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Preface

This paper is written as a report on the project originally intended for the fall semester
in 5th grade of the M.Sc. degree at the Energy and Process Department at NTNU.
The purpose of the project was to give an overview over numerical methods available
for computations of flow in natural gas pipelines, with a special focus on the Method of
Characteristics.

This report presents the mathematical background of the method of characteristics, and
the numerical implmentation of this. Results are presented and compared to measured
data from a test section at Kårstø to Bokn.

The report requires some technical understanding of the concepts, but is written in the
simplest way making it understandable without making too much effort.

The project was done under the supervision of professor Tor Ytrehus, and I would like
to give my regards to him for excellent advice and encouragement throughout the period
when the project was done.

Trondheim, 14th June 2010

Joachim Dyrstad Gjerde
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Abstract

Norwegian gas accounts for approximately 15 % of the total consumption of natural gas
in Europe. In order to deliver the gas to the marked in continental Europe, long pipelines
are used to transport the natural gas.

Metering stations of the state of the gas are only found at inlets and outlets of the
pipelines. Therefore the state of the gas throughout the pipeline can only be found by
using computational programs.

When we refer to what we call transient flow, meaning flow that is changing over time,
the calculation become more complicated. Typical events describing such an event could
be the closure or opening of a valve. This will result in a change in the mass flow rate,
and as a consequence the pressure is also changing.

A brief survey of available methods for calculating transient flow in a natural gas pipelines
is presented, with a specialization in the method of characteristics. The method of
characteristics was used when developing a computer program to solve the transient
flow.

A set of different transients were modelled and the results were compared to values that
had been obtained from Gassco’s test section going from the processing plant at Kårstø
to the island Vestre- Bokn. This section is a 12,2 km long testsection, and is the first
step of the 658 km long Europipe II, that reaches from Kårstø to Dronum In Germany.

The report also gives a brief explanation of the flow inside of a natural gas pipeline, and
the simplifications done in order to solve the governing equations.

Three events were simulated. Oscillation of the flow rate, closure of a valve at the inlet
and the opening of the valve. The first to events were separated into two cases. For the
oscillating flow we investigated both an ideal sine-oscillations with a large magnitude,
and a real event where the flow was unsteady and had small oscillations. The closure of a
valve involved a simulation of the rapid closure, with its following oscillations in the flow,
whereas the other case investigated a stepwise closure according to real data. A simple
investigation of the stepwise opening of the valve was also done. This event was however
not simulated for the entire time period, due to long simulation time, and results that
were not satisfactory compared to real measurements.

Due to the simplifications done in the model, and the lack of sufficient boundary condi-
tions resulted in calculated values that differ a lot from the measured values. The method
might however prove useful when the boundary conditions are well known, and the flow
is rather simple.
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Samandrag

Norsk gass utgjer kring 15 % av det totale forbruket i Europa. For å kunne levere denne
gassen frå Norsk sokkel til det Europeiske fastlandet, vert det nytta lange transportrøyr
frå prosess anlegga i Noreg til Europa og Storbritannia. Desse røyrstrekka strekkjer seg
frå 500 til 800 kilometer.

Ettersom ein berre kan gjere målingar av gassen ved innløp og utløp av røyret, kan
tilstanden gassen er i gjennom røyrstrekket berre finnast ved å bruke numeriske berekn-
ingsverkty.

Når ein referer til transient straum, meinast det at straumen i røyret endrast over tid.
Eit eksempel der straumen endrast over tid, er dersom vi opnar eller lukker ein ventil i
røyret på eit tidspunkt. Dette resultere i at massestraumen i røyret endrast samstundes
med trykket, og gir straumen ein ny tilstand.

Ei lita oversikt over aktuelle metodar for berekning av transient gas transport i røyr
er gitt. Det er deretter gjort ei fordjuping i ein metode med namn karakteristikkme-
toden. Denne metoden vert og nytta når eit program vart skrive for å kunne løyse dei
karakteristiske likningane numerisk. Mykje av den same prosedyren vart og gjort av Stig
Grafsrønningen i 2006, og deler av hans arbeid har vore nytta som basis.

Ei rekkje transientar vart modellert, og resultata av desse modelleringane vart samanlikna
med reelle måledata gjort av Gassco på strekket Kårst til Vestre Bokn. Dette 12,2
kilometer lange teststrekket er det fyrste steget av det 658 kilometer lange gassrøyret
Europipe II, som strekkjer seg frå Kårstø til Dornum i Tyskland.

I hovudsak vart 3 ulike transiente hendingar modellerte. Desse hendingane var os-
cillerande straumrater, lukking av ventil på innløpet og ei opning av den same ventilen.
For den oscillerande straumen, to ulike hendingar vart berekna. Den eine hendinga er ei
simulering av ei reell hending, der resultata vart samanlikna med måledata for den same
hendinga. Den andre hendinga var ein oscillerande straum med store oscillasjonar, i ein
sinuskurve. Ved lukking, vart både ei fullstendig avstenging av ventilen på eit minutt,
og ei hending der massestraumen vart stegvis nedtrappa simulert. Opninga av ein ventil
skjer over ei særs lang til og berre kring 1/3 av tida vart simulert ettersom dei oppnådde
resultat hadde eit stort avvik frå målingar.

Grunna forenklingar gjort i modellen vår og grensevilkår som ikkje strekk til, vert dei
oppnådde resultata ikkje nøyaktige i høve til dei avleste resultata i dei same hendingane.
Men den numeriske berekningsmetoden gjev fysisk truverdige resultat, og vil ein del
høver der grense- og start vilkåra er tilstrekkeleg, truleg gje relativt fornuftege resultat.
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1 Introduction

1.1 Background

Natural gas is a very important in energy supply world wide. And Norway are one of the
main exporters of natural gas to markeds worldwide. Total gas produced on Norwegian
continental shelf has more than doubled over the last 10 years, and was in 2009, the
equivalent of 103,470 million Sm3[2], which accounted for approximately 3% of the total
gas production in the world. For the European marked, Norwegian gas covers around
15%. Natural gas to the European marked, including the United Kingdom, is transported
through 7 pipelines. These pipelines vary from 500 km and up to 800 km in length, and
is operated by the Norwegian, government owned corporation Gassco.

Figure 1.1.1: Natural gas export in 2008[2]

The state of the natural gas and the flow rates can not be measured throughout the whole
pipeline, and computer models are used to calculate the state of the gas. These models
prove very important when it comes to utilizing the full potential of the pipelines. With
as much as 70 million standard cubic metres MSm3 transported in a pipeline daily, a
small error in computed results can prove very costly. Accurate models for the state of
the gas may also simplify the operation of a pipeline.

1.2 Kårstø

Kårstø is a processingplant located a bit north of Stavanger in western Norway, and
plays a key role in Norwegian gas export[1]. It receives rich gas and condensate from the
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North sea and the Norwegian sea through the Åsgard transport system, and Statpipe.
The gas is being processed and fractionated into natural gas, liquified petroleum gases
and condensate. Kårstø serves as one of the main export ports for LPG’s. The natural
gas is transported to Dornum, Germany, through Europipe II, and to Emden, also located
in Germany, through Statpipe/Norpipe.

1.3 Europipe II

Figure 1.3.1: Euopipe II from Kårstø to Dornum[3]

Europipe II is the pipeline transporting natural gas from the facility at Kårstø to the
European continent in Dornum. The length of the pipeline is approximately 660 km and
it mainly goes undersea. The pipeline first became operational in 1999.

Before going undersea, Europipe II contains a test section of around 12,2 km that runs
from the processing plant to Vestre-Bokn.

1.3.1 Kårstø- Bokn

When going through the test section form Kårstø to Vestre-Bokn, the pipeline crosses two
islands and goes undersea between. The maximum difference in tha altitude is about 210
meters. At Vestre -Bokn, Gassco have done measurements of the gas before the pipeline
submerges and travels through the North Sea. The route from Kårstø to Bokn is shown
below.
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Figure 1.3.2: Section from Kårstø to Bokn

The dissertations thesis of Langelandsvik [12] also holds an elevation profile of the
pipeline. This elevation profile is later used in a simplified form when the profile is
used in a numerical model.

Figure 1.3.3: Elevation profile

1.4 Natural gas

The natural gas from a reservoir consists mainly of methane (CH4), but it undergoes
an extensive processing in order to remove most other species. The processing however
leaves other by-products in the gas. However, methane still remains the most important
specie in the gas (>90%), but other species such as ethane, propane, CO2 and N2 are
present. . Typical values are for the dry gas transported in Europipe II were[7].

1.5 Transient-/time dependent modelling

With a daily amout of as much as 70MSm3 of gas flowing through the pipeline each day,
as much as 25.5 billion standard cubic metres of gas can be transported each year. Exact
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Natural gas composition

C1 Methane 89.15%

C2 Ethane 7.35%

C3 Propane 0.51%

iC4 iso-Butane 0.025%

nC4 normal-Butane 0.030%

iC5 iso-Pentane 9.0 · 10−3%

nC5 normal-Pentane 2.06 · 10−3%

C6 Hexane 0%

CO2 Carbon dioxide 2.22%

N2 Nitrogen 0.699%

Table 1.1: Natural gas composition

knowledge of the state of the gas at different events, such as startup and shutdown of a
pipeline is therefore of great value. Not only are there a lot of money involved in such an
operation, time dependent changes in the conditions may results in significant changes
in the flow properties, which again could cause problems with the processing. These
timedependent changes will from now on be refered to as transients. Typical examples
of transient flow, are closing and opening of a valve, flow oscillations or involvement of
other components such as pumps.

Several methods have been used and presented in order to solve transient cases regarding
a flow in a gas pipeline. Some methods can be considered rather complex but the transient
flow can also be solved using simpler methods. Complex methods has the advantage of
being more exact in their results, but are also more costly. The simplest method involves
solving simplified partial differential equations becoming ordinary differential equations.
Other methods, such as finite difference methods, are sometimes used. This part will be
further discussed in chapter 3.
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2 Flow in a gas pipeline

This chapter is meant to give a brief introduction to some of the parameters used to
define the flow in a gas pipeline.

2.1 Introduction

Early research done by Stokes and Osbourne Reynold proved that flow at different ve-
locities have different characteristics. In the late 19th century Reynolds proved that at a
certain velocity of the flow in a pipe, the flow changed from being laminar into turbulent
[19]. From this he introduced the term Reynolds-number, which for a pipe is defined as

Re =
ρUD

µ
=
UD

ν
(2.1.1)

The transition from laminar to turbulent happens in the region 2000 ≤ ReD ≤ 2300, and
from Reynoldsnumbers above this we have a turbulent flow with different characteristics
than for the slower, laminar flow. The velocityprofile changes together with friction and
local pressures.

2.1.1 Laminar flow

For Reynolds numbers below 2300 we say that the flow is laminar. For a pipeflow that
means that the flow is following straight streamlines in the pipe direction. For a laminar
flow the velocity profile inside a pipeline is parabolic.

Figure 2.1.1: Laminar velocity profile
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2.1.2 Turbulent flow

Turbulence is generated close to the walls and is being transported towards the centre of
the pipe. After a distance the entire velocity in the pipeline is turbulent.

Figure 2.1.2: Turbulent flow in a pipe

A turbulent velocity profile for pipeflow. The velocity gradient is greater at the wall, and
the average velocity is quite close to the highest velocity. The turbulent velocity profile
is not as straight forward as the laminar one. It is common to divide it into four regions

• Visous sub-layer: Near the wall region, with small velocities and the viscous forces
are dominating.

• Buffer layer: The velocities are still relatively small in this region, but turbulent
forces are becoming more dominant.

• Logarithmic layer: The flow is totally dominated by turbulent forces, and the
velocity only depends logarithmically on y.

• Wake region: This accounts for most of the turbulent velocity distribution.

The logarithmic layer is described

U+ =
1

κ
ln(y+) +B (2.1.2)

Where κ is the con Karman constant, and the other varaibles are defined as

U+ =
U√
τw/ρ

=
U

u∗
(2.1.3)

y+ =
ρu∗y

µ
(2.1.4)

The value u∗ is the dimension of velocity and is called the friction velocity. The turbulent
velocity profile becomes

6



Figure 2.1.3: Turbulent velocity profile[23]

2.2 Pipeline surface

A steel pipeline, even if the pipeline has been extensively treated, never becomes com-
pletely smooth. Inside of a pipeline there will always be imperfections, and the pipeline
is considered to be rough. But an exact description of the surface at every point of the
pipeline is not possible. One therefore tries to obtain a typical value of the pipeline
surface which is used throughout the whole pipeline.

Figure 2.2.1: Image of an idealised surface roughness

In reality the surface of a pipeline does not look like figure 2.2. Roughness measurements
have been done on real pipelines, and in Dr. Ove Bratlands book on flow assurance [4]
several results of measured roughness’s are presented. 2.2 show measurements done on
a pipeline coated with two-component epoxy coating.

Figure 2.2.2: Measured surface roughness coated pipe[4]
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In comparison with the model in figure 2.2 coated pipeline wil have imperfections that
will be much more smeared. However it illustrates the principle of the surface roughness.
Predictions of the roughness can be done in differents way. One way being the root mean
square

Rq =
1

x

xˆ

0

| z2(x) | dx (2.2.1)

where z is the amplitude. From this a dimensionless parameter, ε/D, of the pipeline
can be found and used in the calculation of turbulent friction factors.

2.3 Pipeline friction

2.3.1 Darcy friction factor

In a simple pipeline segment, pressure loss is relative to the friction loss, and is denoted
the Darcy friction factor.

f =
D ∂p
∂x

1
2ρU

2
(2.3.1)

Is often used as four times the skin friction, f = 4cf .

2.3.2 Laminar flow

For friction balance in a pipe segment one can write

A4p = τwS4x (2.3.2)

from this equation one can obtain the pressure drop

∂p

∂x
= τw

4

D
(2.3.3)

Using that τw = µ∂U/∂y, gives
∂u

∂y
=
∂p

∂x

D

4µ
(2.3.4)

Integrating this over the pipeline cross section gives an average velocity, which combined
with the friction factor derived in 2.3.1

32µ

D2
U =

1

2
fρU2 1

D
(2.3.5)

leads to an expression for the laminar friction factor

f =
64

Re
(2.3.6)
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2.3.3 Turbulent flow

For the turbulent case it gets more complicated. The turbulent velocity profile is a bit
different from the laminar. The turbulence makes the velocity gradient close to the wall
larger, as shown in figure2.1.2. It is normal to assume the pipeflow as turbulent once the
Reynoldsnumber is above 2300.

Re =
ρUD

µ
> 2300 (2.3.7)

Which in reality means that almost all flows in gas pipelines are turbulent. A friction-
factor however, cannot be given as straight forward for the turbulent case as it was for
the laminar case. Prandtl proposed an equation for the friction factor for a smooth pipe

1√
f
= 2log

(
Re
√
f
)
− 0.8 (2.3.8)

Nikuradse[17] had previously presented a correlation for relatively high Reynoldsnumbers

1√
f
= −2log

( ε

3.7D

)
(2.3.9)

Colebrook and White successfully combined the two equations, and giving name to the
well known Colebrook equation which is still now the most established equations for
calculation the friction factor[5].

1√
f =

= −2log
(

ε/D

3.7065
+

2.523

Re
√
f

)
(2.3.10)

A closer look at the equation reveals that it has the disadvantage of being implicit. We
have the frictionfactor f on both sides of the equal sign, meaning that the equations has
to be solved using an iterative method. Despite being implicit, the Colebrook equation,
has been the most popular method of calculating the frictionfactor of turbulent pipeflow.
The frictionfactor f using a logarithmic Reynoldsnumber scale was plotted by Moody in
1944 [16]. The traditional Moody diagram is shown below
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Figure 2.3.1: Moody chart[23]

Haaland later proposed an explicit version of the Coolebrook equation [10], which is quite
accurate compared to the implicit version.

1√
f
= −1.8log

(
6.9

Re
+
( ε

1.11D

)1.11)
(2.3.11)

2.4 Solving the turbulent pipeflow

The pipeflow is turbulent, meaning that if we were to solve the governing equations
eactly using Navier Stokes equations, Direct Numerical Simualtion(DNS) have to be
used. This requires an enourmus amount of computer efforts. Doing a direct numerical
simulation of a pipe would require a number of gridpoints in the order of Re9/4 according
to Kolmogorovs scales[22]. That means having Re ∼ 107 requires the number of nodes
in our numerical scheme is in the order of 5.6 · 1015. In addition comes the timescales.
I practice this proves impossible. Direct numerical simulation can only be used for very
low Re. Other methods in order to solve turbulent pipeflows can be used.
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Large Eddy Simulation: Soling the larger eddies, while use
approximate functions for the

smaller ones

Reynolds Stress models: Solving the reynolds stresses in the
flow in all three directions

Two equation models: Introducing a set of new transport
equations for quantities in order to
solve the turbulent approximations

One equation models: An even simpler model accounting
for the turbulent viscosity

Algebraic models: The simplest models, adding only a
single value to the existing

governing equations

Table 2.1: Methods for solving turbulent pipeflow

All of the above equations involves solving a 3 dimensional flow. We are in general only
interested in the x-direction, and small fluctuations in the flow is ignored. Fully solving
the turbulent pipeflow is therefore not considered and simplified, one dimensional models
are used.
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3 Numerical models for solving transient
gas transport

We have several numerical methods that we can use in order to calculate the flow in a
natural gas pipeline. The four most relevant methods are

• Method of Characteristics

• Finite Difference Method

• Finite Volume Method

• Finite Element Method

Common for all the methods are that they solve the governing equations of the flow.
These governing equations are partial differential equations that must be handled in a
way that makes them solvable. The methods vary in simplicity.

3.1 Method of Characteristics(MoC)

The rather simple way of solving a transient flow in a natural gas pipeline is using the
method of characteristics. The method is a result of the combination of the continuity
equation and the transport equations. With some mathematical manipulation the partial
differential equations collapse and form ordinary differential equations along a slope in
a time and space grid. Further investigation yields that the slopes, or characteristics as
they are called, are equal to C1 = U + B, C2 = U − B and C3 = U , for the momentum
equations and the energy equation, respectively. U denotes the velocity of the fluid, and
B denotes the acoustic wavespeed For the simplified governing equations inertia term is
often neglected, and the characteristics C1 and C2 simplifies and becomes C1,2 = ±B.
In a space-time grid, we see that may cause problems since the location of the solutions
are not located in the same place.

Since the stability criterion used for MoC, is the Courant condition[14], (| U | +B) ≤
4x/4t. We are then using this method to determine timestep, 4t. This will eventually
lead to a very low timestep if the number of nodes is high.

3.2 Finite Difference Method(FDM)

Perhaps the most popular way to solve the governing equations governing a flow in a
gas transport pipeline is using a finite difference method. The pipeline is divided into a
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finite number of pipe nodes and approximate solutions to the derivatives of the equations
are sought at every node. These approximate solutions are also called differences. One
therefore reduces the PDE’s to an algebraic system of equations that are based on the
discrete values of the solution. These differences can get the information forward, central
or backwards in the old or new timestep, depending on wether the solution is implicit
or explicit. The finite difference method has several advantages. It is rather simple to
understand, and all of the equations can be solved at the same location. Using a finite
difference method also implies that an implicit solution can be used. The implicit solution
is a more complicated to implement, and requires a solving procedure. On the positive
side, the method becomes more stable and longer timesteps can be utilized, which for
long transients are very convenient.

3.3 Finite Volume Method(FVM)

A popular method used for CFD, or computational fluid dynamics, is the finite volume
method. I the finite volume method the equations are transformed in such a way that the
equations are integrated over a control volume. For a time dependent flow, integration
is then performed over both the control volume and the timestep. The finite volume
method can also be solved implicitly, obtaining steady solutions using longer timesteps.
A method called TVD, or total variation diminishing, is often used to solve fluid flow in
pipes[26]. but on larger scale pipelines this is not used to a large extent.

3.4 Finite Element Method(FEM)

Even though finite element method is most used in solid mechanics, it can also be used
for fluid calculations. In the finite element method the pipeline is divided into several
elements of a length. The lengths do not have to be equal. Pressure force, flow rates
and temperature are approximated using a set of piecewise continuous functions by a
Galerkin approach or other methods forming weighted residuals[20]. Using the finite
element method involves some rather complicated algebra, but it has been successfully
done for simple transient flows[21]. Finite element method is not used extensively for
transient pipeline simulations.

Spectral methods

A method that is becoming more popular are so-called spectral methods. This method
uses global smooth functions, such as FFT’s(Fast Fourier Transforms), to represent the
variables, instead of the piecewise smooth functions used in FEM.
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3.5 Conclusion

In general we have four methods that can be used to solve the transient flow in a gas
pipeline. For the further investigation of our problem, the Method of Characteristics
will be used. This method is the simplest method of the methods presented above, but
it may also prove useful and quite accurate for some cases of simple flows. The other
methods requires more efforts in order to be completely understood and implemented in
a computer program.
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4 Method of characteristics

The equations governing a natural gas flow through pipelines are the same as for most
other fluid flows. We have equations governing continuity, momentum, and energy. In
a transient flow the most important ones are inertial- and pressure forces, however in a
gas flow, the inertia force is of less importance. The flow is dominated by friction and
pressure forces. When deriving the equations needed in the method of characteristics
solution, we make the following assumptions[24]:

1. The flow is isothermal, meaning that the temperature is kept constant throughout
our calculation.

2. We keep the diameter of the pipe constant.

3. The slope of the pipe remains constant over any particular reach.

4. The equation of state for the gas is given by p = ZρRT , where Z is the gas
compressibility factor. Z is held constant throughout the whole computation.

5. The flow is simplified to one dimensional.

6. Frictionfactor is a function of wall roughness, and Reynoldsnumber.

7. The kinetic energy of the flow is considered unimportant, and therefore neglected.

4.1 Equation of state

The equation for the state of the natural gas is given as:

p = ρZRT (4.1.1)

In which Z represents the compressibility factor, introduced as a factor to make up for
the behaviour of a real gas compared to an ideal gas. The compressibility factor is a
function of pressure and temperature. And when we assume that we have an isothermal
flow, the definition of the wavespeed in the gas is given as

B =

√(
∂p

∂ρ

)
T

=
√
ZRT (4.1.2)

Since the flow rate is given as million standard cubic metres per day,MSm3/d, this must
be converted into kilograms per second. A standard cubic meter of natural gas is defined
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as the amount of gas in a cubic meter at a standardized temperature and pressure, for
natural gas pressure is equal to 1 atmosphere, or 101, 3 kPa, and temperature is 15oC.
From table1.1 the resulting molecular weight of natural gas was calculated, resuklting in
a molecular weight of 18.04 kg/kmol. Calculation to obtain the mass flux in kg/s becomes

PV = nRT (4.1.3)

V

n
=
RT

P
=

8.314× 288.15

101, 325
= 23.64

[
m3

kmol

]
(4.1.4)

23.64 [m3/kmol]

18.04 [kg/kmol]
= 1.3104

[
Sm3

kg

]
= 0.763

[
kg

Sm3

]
(4.1.5)

M = X

[
Sm3

d

]
· 0.763

[
kg

Sm3

]
· 1

60× 60× 24

[
d
s

]
= X · 8.831 · 10−6

[
kg

s

]
(4.1.6)

4.2 Continuity equation

The continuity equation states that the mass has to be conserved. Meaning that the net
inflow has to be compensated by a change in volume and/or density.

∂ρA

∂t
+
∂ρAU

∂xi
= 0 (4.2.1)

In a pipeline with constant diameter this can be shown

Table 4.1: Continuity

Since the sum of ρAU is equal to the total mass flux, we can rewrite the continuity
equation

∂ρA

∂t
+
∂M

∂xi
= 0 (4.2.2)

The density can be eliminated by using the equation of state, and inserting it into the
continuity equation
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∂(Ap/B2)

∂t
+
∂M

∂xi
= 0 (4.2.3)

Now using the notation ∂p/∂t = pt„ and similar for M, we get

pt +
B2

A
Mx = 0 (4.2.4)

4.3 Equation of motion

A force balance of a fluid motion in pipe is made

∂ (ρAU)

∂t
+
∂ (ρAU)

∂x
= −A∂P

∂x
−ASτw −Aρgsinθ (4.3.1)

Darcy Weisbachs formula for friction factor in terms of force balance is used

τw =
1

2
fρU2 1

4
=

1

8
fρ(

M

ρA
)2 ==

fρ

8

M2B4

p2A2
(4.3.2)

Since we also neglect the changes in the velocity of the gas the part on the left also
simplified

DU

Dt
= Ut + UUx u Ut =

1

A

(
M

ρ

)
t

=
B2

Aρ
(Mt +

M

p
pt) (4.3.3)

Substitution of the equations into the force balance

−px4xA−
fρ

8

M2B4

p2A2
πD4x+ ρgA4xsinθ = B2

Aρ

(
Mt −

M

p
pt

)
ρA4x (4.3.4)

The latter term on the right will be small compared to the first term.

px +
1

A
Mt +

pg

B2
sinθ +

fB2M2

2DA2p
= 0 (4.3.5)

Steady state

Steady state means that the boundary conditions remains constant. Hence the time
derivatives are zero, and the only independent variable is in the x direction.

dp

dx
+

(
pg

B2
sinθ +

fB2M2

2DA2p

)
= 0 (4.3.6)

Integrating this equation from x = 0 and p = p1 to x = 4x and p = p2 gives
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dp+

(
pgsinθ

B2
+
fB2M2

2DA2p

)
dx = 0 (4.3.7)

Multiplying by p and further manipulation gives

1

2
dp2 = −gsinθ

B2

(
p2 +

fB4M2

2DA2gsinθ

)
dx (4.3.8)

Integrating this equation from x = 0 and p = p1 to x = 4x and p = p2 gives

ˆ p2

p1

1

p2 + fB4M
2DA2gsinθ

dp2 = −
ˆ 4x
0

2gsinθ

B2
dx (4.3.9)

Simplify by using s=(2g4xsinθ/B2)

[
ln(p2 +

fB4M2

2DA2gsinθ
)

]p2
p1

= −s (4.3.10)

Which also can be written
p21 +

fB4M2

2DA2gsinθ

p22 +
fB4M2

2DA2gsinθ

= es (4.3.11)

And when we solve this equation for p2 to get our steady state pressure after 4x

p22 = (p21+
fB2M2

DA2 4x
es−1
s

)/es (4.3.12)

From this equation we can calculate the pressure distribution in the entire pipe, which
will later on be used as initial conditions when we do transients calculations.

4.4 Solution by the method of characteristics

In section 4.2 we derived the equation of continuity

L1 =
B2

A
Mx + pt = 0 (4.4.1)

And we also derived the momentum equation in section 4.3

L2 = px +
α2

A
Mt +

fB2M2

2DA2p
+

1− α2

A
Mt = 0 (4.4.2)

Here we have introduced the inertial multiplier, α, which is mathematically correct, since

α2

A
Mt +

1− α2

A
Mt =

1

A
Mt (4.4.3)
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When α = 1, the equations is identical to equation 4.4.2. An evaluation on the inertial
multiplier will be given in section 4.5. Combining equations L1 and L2 using an unknown
multiplier yields

λL1 + L2 = λ

(
B2

A
Mx + pt

)
+ px +

α2

A
Mt +

fB3M2

2DA2p
+

1− α2

A
Mt = 0 (4.4.4)

Rearranging this further yields

α2

A

(
λB2

α
Mx +Mt

)
+ λ

(
1

λ
px + pt

)
+
pgsinθ

B2
+
fB2M2

2DA2p
+

1− α2

A
Mt = 0 (4.4.5)

And then we compare the first two terms in the caracteristic equation with the substantial
derivative

dM

dt
=
∂M

∂t
+
dx

dt

∂M

∂x
(4.4.6)

And similar for the pressure. The first part of equation 4.4.5 can be written

Mt +
λB2

α
Mx =

∂M

∂t
+
dx

dt

∂M

∂x
=⇒ dx

dt
=
λB2

α
(4.4.7)

In the same way for the pressure we get

dx

dt
=

1

λ
(4.4.8)

Hence we can write
dx

dt
=

1

λ
=
λB2

α2
=⇒ λ = ± α

B
(4.4.9)

Inserting this into our equation

α2

A

(
dM

dt

)
± α

B

(
dp

dt

)
+
pgsinθ

B2
+
fB2M2

2DA2p
+

1− α2

A
Mt = 0 (4.4.10)

Where dx/dt = ±B/α is valid. The two values are defined as characteristics and we
integrate the equation along its specific characteristic in a finite difference grid.

α2

A

dM

dt
dx± α

B

dp

dt
dx+

pgsinθ

B2
dx+

fB2M2

2DA2p
dx+

1− α2

A
Mtdx = 0 (4.4.11)

with leads to

αB
A

´ p
A,B dM ±

´ P
A,B dp+

´ P
A,B

(
pgsinθ
B2 + fB2M2

2DA2p

)
dx+ B

A

´ P
A,B

1−α2

α
∂M
∂t dt = 0 (4.4.12)

The last term in the equation are what makes the inertial multiplier. As we can see from
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the grid, the solution depends on adjacent values for the new timestep in the characteristic
grid. The term is integrated in the following way

B

A

pˆ

A,B

1− α2

α

∂M

∂t
dt ≈

B

2A

(
1

α
− α

)
(MR,P −MA,C +MP,S −MC,B) (4.4.13)

Integration is done along the characteristics, from now on reffered to as C+and C−

C+: αB
A

(Mp−MA)+pp−pA+ fB24x
(pp+pA)DA2

(
Mp+MA

2

|Mp+MA|
2

)
+

p2p
pp+pA

(es−1)+ B
2A (

1
α
−α)(MR−MA+MP−MC)=0 (4.4.14)

C−: αB
A

(Mp−MB)−pp+pB+ fB24x
(pp+pB)DA2

(
Mp+Mb

2

|Mp+MB |
2

)
+

p2p
pp+pB

(es−1)+ B
2A(

1
α
−α)(Mp−MC+MS−MB)=0 (4.4.15)

The absolute terms are inserted so that the equations are valid for negative flow. The
terms in equation4.4 will be explained in the next section. By ignoring the inertial
multiplier, α 4.4.14 and ?? becomes

C+:B
A
(Mp−MA)+pp−pA+ fB24x

(pp+pA)DA2
es−1
s

(
Mp+MA

2

|Mp+MA|
2

)
+

p2p
pp+pA

(es−1)=0 (4.4.16)

C−:B
A
(Mp−MB)−pp+pB+ fB24x

(pp+pB)DA2
es−1
s

(
Mp+MB

2

|Mp+MB |
2

)
+

p2p
pp+pB

(es−1)=0 (4.4.17)

4.5 Inertial multiplier

Yow introduced an inertial multiplier[25] in the system of equations in order to com-
pensate for the loss of the inertial forces when the equations were simplified. In most
situations of a pipe flow, the inertial term is of less importance, however, in large tran-
sients the inertial term plays a role. This allows for larger time increments to be utilized,
with a small error in the pressure. For long transients, the ability to increase the time
increments is of great importance, since the restrictions due to the Courant condition in
many cases leads to very low timestep.
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Figure 4.5.1: space and time grid

When α = 1 the equations remains the same as they were before introducing the term,
and also in the steady state case, when MA = MB = MP = MR = MC = M we get the
same equations as. The α value is determined by the following equation

α2 = 1− (σmh)2

3pd
+ ψ

√
pd (σmω∗)

2

mω∗4q
(4.5.1)

The quantities are given in dimensionless form as

m =
V0
B
, σ =

fL

2D
, pd =

√
1− 2σm2, h =

4x
L
, ω∗ =

ωL

B

The ψ value denotes the acceptable error of the pressure. ψ = 4p/p . Meaning that if we
accept a 5% error in the pressure, the ψ value becomes 0.05. Higher value of ψ results
in an increased α.

Depending on the type of transient, the 4q and ω∗ are defined the following way

Transient BC ω 4q

Oscillating flow Massflow ω 4q = 4M
M0

Valve opening/-closing Massflow ω = π
2

dM/dt
4M 4q = 4M

M0

Pressure ω = π
2

dp/dt
4p 4q = A

B
4p
M0

Table 4.2: ω∗ and 4q for different types of transients

Solving the equations utilizing the inertial multiplier means that we first have to solve the
equations by an iterative method, without including the iertial term,α. The equations
are then corrected by introducing the complete set of equations for the inner nodes. As
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a consequence we can introduce longer timesteps, 4tnew ≤ α4told. The new equations
are also iterative and an iteration process must be done.

4.6 Boundary conditions

We have two characteristic equations for each node we want to calculate in the next
timestep. At the boundaries, only one of the equations remains valid. C+ characteristic
at the right boundary, and C−at the left. A Dirichlet type of boundarycondition must
therefore be given at each of the boundaries, since we have two unknowns in our equations,
pp and Mp.

Figure 4.6.1: Characteristics at boundaries

The boundary conditions can be given in the following combinations

1. Pressure is given both at the inlet and the outlet of the pipe

2. Flow rate is given at both pressure and inlet

3. Pressure is given at the inlet, while the flow rate is known at the outlet

4. Flow rate is given at the inlet, and pressure is known at the outlet

4.7 Stability

The method of characteristics suffers under the Courant criterion for stability[14] (| V | +a) ≤
4x
4t . In our case, with the simplified equations neglecting the convective term the CFL
coundition yields,

B ≤ 4x
4t

(4.7.1)

Graphically this can be shown by
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Figure 4.7.1: Stability Method of Characteristic[24]

4.8 Discussions on the Method of Characteristics

As seen from the results above, the information regarding a flow inside a pipeline travels
through the pipeline at the speed of sound. This results also proves physically reason-
able, as a disturbance or a shock at on one side of the pipeline will create a wave that
travels through the pipe until it reaches the other other end after a certain time. These
disturbances could for instance be boundary conditions, since an altering of mass flux or
pressure at the inflow creates som kind of a discontinuity in the numerical scheme. The
waves that form are also called weak shock waves, or acoustic waves.

A brief explanation on the formation of characteristics

If we say that a shock wave is isotropic, meaning that the temperature does not change
and the pressure is only is a function of density, p = p(ρ). We have

∂p

∂x
=
∂p

∂ρ

∂ρ

∂x
= B2 ∂ρ

∂x
(4.8.1)

If we then consider a fluid which does not move, a shock can be described as small
perturbations in the fluid

ρ = ρ0 + ρ′ (4.8.2)

p = p0 + p′ (4.8.3)

u = 0 + u′ (4.8.4)
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Where the subscript 0 means that the value is a constant. Then by conisdering our
governing equations

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0 (4.8.5)

and
ρ
∂u

∂t
+ u

∂u

∂x
= −B2 ∂ρ

∂x
(4.8.6)

using that ρ′ � ρ0, p′ � p0 and u′ � B, and inserting 4.8.2to 4.8.4 the equations above
becomes

∂

∂t

(
ρ0 + ρ′

)
+ ρ0

∂

∂x

(
0 + u′

)
= 0 (4.8.7)

ρ0
∂

∂t

(
0 + u′

)
+B2 ∂

∂x

(
ρ0 + ρ′

)
= 0 (4.8.8)

which again is equal to
∂ρ

∂t
+ ρ0

∂u

∂x
= 0 (4.8.9)

ρ0
∂u

∂t
+B2 ∂ρ

∂x
= 0 (4.8.10)

Then, by multiplying the equations by 1/ρ0 and 1/Bρ0 respectively, we obtain a dimen-
sionless form. Adding and subtracting the equations yelds

∂

∂t

(
u

B
+

ρ

ρ0

)
+B

∂

∂x

(
u

B
+

ρ

ρ0

)
= 0 (4.8.11)

∂

∂t

(
u

B
− ρ

ρ0

)
−B ∂

∂x

(
u

B
− ρ

ρ0

)
= 0 (4.8.12)

From the equations above one can observe that they are of the form of the substantial
derivative of

(
u
B + ρ

ρ0

)
, with the acoustic wavespeed as convection velocity. Integrating

these equations reveals

u

B
+

ρ

ρ0
= constant along x−B · t = constant (4.8.13)

u

B
− ρ

ρ0
= constant along x+B · t = constant (4.8.14)

From these results we get the characteristics lines x−B ·t and x+B ·t , and the quantities
u/B ± ρ/ρ0 are called the Riemann invariants[6].
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5 Solving the characteristic equations

The equations derived in the earlier sections are implicitly given. Meaning that the
solution is not given explicitly, but as a function of the solution. That could be that
one variable is a function of a second variable, but the second variable is also a function
of variable number one. Hence we need a method to solve the equations. The method
used to solve these equations is Newton’s method (also known as the Newton-Rhapson’s
method) , suggested by Wylie et. al [24].

5.1 Newton’s method

Newton’s method is a method for solving equations of the form f(x) = 0. The function
is assumed to have continuous first derivativef ′(x), and we start by “guessing” a value
and then iterate until the residual is below a acceptable value for the error. In our case
the “guessed” value will be the value for the previous timestep, or for the first iteration,
our initial conditions.

Figure 5.1.1: Newtons method[11]

As seen from figure.5.1 we see that the derivative f ′ can be defined as

f
′
(xn) = tan(β) =

f(xn)

xn − xn+1
(5.1.1)

which gives us

xn+1 = xn −
f(xn)

f ′(xn)
(5.1.2)
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As seen from the figure and the equations, this requires and iterative process. the value
of xn+1 has to be calculated enough times so that f(xn) → 0 and the error becomes
smaller than an accepted value ε.

xn+1 − xn = − f(xn)
f ′(xn)

≤ ε (5.1.3)

Newton’s method has the advantage of simple implementation, easy to understand and
very fast convergence in many cases, however a problem emerges when the f ′(xn) → 0.
Then f(xn)/f ′ (xn) → inf, and the solution no longer converges. Therefore a maximum
number of iterations using the Newton’s method is given.

5.2 Solution at the boundaries

At the boundaries one of the values Mp or pp is given, meaning that we have to solve the
equation either along C+ or C−. At the inlet, our values ar calculated by either eq... or
by eg..., depending on the propery given av the boundary.
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At the outlet our boundary equations becomes

pnewk =poldk −
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5.3 Newtons method for a system of equations

Newton’s method can also be applied to a system of dependet equations, as is the case
with the characteristic equations above. Instead of dividing f(xn) on its derivative, we
divide the system of functions on its Jacobi matrix,

J =

 f
′
′ (x1) . . . f

′
1(xn)

...
. . .

...
f
′
n(x′) . . . f

′
n(xn)

 (5.3.1)

The complete expression for the Jacobi matrix becomes
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Newton’s method for a system of equations then becomes

xt+4t1,2 = xt1,2 − J−1 · f
(
xt1,2

)
The f1,2(xn) refers to the characteristic equations given in where 1 denotes being the C+

characteristic and 2 is referring to the C−. x1,2 refers to the two variables, Mp and pp.
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(5.3.3)

5.4 Initial conditions

In order to start our iterations using the Newton’s method we need to “guess” starting
values. In this case we use the values at the previous timestep as our initial values. But
at t = 0 we we need existing values of pressure and massflow. And for this we use the
steady state values. An inital massflow in the pipe is equal a steady massflow. The
steady massflow can either be determined from a given value, or it can be found from
the boundary conditions. The initial pressure distribution is determined from the steady
steady state equation described in section 4.3. The pressure at the next node can be
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found by

p2 =

√
(p21+

fB2M2

DA2 4x
es−1
s

)/es (5.4.1)

Pressure at our next node can be found by using the value at the previous node, and
correct accoring to the slope of the pipe and the fluid properties. Hence we need an
initial value of the pressure at the inlet in order to obtain the initial pressure distribution
at the pipe.
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6 The program

In order to solve the equations, a computer program was developed. Much of the same
was done by Grafsrønningen[9] in 2006, however the new program was written from
scratch but involved many of the same functions as the previous program. The previous
program however was written to determine startup and shut-down of a 250 km slope from
a reservoir in Heidrun to the gas processing plant on Tjeldbergodden at the mainland.
This program was written in order to solve gas transport for medium length pipelines,
and testing it up against the existing testresults for the section etween Kårstø and Vestre
Bokn.

Assumptions made in the code

As listed in chapter 4, some assumptions were made when deriving the characteristc
equations. Point 1 and 4 stated that both compressibility factor and temperature were
held constant, and since wavespeed is defined as B =

√
ZRT , it also becomes constant. In

reality, both temperature and compressibility changes over the pipeline. Measurements
from the test section suggest that the temperature of the gas decreases approximately
∼ 14 − 15 degrees Celcius over the 12 km from Kårstø to Bokn. Section5.4 also shows
that the pressure does not remain constant throughout the pipeline. This will in reality
result in a change in both viscosity and compressibliltyfactor.

A comparison of wavespeed and compressibilityfactor at initial conditions shows

6.1 Natural gas compressibility

The compressibility factor is a factor describing the behavioural deviation of the natural
gas from the ideal gas law. Under large pressure and extreme temperatures the gas no
longer acts according to the law of an ideal gas, and the introduction of the compressibility
factor is a way of dealing with the behavioural deviation from the ideal gas law

p = ρRT (6.1.1)

Other, more complex numerical models dealing with gas transport often uses a compli-
cated state equation, i.e TGNet[12]. These equations can be difficult to solve. For the
method of characteristics a single variable called the compressibility factor, Z, is used.

p = ZρRT (6.1.2)
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Figure 6.1.1: Compressibility chart[23]

Rewriting 6.1.2, shows that the compressibilityfactor can be written as sa function of
pressure and temperature. The pressure and temperatures used are the reduced pressure
and temperature. These values are given as pr = p/pcr and Tr = T/Tcr. Tr and pp denotes
the reduced temperature and pressure, and Tcr and pcr represents the critical values.
Obtaining a critical value for a specific gas is a rather complex procedure, and for this
calculation values for methane gas are used. This is likely to deviate some from the real
answer, but since the gas contains approximately 90% methane gas this is considered
good enough.

The computational method used to approximate the Standing Katz compressibility chart,
is the method introduced by Gopal[8]. This method provides rather well approximations
when the values when Tr 6= 1.05 and 1.0 < pr < 1.5 [15].

6.2 Viscosity of natural gas

In order to calculate the viscosity of natural gas, a function visosity.m has been developed.
Lee Gonzalez and Eaking presented as early as 1966 a method to calculate the viscosity
of natural gases[13]. This method has been usend to a large extent in commercial codes,
such as the TGNet[12]. Different versions of the method has been presented. The LGE
method used in the code is implemented as follows:

X =
x1 + x2

T + x3 ·MWg
(6.2.1)
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K =
(k1 + k2 ·MWg) · T k3
k4 + k5 ·MWg + T

(6.2.2)

Y = y1 − y2 ·X (6.2.3)

µ = 10−4Kexp
[
X · ρY

]
(6.2.4)

The unknowns are defined as

k Value x Value y Value
k1 9.379 x1 3.448 y1 2.447
k2 0.016007 x2 986.4 y2 0.2224
k3 1.5 x3 0.010009
k4 209.2
k5 19.26

Table 6.1: LGE correlation factors

The temperature is given in Rankine and the gas density is given in g/cc. The answer
is given in the unit centipose, and must be corrected according to standard values. One
centipose is equal to 0.001N ·s/m2.

6.3 Friction factor

In section 2.3 we derived the friction factor for the pipeflow. This frictionfactor is a
function of Reynoldsnumber, diameter and surface roughness. Since the Reynoldsnumber
changes as the velocity component changes, it does not remain constant, and needs to
be calculated for the different velocities. For instance, a shut down of the pipeline, will
result in zero velocity at one end, whereas the other end still holds the initial velocity.
A function frictionfactor.m were developed. This function first calculates the respective
Reynoldnumber. It then determines if the flow is laminar or turbulent. If the flow is
laminar, given that Re < 2300, the frictionfactor is calculated according to equation
2.3.6. If the flow is turbulent, Re ≥ 2300, the function uses Colebrooks equation, and an
iterative process to calculate the frictionfactor. The frictionfactor.m function is called
first using the steady state velocity. In the iterations process it is called for each node
using the old flow rate at the node.

6.4 The code

The program can mainly be divided into three sections. The first section is the Pre-
processing, where we build up the problem, with all of its variables and necessary data.
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The second part of the program is the main processing which consists of the solver. The
third part is the post processing, here data are saved and presented.

6.4.1 Pre-processing

The program starts with a pre-processing sequence, in which one obtain and sets the
necessary data and variables needed to do the calculations. The pre-processing gives
the data for the gas, pipeline, initial- and boundary conditions. At first the program
asks for which case to calculate, wether it’s a transient or steady state case. Based on
this information the program selects which documents to read. The pre-processing then
follows the following sequence:

Setting universal constants: The universal constants R and g are set.

Reading data: The data necessary for the calculation is read from excel-sheets. Bound-
ary conditions are read from excel documents created from the Data.xls document pro-
vided by Gassco. The pipeline profile is also read from an excel sheet based on an
approximation from a figure in Langelandsvik’s phd thesis[12].

Pipeline properties: The values for the pipeline are then set. Diameter is fixed, and
other properties are calculated from these values and the pipeline profile.

Object: Pipeline
Property Function
.diameter diameter of pipeline
.area calculated area

.roughness wall roughness
..height heights at different nodes at the

pipeline
.length total length of pipeline under

consideration
.initial_nodes number of measuring points
.dx_initial the length of each initial pipeline

segment
.dx 4x−length of each segment

.nodes total number of nodes
.nodes_pr_dx number of nodes pr initial pipeline

segment
.alfa calculated angle of inclination for

the original pipeline segments
.s s=(2g4xsinθ/B2)
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Natural gas properties: Depending on the case, different initial pressures are given.
The other properties of the gas can be calculated from the pressure using the equations
of state given in section 4.1. Critical temperature and pressure are initially given. The
section calls the functions compressibilityfactor.m and viscosity.m

Object: gas
Property Function
.p_init Initial pressure of the gas
T_init Initial temperature
.pc Critical pressure of gas(methane

gas used)
.Tc Critical temperature(methane gas

used)
.Tr Reduced temperature(Tinit/Tr)
.pr Reduced pressure(pinit/pr)
.MW Mole weight of gas
.R Spesific gas constant(Runiversal/MW)

.wavespeed Acoustic wavespeed of
gas(B =

√
ZRT )

.Z Compressibility factor calculated
from6.1

.rho Gas density with inital pressure
and temperature

.my Gas viscosity calculated as in6.2

Initial conditions/ steady–state: We need starting values in our grid in order to have
convergence in our solution. The initial boundary condition for the mass flow rate is used
as the steady state massflow in the pipeline. The pressure however must be calculated
according to 4.3. In 5.4.1, p2 refers to the pressure at the next node. We therefore
need to keep track of the value for the slope of the pipeline. This is done by utlizing a
node-counter for the nodes and an if sentence.

Object: Initial
Property Function
.massflow Steady state massflow
.pressure The calculated steady state

pressure distribution
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Timeevaluation: the program requires an input of the total simulation time in seconds.
When the number of seconds is set, the total number of timesteps must be determined.
In order to calculate the timesteps we use the Courant condition[14]. Equation 4.7.1 gives
us the timestep, and by inserting a total simulation time the total number of timesteps
for a given simulation time becomes ttotal/4t.

Boundary conditions: Depending on the case, different boundary conditions must be
given. The program runs two types of cases, either from real values from real values
taken from the Gassco excel file[7]. When that is the case, the inlet boundarycondition
consists of a vector of massflows with a fixed time interval of one minute. In order to
obtain the correct value at the given timestep, and interpolation using is carried out in
the solver.m code. When the transient is an imagined case such as a sine-oscillation in
massflow, or a rapid closure of a valve, only steady flow value is given,values are given
and the values at the given time are calculated. The outlet boundary condition is set as
the initial pressure that we calculated at the last node according to equation 5.4.1.

6.4.2 Main processing

The main processing starts by initializing a new object called fluid. This is a [2× nodes]
matrix containing the pressure and massflow. It’s first values are set as the steady state
massflow and the initial pressure. One are then asked if the inertial multiplier should
be utilized. Two matrices to save data are pre-allocated. Since the model produces vast
quantities of data, restrictions on the number of nodes and timesteps saved must be
given.

Inertial multiplier

If the inertial multiplier is utilized, a method inertial_multiplier.m is called. This method
calculates the alpha value accoring to equation 4.5.1. With the new alpha value our time
steps can be calculated according to the following

tnew = told + α · 4t (6.4.1)

Iterations

If the inertial multiplier is not utilized, the alfa value is set equal to one. A for-loop
iterates from 1 to the total number of timesteps that we calculated in the pre-processing.
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For each timestep it calls the function solver.m. The function solver.m solves the charac-
teristic equations according to section 4, and returns fluid object with all of the pressures
and flow rates at each node.

When the inertial multiplier is utilized, the same iteration can no longer be used. The
alfa value are changing throughout the flow, and a while-loop is used to iterate in time.
The while loop calls the same function, solver.m as it was when α was set equal to one.
but it now uses the new time as presented in 6.4.1. The alfa value as also no longer
equal to one, and at the end of solver.m, a new function, inertial_solver.m is called.
The inertial_solver.m uses both the old and new value of the fluid. It then corrects the
solution at the new nodes according to equations 4.4.14 and 4.4.15.

6.4.3 Post processing

The main part of the post processing is saving the datas that we have kept from our
calculations. These files are saved as .dat files and a name relating them to the case they
are representing. Presenting the results in plots are also a part of the post processing.
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7 Simulations

In order to make simulations of any value one need to compare the results to already
measured values, only in that way one can see if the results one gets are of any value.
The method of characteristics is a simplified methods to calculate gas transport in pipes.
Several variables can not be examined using this method. However it may prove useful
for simple applications and calculations. The excel-sheet from Gassco were used for the
testcases. The hydrostatic pressureloss from Kårstø to Bokn is negliglible.

7.1 Steady state calculations

Steady state calculations of a constant flow rate of 70.6MSm3/d.

Measurements from Gassco

2/4/2009 2:56:08 AM

Inlet Pressure 180.8623 Bar

Massflow 70.6025 MSm3/d

Temperature 33.183 oC

Outlet Pressure 179.1083 Bar

Temperature 19.005 oC

Pressureloss 1.754 Bar

Table 7.1: Initial conditions

Measured inlet and outletpressure at Kårstø-Bokn
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Figure 7.1.1: Inlet and outletpressure

Since the altitude at the boundaries are approximately the same, the pressureloss due
to friction in the pipe can be represented as the difference between the inletpressure and
outletpressure.
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Figure 7.1.2: The corresponding pressureloss

Average friction pressureloss over the time interval shown in 7.1 is 1.7499 bar.

The steady state calculations gives a pressure distribution as shown below

Figure 7.1.3: Initial pressure distribution

The calculations of the initial pressure distribution shows that the pressure difference
between the highest and the lowest point in our pipeline is approximately 3.564 bars,
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which corresponds rather well to given hydrostatic pressure difference for the two points.
The altitude difference of about 212meters, giving a hydrostatic pressure of 3, 24 bar,

Steady state calculations

Inlet Pressure 180.8623 Bar

Outlet Pressure 178.7419 Bar

Pressureloss 2.1204 Bar

Error 17.27 %

Table 7.2: Steady state results

As the results shows, the MoC tends to overpredict the pressureloss. This will be dis-
cussed further in 8.3.

7.2 Simulation of cases

In addition to the steady state calculations other cases are also discussed. These cases
involves transients, M =M (t). Scenarios of interest are

• Opening of a valve (“start-up”)

• Closing of a valve (“shut-down”)

• Flow oscillations (“altering mass flow rates”)

Based on this we can define some cases. Using cases from the data-sheet from Gassco
gives us results that we can compare to real values. A series of calculations will be
defined:
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case- Steady state 4M Inlet Pressure Valve opening/ Oscillation Number of Simulation

number massflow[kg/s] [kg] [Bar] closing time[s] period[min] Nodes Time[s]

Oscillating flow cases

1 623.4925 2.98 180.86 - - 489 3600

2 623.4925 2.98 180.86 - - 977 3600

3 623.4925 50 180.86 - 10 489 3600

4 623.4925 50 180.86 - 10 977 3600

5 623.4925 2.98 180.86 - - 4942 90

Shut-down

6 626.44 185..43 60 - 489 3600

7 626.44 185..43 60 - 977 3600

8 626.44 185..43 - - 489 1800

9 626.44 185..43 - - 977 1800

10 626.44 185..43 60 - 4942 70

Start-up

11 12.861 147.25 39600 - 245 39600

Table 7.3: Test scenarios

Cases 5 and 6 were used as comparison in order to validate the accuracy of our results
using less nodes.

7.2.1 Oscillating flow

Even though we often refer to the steady state case4.3, the reality is that our case is not
a steady state but time dependent. We have small changes in the massflow and pressure
at the inlet. An increase in the massflow will increase the compressibility, and as a result
the pressure increases.

Two scenarios with oscillating massflow were simulated. One based on a real life example
from the data received from Gassco, using the measured values for the given values in[7]
as a reference. The calculated pressures from the program were compared to the pressure
measurements made by Gassco. The other case is a simulated case with larger oscillations
in the flow. This simulation had no reference and is only an indication of how pressure
and massflow relates to one another when the magnitudes of the oscillations becomes
large.
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7.2.2 Shut down/ valve closing

Another interesting case is the event of a valve closing at one end. Closing a valve will
reduce the mass fluxt and as a consequence the pressure also drops. Depending on the
speed of the shut down different problems emerges. In case of a rapid shut down, large
waves are likely form inside the pipe.

Two cases were also investigated for this event. One rapid shut down from maximum
massflow to complete blockage in 1 minute. The other case involved a partly stepwise
reduction of massflow, not completely blocking the valve. The second case is also a case
from Gassco.

7.2.3 Start-up/ valve opening

Another case of transient flow is a startup of a flow in a closed pipeline. The startup
takes place for a long time period. In the case evaluated using the program, the startup
process happened over a period of 11 hours, the equivalent of 39600 seconds, resulting in
a huge number of timesteps.
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8 Results

8.1 Oscillating flow

8.1.1 Case 1 and 2

The first case of the oscillating flow is a steady-state case from real life measurements.
The steady state in this matter is however, not exactly correct. The flow rate at the inlet
of the pipeline has small oscillations, and corresponding pressure changes. The real life
case is presented below

Figure 8.1.1: Measured pressure and massflow at inlet

As we can see from the case above pressure and massflow are not very well correlated.
The inletpressure increases over our calculation time. A closer look at figure 7.1 reveals
that the outletpresures is also increasing in that case, and inlet and outletpressure follows
one another rather well. In our case we have a constant outletpressure, and a simulation
of the same case is presented in figure 8.1.3.

In order to determine sufficient number of nodes a simulation using 500, 1000 and 5000
nodes were done for the unsteady flow case for 90 sec. The simulation using 5000 nodes
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were not carried out for the entire time of 1 hour, due to computational time. The
difference between 5000 nodes and 500 and 1000 nodes after 60 seconds is presented
below

Figure 8.1.2: Comparison 500, 1000 and 5000 nodes after 60 seconds

From figure 8.1.1 we see that both using 500 and 1000 nodes rather good results. Mean
error between 1000 nodes and 5000 nodes is equal to 5.4426 · 10−5. The case using 1000
nodes is used for the presentation below.

43



Figure 8.1.3: Case2: Pressure and massflow at the inlet

As we clearly see from the resulting plot, massflow and pressure are strongly correlated.
However the results are not correct according to the measured quantities. Reasons for
this will be further discussed in section 8.3. The measured results compared to the
calculated pressure at the inlet is presented in figure below

Figure 8.1.4: Case2 : Comparison to measured values
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8.1.2 Case 3 and 4

A testcase with larger oscillations were also evaluated, using a sine-function representing
steady oscillations. Magnitude of the oscillations were 50 kg/s, and the oscillation period
was set to 10 minutes.

Figure 8.1.5: Case4: Steady oscillations

8.2 Shut-down

8.2.1 Complete shut-down

The first of the shut-down cases involves shutting down the valve completely in a very
short time. The valve closing time in this case was set to be minute, or 60 seconds.
This is a very rapid shut-down and in reality a complete shut down this quickly would
not occur. However, it can be of interest to see what happens with both pressure and
massflow when the valve closes this quickly. Intuitively one sees that the pressure must
drop quickly, and as a result of this, backflow might occur as will be shown in the figures.
A comparison of numer of node was also done for the shut down case.
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Figure 8.2.1: Error vs 5000 nodes solution after 60 seconds

The average error was −1.211 kg/s using 500 nodes, and −1.505 kg/s. This shows that the
solution using 500 nodes is more accurate than using 1000 nodes. This contradicts the
fact that our solution becomes more accurate as the number of nodes increase. However,
both cases provides accurate results with an average of less than one percentage error,
provided that the results at the first node are not considered since mass flow rate at this
point is close to 3or equal to zero. The case using 1000 nodes will be used in the further
presentations.
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Figure 8.2.2: Case 7: Massflow

Figure 8.2.3: Case 7: Pressure

A closer look at the figures above reveals that we have oscillations in our flow. These
oscillations decrease with time, and eventually die out, with a steady state mass flow
rate equal to zero. The damping is a result of friction in the pipeline.
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Figure 8.2.4: Flow oscillations at the outlet

8.2.2 Stepwise shut-down

A case from the datasheet[7] was also simulated. This was a case where the mass flow
in the pipeline was decreased from 70.85MSm3/d to 8.85MSm3/d stepwise over a period of
30 minutes.
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Figure 8.2.5: Case 9: Massflow

Figure 8.2.6: Case 9: Pressure

A comparison of the pressure at the inlet was done with the measured data for the same
case
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Figure 8.2.7: Comparison measured results and calculated

8.2.3 Startup/valve opening

A simulation of the start up process was done using 250 nodes. The simulation was
terminated after 4 hours because of time.

Figure 8.2.8: Case 11: Massflow
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Figure 8.2.9: Case 11: Pressure

From the figure above, we see that the changes pressure is not significant. A comparison
of the calculated result compared to measured values at Bokn is done

Figure 8.2.10: Comparison case 11: inlet pressure
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8.3 Discussion of the results

Figures 8.1.1 and 8.2.1 was done in order to validate the results using 500 and 1000
nodes. Numerical methods such as the Method of Characteristics has the property that
it becomes more accurate as the mesh becomes finer. However there must be a equilibrium
between accuracy and cost, which in this case is computation time. Both figures 8.1.1 and
8.2.1 shows that results using 500 and 1000 nodes for the simulation provides sufficiently
accurate results. Some of the error in figure 8.2.1, might be a result of a difference in
the timesteps saved, since the program tries to save each 20 seconds, but the actual time
might deviate some.

Figures 8.1.3 and 8.1.5 shows the measured values of pressure and flow rates at the inlet.
Flow rate and pressure seems to correlate well. This is also supported by simulations done
by Langelandsvik [12] using TGNet. It can also be explained physically, since increased
flow rate will increase densitey and as a consequence also pressure. Compared to the
measured flow rate and pressure at the inlet for the same time frame in figure 8.1.1, we
see that the results of the measured values does not follow eachother.

A comparison of the measured values and the calculated pressure is given in figure 8.1.4.
From this we see that the measured values does not correspond to the calculated values.
The actual pressure increases, whereas our calculations suggests that the pressure more
or less will remain constant, with minor deviations from the average. The reason for
this can be found in the fact that our boundary condition at the outlet will become very
wrong as time passes. In reality the pipeline under evaluation is 658 km long, giving
an additional 646 km of pipeline after Bokn, that functions as our outlet boundary.
Following the result that we proved when deriving the equations, that the information
travels through the pipeline at the acoustic wavespeed. A wavespeed in the order of 340
m/s, means that the information at the inlet of the pipeline does not arrive at the end
of the pipeline until 32 minutes have passed. What happens at the end is unknown,
but a reflection wave will start to travel in the opposite direction. This wave will use
approximately 33 minutes before arriving at the inlet boundary, since it travel at the
speed of sound minus the velocity of the flow. As a result oft this, we in fact have to wait
for more than on hour in order to get response from changes done at the inlet. Using
only the length from Kårstø to Bokn means that the response from will arrive only a
minute later. from a boundary condition that is physically wrong, since a reduction in
mass flux at Bokn would result in a corresponding reduction of the pressure.

A closure of the valve in 60 seconds produces physical reasonable results. According to
figure 8.2.2 , it is seen that after 60 seconds the mass flux at the outlet is also decreasing.
A closer look at the flow-rate curve after 1 minute shows that we have a contour of a
wave at about 3000 metres in the pipeline. This wave comes as a reflection from the
outlet boundary, and compared to wavespeed and time the distance of the discontinuity
agrees well with its location. Comparing this plot to the pressure curve in figure 8.2.3 we
see that the lowest pressure at the inlet is also after 1 minute. We then have a positive
pressure gradient from inlet to outlet, and a negative flow could be expected.
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The mass flux at the outlet will start to oscillate. The oscillating flow at the outlet
boundary is shown in figure 8.2.4. As we can see from the curve, the magnitude of the
flow is decreasing in time. This damping can pe physically explained as a result of the
wall friction, and the flow will eventually reach steady state, with zero mass flux.

As we can see from figures 8.2.5 and 8.2.6, the stepwise closure of the valve gives a more
stable flow, similar to the steady state solutions. The large oscillations that we saw
when the pipeline was completely shut down in a short time interval does not occur.
Comparing the result of the calculated inletpressure for the stepwise shutdown of the
pipeline in cases 8 and 9, shows that the results once again are completely erroneous
when compared to measured vaules. Figure 8.2.7 reveals that as the calculated values
tends to become stabile, the measured values continues to decrease. As explained earlier,
this results is due to the insufficient boundary conditions at the outlet. A decrease in
flow rate will naturallly result in a lower pressure. This is however not reflected in the
outlet boundary condition, and it affects he solution at the inlet.

When we have the opening of the valve we see that the flowrate is increased in steps over
a long period of time. Only results by the hour are presented in figures 8.2.8 and 8.2.9.
We see from this that we have tendencys of flow oscillations inside of the pipeline, due
to the fluctuating mass flux. The contours of several relfection waves can also be seen.
Pressure shows more or less no change. The pressure tends to be scimilar to the steady
state pressure, since the gradients are low.

When comparing the results of our calculations to the real values in figure 8.2.10, it can
be seen that the measured values contradicts our previous results and comparisons. An
increase in the masflow, should intuitively result in a higher pressure. However this is
not the case. A further investigation of the measured values, and imposed boundary
conditions, reveals that the valve had been closed for about an hour and half. What
happens at the end of the pipeline remains unknown, and our results is of more or less
no value.

Time

Calculations on long pipelines, or with a high number of nodes are very costly in computer
resources and time. Since the simulations were performed on a laptop computer, the
long transients with numerous nodes were in practice impossible to calculate. Using the
stopwatch, tic/toc, function in matlab one can find the expected calculation time. An
approximate computation time for different cases is presented in table 8.3.
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Nodes s Ttotal

500 3600 1.5h

1000 3600 5.3h

5000 70 2.5h

5000 3600 135h

Table 8.1: Time evaluation

Using 500 and 1000 nodes to do the computations is realizable. Increasing the number of
nodes, increases the computiation time by square. The simulations using 5000 nodes, and
one hour simulation time takes about five and a half days to perform. These simulations
were done on a 2 year old Macbook with a 2.4 GHz intel core 2 Duo processor, and 2
Gigabytes 667 MHz SDRAM. A new stationary more powerful personal computer would
manage these operations faster. The Energy and Process department also have computer
clusters available. Weither or not these would be capable of doing the calculations using
matlabscripts were not investigated.

Assumptions when deriving the MoC

When we derived the method of characteristics in section 4, we made a few assumptions
in order to simplifying the equations. The most significant assumption that we made,
was that flow was considered isotherma. From the equation of stat it’s seen that ρ and
p , are temperature dependent. The measured temperature from the inlet to the outlet
decreases by approximately 14oC. An analysis comparing the resulting wavespeed and
compressibility factor for the different temperatures shows.

Variable min max 4 %

Temperature, T 291.9494◦K 306.15◦K 14.2◦K 4.46

Compressibliltyfactor Z 0.7930 0.8207 0.0277 3.38

Wavespeed, B 326.9151m/s 340.5661m/s 13.651m/s 4.01

Table 8.2: Errors due to isothermal assumption

As we can see from the table above, the errors of compressibility, wavespeed and temper-
ature are in the same order of magnitude. An exponential funtion to represent the tem-
peraturedistribution, instead of solving the energy equation, was developed and tested
in the program. This gave new values to Z, ρ, B and µ at the different nodes. The
temperature function is given in equation 8.3.1
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T (x) = 306.36 · exp
(
−3..893 · 10−6 · x

)
(8.3.1)

This method however, proved unstable. Ths method was therefore ignored, and temper-
ature were considered constant throughout the pipeline. This assumption will also be
one source of errors when comparing the results to measured values.

Boundary conditions

Two boundary conditions must be given according to section 4.6. One at each of the
boundaries. For the tests and simulations performed in this paper, flow rate at the inlet
and the calculated initialpressure at the outlet were used as boundary conditions. As
proved in section 7.1, the steady state equation tends to overpredicted the pressureloss.
The pressure at the outlet is in reality is higher than calculated pressure.

The flow rates and inletpressure provided by Gassco were used as the boundary and
initial conditions. Gassco have Paroscientific digiquartz pressure transmitters[12] at each
end of the testsection to read the pressure. In this way, using the measured pressure
at the outlet could in theory be used as a boundary condition. However the measured
values are not correct according to the equations, and it is therefore not ideal to impose
boundary conditions that contradicts the equations.

In general the main problem for this case is that the boundary conditions are only known
at one end, and using a constant boundary condition at the other end provides erroneous
results at the inlet.

A solution to this can be to evaluate the time that we find the outletboundary depending
on the time that we are considering. I.e. if we are simulating for 10 minutes, an acoustic
wave will at the same time travel approximately 200 km. If the boundary conditions at
the outlet is unknown at the time, outletboundary can be placed 200++ km away. The
conditions at the outlet boundary will then not affect our solution at the inlet, and the
response due to the transient will be found at the inlet.

Other cases that could be of interest, where we would have valid boundary conditions
could be

• Steady state with a closed valve: Flow rate at inlet would then be equal to zero, a
reduction of pressure at the outlet would then result in a mass flux.

• Pressure control in order to have constant mass flux.

Initial conditions

For our initial conditions we use the steady state values, giving a constant mass flux, and
the steady state pressue. In reality we already have an unknown unsteady flow inside of
the pipeline. This could however be solved if we did the simulation for the period that
the acousticwave spends in order to travel from inlet to outlet. And from this time start
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saving our result. In this way we could make sure that the initial conditions are correct
accourting to our model.

Inertial multiplier

The inertial multiplier has been presented in the derivation of the equations. The use
inertial multiplier is done in order to increase the timesteps which is useful since the
calculations of longe pipelines is very timeconsuming. The method involves solving the
characteristic equations for the inner nodes both using values from old and new timestep.
The method were implemented using Newton’s iteration method. Unfortunately solver
using the inertial multiplier became unstable as α ≥ 3, and a solution to this problem
were not found in time.

8.4 Suggestions for further work

As we have ssen above, the simplified Method of Charcteristics provides a simple, and
in some situations, rather accurate solution to the problem of transient gas transport in
large pipelines. However, the MoC has disadvantages. The limitations of the timestep
is quite strict, this has partly been solved by [25] and [24]. However, the validity of the
results using the inertial multiplier has been questioned and in some cases proved very
misleading [18].

Expansion of the model

For instance, the use of the simplified equations results in a loss of accuracy. If the
complete equations had been used, our result are likely to become more accurate. In
addition, a characteristic solution of the energy equations could be utilized. Since the
characteristic of the energy equation requires a higher number of nodes if solved using
the same timestep, the energy equation could be solved for fewer timesteps, and therefor
requre less nodes. The results could be interpolated to fit the nodes for the characteristics
for the momentum equation.

In the model, the critical pressure and density for methane is used. This is off course
erroneous since the gas is a composition of different species, even though methane ac-
counts for 90% of the gas. Obtaining critical values for pressure and temperature of the
natural gas composition would also be helpful in improving our results.

Using a different programming language

Even though Matlab is a much used programming language for scientific computing,
providing a simple and understandable environment for its users, it has the major disad-
vantage of being slow. That becomes clear as the computational efforts are increasing.
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In general we separate between two types of programming languages, compiled and in-
terpreted. Matlab falls under the last category. The interpreted code is not in need of a
compiler and is stored the way it is written. A program is therefore changed into binary
code each time it runs, whereas a compiled program is stored in its binary form and
therefore has the advantage of faster execution.

Previously, nearly all scientific programs were written in the language FORTRAN. This is
a rather old language, and in recent years C/C++ has become more and more popular in
combination with object-oriented programming. Therefore, if a more extensive program
is implemented, it should be in form of either C/C++ or FORTRAN.

Finite difference model

In order to make a more accurate and usable program, introducing a finite difference
model instead should be considered. A finite difference model has the advantage that
the complex set of equations would be easier to solve completely. Introducing a finite
difference model would also have the advantage that it can be implemented in an implicit
form, giving a more stable and faster solution since the timestep restrictions no loger
would be as strict as for the MoC. Other methods such as finite element or finite volume
method could also be used.

Improvements on boundary conditions

Our main source of the erroneous results when compared to measured values comes
from the fact that the initial condition are unknown and that boundary condition at the
outlet does not change as the flow rates change. Obtaining some kind of mathematical
correlation function for our outlet pressure as the pressure, or flow rate, changes at the
inlet would significantly improve the results of our calculations.
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9 Conclusions

The project was meant to give a brief introduction on available computational meth-
ods computing the flow in a gas transport pipeline. A specialization in the method of
characteristics, and a comparison on the method compared to other methods was done.
Finally, a numerical method using the method of characteristics was implemented, com-
puting transient flow in a natural gas pipeline. Results were then compared to real
measurements done by Gassco.

This paper proves that the numerical solution of the Method of Characteristics provides
realistic solutions of the partial differential equations governing the flow in a natural
gas pipeline. The pure physics of the method can also be quite easily understood. The
method is rather simple, compared to more extensive models such as finite difference
models. But due to its simplicity, it cannot account for many of the parameters of the
flow as would be the case for more extencive models.

The method itself provides physically reasonable results, but due to insufficient boundary
conditions imposed at the outlet, the results does not correspond well to the measure-
ments done by Gassco. The reason for the lack of sufficient boundary conditions is that
the calculated initial pressure at the outlet is set as the outlet bounday condition. The
boundary at the outlet that we are using in this case is only a part of the pipeline, and it
provides no physical boundary. The use of a constant pressure at this point is therefore
not correct, and in reality the pressure at this point will show the same behaviour to a
change in flow rate as the inlet. This behaviour was shown in figures 8.1.3 and 8.1.5,
which proved a very good correlation between pressure and flow rate. Introducing a
mathematical function that correlated the outletpressure either according to massflow or
pressure at the inlet would likely increase the accuracy of the calculations significantly.

Due to its simple nature, errors may also be a result of other simplification that we did
when we derived the equations.

• The use of isothermal flow.

• Constant compressibility and wavespeed.

• Neglecting the convective term.

• Simplification of our pipeline profile

Even though tests have not been performed, it is likely to believe that the method will
provide rather good results, when we have set boundary conditions, for instance the case
of a closed valve at the inlet, and the request for a constant mass flux at the outlet.
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It can also be concluded that for simulations over a long period of time on longer pipelines,
the use of an explicit solution in Matlab is not ideal. The process is to time consuming,
and we would be better off with an explicit solution using a compiler language, such as
FORTRAN or C/C++.

As a final conclusion it can be said that the program using the method of characteristics
provides reasonable results, but the main problem is the implementation of sufficient
boundary conditions. With the use of constant pressure at the boundary, the results
does not prove valid for the cases that we have investigated.
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Appendix A: Matlab Code
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A1 main.m
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A2 solver.m
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A3 inertial_solver.m
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A4 viscosity.m
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A5 frictionfactor.m
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A6 compressibilityfactor.m
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A7 inertial_multiplier.m
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Appendix B: 3D Plots

Case 2: Massflow

Case 2: Pressure
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Case 4: Massflow

Case 4: Pressure
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Case 7: Massflow

Case 7: Pressure
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Case 9: Massflow

Case 9: Pressure
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Case 11: Massflow

Case 11: Pressure
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