
Master of Science in Product Design and Manufacturing
March 2011
Tor Ytrehus, EPT

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Energy and Process Engineering

Transient Flow in Gas Transport

Joachim Dyrstad Gjerde

Problem Description
Large-scale gas transport I long pipelines is an important part of Norwegian and global petroleum
industry. Models based on the equations of fluid mechanics are used to provide instant values of
the properties in order to obtain maximum utilization of the pipelines. Much of the uncertainty of
these models is related to the transients, with start-up and shutdown of flow.
The paper seeks a self-developed model for calculation of the parameters in natural gas
transportation, by use of the method of characteristics. The aim of the model is to provide results
as accurate as possible compared to measured results done by Gassco.
The paper is done, first having a brief introduction to computational methods used today, and
developing-/expansion of existing model based on the method of characteristics. The paper is
finished with a comparison of the results to measured data, and a discussion of the model.

Assignment given: 19. October 2010
Supervisor: Tor Ytrehus, EPT

Abstract
Transport of natural gas to continental Europe and UK is a large portion of
Norwegian petroleum industry. The gas is mainly transported undersea in
large-scale transport pipelines. Amount of transported gas is currently close
to maximum capacity of the pipeline network, and as a consequence the gas
transport must be careful planned so that the optimal capacity can be utilized.

An important tool in this planning is the use of computational method to
predict the flow. Accurate computational tools is therefore of great value when
predicting the pressures and flow rates in transient cases such as opening of a
valve or shut down of a flow. This report is a part of a major research project
initiated by Gassco, for better flow-predictions models in natural gas pipelines.

A computational model based on the method of characteristics has been
developed. In this report the main focus is on the solution of the energy equation
and introduction of this equation to an already existing code solving for pressure
and mass flux. The method is verified using measured values of pressure at the
inlet.

Since much of the uncertainty is related to the transients, this report focuses
on transient cases. The old program solving the characteristic equations using an
isothermal assumption actually proves surprisingly accurate, and the additional
solution of temperature does not significantly improve the results. The method
however does not provide satisfactory results at the larger transients.

If large temperature gradients are imposed on the solver we see instabilities in
the flow and it affects the solution of the parameters. The Joule Thomson effect
that we have in our solution also results in a much higher drop of temperature
than what can be measured, in case of pressure drop at the inlet.

From the results we also see that the coefficient that is supposed to correct
friction factor for additional drag effects, also should be a function of pressure
and/or Reynold number. If such a correlation would provide more accurate
results in the transient has not been debated, but more accurate correlation of
friction depending on flow rate would probably give a more accurate result.

Also worth noticing is that the method does not have a clear convergence,
or reduction of error as the number of calculation points increases. It gives
smaller extreme values, but average error is not reduced significantly. This is
probably a result of the reduced effect of missing convective-term as the grid
has a finer resolution and time-step decreases and the effect of loss of velocity
in the characteristic becomes small.

As a simple tool for calculation of gas transport in pipelines, the isothermal
method of characteristics proves to give surprisingly accurate results. However,
for more complex systems, i.e. including the temperature and variable properties
such as compressibility and density, finite difference methods are more versatile.
Finite difference methods can be done implicit, giving a more stable solver, and
it’s simpler to account for some of the effects such as temperature etc.

iv

Samandrag
Transport av naturgass til det europeiske kontinentet og England er ein viktig
del av norsk petroleumsverksemd. Gassen vert i all hovudsak transportert frå
raffineri i store røyr som går under sjøen til ein mottakssentral på andre sida.
Den mengda som per i dag vert transportert via slike røyr er per i dag nokså
nære den maksimale kapasiteten røyrnettverket kan takle. Difor er planlegging
av slik gasstransport særs viktig, slik at ein kan utnytte røyra makismalt.

Ettersom ein ikkje kan måle undervegs i røyret og berre ved målestasjonar,
typisk ved start og ende av røyret, må ein nytte berekningsmodellar for å fastslå
straumen. Nøyaktige berekningsverkty er difor særs viktige når ein slik trans-
port skal planleggast i transiente tilfeller. Slike tilfeller er til dømes opning eller
stenging av ein ventil. Denne rapporten er ein del av eit større forskingsprosjekt
sett i gang av Gassco, som styrer den norske gasstransporten til utlandet, for
utarbeiding av betre modellar for å kunne fastslå straumen i gassrøyr.

Eit berekningsverkty basert på karakteristikkmetoden har vore utvikla. Verk-
tyet baserar seg på ein eksisterande kode, og hovudfokuset har her vore løysinga
av energilikninga, å få denne tilpassa ein allereie fungerande kode. Verktyet vert
verifisert ved å samanlikne trykk ved innløp med målte resultat.

Den største usikkerheita er knytt til transiente hendingar, og denne rap-
porten fokuserer på transiente tilfeller. Metoden syner særs god nøyaktigheit
ved relativt små endringar i straumen, men i sjølve transienten vert ikkje resul-
tata like gode. Den gamle koden tok utgangspunkt i konstant temperature, og
tilhøyrande eigenskapar. Og med rette grensetilhøve syner metoden seg å gi be-
tre resultat enn venta, og den nye koden med løysing av temperaturlikninga gjev
ikkje merkbart betre resultat. Store temperaturegradientar inni sjølve straumen
gjev derimot ustabilitetar og utslag på resultata. Joule Thomson effekten med-
fører også eit for høgt temperaturfall ved trykkfall på innløpet.

Ein kan og sjå at ein koeffisient som er satt for å korrigere for drag-effekter
i straumen i høve til friksjon burde vore ein funksjon av trykk og/eller masses-
trøm. Dersom denne hadde vore korrigert i høve til dei nemnte parameterane
ville ein kunne oppnå endå betre resultat. Om ei slik korrigering ville gitt betre
resultat i sjølve transienten er ikkje vurdert.

Verdt å merke seg er at ein ikkje ser ein klar samanheng mellom auka antal
nodar og feil. Ved å nytte ei betre oppløysing og fleire nodar, oppnår ein mindre
ekstremverdiar, men snittfeil er omtrent uforandra. Dette er truleg eit resultat
av at tapet av den konvektive termen i løysaren for trykk og massestrøm, ikkje
vert like signifikant ved høg oppløysing ettersom tidssteget vert mindre og tapet
av hastigheita i karakteristikken ikkje vert like stor.

Som eit enkelt verkty er den forenkla forma av karakteristikk metoden eit
enkelt og godt verkty, men for meir kompliserte modellar, der ein og tek tem-
peraturen med i utrekninga gjev ein differanse metode ein meir hendig metode,
der ein kan gjere metoden implisitt.

v

Contents

1 Introduction 1

2 Governing equations 3
2.1 Equation of state . 3
2.2 Continuity equation . 4
2.3 Conservation of momentum . 4
2.4 Conservation of energy . 4

3 Numerical methods for solving gas transport problems 6
3.1 Finite difference methods . 6
3.2 Method of characteristics . 8

3.2.1 Explicit Method of Characterisitcs(MOC) 8
3.2.2 Implicit Method of Characteristics(IMOC) 10

4 The Energy Equation 13
4.1 Derivation of the energy equation 13

4.1.1 Convective transport of energy 14
4.1.2 Viscous term . 15

4.2 The complete equation . 16
4.2.1 Classic form . 16
4.2.2 Enthalpy form of energy equation 17
4.2.3 A closer look on the enthalpy term 17

4.3 Dissipation term . 18
4.4 Overall heat transfer coefficient 18
4.5 Compressibility . 23

4.5.1 Standing Katz compressibility factor 24
4.5.2 Compressibility factor by Gopal 24
4.5.3 Dranchuck, Purvis and Robinson 26
4.5.4 Dranchuk and Abou-Kassem 27

4.6 Joule Thomson effect . 28
4.7 Dissipation . 31
4.8 Specific heat capacity . 31

vi

5 Solution of the energy equation 32
5.1 Introduction . 32
5.2 Characteristic representation of the energy equation 32

5.2.1 Integrating the characteristic representation 34
5.2.2 Newton Rhapson linearization 35

6 New program 37
6.1 Modification of the old code . 38

7 Simulations of the flow in a gas transport pipeline 40
7.1 Simulations done by Gassco . 40
7.2 Model of pipeline . 41
7.3 Boundary- and initial conditions 42

7.3.1 Steady state boundary conditions 42
7.3.2 Transient boundary conditions 42
7.3.3 Initial conditions . 43

7.4 Steady state simulations . 43
7.4.1 Initial Temperature Calculations 44

7.4.1.1 Contribution due to Joule Thomson effect 44
7.4.1.2 Dissipation . 44

7.4.2 Temperature calculations at steady state conditions . . . 45
7.4.3 Variables at steady state 46

7.5 Transients . 47
7.5.1 The old Matlab program 47
7.5.2 Simulations using the old program 48
7.5.3 Calculations using new program 50
7.5.4 Startup of flow . 56

7.6 Discussions of the results . 59
7.6.1 Errors . 61

7.7 Alternative solutions . 64
7.7.1 Solving the exact equation 64
7.7.2 Solving the enthalpy equation 64
7.7.3 Solving for energy, pressure and flow rate simultaneously 65

8 Conclusions 66

Bibliography 70

A Simulations 72

B Matlab code 79
B.1 main.m . 80
B.2 select_testcase.m . 93
B.3 calcInitialTemperatureDistribution.m 97
B.4 frictionfactor.m . 99
B.5 solver.m . 100
B.6 compressibilityfactor.m . 102

vii

B.7 overallHeatTranfer.m . 105
B.8 JouleThomsonCoefficientCalc.m 107
B.9 DranchukAbouKassemZ.m . 108
B.10 DranchukAbouKassemZderivative.m 110

viii

List of Figures

3.1 Numerical box scheme, evaluation at midpoints [17] 7
3.2 Characteristic curves in xt-plane 10
3.3 IMOC using central differences[3] 10

4.1 Generalized compressibility chart for different gases[22] 24
4.2 Standing Katz by Gopal . 25
4.3 Dranchuk & Abou Kasseem . 28
4.4 Joule Thomson Coefficient µJT for natural gas 30

6.1 Characteristic of energy equation 38

7.1 Simulation by Gassco . 40
7.2 Elevation of Kåstø Bokn section of Europipe II[17] 41
7.3 Temperature due to Joule Thomson 44
7.4 Dissipation effects on temperature 45
7.5 Steady state temperature . 46
7.6 Variables at steady state . 46
7.7 Pressure at inlet case I, using the old program 49
7.8 Pressure at inlet case II, using the old program 49
7.9 Error case I at the inlet using old program 50
7.10 Boundary conditions case I, 04.02.2009 51
7.11 Result calculated vs measured at the inlet 52
7.12 Calculated pressures and measured, case I 52
7.13 Temperatures case I . 53
7.14 Boundary conditions case II, 19.10.2007 54
7.15 Result calculated pressure vs measured pressure at inlet 55
7.16 Calculated pressures and measured, case II 55
7.17 Temperatures case II . 56
7.18 Boundary conditions case III, 19.10.2007 57
7.19 Result calculated inletpressure vs measured inletpressure 58
7.20 Calculated pressures and measured, case III 58
7.21 Temperatures case III . 59
7.22 Outlet temperature case I, different pipelines 61
7.23 Error case I using different number of nodes 62

ix

List of Tables

1.1 Norwegian gas production[23] . 1

4.1 Properties in Langelandsvik[17] 22
4.2 Overall heat transfer coefficient values 22
4.3 Standing Katz by Gopal[14] . 25

6.1 Entities fluid class in code . 38

7.1 Description of three pipeline situations 42
7.2 Convergence of error . 62

x

xi

Nomenclature

Nu = h·d
k Nusselt number

Pr =
cpµ
k Prandtl number

ReD = ρUD
µ Reynolds number

α pipeline angle

p̄ mechanical pressure

δij Diracs delta function

ε surface roughness

γ speed of sound [m/s](Chapter 3)

κ bulk viscosity

κg Iisothermal coefficient of compressibility

κr presudo reduced compressibility

λ viscosity multiplicator coefficient

µ dynamic viscosity

µΦ dissipation function

µJT Joule Thomson coefficient

ν gas velocity [m/s] (Chapter 3)

ρ density

ρr pseudo-reduced density

σij stress tensor

τij shear stress tensor

C+ positive characteristic

xii

C− negative characteristic

cp specific heat at constant pressure

cv specific heat at constant volume

douter outer diamter pipeline

ho outer heat transfer coefficient

kgas thermal conductivity gas

ksouil thermal conductivity soil

pc critial pressure

pr reduced pressure

rinner inner radius pipeline

ri inner radius i’th layer

router outer diameter pipeline

Sp stiffness matrix

Tc critical temperature

Tenv ambient temperature

Tgas temperature gas

Tpr pseudo-reduced temperature

Tr reduced temperature

UW,tot overall heat transfer coefficient

v volume (Chapter 4)

fi force vector

A pipeline area

a speed of sound (Chapter 3)

E total energy

e internal energy

EFF friction factor coefficient

g acceleration of gravity

xiii

h enthalpy

k thermal conductivity [W/mK]

M mass flow rate

M molecular weight (Chapter 4)

MSm3 million standard cubic metres

n molar density

n normal vector

p pressure

Q heat

q heat transfer rate

R specific gas contant

s entropy

T temperature

U 1-D velocity

V specific volume

W work

Z compressibility factor

xiv

Chapter 1

Introduction

Natural gas is becoming a larger portion of the petroleum sector, and is con-
sidered to play a more important role in the future of environmental friendly
energy supply. The total energy delivered by Norway in form of gas is equal
to eight parts of the total production of electricity, and covers approximately
15% of the total European gas consumption [23]. In the last year however the
estimates of existing reservoirs and resources have been downscaled, making the
future deliverance uncertain of Norwegian gas to the European mainland. One
could however assume that new search areas will be opened for test drilling
and that there still exists large undiscovered resources on Norwegian territory,
making transportation of gas to Europe an important business for Norway for
decades to come.

Gas is processed at refineries on shore and separated into natural gas and
LNG (liquefied natural gas). LNG is mainly produced at the Snøhvit facility,
and shipped to North America or South in Europe. A small portion of natural
gas is sold and used in Norway, but the main part is transported in large pipelines
to the European continent and the UK.

Norwegian gas production 2009
Export through pipelines 96,564 MSm3 93.6%

Sale in Norway 1,388 MSm3 1.3%
Reinjection 1,840 MSm3 1.8%

LNG 3,358 MSm3 3.3%
Total 103,160 MSm3 100%

* MSm3 stands for million standard cubic metres

Table 1.1: Norwegian gas production[23]

As seen from the table above produced gas at Norwegian continental shelf al-
ready have passed 100 Billion Standard Cubic metres pr year and is expected to
grow even further the next decade. Estimates vary from 105 to 130 billion Sm3.
The current transport capacity in the existing pipeline system is approximately

1

120 Billion Sm3, which means that the current use is close to the maximum
capacity and could pass the existing capacity in the years to come. This in-
creases the importance of optimal utilization of the existing pipeline system,
since investments in transport pipelines are capital intensive.

Parameters of gas transport, such as temperature, pressure and mass flux,
can be measured at metering stations. These metering stations are typically
placed at the inlet and the outlet of the pipeline, and the state of the gas in
between must rely on computational models. With almost maximum capacity
of the existing pipeline already used, the importance of planning of natural gas
transport becomes more important. The planning is done using computational
models based on basic equations of fluid mechanics. Accurate model that can
reproduce the flow is therefore of great value in the planning of gas transport.

This report is a part of a larger research project initiated by Gassco, where
the goal is to determine the weak sections of today’s computational models for
gas transport. If one better can determine the weak sections of the computa-
tional models, better simulators can be made, and better foresight and planning
of the gas transport can be done.

This report uses an already existing code written in the project assignment
‘Transient gas transport [13], based on the method of characteristics. The orig-
inal code will be expanded and also include the temperature. This involves
solution of the energy equation, and an extensively explanation of the energy
equation in gas transport will be given, and a final solution of the equation
that can be solved by the method of characteristics and included in the exist-
ing code. The previous code was based on the derivation done by Streeter and
Wylie [4] and therefore made a few simplifying assumptions. The main differ-
ence from the old program is the assumption of isothermal flow. As a result of
this assumption, wave speed, compressibility factor and density were previously
kept constant through the entire calculation, whereas in the new program these
properties become functions of both space and time. The simulations are done
on real cases, using the test section from Kårstø to Vestre-Bokn, which is a
12,2 km long section with metering stations at upstream and downstream ends.
Results from these metering stations will therefore be used in the validation of
the new program.

2

Chapter 2

Governing equations

The governing equations of the flow are based on the basic conservation laws
of fluid mechanics, and pipeline diameter is considered to be constant. The
equations for momentum and continuity has been derived in detail in [13], and
will not be given in detail. In general we have four equations governing the flow
in a pipeline

• Equation of state

• Continuity

• Equation of motion

• Energy equation

2.1 Equation of state
In addition to the conservation equations, an equation of state is also introduced.
Ideal gas law states that

pv = nRT (2.1)

Where n is can be related to number of molecules and v represents the volume.
By specific molar weight of the gas the term can be represented by its density,
ρ. This equation describes the behavior of gas under ideal conditions. In case
of extreme external factors, such as extreme temperatures and/or pressure, the
gas no longer behaves ideal and we introduce the real gas law

p = ρZRT (2.2)

where Z is a factor accounting for the change of the behavior of the gas under
non-ideal conditions. This factor is called compressibilityfactor, is dimensionless
and a function of pressure and temperature. By definition, the compressibility
factor can be defined as the actual occupied volume by a gas compared to volume
occupied under ideal conditions.

3

2.2 Continuity equation
The continuity or the preservation of mass states that as we follow a specific
mass it may change shape and volume, but the mass will remain unchanged.
Thus we write

D

Dt

ˆ
ρdV = 0

We convert this into a volume integral by the Reynolds’s transport theorem.
Since the total mass cannot change the integrand must be equal to zero, and
the equation can be written as

∂ρ

∂t
+

∂

∂uk
(ρuk) = 0 (2.3)

Which again can be expanded to

∂ρ

∂t
+ uk

∂

∂uk
(ρ) + ρ

∂

∂uk
(uk) =

Dρ

Dt
+ ρ

∂uk
∂uk

= 0 (2.4)

2.3 Conservation of momentum
General momentum equation is for a flow in three dimensions is given as

ρ
∂ui
∂t

+ ρuj
∂ui
∂uj

=
∂σij
∂xi

+ ρfi (2.5)

The resulting momentum equation for flow in a one-dimensional pipeline can
simplified to

∂U

∂t
+ U

∂U

∂x
= −1

ρ

∂p

∂x
− f U |U |

2D
− g · sin (α) (2.6)

where the term f , is a result of Darcy Weisbach’s [27] friction formula.

2.4 Conservation of energy
During transportation in a pipeline the energy and temperature of the gas
changes. This is due to several effects that will be discussed later in this paper,
and a final equation will be presented and solved. The general expression for the
internal energy of a fluid can be derived from the first law of thermodynamics,
and the result is

ρ
De

Dt
+ p

∂uj
∂xj

= µΦ +
∂

∂xj

(
k
∂T

∂xj

)
(2.7)

The terms of the energy equation is a result of

• Total change of internal energy

• Change of energy due to pressure effects

4

• Dissipation of momentum energy

• Heat convection

The energy equation will be extensively treated in chapter 4.

5

Chapter 3

Numerical methods for
solving gas transport
problems

The problem of gas transport in large pipeline cannot be resolved exactly. Flow
is three-dimensional, solution is depending on the Navier-Stokes equations and
the conservation of energy. The problem must be simplified and a numerical
procedure to solve the problem must be introduced. The equations are only
solved in one dimension, and the terms must be rewritten in order to fit our
one-dimensional approach. A number of methods to solve the problem of gas
transport can be utilized, such as finite element method, finite volume method
and finite difference methods. In addition we will also introduce the method of
characteristics, which will be the selected solver in this paper.

3.1 Finite difference methods
The most frequently used method for larger commercial simulators is the method
of finite differences. Langelandsvik’s thesis [17], describes such a finite difference
approach by the software called TGNet. A brief introduction of the simulator
will be given to highlight the finite difference approach.

To solve the conservation of mass and momentum, the equations can be
written as

∂u

∂t
+ A

∂u

∂x
= F (3.1)

where

A =
1

L

[
0 1

γ2 − ν2 2ν

]
, F =

[
0

−f ·m|m|
2dρ − 1

Lρgsinα

]

6

and u is given as
[
ρ
m

]
. γ and ν refers to speed of sound and gas velocity

respectively. In addition TGNet uses a linearization process for the previous
time step in order to obtain the values at the new. This is done so that the
solver avoids solving non-linear equations. The procedure will not be given in
detail her, but has been more extensively described by Langelandsvik. The
simulator then evaluates the variables at the new and previous time step, at the
midpoint,

(
xi+1/2, tj+1/2

)
.

Figure 3.1: Numerical box scheme, evaluation at midpoints [17]

Using the following relations

U
(
xi+1/2, tj

)
=

1

2
(U (xi+1, tj) + U (xi, t,j))

U
(
xi, tj+1/2

)
=

1

2
(U (xi, tj) + U (xi, t,j+1))

∂

∂t
U
(
xi+1/2, tj+1/2

)
=

1

4t
(
U
(
xi+1/2, tj+1

)
+ U

(
xi+1/2, t,j

))
∂

∂x
U
(
xi+1/2, tj+1/2

)
=

1

4x
(
U
(
xi+1, tj+1/2

)
+ U

(
xi, t,j+1/2

))
Together this forms an implicit method where each of the values at the next
timestep depends on the solution of the previous value of the next time step.
This means that the new values must be calculated at the exact same time
by means of some numerical method, i.e. LU-decomposition and the TDMA
algorithm. More detailed information on the mathematical procedures can be
found in Luskin[19].

7

3.2 Method of characteristics
A much used method to solve hyperbolic partial differential equations(PDE’s),
such as the Navier-Stokes equations, is the method of characteristics. The
method consists of reducing a partial differential equation to an ordinary dif-
ferential equation. This method has been quite popular for simple calculations,
both for gas flow problems and in the hydropower industry.

3.2.1 Explicit Method of Characterisitcs(MOC)
The method consists by combining the conservation equation and the momen-
tum equation. As a result, the partial differential equations (PDE’s) ’collapse’
and form ordinary differential equations (ODE’s) along its characteristics. The
one-dimensional Navier-Stokes equations yield

∂ρ

∂t
+
∂(ρU)

∂x
= 0 (3.2)

∂(ρU)

∂t
+ u

∂{ρU)

∂x
= −∂p

∂x
+

∂

∂x

[
µ
∂U

∂y

]
− ρg sinα (3.3)

Using a Darcy-Weissbach friction formula [4], for the loss due to friction inside
the pipe

∂U

∂t
+ U

∂U

∂x
= −1

ρ

∂p

∂x
− f U |U |

2D
− g sinα (3.4)

Moving all terms over to the left hand side to get an equation in the form of
f(x) = 0

1

ρ

∂p

∂x
+
∂U

∂t
+ U

∂U

∂x
+ f

U |U |
2D

+ g sinα = 0 (3.5)

The equation of conservation can be rewritten using the following relation be-
tween density and pressure

p = ρZRT, ρ =
p

ZRT
(3.6)

And introduction of the speed of sound

B2 =

(
∂p

∂ρ

)
T

(3.7)

As a result we can write the continuity equation in terms of dependent variables
p and U

∂p

∂t
+ U

∂p

∂x
+ ρB2 ∂U

∂x
= 0 (3.8)

The characteristics equation can be found by combining conservation equation
and momentum equation, using a multiplication factor λ.

8

1

ρ

∂p

∂x
+
∂U

∂t
+ U

∂U

∂x
+ f

U |U |
2D

+ g sinα+ λ

[
∂p

∂t
+ U

∂p

∂x
+ ρB2 ∂U

∂x

]
= 0 (3.9)

Rearrangement or the terms in equation 3.9, shows that the same equation can
be written as

λ

[
∂p

∂t
+

(
U +

1

ρλ

)
∂p

∂x

]
+

[
∂U

∂t
+
(
U + ρλB2

) ∂U
∂x

]
+ f

U |U |
2D

+ g sinα = 0

(3.10)
A closer look at the equation above reveals its similarity to the substantial
derivative, DADt = ∂A

∂t + dx
dt
∂A
∂x , where

Dx

Dt
= U +

1

ρλ
= U + ρλB2 (3.11)

Solving this with respect to λ, gives

λ = ± 1

ρB
. (3.12)

Inserting this back into equation 3.10gives

DU

Dt
± 1

ρB

Dp

Dt
+ f

U |U |
2D

+ g sinα = 0 (3.13)

Where
dx

dt
= U ±B (3.14)

Using a positive sign refers to the positive characteristic called C+, and the
negative characteristic, C−. These will be represented as curved lines in the
xt-plane.

A major restriction on the explicit method of characteristics, is the strict
conditions on the time step. The MOC suffers under the Courant-Friedrich-
Levy, or CFL condition which states that

u+ |B| ≤ 4x
4t

(3.15)

Meaning that the largest time step available is restricted by 4x/a+C, which in
some cases means that the time step becomes very small. This can be shown
graphically in figure 3.2

9

Figure 3.2: Characteristic curves in xt-plane

3.2.2 Implicit Method of Characteristics(IMOC)
As a remedy for the shortcomings concerning time steps for the explicit MOC,
implicit methods have been introduced. These methods are used in particular
to simulations and analysis of water hammers in hydropower and hydraulics.
As i result of an implicit approach, the CFL-condition no longer limits the time
step, and longer time steps can be made.

Using central differences
Afshar and Rohani[3] presented a solution of the implicit method of character-
istics for solution of waterhammers in hydropower systems, using central differ-
ences in a ”box” scheme. This method was used for the simplified equations,
not containing the convective term, where dt

dx = ±a becomes the characteristics
(a represents the speed of sound). The box scheme used is shown in figure 3.3.

Figure 3.3: IMOC using central differences[3]

10

Using that n represents a discrete time step we evaluate the characteristic
equations at n+ 1/2. For the C+ characteristic the equation becomes

dU

dt
+

1

ρa

dp

dt
+

f

2D
U |U |+ g sinα = 0 |n+1/2

Using central differences

dU

dt
=
Un+1
i+1 − Uin

4t

dp

dt
=
pn+1
i+1 − pni
4t

Weighting of the term representing friction loss

f

2D
U |U | =

f

2D

[
1

4
(U

n+1
i+1)

2
sign(U

n+1
i+1 + U

n
i) +

1

2
U
n+1
i+1 U

n
i sign(U

n+1
i+1 + U

n
i) +

1

4
(U

n
i)

2
sign(U

n+1
i+1 + U

n
i)

]

Results in the equation

Un+1
i+1 − Uin

4t
+

1

ρa

pn+1
i+1 − pni
4t

+
f

2D
[
1

4
(Un+1

i+1)2sign(Un+1
i+1 + Uni)

+
1

2
Un+1
i+1 U

n
i sign(Un+1

i+1 + Uni) +
1

4
(Uni)2sign(Un+1

i+1 + Uni)] + g sinα = 0 (3.16)

And similar for the C− characteristic. The sign function returns a positive sign
if the result is positive and a negative if negative and zero if result is zero

sign(A) =


1 A > 0

0 A = 0

−1 A < 0

By moving all the terms from the previous timestep to the right hand side of
the equation we get[

1 +
1

4

f

2D
Un+1
i+1 sign(Un+1

i+1 + Uni) +
1

2

f

2D
Uni sign(Un+1

i+1 + Uni)

]
Un+1
i+1

+
1

ρa
pn+1
i+1 = Uni +

1

ρa
pni −

1

4

f

2D
(Uni)2sign(Un+1

i+1 + Uni) + g sinα (3.17)

Which can be written in a matrix form as

Spxp = bp (3.18)

Where xp = [Ui,Ui+1,pi,pi+1]
n+1 and Sp is the matrix of unknowns, also

referred to as stiffness matrix, and bp is a vector of known values. Sp is then a

11

2x4 matrix and bp is a 2x1 vector. Since the equations are non linear, due to the
term Un+1

i+1 ·U
n+1
i+1 a linearization must be done to obtain a solution to the system

of equations. Using a Newton-Rhapson approach will result in the same set of
equations, replacing the x vector by4x, where4x = [4Ui,4Ui+1,4pi,4pi+1]
for the next timestep. The 4 meaning the difference between old and new
iteration in our Newton-Rhapson scheme.

Even though this method was derived for waterhammer analysis, one could
imagine a somewhat similar approach to the problem of gas transport, intro-
ducing a central difference scheme, and obtaining a similar stiffness matrix, but
different coefficients.

Solving the set of matrices
This method lead to either a set of 2x4 matrices that needs to be solved, since
each of the characteristics requires one boundary condition. The matrices can
be written as

Sp =

[
0 C1 0 D
C2 0 −D 0

]
Or we get a space matrix following the same form as the equation presented
above. The term D refers to 1/ρa and the C1 and C2 refers to

C1 = [1 +
1

2

f4t
2D

Umi+1sign(Umi+1 + Uni) +
1

2

f4t
2D

Uinsign(Umi+1 + Uni)]

C2 = [1 +
1

2

f4t
2D

Umi sign(Umi+1 + Uni) +
1

2

f4t
2D

Uni+1sign(Umi+1 + Uni)]

This can be solved by putting the 2x4 matrix into a system where the matrices
must be solved using the result of the previous matrix as the new boundary
condition. This requires a numerical procedure in order to solve. The other
solution creates a Nx2N and solve the single matrix by a numerical procedure.
A solution for this was presented Edenhofer and Schmitz [9].

12

Chapter 4

The Energy Equation

In the old program the energy equation was not solved, and we considered the
flow to be constant This will off course not be the case in real life since the
temperature and pressure changes with transients and as a other effects such as
hydrostatic pressure.

4.1 Derivation of the energy equation
The energy equation can be derived from the 1st law of thermodynamics. The
change of energy is equal to the sum of work done on the system and the heat
added.

dE = dW + dQ (4.1)

The term on the left hand side refers to the total change of energy of the
system, which consists of two parts; change of internal energy and change of
kinetic energy. In some cases potential energy is also considered, but in this
section the potential energy part is left out of the evaluation. Hence the energy
can be written as

E = e+
1

2
u2 (4.2)

Where e refers to the internal- or intrinsic energy, and u is denoting the velocity.
That means that we in a control volume V , have a total amount of energy equal
to ˆ

V

ρ(e+
1

2
u2)dV (4.3)

Then consider the work that the fluid does during an defined event, dW . Such an
event can be forces acting on the surface of an element. Forces can be pressure
and viscous forces. These forces are denoted as σij , and for the entire control
volume under consideration we write

ˆ
S

ujσijnidS (4.4)

13

By use of the Gauss theorem [6], this can be written in terms of volume integral
ˆ
V

∂

∂xi
(ujσij)dV (4.5)

We then consider the latter term on the right hand side, dQ, that refers to the
quantity of heat leaving the fluid. The heat leaves through the boundaries and
can be written as

´
S
q·ndS. Further investigation of this term and using the

Gauss law as we did prior, the added heat term becomes
ˆ
S

q · ndS =

ˆ
V

∂qj

∂xj
dV (4.6)

In addition we also have a term representing body forces, such as gravity and/or
magnetic force

´
V
u · ρfdV . The entire energy equation in terms of volume

integrals can be written as

D

Dt

ˆ
V

(ρe+
1

2
ρu · u)dV =

ˆ
V

∂

∂xi
(ujσij)dV +

ˆ
V

uj · ρfdV −
ˆ
V

∂qj
∂xj

dV (4.7)

We can also assume that the volume integral will be equal to zero, hence all the
terms inside the integral can also be assumed to be equal to zero.

4.1.1 Convective transport of energy
The total change of energy on our left hand side is

D

Dt

[
ρe+

1

2
ρujuj

]
=

∂

∂t
(ρe+

1

2
ρujuj) +

∂

∂xj

[
(ρe+

1

2
ρujuj)uk

]
(4.8)

Further evaluation of the time derivative gives

∂

∂t
(ρe+

1

2
ρujuj) = ρ

∂e

∂t
+ e

∂ρ

∂t
+ ρ

∂

∂t
(
1

2
ujuj) + (

1

2
ujuj)

∂ρ

∂t
(4.9)

Similarly for the latter term of equation 4.8
∂

∂xk

[
(ρe+

1

2
ρujuj)uk

]
= ρuk

∂e

∂xk
+ e

∂

∂xk
(ρuk) + (

1

2
ujuj)

∂

∂xk
(ukρ) + ρuk

∂

∂xk
(
1

2
ujuj)

(4.10)
For the term ∂/∂xk(ρuk) this can be replaced by −∂ρ/∂t in terms of continuity
giving

∂

∂xk

[
(ρe+

1

2
ρujuj)uk

]
= −e∂ρ

∂t
− (

1

2
ujuj)

∂ρ

∂t
+ ρuk

∂e

∂xk
+ ρuk

∂

∂xk
(
1

2
ujuj)

(4.11)
Summation of the results in equation 4.11 and 4.9 yields

D

Dt

[
ρe+

1

2
ρujuj

]
= ρ

∂e

∂t
+ ρuk

∂e

∂t
+ ρuj

∂uj
∂xj

+ ρujuk
∂uj
∂xk

(4.12)

14

And the total change of energy then becomes

DE

Dt
= ρ

∂e

∂t
+ρuk

∂e

∂t
+ρuj

∂uj
∂xj

+ρujuk
∂uj
∂xk

=
∂

∂xi
(ujσij)+uj ·ρfi−

∂qj
∂xj

(4.13)

4.1.2 Viscous term
For the viscous term, represented by forces acting on the surface, ∂

∂xi
(ujσij), it

can be noted that

∂

∂xi
(ujσij) = uj

∂σij
∂xi

+ σij
∂uj

∂xi
(4.14)

If we combine the first term in the viscous representation, and the body force
term we get

uj
∂σij
∂xi

+ uj · ρfi (4.15)

A closer look at the equation above reveals that it is equal to the right hand
side in the momentum equation multiplied by uj .

ρ
∂uj

∂t
+ρuk

∂uj

∂xk
=
∂σij
∂xi

+ ρfi (4.16)

The terms therefore cancel out, and we are left with

ρ
∂e

∂t
+ ρuk

∂e

∂t
= σij

∂uj
∂xi
− ∂qj
∂xj

(4.17)

The term σij which is the stress tensor, that we used in the derivation of the
general energy equation represents

σij = −pδij + τij (4.18)

Where p is the pressure, τij is the shear stress tensor and δij represents the
Kronecker delta. The relation for stress in a Newtonian fluid can be shown to
be equal to

σij = −pδij + λδij
∂uk
∂xk

+ µ

(
∂ui
∂xj

+
∂uj
∂xi

)
(4.19)

Making the first term on the right hand side of the energy equation equal to

σij
∂uk
∂xk

= −p∂uk
∂xk

+ λ

(
∂uk
∂xk

)2

+ µ

(
∂ui
∂xj

+
∂uj
∂xi

)
∂uk
∂xk

(4.20)

In terms of energy, the first term is the reversible work that the pressure gradient
does to the fluid, or in other words the energy due to compression. The two
latter terms together form the dissipation function, µΦ. The dissipation function
is a term representing the rate at which forces act on the fluid transforming
mechanical or kinetic energy into thermal energy. Hence we write

15

σij
∂uk
∂xk

= −p∂uk
∂xk

+ µΦ (4.21)

Where

Φ =
λ

µ

(
∂uk
∂xk

)2

+

(
∂ui
∂xj

+
∂uj
∂xi

)
∂uk
∂xk

Which gives us the energy equation with the heat flux term represented by
Fourier’s law, −qj = k ∂T∂xj

ρ
De

Dt
+ p

∂uj
∂xj

= µΦ− ∂qj
∂xj

(4.22)

4.2 The complete equation
Equation 4.22 refers to the general equation of energy for a fluid. This equation
must be modified to fit our requirements and simplifications. The equation that
we are interested in is an equation for a one-dimensional compressible flow in a
pipeline.

4.2.1 Classic form
Working with a term such as internal energy e, is rather confusing. Using a
more tangible parameter such as temperature can sometimes be more desirable.
Evaluation of the internal energy, since e = e(T, p) we expand the expression

De

Dt
=

(
∂e

∂T

)
ρ

DT

Dt
+

(
∂e

∂ρ

)
T

Dρ

Dt

Using the definition of specific heat capacity at constant volume cv = (∂e/∂T)ρ,
we get

De

Dt
= cv

DT

Dt
+

(
∂e

∂ρ

)
T

Dρ

Dt
(4.23)

The thermodynamic relation(
∂e

∂ρ

)
T

= − T
ρ2

(
∂p

∂T

)
ρ

+
p

ρ2

Is used to obtain the following

De

Dt
= cv

DT

Dt
+

[
− T
ρ2

(
∂p

∂T

)
ρ

+
p

ρ2

]
Dρ

Dt
(4.24)

Using the continuity equation enables us to insert the term −∂uj/∂xj instead
of the substantial derivative of ρ. This relation inserted back into the energy

16

equation that we have derived in the previous section leaves us with the following
expression

ρ

(
cv
DT

Dt
+

[
T

ρ

(
∂p

∂T

)
ρ

− p

ρ

]
∂uj
∂xj

)
+ p

∂uj
∂xj

= Φ +
∂

∂xj

[
k
∂T

∂xj

]
Which is the energy equation solved by TGNet

ρcv
DT

Dt
= −T

(
∂p

∂T

)
ρ

∂uj
∂xj

+ µΦ +
∂

∂xj

[
k
∂T

∂xj

]
(4.25)

4.2.2 Enthalpy form of energy equation
The enthalpy is given by h = e+ p/ρ. Starting with the continuity equation

Dρ

Dt
+ ρ

∂uk
∂xk

= 0

Rewriting this equation, and adding the pressure gives

p
∂uk
∂xk

= −p
ρ

Dρ

Dt

which is equal to the latter term on the left hand side on equation 4.22. Further
modifications of the term yields

−p
ρ

Dρ

Dt
= ρp

D

Dt

1

ρ
= ρ

[
D

Dt

(
p

ρ

)
− 1

ρ

Dp

Dt

]
(4.26)

Inserting the result back into the energy equation gives,

ρ
De

Dt
+ ρ

[
D

Dt

(
p

ρ

)
− 1

ρ

Dp

Dt

]
= ρ

D

Dt

(
e+

p

ρ

)
− Dp

Dt
= µΦ− ∂qj

∂xj
(4.27)

Where we recognize the term (e+ p/ρ) as enthalpy and we can write the expres-
sion the following way

ρ
Dh

Dt
− Dp

Dt
= µΦ− ∂qj

∂xj
(4.28)

4.2.3 A closer look on the enthalpy term
The definition of enthalpy states that the enthalpy is equal to the internal energy
and the work done on the fluid, h = e+pv. Since e = e(T, p), we can write that
h = h(T, p). For the substantial derivative of the enthalpy, we can write

Dh

Dt
=

(
∂h

∂T

)
p

DT

Dt
+

(
∂h

∂p

)
T

Dp

Dt
(4.29)

17

We have from the thermodynamic definitions that (∂h/∂T)p = cp, which is the
specific heat at constant pressure. Inserting this back into the left hand side of
the enthalpy equation gives the equation presented in [29]

ρ
Dh

Dt
− Dp

Dt
= ρcp

DT

Dt
−
(

1− ρ
(
∂h

∂p

)
T

)
Dp

Dt

In section 4.2.1 we introduced a term −T
(
∂p
∂T

)
ρ

∂uj
∂xj

, which is a term accounting

for an effect known as the Joule-Thomson effect. This effect is also accounted
for in the term above as (

1− ρ
(
∂h

∂p

)
T

)
Dp

Dt

This effect will be discussed in section 4.6

4.3 Dissipation term
The dissipation term, µΦ, accounts for the rate of which velocity is transformed
into thermal energy, resulting in an increase of heat. The dissipation is relatively
small, and can in some cases be neglected.

µΦ = λ

(
∂uk
∂xk

)2

+ µ

(
∂ui
∂xj

+
∂uj
∂xi

)
∂uj
∂xi

(4.30)

Where λ is associated with the volume expansion. And can be defined by a
quantity referred to as bulk viscosity, K. The bulk viscosity is defined by the
difference of pressure, p, versus mechanical pressure, p = 1

3 [σ11 + σ22 + σ33] in
the following relation

p− p = K
∂uk
∂xk

(4.31)

The dissipation term however must be simplified in order to fit our one-dimensional
solution. And by use of a turbulence model the dissipation term can be approx-
imated as

≈ ρ f

2 ·D
U3 (4.32)

The derivation of this term is tedious, and has not been done in this report.

4.4 Overall heat transfer coefficient
The heat conducted through the pipe wall to the surrounding environment can-
not, unlike the dissipation be neglected. This term may become significant in
particular if difference between gas and surrounding temperature is large. The
amount of heat transferred is dependent on the materials in the pipeline, and
the coating. It also depends on the exposure of the pipeline. If the pipeline is

18

exposed to water or soil, will significantly change the total heat transfer coeffi-
cient.

An expression for the overall heat transfer coefficient [10] is given as

Ui =
1

1
hi

+
∑ ri

ki
ln
(
ri
ro

)
+ ri

roho

(4.33)

This coefficient is defined by the following relation

q = UA4T (4.34)

The heat transferred from it’s surrounding environments is defined by the fol-
lowing three steps

• Surrounding heat to outer wall of pipe

• Heat conduction through the pipe walls

• Heat transfer from the pipe wall to the gas

Pipe wall to gas
In TGNet [17] it is referred to the formula of Dittus and Boelter [7] for compu-
tation of Nusselt number for the flow inside the pipeline

Nu = 0.023 ·Re0.8 · Prn (4.35)

where n have the following values

n =

{
0.4

0.3

heating

cooling
(4.36)

This equation is valid for fully turbulent flow in a smooth tube with 0.6 ≤ Pr ≤
100, and 2500 ≤ Red ≤ 1.25 · 106. Since by definition

Nu =
h · d
k

, Pr =
cpµ

k
, Re =

ρud

µ

Where

k refers to thermal conductivity

d refers to diameter

h refers to heat transfer coefficient

cp specific heat

µ kinematic viscosity

19

Surroundings to wall
Depending on the surroundings of the pipeline the wall of the pipeline will expe-
rience different exposure, and consequently different heat transfer coefficients.
The assumption is that we have three types of burial of the pipeline.

1. Exposure to seawater: The pipeline if completely exposed to seawater.

2. Shallow burial: The pipeline is buried in soil with the centre of the pipeline
deeper than the radius of the pipeline

3. Deep burial: The pipeline is buried deep in the soil.

Depending on the exposure, a different set of formulas must be used to obtain
a value for the heat transfer coefficient.

Exposed to seawater

In Langelandsvik’s thesis[17], when describing the heat transfer coefficient heat
transfer for a pipe exposd to water calculates the Nusselt number using the
following formula

Nu = 0.26 ·Re0.6 · Pr0.3 (4.37)
Where the Nusselt, Prandtl and Reynolds number is defined as above using
values for seawater. These values are to be used with respect to the film tem-
perature which is defined as the average temperature between pipewall and
seawater.

In a former masterthesis by Klock[15] a somewhat different approach to the
heat transfer coefficient of the outside pipe wall, where the total Nusselt number
is a combination of Nusselt number due to free convection such as buoyancy
effects and forced convection due to the velocity of the seawater.

Shallow burial

When the pipe is considered to be shallow buried, meaning that the depth or
the ceterline of the pipe does not go much deeper than the half diameter of
the pipeline. For this case we use the following correlation for the heat transfer
coefficient

ho =

2kzoil
douter

ln
(
x+
√
x2 − 1

) (4.38)

Where the definitions apply

ho outer heat transfer coefficient

ksoil thermal conductivity of soil

douter Outer diameter of pipeline

x 2Dcenter
douter

Dcenter Depth to center of pipe

20

Deep burial

If the pipeline is buried deeper than 3·douter
2 we consider the pipeline to be deep

buried and we introduce a different correlation for the heat transfer coefficient.
This coefficient is given by

houter =

2·ksoil
douter

ln (4·Dcenter/douter)
(4.39)

Using the same definitions as above.

Wall thermal resistance
When a pipe consists of several layers, it is convenient to use a general expression
for the thermal resistance through the entire wall. We start by writing the
Fourier’s law in cylindrical form

qr = −kAdT
dr

= −k(2πrL)
dT

dr
(4.40)

Integrating this from inner to outer gives

qr
2πL

ln

(
router
rinner

)
= k (Tinner − Touter) (4.41)

And the thermal resistance becomes

R =
ln (router/rinner)

2πkL
(4.42)

Since the terms that make up the area is cancelled in the total overall heat
transfer coefficient that we have presented in section 4.4, the equation if we
have several layers of pipeline coating is

Rwall =
∑
i

ri
ki
ln

(
router
rinner

)
(4.43)

Discussions of the heat transfer term
In order to obtain values for the overall heat transfer coefficient we need values
for conductivity of seawater, soil, pipewalls and gas. Values for these parameters,
except thermal conductivity of gas, were found in Langelandsvik [17] and Klock
[15]. Thermal conductivity for gas is a rather complex property, and no simple
method was found. Values for pure gas is available to a larger extent[18] and
since the gas composed mainly of methane, values for pure methane has been
approximated to temperature and pressure.

In the analysis Langelandsvik used the following values

21

Inner diameter 1.00 m

Wall thickness 0.001 m
Ambient temperature 5 oC

Ground conductivity 2.0 W
mK

Sea water velocity 0.1 m
s

Table 4.1: Properties in Langelandsvik[17]

Performing a test of the total heat transfer coefficient with the following
properties for gas:

• Gas flow rate: 615.92
[
kg
s

]
• Pressure: 185.4776 [bar]

• Heat capacity: 1683.9
[

J
kgK

]
• Viscosity: 1.9686 · 10−5

[
N
m2s

]
• Seawater thermal conductivity [2] 0.580

[
W
mK

]
• Gas conductivity [18] 0.0519

[
W
mK

]
And the results of this test yields

Dept Ambient
temper-
ature

UW,tot
thin
pipe

UW,tot
coated
pipe

UW,totfrom
[17]

3.0 5oC 1.6101 1.6313 1.61
2.0 5oC 1.9242 1.9545 1.94
1.5 5oC 2.2332 2.2741 2.27
1.0 5oC 2.8867 2.9554 3.03
0.75 5oC 4.1604 4.6316 4.15
0.501 5oC 62.9420 22.9521* 59.35

Exposed to
water

5oC 217.4477 30.2882 79.05

* depth of centreline is 1mm more that radius of the coated pipe

Table 4.2: Overall heat transfer coefficient values

From table 4.2 it can be seen that values for deep burial fits well to values
from [17]. When pipeline is exposed to seawater on the other hand the results
deviate significantly from values calculated by TGNet. A test using the formula
for forced convection proposed by Klock [15] , first given by Churchill-Bernstein

22

[5] , neglecting the free convection

Nuforced = 0.3 +
0.62Re

1/2
d0
Pr1/3[

1 + (0.4/Pr)
2/3
]1/4

[
1 +

(
Redo

282000

)5/8
]4/5

(4.44)

The values of used in calculation of the different values should be calculated
based on the film temperature, given as the average of sea temperature and wall
temperature. The resulting Nusselt number based on this formula is NuCB =
429.96 and the simpler equation used by TGNet gives NuTGNet = 394.33.
Prandtl number for seawater became 13.13, which is as expected. For calcu-
lations later the results from [17]have been used.

4.5 Compressibility
The compressibility is related to the volume expansion of the gas, dv. For a
single phase situation , the volume can be considered a function of pressure and
temperature [22], v = v (p, T), and the differential becomes

dv =

(
∂v

∂T

)
p

dT +

(
∂v

∂p

)
T

dp (4.45)

The two differentials can be related to two thermo dynamical properties, 1
v

(
∂v
∂T

)
p

and − 1
v

(
∂v
∂p

)
T
which are called coefficient of volume expansion and isothermal

compressibility, respectively. Volume expansion term expresses the rate at which
a volume expands with temperature given a constant pressure. The isothermal
compressibility refers to the rate of change of volume doe to change of pressure.
This value will always be positive, meaning that the increase of pressure will
always decrease the substances volume.

Considering the isothermal compressibility

κ = −1

v

(
∂v

∂p

)
T

(4.46)

And introduction of the real gas law in equation 2.2 to the term above gives

κg = − p

ZRT

(
∂

∂p

(
ZRT

p

))
T

=
1

p
− 1

Z

(
∂Z

∂p

)
T

(4.47)

Her we have introduced the subscript g to the isothermal compressibility. Trube
[26] introduced the concept of pseudo reduced compressibility, κr as a function
of reduced pressure

κr = κgpc =
1

pr
− 1

Z

(
∂Z

∂pr

)
Tr

(4.48)

This relationship gave a direct connection to Standing Katz compressibility
factor [25] as a function of reduced pressure and pressure.

23

4.5.1 Standing Katz compressibility factor
The compressibility factor accounts for the rate at which the gas volume is differ-
ent from the ideal gas state. The compressibility factor is a function of reduced
pressure, pr and reduced temperature, Tr. Standing and Katz [25] showed that
the compressibility curve of several different gasses coincide closely when plot-
ted along the same axes. This is also known as the principle of corresponding
states. The resulting plot is shown below.

Figure 4.1: Generalized compressibility chart for different gases[22]

4.5.2 Compressibility factor by Gopal
Gopal [14] found a popular straight line fit for the Standing-Katz chart in the
form

Z = pr (ATr +B) + CTr +D (4.49)

Where the values of the factors A,B,C and D where different depending on the
reduced pressure and temperature. This gave a set of 13 equations presented
below

24

Reduced
pressure
range,[pr]

Reduced
temperature
range, [Tr]

Resulting equation

0.2 to 1.2 1.05 to 1.2 pr (1.6643Tr − 2.2114)− 0.3647Tr + 1.4385
1.2 to 1.4 pr (0.5222Tr − 0.8511)− 0.0364Tr + 1.0490
1.4 to 2.0 pr (0.1291Tr − 0.2988) + 0.0007Tr + 0.9969
2.0 to 3.0 pr (0.0295Tr − 0.0825) + 0.0009Tr + 0.9967

1.2 to 2.8 1.05 to 1.2 pr (−1.357Tr + 1.4942) + 4.6315Tr − 4.7009
1.2 to 1.4 pr (0.1717Tr − 0.3232) + 0.5869Tr + 0.1229
1.4 to 2.0 pr (0.0984Tr − 0.2053) + 0.0621Tr + 0.8580
2.0 to 3.0 pr (0.0211Tr − 0.0527) + 0.0127Tr + 0.9549

2.8 to 5.4 1.05 to 1.2 pr (−0.3278Tr + 0.4752) + 1.8223Tr − 1.9036
1.2 to 1.4 pr (−0.2521Tr + 0.3871) + 1.6087Tr − 1.6635
1.4 to 2.0 pr (−0.0284Tr + 0.0625) + 0.4714Tr − 0.0011
2.0 to 3.0 pr (0.0041Tr + 0.0039) + 0.0607Tr + 0.7927

5.4 to 15.0 1.05 to 3.0 pr (0.711 + 3.66Tr)
−1.4667 − 1.637

0.319Tr+0.522 + 2.071

Table 4.3: Standing Katz by Gopal[14]

The resulting plot for Gopals best fit for Standing Katz compressibility factor
is shown in figure 4.5.2

Figure 4.2: Standing Katz by Gopal

25

4.5.3 Dranchuck, Purvis and Robinson
A different method presented by Mattar & Brar et al. [21] originally developed
by Dranchuk, Purvis and Robinson [24], was based on a Benedict-Webb-Rubi
type of equation. This method is based on a best-fit approach to the factors of
Standing Katz. The Z-correlation is given by

Z = 1+

[
a1 +

a2

Tpr
+

a3

T 3
pr

]
ρr+

[
a4 +

a5

Tpr

]
ρ
2
r+

[
a5a6

Tpr

]
ρ
5
r+

[
a7

T 3
pr

ρ
2
r

(
1 + a8ρ

2
r

)
EXP

(
−a8ρ2r

)]
(4.50)

A1=0.31506237 A2=-1.0467099 A3 = -0.57832729
A4 = 0.53530771 A5 = -0.61232032 A6 = -0.10488813
A7 = 0.68157001 A8 = 0.68446549
And the value of the reduced gas density, ρr is given by the relation

ρr =
0.27ppr
Z · Tpr

(4.51)

This method is applicable under some restrictions for temperature and pressure.
The restrictions are

1.05 ≤ Tpr ≤ 3.0

0.2 ≤ ppr ≤ 3.0

Differentiating this term with respect to temperature, which is necessary for the
calculation of the Joule Thomson term in the next section, we get(

∂Z

∂T

)
p

=

(
∂Z

∂Tpr

)
ppr

(
∂Tpr
∂T

)
(4.52)

The derivative of reduced value is simple and gives (∂Tpr/∂T) = 1/Tcritical, and
since Z = Z (Tpr,ρr (Tpr, ppr)) we get

(
∂Z

∂Tpr

)
ppr

= a1ρ
′
r + a2

(
ρ′r −

ρr
Tpr

)
1

Tpr
+ a3

(
ρ′r − 3

ρr
Tpr

)
1

T 3
pr

+2a4ρrρ
′
r + a5

(
2ρrρ

′
r −

ρ2r
Tpr

)
1

Tpr
+ a5a6

(
5ρ4rρ

′
r −

ρ2r
Tpr

)
1

Tpr
+

a7ρr

[
2ρ′r −

ρr
Tpr
− 2a8ρ

′
rρ

2
r

]
e−a8ρ

2
r

Tpr
+ a7a8ρ

3
r

[
4ρ′r −

ρr
Tpr
− 2a8ρ

′
rρ

2
r

]
e−a8ρ

2
r

Tpr
(4.53)

The term ρ′r = (∂ρr/∂Tpr)ppr which becomes

ρ′r ≡
(
∂ρr
∂Tpr

)
ppr

=

(
∂

∂Tpr

)
ppr

(
0.27ppr
ZTpr

)

= −0.27 · ppr
ZT 2

pr

− 0.27 · ppr
Z2Tpr

(
∂Z

∂Tpr

)
ppr

= −ρr

(
1

Tpr
+

1

Z

(
∂Z

∂Tpr

)
ppr

)
(4.54)

26

4.5.4 Dranchuk and Abou-Kassem
This 8-factor model also gave the background for an 11-factor model developed
by Dranchuk and Abu-Kassem [8] of the form

Z = 1 +

[
a1 +

a2
Tpr

+
a3
T 3
pr

+
a4
T 4
pr

+
a5
T 5
pr

]
ρr +

[
a6 +

a7
Tpr

+
a8
T 2
pr

]
ρ2r

−a9
[
a7
Tpr

+
a8
T 2
pr

]
ρ5r + a10

(
1 + a11ρ

2
r

) ρ2r
T 3
pr

e−a11ρ
2
r (4.55)

where ρris given the same way as above.
a1 = 0.3262 a2 = −1.0700 a3 = −0.5339 a4 = 0.01569
a5 = −0.05165 a6 = 0.5475 a7 = −0.7361 a8 = 0.1844
a9 = 0.1056 a10 = 0.6134 a11 = 0.7210

This method is applicable for a larger pressure range

0.2 ≤ ppr ≤ 30

1.0 ≤ Tpr ≤ 3.0

Its derivative with respect to Tpr becomes(
∂Z

∂Tpr

)
ppr

= a1ρ
′
r + a2

(
ρ′r −

ρr
Tpr

)
1

Tpr
+ a3

(
ρ′r − 3

ρr
Tpr

)
1

T 3
pr

+

a4

(
ρ′r − 4

ρr
Tpr

)
1

T 4
pr

+a5

(
ρ′r − 5

ρr
Tpr

)
1

T 5
pr

+2a6ρrρ
′
r+a7ρr

(
2ρ′r −

ρr
Tpr

)
1

Tpr
+

+2a8ρr

(
ρ′r −

ρr
Tpr

)
1

T 2
pr

−a7a9ρ4r
(

5ρ′r −
ρr
Tpr

)
1

Tpr
−a8a9ρ4r

(
5ρ′r −

ρr
Tpr

)
1

T 2
pr

+

a10ρr

[
2ρ′r − 3

ρr
Tpr
− 2a11ρ

2
rρ
′
r

]
e−a11ρ

2
r

T 3
pr

+a10a11ρ
3
r

[
4ρ′r − 3

ρr
Tpr
− 2a11ρ

2
rρ
′
r

]
e−a11ρ

2
r

T 3
pr

(4.56)
Where the definition of reduced density,ρ′r applies as before. The resulting

plot for the compressibilityfactor by Dranchuk and Abou-Kassem is presented
in figure 4.5.4

27

Figure 4.3: Dranchuk & Abou Kasseem

The numerics of the solution of Dranchuk and Abou Kassem’s correlation,
is solved in a similar matter as done by [12], where the solution is solved with
respect to ρrZTr and a Newton type of linearization. The compressibility factor
is then found from the relation of reduced density.

Z =
0.27pr
ρrTr

(4.57)

4.6 Joule Thomson effect
The definition of the Joule-Thomson effect states that

µJT =

(
∂T

∂p

)
h

(4.58)

As presented the Joule Thomson coefficient is defined in terms of dependent
variables and can therefore itself be considered a property[22]. This coefficient
can also be related to the form

µJT = − 1

cp

(
∂h

∂p

)
T

(4.59)

This can be shown by following(
∂h

∂p

)
T

(
∂p

∂T

)
h

(
∂T

∂h

)
p

= −1

28

(
∂h

∂p

)
T

= − 1(
∂p
∂T

)
h

(
∂T
∂h

)
p

= −
(
∂T

∂p

)
h

(
∂h

∂T

)
p

(4.60)

Since we define the specific heat capacity with constant pressure as cp = (∂h/∂T)p
we can write

µJT =

(
∂T

∂p

)
h

= − 1

cp

(
∂h

∂p

)
T

(4.61)

In order to obtain a good relation for the Joule-Thomson coefficient we need
to introduce some basic fundamental equations of thermodynamics. The Tds
equation [22] gives

Tds = du+ pdv (4.62)

and since enthalpy is defined as

h = u+ pv (4.63)

It’s derivative can be written as

dh = du+ pdv + vdp (4.64)

or dh− vdp = du+ pdv, and inserted back into equation 4.62 gives

dh = Tds+ vdp (4.65)

Our result can then be divided by dp at constant temperature T(
∂h

∂p

)
T

= T

(
∂s

∂p

)
T

+ v (4.66)

Using one of Maxwells relations
(
∂s
∂p

)
T

= −
(
∂v
∂T

)
p
we get(

∂h

∂p

)
T

= −T
(
∂v

∂T

)
p

+ v (4.67)

Introducing the equation for derivative of enthalpy 4.29, multiplied by dt

dh =

(
∂h

∂p

)
T

dp+

(
∂h

∂T

)
p

dT =

(
∂h

∂p

)
T

dp+ cpdT (4.68)

And from the equation we recognize the term (∂h/∂p)T so that we can write the
equation as

dh =

[
−T

(
∂v

∂T

)
p

+ v

]
dp+ cpdT (4.69)

Dividing the equation above with dp and assuming constant enthalpy we obtain(
∂T

∂p

)
h

=
1

cp

[
T

(
∂v

∂T

)
p

− v

]
(4.70)

29

Which we recognize from equation 4.58. v in this expression represents the
specific volume of the fluid, denoted by

[
m3
/kg
]
, and is the equivalent of ρ−1.

We have the equation for a real gas given by

p = ρZRT (4.71)

Hence the expression for ρ−1 becomes

v =
1

ρ
=
ZRT

p
(4.72)

Inserting this into equation4.70(
∂T

∂p

)
h

=
1

cp

[
T

(
∂

∂T

(
ZRT

p

))
p

− ZRT

p

]

And since Z = Z (T, p) and the derivative in the first term cancels the second
term we are left with [20]

µJT =

(
∂T

∂p

)
h

=
RT 2

pcp

(
∂Z

∂T

)
p

(4.73)

Results of the Joule Thomson coefficient
The 11-factor model by Dranchuk-AbouKassem has been used to calculate the
Joule Thomson coefficient.

Figure 4.4: Joule Thomson Coefficient µJT for natural gas

The results shows similarities to results obtained by [20], but no verification
of the term is been done.

30

4.7 Dissipation
in order to obtain a value for the loss of energy as a result of dissipation, we
assumed the dissipation function to be

µΦ ' ρ f

2D
U3 (4.74)

In this term, f represents the friction factor found by the famous equation of
Colebrook and White [27]

1√
f

= −2.0 · log
(

ε

3.7 ·D
+

2.51

Re
√
f

)
(4.75)

Which must be solved by an iterative approach since the term 1/
√
f is represented

on both sides of the equation. However, the results of the frictional loss under
steady state conditions of the pipeline shows that the numeric’s have a tendency
of over-predicting the loss of pressure due to the wall friction, and for TGNet
[17] the friction factor is adjusted with a factor that is dependent on the pipeline,
and other parameters.

1√
f

= −2.0 · log
(

ε

3.7 ·D
+

2.51

Re
√
f

)
· EFF (4.76)

The term EFF is supposed to account for additional drag effects. As the term
increases the friction factor is reduced. And dependent on the pipeline and
different cases, the term varies between

0.95 ≤ EFF ≤ 1.05 (4.77)

4.8 Specific heat capacity
In order to solve the equations one needs a correlation for specific heat capacity
of gas. The correlations used is the same as the one presented in TGNet[17].For
isobaric heat capacity one uses,

cp = 1.432 · 104 − 1.045 · 104 · SG+ 3.255 · T + 10.01 · SG · T + EXP (4.78)

Where EXP is defined as

EXP =
15.69 · 10−2 · p1.106 · e−6.203·10−3

SG
(4.79)

A correlation for ratios of specific heat is also given

cv
cp

= 1.03836− 0.000115 +
5.61− 0.002 · T

M
(4.80)

However, these values are given in unknown units and according to [1] , a gen-
eral,multiplication factor of ∼ 0.16 gives an accurate results in terms of SI-units.

31

Chapter 5

Solution of the energy
equation

5.1 Introduction
The energy equation must be solved along with the corresponding momentum
and pressure equations. These equations however, do not have the same char-
acteristic, and therefore cannot be solved at the same place and time simultane-
ously. The characteristics of the characteristic equations derived previously are
equal to the wavespeed. In the gas-transport problem we have subsonic flow,
and B � U . Therefore in a graphic representation, we se as follows.

Therefore an interpolation must be done in order to obtain the result at the
correct time or distance. We also see that 4x − B4t � 4x − U4t. A closer
look at the temperature reveals that ∂p/∂t is rather small, and a remedy for the
interpolation problem, we can use the fact that the energy equation does not
indeed need to be resolved at each time step.

5.2 Characteristic representation of the energy
equation

The enthalpy equation stated

ρcp
dT

dt
−
(

1− ρ
(
∂h

∂p

)
T

)
dp

dt
= φ− 4 · UW,tot

D
(T − Tenv) (5.1)

Rewriting the equation using φ = ρ f
2·DU

3, −ρ
(
∂h
∂p

)
T

= ρcpµJT , results in

ρcp
dT

dt
− (1 + ρcpµJT)

dp

dt
= ρ

f

2 ·D
U3 − 4 · UW,tot

D
(T − Tenv) (5.2)

32

In order to obtain a stable solution we assume constant density and specific heat
over the integration. And we can therefore multiply both sides of the equation
by 1

ρcp
which gives us

dT

dt
−
(

1

ρcp
+ µJT

)
dp

dt
=

1

2 · cp
f

D
U3 − 1

ρcp

4 · UW,tot
D

(T − Tenv) (5.3)

Then, since this is represented in a characteristics manner, the equation holds
along dx

dt = U . Therefore, by multiplying the equation by dt = dx
U we get

dT −
(

1

ρcp
+ µJT

)
dp =

1

2 · cp
f

D
U3 dx

U
− 1

ρcp

4 · UW,tot
D

(T − Tenv)
dx

U
(5.4)

If we then consider the right hand side of our equation
1

2 · cp
f

D
U3 dx

U
−

1

ρcp

4 · UW,tot

D
(T − Tenv)

dx

U
=

1

2 · cp
f

D
U2dx−

1

ρcp

4 · UW,tot

D

1

U
(T − Tenv) dx

(5.5)
Since U and ρ can be written in terms of dependent variables T , M and p, using
the definitions of velocity and equation of state of real gas

U =
M

ρA

ρ =
p

ZRT
The dissipation term on the right hand side then becomes

1

2 · cp
f

D
U2dx =

1

2 · cp
f

D

(
M

ρA

)2

dx =
(ZRT)

2

2 · cp
f

DA2
· M

2

p2
dx (5.6)

And the heat transfer term can be written as
1

ρcp

4 · UW,tot
D

1

U
(T − Tenv) dx =

4

ρcp

UW,tot
D

ρA

M
(T − Tenv) dx

=
4

cp

A

D

UW,tot
M

(T − Tenv) dx =
1

cp

UW,tot
M

(T − Tenv)πDdx (5.7)

On our left hand side we have the term

dT −
(

1

ρcp
+ µJT

)
dp

which by insertion of dependent variables p and T , becomes

dT −
(
ZRT

pcp
+ µJT

)
dp = dT − ZRT

cp

dp

p
− µJT dp

And we then end up wit ha final equation

dT −
(
ZRT

pcp
+ µJT

)
dp =

1

2

(ZR)2

cP
·
f

DA2
·
T 2

p2
M2dx−

1

cp

UW,tot

M
(Tgas − Tenv)πDdx (5.8)

Where we have the Joule Thomson coefficient represented with dp.

33

5.2.1 Integrating the characteristic representation
Taking all terms over to the left hand side setting the equation equal to zero
gives

dT −
(
ZRT

pcp
+ µJT

)
dp−

1

2

(ZR)2

cP
·

f

DA2
·
T 2

p2
M2dx+

1

cp

UW,tot

M
(Tgas − Tenv)πDdx = 0

(5.9)
This equation is then integrated along it’s characteristic dx

dt = U , from point A
to point P .
ˆ P

A
dT −

ˆ P

A

ZRT

cp

dp

p
−
ˆ P

A
µJT dp−

ˆ P

A

[
1

2

(ZR)2

cP
·

f

DA2
·
T 2

p2
M2

]
dx+

ˆ P

A

[
1

cp

UW,tot

M
(Tgas − Tenv)πD

]
dx = 0

(5.10)
The first term is straight forward to integrate. For the other terms simplifica-
tions mut be done. We have the following situation, as

Z = Z(T, p) which means that Z is a function of both temperature and pressure
and will therefore change along the pipe.

cp = cp (T, p,Mw) so heat capacity is also a function of the

µJT = µJT

(
T, cp, p, (∂Z/∂T)p

)
and will as a consequence change along the slope

UW,tot = UW,tot (U, burial, .ρ, µ, cp) The overall heat transfer coefficient depends
on velocity, gas state and pipeline situation.

The average value of T and p is used, and the two latter terms is written as
ˆ P

A

[
1

2

(ZR)2

cP
·

f

DA2
·
T 2

p2
M2dx

]
dx =

1

2

(ZavgR)2

cP,avg
·

f

DA2
·
(
TP + TA

pP + pA

)2

·
(
MP +MA

2
·
∣∣∣∣MP +MA

2

∣∣∣∣)4x
and ˆ P

A

[
1

cp

UW,tot

M
(Tgas − Tenv)πDdx

]
dx =

2

cp,avg

UW,tot

MP +MA
(Tgas − Tenv)πD4x

On our left han side we have

dT − ZRT

cp

dp

p
− µJT dp

Which shall be integrated from A to P.
ˆ P

A
dT−

ˆ P

A

ZRT

cp

dp

p
−
ˆ P

A
µJT dp = (TP − TA)−

ZRTavg

cp
ln

(
pP

pA

)
−µJT (pP − pA) (5.11)

Here we have used the assumption that T is taken as the average value in the
second term, and that the Joule Thomson coefficient is the is the coefficient
based on average values

µJT ≡
RT 2

avg

pavgcp

(
∂Z

∂T

)
p

(5.12)

And the total expression for the energy equation becomes

(TP − TA)−
ZavgR (TP + TA)

2 · cp
ln

(
pp

pA

)
− µJT (pp − pA)

34

−
1

2

(ZavgR)2

cp,avg
·
f

DA2
·
(
TP + TA

pp + pA

)2

·
(
MP +MA

2

)2

4x+
2

cp,avg

UW,tot

MP +MA

(
TA + TP

2
− Tenv

)
πD4x = 0

(5.13)
Her we have used Tgas = Tavg.

5.2.2 Newton Rhapson linearization
Newton Rhapson linearization is a method used to solve equations of the form

f (x) = 0

The method is described in the project, and can be found in the litterature [16].
For a single equation system, the solution can be written as

xn+1 = xn −
f(xn)

f ′(xn)

Which means that we have to obtian a derivative of equation 5.13 to obtain the
Newton-linearized form the equation. The derivative is found with respect to
TP . The first two terms in the expression is rather straight forward to take it’s
derivative. The latter two terms becomes

d

dTP

[
1

2

(ZavgR)
2

cp,avg
· f

DA2
·
(
TP + TA
pp + pA

)2

·
(
MP +MA

2
·
∣∣∣∣MP +MA

2

∣∣∣∣)4x
]

=
(ZavgR)

2

cp,avg
· f

DA2
·
(
TP + TA
pp + pA

)
·
(
MP +MA

2
·
∣∣∣∣MP +MA

2

∣∣∣∣)4x · 1

pp + pA

=
(ZavgR)

2

cp,avg
· f

DA2
· TP + TA

(pp + pA)
2 ·
(
MP +MA

2
·
∣∣∣∣MP +MA

2

∣∣∣∣)4x
The value of Zavgis then said to be constant, and the term ∂Z

∂T is considered to
be negliglible. The heat transfer term becomes

2

cp,avg

UW,tot
MP +MA

(
TA + TP

2
− Tenv

)
πD4x =

1

cp,avg

UW,tot
MP +MA

πD4x

Derivation of the Joule-Thomson term is not so straight-forward as the other
terms

∂µJT
∂Tp

=
∂µJT
∂Tavg

∂Tavg
∂Tp

=
RTsvg
pcp

(
∂Z

∂T

)
+
RT 2

avg

2pcp

(
∂2Z

∂T 2

)
(5.14)

but if we consider the last term to be negligible due to the term
(
∂2Z
∂T 2

)
, the

derivative of the Joule Thomson coefficient becomes
∂µJT
∂Tp

=
RTsvg
pcp

(
∂Z

∂T

)
p

(5.15)

In the equation above Z, cp, T and µJT are kept as constant. These values can
be calculated by using average values, i.e.

35

T = Tavg = 1
2 (TP + TA)

p = pavg = 1
2 (pP + pA)

cp = cp,avg = cp (Tavg, pavg)

Z = Z (Tavg, pavg)

µJT = µJT (Tavg, pavg, cp,avg)

The functional derivative with respect to Tp then becomes

f ′(Tp) ≡ Tp −
ZavgR

2 · cp
ln

(
pp

pA

)
−
∂µJT

∂Tp
(pp − pA)

−
(ZavgR)2

cp,avg
·

f

DA2
·
TP + TA

(pp + pA)2
·
(
MP +MA

2

)2

4x+
1

cp,avg

UW,tot

MP +MA
πD4x = 0 (5.16)

Hence the final form of the equation we want to solve becomes

T
n+1
p = T

n
p −

(TP − TA)− ZavgR(TP+TA)
2·cp ln

(
pp
pA

)
− µJT (pp − pA)

Tp −
ZavgR

2·cp ln
(
pp
pA

)
− ∂µJT

∂Tp
(pp − pA)

...

....
− 1

2

(ZavgR)2

cp,avg
· f

DA2 ·
(
TP+TA
pp+pA

)2
·
(
MP+MA

2 ·
∣∣∣MP+MA

2

∣∣∣)4x+ 2
cp,avg

UW,tot
MP+MA

(
TA+TP

2 − Tenv
)
πD4x

− (ZavgR)2

cp,avg
· f

DA2 ·
TP+TA

(pp+pA)2
·
(
MP+MA

2 ·
∣∣∣MP+MA

2

∣∣∣)4x+ 1
cp,avg

UW,tot
MP+MA

πD4x

(5.17)

36

Chapter 6

New program

In the previous program only pressure and flow rate were solved, based on
isothermal assumption. The isothermal assumption and simplification of the
equations resulted in that variables such as density, compressibility factor, speed
of sound and other were kept constant. The equations also neglected the convec-
tive terms, of pressure and flow rate. The new program also solves the energy
equation together with the characteristic equations for pressure and flow rate.
Therefore the flow can no longer be assumed isothermal.

When the energy equation was solved and temperature no longer could be
assumed constant, variables such as density and speed of sound also changes.
This would of course have to be accounted for in the new code. However the
equations are solved using the method of characteristics and time steps are
set as a result of the CFL condition. The characteristic equations calculating
pressure and flow rate, have a characteristic equal to plus/minus the speed of
sound, however characteristic of the energy equation is equal to the velocity.
Since B � U , the equations could not necessarily be solved at the same time,
without major interpolations, which is likely to be a significant source of error.
And since the temperature gradients are relatively small one does not need to
solve the energy equation at each time step. Therefore as a remedy for this, the
energy equation is solved when4x−

∑
i Ui4ti ≤ 0, where i represents a number

of time steps. When the energy equation is solved, the value of i is reset, and the
temperature is kept constant until the next time the sum of characteristic and
time step of the energy equation is ’big enough’ to almost reach the specified
4x.

37

Figure 6.1: Characteristic of energy equation

Figure 6 represents the development of the characteristic of the energy equa-
tion compared to the characteristics of the equations for pressure and flow rate,
represented in gray lines.

6.1 Modification of the old code
The program initiates a class called fluid. This class previously contained only
pressure and flow rate. This was done since all other properties were kept
constant. This is no longer the case and the new class fluid contains the following
entities

fluid. variable size
temperature Tempertaure 1x306
flowrate Mass flow rate 1x306
pressure Pressure 1x306

Z compressibility factor 1x306
density Density of fluid 1x306
velocity Velocity of fluid 1x306
enthalpy Enthalpy 1x306
time Time new time step 1x1

Table 6.1: Entities fluid class in code

Modifications of the old solver involves calculating frictionfactor based on

38

the node’s previous value, and the wavespeed is used as the wavespeed at the old
time step. In addition an ’oldFluid’ class is initiated in the main-function. This
is done since wavespeed no longer is considered constant, and the characteristics
no longer intersects the same point in the xt-plane, and we interpolate at the
nodes to find the exact value in space. The timestep is determined based on
the highest wavespeed, and other characteristics therefore hits the previous time
step somewhere in between [xi−1, xi] or [xi, xi+1]. The values at the old time
step are also interpolated in space, since the characteristics are unequal. At the
end of the solver-function new properties for the class fluid is calculated. All
properties except flow rate, pressure and temperature are calculated for the new
fluid as a result of the recent calculated pressure and flow rate.

39

Chapter 7

Simulations of the flow in a
gas transport pipeline

7.1 Simulations done by Gassco
The main purpose of this work is to be a part of the road to provide more
accurate numerical models for computation of natural gas transport. Previous
computational model have proved inaccurate in certain cases and the question is
why these results deviates as much from measured values as they do. A plot was
provided by Gassco to show some of the resulting errors commercial software
models provided

Figure 7.1: Simulation by Gassco

40

The line referring to ’Pipeline studio’ is the same as TGNet, which has been
described earlier. From the figure above, one sees that the old TGNet simulator
gives a too high pressure at the inlet. The new simulator however proves more
accurate, but tends to give too low pressure at the end of the transient.

7.2 Model of pipeline
Simulations has been done considering the section from Kårstø to Vestre-Bokn.
This part is amongst others crossing a fjord and goes above an island, making
the elevation of the pipeline rather significant. The model of this pipeline is the
same as used in the previous project and was approximated from a figure of the
section found in Langelandsvik’s thesis[17]. The profile of the pipeline is shown
below

Figure 7.2: Elevation of Kåstø Bokn section of Europipe II[17]

The pipeline was thereby divided into 61 sections of 200 metres each, and
the elevation was approximated at 62 points. The sections contain a certain
number of nodes. All nodes in a section is given the same angle of attack with
respect to gravity force.

Since no data is given on the situation with respect to the surrounding
material and burial of the pipeline along the slope, a set of situations for the
pipe burial had to be guessed. The pipeline was guessed to have 4 possible
states.

1. Exposed to water

2. Shallow burial at half diameter + 1 mm.

3. Deep burial 1 metres.

4. A small section exposed to air of coated pipe

41

For the pipeline itself, 3 situations has been used in the simulations

Situation Description
Exposed pipeline A thin pipeline with only 1mm thick walls is

completely exposed to water in when below sea
level. The first section above sea the heat transfer

has been approximated by a shallow burial
coefficient and the last section is approximated by

deep burial
Buried pipeline The same thin pipeline as above, but now it’s

partially buried much of the time when below
seawater.

Coated pipeline A pipeline coated with an inner layer of steel, then
a layer of asphalt and finally concrete. When in

seawater the pipe is exposed to water and close to
surface shallow buried. In the end a small section

exposed to air has been tested (this resulted in very
low heat transfer and could be considered

negligible).

Table 7.1: Description of three pipeline situations

7.3 Boundary- and initial conditions

7.3.1 Steady state boundary conditions
For the steady state calculations, we keep the mass flux constant at the inlet.
The value used at the inlet is the first value of flow rate given in the specific
problem at the starting time. At the outlet the pressure is kept constant as the
pressure at the outlet calculated by the initial equations. This could of course
have been done the other way around, with flowrate at the outlet and constant
pressure at the inlet. Temperature must also be given at the inlet.

One implication with the assumption of constant flow rate at the inlet, is
that it uses a constant value througout the pipeline according to the isother-
mal assumption, with constant compressibility factor and wavespeed. When
these results are imposed on the equations using variable temperature, and the
other properties vary correspondingly, we don’t have stable conditions inside
the pipeline immediately. This stabilizes however rather quickly as velocity and
density are being adjusted.

7.3.2 Transient boundary conditions
For the transient cases we use the mass flow rate measured by Gassco[11] at the
inlet for the boudary condition at the inlet. For the outlet we use the measured
pressure at the outlet. This however is not all straight forward. The sampling

42

of the data in [11] is not done systematically. The flowrates have mainly been
sampled each minute pluss minus a few seconds, but in most cases some of the
sampling datas have been left out. The pressure and temperatures on the other
hand have not been sampled systematically, with equal time intervals. This
represents a problem, since the date- and time stamp on the sample data is in
an Excel-format that MATLAB was unable to read. Therefore an algorithm
was written to fit the data to consistent predetermined intervals.

This meant that for flow rate, the sampling rates were set to be exact at
each minute. Therefore the method fills inn the holes of the data by choosing
a sequence of random number and inserting the average of the values in front
and behind, making the sample data consistent. For the pressure, the data
were tested with respect to number of samplings in the given time interval.
From there one took the closest value the number of samplings each minute
to fit the sampling rate was found, i.e. 4 samplings a minute gives a pressure
reading each 15 seconds and a total of 240 values each hour. The method adapts
the data sampling to the required number of data to reconstruct a sampling
using a consistent time interval. This is mainly done with deleting a number of
random values in the vector so that the final input and output vectors becomes
consistent.

7.3.3 Initial conditions
We need initial values for all dependent variables, temperature, pressure and
mass flow rate. The initial values used for pressure is the one that was used
in the previous project and by Streeter and Wylie [4]. This uses the steady
state equations for the simplified model using constant temperature, speed of
sound and compressibility. This is of course not correct but its relatively good,
and after some time the initial equations will no longer affect the solution. For
temperature the initial values of temperature distribution may affect the solution
if the initial temperature distribution is very inaccurate from computed. This
will result in high temperature gradients, and will create instabilities in the
flow and oscillating waves in the solution that will affect the result until the
characteristic of the temperature has reached the outlet. Therefore steady-state
simulations to obtain good initial conditions for the temperature were done.

The flow rate is set equal to the flow rate at the inlet for the entire pipeline.
However, the value of the flow rate is then not corrected according to the ac-
tual temperature reduction, with it’s variables such as compressibility and wave
speed. This affects the solution of flow rate and it will immediately oscillate,
with maximum amplitude of approximately 1 kg/s. After short time this oscil-
lation stabilize.

7.4 Steady state simulations
In order to verify the model developed, simulations in a steady state situation
were made. As boundary conditions for this part we kept the flow rate at the

43

inlet constant and equal to the first value and the pressure were kept constant,
with the value found at the calculation of initial conditions. The initial flow
rate inside the pipe is a constant value, as the previous program. For the new
simulation model, the value of flow rate must stabilize by adjusting density and
velocity accordingly.

7.4.1 Initial Temperature Calculations
In order to start our simulations, we need an initial distribution of the tempera-
ture inside the pipeline. Using steady state conditions such as fixed flow rate at
the inlet and a continuous pressure at the outlet, we calculated the temperature
distribution along the pipeline.

7.4.1.1 Contribution due to Joule Thomson effect

The Joule Thomson effect is the effect of temperature changes due to pressure
changes without proper heat transfer. We have an overall pressure drop due
to friction in our 12,5 km long pipeline, and the temperature due to the Joule
Thomson effect should decrease to a certain degree. Final results of temperature
calculations setting both overall heat transfer coefficient and friction factor zero
show that the total temperature drop due to the Joule Thomson effect, 4TJT ,
is approximately 1.5oC

Figure 7.3: Temperature due to Joule Thomson

The temperature follows the hydrostatic pressure, and the inverse elevation
of the pipeline.

7.4.1.2 Dissipation

Due to friction in the pipeline and turbulent flow some of the fluids energy
will be transformed from momentum energy to thermal energy, also known as

44

dissipation. This will increase the temperature of the gas by a relative small
amount.

Figure 7.4: Dissipation effects on temperature

As we clearly see from the figure the increase of temperature as a result of
dissipation very small and could in many cases be neglected. The total increase
of temperature due to dissipation is approximately 4Tφ = 0.25oC.

7.4.2 Temperature calculations at steady state conditions
A steady state simulation to calculate temperature with the three different cases
for pipeline described in table 7.2. The exposed pipeline gives a too high drop
of temperature, and for buried pipe we see that since most of the section below
water is buried we do not get the steep temperature gradient immediately. The
case of the coated pipeline seems to have a more reasonable temperaturedistri-
bution, also compared to pig-measurements of temperature in [17].

45

Figure 7.5: Steady state temperature

The temperature distribution of the coated pipeline seems to give a relatively
good correspondance with ’pig-measured’ temperatures found in [17], and it has
therefore been the preffered situation of the pipeline.

7.4.3 Variables at steady state
For the case of steady state the distribution of the different paramters were also
evaluated.

Figure 7.6: Variables at steady state

From this chart we see that the pressure is the most significant parameter,
which is also noticeable when looking at the definition of the properties.

46

• Velocity is defined U = M
pAZRT

• Density is defined ρ = p
ZRT

• Comperssibility is a function of Z = Z (Tr.pr)

• Wavespeed is defined as B =
√
ZRT

7.5 Transients

7.5.1 The old Matlab program
The old MATLAB program was written in the project of spring 2010. The pro-
gram used the method of characteristics as presented by [4], without the inertial
multiplier. The derivation of the method was done under a set of assumptions

• Isothermal flow

• Expasion of pipe wall negliglible

• Pipeline divided into segments, all having the same inclination.

• Equation of state,p = ρZRT , where the value of Z is considered to be
constant.

• Flow is one-dimensional

• Friction factor assumed a function of Reynolds number and wall roughness,
and calculated as steady-state

• Change of kinetic energy neglected.

The equations are derived by means of continuity and momentum, using the
state equation, the resulting equations are defined by dependent variables pres-
sure and flow rate. The wavespeed, or speed of sound, is keept constant through

the entire problem due to the assumptions made above, B =

√(
∂p
∂ρ

)
=
√
ZRT .

The continuity equation becomes

pt +
B2

A
Mx = 0 (7.1)

The method neglects changes in velocity head, and for the total derivative of
velocity we get

dU

dt
=
∂U

∂t
+ U

∂U

∂x
' ∂U

∂t
≡ Ut (7.2)

This result in terms of dependent variables M and p therefore becomes

dU

dt
' Ut =

1

A

(
M

ρ

)
t

=
B2

Ap

(
Mt −

M

p
pt

)
(7.3)

47

Using this term with the result in 7.1 and forming a characteristics type of
equation results in

C+

{
1
A
dM
dt + 1

B
dp
dt + pgsinθ

B2 + fB2M2

2DA2p = 0
dx
dt = B

(7.4)

and

C−

{
1
A
dM
dt −

1
B
dp
dt + pgsinθ

B2 + fB2M2

2DA2p = 0
dx
dt = −B

(7.5)

These equations are the integrated in a characteristics manner and has been
derived by[4]. The final equations that the previous MATLAB program solves
are
B

A
(Mp −MA)+pp−pA+

fB24x
(pp + pA)DA2

es − 1

s

(
Mp +MA

2

∣∣∣∣Mp +MA

2

∣∣∣∣)+ p2p

pp + pA
(es − 1) = 0

(7.6)
and

B

A
(Mp −MB)−pppB+

fB24x
(pp + pB)DA2

es − 1

s

(
Mp +MB

2

∣∣∣∣Mp +MB

2

∣∣∣∣)+ p2B
pp + pB

(es − 1) = 0

(7.7)
Where we have used the following

s 2g4xsinθ/B2

M flow rate

B speed of sound

θ inclination of particular pipe reach

These equations are then solved using a Newton-Raphson approach.

7.5.2 Simulations using the old program
The old simulations in the previous project were done using constant pressure,
calculated by the steady state equations, at the outlet. The results were com-
pared to measured pressure at the inlet. As the valve closes, the flow rate
decreases and the corresponding pressure also decrease. As a consequence the
pressure at what we refer to as the outlet, will drop as the characteristics reach
that point. In fact, what we refer to as the outlet is in reality only a metering
station. Therefore, holding the pressure constant at the outlet gives a too high
pressure at the inlet.

48

Case I: shut-down at date 04.02.2009

Figure 7.7: Pressure at inlet case I, using the old program

Case II: shut-down at date 04.04.2008

Figure 7.8: Pressure at inlet case II, using the old program

Discussions of the result
The results using the old code give surprisingly accurate results, and more spe-
cific evaluation is necessary to obtain a more precise description of the error.
The resulting pressure at the inlet were compared to the measured pressure and
the result is plotted in figure 7.5.2

49

* avg error is value at node i± 1, 2

Figure 7.9: Error case I at the inlet using old program

In the old code the friction factor multiplier, EFF, were equal to zero, which
results in a too high pressure at the inlet as a result of no drag-forces on the
frictionfactor. As a result the inletpressure in the start of the calculation is too
high, where as it becomes more accurate as the flowrate and pressure decreases.

7.5.3 Calculations using new program
The derived energy equation and the resulting temperature was then embedded
in the existing code. The energy equation is solved as described in chapter 5,
and solved when the

∑
Ui4ti were almost equal to 4x, and held constant until

the energy equation was solved again.

Case I, 04.02.2009:

Case I is a case of valve closure. Flowrate decreases from about 620kg/s to about
100kg/s. The flow rate at inlet and pressure at outlet is give below together
with the incoming temperature.

50

* The straight line temperature at the last hour of temperature in is due to an error in the data

sheet[11], and the temperature is therefore kept constant

Figure 7.10: Boundary conditions case I, 04.02.2009

The flow rate slowly increases before it drops instantly with about 125 kg/s.
The pressure at the outlet starts slowly to decrease as a result of the drop
of mass flux. Interestingly we see that the temperature increases close to the
point of valve closure before starts to decrease. The simulations are done in a 4
hour perspective, staring at 14:00 and ending at 18:00. The complete results of
the simulation is given in the appendices in terms of 3-dimensional plots, but
the computed inlet pressure compared to the measured pressure at the inlet is
presented below.

Results of simulation:

EFF Found based on a best fit to be equal to 1.015

The resulting computed pressure compared to the measured pressure at the inlet
becomes

51

Figure 7.11: Result calculated vs measured at the inlet

The figure above shows the computed results corresponds well to the actual
values at the outlet. Unlike the results of Gasscos simulator,TGNet, where the
pressure at the inlet becomes to high or too low as the flowrate decreases. It has
been debated that this might be due to the friction factor, . However further
investigation of the accuracy of the results reveals that the computed pressure
using this method is slightly smaller than the actual pressure.

The difference of calculated and measured pressure is presented in figure
7.12

* avg error is value at node i± 1, 2

Figure 7.12: Calculated pressures and measured, case I

Mean error is based on the value at the node and i ± 1, 2 . This is done
to give a more precise result of the error since the difficulties with respect to
timestamp of the results. The resulting mean absolute error of each node in this

52

case was ¯err = 0.1010.
The result of the temperature calculation can also be tested and compared

to measured values, and the values at the inlet.

Figure 7.13: Temperatures case I

As clearly can be seen from these figures, the temperature drop in the cal-
culated cases is too large. Where as the differentce Tin − Tout increases during
the transient for the computational case, it actually decreases in the real case.

Case II, 04.04.2008

This case, as before describes a closure of the valve. With a stable flow rate for
3/4 of an hour, and then the flow rate drops significant. As before, the flow does
not completely stopped, but it decreases by approximately 80%. The boundary
conditions used for this case are given as

53

* The straight line temperature at the last hour of temperature in is due to an error in the data

sheet[11], and the temperature is therefore kept constant

Figure 7.14: Boundary conditions case II, 19.10.2007

Unlike the case before, this case actually have an increasing temperature as
the valve closes. This however, can be discussed on how real this actually is.
This will be debated in the discussion on errors to come in a later section.

Results of simulation:

EFF Found based on a best fit to be equal to 1.010

The resulting plot of calculated pressure at the inlet compared to measured
values is presented in figure 7.15.

54

Figure 7.15: Result calculated pressure vs measured pressure at inlet

The pressure, as before, corresponds well, and we don’t see any clear devia-
tions on calculated and measured values. Therefore a more detailed analysis of
the difference of measured and computed results were done. The error between
computed and measured were plotted, and the result was

* avg error is value at node i± 1, 2

Figure 7.16: Calculated pressures and measured, case II

The mean value of the absolute error becomes for this case ¯err = 0.1995.
Which is double the case previous case. Looking at the figure above it becomes
obvious that this increase of total error is due to the last hour of the simulations
where we get oscillations of both pressures and flowrate. Since this is in the final
stage of the computation, the results are likely to become more skewed to the

55

exact results at the given time due to the adaption procedure of the boundary
conditions.

As for the temperature, the initial temperature is rather accurate. The tem-
perature drops significantly as a result of the pressure drop an Joule Thomson,
but measured temperature drops only slightly.

Figure 7.17: Temperatures case II

7.5.4 Startup of flow
Case III, 19.10.2007

The case 19.10.2007 describes an opening of a valve and re-start of the flow.
The flow has been shut down for about an hour, and the flow slowly starts up
again. The simulation is done for 5 hours, but the flow only less than half of
normal flow rate. The boundary conditions are given as

56

Figure 7.18: Boundary conditions case III, 19.10.2007

Interestingly we see that pressure continues to decrease, but temperature
and flowrate increases.

Results of simulation:

EFF Found based on a best fit to be equal to 1.000

The resulting plot of calculated pressure at the inlet compared to measured
values is presented below.

The pressure, as before, corresponds well, and we don’t see any clear devi-
ations on calculated and measured values. Detailed analysis of the difference
of measured and computed results is done. The error between computed and
measured were plotted

57

Figure 7.19: Result calculated inletpressure vs measured inletpressure

* avg error is value at node i± 1, 2

Figure 7.20: Calculated pressures and measured, case III

Mean absolute error in this case became ¯err = 0.1124.
And the resulting temperature distribution shows a rather strange effect.

Temperature at the inlet actually goes below the temperature at the outlet,
and temperature at the outlet more or less stays constant. As before computed
temperature decreases far more than measured values.

58

Figure 7.21: Temperatures case III

7.6 Discussions of the results
Friction factor

For the calculations of the frictionfactor the equation of Colebrook and White
has been used. This is an iterative formula, but it does not require many itera-
tions to obtain convergence. But the formula is a function of f = f(f,ReD, ε),
where ε is the roughness in the pipeline. The value of the roughness previously
used was 5 ·10−6m. This value however seemed to give a too high pressure drop
due to friction and the new value of ε was set to 3 ·10−6m, which was also found
in similar calculations.

The model uses a correction factor, EFF, to account for the additional drag
effects on the gas. When this coefficient is set equal to one the resulting friction
factor is exactly equal to the friction factor of Colebrook and White[27]. And
increase in the factor gives a reduced friction factor, and increased drag effects,
and vice versa. The coefficient is set for each simulation as the value that gave
the best and most accurate result of inlet pressure for the initial case. The results
show that for the first case calculated inletpressue is too small, when the flow
rate is low. As for the second case, the inletpressure seems to be a bit too high.
The drag coefficient is set to 1.1015 and 1.010 respectively. The assumption of
a constant drag coefficient throughout the entire calculation seems to be wrong.
Adjusting the drag coefficient, with respect to flow rate, or Reynolds number
and/or change of pressure, would probably give a more accurate result of friction
loss along the pipeline.

EFF = EFF (ReD,4p) (7.8)

59

If this also would help for the accuracy in the transinet is unknown, but one
might assume that a more correct real frictionfactor also would improve results
in the transients.

Loss of convective term

The equations used to solve for pressure and flow rate are the ones introduced
by Wylie et. al [4], and used in the project. This solver neglected the changes
in velocity head and thereby the convective term. Yow[28] introduced a remedy
for this, by introducing an inertial multiplier. This involves solving the equa-
tions similarly as done in the paper, but adjusting the results using a set of
equation involving the multiplier. However stability became a major issue using
these equations for the method tested, and the inertial multiplier was therefore
neglected. The neglecting of the convective term seems to be a reasonable as-
sumption for most situations, but as seen the results in large transients are not
sufficiently accurate. The loss of convective term is probably one of the main
reasons.

Heat transfer and temperature loss

One of the main uncertainties in this analysis is the situation of the pipeline.
No information except the elevation of the pipeline is available, and some infor-
mation on the pipe is presented at the end of [17]. There the pipe is described
as the coated pipe used above, but with slightly different thickness and con-
ductivity. However, unless knowing of the situation regarding exposure to the
elements, it becomes difficult to exactly calculate correct temperature drop along
the pipeline. Therefore three test cases were done, two cases involving a pipe
with no insulation and one coated pipeline. All three cases were tested for case
I and the temperatures at the outlet became

60

Figure 7.22: Outlet temperature case I, different pipelines

The most accurate results were obtained using the buried pipeline, which was
adapted to fit the measured temperature at the outlet. The coated pipeline gave
a slightly more inaccurate result, but the magnitude of the difference was in the
order of v 0.005 bar and could therefore only be a coincidence. The completely
exposed pipeline gave the biggest error, of approximately ∼ 0.13 bar as the mean
absolute error. So we can by this say that the effect of the temperature has a
slight impact on the result.

Independent of the pipeline we see that as pressure drops the pressure gra-
dient becomes large and negative the temperature also drops significantly. This
is of course due to the Joule Thomson effect, and as the pressure stabilizes the
temperature drop is less significant. Interestingly we see that the heat transfer
from the surrounding is not high enough to deal with the temperature drop. The
lack of seasonal dependent ambient temperature is also a significant source of
error, since convective heat transfer is a significant parameter in the calculation
of temperature.

7.6.1 Errors
An increase in number of nodes would in most cases increase accuracy. A
comparison of error when increasing nodes were done, and the results were

61

Number of nodes max|err| min|err| mean(abs|err|)
306 nodes 0.3749 −1.4427 0.1010
611 nodes 0.4905 −0.7891 0.0979
1221 nodes 0.5793 −0.7888 0.0932

Table 7.2: Convergence of error

As the table shows, we do not have a clear connection with reduction of
error given an increase of nodes by a factor of 2 and the fact that an increase
in number of nodes is very costly in terms of computational effort. The error
given at each minute becomes

Figure 7.23: Error case I using different number of nodes

The error at relative steady flow rates before and after closure of valve gives
a small error, and the difference between different number of nodes. But what
clearly can be seen is that the lowest number of nodes gives by far the largest
absolute error at the instant the valve closes. One are likely to believe this is
due to the loss of convective term, and the fact that a more sparse grid increases
the effect of loss of the convective term.

Simplifications of characteristic equations
When deriving the characteristic equations for flow in gas pipeline, Wylie [4]
made the simplification that convective term in conservation equation and that
velocity head loss were negligible, and introducing the inertial multiplier as a

62

remedy for this. And since velocity head were neglected the total derivative
of the term ˙U = Ut + UUx ≈ Ut. And the convective term in the equation of
motion in terms of dependent variables p and M became

dU

dt
=
∂U

∂t
+ U

∂U

∂x
≈ B2

Ap

(
∂M

∂t
− M

p

∂p

∂t

)
(7.9)

And the resulting equation of conservation became

∂p

∂t
+
B2

A

∂M

∂x
= 0 (7.10)

As a consequence the characteristics follows dx/dt = ±B, which is the wave
speed. This was done amongst others since velocity inside the pipeline can be
considered to be small compared to the speed of sound, or wave speed, U � B.
However, if we derive the equations using complete equations

∂p

∂t
+ U

∂p

∂x
+
B2

A

∂M

∂x
= 0 (7.11)

Which is the complete continuity equation and the momentum equation be-
comes.

∂p

∂x
+

1

A

(
∂M

∂t
+ U

∂M

∂x

)
−M
pA

(
∂p

∂t
+ U

∂p

∂x

)
+
pg

B2
sinθ+

f ·B2M2

2 ·DA2p
= 0 (7.12)

Where we have simplified by inserting U instead of MB2

pA . Combining these two
equations in a characteristics manner using a multiplier

C : λ · L1 + L2 = 0 (7.13)

gives

λ

[
∂p

∂t
+

(
U +

1

λ

)
∂p

∂x

]
− M

pA

[
∂p

∂t
+ U

∂p

∂x

]
+

1

A

[
∂M

∂t
+
(
U + λB2

) ∂M
∂x

]
+
pg

B2
sinθ +

f ·B2M2

2 ·DA2p
= 0 (7.14)

The velocity head loss has been neglected in the previous derivation and we
see that the term is small compared to the others since divided by pressure.
Neglecting this term and evaluating the term inside the parenthesis we get the
result that

λ = ± 1

B
(7.15)

And the equation becomes

1

B

dp

dt
+

1

A

dM

dt
+
pg

B2
sinθ +

f ·B2M2

2 ·DA2p
= 0 (7.16)

63

which is valid along

dx

dt
=

{
U +B

U −B
along C+characteristic

along C−characteristic
(7.17)

Which corresponds to the result that we came up with in section 3.2.1. For high
velocity flows the assumption is obviously wrong, but for very low velocities the
assumption is fairly good. The error can be significant for large transients.

7.7 Alternative solutions

7.7.1 Solving the exact equation
When we derived the equation used to solve the energy equation we made the
assumption when we integrated the energy equation

ρcpdT − (1 + ρcpµJT) dp = ρ
f

2 ·D
U3dt− 4 · UW,tot

D
(T − Tenv) dt (7.18)

That the properties were constant at each integral, and given as the average
value. The main reason for this assumption was that solving the equations using
the method of characteristics became unconditionally unstable when solved with
separate values

(ρcpT)P − (ρcpT)A − ((1 + ρcpµJT) p)P + ((1 + ρcpµJT) p)A

−
f

2 ·D
(
ρU3t

)
P
+

f

2 ·D
(
ρU3t

)
A
+

(
4 · UW,tot

D
(T − Tenv) t

)
P

−
(
4 · UW,tot

D
(T − Tenv) t

)
A

= 0

(7.19)
The reason this is not working for a Newton type of lineariation, is likely to be
that the curve changes as the interation process is converging. An alternative
algorithm of obtaining the solution was made. The equation itself has a zero
value written in terms of f (Tp) = 0. And using an iterative method of selecting
correct temperature value at point P, where the f (TP) = ±tolerance gave a
resulting Tp.

7.7.2 Solving the enthalpy equation
Even though the solution of the exact energy equation written in terms of tem-
perature were unstable, the solution of the enthalpy equation were stable given
the CFL condition.

ρdh− dp− ρ f

2D
U3dt+

4UW,tot
D

(T − Tenv) dt = 0 (7.20)

Keeping constant density over the integral gives

dh− 1

ρ
dp− f

2D
U3dt+

1

ρ

4UW,tot
D

(T − Tenv) dt = 0 (7.21)

64

Then integrating this from point A to P gives

hP − hA −
1

ρ
(pp − pA)− f

2D
U34t+

1

ρ

4UW,tot
D

(T − Tenv)4t = 0 (7.22)

In which the enthalpy h, at point P is found directly. This is done in an iterative
process where f , ρ and UW,tot is used as the average value between the points.
This however results in a loss of the Joule Thomson effect and the value might
therefore be debatable. Temperature at the outlet however increases at steady-
state compared to initial values, but for the transient case results seem to be
more accurate, since the temperature drop as a result of the Joule Thomson
effect is not accounted for.

7.7.3 Solving for energy, pressure and flow rate simulta-
neously

Introduction of a new solver could also be done. The temperature is kept con-
stant in between the solution of the energy equation. As the energy equation
is solved for the new time-step, we have already calculated the flow rate and
pressure based on the old temperature. The pressure and flow rate in the solver
of the energy equation are therefore not a function of temperature, but based on
the old temperature. Solving all three equations simultaneously could be done
by in a new Newton-Rhapson approach, where instead the f(Θ) is a 3x1 vector
and the jacobi matrix is a 3x3 matrix. This would also imply that we also have
to calculate the derivative of the characteristic equations with respect to Tp, pp
and Mp.

One could choose to solve the energy equation at each time-step, using an
interpolation for the temperature, or by the same algorithm as presented as used
in the program. If this would improve accuracy is unknown, but there is a good
chance it would improve stability of the solution, and some of the assumptions
used above, such as constant density in the integral, could be omitted.

65

Chapter 8

Conclusions

The method of characteristics gives a fairly good and accurate solution to the
problem of gas transport. The simplified version such as the one presented by
Streeter andWylie [4], and written for the project, gives surprisingly good results
and the solutions is not very different from when the temperature equation is
solved and implemented. This proves that the simplifications made by neglecting
certain terms such as head velocity, and convective terms, proves sufficiently
accurate when the transients are relative small. However, in large transients,
such as quick shutdown of the pipeline, the simplified method used in this paper
fails. Terms that have been neglected obviously play a more important role
and should have been accounted for. I.e. by Yows inertial multiplier [28] as
previously mentioned.

Convective terms that were neglected during the derivation of the equations
become important as the velocity gradient, or corresponding flow rate gradient
becomes significant. In extreme cases the mass flow rate changes with more
than 200kg/s in less than a minute. The calculated pressure at the inlet show
the tendency of being too low in the period right after the closure of a valve.
However a clear answer of the errors, and in particular the oscillations of the
error, cannot be given since the values cannot get accurately synchronized due
to the lack of compatibility in the time and date stamp readings of the excel
sheet of data.

As for the friction factor, the equation of Colebrook and White was used
together with a correction factor. In the early calculations this corrections factor
was neglected, resulting in a too high frictional pressure drop. This correction
factor is meant to correct for additional effects of friction, such as drag forces
due to high flow rate and pressure. This correction factor was adapted to the
steady state conditions, and based on a best-fit approach to the corresponding
measured pressure at the inlet. The factor was thereby held constant through
the calculation. In one of the cases this constant correction factor gave very
good accuracy for a relative steady flow rate at the inlet, but as the valve closed
at the inlet, decreasing the flow rate to about 15% of the original flow, and
a corresponding pressure drop, the total pressure gradient due to friction was

66

calculated to low. In other cases the result were not that clear, and with larger
oscillations in the calculated pressure versus measured values. However one
can assume that for a more accurate solution the correction factor must be a
function of both flow rate and pressure.

When it comes to the temperature calculations, we see that we get a clear
temperature fall at the outlet as the valve closes. This is a result of the Joule-
Thomson effect, however the same extreme pressure drop is not shown in the
measurements. The temperature drop at steady state due to the Joule Thomson
effect is approximately 1.5oC, which is the result of frictional loss of pressure.
But as the valve closes the pressure drops correspondingly, and the pressure
gradient does in some cases become significant. However as the measurements
shows sign of such a drop of temperature it comes no where near as significant
as it does for the computational results. However, it seems as when the flow
and pressure stabilizes the temperature goes towards normal values and close
to the measured ones.

Another uncertainty regarding the temperature calculation is the where-
abouts of the pipeline. No information on the situation of the pipeline in it’s
slope is given. and situations are only guessed. And for the pipeline specifically
is given using the values of [15]. The temperature of the surrounding material
is also kept constant, and independent of season and weather it consists of soil,
sea-water or air. We clearly see a result of this as the situation of start-up of
flow in the pipeline is simulated. In the code the surrounding temperature is
kept at 5oC, both for air, sea-water and soil, which is not correct since the date
of the case III, 19.10.2007, reflects that this simulation was done in September,
when the temperature of air can be expected to be a bit higher, and at least
temperature of seawater which probably is a lot closer to 20oC, than 5oC.

The method of characteristics as a computational method
for gas transport
The method of characteristics is a fairly simple method to solve partial differen-
tial equations, more specific hyperbolic equations. The method forms a system
of equations that can be solved explicit by use of a linearization method. As
seen from the results above, the method implemented and used in this paper,
provides rather accurate results for the problem of natural gas transport, in
particular for relative steady cases. However the method seem to struggle when
calculating the transients. This is of course a result of some of the simplifica-
tions done when deriving the equations. Another major problem of the explicit
method of characteristics is the restrictions of the time step due to the CFL
condition. This gives a very strict reservation on the length of the time steps,
depending on the resolution in space. If a fine resolution in space is desirable,
one are also left with having to take very small time steps. The test using 2x
and 4x the nodes originally used gave no clear improvement of error, but clear
reductions of maximum and minimum value of the errors were seen. However,
this again is very costly, and results in massive increase in computational time,
since both number of equations and number of time steps are increased. The

67

CFL condition is also dominant in a finite volume or finite difference solver when
done explicit. Implicit methods however have no restrictions in time steps, other
than accuracy of the solution.

As said before the method of characteristics can also be done implicitly.
Among the first to solve this was Edenhofer and Schmitz [9]. The solution of
a natural gas transport problem for a medium range pipeline however requires
solution of a non-symmetric stiffness matrix. This requires complex numerical
procedures, and was not done for this paper. Yow[28] introduced an inertial
multiplier as a remedy for the strict restrictions on the time step of the explicit
method of characteristics, providing a method enabling the user to take longer
time steps and accounting for the inertial term. The method was tested and
implemented in the old project[13] but the implementation proved unstable for
most cases, and the method was dismissed.

In general the method of characteristics is a reasonable method used to solve
the problem of natural gas transport, however the solution of the energy equa-
tion in addition to the momentum and conservation equations does not improve
the solution significantly. The use of finite difference methods or formulation of
a finite element solver will provide simpler and probably more accurate methods
to solve the gas transport problem. These methods can also have the benefit of
an easier numerical manipulation, making them more versatile. It also gives an
opportunity to freely choose the length of the time steps.

Future improvements and recommendations
If a more accurate solution and description of the problem, the first thing that
can be done is to find the specific details on the whereabouts of the pipeline.
Meaning that the burial and coverage of the pipeline should be investigated in
order to obtain more accurate solutions of the temperature. Now pipeline is sort
of placed in order to give the best fit for steady state conditions. A more accurate
solution of the temperature equation will probably give more accurate solutions
of temperature in transients. Seasonal dependence on ambient temperature
should also be considered.

If the method of characteristics is to be utilized further, a new solver of the
momentum and conservation equation should be implemented using more accu-
rate equations, not neglecting such as convective term. For smaller transients
the method of this paper is fine and very accurate, but exactly at the transient
the method fails. But in general for a more complex system, where the temper-
ature equation also is to be resolved, an implementation of a finite difference
method would probably be in favor.

Implementation of the problem should also be considered done in a more
efficient language than MATLAB. The initial idea here was to write some of
the computational procedures using FORTRAN code and combining this with
MATLAB. This should be possible by the use of MEX-files as an intermediary.
This requires a compatible Fortran compiler to the current operating system
and MATLAB version. A solution was sought, but not found, and MATLAB
seemed unable to find the correct compiler. C/C++ method can however be

68

used. If a program is made from scratch, an object oriented approach using
C++ would probably be the preferred method.

69

Bibliography

[1] Conversation with tor ytrehus, 2011.

[2] Properties of seawater, web.mit.edu/seawater/, 2011.

[3] M.H Afshar and M. Rohani. Water hammer simulation by implicit method
of characteristics. Inernational Journal of Pressure Vessels and piping,
2008.

[4] Victor Streeter Benjamin Wylie. Fluid transients. McGraw-Hill Interna-
tional Book Co, 1978.

[5] S.W. Churchill and M. Bernstein. A correlation equation for forced con-
vection from gases and liquids to a circular cylinder in cross flow. J. Heat
Transfer, pages 300–306, 1977.

[6] I. G. Currie. Fundamental mechanics of fluid. Marcel and Dekker, 2nd
edition edition, 1993.

[7] F.W. Dittus and L. M. K. Boelter. Univ. California. PhD thesis, Berkeley,
1930.

[8] P. M. Dranchuk and J. H. Abou-Kassem. Calculation of z factors for natural
gases using equations of state. ournal of Canadian Petroleum Technology,
Volume 14(Number 3), Jul-Sept 1975.

[9] J. Edenhofer and G. Schmitz. Ein implizites charakteristikenverfahren zur
lösung von anfangsrandwertaufgaben bie hyperbolishen systemen und seine
konvergenz. Computing 26, 1980.

[10] Theodore L. Bergman Frank P. Incompera, Daniel P. DeWitt and Adri-
enne S. Lavine. Introducion to Heat Transfer. John Wiley and Sons, 2007.

[11] Gassco. excel sheet measured data.

[12] Aljawad Mohammed S. Ghedan, Shawket G. and Fred H. Poettmann. Com-
pressibility of natural gases. Journal of Petroleum Science and Engineering,
(10):157–162, 1993.

70

[13] Joachim Dyrstad Gjerde. Transient gas transport. Project of spring 2010,
2010.

[14] V.N. Gopal. Gas z-facort equations developed for computer. OGJ, pages
58–60, Aug. 8, 1977.

[15] Ola J Klock. Følsomhetsanalyse av beregningsmodell for gasstransport.
Master’s thesis, NTNU, 2006.

[16] Erwin Kreyszig. Advanced Engineering Mathematics. 1999.

[17] Leif Idar Langelandsvik. Modeling of natural gas transport and friction
factor for large-scale pipelines. PhD thesis, NTNU, 2006.

[18] H.H Reamer L.T. Carmichael and B.H Sage. Thermal conduxtivity of
fluids. methane. Ind. Eng. Chem. Fundamentals, 1965.

[19] Mitchell Luskin. An approximation procedure for nonsymmetric, nonlinear
hyperbolic systems with integral boundary conditions. SIAM J on numer-
ical analysis, 16(1):145–164, 1979.

[20] Ivan Maric. The joule-thomson effect in natural gas flow-rate measure-
ments. Flow Measurement and Instrumentation 16 387-395, 2005.

[21] L. Mattar and G. S. Brar. Compressibility of natural gases. J. Can. Pet.
Technol., page p. 77, (1975), (Oct.-Dec.).

[22] Michael J. Moran and Howard N. Shapiro. Fundamentals of Engineering
Thermodynamics, volume 5th edition. 2006.

[23] Olje og energidepartementet. Fakta norks petroleumsverksemd.

[24] Ross A. Purvis Peter M. Dranchuk and Donald B. Robinson. Computer
calculation of natural gas compressibility factors using the standing and
katz correlation. Institute of Petroleum (London), 1974.

[25] M.B. Standing and D.L. Katz. Density of natural gases. Trans AIME,
1942.

[26] Albert S. Trube. Compressibility of natural gases. Journal of Petroleum
Technology, Volume 9(Number 1):69–71, 1957.

[27] Frank M. White. Viscous fluid flow. McGraw-Hill International Book Co,
2006.

[28] W. Yow. Analysis and Control of Transient Flow in Natural Gas Pipine
Systems. PhD thesis, Univ. of Michigan, Ann Arbour, 1971.

[29] Tor Ytrehus. Energiligningen i Strømningsmekanikk. NTNU, September
1996.

71

Appendix A

Simulations

72

3 dimensional plots Case I, 04.02.2009:

Flowrate:

Pressure:

Temperature:

3­dimensional plots case II, 04.04.2008

Flow rate:

Pressure:

Temperature:

3­dimensional plots case III, 19.10.2007

Flow rate:

Pressure:

Temperature:

Appendix B

Matlab code

79

B.1 main.m

80

% reading flow data
global pReadingPrMin;
[flow_in pressure_in pressure_out h pReadingPrMin
temperature]=select_testcase();
% adapting BC's

ReqFlowLength=60*h+1; % required of
the flow input
ReqPressLength=60*h*pReadingPrMin+1; % required length of
pressure input
PinRemove=numel(pressure_in)-(60*h*pReadingPrMin)-1;
PoutRemove=numel(pressure_out)-(60*h*pReadingPrMin)-1;
[pressure_in pressure_out flow_in temperature]=...

boudaryAdapt(PinRemove,PoutRemove,ReqFlowLength,ReqPressLength,..
.
 pressure_in,pressure_out,flow_in,temperature,h);

%---
% PIPELINE PROPERTIES
%---
global nodeMultiplicationfactor;
nodeMultiplicationfactor=1;
global pipeline;
%---pipeline constants---------------------------------
pipeline.diameter=1.016; % diameter of the
pipe[m]
pipeline.area=0.25*pi*pipeline.diameter^2; % area of the
pipe[m2]
pipeline.roughness=3e-6; % Pipeline
roughness[m]
pipeline.wallLayers=1; % number of layers in
pipeline coating

%---pipeline properties--------------------------------
pipeline.height=profile(:,3); % height of the
pipeline at each initial node[m]
pipeline.length=profile(length(profile(:,1)),2); % length of
pipeline from K?rst?-Bokn[m]
pipeline.initNodes=profile(length(profile(:,1)),1); % number of
nodes from the original pipeline
% reqTotalNumberNodes= input('the total number of wanted nodes in
calculation: ');
reqTotalNumberNodes=305*nodeMultiplicationfactor+1;
if reqTotalNumberNodes<62
 reqTotalNumberNodes=62;
end

pipeline.burialType=profile(:,4);
pipeline.nodesPrDx=round(reqTotalNumberNodes/pipeline.initNodes);
pipeline.DX=pipeline.length/(pipeline.initNodes-1);
pipeline.dx=pipeline.DX/pipeline.nodesPrDx;
pipeline.nodes=pipeline.nodesPrDx*(pipeline.initNodes-1)+1;
pipeline.dXprofile=linspace(0,pipeline.length,pipeline.nodes);
fprintf('total number of pipeline nodes: %3.4g\n',
pipeline.nodes);

for i=1:(profile(length(profile(:,1)),1)-1)
 pipeline.alfa(i)=atan((pipeline.height(i+1)-
pipeline.height(i))/pipeline.DX);
end

%---
% NATURAL GAS PROPERTIES
%---
global gas;
gas.SG=0.65; % specific gravity of gas
gas.MW=18.01; % molecular weight
gas.R=R/gas.MW; % specific gas constant
gas.Tc=191; % critical temperature gas[K]
gas.pc=46.4e5; % critical gas pressure[Pa]

%---
% INITIAL CONDITIONS
%---
global K; K=273.15; % Kelvin
initial.p_in=pressure_in(1)*atm;
initial.temperature=temperature.in(1)+K;
initial.Tr=initial.temperature/gas.Tc;
initial.pr=initial.p_in/gas.pc;
initial.Z=compressibilityfactor(initial.pr,initial.Tr);
initial.rho=initial.p_in/(initial.Z*gas.R*initial.temperature);
initial.my=viscosity(initial.temperature,initial.rho);
initial.wavespeed=sqrt(initial.Z*gas.R*initial.temperature);

%---
% STEADY-STATE
%---
%***steady state calculations*******
MSM3_D=flow_in(1);
global flowCorr; flowCorr=8.831;
steadyFlowRate=MSM3_D*flowCorr;
steadyVelocity=steadyFlowRate/(initial.rho*pipeline.area);
pipeline.s=2*g*pipeline.dx*sin(pipeline.alfa)./initial.wavespeed^
2;

initial.pressure(1)=initial.p_in;

friction=frictionfactor(steadyVelocity,initial.rho,initial.temper
ature);
C=friction*initial.wavespeed^2*steadyFlowRate^2*pipeline.dx/(pipe
line.diameter*pipeline.area^2);

%*****case 1*****
if pipeline.nodesPrDx==1
disp('only one node each measuring point')
 for node=2:pipeline.nodes
 s=pipeline.s(node-1);
 if s==0
 initial.pressure(node)=sqrt(initial.pressure(node-
1)^2-C);
 else
 initial.pressure(node)=sqrt((initial.pressure(node-
1)^2-....
 C*((exp(s)-1)./s))/exp(s));
 end
 end
else
 for node=2:pipeline.nodes
 for n=0:pipeline.initNodes-2
 if node>=(2+pipeline.nodesPrDx*n) &&
node<=(pipeline.nodesPrDx*(1+n))
 s=pipeline.s(n+1);
 end
 end
 if s==0
 initial.pressure(node)=sqrt(initial.pressure(node-
1)^2-C);
 else
 initial.pressure(node)=sqrt((initial.pressure(node-
1)^2-....
 C*((exp(s)-1)./s))/exp(s));
 end
 end
end

%__________INITIAL PLOTS______________
% figure(1)
% subplot(2,1,2)
% % hold on
%
% subplot(2,1,1)
% title('PIPE PROFILE')
%
plot(linspace(0,pipeline.length,length(pipeline.height)),pipeline
.height);
% %clearaxis([0 12500 -100 150])

% xlabel('pipeline length[m]')
% ylabel('heightprofile[m]')
%
% subplot(2,1,2)
% title('PLOT OF INITIAL PRESSUREDISTRIBUTION')
%
plot(linspace(0,pipeline.length,pipeline.nodes),(initial.pressure
)/10^5)
%
% xlabel('meter[m]')
% ylabel('Pressure[Bar]')
%
% hold off
%---
% Initiating class FLUID
%---
global xScale;
xScale=linspace(0,pipeline.length,pipeline.nodes);
temperatureScale=linspace(0,pipeline.length,pipeline.nodes*2-1);

fluid.temperature=calcInitialTemperatureDistribution(temperature)
;
fluid.flowrate=ones(1,pipeline.nodes)*steadyFlowRate;
fluid.pressure=initial.pressure;

for iter=1:pipeline.nodes
 redPressure=initial.pressure(iter)/gas.pc;
 redTemperature=fluid.temperature(iter)/gas.Tc;

fluid.Z(iter)=compressibilityfactor(redPressure,redTemperature);

fluid.wavespeed(iter)=sqrt(fluid.Z(iter)*gas.R*fluid.temperature(
iter));

fluid.density(iter)=initial.pressure(iter)/(gas.R*fluid.Z(iter)*f
luid.temperature(iter));

fluid.velocity(iter)=fluid.flowrate(iter)/(fluid.density(iter)*pi
peline.area);
 [cp
cv]=specificHeat(fluid.temperature(iter),fluid.pressure(iter));
 internalEnergy=cv*fluid.temperature(iter);

fluid.enthalpy(iter)=internalEnergy+fluid.pressure(iter)/fluid.de
nsity(iter);
end
%oldFluid=fluid; % initiating old class to interpolate

%---

% TIME EVALUATION
%---
dt=pipeline.dx/max(fluid.wavespeed);
dt_old=0;
%-----time evaluation in seconds----------------------
seconds=h*3600;
timesteps=ceil(seconds*1/dt);
% time_new=0;
fluid.time=0;
time_old=0;
%---
% BOUNDARY CONDITION
%---
global inletbc;
global outletbc;
inletbc.pressure=0;
outletbc.flowrate=0;
inletbc.flowrate=flow_in;
outletbc.pressure=pressure_out*atm;
outletbc.pressure(1)=initial.pressure(pipeline.nodes);
if sum(inletbc.flowrate)~=0
 inletbc.type='Flow rate is given at inlet';
else
 inletbc.type='pressure is given at inlet';
end
if sum(outletbc.flowrate) ~=0
 outletbc.type='Flow rate is given at outlet';
else
 outletbc.type='pressure is given at outlet';
end
%---
%***MAIN PROCESSING***
% creating class fluid
% saveFile=input('save results?[Y/N] ','s');
saveFile='N';
status=0;
while (status==0)
 if saveFile=='Y'
 nodeSave=input('Save result for each node number: ');
 FlowFileName=input('Save flow rate result as filename:
','s');
 PressureFileName=input('Save pressure result as filename:
','s');
 inltPressureFileName=input('Save the inletpressure as
filename: ','s');
 %time_save=round(sec_save/dt);
 status=1;
 elseif saveFile=='N'
 status=1;

 else
 status=0;
 saveFile=input('save results?[Y/N] ','s');
 end
end
minSave=round(60/dt);
if saveFile=='N'
 nodeSave=round(pipeline.nodes/62);
end
row=round(pipeline.nodes/nodeSave)+1;
numColumn=ceil(timesteps/(60/dt));
flowSave=zeros(numColumn,row);
pressureSave=zeros(numColumn,row);
temperatureSave=zeros(numColumn,row);
% fig4=figure(4);
% title('dynamic pressure at the inlet, calc vs measured')
dynamicPlot=input('Dynamic plot of results(aprrox 2x time)?
[Y/N]: ','s');
%---plot---
if dynamicPlot=='Y'
fig2=figure(2);
title('dynamic plot of inletpressure, flowrate and temperature')
subplot(2,2,1)
p1=plot(fluid.pressure(1)/atm);
xlabel('time')
ylabel('pressure[bar]')
subplot(2,2,2)
p2=plot(xScale,fluid.temperature-273.15);
xlabel('meter[m]')
ylabel('Temperature[oC]')
subplot(2,1,2)
p3=plot(xScale,fluid.flowrate);
ylabel('flow rate[kg/s]')
xlabel('meter[m]')
end
%---

% hold on
it=2;
pIndex=1;
% pressureSaveTime=round((60/pReadingPrMin/dt));
pressureAtInlet=zeros(1,seconds/(60/pReadingPrMin));
pressureAtInlet(1)=fluid.pressure(1);
%oldTemperature=0;
%fluid.temperature=zeros(1,pipeline.nodes);

%***Variables to solve the energy equation***
% iterator=1;
% for j=2:2:pipeline.nodes*2-1

% previousA.velocity(j-1)=fluid.velocity(iterator);
%
previousA.velocity(j)=0.5*(fluid.velocity(iterator)+fluid.velocit
y(iterator+1));
% previousA.density(j-1)=fluid.density(iterator);
%
previousA.density(j)=0.5*(fluid.density(iterator)+fluid.density(i
terator+1));
% previousA.pressure(j-1)=fluid.pressure(iterator);
%
previousA.pressure(j)=0.5*(fluid.pressure(iterator)+fluid.pressur
e(iterator+1));
% previousA.Z(j-1)=fluid.Z(iterator);
% previousA.Z(j)=0.5*(fluid.Z(iterator)+fluid.Z(iterator+1));
% iterator=iterator+1;
% end
previousA=fluid;
% previousA.velocity(pipeline.nodes*2-
1)=fluid.velocity(pipeline.nodes);
% previousA.density(pipeline.nodes*2-
1)=fluid.density(pipeline.nodes);
% previousA.pressure(pipeline.nodes*2-
1)=fluid.pressure(pipeline.nodes);
% previousA.Z(pipeline.nodes*2-1)=fluid.Z(end);
% previousA.temperature=fluid.temperature;

previousA.time=0;
C0char_dx=0;
previousD.temperature=fluid.temperature;
previousD.density=previousA.density;
previousD.velocity=previousA.velocity;
previousD.pressure=previousA.pressure;
previousD.time=0;
%*******************************

% initiatin class to interpolate
oldFluid.time=0;
oldFluid.pressure=fluid.pressure;
oldFluid.flowrate=fluid.flowrate;
%-------------------------------

iterator=1;
timeD=1;
mincount=0;
alfa=1;
tic
contd=0;
energyCalculations=1;
SecondIterator=1;

iterator2=1;
% break
% for iter=1:timesteps
while fluid.time<seconds

% for iter=1:timesteps
% previousA.time=fluid.time;
 fluid.time=fluid.time+dt;
 fluid.time;
 fluid=solver(fluid,oldFluid,dt,time_old);

 tempDxAdd=fluid.velocity*dt;
 C0char_dx=C0char_dx+tempDxAdd;
 diffDx=pipeline.dx-max(C0char_dx);
% ***Soling the energy equation***
 if iterator==1
 previousA.time=fluid.time;
 % at the first iteraton the Energy equation is not resolved
due to
 % the integration in time, and the fact that integration at
time=0
 % will lead to unreliable results

 elseif (diffDx)<tempDxAdd

 %--
 % solving the energy equation
 [fluid]=energyEquationSolved(fluid,previousA,temperature);
 previousA=fluid;
 %--

 % fprintf('remaining length left of the charactertistic:
%6.4f\n ',diffDx)
 %--
 % Energy 2 function
 % [fluid previousA
testdata]=energy2(fluid,previousA,previousD);
 %--

 %--
 % Enthalpy equation
% [fluid
previousA]=enthalpySolver(fluid,previousA,temperature);
 %--
 %--
 % Complete energy equation
 % [fluid
previousA]=newEnergyEqSolved(fluid,previousA,temperature);
 % break

 % [fluid
previousA]=newEnergyEqSolved2(fluid,previousA,temperature);
 %--

 C0char_dx=0;
 iterator2=iterator2+1;
 end

 if iterator==100
 time_evaluator=toc;
 completed=fluid.time/seconds;
 remaining_time=1/completed*time_evaluator;
 remaining_min=round(remaining_time/60);
 fprintf('Approximately time of calculation[min]:
%g\n',remaining_min);
 end

 if iterator==1
 for iter=nodeSave:nodeSave:pipeline.nodes
 flowSave(1,1)=fluid.flowrate(1);
 flowSave(1,iter/nodeSave+1)=fluid.flowrate(iter);
 flowSave(1,row)=fluid.flowrate(pipeline.nodes);
 pressureSave(1,1)=fluid.pressure(1);

pressureSave(1,iter/nodeSave+1)=fluid.pressure(iter);

pressureSave(1,row)=fluid.pressure(pipeline.nodes);
 temperatureSave(1,1)=fluid.temperature(1);

temperatureSave(1,iter/nodeSave+1)=fluid.temperature(iter);
 temperatureSave(1,end)=fluid.temperature(end);
 end
 end

 timeToFullMin=60-mod(fluid.time,60);
 if timeToFullMin<dt

 for iter=nodeSave:nodeSave:pipeline.nodes
 flowSave(it,1)=fluid.flowrate(1);

flowSave(it,iter/nodeSave+1)=fluid.flowrate(iter);
 flowSave(it,row)=fluid.flowrate(pipeline.nodes);
 pressureSave(it,1)=fluid.pressure(1);

pressureSave(it,iter/nodeSave+1)=fluid.pressure(iter);

pressureSave(it,row)=fluid.pressure(pipeline.nodes);

 temperatureSave(it,1)=fluid.temperature(1);

temperatureSave(it,iter/nodeSave+1)=fluid.temperature(iter);
 temperatureSave(it,end)=fluid.temperature(end);
 end
 it=it+1;
 minSim=round(fluid.time/60);
 fprintf('time in minutes: %3.4g\n', minSim)
 if minSim==sim_time*60;
 disp('simulation is complete')
 break
 end
 end

 SaveInletPressure=60/pReadingPrMin-
mod(fluid.time,60/pReadingPrMin);
 if SaveInletPressure<dt

 pIndex=pIndex+1;
 pressureAtInlet(pIndex)=fluid.pressure(1);
 end
 if dynamicPlot=='Y'
 if iterator>1

 fig2;
 subplot(2,2,1)

p1=plot(linspace(1,pIndex,pIndex),pressureAtInlet(1:pIndex)/atm,'
.-',linspace(1,pIndex,pIndex),pressure_in(1:pIndex),'r');
 xlabel('time')
 ylabel('pressure[barg]')

 subplot(2,2,2)
 p2=plot(xScale,fluid.temperature-273.15);
 xlabel('meter[m]')
 ylabel('Temperature[oC]')
 subplot(2,1,2)
 p3=plot(xScale,fluid.flowrate);
 ylabel('flowrate[kg/s]')
 xlabel('meter[m]')
 end
 end

 %---
 % evaluate the timestep for the next iteration
 dt=pipeline.dx/max(fluid.wavespeed);
 if iterator~=1
 time_old=oldFluid.time;
 end

 oldFluid.time=fluid.time;
 oldFluid.pressure=fluid.pressure;
 oldFluid.flowrate=fluid.flowrate;

 if dynamicPlot=='Y'
 pause(0.01);
 delete(p1)
 delete(p2)
 delete(p3)
 end
 iterator=iterator+1;

end

%
save_flow=strcat('flow_',strcat(pipelinecase,'_',num2str(pipeline
.nodes),'_nodes','.dat'));
%
save_pressure=strcat('pressure_',strcat(pipelinecase,'_',num2str(
pipeline.nodes),'_nodes','.dat'));
%
save_temperature=strcat('temperature_',strcat(pipelinecase,'_',nu
m2str(pipeline.nodes),'_nodes','.dat'));

% save flow_040022009_isotherm.dat flowSave -ASCII
% save save_040022009_isotherm.dat pressureSave -ASCII
% save save_040022009_isotherm.dat temperatureSave -ASCII

if strcmp(date,'04.02.2009')==1
 filename=strcat('04022009_',pipelinecase,'.xls');
elseif strcmp(date,'04.04.2008')==1
 filename=strcat('04042008_',pipelinecase,'.xls');
elseif strcmp(date,'24.01.2008')==1
 filename=strcat('24012008_',pipelinecase,'.xls');
elseif strcmp(date,'29.12.2007')==1
 filename=strcat('29122007_',pipelinecase,'.xls');
elseif strcmp(date,'19.10.2007')==1
 filename=strcat('19102007_',pipelinecase,'.xls');
end

xlswrite(filename,flowSave,'Flow');
xlswrite(filename,pressureSave,'Pressure');
xlswrite(filename,temperatureSave,'Temperature');

figure(11)
surf(flowSave)
figure(12)
surf(pressureSave/atm)
figure(13)
surf(tempeartureSave-K)

% mass_size=size(flowSave);
% press_size=size(pressureSave);
% if saveFile=='Y'
% save FlowFileName flowSave -ASCII
% save PressureFileName pressureSave -ASCII
% save inletPressureFileName pressureAtInlet -ASCII
% end
% save FlowPressureJTonly.dat flowSave -ASCII
% xlabel('length pipeline, [m]')
% set(gca,'XTick',0:10:61)
% set(gca,'XTickLabel',(0:2000:12000))
% ylabel('time,[hh:mm]')
% set(gca,'YTick',1:60:241)
% set(gca,'YTickLabel',['14:00';'15:00';'16:00';'17:00';'18:00'])
%
% zlabel('pressure, [bar]')
% xlabel('length pipeline, [m]')
% set(gca,'XTick',0:10:61)
% set(gca,'XTickLabel',(0:2000:12000))
% ylabel('time,[hh:mm]')
% set(gca,'YTick',1:60:241)
% set(gca,'YTickLabel',['16:00';'17:00';'18:00';'19:00';'20:00'])
% set(gca,'XTick',1:60:241)
% set(gca,'XTickLabel',['16:00';'17:00';'18:00';'19:00';'20:00'])

B.2 select_testcase.m

93

temperature_out_data=[1081 1184 1254 1306 1367 1436];
 t_out_read=[temperature_out_data(1)
temperature_out_data(sim_time+1)];
 elseif simCase==2
 pressure_reading=4;
 testvar=1;
 flow_data=[699 729];
 flow_read=flow_data;
 p_in_data=[2764 2884];
 p_in_read=p_in_data;
 p_out_data=[2685 2805];
 p_out_read=p_out_data;

 else
 return
 end
elseif strcmp('04.04.2008',date)==1
 pressure_reading=5;
 testvar=1;
 flow_data=[403 455 510 565 620];
 flow_read=[flow_data(1) flow_data(sim_time+1)];
 p_in_data=[2369 2692 3019 3347 3669];
 p_in_read=[p_in_data(1) p_in_data(sim_time+1)];
 p_out_data=[2150 2448 2752 3049 3347];
 p_out_read=[p_out_data(1) p_out_data(sim_time+1)];
 temperature_in_data=[466 573 738 899 0];
 if temperature_in_data(sim_time+1)==0
 temperature_in_data(sim_time+1)=899;
 temperatureTest1=[1;3];
 end
 t_in_read=[temperature_in_data(1)
temperature_in_data(sim_time+1)];
 temperature_out_data=[680 797 877 935 0];
 if temperature_out_data(sim_time+1)==0
 temperature_out_data(sim_time+1)=935;
 temperatureTest2=[1;3];
 end
 t_out_read=[temperature_out_data(1)
temperature_out_data(sim_time+1)];
elseif strcmp('24.01.2008',date)==1
 pressure_reading=5;
 testvar=1;
 flow_data=[430 484 540 596 652];
 flow_read=[flow_data(1) flow_data(sim_time+1)];
 p_in_data=[2480 2796 3130 3465 3792];
 p_in_read=[p_in_data(1) p_in_data(sim_time+1)];
 p_out_data=[2268 2560 2866 3174 3477];
 p_out_read=[p_out_data(1) p_out_data(sim_time+1)];
 temperature_in_data=[608 686 924 1110 1315];

 t_in_read=[temperature_in_data(1)
temperature_in_data(sim_time+1)];
 temperature_out_data=[1037 1170 1316 1411 1556];
 t_out_read=[temperature_out_data(1)
temperature_out_data(sim_time+1)];
elseif strcmp('29.12.2007',date)==1
 pressure_reading=5;
 testvar=1;
 flow_data=[463 523 582 642];
 flow_read=[flow_data(1) flow_data(sim_time+1)];
 p_in_data=[2669 3024 3380 3735];
 p_in_read=[p_in_data(1) p_in_data(sim_time+1)];
 p_out_data=[2422 2754 3083 3407];
 p_out_read=[p_out_data(1) p_out_data(sim_time+1)];
 temperature_in_data=[880 1024 1203 1378];
 t_in_read=[temperature_in_data(1)
temperature_in_data(sim_time+1)];
 temperature_out_data=[1045 1171 1279 1376];
 t_out_read=[temperature_out_data(1)
temperature_out_data(sim_time+1)];
elseif strcmp('19.10.2007',date)==1
 pressure_reading=5;
 testvar=1;
 flow_data=[432 492 552 611 671 731];
 flow_read=[flow_data(1) flow_data(sim_time+1)];
 p_in_data=[2937 3295 3653 4009 4364 4718];
 p_in_read=[p_in_data(1) p_in_data(sim_time+1)];
 p_out_data=[2698 3033 3363 3689 4015 4342];
 p_out_read=[p_out_data(1) p_out_data(sim_time+1)];
 temperature_in_data=[1530 1773 1883 2000 2163 2377];
 t_in_read=[temperature_in_data(1)
temperature_in_data(sim_time+1)];
 temperature_out_data=[1031 1133 1238 1344 1421 1563];
 t_out_read=[temperature_out_data(1)
temperature_out_data(sim_time+1)];
elseif strcmp('test1440to1450',date)==1
 testvar=1;
 testfile=1;
 pressure_reading=4;
else
 date=input('the date you entered was not a test case, please
try again[DD.MM.YYYY]: ','s');
end
end
if testfile==1
 flow_rate_in=xlsread('test1440to1450.xls','sheet1','A1:A11');
 pressure_in=xlsread('test1440to1450.xls','sheet1','B1:B41');
 pressure_out=xlsread('test1440to1450.xls','sheet1','C1:C41');
else

flow_column=strcat(strcat('C',num2str(flow_read(1))),':',strcat('
C',num2str(flow_read(2))));

p_in_column=strcat(strcat('E',num2str(p_in_read(1))),':',strcat('
E',num2str(p_in_read(2))));

p_out_column=strcat(strcat('I',num2str(p_out_read(1))),':',strcat
('I',num2str(p_out_read(2))));

t_in_column=strcat(strcat('G',num2str(t_in_read(1))),':',strcat('
G',num2str(t_in_read(2))));

t_out_column=strcat(strcat('K',num2str(t_out_read(1))),':',strcat
('K',num2str(t_out_read(2))));

 flow_rate_in=xlsread('data.xls',date,flow_column);
 pressure_in=xlsread('data.xls',date,p_in_column);
 pressure_out=xlsread('data.xls',date,p_out_column);
 temperature.in=xlsread('data.xls',date,t_in_column);
 temperature.out=xlsread('data.xls',date,t_out_column);
end
if temperatureTest1(1)==1

temperature.readingPrMin=ceil(numel(temperature.in)/(temperatureT
est1(2)*60))-1;
% addTempElem=((sim_time)-
temperatureTest1(2))*temperature.readingPrMin*60;
 temperature.constAtEnd=temperatureTest1(2);
else

temperature.readingPrMin=ceil(numel(temperature.in)/(sim_time*60)
)-1;
 temperature.constAtEnd=0;
end

end

B.3 calcInitialTemperatureDistribution.m

97

 % itr=1;
 % factor=nodeMultiplicationfactor/2;
 % delta=1/nodeMultiplicationfactor;
 % for numIter=1:factor
 % for ii=1:nodeMultiplicationfactor:numel(tmpT)
 % if ii==numel(tmpT)
 % tmpT(ii)=T(end);
 % else
 % tmpT(ii)=T(itr);
 %
tmpT(ii+nodeMultiplicationfactor/factor)=0.5*(T(itr)+T(itr+1));
 % itr=itr+1;
 % end
 % end
 % end

 delta=1/nodeMultiplicationfactor;

 tmpT(1)=T(1);
 itr1=1;
 for ii=1:numel(T)-1
 % for ii=45:46
 temperatureList=[T(ii) T(ii+1)];
 itr1=itr1+1;
 for jj=1:nodeMultiplicationfactor-1
 % interp1([1 2],temperatureList,1+delta*jj)
 tmpT(itr1)=interp1([1 2],temperatureList,1+delta*jj);
 itr1=itr1+1;
 end
 tmpT(itr1)=T(ii+1);
 end
 tmpT(end)=T(end);
 % plot(tmpT)

 T=tmpT;
end

% T=xlsread('initialTemperature.xlsx',A1:A306);
end

B.4 frictionfactor.m

99

B.5 solver.m

100

fr=frictionfactor(fluid.velocity(1),fluid.density(1),fluid.temper
ature(1));

C=fr*fluid.wavespeed(1)^2*pipeline.dx/(pipeline.diameter*pipeline
.area^2);
 if pipeline.s(1)==0
 s_tempval=1;
 else
 s_tempval=(exp(pipeline.s(1))-1)/pipeline.s(1);
 end

 switch inletbc.type
 case 'pressure is given at inlet'
 newvalue(2,1)=inletbc.pressure;
 M_1=fluid.flowrate(1);
 M_2=fluid.flowrate(2);

 P_1=newvalue(2,1);
 P_2=fluid.pressure(2);

 err=inf;
 iter1=0;
 while err>tolerance
 newvalue(1,1)=M_1-
((fluid.wavespeed(1)/pipeline.area)*(M_1-M_2)-P_1+P_2+...
 (C/(P_1+P_2)*s_tempval*...

((M_1+M_2)/2)*abs((M_1+M_2)/2)+(P_2^2/(P_2+P_1))*...
 (exp(pipeline.s(1))-
1))/(C/(P_1+P_2))*...
 s_tempval*abs((M_1+M_2)/2));
 err=norm(newvalue(1,1)-M_1);
 M_1=newvalue(1,1);
 iter1=iter1+1;
 if iter1>maxiter
 disp('we do not have convergence at inlet
boundary');
 break
 end
 end

 case 'Flow rate is given at inlet'

newvalue(1,1)=flowCorr*interp1(linspace(1,length(inletbc.flowrate
),...

B.6 compressibilityfactor.m

102

elseif Tr >2.0 && Tr<=3.0
 A=coeff(4,1);
 B=coeff(4,2);
 C=coeff(4,3);
 D=coeff(4,4);
 else return
 end
elseif pr > 1.2 && pr <=2.8
 if Tr >1.05 && Tr<=1.2
 A=coeff(5,1);
 B=coeff(5,2);
 C=coeff(5,3);
 D=coeff(5,4);
 elseif Tr >1.2 && Tr<=1.4
 A=coeff(6,1);
 B=coeff(6,2);
 C=coeff(6,3);
 D=coeff(6,4);
 elseif Tr >1.4 && Tr<=2.0
 A=coeff(7,1);
 B=coeff(7,2);
 C=coeff(7,3);
 D=coeff(7,4);
 elseif Tr >2.0 && Tr<=3.0
 A=coeff(8,1);
 B=coeff(8,2);
 C=coeff(8,3);
 D=coeff(8,4);
 else return
 end
elseif pr > 2.8 && pr <=5.4
 if Tr >1.05 && Tr<=1.2
 A=coeff(9,1);
 B=coeff(9,2);
 C=coeff(9,3);
 D=coeff(9,4);
 elseif Tr >1.2 && Tr<=1.4
 A=coeff(10,1);
 B=coeff(10,2);
 C=coeff(10,3);
 D=coeff(10,4);
 elseif Tr >1.4 && Tr<=2.0
 A=coeff(11,1);
 B=coeff(11,2);
 C=coeff(11,3);
 D=coeff(11,4);
 elseif Tr >2.0 && Tr<=3.0
 A=coeff(12,1);
 B=coeff(12,2);

 C=coeff(12,3);
 D=coeff(12,4);
 else return
 end
elseif pr>5.4 && pr<15
 a=0.711;
 b=3.66;
 c=-1.447;
 d=-1.637;
 e=0.319;
 f=0.522;
 g=2.071;
else return
end
if pr<=5.4
 Z=pr*(A*Tr+B)+C*Tr+D;
elseif pr>5.4
 Z=pr*(a+b*Tr)^c+d/(e*Tr+f)+g;
end

% Z=1;
end

B.7 overallHeatTranfer.m

105

elseif burial==2
% elseif strcmp('deep',burialType)==1
 % deep burial of pipeline

h_outer=(2*k_soil/diameter.outer)/log(4*deep_Dc/diameter.outer);
% deep burial coefficient
elseif burial==3
%elseif strcmp('water',burialType)==1
 % if exposed to water
 U_sea=0.1; % average sea velocity
 cp_sea=3985; % specific heat[W*kg^-1*K^-1]
 k_sea=0.563; % thermal conductivit seawater[W*m^-
1*K^-1]
% k_sea=0.5;
 rho_sea=1030; % sea water density[kg/m^3]
 my_sea=1.881e-3; % sea water viscosit[N/m^2*s]

 Pr_sea=cp_sea*my_sea/k_sea;
 Re_sea=rho_sea*U_sea*diameter.outer/my_sea;
 Nu_sea=0.26*Re_sea^0.6*Pr_sea^0.3;
 h_outer=k_sea*Nu_sea/diameter.outer;
% water burial coefficient

 % nusselt forced convection Klock thesis
%
Nu_sea_forced=0.3+0.62*Re_sea^0.5*Pr_sea^0.333/(1+(0.4/Pr_sea)^0.
6667)^0.25*(1+(Re_sea/282000)^(5/8))^(4/5);
elseif burial==4
 %test exposure to air
 U_air=3.0;
 cp_air=1.0035;
 k_air=0.025;
 rho_air=1.250;
 my_air=16.625e-6;
 Pr_air=cp_air*my_air/k_air;
 Re_air=rho_air*U_air*diameter.outer/my_air;
 Nu_lam=0.664*Re_air^(1/2)*Pr_air^(1/3);
 Nu_turb=0.037*Re_air^0.8*Pr_air/(1+2.443*Re_air^-
0.1*(Pr_air^(2/3)-1));
 Nu_air=0.3+sqrt(Nu_lam^2+Nu_turb^2);
%
Nu_air_test=0.0266*Re_air^0.805*Pr_air^(1/3)*(k_air/diameter.oute
r);
 % Nu_air=0.26*Re_air^0.6*Pr_air^0.3;
 h_outer=k_air*Nu_air/diameter.outer;
end
% h_outer
% heat conduction through pipe wall
if wallLayers==1

B.8 JouleThomsonCoefficientCalc.m

107

B.9 DranchukAbouKassemZ.m

108

T1=C0*Dr;
 T2=C2*Dr2;
 T3=C3*Dr5;
 T4=C4*Dr2;
 T5=a(11)*Dr2;
 T6=exp(-T5);

 ZCPR=(Tr+T1+T2+T3)*Dr+T4*(1+T5)*T6*Dr;
% break
 DZCPR=Tr+2*T1+3*T2+6*T3+T4*T6*(3+3*T5-2*T5^2);

 PrCalc=ZCPR/0.27;
 if J>0

 Dr1=Dr-(ZCPR-.27*pr)/DZCPR;
 if Dr1<0
 Dr1=Dr*0.5;
 elseif Dr1>2.2
 Dr1=Dr+0.9*(2.2-Dr);
 end

 if abs(Dr-Dr1)<=1e-5
% disp('Dr-Dr1')
 break
 end

 elseif J==0
 if abs(PrCalc-pr)<1e-3
% disp('PrCalc-pr')
 break
 elseif PrCalc>pr
 DDr=DDr/2;
 end
 end

 Dr=Dr1;

end

Z=0.27*pr/(Dr*Tr);

% Zold=1;
% error=inf;
% iter=1;
% while error>1e-4

B.10 DranchukAbouKassemZderivative.m

110

function dZdT=DranchukAbouKassemZderivative(Tpr,p_pr,Z)
global gas;
a=[0.3265;-1.0700;-0.5339;0.01569;...
 -0.05165;0.5475;-0.7361;0.1844;...
 0.1056;0.6134;0.7210];

rho_r=0.27*p_pr/Z/Tpr;
iterator=1;
drho_r=1;
dZtemp=1e-3;
error=inf;
while error>1e-4
 dZdTpr=a(1)*drho_r+a(2)*(drho_r-
rho_r/Tpr)*(1/Tpr)+a(3)*(drho_r-3*rho_r/Tpr)*(1/Tpr^3)+...
 a(4)*(drho_r-4*rho_r/Tpr)*(1/Tpr^4)+a(5)*(drho_r-
5*rho_r/Tpr)*(1/Tpr^5)+...
 2*a(6)*rho_r*drho_r+a(7)*rho_r*(2*drho_r-
rho_r/Tpr)*(1/Tpr)+...
 2*a(8)*rho_r*(drho_r-rho_r/Tpr)*(1/Tpr^2)...
 -a(7)*a(9)*rho_r^4*(5*drho_r-rho_r/Tpr)*(1/Tpr)...
 -a(8)*a(9)*rho_r^4*(5*drho_r-2*rho_r/Tpr)*(1/Tpr^2)+...
 a(10)*rho_r*(2*drho_r-3*rho_r/Tpr-
2*a(11)*rho_r^2*drho_r)*exp(-a(11)*rho_r^2)/Tpr^3+...
 a(10)*a(11)*rho_r^3*(4*drho_r-3*rho_r/Tpr-
2*a(11)*rho_r^2*drho_r)*exp(-a(11)*rho_r^2)/Tpr^3;

 drho_r=-rho_r*(1/Tpr+1/Z*dZdTpr);
 error=norm(dZdTpr-dZtemp);
 dZtemp=dZdTpr;
 if iterator>100
 disp('could not find a proper correlation to dZdT');
 break
 end
end
dTprdT=1/gas.Tc;
dZdT=dZdTpr*dTprdT;
return

	Title Page
	Problem Description
	masteroppgave.pdf

