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Sammendrag 
Litteraturstudie av LNG prosesser egnet for offshore har blitt evaluert. Undersøkelsen er utført med 

vekt på plassbehov, kompleksitet, effektivitet og sikkerhet. Ved bruk av termodynamikk er NicheLNG 

prosessen beskrevet. Flytendegjøringsprosessen på HLNG FPSO-1 har blitt vurdert med hensyn til 

energiforbruk, forbedringer og muligheten for å utvide prosessen for å gi en indikasjon på dens 

potensial. I tillegg har en alternativ LNG prosess blitt sammenlignet med NicheLNG prosessen.  

Prosesser med dobbel ekspander kjølekretser basert på nitrogen som kjølemedium er den mest 

foreslåtte løsningen for offshore produksjon. Derfor ble den valgt som en alternativ prosess til 

NicheLNG. I vurderingen av de to prosessene ble simuleringer gjort med likeverdige vilkår. 

NicheLNG prosessen, basert på en åpen metan krets og en nitrogen krets, hadde en lavere massestrøm 

som resulterte i 10% lavere energiforbruk. Valg av kjølemediet (metan eller nitrogen) har forskjellig 

spesifikk varmekapasitet og dermed en innflytelse på massestrømmen. For en gitt kjøleytelse krever 

metan som kjølemiddel mindre massestrøm enn nitrogen. I tillegg vil høyere trykk nivåer bidra til økt 

effektivitet og redusere størrelser på utstyr. 

I den åpne kjølekretsen til NicheLNG prosessen blir metan kjølt ned til -1,5°C før den blir ekspandert. 

Hvis nedkjølingen blir utvidet til -10°C før ekspansjon er det mulig å oppnå høyere effektivitet for 

metan kretsen.  

Kriteriene ved sammenligning av LNG prosesser er viktig når kvaliteten skal fastsettes. Fødegassen og 

produkt spesifikasjonene gir restriksjoner på oppnåelig effektivitet. Med økende fødegasstrykk kreves 

det mindre arbeid (fra fødegass til LNG), men på grunn av den høye virkningsgraden til kompressoren 

og den lave virkningsgraden for selve flytendegjøringen vil den totale virkningsgraden reduseres. 

Arbeidet flytendegjøringen krever blir mer dominerende enn kompressorarbeidet med høyere 

fødegasstrykk. Derfor bør virkningsgraden av LNG prosesser ikke beregnes fra sitt fødegasstrykk men 

fra tilstanden etter fødegasskompressor. For NicheLNG prosessen ble eksergi virkningsgraden av 

flytendegjøringsdelen beregnet til 26,6%, ved et inngangstrykk på 75 bar.  

En vurdering av økt LNG produksjon med vekt på forbedringer for å holde energiforbruket nede ble 

undersøkt. De fire undersøkte løsningene var; End Flash Gas, væskefaseturbin, en ekstra kompressor 

og økning av varmeveksler areal. Væskefaseturbin var forbedringen som skiller seg ut som den med 

høyest bidrag til effektiviteten. Med en 25% økning i LNG produksjon og med de nye enhetene og 

modifikasjonene reduserte det spesifikke arbeidet fra 0,5502 kWh / kgLNG til 0,4791 kWh / kgLNG. 

Disse forbedringene kan rettferdiggjøre økte investeringskostnader ved 25% høyere LNG produksjon 

siden energiforbruket reduserte med 12,9% enn for den opprinnelige utformingen av NicheLNG 

prosessen. Grunnet begrenset med plass og vektkapasitet på en FPSO må dette tas hensyn til ved en 

forandring av prosessen.   
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Summary 
A literature survey of LNG processes suitable for offshore environment has been evaluated. The 

survey has been performed with emphasis on space requirements, complexity, efficiency and safety. 

Thermodynamics theory is described and used in the investigation of the NicheLNG process. The 

liquefaction part of the HLNG FPSO-1 has been evaluated with respect to its energy consumption, 

improvements and the possibility to expand the process to give an indication about improvement 

potentials. In addition, one alternative liquefaction process has been compared with the NicheLNG 

process. 

Dual expander processes based on nitrogen as refrigerant are the most proposed solution suitable for 

offshore applications. Therefore it was chosen as an alternative process to NicheLNG. In the 

investigation of the two processes the processes simulated were with equal conditions. The NicheLNG 

process, based on an open methane cycle and a nitrogen cycle, had a significantly lower mass flow rate 

resulting in 10% lower power consumption. Decision of chosen refrigerant gas (methane or nitrogen) 

has different specific heat capacity and hence an influence on the flow rate. Methane as refrigerant 

requires less mass flow rate than nitrogen for a given duty. In addition, higher pressure levels will 

contribute to increased efficiency and reduced unit sizes. 

In the open refrigeration cycle of the NicheLNG process, methane is cooled down to -1,5°C before it 

is expanded. If the internal heat exchange is extended to -10°C before expansion is it possible to 

achieve some efficiency increase for the methane cycle.  

Comparison criteria are important when the quality of liquefaction processes is to be determined. Feed 

and product specifications provide some restrictions on obtainable efficiency. With an increasing feed 

gas pressure, the whole liquefaction process (from feed to LNG) demands less work, but the overall 

process efficiency is reduced due to the high efficiency of the feed gas compressor and the low 

efficiency of the liquefaction part. Hence, the efficiency of the liquefaction process should not be 

calculated from its feed gas pressure but rather the liquefaction pressure. For the NicheLNG process, 

the exergy efficiency of the liquefaction part was calculated to 26,6%, with a liquefaction pressure at 

75 bar.  

An increase of LNG production with emphasis on improvements to keep work consumption down was 

also discussed. The four evaluated solutions were utilization of End Flash Gas, liquid expander, 

additional compressor and increase of heat exchanger area. The liquid expander was the improvement 

that stands out as the highest contribution to the efficiency. With a 25% increase in LNG production 

and with new units and modifications of the design resulted in a reduction in the specific work 

consumption from 0,5502 kWh/kgLNG to 0,4791 kWh/kgLNG. These efficiency improvements can 

justify higher investment costs since the work consumption, with 25% higher LNG production, was 

12,9% lower than for the original design of the NicheLNG process. Never the less, space and weight 

on a FPSO are limited and has to be considered when a more efficient process is desired.  
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Introduction 
For many years, several companies have been working on realization of offshore LNG production. A 

proposed production facility is an LNG Floating, Production, Storage and Offloading vessel (FPSO) as 

foundation for the liquefaction application. Destinations of an FPSO are isolated gas field. In gas 

fields remote from land may it be uneconomic to build up an infrastructure to exploit the reserves. In 

addition is associated gas from offshore oil production that is flared or re-injected into reservoir a 

possible placement.  

At the present time, Höegh LNG is operating LNG ships for transport and is about to hand over two 

SRV ships (Shuttle and Regasification Vessel). The company wants to have a solution in a floating 

value chain for LNG with integration of a LNG production facility. The development of an FPSO for 

LNG production has reached the end of the FEED (Front End Engineering Design) phase. The design 

is not yet set since final destination is unknown and an increase in production rate may be desired. A 

possibility of higher LNG production or better energy efficiency can give an advantage in the future 

customer negotiations.  

This master thesis takes the original design of the NicheLNG process and compares it with other 

liquefaction processes suitable for offshore applications. Restricted to offshore production, some 

aspects have higher importance than for land based facilities. Potentials and improvements are 

analyzed both from a practical viewpoint but also some hypothetical situations are discussed. Since 

detailed information on the processes is restricted, some considerations have been made to get equal 

assumptions to compare processes. This will be expressed later in the thesis. 

The theory of the underlying thermodynamic calculations is expressed followed by a literature survey 

of liquefaction processes suitable in an offshore environment. These processes are then compared in 

energy efficiency, chosen design and refrigerant medium. Then the improvement potential with 

emphasis on the most promising process is analyzed. An indication of the potential expansion in 

capacity is done by manipulating refrigerants and with a higher equipment count. In contrast to the 

original design analysis, the evaluation of increased capacity has a more practical view.  

Two energy saving sources have in an earlier master thesis been identified and evaluated, and will 

therefore not be treated in this work. It covered the benefit in terms of energy consumption with lower 

cooling water temperature and removal of the NGL extraction process.    
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1 Theory 
Calculations performed in this thesis are based on well known thermodynamics and simulations in 

AspenTech HYSYS. This chapter provides an overview of the thermodynamic principles with 

emphasis on cryogenic processes.  

1.1 Compression and expansion 

Compressors used in the liquefaction section are the main consumer of energy. The amount of 

consumed work depends on the inlet and outlet state. From the first law of thermodynamics [1]:   
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(1.1)  

For a steady state system with one inlet, one exit and neglecting change in potential energy, the energy 

balance is reduced to: 
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When accounting for entropy, enthalpy and pressure changes, work can be expressed by the magnitude 

of the specific volume of the fluid (∆ke = ∆pe = 0) [1]: 
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Figure 1.1 Enthalpy – entropy diagram. Isenthalpic and isentropic expansion illustrated with arrows [12] 

Figure 1.1 illustrates throttling and expansion of a gas. From the relation between the enthalpy change 

for real and isentropic expansion, ∆he/∆hs, the efficiency can be found. In cryogenics the
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efficiency is defined as the reduction of the enthalpy and not the gained mechanical power [12]. An 

expansion without an enthalpy reduction is achieved by throttling. The expansion absorbs no heat and 

does no work. An isenthalpic expansion is defined by the Joule-Thomson coefficient: 

 J

h

T

p
µ

 ∂
=  

∂ 
 (1.4) 

A gas that is cooled through a valve has a positive µ J. When negative µ J occur, the temperature 

increases by an expansion. The phenomenon of increased temperature is of particular importance 

when handling gases at very low temperatures such as helium.  

An isentropic expansion is also illustrated in figure 1.1. The isentropic expansion corresponds to a 

process with no internal irreversibilities. This is an ideal expansion where maximum achievable work 

is developed. In a real expander, entropy is produced resulting in a higher outlet enthalpy value. Thus, 

less work is produced. 

1.2 Coefficient of Performance  

A refrigeration process withdraws heat at rate QC 

from a cold source at temperature TC. This is then 

delivered to a warmer reservoir at rate QH and 

temperature TH. To accomplish this, work input is 

necessary. As figure 1.2 illustrates, required work to 

perform this cooling is W=QH-QC. Higher TC results 

in higher QC, and thus lower work consumption. 

With increasing TC the efficiency of a refrigeration 

process is increased, as eq. 1.5 and 1.6 express.  

 

 

 

 

The efficiency of a refrigeration process is commonly defined by a Coefficient of Performance (COP), 

and is defined [1]: 

 CQ
COP

W
=  (1.5) 

and theoretically maximum [1]: 

 ,max
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th
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C
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T

=
 
 
 

 (1.6) 

Figure 1.2 A refrigeration process [13] 
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From Eq. 1.6 and with hot reservoir temperature at 38°C as TH=T0, the maximum COP as a function of 
cold temperature TC is plotted in Figure 1.3. The cold temperature TC is the temperature the cooling 
duty is delivered. 

 
Figure 1.3 Coefficient of Performance as a function of temperature 

The dotted line in figure 1.3 expresses the COPth,max at TH=15 °C. A lower sea water temperature 

results in a higher COP, hence a more efficient refrigeration process.   

In refrigeration processes, the reversed Carnot 
cycle can be used as an illustration of the 
theory. An ideal gas with heat absorption and 
rejection at constant temperatures is illustrated 
in the T-s diagram in Figure 1.4. The reversible 
process in Figure 1.4 is stated through 
isentropic compression (1-2), isothermal 
compression (2-3), isentropic expansion (3-4) 
and isothermal expansion (4-1). Work can then 
be represented as W and heat extracted as QC in 
Figure 1.4. 
 
The COP for the Carnot cycle is expressed as in 
Eq. 1.6.    

  

Figure 1.4 Carnot reversed cycle 
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1.3 Brayton Refrigeration Cycle 

A Brayton refrigeration cycle is a reversed Brayton cycle. Heat is transported from a cold reservoir, 

where the temperature after an expansion is below that of the cold reservoir. Refrigeration is then 

achieved by attracting heat from a cold region and then later released. Different from other 

refrigeration cycles this cycle involves no phase change. The working fluid remains as a gas 

throughout.  

 

Figure 1.5 illustrates a refrigeration process based on the reversed Brayton cycle. The T-s diagram 

represents a real cycle. An ideal cycle operates with isentropic turbine and compressor. As can be 

seen, the expansion and compression is not isentropic so a real process operates with some losses. 

Heat transfer from the cold region is from 5-6 and then the heat is released after a compression from 2-

3.  

1.3 Exergy 

Exergy is a measure of the maximum amount of work that can be extracted from a process stream 

when it is brought to equilibrium with is surroundings in a hypothetical reversible process [1]. When 

neglecting changes in composition and chemical exergy, this is a measure of the potential in thermo-

mechanical exergy and thus defined only in terms of the stream enthalpy and entropy relative to the 

surroundings. The exergy, e, expressed at steady-state conditions and neglecting kinetic and potential 

energy [2]:  

 
0 00 , 0( - ) -( - )T P T Pe h T s h T s=  (1.7) 

where T0 and P0 are at ambient conditions. When taken from one state to another, the change in exergy 

is given by: 

 
2 2 1 10 , 0( - ) -( - )T P T Pe h T s h T s∆ =  (1.8) 

Figure 1.5 Flow sheet and T-s diagram of a reversed Brayton cycle [18] 
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In a real process irreversibilities exist. So actual work required to bring a process to a state is more 

than in an ideal case. Given by the second law of thermodynamics, over an actual system, lost work 

from compression can be defined as the difference between actual work required and the change in 

exergy: 

 -lost actualW W e= ∆  (1.9) 

and lost work from expansion: 

 lost actualW e W= ∆ −  (1.10) 

When exergy production and losses are known the exergy efficiency can be decided. Exergy efficiency 
is defined as the relation between the exergy change of natural gas to be liquefied and the power 
consumed. Exergy efficiency is defined as: 
 

 
   

 
ex

Minimum power for liquefaction

Power Consumption
η =  (1.11) 

 
Figure 1.6 Simple illustration of an expander refrigeration process 

Figure 1.6 shows a simple a refrigeration process, consisting of a compressor, aftercooler, heat 
exchanger and expander. The compressor consumes work by increasing the pressure of a refrigerant to 
a desired level. Necessary cooling is obtained by expanding the refrigerant through a turbine and this 
will also produce work. From consumed and produced work the exergy efficiency can be expressed as: 

 
1 2 1

exp

( - )

- -
ex

comp

n e e

W W
η =

i

i i

 (1.12) 

According to [3], the placement of state 2 is in front of the valve when exergy change from feed to 
after heat exchanger is to be calculated.  
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Calculations of exergy losses through the components are done as expressed in Table 1.1:   

 
Table 1.1 Exergy losses in different components [3] 

From Table 1.1 the exergy losses of components in a liquefaction system can be found, and thereby 

the exergy efficiency of a component. Comparing different liquefaction processes the exergy losses of 

components in each process may differ and a more detailed overview of the processes may give 

advantages in optimizing them. With an overview of the exergy losses from each component may an 

optimization be easier to accomplish.  
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1.4 Heat Exchanger Duty 

Transfer of heat through a heat exchanger is typically done for three different reasons. Either a stream 
needs to be heated or cooled, or a liquid stream needs to be vaporized, or a vapor stream needs to be 
condensed. To transfer heat, one rule has to be satisfied from the Second Law of Thermodynamics; 
heat can only be transferred from a higher temperature to a lower one. This means that the higher 
temperature cooling curve and the lower temperature heating curve cannot intersect.  
 

 
Figure 1.7 Counter current heat exchanger 

The duty of a heat exchanger as in Figure 1.7 can be provided from an energy balance. If inlet and 

outlet conditions of a hot stream are known and the specific heat capacity assumed to be constant, the 

duty can be expressed as [6]: 

 ( ), ,-H H in H outHQ m Cp T T=
i i

 (1.13) 

or similarly for a cold stream: 

 ( ), ,-C C out C inCQ mCp T T=
i i

 (1.14) 

To determine the temperature driving force for heat transfer, the log mean temperature difference, 
LMTD, is used. The use of LMTD is valid both for co-current and counter-current flow [6] as long as 
the specific heat capacities and the heat transfer coefficient are constant. By defining the temperature 
difference for each side of the heat exchanger, the LMTD is defined as follows [6]: 
 

 
-
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 (1.15) 

where ∆TL is the temperature difference on the left side and ∆TR on the right side of the heat 
exchanger. 
When looking at a cross-flow heat exchanger a common principle is to introduce a correction factor, F. 
The correction factor is in the 0 < F ≤ 1 region.   
With conduction and convection coefficients, the overall heat transfer coefficient, U, can be 
introduced. For a given heat transfer area, A, the duty of a heat exchanger can then be expressed as 
[6]: 
 

 Q U A LMTD F= × × ×
i

 (1.16) 
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1.5 Refrigerant medium 

A traditional large onshore liquefaction plant normally contains three refrigeration cycles. Each cycle 

is supposed to cover different temperature regions of the natural gas to be liquefied. The purpose of 

the cycles is precooling, liquefaction and subcooling. When it is desirable to have two cycles the first 

operates as a precooler followed by a second cycle for the liquefaction and subcooling.  

1.5.1 Gaseous refrigerants 

If a gas is chosen as refrigerant without any phase change, operation in the cold end differs often from 

a mixed refrigerant. A gaseous refrigerant has the possibility of expanding through a turbine and 

thereby produce some work in addition to lower its temperature. Placement of expansion is complex 

and depends on the overall process and the chosen refrigerant gas. Decision of refrigerant gas and 

placement of expander are covered in Chapter 4.     

 

Figure 1.8 Temperature-enthalpy diagram of natural gas with cooling sequences indicated 

Figure 1.8 shows the enthalpy-temperature variation for natural gas at a pressure of 19,5 bar and 75 

bar. The composition of the natural gas is a typical feed gas before a liquefaction process. The isobar 

lines are chosen from the NicheLNG operating pressures. The 75 isobar line is the liquefaction 

pressure and the high pressure level of the methane cycle.  

The main objective is to obtain composite enthalpy-temperature variation of hot and cold streams as 

close to parallel as possible. The 75 bar slope shows that the specific heat, cp or (∆h/∆T)p, differ with 

reducing temperature. As can be seen, the natural gas at 75 bar has three different gradients. Hence, 

utilization of three refrigerant cycles with different composition will be the best option. 

Figure 1.8 also shows that the feed gas pressure influence the slope with reducing temperature. The 

chosen pressure depends on the composition of the feed gas. Higher fraction of heavier hydrocarbons 

results in higher feed gas pressure to avoid early entrance in the two phase area. Even though feed gas 
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may differ with different liquefaction processes the variation cannot be large since the end product 

specifications (composition and higher heating value) have to be almost equal. 

The discussion above is done with pretreatment in mind before natural gas is fed into the liquefier. 

Some liquefaction plants have the removal of impurities, as CO2 and water, and/or heavy 

hydrocarbons integrated in the liquefaction process. Integration will influence the chosen feed 

pressure. 

1.5.2 Mixed refrigerants     

A liquid containing a pure refrigerant, as propane, evaporates at constant temperature. With single 

component evaporation the temperature profile will be horizontal as long as some liquid remains. If a 

fluid has a mixed composition is the temperature profile depending on the chosen fluids and the 

mixture composition. The mixed refrigerant must contain fluids with boiling temperatures which cover 

the whole temperature range. Natural gas to be liquefied needs to be cooled from an ambient 

temperature to -162°C. To cover this range, a composition of different hydrocarbons and nitrogen is 

often used. Concepts of different mixed refrigerants processes are either as a single mixed cycle or as a 

mixed cascade cycle. A mixed refrigerant enables the temperature profile of the cold and hot streams 

to be as close as possible. Closer temperature profile results in reduced compressor power and higher 

exergy efficiency.    
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1.6 Simulation specifications 

Except for some energy balances and exergy calculations most of the results in this thesis are based on 

simulations in Aspentech HYSYS. The data for the NicheLNG process was provided by Höegh LNG 

and included in the HYSYS file 2DLE. This file is a model of the NicheLNG process after the LPG 

fractionation, where lean natural gas is cooled and ends as LNG. The 2DLE file is defined as the 

original case and will be referred to as 2DLE.  

Efficiencies, ambient conditions, outlet aftercooler temperature 

and gas compositions are in 2DLE defined and used as basis in the 

other investigated cases. The compressor efficiencies are defined 

with vendor curves and the expanders have an adiabatic of 87%. 

In order to simplify the analysis was polytropic efficiency at 82% 

chosen instead of vendor curves. Cooling water is able to cool 

down the streams to 38°C and the streams undergo a pressure drop 

of 30 kPa through the aftercoolers. The feed gas to be liquefied 

has the composition expressed in Table 1.2. As Table 1.2 shows, 

the nitrogen content is close to 2,3 mole%. The desired content of 

LNG is below 1 mole% and a higher heating value <11,074 

kWh/m3 (<1070 BTU/scf). Due to the volatility of nitrogen its 

content can be reduced by production of flash gas. To be able to meet the LNG specifications, the 

natural gas leaving the cold box is cooled down to the same temperature in all investigated cases. One 

exception is when a liquid expander is introduced in Chapter 5. The nitrogen refrigeration cycles have 

a composition of 98 mole% nitrogen and 2 mole% oxygen. The FPSO-1 is supposed to have two 

identical liquefaction trains. In this thesis, the evaluations and analysis will be on a single train.     

 

  

Table 1.2 Natural gas mole% 

composition 
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2 Description of liquefaction technologies 
Natural gas from a reservoir may have to undergo cleaning and scrubbing before liquefaction. This is 

necessary if the natural gas contains impurities and do not satisfy the product specifications of LNG. 

Heavy hydrocarbons, nitrogen, mercury, water and energy content are important specifications for the 

liquefaction process and the customer. Once the natural gas specification has fulfilled the requirements 

it is ready for the final liquefaction stage. The liquefaction process is based on the gas being cooled to 

its condensation temperature -162°C at atmospheric pressure. This temperature is defined to lie within 

cryogenic temperatures. By converting natural gas to liquid state, the gas volume is reduced to almost 

1/600 [14]. This enables efficient storage and transportation.  

Liquefaction processes in operation have a wide range of complexity. They differ in efficiency and 

size. By adding units or cycles, the efficiency may increase, but the size and weight will also increase. 

Onshore facilities do not have the strict constraints of low weight and small size so their efficiency is 

higher and the production rate too. They can have higher equipment count and an opportunity of large 

amount of hydrocarbon storage. These constraints are of importance when designing an offshore 

facility. Space is limited and the use of hydrocarbons should be inherently safe. It must also offer a 

high degree of modularity, low equipment count, quick start-up, available and be robust to vessel 

motion.  

Liquefaction processes are either based on cascade, mixed or pure refrigerants cycles. The number of 

cycles differs from one to three and is of importance in the success of an efficient liquefaction. 

Proposed processes for offshore applications often involve one or two cycles.  

 

Table 2.1 Liquefaction processes suitability for FPSO [9] 

Table 2.1 illustrates the most important selection criteria for a liquefaction process for natural gas. 

This is only a rough indication of the challenges each process face. This thesis will not cover cascade 

cycles and mixed refrigerant cycles with three stages, since these most likely are not suitable for 

offshore LNG production. Table 2.1 indicates expander processes (N2-Exp and NicheLNG) as the 

most suitable ones for an offshore environment.  

Several liquefaction processes have been proposed for an FPSO. These processes range from one to 

two mixed refrigerant cycles or expansion cycles involving pure refrigerants. A typical single mixed 

refrigerant (SMR) process is the well known PRICO process from Black & Veatch. This refrigerant 

cycle has a composition of several gases and is carried out at different pressure levels.  
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The two-cycle C3MR is the dominant liquefaction process for natural gas. It involves a propane cycle 

as precooling and then a second cycle of mixed refrigerants. From this principle, Shell has developed 

the Shell Dual Mixed Refrigerant (DMR) liquefaction process. This process uses mixed refrigerants in 

both cycles and is proposed as a good alternative LNG process on a FPSO [15]. The DMR process has 

been selected for the Sakhalin Energy LNG project and is currently under construction. Developments 

of the DMR process have further improved process efficiency, from the C3MR process [8]. In addition 

and of importance for locations such as the Sakhalin, the DMR process is flexible to various operating 

conditions [16]. The site of the Sakhalin plant experience temperatures down to -35 °C in the winter 

and 20 °C in the summer [16].  

 

Table 2.2 Efficiency table of expander natural gas liquefiers [4] 

The Oman LNG plant is based on propane precooling and mixed refrigerant. It is known as one of the 

most efficient liquefiers under operation [4], but the DMR at Sakhalin is expected to have even better 

efficiency. Table 2.2 compares the Oman LNG plant efficiency with different expander liquefiers. Due 

to its size and complexity it is not preferable for a FPSO but it gives a picture of what is feasible. For 

expander processes based on pure refrigerants, the number of cycles has a significant influence on the 

efficiency. It has to be noticed that the two dual expander processes have a methane cycle followed by 

a nitrogen cycle. Using methane or natural gas cycle instead of nitrogen may give some benefits on 

efficiency and will later be explained in Chapter 4.2.  

Expander processes have been in focus for floating production with refrigerants in gas phase. They 

vary from single to dual cycles involving nitrogen and/or natural gas as refrigerant. Two promising 

processes have been developed. Höegh LNG has chosen the NicheLNG process from CB&I and 

several companies have proposed a nitrogen dual cycle process.  
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2.1 Niche LNG 

The NicheLNG liquefaction process is based on a methane (natural gas) and nitrogen refrigerant cycle, 

with one open and one closed cycle respectively. They are independent expansion-compression cycles 

but they do overlap each other by heat exchange. 

The process has the benefit of operating with high pressures, resulting in smaller pipes and valves than 

processes at close to ambient pressure. This gives an advantage related to space constraints on topside 

of a FPSO. 

Neither of the refrigerants experience a phase change. Both remain in gaseous phase, so there are no 

problems with two phase flow distribution. A cycle remaining in gaseous phase reduces the risks of 

leakage and eliminates the need for liquid refrigerant storages, drums and separators.  

Both advantages of high pressure and no liquid content in refrigerants reduce necessary space and the 

equipment count. The process is also more robust with respect to hull movements, due to refrigerants 

operating in gas phase. A non-flammable refrigerant, short start-up time, no venting or flaring of 

refrigerants after shutdown and smaller footprint increases the benefits of this process. The methane 

cycle is a flammable refrigerant and has to be included in the safety evaluation. Nevertheless, the 

proposed FPSO-1 already has large amount of liquid hydrocarbons as LPG so this refrigerant cycle 

should not have a sufficient involvement in the safety.    

 

Figure 2.1 Flow sheet of the NicheLNG process [5] 

Figure 2.1 is a basic principle of the NicheLNG process with two expander-driven compressors, two 

compressors and one heat exchanger. It illustrates how the natural gas and nitrogen are utilized as 

refrigerants. The open cycle is extracted natural gas to be expanded and then re-enters the heat 

exchanger. This cycle is known as a Claude cycle. In addition, a closed nitrogen cycle cools in the 

same temperature range but takes first care of the subcooling. The flash gas from boil-off is not shown 

in Figure 2.1.  
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The specific energy consumption is estimated to 16.5 kW/tonLNG/day (0,396 kWh/kgLNG) [4]. A 

relatively low energy consumption when compared with other processes based on pure refrigerants, as 

expressed in Table 2.2. The Dual Expander C1/N2 corresponds to the NicheLNG process. 

 2.2 PRICO - Single Mixed Refrigerant 

This is one of the most basic processes based on mixed refrigerant and has a low equipment count. 

The setup is one heat exchanger network with a mixed refrigerant consisting of methane, ethane, 

propane, pentane and nitrogen. The composition is chosen based on the respective boiling points of the 

components to match the mixed refrigerant curve with the cooling curve of natural gas. Closer curves 

will increase the efficiency.  

 
Figure 2.2  Basic principle of a single mixed refrigerant process [7] 

2.2.1 Principle 

A mixed refrigerant containing different gases is pressurized through a compressor. The discharge 

pressure has to be sufficiently high to give enough cooling duty after a later expansion. Mixed 

refrigerant flows through the heat exchanger as a hot stream. After leaving the heat exchanger in the 

cold end, the refrigerant undergoes a pressure decrease through an isenthalpic expansion valve. The 

reduction in pressure and temperature, by heat exchange and expansion, is necessary to achieve 

enough cooling duty. The stream contains now liquids. Then it reenters the heat exchanger as a cold 

stream. Heat transfer from the two hot streams, natural gas and mixed refrigerant, evaporates the liquid 

over a wide temperature range. The pressure is then recovered by compression.  

Natural gas to be liquefied has initially a higher pressure level than the ambient condition. Not shown 

in figure 2.2 is a valve in the cold end. After heat is released in the heat exchanger an expansion brings 

the natural gas to the specifications required of LNG.  

2.2.2 Extensions of PRICO 

This process has a considerably large flow rate of refrigerant which leads to high compression work. 

On the other hand, the necessary pressure ratio is lower than for an expander liquefaction process as 

the NicheLNG. An improvement is compressing over two stages with inter-cooling reduces the 

consumption of work.  

Also, the pressurized natural gas to be liquefied has a potential of work recovery. By utilizing the 

pressure to lower the temperature, through a turbine, work and cooling duty will be produced. This 

concept is the same as the open methane cycle in the NicheLNG process. The work recovered from the 

turbine can be utilized with a generator or a directly driven compressor.    
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2.3 Dual nitrogen refrigerant 

Some proposed solutions for offshore LNG production have been with nitrogen as refrigerant. A 

nitrogen based liquefaction application has some advantages over the other compact LNG processes 

intended for offshore environment. It is easier to model, and the equipment is easier to operate, 

because the nitrogen refrigerant is always in gas phase. Due to the gas phase and the fact that nitrogen 

is an inert gas, the process is safer because of reduced hydrocarbon inventory compared to other 

processes.  

The setup of the different nitrogen liquefaction processes share specifications as operating at high 

pressure levels and normally two refrigerant cycles. They do have some differences as the outlet 

pressure of the expanders. This will affect the size due to suction volume and complexity of the 

process. Illustrations and discussion of the possibilities will be covered later in this thesis. 

 

 

Figure 2.3a Statoil proposed solution     Figure 2.3b BHP Billiton proposed solution  

Figure 2.3a illustrates the Statoil solution with pressure reduction to two levels. A large amount of the 

refrigerant stream flows through the middle pressure expander. This stream is supposed to cover the 

refrigeration of precooling and liquefaction. The low pressure stream covers the subcooling and the 

rest of the liquefaction and precooling. The flexibility of the process is rather small and is limited to 

the temperature splits between the cooling stages and the compressor pressure level.  

In figure 2.3b the expanders have the same pressure reduction, and the two cold streams meets and 

flow as one cold stream through the heat exchanger from the subcooling liquefaction split. The most 

important factors from the two examples are the mcp variations through the heat exchangers and the 

suction volumes of the compressors. 
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2.4 Comparing conventional with expander liquefaction processes 

Focusing on efficiency there is no doubt that mixed refrigerant processes have a better efficiency than 

pure refrigerant expander processes [4]. Expander processes have lower efficiency but many benefits 

when production is in an offshore environment. The following sections compares selection criteria of 

different processes.  

Compact: 

Mixed refrigerant cycles require large storage capacity [4]. The large flow rate takes up area and 

increases the weight. Heat exchangers and equipments have to be able to operate with two phase flow. 

Gaseous refrigerants, such as nitrogen, have the potential of being compact because there is no 

refrigerant storage and the refrigerants are operating with high pressures. Although the refrigerant flow 

rates are decreased, the required heat transfer area may not decrease because of the refrigerant heat 

transfer coefficient is also much lower. Non-flammable refrigerant will also reduce necessary area for 

safety.  

Safety:  

Operating with flammable refrigerants is well known from earlier LNG plants. Even though these 

plants have good safety records, operating on a ship with restricted area gives stricter safety concerns. 

Mixed refrigerant and cascade processes have large flammable refrigerant inventories, high circulation 

rate and flare requirements.  

An expander process with nitrogen as refrigerant has higher inherent safety because nitrogen is an 

inert gas. As for the NicheLNG operating with natural gas as refrigerant, some stricter safety issues are 

introduced.   

Operation: 

Mixed refrigerant processes have a more complex operation due to refrigerant composition and high 

equipment count. It has also a longer start-up time and flare requirements. 

Expander processes have an advantage in all three of the following process selection criteria: Ease of 

operation, quick start-up time and low equipment count.  

Efficiency: 

Fluids going through vaporization have to attract heat under almost constant pressure. This change of 

state characterizes a typical single composite refrigerant process. A mix of fluids with different boiling 

points flowing through a heat exchanger results in an evaporation of the cold stream. As Figure 1.8 

shows, the natural gas curve does not have a linear profile. With the right composition of gases in the 

refrigerant, a gliding temperature profile is possible.  

Expander processes operate in gas phase. The heat transfer cannot benefit from evaporation. For pure 

gases the specific heat is almost constant so a variation in the refrigeration flow rate is necessary to 

cover the non-linear temperature profile of natural gas.      
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3 Promising liquefaction processes for FPSO applications 

In the proposed FPSO-1 after the pretreatment of the natural gas and after the LPG separation lean gas 

enters the liquefaction section. This section consists of two identical trains which have a total 

production rate of 4670 ton/day of LNG. The feed stream is divided into two equal mass flows 

entering the two trains. 

3.1 The NicheLNG process  

 

 

Figure 3.1 Pressure – temperature diagram illustrating the natural gas path [5] 

As shown in the pressure-temperature diagram in Figure 3.1, recycled natural gas mixed with the feed 

gas is compressed to a pressure above cricondenbar (1-2). An aftercooler, utilizing water as 

refrigerant, will then lower the temperature (2-3). Then natural gas is entering the main LNG heat 

exchanger as a hot stream, and is cooled against cold low pressure natural gas and a nitrogen stream 

(3-4). Before further cooling, an amount of the hot natural gas stream is extracted from the heat 

exchanger and sent to an expander. The pressure of the extracted natural gas is reduced by a turbine 

(4-5). This extracted natural gas stream now acts as a cold stream. Together with the nitrogen stream, 

heat is now removed from the pressurized natural gas stream (5-6). Exiting the heat exchanger natural 

gas flows to a compressor which is mounted on the same shaft as the expander. Energy generated from 

the expander is utilized by compressing the natural gas. The discharge from the compressor is cooled 

by an after cooler (6-1).  

The remaining natural gas to be liquefied, which has the same flow rate as the feed, is further cooled 

(4-8). Pressure is reduced across a valve which results in entering the two phase region and produces 

some flash gas and LNG (8-9). 
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Figure 3.2 Pressure – temperature diagram illustrating the nitrogen path [5] 

To bring the natural gas to the required temperature (state 8), nitrogen is used as a second refrigerant 

in a closed loop. The warm nitrogen stream leaving the heat exchanger is compressed followed by an 

aftercooler and then further compressed by an interstage compressor with an after cooler (1-2). It then 

flows as a warm stream through the heat exchanger and is cooled by the cold streams of natural gas 

and nitrogen (2-3). Then the high pressured nitrogen stream is expanded through a turbine and 

produces cooling and work (3-4). The expanded nitrogen provides a cooling potential at low 

temperature that is utilized in the heat exchanger (nitrogen is heated from state 4-1).  

 

Figure 3.3 Temperature profile in the heat exchanger 
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The temperature-enthalpy diagram in Figure 3.3 shows the temperature difference in the heat 

exchanger. As illustrated in Figure 3.3, the pinch point is in the warm end. The cold composite curve, 

with temperature split at -85°C, has an almost linear profile in two intervals.  

The natural gas composition in the 2DLE case is chosen after the pretreatment and the LPG separation 
to meet the LNG specifications. Some processes have an integrated LPG extraction. A partial or full 
integration depends on feed gas and onshore/offshore production. Since the focus is on the NicheLNG 
process the natural gas composition from the 2DLE case applies for all simulated cases in this thesis.       
 

3.1.1 Exergy analysis of the NicheLNG process 

One way of analyze the quality of the NicheLNG process is by determining the exergy efficiency. 

From the ratio of minimum work of liquefaction and the actual compressor work, the exergy 

efficiency can be expressed. The exergy calculations are done with enthalpy and entropy values 

obtained from simulations in HYSYS.  

Since exergy is dependent on pressure, temperature and ambient conditions, the initial state will affect 

the efficiency. The feed gas alone has a relatively high exergy value. This affects the exergy efficiency 

and the specific power consumption. Hence, comparison of processes based on overall exergy 

efficiency and specific work will favor the one with highest inlet feed pressure.  

 

Figure 3.4 Specific work as function of overall exergy efficiency for a LNG process from gaseous feed at different 

pressures to saturated liquid at 1 bar 

As Figure 3.4 illustrates, the minimum work (exergy efficiency of 100%) for liquefaction of natural 

gas at atmospheric pressure (1 bar) is 0,278 kWh/kgLNG. The calculations are done with enthalpy and 

entropy values from a feed gas simulated in HYSYS, and are attached in Appendix A. Included in 
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Figure 3.4 is feed gas at higher pressures. The exergy content increases with higher pressure and 

reduces necessary specific work at a given overall exergy efficiency. So when efficiency of the 

NicheLNG process is to be compared with other liquefaction processes, the operating conditions have 

to be uniform. The efficiencies given in Table 2.2 are not specified with operating conditions so they 

may not be comparable. The efficiency of Dual Expander C1/N2 (NicheLNG) in Table 2.2, do not 

match with the efficiency 0,503 kWh/kgLNG, simulated in HYSYS by the 2DLE file. An explanation of 

the variation can be the composition of feed gas, cooling water temperature, chosen equipment and the 

condition of feed gas after pretreatment. To be able to compare the NicheLNG process with another 

liquefaction process, a simulation of a dual nitrogen expander process has been done at equal 

conditions. The dual nitrogen expander process will be investigated later. 

In the matter of comparing the NicheLNG process with another process, some design specifications 

have to be set in the evaluation. The main compressor use vendor curves in the HYSYS 2DLE file. So 

to achieve equal conditions for the two concepts to be investigated, all compressors were defined with 

polytropic efficiency of 82% and expanders with adiabatic efficiency of 87%. Every compressor has 

an aftercooler which lowers the temperature of the compressed gas to 38°C. The minimum 

temperature approach in the heat exchanger is specified to 3°C. Since phase change occurs in the heat 

exchanger, the ‘Weighted model’ was chosen as heat exchanger parameter for UA-value calculation. 

The background for the chosen model is attached in Appendix B. Exergy calculations are done with 

ambient conditions at 1 bar 

and 25°C.     

From the specifications above 

the NicheLNG process is 

simulated in HYSYS. The 

transition from compressor 

vendor curves resulted in a 

lower outlet pressure of the 

expander driven compressor. 

To obtain feed gas pressure 

of the open methane cycle 

was an additional compressor 

(NG Comp.) installed to 

increase the pressure to the 

same pressure as the feed gas.  

The minimum power for 

liquefaction was calculated with values from feed gas conditions to after 

the heat exchanger, as discussed in Section 1.3. Feed gas composition 

from Table 1.2 has been used for all cases. 

With feed pressure at 30 bar, the exergy efficiency was calculated from 

Eq. 1.11 to be 31,2%. As can be seen from Figure 3.4 the calculated 

exergy efficiency matches with the calculated specific work in Table 3.1.  

A way of characterizing the quality of a liquefaction process is by 

comparing it with the theoretical minimum liquefaction work. Table 3.2 

expresses necessary minimum work for given pressures. The calculations 

are done with data from HYSYS. The calculations resulting in Table 3.2 

Table 3.1 Efficiency and work consumption for the NicheLNG process 

Table 3.2 Minimum 

liquefaction work to feed gas 

pressure 
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are found in Appendix A and the composition of the natural gas is found in Table 1.2. Table 3.2 

illustrates how feed gas pressure affects the efficiency and will be further investigated in Chapter 4. 

 

Figure 3.5 The composite curves for the NicheLNG process 

 

 

        

The N2 Comp. in Figure 3.6 represents two compressors with interstage cooling.  

Figure 3.6 Flow sheet of the simulated NicheLNG process 
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3.2 Dual nitrogen process 

The most frequently proposed process for offshore liquefaction of natural gas is with two nitrogen 

refrigerant cycles. One cycle covers the precooling and the second is used for liquefaction and 

subcooling. Nitrogen as refrigerant medium is very flexible. The relative low dew point gives the 

opportunity of the refrigerant cycles to operate at a wide temperature range. Chapter 2.3 describes 

different concepts. The choice of concept in this work was with emphasis on equipment count that 

matches the NicheLNG process. 

3.2.1 Exergy analysis of a dual nitrogen process 

To compare a dual nitrogen process with the NicheLNG process equal conditions are necessary. The 

same efficiencies for compressors and expanders are being used. Feed gas and the produced LNG have 

the compositions from Table 1.2 and the same conditions as in the exergy analysis for the NicheLNG 

process. The natural gas in the open methane cycle has been replaced with 98 mole% N2 and 2 mole% 

O2 and configured to a closed cycle. With these specifications, flows and pressures in the two nitrogen 

cycles have been optimized to minimize work consumption. Figure 3.8 illustrates the design of the 

dual nitrogen process.  

Table 3.3 expresses the 

quality of the simulated dual 

nitrogen process. When the 

natural gas leaves the cold 

box, a pressure reduction 

through a valve will result in 

flash gas formed by 

evaporation. The evaporation 

is necessary in order to 

reduce the nitrogen content 

to 1 mole%. In both 

processes, the natural gas 

leaving the cold box has the 

same temperature at -157,2 

°C. With temperatures at the 

same level the flash gas 

production will be at the same 

rate and thereby a similar LNG composition. Both processes produce LNG with a higher heating value 

of 10,95 kWh/m3 (1058 BTU/scf). 

It was decided to operate the refrigerant with only one high pressure and one low pressure level, 

respectively at 90 bar and at 17 bar. Then only adjustment of the flow rate was necessary to provide 

the required cooling.  

 

         

 

 

Table 3.3 Efficiency and work consumption for the dual nitrogen process 
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Figure 3.7 The composite curves for the dual nitrogen process 

 

The N2 Comp-1 in figure 3.8 represents two compressors with interstage cooling.  

Figure 3.8 Flow sheet of the simulated dual nitrogen process 
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3.3 Discussion of NicheLNG versus dual N2 process 

Both processes are almost similar in design but are distinguished by the different refrigerant. They 

have the same amount of compressors and expanders. Equal equipment count is one criterion to 

achieve a fair comparison. In addition to the two expander driven compressors had both processes four 

compressors.  

The simulated NicheLNG process in Section 3.1.1 distinguished from the original 2DLE by adding 

one compressor in the open methane cycle. This had to be done after efficiency adjustment of 

compressors and heat exchanger. It looks like that 2DLE low pressure of the open methane cycle was 

defined by the feed gas pressure or vice versa. A design with an open methane cycle is influenced by 

the feed gas pressure. If the feed gas pressure changes it will affect the cooling duty of the open 

methane cycle, since feed gas and refrigeration gas are pressurized by the same compressor. By 

closing the loop the NicheLNG process will be more available to different feed pressures. It may also 

be an advantage to have a possibility of higher pressures in the methane cycle.      

The NicheLNG process has about 10 % lower work consumption. This can be explained by the chosen 

refrigerant and the heat distribution in the heat exchanger. Natural gas as a refrigerant has higher cp 

than nitrogen, resulting in a significantly smaller refrigerant mass flow rate. Higher mass flow rate 

causes more irreversibilities in the compressors and expanders, so the lower mass flow rate explains 

why NicheLNG is the most energy efficient process.  

Figure 3.5 and 3.7 illustrates that the processes do not differ much in temperature difference and they 

have almost the same UA value. A larger temperature difference produces more entropy. With closer 

composite curves (smaller ∆T), the process efficiency will be improved, however, at the expense of a 

larger heat exchanger. 

The NicheLNG uses a flammable refrigerant, so it has a disadvantage from a safety point of view. An 

evaluation of this issue must be considered with respect to the safety requirements.   

Table 3.4 Results of both processes 
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4 Adjustments and analysis of NicheLNG 

4.1 Precooling 

To keep refrigerant cycles at relatively small sizes, even at high LNG production rate, the number of 

refrigerant cycles can be extended. A precooling helps the more energy demanding liquefaction and 

subcooling by reduced flow rate of refrigerants. In addition, the specific heat of natural gas varies with 

temperature so refrigerants with different mixtures can benefit from closer temperature difference in 

the heat exchangers. 

The most common precooling refrigerants are propane or ethane/propane mixtures. These are 

flammable hydrocarbons and have to be included in the evaluation of the process safety. From Table 

2.2 a precooling integration can provide an 18% higher efficiency to the NicheLNG process. Another 

possibility is CO2 as precooling refrigerant. CO2 is not flammable and may be preferable in offshore 

liquefaction processes. A disadvantage is the risk of forming solids.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 4.1 is an illustration of a precooler installed for a single train. The FPSO-1 is planned to have 
two liquefaction trains, so a larger precooler to cover both will keep equipment count down. 

  

Figure 4.1 The NicheLNG process with a precooler in front [17] 
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4.2 Refrigerant medium 

All of the expander processes described in Chapter 3 operates with two refrigerant cycles based on 

nitrogen or natural gas and nitrogen. They operate in gaseous phase through the cycles and have 

therefore some constraints. An expander process has to take into the account the boiling point of the 

gas, due to problems with liquids in a turbine. Hence, a natural gas refrigerant cycle has a stricter 

constraint on operability than nitrogen. Since the boiling point of nitrogen is -196 °C at atmospheric 

pressure, entering the two phase region is at a lower risk than operating with natural gas. The relative 

low boiling point results in a higher degree of freedom than for a refrigerant of natural gas.  

 

Figure 4.2 Simple illustration of expander precooling 

Figure 4.2 is an example of a closed precooling cycle. It contains compressor, expander, cooler and 

heat exchanger. Simulation is done with an adiabatic efficiency of 80% in the compressor and 

expander and no pressure loss the through aftercooler and heat exchanger. The heat exchanger has a 

minimum temperature approach of 3°C.  

The calculations shown in Table 4.1 are 

done with a constant pressure ratio of 

refrigerant and with a desired outlet 

temperature of the natural gas. Mass flow 

is adjusted to cool down the natural gas to 

-65°C. The chosen refrigerants are pure 

methane and nitrogen. 

This example shows the importance of the 

refrigeration gas ability to extract heat. 

Methane as a refrigerant has a higher 

specific heat capacity, hence lower 

necessary mass flow resulting in higher 

efficiency. A nitrogen refrigeration cycle 

has, with the specifications from Table 4.1, 

over twice the energy consumption as a 

methane refrigeration cycle. 

Ethane has an even higher specific heat capacity. So for the NicheLNG process, operating with an 

open refrigeration cycle of natural gas, small amounts of heavier hydrocarbons such as ethane will 

give a small increase in efficiency.  

 

Table 4.1 Specifications and results of a precooling example 
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4.2.1 Change in gas characteristics for pressure variations  

The composition of a stream flowing through a heat exchanger affects the size. The amount of heat a 

fluid is able to hold depends on its specific heat capacity and flow rate. If a fluid is supposed to attract 

a given heat duty at a given temperature range the flow rate will be dependent on the specific heat 

capacity. From this a higher specific heat capacity will result in a lower necessary flow rate, and 

thereby influence the heat exchanger size and the compressor work.  

 

Figure 4.3 Specific heat capacities of N2 and CH4 at pressure levels from the NicheLNG process 

Figure 4.3 illustrates the variation of specific heat capacity at constant pressure levels between two 

gases in a certain temperature range. The most important information from Figure 4.3 is the large cp of 

methane. Even though methane is able to attract more heat than nitrogen is its range of operation in 

gaseous phase restricted to a smaller temperature region. The peaks for each curve in figure 4.2 are the 

critical points of the respective gases.  

It is easy to conclude that CH4 is able to hold more heat than N2 at the same flow rate. Hence, it is 

believed that the choice of refrigerant will affect the heat exchanger size. It has to be noticed that this 

is not fully true since the size of heat exchangers are also dependent on the heat transfer coefficient. At 

a fixed conduction through the wall of a heat exchanger the heat transfer coefficient is relative to 

convection. Speed will vary with the chosen gas to satisfy necessary heat transfer, and thereby 

influence the turbulence with change in speed and viscosity.      
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The overall specific efficiency of a liquefaction process is the ratio between the work consumed and 

the LNG produced. To get necessary cooling duty, a gas has to be expanded and later re-compressed. 

The compression work of a single compressor is depending on inlet temperature, pressure ratio and 

specific volume of the gas. Compression in liquefaction processes is done at close to ambient 

temperature. The pressure ratio depends on desired cooling duty which is also influenced by the 

chosen refrigerant gas.  

 

Figure 4.4 Specific volume variations with pressure at a temperature of 30 °C 

Figure 4.4 illustrates how the specific volume varies with pressure for different gases. The sudden 

decrease of the propane (C3H8) above 1000 kPa is due to condensation.  

 The molecular weight of gases influences its specific volume. For natural gas containing mostly 

methane a small amount of heavier hydrocarbons will give a reduction in specific volume when 

comparing with pure methane. Nevertheless, it will not decrease below the specific volume of 

nitrogen.  

Maybe the most important observation from Figure 4.4 is the specific volume value at higher 

pressures. The specific volume difference between certain gases reduces with higher pressure. So 

operating at high pressure levels will not give significant difference in the specific volume. The 

specific heat capacity will be more effective. A high specific heat capacity demands lower flow rate 

for a given heat exchange duty.  
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4.3 Placement of expansion 

As explained earlier an expansion instead of a throttling is favorable. In sub-ambient processes can a 

pressurized stream provide cooling and produce work. A typical expander liquefaction process is 

normally based on two refrigeration cycles. Each cycle is supposed to cover a given temperature 

region.  

 

Figure 4.5 The NicheLNG open methane refrigeration cycle with refrigeration regions indicated  

Figure 4.5 illustrates the open methane cycle in the NicheLNG liquefaction process. It has the same 

principle as a typical Brayton cycle. The placement of the expander is at -1,5°C after an internal heat 

exchange. After the expansion to 19,5 bar the temperature is reduced to -76,8°C which results in a 

refrigeration load of 2568 kJ/kgmole and a necessary compressor work of 2845 kJ/kgmole (17084 

kW). The calculations are done with the natural gas refrigerant flow rate from the 2DLE case at 

21618,85 kgmole/h.  

4.3.1 Expander placement for the open methane cycle 

A way of expressing the efficiency of the open methane cycle is by the ratio of compression work and 

refrigeration load. By comparing the original design with other hypothetical inlet temperatures the 

quality can be found. It has to be noticed that the results from Figure 4.6 is restricted to the open 

natural gas cycle in the NicheLNG process. How the overall efficiency varies with different inlet 

temperature of the open cycle expander is not included. 



30 
 

 

Figure 4.6 Efficiency of the open natural gas cycle with different inlet temperatures  

Figure 4.6 illustrates how the efficiency of the open 

methane cycle varies with inlet temperature from the 

original indicated with a dotted line. The calculations 

are attached in Appendix C. All calculations are done 

with an ideal heat exchanger, turbine with 87% 

adiabatic efficiency and compressors with 82% 

polytropic efficiency. The ∆T in the warm end is set to 

2°C. 

From Figure 4.6 and Table 4.2 less work per 

refrigeration load will be the result with cooling down 

to -10°C before an expansion. As earlier mentioned, 

these calculations are restricted to the open natural gas 

cycle. More internal heat exchange, with inlet 

expansion temperature at -10°C, will give less 

refrigeration duty to the overall process.  

 

4.3.2 Consequences of expander 

placement  

Inlet expansion of the open methane cycle at -10°C results in almost the same cooling duty (internal 

heat exchange and refrigeration duty) as with an inlet expansion temperature at -1,5°C. Hence, less 

work is needed for the same cooling duty. Even though the total cooling produced does not change, 

the natural gas has been further cooled by internal heat exchange and this will affect the refrigeration 

load. The reduced refrigeration load is 473,6 kJ/kgmole or in heat flow 10,239*106 kJ/h. This reduced 

refrigeration load has to be covered by the closed nitrogen cycle or by higher compressor work in the 

open methane cycle. 

Table 4.2 Results of inlet temperature as 

original at -1,5°C and at -10°C 
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4.4 Liquefaction pressure 

Natural gas to be liquefied is always under high pressure. The advantage of liquefying pressurized 

natural gas can easily be seen from a pressure - enthalpy diagram. Natural gas at constant temperature 

has lower enthalpy with increasing pressure. Hence, the amount of heat to be removed is reduced with 

increased pressure at a constant temperature. After subcooling, the natural gas is still pressurized. An 

expansion, in addition to recovering work and contribute to the cooling, will bring the natural gas to 

the given specifications.   

 

Figure 4.7 Natural gas path through liquefaction for a typically onshore facility [11] 

Figure 4.7 illustrates the natural gas path through liquefaction for a typical onshore based LNG 

production. The composition is C1 89,7%, C2 5,5%, C3 1,8% and N2 2,8% [11]. The natural gas 

enters with a pressure of 60 bar. As figure 4.7 illustrates is the cooling done below the critical point. 

By entering the two phase region some liquid can be extracted with a phase separator before further 

cooling. The NicheLNG process avoids the utilization of a phase separator by higher liquefaction 

pressure. How the liquefaction pressure affects the liquefaction will be further investigated in the 

following sections.   

4.4.1 Relationship between feed gas and liquefaction pressure 

When production of LNG is done offshore some constraints will affect the process. By excluding a 

phase separator, the pressure can be increased above the critical point. Without a phase separator, the 

natural gas entering has the same composition as the one leaving the cold box. A lean composition is 

therefore required to meet the LNG specifications. This will affect the comparison of efficiency 

between different LNG processes. An integration of a phase separator in the liquefaction section will 

affect the power consumption due to a different liquefaction pressure. For the NicheLNG process, all 

LPG fractionation is done in front of the liquefaction. For the processes in Table 2.2 a detailed 

description on the utilization of phase separator in the liquefaction part could not be found. So a direct 

comparison of a traditional onshore process as Oman LNG cannot be made without more data. 
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As cooling water is relatively cheap there are several advantages by using this as a cooling medium. 

When it comes to saving work, two areas in particular are outstanding. Multiple compressions with 

interstage cooling in order to achieve close to isothermal compression will save some energy. Second 

the cooling water temperature 

is important for the amount of 

necessary heat to be removed. 

Figure 4.8 illustrates an ideal 

liquefaction process for 

natural gas. The ideal work is 

shown in the W area with heat 

rejection at constant 

temperature. The T-s diagram 

in figure 4.8 shows how the 

influence of the heat rejection 

temperature has to work 

consumption.   

Heat is removed as the gas is 

cooled at gliding temperature 

and constant pressure. The 

isobar lines show two 

important factors with 

increased pressure. As 

pressure increases the gliding 

temperature gets more linear. 

A more linear cooling of the 

natural gas is an advantage 

when the number of refrigeration cycles is restricted to one or two. The more interesting factor is the 

changing properties of the feed gas with increased pressure. Figure 4.7 illustrates the enthalpy 

reduction with increased pressure at a constant heat rejection temperature. A lower enthalpy of the 

natural gas entering the cold box results in less heat to be removed, and thus lower necessary work 

consumption for the refrigeration cycles. Even though compression of the feed gas consumes more 

work with higher pressure, it may be favorable due to the low refrigeration efficiency for liquefaction 

processes.  

 

Figure 4.9 Simple flow sheet of the liquefaction path from feed gas to LNG  

Figure 4.9 illustrates the liquefaction path from feed gas (a) to LNG (c). A compression of the feed gas 

(a-b) will change its properties which will influence the liquefaction. In order to illustrate how the feed 

gas pressure affects the liquefaction some adjustments to the 2DLE process have been made. The 

Figure 4.8 Ideal liquefaction process of natural gas [11] 
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original process is the 2DLE with one open methane refrigeration cycle. Closing the loop and using a 

feed gas compressor will simplify the analysis by focusing only on the natural gas to be liquefied. This 

adjustment will also give the possibility of limiting the boundaries to the liquefaction part only (b-c). 

The adjusted process will be referred to as 2DLE-2. Values given in Table 4.3 are from the simulated 

2DLE-2 and are based on the principle from Figure 4.9. Stream b is after a compression and 

aftercooler respectively at 75 bar and 38°C. The feed gas goes through liquefaction and ends up as 

stream c after the cold box at 74 bar and -157,3°C. The pressure drop of 1 bar is losses through the 

heat exchanger.  

Liquefaction efficiency is calculated after the feed gas compressor. In Table 3.1 the feed gas 

compressor is included when efficiency is calculated. A reduction in efficiency will therefore occur for 

the liquefaction part, b-c in Figure 4.9, due to the relative high efficiency of compressors.  

The high efficiency of compression and the low efficiency of liquefaction make the change in 

properties interesting when pressure is increased. Figure 4.7 illustrates that when pressure is increased 

at constant temperature the enthalpy reduces. A lower enthalpy results in lower refrigeration work.  

 

Figure 4.10 Specific work of compression from 1 bar to a certain liquefaction pressure and specific liquefaction work 

Table 4.3 Exergy calculations of the liquefaction part (without feed gas compressor and for a single train) 
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To benefit from high liquefaction pressure, a compressor is necessary to reach the desired pressure. 

Figure 4.10 illustrates work consumption for compression alone and compression included 

liquefaction work. Natural gas is compressed from 1 bar with composition from Table 1.2 and then 

refrigerated from a certain pressure at 38°C to -157,3°C. The feed gas compressor has a polytropic 

efficiency of 82% and the liquefaction part is illustrated with different efficiencies. The data are given 

in Appendix D. Figure 4.10 illustrates that only liquefiers with low efficiencies will benefit of higher 

liquefaction pressures when the natural gas enters with a pressure of 1 bar. If natural gas, after a 

pretreatment of LPG, has a pressure higher than 1 bar a liquefier with higher efficiency will benefit 

from higher liquefaction pressures. Hence, the influence of the feed gas compressor work will be 

smaller on the whole process.  

 

Figure 4.11 Work consumption for compression from a feed gas pressure to a liquefaction pressure and a 26,6% 

efficient liquefier 

In Figure 4.11 feed gas at different pressures is illustrated. As illustrated a 26,6% efficient liquefier 
will benefit from higher liquefaction pressure for feed gas pressures at a range from 10 to 60 bar. The 
NicheLNG, expressed in blue, has a feed gas pressure after pretreatment of 30 bar. The total work 
consumption in NicheLNG is reduced with higher liquefaction pressure. Figure 4.11 is based on 
calculations attached in Appendix E-2.   
 
If some adjustment to the liquefier is done to improve its efficiency new calculations are necessary. A 
higher efficiency for the liquefier will influence the benefits of higher liquefaction pressure. The 
compressor work will dominate more of the total consumption with higher liquefaction pressure. 
Appendix E-2 shows how an increase in efficiency of the liquefier will give a negative influence to the 
overall process, when liquefaction pressure is increased.   
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4.5 Discussion on the analysis 

A decision of operating with high pressures in the process keeps the specific volume down. Low 

specific volume is beneficial to equipment sizes. Smaller equipments can be chosen and therefore 

lower necessary space for the plant. When operating at high pressures, the specific volume is less 

important when selecting the refrigerant gas. The difference in specific volume between nitrogen and 

hydrocarbon gases is very small with higher pressures. More important is their respective heat 

capacity. It is shown that methane has a relatively high specific heat capacity. In addition, the specific 

heat capacity of methane is more influenced by temperature variation. At high pressures, the specific 

heat capacity of methane increases with a reduction in temperature. The benefits of high heat capacity 

relates to lower necessary mass flow and thereby lower compressor work. So when expanders are used 

in a refrigeration process, methane rather than nitrogen, is more effective. It has to be noticed that 

methane has some restrictions on operability due to higher dew point. 

The open methane cycle in the NicheLNG process enter the cold box at 38°C and cools down to -

1,5°C before an expansion. By cooling it further down to -10°C before expanding, less work is 

necessary for the same cooling duty. How it will affect the whole process is not investigated, so this is 

not something one can conclude. 

An increase in pressure of natural gas results in higher exergy. Cooling water is a relatively cheap 

refrigeration resource and is therefore seen as free. By cooling a pressurized natural gas to be liquefied 

with cooling water an increase in pressure will result in lower enthalpy. The stream leaving the cold 

box has relative high exergy and an increase in exergy of the natural gas to be liquefied results in a 

smaller necessary exergy change. Hence, less work is required to remove heat.  

When evaluating LNG processes with emphasis on how the liquefaction pressure influence the process 

the control boundary is of importance. The state of the feed gas affects the benefits of higher 

liquefaction pressure. A low feed gas pressure with a high efficiency liquefier (40 – 50% or higher) 

may have a negative effect on the total work consumption if the liquefaction pressure is increased. For 

the NicheLNG process and other offshore based liquefiers, the efficiencies are low. As shown in 

Chapter 4 and Appendix D-2 liquefiers with low efficiency will take advantage of higher liquefaction 

pressure. The NicheLNG has a liquefaction pressure of 75 bar and a liquefier efficiency of 26,6%. 

With these characteristics an increase in liquefaction pressure has positive effect for any entering feed 

gas pressure.  
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5 Increased capacity of the NicheLNG process 
Destination and customer for the FPSO is not yet decided. In order to have a more flexible design to 

meet future demands on production rate, Höegh LNG wants to look at the possibilities to expand LNG 

production rate of the original design. An increased capacity with implementation of additional units 

will be covered in this chapter. Focusing on the efficiency for each improvement, an indication of 

increased capacity can be shown. 

The selected improvements to be investigated: 

• Utilization of end flash gas (EFG) 

• Liquid expander 

• Two stage compression 

• Higher UA value 

The inert gas nitrogen affects the higher heating value of the LNG. Higher nitrogen content in LNG 

results in reduced heating value. Nitrogen is a more volatile gas than hydrocarbons so the EFG leaving 

the LNG receiver contains more nitrogen than the LNG. The EFG production is therefore necessary to 

obtain desired LNG specifications. All simulations in Chapter 5 are done with same efficiencies and 

UA-values as in the 2DLE case. 

5.1 Utilization of end flash gas (EFG) 

The cold duty from EFG leaving the LNG receiver is in the original design not utilized. It constitutes 

about 7% of the feed mass flow rate to be liquefied but has only available 3% cold duty of the 

necessary cooling of the feed gas. A certain amount of EFG has to be produced in order to meet the 

specification of LNG. Work consumed increases with the rate of EFG production. Due to the low 

temperature of EFG (-162°C) the work to produce this cold duty is relative high, referred to figure 1.3. 

Hence, the EFG has a relative high quality. From Eq. 1.6 the COPth,max is calculated to 0,555. A COP 

at 0,555 and EFG cold duty at 739 kW results in a work input of 1331 kW. The calculated COP in this 

case is when operating reversibly and adiabatically. To achieve the same cold duty in a real process 

higher work consumption is 

necessary.  

With the real COP for the 2DLE 

case a calculated efficiency increase 

of including EFG could be 

controlled. When including EFG as 

a cold stream in the cold box, the 

overall work consumed is simulated 

in HYSYS to be 47785 kW with the 

same production rate of LNG. From 

Table 5.1 the required real work to 

obtain the cold duty of EFG is 1677 

kW. Adding the calculated work of 

EFG cold duty to the simulated 

work of the 2DLE with EFG, results 

in a power consumption of 49462 

kW which is close to the power 

Table 5.1 COP of 2DLE and the EFG 
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consumption in the 2DLE case. Some losses in the cold box may explain the small difference between 

the calculated and the simulated power saved with integration of EFG. 

5.2 Liquid expander 

As the natural gas to be liquefied is under a relatively high pressure and in liquid state when leaving 

the cold box, a liquid expander may give some improvements to the process. In the 2DLE case, 

pressure reduction is done through an isenthalpic valve. An isenthalpic expansion results in no work 

recovery and has a smaller temperature drop than for an isentropic expansion. By installing a liquid 

expander at the cold side of the cold box, work can be extracted and required cooling duty of the heat 

exchanger may be reduced.   

In order to avoid destruction of the pressure exergy a liquid expander was introduced. This expander is 

essentially a pump run backwards that allow a subcooled liquid to be isentropically expanded almost 

to its bubble point. The most important benefit is the temperature reduction at very low temperature as 

power recovery is small at very low temperatures. Hence, isentropic expansion is an efficient way of 

rejecting heat, and not necessary as work recovery.  

Two-phase expanders are now available and will contribute to fulfill an isentropic expansion into the 

two-phase region [10]. These expanders are not proven at large scale and will therefore not be covered 

in this thesis. 

 

Figure 5.1 Pressure-temperature diagram for pressure reduction with valve and liquid expander followed by a valve 

Figure 5.1 illustrates the cooling path of natural gas to be liquefied. The green line indicates the 2DLE 

case and the red is after installation of a liquid expander. Simulated in HYSYS both processes produce 

the same amount of LNG, 2357 ton/day for one train. As the temperature out of the heat exchanger is 

higher with a liquid expander, less refrigerant duty is required. Compressor power can then be reduced 
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either in the methane or nitrogen cycle. To express the gained efficiency by introducing a liquid 

expander, the nitrogen refrigeration flow rate was reduced. This resulted in 2,155 MW reduced total 

power consumption and represents 4,3% of the 2DLE case.      

Another graphical illustration of how a liquid expander contributes to the efficiency is by a 
temperature-entropy diagram. In Figure 5.2, a natural gas at 75 bar and 38°C is cooled down to -
157,2°C.  

 

Figure 5.2 A graphical overview work saved by integration of a liquid expander 

In Figure 5.2 the heat Q is extracted from the natural gas as a heat source and rejected to the 
surroundings as a heat sink. The necessary work W and Wsaved are represented respectively in the blue 
and green area above Q. With a liquid expander the amount of work is reduced to involve only the W 
area.  
 
Figure 5.2 illustrates that at low temperatures, higher outlet temperature of the heat exchanger result in 
a considerable work reduction. By introducing a liquid expander the COP of the reduced duty can be 
calculated and be an indication of saved work with increased LNG production.   

  



40 
 

 

In Table 5.2 the values for both 2DLE cases are simulated in HYSYS. Based on the two cases the 

COP is calculated and can then be used as an indication of reduced work with liquid expander at 

higher LNG production. Even though reduced work increases with LNG rate, reduced work in 

percentage will stay constant.   

 

5.3 Two stage compression  

The compression of feed gas and methane in the refrigeration cycle is done with one compressor. The 

flow rates of these streams are 63% of the total flow rate (natural gas and nitrogen) through the cold 

box and require a 22,3 MW compressor. By including a second compressor in series with an 

intercooler, power consumption will be reduced.  

The new compressor is assumed to have the same efficiency as the one already in place. To find the 

optimum pressure increase for the first compressor, a case was simulated in HYSYS. With a pressure 

variation from inlet pressure to liquefaction pressure the optimum middle pressure where found to be 

48 bar. This resulted in a power reduction of 1,56 MW and represent a reduction of 6,8%. For the 

2DLE process, a two stage compression reduced the overall power consumption by 3,2% at the same 

LNG production. 

  

Table 5.2 Results from the integration of a liquid expander 
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5.4 The improvements influence by higher LNG production 

Höegh LNG wants to look at how an increase in production affects the process and how new 

improvements will contribute to keep the power consumption down. The three proposed solutions to 

increase the efficiency of the NicheLNG are all promising without huge changes to its original design. 

Additional units increase the equipment count and more space is needed. By higher LNG rate the size 

of each unit will also increase. A higher feed gas rate results in a higher refrigerant rate, and hence an 

increase in unit size. The heat exchanger will be particularly influenced by higher flow rates. Later it 

will be illustrated how each improvement affects the process with a 25 % higher LNG production. The 

2DLE case was extended with liquid expander, two stage compression and EFG. The compressors in 

the 2DLE case had polytropic efficiencies decided by vendor curves. They all had efficiencies around 

80%, so in the simulations with higher LNG rate, all compressors were defined with polytropic 

efficiencies at 82%. To meet the LNG specifications, higher heating value was hold constant at 10,95 

kWh/m3 (1058 BTU/scf) for both cases. To accomplish a constant higher heating value the 

refrigeration duty was varied to keep the nitrogen content below 1 mole%. In the two following cases 

the refrigeration duty for the methane cycle was held constant and in the nitrogen cycle the flow rate 

was increased.       

An increase in LNG production demands a higher duty of the heat exchanger. In the 2DLE the UA 

value is constant at 23 860 MJ/°C*h so a higher duty results in a larger ∆T in the heat exchanger. If it 

is desired to keep the power consumption down and without additional equipment it is necessary to 

increase the heat exchanger size. A higher UA value will allow reduced ∆T for the same duty, thus 

reduced exergy losses and reduced power consumption.  

The results represented in Figure 5.3 are based on simulations of the 2DLE with 25% higher LNG 

production. The process demanded 0,5502 kWh/kgLNG with the original UA value at 23 860 MJ/°C*h. 

Illustrated is the power savings with an increase of the UA value.  

Figure 5.3 25% higher LNG production with increase of UA-value 
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In Table 5.3 each improvement is represented alone with 25% increase LNG production. The UA 

value is constant at 23 860 MJ/°C*h and only the nitrogen flow rate is adjusted to meet the LNG 

specifications. The improvement with a liquid expander stands out as the most efficient solution. 

In order to see how the improvements together affected the process they were all simulated in two 
cases, with constant UA value and constant LMTD. It was chosen to see how the efficiency of the heat 
exchanger affected an extended process with all three improvements. The two cases were based on the 
heat exchanger specifications from the 2DLE case with emphasis on its UA value and LMTD. Both 
extended processes had the same LNG production and specifications. 

 

Figure 5.4 illustrates the extended NicheLNG process simulated in HYSYS. Black represent the 

natural gas path, green the nitrogen path and blue the EFG. In HYSYS, the process was simulated with 

the heat exchanger divided in four parts, HX-1, HX-2, HX-3 and HX-4. Each HX has its own UA 

value and LMTD. 

  

Table 5.3 Individual improvements in efficiency with new a unit or change in the design (EFG) 

Figure 5.4 The extended NicheLNG process 
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Table 5.4 represents four simulated cases. Feed gas enters with 30 bar and 44°C. In all cases the 

compressors and expanders have polytropic efficiency of 82% and adiabatic efficiency of 87% 

respectively. The 2DLE original is without increase in LNG production and changes in specifications. 

In the 2DLE the capacity is increased with 25% and with the same design as in 2DLE original. For 

both of the Extended 2DLE the design is illustrated in Figure 5.4. Both cases are either based on the 

same UA value or LMTD as in the 2DLE original. Equal LMTD, based on the 2DLE original, was 

chosen to see how the UA value affected the efficiency of the process.  

  

Table 5.4 Results of 25 % increase in LNG production 
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Figure 5.5 and 5.6 illustrate the composite curves for the 2DLE with 25% increased capacity and the 

Extended 2DLE with constant LMTD also with 25% increased capacity. From the figures it can be 

observed that the Extended 2DLE with constant LMTD demands less duty and the composite curves 

are closer in the temperature region below -70°C. 

 

 

  

Figure 5.5 Temperature-enthalpy diagram of the 2DLE with 25% increased capacity 

Figure 5.6 Temperature-enthalpy diagram of the Extended 2DLE with constant LMTD and 25% increased capacity  
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5.5 Discussion on increased capacity 

Three solutions to make the liquefaction process more efficient have been described. A more efficient 

process, and especially with higher production rate, can defend higher investment costs.  

After LPG extraction the feed gas entering the liquefaction process has too high nitrogen content to 

meet the LNG specifications. Some end flash gas has to be produced and it has a relative high 

refrigerant quality due to its low temperature. The refrigerant quality of a gas depends on its capacity 

to attract heat and the efficiency of the liquefaction process. With less efficient liquefaction process 

any produced EFG will be more valuable. In the 2DLE case with normal LNG production an EFG 

utilization would affect the process with 3,3% lower power consumption. Destination of the FPSO is 

not decided and the nitrogen content in the feed may therefore vary. The nitrogen content has an 

influence on the process and how utilization of EFG will affect power consumption. 

The natural gas stream leaving the cold box is already in liquid phase, and still under pressure. By 

expansion in a turbine, instead of a valve, power can be recovered. In this case the power recovery is 

very small (394 kW), but more important is the temperature drop. When fluid does work by 

expansion, at very low temperatures, heat rejection is more valuable. With a liquid expander, the 

temperature of LNG leaving the heat exchanger could be increased by 3,4°C. This reduced the 

refrigeration load and resulted in a 4,3% lower power consumption.  

Feed gas and the methane cycle are compressed by one compressor. This compressor is responsible for 

almost half of the total power consumption. With an additional compressor so the compression is done 

over two stages with an intercooler, the total power consumption is reduced by 3,2%. 

When LNG production was increased by 25% the liquid expander did stand out as the improvement 

with highest contribution to efficiency. The liquid expander alone reduced the power consumption 

with 5%. The efficiency of the liquefaction part was found to be 26,6% in Chapter 4.4.1. Due to its 

low efficiency an improvement that contributes to lower duty of the liquefaction part will have an 

increasing influence with higher LNG production. In contrast is the improvement with interstage 

compression. Compressors have a relative high efficiency. When LNG production increases the power 

consumption of the liquefaction part will grow more rapidly than for the compression. This explains 

the decrease from 3,2% to 2,6% when LNG production is increased by 25%. The improvement on 

utilizing the EFG production is not influenced by the higher LNG production. With higher LNG 

production the EFG production increases with the same rate and the 3,3-3,4% reduction will stay 

constant. 

An alternative or another contribution to higher efficiency is to operate with a more efficient heat 

exchanger. A heat exchanger with higher UA value reduced the power consumption by an average of 

0,16% per percent of increased UA value.       

The three improvements together were simulated with higher LNG production. Even though 

production was increased by 25% it was more efficient than at normal production rate. It applies for 

both simulated cases. The two extended NicheLNG processes with 25% higher LNG production will 

also affect the heat exchanger. An equally efficient heat exchanger as in 2DLE results in higher UA 

value and thereby more necessary space. Depending on available space, a compromise on efficiency 

and units or size will decide the final design.         
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6 Conclusions and further work 

6.1 Conclusions 

The NicheLNG process, the chosen liquefaction process for the HLNG FPSO-1, has been described 

and evaluated with respect to energy efficiency. The improvement potentials and energy savings have 

been presented by thermodynamic analysis and simulations in HYSYS. A comparison with a 

promising alternative process has also been presented. Possibilities to expand the NicheLNG process 

is considered with increased LNG capacity. 

In the evaluation of suitable natural gas liquefaction processes for offshore applications, the expander 

processes did stand out as the most promising when emphasis is on; compactness, safety, operation 

and equipment count. The most proposed expander process, a dual nitrogen process, was compared 

with the NicheLNG process with emphasis on power consumption and energy efficiency. With equal 

conditions and LNG production, the NicheLNG process with an exergy efficiency of 31,2% had 10% 

lower work consumption. Natural gas as refrigerant has higher cp than nitrogen, resulting in a 

significantly lower mass flow rate. Hence, lower flow rate contributes to lower compression work.  

The benefit in terms of energy consumption with higher liquefaction pressure depends on the feed gas 

pressure and the efficiency of the liquefier. A constant heat rejection temperature and with increasing 

liquefaction pressure, the necessary heat to be removed is reduced. The NicheLNG liquefier has an 

exergy efficiency of 26,6%. With this efficiency and feed gas pressure in the range of 10 bar to 60 bar, 

a higher liquefaction pressure will have a positive influence on the work consumption. 

The improvements; utilization of EFG, liquid expander, two stage compression and higher UA-value, 

were individually discussed and evaluated with LNG production as normal and 25% higher capacity. 

The utilization of End Flash Gas and a new compressor reduced the work consumption by 3,4% and 

2,6%, respectively. These improvements reduced the work consumption by a few percent but the 

liquid expander, at 25% higher LNG production, stands out alone as the improvement with the highest 

contribution. With a liquid expander, the work consumption is reduced by 5%.  

The NicheLNG process with 25% higher LNG production demands, in the terms of specific work, 

0,5502 kWh/kgLNG. By extending the process with the proposed improvements, the work consumption 

is reduced but on the cost of space. The two extended process resulted a specific work of 0,4913 

kWh/kgLNG and 0,4791 kWh/kgLNG. They had the same improvements except that the one with the 

lowest energy demand differ by its heat exchanger with a 11,2% higher UA value.  
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6.2 Suggestions on further work 

In the next phase of the NicheLNG analysis, a more practical view should be evaluated on how the 

adjustments and the expansions suggested in this thesis will affect the topside of the FPSO-1. It has to 

be taken account of available space and how the changes, on operability, will be influenced. It should 

also be evaluated whether the improvements can be justified with respect to investment costs.  

A change of the design by closing the open methane cycle, the impact an additional compressor has on 

the process should be evaluated. With a closed methane cycle, higher pressures in the cycle can be 

chosen. The influence, a higher pressure level has on the unit sizes and the work consumption, should 

be investigated.    

Since there already are heavy hydrocarbons in liquid phase (LPG) on the topside of the FPSO-1, a 

precooler based on propane or a mixture of heavy hydrocarbons can be justified. The benefits, in terms 

of reduced work consumption, of a precooler in front of the NicheLNG process must also be evaluated 

with respect to investment costs. On the other hand, if it is decided to operate with liquid refrigerants, 

a replace of the NicheLNG process with the Single Mixed Refrigerant process could be a promising 

alternative.             
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Appendix A 
Exergy change and liquefaction work calculated with data from HYSYS simulations. 
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Appendix B 
From Aspentech HYSYS Support was ‘Weighted Model’ chosen as heat exchanger parameter. Bellow 

is an explanation of the difference between the various heat exchanger models, given by Aspentech. 
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Appendix C 
Calculations of the methane refrigeration cycle with different inlet expander temperatures. 
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Appendix D 
Feed gas compressed to a liquefaction pressure. Compressor has a polytropic efficiency of 82% and 

the liquefiers efficiencies varies.  
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Appendix E-1 
Feed gas compressed to a liquefaction pressure. Compressor has a polytropic efficiency of 82%. 

Exergy values are exergy change from compressed natural gas to stream out of cold box (Liquefier 

100% efficiency).   
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Appendix E-2 
Compressions for all calculations are done with a polytropic efficiency of 82%. Feed is pressure 

entering compressor after pretreatment and Liq. is outlet compressor pressure/liquefaction pressure. 
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Total work consumption of compression and a liquefier with an efficiency of 26,6%. Feed is pressure 

entering compressor after pretreatment and Liq. is outlet compressor pressure/liquefaction pressure.  

 

Graph for the calculations above: 
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Total work consumption of compression and a liquefier with an efficiency of 30%. Feed is pressure 

entering compressor after pretreatment and Liq. is outlet compressor pressure/liquefaction pressure. 

 

Graph for the calculations above: 
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Total work consumption of compression and a liquefier with an efficiency of 40%. Feed is pressure 

entering compressor after pretreatment and Liq. is outlet compressor pressure/liquefaction pressure. 

 

Graph for the calculations above: 

 



62 
 

Total work consumption of compression and a liquefier with an efficiency of 50%. Feed is pressure 

entering compressor after pretreatment and Liq. is outlet compressor pressure/liquefaction pressure. 

 

Graph for the calculations above: 
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