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Abstract

The stochastically forced Burgers equation shares some of the same
characteristics as the three-dimensional Navier-Stokes equations. Because
of this it is sometimes used as a model equation for turbulence. Simulating
the stochastically forced Burgers equation with low resolution can be
considered as a one dimensional model of a three-dimensional large eddy
simulation, and can be used to evaluate subgrid models.

Modified versions of subgrid models using the fractal interpolation
technique are presented here and tested in low resolution simulations of
the stochastically forced Burgers equations. The results are compared with
high resolution simulations, then low resolution simulations first using the
dynamic Smagorinsky model and then using no subgrid model other than
the numerical dissipation of the convective flux discretisation scheme.

The fractal models perform reasonably well and most of the large
scale features from the high resolution simulations are reproduced by
corresponding simulations with low resolution. The performance of the
fractal models is not, however, better than the performance of the dynamic
Smagorinsky model. Therefore one might say that although the fractal
models give promising results, it is not obvious that they are in any way
superior to the traditional models. Also the low resolution simulation with
the dissipative convective scheme performs well, suggesting that numerical
dissipation can be sufficient as a subgrid model in one dimension.

The solutions to the stochastically forced Burgers equation follow a κ−
5

3

energy spectrum, but high order statistics are not similar to real turbulence,
due to the complete domination of shocks. Thus the stochastically forced
Burgers equation might not be a suitable model for turbulence. It is
not likely that the complexity of three-dimensional subgrid modelling is
sufficiently represented by the one-dimensional case either.





Oppsummering

Burgers’ ligning med stokastisk kildeledd deler enkelte av de samme
egenskapene som Navier-Stokes-ligningene, og den blir i noen tilfeller brukt
som en modelligning for turbulens. En simulering med grovt romlig
nettverk kan ses p̊a som en endimensjonal modell av en tredimensjonal
“large eddy simulation”, og kan dermed brukes til å teste“subgrid”-modeller.

Modeller som bruker fraktalinterpolering har blitt modifisert og utprøvd
i simuleringer med grovt nettverk av Burgers’ ligning med stokastisk
kildeledd. Disse resultatene har blitt sammenlignet med resultater fra
simuleringer med fint nettverk. Ogs̊a lavoppløste simuleringer som benytter
den dynamiske Smagorinsky-modellen og simuleringer uten “subgrid”-
modell har blitt brukt som sammenligningsgrunnlag. I simuleringen uten
“subgrid”-modell benyttes en diskretiseringsmetode som tilfører betydelige
mengder numerisk dissipasjon.

Fraktalmodellene gir forholdsvis gode resultater, og de store skalaene
ser ut til å stemme godt overens med de største skalaene i den høyoppløste
simuleringen. Resultatene er imidlertid ikke bedre enn tilsvarende
resultater for simuleringen som bruker Smagorinsky-modellen. Til tross
for lovende resultater, ser det derfor ikke ut til å være noe som tyder p̊a
at fraktalmodellene yter bedre enn de tradisjonelle modellene. Ogs̊a den
lavoppløste simuleringen uten “subgrid”-modell gir gode resultater. Dette
antyder at numerisk dissipasjon er en tilstrekkelig god “subgrid”-modell for
endimensjonale problemer.

Det velkjente κ−
5

3 -energyspektrumet finner man ogs̊a for Burgers’
ligning med stokastisk kildeledd. Høyereordens statistiske parametre er
derimot veldig forskjellig for Burgers’ ligning, grunnet de karakteristiske
støtene, og det er dermed ikke sikkert at Burgers’ ligning med stokastisk
kildeledd er en spesielt god modelligning for turbulens. Det ser heller ikke
ut til at kompleksiteten i tredimensjonal “subgrid”-modellering er spesielt
godt ivaretatt i én dimensjon.
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Chapter 1

Introduction

In most engineering applications and in nature, flows are turbulent. Because
turbulent flow problems are so complex, they can rarely be solved directly,
and models are required. This report deals with the use of fractals to model
turbulence, and this chapter gives an introduction to the topics addressed
in the rest of the report.

1.1 Background

The governing equations for both laminar and turbulent flow are the Navier-
Stokes equations. The Navier-Stokes equations can be solved directly
without modelling in both cases, but for turbulent flow this is very time
consuming. To get reasonable solutions to the problem, one is therefore
often required to simplify. The two most common ways of simplifying the
turbulence equations are temporal averaging and spatial filtering, leading
to the Reynolds-averaged Navier-Stokes equations and the large eddy
simulation equations, respectively. In both cases models are required to
close the equations.

For large eddy simulations the type of models required to close the
equations are known as subgrid models, because they model the scales that
are smaller than the grid size. The idea is then to solve the larger scales
and create a model that represents the effect the small scales have on the
larger scales.

It was first suggested by Mandelbrot (1974) and Mandelbrot (1975)
that several aspects of turbulence could be described as fractal, and this
proposition led to a large number of scientific papers reporting similar
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observations. Many of the earlier papers on fractals and turbulence are
presented by Sreenivasan (1991). In recent years it has been suggested
that fractals could be used as a method for subgrid closure for large
eddy simulations. Scotti & Meneveau (1999) proposed that the fractal
interpolation technique could be used to model the unresolved scales, and
the simulations showed intriguing results.

Because also large eddy simulations are very time consuming, it can
sometimes be useful to study a simplified system instead of the full three-
dimensional large eddy simulation equations. Chekhlov & Yakhot (1995a)
showed that simulations of the stochastically forced Burgers equation
shared similar features with the three-dimensional Navier-Stokes equations.
Based on these results, Scotti & Meneveau (1999) chose to use the
stochastically forced Burgers equation as a model equation, when testing
the performance of a fractal subgrid model.

1.2 Objectives

The principal objective for this project is to study the use of fractals for
subgrid modelling. To do this, the stochastically forced Burgers equation
is used as a model equation for turbulence. The Burgers equation allows
simple experimentation while still sharing some of the characteristic features
of the Navier-Stokes equations. The fractal models are also compared with
more conventional subgrid models.

In order to assess the performance of the subgrid models, low resolution
solutions to the stochastically forced Burgers equation with subgrid
modelling is compared with results from high resolution simulations of the
stochastically forced Burgers equation. This means that the results of the
high resolution simulations first have to be validated by earlier published
results. The finite volume method is commonly used in computational fluid
dynamics and is used for solving the stochastically forced Burgers equation.

The stochastically forced Burgers equation is used as a model for the
Navier-Stokes equations. The ambition is that the observations from the
use of the Burgers equation in one way or another can also be applicable
to the Navier-Stokes equations. The degree of applicability and relevance
is however highly dependent upon how well the solutions to the Burgers
equation resemble real turbulence.
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1.3 Overview

Many different topics are treated in the report, each organised in a separate
chapter. A brief summary of each chapter is given here to provide an
overview of the rest of the report.

1.3.1 Chapter 2

Chapter 2 is called “The non-linear diffusion equation” and presents the
Burgers equation, the equation studied for the rest of the report. Exact
analytical solutions, to be later used when testing numerical methods, are
developed.

1.3.2 Chapter 3

Chapter 3 is called “Fractals and fractal interpolation” and introduces the
fractal theory used in the fractal subgrid model that is presented in chapter
7. An informal description of the concept of multifractality is provided, and
the fractal interpolation technique is presented. The analytical expressions
that are used for the fractal subgrid model are derived here.

1.3.3 Chapter 4

Chapter 4 is called “The finite volume method for the Burgers equation”
and introduces the numerical methods used for discretising the Burgers
equation. The numerical schemes are tested by comparing the results with
the exact solutions derived in chapter 2.

1.3.4 Chapter 5

Chapter 5 is called “The Burgers equation and turbulence” and contains a
description of solutions to the stochastically forced Burgers equation. The
numerical schemes presented in chapter 4 are tested for the stochastically
forced Burgers equation, and high resolution reference results are presented
and discussed.

1.3.5 Chapter 6

Chapter 6 is called “Modelling turbulence” and introduces the different
types of turbulence models used to obtain approximate solutions to the
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Navier-Stokes equations. The difference between the time averaging
approach and the spatial filtering approach is explained. A description of
how these models can be used for the stochastically forced Burgers equation
is provided at the end of the chapter.

1.3.6 Chapter 7

Chapter 7 is called “A fractal subgrid model for the stochastically forced
Burgers equation” and presents two different versions of a multifractal
subgrid model developed using the fractal interpolation technique.

1.3.7 Chapter 8

Chapter 8 is called “Results” and presents the most important results
obtained when testing the fractal subgrid models from chapter 7. Both
their ability to reproduce the actual subgrid stress and their performance
in actual simulations are tested.

1.3.8 Chapter 9

Chapter 9 is called “Conclusion” and sums up the most important results
and what we might conclude from these results.

1.3.9 Appendix A

Appendix A is called “Statistical treatment of turbulence” and introduces
basic statistical concepts used in turbulence research.

1.3.10 Appendix B

Appendix B is called “Fractal geometry” and gives an introduction to basic
concepts in fractal geometry.

1.3.11 Appendix C

Appendix C is called “Programming” and presents the program created to
solve the stochastically forced Burgers equation.
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1.3.12 Appendix D

Appendix D is called “A computational study of Burgers turbulence” and
contains an article for the proceedings at the MekIT’11 conference.





Chapter 2

The non-linear diffusion

equation

The chapter covers the non-linear diffusion equation, commonly called
the Burgers equation, analytical solutions and applications. Analytical
solutions of the Burgers equation are covered by Burgers (1974), which
is the main reference used for this chapter.

2.1 The Burgers equation

The Burgers equation, is a quasilinear parabolic partial differential equation
in one-dimensional space and time. It was first suggested by Burgers (1948)
as a model equation for studying turbulence. The Burgers equation,

∂u

∂t
+

∂

∂x

(
1

2
u2
)

= ν
∂2u

∂x2
, (2.1)

can be considered as a one-dimensional version of the Navier-Stokes
equations without pressure gradient. It contains a time derivative, a
convective term and a diffusive term. The Burgers equation describes
a compressible flow, as only trivial incompressible flows exist in one
dimension.

For convenience the equation will be considered non-dimensional. Then
u is a non-dimensional velocity, x is a non-dimensional length and t is non-
dimensional time. The diffusion coefficient ν is a non-dimensional kinematic
viscosity, or inverse Reynolds number.
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2.2 Analytical solutions

There are many different exact solutions to the Burgers equation, which
make it especially well suited for testing numerical methods. When exact
analytical solutions are available, it is easy to determine the accuracy of
approximate numerical methods.

2.2.1 The inviscid Burgers equation

The inviscid Burgers equation is a one-dimensional scalar conservation law
of the type

∂u

∂t
+

∂f(u)

∂x
= 0, (2.2)

where f(u) = 1
2u

2. Along characteristic lines x(t) with dx
dt = u, the inviscid

Burgers equation is reduced to an ordinary differential equation

du

dt
=

∂u

∂t
+

dx

dt

∂u

∂x
=

∂u

∂t
+ u

∂u

∂x
= 0, (2.3)

and thus for initial condition u0(x) = u(x, 0) the exact solution is implicitly
given as

u(x, t) = u0(x− u(x, t)t). (2.4)

The velocity u is constant along the characteristics determined by straight
lines of slope u0(x).

2.2.2 The Riemann problem

An initial value problem for equation (2.2) with initial value

u(x, 0) =

{
uL for x < 0
uR for x > 0

(2.5)

is called a Riemann problem. For the Burgers equation two distinct
solutions emerge depending on which of uL and uR is the largest.

For uL > uR the solution is a shock propagating with a shock speed s
that can be calculated from the Rankine-Hugoniot condition

s(uR − uL) = f(uR)− f(uL), (2.6)

which gives the shock speed

s =
1

2
(uL + uR). (2.7)
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Figure 2.1: The shock in the solution of the Riemann problem propagates
from left to right with speed s.

The exact solution of the Riemann problem is then

u(x, t) =

{
uL for x < st
uR for x > st

(2.8)

The solution to the Riemann problem for uL > uR is seen in figure 2.1,
where it is shown at three different times. The left side velocity is uL = 0.8
and the right side velocity is uR = 0.2, which gives a shock speed s = 0.5.

For uL < uR the exact solution is a rarefaction wave

u(x, t) =





uL for x < uLt
x
t for uLt < x < uRt
uR for x > uRt

(2.9)

An expansion shock is another possible solution to the equation, but is not
correct because it is not a physical solution. The flux function is hyperbolic
and so the Lax entropy condition requires that f ′(uL) > s > f ′(uR) (Müller,
2010), which is not satisfied for the expansion shock. The solution to the
Riemann problem for uL < uR is seen in figure 2.2, at three different times
for uL = 0.2 and uR = 0.8. The wave expansion is distinctly different from
the shock solution in figure 2.1.
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Figure 2.2: The rarefaction wave moves from left to right, and because the
right side moves with higher velocity, the width of the wave increases.

2.2.3 Hopf-Cole transformation

In order to transform the quasi-linear Burgers equation into a linear partial
differential equation, the Hopf-Cole transformation was introduced (Hopf,
1950; Cole, 1951). The transformation introduces the variable φ and sets u
equal to

u = −2ν
1

φ

∂φ

∂x
. (2.10)

When this is introduced into equation (2.1), we get, after cancellations,

1

φ

∂φ

∂x

(
∂φ

∂x
− ν

∂2φ

∂x2

)
− ∂

∂x

(
∂φ

∂x
− ν

∂2φ

∂x2

)
= 0. (2.11)

It then follows that if φ is a solution of the equation

∂φ

∂x
= ν

∂2φ

∂x2
, (2.12)

then u is a solution of the Burgers equation. Equation (2.12) is called the
heat equation and is a linear partial differential equation.
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Figure 2.3: The exact solution for u0(x) = sin(2πx) and ν = 1 shows the
sine wave amplitude decreasing in time.

A general solution of the heat equation for an infinite domain and t > 0
is

φ =
1

2
√
πνt

∫ +∞

−∞
exp

[
−(x− ξ)2

4νt
+ F (ξ)

]
dξ , (2.13)

where F (ξ) is an arbitrary function. When t → 0 this yields

w0(x) = exp[F (x)], (2.14)

and for u with initial condition u0

u0(x) = −2ν
dF

dx
. (2.15)

When the function F is determined from u0, the solution is

φ =
1

2
√
πνt

∫ +∞

−∞
exp

[
−(x− ξ)2

4νt
− 1

2ν

∫ ξ

0
u0(ξ̃) dξ̃

]
dξ , (2.16)

and for u

u(x, t) =

1
2
√
πνt

∫ +∞
−∞

x−ξ
t exp

[
− (x−ξ)2

4νt − 1
2ν

∫ ξ
0 u0(ξ̃) dξ̃

]
dξ

1
2
√
πνt

∫ +∞
−∞ exp

[
− (x−ξ)2

4νt − 1
2ν

∫ ξ
0 u0(ξ̃) dξ̃

]
dξ

. (2.17)
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Figure 2.4: The exact solution for u0(x) = sin(2πx) and ν = 0.005 shows
the sine wave developing into a shock.

Alternatively, the solution can be obtained using Fourier series.
Consider the viscous Burgers equation with initial condition

u(x, 0) = u0(x), 0 < x < L (2.18)

and Dirichlet boundary conditions

u(0, t) = u(L, t) = 0, t > 0. (2.19)

Using the Hopf-Cole transformation this problem is transformed to the heat
equation (2.12) with initial condition

φ(x, 0) = φ0(x) = exp

(
− 1

2ν

∫ ξ

0
u0(ξ̃) dξ̃

)
(2.20)

and Neumann boundary conditions

∂φ

∂x

∣∣∣∣
x=0

=
∂φ

∂x

∣∣∣∣
x=L

= 0, t > 0. (2.21)
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Figure 2.5: The amplitude spectrum of the exact solution for u0(x) =
sin(2πx) and ν = 0.005 shows how the Burgers equation creates high wave
number information.

Using separation of variables, the exact Fourier series solution to the
heat equation problem outlined above is

φ(x, t) =

∞∑

n=0

An cos
(nπx

L

)
exp

(
−νn2π2

L2
t

)
, (2.22)

where

A0 =
1

L

∫ L

0
φ0(x) dx (2.23)

An =
2

L

∫ L

0
φ0(x) cos

(nπx
L

)
dx . (2.24)

Then the solution to the corresponding Burgers equation problem is

u(x, t) =
2πν

L

∑∞
n=1Ann sin

(
nπx
L

)
exp

(
−νn2π2

L2 t
)

A0 +
∑∞

n=1An cos
(
nπx
L

)
exp

(
−νn2π2

L2 t
) , (2.25)

with coefficients {An : n = 0, 1, . . .} defined in equations (2.23)–(2.24).
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Two examples of exact solutions to the viscous Burgers equation are
shown in figure 2.3 and 2.4. Figure 2.3 shows the solution for u0(x) =
sin(2πx) and ν = 1. The high viscosity ensures a rapid decrease in
amplitude. Figure 2.4 shows the solution for equal initial condition but
with viscosity ν = 0.05. The left part of the sine wave surpasses the right
part and a shock-like sharp gradient develops.

Figure 2.5 shows the amplitude spectrum of the velocity in figure 2.3.
The initial condition is a sine wave and should have an zero amplitude for
all other wave numbers than κ = 1. The amplitude spectrum in the figure
has non-zero values for larger wave numbers due to numerical inaccuracy.
It is clear that the later samples (t = 0.1 and t = 0.5) contain more high
wave number information. This shows how the Burgers equation creates
smaller scales than those included in the initial condition. The transport
of energy from large to smaller scales is one of the characteristics that the
dynamics of the Burgers equation shares with turbulence.

2.3 Applications

The Burgers equation is a nonlinear wave equation, and has found
applications in nonlinear acoustics and other wave problems. A review
is found in Gurbatov et al. (1991). Other applications include cosmology,
condensed matter and statistical physics, and also vehicular traffic. This is
elaborated on in Frisch & Bec (2001) and references therein.

A common usage of the Burgers equation is as a testing ground for
the three-dimensional Navier-Stokes equation, both with regards to testing
numerical methods and studying the physics. Because the terms in the
Burgers equation are similar to those in the Navier-Stokes equations, new
numerical methods can typically be tested for the Burgers equation, with
the added convenience of having exact solutions.

Even though the Burgers equation was initially thought to be a model
equation for turbulence, the standard Burgers equation has little to do with
turbulence. As will be elaborated later, the addition of a stochastic element
can make the Burgers equation more relevant for turbulence.



Chapter 3

Fractals and fractal

interpolation

The objective of this chapter chapter is to give an introduction to
multifractal theory and the fractal interpolation technique. The theory
builds on the basic fractal theory described in appendix B.

Multifractals are also covered briefly by Falconer (2003) and Schroeder
(1991), and some of the information comes from papers, cited when
appropriate. The main references on iterated function systems and fractal
interpolation are Falconer (2003), Barnsley & Rising (1993, chapter VI)
and Barnsley (1986).

3.1 Multifractals

The fractals mentioned in appendix B are characterised by a single
parameter known as the fractal dimension. This dimension describes
the scaling or self-similar properties of the geometry, and contains in its
simplicity a lot of information. Such fractals are known as monofractals.
There are, however, many phenomena in nature that require a scaling
description with several scaling exponents, and thus the theory of
multifractals emerged.

Figure 3.1 shows the SGS stress in a solution to the stochastically
forced Burgers equation, as presented in chapter 5. It is obvious that
the stress is highly non-uniform and intermittent. If a particular measure
has a Gaussian probability distribution, then the process is completely
described by the mean and variance of the distribution. Several other
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Figure 3.1: Plotted subgrid scale stress showing multifractal features

common probability distributions are completely described by a few low-
order moments. For measures like the SGS stress in figure 3.1, the lower
order moments reveal little about the true nature of the process.

To describe highly intermittent measures, the concept of multifractality
is particularly well suited. The idea of a multifractal can be illustrated
with a multiplicative cascade, a process that distributes the measure at one
scale unequally to the next smaller scales. When the measure is unequally
divided among the offsprings, and this process is repeated the measure
becomes increasingly unevenly distributed. This process is illustrated in
figure 3.2, where the measure at a given scale is divided into two parts with
70% to the right and 30% to the left, after 1, 2 and 10 partitions. The
distribution after 10 steps begins to resemble the subgrid stress in figure
3.1, but the real process is much more random. If the rule determining the
partitioning of the measure at each step is similar or equal for all steps in
the process, then scale-similarity is expected.
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Figure 3.2: Multiplicative cascade where each step involves distributing
70% of the measure to the right side and 30% to the left

3.1.1 Structure functions

Using the definition of statistical moment (appendix A), a useful concept
called a structure function can be defined.

Definition 3.1. The longitudinal structure function of order p is defined
as

Sp(r) ≡ 〈[u(x+ r)− u(x)]p〉, (3.1)

where x is the position and r is the spatial increment.

Using the ergodicity theorem (theorem A) the sample averages can be
replaced by time averages and the structure functions computed as

Sp(r) = |u(x+ r)− u(x)|p, (3.2)

where the absolute value is taken to avoid cancellations for non-even p.
For many different phenomena the structure functions scale as power

laws, i.e.
Sp(r) ∼ rζp , (3.3)

where ζp are the structure function exponents, which will be shown to be
closely connected with the fractal description.
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3.1.2 The multifractal spectrum

Multifractals are typically characterised with what is known as a multifrac-
tal spectrum, also called a singularity spectrum. The concept of a multi-
fractal spectrum is not that intuitive and will be introduced here rather
informally, broadly following Sreenivasan (1991). For formal proofs and
derivations see Falconer (2003, chapter 17) and references therein.

Lets imagine that the total energy dissipation in a certain region of size
r is Er. Following the logic of a box-counting algorithm the total integrated
dissipation Er in a box of size r is expressed as

Er

EL
∼
( r
L

)β
, (3.4)

where L is a characteristic large scale. The exponent β is a local scaling
exponent and will depend on the position of the box. This is a reflection
of the fact that multifractal scaling is a local phenomenon. One can
then imagine the measure consisting of infinitely many sets of constant
scaling exponent β that are intertwined. Each of these sets has a fractal
dimension f(β), describing the geometry of the particular set that has a
scaling exponent equal to β. The function f(β) is known as the singularity
spectrum, or multifractal spectrum.

Another approach to characterising the multiplicative measure is by
using moment exponents τ(q). The exponents are implicitly defined
through the relation ∑

Eq
r ∼ Eq

L

( r
L

)τ(q)
. (3.5)

For q > 0 the major contribution will be from increasingly larger peaks as
q is increased. Thus the parameter q will accentuate peaks of a certain size,
and τ(q) is the corresponding scaling exponent. This description is linked
to what is called the generalised dimension defined as

Dq =
τ(q)

(q − 1)
. (3.6)

The dimension D0 corresponds to the regular fractal dimension of the
support of the measure. The two different scaling descriptions presented
here (f(β) and τ(q)) are linked through the Legendre-transform relation
(see e.g. Falconer (2003)), and are equivalent. Both methods can be said
to describe the strengths of singularities and the dimension of the sets they
are distributed on. A thorough treatise of the multifractal formalism and
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how to determine the scaling spectra was given by Jaffard (1997a) and
Jaffard (1997b).

Determining the multifractal spectrum is not the topic of this report,
rather multifractal theory has principal interest in its relation to the
structure function components and the use to determine the parameters
in the fractal interpolation technique. It was shown by Meneveau &
Sreenivasan (1987) that the structure function scaling exponents ζp were
related to the generalised dimension Dq as

ζp =
(p
3
− 1
)
Dp/3 + 1. (3.7)

3.1.3 Multifractals and turbulence

The idea of a multiplicative cascade is very similar to the notion of an
energy cascade in turbulence. Richardson (1922) presented the idea of
eddies transferring their energy to smaller eddies in much the same way as
for each step in the multiplicative cascade the measure is divided among the
offsprings. This has inevitably led to the multifractal studies of turbulence
being quite popular. Early studies of multifractality in turbulence were
presented in the review by Sreenivasan (1991).

Kolmogorov’s hypothesis of global scale invariance in the inertial range
predicts that the structure function exponents follow the linear relation
ζp = p

3 over inertial range separations. Deviations from this linear relation
suggest inertial range intermittency, and this is still an unresolved issue in
turbulence research.

3.2 The fractal geometry of graphs

Many different phenomena of interest, display fractal features when plotted
as functions of time. Examples include stock prices, reservoir levels,
population data, measurements of brain-waves and heart beats, and velocity
or pressure traces in turbulent flow.

There are also examples of graphs of functions that are fractal, and it is
possible for a continuous function to be so irregular that it has a dimension
strictly greater than 1. Perhaps the most well-known example of this is the
function

f(t) =
∞∑

k=1

λ(s−2)k sin(λkt), (3.8)
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where 1 < s < 2 and λ > 1. The function is called the Weierstrass function,
and its graph is continuous everywhere although nowhere differentiable.
The graph is a strictly self-similar fractal and has a fractal dimension equal
to s.

The fractal dimension of a graph can be determined by using a
box-counting dimension as for more general geometries, but there are
other simpler ways of finding the dimension. These methods use the
relation between the fractal dimension and other common methods used
to characterise graphs, such as structure functions and power spectra.

A signal with a power spectrum proportional to 1/κα, where κ is the
wavenumber is expected to have a graph of dimension 1

2(5−α) for 1 < α < 3.
The dimension can also be determined from the second order structure
function, which is expected to scale as S2(r) ∼ r(α−1).

3.3 The fractal interpolation technique

From an experiment or a numerical simulation, the resulting data set
{(xi, yi) : i = 0, 1, 2, . . . , N} is given. To analyse this data set it is common
to use elements from Euclidian geometry and elementary functions such as
sine, cosine and polynomials. A graphical representation might be used and
elementary functions fitted to different sections of the graph.

N is a positive integer, xi−1 < xi∀i and yi = y(xi). In order to
estimate a value for y(x) for xi < x < xi+1 and interpolation function f ,
such that f(xi) = yi∀i might be used. The typical interpolation functions
consist of piecewise linear functions, polynomials and splines. While these
functions are well suited for smooth curves, they might not be well suited
for highly irregular ones. In order to devise an interpolation function for
highly irregular, and assumed somewhat self-similar curves, the fractal
interpolation technique (FIT) was introduced (Barnsley, 1986).

3.3.1 Iterated function systems

Many fractals consist of parts that are similar to or resemble the whole
geometry. Iterated function systems use this property to define the fractals
with a simple iterative mapping procedure.

Let F be a closed subset of Rn and wn : F → F for n ∈ {1, 2 . . . , N}
be a continuous mapping. Then a finite collection {wn : n = 1, 2, . . . , N} is
termed an iterated function system (IFS) and has an attractor G defined
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as
G = W (G) =

⋃

n

wn(G). (3.9)

The attractor of an IFS is usually fractal.
If for some 0 ≤ s < 1 and for all n

|wn(x)− wn(y)| ≤ |x− y| , ∀ x, y ∈ F, (3.10)

where | · | is the Euclidian distance, then w is called a contraction mapping,
the IFS is called hyperbolic and the attractor G is the unique attractor
defined by

G = lim
m→∞

W (m)(G) = lim
m→∞

W (W (· · ·W (x) · · · )). (3.11)

An example of an IFS is the collection of the two contraction mappings
w1 =

1
3x and w2 =

1
3x+

2
3 . If F is the interval [0, 1] then w1 creates a smaller

copy of F on the interval
[
0, 13
]
and w2 creates a copy of F on

[
2
3 , 1
]
. If this

process is repeated an infinite number of times, the middle-third Cantor
set emerges (see appendix B.3.1). Thus the middle-third Cantor set is the
attractor of the IFS {w1, w2}.

The mappings w1 and w2 are examples of affine transformations. Affine
transformations are defined as w(x) = T (x) + a, where T is a non-singular
linear transformation and a is a point in R

n. An affine transformation
can be thought of as a shear transformation in terms of fluid dynamics
nomenclature.

3.3.2 A fractal interpolation function

Given the set of data {(xi, yi) ∈ R
2 : i = 0, 1, 2, . . . , N}, where x0 <

x1 < x2 < · · · < xN , an interpolation function for the data is a function
f : [x0, xN ] → R such that

f(xi) = yi, for i = 0, 1, 2, . . . , N. (3.12)

The fractal interpolation technique uses an interpolation function f whose
graph G = {(x, f(x)) : x ∈ [x0, xN ]} is an attractor of an IFS. These
functions will be referred to as fractal interpolation functions, as the
Hausdorff dimension of G often is non-integer. The interpolation function
f will then be continuous but not differentiable.
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The IFS whose attractor is the graph of the interpolation function is
defined such that

wn(x, y) = (Ln(x), Fn(x, y)). (3.13)

Linear fractal interpolation functions are defined as those using affine maps

Ln(x) = anx+ en, (3.14)

Fn(x, y) = cnx+ dny + fn, (3.15)

or in matrix notation

wn

[
x
y

]
=

[
an 0
cn dn

] [
x
y

]
+

[
en
fn

]
. (3.16)

The constraints for these functions are

wn

[
x0
y0

]
=

[
xn−1

yn−1

]
, (3.17)

and

wn

[
xN
yN

]
=

[
xn
yn

]
, (3.18)

for all n = 1, 2, . . . , N . This yields the following coefficients:

an =
(xn − xn−1)

(xN − x0)
, (3.19)

en =
(xNxn−1 − x0xn)

(xN − x0)
, (3.20)

cn =
(yn − yn−1)

(xN − x0)
− dn

(yN − y0)

(xN − x0)
, (3.21)

fn =
(xNyn−1 − x0yn)

(xN − x0)
− dn

(xNy0 − x0yN )

(xN − x0)
, (3.22)

where dn are the only remaining free parameters. The coefficients dn are
called vertical stretching factors because they determine how much the
affine mapping stretches the original data in the vertical direction. A more
general class of IFS is defined by

Ln(x) = anx+ en (3.23)
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Fn(x, y) = dny + qn(x), (3.24)

where qn can be used to fix the approximate general shape of the
interpolation function. In order to be able to calculate the integrals
required here, the interpolation will be limited to linear fractal interpolation
functions.

Definition 3.2. A linear fractal interpolation function on the data
{(xi, yi) ∈ R

2 : i = 0, 1, 2, . . . , N} is defined as the continuous function
f : [x0, xN ] → R that is the attractor G of the IFS defined by {wn :
n = 1, 2, . . . , N} and equations (3.16), (3.19)–(3.22), with dn as a free
parameter.

3.3.3 Integration of fractal interpolation functions

Using linear fractal interpolation functions, it will be shown how to
explicitly calculate moment integrals of the type

f1,m =

∫
xmf(x) dx (3.25)

and

fl,m =

∫
xm(f(x))l dx . (3.26)

Linearity is not a necessary requirement for the first integral, but it is
for the second integral. Because also the second integral will be shown
to be necessary when the fractal interpolation technique is applied, only
linear fractal interpolation functions are considered. Given that the second
integral (3.26) by definition also includes the first integral, only the solution
to this integral will be developed.

For I = [x0, xN ] a fractal interpolation function f : I → R is defined
as before. If Ln(x) are affine and the values of an are given by (3.19), the
identity

∫

I
H(x, f(x)) dx =

N∑

n=1

an

∫

I
H(Ln(x), Fn(x, f(x))) dx (3.27)

holds, where H(x, f(x)) is a function on the iterated function system. This
identity makes it possible to calculate the specified integrals. The proof of
this identity is given in Barnsley (1986), and will not be dwelled further on
here.
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For simplicity the integral

f1,0 =

∫

I
f(x) dx (3.28)

will be considered first. Using equation (3.27) with H(x, y) = y, and
Ln(x), Fn(x, f(x)) defined from equations (3.14)–(3.15) the integral can be
rewritten as

f1,0 =

N∑

n=1

an

∫

I
Fn(x, f(x)) dx =

N∑

n=1

an

∫

I
cnx+ dnf(x) + fn dx . (3.29)

This can then be written as

f1,0 =

(
N∑

n=1

andn

)
f1,0 +

N∑

n=1

an

∫

I
cnx+ fn dx (3.30)

which then gives

f1,0 =

∑N
n=1 an

∫
I cnx+ fn dx

1−∑N
n=1 andn

(3.31)

=

∑N
n=1 an(cnf0,1 + fnf0,0)

1−∑N
n=1 andn

. (3.32)

For H(x, y) = xmyl and Ln(x), Fn(x, f(x)) given as before, the integral
in equation (3.26) can be computed as

fl,m =
N∑

n=1

an

∫

I
(anx+ en)

m(cnx+ dnf(x) + fn)
l dx . (3.33)

This can then be rewritten as

fl,m =
l∑

p=0

∫

I
(f(x))pPl,m,p(x) dx , (3.34)

where Pl,m,p(x) is a polynomial defined as

Pl,m,p(x) =
N∑

n=1

(
l

p

)
an(cnx+ fn)

l−pdpn(anx+ en)
m (3.35)

=

l+m−p∑

j=0

K(l,m, p, j)xj . (3.36)
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From this and

K(l,m, l,m) =
N∑

n=1

aj+1
n dln (3.37)

it is obtained that

fl,m =




m−1∑

j=0

fl,j

(
m

j

) N∑

n=1

aj+1
n dne

m−j
n

+

l−1∑

p=0

l+m−p∑

j=0

K(l,m, p, j)fp,j



/(

1−
N∑

n=1

am+1
n dln

)
.

(3.38)

By choosing l = 1 and m = 0, the expression is reduced to equation
(3.32). For l = 2 and m = 0 the integral is

f2,0 =

(
N∑

n=1

an(c
2
nf0,2 + 2cnfnf0,1 + f2

nf0,0 + 2cndnf1,1

+ 2dnfnf1,0)

)/(
1−

N∑

n=1

and
2
n

)
,

(3.39)

where

f1,1 =

(
N∑

n=1

andnenf1,0 +
N∑

n=1

an(ancnf0,2 + cnenf0,1

+ anfnf0,1 + enfnf0,0)

)/(
1−

N∑

n=1

a2ndn

)
,

(3.40)

and the computation of all f0,m are trivial. Thus a framework exists from
which all fl,m can be computed.

3.3.4 The dimension of fractal interpolation functions

The fractal dimension of fractal interpolation functions can be determined
using the following theorem.

Theorem 3.3. Let an IFS described by equation 3.16, and with parameters
determined by equations 3.19–3.22, be associated with the set of data
{(xi, yi) : i = 0, 1, 2, . . . , N}, for N > 1. The scaling factors dn all obey
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0 ≤ dn < 1. Let G be the attractor of the IFS, so that it is the graph of the
fractal interpolation function associated with the IFS. Then if

N∑

n=1

|dn| > 1 (3.41)

and the interpolation points are not all collinear, the fractal dimension DF

of the graph G is the solution to

N∑

n=1

|dn|aDF−1
n = 1. (3.42)

An informal demonstration of this theorem is found in Barnsley & Rising
(1993, page 224–226).

For equally spaced interpolation points an is given by an = 1
N and using

theorem 3.3 we get

DF = 1 + logN

(
N∑

n=1

|dn|
)
. (3.43)

This is in interesting formula, both in its simplicity, and the sole dependence
on dn. The fractal dimension of the graph is completely independent of the
interpolation values.

With the introduction of the multifractal formalism it is possible to find
a formula that provides a more general description of the scaling properties
of the graph. An expression relating the scaling exponent spectrum to the
stretching factors is

ζp = 1− logN

N∑

n=1

|dn|q, (3.44)

as shown by Basu et al. (2004a). Using the relation that DF = 2− ζ1 (see
e.g. Davis et al., 1994), equation 3.43 is recovered. If all dn are equal ζp is
a linear function of p and the interpolation is monoaffine. Otherwise, the
interpolation is multiaffine.



Chapter 4

The finite volume method

for the Burgers equation

The finite volume method (FVM) is presented and applied to the Burgers
equation. Different temporal and spatial discretisation schemes are
presented. The presentation broadly follows Müller (2010), Geurts (2004)
and Versteeg & Malalasekera (2007).

4.1 The finite volume method

The finite volume method is a spatial discretisation method commonly used
for computational fluid dynamics (CFD). The FVM is a popular approach
as it has several convenient properties, such as geometric flexibility, discrete
conservation and shock capturing capability. However, numerical analysis
of FVM methods is much less developed than for finite difference and finite
element methods, and it is more difficult to extend numerical schemes to
higher order of accuracy.

The distinguishing feature of the FVM is that instead of directly ap-
proximating the partial derivatives in the equation, an integral formulation
is considered. The viscous Burgers equation with a general volume force g
can be written as

∂u

∂t
+

∂

∂x

(
1

2
u2
)

= ν
∂2u

∂x2
+ g(x, t), (4.1)

where the kinematic viscosity ν is constant. Integrating this equation over
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a general volume V yields

∫

V

∂u

∂t
dV +

∫

V

∂

∂x

(
1

2
u2
)

dV =

∫

V
ν
∂2u

∂x2
dV +

∫

V
g(x, t) dV , (4.2)

which, using Gauss’ divergence theorem and Leibniz’s rule, can be rewritten
as

d

dt

∫

V
u dV +

∫

∂V

1

2
u2nx dS =

∫

∂V
ν
∂u

∂x
nx dS +

∫

V
g(x, t) dV , (4.3)

where ∂V is the boundary of V and nx is the x-component of the surface
normal of ∂V .

If V has a constant cross-section in the y-z-plane and x goes from xa
to xb, then the integral equation simplifies to

∆x
dû

dt
+

(
1

2
u2
)

b

−
(
1

2
u2
)

a

=

(
ν
∂u

∂x

)

b

−
(
ν
∂u

∂x

)

a

+ ∆x ĝ, (4.4)

where
∆x = xb − xa, (4.5)

and û and ĝ are cell-averages of u and g defined as

û =
1

∆x

∫ xb

xa

u dx (4.6)

ĝ =
1

∆x

∫ xb

xa

g dx . (4.7)

To solve the Burgers equation, the domain is divided into NJ control

volumes
[
xj− 1

2

, xj+ 1

2

]
, each satisfying equation (4.4). In the centre of each

control volume the node xi, where values are evaluated, is located. Each
node j has a left neighbour j − 1 and a right neighbour j + 1. The cell-
averaged values û and ĝ are approximated by uj and gj , and the integral
equation for control volume j is

∆xj
duj
dt

+

(
1

2
u2
)

j+ 1

2

−
(
1

2
u2
)

j− 1

2

=

(
ν
∂u

∂x

)

j+ 1

2

−
(
ν
∂u

∂x

)

j− 1

2

+∆xj gj .

(4.8)
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This is no longer an exact equation, as the cell-averaged values are
approximated by the known values in node xi. The equation can be written
symbolically as

∆xj
duj
dt

+ fj+ 1

2

− fj− 1

2

= diff j+ 1

2

− diff j− 1

2

+ ∆xj S (uj , xj , t) , (4.9)

where f is a convective flux, diff is a diffusive flux and S is the source
term. These different types of terms in the equation need to be treated
differently when they are approximated. The fluxes must be approximated
at the cell faces using the known values in the nodes. The leftmost term
in the equation is the time-dependent term which needs to be dealt with
when the equation is integrated in time.

4.2 Discretising the diffusive flux

The diffusive fluxes can be approximated at the cell faces using normal
finite difference discretisation. A second order central difference method
yields (

ν
∂u

∂x

)

j− 1

2

=
uj − uj−1

xj − xj−1
, (4.10)

(
ν
∂u

∂x

)

j+ 1

2

=
uj+1 − uj
xj+1 − xj

. (4.11)

4.3 Discretising the convective flux

4.3.1 Central method

The central FVM approximates the convective flux at the cell faces by
taking the arithmetic average of the adjacent flux values, i.e.

fj− 1

2

=
1

2
(fj−1 + fj) , (4.12)

fj+ 1

2

=
1

2
(fj + fj+1) . (4.13)

The central FVM is second order accurate for an equidistant grid, but will
introduce oscillations at discontinuities. Therefore, the central FVM can
only be used for well resolved smooth flow and is not suitable for the Burgers
equation.
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4.3.2 Upwind method

The central FVM does not contribute to numerical dissipation. In order
to deal with discontinuities and sharp gradients without oscillations, the
method should add numerical dissipation. A dissipation model is therefore
added to the central FVM.

The upwind FVM, also called Roe’s approximate Riemann solver,
approximates the convective fluxes at the cell interfaces by solving a
Riemann problem at each interface. The upwind method is an approximate
Riemann solver, as opposed to Godunov’s method, that exactly solves a
Riemann problem at each interface.

The upwind FVM prescribes the convective flux at xi+ 1

2

as

fj+ 1

2

=

{
f (uL) if aj+ 1

2

≥ 0

f (uR) if aj+ 1

2

< 0
, (4.14)

where

aj+ 1

2

=





f(uR)−f(uL)
uR−uL

if uL 6= uR
df
du

∣∣∣
uL

if uL = uR
, (4.15)

and uL and uR are the velocities at the left and right side of the interface.
The numerical flux function can also be written as

fj+ 1

2

=
1

2

[
f (uL) + f (uR)−

∣∣∣aj+ 1

2

∣∣∣ (uR − uL)
]
, (4.16)

where it is apparent that the upwind method is a central method with an
added dissipation model. The velocities are assumed constant inside the
cells, and so uL and uR can be approximated by uj and uj+1. For the
Burgers equation the convective flux function then becomes

fj+ 1

2

=
1

2

[
1

2
u2j +

1

2
u2j+1 −

∣∣∣∣
1

2
(uj + uj+1)

∣∣∣∣ (uj+1 − uj)

]
, (4.17)

and similarly for fj− 1

2

.

The upwind method predicts an unphysical expansion shock in cases
where the solution should be a rarefaction wave. This corresponds to a
decrease in total entropy (Geurts, 2004), which is not physically correct.
To avoid this, a certain amount of numerical viscosity can be added where

it is needed. This can be done by replacing
∣∣∣aj+ 1

2

∣∣∣ with Q(aj+ 1

2

) defined by

Q(a) =

{
|a| if |a| > δ
δ if |a| ≤ δ

, (4.18)



4.3. DISCRETISING THE CONVECTIVE FLUX 31

where δ is a small problem specific positive constant. A possible choice of
δ is to use

δ = max(f ′(uR)− f ′(uL), eps), (4.19)

where eps = 2−53 is standard double precision machine epsilon.
The upwind FVM with constant cell reconstructions is first order

accurate. An important property of the upwind method is that it is total
variation diminishing (TVD). That is, the total variation defined as

TV (un) =
∞∑

i=−∞

∣∣unj − unj−1

∣∣ (4.20)

does not increase from time step n to n+ 1, i.e.

TV (un) ≤ TV
(
u
n+1
)
. (4.21)

This ensures that oscillations do not occur at discontinuities, as they can
for methods that are not TVD.

4.3.3 Local Lax-Friedrichs method

Another simple and robust method is the local Lax-Friedrichs method, also
called the Rusanov method, which is a modification of the Lax-Friedrichs
method. The flux function for the local Lax-Friedrichs method is

fj+ 1

2

=
1

2

[
f (uL) + f (uR)−max

(∣∣f ′ (uL)
∣∣ ,
∣∣f ′ (uR)

∣∣) (uR − uL)
]
, (4.22)

and when uL and uR are approximated by uj and uj+ 1

2

the method is first

order accurate.

4.3.4 MUSCL interpolation

To extend the first order TVD methods to higher order of accuracy
the MUSCL (Monotone Upwind-centred Schemes for Conservation Laws)
interpolation method was developed (van Leer, 1974). Instead of assuming
constant reconstruction inside the cells, the MUSCL technique applies a
linear or quadratic reconstruction to approximate uL and uR in the flux
functions.



32 CHAPTER 4. FVM FOR THE BURGERS EQUATION

To avoid loss of TVD property the slopes are limited near extrema using
the minmod-limiter. The limiting reduces the accuracy to second order at
extrema. The MUSCL interpolated values of uL and uR for flux fj+ 1

2

are

uL = uj +
1

4

[
(1− κ)∆+uj + (1 + κ)∆−uj

]
(4.23)

and

uR = uj+1 −
1

4

[
(1− κ)∆−uj+1 + (1 + κ)∆+uj+1

]
, (4.24)

where ∆+u and ∆−u are the minmod-limited velocity differences

∆+uj = minmod
(
∆u j− 1

2

, β∆u j+ 1

2

)
(4.25)

and
∆−uj = minmod

(
∆u j+ 1

2

, β∆u j− 1

2

)
. (4.26)

The minmod limiter is defined as

minmod(a, b) =
1

2
(sign(a) + sign(b))min(|a|, |b|). (4.27)

The MUSCL approach can be used to increase the order of accuracy of
the first-order flux functions by inserting the interpolated uL and uR values
into the flux function approximation expressions. For κ = 1

3 the method is
third order accurate in smooth regions of the flow, and a value of β = 2

3 is
recommended (Geurts, 2004).

4.4 Discretising sources

The source term in the equation can be approximated by a sum of a part
that is independent of uj and a linear function of uj

S (uj , xj , t) = S0 (xj , t) + Sjuj . (4.28)

If S is not a linear function of u, then it has to be linearised.

4.5 Temporal discretisation

After introducing the approximations for the fluxes and the source term,
the equation can be written as a system of ordinary differential equations
(ODE)

du

dt
= R(u), (4.29)
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where u is the velocity vector and R is the vector of residuals. This system
can be solved with different types of ODE solvers, and a popular class of
solvers are the explicit Runge-Kutta methods.

4.5.1 Explicit Euler method

The simplest explicit Runge-Kutta method is the explicit Euler method,
which is a first order explicit method. The algorithm for the explicit Euler
method is

u
n+1 = u

n + ∆tR(un), (4.30)

where u
n+1 is the velocity vector for the new time step and u

n is the
velocity vector for the old time step.

4.5.2 TVD Runge-Kutta

A third-order Runge-Kutta method that preserves the TVD property was
developed by Gottlieb & Shu (1998). This is a three-stage method with the
following algorithm

u
(1) = u

n + ∆tR(un),

u
(2) = 3

4u
n + 1

4u
(1) + 1

4 ∆tR(u(1)),

u
n+1 = 1

3u
n + 2

3u
(2) + 2

3 ∆tR(u(2)).

(4.31)

4.6 Stability analysis

An important concern when choosing the numerical method for a particular
partial differential equation is stability. In order to get reliable results
the simulation must be stable and not diverge. For explicit methods in
particular one must abide to a strict time step criterion to ensure stability.
Because of this, stability analysis is an important part of the study of
numerical methods for solving partial differential equations.

The most used form of stability analysis is the von Neumann analysis.
This method is involves inserting a Fourier mode in the discretised equation
and requires that the amplitude is non-increasing. In von Neumann analysis
the non-linear equation is locally linearised and checked for stability.

Two non-dimensional numbers are revealed when studying stability
analysis, the von Neumann number

r =
ν∆t

∆x 2
, (4.32)
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and the Courant number

C =
|u|∆t

∆x
, (4.33)

where u is the locally linearised velocity. The maximum Courant number
Cmax uses the maximum velocity in the initial condition.

For the inviscid Burgers equation discretised using the upwind method
and integrated with the explicit Euler method, the stability condition reads

Cmax = max
j

|uj |∆t

∆x
≤ 1, (4.34)

and for the viscous Burgers equation using central discretisation for the
diffusive flux the stability condition is

Cmax + 2r ≤ 1. (4.35)

4.7 Numerical accuracy

In order to assess the accuracy of different numerical methods, one can
compare the results of these methods with a reference. For some problems
exact numerical solutions of the Burgers equation exist and can provide
such a reference. The exact solutions used here are discussed in more detail
in chapter 2.

A useful method when comparing different discretisation schemes is to
compute the Euclidian norm of the error. The discrete Euclidian norm, or
L2-norm, of the error is defined as

‖u− uexact‖ =

√√√√ 1

NJ

NI∑

j=1

(uj(t)− uexact(xj , t))2. (4.36)

If it is assumed that the error in the calculation can be expressed as

error(∆x ) = c∆x p, (4.37)

where c is constant, then the convergence rate p can be calculated as

p =
log
(
error(∆x )/error( ∆x

2 )
)

log(2)
. (4.38)

The range in which c is constant is called the asymptotic range of
convergence. The convergence rate specifies the order of accuracy of the
computation and an n-order method should have a convergence rate p equal
to n.
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Figure 4.1: Numerical solution to the Riemann shock problem for four
different convective flux functions for t = 1.0.

4.7.1 The inviscid Burgers equation

The Riemann problem with uL > uR is solved using an FVM code with
explicit Euler time integration. The convective flux functions tested are
the upwind method and the local Lax-Friedrichs method (LLF), both with
and without MUSCL interpolation. The central method was tested and
discarded, due to instability causing infinite values (as expected). Spatial
resolution was 75 cells between −0.5 and 1.0, the time step was 0.01 and
the time of comparison was t = 1.0, for all methods. This corresponds to a
maximum Courant number of C = 0.4. The explicit Euler method is used
for temporal integration.

The MUSCL interpolation method is used with limiter, as described
earlier in the chapter. Both MUSCL simulations use the suggested values
for κ and β. The upwind method is equipped with the entropy fix suggested
in equations (4.18) and (4.19).

The resulting velocity can be seen in figure 4.1. The shock is placed
correctly for all methods, suggesting little dispersion error. There are no
oscillations for any of the methods, but all of them suffer to some degree
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Figure 4.2: Difference between numerical solution of Riemann shock
problem and analytical solution clearly shows difference in accuracy.

from dissipation error. The shock is smoothened by numerical dissipation
for all four methods, but to a lesser degree for the two methods using
MUSCL due to the higher order of accuracy.

The difference between the numerical simulation and the exact solution
is plotted in figure 4.2. The accuracy of the methods is more easily assessed
by looking at the difference, than the actual value. Except for the higher
accuracy of methods using MUSCL, another observation is that the upwind
method is slightly more accurate than the local Lax-Friedrichs method.

Figure 4.2 shows a velocity error that appears perfectly antisymmetric
around the shock. The implication of this is that there is no trailing error
caused by the shock.

Figure 4.3 shows the Euclidian norm of the error for different grid
resolutions. The difference in accuracy is even clearer here, than in the
earlier plots. All methods show a reduction in error for increased number
of grid cells, but the convergence rate is only 0.5 for all the different
flux functions. The value of c in equation (4.37) is constant, suggesting
an asymptotic range of convergence. For this particular problem the
higher order methods exhibit an equally low convergence rate as the first
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Figure 4.3: The Euclidian norm of the error for the Riemann shock problem
shows a positive convergence rate of 0.5 for all flux functions, at constant
Courant number C = 0.4.

order methods. All methods also show lower convergence rate than their
theoretical order of accuracy. The estimated order of accuracy of the
numerical methods is based on Taylor expansion, and thus smoothness is
assumed. The fact that the discontinuous Riemann problem does not follow
the theoretical order of accuracy, should therefore not be surprising.

4.7.2 The viscous Burgers equation

For comparison with the Hopf-Cole solution, the viscous Burgers equation
has been solved numerically for initial condition u0 = sin(2πx) and viscosity
ν = 0.005. The solution is compared with the exact solution at time t = 0.5
for the upwind method and the local Lax-Friedrichs method, both with
and without MUSCL interpolation. The explicit Euler method is used for
temporal integration.

The error in the simulation is computed as the difference between the
simulation results and the exact solution, and plotted in figure 4.4 for
NI = 80 and C = 0.4. All methods show diffusion errors at the shock
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position x = 0.5, but less so for the MUSCL methods. While the MUSCL
methods show very little error in the smoother sections, both first order
methods show consistent errors away from the shock. This can be attributed
to a dispersion error causing a phase shift.

The Euclidian norm of the error is compared for different grid resolution
at constant 2r+C = 1.0 and is presented in figure 4.5. Both the first order
methods show fairly consistent convergence rates at around 1. The last
two grid refinements can be said to be within the asymptotic range of
convergence for both methods.

The MUSCL methods exhibit better convergence rates and significantly
lower total error for the first two grid refinements. For the first two grid
refinements both methods appear to asymptotically converge, and have
convergence rates around 1.7. For the final grid refinement however, the
convergence rate is around 1 for both methods.

Due to the second order central method used for the diffusive flux, the
error caused by the diffusive term is going to be second order accurate. The
error in the solution is therefore not going to exceed second order accuracy
for anything but negligible diffusion, even though the flux functions are
third order accurate.

4.7.3 Temporal discretisation accuracy

The numerical temporal integration method also introduces error. However,
this error will often be smaller than the error introduced by spatial
discretisation. For explicit methods with restrictive stability requirements,
this is especially true.

There are various concerns to consider when choosing the time step
for a numerical simulation. Most obvious is the requirement for sufficient
accuracy. The time step must be small enough for temporal changes to be
sufficiently finely resolved. The requirement for sufficient resolution can be
expressed as a requirement that the time step ∆t is smaller or equal to an
accuracy time step ∆t acc .

Also the stability of the numerical integration method must be taken
into account. The numerical integration method might have stability
restrictions that require the time step ∆t to be smaller than the stability
time step ∆t stab .

Numerical integration methods can either be implicit or explicit. The
numerical integration methods presented and discussed here are explicit
methods. A disadvantage with explicit methods is a sometimes very
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Figure 4.4: Difference between numerical solution and Hopf-Cole solution
clearly shows difference in accuracy.
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Figure 4.5: The Euclidian norm of the error for the Hopf-Cole problem
shows difference in convergence rates for the different flux functions.
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restrictive stability requirement. Often the stability time step will be
smaller than the accuracy time step, leading to increased computational
effort. Explicit methods are chosen here because they are simple to
implement and because the required accuracy time steps of the simulations
presented later in the report are very small.

Figure 4.6 shows the Euclidian norm of the error for a simulation of the
viscous Burgers equation with u0 = sin(2πx) and viscosity ν = 0.005. The
solution is compared with the exact Hopf-Cole solution at time t = 0.5,
for different time steps ∆t and the two different numerical integration
methods. Both methods are tested with both the upwind method and the
upwind method with MUSCL.

There is a general decrease in error for finer temporal resolution, but
only corresponding to a convergence rate around 0.5. The difference
between the explicit Euler method and the TVD Runge Kutta method
is negligible for the first order upwind method, but more significant for the
higher order MUSCL method for the lowest temporal resolution.

The difference in error, both with regards to temporal resolution and
integration method appears to be small. This could be because the stability
requirement enforces a time step that is so small that the error caused by
the temporal discretisation is small in comparison with the spatial error.

4.8 Other convective flux discretisation methods

As will be explained later in the report, the methods for discretising the
convective flux discussed thus far did not give satisfying results for the
particular type of simulation required. Because of this some alternative
discretisation methods were used; these will be presented in this section.
The necessity of replacing the previously explained discretisation methods
was discovered in the later stages of the project. Therefore, it has not been
possible to subject these methods to the same numerical analysis as the
former described methods. All methods presented are however well known
and documented in the cited literature.

4.8.1 Higher order fixed stencil interpolation

As shown the MUSCL interpolation is used to increase the order of accuracy
by computing left and right reconstructions of the velocity at the cell
faces. Also other interpolation methods can be used to achieve higher order
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Figure 4.6: The Euclidian norm of the error for the Hopf-Cole problem for
different time steps and integration schemes.

accuracy. The order of accuracy of the interpolation is determined by the
number of cell values used to reconstruct the velocity. Here a third order
reconstruction using three cell values is presented.

When using interpolation to estimate the value at xj+ 1

2

a weighted sum

of the neighbouring points is derived and known as a stencil. The stencil
weights used by Cockburn et al. (1998) for third order approximation at
point xj+ 1

2

are the following for different degrees of upwind bias:

uaL =
11

6
uj+1 −

7

6
uj+2 +

1

3
uj+3 (4.39)

ubL =
1

3
uj +

5

6
uj+1 −

1

6
uj+2 (4.40)

ucL = −1

6
uj−1 +

5

6
uj +

1

3
uj+1 (4.41)

udL =
1

3
uj−2 −

7

6
uj−1 +

11

6
uj (4.42)

The stencils range from the completely downwind-weighted uaL to the
completely upwind-weighted ubL. Stencil weights for the right side
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reconstruction uR are found by mirroring the stencil weights for the left
side reconstruction.

These stencil weights were used by Cockburn et al. (1998) in ENO
(Essentially Non-Oscillatory Harten et al., 1987) and WENO (Weighted
Essentially Non-Oscillatory Liu et al., 1994b) schemes to avoid oscillations.
This is a different approach to limiting oscillations than the limiting used
for the MUSCL interpolation, and involves choosing (ENO) or weighting
(WENO) the stencils based on their smoothness. The stencils can also be
used for fixed stencil interpolation without limiting or ENO/WENO.

4.8.2 Energy-conserving scheme

Another approach for discretising the convective term is skew-symmetric
splitting. This method consists of splitting the convective term in a
conservative and a non-conservative part. One of the earliest treatments of
skew-symmetric splitting was written by Arakawa (1966). Using the skew-
symmetric treatment in the finite difference method the convective term in
the Burgers equation is approximated by

∂ 1
2u

2

∂x
≈ θ

4∆x

(
u2j+1 − u2j−1

)
+

1− θ

2∆x
uj (uj+1 − uj−1) . (4.43)

For θ = 2
3 the method conserves the total energy. This can be seen by

inserting θ = 2
3

∂ 1
2u

2

∂x
≈ 1

6∆x

(
u2j+1 − u2j−1

)
+

1

6∆x
uj (uj+1 − uj−1) , (4.44)

and multiplying with uj

∂ 1
2u

2

∂x
≈ 1

6∆x
uj
(
u2j+1 − u2j−1

)
+

1

6∆x
u2j (uj+1 − uj−1) , (4.45)

and thus
∑

j u
2
j is conserved. The method was covered in further detail

by Arakawa (1966), McLachlan (2003) Turner & Rosales (1997) and Yee &
Sjögreen (2004), and mentioned briefly by Durbin & Petterson Reif (2011,
page 313).

In a finite volume framework the method can be rewritten to give the
following flux functions:

fj− 1

2

=
1

6

(
uj−1uj + u2j−1 + u2j

)
(4.46)
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fj+ 1

2

=
1

6

(
ujuj+1 + u2j + u2j+1

)
(4.47)

These flux functions are then inserted in equation 4.9.





Chapter 5

The Burgers equation and

turbulence

The chapter deals with the study of solutions to the stochastically forced
Burgers equation, and how they relate to real three-dimensional turbulence.
First an overview of the topic is given, and then later in the chapter results
from new simulations are presented.

5.1 Burgers turbulence

When J. M. Burgers introduced the Burgers equation, he intended it to be
a model equation for turbulence. The Burgers equation contains the same
type of advective non-linearity and diffusion term as the three dimensional
Navier-Stokes equations. When it was discovered that an explicit analytical
solution to the Burgers equation could be found (Hopf, 1950; Cole, 1951),
it seemed unlikely that solutions to the Burgers equation could contribute
to the study of turbulence. One of the characteristic features of the
Navier-Stokes equations and turbulence, is the sensitivity to changes in
initial conditions. In real turbulence apparent randomness spontaneously
develops; this does not happen with the Burgers equation.

The use of the Burgers equation to study turbulence has gained renewed
popularity in recent years (1980s and onwards), and the study of random
solutions to the Burgers equation is sometimes referred to as “burgulence”.
The randomness can either enter through a random initial condition or a
stochastic source term, the latter being the approach studied here.
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5.1.1 Relevant literature

There have been many studies on Burgers turbulence in recent years, and
on how it relates, or does not relate, to real three-dimensional turbulence.
Many of these studies are referenced in Frisch & Bec (2001). Analytical
solutions to the Burgers equation are well documented and it is well-known
that the dominance of shocks in the solution leads to an energy spectrum
proportional to k−2 (Burgers, 1974).

One method of studying Burgers turbulence, is to study the Burgers
equation with stochastic initial condition. The initial condition is typically
of Brownian type, or fractional Brownian, with a power law spectrum.
Because Brownian motion is continuous but not differentiable, shocks will
form after an arbitrarily short time. She et al. (1992) studied solutions to
the Burgers equation in the limit of vanishing viscosity with a fractional
Brownian initial condition. A companion paper by Sinai (1992) studied the
statistics of shocks for the same problem. Both showed an energy spectrum
proportional to k−2, characteristic of the shocks in the solution.

A general treatment of an n-dimensional Burgers equation with
Brownian initial velocity was written by Vergassola et al. (1994). It was
shown that there was a Devil’s staircase of dimension 1/2 in the Lagrangian
map of the solution of the Burgers equation in the limit of vanishing
viscosity. Decaying Burgers turbulence was also studied by Gurbatov
et al. (1997) for a homogeneous Gaussian initial condition with a spectrum
proportional to kn for small wave numbers and quickly falling off at large
wave numbers.

The study of the stochastically forced Burgers equation has been the
topic for many papers. Notably, simulations published by Chekhlov &
Yakhot (1995a) provided new insight into the physics of Burgers turbulence.
It was shown that the one-dimensional Burgers equation with stochastic
forcing exhibited turbulence like properties, provided that the stochastic
force is white in time with a κ−1 spatial power spectrum. The numerical
experiments revealed an energy spectrum proportional to κ−5/3, and strong
intermittency.

Further investigations on scaling and statistical properties were pub-
lished by Chekhlov & Yakhot (1995b), where biscaling behaviour was found.
Properties of the tails of probability density functions were presented by
Yakhot & Chekhlov (1996). Kolmogorov-like scaling was discovered for low
order structure functions where ζp almost followed p

3 for p between 1
3 and

2. For p > 4 the structure function scaled with almost constant exponent



5.1. BURGERS TURBULENCE 47

ζp ≈ 0.91, characteristic of the shocks in the solution. So while the stochas-
tically forced Burgers equation exhibited Kolmogorov scaling for low order
structure functions, the higher order structure functions were completely
dominated by shocks.

The results of Chekhlov & Yakhot (1995a), Chekhlov & Yakhot
(1995b) and Yakhot & Chekhlov (1996) were further generalised by
Hayot & Jayaprakash (1996), Hayot & Jayaprakash (1997b) and Hayot
& Jayaprakash (1997a). They studied the general case of the stochastically
forced Burgers equation with a source term energy spectrum proportional to
κ−α. Theoretical and numerical investigations revealed that for −1 < α < 1
increasingly multifractal structures appear as α approaches 1. Similar
results as for Chekhlov & Yakhot (1995a), Chekhlov & Yakhot (1995b)
and Yakhot & Chekhlov (1996) were found for β = 1. It was also shown
that for 2

3 < α < 1, the structure function scaling exponents could be
analytically derived as

ζ2 =
2α

3
, (5.1)

ζ3 = α, (5.2)

ζ4 =
2 + α

3
, (5.3)

ζ5 = 1− 1− α

12
. (5.4)

Forced Burgers turbulence with large scale white-in-time random
forcing was studied by Gotoh & Kraichnan (1998). So-called kicked
Burgers turbulence combines features of decaying Burgers turbulence and
continuously forced Burgers turbulence, and was studied by Bec et al.
(2000).

5.1.2 The stochastically forced Burgers equation

The stochastically forced Burgers equation is the Burgers equation with the
addition of a stochastic source term, i.e.

∂u

∂t
+

∂

∂x

(
1

2
u2
)

= ν
∂2u

∂x2
+ g(x, t), (5.5)

where g(x, t) is the stochastic source. The source used here is white noise
in time, but with spatial correlation, as for the simulations of Chekhlov &
Yakhot (1995a). The source is described by the energy spectrum

|ĝ(κ)|2 ∝ κ−α, (5.6)
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where (̂·) denotes the Fourier transform.

5.2 Numerical solution and validation

The stochastically forced Burgers equation is solved numerically using an
FVM code, as described in chapter 4.

5.2.1 Stochastic source

The source term in the equation is a stochastic force represented as the
superposition of Fourier modes. The stochastic source is implemented in
the FVM code as the inverse discrete Fourier transform

g(xj , t) =
N−1∑

k=0

Ak exp

(
2iπ

jk

N

)
, (5.7)

where

Ak =





A√
∆t

k−α/2eiφk for k ∈ {k1, k1 + 1, . . . , kn}
AN−k

∗ for k ∈ {N − kn, N − kn + 1, . . . , N − k1}
0 otherwise

,

(5.8)
k1, kn ∈ N, k1 ≥ 1, kn < N/2. (5.9)

A is a constant, α specifies the spectrum and φk is the random phase
shift for wave number k chosen uniformly in [0, 2π]. The parameters k1
and kn represent the smallest and largest wave numbers, respectively, i
is the imaginary unit i =

√
−1 and (·)∗ denotes the complex conjugate.

The limiting wave numbers k1 and kn are determined by specifying the
largest and smallest length scales, 2l and δG. The division by

√
∆t is a

normalisation required to be able to compare solutions for different sized
time steps.

In order to reduce the computational time for performing the inverse
Fourier transform, the fast Fourier transform (FFT) (Cooley & Tukey,
1965) algorithm was used, taking advantage of the periodicity of the Fourier
modes and reducing the computational effort from N2 to N log2(N). The
implementation of the source term and the FFT is discussed in more detail
in appendix C.

A new set of φk values are generated for each time step, giving no
temporal correlation, implying a white spectrum in time. Because the φk
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values are chosen using a pseudo-random number generator, the numbers
are not really random but follow a very long sequence of numbers. Because
of the length of this sequence, the numbers can be perceived as random.
This has however some consequences that are important to remember.
Because of the nature of the algorithm, the same sequence of numbers
will be generated each time, if not the generator is seeded using a different
parameter. This means that reliable statistics can only be achieved by
averaging over a number of simulations with different seeding or by running
very long time series. A convenient consequence is that results obtained
using the same seed and time step can be compared directly.

Because of the inherent symmetry in the Fourier transform of real
functions it is convenient to use the absolute wave number κ defined as

κ = |k|. (5.10)

Thus all references to the wave number κ actually refer to the absolute
value of the wave number, and all functions of κ contain the contribution
from both positive and negative wave numbers.

5.2.2 Numerical accuracy

To compare the different flux functions, low resolution simulations of the
stochastically forced Burgers equation have been compared with a high
resolution reference simulation. Source statistics are described by an
amplitude constant A = 0.05, spectrum α = 1 and an upper cut-off wave
number of κ = 100. The equation was integrated in time using the TVD
Runge-Kutta method with ∆t = 5 ·10−5, and statistics are computed from
t = 0 until t = 10, starting from initial condition u0 = 0. The kinematic
viscosity was ν = 1 · 10−5, and periodic boundary conditions were used.

Simulations for 29 grid cells in [0, 1] were compared with a reference
simulation of 213 grid cells. For the low resolution simulations all four flux
function combinations, upwind and local Lax-Friedrichs with and without
MUSCL, were tested and compared with the reference simulation using
local Lax-Friedrichs method with MUSCL.

Averaged amplitude spectra for the results are plotted in figure 5.1
to investigate how well the different methods perform at low and high
wave numbers. The spectra at the low resolutions are plotted up until
κ = 1/(2∆x ), beyond which no spectral information exists.

The first order methods start deviating from the reference simulation
already at wave number 20, while the higher order methods follow the
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|û
(κ
)|

Upwind

LLF

Upwind MUSCL

LLF MUSCL

Reference

100 101 102 103

10−1

10−2

10−3

10−4

Figure 5.1: The averaged amplitude spectra of the velocity for the four
different convective flux functions for 29 grid cells are compared with a
reference simulation using the local Lax-Friedrichs method with MUSCL
for 213 grid cells.

reference spectrum until κ = 70. All methods end up deviating significantly,
proving that the resolution is too low. In addition to exhibiting superior
results for the higher order methods, the amplitude spectra also appear to
exhibit less high wave number damping for the upwind flux function. This
difference is less significant for the MUSCL methods.

To estimate the accuracy of the numerical solution in chapter 4 the exact
solution was used as a reference. When no such reference exists, a common
approach is to estimate accuracy by grid refinement. The difference in error
for two different grids is equal to the difference between the two solutions.
To study the accuracy of the different numerical methods and different grid
sizes, the four different flux functions were tested for six different grids.

Numerical simulations of the stochastically forced Burgers equation with
source described by the parameters A = 0.035, 2L = 1, δG = 0.01, α = 2,
were conducted for the different methods. The solutions were compared
after t = 2 with a time step equal to ∆t = 5 · 10−5 and for grids
with NI ∈ {625, 1250, 2500, 5000, 10000, 20000}. The simulation domain
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Figure 5.2: The Euclidian norm of the difference in solution for grid
refinement, for the different flux functions.
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Figure 5.3: The amplitude spectrum of the velocity for three different grids
for the local Lax-Friedrichs method with MUSCL.
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was x ∈ [0, 1], the viscosity ν = 1 · 10−5 and initial condition u0 = 0.
The maximum velocity for this simulation is around 0.15. The temporal
discretisation method used is the TVD Runge-Kutta method.

The solution at grid spacing ∆x was compared with the solution at
grid spacing ∆x

2 and plotted in figure 5.2 to study the accuracy. As is
apparent from the figure, the Euclidian norm of the difference is strictly
decreasing, showing that the enhancement in accuracy gets smaller for each
grid refinement. As for earlier tests, the difference between the upwind and
the local Lax-Friedrichs method is very small, and the MUSCL interpolation
increases accuracy.

To better be able to judge the effect of grid refinement, the amplitude
spectra of the local Lax-Friedrichs method with MUSCL for three different
grids (NI ∈ {5000, 10000, 20000}) are plotted in figure 5.3. A too low
resolution means that the smaller scales of the problem are not properly
resolved. This will show itself in the spectrum by inaccurate representation
of high wave number modes. The spectra are plotted up to wave number
κ = 1/(2∆x ).

All three spectra follow a seemingly linear curve in most of the wave
number range, and transition to a steeper declining range at wave number
around 1000. The linear range is equivalent to the inertial range in three
dimensional turbulence, and this range then transitions to the dissipation
range. The three spectra seem to follow each other for all of the inertial
range and the beginning transition to the dissipation range. How well
resolved the smallest scales need to be is difficult to determine, but it is
believed that most essential scales are resolved for all three simulations.
The rapid decline in amplitude beyond wave number 1000 means that the
smaller scales have much less energy and are less and less important for the
larger scales.

The change in slope for the high resolution spectrum at wave number
κ = 3000 does not appear to be physically sound, and this phenomenon
does not occur for the first order methods. It is likely that this is a purely
numerical effect.

The consistent reduction in error together with the small difference in
amplitude spectrum between NI = 10000 and NI = 20000, implies that the
results can be trusted as good numerical solutions of the problem. Since the
convergence rate is different for the different grid refinements, it is difficult
to get an accurate estimate of the total error in the solution at a given
grid spacing. It is however, reasonable to assume that the error will be
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Figure 5.4: The amplitude spectrum of the velocity for the explicit Euler
method and the TVD Runge-Kutta method for ∆t = 4 ·10−4, for the local
Lax-Friedrichs method with MUSCL.

of the same order of magnitude as the grid refinement differences plotted
in figure 5.2. A resolution of 10000 should therefore have an estimated
error of O(10−4). The relative size of this error compared with a velocity
in the range (−0.15, 0.15) combined with resolving scales well beyond the
transition point to the dissipation range, suggests that the resolution is
sufficient.

Because a new value of the source term is generated every time step, it
is not possible to make direct comparisons between the results at a given
time for different time steps. A study of the effect of changing the time
step, could therefore be concerned with statistical properties. However,
composing good statistics requires large amounts of data, and it will always
be difficult to distinguish small differences when the sample is different. To
compare the effect of changing the time step, the results from the two
different numerical integration methods are compared. If the results from
these two methods are not significantly different, it can be assumed that the
temporal resolution is sufficient. The logic of this argument, is that when
two different integration methods, of different theoretical order of accuracy,
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Figure 5.5: The amplitude spectrum of the velocity for the explicit Euler
method and the TVD Runge-Kutta method for ∆t = 5 ·10−5, for the local
Lax-Friedrichs method with MUSCL.

give the same results, then the velocity is so smooth in time that the result
is not dependent on the numerical integration method.

For the three different time step sizes ∆t ∈ {5 · 10−5, 1 · 10−4, 4 · 10−4},
the stochastically forced Burgers equation has been solved numerically using
both the explicit Euler method and the TVD Runge-Kutta method. The
spatial resolution is NI = 10000 and the flux function used is the local
Lax-Friedrichs method with MUSCL. The solutions are compared after
t = 1. Other parameters are as before, but with a velocity field from
after a statistically steady state is reached as initial condition.

The amplitude spectra for ∆t = 4 · 10−4 for both the explicit Euler
method and the TVD Runge-Kutta method are plotted in figure 5.4. There
is a difference at high wave numbers, showing that the high wave number
content of the solution is computed differently for the two integration
methods. When the time step is reduced to ∆t = 5 ·10−5, this difference is
almost removed entirely (see figure 5.5). An independence of the temporal
discretisation method is a good indication of the temporal resolution being
sufficiently high. The difference present at the higher value of ∆t does
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not appear to be of crucial importance, and that time step is about the
highest possible time step for which the solution is stable for both temporal
integration methods.

The most fundamental criterion of sufficient temporal resolution is
smoothness in time, as this is the very assumption employed when
developing the methods used. Smoothness requires that the change in
velocity is small in one time step. For ∆t = 4e− 4 the maximum absolute
change in u for the final time step is 0.014, and the average absolute change
for the final time step is 1 · 10−3. For 0.001 the numbers are 0.0027 and
1.7 · 10−4 respectively. For velocity values in the range (−0.15, 0.15), at
least the smallest ∆t can be said to be sufficiently smooth.

The results presented here are used to determine the numerical methods
utilised for further simulations. Due to the reduction in error high order flux
functions using MUSCL are chosen. There does not seem to be significant
difference between the upwind method and the local Lax-Friedrichs method,
and both appear to produce good results. When choosing the resolution, the
primary concern is to resolve all scales in the inertial range. Simulations
where the transition to the dissipation range is well within the resolved
range are considered to have a sufficiently low ∆x . The numerical methods
used here have predictable behaviour also for low resolutions and the only
appreciable differences are deviations at the largest applicable scales.

For numerical integration in time the TVD Runge-Kutta method is
chosen for its larger stability domain and the higher theoretical order of
accuracy. Due to the added steps of computing the TVD Runge-Kutta
method will increase computation time compared with the explicit Euler
method. The time step is then chosen so that there is no discernible
difference between the results from the explicit Euler and the TVD Runge-
Kutta method.

5.2.3 Initial condition and stationary solution

In order to compose good statistics from a solution, the sampling must
start after a statistically steady state is reached, assuming that such a state
exists. The statistical properties of the steady state condition should be
independent of initial condition and statistically steady. In order to test
different types of initial conditions and determine the time until the steady
state was reached, simulations of the stochastically forced Burgers equation
were conducted from t = 0 to t = 20.

All simulations had NI = 4096 grid cells and time step ∆t = 5 · 10−5.
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Figure 5.6: The total kinetic energy is plotted against time for constant,
linear and trigonometric initial conditions, each with three different initial
energy levels. The initial conditions are listed in equation 5.13.

The kinematic viscosity was ν = 1 · 10−5 and the stochastic source was
specified by the parameters A = 0.035, 2L = 1, α = 2 and δG = 0.01.

The property used to study the dynamical behaviour of the system
is the total specific kinetic energy 1

2u
2, determined by integrating the

power spectrum over all wave numbers. In order to study the dynamical
development of the energy at particular scales the energy spectrum can
be integrated over a certain range of wave numbers. So, the total kinetic
energy in the velocity field is calculated as

K(t) =

∫ ∞

0

1

2
(û(κ))2 dκ , (5.11)

and the kinetic energy at wave numbers higher than κ = 500 is calculated
as

Kκ>500(t) =

∫ ∞

500

1

2
(û(κ))2 dκ . (5.12)

As the stochastic source only contains energy at wave numbers up to
κ = N = 1

0.01 = 100, the high wave number energy is produced by the
dynamics of the equation.
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Figure 5.7: The total kinetic energy for wave numbers κ > 500 is plotted
against time for constant, linear and trigonometric initial conditions, each
with three different initial energy levels. The initial conditions are listed in
equation 5.13.

Nine different initial conditions were tested, representing a range of
different characteristics in initial energy content and spectrum. The initial
conditions were the following:

u0 = 0.0 u0 = 0.05 u0 = 0.1
u0 = 0.1x− 0.05 u0 = 0.5x− 0.25 u0 = 2.0x− 1.0
u0 = 0.1 sin(2πx) u0 = 0.5 sin(2πx) u0 = 1.0 sin(2πx)

(5.13)

These initial conditions exhibit, through the change of exponents, difference
in initial kinetic energy. There is also a difference in spectral content.
While the constant initial conditions and the sine initial conditions only
contain energy at wave numbers zero and one respectively, the linear initial
condition contains energy over a wide range of scales. Together these
nine different initial conditions cover a large range of energy and spectral
properties.

The total kinetic energy is plotted in figure 5.6 from t = 0 to t = 2. The
different initial conditions all seem to converge towards a steady condition
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quite rapidly, and already at t = 5 most of the curves seem to have flattened
out. All but two initial conditions collapse at approximately t = 13,
marking the point at which all memory of the initial condition seems to be
lost. The two curves that deviate after t = 13 are the two non-zero constant
initial conditions. The constant velocity in the initial data is not smoothed
out considerably over time because of the lack of gradients. The spectral
content of the initial condition does not seem to affect the convergence
much, and the total energy in the high energy initial conditions is quite
rapidly dissipated. All simulations reach a steady state condition rapidly,
but the fluctuations in energy are large in the steady region.

To better understand the physics of the dynamical process towards
steady state, the high wave number energy is plotted in figure 5.7. The
comments above are also valid for the high wave number energy, and the
energy at high wave numbers is also equal for all but two initial conditions
for t > 13 (not shown here). Some other observations, are however also
pertinent. The linear initial conditions already contain energy at high
wave numbers, and the process towards steady state is a smooth process of
redistribution among the scales.

For two of the sine initial conditions (the two with highest initial energy)
the solution exhibits a jump in high wave number energy and then a smooth
decay. What happens is that the energy in the initial sine function is rapidly
transported towards smaller scales, as seen in figure 2.5. For the rest of the
energy curves, the increase in high wave number energy is later and smaller,
and is caused by the energy in the stochastic source being transported to
smaller scales.

Both the plot of total energy and high wave number energy show a
process in which the energy in the initial condition is transported to higher
wave numbers and eventually dissipated. As long as the initial conditions
contain sufficient gradients, the energy of the initial condition is lost after
t = 13, and a steady state can be said to be reached much sooner than this.

The rapid reduction of energy from the initial condition seems to imply
that all memory of the initial condition is lost after a short amount of time.
A velocity plot at t = 10 and t = 20 for initial condition u0 = 0.5x − 0.25
in figure 5.8 does, however, seem to imply otherwise. At the time t = 10
the energy in the solution is almost identical to the other simulations, as
seen in figure 5.6, but the velocity shows a quite distinctive sawtooth like
profile reminiscent of the initial condition. Although it is very subtle, the
velocity at time t = 20 also has one distinctive large shock that remains
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Figure 5.8: Velocity plotted at time t = 10 (solid black line) and t = 20
(dotted line) for initial condition u0 = 0.5x − 0.25 exhibits a similar
sawtooth pattern.

from the initial condition. This shows that even though the energy in the
initial condition is dissipated, memory of shock patterns remains for much
longer.

5.2.4 Comparison with published results

Simulations using the local Lax-Friedrichs method with MUSCL for 215

and 214 grid cells for x ∈ [0, 2π] were conducted to be compared with
previously published results by Scotti & Meneveau (1999). The TVD
Runge-Kutta method was used for integration in time, and the time step
was ∆t = 5 · 10−5. Kinematic viscosity was ν = 1 · 10−5, and the source
parameters were A =

√
2 · 10−3, α = 1, with forcing at all scales. Initial

conditions were u0 = 0.1 sin(2πx) for the simulation with 215 grid cells and
u0 = 0.02(x− π) for the simulation with 214 grid cells.

Energy spectra averaged between t = 60 and t = 200 are shown
in figure 5.9, compared with results from a pseudo-spectral code by
Scotti & Meneveau using 213 modes. All three simulation results exhibit
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Figure 5.9: Averaged energy spectra for simulation using 215 grid cells
(solid black line) and simulation using 214 grid cells (dotted line), compared
with previously published amplitude spectrum of Scotti & Meneveau (1999)
(grey line).

the −5/3 energy spectrum slope, characteristic of this type of Burgers
turbulence. Spectrum results correspond well for most wave numbers,
but deviate at the lowest wave numbers and for wave numbers larger
than 103. The significance of this deviation is uncertain, but the high
wave number difference could be attributed to excessive damping for the
simulations presented here. There is however very little difference between
the simulation with 215 grid cells and the simulation with 214 grid cells, and
if the high wave number discrepancy was caused by numerical diffusion,
one would expect the simulation with the highest resolution to yield better
results.

It is perhaps more likely that the difference at high wave numbers is
related to the difference at the lowest wave numbers. The simulation results
from Scotti & Meneveau have large scales with significantly more energy,
and thus more energy is transported to the smallest scales. The lack of
smoothness at the smallest wave numbers indicates persistent large scale
structures. This difference could perhaps be caused by the implementation
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Figure 5.10: Averaged energy spectra for low resolution simulations using
28 grid cells and filter width ∆ = 2π/128 (solid black line) and filter width
∆ = 2π/64 (dotted line), compared with simulation using 214 grid cells
(grey line).

of the source term or the initial condition, the details of which are not
entirely clear. Tests with different types of initial conditions have shown
that even though the energy of the initial condition quite quickly dies out,
traits of the initial condition, in particular shock patterns, survive for a
long time.

Additional simulations at a very low resolution of 28 grid cells are
compared with the high resolution simulation in figure 5.10, for similar
initial conditions. These simulations represent one-dimensional large eddy
simulations without subgrid modelling, and are filtered using a spectral cut-
off filter (implemented by only prescribing the lowest wave numbers of the
stochastic source). Filtering widths of both ∆ = 2π/128 and ∆ = 2π/64
were tested.

Energy spectra for both low resolution simulations follow the high
resolution energy spectrum for wave numbers smaller than 40, but deviate
for larger wave numbers. There is no build-up at the highest wave
numbers, as one might expect, but instead excessive damping. Increasing
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the filtering width to 2π/64 increases the difference at the highest wave
numbers. The results show that at this resolution and stochastic forcing, the
numerical diffusion is sufficiently large to function as an eddy viscosity, thus
dissipating the energy. Sufficient dissipation does not, however, by itself
constitute a good subgrid model, and a dedicated subgrid model should be
able to produce better results.

The evolution of large scale kinetic energy per length scale, defined

K(t) =
1

2 · 2π

∫ 2π

0
ũ2 dx , (5.14)

is plotted in figure 5.11 for the highest resolution simulation, the low
resolution simulation filtered at ∆ = 2π/128 and the simulation by Scotti
& Meneveau. ũ is the velocity u filtered at scale ∆ = 2π/128. All three
spectral curves decay from an initial condition with high kinetic energy
and then reach a statistically steady state where forcing and dissipation are
in approximate equilibrium. Again it is apparent that the low resolution
simulation dissipates a significant amount of energy, as the energy levels
out instead of strictly increasing.

Within the statistically steady region, the kinetic energy fluctuations are
large. This is because of the instability of the largest scales containing most
of the energy, and could also be part of the explanation for the discrepancy
seen in figure 5.9. Truly reliable statistics would require much longer time
series than the ones used here. Another noteworthy observation is that
the energy decreases far more rapidly from the initial condition for the
simulations presented here, than for the results from Scotti & Meneveau.
This is indicative of different initial conditions and lends credibility to the
notion that the initial conditions could cause some of the difference observed
in figure 5.9.

The effect of time step size was tested by comparing two simulations
with 214 grid cells, one with ∆t = 5 · 10−5 and one with ∆t = 1 · 10−5.
Energy spectra for these two simulations almost completely overlapped,
proving that the time step is low enough for the statistical features of the
solution to be independent of time step size. This result is contingent on
the normalisation by 1/

√
∆t in the amplitude of the source.

5.2.5 Effect of source parameters

The statistical properties of the stochastic force are to a large degree
described by the Fourier spectrum. Three of the most well known types of
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Figure 5.11: Evolution of large scale kinetic energy simulation using 215

grid cells (solid black line) compared with previously published results from
Scotti & Meneveau (1999) (grey line) and low resolution simulation with
28 grid cells filtered at ∆ = 2π/128 (dotted line).

noise functions are white noise with an energy spectrum ∝ κ0, pink noise
with energy spectrum ∝ κ−1 and brown noise with an energy spectrum
∝ κ−2. These three energy spectra have been tested as sources in the
stochastically forced Burgers equation in order to determine how the
spectral properties of the source affects the spectral properties of the results.

Simulations have been conducted using the local Lax-Friedrichs method
with MUSCL interpolation for the convective fluxes, and the TVD Runge-
Kutta method in time with ∆t = 5 · 10−5. The viscosity is ν = 1 · 10−5,
there are 213 grid cells, and the source has an amplitude coefficient A = 0.05
and forcing at all admissible scales. All amplitude spectra are averaged over
t ∈ [10, 20], after a statistically steady state is reached, and all simulations
are started from initial condition u0 = 0.

Figure 5.12 shows the resulting velocity and time-averaged energy
spectra |û(κ)|2 of the solution for the three different source types, white,
pink and brown. Also plotted in the figure are the energy spectra of the
source functions and proposed regression lines. A first observation is that
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Figure 5.12: The velocity (left) and energy spectrum (right) for the three
different source energy spectrum slopes κ0 (top), κ−1 (centre) and κ−2

(bottom), corresponding to white, pink and brown noise, respectively. The
grey lines are the energy spectra of the sources (multiplied by a factor 10−6),
and the dotted lines represent, from top to bottom, power laws κ−1, κ−5/3

and κ−2.
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the presence of a source term, with energy spectrum decreasing less rapidly
than the κ−2 Burgers shocks, reduces the negative slopes of the spectra.

The velocity plots reveal obvious differences between the three different
source types. The velocity plotted for the white source shows little coherent
large-scale structures, but high-amplitude noise over a wide range of wave
numbers. This is caused by the white source having equal amplitudes for all
wave numbers. The energy spectrum follows the regression line κ−1 quite
well, serving as a combination between the stochastic noise and the physics
of the shocks in the Burgers equation.

The velocity plot for the source with a pink spectrum shows existence
of large-scale structures as well as smaller structures over a range of wave
numbers. This is explained by the energy spectrum falling more steeply
than for the white source, and following the κ−5/3 regression line reasonably
well. Much less small scale structures are present in the last velocity plot,
with the brown source. The solution is very much dominated by the large
scale shocks, also apparent in the energy spectrum that follows the expected
k−2.

Out of the three velocity plots, the pink noise solution, is the one
that resembles real turbulence the most. This is backed up by an energy
spectrum following κ−5/3, Kolmogorov’s energy spectrum for homogeneous
turbulence, as previously reported by Checklov & Yakhot Chekhlov &
Yakhot (1995a).

The spectral slope of a graph also provides information about other
features of the graph. For example a power law energy spectrum proves
the existence of scaling laws, and it is expected that the graphs with
energy spectral slopes −1, −5/3 and −2 have fractal dimensions (see e.g.
Mandelbrot (1982)) 2, 5/3 and 3/2, respectively. A high fractal dimension
is consistent with a high degree of roughness, evident from the velocity
plots. The indicated spectral slopes also lead to second order structure
functions scaling as S2(r) ∝ r0, S2(r) ∝ r2/3 and S2(r) ∝ r1 for the white,
pink and brown source, respectively.

Two other source parameters that are also expected to change the results
are the source amplitude constant A and the lower cut-off scale δG. The
effect of changing these parameters is presented in figures 5.13 and 5.14,
respectively.

Figure 5.13 shows how the stochastic source reduces the negative slope
of the energy spectrum in the region where it contributes energy. In the
transition between forced and non-forced scales there is a sharp transition
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Figure 5.13: The velocity (left) and energy spectrum (right) for the three
different source lower cut-off scales δG = 0.1 (top), δG = 0.01 (centre) and
δG = 0.001 (bottom).
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Figure 5.14: The velocity (left) and energy spectrum (right) for the three
different source constants A = 0.01 (top), A = 0.05 (centre) and A = 0.2
(bottom).
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to a steeper negative slope. This is also clearly shown on the velocity plots
where the energy at higher wave numbers clearly increases as the range of
the source is increased.

Increasing the source constant has the effect of increasing the amplitude
of the velocity. This lifts the whole energy spectrum, but more interestingly
extends the linear inertial range towards larger wave numbers. More energy
in the larger scales causes more energy to be transferred to the smaller
scales. This is similar to the process in three-dimensional turbulence where
energy in large scale eddies are transferred to the smaller scales.

5.3 DNS of Burgers turbulence

Based on the numerical analysis presented thus far, numerical methods were
chosen for fully resolved simulations of the stochastically forced Burgers
equation. The simulation results presented in this chapter are the reference
results later used when comparing subgrid models, and are referred to as
DNS.

The TVD Runge-Kutta method was chosen for temporal integration
with a time step of ∆t = 1 · 10−5, and the upwind MUSCL method was
used for convective flux discretisation. A total of 20000 grid cells were used
for the domain x ∈ (0, 1) and the simulation was run from t = 0 until
t = 1000. The kinematic viscosity was ν = 5 · 10−6. The simulation was
initialised with a κ−5/3 stochastic initial condition, and, as before, periodic
boundary conditions were used. The parameters describing the source were
A = 0.25 and α = 1 (pink), with forcing at all scales.

The velocity plotted at t = 2 is shown in figures 5.15 5.16, showing
existence of a large number of smaller shocks as well as some large shocks.
The evolution of total kinetic energy K(t) is plotted in figure 5.17 for the
first two time units, and it can be seen that the energy decreases from the
initial value and stabilises around a stationary condition after t = 0.5. A
suitable characteristic time scale for the problem is 1, and so the simulation
spans 1000 time scales, which should be sufficient for good statistics.

When plotting the total kinetic energy over a longer period of time,
a slightly different image emerges. Figure 5.18 shows the kinetic energy
for the first 50 time units, and it becomes clear how highly fluctuating
the steady state energy is. The instability of the larger shocks in the
solution causes large variations in the total kinetic energy. There are,
however, no consistent trends and the solution can be considered to be
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Figure 5.15: Velocity at time t = 2 for DNS with pink noise source shows
presence of many small shocks and some large shocks

statistically steady. Due to the large variation in energy, long time-series
will be important when computing averaged statistics. All time-averaged
quantities are averaged from t = 50, at which point a stationary condition
is surely reached, until t = 1000 unless otherwise noted. 100 time samples
are used for each time unit, for a total of 950000 time samples for the whole
simulation.

5.3.1 Energy spectrum

As noted before the −5
3 slope of the energy spectrum is one of the

characteristic features of Kolmogorov homogeneous turbulence that is
expected to be replicated by solutions to the stochastically forced Burgers
equation. The averaged energy spectrum for the Burgers DNS results is
plotted in figure 5.19 together with a power-law regression line. Due to the
large number of time samples used when averaging, the spectrum is very
smooth and appears linear for a large part of the wave number range. The
slope of the regression line is −1.630, not that far from the −5

3 ≈ 1.667
result of Kolmogorov turbulence. The linear inertial range persists almost
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Figure 5.16: Detailed view of velocity at time t = 2 for DNS with pink
noise source
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Figure 5.18: Evolution of large scale kinetic energy for t ∈ (0, 50)

to wave number κ = 1000, beyond which the negative slope is increasing.
Although the energy spectrum slope is quite resemblant of real

turbulence, this is hardly enough to qualify as a model system for
turbulence. Furthermore, and in particular of higher order, statistics need
to be compared in order to assess the validity of the stochastically forced
Burgers equation as a model equation for turbulence.

5.3.2 Structure functions

Structure functions of different orders are often used to characterise scaling
behaviour and are, as noted in chapter 3, closely related to the multifractal
description of turbulence. Here we look at structure functions of order 1

3 to
8 computed based on simulation results from Burgers DNS. The structure
function Sp(r) is plotted as a function of the distance r for structure function
orders {1

3 ,
2
3 , 1,

4
3 ,

5
3 , 2, 3} in figure 5.20 and orders {4, 6, 8} in figure 5.21.

The least squares fit lines are fitted in the interval r ∈ (0.01, 0.1),
corresponding to wave numbers κ ∈ (10, 100). This is the same region
used for fitting the least squares fit line for the energy spectrum, and is
located entirely within the inertial range. If the scaling exponent of the
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Figure 5.19: Averaged energy spectrum for DNS results (solid line) with
power law regression line ∝ κ−1.630 (dashed line) least squares fitted for
κ ∈ (10, 100)

second order structure function were to be used to determine the slope in
the energy spectrum a value of −1 − 0.613 = −1.613 would be predicted,
quite close but not identical to the value of −1.630 measured from the
energy spectrum.

All curves in figure 5.20 appear perfectly smooth and the amount of
data used seems sufficient for determining the behaviour of the lower order
structure functions. For the three higher order structure functions the
curves are less smooth, and for p = 8 in particular it seems that an
even larger sample would be beneficial. This will inevitably lead to more
uncertainty with regards to the predicted slope of the least squares fit line.

All the structure function scaling exponents ζp are plotted in figure 5.22
together with similar results from Chekhlov & Yakhot (1995a). The values
computed here correspond well with the values determined by Chekhlov
& Yakhot (1995a) for the whole range. The deviations are largest for
the highest order structure functions, and the values are not completely
constant for p ∈ (4, 6, 8) as found by Chekhlov & Yakhot (1995a). Due
to the insufficient data sample for accurately determining the slope of the
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Figure 5.20: Structure functions (dotted lines) of order, from top to bottom,
1
3 ,

2
3 , 1,

4
3 ,

5
3 , 2 and 3 plotted together with least squares fitted power law

(solid lines) fitted for r ∈ (0.01, 0.1). Slopes of the least squares fits are,
from top to bottom, 0.116, 0.229, 0.337, 0.439, 0.531, 0.613 and 0.784.

highest order structure functions, it is difficult to distinguish if this is a
significant difference in the results or just a statistical aberration.

Also shown in figure 5.22 are structure function exponents for real three
dimensional turbulence, as determined for a jet flow by Anselmet et al.
(1984) and the theoretical Kolmogorov values of p

3 . The deviation between
the values estimated by Anselmet et al. (1984) and p

3 is what is referred to
as inertial range intermittency and is a popular topic in turbulence research.

Compared with both the estimated values for real turbulence and the
theoretical model, the results for Burgers turbulence deviates significantly.
For low order structure functions up to around p = 2, the results for Burgers
turbulence follow p

3 quite well. For higher order structure functions, the
difference is very large. While the results for real turbulence has a slightly
increasing deviation compared with p

3 for increasing p, the results from
Burgers turbulence are vastly different for structure functions of order larger
than 2.

The physical implication of this clear difference, is that small devia-
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fitted for r ∈ (0.01, 0.1). Slopes of the least squares fits are, from top to
bottom, 1.00, 0.931 and 0.867.

tions in the velocity behave quite similarly to theoretical homogeneous Kol-
mogorov turbulence, while the statistics of larger deviations are completely
dominated by shocks. The statistics of higher order structure functions are
similar to the constant ζp = 1 expected for the standard Burgers equation,
and it is obvious that the large shocks are dominating the higher order
statistics. One might argue that this considerable difference in the scal-
ing behaviour of higher order structure functions limits the usability of the
stochastically forced Burgers equation as a model equation for turbulence.

5.4 Relevance for turbulence

Let us once again recall the energy spectrum of Burgers turbulence for a
pink noise source, and consider its resemblance to real turbulence. In real
three dimensional turbulence the energy spectrum is the result of an energy
cascade from large to smaller scales, caused by the three-dimensional vortex
stretching that occurs due to the interaction between different sized eddies.
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Figure 5.22: Structure function scaling exponents for Burgers DNS results
compared with similar results from Chekhlov & Yakhot (1995a), results
from three dimensional turbulence (Anselmet et al., 1984) and Kolmogorov
p
3 turbulence

In one-dimensional Burgers turbulence the concept of a vortex does not
exist, but still an energy cascade of some sort occurs. Observing figure
5.15, showing the velocity at time t = 2 for the high resolution simulation,
some salient features are apparent. The velocity plot is dominated by a few
large shocks, and several smaller ones. Both the creation of large shocks
and their breakdown into smaller shocks, take place constantly, serving
as an energy interaction and transfer between large and small scales. A
forcing that is active over a wide range of scales ensures that both processes
occur. Because of this, one would expect a certain degree of backscatter,
the process of energy being transported from small to larger scales.

An energy spectrum quite resemblant of three-dimensional homoge-
neous Kolmogorov turbulence is found, and lower order structure functions
have scaling exponents following p

3 . However, the statistics of higher order
moments are completely dominated by shocks and are vastly different from
the case in three-dimensional turbulence. The lack of similarity in higher
order statistics is a serious concern if the stochastically forced Burgers equa-
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tion is to be used as a model equation for turbulence.

5.5 LES of Burgers turbulence

The remainder of the report is primarily concerned with subgrid modelling
and low resolution simulations. The presented DNS results will be used
as a reference when comparing subgrid models. In order to provide a
reasonable testing system for subgrid models the numerical methods used
must be suited for the task. It has already been pointed out here that low
resolution simulations using local Lax-Friedrichs or upwind with MUSCL
add excessive numerical dissipation, and adding a subgrid model would only
contribute even more dissipation. For the subgrid models to be tested fairly
they must be used in a context where they are actually necessary.

Two new convective flux discretisation methods were introduced to be
used for the simulations using a subgrid model. These two methods were
presented in the last section of chapter 4 and will be tested here. The one
cell upwind-biased fixed stencil (see equation 4.40) was used together with
an upwind flux function, resulting in a third order upwind-biased method.
The skew-symmetric energy conserving method is the second discretisation
method tested here.

Simulations for the two new methods as well as the upwind MUSCL
methods were run with 250 grid cells tmax = 50 and otherwise identical
parameters as for the DNS. Energy spectra averaged for 5000 time samples
between 0 and 50 are plotted in figure 5.23 together with similarly averaged
energy spectrum for the DNS.

As before the upwind MUSCL method has too much numerical
dissipation. This is largely because the combination of the limiter and
a highly irregular velocity causes the method to be first order accurate
in a large portion of the domain. When using a third order upwind-
biased method without limiting the energy spectrum follows the DNS
spectrum for almost the entire range, with only a small deviation at the
largest wave numbers. This method has apparently the correct amount
of numerical dissipation to not need a subgrid model and still not be
excessively dissipative. The skew-symmetric treatment of the convective
flux obviously has the least amount of numerical dissipation, and clearly
needs a subgrid model to provide usable results.

Based on the energy spectra for the different discretisation methods the
skew-symmetric treatment of the convective flux is chosen as the numerical
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Figure 5.23: Averaged energy spectra for t ∈ (0, 50) for Burgers DNS (grey
line), skew-symmetric flux (solid black line), third order upwind-biased
method (dotted line) and upwind MUSCL (dashed line)

method used together with the subgrid models. This numerical treatment
has very little numerical dissipation, but does not cause problems with
instability or oscillations. The required numerical dissipation to get decent
results must then be supplied by the subgrid model.

The upwind-biased method without limiting seems to produce promis-
ing results without using a subgrid model. To provide a baseline for what
can be achieved with numerical dissipation as the only subgrid model simu-
lations based on this method will be revisited when different subgrid models
are compared.





Chapter 6

Modelling turbulence

The chapter gives an introduction to turbulence modelling, and describes
different approaches. First the non-modelling approach is explained and
then the necessity of modelling is argued for. The two main approaches to
modelling in turbulence, temporal averaging and spatial filtering, are then
introduced and discussed. Lastly, the type of modelling employed in this
thesis is discussed.

Many modern books about fluid dynamics contain chapters on
turbulence modelling for the Reynolds-averaged Navier-Stokes equations.
Here Versteeg & Malalasekera (2007), Ertesv̊ag (2000) and Andersson
(1988) have been used as references on such models. Geurts (2004) and
Meneveau & Katz (2000) have been the main references used for information
about the large eddy simulation approach.

6.1 Direct Numerical Simulation

The governing equations for turbulent incompressible flow are the incom-
pressible Navier-Stokes equations (6.1) and the continuity equation (6.2).
The density and viscosity are assumed constant.

ρ
Dui
Dt

= fi −
∂p

∂xi
+ µ

∂2ui
∂xj∂xj

(6.1)

∂ui
∂xi

= 0 (6.2)

It is the general belief that these equations represent all aspects of
incompressible turbulence, and that solving them numerically introduces
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no approximations, other than those inherent in the numerical methods
used. This approach is called direct numerical simulation (DNS).

DNS represents the most accurate solution of the governing system
of equations conceivable. It is only second in terms of accuracy to an
analytical solution, the existence of which is unlikely. The inaccuracies
introduced when solving the equations numerically are well understood and
controllable.

Using dimensional analysis Kolmogorov (1941b) obtained an estimate

for the smallest relevant viscous spatial scale η, and showed that η
l ∼ Re−

3

4 ,
where l is a representative large scale. In three dimensions this yields a
requirement for total spatial resolution scaling as Re

9

4 . Also accounting
for the effect of temporal resolution, the computational work will typically
scale as Re3 for most numerical methods (Geurts, 2004, page 23). This
implies that even an increase in computational power on the order of 103

only increases the possible Reynolds number by an order of 10.
Due to the multiscale nature of turbulence, DNS requires high spatial

and temporal resolution, and the computational requirements are immense
for even the simplest turbulent flows. Despite rapid increase in computer
power, the use of DNS for high Reynolds number engineering applications is
inconceivable in the near future. In order to get solutions for high Reynolds
number flows in complex geometries, simplifications are necessary. So,
even though the Navier-Stokes equations, with continuity equation and
suitable boundary conditions, represent a well-posed problem, they are
seldom solved directly.

6.2 The need for models

As already argued, the equations describing turbulence in most applications
need approximations in order to be solvable. An approximation to the
original differential equation can be obtained by averaging or filtering. Both
of these methods will introduce new unknowns, without introducing any
new equations. The system of equations will then be underdetermined. The
filtered or averaged equations are still exact, but considerable information
is lost and the equations are no longer solvable.

In order to solve the system that emerges after initial filtering or
averaging, models most be introduced. These models relate the unresolved
parts of the problem to the resolved variables by explicitly or implicitly
expressing the new unknowns in terms of known quantities. Many of these



6.3. THE REYNOLDS-AVERAGED NAVIER-STOKES EQUATIONS81

models are crude approximations yet employ sophisticated mathematics.
Few of these models can be said to yield a general approximation that is
good enough for all cases.

6.3 The Reynolds-averaged Navier-Stokes equa-

tions

The most common approach to approximate turbulence simulations is using
the Reynolds-averaged Navier-Stokes equations. This approach involves
averaging the equations in time and modelling the new terms that emerge
from this procedure.

6.3.1 Averaging the Navier-Stokes equations

Starting with the conservation form of the incompressible Navier-Stokes
equations and continuity equation,

∂ρui
∂t

+
∂ρujui
∂xj

= fi −
∂p

∂xi
+

∂

∂xj

(
µ
∂ui
∂xj

)
, (6.3)

∂ui
∂xi

= 0, (6.4)

and introducing the Reynolds decomposition

ui = ūi + u′i, (6.5)

where ūi is a temporal average defined as in definition A.2 and u′i is the
deviation. Temporal averaging of both sides of the equation, yields

∂ρūi
∂t

+
∂ρūj ūi
∂xj

= f̄i −
∂p̄

∂xi
+

∂

∂xj

(
µ
∂ūi
∂xj

− ρu′iu
′
j

)
, (6.6)

∂ūi
∂xi

= 0. (6.7)

This introduces nine new components in the Reynolds stress tensor u′iu
′
j ,

but due to symmetry only six new unknowns. In order to solve the system,
these unknowns have to be modelled. By time-averaging the Navier-Stokes
equation, the models used must represent the effect of all the scales of
turbulence on the mean flow.
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6.3.2 Eddy viscosity models

As an analogy to Newton’s law of viscosity, Boussinesq (1877) proposed
that the Reynolds stress components might be proportional to the mean
rates of deformation, that is

−ρu′iu
′
j = µt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− 1

3
ρu′iu

′
iδij . (6.8)

This effectively reduces the modelling problem to determining a new
quantity µt called the eddy viscosity or turbulent viscosity.

The assumption that fluid flow can be treated as a continuum is based
on the premise that there is substantial scale separation between the
largest viscous scales and the mean free path of the molecules. This is
well justified as even the smallest scales of turbulence do not approach
the molecular scale. However the extension of this principle to turbulent
eddies diminishes the physical interpretation. There is an incessant range
of different sized eddies that interact continuously, and no distinct scale
separation separating the smaller scales from the large scales.

Despite this, the eddy viscosity concept is widely used in turbulence
modelling and forms the basis for some of the most used turbulence models.
The models for the eddy viscosity range from simple analytical expressions
to systems of partial differential equations that needs to be solved together
with the RANS equations. The physical foundation of the eddy viscosity
and the Boussinesq approximation is however the same.

The models are usually characterised by the number of additional
differential equations they introduce. Zero-equation models such as the
Prandtl mixing length model (Prandtl, 1945) usually involve prescribing
a turbulence related length scale and represent the simplest approach
to turbulence modelling. These models do however in some cases
correspond well with experimental results, particularly in free shear flows
(see Schlichting, 1979, page 741). The Prandtl mixing length model
suggests the relation

µt = ρl2
∣∣∣∣
∂u

∂x

∣∣∣∣ , (6.9)

where l is the prescribed mixing length.
The most common one-equation model introduces a partial differential

equation for the turbulence energy k, a measurable turbulence quantity.
A prescribed length scale is still required. Two-equation models usually
involve the equation for turbulence energy k and an additional equation
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for a quantity derived from k and a length scale. The k-ε (Launder &
Spalding, 1974) model and the k-ω (Kolmogorov, 1942) model are two of the
most popular two-equation eddy viscosity models and prescribe additional
equations for dissipation and characteristic frequency, respectively.

While the models with added differential equations usually yield
better results than zero-equations models, there is an obvious increase in
computational work when additional partial differential equations needs to
be solved. Also, despite the added complexity of the eddy viscosity models,
these models are still based on the same principle that the eddy viscosity
provides a suitable description of turbulence.

6.3.3 Reynolds stress models

Instead of introducing eddy viscosity, the Reynolds stress models model
the components of the Reynolds stress tensor directly. This either involves
analytical expressions for each component or, for the more complex models,
partial differential equations for each component. Introducing six new
partial differential equations significantly increases the computational effort
required to solve the equations.

The Reynolds stress models using partial differential equations, are
however generally regarded as the most accurate models for the RANS
equations. Also, modelling the stress tensor directly avoids having
to introduce an eddy viscosity or other model quantities that are not
measurable.

6.4 Large eddy simulation

Instead of averaging the equations and modelling all scales of turbulence,
a large eddy simulation (LES) uses a filtered equation and solves for the
largest scales. This preserves more of the physics of turbulence and reduces
the task of modelling to the smaller scales. This involves finding a relation
between the behaviour of small scales and the behaviour of large resolved
scales. The models are usually called subgrid-scale (SGS) models or just
subgrid models, as they model the unresolved scales.

The idea of filtering the Navier-Stokes equations and modelling smaller
scales appears logical when considering the physics of turbulent eddies.
Smaller scales are largely considered to be more general, more isotropic
and less geometry dependent than larger scales. The prospect of finding
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general models that accurately represent the smaller scales of turbulence
should then be much brighter than that of finding a model that represents
all the scales of turbulence. However, there are numerous different models,
none of which can be expected to produce excellent results for all types of
flow.

6.4.1 Filtering the Navier-Stokes equation

In order to reduce the complexity of the Navier-Stokes equations a spatial
low-pass filter is used to remove the smallest scales (Leonard, 1974;
Germano, 1992). The velocity field is spatially filtered with a convolution
kernel G∆, that eliminates all scales smaller than ∆. By applying the filter
(̃·) to the Navier-Stokes equations the LES equations are obtained

∂ũi
∂t

+
∂ũj ũi
∂xj

=
1

ρ
f̃i −

1

ρ

∂p̃

∂xi
+ ν

∂2ũi
∂xj∂xj

− ∂τij
∂xj

, (6.10)

∂ũi
∂xi

= 0, (6.11)

where
τij = ũiuj − ũiũj . (6.12)

As for the RANS equations, the LES equations reduce the range of scales
but introduce new unknowns. For the LES equations the new terms that
need to be modelled are the components of the subgrid stress tensor τij .

There are various different filter types that can be utilised when filtering
the Navier-Stokes and many of these are presented in Geurts (2004, chapter
6). The intention of the low-pass filter is to remove the spatial scales
smaller than ∆ without significantly altering the scales larger than ∆. The
filter is applied by convolving the filter kernel G∆ with the velocity, in one
dimension defined as

ũ(x) =

∫ ∞

−∞
G∆(x− ξ)u(ξ) dξ . (6.13)

To satisfy the requirement that large scales should not be significantly
affected by the filter, the filter is required to be normalised such that 1̃ = 1,
i.e. constants are invariant under filtering.

One of the most commonly used filters is the top-hat filter. The top hat
filter is a simple spatial average over the filter width and is in one dimension
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expressed as

ũ(x, t) =

∫ x+∆

2

x−∆

2

u(ξ, t)

∆
dξ . (6.14)

In most cases an LES is performed either with filter width ∆ = ∆x or
∆ = 2∆x . It was (according to Geurts (2004, page 288)) found by Kwak
(1975) and Love (1980) that ∆ = 2∆x minimises the total simulation error,
and also argued by Liu et al. (1994a) that ∆ = 2∆x is an appropriate
choice for the similarity model.

6.4.2 Subgrid-scale models

As for the RANS models, there are a large variety of turbulence models
for subgrid scale closure. The most common approach is very similar to
the method pursued for the RANS equations, and uses the notion of an
eddy viscosity. The most well known of the eddy viscosity models is the
Smagorinsky model (Smagorinsky, 1963; Lilly, 1967). The subgrid stress
tensor is then related to the filtered velocity field as

τij −
1

3
τkkδij = −2νtS̃ij , (6.15)

where

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(6.16)

is the resolved strain-rate tensor, and νt is a prescribed eddy viscosity. The
eddy viscosity can be interpreted as the product of a characteristic length
scale and a characteristic velocity scale, and is for the Smagorinsky model
determined as

νt = (CS∆)2|S̃|, (6.17)

where
|S̃| =

√
2SijSij . (6.18)

Several different values for the Smagorinsky constant C2
S have been

suggested over the years, for several different flow conditions. It is also
possible to determine the constant dynamically from the resolved scales. A
suggested method to dynamically determine the constant was proposed by
Germano et al. (1991), and subsequently modified by Lilly (1992). This
approach uses an extra test filtering (·) and the relation

Lij = Tij − τ̃ij , (6.19)
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known as the Germano identity. For the rest of this chapter (·) denotes a
second filter operator and not temporal averaging. In this equation τij is
the subgrid stress at filter width ∆, Tij is the subgrid stress at the test filter

width γ∆ and the second filter (·) denotes filtering at γ∆, with γ > 1. Lij

is expressed as
Lij = ũiũj − ¯̃ui ¯̃uj , (6.20)

and is interpreted as the subgrid stress between ∆ and γ∆. Assuming scale
invariance, C2

S is equal for the two filter widths and can be fully determined
from the resolved scales.

Inserted for the Smagorinsky model, the Germano identity yields

Lij −
1

3
Lkkδij = C2

SMij , (6.21)

where
Mij = −2∆2

(
γ2|S̃|S̃ij − |S̃|S̃ij

)
. (6.22)

Following the error-minimisation approach of Lilly (1992), the coefficient
can be determined as

C2
S =

〈LijMij〉
〈MijMij

. (6.23)

The averaging 〈(·)〉 can be performed in different ways, but it is
quite common to average along a statistically homogeneous direction, as
suggested by Germano et al. (1991). Without this averaging, C2

S tends to
vary a lot and can also take negative values. High variations violate the
extraction of C2

S from the test filter operation, that was done to develop the
expression for C2

S . Negative values will be destabilising for the numerical
simulation.

Another entirely different approach to subgrid modelling is the
similarity model introduced by Bardina et al. (1980). The assumption of
scale invariance is used to express the subgrid stress term as

τij = Csim = (ũiũj − ũiũj), (6.24)

where (·) again represents a second filter.

6.5 Subgrid modelling for the Burgers equation

As for the Navier-Stokes equations, the stochastically forced Burgers equa-
tion produces a wide range of scales. But, as a one-dimensional problem
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the computational requirements for solving the equation numerically are
quite manageable on a modern computer. It can still be useful to filter the
equations and solve with a subgrid model, as this might reveal useful infor-
mation about subgrid modelling in general. A study of subgrid modelling
with the Burgers equation was performed by Love (1980), concluding that
the tested subgrid models had satisfactory performance.

6.5.1 Filtering the Burgers equation

The Burgers equation is filtered in the same fashion as the Navier-Stokes
equations. Starting with the Burgers equation with a source term

∂u

∂t
+

∂

∂x

(
1

2
ũ2
)

= ν
∂2u

∂x2
+ g(x, t), (6.25)

and filtering with filter width ∆ yields

∂ũ

∂t
+

∂

∂x

(
1

2
ũ2
)

= ν
∂2ũ

∂x2
+ g̃(x, t)− 1

2

∂τ

∂x
, (6.26)

where τ is the subgrid stress

τ = ũu− ũũ, (6.27)

and needs to be modelled. This is very similar to the situation for the three
dimensional filtered Navier-Stokes equation.

While the new term τ needs to be modelled, the remaining terms of
the equation can be treated as for the non-filtered forced Burgers equation
using the numerical methods presented in chapter 4.

6.5.2 Modelling the subgrid stress

Many of the same models used for a three-dimensional LES can also be
used with the filtered Burgers equation. The Smagorinsky eddy-viscosity
model is in the one-dimensional context reduced to

τ = −2(CS∆)2
∣∣∣∣
∂ũ

∂x

∣∣∣∣
(
∂ũ

∂x

)
. (6.28)

The constant CS can also here be determined using the Germano identity,
i.e.

C2
S =

〈L11M11〉
〈M11M11

, (6.29)
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where
L11 = ũũ− ¯̃u¯̃u, (6.30)

and the first ((̃·)) and second ((·)) filters denote filtering at scales ∆ and
γ∆, respectively. For γ = 2 we get

M11 = −2∆2

(
4

∣∣∣∣
∂ũ

∂x

∣∣∣∣
(
∂ũ

∂x

)
−
∣∣∣∣
∂ũ

∂x

∣∣∣∣
(
∂ũ

∂x

))
. (6.31)

The dynamic Smagorinsky model was thoroughly tested by Basu (2009) and
has shown to provide satisfactory results for one-dimensional turbulence.



Chapter 7

A fractal subgrid model for

the stochastically forced

Burgers equation

The chapter presents a fractal subgrid model to be used with low resolution
simulations of the stochastically forced Burgers equation.

7.1 Requirements for a subgrid model

It is difficult to determine what in fact makes a good subgrid model and
what the primary evaluation parameters should be for such a subgrid model.
Perhaps the most obvious requirement would be that the modelled subgrid
stress has a high correlation with the exact subgrid stress calculated from
high resolution simulations. However, the Smagorinsky model has been
shown to have a very poor correlation with the actual subgrid stress for
three dimensional simulations (around 0.1–0.2, see Liu et al. (1994a) and
Winckelmans et al. (1996)). Despite this the model remains popular,
implying that there is more to this than just correlation numbers.

What the Smagorinsky model does succeed in supplying is sufficient
dissipation. In a numerical context where the subgrid model is actually
required, the primary purpose of the subgrid model is to model the energy
interaction with the smaller scales. On average there should be a transport
of energy towards the smaller scales, and so the subgrid scale model should
on average be an energy sink. The energy lost in the subgrid model is called
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the SGS dissipation rate and can in one dimension be defined as

Π = −∂u

∂x
τ. (7.1)

A positive SGS dissipation rate corresponds to energy being removed from
the larger scales, and vice versa. The energy transfer from smaller to larger
scales, where Π < 0, is known as backscatter.

It is therefore believed that calculating the correct energy transfer, as
the primary purpose of the model, is a good indicator of how well the model
works. It should however still be noted that a high correlation for the
subgrid stress is considered a desirable feature (see e.g Liu et al. (1994a)),
but not a sufficient feature.

An important point is that the required amount of subgrid dissipation
in the subgrid model is highly dependent on the type of numerical methods
used, and as shown in chapter 5 some numerical methods, typically upwind-
biased, already have too much numerical dissipation. This is important to
keep in mind because it means that when choosing a subgrid model, the
type of numerical methods used should be an important deciding factor.

7.2 Fractal subgrid modelling

Some of the most commonly used types of subgrid models were presented
in chapter 6. A very different approach to subgrid modelling is to use
the fractal interpolation technique as presented in chapter 3. This method
was first suggested by Scotti & Meneveau (1997) and Scotti & Meneveau
(1999) and proposed modified by Basu et al. (2004b). The general idea is
to use the notion that velocity graphs in turbulent flow can be described
as fractals and then create a fractal interpolation function that has the
task to reproduce the small scale features of the velocity. There are many
studies suggesting that features of turbulence can be described as fractal
(see Sreenivasan (1991)) and Scotti et al. (1995) found that the fractal
dimension of velocity signals in hydrodynamic turbulence was around 1.7.

The approach suggested by Scotti & Meneveau (1999) consists of using
the three points {ũj−1, ũj , ũj+1}, and then use the fractal interpolation
technique to reconstruct an approximation of the unfiltered velocity. A
new variable ξ is used as a substitute for x and is defined such that

ξ(xi−1) = 0.0, ξ(xi) = 0.5, ξ(xi+1) = 1.0. (7.2)
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Figure 7.1: Graph of fractal interpolation function after one (dashed line),
two (dotted line) and ten (solid line) iterations of the IFS

The interpolation includes the use of an IFS to iteratively construct smaller
and smaller scales. The only free parameters for the interpolation function
are the dn stretching factor values. All the other parameters are determined
from the stretching factors as shown in chapter 3. For this example
there are N + 1 = 3 interpolation points and N = 2 stretching factors
must be determined. Scotti & Meneveau (1999) chose d1 = −d2 and
|d1| = |d2| = 0.794. Using equation 3.43 this gives a fractal dimension
of

D = 1 + log2(|d1|+ |d2|) = 1.67, (7.3)

the expected fractal dimension of a signal with a κ−
5

3 energy spectrum.
An illustration of this approach is given in figure 7.1, where the

interpolated velocity is shown after one, two and ten iterations of the IFS,
for d1 = 0.794 and d2 = −0.794.

The subgrid scale stress can then be analytically calculated using the
interpolation formulas in chapter 3 and top-hat filtering. Scotti & Meneveau
(1999) used a top-hat filter with a filter width of ∆ = ∆x , but here a filter
width of ∆ = 2∆x will be used. The modelled subgrid scale stress can
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then be expressed as

τ = ũu− ũũ = f2,0 − f1,0f1,0, (7.4)

where f1,0 and f2,0 are defined by equation 3.26 and solved in terms of dn
and the interpolation points in equations 3.32 and 3.39, respectively.

The model presented by Scotti & Meneveau (1999) described monofrac-
tal fields, due to the choice of equal stretching factors |d1| = |d2|. This
becomes obvious when looking at equation 3.44 as a linear ζp is predicted.
Because of the expected deviation from monofractality, Basu et al. (2004b)
suggested to use the stretching factors 0.887 and 0.676 chosen to produce
interpolation functions with similar multifractal features as real turbulence.

7.3 A two-stage interpolation model

A modified version of the subgrid model presented by Scotti & Meneveau
(1999) is presented here. The fundamental idea of this modification
is to create a two-stage interpolation method, where the first stage
approximately fixes the overall shape of the interpolation function. The
purpose of this first stage is to be able to adjust the amount of dissipation
in the model by changing the method used for determining the first step.
This is an important feature if the model is to be used with different types
of numerical methods, with different varying of numerical dissipation.

The first stage in the interpolation method determines the values in
the points xi− 1

2

and xi+ 1

2

, and then the second stage uses the fractal

interpolation technique to create an interpolation function for the points
{ũj−1, ũi− 1

2

, ũj , ũi+ 1

2

, ũj+1}. The second stage of the interpolation method

uses the same fractal interpolation technique as previously described but
now with N = 4. A new substituted variable ξ is introduced and defined
such that 7.2 holds and

ξ(xi− 1

2

) = 0.25, ξ(xi+ 1

2

) = 0.75. (7.5)

An example of the graph of this type of fractal interpolation function is
given in figure 7.2, where the first stage is determined using one step of a
fractal interpolation function with d1 = 0.794 and d2 = −0.794. The second
stage is a multifractal interpolation using d1 = 0.6, d2 = −0.8, d3 = 0.52,
d4 = −0.6.
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Figure 7.2: Graph of two-stage fractal interpolation function after one
(dashed line), two (dotted line) and ten (solid line) iterations of the IFS

There are now four stretching factors dn that must be determined.
These stretching factors are determined using the method suggested by
Basu et al. (2004b), i.e. using equation 3.43. Using this equation and the ζp
data for p ∈ {1

3 ,
2
3 , 1,

4
3 ,

5
3 , 2, 3, 4, 6, 8} presented in chapter 5, the stretching

factors can be determined. A least squares fit is used to determine the ideal
stretching factors as

|d1| = 0.438, |d2| = 0.438, |d3| = 0.595, |d4| = 0.999, (7.6)

or any other permutation of these four absolute values with positive or
negative signs. A desirable effect of using four stretching factors instead of
two is that one can get a closer fit for the scaling exponents ζp.

Figure 7.3 shows the graph of the two-stage fractal interpolation method
with four different stretching factor permutations, and with the first stage
equal to one step of the fractal interpolation function with N = 2 and
d1 = 0.794, d2 = −0.794. The four different graphs show that the
combination of the four stretching factors greatly affects the resulting
interpolation function.

The expression for the subgrid stress term in point xj using the two-
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Figure 7.3: Two-stage fractal interpolation method with stretching factors
d1 = 0.438, d2 = 0.438, d3 = 0.595 and d4 = 0.999 (upper left);
d1 = −0.438, d2 = 0.438, d3 = 0.999 and d4 = −0.595 (upper right);
d1 = 0.438, d2 = −0.595, d3 = −0.999 and d4 = 0.438 (lower left);
d1 = −0.999, d2 = −0.595, d3 = −0.438 and d4 = 0.438 (lower right)
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stage interpolation method and the fractal interpolation function for the
second stage is

τ(xj) =α1ũ
2
i+1 + α2ũi+ 1

2

ũi+1 + α3ũiũi+1 + α4ũi− 1

2

ũi+1 + α5ũi−1ũi+1

+ α6ũ
2
i+ 1

2

+ α7ũiũi+ 1

2

+ α8ũi− 1

2

ũi+ 1

2

+ α9ũi−1ũi+ 1

2

+ α10ũ
2
i

+ α11ũi− 1

2

ũi + α12ũi−1ũi + α13ũ
2
i− 1

2

+ α14ũi−1ũi− 1

2

+ α15ũ
2
i−1,

(7.7)

where the coefficients are determined using equation 7.4 and the prescribed
stretching factors.

It was argued and shown by Basu et al. (2004b) that it was desirable
to have stretching factors giving symmetrical stencils. In order to find the
stretching factor permutation with the most symmetrical stencil the first
stage in the interpolation method was determined with the central method

ũi− 1

2

=
1

2
(ũi−1 + ũi), ũi+ 1

2

=
1

2
(ũi + ũi+1), (7.8)

and the coefficients in the new interpolation stencil

τ(xj) = β1ũ
2
i+1 + β2ũiũi+1 + β3ũi−1ũi+1 + β4ũ

2
i + β5ũi−1ũi + β6ũ

2
i−1 (7.9)

were compared. The symmetry of the stencils was determined by how
much β1

β6
and β2

β5
deviated from 1. The two most symmetrical stencils were

described by the stretching factors

|d1| = −0.438, |d2| = 0.438, |d3| = 0.999, |d4| = −0.595, (7.10)

and the mirrored stretching factors

|d1| = −0.595, |d2| = 0.999, |d3| = 0.438, |d4| = −0.438, (7.11)

with

max

(
β1
β6

,
β6
β1

,
β2
β5

,
β5
β2

)
= 1.01. (7.12)

The resulting stencils using these stretching factors are

α1 = 0.3827, α2 = −0.4400, α3 = −0.5822,

α4 = −0.1762, α5 = 0.4332, α6 = 0.3581,

α7 = 0.1876, α8 = −0.2444, α9 = −0.2194,

α10 = 0.3932, α11 = 0.1998, α12 = −0.5915,

α13 = 0.2661, α14 = −0.3113, α15 = 0.3445,

(7.13)
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and the mirror version

α1 = 0.3445, α2 = −0.3113, α3 = −0.5915,

α4 = −0.2194, α5 = 0.4332, α6 = 0.2661,

α7 = 0.1998, α8 = −0.2444, α9 = −0.1762,

α10 = 0.3932, α11 = 0.1876, α12 = −0.5822,

α13 = −0.3581, α14 = −0.4400, α15 = 0.3827.

(7.14)

These are the two stencils used for all subgrid models using the two-stage
fractal interpolation model. One of the two stencil versions is chosen
randomly with equal probability, for each grid cell j.

The initial guess for the first stage of the two-stage interpolation was to
use one step of the fractal interpolation function with |d1| = |d2| = 0.794,
d1 = −d2 and signs chosen randomly. The extra interpolation points
{ũj− 1

2

, ũj+ 1

2

} were then determined as

ũj− 1

2

=
1

2
(ũj−1 + ũj)−

1

2
d1(ũj−1 − 2ũj + ũj+1), (7.15)

and

ũj+ 1

2

=
1

2
(ũj + ũj+1)−

1

2
d2(ũj−1 − 2ũj + ũj+1). (7.16)

The described subgrid model was then tested on filtered DNS results
to see how closely it fitted the subgrid scale stress calculated from DNS
results for NJ = 250 cells. The result can be seen in figure 7.4, where
the modelled subgrid stress appears predict a subgrid stress with similar
features as the exact subgrid stress. The peaks are however much too
low. To test the subgrid model in an actual simulation context, it was
implemented in a low resolution simulation with 250 grid cells and the
skew-symmetric treatment of convection. The simulation quickly diverged,
implying that the subgrid model did not satisfy its main task of adding
dissipation, but instead destabilised the simulation.

7.4 Modified interpolation model

Due to the unsatisfactory performance of the first incarnation of the two-
stage model, changes were implemented to increase the total dissipation of
the simulation. Two different approaches were tested, local maximisation
and a mixed model.
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Figure 7.4: Plotted subgrid scale stress showing for Burgers DNS (grey line)
and the first incarnation of the two-stage fractal interpolation model (black
line)

7.4.1 The local maximisation approach

In order to increase the amount of dissipation contributed by the subgrid
model, the amount of dissipation is locally maximised. The first stage of
the two-stage method implements the fixed stencil interpolation functions
presented in section 4.8. Different values of the two velocities {ũj− 1

2

, ũj+ 1

2

}
are then computed using these four different fixed stencil interpolation
functions. The second stage of the interpolation uses the same fractal
interpolation function as before.

In order to maximise dissipation, four different values of the subgrid
scale stress are calculated from the four different stencils. The one with the
maximum amount of dissipation is chosen. This is implemented as

τ = −σmax(−στa,−στ b,−στ c,−στd), (7.17)

where
σ = sign(uj+1 − uj−1). (7.18)
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7.4.2 The mixed model approach

The mixed model approach consists of using a combination of the fractal
interpolation model and a Smagorinsky model. The first stage of the
interpolation is determined using one cell upwind-biased interpolation
functions from 4.8. The second stage is the same as before. The subgrid
scale stress is then computed as the maximum of the stress from the fractal
model and the stress from the Smagorinsky model.

This is implemented as

τ = max(τ frac, τSmag), (7.19)

where τSmag is defined in equation 6.28 and a constant coefficient C2
S = 0.28

is used.



Chapter 8

Results and discussion

The chapter presents the most important results for the subgrid model tests.
First the subgrid models ability to recreate the subgrid stress is tested by
comparing the subgrid stress calculated from filtered DNS results. Then the
subgrid model is tested in actual simulations where the statistical features
of the velocity are compared with DNS results.

8.1 Specifications

All numerical methods and subgrid models used here are introduced and
explained in previous chapters. A short summary is however given here for
clarity. All DNS results refer to the simulation presented in detail in section
5.3, and all low resolution simulations use the same set of parameters.

There are three subgrid models tested, the multifractal model with
local dissipation maximisation (labelled MF), the mixed Smagorinsky
multifractal model (labelled MFS) and the dynamic Smagorinsky model
(labelled DS). All simulations using subgrid models utilise the energy
conserving skew-symmetric treatment of the convection term. In addition
to simulations using these three subgrid models, a simulation using the
third order one cell upwind-biased method without subgrid modelling is
studied (labelled NS). Values directly computed from DNS results are used
as a reference (labelled DNS).
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8.2 Correlation studies

The task of a subgrid model in the Burgers equation is to model the subgrid
stress term

τ = ũu− ũũ, (8.1)

in the filtered equation. The subgrid stress is easily calculated from DNS
results using this definition, and ideally a subgrid model should predict
the same values using the filtered velocity. To test the merit of a subgrid
model without doing actual simulations using the model, one can calculate
the modelled subgrid scale stress from filtered DNS results and compare it
with the exact subgrid stresses calculated using equation 8.1.

The reference subgrid stress values τDNS are calculated from the DNS
results using a top hat filter with filter width ∆ = 2∆x = 2

25 = and
the definition of the subgrid stress (equation 8.1). The modelled stresses
are calculated by applying the subgrid models to the top-hat filtered DNS
velocity. The exact and modelled subgrid stresses are calculated for all
950000 time samples for t ∈ (50, 1000) and statistics are computed by
averaging over all time samples.

Before computing the statistical correlation between the exact and
modelled subgrid stress, a visual comparison of the actual subgrid stresses
is studied. Figures 8.1, 8.2 and 8.3 show the computed subgrid stress
compared with the exact DNS subgrid stress at time t = 200 for models
MF, MFS and DS, respectively. This is a simple way of studying how well
the general features of the subgrid stress are represented in the different
models.

Figure 8.1 shows that the modelled subgrid stress τMF in general follows
the exact stress τDNS but fails to reach the maximum values of the sharpest
peaks. Both τDNS and τMF are strictly positive, which means that the stress
values corresponding with positive gradients will cause backscatter.

Figure 8.2 shows that the modelled subgrid stress τMF appears to
correspond well with the exact stress τDNS, but the peaks are too large. Also
for this model the subgrid stress τMFS is strictly positive, and backscatter
is expected.

The third modelled stress τDS is shown in figure 8.3 with a distinctive
difference. The model predicts both positive and negative values, despite
the exact stress τDNS being strictly positive. This makes the graph of the
modelled subgrid stress τDS overlap less with the graph of τDNS, but the
peaks appear to be correctly placed.
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Figure 8.1: Modelled subgrid stress using MF model τMF (black line)
compared with exact subgrid stress τDNS (grey line) at time t = 200
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Figure 8.2: Modelled subgrid stress using MFS model τMFS (black line)
compared with exact subgrid stress τDNS (grey line) at time t = 200
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Figure 8.3: Modelled subgrid stress using DS model τDS (black line)
compared with exact subgrid stress τDNS (grey line) at time t = 200

All three models predict subgrid stresses that seemingly correlate quite
well with the DNS stress. Although neither of the models generally predict
exact values at the peaks, most peaks are correctly located. Although it
can not be stated that these types of plots generally exhibit much detailed
information, the most visible features are well represented. None of the
models stand out notably, they are neither better nor worse than the
other models, and it is difficult to determine which model most successfully
compares with τDNS. The most markedly different of the three models is
the DS model with the negative values of τDS.

To reveal more about the local dynamics of the subgrid models the
local subgrid dissipation rate Π(x) is calculated and plotted for all three
subgrid models. Graphs of Π(x) for models MF, MFS and DS are compared
with ΠDNS(x) at time t = 200 in figures 8.4, 8.5 and 8.6, respectively.
The characteristics of the subgrid dissipation is an important feature for
a subgrid model, as this accounts for the energy transfer of the model.
Since perhaps the most important task of the subgrid model is to model
the transfer of energy to smaller scales, it is important that the subgrid
dissipation is correctly predicted.
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Figure 8.4: Modelled subgrid dissipation using MF model ΠMF (black line)
compared with exact subgrid dissipation ΠDNS (grey line) at time t = 200

In figure 8.4 the subgrid dissipation for the MF model ΠMF(x) is
compared with ΠDNS(x), and appears to match quite well, although the
maximum dissipation values are lower than those of ΠDNS(x). Small
negative peaks are seen for both ΠDNS(x) and ΠMF(x) showing the existence
of backscatter.

Backscatter is also seen in figure 8.5, showing the subgrid dissipation of
the MFS model ΠMFS(x) compared with ΠDNS(x). In general the modelled
subgrid dissipation appears to show good correlation with the exact subgrid
dissipation, but for this model the peaks are too large.

The dissipation of the DS model ΠDS(x) is compared with ΠDNS(x)
in figure 8.6, and also here the most characteristic features appear to be
well represented. Due to the predicted negative subgrid stress in regions of
positive velocity gradient the subgrid dissipation of the DS model ΠDS(x)
is strictly positive.

Once again, none of the three models stand out, and once again it
is difficult to conclude on a preferred model from these plots. The lack
of backscatter for the DS model is the most significant difference, but
considering how small the negative dissipation peaks are, it is not sure
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Figure 8.5: Modelled subgrid dissipation using MFS model ΠMFS (black
line) compared with exact subgrid dissipation ΠDNS (grey line) at time
t = 200

how important this is.
Both the subgrid stress and the dissipation plots show graphs with very

characteristic large scale features, corresponding with the largest shocks in
the solution. One might assume that the prediction of very large peaks in
the dissipation plots dominates the overall energy balance. All three models
tested here manage to correctly place the local maxima, but fail to predict
the correct values. The overall intermittent features are preserved, but the
actual values are often significantly different. If these large peaks dominate
the overall energy balance, then this might cause a problem. Even though
the largest peaks are the most important for the global energy balance, the
small scale features are essential for the local energy balance. Incorrect
dissipation on a local level, for instance excessive backscatter, could cause
local oscillations.

There is a limit to the amount of knowledge one can extract from the
performance of a subgrid model by studying one single time sample. To
get a more complete understanding of how well the modelled subgrid stress
matches the exact subgrid stress, the commonly used correlation coefficient
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Figure 8.6: Modelled subgrid dissipation using DS model ΠDS (black line)
compared with exact subgrid dissipation ΠDNS (grey line) at time t = 200

was computed for all the three subgrid models. The correlation coefficient
(defined in section A.3.3) measures how well the two variables fit a linear
relation. A correlation equal to 1 implies that the data points all perfectly fit
a linear line. As mentioned before, high correlation is considered a desirable
feature for a subgrid model. The correlation coefficients are computed using
all available temporal and spatial data points.

Correlation results for both corr(τmodel, τDNS) and corr(Πmodel,ΠDNS)
are presented in table 8.1 for all three subgrid models. All six correlation
coefficients are much larger than expected. All three models have higher
correlation coefficients for the subgrid dissipation, and the model with
the highest correlation is the MFS model. Considering that the standard
Smagorinsky model is known to show correlation coefficients around 0.1–0.2
(Liu et al., 1994a) for real turbulence, the correlation coefficients shown here
are surprising. Correlation coefficients in excess of 0.9 are shown for both
subgrid stress and subgrid dissipation for the DS model, perhaps suggesting
that this model is more successful in reproducing the characteristics of one-
dimensional turbulence

The correlation coefficients for all three models are so high that it might
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MF MFS DS

corr(τmodel, τDNS) 0.830 0.943 0.916
corr(Πmodel,ΠDNS) 0.943 0.978 0.967

Table 8.1: Correlation coefficients for modelled subgrid stress τmodel and
modelled subgrid dissipation Πmodel for subgrid models MF, MFS and DS

be tempting to suggest that all three models provide excellent fits to the
DNS results. As will be shown, this is not necessarily so. If one were to
choose a subgrid model solely based on the correlation coefficient then the
MFS model has the most promising results. Clearly, the information that
can be extracted from a single number does not provide sufficient basis for
selecting the best subgrid model.

To getter a better idea of how well the models actually correlate with the
exact subgrid stress, a more visual approach is used. While the correlation
coefficient measures how well corr(τmodel, τDNS) fits any straight line, the
information of interest is how well it fits the line τmodel = τDNS. To
investigate how closely the data fits, the modelled subgrid stress is plotted
against the exact subgrid stress in figures 8.7, 8.8 and 8.9, respectively.
The coordinates (τmodel, τDNS) are plotted as scatter points together with
the ideal linear relation τmodel = τDNS. The desired result is that the points
fit as closely as possible to the line, and the position will say something
about how well the modelled results compare with the exact results.

The correlation plot of the MF model is shown in figure 8.7. There is
a very strong clustering of the points, with a few scattered points. This
clustering is expected considering the small number of very large values in
the previously presented subgrid stress plots. Most of the data seems to
be fairly well fitted to a linear regression line, thus explaining the large
correlation coefficient. The data does however not fit the straight line
plotted in the figure. For the smallest values the points seem approximately
symmetrically distributed about the straight line, but as the values increase
the asymmetry increases. The largest subgrid stress values are consistently
under-predicted, as indicated earlier by the subgrid stress plot. Despite
the large correlation coefficient the correlation suggested in figure 8.7 is far
from excellent. Although most points are in close proximity to the line
τMF = τDNS, the overall trend is wrong.

A similar correlation plot of the MFS model is shown in figure 8.7. As
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Figure 8.7: Coordinates (τMF, τDNS) plotted as scatter points and compared
with the linear line τMF = τDNS
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Figure 8.8: Coordinates (τMFS, τDNS) plotted as scatter points and
compared with the linear line τMFS = τDNS
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Figure 8.9: Coordinates (τDS, τDNS) plotted as scatter points and compared
with the linear line τDS = τDNS

expected from the large correlation coefficient the data appears to follow a
linear line well. However, this time almost all points fall above the line
τMFS = τDNS, indicating that the model consistently over-predicts the
subgrid stress. The slope is also wrong and larger values of the subgrid
stress are increasingly over-predicted.

The correlation plot of the DS model is shown in figure 8.12, and appears
to be the most promising of the three. It is evident that the points are
much more symmetrically distributed about the line τDS = τDNS than the
previous two models, which is clearly desireable. There is also here quite a
bit of scattering and most points do seem to fall below the desired linear
regression line. What makes this correlation plot the most promising is
that the general trend of the data fits the trend of the line τDS = τDNS.

As for the subgrid stress, the subgrid dissipation is plotted in correlation
plots in figures 8.10, 8.11 and 8.12, respectively. Similar trends emerge
as for the subgrid stress correlation plot, and most previous observations
also apply here. The MF model predicts dissipation values that are quite
consistently too low and the MFS model predicts values consistently too
high. All three models appear to fit a linear line quite well, but only the DS
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Figure 8.10: Coordinates (ΠMF,ΠDNS) plotted as scatter points and
compared with the linear line ΠMF = ΠDNS
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Figure 8.11: Coordinates (ΠMFS,ΠDNS) plotted as scatter points and
compared with the linear line ΠMFS = ΠDNS



110 CHAPTER 8. RESULTS AND DISCUSSION

ΠDNS

Π
D
S

−50
−50

0

0

50

50

100

100

150

150

200

200

250

250

300

300

Figure 8.12: Coordinates (ΠDS,ΠDNS) plotted as scatter points and
compared with the linear line ΠDS = ΠDNS

model shows the desired trend. The coordinates (ΠMF,ΠDNS) consistently
fall below the line ΠMF = ΠDNS, while the coordinates (ΠMFS,ΠDNS)
consistently fall above the line ΠMFS = ΠDNS. The coordinates (ΠDS,ΠDNS)
are approximately symmetrically distributed about the line ΠDS = ΠDNS.

Neither of the shown correlation plots seem to show excellent data fit,
contradictory to the very high correlation coefficients presented earlier. It
is worth mentioning once again that the correlation coefficient actually
measures the degree to which the data fits a straight line. This is a
good example of how little information one can obtain from the statistical
correlation of two variables, based on the correlation coefficient alone. The
data can fit a linear line excellently, and thus have a high correlation
coefficient, however it does not follow that two variables tend to have the
same values.

Better fits in the correlation plots for the MF and MFS models could
be achieved by multiplying the model by a coefficient, but this would not
necessarily yield better results in actual simulations. It still remains to be
seen how important it is to have a model that predicts a subgrid stress that
is highly correlated with the exact subgrid stress, and whether or not the
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Figure 8.13: Graph of velocity at time t = 100 for DNS simulation

models with the most appealing correlation features give the best results in
actual simulations.

8.3 Statistical features of simulation results

Although useful information about the performance of a subgrid model is
revealed when studying the correlation with the exact subgrid stress, the
ultimate test of the quality of a subgrid model is to test its performance in
actual simulations. All three subgrid models MF, MFS and DS are therefore
tested in low resolution simulations and the results are compared with the
high resolution DNS simulation and the low resolution simulation without
subgrid model NS.

Because filtered equations are solved one could argue that it would
be most appropriate to compare the results with filtered DNS results.
However, the velocity fields in the simulations are not explicitly filtered.
The top-hat filtering procedure only enters into the subgrid model. Filtering
is used to derive the subgrid stress for the fractral interpolation function,
and it is used to determine the constant in the dynamic Smagorinsky model.
Regardless of filtering, the ultimate goal of the low resolution simulations
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Figure 8.14: Graph of velocity at time t = 100 for MF simulation
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Figure 8.15: Graph of velocity at time t = 100 for MFS simulation
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Figure 8.16: Graph of velocity at time t = 100 for DS simulation
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Figure 8.17: Graph of velocity at time t = 100 for NS simulation
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is to get results that are as close as possible to the DNS results. Therefore
the unfiltered DNS results are used for all comparisons. Filtering the DNS
results would make the comparison dependent on the filter type.

The simulations presented here use different random values for the
sources, and thus only the statistical properties of the solutions can be
compared. The random number generator starts from a different seed for
each of the simulations and the number of random values required differs.
A direct comparison between simulations with comparable random sources
is presented in the next section.

Before studying the actual statistics, a general impression of the visual
soundness of the results can be obtained by analysing the velocity plots.
The velocities at time t = 100 are plotted in figures 8.13, 8.14, 8.15, 8.16
and 8.17 for simulations DNS, MF, MFS, DS and NS, respectively. Due
to the different random values for the sources, these plots are not meant
to be directly comparable, but only meant to show general features of the
velocity.

Figure 8.13 shows the velocity from the DNS simulation and similar
features as discussed before are observed. The velocity graph is very
irregular and shows both larger shocks and a large number of smaller shocks.
The velocity plots from the low resolution simulations presented in figures
8.14, 8.15, 8.16 and 8.17 all show comparable large scale features, but with
less small scale fluctuations. This is clearly due to the considerably lower
resolution applied for these cases.

Of the four low resolution velocity plots, the NS velocity plot is the one
that is the most different. The NS velocity plot exhibits considerably less
small scale fluctuations, and the velocity appears smoother. This means
that more of the small scale fluctuations are suppressed by the dissipation.
There are no obvious differences between the velocity plots for MF (figure
8.14), MFS (figure 8.15) and DS (figure 8.16), and so at first glance the
three subgrid models appear to behave similarly.

Once again we progress from the basic visual inspection to a more
comprehensive statistical description. Averages are computed for 950000
time samples for t ∈ (50, 1000) for all of the simulation results. If the
low resolution simulations (MF, MFS, DS and NS) are to provide good
approximations to the high resolution DNS simulation, then the statistics
of the velocity signal should be similar. However, only the larger scales are
represented in the low resolution simulations and thus only statistics of the
larger scales are available for comparison.
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Figure 8.18: Averaged energy spectra for simulations MF (solid black line),
MFS (dotted line), DS (dashed line), NS (dash-dot line) and DNS (grey
line)

A useful parameter in all kinds of signal analyses is the energy spectrum.
A great deal of information can be extracted from the velocity signal by
analysing the energy spectrum. The energy spectrum will disclose if the
overall energy balance is sound, and if the energy is correctly distributed
among the different scales. Energy spectra for all the simulations are
presented in figure 8.18.

Clearly it can be seen that all the energy spectra follow each other
well for the represented scales. For wave numbers κ ∈ (1, 10) all spectra
completely overlap, proving that the energy spectra of the largest scales are
similar for all of the simulations. The implication of this is that the largest
scales are properly represented in all cases. For wave numbers κ ∈ (10, 100)
the spectra do not completely overlap, but there are no major deviations,
and for wave numbers κ > 100 most of the low resolution velocity graphs
significantly deviate from the DNS spectrum.

To get better insight into where deviations occur between the wave
numbers, a detailed view of the averaged energy spectra is plotted in figure
8.19. Here the differences become more apparent. For the range between
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Figure 8.19: Detailed view of averaged energy spectra for simulations MF
(solid black line), MFS (dotted line), DS (dashed line), NS (dash-dot line)
and DNS (grey line)

wave numbers 10 and 100 the MFS and NS spectra lie slightly above the
DNS spectrum, while the DS spectrum is placed slightly below. The only
spectrum that is overlapping well with the DNS spectrum for most of this
range is the MF spectrum, with only a slight deviation for the larger wave
numbers.

For wave numbers larger than 100 the deviations are much more
conspicuous and MF, MFS, DS and NS spectra all exhibit a peak at
the largest wave numbers. The most prominent peak is seen for the DS
spectrum, while the NS spectrum has the smallest peak. These deviations
could indicate that there is excessive energy at the largest wave numbers
represented in the simulations, but it is also possible that this effect is
caused by aliasing in the direct Fourier transform. Aliasing is a type of
distortion commonly observed when using the discrete Fourier transform
with a too low sampling rate. As the velocity is very far from smooth this
is not an unexpected effect.

Generally the energy spectra for MF, MFS, DS and NS all match very
well with the DNS energy spectrum. It follows that the correct amount
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Figure 8.20: First order structure function plotted against distance r for
simulations MF (solid black line), MFS (dotted line), DS (dashed line), NS
(dash-dot line) and DNS (grey line)

of energy is distributed among the different scales, and that the overall
dissipation is approximately right. Out of the four the most promising
energy spectra is the MF energy spectrum, showing very little deviation also
in the region κ ∈ (10, 100). It also interesting to observe how similar the
energy spectra are. The four completely different approaches all give almost
the same results. This shows that it is possible to get the required amount of
dissipation with different types of subgrid models and also without a subgrid
model. The large difference between the energy spectra of the simulations
using subgrid models and the energy spectrum of the simulation using the
same convective flux treatment but no subgrid model in figure 5.23 shows
the effect of the subgrid models.

Although investigating the energy spectra is useful, it might be possible
to extract additional information by analysing the structure functions. To
begin with we look at the first order structure function S1(r), plotted
in figure 8.20. The first order structure function also shows generally
good agreement for MF, MFS, DS and NS, when compared with the DNS
structure function. There are no significant inconsistencies, and the most
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Figure 8.21: Second order structure function plotted against distance r for
simulations MF (solid black line), MFS (dotted line), DS (dashed line), NS
(dash-dot line) and DNS (grey line)

apparent difference is what appears to be a slightly different slope for the
MF structure function. There are also some deviations for the lowest r
values but the differences are small. The first order scaling features of the
velocity does therefore appear to be in order for all of the low resolution
simulations.

The second order structure function S2(r) is plotted in figure 8.21, and
it is obvious that the deviations now become more significant. There is
still a generally reasonable agreement with the DNS structure function for
MF, MFS, DS and NS structure functions, and the slopes are not that
different. As the value of r decreases the difference between the curves
further develops into a clear deviation for the lowest values of r. The NS
structure function lies above the DNS structure function, while all of the
others are placed below.

This difference is even more pronounced for the fourth order structure
function presented in figure 8.22, and the deviations really become
significant. Neither of the structure functions for MF, MFS, DS or NS
fit closely to the DNS structure function for r < 0.02, and the NS structure



8.3. STATISTICAL FEATURES OF SIMULATION RESULTS 119

r

S
4
(r
)

10−3

10−3

10−2

10−2

10−1

10−1

100

100

101

Figure 8.22: Fourth order structure function plotted against distance r for
simulations MF (solid black line), MFS (dotted line), DS (dashed line), NS
(dash-dot line) and DNS (grey line)

function deviates the most and for the largest scales. For r > 0.1 there is
still quite reasonable agreement between all of the results.

The general impression from studying first, second and fourth order
structure functions is that the low order statistics are well represented
by all of the simulations, while higher order statistics are represented to
a lesser degree. The higher order statistics of the smaller scales deviate
significantly from the desired DNS structure function behaviour, and it is
not immediately obvious which of MF, MFS, DS and NS has the most
attractive results. The fourth order NS structure function clearly stands
out with its very different behaviour compared to MF, MFS and DS, despite
seemingly similar energy spectra.

It is difficult to determine how important these deviations are and if
they are associated with the deviations observed in the energy spectra. It
is however likely that the general representation of lower order statistics is
satisfactory for all the low resolution simulations, while the higher order
statistics are not that well represented. The largest scales are well taken
care of by all the simulations.
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Figure 8.23: Structure function exponent scaling spectrum for simulations
MF, MFS, DS and NS compared with DNS scaling spectrum

As before a least squares fit in the range r ∈ (0.01, 0.1) is used to find the
slope of the structure functions within the inertial range. These slopes are
then compared for all the simulations in figure 8.23. The structure function
scaling exponents ζp illustrate the differences observed earlier. While the
deviations are quite small for the lower order structure function exponents,
the deviations increase considerably for the higher order exponents.

It is obvious that the high order scaling exponents of the NS simulation
behave very different from the other simulations. While it follows the
DNS scaling spectrum very well for order p up to 2, the scaling properties
completely change for larger order structure functions. The three other
scaling spectra MF, MFS and DS look quite similar. The MFS scaling
spectrum seems to fit the DNS spectrum closest for most of the structure
function orders, but it is the only spectrum with appreciable deviations for
order p less than 2. Both the scaling spectra for MF and DS have similar
shapes to the DNS spectrum, but predict consistently too large scaling
exponents for p > 2.

The differences seen for the higher order scaling exponents are caused by
the discrepancy for small r’s moving further into the range r ∈ (0.01, 0.1).
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The largest scales are still fairly well represented as shown in figure 8.22.
The structure function scaling spectra of MF, MFS and DS all compare
quite well with the DNS scaling spectrum. It should be noted that the
deviations for the higher order structure functions are affected by much
larger statistical uncertainty, due to the lack of smoothness of the high
order structure function plots. Despite this, the completely different trend
shown by the NS scaling spectrum is a disturbing result, and indicates that
higher order statistics are not properly represented by the NS simulation
results.

8.4 Direct comparison

The results presented so far have shown that the statistical properties of the
low resolution simulation results correspond quite well with DNS results.
However, the low resolution simulations should not only be able to predict
the stationary statistical properties, but also the dynamic behaviour. The
low resolution simulations should be able to predict velocities corresponding
reasonably well with the DNS velocity if compared at the same instant.
Simulations with directly comparable results are therefore run for all cases
MF, MFS, DS, NS and DNS, and compared. All the simulations start from
initial condition u0 = 0, are run from t = 0 to t = 10 and have otherwise
identical parameters as the earlier simulations. The MF, MFS, DS and NS
simulations use 250 grid cells and the DNS use 20000 grid cells.

In order to be able to directly compare two different stochastically
forced simulations, we must ensure that the large scale modes of the source
term are identical for both the low resolution simulations and the DNS
simulation. This is achieved by initialising the random number generator
from the same seed and generating the same amount of numbers for all the
simulations. The random source modes in the low resolution simulations
are therefore identical to the large scale modes of the DNS, and the random
modes corresponding with the smaller scales in the DNS are not used for
the other simulations.

The development of the total kinetic energy K(t) for t ∈ (0, 1) is plotted
in figure 8.24 and this gives a good description of the dynamical behaviour
of the system. Only the first time unit is plotted as it gives a clearer
understanding of what is also valid for the rest of the period t ∈ (0, 10). As
the most scales with most energy are resolved for all simulations, the total
kinetic energy is expected to be similar even though much more scales are
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Figure 8.24: Evolution of total kinetic energy for simulations MF (solid
black line), MFS (dotted line), DS (dashed line) and NS (dash-dot line)
compared with DNS (grey line)

present in the DNS results.
The general impression of the kinetic energy in figure 8.24 is that all

the energy graphs follow each other quite closely. This shows that all the
simulations provide good representations of the temporal evolution of the
total kinetic energy. This means that the global energy balance between
the stochastic energy source and the dissipation is well represented by the
low resolution simulations. The most significant deviations are found for
the MFS energy curve, but the deviations are not that large. Based on the
temporal development of kinetic energy, it does not seem to matter what the
source of the dissipation is. The simulation using no subgrid model, with
only numerical dissipation, does behave very similarly to the simulations
using subgrid models.

The low resolution simulations should be able to provide good
approximations of the actual DNS velocity field. The smaller scales are
inevitably lost, but the larger scales should preferably follow the DNS large
scales as closely as possible. The velocity at time t = 10 for x ∈ (0.0, 0.2) is
plotted for the MF simulation in figure 8.25, the MFS simulation in figure
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Figure 8.25: Graph of velocity at time t = 10 for MF simulation (black
line) compared with DNS velocity (grey line)

8.26, the DS simulation in figure 8.27 and the NS simulation in figure 8.28.
In all the figures the DNS velocity is used as a reference for comparison.

For all of the low resolution simulations, the large scale features of the
velocity have a general resemblance to the large scale features of the DNS
velocity at time t = 10. Of the four simulations, the NS velocity appears
to correlate best with the DNS velocity. The MFS velocity has the largest
deviations, and it is the only simulation that fails to predict the large peak
around x = 0.16.

It is uncertain how much information about the subgrid model can be
extracted from velocity plots at a single time, but it is promising that after
10 characteristic length scales all the low resolution simulations predict
velocities that show good agreement with the large scale features of the
DNS velocity. As already mentioned, the NS velocity fits particularly well.

The observations made so far about the velocity plots might not be
applicable velocity trends for all time steps. Instead of studying velocity
plots for all the different time steps, simple correlation plots are used. As
we want the velocity of the simulations MF, MFS, DS and NS to fit as
closely to the DNS velocity as possible, the quality of the results can easily
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Figure 8.26: Graph of velocity at time t = 10 for MFS simulation (black
line) compared with DNS velocity (grey line)

be evaluated with a data fit to the line uLES = uDNS.
The coordinates (uLES, uDNS) are plotted and compared with the line

uLES = uDNS in figures 8.29, 8.30, 8.31 and 8.32 for simulations MF, MFS,
DS and NS, respectively. The velocity coordinates are chosen for equal
values of x for the LES and DNS results by sampling the DNS velocity at
the lower resolution. Ideally one would want all the points to align along
the straight line, implying that the low resolution results were identical to
the sampled DNS results. TThis is not the expected result and would not
be the likely result even if the DNS was compared with a filtered DNS, as
peaks are expected to have reduced amplitude for explicitly or implicitly
filtered results.

All the four correlation plots show scatter points following a similar
trend as the desired linear regression line, but how near the points are
aligned with the straight line differs. As observed from the plotted
velocities the best agreement is found for the NS velocity. The width
of the scatter around the line is narrowest for the NS velocity, showing
best correlation with the DNS velocity. The most scatter is found for the
MFS velocity, and so this is the simulation where the velocity deviates the
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Figure 8.27: Graph of velocity at time t = 10 for DS simulation (black line)
compared with DNS velocity (grey line)
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Figure 8.28: Graph of velocity at time t = 10 for NS simulation (black line)
compared with DNS velocity (grey line)
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Figure 8.29: Coordinates (uMF, uDNS) plotted as scatter points and
compared with the straight line uMF = uDNS
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Figure 8.30: Coordinates (uMFS, uDNS) plotted as scatter points and
compared with the straight line uMFS = uDNS
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Figure 8.31: Coordinates (uDS, uDNS) plotted as scatter points and
compared with the straight line uDS = uDNS
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Figure 8.32: Coordinates (uNS, uDNS) plotted as scatter points and
compared with the straight line uNS = uDNS
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most. The remaining two plots, for MF and DS velocities respectively, show
approximately equally good results.

8.5 Summary of results

A lot of results have been shown and some general observations should be
mentioned. For the most part the results look promising. Most comparisons
made, both for instantaneous and statistic parameters, show that results of
all four low resolution simulations MF, MFS, DS and NS agree quite well
with the DNS results.

For the correlation tests of the computed subgrid stress and subgrid
dissipation, the Smagorinsky model appeared to be most promising as it
was the only model where the scatter points followed the same trend as the
straight line. The scatter points from the MF and MFS models could be
made to fit by multiplying the model by a constant. This would however
also change all the other results, most of which looked quite promising.
A surprising observation was how high the correlation factors were for all
three models, with values around 0.9 for both subgrid stress and dissipation.
This was much higher than expected and considerably higher than typically
reported for three dimensional turbulence. Using either Smagorinsky,
similarity or fractal interpolation models, no correlation coefficient larger
than 0.5 for the subgrid stress was found by Basu et al. (2004a). It
seems like the tested subgrid models yield a much higher correlation in
one dimensional turbulence.

For the simulation results the agreement with DNS was in general
good. All four low resolution simulations gave results in reasonable to
good agreement with the DNS results. The NS simulation using no
subgrid model performed better than the three simulations using models
for the direct comparisons. The statistical properties of higher order
structure functions in particular were however not properly represented
by this simulation, mostly due to the less than satisfactory prediction of
the smaller scales. Considering that numerical dissipation is essentially
an eddy-viscosity model in one dimension, one might argue that the NS
simulation also has a subgrid model. How well this would translate to
three dimensions is not easy to predict, but it is important to note that
in three dimensions the numerical dissipation would no longer be exactly
analogous to an eddy-viscosity model.

As the primary purpose of this report is to study fractal subgrid models,
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the performance of the two fractal models MF and MFS are of particular
interest. Both models provide sufficient dissipation to work as subgrid
models, and the results are generally quite good. For most of the studied
results, both models behave quite similarly to the DS model, but they are
not appreciably better for any of the results. The results indicate that both
MF and MFS models are viable alternatives as subgrid models, but that
neither outperform the commonly used DS model.

Compared with published results, general agreement for the evolution
of the kinetic energy and instantaneous velocity is similar to what
was observed by Basu (2009) for dynamic eddy-viscosity models. The
agreement of the energy spectra and the second order structure function
is also similar. Basu (2009) concluded that eddy-viscosity subgrid models
produced satisfactory results, and this would be suitable to also conclude
for the results presented herein.

The idea of using the fractal interpolation technique as a subgrid
model was introduced by Scotti & Meneveau (1999), and the two fractal
models MF and MFS presented here produce energy spectra in equally
good agreement with the DNS spectrum as the best fractal model of
Scotti & Meneveau (1999). Scotti & Meneveau (1999) did however, not
get satisfactory results with an eddy-viscosity model with constant eddy-
viscosity.
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Conclusion

In this thesis subgrid models have been tested for low resolution simulations
of the stochastically forced Burgers equation. Two new subgrid models
based on the fractal interpolation technique have been developed and
thoroughly tested. The results have been compared with high resolution
simulations, and results from low resolution simulations using the well-
known dynamic Smagorinsky model. In order to also evaluate the necessity
of having a subgrid model, a low resolution simulation with a numerically
dissipative convective scheme and no subgrid model was compared with the
other simulations.

Correlation studies of the subgrid stress tensor computed from filtered
high resolution results revealed that the dynamic Smagorinsky model and
the two fractal models all had remarkably high correlation coefficients with
the exact subgrid stress. Correlation coefficients with values around 0.9
was found for all three models, and for both the subgrid stress and the
subgrid dissipation. This is a much higher correlation coefficient than what
is typically found for any subgrid models in published three-dimensional
studies. However, it was seen from the correlation plots that the dynamic
Smagorinsky model predicted the subgrid stress values closest to the exact
values. While no backscatter was predicted by the dynamic Smagorinsky
model, both of the fractal models predicted regions of negative subgrid
dissipation.

To test the performance of the subgrid models in actual simulations, new
low resolution simulations were compared with high resolution simulation
results. It was found that all the low and high resolution simulations
corresponded reasonably well. Both of the new fractal subgrid models
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were tested, as well as the dynamic Smagorinsky model and one simulation
without a subgrid model. The energy spectra and the low order structure
functions of of the low and high resolution results were in good agreement.
Larger deviations were found for the higher order structure functions.
The low resolution simulation with no subgrid model showed particularly
poor results for the higher order structure functions, due to problematic
behaviour at the smallest scales.

By using the same exact random large scale modes for the sources in
the different simulations, instantaneous results could be compared for the
different simulations. All the low resolution simulations predicted a correct
development of the kinetic energy, following the high resolution simulation
closely. When comparing the actual velocity values, it was found that the
simulation with no subgrid model compared best with the high resolution
results.

The purpose of this study has been to evaluate fractal based subgrid
models for the stochastically forced Burgers equation. The results have
showed that the fractal interpolation technique is a viable basis for a subgrid
model. The two-stage interpolation method makes it possible to adjust the
amount of dissipation to what is required by the numerical methods used.
However, none of the results show in any way that the fractal models have
significantly superior performance to the Smagorinsky model.

Perhaps equally interesting as the results for the fractal subgrid
models, are the results for the simulation using no subgrid model.
Despite questionable performance for high order structure functions, the
simulation using no subgrid model outperformed all the other low resolution
simulations in the direct velocity comparison. By choosing a numerical
method with the appropriate amount of numerical dissipation, good results
can be obtained also without a subgrid model. However, considering
that numerical dissipation is a sort of eddy viscosity model, the only
real difference is that the subgrid model is now included in the numerical
method.

It appears like the single most important factor is to get the appropriate
amount of dissipation, and that this can be achieved in several different
ways. The total amount of dissipation in both the numerical methods and
the subgrid model is what actually matters in the simulation. It follows
that the choice of subgrid model must be closely considered together with
the type of numerical method used. As shown earlier in the report, many
of the most commonly used discretisation methods already have too much
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numerical dissipation before the subgrid model is added. This is one of
the reasons why the finite volume method was used for the simulations
presented here. As a reflection, it might be regarded as unfortunate that
subgrid models are often tested with high-order spectral methods.

Even though the stochastically forced Burgers equation is intended used
as a model equation for turbulence, it is not appropriate to draw conclusions
about three-dimensional turbulence based on one-dimensional results. Even
though the low order statistics of the stochastically forced Burgers equation
are very similar to those of homogeneous Kolmogorov turbulence, the high
order statistics are completely dominated by the shocks. When solving the
large eddy simulation equations, the solution is expected to be smooth.
This is completely different from the Burgers equation, which will always
produce shocks if the viscosity is sufficiently low.

One general concept that should also be applicable to three-dimensional
simulations is that both the subgrid model and the numerical methods
provide dissipation. Choosing a subgrid model is therefore just as much a
matter of finding a model that fits the numerical schemes, as it is a matter
of finding a model that properly represents the smallest scales of turbulence.
Considering that good results were obtained without using a subgrid model
for the stochastically forced Burgers equation, it could be argued that one
dimension is not sufficient to represent the complexity of three-dimensional
subgrid modelling.

There are several interesting paths one might follow to advance some of
the topics addressed here. Although the fractal subgrid models tested here
did not have superior performance to the dynamic Smagorinsky model,
using fractals to model turbulence is still an intriguing topic. There are
many different ways one might use fractal geometry to model turbulence,
and the multifractal features of the actual subgrid stress might be exploited
to create a direct multifractal model for the subgrid stress, instead of using
fractal interpolation for the velocity. The fractal features of dissipation,
vorticity and helicity could also be used to create subgrid closures. In the
end the merit of all types of subgrid models must be evaluated in actual
three-dimensional simulations.

The evaluation of the actual necessity of using subgrid models in three-
dimensional simulations is also a topic that deserves further attention.
Although the results presented here indicate that subgrid modelling is not
strictly necessary in one dimension, this notion can not be immediately
extrapolated to three dimensions. It should be possible to choose numerical
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schemes with the right appropriate of numerical dissipation, but it is
unlikely that this is enough to accurately reproduce the three-dimensional
subgrid stress tensor. Nevertheless, this is an interesting topic that needs
further investigation.
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Appendix A

Statistical treatment of

turbulence

The chapter gives an introduction to the notion of treating turbulence as a
statistical problem. First the problem of turbulence is presented, and then
it is argued why one might consider this a statistical problem. Common
tools of probability theory are then presented, and averaging is discussed.
Lastly the chapter deals with scales and self-similarity in turbulence, serving
as a bridge to the next topic of fractal geometry.

Classical books on turbulence, that cover the statistical approach,
are Hinze (1975), Monin & Yaglom (1971), Monin & Yaglom (1975),
Tennekes & Lumley (1972) and Lumley (1970). A more modern account of
turbulence, and statistical tools in particular, is given by Frisch (1995).

A.1 The turbulence problem

In nature and in engineering applications, flows are usually turbulent.
Turbulent flows are characterised by severely disorganised, irregular and
unsteady motion, three-dimensionality, rapidly varying vorticity, high
diffusion and viscous dissipation.

Even though this chapter has been based on statistical methods, the
problem of turbulence is a deterministic one. The incompressible Navier-
Stokes equations in Cartesian tensor form is written in equation (A.1). The
incompressible continuity equation in Cartesian tensor form is written in
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equation (A.2).

ρ
Dui
Dt

= fi −
∂p

∂xi
+ µ

∂2ui
∂xj∂xj

(A.1)

∂ui
∂xi

= 0 (A.2)

The Navier-Stokes equations can be solved, when coupled with the
continuity equation and sufficient boundary conditions. A thorough
explanation of the Navier-Stokes equations, and other fundamental
differential equations of fluid mechanics is given in Schlichting (1979) or
Schlichting & Gersten (2000).

For incompressible flow the incompressible Navier-Stokes equations are
commonly thought to contain all of turbulence, and thus solving these
equations would give the solution to the problem of turbulence in an
incompressible fluid. However, there is no known analytical solution to
the Navier-Stokes equations, and solving them through Direct Numerical
Simulation is extremely costly and time consuming. The difficulty of
turbulence is connected to some of the properties of these equations, which
include:

• The existence of a smooth solution at all times.

• Interdependency for the entire domain.

• Non-linearity, due to the non-linear advection terms.

• A large range of scales, giving a system that is stiff at all times.

A.2 A probabilistic approach

Keynes (1920) defined probability as the degree of rational belief we can
hold a claim to. Even though turbulence is not a problem of randomness, a
probabilistic approach might lead to results that one can hold rational belief
in. The statistical approach attempts to simplify the problem described in
chapter A.1 by looking for order and universality in the erratic behaviour
of turbulence.

For a laminar flow problem, solving the set of equations yields the unique
solution that describes the flow properties. In turbulence, however, the
problem is finding the ensemble of all solutions satisfying the equation and
boundary conditions. Thus, even though the problem is deterministic, the
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solution can be probabilistic. Essentially, when one is looking for general
results, the study is no longer just concerned with that particular flow, but
with the statistical ensemble of all similar flows.

Usually the field of statistics is concerned with studying the output from
a process, where the generator of the data is unknown and the problem
consists of understanding how the generator works. However, in the field of
statistical fluid mechanics, the generator is known, and the problem consists
of predicting the output.

In order to better understand turbulence, one can use results from
experiments or high accuracy simulations such as DNS, and then try to
find general results. In order to do so, various statistical tools are needed.

A.3 Probability theory

For a stochastic variable u, the probability of finding u between u and
u+ du is the probability density function B(u), and it is defined such that

∫ ∞

−∞
B(u) du = 1. (A.3)

A.3.1 Averaging and ergodicity

Finding averages is a central part of a statistical description of turbulence.
A discussion on averaging was written by Monin & Yaglom (1971, pages
205–218) and different types of averages were listed by Hinze (1975, page
5). For a stochastic variable u, two commonly used averages can be defined.

Definition A.1. The ensemble average of u is defined as

〈u〉 ≡
∫ ∞

−∞
uB(u) du , (A.4)

where B(u) is the probability density function of u.

Definition A.2. The time average of a time dependent u is defined as

u ≡ lim
T→∞

1

T

∫ T

0
u(t) dt , (A.5)

where T is the averaging period.
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In statistics an average value is usually found by evaluating all
realisations of the total solution space. In most cases, and also here, this is
not possible. So to find usable averages, we invoke ergodicity and use the
time average of the value as an approximation to the ensemble average over
all realisations. Ergodic theory is a large branch of mathematics that will
not be covered in any detail here, but Birkhoff’s ergodic theorem (Frisch,
1995, pp. 36–37) ensures that the ensemble average can be approximated
by the time average. Ergodicity is also discussed in Monin & Yaglom (1971,
pp. 214–218 and 249–256).

Theorem A.3. The ergodic theorem states that under suitable conditions,
the time average of u is equal to the ensemble average of u,

u = 〈u〉. (A.6)

The ergodic theorem can be thought of as an extension of the strict law
of large numbers. For practical purposes one conveniently assumes that the
time average can be approximated by an average over a finite number of
time instances

u =
1

T

∫ T

0
u(t) dt =

1

T

N∑

n=1

un∆t =
1

N

N∑

n=1

un, (A.7)

for suitably large T and N , and constant ∆t .

A.3.2 Statistical moments

For a stochastic variable u, the moments can be defined and they provide
information on how u is distributed in the probability space. The moments
of a random variable, in the context of turbulence, are discussed in detail
in Monin & Yaglom (1971, pp. 222–256) and Lumley (1970, pp. 19–41).

Definition A.4. The nth order moment of u is defined as

〈un〉 ≡
∫ ∞

−∞
unB(u) du . (A.8)

The 1st order moment is then the ensemble average of u. A random
variable is centred if the 1st order moment is equal to zero. By subtracting
the 1st order moment from u, one gets the central moments. The first four
central moments are most commonly used.
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Definition A.5. The 2nd order central moment of u is the variance of u

σ2 ≡ 〈(u− 〈u〉)2〉, (A.9)

and can be approximated by

σ2 = (u− u)2. (A.10)

Definition A.6. The 3rd order central moment of u is the skewness of u

S ≡ 〈(u− 〈u〉)3〉, (A.11)

and can be approximated by

S = (u− u)3. (A.12)

Definition A.7. The 4th order central moment of u is the flatness of u

F ≡ 〈(u− 〈u〉)4〉, (A.13)

and can be approximated by

F = (u− u)4. (A.14)

The gaussian probability density function has a flatness of F = 3, and
for direct comparison with this distribution it is common to use the kurtosis,
which Monin & Yaglom (1971) called the excess.

Definition A.8. The kurtosis of u is defined as

K = F − 3. (A.15)

Tennekes & Lumley (1972, page 200) defined the kurtosis as equal to
the flatness, which is not strictly correct.

A.3.3 Joint probability distribution and covariance

The concept of a probability density function can be extended to more than
one variable. The joint probability density function B(u, v) expresses the
joint probability of finding u between u and u+ du , and v between v and
v + dv . It is defined such that

∫ ∞

−∞

∫ ∞

−∞
B(u, v) du dv = 1. (A.16)

The moments of a joint probability distribution can be defined in a
similar way as the moments of a single variable distribution.
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Definition A.9. The mth and nth order joint moment of u and v is defined
as

〈umvn〉 ≡
∫ ∞

−∞

∫ ∞

−∞
umvnB(u, v) du dv . (A.17)

The most commonly used joint moment is 〈uv〉, for m = n = 1, which
is called the covariance. The covariance is a measure of the asymmetry of
B(u, v).

A commonly used measure of correlation between two variables u and
v is the Pearson product-moment correlation coefficient, often just called
the correlation coefficient. The correlation coefficient is defined as

corr(u, v) =
〈uv〉
σuσv

(A.18)

and measures how well (u, v) follows a linear dependendence.

A.3.4 Filtering

To get a better idea of the concept of scale, it is useful to introduce the
idea of filtering. A function u can be represented by the Fourier series

u(x) =
∑

κ

ûκe
iκx, κ ∈ 2π

L
Z
3, (A.19)

and associated with a length scale l there is a filtering scale Kl such that
l = K−1

l . To separate the range of large scales, from that of smaller scales,
the idea of the high-pass and low-pass filters is introduced.

Definition A.10. The low-pass filtered function of u is defined as

u<Kl
(x) ≡

∑

κ≤Kl

ûκe
iκx. (A.20)

Definition A.11. The high-pass filtered function of u is defined as

u>Kl
(x) ≡

∑

κ>Kl

ûκe
iκx. (A.21)
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A.4 Symmetry and scale invariance

When studying physical systems it is often useful to study symmetries.
Symmetry in this context is used in the extended definition as any
invariance group of the system. The Navier-Stokes equations have
several invariance groups or symmetries, including space-translation, time-
translation, Galilean transformation, parity, rotation and scaling symmetry
(Frisch, 1995). In the context of this project, scaling symmetry is of most
interest.

Using A.1 and ignoring fi yields

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

. (A.22)

Introducing the scaling ui → λnui, t → λ1−nt, xi → λxi and knowing that
p/ρ scales as velocity squared gives

λ2n−1∂ui
∂t

+ λ2n−1uj
∂ui
∂xj

= −λ2n−1 1

ρ

∂p

∂xi
+ λn−2ν

∂2ui
∂xj∂xj

. (A.23)

This is only true for n = 1, but when neglecting viscosity there are infinitely
many scaling groups that satisfy the equation. Thus for high Reynolds
number flow, one would expect some sort of scale invariant behaviour.

For turbulent flow it is more useful to consider statistical symmetry as
the traditional symmetries will be broken for a single solution. Statistical
space translation symmetry corresponds to homogeneous turbulence, while
statistical rotation symmetry corresponds to isotropic turbulence. Due
to the presence of solid boundaries, turbulence is seldom homogeneous,
isotropic or strictly self-similar. However, many turbulent flows suggest
some form of homogeneity, isotropy and scale-invariance.

A.4.1 Scales in turbulence

It has already been mentioned that turbulence is a phenomenon with a large
range of scales. Due to physical constraints there cannot be an infinite range
of scales, and so there must be a lower and upper cut-off scale. The upper
cut-off point is determined by the geometrical constraints of the problem, as
the turbulent eddies cannot be much larger than the large scale geometry.

At the lower end, there is the point at which the viscous forces become
significant and the turbulent motion dissipates. This is known as the
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Kolmogorov length scale η, which can be estimated as η/D =
(
εRe3

)− 1

4

using the terminology defined earlier in this chapter. There can be even
smaller scales related to scalar transport in the flow. The Batchelor scale is
defined as ηB = η/Sc

1

2 . For high Schmidt number flow the Batchelor scale
can be significantly smaller than the Kolmogorov scale.

The idea of scales can be illustrated with the high-pass and low-pass
filtrations. The small scales of turbulence are what remain after a high-
pass filtration of a Fourier representation of the signal. The large scales are
what remain after a low-pass filtration of the signal.

A.4.2 Self-similarity in turbulence

Perhaps the most famous, and one of the earliest, accounts of the apparent
self-similarity of turbulence was written by Richardson (1922) in his famous
rhyme.

Big whorls have little whorls
Which feed on their velocity

And little whorls have lesser whorls
And so on to viscosity
(in the molecular sense)

Richardson’s rhyme suggests a physical notion of self-similarity in
turbulence. The study of self-similarity was then shifted to wavenumber
space, most significantly by Kolmogorov (1941b,c,a,d). One of the most
well known results in turbulence is Kolmogorov’s 5

3 energy spectrum law.
In an intermediate range in the turbulence energy spectrum, known as
the inertial range, the turbulence energy related to a wavenumber κ is
proportional to κ−

5

3 .
Another important result is the two-thirds law, stating that the second

order structure function follows an l
2

3 law. This result also implies a κ−
5

3

law in the energy spectrum. Kolmogorov also suggested that structure
functions Sp should have scaling exponents ζp =

p
3 .

Kolmogorov’s hypotheses suggest power law behaviour and self simi-
larity in the wavenumber space. This approach to self-similarity is also
described in detail by Hinze (1975) and Monin & Yaglom (1971, 1975). A
modern account of Kolmogorov’s hypotheses is given by Frisch (1995).

The notion that turbulent eddies are spatially compact structures, and
not Fourier modes, has led to more geometrical studies of self-similarity
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in turbulence in real space. One of the most significant proponents for
the study of self-similarity in real space was Benoit B. Mandelbrot who is
considered the father of fractal geometry.

To give a description of self-similarity in real space for a turbulent
interface, the idea of fractality seems appropriate. Instead of trying to
describe the geometry of turbulence using regular objects of Euclidian
geometry, the irregular and inherently self-similar fractal geometry can be
used.





Appendix B

Fractal geometry

A brief introduction to fractal geometry is given, along with the necessary
mathematical theory to support the definitions. The chapter starts with a
description of the geometrical concept that is a fractal, is then followed by
the mathematical foundation for the theory of fractal geometry, and ends
with some examples of fractals and applications.

The seminal work on fractal geometry is from Mandelbrot (1982), the
revised essay on fractals. More modern accounts of fractal geometry are
given by Falconer (2003) and Schroeder (1991).

B.1 What is fractal geometry?

Mathematics has traditionally been mostly concerned with the geometry
of well-behaved differentiable surfaces. The idea of a fractal geometry was
developed to be able to study the geometric properties of sets that were
not smooth. The term fractal was initially conceived by Mandelbrot from
the Latin word fractus, meaning broken or irregular, and he created the
unifying field of fractal geometry (Mandelbrot, 1982). The idea of a set
having non-integer dimension, is however much older.

The need for a geometry of non-smooth sets arose from the realisation
that nature is rarely smooth, and that Euclidian geometry is not sufficient
to describe natural phenomena.

A clear definition of a fractal is hard to find, but it is possible to create
a list of properties that most fractals will satisfy.

1. Too irregular to be described by Euclidian geometry.
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2. A large range of scales.

3. A certain degree of self-similarity among scales, either exact,
approximate or stochastic.

4. A Hausdorff dimension greater than the the topological dimension.

5. A simple recursive description.

Property number 4 was the fractal definition used by Mandelbrot (1982),
but this does not hold for all fractals.

B.2 Dimension

To introduce the idea of a fractal dimension and clarify what the term
fractal dimension will mean in this report, a survey of the subject of
dimensions is given. This includes a brief introduction to measure theory
and then a mathematical definition of the Hausdorff dimension and the
box-counting dimension. The idea of a fractal dimension is then discussed.
For all of these dimensions, the general idea is that of a measurement at
scale δ, that is for each δ a set is measured in such a way that irregularities
smaller than δ are ignored.

B.2.1 Dimensions and topology

The dimension of a set says something about how disconnected it is, or
how much space is occupied around each point in the set. In topology in
Euclidian space, the dimension is a measure that for a point is equal to zero,
for a line is equal to one, for a surface is equal to two and for a volume is
equal to three. There is also an idea of dimension for more general sets,
but it is much less intuitive and not always easily computed.

B.2.2 Set theory and measures

In mathematics a measure is a way of assigning a size to a set, in much
the same way that one could assign a mass distribution to a set. The idea
is to have a property, or measure, that is such that if the set is divided
into a countable number of subsets in a reasonable way, then the measure
of the whole set is equal to the sum of all the subset measures. A simple
example of a measure is a counting measure, where the measure of a set is
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equal to the number of points in the set. Another well known measure is
the n-dimensional Lebesque measure Ln which evaluates the n-dimensional
volume of a general set.

In order to proceed, a few set theory definitions are needed. For a
non-empty subset of Rn, F of real numbers we have.

Definition B.1. The supremum supF is the smallest number n such that
φ ≤ n for all φ ∈ F .

Definition B.2. The infinum inf F is the largest number n such that φ ≥ n
for all φ ∈ F .

Definition B.3. The diameter |F | is the largest distance between any two
points in F , i.e. |F | = sup{|φ1 − φ2| : φ1, φ2 ∈ F}.

B.2.3 The Hausdorff measure and dimension

F is a non-empty subset of the n-dimensional Euclidian space Rn, |F | is the
diameter of F and {Fi} is a finite collection of sets with diameter at most
δ, covering F . {Fi} is called a δ-cover of F and s is assumed non-negative.
Then

Hs
δ ≡ inf

{ ∞∑

i=1

|Ui|s : {Ui}is a δ-cover of F

}
, (B.1)

and the Hausdorff measure can be defined.

Definition B.4. The s-dimensional Hausdorff measure of F is the smallest
possible sum of the s-power diameters of |Ui|, when the supremum diameter
δ goes to zero.

Hs(F ) ≡ lim
δ→0

Hs
δ(F ) (B.2)

When evaluating Hs for different values of s, Hs jumps from infinity to
zero at a critical value. This value is called the Hausdorff dimension of F ,
and is defined.

Definition B.5. The Hausdorff dimension of F is the value of s at which
the s-dimensional Hausdorff measure of F jumps from infinity to zero.

dimH F ≡ sup{s : Hs(F ) = ∞} (B.3)

The Hausdorff dimension is often difficult to compute, and because
of this, other dimensions can be more convenient to use. However, the
Hausdorff dimension is an important theoretical concept that defines the
idea of a divider dimension in the most rigorous way.
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B.2.4 The box-counting dimension

Again, the non-empty subset F of R
n is studied. Nδ is the smallest

number of sets of diameter at most δ that covers F . Then the box-counting
dimension can be defined.

Definition B.6. The box-counting dimension is defined as

dimB F ≡ lim
δ→0

logNδ(F )

− log δ
, (B.4)

if the upper and lower limits are equal.

There are many ways of covering F with a suitable collection of subsets,
and the best suited covering depends on the set F .

B.2.5 The fractal dimension

For both the Hausdorff dimension and the box-counting dimension, the
general idea is that of a measurement at scale δ. It will often be difficult to
use the strict definitions of Hausdorff and box-counting dimension for sets
outside the domain of pure mathematics. It is practical to use a less strict
definition.

If a set F is measured at scale δ and the number of steps required to
cover F obeys the power law

N(F ) ∼ cδ−DF , (B.5)

then DF is the divider dimension of F and c is the DF -dimensional length.
This means that −DF is the slope of a log-log plot of N as a function of
δ, which is very convenient when it is difficult to allow δ to approach zero.
We call DF the fractal dimension of F .

The idea of a fractal dimension is, although quite commonly used, not
rigorously defined. This has led to numerous different definitions and often
inconsistency in the treatment of the fractal dimension. Because of this,
some authors advice against the use of the term “fractal dimension” (e.g.
Falconer (2003) and Vassilicos (1989)). It is, however, a term commonly
used in scientific publications.
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B.2.6 Intersection of surfaces

In turbulence research and many other fields, it is difficult to get
complete three-dimensional data, and one is often forced to study planes
of intersections. Because of this, it will not be possible to find the fractal
dimension of a set in R

3 directly, and instead one must determine the fractal
dimension of the intersection of the set and a plane or a line.

To assess the dimension of the set itself, one then has to find a relation
between the dimension of a set and the dimension of an intersection. This
problem is discussed for general sets in Mandelbrot (1982, pp. 135–136)
and Falconer (2003, pp. 109–119).

For the purpose of this study, one can generally say that the intersection
of a set F in R

3 and a sufficiently thin plane, that is thinner than the
smallest scale in F , has a dimension that is one less than the dimension of
F , if and only if the resulting dimension is independent of the orientation
of the intersecting plane. For a line, the dimension of the intersection will
be two less than the dimension of the set. For sufficiently sparse sets, the
intersection set could be empty.

For this study, the dimension of a line in two orthogonal intersecting
planes is being used to infer the dimension of a surface in R

3.

B.3 Some examples of fractals

B.3.1 The Cantor set

The Cantor set is one of the oldest and also simplest fractals, yet it possesses
many interesting properties. The Cantor set is constructed by starting with
a line of length unity, and removing the middle third section. This process
is repeated infinitely many times, and what remains is the Cantor set. An
illustration of the Cantor set after the first six iterations is shown in figure
B.1. In this figure, what are actually points, are drawn as bars to make the
illustration clearer.

As the Cantor set is completely discontinuous, it must have a dimension
that is less than one. At the same it is much denser around each point than
a collection of points of zero dimension. It then follows intuitively that the
dimension of the Cantor set must lie somewhere between zero and one. The
Cantor set satisfies many of the common traits of fractals, i.e. self similarity,
fine structure, simple recursive definition and a Hausdorff dimension which
is strictly greater than the topological dimension.
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Figure B.1: The Cantor set after six iterations.

The length of the set measured at scale δ can be expressed recursively
as

L

(
δ

3

)
=

2

3
L (δ) , (B.6)

which has the solution
L(δ) = δ1−D, (B.7)

D =
log 2

log 3
≈ 0.6309 (B.8)

where D is a divider dimension of the Cantor set. This is also equal to the
Hausdorff dimension of the Cantor set.

B.3.2 Julia sets

The Julia sets are a collection of self-similar recursively defined sets, from
a polynomial function. A special category of Julia sets are the quadratic
Julia sets defined from the recursive assignment

Z → Z2 + Z0, (B.9)

in the complex plane. Different values of Z0 yield the collection of quadratic
Julia sets.

The so-called filled-in Julia set contains all values in C such that
assignment (B.9) is limited, i.e. does not go to infinity. The Julia set is the
boundary of the filled-in Julia set. The quadratic Julia set for Z0 = −1 has
a Hausdorff dimension of 1.2683, and is shown in figure B.2.

A special case of the Julia set is the well known Mandelbrot set, which
is the set of all Z0 such that the Julia set, defined from equation (B.9), is
connected.
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Figure B.2: The Julia set Z → Z2 − 1.

B.3.3 Fractional Brownian motion

The fractals described thus far have been deterministic fractals, described
by an exact recursive rule. Another type of fractal is the random fractal
or stochastic fractal. For a random fractal, the recursive divider rule is
a stochastic process. Brownian motion is a typical example of a random
fractal.

Brownian motion, or the Wiener process, is a Gaussian process. The
process starts in the origin and moves by independent and normally
distributed increments. An example of a realisation of one-dimensional
Brownian motion is plotted in figure B.3.

For many purposes random functions with different properties to
Brownian motion are useful. A variation of Brownian motion is fractional
Brownian motion, which has normally distributed, but not independent,
increments. For simplicity, one-dimensional fractional Brownian motion is
first considered.

Fractional Brownian motion with a Hurst index H ∈ (0, 1) is a
Gaussian process u : [0,∞) → R, where the increment u(x + l) − u(x) is
normally distributed with mean zero and variance l2H . The joint moment
〈u(x)u(x+ l)〉 is expressed as

〈u(x)u(x+ l)〉 = 1

2

(
x2H + (x+ l)2H − l2H

)
, (B.10)
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Figure B.3: A realisation of one-dimensional Brownian motion.

and the second order structure function S2 is

S2(l) = 〈[ ∆u (l)]2〉 = l2H . (B.11)

For H > 1
2 the increments are positively correlated, for H < 1

2 the
increments are negatively correlated, and for H = 1

2 the process is regular
Brownian motion.

The power spectrum of u(x) is expected to follow κ−(1+2H), and the
Hausdorff and box-counting dimensions are 2−H. The fractional Brownian
motion can be extended to two dimensions, yielding a fractional Brownian
surface, by replacing x with coordinates (x, y). Then, l is a length in two-
dimensional space, and the dimensions are equal to 3−H.

For a specific Hurst index, H = 1
3 , the fractional Brownian surface has

a second order structure function equal to l
2

3 , a power spectrum following
κ−

5

3 , and Hausdorff and box-counting dimensions equal to 8
3 ≈ 2.67.

B.4 Applications

Fractal geometry has typically been used to describe the geometry of objects
that are too irregular to be described using Euclidian geometry. This
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includes most of the objects in nature. In the introduction to his essay,
Mandelbrot noted that nature is rarely smooth.

Clouds are not spheres, mountains are not cones, coastlines are
not circles, and bark is not smooth, nor does lightning travel in
a straight line. (Mandelbrot, 1982)

Fractals have perhaps most famously been used to describe coastlines,
after the realisation that the length of a coastline is highly dependent on the
scale of the measurement. Also mountains and clouds have been described
as fractal, and convincing mountains and clouds can been generated
using random fractals. Fractal geometry has further been used in signal
processing and antenna technology.

It is obvious that natural objects do not behave as perfectly fractal as
the mathematical fractals. The self-similarity is not exact and not defined
for an infinite range of scales. So there is a lower and upper cut-off point,
beyond which the object is no longer fractal. Nevertheless, fractal geometry
can be useful to describe the region that is approximately fractal.

Another field where fractals have been used is finance. Mandelbrot
proposed a fractal description of financial instruments, because the
commonly used Gaussian statistics did not sufficiently encompass the
uncertainty in finance and the importance of large deviations. Mandelbrot
& Hudson (2006) presented a new theory of finance, based on fractal
geometry.

B.4.1 Fractals and turbulence

The application of fractal geometry to something that is by definition
smooth like fluid flow, might at first appear contradictory. However, if
limited to an intermediate range of scales, a fractal description could be
justified. The scale-invariance in turbulence discussed in section A.4 would
suggest that a fractal description could have merit. Any self-similarity in
turbulence can only be stochastic, and so turbulence will mostly resemble
random fractals.

It could also be argued that turbulence geometrically resembles objects
of fractal geometry more than the classical objects of Euclidian geometry.
It should be clear that a turbulent wake is no more a cone frustum than
mountains are cones.

Fractals have been used in different ways in turbulence. A fractal
description of the geometry of lines or surfaces in turbulence have been
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proposed by several authours. More recently fractals have been used to
model turbulence, and fractally forced turbulence has been studied.



Appendix C

Programming

A program was created to solve the stochastically forced Burgers equation.
A description of the most important features of this program is given in
this appendix.

C.1 Program structure

The programming language Fortran was used to create the part of
the program that performs the actual computations. Fortran is a
popular programming language for numerical computations because of the
computational speed of the compiled programs. The Fortran program was
compiled using the GNU Fortran compiler with compilation flags -O3 and
-march=native for optimisation. All simulations were run on a desktop
computer with a x86-64 quad-core processor; the code was not parallelised.

The Fortran program has a simple structure where a main program
communicates with a number of subroutines, each doing a specialised
task. There are subroutines for data import, data export, initialisation,
grid generation, spatial discretisation, temporal discretisation, subgrid
modelling and the source term. For each of these classes there are several
different subroutines, for example for different discretisation methods and
subgrid models. The desired subgrid models are decided by the user and
chosen using procedure pointers in the main program. The procedure
pointers are the only Fortran 2003 feature in the program; the rest is strictly
Fortran 95.

To simplify the use of this program a front end, consisting of one Python
script and one BASH script, is developed to communicate with the Fortran
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program. The BASH script defines commands used by the user and the
Python script imports values from a setup file and sends these values to the
Fortran program.

C.2 Implementing the FFT algorithm

In order to compute the stochastic source term for each time step, a set of
Fourier modes with amplitude (A/

√
∆t )k−α/2 and phases randomly chosen

uniformly in [0, 2π] were prescribed. The power law exponent α specifies
the energy spectrum of the forcing. The prescribed Fourier modes were
then inversely Fourier transformed using the fast Fourier transform (FFT)
(Cooley & Tukey, 1965) to get the force in real space. Using the FFT
algorithm takes advantage of the periodicity of the Fourier modes and
reduces the computational effort from N2 to N log2(N) operations. An
introduction to the FFT algorithm was written by Bergland (1969).

A simple radix-2 Fast Fourier Transform algorithm was first imple-
mented in a Fortran subroutine to handle the inverse Fourier transform.
For added flexibility and optimisation, this algorithm was later replaced
with the FFTW (Fastest Fourier Transform in the West) library (Frigo &
Johnson, 2005), yielding considerable speed improvements.

C.3 Using the program

Because of the large number of simulations, it would be inconvenient to
modify and compile the Fortran program for each parameter change. The
program therefore imports all specified parameters from a setup file, and
predefined commands are used to use the program. These commands are
defined in the BASH script and are listed here.

master-cfd new-project [project name] creates a new project
called [project name] in the current directory. A standard setup file
[project name].SETUP is created in the current directory. This is the
only command that depends on the current directory.

master-cfd run [project name] runs the simulation titled [project
name].

master-cfd run-all [project name] runs all the simulations located
in the same folder as [project name].

master-cfd stop [project name] stops the simulation titled [project
name].
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master-cfd restart [project name] restarts the simulation titled
[project name] by initialising the simulation from the last time step that
was written to file.

master-cfd remove [project name] removes the project titled [project
name].

master-cfd tail [project name] displays the progress of the simu-
lation [project name]. The total elapsed time, the flow time, the number of
time steps and one velocity value is printed to standard output each time
step.

master-cfd get-pid [project name] prints the process ID of
[project name] to standard output.

master-cfd edit [project name] opens the setup file [project

name].SETUP for editing.
master-cfd list-projects writes a list of all the simulation projects

stored on the computer to standard output.
master-cfd find-project [project name] writes the location in the

file system of [project name] to standard output.
master-cfd about-project [project name] writes the contents of

the file [project name].SETUP to standard output.
An example of what a typical setup file contains follows.

#=============================================================

# Setup file for master-cfd

#=============================================================

grid = {

"xmin": 0,

"xmax": 1,

"nx": 250

}

spatial_discretisation = {

"flux_function": "arakawa_flux"

}

time_discretisation = {

"scheme": "RK_TVD",

"dt": 0.00001,

"tmax": 1000

}

physical_parameters = {
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"kinematic_viscosity": 0.000005,

"power_fluid_index" : 1

}

boundary_conditions = {

"type": "periodic"

}

initialisation = {

"type": "stochastic",

"k1": 0.5,

"k2": -0.833333,

"k3": 0.5,

"k4": 0,

"k5": 0,

"k6": 0

}

output = {

"output_rate": 1000

}

source = {

"type": "stochastic",

"coefficient": 0.25,

"spectrum": -0.5,

"l": 0.5,

"small_scale": 0

}

sgs_model = {

"type": "multifractal"

}

random_number = {

"seed": "clock"

}

Those familiar with the Python programming language will notice that
the setup file contains dictionary classes, making it very easy to import all
the values from the file. The different parameters specified in the setup file
should be mostly self-explanatory.
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Summary New simulations of the stochastically forced Burgers equation using the finite volume
method compare favourably with previously published results using a pseudo-spectral code. Low
resolution simulations without subgrid modelling exhibit sufficient dissipation to avoid build-up

of energy. White (k0), pink (k−1) and brown (k−2) energy spectra for the stochastic sources result

in energy spectra for the solutions proportional to k−1, k−5/3 and k−2, respectively.

Introduction

When J. M. Burgers introduced the Burgers equation, he intended it to be a model equation

for turbulence. The Burgers equation contains the same type of advective non-linearity and

diffusion term as the three dimensional Navier-Stokes equations. When it was discovered that

an explicit analytical solution to the Burgers equation could be found [13, 6], it seemed unlikely

that solutions to the Burgers equation could contribute to the study of turbulence. One of

the characteristic features of the Navier-Stokes equations and turbulence, is the sensitivity to

changes in initial conditions. In real turbulence apparent randomness spontaneously develops;

this does not happen with the Burgers equation.

The Burgers equation is a nonlinear wave equation, and has found applications in nonlinear

acoustics and other wave problems. A review was written by Gurbatov et al. [12]. Other

applications include cosmology, condensed matter and statistical physics, and also the study

of vehicular traffic. This is elaborated on by Frisch & Bec [9] and references therein.

A common usage of the Burgers equation is also as a testing ground for the three-dimensional

Navier-Stokes equations, both with regards to testing numerical methods and studying the

physics. Because the terms in the Burgers equation are similar to those in the Navier-Stokes

equations, new numerical methods can typically be tested for the Burgers equation, with the

added convenience of exact solutions.

Even though the Burgers equation was initially thought to be a model equation for turbulence,

the standard Burgers equation has little to do with turbulence. As will be seen, the addition

of a source term can make the solution of Burgers equation resemble turbulence. The use of

the Burgers equation to study turbulence has gained renewed popularity in recent years (1980s

and onwards), and the study of random solutions to the Burgers equation is sometimes referred

to as “burgulence”. The randomness can either enter through a random initial condition or a

stochastic source term, the latter being the approach studied here. There have been many studies

on Burgers turbulence in recent years, and on how it relates, or does not relate, to real three-

dimensional turbulence. Many of these studies are referenced by Frisch & Bec [9].

Analytical solutions to the Burgers equation are well documented and the dominance of shocks

in the solution leads to an energy spectrum proportional to k−2 [3]. She et al. [15] studied

solutions to the Burgers equation in the limit of vanishing viscosity with a fractional Brownian

initial condition. A companion paper by Sinai [16] studied the statistics of shocks for the same

problem. Both showed an energy spectrum proportional to k−2, characteristic of the shocks in

the solution.



The study of the stochastically forced Burgers equation has been the topic for many papers.

Notably, simulations published by Checklov & Yakhot [4, 5, 18] provided new insight into the

physics of Burgers turbulence. It was shown that the one-dimensional Burgers equation with

stochastic forcing exhibited turbulence-like properties, provided that the stochastic force was

white in time and had a k−1 spatial energy spectrum. The numerical experiments revealed an

energy spectrum proportional to k−5/3, and strong intermittency.

The topic of this study is the numerical solution of stochastically forced Burgers turbulence

using the finite volume method. Different discretisation schemes are tested, and an investigation

of the effect of different sources was carried out to identify how the energy spectrum of the

solution was influenced by the source term. Furthermore, the objective was to identify which

source type yielded a solution with most turbulence-like properties. Special emphasis was

placed on the case when the source term had a k−1 energy spectrum.

The stochastically forced Burgers equation

The Burgers equation is a quasi-linear parabolic partial differential equation in one-dimensional

space and time. It was first suggested by Burgers [2] as a model equation for studying

turbulence. The Burgers equation,

∂u

∂t
+

∂

∂x

(
1

2
u2

)
= ν

∂2u

∂x2
, (1)

can be considered as a one-dimensional version of the Navier-Stokes equations without pressure

forces. The Burgers equation describes a compressible flow, as only trivial incompressible flows

exist in one dimension, and ν plays the part of a diffusivity or kinematic viscosity. All variables

are treated as non-dimensional, leading to ν being interpreted as an inverse Reynolds number.

The stochastically forced Burgers equation is the Burgers equation with the addition of a

stochastic source term, i.e.

∂u

∂t
+

∂

∂x

(
1

2
u2

)
= ν

∂2u

∂x2
+G(x, t), (2)

where G(x, t) is the stochastic source. Statistical properties of the source can be varied and are

expected to affect the statistics of the results. For the simulations presented here the source is

white noise in time, but with spatial correlation. The source is described by the energy spectrum

|Ĝ(k)|2 ∝ k−α, (3)

where −α is the slope of the spectrum, (̂·) denotes the Fourier transform and (·) temporal

averaging. Here and in the rest of the paper, k is the absolute value of the wave number. Every

function of k will then include the contribution from both positive and negative wave numbers.

Equation (2) is not just the governing equation for a type of Burgers turbulence, as studied here,

it has also been proven useful in other applications including the study of stochastic growth of

interfaces [1].

Numerical methods

The stochastically forced Burgers equation has been solved using a finite volumemethod (FVM)

code. A Fortran 95 code was developed, together with a simple front-end consisting of Python



and BASH scripts. The Fortran program was compiled using the GNU Fortran compiler with

compilation flags -O3 and -march=native for optimisation. All simulations were run on a

desktop computer with a x86-64 quad-core processor; the code was not parallelised.

Different discretisation methods have been implemented in the FVM code, to allow for

comparison and validation. The diffusive flux is discretised using a central difference method,

having second order theoretical accuracy. The convective flux is approximated by two different

commonly used flux functions, the upwind method (Roe’s approximate Riemann solver) and

the local Lax-Friedrichs (LLF) method. Both methods are first order accurate, and in order to

increase the order of accuracy, MUSCL interpolation [17] has also been used. The discretised

equation was solved on an equidistant grid.

The MUSCL interpolation technique replaces the piecewise constant reconstruction with a

linear reconstruction, and consequently increases the order of accuracy of the method. This

interpolation yields left and right values at the cell faces expressed as

uL = uj +
1

4

[
(1− κ)∆+uj + (1 + κ)∆−uj

]
, (4)

uR = uj+1 −
1

4

[
(1− κ)∆−uj+1 + (1 + κ)∆+uj+1

]
, (5)

where ∆+u and ∆−u are the minmod-limited velocity differences

∆+uj = minmod
(
∆u j− 1

2

, β∆u j+ 1

2

)
, (6)

∆−uj = minmod
(
∆u j+ 1

2

, β∆u j− 1

2

)
, (7)

∆u j+ 1

2

= uj+1 − uj and the minmod limiter is defined as

minmod(a, b) =
1

2
(sign(a) + sign(b))min(|a|, |b|). (8)

Using the minmod limiter reduces the order of accuracy to first order at local extrema, but

ensures that oscillations are avoided. Combined with the upwind Riemann solver this yields the

third order upwind method, for κ = 1/3. A value of β = 2/3 is recommended [10, page 147].

The MUSCL interpolation technique with κ = 1/3 and β = 2/3 is also tested for the local

Lax-Friedrichs method.

Both the explicit Euler method and the third order total variation diminishing (TVD) Runge-

Kutta method of Gottlieb & Shu [11] have been used to integrate the equation in time. The time

step has for each simulation been chosen such that the difference between the solution using the

explicit Euler method and the TVD Runge-Kutta method is negligible.

In order to compute the stochastic source term for each time step, a set of Fourier modes with

amplitude (A/
√
∆t )k−α/2 and phases randomly chosen uniformly in [0, 2π] were prescribed.

The power law exponent α specifies the energy spectrum of the forcing. The Fourier modes

were then inversely transformed using the fast Fourier transform (FFT) [7] to get the force in

physical space. Using the FFT algorithm takes advantage of the periodicity of the Fourier modes

and reduces the computational effort from N2 to N log2(N) operations.
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Figure 1: The averaged amplitude spectra of the velocity for the four different convective flux functions

for 29 grid cells are compared with a reference simulation using the LLF method with MUSCL for 213

grid cells.

Results and discussion

Convective flux discretisation

To compare the different flux functions, low resolution simulations of the stochastically forced

Burgers equation have been compared with a high resolution reference simulation. Source

statistics are described by an amplitude constant A = 0.05, spectrum α = 1 and an upper

cut-off wave number of k = 100. The equation was integrated in time using the TVD Runge-

Kutta method with ∆t = 5 · 10−5, and statistics are computed from t = 0 until t = 10, starting
from initial condition u0 = 0. The kinematic viscosity was ν = 1 · 10−5, and periodic boundary

conditions were used.

Simulations for 29 grid cells in [0, 1]were compared with a reference simulation of 213 grid cells
using the LLF method and MUSCL. For the low resolution simulations all four flux function

combinations, upwind and local Lax-Friedrichs with and without MUSCL, were tested.

Averaged amplitude spectra for the results are plotted in figure 1 to investigate how well the

different methods perform at low and high wave numbers. The spectra at the low resolutions

are plotted up until k = 1/(2∆x ), beyond which no spectral information exists. The Fourier

transform is calculated using the FFT algorithm.

The first order methods start deviating from the reference simulation already at wave number 20,
while the higher order methods follow this reference until k = 70. All methods end up deviating

significantly, demonstrating that the resolution is too low. In addition to yielding superior results

for the higher order methods, the amplitude spectra also appear to exhibit less high wave number

damping for the upwind flux function. This difference is less significant for the simulations

utilising the MUSCL interpolation technique.



Forcing spectrum

The statistical properties of the stochastic force are to a large degree described by the Fourier

spectrum. Three of the most well known types of noise functions are white noise with an energy

spectrum ∝ k0, pink noise with energy spectrum ∝ k−1 and brown noise with an energy

spectrum ∝ k−2. These three energy spectra have been tested as sources in the stochastically

forced Burgers equation in order to determine how the spectral properties of the source affect

the spectral properties of the results.

Simulations have been conducted using the local Lax-Friedrichs method with MUSCL interpo-

lation for the convective fluxes, and the TVD Runge-Kutta method in time with ∆t = 5 · 10−5.

The viscosity is ν = 1 · 10−5, there are 213 grid cells for x ∈ [0, 1], and the source has an

amplitude coefficient A = 0.05 and forcing at all admissible scales. All amplitude spectra are

averaged over t ∈ [10, 20], after a statistically steady state is reached, and all simulations are

started from initial condition u0 = 0.

Figure 2 shows the resulting velocity and time-averaged energy spectra |û(k)|2 of the solution
for the three different source types, white, pink and brown. Also plotted in the figure are the

energy spectra of the source functions and proposed regression lines. A first observation is that

the presence of a source term, with energy spectrum decreasing less rapidly than the k−2 Burgers

shocks, reduces the negative slopes of the spectra. The similarity in general shape of the three

velocity plots is caused by the pseudo-random number generator starting from the same seed for

all three simulations, thus causing identical phases of the source term for the three simulations.

The velocity plots reveal obvious differences between the three different source types. The

velocity plotted for the white source shows little coherent large-scale structures, but high-

amplitude noise over a wide range of wave numbers. This is caused by the white source having

equal amplitudes for all wave numbers. The energy spectrum follows the regression line k−1

quite well, serving as a combination between the stochastic noise and the physics of the shocks

in the Burgers equation.

The velocity plot for the source with a pink spectrum shows the existence of large-scale

structures as well as smaller structures over a range of wave numbers. This is explained by

the energy spectrum falling more steeply than for the white source, and following the k−5/3

regression line reasonably well. Small scale structures contribute modestly in the last velocity

plot, with the brown source. The solution is primarily dominated by the large scale shocks, also

apparent in the energy spectrum that follows the expected k−2.

Out of the three velocity plots, the pink noise solution, is the one that resembles real turbulence

the most. This is backed up by an energy spectrum following k−5/3, Kolmogorov’s energy

spectrum for homogeneous turbulence, as previously reported by Checklov & Yakhot [4].

The spectral slope of a graph also provides information about other features of the graph. For

example a power law energy spectrum proves the existence of scaling laws, and it is expected

that the graphs with energy spectral slopes−1,−5/3 and−2 have box-counting dimensions [8]

2, 5/3 and 3/2, respectively. A high box-counting dimension is consistent with a high degree

of roughness, evident from the velocity plots. The indicated spectral slopes also lead to second

order structure functions, S2(r) = [u(x+ r)− u(x)]2, scaling as S2(r) ∝ r0, S2(r) ∝ r2/3 and
S2(r) ∝ r1 for the white, pink and brown source, respectively [8].
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Figure 2: The velocity (left) and energy spectrum (right) for the three different source energy spectrum

slopes k0 (top), k−1 (centre) and k−2 (bottom), corresponding to white, pink and brown noise,

respectively. The grey lines are the energy spectra of the sources (multiplied by a factor 10−6), and

the dotted lines represent, from top to bottom, power laws k−1, k−5/3 and k−2.
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|û
(k
)|2

100 101 102 103 104

10−3

10−4

10−5

10−6

10−7

10−8

10−9

10−10

10−11

10−12

Figure 3: Averaged energy spectra for simulation using 215 grid cells (solid black line) and simulation

using 214 grid cells (dotted line), compared with previously published amplitude spectrum of Scotti &

Meneveau (grey line) [14].

Burgers turbulence for pink-spectrum source

Simulations using the local Lax-Friedrichs method with MUSCL for 215 and 214 grid cells

for x ∈ [0, 2π] were conducted to be compared with previously published results by Scotti &

Meneveau [14]. The TVD Runge-Kutta method was used for integration in time, and the time

step was ∆t = 5 · 10−5. Kinematic viscosity was ν = 1 · 10−5, and the source parameters were

A =
√
2 · 10−3, α = 1, with forcing at all scales. Initial conditions were u0 = 0.1 sin(2πx) for

the simulation with 215 grid cells and u0 = 0.02(x− π) for the simulation with 214 grid cells.

Energy spectra averaged between t = 60 and t = 200 are shown in figure 3, compared

with results from a pseudo-spectral code by Scotti & Meneveau using 213 modes. All three

simulation results exhibit the−5/3 energy spectrum slope, characteristic of this type of Burgers

turbulence. Spectrum results correspond well for most wave numbers, but deviate for the

lowest wave numbers and for wave numbers larger than 103. The significance of this deviation
is uncertain, but the high wave number difference could be attributed to excessive damping

for the simulations presented here. There is however only a marginal difference between the

simulation with 215 grid cells and the simulation with 214 grid cells, and if the high wave

number discrepancy was caused by numerical diffusion, one would expect the simulation with

the highest resolution to yield better results.

It is perhaps more likely that the difference at high wave numbers is related to the difference

at the lowest wave numbers. The simulation results from Scotti & Meneveau have large scales

with significantly more energy, and thus more energy is transported to the smallest scales. The

lack of smoothness at the smallest wave numbers indicates the presence of persistent large scale

structures. This difference could perhaps be caused by the implementation of the source term
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Figure 4: Averaged energy spectra for low resolution simulations using 28 grid cells and filter width

∆ = 2π/128 (solid black line) and filter width ∆ = 2π/64 (dotted line), compared with simulation

using 214 grid cells (grey line).

or the initial condition, the details of which are not entirely clear. Tests with different types of

initial conditions have shown that even though the energy of the initial condition quite quickly

dies out, traits of the initial condition, in particular shock patterns, survive for a long time.

Additional simulations at a very low resolution of 28 grid cells are compared with the high

resolution simulation in figure 4, for similar initial conditions. These simulations represent one-

dimensional large eddy simulations without subgrid modelling, and are filtered using a spectral

cut-off filter (implemented by only prescribing the lowest wave numbers of the stochastic

source). Filtering widths of both ∆ = 2π/128 and ∆ = 2π/64 were tested.

Energy spectra for both low resolution simulations follow the high resolution energy spectrum

for wave numbers smaller than 40, but deviate for larger wave numbers. There is no build-up

at the highest wave numbers, as one might expect, but instead excessive damping. Increasing

the filtering width to 2π/64 increases the difference at the highest wave numbers. The results

show that at this resolution and stochastic forcing, the numerical diffusion is sufficiently large

to function as an eddy viscosity, thus dissipating the energy. Sufficient dissipation does not,

however, by itself constitute a good subgrid model, and a dedicated subgrid model should be

able to produce better results.

The evolution of large scale kinetic energy, defined as K(t) = 1/(2 · 2π)
∫
2π

0
ũ2 dx , is plotted

in figure 5 for the highest resolution simulation, the low resolution simulation filtered at

∆ = 2π/128 and the simulation by Scotti & Meneveau. ũ is the velocity u filtered at scale

∆ = 2π/128. All three spectral curves decay from an initial condition with high kinetic energy

and then reach a statistically steady state where forcing and dissipation are in approximate

equilibrium. Again it is apparent that the low resolution simulation dissipates a significant
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Figure 5: Evolution of large scale kinetic energy simulation using 215 grid cells (solid black line)

compared with previously published results from Scotti & Meneveau (grey line) [14] and low resolution

simulation with 28 grid cells filtered at ∆ = 2π/128 (dotted line).

amount of energy, as the energy levels out instead of increasing gradually.

Within the statistically steady region, the kinetic energy fluctuations are large. This is because

of the instability of the largest scales containing most of the energy, and could also be part of

the explanation for the discrepancy seen in figure 3. Truly reliable statistics would require much

longer time series than the ones used here. Another noteworthy observation is that the energy

decreases far more rapidly from the initial condition for the simulations presented here, than for

the results from Scotti & Meneveau. This could be a consequence of different initial conditions,

thus supporting the notion that the initial conditions could attribute to some of the difference

observed in figure 3.

The effect of time step size was tested by comparing two simulations with 214 grid cells, one

with ∆t = 5 · 10−5 and one with ∆t = 1 · 10−5. Energy spectra for these two simulations (not

shown) almost completely overlapped, demonstrating that the time step is low enough for the

statistical features of the solution to be independent of time step size. This result is contingent

on the normalisation by 1/
√

∆t in the amplitude of the source.

Energy cascade of Burgers turbulence

Let us once again recall the energy spectrum of Burgers turbulence for a pink noise source,

and consider its resemblance to real turbulence. In real three dimensional turbulence the energy

spectrum is the result of an energy cascade from large to smaller scales, caused by the three-

dimensional vortex stretching that occurs due to the interaction between different sized eddies.

In one-dimensional Burgers turbulence the concept of a vortex does not exist, but still an energy

cascade of some sort occurs. Observing figure 6, showing the velocity at time t = 115 for the

high resolution simulation, some salient features are apparent. The velocity plot is dominated
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Figure 6: Velocity at time t = 115 for simulation with 215 grid cells and pink noise source shows presence
of many small shocks and some large shocks.

by a few large shocks, and several smaller ones. Both the creation of large shocks and their

breakdown into smaller shocks, take place constantly, serving as an energy interaction and

transfer between large and small scales. A forcing that is active over a wide range of scales

ensures that both processes occur. Because of this, one would expect a certain degree of

backscatter, the process of energy being transported from small to larger scales.

While the energy spectra of the turbulent signals reveal useful information about the spectral

properties of the signal, nothing is revealed about the localisation in physical space. The

existence of a shock in the solution to the Burgers equation causes an energy spectrum

proportional to k−2. Methods, such as wavelet transforms, providing local information about

the energy at different wave numbers, would display high wave number peaking around the

largest shocks in the solution.

Conclusion

Simulations using the finite volume method for the stochastically forced Burgers equation have

shown favourable agreement with previously published results from a pseudo-spectral code.

The utilisation of MUSCL interpolation increases the accuracy of the simulation for a given

resolution. Very low resolution simulations, representing large eddy simulations without subgrid

modelling, showed that the presence of numerical diffusion is sufficient to serve as an eddy

viscosity. It is, however, believed that one should be able to get improved results utilising a

dedicated subgrid model.

Stochastic forcing with a white (k0) energy spectrum yields a resulting velocity with an

approximately k−1 energy spectrum, while a brown (k−2) forcing causes the typical k−2

spectrum, characteristic of the shocks. A pink (k−1) forcing spectrum creates a Kolmogorov

k−5/3 spectrum for the solution.



The evolution of kinetic energy exhibited steady state behaviour with large fluctuations,

attributed to the breakdown of larger shocks in the solution. The creation and breakdown of

shocks cause an energy interaction between large and small scales. Energy is transported from

large to smaller scales, but also, to a lesser degree, from small to large scales.
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