < 0 while φ22 and φ33 are positive.

When system rotation is imposed, the production term Fij becomes active.
Its components are correlations between the �uctuating component of the
Coriolis force and a �uctuating velocity component. From table 3.1, it
can be seen that the normal Reynolds stresses u′2 and v′2 are oppositely
a�ected by the system rotation, as the respective production terms always
are of opposite sign. Then, by considering the contribution to the turbulent
kinetic energy k = 1

2u
′
iu
′
i,

1

ρ

(
1

2
Pii +

1

2
Fii

)
=

1

2

(
−2u′v′

du

dy

)
+

1

2
(0) = −u′v′du

dy
, (3.3)

it is seen that k does not directly depend on the system rotation. This can
be explained by recalling that the Coriolis force acts perpendicular to the
instantaneous velocity vector U , and thereby cannot perform any work on
the �uid. Hence, the result is valid for all �ows, not just parallel shear �ow.
The Coriolis force may however a�ect the turbulence energy level indirectly
by altering the anisotropy through the production terms in table 3.1.

Consider a region of a parallel shear �ow subject to positive rotation
Ωz > 0, where du/dy > 0, and the corresponding vorticity becomes
negative, ωz = −du/dy. This signi�es anti-cyclonic rotation where S
(eq. (2.11)) is negative. P12 contributes to the negative shear stress u′v′,
which consequently increases production of u′2 through P11. If u′2 > v′2,
the shear stress production due to rotation, F12, will further decrease u′v′

proportionally with the angular velocity. This causes dampening of the
streamwise �uctuations u′2 and ampli�cation of the wall-normal �uctuations
v′2 by F11 and F22, respectively. Hence, the turbulence agitation is enhanced
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(destabilised). However, at high rotation rates, the turbulence agitation
restabilises when u′2 becomes smaller than v′2, causing F12 to change sign.
In the case of cyclonic rotation, S > 0, we have an opposite scenario
where the turbulence is dampened. These alterations of the turbulence
will naturally a�ect the mean velocity pro�le as the �ow varies between
being highly turbulent and more laminar-like. See e.g. Andersson [1] and
Kristo�ersen & Andersson [27] for further details. What we can conclude
from the preceding illustration, is that even in the simple case of a parallel
shear �ow, the mean velocity pro�le is changed when the Reynolds stresses
are altered by rotational e�ects. Being able to account for these e�ects is
therefore a vital part of computations involving rotating �ows.

Parallel shear �ows are relatively simple and have often been subject of
investigation when it comes to rotating �ows. Turbulence models are also
frequently validated by comparing their results with DNS or experimental
data from this kind of �ows. The current section illustrates the importance
of accounting for Coriolis-force e�ects when modelling rotating turbulent
�ows. Di�erent classes of turbulence models respond to system rotation in
di�erent ways, depending on their complexity. There is a vast number of
turbulence models in the literature, but they can be divided into groups
based on their underlying theory. A brief review of developments in
turbulence modelling concerning Coriolis-force e�ects will be given in the
following sections. Only modelling relevant to modern CFD analysis will
be considered.

3.2 Eddy-viscosity models

Because of their computational low cost and robustness, linear eddy-
viscosity models are very popular in industrial CFD analysis. The de�nition
of the Reynolds stresses given in equation (2.15) yields simple and stable
turbulence modelling where determination of the eddy viscosity is the only
required task in order to close the governing equations.
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3.2.1 Linear eddy-viscosity models

On basis of empiricism and dimensional analysis, Spalart & Allmaras [67]
derived a transport equation for the eddy viscosity itself. The Spalart�
Allmaras (SA) one-equation model is intended for aerodynamic �ows, and
it has predicted them with good results [5]. The transport equation is valid
in the vicinity of walls, and as a one-equation model, it is the simplest
complete turbulence model and hereby computationally cost-e�cient.

The most popular turbulence models are however two-equation models
where the eddy viscosity is determined by means of a velocity scale and
a length scale, as in equation (2.16). The scales can be constructed by
means of two turbulent quantities, for which two transport equations are
solved. The most popular choice is k and ε, as in the standard k�ε model,
section 2.4.1. The turbulent kinetic energy k is present in most two-equation
models, but several quantities have been proposed as the second variable.
For example, the k�ω model is a popular model where the speci�c dissipation
rate ω ≡ ε/k is taken as the second variable. The most recent version of the
model is described in detail by Wilcox [77]. Variables can also be blended,
such as in the SST k�ω model by Menter [41], [44]. Here, ω is calculated
near walls, while the equation for ε is applied in the free stream.

Near-wall integration has been an issue with the k�ε models. Avoiding
integration by using classical wall functions based on equilibrium assump-
tions has been a popular approach, but it has proven to yield poor results
in complex �ows. Speci�cally, in the case of wall-bounded rotating �ows,
Kristo�ersen & Andersson [27] reported that the mean velocity pro�les do
not correspond with the semi-logarithmic law u+ = 2.5 ln y+ + 5.5, due to
stabilising and destabilising Coriolis-force e�ects. As more computational
resources became available, integration to the wall was a natural area of
research. New formulations for the eddy viscosity and new transport equa-
tions for ε, involving damping functions [47], were introduced in order to
obtain better accuracy. These ad-hoc modi�cations are however somewhat
numerically sti� and has been implemented with a varying degree of suc-
cess. General models which can be used in both the free stream and in the
vicinity of walls are preferred.

In 1991, Durbin [12] proposed such an alternative approach, the method
of elliptic relaxation. The velocity scale k was replaced by the scalar v′2,
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which is a more appropriate velocity scale near solid boundaries. The model
is often referred to as the v2�f model. Kinematic blocking near boundaries
is indirectly accounted for by solving an elliptic relaxation equation for
f , which is a source in the v′2 equation. When the linear eddy-viscosity
hypothesis is invoked, three transport equations are solved, namely those
for k, ε and v′2. The model can be regarded as a "light" Reynolds stress
model in the sense that v′2 is analogous to the normal stress component
near surfaces (v′2 ≈ v2 for y+ ≤ 10, [51]), and its transport equation is
approximated from the corresponding Reynolds stress transport equation.
The eddy viscosity is de�ned as

µt = ρcµv′2T, (3.4)

where T is a time scale and cµ is a constant.

The linear eddy-viscosity models discussed in the previous paragraphs are
some of the most popular turbulence models in the CFD community.
They do however have some de�ciencies in common, which are inherited
from their formulation. Related to system rotation, the isotropic eddy
viscosity and the material frame-indi�erence stands out as the most critical
issues. As a consequence of the Boussinesq approximation (2.15), where
a direct proportionality between the Reynolds stresses and the mean rate
of strain is assumed, anisotropy in the normal Reynolds stresses cannot be
accounted for. Also, there are no rotation-dependent terms in (2.15), the
Reynolds stresses exclusively depend on the frame-indi�erent strain-rate
tensor, making the previously mentioned models insensitive to Coriolis-force
e�ects. They will only be able to exhibit changes in the pressure and velocity
�eld that stems directly from the centrifugal and Coriolis force terms in the
RANS equation (2.13).

3.2.2 Nonlinear eddy-viscosity models

The models may however be sensitised to rotation with model extensions.
Simple, case-dependent extensions have been proposed, but general formu-
lations that are frame invariant are of course preferred. Such models can
be formulated by e.g. introducing nonlinear dependence on the magnitude
of rate of strain and rotation in the eddy-viscosity formulation or in the
transport equations. These quasi-linear models are still based on linear
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tensoral dependence to the rate of strain, but the proportionality coe�cient
is nonlinear. Quasi-linear and fully nonlinear eddy-viscosity models can be
based on the algebraic stress approximation which was introduced in order
to reduce the computational expense of solving a full Reynolds stress model.
Rodi [56] proposed to reduce the partial di�erential equations in the RSM
to a set of algebraic equations so that u′iu

′
j may be implicitly determined by

means of mean velocity gradients and transport equations for e.g. k and ε.
By structural equilibrium assumptions the physics of the full RSM should
be retained in the derived algebraic stress model (ASM). Obviously, the
�nal result depends on the unavoidable modelling. This was the basis for
constitutive modelling where the stress tensor is a function of rates of strain
and rate of rotation. A general explicit relation can be obtained as a linear
combination of ten tensors, as derived by Pope [53]. Retaining only quad-
ratic terms, the general stress tensor function can then be written as [15,
sec. 7.2.3]

u′iu
′
j −

2

3
δijk =− c1sij + c2

(
sikskj −

1

3
|s|2δij

)
+ c3 (Ωikskj + Ωjkski) + c4

(
ΩikΩjk −

1

3
|Ω|2δij

)
,

(3.5)

where |s|2 = sijsij and |Ω|2 = ΩijΩij . Speziale [69] showed that algebraic
turbulence models are a�ected by system rotation only through the intrinsic
rotation tensor, which can be obtained by adding the term CεijkΩk to the
rotation tensor Ωij . C is a constant derived from the turbulence model
in which it is used. The introduction of the intrinsic rotation tensor makes
algebraic closures frame-independent and this is employed in the subsequent
mentioned models.

c1, c2, c3 and c4 may be determined in an ad-hoc manner, often based
on mathematical constraints, or they can be determined directly from an
underlying RSM. In linear eddy-viscosity models, c2, c3 and c4 are set to zero
and c1 is constant, as seen in (2.15). In the quasi-linear models however,
c1 involve nonlinear dependence on the magnitude of rate of strain and
rotation. Indeed, it can be shown that the response to system rotation can
be captured by an eddy-viscosity model with a variable c1 [15, sec. 8.3.3].

The Realizable k�ε model in section 2.4.2 is an example of a quasi-linear
model where the realisability constraints are invoked when developing the
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ad-hoc extension. Computations with this model have yielded rotational
e�ects on the mean �ow �eld, but it is not able to predict turbulence
stabilisation [14]. No dependence on rotation will thus be seen in a �ow case
such as the rotating channel �ow [27] where the rotational e�ects act only
through the turbulence equations. Pettersson Reif et al. [50] sensitised the
v2�f model by means of an algebraic stress model and were able to capture
Coriolis-force e�ects, including turbulence stabilisation, that the original
model could not predict. For the one-equation SA model, turbulence
enhancement by Coriolis-force e�ects corresponds to an increase in the
eddy viscosity. Spalart & Shur [68] proposed the Spalart�Shur correction
term in the SA transport equation and was able to predict rotational
e�ects. The same correction term is also applicable to other models and
has quite successfully been implemented in the SST k�ω model by Smirnov
& Menter [64].

In order to account for the anisotropy of the the turbulence �eld more
extensively, the remaining coe�cients in equation (3.5) may be non-zero to
get a fully nonlinear eddy-viscosity model. Secondary �uid motion normal
to the streamwise direction of the �ow is linked to turbulence anisotropy.
The secondary �ows referred to as �ows of Prandtl's �rst and second kind
appear in duct �ows. The former is due to an imbalance between the
pressure and Coriolis forces near walls where the Coriolis force goes to
zero. It appears in laminar as well as turbulent rotating �ows, and will
a�ect the turbulent �uctuations. See e.g. Speziale [71]. The latter arises
due to anisotropies in the turbulence �eld close to walls and appears also
in non-rotating ducts. However, the stabilising e�ect of rotation modi�es
the turbulence anisotropy, and should therefore a�ect the formation of this
secondary �ow. A third �ow phenomena appearing in rotating �ows are
longitudinal vortices or roll cells. These appear in both rotating ducts and
channels due to instabilities in connection with the rotation. Also these will
a�ect turbulence �uctuations. See e.g. [27] and [71].

If a given turbulence model is able to simulate the turbulence anisotropy, it
should be able to show secondary �ows and in general yield a more accurate
solution. Pettersson Reif [49] further developed the model given in [50] and
derived a nonlinear v2�f model by a phenomenological method. The model
is reported to predict turbulence anisotropy in wall-bounded �ows quite
accurately. The lack of a transport mechanism for the Reynolds stresses in
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the algebraic formulation is however a drawback for the model. Craft et
al. [9] proposed a cubic model and provide an overview of some quadratic
models in their paper. See also Hellsten & Wallin [21] for further details on
the explicit ASM approach, including concerns relevant to system rotation,
and recent developments in the �eld.

3.3 Reynolds stress equation models

In Reynolds stress models, transport equations for the individual Reynolds
stresses are solved, namely equation (2.30). The exact term for rotational
production Fij appears naturally when deriving the transport equations,
and makes second moment closure the natural choice for modelling turbulent
�ows subject to rotation. The absence of modelling requirements for the
production terms Pij and Fij , and the presence of a redistribution term
φij , are the most advantageous properties of the RSM. The di�erences
between various RSMs lie in the modelling of redistribution, dissipation
and di�usion, where redistribution modelling is the most complex task.

When it comes to Coriolis-force e�ects, the behaviour of the production
terms was illustrated by an example in section 3.1, while the modelling
of di�usion DT,ij does not require special attention related to rotation.
Some considerations are however required for modelling of redistribution
and dissipation. As discussed in section 2.5.4, it is common practice to
split the redistribution term φij into slow and rapid parts, as well as a wall-
correction part. The resulting tensors φslow

ij and φrapid
ij can be expanded

analogous to equation (3.5), through the Cayley�Hamilton theorem. The
obtained equation for φslow

ij is quadratic, but only the linear term is retained
in most RSMs, according to the Rotta model [58]. An exception is the
quadratic model (SSG model) by Speziale et al. [70], which is the most
general quasi-linear pressure-strain model. Models for φslow

ij are not a�ected

by system rotation. φrapid
ij , on the other hand, may we written in terms

of production, di�usion and the mean strain-rate tensor [31]. Here it is
important to account for rotational production by including 1/2Fij , in
addition to the shear production Pij , in the model. The coe�cient of 1/2 is
included to ensure material frame indi�erence, see e.g. [35]. Several models
for the wall-correction term φwall

ij have been proposed, including the low-
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Re version given in equation (2.38). (Low-Re models can be integrated to
the wall.) The purpose of this term is to account for the blocking e�ect
close to walls by proper stress redistribution and modi�cation of the stress
production. Rotational e�ects come into play e.g. through the inclusion of
φrapid
ij in the model for the latter process.

An early RSM computation of fully developed turbulent �ow in a rotating
channel was the one by Launder et al. [35], published in 1987. The main
e�ects of rotation were successfully captured by the model. Nilsen &
Andersson [45] used an ASM based on the very same model to compute the
turbulent �ow over a rotating backward-facing step. In an ASM formulation,
the production terms from the RSM is retained. This made it possible to
correctly predict the correlation between reattachment length and rotation
rate, as well as turbulence anisotropy. The accuracy in both computations
were however rather poor due to the employment of standard wall functions.
Better results were obtained by Kristo�ersen et al. [28] when computations
with the low-Re RSM by Launder & Shima [32] were compared with DNS
data for rotating channel �ow. Launder & Tselepidakis [34] subsequently
proposed a new low-Re model which yielded even better results than those
reported by Kristo�ersen et al. [28].

The modelling of redistribution near walls is apparently crucial in second
moment closure. Instead of adding wall-correction terms, Durbin [13]
introduced the previously discussed elliptic relaxation approach applied to
the redistribution term. The blocking e�ect is now indirectly accounted
for by the solution of an elliptic equation. The method can be applied
to a variety of second moment closures. Pettersson & Andersson [48]
modelled near-wall e�ects using elliptic relaxation in conjunction with the
nonlinear pressure-strain model by Ristorcelli et al. [55]. The �ow case
was fully developed turbulent Poiseuille and Couette �ow subjected to
spanwise rotation, and the results were compared with DNS data. The
model predicted the features of the mean �ow and turbulence �eld quite well,
but some signi�cant discrepancies were seen on the stable side of the rotating
Poiseuille �ow at low rotation numbers and in Couette �ow subjected
to destabilising rotation. Oberlack et al. [46] used the elliptic relaxation
method in conjunction with the SSG model to predict the complicated
case of turbulent channel �ow with streamwise rotation. The model did
capture most of the basic features of the �ow, but one stress component was
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computed with a wrong sign, which was due to a defect in the SSG model.
Second moment closure with the elliptic relaxation method has proven to
yield good results in several cases, but su�ers from numerical sti�ness arising
from its boundary conditions [15, sec. 7.4.1], and is therefore not widely
used in industrial CFD. Extensive research on making models like this less
sti� and computationally cheaper is ongoing. Proposals like modelling of
redistribution by means of a wall e�ect vector by Shima & Kobayashi [60]
show promising results for rotating �ows and are encouraging.

In the dissipation modelling, many RSMs make use of the transport equation
(2.33) which has no rotation-dependent terms. However, since the transport
equation for the governing dissipation rate tensor εij does contain rotation-
dependent terms, equation (2.33) should be modi�ed accordingly. Several
proposals on how to do this have been published, including the one by
Shimomura [61] where an extra source term is added to the ε transport
equation. The addition was used in e.g. Pettersson & Andersson [48] and
is elsewhere reported to improve predictions of rotating channel �ow [24].

Around year 2000, the always increasing available computational resources
triggered the interest for unsteady RANS (URANS) modelling of turbulent
�ows. Unsteady implies time dependent simulations, which is a natural pre-
requisite for �ows that are not statistically stationary. The computations
can be performed in both two and three dimensions. Three-dimensional
computations are however required in order to predict important �ow fea-
tures in massively separated �ows. The URANS approach have been ex-
amined and validated by e.g. Iaccarino et al. [23] and Shur et al. [62].
Unsteady three-dimensional computations have become relevant for indus-
trial applications during the last decade, and there is a constant demand for
better accuracy. This brings us on to eddy-resolving approaches, which is
the topic of the next section. For further details on Reynolds stress equation
models in general, see e.g. Hanjali¢ & Jakirli¢ [20].

3.4 Eddy-resolving simulations

When turbulent eddies are resolved and simulated, the physics and
development of the �ow are inherently captured from solving the Navier�
Stokes equations. Thus, given a su�cient resolution in space and time,
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the in�uence of e.g. the Coriolis force can be precisely predicted by the
computations. However, such high resolutions are not feasible in most
situations, calling for approaches where only a portion of the eddies are
resolved. As explained in section 2.8, modelling is then normally introduced
in order to account for what is omitted. Raufeisen et al. [54] showed that
it is bene�cial to include a SGS model, but its in�uence on the solution
will naturally depend on the cuto� scale. LES computations with a small
cuto� scale (high resolution) will be less a�ected by the SGS model than
computations with a large cuto� scale.

LES is in general the most accurate CFD approach where modelling is
involved, as the �ltered Navier�Stokes equations (2.55) and (2.56) are solved
explicitly. Only numerical dissipation and limitations of the SGS model
cause incorrectness in LES. Recall that the main purpose of the SGS models
in LES is to account for the �ow of kinetic energy between resolved eddies
and the small eddies that are cut o�. It is not necessary to involve the
system rotation directly in the SGS model in order to exhibit Coriolis-force
e�ects in the �ow, as opposed to RANS models. This is why LES can yield
very good results for rotating �ows, and it stands out as the main advantage
of using LES when predicting these �ows, compared to RANS.

Even though system rotation is not directly involved in SGS modelling, the
choice of a model is important. In turbulent �ows, energy is transferred
through the energy cascade from the large scales to the small scales, where
it is dissipated by viscous e�ects. In the context of LES, the energy transfer
from the resolved scales to the unresolved scales is termed forward scatter.
According to Leslie & Quarini [36], some energy is also transferred the other
way, from unresolved scales to resolved scales. Referred to as backward
scatter, this could be almost a third of the forward scatter. In rotating
�ows, the stabilising and destabilising e�ects of the Coriolis force alters the
energy �ow between the eddies. As seen in e.g. Xun et al. [78], both forward
and backward scatter is enhanced in destabilised regions and reduced to
nearly zero in stabilised regions. Thus, being able to predict this with the
SGS model could be important for LES computations of rotating �ows.

The Smagorinsky model described in section 2.8 is a purely dissipative
model, predicting forward scatter only. A dynamic SGS model, where the
local Smagorinsky constant cs is determined from the resolved scales, was
proposed by Germano et al. [16] and modi�ed by Lilly [39]. A second test
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�lter is applied, and cs is evaluated using a least-squares approach. In
principle, negative values for cs is now possible and could be considered
as the backward scatter e�ect. The resulting negative SGS eddy viscosity
will however destabilise the numerical algorithm considerably. These values
are therefore avoided in practical computations, and linear dynamic models
are thereby also unable to account for backward scatter. Quite recently,
Marstorp et al. [40] used the ASM approach to formulate an explicit dynamic
SGS model that could predict the anisotropy of the subgrid dissipation quite
accurately. When the model was applied to rotating channel �ow, the results
were better than those from the dynamic model in Lilly [39].

Some nonlinear SGS models have been proposed, such as the dynamic
nonlinear model by Wang & Bergstrom [76]. Similar to the advancement
from linear to nonlinear eddy-viscosity RANS models, quadratic terms are
now retained in the constitutive relation for the SGS stress tensor. Three
terms are included in the model, being functions of the resolved rate of
strain and the resolved rate of rotation. Backward scatter from the SGS
eddies to the �ltered eddies is now possible and the model has proven to be
numerically stable. Xun et al. [78] compared Lilly's dynamic SGS model [39]
and the nonlinear model [76] with DNS data for rotating turbulent channel
�ow with heat transfer. They found that the nonlinear model yielded
improved results over the dynamic model for second-order statistics, mainly
due to the prediction of backward scatter. The results for the mean velocity
were similar for the two models. A relatively cost-e�cient second-order
central di�erence scheme was used for spatial discretisation. This is a
reasonable choice, as it may very well be used in commercial applications of
LES. Also, the scheme will not contaminate the simulations with too much
numerical dissipation, as is the case with �rst-order schemes.

The main disadvantage of LES compared to RANS computations is of
course the computational cost. Very �ne grids and short time steps are
required in order to resolve the turbulence. Especially for wall-bounded
�ows, which is the case in most rotating �ows, the cost is high. The eddies
in the near vicinity of a wall are small, yet highly energetic. They should
therefore be resolved in order to uphold the accuracy of the simulation.
Such a high resolution is however not an alternative in many cases, as the
computational cost scales as the Reynolds number to the power 2.4 for the
inner boundary layer [52]. As in RANS modelling, damping functions, wall
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functions and wall models have been proposed with a varying degree of
success. Damping functions and wall functions are not useful for rotating
�ows, due to Coriolis-force e�ects near walls. Balaras et al. [4] achieved
comparatively good results with a two-layer model in rotating channel �ow,
but another approach has become popular during the past few years.

Detached eddy simulation (DES) originated in the late nineteen nineties (see
Spalart [65]) and was intended primarily for high-Re number, massively
separated �ows. It presented an approach where the near-wall region is
modelled by RANS, while large-scale eddies in the rest of the �ow domain
are resolved by LES. The RANS model will also serve as a SGS model in the
LES regions. The resolved eddies are allowed to evolve from instabilities
in shear layers, due to a limited eddy viscosity. In practice, this is done
by de�ning a new turbulent length scale for the computations. The DES
length scale LDES is typically given as

LDES = min[L, CDES max(∆x,∆y,∆z)], (3.6)

where L is the original RANS model length scale, CDES is a constant and
∆x is the grid spacing. Thus, the RANS formulation is employed when L
is active, while the model is otherwise reduced to a SGS model. The �rst
DES formulation was based on the Spalart�Allmaras model which uses the
distance to the wall as L. In this case, it is easy to see that the transition
from RANS to LES will occur at a certain distance from the wall, depending
on the grid resolution. Indeed, for a su�ciently �ne grid, the DES will tend
towards a LES.

As demonstrated by Strelets [73], the DES formulation can also be
implemented with other RANS models. The turbulent length scale in
di�erent models may very well be a function of both time and space.
Whether RANS or LES is employed at a certain point will thus depend on
the instantaneous local conditions. Viswanathan & Tafti [75] used a SST
k�ω DES formulation to predict the �ow and heat transfer in a rotating
channel with ribs. The results were compared with results from LES and
URANS (SST k�ω) computations. Even though the SST k�ω formulation
in the DES was not sensitised to system rotation, the DES results exhibited
Coriolis-force e�ects similar to the LES results. The reattachment length
of the recirculation zone behind the ribs varied as the system rotation rate
increased, rotation-induced secondary �ows were predicted, and turbulence
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resulting DES model (and many variants of it) has
been applied successfully to numerous industrial
flows, and is currently also been investigated as an
approach for avoiding the excessive Reynolds number
scaling of LES for wall (Peng and Haase 2008). As
stated in the introduction, the SST model has been
one of the main platforms for DES model formula-
tions and the concept of using blending functions has
developed into an essential element of such model
formulations (Menter and Kuntz 2003, Spalart et al.
2006).

One of the motivations for DES was the inability
of standard RANS models to resolve unsteady
turbulent structures in separated and free shear
flows, even if the grid and the time step resolution
would allow that. The behaviour of RANS models in
unsteady mode (URANS) is depicted in the left part
of Figure 6. It can be seen that URANS models
typically produce single mode large scale unsteady
structures without resolving any of the details of
turbulence. It was long believed that this is a result
of the Reynolds averaging applied to the RANS
equations, which is consistent with damping small
scale turbulence. Although this argument is convin-
cing at first, it was recently shown in a series of
articles (Menter et al. 2003, Menter and Egorov
2004, 2005, 2006, Menter et al. 2006a) that this
behaviour is not directly related to the Reynolds
averaging, but to the specific way such models have
been derived in the past. The weak link in any
historic RANS formulation has been the scale
equation (typically the e- or o-equation). Although
an exact transport equation is available as basis
for the modelled turbulent kinetic energy equation,
no such equation can be used as basis for e or
o. The reason is that the exact e-equation describes
the smallest (dissipative) scales of turbulence, while
the modeled e-equation describes the large scales
(which are relevant for the momentum exchange).
The e-equation (and subsequently the o-equation) is
therefore modelled in pure analogy to the k-

equation. This is a very weak concept and an exact
scale equation would significantly improve the basis
of RANS models. This was recognised by Rotta
(1972), who derived an exact equation for the
turbulent length scale, L, times the turbulent kinetic
energy, kL. This formulation was re-visited recently
(Menter and Egorov 2004) and it was argued that
Rotta’s modelling assumptions were not entirely
consistent with the inherent nature of the terms in
the equations. In particular, a leading order term
was omitted in the Rotta model based on arguments
of homogenous turbulence, although the term proved
to be of in-homogenous nature. As a result, the
Rotta model was re-formulated into an equation
containing the second derivative of the mean flow.
The model is documented in detail by Menter et al.
(2006a) and only the basic high Re form is given
here:
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(z1¼ 0.8, z2¼ 1.47, z3¼ 0.0288, sk¼ 2/3, sF¼ 2/3,
cm¼ 0.09, k¼ 0.41). The model can be run in a one-
or a two-equation mode. Model constants as well as

Figure 6. Turbulent structures computed for cylinder in crossflow. Left: SST–RANS, Right: SST–SAS model.
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Figure 3.1: Turbulent structures behind a cylinder for a SST URANS and
a SST SAS computation. From Menter [42], �gure 6.

stabilisation and destabilisation occurred. All at a considerably lower cost
than for the LES. The URANS computations showed little or no Coriolis-
force e�ects.

Some DES formulations and other eddy-resolving methods have been
implemented in commercial CFD codes during the past few years. The
hybrid LES/RANS approach seems to be attractive for industrial CFD
applications and will perhaps be the main research area within CFD for
the next decade. The motivation is to achieve better accuracy as the
computational resources increase. Standard (U)RANS models describe
�ows in a statistical sense. They will typically produce merely quasi-periodic
large-scale unsteady structures, while the chaotic details of turbulence
remain unresolved. Resolving more of the turbulence would yield a
more detailed and accurate solution for �ows that are also governed by
the small scale structures. This can be illustrated by comparing the
turbulent structures behind a cylinder for the two approaches, as seen
in �gure 3.1. Here, the eddy-resolving approach is represented by scale
adaptive simulation (SAS), see Menter & Egerov [43].

The use of LES and hybrid eddy-resolving methods do however require more
knowledge, experience and working hours than RANS computations. It lies
in the very nature of eddy resolving that the solution will depend on the
grid. The CFD analysist will therefore have to understand turbulent �ow
physics when constructing a grid that is both cost e�cient and �ne enough
to capture the relevant �ow features. Choosing an appropriate time step is
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extensions for VSM modelling are given in Menter
et al. (2006a) and are not repeated here. It should be
noted that these models are also an attractive frame-
work for steady RANS formulations (see Menter et al.
2006a) which is worthwhile further exploration.

In order to avoid the development of an entirely
new modelling framework, the above model has also
been transformed into a k-o basis. The transformed o-
equation reads:
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This equation could be used within a k-o formula-
tion. However, to preserve the characteristics of the SST
model for boundary layers flows, the SAS terms where
further modified as additional terms to the o-equation
in the SST model, in a way which does not affect the
near wall SST–RANS model (for more details, see
Menter and Egorov 2006, Menter et al. 2006a):
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(Cc¼ 2). The resultingmodel is termed SST–SASmodel.
The most relevant aspect of SAS models for the

current discussion is the appearance of the von
Karman lengths scale LvK. It is a direct result of the

term-by-term modelling of the exact Rotta equation. It
was found that the inclusion of this term alters the
model behaviour for unsteady flow simulations entirely
compared to conventional URANS models. The
reason is that LvK allows the model to adjust to
already resolved scales in the flow field, thereby
avoiding the excessive damping introduced by conven-
tional URANS. This can be seen in the right portion of
Figure 6. It should be emphasised that a numerical
scheme with low diffusion has to be used in the
resolved flow regime.

Figure 7 shows the flow structures computed by
this model for a periodic hill flow. The two pictures
represent simulations on the same mesh (*2.5 million
nodes) using two different time steps. The time step in
the left part of the figure corresponds to a typical LES
time step (CFL 5 1), in the right part the time step is
increased by a factor of four. Further increasing the
time step would result in a steady state RANS
solution. Figure 7 illustrates the terminology Scale-
Adaptive, which allows the model to adjust to the
mesh and time step resolution provided, resulting in a
continuous variation of the simulation from LES to
steady-state RANS. The colour in Figure 7 displays
the ratio of Eddy-viscosity to molecular viscosity. In
the left part of Figure 7 this ratio is of order 5–10 and
in the right part of order 30–50. The ability of the
model to adjust its Eddy-viscosity to the resolved scales
is unique and cannot be achieved with standard LES
models. For Smagorinsky type models (vt¼ (cD)2S),
the length scale is fixed by the grid spacing, D. For
large scales the strain rate, S, is lower than for small
scales. Such a model would therefore produce a lower
Eddy-viscosity for large structures than for small ones.

Figure 8 shows the velocity profiles computed with
the SAS model using the two different time steps in
comparison with the reference LES (Fröhlich et al.

Figure 7. Turbulent structures for flow over periodic hill. Left: LES – time step (CFL *1), Right 6 4 larger time step. Colour:
ratio of Eddy-viscosity to molecular viscosity.
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Figure 3.2: Turbulent structures for �ow over a periodic hill, using SAS.
Left: Short time step. Right: Four times larger time step. FromMenter [42],
�gure 7.

also not trivial. Figure 3.2 illustrates how a SAS solution on the same grid
is a�ected by the time step. The time step in the right part of the �gure
is increased by a factor of four, compared to the left part. We see that
the smallest turbulent structures are not resolved in the simulations with
a large time step. Additionally, gathering statistics and post processing of
data is a time consuming part of the analysis. Statistical convergence in
LES and eddy simulations in general, is slow, and the accumulated data
can be overwhelming.
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Chapter 4

Flow case and preliminary

work

4.1 Flow over a backward-facing step

The �ow over a backward-facing step (BFS) in a channel is a geometrically
simple �ow case which features the physical phenomenas of separation,
recirculation and reattachment. The �uid enters upstream of a sudden
geometrical expansion and separates from the lower wall at the step edge,
as seen in �gure 4.1. The separation causes the formation of a anisotropic
turbulent free shear layer between the inlet �ow and the more stagnant
�uid in the step corner. At �rst, the shear layer is nearly parallel with the
walls, but it will soon curve downwards and impinge on the lower wall. We
say that the �uid on the low-speed side of the shear layer forms a so-called
separation bubble, con�ned by the walls. An adverse pressure gradient
will cause back�ow near the lower wall within the separation bubble. The
�uid is now recirculating clockwise with a relatively low velocity within
the separation bubble, driven by the momentum of the outer �ow. There
is also a small secondary separation bubble adjacent to the step corner,
recirculating in the opposite direction.

For nonrotating high-Re laminar and transitional �ows, the �ow may detach
and reattach at the upper wall, due to the pressure gradient. The �uid
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Figure 4.1: Sketch of the spanwise rotating backward-facing step including
the recirculation zones.

within the resulting separation bubble will be recirculating in the opposite
direction of the �uid within the large recirculation zone near the lower wall.
For nonrotating turbulent �ows, the separation at the upper straight wall
has not been observed. However, when positive (anticlockwise) rotation is
induced about the spanwise axis, Barri & Andersson [6] report that this
separation bubble occurs also for fully turbulent �ows. Notice also that
the positive system rotation makes the shear �ow along the straight wall
cyclonic, S > 0, and turbulence is thus dampened. An opposite e�ect is
seen along the stepped wall, where we have anti-cyclonic rotation (S < 0)
and turbulence augmentation. A mean pressure gradient in the wall-normal
direction will also appear in order to balance the y component of the Coriolis
force. Consequently, the pressure is in general higher near the stepped wall,
than near the straight wall.

At a point where the �ow detach or reattach, the wall shear stress

τw = µ
∂u

∂y

∣∣∣∣
w

(4.1)

is zero. The reattachment length Xr and the corresponding lengths Xu1

and Xu2 are thus de�ned as the distance downstream of the step where τw

is zero. Their value depend on in�ow conditions, the system rotation rate,
the expansion ratio ER = h/H and the Reynolds number. The latter can
be expressed in terms of the in�ow bulk velocity Ub = 1

δ

∫ δ
0 u dy and the

step height h,

Reb = Ubh/ν. (4.2)
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ij 11 22 33 12

Pij/ρ −2
(
u′2 ∂u∂x + u′v′ ∂u∂y

)
−2
(
u′v′ ∂v∂x + v′2 ∂v∂y

)
0 −

(
u′2 ∂v∂x + v′2 ∂u∂y

)
Fij/ρ 4Ωu′v′ −4Ωu′v′ 0 −2Ω(u′2 − v′2)

Table 4.1: Components of Reynolds stress production terms due to mean
shear (Pij) and rotation (Fij) in two-dimensional �ow rotating about the
spanwise axis z.

δ is half the channel height. The system rotation rate can be be quanti�ed
by the dimensionless rotation number Ro given in equation (2.10). In the
present study, we de�ne the global rotation number as

Ro =
Ωh

Ub
. (4.3)

Recall the Reynolds stress production terms due to shear and rotation,
equations (3.1) and (3.2). The �ow over a BFS is two-dimensional, e.g.
u = (u, v, 0), and there are consequently more nonzero production terms
than in parallel shear �ows. The terms are written out in table 4.1.
Rotational production is the same as for parallel shear �ow, but new terms
appear in shear production. The terms involving v can be considered as
additional production associated to streamline curvature which will occur
downstream of the expansion. The curved shear layer is therefore expected
to be highly turbulent.

Barri & Andersson [6] performed a DNS for fully developed turbulent
channel �ow over a BFS subjected to spanwise rotation. In their case, the
expansion ratio was ER = 1/2 and the Reynolds number was Reb = 5600.
Di�erent rates of positive system rotation was imposed, and the results are
consistent with the experimental data provided by Rothe & Johnston [57].
The computational domain extended Le = 6h upstream and Lx = 32h
downstream of the step. The turbulence statistics are independent of z
and time t, making the con�guration suitable as a reference for simpler
CFD codes. For a geometrically identical �ow domain in two dimensions,
the present study will explore how di�erent levels of turbulence modelling
tackle the e�ect of system rotation on a massively separated turbulent �ow.
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Figure 4.2: Segment of the structured BFS grid used in the calculations.

4.2 Grid and precursor calculations

A grid study for the BFS was performed in a previous project work by the
author [19]. The resulting grid proved to be �ne enough to provide a grid-
independent RANS result, and is reused in all of the BFS calculations in the
present work. ANSYS Gambit 2.4.6 was used when creating the structured,
Cartesian grid with a cell count of 53 040. The cells are quadrilateral and
the Map meshing scheme was used. In order to resolve the region close to
the inlet and expansion, a bi-exponential function is used for streamwise
node distribution before the step. In the separation region between the
step and 9h downstream of the step, the nodes are distributed uniformly in
the streamwise direction. Further downstream, in the recovery region, the
cells are stretched in the streamwise direction by an exponential function.
A detailed view of the grid around the expansion can be seen in �gure 4.2.
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Figure 4.3: Values of y+ for the grid used in the computations, with a RSM
solution. �, stepped wall; - - -, straight wall.

Upstream of the step, the node interval count is 64 in the x-direction and 60
in the y direction, resulting in a total of 3840 cells. Downstream of the step,
the corresponding numbers are 410 node intervals in the x direction and 120
in the y direction. This makes a total of 49 200 cells. A high node density in
the wall-normal direction is preferred close to walls and near the shear layer.
An identical wall-normal node distribution is applied for all walls parallel
to the x direction. The y+ value at the upper and lower wall is in the order
of 1 (�gure 4.3) and there is about twenty cells within the viscosity-a�ected
near-wall region. Hence, the boundary layer is well resolved.

Precursor computations were performed in order to ensure a fully developed
�ow at the inlet of the BFS. One precursor computation was done for
each BFS computation. The approach consisted in letting a turbulent
�ow develop in a channel identical to the inlet channel in the BFS case.
The �rst and second order moments were fully developed after about 60
channel heights downstream of the inlet. The fully developed velocity
pro�le, together with turbulent quantities and stresses, were then applied as
inlet conditions in the corresponding BFS case. In all calculations (also the
BFS), zero gauge pressure was used at the outlet, together with the no-slip
condition at walls.
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Chapter 5

Results and discussion

Di�erent classes of turbulence models have been tested for the rotating
BFS case in order to explore how they react to system rotation. Since
the physical phenomenas in this �ow case depend on the rate of system
rotation, it will be easier to di�erentiate between the classes. In the
nonrotating case, the turbulence models will encounter challenges when
predicting the reattachment length Xr, the correct recovery of the �ow
and the reattachment process itself. Important rotation-related e�ects that
the models should exhibit are asymmetric fully developed velocity pro�les,
a correlation between Xr and Ro and the appearance of the separation
bubble at the upper wall. All three e�ects are related to augmentation
and dampening of turbulence due to system rotation. Model results will be
compared with DNS data from Barri & Andersson [6], making it possible
to assess the performance in detail.

There has not been a lot of research focusing on modelling of turbulent �ow
over a rotating BFS. Nilsen & Andersson [45] used an ASM formulation
of the RSM by Launder et al. [35], but were hampered by the use of wall
functions. The results were however qualitatively good and the the model
exhibited a correlation betweenXr and Ro consistant with experiments [57],
namely that Xr decreases with increasing Ro and vice versa. Agitation
and dampening of turbulence was also predicted, but no separation bubble
at the straight wall is mentioned in their paper. Later, Pettersson Reif
et al. [50] validated a quasi-linear v2�f model and achieved good results.
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They were able to predict the correlation between Xr and Ro and found
a separation bubble at the straight wall for higher Ro. The results were
however not documented in detail. Both studies conclude that the changes
in the mean �ow �eld occurring when system rotation is induced, is mainly
due to rotational stress production.

In the present study, the commercial CFD software ANSYS Fluent 13.0.0
is used. Fluent has a range of built-in turbulence models, as well as DES
and LES formulations. Due to restrictions in computational resources, and
since the �ow �eld is statistically homogeneous in the spanwise direction,
only two-dimensional computations will be conducted in the present study.
As discussed in chapter 3, a RSM is a natural choice for modelling turbulent
�ows subject to rotation, due to the exact rotational production of Reynolds
stresses. RSM computations will thus be emphasised, but also eddy-
viscosity models will be tested. Three RSM formulations are included in
Fluent. The ω-based RSM did not perform well for the BFS case in [19],
and the SSG model [70] is only available with standard wall functions. The
Linear Pressure-Strain Model was therefore chosen and it is described in
section 2.5. The standard k�ε and the Realizable k�ε models of sections
2.4.1 and 2.4.2, respectively, will represent the eddy-viscosity models. The
near-wall treatment described in section 2.7.2 is applied in all computations.

The grid and boundary conditions used are described in chapter 4. The
Reynolds number, based on the bulk velocity Ub and the step height h, is
5600. Some di�erent rotation numbers will be considered, namely Ro = 0,
0.05, 0.1, 0.2 and 0.4. The simulations are performed with a double
precision implicit pressure-based coupled solver. By using the pseudo-
transient solution method, which is a form of implicit under-relaxation
for steady-state cases, convergence was achieved relatively quickly. This
solution method uses a pseudo-transient time-stepping approach and has in
some cases proven to reduce the required number of iterations by an order
of magnitude or more [26]. The PRESTO! discretisation scheme is used for
the pressure equation, while the second-order upwind scheme is used for the
remaining equations. Iterations were carried out until the sum of the scaled
cell residuals for all variables were in the order of 10−8 or less.
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5.1 Streamlines

Streamlines are calculated from the velocities u and v, and yield a general
overview of the computational results. Figure 5.1 compares the streamlines
obtained with the standard k�ε and the Realizable k�ε models in the
nonrotating case and for Ro = 0.2. Vertical lines indicate the position
downstream of the step. Upstream of the step, the streamlines are parallel,
indicating a fully developed mean velocity pro�le. The �ow separates at
the step edge and a separation bubble is predicted in all computations. The
separation bubble consists of a large clockwise recirculation zone, as well as
a small counter-clockwise recirculation zone adjacent to the step corner. It
is further seen that the shear layer curves downwards and the �ow reattaches
at some length downstream of the step. Far downstream the streamlines
get more parallel as the velocity pro�le redevelops.

Comparing �gures 5.1a and 5.1b, the standard k�ε model shows essentially
the same streamlines for both Ro = 0 and Ro = 0.2. The k�ε model is a
linear eddy-viscosity model which is incapable of predicting Coriolis-force
e�ects on the turbulence �eld. Since all rotationally induced changes to the
velocity �eld are attributed to changes in the turbulence �eld, the outcome
was not a surprise. A pressure gradient ∂Peff/∂y which balances the Coriolis
force is predicted by the model, but it will not a�ect the mean velocity in
this con�ned �ow.

The Realizable k�ε model, on the other hand, is a quasi-linear model.
Figures 5.1c and 5.1d show a correct correlation between the reattachment
length Xr and the rotation number Ro. This is due to the model's eddy-
viscosity formulation where Cµ (eq. (2.27)) is a function of rate of rotation
and system rotation. The eddy viscosity increases drastically in the shear
layer when rotation is induced, causing earlier reattachment. The model is
however unable to alter the turbulence �eld upstream of the step, con�rmed
by an examination of the turbulent quantities. Turbulence augmentation
near the anti-cyclonic wall, and dampening near the cyclonic wall, would
lead to high and low values of k, respectively. The computed values of k
(not shown herein) are however symmetric about the channel centreline.
The region just downstream of the step edge is therefore not as turbulent
as it should be, causing less mixing and thus an overpredicted reattachment
length compared to DNS data. Note that this also implies a symmetric inlet
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x/h = 10 12 14 166 18 208

(a) Standard k�ε, Ro = 0

(b) Standard k�ε, Ro = 0.2

(c) Realizable k�ε, Ro = 0

(d) Realizable k�ε, Ro = 0.2

Figure 5.1: Streamlines for di�erent computations with k�ε models.

velocity pro�le, which is the case for both k�ε models.

Figure 5.2 shows the streamlines computed for di�erent rotation numbers
by the RSM. The shear layer in the nonrotating case becomes steep near
the stepped wall, resulting in a somewhat small recirculation bubble.
As system rotation is induced, streamlines on the cyclonic side start to
bend downstream of the step, and a separation bubble appears somewhere
between Ro = 0.05 and Ro = 0.1. Within the separation bubble, the
�ow is recirculating in a counter-clockwise manner. At the same time, the
separation bubble at the anti-cyclonic side is reduced in size with increasing
Ro. For higher rotation numbers, we see that the separation bubble on
the cyclonic side increases dramatically in size, while the other separation
bubble gets even smaller. The formation and enlargement of the separation
bubble at the straight wall is clearly related to system rotation. Due to
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x/h = 10 12 14 166 18 208

(a) RSM, Ro = 0

(b) RSM, Ro = 0.05

(c) RSM, Ro = 0.1

(d) RSM, Ro = 0.2

(e) RSM, Ro = 0.4

Figure 5.2: Streamlines for di�erent computations with the Reynolds stress
model.
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the sudden expansion, there will be an adverse pressure gradient near the
straight wall (see e.g. [6], [19]), but the channel �ow will not separate in the
nonrotating turbulent case. When system rotation is induced however, the
cyclonic �ow near the straight wall becomes less turbulent due to stabilising
e�ects. Analogous to laminar and transitional BFS �ow, separation due to
the adverse pressure gradient will now become more likely.

By comparing �gures 5.2d and 5.2e, it seems that the size of the separation
bubbles tends towards a certain value for higher Ro. This seems reasonable,
at least for the separation bubble at stepped wall which is dependent on the
step geometry. We further observe that between Ro = 0.1 and Ro = 0.2,
the high-velocity region within the recirculating zone at the straight wall
shifts towards the downstream part of the zone. The small counter-clockwise
recirculation zone adjacent to the step corner is also predicted in all RSM
calculations.

5.2 Reattachment length

The separation and reattachment locations can be found by examining
the skin friction coe�cient Cf = τw/

1
2ρU

2
b at the walls. The computed

values for Xr are compared with DNS data in �gure 5.3. As seen from
the streamlines, the standard k�ε model predicts the same reattachment
length independently of Ro, while the Realizable k�ε model yields a shorter
length when system rotation is induced. Note that for the latter model,
Xr = 7.8h is equal to the DNS data for Ro = 0. It is however overpredicted
for Ro = 0.2, as discussed in the previous section.

For Xr computed with the RSM, a very good correlation with DNS data
can be seen for Ro ≥ 0.05. The predicted reattachment length for Ro = 0.4
is merely 0.2h shorter than what is found in Barri & Andersson [6]. In
Gundersen [19], the author pointed out that the RSM model may have
predicted a short reattachment length in the nonrotating case due to inlet
conditions that were not fully developed. In the present work, the inlet
conditions are fully developed, but the reattachment length Xr = 5.6h
did not increase more than 0.1h, compared to [19]. The in�uence of the
inlet conditions is seemingly not that great in this case, and the defect is
presumably found in the model itself.
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Figure 5.3: Reattachment length at stepped wall for the di�erent compu-
tations, based on skin friction coe�cient Cf . Symbols: �, standard k�ε;
+, Realizable k�ε. Lines: �∗�, RSM; - - -◦- - -, DNS data from Barri &
Andersson [6].

5.3 Skin friction coe�cient

By examining the skin friction coe�cient along the stepped and straight
wall, we can get a more detailed impression of the BFS �ow. The variation
of Cf downstream of the step for the k�ε computations is shown in �gure 5.4.
A negative Cf denotes back�ow near the wall. Both models overpredict the
back�ow velocity in the nonrotating case, indicated by the minimum value
along the stepped wall. The small secondary recirculation zone in the step
corner can also be seen, but it is too small compared to the nonrotating DNS
results. It can further be seen that the velocity pro�le is still redeveloping
far downstream (the Cf values do not coincide), contrary to the DNS where
the velocity pro�le is essentially fully developed, Barri et al. [7].

Notice that the Cf computed by the standard k�ε model is identical
for both rotation numbers. For the Realizable k�ε model, the solution
shifts somewhat due to system rotation, but �gure 5.4b con�rms that no
separation occurs along the straight wall. The size of the small secondary
recirculation zone, as well as the back�ow intensity in the large recirculation
zone, is computed quite accurately. Thus, the quasi-linear Realizable
k�ε model manages to imitate certain rotation-induced e�ects, but the
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Figure 5.4: Skin friction coe�cient Cf for di�erent k�ε computations.
Colours: Red, stepped wall; blue, straight wall. Lines: �, standard k�ε;
- - -, Realizable k�ε. Symbols: DNS data from Barri & Andersson [6].

performance is still rather poor due to the absence of stabilising and
destabilising e�ects.

The variation of the skin friction coe�cient predicted by the RSM is
shown in �gure 5.5. In the nonrotating case, the shape and intensity
of the large recirculation zone is similar to that from the DNS. The
secondary recirculation zone is however too small, leading to premature
reattachment. Consistant with the �ndings in [19], the �ow seems to
redevelop quickly in the downstream region. When weak system rotation is
induced, the calculated values of Cf correspond well with DNS data, as seen
in �gure 5.5b. Results for the straight wall indicate that the �ow actually
separates at x/h ≈ 11, or at least that the �ow comes to a standstill. In the
downstream redevelopment region, it is seen that Cf is higher at the stepped
wall than at the straight wall. This is due to the turbulence augmentation
near the stepped wall which occurs for Ro > 0. As the �ow becomes more
turbulent, the velocity gradient becomes steeper, resulting in a higher τw.
This e�ect is also seen in the DNS results.

When the rotation number reaches 0.1, seen in �gure 5.5c, we immediately
recognise the oversized separation bubble at the straight wall, also seen
from the streamlines. The length of the bubble, Xu2 −Xu1 is about 8.1h,
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Figure 5.5: Skin friction coe�cient Cf for the RSM computations. Colours:
Red, stepped wall; blue, straight wall. Symbols: DNS data from Barri &
Andersson [6].
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more than twice the size found in the DNS, which was about 3.3h. The
same tendency is seen for Ro = 0.2 and 0.4. The composition of the
separation bubble in the high-Ro cases is however similar to the DNS
results, with the highest back�ow intensity in the downstream part of the
bubble. For Ro = 0.4, Barri & Andersson [6] noted that a local minimum
for Cf appeared along the straight wall, about 1h downstream of the
step. This indicates the formation of two smaller recirculation zones within
the separation bubble, rather than one large. The same phenomenon is
indicated by the RSM results, in addition to a more evident local minimum
at x/h ≈ 15.5, caused by the momentum of the intense back�ow at
x/h ≈ 17.5.

The back�ow intensity is seen to increase with Ro also at the stepped wall.
The RSM predicts this separation bubble fairly accurate, although the small
secondary recirculation zone is too small. Downstream of reattachment, the
model exhibits a global maximum for Cf , related to the separation bubble at
the straight wall. As the separation bubble covers about half of the channel
in the wall-normal direction, the streamwise velocity between the stepped
wall and the bubble must increase in order to uphold mass conservation.
The same e�ect is seen in the DNS results, but the outcome is not so
dramatic because of a smaller separation bubble in both x and y direction.
The situation is further illustrated by examining the velocity pro�les in the
next section.

In the downstream redevelopment region, we notice a decrease in Cf at
the cyclonic side of the channel, as the rotation number increases. This
is due to the stabilising Coriolis-force e�ect, and consistant with DNS
data. For the anti-cyclonic side, Cf increase with increasing Ro up to
Ro = 0.2. Then, at Ro = 0.4, Cf has dropped to a lower value than in the
nonrotating case. Accordingly, somewhere between Ro = 0.2 and Ro = 0.4,
u′2 becomes smaller than v′2, causing the rotational shear stress production
term F12/ρ = −2Ω(u′2 − v′2) to change sign (see sec. 3.1). Turbulence is
thus dampened also at this side of the channel, and the velocity gradient
tends towards the one at the straight wall. Note that this applies only to the
redeveloping �ow downstream of the step. The e�ective rotation number
is higher here than upstream of the step since it depends on the channel
height. Being able to predict this e�ect directly is a good example of the
advantages by using a RSM instead of a simpler turbulence model.
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5.4 Velocity pro�les

Streamwise velocity pro�les u/Umax from the RSM results are shown in
�gure 5.6. Umax is the maximum inlet velocity in each computation.
Velocity pro�les are shown for the �ow at the step, as well as for seven
downstream positions. DNS data from Barri & Andersson [6] is included
for comparison, but note that no DNS data is shown for x/h = 16 and 20.
These two pro�les are included due to the oversized separation bubble near
the straight wall.

When rotation is induced, the RSM correctly exhibit the characteristic
asymmetric velocity pro�le for the �ow over the step. (The velocity pro�le
at the step is somewhat a�ected by the downstream conditions and is
therefore not entirely fully developed.) As Ro increases in parallel shear
�ow, Umax shifts towards the cyclonic side due to stabilising e�ects. A
region of zero absolute vorticity, where S = 2Ω/(∂v/∂x − ∂u/∂y) ≈ −1,
appears in the channel core. Zero absolute vorticity signi�es that the system
vorticity balances the �ow vorticity. When v is negligible, the region is
characterised by a linear part in the velocity pro�le with a slope proportional
to 2Ω. Overall, the prediction of the fully developed �ow at the step is
considered fairly good, especially at the anti-cyclonic side of the channel.
The computed redeveloping pro�les at x/h = 30 also correspond well with
DNS data, except for Ro = 0.4 where the pro�le is slightly shifted towards
the cyclonic side.

The separation bubbles are readily observed by examining the velocity
pro�les downstream of the step, where u/Umax < 0 corresponds to
back�ow. Predictions for Ro = 0.05 are reasonable, but for Ro ≥ 0.01
we see that the separation bubble along the straight wall extends too far
downstream. Additionally, as it expands towards the stepped wall, it blocks
the streamwise �ow which responds with a higher velocity. The e�ect is
clearly seen for x/h = 13 and re�ects the overpredicted Cf in �gures 5.5d
and 5.5e. It seems likely that the overpredicted back�ow intensity near the
straight wall appears due to the increased velocity near the stepped wall.
Velocity pro�les for x/h = 7, 8 and partly 10 are anyhow rather accurate
compared to DNS data. The RSM is evidently struggling with the cyclonic
part of the �ow, whereas the anti-cyclonic part is well handled.
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Figure 5.6: Mean streamwise velocity pro�les at di�erent locations x/h = 6,
7, 8, 10, 13, 16, 20 and 30. �, RSM; - - -, DNS data, Barri & Andersson [6].
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5.5 Reynolds stresses

Reynolds stress contours from the RSM and DNS computations are shown
in �gure 5.7. Only the case of Ro = 0.2 will be considered. Note that the
contour values from the RSM and DNS do not correspond, the �gure is
meant to give a qualitative impression of the stress distribution. Contours
near the straight wall in 5.7g and 5.7h represent positive values of u′v′, while
those near the stepped wall are negative.

The predicted distribution of Reynolds stresses at the anti-cyclonic side
seems to correspond quite well with the DNS data. Both the curved shear
layer and the upstream channel �ow is highly turbulent, in correspondence
with the production terms in table 4.1. Yet, one exception is seen when
comparing the spanwise Reynolds stress w′2 in �gures 5.7e and 5.7f. The
appearance of w′2 in the RSM computation is solely due to the redistribution
term φ33, as the production terms P33 and F33 are both zero. Barri &
Andersson [6] attribute their excessive level of w′2 near the wall at x/h = 9
to the dynamic �ow phenomenon of secondary �ows. Longitudinal roll cells
were observed in the reattachment zone when inspecting the instantaneous
�ow �eld. Rotating in the yz plane, these roll cells will cause high levels of
w′2, even though the time average of the �uctuations w′ naturally vanishes.
If the secondary motions are to be resolved, a three-dimensional (or two-
dimensional, three-componential) computation is required, so the e�ect
cannot be predicted in the present study.

When it comes to the cyclonic side of the channel, there are more di�erences.
At �rst sight the contours look quite similar, but the computed values for the
wall-normal stresses v′2 require further inspection. It is seen from the DNS
results in �gure 5.7c that rather high values of v′2 occur on the cyclonic side
for 8 ≤ x/h ≤ 14. This tendency is absent in the RSM computation. Values
of v′2 scaled by the global friction velocity u2

∗ = − 1
2ρ
∂Peff
∂x (H−h) at x/h = 10

are compared with the DNS data in �gure 5.8. It is readily seen that the
wall-normal stress is considerably underpredicted at the cyclonic side in the
RSM computation. High values of wall-normal stress signify more mixing
across the shear layer and therefore a suppression the separation bubble at
the straight wall. This seems to be the main reason for the prediction of an
oversized separation bubble by the RSM.
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Figure 5.7: Reynolds stress contours for Ro = 0.2. Left: DNS data from
Barri & Andersson [6]. Right: RSM solution.
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Figure 5.8: Wall-normal Reynolds stress v′2/u2
∗ for Ro = 0.2, at x/h = 10.

DNS data from Barri & Andersson [6] denoted by ×.

The high values of v′2 predicted by the DNS cannot be attributed to mean
shear production P22 or rotational production F22. Barri & Andersson [6]
show that mean shear production P22 is negligible in this region, and
F22 will act as a sink since u′v′ is positive. We are then left with the
redistribution term φij . As is normally the case, φ11 is negative and
turbulent energy is distributed to the other diagonal stress components.
Contrary to conventional wall-bounded shear �ows however, most of the
energy from φ11 is now distributed into wall-normal �uctuations instead of
spanwise �uctuations [6]. This is the reason for the high values of wall-
normal stress in the cyclonic region. The shear stress u′v′ is also increased
due to an increased v′2, as seen in �gure 5.7g. It should be noted that
the contours in �gure 5.7h are somewhat misleading, as shear stress on the
cyclonic side is rather low. The highest magnitude on the cyclonic side is
only ≈ 0.125 of that at the anti-cyclonic side, whereas as the same ratio in
the DNS results is ≈ 0.23.

It seems that the wall-normal redistribution term φ22 is underpredicted at
the cyclonic side in the RSM results. The relatively high values of u′2 for
12 ≤ x/h ≤ 16 in �gure 5.7b may indicate turbulent energy that should have
been redistributed into wall-normal �uctuations. Figure 5.7f also indicates
that turbulent energy from the streamwise �uctuations in the cyclonic shear
layer are redistributed into w′2 rather than v′2. Hence, the main defect
in the RSM calculations, the oversized separation bubble at the cyclonic
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side of the channel, seems to arise due to a �aw in the modelling of the
redistribution term φij , equation (2.37). This is perhaps not a surprise, as
accurate modelling of φij is regarded as the most di�cult part of Reynolds
stress equation modelling. The intercoupling between the stresses through
production, redistribution, dissipation and di�usion is however an intricate
process and an individual inspection of the components in each process is
required in order to locate the �aw with certainty.
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Chapter 6

Conclusions

A study of how di�erent levels of turbulence modelling tackle the e�ects
of system rotation has been conducted. System rotation gives rise to the
�ctitious Coriolis and centrifugal forces in the equations of motion, where
the Coriolis force signi�cantly a�ects turbulent �ows. Its presence leads to
the introduction of a new production term Fij when deriving the transport
equations for the Reynolds stresses. The term is dependent on rate of system
rotation and will alter the turbulence �eld accordingly. In shear �ows,
the general e�ect is augmentation and dampening of turbulence in regions
subjected to anti-cyclonic and cyclonic rotation, respectively. Additionally,
system rotation will a�ect processes such as Reynolds stress redistribution
and may induce secondary �ows.

An investigation of relevant literature revealed that linear eddy-viscosity
turbulence models are unable to predict any Coriolis-force e�ects on the
turbulence �eld. Such cost e�cient models are widely used for industrial
applications due to their simplicity. This is however also their vulnerable
point, as the simple linear eddy-viscosity formulation relies on the frame-
indi�erent strain-rate tensor to predict the turbulent stresses. It is however
possible to capture rotational e�ects on the �ow �eld by sensitising the
models. This is often done by introducing the rate-of-rotation tensor and
the system rotation in the eddy-viscosity formulation. However, the model
still exhibits isotropic turbulence which is in strong violation with rotating
turbulent �ows. Fully nonlinear eddy-viscosity models are able to predict
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turbulence anisotropy, but will in any case lack a transport mechanism for
the stresses.

The more costly Reynolds stress equation turbulence model class stands
out as the natural choice when selecting a RANS turbulence model for
rotating �ows. This is due to the Reynolds stress production terms
and the redistribution term appearing in the Reynolds stress transport
equation (2.30). The production terms are exact, meaning that Coriolis-
force e�ects will be predicted to a large extent, independently of the model
formulation. Modelling the redistribution process is considered as the
main challenge in RSMs and is principally what di�erentiates the several
formulations in the literature.

The use of eddy-resolving simulations has increased considerably during
the last decade. The main advantage of LES compared to the RANS
approach, is that the e�ects of rotation are captured directly by solving
the �ltered Navier�Stokes equations (2.56). As numerical dissipation and
limitations of the SGS model are the only sources of incorrectness in LES,
the computed results can be very accurate and detailed. A very �ne grid
and short time step is however required, making LES very costly compared
to RANS. A compromise between the two approaches has been made in the
DES formulation, where RANS and LES are used near walls and in the free
stream, respectively. The DES formulation has proven to yield accurate
results for rotating �ows at a relatively low cost [75].

Two-dimensional RANS calculations of the turbulent �ow over a spanwise
rotating backward-facing step were performed with the commercial CFD
software ANSYS Fluent. Results were compared with DNS data from
Barri & Andersson [6] which corresponded well with the experiments of
Rothe & Johnston [57]. As a linear eddy-viscosity model, the standard k�
ε model did not manage to predict any e�ect on the mean velocity �eld
due to system rotation. The solution was essentially the same in both the
nonrotating case and for Ro = 0.2. The quasi-linear Realizable k�ε model
exhibited a correct correlation between the reattachment length Xr and
system rotation, although Xr was still overpredicted in the rotating case.
No e�ects on the turbulence �eld upstream of the step were seen. The quasi-
linear eddy-viscosity formulation did only respond to rotation in regions
with streamline curvature, e.g. just downstream of the step. The absence
of a separation bubble near the straight wall, as well as the overpredicted

64



reattachment length, can be attributed to this defect.

Except for any secondary �ows, the RSM captured all of the rotationally
induced e�ects on the mean �ow �eld seen in Barri & Andersson [6]. In
general, the anti-cyclonic part of the �ow was predicted accurately. The
deviation in reattachment length at the stepped wall for Ro = 0.4 was
just 0.2h. At the cyclonic side of the channel, separation occurred at
approximately the same rotation rate as in the DNS. For higher rotation
rates, the size of the separation bubble is however severely overpredicted in
both x and y direction.

Reynolds stress predictions by the RSM compare fairly well with the DNS
data. Values of wall-normal stresses at the cyclonic side downstream of the
step are however too low. Barri & Andersson [6] attributed their high levels
of v′2 to the redistribution process. Contrary to conventional wall-bounded
shear �ows, most of the energy was redistributed into wall-normal, rather
than spanwise �uctuations, causing a suppression of the separation bubble.
As the Reynolds stress production terms are exact, the oversized separation
bubble in the RSM results is attributed to a �aw in the modelling of the
redistribution process.

On basis on the present computations, we may conclude that the RSM class
is the best choice for two-dimensional calculations of rotating turbulent
�ows. Although it is crucial to compare results with experimental or DNS
data, a RSM will seemingly exhibit the rotationally induced e�ects on the
mean �ow �eld. Still, the present RSM clearly has its limitations, calling for
a detailed examination of the individual Reynolds stress transport processes.
Model modi�cations and further validation is then possible. It would also be
interesting to assess the performance of the computationally cheaper v2�f
formulation by Pettersson Reif et al. [50] in detail. For three-dimensional
calculations of rotating �ows, further comparison of DES and RANS results
would be useful for the community.

65



Bibliography

[1] H. I. Andersson. E�ect of system rotation on free shear �ows. E�ect of
System Rotation on Turbulence with Applications to Turbomachinery,
September 20 � 23, 2010. VKI Lecture Series.

[2] H. I. Andersson. Introduction to the e�ects of rotation on turbulence.
E�ect of System Rotation on Turbulence with Applications to Turbo-

machinery, September 20 � 23, 2010. VKI Lecture Series.

[3] ANSYS Inc. ANSYS 13.0 Help, 2010.

[4] E. Balaras, C. Benocci, and U. Piomelli. Two-layer approximate
boundary conditions for large-eddy simulations. AIAA Journal,
34:1111�1119, 1996.

[5] J. E. Bardina, P. G. Huang, and T. J. Coakley. Turbulence modeling
validation, testing, and development. AIAA Paper 97-2121, 1997.

[6] M. Barri and H. I. Andersson. Turbulent �ow over a backward-facing
step. Part 1. E�ects of anti-cyclonic system rotation. Journal of Fluid
Mechanics, 665:382�417, 2010.

[7] M. Barri, G. K. El Khoury, H. I. Andersson, and B. Pettersen. DNS
of backward-facing step �ow with fully turbulent in�ow. International
Journal for Numerical Methods in Fluids, 64:777�792, 2009.

[8] H. C. Chen and V. C. Patel. Near-wall turbulence models for complex
�ows including separation. AIAA Journal, 26:641�648, 1988.

66



[9] T. J. Craft, B. E. Launder, and K. Suga. Development and application
of a cubic eddy-viscosity model of turbulence. International Journal of
Heat and Fluid Flow, 17:108�115, 1996.

[10] B. J. Daly and F. H. Harlow. Transport equations in turbulence.
Physics of Fluids, 13:2634�2649, 1970.

[11] J. W. Deardor�. A numerical study of three-dimensional turbulent
channel �ow at large reynolds numbers. Journal of Fluid Mechanics,
41:453�480, 1970.

[12] P. A. Durbin. Near-wall turbulence closure modeling without "damping
functions". Theoretical and Computational Fluid Dynamics, 3:1�13,
1991.

[13] P. A. Durbin. A Reynolds stress model for near-wall turbulence.
Journal of Fluid Mechanics, 249:465�498, 1993.

[14] P. A. Durbin and B. A. Pettersson Reif. On Algebraic Second Moment
Models. Flow, turbulence and combustion, 63:23�37, 2000.

[15] P. A. Durbin and B. A. Pettersson Reif. Statistical Theory and Modeling

for Turbulent Flows. John Wiley & Sons, Ltd., second edition, 2011.

[16] M. Germano, U. Piomelli, P. Moin, and W. H. Cabot. A dynamic
subgrid-scale eddy viscosity model. Physics of Fluids A: Fluid

Dynamics, 3:1760�1765, 1991.

[17] M. M. Gibson and B. E. Launder. Ground e�ects on pressure
�uctuations in the atmospheric boundary layer. Journal of Fluid

Mechanics, 86:491�511, 1978.

[18] F. F. Grinstein, L. G. Margolin, and W. Rider. Implicit large eddy

simulation: Computing turbulent �uid dynamics. Cambridge University
Press, 2007.

[19] T. Ø. K. Gundersen. Numerical simulation of separated turbulent
�ow. Project work, Norwegian University of Science and Technology,
December 2010.

[20] K. Hanjali¢ and S. Jakirli¢. Second-moment turbulence closure
modelling. In Closure strategies for turbulent and transitional �ows,
pages 47�101. Cambridge University Press, 2002.

67



[21] A. Hellsten and S. Wallin. Explicit algebraic Reynolds stress and non-
linear eddy-viscosity models. International Journal of Computational

Fluid Dynamics, 23:349�361, 2009.

[22] J. C. R. Hunt and J. M. R. Graham. Free-stream turbulence near plane
boundaries. Journal of Fluid Mechanics, 84:209�235, 1978.

[23] G. Iaccarino, A. Ooi, P. A. Durbin, and M. Behnia. Reynolds averaged
simulation of unsteady separated �ow. International Journal of Heat

and Fluid Flow, 24:147�156, 2003.

[24] S. Jakirli¢, C. Tropea, and K. Hanjali¢. Computations of rotating
channel �ows with a low-Re-number second-moment closure model, 7th
ERCOFTAC. In IAHR Workshop on Re�ned Flow Modelling UMIST,

Manchester, pages 28�29, 1998.

[25] W. P. Jones and B. E. Launder. The prediction of laminarization with
a two-equation model of turbulence. International Journal of Heat and
Mass Transfer, 15:301�314, 1972.

[26] M. Keating. Accelerating CFD Solutions. ANSYS Advantage, 5:48�49,
2011.

[27] R. Kristo�ersen and H. I. Andersson. Direct simulations of low-
Reynolds-number turbulent �ow in a rotating channel. Journal of Fluid
Mechanics, 256:163�197, 1993.

[28] R. Kristo�ersen, P. J. Nilsen, and H. I. Andersson. Validation
of Reynolds stress closures for rotating channel �ows by means of
direct numerical simulations. Engineering Turbulence Modelling and

Experiments, pages 145�152, 1990.

[29] P. K. Kundu and I. M. Cohen. Fluid Mechanics. Academic Press,
fourth edition, 2008.

[30] B. E. Launder. Second-moment closure: Present... and future?
International Journal of Heat and Fluid Flow, 10:282�300, 1989.

[31] B. E. Launder, G. J. Reece, and W. Rodi. Progress in the Development
of a Reynolds-Stress Turbulence Closure. Journal of Fluid Mechanics,
3:537�566, 1975.

68



[32] B. E. Launder and N. Shima. Second-moment closure for the near-wall
sublayer: Development and application. AIAA Journal, 27:1319�1325,
1989.

[33] B. E. Launder and D. B. Spalding. Lectures in mathematical models
of turbulence. 1972.

[34] B. E. Launder and D. P. Tselepidakis. Application of a new second-
moment closure to turbulent channel �ow rotating in orthogonal mode.
International Journal of Heat and Fluid Flow, 15:2�10, 1994.

[35] B. E. Launder, D. P. Tselepidakis, and B. A. Younis. A second-moment
closure study of rotating channel �ow. Journal of Fluid Mechanics,
183:63�75, 1987.

[36] D. C. Leslie and G. L. Quarini. The application of turbulence theory
to the formulation of subgrid modelling procedures. Journal of Fluid

Mechanics, 91:65�91, 1979.

[37] F. S. Lien and M. A. Leschziner. Assessment of turbulence-transport
models including non-linear RNG eddy-viscosity formulation and
second-moment closure for �ow over a backward-facing step. Com-

puters & �uids, 23:983�1004, 1994.

[38] D. K. Lilly. The representation of small scale turbulence in numerical
simulation experiments. In IBM Scienti�c Computing Symposium on

Environmental Sciences, pages 195�210, 1967.

[39] D. K. Lilly. A proposed modi�cation of the germano subgrid-scale
closure method. Physics of Fluids A: Fluid Dynamics, 4:633�635, 1992.

[40] L. Marstorp, G. Brethouwer, O. Grundestam, and A. Johansson.
Explicit algebraic subgrid stress models with application to rotating
channel �ow. Journal of Fluid Mechanics, 639:403�432, 2009.

[41] F. R. Menter. Two-equation eddy-viscosity turbulence models for
engineering applications. AIAA Journal, 32:1598�1605, 1994.

[42] F. R. Menter. Review of the shear-stress transport turbulence model
experience from an industrial perspective. International Journal of

Computational Fluid Dynamics, 23:305�316, 2009.

69



[43] F. R. Menter and Y. Egorov. The scale-adaptive simulation method
for unsteady turbulent �ow predictions. Part 1: Theory and model
description. Flow Turbulence and Combustion, 85:113�138, 2010.

[44] F. R. Menter, M. Kuntz, and R. Langtry. Ten years of industrial
experience with the SST turbulence model. Turbulence, heat and mass

transfer, 4:625�632, 2003.

[45] P. J. Nilsen and H. I. Andersson. Rotational e�ects on sudden-
expansion �ows. Engineering Turbulence Modelling and Experiments,
pages 65�72, 1990.

[46] M. Oberlack, W. Cabot, B. A. Petterson Reif, and T. Weller. Group
analysis, direct numerical simulation and modelling of a turbulent
channel �ow with streamwise rotation. Journal of Fluid Mechanics,
562:383�403, 2006.

[47] V. C. Patel, W. Rodi, and G. Scheuerer. Turbulence models for near-
wall and low Reynolds number �ows: A review. AIAA journal, 23:1308�
1319, 1985.

[48] B. A. Pettersson and H. I. Andersson. Near-wall Reynolds-stress
modelling in noninertial frames of reference. Fluid Dynamics Research,
19:251�276, 1997.

[49] B. A. Pettersson Reif. Towards a nonlinear eddy-viscosity model based
on elliptic relaxation. Flow, turbulence and combustion, 76:241�256,
2006.

[50] B. A. Pettersson Reif, P. A. Durbin, and A. Ooi. Modeling rotational
e�ects in eddy-viscosity closures. International journal of heat and �uid
�ow, 20:563�573, 1999.

[51] B. A. Pettersson Reif, M. Mortensen, and C. A. Langer. Towards
Sensitizing the Nonlinear v2�f Model to Turbulence Structures. Flow,
Turbulence and Combustion, 83:185�203, 2009.

[52] U. Piomelli. Wall-layer models for large-eddy simulations. Progress in
Aerospace Sciences, 44:437�446, 2008.

[53] S. B. Pope. A more general e�ective-viscosity hypothesis. Journal of

Fluid Mechanics, 72:331�340, 1975.

70



[54] A. Raufeisen, M. Breuer, T. Botsch, and A. Delgado. LES validation
of turbulent rotating buoyancy-and surface tension-driven �ow against
DNS. Computers & Fluids, 38:1549�1565, 2009.

[55] J. R. Ristorcelli, J. L. Lumley, and R. Abid. A rapid-pressure cov-
ariance representation consistent with the Taylor�Proudman theorem
materially frame indi�erent in the two-dimensional limit. Journal of

Fluid Mechanics, 292:111�152, 1995.

[56] W. Rodi. A new algebraic relation for calculating the reynolds stresses.
In Gesellschaft Angewandte Mathematik und Mechanik Workshop Paris

France, volume 56, page 219, 1976.

[57] P. H. Rothe and J. P. Johnston. Free shear layer behavior in rotating
systems. In Turbulent Boundary Layers: Forced, Incompressible, Non-

Reacting, volume 1, pages 23�26, 1979.

[58] J. Rotta. Statistische theorie nichthomogener turbulenz. Zeitschrift für
Physik, 129:547�572, 1951.

[59] T.-H. Shih, W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu. A new
k�ε eddy viscosity model for high reynolds number turbulent �ows.
Computers & Fluids, 24:227�238, 1995.

[60] N. Shima and H. Kobayashi. Modelling of the Reynolds stress
redistribution with a wall e�ect vector. Fluid dynamics research,
39:320�333, 2007.

[61] Y. Shimomura. Turbulence modeling suggested by system rotation.
Near-wall turbulent �ows, pages 115�123, 1993.

[62] M. Shur, P. R. Spalart, K. D. Squires, M. Strelets, and A. Travin. Three
dimensionality in Reynolds-averaged Navier-Stokes solutions around
two-dimensional geometries. AIAA journal, 43:1230�1242, 2005.

[63] J. Smagorinsky. General circulation experiments with the primitive
equations. Monthly weather review, 91:99�164, 1963.

[64] P. E. Smirnov and F. R. Menter. Sensitization of the SST Turbulence
Model to Rotation and Curvature by Applying the Spalart�Shur
Correction Term. Journal of Turbomachinery, 131:041010, 2009.

71



[65] P. Spalart. Detached-eddy simulation. Annual Review of Fluid

Mechanics, 41:181�202, 2009.

[66] P. R. Spalart. Direct simulation of a turbulent boundary layer up to
Rθ = 1410. Journal of Fluid Mechanics, 187:61�98, 1988.

[67] P. R. Spalart and S. R. Allmaras. A one-equation turbulence model
for aerodynamic �ows. aiaa paper 92-0439. In 30th AIAA Aerospace

Sciences Meeting, Reno, USA, 1992.

[68] P. R. Spalart and M. Shur. On the sensitization of turbulence models to
rotation and curvature. Aerospace Science and Technology, 1:297�302,
1997.

[69] C. G. Speziale. Turbulence Modeling in Noninertial Frames of
Reference. Theoretical and Computational Fluid Dynamics, 1:3�19,
1989.

[70] C. G. Speziale, S. Sarkar, and T. B. Gatski. Modelling the pressure-
strain correlation of turbulence: An invariant dynamical systems
approach. Journal of Fluid Mechanics, 227:245�272, 1991.

[71] C. G. Speziale and S. Thangam. Numerical study of secondary �ows
and roll-cell instabilities in rotating channel �ow. Journal of Fluid

Mechanics, 130:377�395, 1983.

[72] H. M. Stommel and D. Moore. An introduction to the Coriolis force.
Columbia University Press, 1989.

[73] M. Strelets. Detached eddy simulation of massively separated �ows. In
AIAA, Aerospace Sciences Meeting and Exhibit, 39th, Reno, NV, 2001.

[74] H. K. Versteeg andW. Malalasekera. An Introduction to Computational
Fluid Dynamics � The Finite Volume Method. Pearson Education
Limited, 2 edition, 2007.

[75] A. K. Viswanathan and D. K. Tafti. Detached eddy simulation of �ow
and heat transfer in fully developed rotating internal cooling channel
with normal ribs. International journal of heat and �uid �ow, 27:351�
370, 2006.

[76] B. C. Wang and D. J. Bergstrom. A dynamic nonlinear subgrid-scale
stress model. Physics of Fluids, 17:035109, 2005.

72



[77] D. C. Wilcox. Turbulence Modelig for CFD. DCW Industries Inc., La
Cañada, California, 2 edition, 2004.

[78] Q. Q. Xun, B. C. Wang, and E. Yee. Large-eddy simulation of turbulent
heat convection in a spanwise rotating channel �ow. International

Journal of Heat and Mass Transfer, 54:698�716, 2011.

73


	Title Page
	masteroppgave.pdf

