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Abstract

The present thesis focuses on several topics within three separate but related branches of
the overall field of dispersion forces. The three branches are: temperature corrections to the
Casimir force between real materials (Part 1), explicit calculation of Casimir energy in wedge
geometries (Part 2), and Casimir-Polder forces on particles out of thermal equilibrium (Part
3).

Part 1 deals primarily with analysis of a previously purported thermodynamic inconsis-
tency in the Casimir-Lifshitz free energy of the interaction of two plane mirrors – violation
of the third law of thermodynamics – when the latter’s dielectric response is described with
dissipative models. It is shown analytically and numerically that the Casimir entropy of the
interaction between two metallic mirrors described by the Drude model does tend to zero at
zero temperature, provided electronic relaxation does not vanish. The leading order terms at
low temperature are found. A similar calculation is carried out for the interaction of semi-
conductors with small but non-zero DC conductivity. In a generalisation, it is shown that a
violation of the third law can only occur for permittivities whose low-frequency behaviour is
temperature dependent near zero temperature. A calculation using path integral methods
shows that the low temperature behaviour of the interaction of fluctuating Foucault currents
in two mirrors of Drude metal is identical to that of the full Casimir-Lifshitz free energy,
reasserting a previous finding by Intravaia and Henkel that such fluctuating bulk currents
are the physical reason for the anomalous entropy behaviour.

In a related effort, an analysis of the frequency dependence of the Casimir force by Ford
is generalised to imperfectly reflecting mirrors. A paradox is pointed out, in that the effects
of a perturbation of the reflecting properties of the mirrors in a finite frequency window can
be calculated in two ways giving different results. It is concluded that optimistic conclusions
reached by Ford based on one of these methods, which seems to allow radically changing and
tailoring the Casimir force with engineered materials, can not be realised.

Part 2 presents several explicit calculations of the Casimir energy of different wedge and
cylinder geometries. The Casimir energy of a perfectly conducting wedge intercut by a cir-
cularly cylindrical arc, either perfectly conducting or (magneto)dielectric, is calculated. The
energy is found to include a singular and non-regularisable term due to the corners where
the arc meets the wedge, whereas the finite part is an immediate generalisation of the previ-
ously known results for a circular cylinder. The energy of a magnetodielectric wedge obeying
a criterion of isorefractivity (spatially uniform speed of light) superimposed coaxially on a
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perfectly conducting cylindrical shell is calculated. This is the first expression for the energy
of a wedge which is not perfectly reflecting. Finally, the energy of the perfectly conducting
wedge and arc (and, as a special case, cylinder) is extended to the case of non-zero tem-
peratures. After a regularisation procedure making use of the Chowla-Selberg formula an
analytical expression for the temperature-dependent energy at all temperatures is derived,
and showed to coincide with previously calculated high-temperature asymptotics by Bordag,
Nesterenko and Pirozhenko.

Part 3 considers numerical and analytical studies of the Casimir-Polder forces acting
on particles prepared in a given eigenstate (or superposition of such) in an environment
which is otherwise at thermal equilibrium. We first consider cold polar molecules outside a
metallic halfspace. It is found that the force in the near-zone (non-retarded regime) is much
weaker than what would result from a naïve perturbative calculation, and that in the far-zone
(retarded regime) the force becomes spatially oscillatory. It is demonstrated how these spatial
oscillations may be enhanced in a resonating planar cavity, although for polar molecules
the resulting amplitude is still insufficient for observation. A cylindrical cavity, however,
can achieve a better enhancement factor. The Casimir-Polder forces on Rydberg atoms near
a surface are calculated; because of the very large transition dipole moments of Rydberg
transitions, the force is enormous on an atomic scale. We show that the oscillating force on
Rydberg atoms can be enhanced into the observable regime by use of a fine-tuned cylindrical
cavity. A particle in an eigenstate which is in the non-retarded regime with respect to all its
dominant transitions is shown to feel a Casimir-Polder force which is virtually independent
of temperature from zero to room temperature and beyond. Both for cold polar molecules
and Rydberg atoms, the temperature-independent regime extends to a few and hundreds of
micrometers, respectively, and includes the separations generally accessed in experiments.
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hopefully continue far into the future.
My topic of research has been atypical for the Department of Energy and Process Engi-

neering (EPT) to put it mildly. Yet although my research has been topically different from
that of my colleauges, I have always felt at home at EPT. I must thank the Faculty for En-
gineering Science and Technology for granting a generous PhD Fellowship to a theorist like
myself. I furthermore thank the Department for hosting me. Thanks to my bosses as scien-
tific assistant in Fluid Mechanics for seamless co-operation: Professors Lars Sætran, Helge
Andersson and Bernhard Müller, Reidar Kristoffersen and Dr. Maria Fernandino. Finally,
thanks should go to the administrative staff at the Department who make life so easy for
clueless academics like myself. I have only the highest praise for the EPT administration, of
whom Gerd Randi, Ingrid, Gunnhild and Anita are the ones I’ve troubled the most.

Life at the Department would have been dull and dreary if not for my fellow Ph.D. stu-
dents. My room mate Kristian E. Einarsrud deserves particular mention, for excellent dis-
cussions about any thinkable topic, as well as a particularly well functioning co-habitation
for three years in room 111. Further thanks to Joris Verschaeve, Claudio Walker, Vagesh
Narasimhamurthy, Frode Nygård, Jan Fredrik Helgaker and many more for the fun and the
discussions. I cannot forgo the mention of Corridor Cricket, a source of amusement and exer-
cise for the last year and a half. No thanks, however, to the fake tree in the corridor blocking
mid-on to mid-wicket and making it dashed hard to score runs on the leg side!

Some will be aware that this is the second time I write the foreword to a Ph.D. thesis. My
official and unofficial supervisors for my previous Ph.D. at King’s College London, Professor
Peter D. Zimmerman and Dr. James Acton were important also in facilitating this doctorate
in an indirect way. Pete was very understanding of my desire to return to physics, and
his blessing made the transition back to Trondheim so much easier. James’ ruthless and
brilliantly lucid dissection of my thesis chapters every time I popped over to London was was
what made it possible to work on two theses simultaneously.

In Oklahoma I met Jef Wagner, K. V. Shajesh and Prachi Parashar. Special thanks must
go to Jef and his wife Kristen for taking such good care of me, driving me around Oklahoma
and introducing me to a proper southern breakfast, and to Shajesj for getting me to and from
the airport in Oklahoma City at ridiculous hours.

Aside from my main collaborators, I have been privileged to work with other experts on
a number of smaller projects. All of these have been highly enjoyable and rewarding. Alex
Crosse I got to know during my stays at Imperial, and it felt only about time when we finally
got both our names on the same paper. Francesco Intravaia and Carsten Henkel were kind
enough to invite me for a short stay in Potsdam with them, wich resulted in a paper I’ve
included in the thesis. Carsten and Francesco have a way of thinking about physics which
is rather different from my own, and I cannot think of a single research project which has
heightened my understanding more than the one I did with them. Finally I must thank Yury
Sherkunov who sportingly agreed to team up for the proceedings paper for QFEXT09.

I have had the pleasure and privilege of discussing physics with and get to know a num-
ber of young scientists in similar circumstances as my own. Jef, Shajesj, Prachi, Alex,
Yury, Stefan B. and Francesco I’ve already mentioned, but Harald Haakh, Filipe da Rosa,
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James Babington, Antoine Carnaguier-Durand, Ines Cavero-Peláez, Elom Abalo, Olesya Gor-
bunova, Irina Pirozhenko, and Justin Wilson I hadn’t before now. Thanks for all good times!

My horizons were severely broadened by Professor Alex Hansen and his Ph.D. students
Morten Grøva and Knut S. Gjerden, with whom I co-authored a PRE about density waves in
falling sand. Quite some way from the Casimir effect! It all commenced as I took “Compu-
tational Physics" for a Ph.D. topic, taught by Prof. Hansen. His model, upon whose analysis
our paper expands, was given as topic for the four-day exam, and the conclusions brought
forth in the article were conceived in the pangs and woes of those four frenzied days. Dashed
spiffing it all was, and a great way to befriend a completely other branch of physics!

Throughout my research I have benefited from discussions with a number of my seniors
from around the world. These include in no particular order (and I hope I have not forgot-
ten too many) Dr. Davide Iannuzzi, Prof. Bo Sernelius, Prof. Emilio Elizalde, Prof. Sergei
Odintsov, Dr. Guiseppe Bimonte, Prof. Vladimir Nesterenko, Dr. Valery Marachevsky, Prof.
Steve Lamoreaux, Dr. Diego Dalvit, Prof. Holger Gies, Dr. Lev Kaplan, Prof. Bo-Sture Sk-
agerstam, Prof. Kåre Olaussen, Dr. Olav Gaute Hellesø, Prof. James Wilkinson, Prof. Thomas
Huser, Dr. Per Jakobsen, Prof. Pierre Benech, Prof. Jens Oluf Andersen, Prof. Gert-Ludwig
Ingold, Dr. Mauro Antezza, Dr. Michael Bordag, Prof. Klaus Kirsten, Dr. Ricardo Decca, Prof.
Umar Mohideen, Prof. Vladimir Mostepanenko, Dr. Giovanni Carugno, Prof. Steven Johnson,
Prof. Michael Levin and Prof. Lev Pitaevskii. Particular thanks to Dr. Astrid Lambrecht &
Prof. Serge Reynaud who very hospitably invited me to Paris for discussions.

Very special thanks to my erstwhile physics teacher Oddvar Stubø who persuaded me to
study physics in the first place. It has made all the difference.

Doing a doctorate, the support of friends and relatives is at least as important as scientific
support. So many have been and are important to me in my personal life that I deem it wiser
not to attempt to list everyone and risking to inadvertently omit someone. It is my hope
that you already know who you are, that I have been able to somehow express how much I
value and enjoy our time together. I therefore thank in particular only my parents, who have
always supported me on the strange and winding path I have chosen to follow so far in life.

Yet most important of all through these last years has been my dear wife Inger. May we
have many days ahead of us, and may I be able to thank and repay you every one of those
days for all that you are to me.

And so it was that I became one of the many who toil to search out what goes on under
the sun, and I’m not sure I’m any closer to discovering its meaning. But ’pon my word, has
it been fun to try! I am ever indebted to Him who died so long ago so that we may live and
indulge in such delightful nonsense as this.

Simen Andreas Ådnøy Ellingsen
Trondheim, October 2010
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Chapter 1

Introduction

The advent of quantum physics brought with it an implication that everything fluctuates. No
longer could things be said to be sit at one point in space and time, perfectly still, not even at
zero temperture. Even vacuum, which was understood in classical physics as “simply empty
space”, is neither simple nor empty according to quantum theory. The quantum field theory
(QFT) description of vacuum is like a bubbling kettle of particles, antiparticles and field
quanta which appear and disappear faster than can be observed. One of the few windows
through which quantum fluctuations may be seen is the Casimir effect and its siblings, the
van der Waals and Casmir-Polder effects.

Figure 1.1: Microscopic machinery. Left: a system of microscopic cogs driven by a chain. The
white bar in the upper left corner has length 0.5mm. Right: Cogs are dwarfed by a dust mite.
Images courtesy of Sandia National Laboratories, www.sandia.gov. Systems such as these
suffer problems of stiction due to Casimir attraction.

One may not experience quantum fluctuations much in everyday life, and yet these may
be said to be the source of a plethora of very diverse phenomena. Some experts believe that
70% of the energy of the universe, the so-called dark energy, is due to vacuum fluctuations, as
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supported by recent cosmological data [1, 2]. On the other end of the scale, it is the Casimir
effect which makes the gecko’s feet sticky, allowing it to walk effortlessly on walls and ceil-
ings [3]. In the microscopic machinery being developed in the rapidly progressing field of
nanotechnology (see e.g. figure 1.1), the Casimir effect is a source of trouble, causing moving
machine parts to stick to each other [4]. Today, hundreds of papers are published each year
about the Casimir effect and related topics as shown in figure 1.21.
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Figure 1.2: Number of publications with Casimir effect and related topics by year.

In this introduction I provide the context for the research presented in this thesis in the
form of the 16 scientific articles found in full in the second part. The research articles fall
naturally into three categories, all under the common category “dispersion forces”, and after
a general historical introduction to the overall field, each of the three parts is introduced
separately.

1.1 A brief history of Casimir effect research

The history of the Casimir effect goes back to the observation of Dutch physicist Johann
van der Waals in his 1873 PhD thesis that the equation of state for gases could be much
improved with respect to experimental observations by introducing a weak attractive force
acting between the atoms and molecules [5]. The force introduced by van der Waals was
initially ad hoc, and a physical explanation of its origin remained amiss until 1930 when
Fritz London, making use of the newly developed quantum theory, showed that it was the
effect of fluctuations between the individual charged particles making up the atoms [6]. A
short-lived dipole moment is set up by a fluctuation in the electron cloud around one atom,

1According to ISI Web of Science, search for topics “Casimir Effect”, “Casimir force”, “Casimir-Lifshitz”,
“Casimir-Polder", “retarded van der Waals" and “Casimir energy”.
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Figure 1.2: Number of publications with Casimir effect and related topics by year.
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inducing a dipole moment in a nearby atom, and the dipole-dipole force, when averaged over
time, gives rise to an attractive force.

Figure 1.3: Hendrik Brugt Gerhard Casimir, 1909-2000

A connection between the London-van der Waals force and the fluctuations of the vacuum
itself was made by Hendrik Casimir in 1948. Together with collaborator Dirk Polder he had
found an expression for the London-van der Waals force at long distances, where account
must be taken for the fact that light travels at a finite speed [7]. A mumbled comment
by Niels Bohr spurred Casimir into realising that the interaction could be understood also in
terms of fluctuations of the vacuum itself [8]. He went on, therefore, to calculate the potential
between two infinite, parallel and perfectly conducting plates separated by a vacuum gap of
width a. The resulting free energy per unit area, F , and corresponding pressure, P, was
found as [9] (I use SI units throughout the Introduction)

F =−
π2h̄c
720a3 ; P =−

d
da

F =−
π2h̄c
240a4 . (1.1)

Today, in memory of these seminal publications, the following numenclature is estab-
lished2. London-van der Waals forces act between two or more atoms or other microscopic
particles, Casimir-Polder forces act between a particle and a macroscopic body, and Casimir
forces act between macroscopic bodies. At the fundamental level these are all one and the
same phenomenon, measurable forces due to fluctuations of charges and fields, but the dis-
tinctions makes sense at least for a theoretician, with reference to which mathematical meth-
ods are best suited for calculations. A common name for all these forces is dispersion forces.

2Although distinctions are often blurred, and terms are sometimes used interchangeably, depending on the
background of the researcher.
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One of the most important results in the history of the Casimir effect was derived by
Lifshitz in 1955 [10] and is today simply referred to as the Lifshitz formula. It expresses
the pressure between two parallel plates, the setup considered by Casimir earlier, but now
allowing the plates to not be perfect conductors but have general reflection properties3

F =
kBT
2π

∑
σ=s,p

∞∑
m=0

′

∫∞

0
dqq ln[1− r+σr−σe−2κ0a]; (1.2a)

P =−
kBT
π

∑
σ=s,p

∞∑
m=0

′

∫∞

0
dqqκ0

r+σr−σe−2κ0a

1− r+σr−σe−2κ0a , (1.2b)

where r±σ(q, iζm) are the reflection coefficients of the left (−) and right (+) hand plate for a
σ-polarised wave, and ζm is the mth Matsubara frequency, ζm = 2πkBT/h̄. Here we assume
the gap to be vacuum-filled, so κ0 =

√
ζ2/c2 + q2. If the plates are simply infinitely thick half-

spaces of permittivity and permeability ε and μ (both relative to their vacuum values), the
reflection coefficients take the form

rs(q, iζ)=
μκ0 −κ1

μκ0 +κ1
; rp(q, iζ)=

εκ0 −κ1

εκ0 +κ1
(1.3)

where κ1 =
√

εμζ2/c2 + q2.
In the decades after, the Casimir effect remained of a certain theoretical interest, whereas

the considerable number of attempts to measure it in experiment were largely inconclusive,
the most notable among them perhaps those of Sparnaay [11] and Sabisky and Anderson [12].
Experiments measuring the atom-atom and atom-body forces were more plentiful, and the
transition from non-retarded to the retarded regime as predicted by Casimir and Polder was
eventually observed directly in 1993 [13].

Of particular interest to the present project are two much cited theoretical papers both
appearing in Annals of Physics in 1978, introduced different methods for calculating Casimir
forces between bodies of non-trivial geometry today. The first was by French physicists Balian
and Duplantier [14] who derived a powerful method of calculating Casimir forces between
bodies by making use of the fact that the force has the form of a sum over all multiple scat-
tering paths of light between the bodies [14]. The enormous progress made in recent years
on numerical evaluation of Casimir forces between bodies of arbitrary shape and reflecting
properties has primarily been made using generalisations of this multiple scattering theory4.
The second paper was due to Schwinger, DeRaad and Milton [16] who introduced a technique
of Green’s functions which has enabled analytical calculations of the Casimir force and en-
ergy in many geometries later. The two methods, Green’s functions and multiple scattering,
are equivalent and sometimes employed so that it is not strictly one or the other. In this the-
sis, Green’s functions are made frequent use of (articles [f,l,m,n,o] and [p]), whereas multiple
scattering arguments are employed as well, in articles [b,e,g] and [j].

3Lifshitz originally assumed purely dielectric half-spaces, later generalised.
4It is reasonable to mention that the multiple scattering understanding had been employed in more specialised

versions before Balian and Duplantier, e.g. [15].
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In contrast to the local method of Green’s functions is the method Casimir himself em-
ployed [9] for calculation of the global energy shift of fluctuating fields in the presence of
boundaries, namely by simply summing up the allowed field solutions (called ‘modes’) in the
presence and absence of these boundaries and taking the difference. A powerful way of per-
forming such calculations by use of Cauchy’s integral theorem (the method is often referred
to as the ‘argument principle’) was introduced to Casimir physics in a seminal paper by van
Kampen and co-workers in 1968 [17]. Casimir’s original method of direct mode summation
can only be used in a few simple geometries where the modes are known; we employ this
method in articles [i,j] and [k].

The modern era of Casimir effect resarch can be said to have started with its first quanti-
tative measurement, by Lamoreaux in 1997 [18], quickly followed by other impressive exper-
iments [19–25]. The fact that dispersion forces between macroscopic bodies was now within
reach of precision experiments lifted this branch of physics, hitherto an almost purely the-
oretical discipline, into being a focus of interest to a broad range of physicists. Numerous
experiments followed, and well over a thousand numerical and theoretical publications.

In the following three sections I will briefly review the backgrouhd for each of the three
parts of the thesis. Because emphasis will be on preparing for, informing and illustrating the
research presented in the reseach articles included, no attempt is made to cover all aspects
of modern Casimir and Casimir-Polder effect research, which has spanned out into a number
of sub-fields of which I have worked in three. For a fuller overview, the reader is referred to
reviews from various angles, both books [26–28] and articles [29–35]. An up-to-date overview
of the questions currently being researched is provided by the Proceedings volumes of two
recent conferences [36,37].

The three next sections contain what is intended to convey a general understanding of
the problems analysed in the research articles and an qualitative outline of the methods
made use of. I will not, however, repeat the numerous conclusions reached in these articles,
nor will I reiterate any of the sundry minutiae of the actual implementations, numerical or
analytical, of these methods. Such details are all covered in the papers themselves, and a
second rendition would not only be a lengthy and rather tedious exercise, but also largely
superfluous. I am somewhat prone to prolixity as it is, and will aspire to spare the reader the
additional humdrum of avoidable repetition.

1.2 Casimir effect at the crossroads: from ideal models to re-
alistic conditions

The “modern era” of Casimir effect research has been marked in particular by the transition
from a purely theoretical subject to an experimental and technological discipline. While the
theoretical efforts used to be concerned with conceptual questions relating to the nature of the
quantum vacuum, a new need arose to provide accurate predictions for the forces measured
in experiments. For the Casimir effect this meant that in particular four idealisations which
had previously been convenient had to be generalised:
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1. Smooth surfaces to rough surfaces: Real surfaces are not perfectly smooth. This intro-
duces corrections to results for perfectly smooth surfaces (e.g. [29,38]).

2. Plane-Plane to Plane-Sphere geometry: Although a few experiments have made use
of Casimir’s original geometry of two parallel plates, replacing one plate by a sphere
has proven to be a more workable geometry despite the force between the bodies being
weaker in this case [28, 31, 33]. The reason is that it has proven very difficult to keep
two planes perfectly parallel. Calculation-wise, however, the sphere-plane geometry is
much more difficult, and a large theoretical effort has been put into achieving better
analytical and numerical results in this geometry, a work which is still ongoing (e.g.
[28,39,40]).

3. Perfect conductors to real materials: Casimir’s calculation [9] assumed perfectly con-
ducting plates, which Lifshitz generalised to material slabs of permittivity ε. The
Casimir effect according to Lifshitz theory depends on the dispersive properties of the
materials involved at all frequencies, however, and it turns out that inserting fully fre-
quency dependent permittivity and permeabilities into Lifshitz’ result is not without
complications in certain situations, as will be detailed below.

4. Zero temperature to finite temperature: Experiments are typically performed at room
temperatures, which introduces corrections. The transition is formally apparently
straightforward (in quantum field theory the time dimension becomes compactified at
finite temperatures, with period h̄/kBT) and the expression was written down already
by Lifshitz [10].

It soon transpired that, while each of these four transitions in isolation were rather
straightforward at least in principle, including two or more corrections at the same time
leads to ambiguities. In particular the combination of real materials and non-zero temper-
ature turned out to be controversial, since the two corrections do not commute: it matters
which assumption is generalised before the other. I will expand on this in the following.

1.2.1 Temperature anomaly for metals

The Casimir effect between metals at non-zero temperature has been a subject of heated
debate for a good decade. An ambiguity as to how to take the limit of perfect reflection was
recognised early by Scwinger and co-workers [16] and ‘solved’ by a prescription which was
followed for years to follow. The prescription was in essence to set the reflection coefficients
entering in Eq. (1.2) to unity prior to further calculation. Thus the original Casimir result
was obtained at zero temperatures.

It was a paper by Boström and Sernelius [41] which first pointed out that this prescription
was in conflict with application of the most widely employed model for metallic permittivity,
the Drude model,

ε(ω)= 1−
ω2

p

ω(ω+ iγ)
⇔ ε(iζ)= 1+

ω2
p

ζ(ζ+γ)
, (1.4)
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where ωp is the metallic plasma frequency and γ the relaxation frequency. To see how this
happens, consider the s (or TE) reflection coefficient in Eq. (1.3) which features the quantity

κ1 =

√
εζ2

c2 + q2 ζ→0
∼

√
ω2

pζ

γc2 + q2 ζ→0
→ q (1.5)

(we let μ= 1 here and in the following for simplicity), and hence, from Eq. (1.3), rs
ζ→0
→

q−q
q+q = 0.

In other words the Drude model implies that for the term m = 0 in the sums of Eqs. (1.2),
there is no contribution from the TE mode.

The vanishing of the TE term has significance at high temperature and/or long interplate
separations as one will see when noting that when the arguments of the exponentials in (1.2)
are sufficiently large the summands fall off exponentially like5

e−2κ0a
∼ exp

(
−

4πmkBTa
h̄c

)
as

kBTa
h̄c

→∞. (1.6)

Hence, in the limit kBTa/h̄c � 1, only the term m = 0 contributes significantly to the sum,
and the Casimir pressure is approximately

P ∼−
kBT
2π

∑
σ=s,p

∫∞

0
dqqκ0

r+σr−σe−2κ0a

1− r+σr−σe−2κ0a

∣∣∣∣
ζ=0

. (1.7)

As argued, rs(ζ = 0) = 0 (at least if the discrete term m = 0 is to be interpreted as the limit
m → 0+) whereas rp takes on q dependent values close to unity. All in all the Drude model
predicts a force reduced by a factor 1

2 compared to Casimir’s original calculation; a dramatic
result! Later calculations have shown that also more detailed, spatially dispersive models
give similar results [42,43]. For the sphere-plane geometry, the factor turns out to be 2

3 [44].
The Drude prediction was criticicised on two levels, theoretical and experimental. For

a more complete review of the debate that ensued, from two different perspectives, see [28]
and [45]; here I will merely mention the experimental debate and very briefly account for
some of the main theoretical points.

On the experimental side the objection which has been raised is simply that the Drude
prediction does not match the experimental data available. First it was found that Lamore-
aux’s experiment [18] did not favour a metallic model with low-frequency dissipation such as
that of Drude, but fitted better with Casimir’s original result, which can be approximated by
a metallic model without low-frequency dissipation from scattering6. Later, experiments by
Decca and co-workers [47,48], claiming extremely high precision down to the 1% level, came
to the same conclusion. Still today, no commonly accepted theory explains this apparent
discrepancy between theory and experiment.

On the theoretical side, the observation of Boström and Sernelius was soon criticised on
thermodynamical grounds [49–52]. The argument, which concerns the vanishing of Casimir

5The symbol ∼ is used in the sense ‘asymptotically’.
6Note that Lamoreaux recently attributed this to a systematic correction [46] which, upon inclusion, shifts

that experiment in the direction of the Drude result after all.
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entropy at zero temperature, has been gradually crystallised through a decade of ensuing
debate. The way I myself understand it at the end of all that, it goes as follows7. Assume the
two slabs of the same metal are truly infinitely large and made of a perfect crystal lattice,
completely free of impurities and imperfections which can scatter electrons at zero temper-
ature. In this case the only mechanism to give electronic relaxation is scattering of the free
electrons on thermally excited phonons of the material. As temperature decreases, these die
away according to the Bloch-Grüneisen formula [53] as

γ(T)∝ T5, T → 0. (1.8)

Regarding now the reflection coefficient rs again, we notice that the two limits ζ → 0 and
T → 0 do not commute:

lim
T→0

lim
ζ→0

rs = 0, but

lim
ζ→0

lim
T→0

rs = r̃s =−χ2
(√

1+χ−2 −1
)2

	= 0, (1.9)

with χ =
cκ0
ωp

. Using the Euler-Maclaurin sum formula [54] to calculate the low-frequency
behaviour of the free energy (1.2a), one can then show that F (T) obtains a term linear in T:

F (T)=F0 +
ω2

pkBT

4πc2

∫∞

0
dχχ ln[1− r̃2

s(χ)e−(2aωp/c)χ]+O [T2]. (1.10)

In other words, the entropy S =−∂TF is different from zero at T = 0, which, it was argued,
voilates Nernst’s theorem, the third law of thermodynamics.

As mentioned, the dicourse on the violation of the third law has crystallized over time,
and the link to the non-commuting limits of frequency and temperature was only arrived at
in two independent studies in 2008, of which my article [d] was one, and the other was due to
Intravaia and Henkel [55]. The above argument (elaborated in [f]) is the ‘end product’ after
nearly ten years of arguments back and forth, a discourse in which clarity has gradually
emerged.

But let us go back in time a little. Starting 2003, Høye, Brevik, Aarseth and Milton
published work in support of the Drude description of metals showing that for a realistic
metal with imperfections present, entropy does vanish [56,57]. Their work was supported by
the statistical mechanical elaborations of two other groups [58–61]. A further study showed
that the low-temperature behaviour of the Casimir free energy between Drude metals is
quadratic in T [62], and the two leading order terms of the TE-mode free energy were worked
out analytically in article [a].

A highly similar problem was pointed out also for semiconductors which have a small
but non-zero conductivity which, for some types of semiconductor, vanishes exponentially as
temperature goes to zero, when the conductivity influence on the permittivity is described by

7The following is adapted from section 2 of article [f] and shortened.
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behaviour of the free energy (1.2a), one can then show that F (T) obtains a term linear in T:

F (T)=F0 +
ω2

pkBT

4πc2

∫∞

0
dχχ ln[1− r̃2

s(χ)e−(2aωp/c)χ]+O [T2]. (1.10)

In other words, the entropy S =−∂TF is different from zero at T = 0, which, it was argued,
voilates Nernst’s theorem, the third law of thermodynamics.

As mentioned, the dicourse on the violation of the third law has crystallized over time,
and the link to the non-commuting limits of frequency and temperature was only arrived at
in two independent studies in 2008, of which my article [d] was one, and the other was due to
Intravaia and Henkel [55]. The above argument (elaborated in [f]) is the ‘end product’ after
nearly ten years of arguments back and forth, a discourse in which clarity has gradually
emerged.

But let us go back in time a little. Starting 2003, Høye, Brevik, Aarseth and Milton
published work in support of the Drude description of metals showing that for a realistic
metal with imperfections present, entropy does vanish [56,57]. Their work was supported by
the statistical mechanical elaborations of two other groups [58–61]. A further study showed
that the low-temperature behaviour of the Casimir free energy between Drude metals is
quadratic in T [62], and the two leading order terms of the TE-mode free energy were worked
out analytically in article [a].

A highly similar problem was pointed out also for semiconductors which have a small
but non-zero conductivity which, for some types of semiconductor, vanishes exponentially as
temperature goes to zero, when the conductivity influence on the permittivity is described by

7The following is adapted from section 2 of article [f] and shortened.
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debate. The way I myself understand it at the end of all that, it goes as follows7. Assume the
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a Drude-type model [63]. Mathematically the formal violation of the third law of thermody-
namics is almost identical to that described for metals above (see [f]), but now concerns the
TM rather than TE modes. As a benchmark result, the low T expansion of the free energy
also for the TM mode using this discription of conductivity was worked out in article [c].

In recent years, several interesting developements have been made on the theoretical
side in an effort to understand the mysterious temperature effect for Drude metals. With
respect to the Nernst theorem anomaly, it was pointed out by Bimonte [64] that the interac-
tion of stochastical Johnson noise currents in two wires exhibited the same entropy anomaly,
and a little later, Intravaia and Henkel demonstrated that the entropy problem could indeed
be attributed to a type of modes corresponding physically to fluctuating overdamped bulk
currents, called Foucault currents, within the two materials [65]. In a continuation of that
effort, I joined forces with the latter group and we were able to show that the low tempera-
ture expansion of the free energy due to these Foucault currents alone is the same as for the
entire Casimir-Lifshitz interaction [h]. Other enlightening treatments include the compar-
ison between the Casimir entropy anomaly and that of a Brownian particle, by Ingold and
co-workers [66].

I offered some arguments in [d] why the third law of thermodynamics (Nernst’s theo-
rem) is probably not a good criterion for choosing how to describe the Casimir interaction at
high temperature at all. A main point is, I still believe, that the Nernst theorem is valid at
zero temperature. In that regime, simple and local permittivity models such as Drude and
Plasma models are not expected to describe real physics anyway because of such effects as
the anomalous skin effect or onset of superconductivity, and in any case the reason one needs
to distinguish between different models is to correctly describe the Casmir force at high tem-
peratures. Indeed, near zero temperature the two models give practically the same Casimir
force. An alternative criterion was suggested by Bimonte [67]. He shows that the Bohr-van
Leuven theorem of classical statistical mechanics implies that the TE reflection coefficient rs

should tend to zero in the high-temperature limit according to the Drude prediction.
The latest developments on the theory side of temperature debate concern the triple in-

teraction of temperature, real materials and non-flat geometry. A notable step forward was
the numerical calculation of Antoine Carnaguier-Durand and co-workers [44,68]. The sphere
+ flat plate geometry is what is is typically used in experiments to circumvent issues of re-
taining parallelity, and is used in all of the most precise measurements of the Casimir force
including those of Decca [47, 48] which do not seem to fit with a dissipative description of
metals. Noting, however, that both the sphere-plate separation and the sphere radius are
the same order of magnitude as the thermal wavelength λT = 2πh̄c/kBT at room temper-
ature (a few micrometers), it is an appealing thought at a somewhat hand-waving level to
think that the smallness of the physical system means temperature effects which would be
present for macroscopic plates (and which in that geometry only becomes important only
when inter-plate separations a are not much smaller than λT ) cannot be “seen” by a micro-
sphere. A brief elaboration of this view was recently published [69]. If Lamoreaux’s latest
correction [46] to his old experiment [18] and corresponding reanalysis are correct, it might
be an indication of such geometry effects: Lamoreaux’s spheres are macroscopic (radius in
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centimeters) whereas Decca’s spheres are much smaller and measure in the tens of microns.

1.3 Casimir effect as mathematical physics: the wedge

Before the advent of precise Casimir force experiments [18], the Casimir effect was a subject
belonging primarily to mathematical and theoretical physics. A much cited review article
from the mid 1980s [70] illustrates this. Its bulk consists of questions such as field quantisa-
tion procedures, different boundary conditions, different mathematical routes of evaluation,
scalar vs. electromagnetic fields, quarks in gluon bags, and finite temperature. As “applica-
tions” the attraction between dielectrics as calculated by Lifshitz is presented. A more recent
overview of the theoretical part of Casimir physics is found in Milton’s book [26]. A reminder
of the quantum field theory roots of the Casimir community is found in the name of the bi-
annual Casimir effect conferences, which still bear the name "Quantum Field Theory Under
the Influence of External Boundary Conditions (QFEXT)" [37], although these days you are
as likely to hear talks about experimental precision and apparatus as about, say, the vacuum
self-energy of D+1 dimensional Dirichlet-bounded hyperparaboloids.

Today, a review with the general heading “The Casimir Effect” would be expected to in-
clude much more than quantum field theoretical calculations. To forgo the mention of experi-
ments, the various corrections due to system imperfections such as listed above, and the link
to applied atomic and colloid physics would be almost unthinkable. Yet, for all the newfound
applications of this field of physics which was once a theoretical curiosity, the Casimir effect
lives on as a branch mathematical physics as well.

A particular branch of the theoretical side of the Casimir effect has been the striving to-
wards analytical results for the Casimir energy of new geometries. The story of the search to
understand the rôle of geometry on the Casimir energy goes back far, probably to Casimir’s
own stipulation that if the electron could be modelled as a thin shell held together by Casimir
attraction but pushed apart by Coloumb forces, the fine-structure constant could be calcu-
lated [71]. This dream was shattered when Boyer showed in his Ph.D. work that the Casimir
stress on a perfectly conducting spherical shell is, modulo some singular but renormalisable
terms8, repulsive [72]. Thus was started the search for more analytical results in new ge-
ometries in an attempt to understand how geometry could have such a profound effect on
the Casimir energy. This work continues, and as I write it is less than two weeks since the
appearence of a paper by Professor Milton’s group on cylinders of triangular cross-sections
wherein a universal function for the Casimir energy of cylinders of general polygonal cross-
sections is proposed [73].

Research on the Casimir effect was sporadic in the first few decades, and results on new
geometries were slow in coming. Only in 1981 was the Casimir energy of an infinitely long
perfectly conducting circularly cylindrical shell calculated by DeRaad and Milton [74], and
the more physical but also much more complicated case of a (magneto)dielectric cylinder has
only been treated in relatively recent years [75–82]. A particularly useful kind of “boundary

8This has been subject of some controversy, see [26] and references therein.
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8This has been subject of some controversy, see [26] and references therein.

10



α x

y

ε1,μ1

ε2,μ2

a

α

(a) (b)

α x

y

ε1,μ1

ε2,μ2

a

x

y

ε2,μ2

ε1,μ1

α

(c) (d)

Figure 1.4: Different wedge geometries, (a) the classical perfectly conducting wedge geome-
try; (b) a material-filled perfectly conducting wedge closed by a perfectly conducting circularly
cylindrical arc, considered in article [i]; (c) the perfectly conducting wedge, now with a mag-
netodielectric arc, considered in article [i]; (d) an isorefractive wedge positioned coaxially in
a circularly cylindrical perfectly reflecting shell, the geometry considered in article [j].

conditions” for calculating the Casimir force in various geometries has been the use of δ-
function potentials. A host of different geometries have been treated for the scalar field in
this formalism via the Klein-Gordon equation which is solved by means of a Green’s function
(e.g. [26,30,83,84]).

Closely related to the circularly cylindrical geometry is the infinite wedge. The problem
was first approached in the late seventies [85,86]. Since, various embodiments of the wedge
have been treated by Brevik and co-workers [87–89] and others [90]. A wedge intercut by a
cylindrical shell was considered by Nesterenko and co-workers, first for a semi-cylinder [91],
then for arbitrary opening angle [92], and the corresponding local stresses were studied by
Saharian [93–95].

It is in light of all this previous research into geometry effects of the Casimir energy
that my senior collaborators, Profs. Brevik and Milton, and I contributed another few pieces
to the jigsaw in the form of papers [i,j,k]. The first article [i] considers the geometry of a
perfectly conducting wedge intercut by a circularly cylindrical arc, either perfectly conducting
or magnetodielectric. In the second article [j] the same geometry is chosen, but now letting
the wedge be not perfectly conducting but isorefractive, that is, it is magnetodielectric in
such a way that the speed of light is the same in all sectors. Finally, in article [k] the results
obtained in article [i] are generalised to non-zero temperature.
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1.3.1 Casimir energy calculated by mode summation

In all these papers, the method of calculation is in essence the same, namely what is called
mode summation. The rest of this section contains a sketch of how we calculate Casimir
energies at zero and finite temperatures with this method, which is essentially the same
as that originally employed by Casimir [9]. I do not strive to be rigorous here, but seek to
convey an understanding of the general procedure without involving the nitty-gritty details
and subtleties which tend to enter in any real calculation.

According to quantum field theory, the vacuum zero-temperature energy of the fluctuat-
ing electromagnetic field is given as

E =
1
2 h̄

∑


ω =
∑


e(ω) (1.11)

where ω are the eigenfrequencies of the field, dependent on a set of quantum numbers ,
which solves the boundary conditions of the system. At non-zero temperature this expression
generalises to [96]

E (T)= kBT
∑


ln
[
2sinh

h̄ω

2kBT

]
=

∑


fT (ω). (1.12)

In principle the sport is now to find what the eigenmodes {} of the geometry are and sum
the free energy contribution from all these (infinitely many) modes. In practice, however,
doing so explicitly is only feasible for a few very simple geometries. Instead one may employ a
very powerful method called the argument principle. The method, introduced to the Casimir
world by van Kampen et al. [17] as previously mentioned, requires that a function can be
found containing all relevant boundary conditions, such that

D(ω)= 0⇔ω ∈ {ω}. (1.13)

The function may have other zeros and poles as well provided these are known and the
corresponding spurious solutions can be subsequently subtracted off, but let us assume the
function D(ω) satisfies (1.13) and is free of other singularities and branch cuts, for simplicity.
The energy can then be summed up according to Cauchy’s theorem as

E (T)=
∑


fT (ω)=
1

2πi

∮
Ξ

dω fT (ω)
d

dω
lnD(ω) (1.14)

where Ξ is a complex integration path encircling all relevant solutions ω. In an extension
of the simple equations above, the boundary value equation (1.13) can depend on further
variables which must be summed over at the end. Typically, the energies (1.11) and (1.12) are
infinite and must be regularised by subtracting the corresponding value when the boundaries
are removed. This ‘empty’ system (denoted “∞”) has eigenmodes given by D0(ω) = 0, and so
the regularised, free energy is

F (T)=

[∑


−
∑
∞

]
fT (ω)=

1
2πi

∮
Ξ

dω fT (ω)
d

dω
ln

D(ω)
D0(ω)

. (1.15)
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This is a sketch of the general route to obtaining the Casimir energy by mode summation.
For the case of a perfectly cylindrical wedge, the solution of the governing electromagnetic

equation (the Helmholz equation) can be expanded in partial waves which involve cylindrical
Bessel functions and take the general form

E,H=A
Jν(�ρ)

H(1)
ν (�ρ)

+B
J′
ν(�ρ)

H(1)′
ν (�ρ)

(1.16)

(for the actual expressions of field components, see [i]) where

�(ω)=
√

k2
z −εμω2, (1.17)

kz being the wave number along the cylinder axis (A and B are constants, upper or lower
Bessel function chosen according to boundary conditions at r = 0 or r →∞), and ρ is distance
from z axis.

For a circularly cylindrical, perfectly reflecting arc of radius a the boundary condition
giving the eigenvalues of ω is

Dkz,ν(ω)= 1− x2λ2
ν(x)= 0 (1.18)

with

λ(x)=
d
dx

[Iν(x)Kν(x)], and x = �a. (1.19)

A somewhat more complicated eigenequation pertains to a magnetodielectric cylindrical arc,
see article [i]. After inserting this value into the argument principle, equation (1.15), we
finally integrate over kz and sum over all allowed values of ν.

One quickly finds that the order of the Bessel functions are restricted by the presence of
the perfectly conducting wedge to values

ν= mp, p = 2π/α, m ∈Z, (1.20)

where α is the opening angle of the wedge. After employing the argument principle, the
solution must then simply be summed over m9. The situation is subtler for the diaphanous
wedge [j]: there the values of ν are given not by (1.20) but implicitly, via the eigenequation

sin2πν− r2 sin2ν(π−α)= 0, (1.21)

where
r =

ε1 −ε1

ε2 +ε2
=−

μ1 −μ2

μ1 +μ2
(1.22)

(since ε1μ1 = ε2μ2). In this case it is necessary to use the argument principle twice: once to
sum over eigenfrequencies ω(ν) and again to sum over the allowed values of ν for a given r.

9Note that some subtleties pertain to this sum, see article [i].
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see article [i]. After inserting this value into the argument principle, equation (1.15), we
finally integrate over kz and sum over all allowed values of ν.
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the perfectly conducting wedge to values

ν= mp, p = 2π/α, m ∈Z, (1.20)

where α is the opening angle of the wedge. After employing the argument principle, the
solution must then simply be summed over m9. The situation is subtler for the diaphanous
wedge [j]: there the values of ν are given not by (1.20) but implicitly, via the eigenequation

sin2πν− r2 sin2ν(π−α)= 0, (1.21)

where
r =

ε1 −ε1

ε2 +ε2
=−

μ1 −μ2

μ1 +μ2
(1.22)

(since ε1μ1 = ε2μ2). In this case it is necessary to use the argument principle twice: once to
sum over eigenfrequencies ω(ν) and again to sum over the allowed values of ν for a given r.

9Note that some subtleties pertain to this sum, see article [i].
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1.3.2 Generalisation to non-zero temperature

Both articles [i] and [j] operate at zero temperature, in which fT (ω) → e(ω) = 1
2 h̄ω. Nonzero

temperatures are typically treated in the expression (1.15) the following way. First, note
that the eigenfrequencies of the system typically lie on or slightly below the real frequency
axis. Second, note that a contour encircling the whole complex frequency plane in a circle at
infinity must give zero result presuming (as is physical) D(ω) vanishes sufficiently quickly as
|ω|→∞. Performing a partial integration, we write

1
2πi

∮
∞

dω fT (ω)
d

dω
ln

D(ω)
D0(ω)

=−
h̄

4πi

∮
∞

dωcoth
h̄ω

2kBT
ln

D(ω)
D0(ω)

= 0. (1.23)

The integral (1.23) gets contributions from the zeros of D(ω) and D0(ω), and at the poles
of the coth function, which are found along the imaginary frequency axis at the Matsubara
frequencies

ω= iξm =
2πinkBT

h̄
, n ∈Z, (1.24)

hence
h̄

4πi

∮
∞

dωcoth
h̄ω

2kBT
ln

D(ω)
D0(ω)

=−2F (T)+kBT
∞∑

n=−∞
ln

D(iξn)
D0(iξn)

= 0 (1.25)

[the minus sign on FT comes from a partial integration like in Eq. (1.23), the factor 2 from
equal contributions from eigenfrequencies in the right and left half-plane due to symmetry
properties [97]], and hence the free energy can be expressed as a Matsubara sum:

F (T)= 1
2 kBT

∞∑
n=−∞

Trln
D(iξn)
D0(iξn)

. (1.26)

I have rather magically applied a trace operator to the last formula to indicate that further
summation over other variables (to wit, a sum over m or ν and an integral over kz in the
wedge case) must also be made, but has been suppressed in this simplified derivation for
simplicity. For more rigorous derivations, see papers [i,j]. A useful exposition of such spectral
path integral methods in Casimir calculations is also given in article [h].

1.4 Casimir-Polder effects out of thermal equilibrium

A number of modern experimental technique have the common trait that they involve de-
tailed manipulation of atoms or nano particles close to surfaces in such a way that the par-
ticles are not in thermal equilibrium with their environment. One such area is magnetic
trapping of ultracold atoms close to surfaces for a number of experimental uses [98]. Trap-
ping of Bose-Einstein condensates in particular have proven highly useful, for example a
the much cited “slow light” experiment by Vestergaard Hau’s group [99], measurement of
long-range Casimir-Polder forces [100] as well as possibilities for quantum information pro-
cessing [101,102]. Another area is the trapping of cold molecules from molecular beams near
surfaces for experimental investigation [103]. This technique has been applied as a sensi-
tive probe of the permanent dipole moment of the electron [104]. A detailed description of
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particle-surface interactions for particles out of thermal equilibrium is of importance to the
theoretical description of any of these systems.

The above systems may all be said to belong to a category of non-equilibrium systems
in which the particles are prepared in a given eigenstate (or superposition of such) whereas
the environment is in a state of (approximate) thermal equilibrium at a given temperature.
A general theory for such a system was recently presented by by collaborators Buhmann
and Scheel [105], as a generalisation of previous work for zero-temperature systems [106].
Buhmann and Scheel’s theory generalises a number of previous theoretical efforts on excited
atoms, going back at least to Barton’s treatments in the 1970s [107–109], and through to re-
cent times [110–112]. The system of a ultra-low temperature Bose-Einstein condensate held
outside a substrate at high temperature was considered by Antezza and co-workers [113,114]
via a modification of Lifshitz’ classic derivation [10]. Another generalisation was recently pro-
vided by Sherkunov, who derived the expression for the Casimir-Polder potential between two
particles prepared in arbitrary eigenstates, in the presence of an external electric field [115],
for example one from thermal radiation. A demonstration of the compatibility of the three
non-equilibrium theories of Antezza et alia, Buhmann and Scheel, and Sherkunov was pro-
vided in the collaborative project resulting in Ref. [116].

I will briefly lay out the essentials of the theory employed in articles [l-p] as an intro-
duction to the research papers found in full text in the second half of the thesis. The specific
conclusions from the individual articles are summarised in Chapter 2 and in the papers them-
selves, and will not generally be repeated in this section, which focuses on the background.

1.4.1 Macroscopic Quantum Electrodynamics: Buhmann-Scheel theory

I will briefly account for the main conclusions of the theory due to Buhmann and Scheel [105].
They derive the energy shift of a particle in an arbitrary superposition of its eigenstates in the
vicinity of macroscopic bodies held at a temperature T. The derivation is made in the dipole
approximation via a d ·E term in the interaction Hamiltonian, and the energy shift is found
with perturbation theory to second order (the first order term is zero for parity reasons).

The details of derivation will not be reiterated here, nor will I consider the most general
cases of the theory. In the following I restrict attention to a single isotropic particle prepared
in a single eigenstate |n〉 whose transition rates Γkn are small compared to transition fre-
quencies |ωkn| = |Ek −En|/h̄ for all relevant transitions to other states |k〉 (E j is energy level
of state | j〉). In this case the potential (energy level shift) of the particle can be written

Un(r)=
kBT
ε0

∞∑
j=0

′
ξ2

j

c2αn(iξ j)TrG(1)(r,r; iξ j)

+
1

3ε0

∑
k

ω2
kn

c2 {Θ(ωkn)n(ωkn)−Θ(ωnk)[n(ωnk)+1]} |dkn|
2Tr ReG(1)(r,r; |ωkn|). (1.27)

Here, αn(ω) is the particle polarisability of the particle in state |n〉 (scalar for isotropic parti-
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cle)

αn(iξ)=
2
3

∑
k

ωkn|dkn|
2

ω2
kn +ξ2

,

ξ j is the jth Matsubara frequency ξ j = 2 jπkBT/h̄, dkn is the transition dipole moment of
the transition |n〉→ |k〉, Θ(x) is the unit step function, and G(1)(r,r′;ω) is the scattering part
(excluding direct source field) of the two-point electromagnetic dyadic Green’s function of the
system, in the reciprocal time domain.

The key observation to make with regard to Eq. (1.27) is that it consists of two terms of
fundamentally different nature. The latter term depends on a discrete set of real frequencies,
whereas the former is a sum of infinitely many equidistant imaginary frequencies. We call
the latter part the resonant contribution, and the Matsubara sum the non-resonant contribu-
tion. The reasoning behind this numenclature is that the resonant term is due to resonant
interaction between the fluctuating thermal EM field and the system’s eigenfrequencies ωkn,
whereas the Matsubara sum does not resonate with any particular frequency. This can be
seen from the relation (Kramers-Kronig)

G(1)(r,r′; iξ)=
2
π

∫∞

0

dωω
ω2 +ξ2 ImG(1)(r,r′;ω) (1.28)

which G(1) must satisfy because it is a generalised susceptibility [97]. Each term of the
Matsubara sum therefore corresponds to an integral over all real frequencies, and cannot be
made to resonate with any particular frequency.

In the special case where the particle is in thermal equilibrium,

|n〉→ |T〉 =Z
−1 ∑

k
e−Ek/kBT

|k〉, (1.29)

[Z =
∑

j e−E j /kBT : partition function] one can show [105] that all resonant features vanish
from (1.27), which becomes

UT (r)=
kBT
ε0

∞∑
j=0

′
ξ2

j

c2αT (iξ j)TrG(1)(r,r; iξ j) (1.30)

where αT (ω) is the polarisability of the thermal state:

αT (ω)=Z
−1 ∑

k
e−Ek/kBTαk(ω). (1.31)

The resonant phenomena due to the second term in (1.27), which we investigate in particular
in articles [l,m,p] are therefore strictly thermal non-equilibrium effects.

To obtain an analytical expression for the Casimir-Polder potential in a given geometry
within this formalism, one has to find the Green’s function (or rather, tensor), which, given
the geometrical boundary conditions, solves the Helmholtz equations (I assume the particle
be placed in a locally homogeneous medium)(

∇×∇× −
εμ

c2

)
G(r,r′;ω)=μδ(r−r′)I (1.32)
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To obtain an analytical expression for the Casimir-Polder potential in a given geometry
within this formalism, one has to find the Green’s function (or rather, tensor), which, given
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be placed in a locally homogeneous medium)(
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where I is the 3× 3 unit matrix. The nondimensional permittivity ε and permeability μ

are in general functions of r and ω. The scattering part G(1)is a homogeneous solution to
(1.32) [117]. The dyadic Green’s functions of a number of standard geometries have been
worked out analytically [119].

In article [l] the Green’s function a distance z outside a single plane dielectric half-space
of permittivity ε1(ω) is used,

G(1)(r,r;ω)=
i

8π

∫∞

0
dq

q
β

e2iβz
[(

rs −
β2c2

ω2 rp

)
(exex +eyey)+2

q2c2

ω2 rpezez

]
, (1.33)

with
β=

√
ω2/c2 − q2; β1 =

√
ε1(ω)ω2/c2 − q2 (1.34)

and, as before,

rs =
β−β1

β+β1
; rp =

ε1β−β1

ε1β+β1
. (1.35)

For the geometry of a planar cavity only the reflection coefficients are changed to allow for
multiple scattering between the walls:

rσ →
r2
σe2iβa

1− r2
σe2iβa

; σ= s, p, (1.36)

where we assume both walls to be made of the same material for simplicity, and a is the
interface-interface separation. For planar multilayers the reflection coefficients can quite
readily be generalised further [117,118].

In article [p] the Green’s function for a circularly cylindrical cavity is used, which was
worked out by Li et alia some years ago [120]. While far more complicated (for the complete
expression, see article [p]) it can be recognised as having the same structure as (1.33) in
consisting of propagation factors [analogous to exp(iβz)] and reflection coefficients.

1.4.2 Examples: cold polar molecules and Rydberg atoms

Of the various non-equilibrium systems possible, I have participated in the investigation of
two examples, namely cold polar molecules and Rydberg atoms held close to surfaces. I will
briefly account for some special properties of these systems and how to apply the Buhmann-
Scheel theory on them. The full details of these investigations are found in papers [l-p].

Beams of polar molecules can be routinely produced these days [103], and has been made
experimental use of as mentioned previously. A large fraction of the molecules in such beams
are typically found to be in their ground state; for example the experiment [121] reported
a fraction of 90%. A ground state molecule in a room-temperature environment will heat
up over time until it reaches a thermal state. The thermalization time is in the order of
seconds for such molecules [122]. In principle there is an infinity of excited states to which
the molecule can be excited to by absorption of thermal photons, but in practice only a few
(typically one or two) of these transitions give a significant contribution to the Casimir-Polder
potential.
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Figure 1.5: Thermal Casimir-Polder force on a ground state LiH molecule outside a gold
half-space. Image from article [l].

As an illustration, the different terms of the Casimir-Polder force, Eq. (1.27), on a ground
state LiH molecule is shown in figure 1.5: the first term of (1.27) is the non-resonant part, and
the second term splits naturally into an evanescent (q > ω10/c) and propagating (q < ω10/c)
part, where ω10 is the transition frequency from ground state |0〉 to first rotational state “|1〉”.
For details, see article [l].

For a force or potential term due to a transition of frequency ωkn I will distinguish be-
tween a non-retarded and retarded regime:

z �λkn

z λkn
,

retarded
non-retarded

; λkn =
2πc
|ωkn|

. (1.37)

For the transition from ground-state to the first rotational states10, the transition wavelength
is λ01 ≈ 14μm.

How many transitions to include in the k-sum?

How many transition levels must be included depends on whether the separations involved
are retarded or non-retarded (as well as on the required numerical precision, of course). As
long as the particle is in the non-retarded regime with respect to all significant transitions,
the fully thermal Casimir-Polder force turns out to be independent of temperature and given
by the simple formula (see article [n])

Ukn
zλkn
= −

|dnk|
2

48πε0z3 , (1.38)

10There is a threefold degeneration due to magnetic quantum mumber m = 0,±1 [l].
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where Un =
∑

k Ukn. In this regime the monotonous non-resonant and resonant evanescent
terms dominate, and almost cancel each other out. Hence, the potential contribution from
different transitions scales strictly with the transition dipole moments squared.

In the retarded regime far from the plate, shown in figure 1.5, the resonant propagating
part dominates, and is oscillating in sign. As the molecule thermalizes, these oscillations
gradually die out [l]. Asymptotically far from the wall (assumed to be metal) the potential is
now [l]:

Ukn
z�λkn
∼ −

|dnk|
2

12πε0z

ω2
kn

c2 {Θ(ωkn)n(ωkn)−Θ(ωnk)[n(ωnk)+1]}cos(2|ωkn|z/c) . (1.39)

In this regime, therefore, the contribution from a given transition is estimated from

Ukn
z�λkn
∝ |dnk|

2ω2
knn(ωkn) (1.40)

which depends both on the dipole moment matrix elements, the transition frequency and,
importantly, on temperature11.

Enhancing oscillations in retarded regime

The fact that the Casimir-Polder potential becomes spatially oscillating in the retarded regime
means there is in principle a possibility for trapping and guiding particles for as long as the
particle stays in the ground state. However, the corresponding potential depth outside a half-
space is in the order of 10−2 Hz, probably too shallow to even be measurable and certainly
not useful for guiding purposes.

A scheme to geometrically enhance these oscillations using a planar cavity was investi-
gated in article [m]. Unfortunately, the enhancement factor scales with the logarithm of the
Q factor of the cavity, limiting the enhancement potential to about one order of magnitude,
which is not enough.

A similar investigation for a cylindrical cavity was undertaken in article [p]. That ge-
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Figure 1.6: Left: Enhanced Casimir-Polder potential on a Rb atom in state |32s1/2〉 for differ-
ent resonant radii (for details, see article [p]). Right: same potential, outside a half-space.

• Their large physical size means they have enormous transition dipole moments which
increase rapidly with n: |d|2 ∝ n4.

• At large n the atomic energy levels lie close together, and the energy differences be-
tween nearby levels (such as constitute the dominating transitions) are small compared
to thermal energies: En  kBT. Thus, the thermal photon numbers n(ωkn) are large.

• Long transition wavelengths (typically hundreds of μm) mean the atoms remain in
the non-retarded regime at all experimentally useful separations. This implies that
the dipole force is given by the simple formula (1.38), and the Casimir-Polder force is
independent of temperature except at extremely large distances.

• Although large cylinder radii are required in order to resonate with the dominating
Rydberg transitions (approx a millimeter), the enormous atomic dipole moment means
the resulting force can be boosted into the measurable regime (see article [p]).

• Rydberg states have long lifetimes on an atomic scale; micro- to milliseconds.

I include a few results as demonstrations of the favourable properties of Rydberg atoms
for Casimir-Polder investigations. The potential felt by a Rb atom prepared in the low-lying
Rydberg state |32s1/2〉 in a cylindrical gold cavity made to resonate with the transition to
|31p3/2〉 is shown in figure 1.6. Because of the small energy difference and correspondingly
long wavelength of the transition, the resonating radii are macroscopic, measured in millime-
ters. Still the potential (and correspondingly, atomic energy level shift) at the center of the
cavity can be enhanced to tens of kHz.

Close to a wall, the atomic energy level shift is naturally far greater, as shown in fig-
ure 1.7 for three different Rydberg states of Rb. Because of the large physical size of the
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Figure 1.7: Three different Rydberg states of Rb near a gold half space. (a) potential, inset:
quadrupole correction to potential; (b) total transition rate. Figure adapted from article [o]
(erratum).

atom, corrections to the dipole approximation become noticeable, with quadrupole shifts of
the energy ranging in the hundreds of MHz at a micrometer’s separation.
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Chapter 2

Summary of thesis articles

For journal references of the below articles, see list at the end of the Bibliography below.

2.1 Part 1

Article [a]

Analytic and Numerical Verification of the Nernst Theorem for Metals
This article builds on and extends previous calculations by Høye, Brevik, Aarseth and Mil-
ton in connection with the purported entropy anomaly of the Casimir effect between Drude
metals. The Casimir-Lifshitz entropy and (Helmholtz) free energy between two metals de-
scribed by the Drude model is analyzed in detail both analytically and numberically to obtain
the leading order terms as temperature vanishes. Analytical expressions for the two leading
order free energy terms are found, proportional to T2 and T5/2, respectively, and a detailed
numerical analysis is performed to ascertain the correctness of these two terms.

Article [b]

Frequency spectrum of the Casimir force: interpretation and a paradox
This article was inspired by an article by Ford many years previously [123] in which the
“frequency spectrum" of the Casimir force was analysed between perfectly conducting plates.
I show that his result can be extended analytically when the plates are described by a simple
transparency model, and that the discontinuous spectrum Ford found becomes smooth for
imperfect reflectivity. A paradox is observed when comparing two methods of calculating
correction to the Casimir effect due to a material transpareny frequency window.
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Article [c]

Temperature correction to Casimir-Lifshitz free energy at low temperatures: semi-
conductors
In this article the low temperature thermal correction to Casimir-Lifshitz free energy is con-
sidered in a similar fashion as article [a], but this time with respect to another purported
entropy anomaly, between semiconductors with a small but nonzero conductivity, whose per-
mittivity is described by a Drude model. By a lengthy calculation we derive the first few
terms for both TE and TM polarisations and support the calculation by numerical analysis.

Article [d]

Nernst’s heat theorem for Casimir-Lifshitz free energy
In this article I analyse the formal violation of the third law of thermodynamics (Nernst’s
theorem), but unlike articles [a,c] the analysis is made at real rather than imaginary frequen-
cies. The entropy problems, which appear for temperature dependent permittivity functions,
are identified as originating from non-commutation of the limits of zero frequency and tem-
perature. The general insight obtained is thus that no entropy anomaly can occur between
materials whose leading order frequency term is temperature-constant near zero tempera-
ture. A similar conclusion was reached independently in [55].

Article [e]

Casimir-Lifshitz pressure and free energy: exploring a simple model
This article, written for the Festschrift in honour of Professor Brevik, derives a series of
results for the Casimir effect between materials described by a simple “constant reflection”
model, which I first introduced in article [b]. By use of polylogarithmic functions, closed ex-
pressions for the Casimir pressure and free energy are obtained, as well as the full asymptotic
low temperature expansion of the free energy. It is shown how the known temperature ex-
pansion for perfect conductors can be regained as a limit. Finally a speculative consideration
of a generalised force on reflectivity is discussed in connection with the thermal discussion
in the Casimir community. A simple calculation indicates that even if such a force exists, it
would only provide a minute correction to experiments.

Article [f]

Low temperature Casimir-Lifshitz free energy and entropy: the case of poor con-
ductors
This conference article partly overlaps with articles [c,d], but has some new contributions
in its sections 2 and 3. Section 2 lays out the insights in article [d] in a succinct and ana-
lytical form, and simple analytical formulae are produced relating non-commuting limits of
temperature and frequency to residual entropy at zero temperature. Section 3 lays out in
detail the method of obtaining low-temperature expansions from Matsubara-sum free energy
expressions used in [c]. While implicit in [c,d], the ideas behind these methods had been
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Article [d]

Nernst’s heat theorem for Casimir-Lifshitz free energy
In this article I analyse the formal violation of the third law of thermodynamics (Nernst’s
theorem), but unlike articles [a,c] the analysis is made at real rather than imaginary frequen-
cies. The entropy problems, which appear for temperature dependent permittivity functions,
are identified as originating from non-commutation of the limits of zero frequency and tem-
perature. The general insight obtained is thus that no entropy anomaly can occur between
materials whose leading order frequency term is temperature-constant near zero tempera-
ture. A similar conclusion was reached independently in [55].

Article [e]

Casimir-Lifshitz pressure and free energy: exploring a simple model
This article, written for the Festschrift in honour of Professor Brevik, derives a series of
results for the Casimir effect between materials described by a simple “constant reflection”
model, which I first introduced in article [b]. By use of polylogarithmic functions, closed ex-
pressions for the Casimir pressure and free energy are obtained, as well as the full asymptotic
low temperature expansion of the free energy. It is shown how the known temperature ex-
pansion for perfect conductors can be regained as a limit. Finally a speculative consideration
of a generalised force on reflectivity is discussed in connection with the thermal discussion
in the Casimir community. A simple calculation indicates that even if such a force exists, it
would only provide a minute correction to experiments.

Article [f]

Low temperature Casimir-Lifshitz free energy and entropy: the case of poor con-
ductors
This conference article partly overlaps with articles [c,d], but has some new contributions
in its sections 2 and 3. Section 2 lays out the insights in article [d] in a succinct and ana-
lytical form, and simple analytical formulae are produced relating non-commuting limits of
temperature and frequency to residual entropy at zero temperature. Section 3 lays out in
detail the method of obtaining low-temperature expansions from Matsubara-sum free energy
expressions used in [c]. While implicit in [c,d], the ideas behind these methods had been
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further crystallised since their publication, and the proceedings format allowed for them to
be presented again with greater clarity and generality.

Article [g]

The Casimir frequency spectrum: can it be observed?
This article reviews and extends article [b]. A new calculation is included, assuming the
permittivity of two plates to be made transparent over an infinitesimal frequency band, and
analysing the effect on the Casimir attraction due to this by two methods under the criterion
that the perturbation obeys criteria of causality and the ‘f-sum rule’. It is found that even in
this case, the paradox remains.

Article [h]

Casimir-Foucault interaction: Free energy and entropy at low temperature
This article compares the low frequency expansions found in articles [a, f] for the Casimir
interaction between two Drude metal plates to that of the free energy stemming from the
interaction of coupled Foucault currents alone. It had previously been shown [65] that the
peculiar now-temperature behaviour could be attributed to these currents. The two free
energies are found to be identical for good metals to the two leading low-temperature terms.
Moreover, a simpler and more elegant method for obtaining low temperature expansions
by means of complex frequency contour integrals is developed which readily reproduces the
results of article [a].

2.2 Part 2

Article [i]

Electromagnetic Casimir Effect in a Medium-Filled Wedge
The Casimir energy of a perfectly conducting wedge closed by a circular arc is calculated
when the arc is either perfectly conducting or dielectric. After regularisation, the results
are found to be closely analogous to previously obtained results for perfectly conducting or
dielectric cylinders, except for a singular and non-regularisable term pertaining to the sharp
corners where the arc meets the wedge. The singular term is shown to be finite when the
wedge is assumed to be transparent at high-frequencies.

Article [j]

Electromagnetic Casimir Effect in a Medium-Filled Wedge II
Like in article [i], the Casimir energy of a wedge geometry is calculated also here, but this
time for a transparent wedge closed by a perfectly reflecting cylindrical shell. For calcula-
bility, the wedge is assumed to be isorefractive (diaphanous). This was the first time the
Casimir energy of wedge described by electromagnetic and imperfectly reflecting boundaries
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had been calculated. The singular term found in [i] is argued to be absent because of coupling
of solutions in the two wedge sectors. A very significant effort went into the numerical part of
the article which involves nested infinite integrals of modified Bessel functions of imaginary
order, with respect to both order and argument.

Article [k]

Casimir effect at nonzero temperature for wedges and cylinders
This article provides an extension of the results of article [i] for nonzero temperatures. The
full temperatue behaviour of the Casimir energy for wedges and cylinders had not been found
before, only the high-temperature asymptotics for a cylinder were known [124]. As is typical
for such calculations, the energy expression is formally divergent, but a regularsation pro-
cedure was found using the Chowla-Selberg formula. Finally, high temperature asymptotics
are derived and shown to be consistent with previous publications.

2.3 Part 3

Article [l]

Dynamics of thermal Casimir-Polder forces on polar molecules
This article was the result of the first project with the Stefans at Imperial College. We ap-
plied their recently derived theory [105] to the case of cold polar molecules near a gold sur-
face. We observe that the thermal Casimir-Polder force is oscillating in the far-zone due to
thermal non-equilibrium, and study the dynamics of the polar molecule as it heats up. A
“naïve calculation" of the force on such molecules using equilibrium theory and ground state
polarizability is shown to be wrong by up to three orders of magnitude.

Article [m]

Enhancement of thermal Casimir-Polder potentials of ground-state polar molecules
in a planar cavity
Picking up on the oscillations of the thermal Casimir-Polder force observed in article [l], we
investigate a possible scheme to enhance the oscillatory behaviour by use of a fine-tuned pla-
nar cavity of good reflectors. The scheme is shown to work, but the resulting enhancement
turns out to scale with the logarithm of the cavity Q-factor, strongly limiting the potentiality
of such a scheme. The various dependencies of the potential depth obtainable are laid out.

Article [n]

Temperature-independent Casimir-Polder forces despite large thermal photon num-
bers
We show in this article that the Casimir-Polder potential on a particle in an eigenstate can be
independent of the temperature of the surrounding system from zero temperature up to room
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temperature and beyond, provided the particle is much closer to the surface than the wave-
length of the dominating intraparticle transitions. Many cold polar molecules fall in this
category for separations up to several micrometers (as do Rydberg atoms, although these
were not considered in this article), whereas ground state atoms, in contrast, show a linear
dependence on temperature at typical separations.

Article [o]

Thermal Casimir-Polder shifts in Rydberg atoms near metallic surfaces
The Casimir-Polder force on Rydberg atoms is calculated close to a metallic surface. Due to
the enormous dipole moment associated with Rydberg atom transitions, the Casimir-Polder
force is enormous on an atomic scale. The quadrupole correction to the force is of significant
at small separations due to the large physical size of the atom. Rydberg atoms exhibit the
temperature independence derived in article [n] even for large particle-surface distances, up
to hundreds of micrometers.

Article [p]

Casimir-Polder potential and transition rate in resonating cylindrical cavities
The same enhancement scheme as in article [m] is investigated, but replacing the planar
cavity by a cylindrical geometry which allows mode confinement in two spatial dimensions
rather than one. We show that the enhancement factor is considerably improved compared
to the planar case. When using atoms in low-lying Rydberg states inside a cylindrical cavity
of fine-tuned radius, potential oscillations of tens of kiloherz can be obtained on the central
axis, within the region of observability of modern experiments. An extensive analytical as
well as numerical analysis is undertaken.
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In view of the current discussion on the subject, an effort is made to show very accurately both analytically
and numerically how the Drude dispersion model gives consistent results for the Casimir free energy at low
temperatures. Specifically, for the free energy near T=0 we find the leading term proportional to T2 and the
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I. INTRODUCTION

In recent years there has been a lively discussion about
the thermodynamic consistency of the expression for the Ca-
simir pressure at finite temperature T. The problem gets ac-
centuated at low values of T, where one has to satisfy the
Nernst theorem saying that S=−�F /�T goes to zero as T
→0. �Here S is the entropy and F the free energy, both
referring to unit plate area.� What we shall consider in the
following is the standard Casimir configuration, implying
two semi-infinite homogeneous metallic media separated by
a vacuum gap of width a. We take the two media to be
identical and assume that they are nonmagnetic with a
frequency-dependent relative permittivity ����. Spatial dis-
persion is neglected. The two surfaces lying at z=0 and z
=a are assumed to be perfectly planar and to be of infinite
extent.

A central ingredient in the discussion of the thermody-
namic consistency of calculated results for the Casimir at-
tractive force between real materials is the form of a disper-
sion relation used as input in the conventional Lifshitz
formula. A very useful dispersion relation—the one that in
our opinion is by far the most preferable one among simple
dispersion relations for real systems at arbitrary
frequencies—is the Drude expression

��i�� = 1 +
�p

2

��� + ��
. �1�

Here �= i�, �p is the plasma frequency, and � is the relax-
ation frequency �we use the same notation as in Ref. �1��.

The plasma wavelength is �p=2�c /�p. For gold, the sub-
stance that we shall focus on in the following, we use

�p = 9.03 eV, � = 34.5 meV, �p = 137.4 nm. �2�

In Ref. �1�, we employed the values �p=9.0 eV and �
=35 meV, which amounts roughly to a difference on the 1%
level. The exact determination of Drude parameters is a non-
trivial matter as discussed in �2�. Using a slightly different
set of Drude parameters will shift our numerical results
slightly, but does not alter any of our conclusions.

When comparing with experimental values it turns out
that the Drude relation fits optical data very accurately for
�	2
1015 rad/s �3,4�. In this connection we should bear in
mind the following fact �cf. also the discussion in Ref. �5��:
There exist no measurements of the permittivity at very low
frequencies. What is available is a series of measurements of
the imaginary part ����� of the complex permittivity ����
=�����+ i�����. The Kramers-Kronig relations then permit
us to calculate the real part �����, and thus the complete
���� is known. Permittivity data kindly supplied by Astrid
Lambrecht cover a very large frequency region, from 1.5

1011 rad/s to 1.5
1018 rad/s. From these data, the relax-
ation frequency � can be derived. As mentioned, from com-
parison with experimental data it turns out that � can be
taken to be constant to a good accuracy, up to about �=2

1015 rad/s. For low frequencies the Drude relation yields
the proper extrapolation down to �=0.

A word of caution is called for, as regards the circum-
stance that permittivity measurements are done at room tem-
perature in practice. The frequency � is in principle tempera-
ture dependent, and we do not know the value of ��T=0�
very accurately. It might seem natural here to invoke the
Bloch-Grüneisen formula for the temperature dependence of
the electrical resistivity �cf. �6� or also the discussion in Ref.
�1��. From this, a form for �=��T� can in principle be found.
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level. The exact determination of Drude parameters is a non-
trivial matter as discussed in �2�. Using a slightly different
set of Drude parameters will shift our numerical results
slightly, but does not alter any of our conclusions.

When comparing with experimental values it turns out
that the Drude relation fits optical data very accurately for
�	2
1015 rad/s �3,4�. In this connection we should bear in
mind the following fact �cf. also the discussion in Ref. �5��:
There exist no measurements of the permittivity at very low
frequencies. What is available is a series of measurements of
the imaginary part ����� of the complex permittivity ����
=�����+ i�����. The Kramers-Kronig relations then permit
us to calculate the real part �����, and thus the complete
���� is known. Permittivity data kindly supplied by Astrid
Lambrecht cover a very large frequency region, from 1.5

1011 rad/s to 1.5
1018 rad/s. From these data, the relax-
ation frequency � can be derived. As mentioned, from com-
parison with experimental data it turns out that � can be
taken to be constant to a good accuracy, up to about �=2

1015 rad/s. For low frequencies the Drude relation yields
the proper extrapolation down to �=0.

A word of caution is called for, as regards the circum-
stance that permittivity measurements are done at room tem-
perature in practice. The frequency � is in principle tempera-
ture dependent, and we do not know the value of ��T=0�
very accurately. It might seem natural here to invoke the
Bloch-Grüneisen formula for the temperature dependence of
the electrical resistivity �cf. �6� or also the discussion in Ref.
�1��. From this, a form for �=��T� can in principle be found.
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��i�� = 1 +
�p

2

��� + ��
. �1�
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According to the formula, the value of � should go to zero as
T→0. However, in practice this is not true. There are always
impurities present, which make the value of � finite at T=0
�7�. The Bloch-Grüneisen formula, thus, is not followed in
this limit. Mathematically, the important point is that

�2���i�� − 1�→ 0 as � → 0. �3�

This relation ensures that the zero-frequency TE mode does
not contribute to the Casimir force at all, as discussed in
detail in Ref. �1�. Strictly, the Drude parameters of Eq. �2�
are valid at room temperature, and � will take significantly
smaller values for low temperatures. This affects our numeri-
cal results quantitatively, but not qualitatively; as long as � is
nonzero, the TE part of the free energy vanishes at zero
frequency which is the central point.

The recent series of works on the Casimir effect by the
present group of authors �1,5,8–13�—built upon the Lifshitz
formula and the measured values of ���� in combination
with the Drude relation—have nowhere been found to run
into conflict with basic thermodynamic principles. And there
are other papers in agreement with ours: for instance, Jan-
covici and Šamaj �14� and Buenzli and Martin �15� consid-
ered the Casimir force between two plates in the high-
temperature limit. They found the linear dependence in T for
the Casimir force to be reduced by a factor of 2 from the
behavior of an ideal metal, this being a signal of the vanish-
ing influence from the zero-frequency TE mode. �The first
observation of the vanishing influence from this particular
mode was made by Boström and Sernelius �16�.� Further
support is found in the paper of Sernelius �17�, who calcu-
lates the Casimir force taking spatial dispersion into account
as well. It is found that at high temperatures and/or at large
separations the force is reduced by the same factor of 2 com-
pared with the ideal-metal �IM� result.

There is no universal agreement on these issues, however.
In a series of recent papers—cf., for instance, Refs.
�18–22�—it is argued that the Drude dispersion relation runs
into trouble explaining recent experiments and, moreover,
comes into conflict with the Nernst theorem. These authors
favor, instead of the Drude relation, the plasma relation

��i�� = 1 +
�p

2

�2 , �4�

which corresponds to setting �=0 in Eq. �1�. �It should be
noted that expression �4� does not satisfy condition �3�.�

An argument of the latter references is that omission of a
zero-frequency TE mode would add a term linear in T to the
free energy. This would violate the Nernst theorem as it
would give a nonzero contribution to the entropy at T=0.
However, this argument is based upon use of the IM model
where �=� for all � or use of the plasma model �4� where no
relaxation is present. With ��0 the term in question is still
linear away from T=0, but the precise behavior as T→0 has
been less obvious. As argued in Ref. �1�, the straight line
should bend to become horizontal at T=0. This was not veri-
fied in utmost detail, however; the numerical results of Ref.
�1� did not go sufficiently close to T=0 to show the behavior
very distinctly, and the previous discussion and disagreement

about violation of the Nernst theorem has accordingly con-
tinued. The main purpose of the present work is to investi-
gate the issue more closely: we will show in detail, both
analytically and numerically, how the Casimir energy be-
haves close to T=0 and by that show how it is consistent
with the Nernst theorem.

We shall not go into a study of experimental aspects in
this paper. Rather, the objections referred to above make it
mandatory to reconsider the thermodynamics associated with
the Drude relation anew, which brings us to the central theme
of this paper. We will aim at showing, via a combination of
analytical and numerical methods, how the basic theory
sketched above �essentially the Drude theory� satisfies the
Nernst theorem to a very high accuracy. We consider this
point to be important; a simple physical model of course
cannot be permitted to run into conflict with thermodynam-
ics.

In the next section we show analytically, by using the
Euler-Maclaurin formula, that the dominant contribution to
the free Casimir energy F near T=0 is proportional to T2. We
evaluate both this term and the leading correction term,
which is proportional to T5/2. This implies that the entropy
S=−�F /�T tends to zero as T→0, in accordance with the
Nernst theorem. In Sec. III we calculate F numerically and
find agreement with the previous analytical result to a very
high degree of accuracy. The results are illustrated in various
figures. Thus, we can conclude that the Drude ansatz does
not run into conflict with thermodynamics at all.

Readers interested in recent reviews on the Casimir effect
may consult Milton’s book1 �23� and several review articles
�24–27�. A great deal of recent information can also be found
in special issues of J. Phys. A �28� and New J. Phys. �29�.

As mentioned above, we shall not be concerned with a
comparison between theory and experiment in the present
paper. We mention, though, the recent experiment of Obrecht
et al. �30�, which seems to report the first accurate measure-
ment of thermal Casimir effects. The experiment is impor-
tant, but it lies outside the scope of the present investigation
since it deals with nonuniformly heated systems.

Finally, we mention the special variant of the thermal Ca-
simir problem consisting in studying, instead of a metal, a
semiconductor endowed with a small but finite conductivity
at zero frequency �31,32�. According to the authors of these
references, this situation implies an interchange of the roles
of the TE and TM modes, as compared with the case of a
metal. Namely, within an idealized approach, they find that
the TM reflection coefficient gets a discontinuity at �=0,
implying in turn an apparent conflict with the Nernst theo-
rem. The problem is interesting, and we hope to return to it
in a later paper.

II. ANALYTICAL APPROACH: CASIMIR FREE ENERGY
NEAR T=0 FOR REAL METALS

As mentioned, we use the same notation as in Ref. �1�. We
will evaluate the leading T dependence of the Casimir free

1It may be mentioned for completeness that this book from 2001
was written from the standpoint of the “classical” IM model.
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Readers interested in recent reviews on the Casimir effect
may consult Milton’s book1 �23� and several review articles
�24–27�. A great deal of recent information can also be found
in special issues of J. Phys. A �28� and New J. Phys. �29�.
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II. ANALYTICAL APPROACH: CASIMIR FREE ENERGY
NEAR T=0 FOR REAL METALS

As mentioned, we use the same notation as in Ref. �1�. We
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1It may be mentioned for completeness that this book from 2001
was written from the standpoint of the “classical” IM model.
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, � � � , �5�

with D=�p
2 /�. The free energy is given by expression �3.4a�

in �1� as

F =
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�

��
�/c

�

�ln�1 − �TM� + ln�1 − �TE��q dq , �6�

where =1/kT and

�TM = Ae−2qa,

�TE = Be−2qa.

The prime on the summation sign means that the case m=0
is taken with half weight. The coefficients A and B are the
squared Fresnel reflection coefficients for the two media and
are given by

A = 	 s − �p

s + �p

2, B = 	 s − p

s + p

2, �7�

with

s = �� − 1 + p2, p =
qc

�
.

Here a is the plate separation, � the relative permittivity, c
the velocity of light in vacuum, and � the Matsubara fre-
quency given by

� =
2�k

�
mT . �8�

Note that the quantities A, B, s, p, and � all depend upon the
summation variable m. �Units c=�=k=1 are not used.� The
term of interest is the TE mode, since this is the term that
gives rise to the controversy about the Nernst theorem.

With the small-� dependence of Eq. �5� the B has a scal-
ing form such that it can be expressed in terms of one vari-
able. So by introducing a new variable x to replace q the �
dependence can be removed fully:

x2 =
q2c2

�� − 1��2 �
q2c2

D�
, � � � . �9�

With this we have

B = 	�1 + x2 − x
�1 + x2 + x


2 = ��1 + x2 − x�4, �10�

and the TE free energy expression can be written as

FTE = C�
m=0

�

�g�m� , �11�

with

g�m� = m�
x0

�

x ln�1 − Be−y�dx , �12�

where

C =
D

c2�
=

�p
2

c2��
, y = 2qa = 2

a

c
�D�x, x0 =� �

D
.

�13�

The small-T behavior can now be obtained by use of the
Euler-Maclaurin summation formula

�
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�

�g�n� = �
0
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g�u�du −
1

12
g��0� +

1

720
g��0� − ¯ .

�14�

One easily sees that

g��0� = �
0

�

x ln�1 − B�dx . �15�

This integral can be performed analytically. First introduce a
new variable x=sinh t with dx=cosh tdt:

g��0� = �
0

�

sinh t cosh t ln�1 − e−4t� dt

=
1

4
�

0

�

�e2t − e−2t�ln�1 − e−4t�dt . �16�

Next we substitute e−2t=u for which −2e−2tdt=du and use
partial integration to obtain

g��0� = −
1

8
�

0

1 	1 −
1

u2
ln�1 − u2�du

= −
1

8
�1

u
��1 + u�2ln�1 + u� + �1 − u�2ln�1 − u�� − 2u

0

1

= −
1

4
�2 ln 2 − 1� � − 0.09657. �17�

At T=0 the free energy is determined by the integral in
Eq. �14� �besides the contribution from the TM mode�. For
small T→0 the deviation from the T=0 value is thus �
=1/kT�

�FTE =
C


�− 1

12
g��0�� = C

48
�2 ln 2 − 1� . �18�

This result was presented by Milton at the QFEXT03 Work-
shop and is given as Eq. �22� in Ref. �8� or Eq. �4.9� in Ref.
�11�.

It can be noted that �FTE is independent of the plate sepa-
ration a and can thus be valid only sufficiently close to T
=0 for a given a such that �FTE�FTE��c /a3. Evaluation
of the next term as given by the result �30� below verifies
this. The leading term of �FTE dominates its next term only
when the dimensionless quantity aC1/2�1 or
a2kT���c2 /�p

2. A consequence of this is that for increasing
a the temperature interval where Eq. �18� is valid decreases
rapidly, and �FTE becomes more and more negligible com-
pared to FTE since then �FTE�C /
=�p

2�kT�2 / �c2����c2�� / ��p
2a4�. �Thus in the present case

�FTE�FTE provided a�c� /�p
2�0.1 nm with

a2kT���c2 /�p
2 fulfilled.� In the limit a→� the IM ��
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= � �, but now with the linear term included, is recovered.
But the latter does not violate the Nernst theorem as long as
a is finite, and for a=� there is no Casimir free energy
anyway.2

Inserting the value for g��0� and the values ��p

=9.03 eV and ��=34.5 meV for Au we find with C given by
Eqs. �13� ��=1.0545
10−34 J s, k=1.381
10−23 J /K, c
=2.998
108 m/s�

�FTE = C1T2 with C1� 5.81 
 10−13 J/�m2 K2� .
�19�

It turns out that Eq. �18� holds only very close to T=0
�i.e., T�0.01 K�, but there will be a leading correction that
we can obtain with good accuracy. Expanding g�m� in pow-
ers of m one notes that half-integer powers will occur. Thus,
formula �14� is not quite valid as g��0� and higher-order
derivatives will diverge. However, this problem can be
avoided since the formula can be applied to summation start-
ing at m= p �p=1,2 ,3 , . . . �. Thus, we have

�
n=0

�

g�n� =�
n=0

p−1

g�n� + �
p

�

g�u�du +
1

2
g�p� −

1

12
g��p�

+
1

720
g��p� + ¯

= �
0

�

g�u�du + S −
1

12
g��p� +

1

720
g��p� + ¯ ,

�20�

where

S =�
n=0

p−1

g�n� +
1

2
g�p� − �

0

p

g�u�du . �21�

For a power term g��m�=m� �for small m� we have

g���p� = �p�−1, g���p� = ��� − 1��� − 2�p�−3, �
0

p

g��u�du

=
1

1 + �
p�+1. �22�

With the choice p=1 we get

S = S��1� =
1

2
−

1

1 + �
. �23�

One may note that S1�1�=0 as should be expected. The
power of key interest here will be �=3/2 by which S�

=1/10, and thus

�S��1� � S��1� −
1

12
g���1� +

1

720
g���1�

� − 0.02552� − 0.204
1

12
g���1� . �24�

When other terms are neglected the error can be estimated
from the next term in the series �provided the sums of
higher-order terms converge�:

1

30240
g�
�V��1� =

− 1

30240

3

2
	1

2

	− 1

2

	− 3

2

	− 5

2



� 4.65 
 10−5, �25�

which is only about 0.2% of the value �24�. For increasing
values of p the error goes further down rapidly. �Instead of
the result �24�, p=2 yields �−0.02549.� Thus, Eq. �24� with
p=1 is a good estimate for the sum of interest.

With g�m� given by Eq. �12� we can expand to leading
order in m or y��T1/2�. To this leading order the limit of
integration x0��T1/2� can be put equal to zero since the inte-
grand vanishes for x=0. We find

g�m� = mg��0� + myI + ¯ . �26�

Now, from Eqs. �8� and �13�,

y = 2a�2�Cxm1/2, �27�

with C given by Eq. �13�. Thus the derivative becomes

g��m� = g��0� + 3a�2�CIm1/2 + ¯ , �28�

where g��0� is given by Eq. �17� and �with substitution x
=sinh t as in Eq. �16��

I = �
0

� x2B

1 − B
dx =

1

8
�

0

�

�e−t − e−3t�dt =
1

12
. �29�

Now we will use Eq. �21� for the most simple case m= p
=1 for which S��1� is given by Eq. �23�, and with exponent
� equal to 1 and 3/2 for the two separate terms in Eq. �26�
the corresponding values of S��1� are 0 and 1/10, respec-
tively. Thus, with Eqs. �24� and �28� we have 12�S1�1�=
−g1��0�=−g��0� and 12�S3/2�1�=−0.204g3/2� �1�=−0.204

3a�2�CI. So with Eq. �18� the change in free energy be-
comes

�FTE =
C


��S1�1� + �S3/2�1� + ¯ �

=
C


�− 1

12
g��0���1 − 0.204 ·

3a�2�C

− 12g��0�
+ ¯ � ,

�30�

which gives the small-T correction to the result �18�. Again
inserting the previous values for �p and � we obtain with
plate separation a=1000 nm:

�FTE = C1T2�1 − C2T1/2 + ¯ � with C2� 3.03 K−1/2.

�31�

2It may be noted that for a / ��c��1 an a-independent contribu-
tion to the free energy was found also in the “classical” Casimir
theory for metals at low temperature. See Eq. �3.38� in Ref. �23� or
Eq. �3.24� in Ref. �1�.
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= � �, but now with the linear term included, is recovered.
But the latter does not violate the Nernst theorem as long as
a is finite, and for a=� there is no Casimir free energy
anyway.2

Inserting the value for g��0� and the values ��p

=9.03 eV and ��=34.5 meV for Au we find with C given by
Eqs. �13� ��=1.0545
10−34 J s, k=1.381
10−23 J /K, c
=2.998
108 m/s�

�FTE = C1T2 with C1� 5.81 
 10−13 J/�m2 K2� .
�19�

It turns out that Eq. �18� holds only very close to T=0
�i.e., T�0.01 K�, but there will be a leading correction that
we can obtain with good accuracy. Expanding g�m� in pow-
ers of m one notes that half-integer powers will occur. Thus,
formula �14� is not quite valid as g��0� and higher-order
derivatives will diverge. However, this problem can be
avoided since the formula can be applied to summation start-
ing at m= p �p=1,2 ,3 , . . . �. Thus, we have

�
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g�n� =�
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where

S =�
n=0
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2
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For a power term g��m�=m� �for small m� we have

g���p� = �p�−1, g���p� = ��� − 1��� − 2�p�−3, �
0
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=
1

1 + �
p�+1. �22�

With the choice p=1 we get

S = S��1� =
1

2
−

1

1 + �
. �23�

One may note that S1�1�=0 as should be expected. The
power of key interest here will be �=3/2 by which S�

=1/10, and thus

�S��1� � S��1� −
1

12
g���1� +

1

720
g���1�

� − 0.02552� − 0.204
1

12
g���1� . �24�

When other terms are neglected the error can be estimated
from the next term in the series �provided the sums of
higher-order terms converge�:
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� 4.65 
 10−5, �25�

which is only about 0.2% of the value �24�. For increasing
values of p the error goes further down rapidly. �Instead of
the result �24�, p=2 yields �−0.02549.� Thus, Eq. �24� with
p=1 is a good estimate for the sum of interest.

With g�m� given by Eq. �12� we can expand to leading
order in m or y��T1/2�. To this leading order the limit of
integration x0��T1/2� can be put equal to zero since the inte-
grand vanishes for x=0. We find

g�m� = mg��0� + myI + ¯ . �26�

Now, from Eqs. �8� and �13�,

y = 2a�2�Cxm1/2, �27�

with C given by Eq. �13�. Thus the derivative becomes

g��m� = g��0� + 3a�2�CIm1/2 + ¯ , �28�

where g��0� is given by Eq. �17� and �with substitution x
=sinh t as in Eq. �16��

I = �
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1 − B
dx =

1
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�e−t − e−3t�dt =
1

12
. �29�

Now we will use Eq. �21� for the most simple case m= p
=1 for which S��1� is given by Eq. �23�, and with exponent
� equal to 1 and 3/2 for the two separate terms in Eq. �26�
the corresponding values of S��1� are 0 and 1/10, respec-
tively. Thus, with Eqs. �24� and �28� we have 12�S1�1�=
−g1��0�=−g��0� and 12�S3/2�1�=−0.204g3/2� �1�=−0.204

3a�2�CI. So with Eq. �18� the change in free energy be-
comes

�FTE =
C


��S1�1� + �S3/2�1� + ¯ �

=
C


�− 1

12
g��0���1 − 0.204 ·

3a�2�C

− 12g��0�
+ ¯ � ,

�30�

which gives the small-T correction to the result �18�. Again
inserting the previous values for �p and � we obtain with
plate separation a=1000 nm:

�FTE = C1T2�1 − C2T1/2 + ¯ � with C2� 3.03 K−1/2.

�31�

2It may be noted that for a / ��c��1 an a-independent contribu-
tion to the free energy was found also in the “classical” Casimir
theory for metals at low temperature. See Eq. �3.38� in Ref. �23� or
Eq. �3.24� in Ref. �1�.
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= � �, but now with the linear term included, is recovered.
But the latter does not violate the Nernst theorem as long as
a is finite, and for a=� there is no Casimir free energy
anyway.2

Inserting the value for g��0� and the values ��p

=9.03 eV and ��=34.5 meV for Au we find with C given by
Eqs. �13� ��=1.0545
10−34 J s, k=1.381
10−23 J /K, c
=2.998
108 m/s�

�FTE = C1T2 with C1� 5.81 
 10−13 J/�m2 K2� .
�19�

It turns out that Eq. �18� holds only very close to T=0
�i.e., T�0.01 K�, but there will be a leading correction that
we can obtain with good accuracy. Expanding g�m� in pow-
ers of m one notes that half-integer powers will occur. Thus,
formula �14� is not quite valid as g��0� and higher-order
derivatives will diverge. However, this problem can be
avoided since the formula can be applied to summation start-
ing at m= p �p=1,2 ,3 , . . . �. Thus, we have
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where

S =�
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g�u�du . �21�

For a power term g��m�=m� �for small m� we have

g���p� = �p�−1, g���p� = ��� − 1��� − 2�p�−3, �
0
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g��u�du

=
1

1 + �
p�+1. �22�

With the choice p=1 we get

S = S��1� =
1

2
−

1

1 + �
. �23�

One may note that S1�1�=0 as should be expected. The
power of key interest here will be �=3/2 by which S�

=1/10, and thus

�S��1� � S��1� −
1

12
g���1� +

1

720
g���1�

� − 0.02552� − 0.204
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12
g���1� . �24�

When other terms are neglected the error can be estimated
from the next term in the series �provided the sums of
higher-order terms converge�:
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� 4.65 
 10−5, �25�

which is only about 0.2% of the value �24�. For increasing
values of p the error goes further down rapidly. �Instead of
the result �24�, p=2 yields �−0.02549.� Thus, Eq. �24� with
p=1 is a good estimate for the sum of interest.

With g�m� given by Eq. �12� we can expand to leading
order in m or y��T1/2�. To this leading order the limit of
integration x0��T1/2� can be put equal to zero since the inte-
grand vanishes for x=0. We find

g�m� = mg��0� + myI + ¯ . �26�

Now, from Eqs. �8� and �13�,

y = 2a�2�Cxm1/2, �27�

with C given by Eq. �13�. Thus the derivative becomes

g��m� = g��0� + 3a�2�CIm1/2 + ¯ , �28�

where g��0� is given by Eq. �17� and �with substitution x
=sinh t as in Eq. �16��

I = �
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� x2B

1 − B
dx =

1

8
�

0
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�e−t − e−3t�dt =
1

12
. �29�

Now we will use Eq. �21� for the most simple case m= p
=1 for which S��1� is given by Eq. �23�, and with exponent
� equal to 1 and 3/2 for the two separate terms in Eq. �26�
the corresponding values of S��1� are 0 and 1/10, respec-
tively. Thus, with Eqs. �24� and �28� we have 12�S1�1�=
−g1��0�=−g��0� and 12�S3/2�1�=−0.204g3/2� �1�=−0.204

3a�2�CI. So with Eq. �18� the change in free energy be-
comes

�FTE =
C


��S1�1� + �S3/2�1� + ¯ �

=
C


�− 1

12
g��0���1 − 0.204 ·

3a�2�C

− 12g��0�
+ ¯ � ,

�30�

which gives the small-T correction to the result �18�. Again
inserting the previous values for �p and � we obtain with
plate separation a=1000 nm:

�FTE = C1T2�1 − C2T1/2 + ¯ � with C2� 3.03 K−1/2.

�31�

2It may be noted that for a / ��c��1 an a-independent contribu-
tion to the free energy was found also in the “classical” Casimir
theory for metals at low temperature. See Eq. �3.38� in Ref. �23� or
Eq. �3.24� in Ref. �1�.
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= � �, but now with the linear term included, is recovered.
But the latter does not violate the Nernst theorem as long as
a is finite, and for a=� there is no Casimir free energy
anyway.2

Inserting the value for g��0� and the values ��p

=9.03 eV and ��=34.5 meV for Au we find with C given by
Eqs. �13� ��=1.0545
10−34 J s, k=1.381
10−23 J /K, c
=2.998
108 m/s�

�FTE = C1T2 with C1� 5.81 
 10−13 J/�m2 K2� .
�19�

It turns out that Eq. �18� holds only very close to T=0
�i.e., T�0.01 K�, but there will be a leading correction that
we can obtain with good accuracy. Expanding g�m� in pow-
ers of m one notes that half-integer powers will occur. Thus,
formula �14� is not quite valid as g��0� and higher-order
derivatives will diverge. However, this problem can be
avoided since the formula can be applied to summation start-
ing at m= p �p=1,2 ,3 , . . . �. Thus, we have
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where
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For a power term g��m�=m� �for small m� we have

g���p� = �p�−1, g���p� = ��� − 1��� − 2�p�−3, �
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=
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1 + �
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With the choice p=1 we get

S = S��1� =
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One may note that S1�1�=0 as should be expected. The
power of key interest here will be �=3/2 by which S�

=1/10, and thus
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When other terms are neglected the error can be estimated
from the next term in the series �provided the sums of
higher-order terms converge�:
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which is only about 0.2% of the value �24�. For increasing
values of p the error goes further down rapidly. �Instead of
the result �24�, p=2 yields �−0.02549.� Thus, Eq. �24� with
p=1 is a good estimate for the sum of interest.

With g�m� given by Eq. �12� we can expand to leading
order in m or y��T1/2�. To this leading order the limit of
integration x0��T1/2� can be put equal to zero since the inte-
grand vanishes for x=0. We find

g�m� = mg��0� + myI + ¯ . �26�

Now, from Eqs. �8� and �13�,

y = 2a�2�Cxm1/2, �27�

with C given by Eq. �13�. Thus the derivative becomes

g��m� = g��0� + 3a�2�CIm1/2 + ¯ , �28�

where g��0� is given by Eq. �17� and �with substitution x
=sinh t as in Eq. �16��
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�e−t − e−3t�dt =
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Now we will use Eq. �21� for the most simple case m= p
=1 for which S��1� is given by Eq. �23�, and with exponent
� equal to 1 and 3/2 for the two separate terms in Eq. �26�
the corresponding values of S��1� are 0 and 1/10, respec-
tively. Thus, with Eqs. �24� and �28� we have 12�S1�1�=
−g1��0�=−g��0� and 12�S3/2�1�=−0.204g3/2� �1�=−0.204

3a�2�CI. So with Eq. �18� the change in free energy be-
comes

�FTE =
C


��S1�1� + �S3/2�1� + ¯ �

=
C


�− 1

12
g��0���1 − 0.204 ·

3a�2�C

− 12g��0�
+ ¯ � ,

�30�

which gives the small-T correction to the result �18�. Again
inserting the previous values for �p and � we obtain with
plate separation a=1000 nm:

�FTE = C1T2�1 − C2T1/2 + ¯ � with C2� 3.03 K−1/2.

�31�

2It may be noted that for a / ��c��1 an a-independent contribu-
tion to the free energy was found also in the “classical” Casimir
theory for metals at low temperature. See Eq. �3.38� in Ref. �23� or
Eq. �3.24� in Ref. �1�.
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This result can only be valid for very small T as it other-
wise becomes negative already for T slightly larger than
0.1 K. To avoid this one may instead write

�Fth
TE =

C1T2

1 + C2T1/2 �32�

as the theoretical or analytical result for �FTE for small T.
This Padé approximant form �which is equivalent to Eq. �31�
with respect to the first two terms� turns out to be convenient
for comparison with numerical evaluations. If the corre-
sponding numerical result for �FTE is �Fnum

TE , one can evalu-
ate the ratio

R =
�Fth

TE − �Fnum
TE

�Fth
TE �33�

and consider the limit T→0 for which the limiting value
should be R=0 �cf. more details in Appendix B�.

III. NUMERICAL CALCULATION OF FREE ENERGY AT
LOW TEMPERATURES

We have calculated the free energy FTE as a function of
temperature given by Eq. �6� for two gold half-spaces sepa-
rated by a vacuum gap of width a=1.0 �m. This would be a
typical experimental situation where the influence from the
finite temperature is large, about a 15% increase in the mag-
nitude of the Casimir free energy �1� and a corresponding
decrease of the Casimir force according to our theory with no
contribution from the TE mode at zero frequency. The cal-
culations use the permittivity data for gold, received from
Astrid Lambrecht as mentioned. At T=0 the free energy is
calculated numerically as a double integral rather than a sum
of integrals using a two-dimensional version of Simpson’s
method.

The vanishing of the zero-frequency mode is intimately
connected with the behavior of the reflection coefficient B at
vanishing frequency. According to the Drude model �or any
model satisfying �3�� the TE mode reflection coefficient
tends to zero as �→0. To illuminate this point, we have
plotted A and B as a function of imaginary frequency and
transverse momentum, k�, for an interface between gold and
vacuum in Fig. 1. In part �c� of this figure, we clearly see
how B vanishes smoothly when �→0 for k��0 consistent
with Maxwell’s equations of electrodynamics. However, the
coefficient A in Fig. 1�a� for the TM mode equals 1 for all k�

as �→0, as is also the case for all � for an ideal metal. In the
latter limit we also have B→1, but for �=0, B remains zero.

For ideal or nonideal metals it is well known that the
temperature correction for the TM mode behaves as T4.
Thus, it does not add to the T2 and T5/2 terms that we find
from the TE mode.

By direct numerical integration and lengthy summations
independent of the analytic derivations made in Sec. II, we
obtain the free energy numerically. Figure 2 shows the free
energy versus temperature up to 800 K, while the inset
shows details of the parabolic shape close to T=0. First of all
the figure shows the controversial decrease of the magnitude
of the Casimir free energy and thus also the related decrease

of the Casimir force up to a certain temperature. Second, the
inset shows that the tangent of the curve is horizontal at T
=0 as predicted. This implies that the entropy due to the
Casimir force is indeed zero at T=0. Thus the Nernst theo-
rem is not violated when using the realistic Drude dispersion
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FIG. 1. Squared reflection coefficients A and B of the metal
interfaces as defined in Eq. �7� for the TM and TE modes, as a
function of � /c and the transverse momentum k�. �a� A for the TM
mode, �b� B for the TE mode, and �c� B for k� and � close to zero.
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This result can only be valid for very small T as it other-
wise becomes negative already for T slightly larger than
0.1 K. To avoid this one may instead write

�Fth
TE =

C1T2

1 + C2T1/2 �32�

as the theoretical or analytical result for �FTE for small T.
This Padé approximant form �which is equivalent to Eq. �31�
with respect to the first two terms� turns out to be convenient
for comparison with numerical evaluations. If the corre-
sponding numerical result for �FTE is �Fnum

TE , one can evalu-
ate the ratio

R =
�Fth

TE − �Fnum
TE

�Fth
TE �33�

and consider the limit T→0 for which the limiting value
should be R=0 �cf. more details in Appendix B�.

III. NUMERICAL CALCULATION OF FREE ENERGY AT
LOW TEMPERATURES

We have calculated the free energy FTE as a function of
temperature given by Eq. �6� for two gold half-spaces sepa-
rated by a vacuum gap of width a=1.0 �m. This would be a
typical experimental situation where the influence from the
finite temperature is large, about a 15% increase in the mag-
nitude of the Casimir free energy �1� and a corresponding
decrease of the Casimir force according to our theory with no
contribution from the TE mode at zero frequency. The cal-
culations use the permittivity data for gold, received from
Astrid Lambrecht as mentioned. At T=0 the free energy is
calculated numerically as a double integral rather than a sum
of integrals using a two-dimensional version of Simpson’s
method.

The vanishing of the zero-frequency mode is intimately
connected with the behavior of the reflection coefficient B at
vanishing frequency. According to the Drude model �or any
model satisfying �3�� the TE mode reflection coefficient
tends to zero as �→0. To illuminate this point, we have
plotted A and B as a function of imaginary frequency and
transverse momentum, k�, for an interface between gold and
vacuum in Fig. 1. In part �c� of this figure, we clearly see
how B vanishes smoothly when �→0 for k��0 consistent
with Maxwell’s equations of electrodynamics. However, the
coefficient A in Fig. 1�a� for the TM mode equals 1 for all k�

as �→0, as is also the case for all � for an ideal metal. In the
latter limit we also have B→1, but for �=0, B remains zero.

For ideal or nonideal metals it is well known that the
temperature correction for the TM mode behaves as T4.
Thus, it does not add to the T2 and T5/2 terms that we find
from the TE mode.

By direct numerical integration and lengthy summations
independent of the analytic derivations made in Sec. II, we
obtain the free energy numerically. Figure 2 shows the free
energy versus temperature up to 800 K, while the inset
shows details of the parabolic shape close to T=0. First of all
the figure shows the controversial decrease of the magnitude
of the Casimir free energy and thus also the related decrease

of the Casimir force up to a certain temperature. Second, the
inset shows that the tangent of the curve is horizontal at T
=0 as predicted. This implies that the entropy due to the
Casimir force is indeed zero at T=0. Thus the Nernst theo-
rem is not violated when using the realistic Drude dispersion

10
3

106
10

9

103

10
6

109

0

0.2

0.4

0.6

0.8

1

ζ/c

k⊥(rad m )−1

A
(

ζ/
c
,
k ⊥
)

(rad m )−1

103
106

10
9

10
3

10
6

109

0

0.2

0.4

0.6

0.8

1

ζ/c

k⊥(rad m )−1

B
(

ζ/
c
,
k ⊥
)

(rad m )−1

104 106 108 1010 1012 1014 1016
0

0.2

0.4

0.6

0.8

1

B
(
i

ζ;
k

⊥)

k⊥ = 10
3
rad/m

k⊥ = 10
4
rad/m

k⊥ = 10
5
rad/m

k⊥ = 10
6
rad/m

k⊥ = 10
7
rad/m

Frequency ζ (rad s-1)

FIG. 1. Squared reflection coefficients A and B of the metal
interfaces as defined in Eq. �7� for the TM and TE modes, as a
function of � /c and the transverse momentum k�. �a� A for the TM
mode, �b� B for the TE mode, and �c� B for k� and � close to zero.
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This result can only be valid for very small T as it other-
wise becomes negative already for T slightly larger than
0.1 K. To avoid this one may instead write

�Fth
TE =

C1T2

1 + C2T1/2 �32�

as the theoretical or analytical result for �FTE for small T.
This Padé approximant form �which is equivalent to Eq. �31�
with respect to the first two terms� turns out to be convenient
for comparison with numerical evaluations. If the corre-
sponding numerical result for �FTE is �Fnum

TE , one can evalu-
ate the ratio

R =
�Fth

TE − �Fnum
TE

�Fth
TE �33�

and consider the limit T→0 for which the limiting value
should be R=0 �cf. more details in Appendix B�.

III. NUMERICAL CALCULATION OF FREE ENERGY AT
LOW TEMPERATURES

We have calculated the free energy FTE as a function of
temperature given by Eq. �6� for two gold half-spaces sepa-
rated by a vacuum gap of width a=1.0 �m. This would be a
typical experimental situation where the influence from the
finite temperature is large, about a 15% increase in the mag-
nitude of the Casimir free energy �1� and a corresponding
decrease of the Casimir force according to our theory with no
contribution from the TE mode at zero frequency. The cal-
culations use the permittivity data for gold, received from
Astrid Lambrecht as mentioned. At T=0 the free energy is
calculated numerically as a double integral rather than a sum
of integrals using a two-dimensional version of Simpson’s
method.

The vanishing of the zero-frequency mode is intimately
connected with the behavior of the reflection coefficient B at
vanishing frequency. According to the Drude model �or any
model satisfying �3�� the TE mode reflection coefficient
tends to zero as �→0. To illuminate this point, we have
plotted A and B as a function of imaginary frequency and
transverse momentum, k�, for an interface between gold and
vacuum in Fig. 1. In part �c� of this figure, we clearly see
how B vanishes smoothly when �→0 for k��0 consistent
with Maxwell’s equations of electrodynamics. However, the
coefficient A in Fig. 1�a� for the TM mode equals 1 for all k�

as �→0, as is also the case for all � for an ideal metal. In the
latter limit we also have B→1, but for �=0, B remains zero.

For ideal or nonideal metals it is well known that the
temperature correction for the TM mode behaves as T4.
Thus, it does not add to the T2 and T5/2 terms that we find
from the TE mode.

By direct numerical integration and lengthy summations
independent of the analytic derivations made in Sec. II, we
obtain the free energy numerically. Figure 2 shows the free
energy versus temperature up to 800 K, while the inset
shows details of the parabolic shape close to T=0. First of all
the figure shows the controversial decrease of the magnitude
of the Casimir free energy and thus also the related decrease

of the Casimir force up to a certain temperature. Second, the
inset shows that the tangent of the curve is horizontal at T
=0 as predicted. This implies that the entropy due to the
Casimir force is indeed zero at T=0. Thus the Nernst theo-
rem is not violated when using the realistic Drude dispersion
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model. In contrast, it would be violated if a TE term were
added for �=0. This conclusion, as mentioned above, is
clearly in contrast to that presented in various earlier works
�18–22�. The reader should note that the dependence of � on
temperature has been neglected in Fig. 2.

Now there are always some uncertainties connected with
numerical calculations. Also the analytic derivation has some
uncertainties, e.g., concerning proper use of the Euler-
Maclaurin formula, and concerning convergence and neglect
of higher-order terms. In Fig. 3 we have therefore made a
more accurate and much more sensitive test of the behavior
near T=0 comparing the analytic result with the numerical
one, by plotting the ratio R defined in Eq. �33�. We see that R
when extrapolated approaches zero linearly with a finite
slope �when taking the curvature of the plot into account�.
Thus, with high accuracy we find full agreement concerning
the T2 and T5/2 terms in the free energy and their coefficients
C1 and C2. As the number of terms to be summed numeri-
cally increases rapidly when T=0 is approached, our evalu-
ations were terminated at T=0.008 K. The extrapolated
value R=0 for T=0 means that the coefficient C1 is correct
while the finite slope means that C2 is correct too within
numerical uncertainties. Also if a more dominant power were
present, R would diverge at T=0. The finite slope of R at
T=0 means that the next term in �FTE is of higher order �see
also Appendix B for details�.
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APPENDIX A: ALTERNATIVE DERIVATION BY
EXPANSION OF g„m…

As a variant of the analytic approach, let us show how the
essential dependence of the free energy FTE on T near T=0
also can be recovered by making use of complex integration.
We begin with the TE expression

FTE = C�
m=0

�

�m�
x0

�

x ln�1 − Be−�x�dx , �A1�

where

C =
�p

2

��c2 , � = 2a�2�Cm . �A2�

The essential step now is to expand the logarithm to the first
term,

FTE = − C�
m=1

�

m�
0

�

xBe−�xdx �A3�

�m=0 does not contribute to the sum �A1��, where we have
also replaced the lower limit x0 by zero. We next use the
formula �34�

e−�x =
1

2�i
�

c−i�

c+i�

ds��x�−s��s�, c � 0, �A4�

where ��s� is the gamma function. The summation over m is
easily done,

�
m=1

�

m1−s/2 = �	 s
2

− 1
 . �A5�

Here � is the Riemann zeta function, defined by the analytic
continuation of

��s� =
1

��s��0
� ts−1

et − 1
dt �A6�

for Re�s�	1 �33�. As is known, ��s� is one-valued every-
where except for s=1, where it has a single pole with residue
1. As ��s� has simple poles at s=−n with residue �−1�n /n!,
n=0,1 ,2 , . . ., we get, by taking c�4 and closing the contour
of integral �A4� as a large semicircle on the left,

FTE = − C�
0

�

Bx� ��4��2ax�4
1

�2�C�2
+ ��− 1�

− 2ax�2�C�	− 3

2

 + ¯ �dx . �A7�

The first term in Eq. �A7� diverges, the reason being that we
have replaced the lower limit x0 by zero. This term is inde-
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model. In contrast, it would be violated if a TE term were
added for �=0. This conclusion, as mentioned above, is
clearly in contrast to that presented in various earlier works
�18–22�. The reader should note that the dependence of � on
temperature has been neglected in Fig. 2.

Now there are always some uncertainties connected with
numerical calculations. Also the analytic derivation has some
uncertainties, e.g., concerning proper use of the Euler-
Maclaurin formula, and concerning convergence and neglect
of higher-order terms. In Fig. 3 we have therefore made a
more accurate and much more sensitive test of the behavior
near T=0 comparing the analytic result with the numerical
one, by plotting the ratio R defined in Eq. �33�. We see that R
when extrapolated approaches zero linearly with a finite
slope �when taking the curvature of the plot into account�.
Thus, with high accuracy we find full agreement concerning
the T2 and T5/2 terms in the free energy and their coefficients
C1 and C2. As the number of terms to be summed numeri-
cally increases rapidly when T=0 is approached, our evalu-
ations were terminated at T=0.008 K. The extrapolated
value R=0 for T=0 means that the coefficient C1 is correct
while the finite slope means that C2 is correct too within
numerical uncertainties. Also if a more dominant power were
present, R would diverge at T=0. The finite slope of R at
T=0 means that the next term in �FTE is of higher order �see
also Appendix B for details�.
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model. In contrast, it would be violated if a TE term were
added for �=0. This conclusion, as mentioned above, is
clearly in contrast to that presented in various earlier works
�18–22�. The reader should note that the dependence of � on
temperature has been neglected in Fig. 2.

Now there are always some uncertainties connected with
numerical calculations. Also the analytic derivation has some
uncertainties, e.g., concerning proper use of the Euler-
Maclaurin formula, and concerning convergence and neglect
of higher-order terms. In Fig. 3 we have therefore made a
more accurate and much more sensitive test of the behavior
near T=0 comparing the analytic result with the numerical
one, by plotting the ratio R defined in Eq. �33�. We see that R
when extrapolated approaches zero linearly with a finite
slope �when taking the curvature of the plot into account�.
Thus, with high accuracy we find full agreement concerning
the T2 and T5/2 terms in the free energy and their coefficients
C1 and C2. As the number of terms to be summed numeri-
cally increases rapidly when T=0 is approached, our evalu-
ations were terminated at T=0.008 K. The extrapolated
value R=0 for T=0 means that the coefficient C1 is correct
while the finite slope means that C2 is correct too within
numerical uncertainties. Also if a more dominant power were
present, R would diverge at T=0. The finite slope of R at
T=0 means that the next term in �FTE is of higher order �see
also Appendix B for details�.
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model. In contrast, it would be violated if a TE term were
added for �=0. This conclusion, as mentioned above, is
clearly in contrast to that presented in various earlier works
�18–22�. The reader should note that the dependence of � on
temperature has been neglected in Fig. 2.

Now there are always some uncertainties connected with
numerical calculations. Also the analytic derivation has some
uncertainties, e.g., concerning proper use of the Euler-
Maclaurin formula, and concerning convergence and neglect
of higher-order terms. In Fig. 3 we have therefore made a
more accurate and much more sensitive test of the behavior
near T=0 comparing the analytic result with the numerical
one, by plotting the ratio R defined in Eq. �33�. We see that R
when extrapolated approaches zero linearly with a finite
slope �when taking the curvature of the plot into account�.
Thus, with high accuracy we find full agreement concerning
the T2 and T5/2 terms in the free energy and their coefficients
C1 and C2. As the number of terms to be summed numeri-
cally increases rapidly when T=0 is approached, our evalu-
ations were terminated at T=0.008 K. The extrapolated
value R=0 for T=0 means that the coefficient C1 is correct
while the finite slope means that C2 is correct too within
numerical uncertainties. Also if a more dominant power were
present, R would diverge at T=0. The finite slope of R at
T=0 means that the next term in �FTE is of higher order �see
also Appendix B for details�.
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Here � is the Riemann zeta function, defined by the analytic
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for Re�s�	1 �33�. As is known, ��s� is one-valued every-
where except for s=1, where it has a single pole with residue
1. As ��s� has simple poles at s=−n with residue �−1�n /n!,
n=0,1 ,2 , . . ., we get, by taking c�4 and closing the contour
of integral �A4� as a large semicircle on the left,
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The first term in Eq. �A7� diverges, the reason being that we
have replaced the lower limit x0 by zero. This term is inde-
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pendent of T and can thus be omitted in the present context.
Thus using ��−1�=−1/12, ��−3/2�=−0.025485, together
with the integrals �0

�Bxdx=1/12 and �0
�Bx2dx=8/105, gives

the temperature-dependent free energy to first order in B.
However, this is easily extended to arbitrary order in B by

expansion of the integrand in Eq. �A1� since �Be−�x�n

=Bn�1−�nx+ 1
2 ��nx�2+ ¯�. Thus, by summation xB

→x�n=1
� Bn /n=−x ln�1−B� and x�Bx�→x�n=1

� �nBn /n�x
=x2B / �1−B�. By this the above integrals become those of
Eqs. �15� and �29�, and for the temperature-dependent part of
the free energy we thus get

�FTE = −
C


�− g��0���− 1� − 2a�2�CI�	− 3

2

 + ¯ �

=
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fully consistent with the result �30�. Note that ��−3/2� is
close to the approximate value �24� and even closer to the
more accurate value �25�. Thus, we have reason to consider
��−3/2� to be the exact result for the Euler-Maclaurin expan-
sion performed in Sec. II.

APPENDIX B: REMARKS ON THE QUANTITY R

Let us explain in some more detail the interpretation of
the quantity R, defined in Eq. �33�. This quantity gives the

relative difference between the temperature-dependent theo-
retical free energy �Fth

TE, having the form �32�, and the
temperature-dependent numerical free energy �Fnum

TE calcu-
lated from Eq. �6�. �As mentioned in Sec. III, the TM mode
behaves as T4 and is thus negligible near T=0.�

Let us assume that �Fth
TE has the same form �32� as be-

fore, with coefficients C1 and C2, and that �Fnum
TE has the

form

�Fnum
TE = D1�T2 − D2T5/2 + D3T3 + ¯ � , �B1�

with calculated values for the coefficients D1, D2, and D3.
Then,

R =
�Fth

TE − �Fnum
TE

�Fth
TE =

C1 − D1

C1
+

D1

C1
�D2 − C2�T1/2

+
D1

C1
�C2D2 − D3�T + ¯ .

If C1=D1 and C2=D2, we see that R is zero at T=0 and is
linear in T for low T. From Fig. 3 we see that the fit is perfect
insofar as it may be determined from the graph. A constant
term would have caused a nonzero value at T=0, and a non-
zero T1/2 term would have caused a vertical slope near T
=0. None of these effects are perceivable within the numeri-
cal accuracy, from which we must conclude that C1 and C2
are correct within the numerical accuracy.
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pendent of T and can thus be omitted in the present context.
Thus using ��−1�=−1/12, ��−3/2�=−0.025485, together
with the integrals �0

�Bxdx=1/12 and �0
�Bx2dx=8/105, gives

the temperature-dependent free energy to first order in B.
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� �nBn /n�x
=x2B / �1−B�. By this the above integrals become those of
Eqs. �15� and �29�, and for the temperature-dependent part of
the free energy we thus get
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fully consistent with the result �30�. Note that ��−3/2� is
close to the approximate value �24� and even closer to the
more accurate value �25�. Thus, we have reason to consider
��−3/2� to be the exact result for the Euler-Maclaurin expan-
sion performed in Sec. II.
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the quantity R, defined in Eq. �33�. This quantity gives the
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retical free energy �Fth

TE, having the form �32�, and the
temperature-dependent numerical free energy �Fnum

TE calcu-
lated from Eq. �6�. �As mentioned in Sec. III, the TM mode
behaves as T4 and is thus negligible near T=0.�

Let us assume that �Fth
TE has the same form �32� as be-

fore, with coefficients C1 and C2, and that �Fnum
TE has the

form
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If C1=D1 and C2=D2, we see that R is zero at T=0 and is
linear in T for low T. From Fig. 3 we see that the fit is perfect
insofar as it may be determined from the graph. A constant
term would have caused a nonzero value at T=0, and a non-
zero T1/2 term would have caused a vertical slope near T
=0. None of these effects are perceivable within the numeri-
cal accuracy, from which we must conclude that C1 and C2
are correct within the numerical accuracy.
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pendent of T and can thus be omitted in the present context.
Thus using ��−1�=−1/12, ��−3/2�=−0.025485, together
with the integrals �0

�Bxdx=1/12 and �0
�Bx2dx=8/105, gives

the temperature-dependent free energy to first order in B.
However, this is easily extended to arbitrary order in B by

expansion of the integrand in Eq. �A1� since �Be−�x�n

=Bn�1−�nx+ 1
2 ��nx�2+ ¯�. Thus, by summation xB

→x�n=1
� Bn /n=−x ln�1−B� and x�Bx�→x�n=1

� �nBn /n�x
=x2B / �1−B�. By this the above integrals become those of
Eqs. �15� and �29�, and for the temperature-dependent part of
the free energy we thus get
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fully consistent with the result �30�. Note that ��−3/2� is
close to the approximate value �24� and even closer to the
more accurate value �25�. Thus, we have reason to consider
��−3/2� to be the exact result for the Euler-Maclaurin expan-
sion performed in Sec. II.

APPENDIX B: REMARKS ON THE QUANTITY R

Let us explain in some more detail the interpretation of
the quantity R, defined in Eq. �33�. This quantity gives the

relative difference between the temperature-dependent theo-
retical free energy �Fth

TE, having the form �32�, and the
temperature-dependent numerical free energy �Fnum

TE calcu-
lated from Eq. �6�. �As mentioned in Sec. III, the TM mode
behaves as T4 and is thus negligible near T=0.�

Let us assume that �Fth
TE has the same form �32� as be-

fore, with coefficients C1 and C2, and that �Fnum
TE has the

form

�Fnum
TE = D1�T2 − D2T5/2 + D3T3 + ¯ � , �B1�

with calculated values for the coefficients D1, D2, and D3.
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+
D1

C1
�C2D2 − D3�T + ¯ .

If C1=D1 and C2=D2, we see that R is zero at T=0 and is
linear in T for low T. From Fig. 3 we see that the fit is perfect
insofar as it may be determined from the graph. A constant
term would have caused a nonzero value at T=0, and a non-
zero T1/2 term would have caused a vertical slope near T
=0. None of these effects are perceivable within the numeri-
cal accuracy, from which we must conclude that C1 and C2
are correct within the numerical accuracy.
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pendent of T and can thus be omitted in the present context.
Thus using ��−1�=−1/12, ��−3/2�=−0.025485, together
with the integrals �0

�Bxdx=1/12 and �0
�Bx2dx=8/105, gives

the temperature-dependent free energy to first order in B.
However, this is easily extended to arbitrary order in B by
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fully consistent with the result �30�. Note that ��−3/2� is
close to the approximate value �24� and even closer to the
more accurate value �25�. Thus, we have reason to consider
��−3/2� to be the exact result for the Euler-Maclaurin expan-
sion performed in Sec. II.
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Abstract – The frequency spectrum of the Casimir force between two plates separated by vacuum
as it appears in the Lifshitz formalism is reexamined and generalised as compared to previous
works to allow for imperfectly reflecting plates. As previously reported by Ford (Phys. Rev. A,
48 (1993) 2962), the highly oscillatory nature of the frequency dependence of the Casimir force
points to possibilities for very large and indeed negative Casimir forces if the frequency-dependent
dielectric response, ε(ω), of the materials could be tuned. A paradox occurs, however, because an
alternative calculation of the effect of a perturbation of ε(ω) involving a Wick rotation to imaginary
frequencies indicates only very modest effects. A recent experiment appears to convincingly rule
out the reality of Ford’s optimistic predictions, although given the enormous technological promise
of such frequency effects, further theoretical and experimental study is called for.
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In an interesting paper [1], Ford analysed the frequency
spectrum of the Casimir pressure as it appears when read
directly out of Lifshitz’ celebrated formula [2]. His calcu-
lations extended a previous study of the spectrum of the
Casimir effect for a massless scalar field [3] and subsequent
analysis of the electromagnetic vacuum stress tensor by
Hacyan et al. [4]. In [1], the classical Casimir set-up is
considered, where two perfectly reflecting metal plates of
infinite transverse size are separated by a vacuum-filled
gap of width a. For this system, the pressure between the
plates was found by Casimir [5] to be

PC(a) =− �cπ
2

240a4
. (1)

Ford’s puzzling finding was that if the pressure is
expressed as an integral over all frequencies of the zero-
point oscillations of the electromagnetic field in the cavity,
the integrand is wildly oscillating and discontinuous as
a function of frequency and the integral a sum of almost
exactly cancelling positive and negative contributions,
each of which far larger in magnitude than the measurable
pressure itself. By a suitable cutoff procedure, however,

(a)E-mail: simen.a.ellingsen@ntnu.no

the integral is calculable and the result correct. Similar
considerations were later performed for a sphere and
plate set-up [6,7] and the electromagnetic stress tensor in
a cavity [8]. An extension of Ford’s work on two ideally
conducting plates was recently presented by Lang [9].
The unruly behaviour of the Casimir force as a function

of real frequencies was recently treated for numerical
purposes [10] and the same oscillatory behaviour was
found. As a consequence these latter authors like most
before performed the Wick rotation to imaginary time
(and imaginary frequencies), which is permitted when
the permittivity is assumed causal. As expressed for
imaginary frequencies, the Lifshitz expression is much
more well behaved and rather than complex and strongly
oscillating, the frequency integrand is real, nicely peaked
and exponentially decreasing at high imaginary frequency.
The importance of good optical data for the precise calcu-
lation of Casimir forces has been emphasised in a number
of recent efforts [11–14], but these have all employed a
Wick rotated formalism.
Ford suggested that if the frequency response of

the plate materials could be tuned, for example if a
material could be found which is transparent for all
but a small band of frequencies in which it was a good
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reflector, Casimir forces much larger than that between
perfect conductors could be observed and by changing
the reflection band the force could be changed from
attractive to repulsive. Despite the potentially enormous
technological potential of such tuning for applications in
microengineering and nanotechnology, the issue of the
physical interpretation of the frequency spectrum of the
Casimir force has remained largely unaddressed.
A relevant experiment was recently performed by

Iannuzzi, Lisanti and Capasso at Harvard [15] in which
the Casimir force was measured in the same configuration
with a good and poor reflector, respectively. The material
used was a so-called hydrogen-switchable mirror which
can be switched from mirror to transparent at optical
frequencies by introducing hydrogen. At frequencies in the
IR and UV parts of the spectrum, reflection is presumed
by the authors of [15] to be approximately unchanged.
This is the inverse of the situation suggested by Ford, and
based on [1] large effects should be expected. Iannuzzi
et al. observed no change of the force in the two cases,
however.
The paradox is theoretical as well as experimental:

Assume that the permittivity of one or both of the
plates in a standard two-plate set-up [5] is changed in
a band of frequencies. The effect on the force of this
perturbation may, one may think, be calculated in two
different ways. Either Lifshitz’ expression for the force is
integrated over the relevant band of real frequencies and
the difference taken. Alternatively, the new, perturbed
permittivity is rotated to imaginary frequencies using
the Kramers-Kronig relations and the force calculated as
an integral (assuming zero temperature) over imaginary
Matsubara frequencies. The numerical results obtained in
the two ways, however, appear to differ greatly.
In the following, Ford’s calculations are generalised to

imperfectly reflecting plates represented by an effective
reflection coefficient. While the same oscillatory behaviour
is found, the integrand is no longer discontinuous. In
the limit of perfect reflection, Casimir’s result is once
more obtained. Thereafter the paradox is elaborated and
compared to the recent experiment by Iannuzzi et al.

Casimir force and frequency spectrum with
constant reflection coefficients. – The expression for
the Casimir pressure was given by Lifshitz as an integral
over (real) frequencies and the variable p by [2]

PT (a) = − �

2π2c3
�e
∫ ∞
0

dωω3
∫
C

dpp2 coth

(
�ω

2kBT

)

×
TM∑
σ=TE

r2σ exp(2ipωa/c)

1− r2σ exp(2ipωa/c)
, (2)

where the variable p relates to the transverse wave vector
k⊥ as

p=
ic

ω

√
k2⊥−ω2/c2

Re(p)

Im(p)

Fig. 1: The integration contour in (2).

and the contour of integration C, shown in fig. 1, runs from
1 to 0 along the real axis and thence along the imaginary
axis to +i∞. We have assumed both plates equal in (2) but
all results in the following may be generalised to different
media 1 and 2 by letting r2→ r1r2. It is easy to show that
the former part of the integral covers all modes which
propagate in vacuum, that is when ω > |k⊥|c, and the
latter covers all evanescent modes ω < |k⊥|c which vanish
exponentially away from the surfaces.
In the first part of the analysis we shall consider complex

reflection coefficients which are constant with respect to
ω and p, but in principle dependent on the separation a.
We will assume zero temperature throughout so that the
coth function in (2) is set to 1.
To denote the frequency dependence we use the notation

P =

∫ ∞
0

dωPω =

∫ ∞
0

dω

TM∑
σ=TE

Pωσ.

Let us assume now that the reflection coefficient rσ is a
constant quantity with respect to ω and p which we allow
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When rσ are real, there is no evanescent contribution
to the pressure as we will see. We have plotted the
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reflector, Casimir forces much larger than that between
perfect conductors could be observed and by changing
the reflection band the force could be changed from
attractive to repulsive. Despite the potentially enormous
technological potential of such tuning for applications in
microengineering and nanotechnology, the issue of the
physical interpretation of the frequency spectrum of the
Casimir force has remained largely unaddressed.
A relevant experiment was recently performed by

Iannuzzi, Lisanti and Capasso at Harvard [15] in which
the Casimir force was measured in the same configuration
with a good and poor reflector, respectively. The material
used was a so-called hydrogen-switchable mirror which
can be switched from mirror to transparent at optical
frequencies by introducing hydrogen. At frequencies in the
IR and UV parts of the spectrum, reflection is presumed
by the authors of [15] to be approximately unchanged.
This is the inverse of the situation suggested by Ford, and
based on [1] large effects should be expected. Iannuzzi
et al. observed no change of the force in the two cases,
however.
The paradox is theoretical as well as experimental:

Assume that the permittivity of one or both of the
plates in a standard two-plate set-up [5] is changed in
a band of frequencies. The effect on the force of this
perturbation may, one may think, be calculated in two
different ways. Either Lifshitz’ expression for the force is
integrated over the relevant band of real frequencies and
the difference taken. Alternatively, the new, perturbed
permittivity is rotated to imaginary frequencies using
the Kramers-Kronig relations and the force calculated as
an integral (assuming zero temperature) over imaginary
Matsubara frequencies. The numerical results obtained in
the two ways, however, appear to differ greatly.
In the following, Ford’s calculations are generalised to

imperfectly reflecting plates represented by an effective
reflection coefficient. While the same oscillatory behaviour
is found, the integrand is no longer discontinuous. In
the limit of perfect reflection, Casimir’s result is once
more obtained. Thereafter the paradox is elaborated and
compared to the recent experiment by Iannuzzi et al.

Casimir force and frequency spectrum with
constant reflection coefficients. – The expression for
the Casimir pressure was given by Lifshitz as an integral
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Fig. 2: Plot of (3) normalised by a3/� as a function of ωa/c for
different real values of r. This figure generalises fig. 2 of [1].

integrand (3) as a function of ξ for various real values
of the effective reflection coefficient r in fig. 2 (assumed
equal for TE and TM for simplicity). In the limit r= 1
one obtains the discontinuous behaviour reported by Ford.
Equation (3) thus generalises Ford’s calculation; indeed
fig. 2 is formatted so as to ease comparison with fig. 2
of [1].
We can go on to calculate the force for constant

reflection coefficients. The analysis so far only required rσ
to be independent of p; one could define some p-averaged
rσ(ω) and plot it the way we have in fig. 2. By assuming r
independent of ω as well, however, we are able to evaluate
the ω integral explicitly. We substitue ω by ξ in the integral
and write uσ ≡ r2σ exp(iξ) for short.
For a ξ-independent rσ one may show from the recursion

property [16]

∫ z
0

dt
Lin(t)

t
=Lin+1(z)

that the following relations are fulfilled:

�m
∫ ξ
0

dξ′Li2n−1(r2σe
iξ′) =−�eLi2n(r2σeiξ),

�e
∫ ξ
0

dξ′Li2n(r2σe
iξ′) = �mLi2n+1(r2σeiξ).

The integrand as given by (3) is a wildly oscillating
function of ξ as fig. 2 indicates. For definiteness, let
r→ r exp(−δξ), where δ is a small real quantity which
we will take to zero in the end. The same procedure was
followed by Ford [1] and reflects the physical fact that
all materials become transparent at very high frequen-
cies. By moderately lengthy but straightforward partial
integrations of (3) with respect to ξ one may then obtain
for constant and real reflection coefficients

PPWσ =
−�c
16π2a4

[
1

2
ξ2�eLi2uσ − 2ξ�mLi3uσ

−3�eLi4uσ − 1
2
ξ�mLi3r2σ

]∞
ξ=0

. (4)
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Fig. 3: The Casimir pressure for non-unitary real reflection
coefficient (assumed equal for TE and TM) plotted relative
to Casimir’s result (1).

With the normalising factor exp(−δξ) in all reflection
coefficients the ∞ limit is zero as physically expected. In
the limit ξ = 0, uσ→ r2σ and only the term with no factor
ξ remains:

PPWσ =− 3�c

16π2a4
�eLi4r2σ.

Secondly we consider the part of the pressure from
evanescent waves (EW). The same way as above we
evaluate the p integral as follows:

�e
∫ i∞
0

dp · p2
r−2σ e−2ipwa/c− 1 = �m

∫ ∞
0

dq · q2
r−2σ e2qwa/c− 1

=
2

ξ3
�mLi3(r2σ), (5)

where p= iq. Clearly if rσ is real as in a non-dissipative
medium, there is no evanescent contribution. Moreover,
one notices that that the evanescent contribution is
exactly cancelled by the last term of (3) above. Using
the same normalisation as before the evanescent part
accumulates to zero. Note that we could have let the
normalisation exp(−δξ) pertain to the exponential
factor exp(iξ) in the integration (4) since the remain-
ing divergent term is exactly cancelled by evanescent
contributions.
Hence the final result is obtained when rσ is constant:

P (a, r) =− 3�c

16π2a4

TM∑
σ=TE

�eLi4(r2σ). (6)

In the limit of perfect reflection, rσ→ 1, the summation
over σ gives a factor 2, and with Li4(1) = ζ(4) = π

4/90 we
get Casimir’s result (1). P (a, r) is plotted in fig. 3 relative
to the case for ideal reflection.
In exactly the same manner we could find the Casimir

free energy for real and constant reflection coefficients to
be given as

F (a, r) =− �c

16π2a3

TM∑
σ=TE

�eLi4(r2σ). (7)
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the same normalisation as before the evanescent part
accumulates to zero. Note that we could have let the
normalisation exp(−δξ) pertain to the exponential
factor exp(iξ) in the integration (4) since the remain-
ing divergent term is exactly cancelled by evanescent
contributions.
Hence the final result is obtained when rσ is constant:

P (a, r) =− 3�c

16π2a4

TM∑
σ=TE

�eLi4(r2σ). (6)

In the limit of perfect reflection, rσ→ 1, the summation
over σ gives a factor 2, and with Li4(1) = ζ(4) = π

4/90 we
get Casimir’s result (1). P (a, r) is plotted in fig. 3 relative
to the case for ideal reflection.
In exactly the same manner we could find the Casimir

free energy for real and constant reflection coefficients to
be given as

F (a, r) =− �c

16π2a3

TM∑
σ=TE

�eLi4(r2σ). (7)

53001-p3

Frequency spectrum of Casimir forces

Fig. 2: Plot of (3) normalised by a3/� as a function of ωa/c for
different real values of r. This figure generalises fig. 2 of [1].
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one notices that that the evanescent contribution is
exactly cancelled by the last term of (3) above. Using
the same normalisation as before the evanescent part
accumulates to zero. Note that we could have let the
normalisation exp(−δξ) pertain to the exponential
factor exp(iξ) in the integration (4) since the remain-
ing divergent term is exactly cancelled by evanescent
contributions.
Hence the final result is obtained when rσ is constant:
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In the limit of perfect reflection, rσ→ 1, the summation
over σ gives a factor 2, and with Li4(1) = ζ(4) = π

4/90 we
get Casimir’s result (1). P (a, r) is plotted in fig. 3 relative
to the case for ideal reflection.
In exactly the same manner we could find the Casimir

free energy for real and constant reflection coefficients to
be given as
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Fig. 4: rσ(a) for gold as computed from numerically calculated
force using (8).

Again Casimir’s result is obtained in the limit rσ = 1.
Some caution should be excerted here since the function
Li4(z) has a branch cut along the real axis from z = 1 to∞
across which its imaginary part is discontinuous. Its real
part, however, is continuous everywhere [16].

Physical significance: näıve approach. – Physi-
cally, reflection coefficients are far from constant with
respect to frequency and transverse momentum, but the
above analysis using constant reflection coefficients can be
thought of as an averaging process in which the constant
rσ is defined as the value which, when replacing the realis-
tic rσ(ω, p), does not change the value of the integral (2).
Such an interpretation requires rσ to depend on a as well.
Using the calculated Casimir pressure between gold

plates where realistic data from [17] are employed (the
calculation was previously presented in [18]), we can
calculate the effective reflection coefficients rσ(a) by

rσ =

[
Li−14

{
−16π

2a4

3�c
P numσ (a)

}]1/2
, (8)

where Pnum are the calculated data, and Li
−1
m is the

inverse polylogarithm of order m. By use of the series
reversion functionality of analytic software the inverse
polylogarithm is simple to calculate numerically. We plot
the effective reflection coefficient in fig. 4.
Ford [1] (and later Lang [9]) appears to argue that the

frequency spectrum shown in fig. 2 resembles the real
spectrum, with the modification that the oscillations will
be dampened and finally vanish at high frequencies. He
concludes from this that since the oscillations themselves
are much larger than the final force (which is the remain-
der of large fluctuations which cancel each other almost
exactly), much larger and even repulsive Casimir forces
could be obtained if media could be found which were
good reflectors only in a range of frequencies.
Such a simple physical interpretation of the frequency

spectrum is not unproblematic, however. For comparison
with a more physically realistic system we have plotted
the frequency spectrum obtained by plugging tabulated
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Fig. 5: The frequency spectrum of the Casimir pressure
calculated using real data for gold and the plasma model,
respectively. We have used a= 100 nm. The bottom graph is
a zoom of the above.

optical data for gold from Palik’s book [17] directly into (2)
and integrating over transverse momentum numerically
(the separation is 100 nm; the integrand is now a function
of ω and a individually, not only their product), as well
as the same integrand as obtained when using the simple
plasma model, ε(ω) = 1−ω2p/ω2 with plasma frequency
for gold ωp = 9 eV. Although the force predicted by either
model at zero temperature is found to be very similar in
magnitude when calculated by way of Wick rotation1, the
frequency spectrum clearly differs greatly.
While a useful generalisation, the formalism of mean

reflection coefficients should be used with care since its
substitution renders the integrand of (4) void of physical
meaning other than giving the correct value per definition
after integration: ω simply becomes a dummy variable.
If Ford’s result can be seen as a limiting case of the same
procedure, this would indicate that the spectrum depicted
in fig. 2, while interesting, may not represent physics.
Nonetheless, the key feature of the integrands of figs. 2

and 5, the presence of large oscillations, is a hallmark of
all these graphs. These fluctuations should be physically
observable as noted by several authors. As we will see,

1Disregarding the disputed behaviour of the TE mode near zero
frequency [18].
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Again Casimir’s result is obtained in the limit rσ = 1.
Some caution should be excerted here since the function
Li4(z) has a branch cut along the real axis from z = 1 to∞
across which its imaginary part is discontinuous. Its real
part, however, is continuous everywhere [16].
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respect to frequency and transverse momentum, but the
above analysis using constant reflection coefficients can be
thought of as an averaging process in which the constant
rσ is defined as the value which, when replacing the realis-
tic rσ(ω, p), does not change the value of the integral (2).
Such an interpretation requires rσ to depend on a as well.
Using the calculated Casimir pressure between gold

plates where realistic data from [17] are employed (the
calculation was previously presented in [18]), we can
calculate the effective reflection coefficients rσ(a) by

rσ =

[
Li−14

{
−16π

2a4

3�c
P numσ (a)

}]1/2
, (8)

where Pnum are the calculated data, and Li
−1
m is the

inverse polylogarithm of order m. By use of the series
reversion functionality of analytic software the inverse
polylogarithm is simple to calculate numerically. We plot
the effective reflection coefficient in fig. 4.
Ford [1] (and later Lang [9]) appears to argue that the

frequency spectrum shown in fig. 2 resembles the real
spectrum, with the modification that the oscillations will
be dampened and finally vanish at high frequencies. He
concludes from this that since the oscillations themselves
are much larger than the final force (which is the remain-
der of large fluctuations which cancel each other almost
exactly), much larger and even repulsive Casimir forces
could be obtained if media could be found which were
good reflectors only in a range of frequencies.
Such a simple physical interpretation of the frequency

spectrum is not unproblematic, however. For comparison
with a more physically realistic system we have plotted
the frequency spectrum obtained by plugging tabulated
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a zoom of the above.

optical data for gold from Palik’s book [17] directly into (2)
and integrating over transverse momentum numerically
(the separation is 100 nm; the integrand is now a function
of ω and a individually, not only their product), as well
as the same integrand as obtained when using the simple
plasma model, ε(ω) = 1−ω2p/ω2 with plasma frequency
for gold ωp = 9 eV. Although the force predicted by either
model at zero temperature is found to be very similar in
magnitude when calculated by way of Wick rotation1, the
frequency spectrum clearly differs greatly.
While a useful generalisation, the formalism of mean

reflection coefficients should be used with care since its
substitution renders the integrand of (4) void of physical
meaning other than giving the correct value per definition
after integration: ω simply becomes a dummy variable.
If Ford’s result can be seen as a limiting case of the same
procedure, this would indicate that the spectrum depicted
in fig. 2, while interesting, may not represent physics.
Nonetheless, the key feature of the integrands of figs. 2

and 5, the presence of large oscillations, is a hallmark of
all these graphs. These fluctuations should be physically
observable as noted by several authors. As we will see,

1Disregarding the disputed behaviour of the TE mode near zero
frequency [18].
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Again Casimir’s result is obtained in the limit rσ = 1.
Some caution should be excerted here since the function
Li4(z) has a branch cut along the real axis from z = 1 to∞
across which its imaginary part is discontinuous. Its real
part, however, is continuous everywhere [16].

Physical significance: näıve approach. – Physi-
cally, reflection coefficients are far from constant with
respect to frequency and transverse momentum, but the
above analysis using constant reflection coefficients can be
thought of as an averaging process in which the constant
rσ is defined as the value which, when replacing the realis-
tic rσ(ω, p), does not change the value of the integral (2).
Such an interpretation requires rσ to depend on a as well.
Using the calculated Casimir pressure between gold

plates where realistic data from [17] are employed (the
calculation was previously presented in [18]), we can
calculate the effective reflection coefficients rσ(a) by
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where Pnum are the calculated data, and Li
−1
m is the

inverse polylogarithm of order m. By use of the series
reversion functionality of analytic software the inverse
polylogarithm is simple to calculate numerically. We plot
the effective reflection coefficient in fig. 4.
Ford [1] (and later Lang [9]) appears to argue that the

frequency spectrum shown in fig. 2 resembles the real
spectrum, with the modification that the oscillations will
be dampened and finally vanish at high frequencies. He
concludes from this that since the oscillations themselves
are much larger than the final force (which is the remain-
der of large fluctuations which cancel each other almost
exactly), much larger and even repulsive Casimir forces
could be obtained if media could be found which were
good reflectors only in a range of frequencies.
Such a simple physical interpretation of the frequency

spectrum is not unproblematic, however. For comparison
with a more physically realistic system we have plotted
the frequency spectrum obtained by plugging tabulated
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optical data for gold from Palik’s book [17] directly into (2)
and integrating over transverse momentum numerically
(the separation is 100 nm; the integrand is now a function
of ω and a individually, not only their product), as well
as the same integrand as obtained when using the simple
plasma model, ε(ω) = 1−ω2p/ω2 with plasma frequency
for gold ωp = 9 eV. Although the force predicted by either
model at zero temperature is found to be very similar in
magnitude when calculated by way of Wick rotation1, the
frequency spectrum clearly differs greatly.
While a useful generalisation, the formalism of mean

reflection coefficients should be used with care since its
substitution renders the integrand of (4) void of physical
meaning other than giving the correct value per definition
after integration: ω simply becomes a dummy variable.
If Ford’s result can be seen as a limiting case of the same
procedure, this would indicate that the spectrum depicted
in fig. 2, while interesting, may not represent physics.
Nonetheless, the key feature of the integrands of figs. 2

and 5, the presence of large oscillations, is a hallmark of
all these graphs. These fluctuations should be physically
observable as noted by several authors. As we will see,

1Disregarding the disputed behaviour of the TE mode near zero
frequency [18].
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Again Casimir’s result is obtained in the limit rσ = 1.
Some caution should be excerted here since the function
Li4(z) has a branch cut along the real axis from z = 1 to∞
across which its imaginary part is discontinuous. Its real
part, however, is continuous everywhere [16].

Physical significance: näıve approach. – Physi-
cally, reflection coefficients are far from constant with
respect to frequency and transverse momentum, but the
above analysis using constant reflection coefficients can be
thought of as an averaging process in which the constant
rσ is defined as the value which, when replacing the realis-
tic rσ(ω, p), does not change the value of the integral (2).
Such an interpretation requires rσ to depend on a as well.
Using the calculated Casimir pressure between gold

plates where realistic data from [17] are employed (the
calculation was previously presented in [18]), we can
calculate the effective reflection coefficients rσ(a) by
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where Pnum are the calculated data, and Li
−1
m is the

inverse polylogarithm of order m. By use of the series
reversion functionality of analytic software the inverse
polylogarithm is simple to calculate numerically. We plot
the effective reflection coefficient in fig. 4.
Ford [1] (and later Lang [9]) appears to argue that the

frequency spectrum shown in fig. 2 resembles the real
spectrum, with the modification that the oscillations will
be dampened and finally vanish at high frequencies. He
concludes from this that since the oscillations themselves
are much larger than the final force (which is the remain-
der of large fluctuations which cancel each other almost
exactly), much larger and even repulsive Casimir forces
could be obtained if media could be found which were
good reflectors only in a range of frequencies.
Such a simple physical interpretation of the frequency

spectrum is not unproblematic, however. For comparison
with a more physically realistic system we have plotted
the frequency spectrum obtained by plugging tabulated
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calculated using real data for gold and the plasma model,
respectively. We have used a= 100 nm. The bottom graph is
a zoom of the above.

optical data for gold from Palik’s book [17] directly into (2)
and integrating over transverse momentum numerically
(the separation is 100 nm; the integrand is now a function
of ω and a individually, not only their product), as well
as the same integrand as obtained when using the simple
plasma model, ε(ω) = 1−ω2p/ω2 with plasma frequency
for gold ωp = 9 eV. Although the force predicted by either
model at zero temperature is found to be very similar in
magnitude when calculated by way of Wick rotation1, the
frequency spectrum clearly differs greatly.
While a useful generalisation, the formalism of mean

reflection coefficients should be used with care since its
substitution renders the integrand of (4) void of physical
meaning other than giving the correct value per definition
after integration: ω simply becomes a dummy variable.
If Ford’s result can be seen as a limiting case of the same
procedure, this would indicate that the spectrum depicted
in fig. 2, while interesting, may not represent physics.
Nonetheless, the key feature of the integrands of figs. 2

and 5, the presence of large oscillations, is a hallmark of
all these graphs. These fluctuations should be physically
observable as noted by several authors. As we will see,

1Disregarding the disputed behaviour of the TE mode near zero
frequency [18].
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Frequency spectrum of Casimir forces

however, indications are that while experimental confirma-
tion of the Casimir force as calculated using Wick rotation
is plentiful (see [19] for a review), calculation by straight-
forward integration over real frequencies seems at odds
with a recent experiment. This is paradoxical since the
two methods are typically presented as equivalent.

The paradox and an experiment. – Assume that
the permittivity of two metallic planes in a Casimir cavity
is perturbed in such a way that it is made transparent
in a band of frequencies but is still a good reflector
outside this band (with reflectivity dying off at high
frequencies). The effect on the force from this perturbation
may be calculated in two different ways and the results are
different.
Exactly such a situation was probed experimentally

by Iannuzzi et al. [15]. The force between two metallic
plates (in reality a sphere and a plane) was measured,
one of which was a hydrogen-switchable mirror (HSM). A
good mirror in its as-deposited state, the HSM becomes
transparent in the visible region once in a hydrogen-rich
atmosphere. According to the authors of [15] the switching
of the mirror corresponded roughly to setting the material
reflectivity to zero over a wavelength range 0.2–2.5μm,
corresponding to ω between about ω1 = 7.5 · 10141/s and
ω2 = 9.4 · 10151/s. At a precision of 10%–15% (measured
roughly from fig. 4 in [15]) the group was unable to detect
any difference in the force with the mirror switched on and
off, respectively.
We will estimate the effect of the transparency window

using two different methods (an idealised version of such
a material was considered in [9]). Assume first that the
boundaries of the transparent window, between frequen-
cies ω1 and ω2, are sharp so that for a complex permittivity
ε= ε′+ iε′′ ≡ 1+χ,

χ(ω)→ χ(ω)[1− θ(ω−ω1)θ(ω2−ω)],

where θ is the unit step function. Using, as in [15],
the Drude model with data for gold, ε(ω) = 1−ω2p/(ω2+
iων) with ωp = 9 eV and ν = 35meV, the change in the
permittivity at imaginary frequencies is found as ε(iζ)→
ε(iζ)−Δε(iζ) by use of the Kramers-Kronig relation

Δε(iζ) =
2

π

∫ ω2
ω1

dωε′′(ω)
ω2+ ζ2

=
ω2p

ζ2− ν2
2

π

[
arctan

ω2

ν
− arctan ω2

ν

−ν
ζ

(
arctan

ω2

ζ
− arctan ω1

ζ

)]
,

the use of which ensures that the perturbation obeys
causality. Δε(iζ) makes for a correction to ε(iζ) on the
level of 1%–4% and a corresponding correction to the
force which would be unobservable at the precision of
the experiment [15]. The latter authors use precisely this
argument to explain their negative result.

Fig. 6: ϕ(ω) for Δ= 1 with different s values.

Now let us calculate the correction by instead inserting
a modified ε(ω) into (2) where for a single interface

rTE =
p−√p2+ ε− 1
p+
√
p2+ ε− 1 ; rTM =

εp−√p2+ ε− 1
εp+

√
p2+ ε− 1 ,

and instead of the step functions we model the transparent
window using a function which allows smooth boundaries.
Let χ(ω)→ χ(ω)ϕ(ω;Δ, s) with

ϕ(ω) = 1− Δ
π

[
arctan

s(ω−ω1)
c/a

+arctan
s(ω2−ω)
c/a

]
. (9)

Here the parameter Δ∈ [0, 1] is the relative reduction in
the window and s determines the sharpness of the edges
with s=∞ giving unit step behaviour. The function ϕ is
plotted in fig. 6 for Δ= 1 and different values of s.
We now calculate the change in the force by simply

inserting this modified ε(ω) into (2) and integrate over
p and a sufficiently large frequency range, then taking
the difference. We use the Drude and plasma model,
respectively with parameters for gold to model ε (the data
of [17] contain too few points to use without extensive
extrapolation). In the experiment of [15] only one of the
plates was gold, yet the calculations are so rough that
the difference does not matter here. The fact that in
this estimation both reflection coefficients vanish in the
transparency window whilst in the experiment only one
did so, makes for a slight overestimation of the effect
for smooth window edges, whilst it makes no difference
when edges are sharp since the force only depends on the
product of the reflection coefficients of the two materials.
Note, furthermore, that the erratic behaviour of the
integrand makes the numerical accuracy of integration
somewhat rough, and also that in the modelling of the
transparency band no effort has been made to ensure that
causality is satisfied. Thus, the estimate is accurate only
to an order of magnitude.
The results for different values of Δ and s at separation

a= 100 nm are shown in fig. 7. Note that the absolute
pressure between parallel gold plates at T = 0 is approx-
imately 6Pa (e.g. [18]) and that the difference between
using Drude and plasma models is negligible here. Clearly
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is plentiful (see [19] for a review), calculation by straight-
forward integration over real frequencies seems at odds
with a recent experiment. This is paradoxical since the
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where θ is the unit step function. Using, as in [15],
the Drude model with data for gold, ε(ω) = 1−ω2p/(ω2+
iων) with ωp = 9 eV and ν = 35meV, the change in the
permittivity at imaginary frequencies is found as ε(iζ)→
ε(iζ)−Δε(iζ) by use of the Kramers-Kronig relation

Δε(iζ) =
2

π

∫ ω2
ω1

dωε′′(ω)
ω2+ ζ2

=
ω2p

ζ2− ν2
2

π

[
arctan

ω2

ν
− arctan ω2

ν

−ν
ζ

(
arctan

ω2

ζ
− arctan ω1

ζ

)]
,

the use of which ensures that the perturbation obeys
causality. Δε(iζ) makes for a correction to ε(iζ) on the
level of 1%–4% and a corresponding correction to the
force which would be unobservable at the precision of
the experiment [15]. The latter authors use precisely this
argument to explain their negative result.
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Here the parameter Δ∈ [0, 1] is the relative reduction in
the window and s determines the sharpness of the edges
with s=∞ giving unit step behaviour. The function ϕ is
plotted in fig. 6 for Δ= 1 and different values of s.
We now calculate the change in the force by simply

inserting this modified ε(ω) into (2) and integrate over
p and a sufficiently large frequency range, then taking
the difference. We use the Drude and plasma model,
respectively with parameters for gold to model ε (the data
of [17] contain too few points to use without extensive
extrapolation). In the experiment of [15] only one of the
plates was gold, yet the calculations are so rough that
the difference does not matter here. The fact that in
this estimation both reflection coefficients vanish in the
transparency window whilst in the experiment only one
did so, makes for a slight overestimation of the effect
for smooth window edges, whilst it makes no difference
when edges are sharp since the force only depends on the
product of the reflection coefficients of the two materials.
Note, furthermore, that the erratic behaviour of the
integrand makes the numerical accuracy of integration
somewhat rough, and also that in the modelling of the
transparency band no effort has been made to ensure that
causality is satisfied. Thus, the estimate is accurate only
to an order of magnitude.
The results for different values of Δ and s at separation

a= 100 nm are shown in fig. 7. Note that the absolute
pressure between parallel gold plates at T = 0 is approx-
imately 6Pa (e.g. [18]) and that the difference between
using Drude and plasma models is negligible here. Clearly

53001-p5

Frequency spectrum of Casimir forces

however, indications are that while experimental confirma-
tion of the Casimir force as calculated using Wick rotation
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Exactly such a situation was probed experimentally
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Fig. 7: Force difference with and without a transparent window
using direct frequency calculation. Circles: Drude model, no
circles: plasma model.

the corrections at Δ close to 1 are much too large, more
than 10 times the force itself. The smoothness of the edges
has no obvious effect. Only the plasma model with sharp
boundaries and Δ< 0.5 could fall within the experimen-
tal accuracy of [15], yet it seems highly likely that the
relatively small corrections at low Δ and high s for the
plasma model are due to chance, especially since the more
realitic Drude model gives corrections which are enormous
and also, counterintuitively, positive. Such large correc-
tions would be in keeping with Ford’s predictions, but
seem clearly ruled out by experiment.

Conclusions. – We have revisited the question of the
frequency spectrum of the Casimir force, generalising
Ford’s result [1] to the case of subunitary reflection coef-
ficients. While this smooths out the frequency spectrum
as given by the real-frequency Lifshitz formula integrand,
the integrand is still wildly oscillating. This result is
used to calculate the Casimir force, and free energy for
constant, “effective”, reflection coefficients, a new result
to the author’s knowledge.
While the effective reflection coefficient may be a useful

model, there is little reason to believe the resulting
frequency spectrum to represent physics. A more realistic
spectrum using physical models for the permittivity of
materials is still highly irregular and, taken at face value,
indicates that large and even repulsive Casimir forces
could be attainable by tuning the dielectric response
of materials used. An alternative means of calculation,
paradoxically, gives a different pessimistic result, and the
large effects seemingly implied by the wildly behaved
frequency spectrum will seem to be excluded by a recent
experiment by Ianuzzi et alia.
With the possibility of technological applications of the

Casimir force, however, there is reason to strive for a
better understanding of the physical interpretation of the
frequency spectrum of the Casimir force as well as make

further experimental efforts to settle this issue. An exper-
iment similar to [15] accompanied by a careful measure-
ment of the dielectric response of the actual sample used
over a large frequency region would be a straightforward
possibility, and a more sensitive measurement of the force
might also be able to measure the actual difference in pres-
sure.
It appears that the straightforward interpretation of

the Casimir frequency spectrum as the integrand of the
Lifshitz force formula at real frequencies is not valid, yet
given the modesty of the efforts presented herein further
investigation is warranted. Furthermore, the paradox
presented herein pends a satisfactory resolution, hopefully
to appear in the future.
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data from [17] in electronic format and acknowledges
highly useful suggestions from an anonymous referee.
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the corrections at Δ close to 1 are much too large, more
than 10 times the force itself. The smoothness of the edges
has no obvious effect. Only the plasma model with sharp
boundaries and Δ< 0.5 could fall within the experimen-
tal accuracy of [15], yet it seems highly likely that the
relatively small corrections at low Δ and high s for the
plasma model are due to chance, especially since the more
realitic Drude model gives corrections which are enormous
and also, counterintuitively, positive. Such large correc-
tions would be in keeping with Ford’s predictions, but
seem clearly ruled out by experiment.
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using direct frequency calculation. Circles: Drude model, no
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the corrections at Δ close to 1 are much too large, more
than 10 times the force itself. The smoothness of the edges
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the corrections at Δ close to 1 are much too large, more
than 10 times the force itself. The smoothness of the edges
has no obvious effect. Only the plasma model with sharp
boundaries and Δ< 0.5 could fall within the experimen-
tal accuracy of [15], yet it seems highly likely that the
relatively small corrections at low Δ and high s for the
plasma model are due to chance, especially since the more
realitic Drude model gives corrections which are enormous
and also, counterintuitively, positive. Such large correc-
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seem clearly ruled out by experiment.
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Ford’s result [1] to the case of subunitary reflection coef-
ficients. While this smooths out the frequency spectrum
as given by the real-frequency Lifshitz formula integrand,
the integrand is still wildly oscillating. This result is
used to calculate the Casimir force, and free energy for
constant, “effective”, reflection coefficients, a new result
to the author’s knowledge.
While the effective reflection coefficient may be a useful

model, there is little reason to believe the resulting
frequency spectrum to represent physics. A more realistic
spectrum using physical models for the permittivity of
materials is still highly irregular and, taken at face value,
indicates that large and even repulsive Casimir forces
could be attainable by tuning the dielectric response
of materials used. An alternative means of calculation,
paradoxically, gives a different pessimistic result, and the
large effects seemingly implied by the wildly behaved
frequency spectrum will seem to be excluded by a recent
experiment by Ianuzzi et alia.
With the possibility of technological applications of the

Casimir force, however, there is reason to strive for a
better understanding of the physical interpretation of the
frequency spectrum of the Casimir force as well as make

further experimental efforts to settle this issue. An exper-
iment similar to [15] accompanied by a careful measure-
ment of the dielectric response of the actual sample used
over a large frequency region would be a straightforward
possibility, and a more sensitive measurement of the force
might also be able to measure the actual difference in pres-
sure.
It appears that the straightforward interpretation of

the Casimir frequency spectrum as the integrand of the
Lifshitz force formula at real frequencies is not valid, yet
given the modesty of the efforts presented herein further
investigation is warranted. Furthermore, the paradox
presented herein pends a satisfactory resolution, hopefully
to appear in the future.
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INTRODUCTION

There has been an explosion of interest in the Casimir
effect �1�, generalized to dielectrics by Lifshitz �2�, since the
modern experiments began with Lamoreaux in 1997 �3�. The
zero-temperature Casimir-Lifshitz theory seems to have been
confirmed to 1% accuracy over a range from 100 nm to a
micrometer �4–12�.

However, there has been a continuing controversy over
the temperature dependence of this effect. The prescription
given in Ref. �13� was seriously questioned by Boström and
Sernelius �14� who pointed out that necessarily the trans-
verse electric reflection coefficient at zero frequency must
vanish for metals. This discontinuity predicted a linear tem-
perature term at low temperatures, resulting in about a 15%
correction to the result found by Lamoreaux. Lamoreaux be-
lieves that his experiment could not be in error to this extent
�15�. More heatedly, Mostepanenko and collaborators have
insisted that this behavior is inconsistent with thermodynam-
ics �the Nernst heat theorem� because it would predict, for an
ideal metal, that the free energy has a linear temperature term
at low temperature, and hence that the entropy would not
vanish at zero temperature �16�. Moreover, they assert that
the precision Purdue experiments rule out the linear tempera-
ture term in the low-temperature expansion �12�.

The issue is as yet unresolved, and is summarized in re-
cent reviews �17,18�. We will not add further to the discus-
sion of this controversy here. Rather, the purpose of this
paper is to examine another purported temperature anomaly.
In several recent papers �19–22� Geyer, Klimchitskaya, and
Mostepanenko have claimed that in real dielectrics, which

possess a very small, but nonzero conductivity which van-
ishes at T=0, a similar discontinuity in the transverse mag-
netic reflection coefficient occurs, which would lead to a
similar violation of the Nernst theorem. The same applies to
semiconductors whose conductivity vanishes as temperature
drops to zero. The solution according to these authors, as in
the TE case for good conductors, is to prescribe the effect
away. We argue, however, that such a solution is physically
unsatisfactory.

In Sec. I, we will review and clarify their argument for a
standard Drude-type permittivity model for a weakly con-
ducting material. We thereafter work out the leading-order
temperature corrections to the free energy in the cases where
the media are assumed to have a finite but small residual
conductivity at T=0, as is implied when a Drude model is
employed for taking the conductivity into account. This is a
new result to the best of our knowledge �a similar calculation
for materials with zero conductivity was undertaken in Ref.
�19��. While this calculation does not solve the thermal
anomaly brought forth in Refs. �19–21� and reviewed in Sec.
I, it serves to further illuminate the mathematical behavior of
the free energy of poor conductors at very low temperatures
when different models for the dielectric response of the ma-
terials are employed. A similar calculation is subsequently
performed for the TE mode, which extends that of Ref. �23�
in several ways: We allow for the conductivity to be small;
we work out one further order of the temperature correction
to the free energy; and we allow, for generality, the permit-
tivity to have a finite dielectric constant term in addition to
the Drude-type dielectric response due to free charges.

A word about units. For our theoretical calculations, it is
most convenient to use Gaussian electromagnetic units, as
well as natural space-time units: �=c=kB=1. However, for
final results, which could be experimentally observed, we
use Système International �International System of Units�
�SI� units. The mapping between units is very simply carried
out by dimensional considerations, using the unit conversion
factor �c=1.97
10−5 eV cm. The conductivity transforma-
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tion between Gaussian and SI units is the simple replacement
4��=�SI /�0, where �0=8.85
10−12 F /m is the absolute
permittivity of the vacuum and the notation �SI is used to
explicate that SI units are used.

I. TEMPERATURE ANOMALY FOR SEMICONDUCTORS

Here is a simple way to understand the argument of Ref.
�19�. Suppose we model a dielectric with some small con-
ductivity by the permittivity function

��i�� = 1 +
�̄ − 1

1 + �2/�0
2 +

4��

�
. �1.1�

The essential point is that as �→0, �→ �̄ if �=0, otherwise
�→�. The Casimir �Lifshitz� free energy between two half
spaces, separated by a distance a, assumed to be of the same
material for simplicity, is given by

F =
T

2��m=0

�

��
�m

�

d���ln�1 − rTM
2 e−2�a� + ln�1 − rTE

2 e−2�a�� .

�1.2�

Here �, rTE, and rTM are functions of the discrete Matsubara
frequencies �m=2�mT; �2=k�

2 +�2 with k� the transverse
wave vector, directed parallel to the surfaces. As is conven-
tional, the prime on the summation mark implies the m=0
term be taken with half weight. We need to examine the
behavior of the reflection coefficients in the small � limit.
These are

rTE =
� − ��2 + �2�� − 1�

� + ��2 + �2�� − 1�
, �1.3�

rTM =
�� − ��2 + �2�� − 1�

�� + ��2 + �2�� − 1�
, �1.4�

where �=��i��. For the case of an ideal metal, it was rTE

which was discontinuous:

rTE�� = 0� = 0, lim
�→0

rTE = − 1, �1.5�

so this gave a linear temperature term when the sum over
Matsubara frequencies is converted to an integral according
to the Euler-Maclaurin formula, for example �Ref. �19� uses
the Abel-Plana formula, but that is equivalent�.

For a dielectric the TE reflection coefficient is continuous
and vanishes as �→0, but if there is a small �but not zero�
conductivity which vanishes with T linearly or faster, the TM
coefficient exhibits a discontinuity at �=0 as we now ex-
plain. When the conductivity is small we can assume there
exists a temperature so that the m=1 Matsubara frequency,
�1=2�T, satisfies the inequality

0 	 4��� �1 ��0, �1.6�

in which case

rTM�i� = 0� = 1, rTM�i�1� =
�̄ − 1

�̄ + 1
. �1.7�

Typical values of �0 are in the optical or near IR frequency
regions, so Eq. �1.6� will hold at room temperature for many
semiconductors. If now � goes to zero as T→0 linearly or
faster, Eq. �1.6� continues to hold true all the way to zero
temperature where Eq. �1.7� becomes a true discontinuity,

rTM�i� = 0� = 1, lim
�→0

rTM�i�� =
�̄ − 1

�̄ + 1
. �1.8�

Clearly if � reaches some residual value �0, Eq. �1.6� will
not hold near zero temperature. Likewise the discontinuity
disappears should � be exactly zero in a temperature region
of finite width including T=0.

As in the metal case, Eq. �1.8� gives rise to a linear tem-
perature term in the pressure and the free energy �see, e.g.,
Ref. �17� and references therein for details�. Let fm be the
summand of Eq. �1.2� or a similar expression for the Casimir
pressure. Since fm is discontinuous at m=0, we must replace
it by a continuous function,
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2
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where f̃m is continuous,

f̃m = � f̃0
= lim
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fm, m = 0,

f̃m = fm, m � 0, � �1.10�

so that the Euler-Maclaurin summation formula can be ap-

plied to the sum over f̃m. Then the first term in the third form
in Eq. �1.9� gives rise to a free-energy contribution which is
a linear function of T. Defining the shorthand notation

A0 = 	 �̄ − 1

�̄ + 1

2, �1.11�

that linear term is
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Note that the linear term vanishes for �̄→� as is clear from
noting the relation to the Riemann � function,

Lin�1� = ��n� . �1.14�

Thus at zero temperature, the entropy is nonzero,
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tion between Gaussian and SI units is the simple replacement
4��=�SI /�0, where �0=8.85
10−12 F /m is the absolute
permittivity of the vacuum and the notation �SI is used to
explicate that SI units are used.

I. TEMPERATURE ANOMALY FOR SEMICONDUCTORS

Here is a simple way to understand the argument of Ref.
�19�. Suppose we model a dielectric with some small con-
ductivity by the permittivity function
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The essential point is that as �→0, �→ �̄ if �=0, otherwise
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spaces, separated by a distance a, assumed to be of the same
material for simplicity, is given by
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Here �, rTE, and rTM are functions of the discrete Matsubara
frequencies �m=2�mT; �2=k�

2 +�2 with k� the transverse
wave vector, directed parallel to the surfaces. As is conven-
tional, the prime on the summation mark implies the m=0
term be taken with half weight. We need to examine the
behavior of the reflection coefficients in the small � limit.
These are
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so this gave a linear temperature term when the sum over
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the Abel-Plana formula, but that is equivalent�.
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Typical values of �0 are in the optical or near IR frequency
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Clearly if � reaches some residual value �0, Eq. �1.6� will
not hold near zero temperature. Likewise the discontinuity
disappears should � be exactly zero in a temperature region
of finite width including T=0.

As in the metal case, Eq. �1.8� gives rise to a linear tem-
perature term in the pressure and the free energy �see, e.g.,
Ref. �17� and references therein for details�. Let fm be the
summand of Eq. �1.2� or a similar expression for the Casimir
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it by a continuous function,
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= lim
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so that the Euler-Maclaurin summation formula can be ap-

plied to the sum over f̃m. Then the first term in the third form
in Eq. �1.9� gives rise to a free-energy contribution which is
a linear function of T. Defining the shorthand notation
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Note that the linear term vanishes for �̄→� as is clear from
noting the relation to the Riemann � function,
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of finite width including T=0.
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a linear function of T. Defining the shorthand notation

A0 = 	 �̄ − 1

�̄ + 1

2, �1.11�

that linear term is

FTM =
T

4�
�

0

�

d���ln�1 − A0e−2�a� − ln�1 − e−2�a��

=
T

4��n=1

�
1

n
�A0

n − 1��
0

�

d��e−2n�a

=
T

16�a2 �Li3�A0� − ��3�� , �1.12�

where the polylogarithmic function is

Lin��� =�
k=1

�
�k

kn . �1.13�

Note that the linear term vanishes for �̄→� as is clear from
noting the relation to the Riemann � function,

Lin�1� = ��n� . �1.14�

Thus at zero temperature, the entropy is nonzero,

ELLINGSEN et al. PHYSICAL REVIEW E 78, 021117 �2008�

021117-2



S = − 	 �F
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V
= −
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16�a2 �Li3�A0� − ��3�� , �1.15�

which, if physical, is a violation of the Nernst heat theorem,
or the third law of thermodynamics, which states that the
entropy of a system must vanish at zero temperature.

II. GENERAL FORMALISM

For reference throughout the next sections we will go
though the formalism of determining the leading temperature
corrections to the Casimir �Lifshitz� free energy by use of the
Euler-Maclaurin formula, a procedure often employed previ-
ously.

Considering one polarization mode at a time, the free en-
ergy for the q mode �q=TM,TE� is written in the form

Fq = f�a,T��
m=0

�

�g�m� , �2.1�

where we have pulled out a convenient prefactor.
When T→0 the Matsubara sum becomes an integral, so

the temperature correction to the free energy, given by

�Fq = f�a,T���
m=0

�

� − �
0

�

dm�g�m� , �2.2�

can be determined by use of the Euler-Maclaurin formula.
For the summands of the Lifshitz formula, the higher deriva-
tives of g�m� are singular near m=0. When this is the case
the Euler-Maclaurin formula can be applied to the sum start-
ing at m=1 �or a higher value of m� instead, whereby
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where Bn are the Bernoulli numbers,

B2 =
1

6
; B4 = −

1

30
; B6 =

1

42
; . . . , �2.4�

using the convention of �24� Sec. 23.2. �Two remarks are
called for here: We have assumed that g and all its deriva-
tives vanish at infinity, and we have converted this formula
into one which is commonly asymptotic because we have
omitted the remainder term which is present when only a
finite number of derivatives terms are retained. Thus we are
considering only the leading terms in an asymptotic expan-
sion for small T.�

As mentioned above, g�m� is not analytic at m=0. It can
be written in the asymptotic form for small m

g�m� � c0 + c1m + c3/2m3/2 + c2lm
2 ln m + c2m2 + ¯ ,

�2.5�

m → 0.

The terms needed for the right-hand side of Eq. �2.3� are
now

g�0� = c0, �2.6a�
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When inserted into Eq. �2.3� the terms involving c0 and c2
cancel and one is left with

�̃� −
c1

12
+

11c2l

360
−

49

1920
c3/2 + ¯ . �2.7�

Here the term due to c1 is exact, whereas the terms with c2l
and c3/2 receive contributions from all higher derivatives in
the Euler-Maclaurin formula, and to obtain exact expressions
for the coefficients, all such terms must be kept, as we now
show.

Retaining the higher derivative terms in the Euler-
Maclaurin formula one finds by using
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that the temperature correction to free energy is
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for the coefficients, all such terms must be kept, as we now
show.
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Maclaurin formula one finds by using
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�Fq = f�a,T��̃ , �2.9�

where with Eq. �2.3�,

�̃ = −
c1

12
+ �c2l + �c3/2 + ¯ , �2.10�

with the coefficients

� =
1

9
−

B2

2
−�

n=2

�
B2n�2n

�2n�!
, �2.11a�

TEMPERATURE CORRECTION TO CASIMIR-LIFSHITZ… PHYSICAL REVIEW E 78, 021117 �2008�

021117-3

S = − 	 �F

�T



V
= −

1

16�a2 �Li3�A0� − ��3�� , �1.15�

which, if physical, is a violation of the Nernst heat theorem,
or the third law of thermodynamics, which states that the
entropy of a system must vanish at zero temperature.

II. GENERAL FORMALISM

For reference throughout the next sections we will go
though the formalism of determining the leading temperature
corrections to the Casimir �Lifshitz� free energy by use of the
Euler-Maclaurin formula, a procedure often employed previ-
ously.

Considering one polarization mode at a time, the free en-
ergy for the q mode �q=TM,TE� is written in the form
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can be determined by use of the Euler-Maclaurin formula.
For the summands of the Lifshitz formula, the higher deriva-
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into one which is commonly asymptotic because we have
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be written in the asymptotic form for small m

g�m� � c0 + c1m + c3/2m3/2 + c2lm
2 ln m + c2m2 + ¯ ,

�2.5�

m → 0.

The terms needed for the right-hand side of Eq. �2.3� are
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show.

Retaining the higher derivative terms in the Euler-
Maclaurin formula one finds by using

�2n = � d2n−1

dm2n−1m3/2�
m=1
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These series are formally divergent as is typical for pertur-
bation series near singularities. Indeed, they arise from the
asymptotic Euler-Maclaurin formula �2.3�. For example, �
can be recognized as a special case of the expansion of the
Riemann � function in terms of Bernoulli numbers, Eq.
23.2.3 of Ref. �24� with an infinite number of terms retained
in the sum, and the remainder omitted. A meaningful value
can nonetheless be assigned to them through Borel summa-
tion as detailed in the Appendix. Numerically, the math-
ematical software Maple computes the numerical values by
means of a Levin u transform to

� = 0.03044845705840 . . . , �2.12a�

� = − 0.0254852018898 . . . . �2.12b�

By either numerical or analytical correspondence we thus
recognize that

� = �	− 3

2

 , �2.13a�

� =
��3�
4�2 , �2.13b�

where � is the Riemann � function.
When Eq. �1.1� is used in the Lifshitz formalism with

constant and finite � and �̄�1 in Secs. III and IV, we will
find that the terms of F stemming from c1, c3/2, and c2l are
proportional to T2, T5/2, and T3, respectively. Higher-order
terms of g�m� will likewise give higher-order temperature
corrections.

III. TM MODE, RESIDUAL CONDUCTIVITY

In the following sections we will work out the low-
temperature behavior of corrections to the free energy under
the assumption that a Drude-type dielectric function �1.1�
may be used, and that � is finite and constant with respect to
� and T for small T and �. As argued in Ref. �25�, when � is
finite close to zero temperature Nernst’s theorem will be sat-
isfied. Here we will calculate explicitly the low-temperature
behavior of the free energy for the TM mode.

Conventionally, semiconductors are found within the
broad interval of conductivity �SI in SI units 10−5 �� m�−1

	�SI	105 �� m�−1, that is

106 s−1 	 �SI/�0 	 1016 s−1. �3.1�

For numerical purposes we will use the intermediate value
�SI /�0=1012 s−1, which is large enough not to hamper nu-
merical verification unnecessarily, but small enough to dis-
tinguish the material in question from a good metal. The
frequency corresponding to �SI /�0 for a metal is �p

2 /�, where
�p is the plasma frequency and � the relaxation frequency.
For gold at room temperature �p

2 /� has the approximate
value 3.5
1022 s−1.

Returning to Gaussian units, we consider the TM mode
and introduce the shorthand notation

t =
�1

4��
=

2�T

4��
=

2�kBT

���SI/�0�
�3.2�

and the symbol

� = mt . �3.3�

If 4��=1012 s−1 as assumed above,

t� 0.83T , �3.4�

with T in Kelvin.
The free energy is given by Eq. �1.2�, for which we now

consider only the TM term,

FTM =
T

2��m=0

�

��
�

�

d�� ln�1 − Ae−2�a� , �3.5�

where the reflection coefficient squared is

A� rTM
2 = 	� − �1 + �� − 1���/��2

� + �1 + �� − 1���/��2

2. �3.6�

Here and henceforth the index m on Matsubara frequencies
�m and quantities dependent on it will frequently be sup-
pressed.

The temperature corrections to the free energy at low tem-
peratures are dominated by small frequencies, so we can as-
sume as an approximation that the middle term of Eq. �1.1� is
simply equal to �̄−1 and write

��i�� � �̄ +
4��

�
= �̄ +

1

�
. �3.7�

We define the dimensionless quantity

� = 2a�4��� =
2a

c
��SI/�0� , �3.8�

where a is the distance between the semiconductor plates.
For the value 4���1012 s−1 or smaller, � is a small quan-
tity, which we use to define a criterion for the smallness of
the conductivity in the remainder of this paper,

� � 1. �3.9�

For a=1 �m and � as above, as used for numerical purposes
later, � has a value of about 6.7
10−3, so this criterion is
well satisfied.

By defining the variable x,

x = 2�a =
��

4��
=
���

�
, �3.10�

A can be written

A = 	1 + �̄� − ��1 + �1 + ��̄ − 1����2�/x2

1 + �̄� + ��1 + �1 + ��̄ − 1����2�/x2
2,

�3.11�

and the integral �3.5� with the use of Eq. �3.2� and �
=2�mT becomes
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Riemann � function in terms of Bernoulli numbers, Eq.
23.2.3 of Ref. �24� with an infinite number of terms retained
in the sum, and the remainder omitted. A meaningful value
can nonetheless be assigned to them through Borel summa-
tion as detailed in the Appendix. Numerically, the math-
ematical software Maple computes the numerical values by
means of a Levin u transform to

� = 0.03044845705840 . . . , �2.12a�

� = − 0.0254852018898 . . . . �2.12b�

By either numerical or analytical correspondence we thus
recognize that

� = �	− 3

2

 , �2.13a�

� =
��3�
4�2 , �2.13b�

where � is the Riemann � function.
When Eq. �1.1� is used in the Lifshitz formalism with

constant and finite � and �̄�1 in Secs. III and IV, we will
find that the terms of F stemming from c1, c3/2, and c2l are
proportional to T2, T5/2, and T3, respectively. Higher-order
terms of g�m� will likewise give higher-order temperature
corrections.

III. TM MODE, RESIDUAL CONDUCTIVITY

In the following sections we will work out the low-
temperature behavior of corrections to the free energy under
the assumption that a Drude-type dielectric function �1.1�
may be used, and that � is finite and constant with respect to
� and T for small T and �. As argued in Ref. �25�, when � is
finite close to zero temperature Nernst’s theorem will be sat-
isfied. Here we will calculate explicitly the low-temperature
behavior of the free energy for the TM mode.

Conventionally, semiconductors are found within the
broad interval of conductivity �SI in SI units 10−5 �� m�−1

	�SI	105 �� m�−1, that is

106 s−1 	 �SI/�0 	 1016 s−1. �3.1�

For numerical purposes we will use the intermediate value
�SI /�0=1012 s−1, which is large enough not to hamper nu-
merical verification unnecessarily, but small enough to dis-
tinguish the material in question from a good metal. The
frequency corresponding to �SI /�0 for a metal is �p

2 /�, where
�p is the plasma frequency and � the relaxation frequency.
For gold at room temperature �p

2 /� has the approximate
value 3.5
1022 s−1.

Returning to Gaussian units, we consider the TM mode
and introduce the shorthand notation

t =
�1

4��
=

2�T

4��
=

2�kBT

���SI/�0�
�3.2�

and the symbol

� = mt . �3.3�

If 4��=1012 s−1 as assumed above,

t� 0.83T , �3.4�

with T in Kelvin.
The free energy is given by Eq. �1.2�, for which we now

consider only the TM term,

FTM =
T

2��m=0

�

��
�

�

d�� ln�1 − Ae−2�a� , �3.5�

where the reflection coefficient squared is

A� rTM
2 = 	� − �1 + �� − 1���/��2

� + �1 + �� − 1���/��2

2. �3.6�

Here and henceforth the index m on Matsubara frequencies
�m and quantities dependent on it will frequently be sup-
pressed.

The temperature corrections to the free energy at low tem-
peratures are dominated by small frequencies, so we can as-
sume as an approximation that the middle term of Eq. �1.1� is
simply equal to �̄−1 and write

��i�� � �̄ +
4��

�
= �̄ +

1

�
. �3.7�

We define the dimensionless quantity

� = 2a�4��� =
2a

c
��SI/�0� , �3.8�

where a is the distance between the semiconductor plates.
For the value 4���1012 s−1 or smaller, � is a small quan-
tity, which we use to define a criterion for the smallness of
the conductivity in the remainder of this paper,

� � 1. �3.9�

For a=1 �m and � as above, as used for numerical purposes
later, � has a value of about 6.7
10−3, so this criterion is
well satisfied.

By defining the variable x,

x = 2�a =
��

4��
=
���

�
, �3.10�

A can be written

A = 	1 + �̄� − ��1 + �1 + ��̄ − 1����2�/x2

1 + �̄� + ��1 + �1 + ��̄ − 1����2�/x2
2,

�3.11�

and the integral �3.5� with the use of Eq. �3.2� and �
=2�mT becomes
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FTM�
�4���3t

4�2�2 �
m=0

�

�g�m� , �3.12�

where

g�m� = �
��

�

dxx ln�1 − Ae−x� . �3.13�

We wish now to extract explicitly the temperature depen-
dence of the integrals g�m� in Eq. �3.13�. The procedure we
choose is to expand Eq. �3.13� to leading order in the small
parameter �, and then expand the resulting term in powers of
m to obtain the form �2.5�.

The first term in the Taylor expansion of the logarithm in
powers of � is

ln�1 − Ae−x� = − Li1�A�e−x� + O��2� �3.14�

where we use the polylogarithmic function defined in Eq.
�1.13� and define the quantity

A� = 	1 + ��̄ − 1��
1 + ��̄ + 1��


2. �3.15�

For integral s�1 the polylogarithm Lis�y� can be expressed
by elementary functions, specifically

Li1�y� = − ln�1 − y�; Li0�y� =
y

1 − y
;

Li−1 =
y

�1 − y�2
. �3.16�

The summand g�m� thus has the form

g�m� = − �
��

�

dxx Li1�A�e−x� + O��2� . �3.17�

Now we will expand g�m� in powers of m. It is easy to
show from Eq. �1.13� that

� dy Lin�Ce−y� = −
1


Lin+1�Ce−y�; �3.18�

from which by partial integration

g�m� = − �� Li2�A�e−��� − Li3�A�e−��� + O��2� .
�3.19�

We now use the property

Lin�Ce−y� =�
l=0

�
�− y�l

l!
Lin−l�C� �3.20�

for �C�	1 to expand the polylogarithms in powers of ��.
The terms containing Li2 then cancel and we are left with

g�m� = − Li3�A�� +
1

2
�2�2Li1�A�� + O��2� �3.21�

with A� given by Eq. �3.15�. Henceforth we shall denote the
first two terms of the expansion �3.21� gI�m� and gII�m�. The
remaining O��2� term comes from the error in Eq. �3.14�. As

before we are going to truncate the expansion in � at leading
order, but will evaluate the explicit correction ��2 to Eq.
�3.21� later as a measure of the error. We thus have the
simple expression

gI�m� = − Li3�A�� . �3.22�

We will next expand Eq. �3.22� in �. Li3�A�� does not
have a Taylor expansion near m=0 �where A0=1� because its
second derivative is singular here. Using

d

dy
Lin�y� =

1

y
Lin−1�y� , �3.23�

we differentiate Eq. �3.22� to find

gI��m� =
4t Li2�A��

�1 + ��̄ + 1����1 + ��̄ − 1���
. �3.24�

We can use the identity �26�

Li2�z� + Li2�1 − z� =
�2

6
− ln�z�ln�1 − z� , �3.25�

which is easily verified by differentiation, use of Eq. �1.13�,
and Li2�1�=�2 /6. Furthermore, Li2�1−A�� has a simple Tay-
lor expansion around A�=1,

Li2�1 − A�� = 4� − 4��̄ + 1��2 + ¯ �3.26�

and

4

�1 + ��̄ + 1����1 + ��̄ − 1���
= 4 − 8�̄� + ¯ , �3.27�

whereby we find

gI��m� =
2�2t

3
− 4mt2	 �̄�2

3
+ 4
 + 16mt2 ln 4� + ¯ ,

�3.28�

where the next term of the series is of order t3.
Comparing with Eq. �2.5� we recognize the coefficients

c1 =
2�2t

3
, c2l = 8t2, �3.29�

which we insert into Eq. �2.10� to find

��
m=0

�

� − �
0

�

dm�gI�m� = −
�2t

18
+ 8�t2. �3.30�

We thus obtain the approximate correction to the free en-
ergy for small t,

�FI
TM =

�4���3t

4�2�2 ��
m=0

�

� − �
0

�

dm�gI�m�

� −
�4���3

72�2�2 t2��2 − 144�t� �3.31�

in terms of our reduced units t and �. In SI units, inserting
Eq. �2.13b�,
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where
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dxx ln�1 − Ae−x� . �3.13�

We wish now to extract explicitly the temperature depen-
dence of the integrals g�m� in Eq. �3.13�. The procedure we
choose is to expand Eq. �3.13� to leading order in the small
parameter �, and then expand the resulting term in powers of
m to obtain the form �2.5�.

The first term in the Taylor expansion of the logarithm in
powers of � is

ln�1 − Ae−x� = − Li1�A�e−x� + O��2� �3.14�

where we use the polylogarithmic function defined in Eq.
�1.13� and define the quantity

A� = 	1 + ��̄ − 1��
1 + ��̄ + 1��


2. �3.15�

For integral s�1 the polylogarithm Lis�y� can be expressed
by elementary functions, specifically

Li1�y� = − ln�1 − y�; Li0�y� =
y

1 − y
;

Li−1 =
y

�1 − y�2
. �3.16�

The summand g�m� thus has the form

g�m� = − �
��

�

dxx Li1�A�e−x� + O��2� . �3.17�

Now we will expand g�m� in powers of m. It is easy to
show from Eq. �1.13� that

� dy Lin�Ce−y� = −
1


Lin+1�Ce−y�; �3.18�

from which by partial integration

g�m� = − �� Li2�A�e−��� − Li3�A�e−��� + O��2� .
�3.19�

We now use the property

Lin�Ce−y� =�
l=0

�
�− y�l

l!
Lin−l�C� �3.20�

for �C�	1 to expand the polylogarithms in powers of ��.
The terms containing Li2 then cancel and we are left with

g�m� = − Li3�A�� +
1

2
�2�2Li1�A�� + O��2� �3.21�

with A� given by Eq. �3.15�. Henceforth we shall denote the
first two terms of the expansion �3.21� gI�m� and gII�m�. The
remaining O��2� term comes from the error in Eq. �3.14�. As

before we are going to truncate the expansion in � at leading
order, but will evaluate the explicit correction ��2 to Eq.
�3.21� later as a measure of the error. We thus have the
simple expression

gI�m� = − Li3�A�� . �3.22�

We will next expand Eq. �3.22� in �. Li3�A�� does not
have a Taylor expansion near m=0 �where A0=1� because its
second derivative is singular here. Using

d

dy
Lin�y� =

1

y
Lin−1�y� , �3.23�

we differentiate Eq. �3.22� to find

gI��m� =
4t Li2�A��

�1 + ��̄ + 1����1 + ��̄ − 1���
. �3.24�

We can use the identity �26�

Li2�z� + Li2�1 − z� =
�2

6
− ln�z�ln�1 − z� , �3.25�

which is easily verified by differentiation, use of Eq. �1.13�,
and Li2�1�=�2 /6. Furthermore, Li2�1−A�� has a simple Tay-
lor expansion around A�=1,

Li2�1 − A�� = 4� − 4��̄ + 1��2 + ¯ �3.26�

and

4

�1 + ��̄ + 1����1 + ��̄ − 1���
= 4 − 8�̄� + ¯ , �3.27�

whereby we find

gI��m� =
2�2t

3
− 4mt2	 �̄�2

3
+ 4
 + 16mt2 ln 4� + ¯ ,

�3.28�

where the next term of the series is of order t3.
Comparing with Eq. �2.5� we recognize the coefficients

c1 =
2�2t

3
, c2l = 8t2, �3.29�

which we insert into Eq. �2.10� to find

��
m=0

�

� − �
0

�

dm�gI�m� = −
�2t

18
+ 8�t2. �3.30�

We thus obtain the approximate correction to the free en-
ergy for small t,

�FI
TM =

�4���3t

4�2�2 ��
m=0

�

� − �
0

�

dm�gI�m�

� −
�4���3

72�2�2 t2��2 − 144�t� �3.31�

in terms of our reduced units t and �. In SI units, inserting
Eq. �2.13b�,
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We wish now to extract explicitly the temperature depen-
dence of the integrals g�m� in Eq. �3.13�. The procedure we
choose is to expand Eq. �3.13� to leading order in the small
parameter �, and then expand the resulting term in powers of
m to obtain the form �2.5�.

The first term in the Taylor expansion of the logarithm in
powers of � is

ln�1 − Ae−x� = − Li1�A�e−x� + O��2� �3.14�

where we use the polylogarithmic function defined in Eq.
�1.13� and define the quantity

A� = 	1 + ��̄ − 1��
1 + ��̄ + 1��


2. �3.15�

For integral s�1 the polylogarithm Lis�y� can be expressed
by elementary functions, specifically

Li1�y� = − ln�1 − y�; Li0�y� =
y

1 − y
;

Li−1 =
y

�1 − y�2
. �3.16�

The summand g�m� thus has the form

g�m� = − �
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dxx Li1�A�e−x� + O��2� . �3.17�

Now we will expand g�m� in powers of m. It is easy to
show from Eq. �1.13� that

� dy Lin�Ce−y� = −
1


Lin+1�Ce−y�; �3.18�

from which by partial integration

g�m� = − �� Li2�A�e−��� − Li3�A�e−��� + O��2� .
�3.19�

We now use the property

Lin�Ce−y� =�
l=0
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�− y�l

l!
Lin−l�C� �3.20�

for �C�	1 to expand the polylogarithms in powers of ��.
The terms containing Li2 then cancel and we are left with

g�m� = − Li3�A�� +
1

2
�2�2Li1�A�� + O��2� �3.21�

with A� given by Eq. �3.15�. Henceforth we shall denote the
first two terms of the expansion �3.21� gI�m� and gII�m�. The
remaining O��2� term comes from the error in Eq. �3.14�. As

before we are going to truncate the expansion in � at leading
order, but will evaluate the explicit correction ��2 to Eq.
�3.21� later as a measure of the error. We thus have the
simple expression

gI�m� = − Li3�A�� . �3.22�

We will next expand Eq. �3.22� in �. Li3�A�� does not
have a Taylor expansion near m=0 �where A0=1� because its
second derivative is singular here. Using

d

dy
Lin�y� =

1

y
Lin−1�y� , �3.23�

we differentiate Eq. �3.22� to find

gI��m� =
4t Li2�A��

�1 + ��̄ + 1����1 + ��̄ − 1���
. �3.24�

We can use the identity �26�

Li2�z� + Li2�1 − z� =
�2

6
− ln�z�ln�1 − z� , �3.25�

which is easily verified by differentiation, use of Eq. �1.13�,
and Li2�1�=�2 /6. Furthermore, Li2�1−A�� has a simple Tay-
lor expansion around A�=1,

Li2�1 − A�� = 4� − 4��̄ + 1��2 + ¯ �3.26�

and

4

�1 + ��̄ + 1����1 + ��̄ − 1���
= 4 − 8�̄� + ¯ , �3.27�

whereby we find

gI��m� =
2�2t

3
− 4mt2	 �̄�2

3
+ 4
 + 16mt2 ln 4� + ¯ ,

�3.28�

where the next term of the series is of order t3.
Comparing with Eq. �2.5� we recognize the coefficients

c1 =
2�2t

3
, c2l = 8t2, �3.29�

which we insert into Eq. �2.10� to find
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m=0
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� − �
0
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dm�gI�m� = −
�2t

18
+ 8�t2. �3.30�

We thus obtain the approximate correction to the free en-
ergy for small t,
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0
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dm�gI�m�

� −
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in terms of our reduced units t and �. In SI units, inserting
Eq. �2.13b�,
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from which by partial integration
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order, but will evaluate the explicit correction ��2 to Eq.
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and

4

�1 + ��̄ + 1����1 + ��̄ − 1���
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We thus obtain the approximate correction to the free en-
ergy for small t,
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� − �
0
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dm�gI�m�
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in terms of our reduced units t and �. In SI units, inserting
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�FI
TM = −

�2�kBT�2

72���SI/�0�a2 +
��3��kBT�3

�����SI/�0�a�2

= −
�2�kBT�2

72���SI/�0�a2	1 −
72��3�kBT

�3��SI/�0

 . �3.32�

A. Correction due to subleading terms of Eq. (3.21)

Twice in the above we truncated the expressions at lead-
ing order in the parameter �, in Eq. �3.14� and Eq. �3.21�. As
an indication of the magnitude of the error we will calculate
the next order in � of Eq. �3.21� while a similar calculation
for Eq. �3.14� is more troublesome due to singularities and
beyond the scope of the present effort. The correction ��2 of
Eq. �3.21� was

�g�m� =
1

2
�2m2t2Li1�A�� + O��3t3� . �3.33�

We will only consider the first term, since the next terms give
temperature corrections �T4 and higher. We Taylor expand
as before in powers of �,

Li1�A�� = − ln�4t� − ln m + ��̄ + 2�� + O��2� , �3.34�

from which the leading correction from �gI�m�, is found
from Eq. �2.10� to order T3 to which only the term �m2 ln m
contributes,

 FTM =
�4���3t

4�2�2  �̃�
�4���3�t3

8�2 . �3.35�

Being � independent, the correction �3.35� is much smaller
than the leading term �3.31� for small �. In SI units,

 FTM =
��3��kBT�3

4��2c2 + O�T4� . �3.36�

The relative magnitude of this term compared to the T3 term
of Eq. �3.32� is with our numerical data

��SI/�0�2a2

4c2 � 2.8 
 10−6. �3.37�

The correction from the truncation of Eq. �3.14� is likely to
be of similar size and therefore much smaller than the accu-
racy of the numerical investigation.

B. Numerical investigation of TM mode result

The numerical investigation in Fig. 1�a� employs Eq. �1.1�
with �SI /�0=1012 s−1, �̄=11.67, and �0=8
1015 s−1 as ap-
propriate for Si �27�. While the analytical expression fits well
for T	0.1 K, corrections �T4 become important beyond
this point. The two leading orders in temperature corrections
were shown to be independent of �̄ to leading order in �, but
the T4 correction �not calculated analytically herein� depends
heavily on this value. A qualitative measure of this effect is
given in Fig. 1�b� where we have used �̄=1, cetera paribus.
In all plots the curves are given by Eq. �3.32� with and with-
out inclusion of its second term.

It is noteworthy that, as seen from Fig. 1, while the �−1

term of Eq. �1.1� gives the dominant temperature correction
for small T, nearly all �99.7% with our data� of the free
energy at T=0 is due to the �̄ term.

While the fit pictured in Fig. 1 is indicative, a much more
sensitive confirmation of the accuracy of the theoretical re-
sults is provided by considering the quantity

R =
�Fth − �Fnum

�Fth
, �3.38�

where �Fnum is the direct numerical calculation and �Fth is
the theoretical result to next-to-leading order, in the form
�3.31�. An analysis exactly similar to this was performed in
Ref. �23�; the reader may refer to that paper for further de-
tails.

We have found that �Fth is of the form

�Fth = − CT2�1 − C1T� �3.39�

and assume �Fnum to be of the form

0 0.1 0.2 0.3 0.4 0.5
−1.0757

−1.0756

−1.0755

−1.0754

−1.0753

−1.0752

−1.0751

−1.075

−1.0749
x 10

−10

Temperature T (K)

F
r
e
e
e
n
e
r
g
y
(
J
/
m
2)

Exact numerical calculation
First order T−correction
First and second order T−correction

0 0.2 0.4 0.6 0.8 1
−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3
x 10

−13

Temperature T (K)

F
r
e
e
e
n
e
r
g
y
(
J
/
m
2
)

Exact numerical calculation
First order T−correction
First and second order T−correction

(b)

(a)

FIG. 1. FTM and its approximation with �a� �̄=11.67 and
�b� �̄=1. Correction curves, calculated from Eq. �3.31�, are shifted
to match the numerical calculations at T=0 in each graph.
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A. Correction due to subleading terms of Eq. (3.21)

Twice in the above we truncated the expressions at lead-
ing order in the parameter �, in Eq. �3.14� and Eq. �3.21�. As
an indication of the magnitude of the error we will calculate
the next order in � of Eq. �3.21� while a similar calculation
for Eq. �3.14� is more troublesome due to singularities and
beyond the scope of the present effort. The correction ��2 of
Eq. �3.21� was

�g�m� =
1

2
�2m2t2Li1�A�� + O��3t3� . �3.33�

We will only consider the first term, since the next terms give
temperature corrections �T4 and higher. We Taylor expand
as before in powers of �,

Li1�A�� = − ln�4t� − ln m + ��̄ + 2�� + O��2� , �3.34�

from which the leading correction from �gI�m�, is found
from Eq. �2.10� to order T3 to which only the term �m2 ln m
contributes,
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Being � independent, the correction �3.35� is much smaller
than the leading term �3.31� for small �. In SI units,
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The relative magnitude of this term compared to the T3 term
of Eq. �3.32� is with our numerical data
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The correction from the truncation of Eq. �3.14� is likely to
be of similar size and therefore much smaller than the accu-
racy of the numerical investigation.

B. Numerical investigation of TM mode result

The numerical investigation in Fig. 1�a� employs Eq. �1.1�
with �SI /�0=1012 s−1, �̄=11.67, and �0=8
1015 s−1 as ap-
propriate for Si �27�. While the analytical expression fits well
for T	0.1 K, corrections �T4 become important beyond
this point. The two leading orders in temperature corrections
were shown to be independent of �̄ to leading order in �, but
the T4 correction �not calculated analytically herein� depends
heavily on this value. A qualitative measure of this effect is
given in Fig. 1�b� where we have used �̄=1, cetera paribus.
In all plots the curves are given by Eq. �3.32� with and with-
out inclusion of its second term.

It is noteworthy that, as seen from Fig. 1, while the �−1

term of Eq. �1.1� gives the dominant temperature correction
for small T, nearly all �99.7% with our data� of the free
energy at T=0 is due to the �̄ term.

While the fit pictured in Fig. 1 is indicative, a much more
sensitive confirmation of the accuracy of the theoretical re-
sults is provided by considering the quantity

R =
�Fth − �Fnum

�Fth
, �3.38�

where �Fnum is the direct numerical calculation and �Fth is
the theoretical result to next-to-leading order, in the form
�3.31�. An analysis exactly similar to this was performed in
Ref. �23�; the reader may refer to that paper for further de-
tails.

We have found that �Fth is of the form

�Fth = − CT2�1 − C1T� �3.39�

and assume �Fnum to be of the form
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FIG. 1. FTM and its approximation with �a� �̄=11.67 and
�b� �̄=1. Correction curves, calculated from Eq. �3.31�, are shifted
to match the numerical calculations at T=0 in each graph.
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Twice in the above we truncated the expressions at lead-
ing order in the parameter �, in Eq. �3.14� and Eq. �3.21�. As
an indication of the magnitude of the error we will calculate
the next order in � of Eq. �3.21� while a similar calculation
for Eq. �3.14� is more troublesome due to singularities and
beyond the scope of the present effort. The correction ��2 of
Eq. �3.21� was
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1
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We will only consider the first term, since the next terms give
temperature corrections �T4 and higher. We Taylor expand
as before in powers of �,

Li1�A�� = − ln�4t� − ln m + ��̄ + 2�� + O��2� , �3.34�

from which the leading correction from �gI�m�, is found
from Eq. �2.10� to order T3 to which only the term �m2 ln m
contributes,
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Being � independent, the correction �3.35� is much smaller
than the leading term �3.31� for small �. In SI units,
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The relative magnitude of this term compared to the T3 term
of Eq. �3.32� is with our numerical data
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The correction from the truncation of Eq. �3.14� is likely to
be of similar size and therefore much smaller than the accu-
racy of the numerical investigation.

B. Numerical investigation of TM mode result

The numerical investigation in Fig. 1�a� employs Eq. �1.1�
with �SI /�0=1012 s−1, �̄=11.67, and �0=8
1015 s−1 as ap-
propriate for Si �27�. While the analytical expression fits well
for T	0.1 K, corrections �T4 become important beyond
this point. The two leading orders in temperature corrections
were shown to be independent of �̄ to leading order in �, but
the T4 correction �not calculated analytically herein� depends
heavily on this value. A qualitative measure of this effect is
given in Fig. 1�b� where we have used �̄=1, cetera paribus.
In all plots the curves are given by Eq. �3.32� with and with-
out inclusion of its second term.

It is noteworthy that, as seen from Fig. 1, while the �−1

term of Eq. �1.1� gives the dominant temperature correction
for small T, nearly all �99.7% with our data� of the free
energy at T=0 is due to the �̄ term.

While the fit pictured in Fig. 1 is indicative, a much more
sensitive confirmation of the accuracy of the theoretical re-
sults is provided by considering the quantity

R =
�Fth − �Fnum

�Fth
, �3.38�

where �Fnum is the direct numerical calculation and �Fth is
the theoretical result to next-to-leading order, in the form
�3.31�. An analysis exactly similar to this was performed in
Ref. �23�; the reader may refer to that paper for further de-
tails.

We have found that �Fth is of the form

�Fth = − CT2�1 − C1T� �3.39�

and assume �Fnum to be of the form
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FIG. 1. FTM and its approximation with �a� �̄=11.67 and
�b� �̄=1. Correction curves, calculated from Eq. �3.31�, are shifted
to match the numerical calculations at T=0 in each graph.
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A. Correction due to subleading terms of Eq. (3.21)

Twice in the above we truncated the expressions at lead-
ing order in the parameter �, in Eq. �3.14� and Eq. �3.21�. As
an indication of the magnitude of the error we will calculate
the next order in � of Eq. �3.21� while a similar calculation
for Eq. �3.14� is more troublesome due to singularities and
beyond the scope of the present effort. The correction ��2 of
Eq. �3.21� was

�g�m� =
1

2
�2m2t2Li1�A�� + O��3t3� . �3.33�

We will only consider the first term, since the next terms give
temperature corrections �T4 and higher. We Taylor expand
as before in powers of �,

Li1�A�� = − ln�4t� − ln m + ��̄ + 2�� + O��2� , �3.34�

from which the leading correction from �gI�m�, is found
from Eq. �2.10� to order T3 to which only the term �m2 ln m
contributes,

 FTM =
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4�2�2  �̃�
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8�2 . �3.35�

Being � independent, the correction �3.35� is much smaller
than the leading term �3.31� for small �. In SI units,

 FTM =
��3��kBT�3

4��2c2 + O�T4� . �3.36�

The relative magnitude of this term compared to the T3 term
of Eq. �3.32� is with our numerical data
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The correction from the truncation of Eq. �3.14� is likely to
be of similar size and therefore much smaller than the accu-
racy of the numerical investigation.

B. Numerical investigation of TM mode result

The numerical investigation in Fig. 1�a� employs Eq. �1.1�
with �SI /�0=1012 s−1, �̄=11.67, and �0=8
1015 s−1 as ap-
propriate for Si �27�. While the analytical expression fits well
for T	0.1 K, corrections �T4 become important beyond
this point. The two leading orders in temperature corrections
were shown to be independent of �̄ to leading order in �, but
the T4 correction �not calculated analytically herein� depends
heavily on this value. A qualitative measure of this effect is
given in Fig. 1�b� where we have used �̄=1, cetera paribus.
In all plots the curves are given by Eq. �3.32� with and with-
out inclusion of its second term.

It is noteworthy that, as seen from Fig. 1, while the �−1

term of Eq. �1.1� gives the dominant temperature correction
for small T, nearly all �99.7% with our data� of the free
energy at T=0 is due to the �̄ term.

While the fit pictured in Fig. 1 is indicative, a much more
sensitive confirmation of the accuracy of the theoretical re-
sults is provided by considering the quantity

R =
�Fth − �Fnum

�Fth
, �3.38�

where �Fnum is the direct numerical calculation and �Fth is
the theoretical result to next-to-leading order, in the form
�3.31�. An analysis exactly similar to this was performed in
Ref. �23�; the reader may refer to that paper for further de-
tails.

We have found that �Fth is of the form

�Fth = − CT2�1 − C1T� �3.39�

and assume �Fnum to be of the form
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FIG. 1. FTM and its approximation with �a� �̄=11.67 and
�b� �̄=1. Correction curves, calculated from Eq. �3.31�, are shifted
to match the numerical calculations at T=0 in each graph.
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�Fnum = − DT2�1 − D1T + D2T2 + ¯ � , �3.40�

from which one finds

R =
C − D

C
−

D

C
�C1 − D1�T −

D

C
�D2 + C1�C1 − D1��T2 + ¯ .

�3.41�

In the special case where C=D and C1=D1, this becomes

R = − D2T2 + O�T3� �3.42�

which is zero in the limit T=0 and has zero slope in this
limit. The zero-temperature limit of R and its slope thus pro-
vide measures of the accuracy of the theoretical results: if the
T2 coefficient is correct, R should approach zero as T→0,
and if the T3 coefficient is correct, the slope of R�T� should
vanish in this limit as well. We have not taken the corrections
�3.36� into account in the plotting of Fig. 2.

We have undertaken a numerical study of the behavior
close to zero temperature, resulting in the graph of R shown
in Fig. 2. Due to the vanishing denominator of Eq. �3.38�, the
analysis is extremely sensitive to numerical errors as the zero
temperature limit is approached. From the figure it seems
clear that the errors in the two coefficients are small enough
to confirm the correctness of Eq. �3.31�, although some cau-
tion must be exerted due to the numerical volatility of R.
Comparing Fig. 2 to Eq. �3.42� it is clear that D2	0 which
implies that the coefficient of the T4 term of the free energy
be positive, which conforms with the corrections in Fig. 1
not accounted for to order T3.

IV. TE MODE, RESIDUAL CONDUCTIVITY

For the TE mode the dominant temperature correction to
the free energy comes from the last term of Eq. �1.1�. The
permittivity �1.1�, which can be approximated as Eq. �3.7�, is
similar, but not identical, to that for a Drude metal, consid-
ered in Refs. �23,28�. There, instead of Eq. �3.7� the permit-
tivity was assumed to be

�metal = 1 +
�p

2

��� + ��
� 1 +

�p
2

��
. �4.1�

The principal difference is that the constant term �̄ is as-
sumed to be significant here and kept general. Since for
small � the term ��−1 dominates the constant term, an ap-
proximation to the low-temperature behavior of the dielectric
would be expected to be found by the same analysis as that
of Refs. �23,28� but with the substitution

�p
2

�
→ 4�� . �4.2�

For typical semiconductors, 4�� is smaller than �p
2 /� for a

good metal by many orders of magnitude. For this reason,
since the free energy at zero temperature is of the same order
of magnitude for the metals and semiconductors for the same
separation, the relative temperature corrections for the TE
mode are expected to be much smaller than for a metal.
Thus, there is reason to investigate whether the effects of
�̄�1, while negligible for a metal, could be important for
small �. In some dielectric materials, as is well known, �̄ can
exceed unity by as much as two orders of magnitude, and a
more careful analysis is therefore justified. The procedure is
the same as above, and an extension of that found in Ref.
�23�, to which the reader may turn for further detail.

It was found in Refs. �23,28� that for T→0, and �̄=1,

�FTE = C2T2 − C5/2T5/2 + ¯ , �4.3�

where

C2 =
�4���

48
�2 ln 2 − 1� , �4.4a�

C5/2 =
�2�

6
��− 3/2��4���3/2a . �4.4b�

Here ��y� is the Riemann � function �for this closed form of
C5/2, see Appendix A of Ref. �23��.

For the numerical values indicated this gives the SI values

C2 = 1.618 571 9 
 10−19 J

K m2	 �SI/�0

1012 s−1
 , �4.5a�

C5/2 = 2.584 437 3 
 10−22 J

K5/2 m2	 a

1 �m

	 �SI/�0

1012 s−1
3/2

.

�4.5b�

Thus the TE temperature correction is expected to be posi-
tive and in the order of magnitude of 10−19 J /m2 at T=1 K.

The numerical calculations shown in Fig. 3 were compli-
cated by the fact that the thermal corrections are many orders
of magnitude smaller than the free energy at zero tempera-
ture, making a graph of the quantity R similar to Fig. 2
unfeasible within the assumption of ��1. We show here,
however, that assuming �̄�1 does not change the theoreti-
cally predicted thermal correction to the free energy to order
T3, and therefore merely refer to Ref. �23� for further numeri-
cal support of the theoretical result.
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FIG. 2. The quantity R defined in Eq. �3.38� plotted for the TM
result �3.31� and numerical calculations.
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which is zero in the limit T=0 and has zero slope in this
limit. The zero-temperature limit of R and its slope thus pro-
vide measures of the accuracy of the theoretical results: if the
T2 coefficient is correct, R should approach zero as T→0,
and if the T3 coefficient is correct, the slope of R�T� should
vanish in this limit as well. We have not taken the corrections
�3.36� into account in the plotting of Fig. 2.

We have undertaken a numerical study of the behavior
close to zero temperature, resulting in the graph of R shown
in Fig. 2. Due to the vanishing denominator of Eq. �3.38�, the
analysis is extremely sensitive to numerical errors as the zero
temperature limit is approached. From the figure it seems
clear that the errors in the two coefficients are small enough
to confirm the correctness of Eq. �3.31�, although some cau-
tion must be exerted due to the numerical volatility of R.
Comparing Fig. 2 to Eq. �3.42� it is clear that D2	0 which
implies that the coefficient of the T4 term of the free energy
be positive, which conforms with the corrections in Fig. 1
not accounted for to order T3.

IV. TE MODE, RESIDUAL CONDUCTIVITY

For the TE mode the dominant temperature correction to
the free energy comes from the last term of Eq. �1.1�. The
permittivity �1.1�, which can be approximated as Eq. �3.7�, is
similar, but not identical, to that for a Drude metal, consid-
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good metal by many orders of magnitude. For this reason,
since the free energy at zero temperature is of the same order
of magnitude for the metals and semiconductors for the same
separation, the relative temperature corrections for the TE
mode are expected to be much smaller than for a metal.
Thus, there is reason to investigate whether the effects of
�̄�1, while negligible for a metal, could be important for
small �. In some dielectric materials, as is well known, �̄ can
exceed unity by as much as two orders of magnitude, and a
more careful analysis is therefore justified. The procedure is
the same as above, and an extension of that found in Ref.
�23�, to which the reader may turn for further detail.
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Thus the TE temperature correction is expected to be posi-
tive and in the order of magnitude of 10−19 J /m2 at T=1 K.

The numerical calculations shown in Fig. 3 were compli-
cated by the fact that the thermal corrections are many orders
of magnitude smaller than the free energy at zero tempera-
ture, making a graph of the quantity R similar to Fig. 2
unfeasible within the assumption of ��1. We show here,
however, that assuming �̄�1 does not change the theoreti-
cally predicted thermal correction to the free energy to order
T3, and therefore merely refer to Ref. �23� for further numeri-
cal support of the theoretical result.
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FIG. 2. The quantity R defined in Eq. �3.38� plotted for the TM
result �3.31� and numerical calculations.
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In the special case where C=D and C1=D1, this becomes

R = − D2T2 + O�T3� �3.42�

which is zero in the limit T=0 and has zero slope in this
limit. The zero-temperature limit of R and its slope thus pro-
vide measures of the accuracy of the theoretical results: if the
T2 coefficient is correct, R should approach zero as T→0,
and if the T3 coefficient is correct, the slope of R�T� should
vanish in this limit as well. We have not taken the corrections
�3.36� into account in the plotting of Fig. 2.

We have undertaken a numerical study of the behavior
close to zero temperature, resulting in the graph of R shown
in Fig. 2. Due to the vanishing denominator of Eq. �3.38�, the
analysis is extremely sensitive to numerical errors as the zero
temperature limit is approached. From the figure it seems
clear that the errors in the two coefficients are small enough
to confirm the correctness of Eq. �3.31�, although some cau-
tion must be exerted due to the numerical volatility of R.
Comparing Fig. 2 to Eq. �3.42� it is clear that D2	0 which
implies that the coefficient of the T4 term of the free energy
be positive, which conforms with the corrections in Fig. 1
not accounted for to order T3.

IV. TE MODE, RESIDUAL CONDUCTIVITY

For the TE mode the dominant temperature correction to
the free energy comes from the last term of Eq. �1.1�. The
permittivity �1.1�, which can be approximated as Eq. �3.7�, is
similar, but not identical, to that for a Drude metal, consid-
ered in Refs. �23,28�. There, instead of Eq. �3.7� the permit-
tivity was assumed to be
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The principal difference is that the constant term �̄ is as-
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For typical semiconductors, 4�� is smaller than �p
2 /� for a

good metal by many orders of magnitude. For this reason,
since the free energy at zero temperature is of the same order
of magnitude for the metals and semiconductors for the same
separation, the relative temperature corrections for the TE
mode are expected to be much smaller than for a metal.
Thus, there is reason to investigate whether the effects of
�̄�1, while negligible for a metal, could be important for
small �. In some dielectric materials, as is well known, �̄ can
exceed unity by as much as two orders of magnitude, and a
more careful analysis is therefore justified. The procedure is
the same as above, and an extension of that found in Ref.
�23�, to which the reader may turn for further detail.
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result �3.31� and numerical calculations.
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result �3.31� and numerical calculations.
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A. More general treatment of the TE mode

Let us treat the TE mode temperature correction to the
free energy more carefully. Starting with the expression �1.2�
we perform the substitution

x =
�

����i�� − 1
=
��

!�
�4.6�

where we define the recurring quantity

! = �� + ��̄ − 1��2. �4.7�

Then the free energy may be written

FTE =
�4���3t

4�2 �
m=0

�

�g�m� �4.8a�

with

g�m� = !2�
�/!

�

dxx ln�1 − Be−�!x� . �4.8b�

The squared reflection coefficient given by Eq. �1.3� now
depends only on x,

B = �x − �x2 + 1�4. �4.9�

We expand the integrand of g�m�,

ln�1 − Be−�!x� = ln�1 − B� +
�!xB

1 − B
+ ¯ . �4.10�

Note that this is as far as we can expand this way, since the
next term of the � expansion gives a divergent contribution
�an alternative method which avoids some divergences but is
somewhat more cumbersome is the method employed in Ap-
pendix A of Ref. �23� where the corrections are calculated
without the use of the Euler-Maclaurin formula�.

Consider the first terms of the expansion �4.10� �we dub
the terms of g�m� from the expansion gI�m� ,gII�m� , . . .�,

gI�m� = !2�
�/!

�

dxx ln�1 − �x − �x2 + 1�4� . �4.11�

This integral can be evaluated explicitly �a similar integral
was evaluated in Ref. �23� where the lower limit was ap-
proximated as zero�. Perform the substitution x=sinh u. Then
we may write

gI�m� =
!2

4
�

u0

�

du�e2u − e−2u�ln�1 − e−4u� �4.12a�

with

u0 = arsinh
�

!
=

1

2
ln	��̄� + 1 + ��
��̄� + 1 − ��
 . �4.12b�

With the substitution y=e−2u,

gI�m� =
!2

8
�

0

y0

dy�y−2 − 1�ln�1 − y2� , �4.13a�

where

y0 = e−2u0 =
��̄� + 1 − ��
��̄� + 1 + ��

= 1 − 2�� + 2� + ��̄ − 2��3/2 + ¯ . �4.13b�

The integral is straightforward to evaluate and the result is

gI�m� = −
!2

8
�	 1

y0
+ y0
ln�1 − y0

2� − 2y0 + 2 ln
1 + y0

1 − y0
� .
�4.14�

We expand this in powers of � and find that the terms
��3/2 cancel, consistent with the small-x dependence of the
integrand of gI�m�. We are left with

gI�m� = −
�

4
�2 ln 2 − 1� −

�2

4
�ln 4� + �̄�2 ln 2 − 1��

+
2

3
�5/2 + O��3� . �4.15�

Comparing with Eq. �2.5� we see

c1 = −
t

4
�2 ln 2 − 1� and c2l = −

t2

4
, �4.16�

while the dependence on �̄ only enters in the c2 term �m2

which does not contribute to the Euler-Maclaurin formula.
The temperature correction to first order in � is thus

�FI
TE�

�4���3t2

4�2 �2 ln 2 − 1

48
−
�t

4
� . �4.17�

We see that the leading term conforms with Eq. �4.3� when
Eq. �4.4a� is inserted. The first term beyond those calculated
is proportional to T7/2 according to Eq. �4.15�. In SI units
with �2.13b�,

�FI
TE�

�SI�kBT�2

48�0�c2 �2 ln 2 − 1� −
��3��kBT�3

8��2c2 . �4.18�
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FIG. 3. Temperature dependence of the free energy for TE at
1 micron separation. The solid line is an exact numerical calcula-
tion including all terms of Eq. �1.1� with �̄=11.66 and �0=8.0

1015 s−1, the dashed line is the parabolic temperature correction
�4.3�. The term �T5/2 is too small to be visible in the graph.
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FIG. 3. Temperature dependence of the free energy for TE at
1 micron separation. The solid line is an exact numerical calcula-
tion including all terms of Eq. �1.1� with �̄=11.66 and �0=8.0

1015 s−1, the dashed line is the parabolic temperature correction
�4.3�. The term �T5/2 is too small to be visible in the graph.

ELLINGSEN et al. PHYSICAL REVIEW E 78, 021117 �2008�

021117-8

A. More general treatment of the TE mode

Let us treat the TE mode temperature correction to the
free energy more carefully. Starting with the expression �1.2�
we perform the substitution

x =
�

����i�� − 1
=
��

!�
�4.6�

where we define the recurring quantity

! = �� + ��̄ − 1��2. �4.7�

Then the free energy may be written

FTE =
�4���3t

4�2 �
m=0

�

�g�m� �4.8a�

with

g�m� = !2�
�/!

�

dxx ln�1 − Be−�!x� . �4.8b�

The squared reflection coefficient given by Eq. �1.3� now
depends only on x,

B = �x − �x2 + 1�4. �4.9�

We expand the integrand of g�m�,

ln�1 − Be−�!x� = ln�1 − B� +
�!xB

1 − B
+ ¯ . �4.10�

Note that this is as far as we can expand this way, since the
next term of the � expansion gives a divergent contribution
�an alternative method which avoids some divergences but is
somewhat more cumbersome is the method employed in Ap-
pendix A of Ref. �23� where the corrections are calculated
without the use of the Euler-Maclaurin formula�.

Consider the first terms of the expansion �4.10� �we dub
the terms of g�m� from the expansion gI�m� ,gII�m� , . . .�,

gI�m� = !2�
�/!

�

dxx ln�1 − �x − �x2 + 1�4� . �4.11�

This integral can be evaluated explicitly �a similar integral
was evaluated in Ref. �23� where the lower limit was ap-
proximated as zero�. Perform the substitution x=sinh u. Then
we may write

gI�m� =
!2

4
�

u0

�

du�e2u − e−2u�ln�1 − e−4u� �4.12a�

with

u0 = arsinh
�

!
=

1

2
ln	��̄� + 1 + ��
��̄� + 1 − ��
 . �4.12b�

With the substitution y=e−2u,

gI�m� =
!2

8
�

0

y0

dy�y−2 − 1�ln�1 − y2� , �4.13a�

where

y0 = e−2u0 =
��̄� + 1 − ��
��̄� + 1 + ��

= 1 − 2�� + 2� + ��̄ − 2��3/2 + ¯ . �4.13b�

The integral is straightforward to evaluate and the result is

gI�m� = −
!2

8
�	 1

y0
+ y0
ln�1 − y0

2� − 2y0 + 2 ln
1 + y0

1 − y0
� .
�4.14�

We expand this in powers of � and find that the terms
��3/2 cancel, consistent with the small-x dependence of the
integrand of gI�m�. We are left with

gI�m� = −
�

4
�2 ln 2 − 1� −

�2

4
�ln 4� + �̄�2 ln 2 − 1��

+
2

3
�5/2 + O��3� . �4.15�

Comparing with Eq. �2.5� we see

c1 = −
t

4
�2 ln 2 − 1� and c2l = −

t2

4
, �4.16�

while the dependence on �̄ only enters in the c2 term �m2

which does not contribute to the Euler-Maclaurin formula.
The temperature correction to first order in � is thus

�FI
TE�

�4���3t2

4�2 �2 ln 2 − 1

48
−
�t

4
� . �4.17�

We see that the leading term conforms with Eq. �4.3� when
Eq. �4.4a� is inserted. The first term beyond those calculated
is proportional to T7/2 according to Eq. �4.15�. In SI units
with �2.13b�,

�FI
TE�

�SI�kBT�2

48�0�c2 �2 ln 2 − 1� −
��3��kBT�3

8��2c2 . �4.18�

0 0.5 1
−2.331488190

−2.331488185

−2.331488180

−2.331488175

−2.331488170

Temperature (K)

F
r
e
e

e
n
e
g
y

(
1
0
−
1
1
J
m
−
2)

FIG. 3. Temperature dependence of the free energy for TE at
1 micron separation. The solid line is an exact numerical calcula-
tion including all terms of Eq. �1.1� with �̄=11.66 and �0=8.0

1015 s−1, the dashed line is the parabolic temperature correction
�4.3�. The term �T5/2 is too small to be visible in the graph.
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free energy more carefully. Starting with the expression �1.2�
we perform the substitution

x =
�

����i�� − 1
=
��

!�
�4.6�

where we define the recurring quantity

! = �� + ��̄ − 1��2. �4.7�

Then the free energy may be written

FTE =
�4���3t

4�2 �
m=0

�

�g�m� �4.8a�

with

g�m� = !2�
�/!

�

dxx ln�1 − Be−�!x� . �4.8b�

The squared reflection coefficient given by Eq. �1.3� now
depends only on x,

B = �x − �x2 + 1�4. �4.9�

We expand the integrand of g�m�,

ln�1 − Be−�!x� = ln�1 − B� +
�!xB

1 − B
+ ¯ . �4.10�

Note that this is as far as we can expand this way, since the
next term of the � expansion gives a divergent contribution
�an alternative method which avoids some divergences but is
somewhat more cumbersome is the method employed in Ap-
pendix A of Ref. �23� where the corrections are calculated
without the use of the Euler-Maclaurin formula�.

Consider the first terms of the expansion �4.10� �we dub
the terms of g�m� from the expansion gI�m� ,gII�m� , . . .�,

gI�m� = !2�
�/!

�

dxx ln�1 − �x − �x2 + 1�4� . �4.11�

This integral can be evaluated explicitly �a similar integral
was evaluated in Ref. �23� where the lower limit was ap-
proximated as zero�. Perform the substitution x=sinh u. Then
we may write

gI�m� =
!2

4
�

u0

�

du�e2u − e−2u�ln�1 − e−4u� �4.12a�

with

u0 = arsinh
�

!
=

1

2
ln	��̄� + 1 + ��
��̄� + 1 − ��
 . �4.12b�

With the substitution y=e−2u,

gI�m� =
!2

8
�

0

y0

dy�y−2 − 1�ln�1 − y2� , �4.13a�

where

y0 = e−2u0 =
��̄� + 1 − ��
��̄� + 1 + ��

= 1 − 2�� + 2� + ��̄ − 2��3/2 + ¯ . �4.13b�

The integral is straightforward to evaluate and the result is

gI�m� = −
!2

8
�	 1

y0
+ y0
ln�1 − y0

2� − 2y0 + 2 ln
1 + y0

1 − y0
� .
�4.14�

We expand this in powers of � and find that the terms
��3/2 cancel, consistent with the small-x dependence of the
integrand of gI�m�. We are left with

gI�m� = −
�

4
�2 ln 2 − 1� −

�2

4
�ln 4� + �̄�2 ln 2 − 1��

+
2

3
�5/2 + O��3� . �4.15�

Comparing with Eq. �2.5� we see

c1 = −
t

4
�2 ln 2 − 1� and c2l = −

t2

4
, �4.16�

while the dependence on �̄ only enters in the c2 term �m2

which does not contribute to the Euler-Maclaurin formula.
The temperature correction to first order in � is thus

�FI
TE�

�4���3t2

4�2 �2 ln 2 − 1

48
−
�t

4
� . �4.17�

We see that the leading term conforms with Eq. �4.3� when
Eq. �4.4a� is inserted. The first term beyond those calculated
is proportional to T7/2 according to Eq. �4.15�. In SI units
with �2.13b�,

�FI
TE�

�SI�kBT�2

48�0�c2 �2 ln 2 − 1� −
��3��kBT�3

8��2c2 . �4.18�
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FIG. 3. Temperature dependence of the free energy for TE at
1 micron separation. The solid line is an exact numerical calcula-
tion including all terms of Eq. �1.1� with �̄=11.66 and �0=8.0

1015 s−1, the dashed line is the parabolic temperature correction
�4.3�. The term �T5/2 is too small to be visible in the graph.
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The T3 term of Eq. �4.18� has the same form as that found
for ideal metals in the limit aT�1 �29,30�. A similar term is
present in Eq. �3.36�. �Note that the T3 correction for the TM
mode is not fully accounted for therein.� A numerical com-
parison of this term with the difference between the graphs in
Fig. 3 is shown in Fig. 4. It shows that the T3 coefficient in
Eq. �4.18� is the right order of magnitude, but the numerical
precision is not sufficient to draw definite conclusions about
its accuracy at this time.

B. First-order correction to expansion (4.10)

The first-order correction term in Eq. �4.10� is easily cal-
culated with a similar scheme. We have

gII�m� = �!3�
�/!

�

dx
x2B

1 − B
=
�!3

4
�
�/!

�

dx
x�x − �x2 + 1�2

�x2 + 1
.

�4.19�

The procedure for solving this integral is as before. Substi-
tute x=sinh u to obtain with a little shuffling

gII�m� =
�!3

8
�

u0

�

due−u�1 − e−2u� . �4.20�

With the substitution z=e−u this becomes very simple,

gII�m� = −
�!3

8
�

z0

0

dz�1 − z2� =
�!3

8
	z0 −

z0
3

3

 �4.21�

with

z0 = e−u0 = 	��̄� + 1 − ��
��̄� + 1 + ��


1/2

= 1 − �� +
�

2
+

1

2
��̄ − 1��3/2 + ¯ . �4.22�

Thus we find the � expansion of gII�m�,

gII�m� =
�

8
	2

3
�3/2 − �2 − �̄��5/2 + ¯ 
 . �4.23�

Hence, with Eqs. �2.10� and �4.8a�,

�FII
TE =

�4���3�
48�2 �t5/2 + O�t7/2� , �4.24a�

or in SI units with �=��− 3
2 �,

�FII
TE =

�2��	− 3

2

a��SI/�0�3/2

6�3/2 �kBT�5/2 + ¯ .

�4.24b�

Comparison with Eq. �4.4b� shows full agreement with the
result for metals ��̄=1�.

It is worth noting that while the next-to-leading tempera-
ture correction is of order T5/2, the term �T3 in Eq. �4.18�
dominates it with respect to �. Thus in the small � limit the
T5/2 dependency becomes all but imperceptible.

CONCLUSIONS

We have worked out the two leading terms of the tem-
perature correction to the Casimir-Lifshitz free energy at low
temperatures between poor conductors obeying a Drude-type
dispersion relation. We have assumed that the materials have
a small residual conductivity �compared to the reciprocal of
the interplate separation� which is finite and constant with
respect to temperature and frequency near T=0.

The calculation for the TM mode complements that of
Ref. �19� where the temperature correction for free energy
between two dielectrics of zero conductivity was calculated.
Both the TE and TM free energy temperature corrections are
quadratic to leading order. To the extent of our computations,
the TM mode has integer powers of T beyond the leading,
whereas the TE mode has both integer and half-integer pow-
ers. The temperature anomaly reviewed in Sec. I occurs
when the transition from finite to zero conductivity happens
at exactly T=0, and while the analysis presented here does
not resolve the anomaly, it is of interest to know the low-
temperature behavior of the free energy in each of the two
cases.

Note furthermore that the effects of the static dielectric
permittivity �̄ only enters to order T4 for the TM mode and
order T7/2 for the TE mode. The fact that the coefficient of
the term T7/2 appears to depend on �̄ is noteworthy since
only integer powers of T were reported in Ref. �19�, although
seeing as we have not calculated the coefficient here it is
possible that cancellations occur.

Our calculations are delicate since they rely on the rela-
tive smallness of different parameters simultaneously. We
have assumed the parameter t �essentially temperature T di-
vided by conductivity �� small while at the same time letting
� be small compared to the inverse of the separation a. This
is the reason why the leading order temperature corrections
in Eq. �3.31� appear to diverge as � vanishes. On a deeper
level these subtleties stem from noncommuting limits in the
Lifshitz formalism which are the cause of anomalies such as
that reviewed in Sec. I. Another curious property both of the
present calculations and those of Geyer, Klimchitskaya, and
Mostepanenko �19� is that the free energy corrections of or-
der in T just beyond what we have considered here appear to
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FIG. 4. The difference between the numerically calculated free
energy and the quadratic T term of Eq. �4.18� �equal to the differ-
ence between the graphs in Fig. 3� plotted against the absolute value
of the T3 term of Eq. �4.18�.
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The T3 term of Eq. �4.18� has the same form as that found
for ideal metals in the limit aT�1 �29,30�. A similar term is
present in Eq. �3.36�. �Note that the T3 correction for the TM
mode is not fully accounted for therein.� A numerical com-
parison of this term with the difference between the graphs in
Fig. 3 is shown in Fig. 4. It shows that the T3 coefficient in
Eq. �4.18� is the right order of magnitude, but the numerical
precision is not sufficient to draw definite conclusions about
its accuracy at this time.

B. First-order correction to expansion (4.10)

The first-order correction term in Eq. �4.10� is easily cal-
culated with a similar scheme. We have

gII�m� = �!3�
�/!

�

dx
x2B

1 − B
=
�!3

4
�
�/!

�

dx
x�x − �x2 + 1�2

�x2 + 1
.

�4.19�

The procedure for solving this integral is as before. Substi-
tute x=sinh u to obtain with a little shuffling

gII�m� =
�!3

8
�

u0

�

due−u�1 − e−2u� . �4.20�

With the substitution z=e−u this becomes very simple,

gII�m� = −
�!3

8
�

z0

0

dz�1 − z2� =
�!3

8
	z0 −

z0
3

3

 �4.21�

with

z0 = e−u0 = 	��̄� + 1 − ��
��̄� + 1 + ��


1/2

= 1 − �� +
�

2
+

1

2
��̄ − 1��3/2 + ¯ . �4.22�

Thus we find the � expansion of gII�m�,

gII�m� =
�

8
	2

3
�3/2 − �2 − �̄��5/2 + ¯ 
 . �4.23�

Hence, with Eqs. �2.10� and �4.8a�,

�FII
TE =

�4���3�
48�2 �t5/2 + O�t7/2� , �4.24a�

or in SI units with �=��− 3
2 �,

�FII
TE =

�2��	− 3

2

a��SI/�0�3/2

6�3/2 �kBT�5/2 + ¯ .

�4.24b�

Comparison with Eq. �4.4b� shows full agreement with the
result for metals ��̄=1�.

It is worth noting that while the next-to-leading tempera-
ture correction is of order T5/2, the term �T3 in Eq. �4.18�
dominates it with respect to �. Thus in the small � limit the
T5/2 dependency becomes all but imperceptible.

CONCLUSIONS

We have worked out the two leading terms of the tem-
perature correction to the Casimir-Lifshitz free energy at low
temperatures between poor conductors obeying a Drude-type
dispersion relation. We have assumed that the materials have
a small residual conductivity �compared to the reciprocal of
the interplate separation� which is finite and constant with
respect to temperature and frequency near T=0.

The calculation for the TM mode complements that of
Ref. �19� where the temperature correction for free energy
between two dielectrics of zero conductivity was calculated.
Both the TE and TM free energy temperature corrections are
quadratic to leading order. To the extent of our computations,
the TM mode has integer powers of T beyond the leading,
whereas the TE mode has both integer and half-integer pow-
ers. The temperature anomaly reviewed in Sec. I occurs
when the transition from finite to zero conductivity happens
at exactly T=0, and while the analysis presented here does
not resolve the anomaly, it is of interest to know the low-
temperature behavior of the free energy in each of the two
cases.

Note furthermore that the effects of the static dielectric
permittivity �̄ only enters to order T4 for the TM mode and
order T7/2 for the TE mode. The fact that the coefficient of
the term T7/2 appears to depend on �̄ is noteworthy since
only integer powers of T were reported in Ref. �19�, although
seeing as we have not calculated the coefficient here it is
possible that cancellations occur.

Our calculations are delicate since they rely on the rela-
tive smallness of different parameters simultaneously. We
have assumed the parameter t �essentially temperature T di-
vided by conductivity �� small while at the same time letting
� be small compared to the inverse of the separation a. This
is the reason why the leading order temperature corrections
in Eq. �3.31� appear to diverge as � vanishes. On a deeper
level these subtleties stem from noncommuting limits in the
Lifshitz formalism which are the cause of anomalies such as
that reviewed in Sec. I. Another curious property both of the
present calculations and those of Geyer, Klimchitskaya, and
Mostepanenko �19� is that the free energy corrections of or-
der in T just beyond what we have considered here appear to
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FIG. 4. The difference between the numerically calculated free
energy and the quadratic T term of Eq. �4.18� �equal to the differ-
ence between the graphs in Fig. 3� plotted against the absolute value
of the T3 term of Eq. �4.18�.
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The T3 term of Eq. �4.18� has the same form as that found
for ideal metals in the limit aT�1 �29,30�. A similar term is
present in Eq. �3.36�. �Note that the T3 correction for the TM
mode is not fully accounted for therein.� A numerical com-
parison of this term with the difference between the graphs in
Fig. 3 is shown in Fig. 4. It shows that the T3 coefficient in
Eq. �4.18� is the right order of magnitude, but the numerical
precision is not sufficient to draw definite conclusions about
its accuracy at this time.

B. First-order correction to expansion (4.10)

The first-order correction term in Eq. �4.10� is easily cal-
culated with a similar scheme. We have

gII�m� = �!3�
�/!

�

dx
x2B

1 − B
=
�!3

4
�
�/!

�

dx
x�x − �x2 + 1�2

�x2 + 1
.

�4.19�

The procedure for solving this integral is as before. Substi-
tute x=sinh u to obtain with a little shuffling

gII�m� =
�!3

8
�

u0

�

due−u�1 − e−2u� . �4.20�

With the substitution z=e−u this becomes very simple,

gII�m� = −
�!3

8
�

z0

0

dz�1 − z2� =
�!3

8
	z0 −

z0
3

3

 �4.21�

with

z0 = e−u0 = 	��̄� + 1 − ��
��̄� + 1 + ��


1/2

= 1 − �� +
�

2
+

1

2
��̄ − 1��3/2 + ¯ . �4.22�

Thus we find the � expansion of gII�m�,

gII�m� =
�

8
	2

3
�3/2 − �2 − �̄��5/2 + ¯ 
 . �4.23�

Hence, with Eqs. �2.10� and �4.8a�,

�FII
TE =

�4���3�
48�2 �t5/2 + O�t7/2� , �4.24a�

or in SI units with �=��− 3
2 �,

�FII
TE =

�2��	− 3

2

a��SI/�0�3/2

6�3/2 �kBT�5/2 + ¯ .

�4.24b�

Comparison with Eq. �4.4b� shows full agreement with the
result for metals ��̄=1�.

It is worth noting that while the next-to-leading tempera-
ture correction is of order T5/2, the term �T3 in Eq. �4.18�
dominates it with respect to �. Thus in the small � limit the
T5/2 dependency becomes all but imperceptible.

CONCLUSIONS

We have worked out the two leading terms of the tem-
perature correction to the Casimir-Lifshitz free energy at low
temperatures between poor conductors obeying a Drude-type
dispersion relation. We have assumed that the materials have
a small residual conductivity �compared to the reciprocal of
the interplate separation� which is finite and constant with
respect to temperature and frequency near T=0.

The calculation for the TM mode complements that of
Ref. �19� where the temperature correction for free energy
between two dielectrics of zero conductivity was calculated.
Both the TE and TM free energy temperature corrections are
quadratic to leading order. To the extent of our computations,
the TM mode has integer powers of T beyond the leading,
whereas the TE mode has both integer and half-integer pow-
ers. The temperature anomaly reviewed in Sec. I occurs
when the transition from finite to zero conductivity happens
at exactly T=0, and while the analysis presented here does
not resolve the anomaly, it is of interest to know the low-
temperature behavior of the free energy in each of the two
cases.

Note furthermore that the effects of the static dielectric
permittivity �̄ only enters to order T4 for the TM mode and
order T7/2 for the TE mode. The fact that the coefficient of
the term T7/2 appears to depend on �̄ is noteworthy since
only integer powers of T were reported in Ref. �19�, although
seeing as we have not calculated the coefficient here it is
possible that cancellations occur.

Our calculations are delicate since they rely on the rela-
tive smallness of different parameters simultaneously. We
have assumed the parameter t �essentially temperature T di-
vided by conductivity �� small while at the same time letting
� be small compared to the inverse of the separation a. This
is the reason why the leading order temperature corrections
in Eq. �3.31� appear to diverge as � vanishes. On a deeper
level these subtleties stem from noncommuting limits in the
Lifshitz formalism which are the cause of anomalies such as
that reviewed in Sec. I. Another curious property both of the
present calculations and those of Geyer, Klimchitskaya, and
Mostepanenko �19� is that the free energy corrections of or-
der in T just beyond what we have considered here appear to
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FIG. 4. The difference between the numerically calculated free
energy and the quadratic T term of Eq. �4.18� �equal to the differ-
ence between the graphs in Fig. 3� plotted against the absolute value
of the T3 term of Eq. �4.18�.
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The T3 term of Eq. �4.18� has the same form as that found
for ideal metals in the limit aT�1 �29,30�. A similar term is
present in Eq. �3.36�. �Note that the T3 correction for the TM
mode is not fully accounted for therein.� A numerical com-
parison of this term with the difference between the graphs in
Fig. 3 is shown in Fig. 4. It shows that the T3 coefficient in
Eq. �4.18� is the right order of magnitude, but the numerical
precision is not sufficient to draw definite conclusions about
its accuracy at this time.

B. First-order correction to expansion (4.10)

The first-order correction term in Eq. �4.10� is easily cal-
culated with a similar scheme. We have

gII�m� = �!3�
�/!

�

dx
x2B

1 − B
=
�!3

4
�
�/!

�

dx
x�x − �x2 + 1�2

�x2 + 1
.

�4.19�

The procedure for solving this integral is as before. Substi-
tute x=sinh u to obtain with a little shuffling

gII�m� =
�!3

8
�

u0

�

due−u�1 − e−2u� . �4.20�

With the substitution z=e−u this becomes very simple,

gII�m� = −
�!3

8
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z0

0

dz�1 − z2� =
�!3

8
	z0 −

z0
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 �4.21�

with

z0 = e−u0 = 	��̄� + 1 − ��
��̄� + 1 + ��


1/2

= 1 − �� +
�

2
+

1

2
��̄ − 1��3/2 + ¯ . �4.22�

Thus we find the � expansion of gII�m�,

gII�m� =
�

8
	2

3
�3/2 − �2 − �̄��5/2 + ¯ 
 . �4.23�

Hence, with Eqs. �2.10� and �4.8a�,

�FII
TE =

�4���3�
48�2 �t5/2 + O�t7/2� , �4.24a�

or in SI units with �=��− 3
2 �,

�FII
TE =

�2��	− 3

2

a��SI/�0�3/2

6�3/2 �kBT�5/2 + ¯ .

�4.24b�

Comparison with Eq. �4.4b� shows full agreement with the
result for metals ��̄=1�.

It is worth noting that while the next-to-leading tempera-
ture correction is of order T5/2, the term �T3 in Eq. �4.18�
dominates it with respect to �. Thus in the small � limit the
T5/2 dependency becomes all but imperceptible.

CONCLUSIONS

We have worked out the two leading terms of the tem-
perature correction to the Casimir-Lifshitz free energy at low
temperatures between poor conductors obeying a Drude-type
dispersion relation. We have assumed that the materials have
a small residual conductivity �compared to the reciprocal of
the interplate separation� which is finite and constant with
respect to temperature and frequency near T=0.

The calculation for the TM mode complements that of
Ref. �19� where the temperature correction for free energy
between two dielectrics of zero conductivity was calculated.
Both the TE and TM free energy temperature corrections are
quadratic to leading order. To the extent of our computations,
the TM mode has integer powers of T beyond the leading,
whereas the TE mode has both integer and half-integer pow-
ers. The temperature anomaly reviewed in Sec. I occurs
when the transition from finite to zero conductivity happens
at exactly T=0, and while the analysis presented here does
not resolve the anomaly, it is of interest to know the low-
temperature behavior of the free energy in each of the two
cases.

Note furthermore that the effects of the static dielectric
permittivity �̄ only enters to order T4 for the TM mode and
order T7/2 for the TE mode. The fact that the coefficient of
the term T7/2 appears to depend on �̄ is noteworthy since
only integer powers of T were reported in Ref. �19�, although
seeing as we have not calculated the coefficient here it is
possible that cancellations occur.

Our calculations are delicate since they rely on the rela-
tive smallness of different parameters simultaneously. We
have assumed the parameter t �essentially temperature T di-
vided by conductivity �� small while at the same time letting
� be small compared to the inverse of the separation a. This
is the reason why the leading order temperature corrections
in Eq. �3.31� appear to diverge as � vanishes. On a deeper
level these subtleties stem from noncommuting limits in the
Lifshitz formalism which are the cause of anomalies such as
that reviewed in Sec. I. Another curious property both of the
present calculations and those of Geyer, Klimchitskaya, and
Mostepanenko �19� is that the free energy corrections of or-
der in T just beyond what we have considered here appear to
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FIG. 4. The difference between the numerically calculated free
energy and the quadratic T term of Eq. �4.18� �equal to the differ-
ence between the graphs in Fig. 3� plotted against the absolute value
of the T3 term of Eq. �4.18�.
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diverge as �̄→�, as indicated for example by Eqs. �3.34�
and �4.23�. This limit would a priori be expected to yield the
ideal metal limit. Such phenomena should be addressed in
future studies in the effort to achieve full understanding of
the low-temperature behavior of the Casmir force and free
energy.

The asymptotics of the Lifshitz formula as frequency and
temperature approach zero are fraught with inherent subtle-
ties both mathematical and physical. While the method em-
ployed herein is highly useful for its simplicity and transpar-
ency, it has limitations because the functions involved are not
analytic in the limits considered and noninteger powers and
logarithms enter. Physically we have assumed herein a model
which may represent certain physical systems, but avoids the
temperature behavior which leads to the anomaly reviewed
in Sec. I. It also neglects effects which may be of impor-
tance, such as spatial dispersion, a subject which has been
extensively investigated over the years �31–34�. A theoretical
effort to attempt to describe the screening effects and dielec-
tric response of the vanishing density of free charges in in-
sulators near zero temperature involving all important physi-
cal effects will likely be required in the future and will
hopefully provide the resolution of the anomaly for dielec-
trics.
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Consideration of the Lifshitz expression for the Casimir free energy on the real frequency axis rather than
the imaginary Matsubara frequencies as is customary sheds light on the ongoing debate regarding the thermo-
dynamical consistency of this theory in combination with common permittivity models. It is argued that when
permittivity is temperature independent over a temperature interval including zero temperature, a cavity made
of causal material with continuous dispersion properties separated by vacuum cannot violate Nernst’s theorem
�the third law of thermodynamics�. The purported violation of this theorem pertains to divergencies in the
double limit in which frequency and temperature vanish simultaneously. While any model should abide by the
laws of thermodynamics within its range of applicability, we emphasize that the Nernst heat theorem is a
relevant criterion for choosing among candidate theories only when these theories are fully applicable at zero
temperature and frequency.
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INTRODUCTION

Since Boström and Sernelius first predicted the existence
of large thermal corrections to the Casimir force in 2000 �1�,
controversies over the thermal behavior of this effect, which
in its most typical embodiment may be seen as the attraction
between macroscopic objects due to zero-point fluctuations
of the quantum vacuum, have been extensively covered in
the published literature. The use of the Drude model to de-
scribe dielectric permittivity employed in �1� was soon criti-
cized on thermodynamical grounds �2�. The reason was that
in the case of a perfect crystal lattice, when all dissipation is
due to scattering of electrons on thermal phonons, the Ca-
simir free energy as calculated with the Lifshitz formula ap-
pears to violate Nernst’s heat theorem which states that en-
tropy should vanish as T→0. The Drude model was
defended by other authors �3–5� who argued that, since the
Drude model offers a better description of impure metals,
and since real metal samples always have impurities, the
Drude model must be employed. It was shown in �6� and
recently in a more extensive treatment �7� that the free en-
ergy with Drude permittivity is quadratic in T for small tem-
peratures when impurities are present. No consensus has yet
been reached on the important physical question of why Ca-
simir force predictions for the perfect lattice model, impor-
tant in solid state physics, differ significantly from those per-
taining to real metals with a very small but nonzero
concentration of imperfections.

Recently, a somewhat analogous problem was brought
forth for dielectrics with a small conductivity for finite T
which vanishes at T=0 �8�. While the purported violation in
the case of Drude metals referred to the transverse electric
�TE� mode, this time the bother appears to be a discontinuity
in the transverse magnetic �TM� Fresnel reflection coefficient
giving rise to nonzero entropy at zero temperature. The prob-
lem was recently argued to extend to insulators and intrinsic
and lightly doped semiconductors as well as Mott-Hubbard

semiconductors, and indeed the permittivity contribution
from Debye rotation of molecular dipoles �9�.

According to the argument presented herein both the
Drude model and the dielectric permittivity model with con-
ductivity included belong to a group of permittivities which
cannot violate Nernst’s theorem when permittivity can be
regarded as temperature invariant in a range of temperatures
near and including T=0. While the present paper does not
aspire to solve the physical question of how to take into
account the presence of a small conductivity in dielectrics
when substituted into the Lifshitz formula, it seeks to illumi-
nate the ever recurring question of thermodynamical consis-
tency. It has previously been shown �10� by use of the Euler-
Maclaurin �or equivalently Abel-Plana� formula that, for
Fresnel reflection coefficients which are continuous func-
tions of imaginary frequencies in the limit T→0, Nernst’s
theorem is satisfied. An exploration of Casimir entropy in the
formalism of surface modes was undertaken independently
of this work by Intravaia and Henkel �11� whose conclusions
accord with ours. By a method of summation of the eigen-
modes of the vacuum between two plates they demonstrate
that Nernst’s theorem can be broken between metal plates
only for temperature-dependent relaxation such as in a per-
fect and infinitely large metal lattice.

This paper demonstrates a similar result using the real
frequency Lifshitz formalism between plates of a generic
nonmagnetic material whose permittivity satisfies a small set
of criteria. The real frequency formalism is more compli-
cated and less elegant, but with the advantage of a more
direct physical interpretation. Finally, a discussion of the
physical implications of the mathematical limits involved is
given. In particular, we emphasize the importance of assess-
ing when Nernst’s theorem, which concerns zero tempera-
ture, can be used to inform finite-temperature physics.

I. FREE ENERGY AND ENTROPY AT REAL
FREQUENCIES

The Lifshitz expression �12� for the free energy per unit
transverse area between two identical dielectric plates sepa-
rated by vacuum is in general of the form*simen.a.ellingsen@ntnu.no
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controversies over the thermal behavior of this effect, which
in its most typical embodiment may be seen as the attraction
between macroscopic objects due to zero-point fluctuations
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ergy with Drude permittivity is quadratic in T for small tem-
peratures when impurities are present. No consensus has yet
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simir force predictions for the perfect lattice model, impor-
tant in solid state physics, differ significantly from those per-
taining to real metals with a very small but nonzero
concentration of imperfections.

Recently, a somewhat analogous problem was brought
forth for dielectrics with a small conductivity for finite T
which vanishes at T=0 �8�. While the purported violation in
the case of Drude metals referred to the transverse electric
�TE� mode, this time the bother appears to be a discontinuity
in the transverse magnetic �TM� Fresnel reflection coefficient
giving rise to nonzero entropy at zero temperature. The prob-
lem was recently argued to extend to insulators and intrinsic
and lightly doped semiconductors as well as Mott-Hubbard

semiconductors, and indeed the permittivity contribution
from Debye rotation of molecular dipoles �9�.

According to the argument presented herein both the
Drude model and the dielectric permittivity model with con-
ductivity included belong to a group of permittivities which
cannot violate Nernst’s theorem when permittivity can be
regarded as temperature invariant in a range of temperatures
near and including T=0. While the present paper does not
aspire to solve the physical question of how to take into
account the presence of a small conductivity in dielectrics
when substituted into the Lifshitz formula, it seeks to illumi-
nate the ever recurring question of thermodynamical consis-
tency. It has previously been shown �10� by use of the Euler-
Maclaurin �or equivalently Abel-Plana� formula that, for
Fresnel reflection coefficients which are continuous func-
tions of imaginary frequencies in the limit T→0, Nernst’s
theorem is satisfied. An exploration of Casimir entropy in the
formalism of surface modes was undertaken independently
of this work by Intravaia and Henkel �11� whose conclusions
accord with ours. By a method of summation of the eigen-
modes of the vacuum between two plates they demonstrate
that Nernst’s theorem can be broken between metal plates
only for temperature-dependent relaxation such as in a per-
fect and infinitely large metal lattice.

This paper demonstrates a similar result using the real
frequency Lifshitz formalism between plates of a generic
nonmagnetic material whose permittivity satisfies a small set
of criteria. The real frequency formalism is more compli-
cated and less elegant, but with the advantage of a more
direct physical interpretation. Finally, a discussion of the
physical implications of the mathematical limits involved is
given. In particular, we emphasize the importance of assess-
ing when Nernst’s theorem, which concerns zero tempera-
ture, can be used to inform finite-temperature physics.

I. FREE ENERGY AND ENTROPY AT REAL
FREQUENCIES

The Lifshitz expression �12� for the free energy per unit
transverse area between two identical dielectric plates sepa-
rated by vacuum is in general of the form*simen.a.ellingsen@ntnu.no
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F�a,T� = �
0

�

d� coth	 �

2�T

Im����,T�� , �1�

where �T�kBT /� and ��� ,T� is the zero-temperature inte-
grand

���,T� =
�

4�2�
0

�

dk�k��
q=TE

TM

ln Dq��,ck�,T� , �2�

wherein

Dq� 1 − rq
2 exp�− 2�0a� , �3a�

rTE =
�0 − �

�0 + �
, rTM =

��0 − �

��0 + �
. �3b�

We have assumed �=1 everywhere for simplicity, � is the
permittivity of the dielectric relative to vacuum, and

�0 = �k�
2 − �2/c2�1/2, � = �k�

2 − ��2/c2�1/2. �4�

We assume that � does not depend on transverse momentum,
thus neglecting any nonlocal effects and furthermore that it is
a generalized susceptibility and obeys causality, which im-
plies in particular that �13� �1� ��−�*�=�*���; �2�
�Im��������0 on the entire real frequency axis except at �
=0 where it may be undefined. In general � is also tempera-
ture dependent, making for the temperature dependence of
��� ,T�. The complex conjugate is denoted with an asterisk
and we will consider only real frequencies henceforth. One
might furthermore impose the physically reasonable demand
that �3� ���� is continuous and ������	� for all real fre-
quencies except possibly �=0.

The function � obeys the symmetry property
��−��=�*��� for real frequencies,1 hence the real part of
���� is even with respect to � while its imaginary part is
odd. This allows us to write F in a form that makes the
mathematical discussion in the following somewhat more
transparent. Since both Im� and coth�� /2�T� are odd func-
tions of �, the integrand of �1� is even and we can let the �
integral run from −� to � and divide by 2. Adding the real
part of � by substituting Im�→� / i will make no difference,
since it makes for an odd integrand term which vanishes
under symmetrical integration, so

F�a,T� =
1

2i
�

−�

�

d� coth	 �

2�T

���,T� �5�

is equivalent to �1�.
Assume for the moment that �, and hence �, is invariant

with temperature over at least a finite range of small tem-
peratures including T=0. In this case the temperature depen-
dence of F�T� can be treated very simply when T is in this
range, since the T dependence now resides only in the factor

coth�� /2�T�. From thermodynamics the Casimir entropy in
the cavity, S, is given as

S = −
�

�T
F�T� , �6�

so if one were able to interchange integration and differen-
tiation with respect to T, one could write

S = −
1

2i
�
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�

d� ����
d

dT
coth	 �

2�T



= −
�

ikBT2�
−�

�

d� ����
� exp��/�T�
�exp��/�T� − 1�2

. �7�

For any finite � the integrand of �7� vanishes extremely
fast, as exp�−���� /kBT�, when T→0. This demonstrates the
finding of Torgerson and Lamoreaux �14� that temperature
corrections are important only for frequencies below �T,
which is a very low frequency even at room temperature
��1013 rad /s�. At �=0 �and finite T� the rightmost fraction
in �7� has a simple pole, yet only the imaginary part of ����
contributes to �7�, which is zero here since Im��� is an odd
function of �, removing this pole. Thus, in the limit T→0,
entropy vanishes as it should and the third law of thermody-
namics is obeyed �there are subtleties pertaining to the TM
mode as will be discussed in the following�.

Two questions arise from this consideration, Under what
circumstances may differentiation be interchanged with inte-
gration? And what happens if one or more parameters of
���� are temperature dependent all the way down to zero
temperature?

II. TEMPERATURE-INDEPENDENT �(�)

We will treat the first question first. Leibnitz’ integral rule
for improper integrals,

d

dy
�

x0

�

dx f�x,y� = �
x0

�

dx
d

dy
f�x,y� , �8�

is always valid when ��15� §4.44� �i� f�x ,y� and df�x ,y� /dy
are both continuous on x� �x0 ,�� and the relevant interval of
values of y; �ii� the integral on the left exists; and �iii� the
integral on the right converges uniformly. The generalization
to integrals with both limits infinite is trivial.

To make our considerations more concrete, let us concen-
trate on some permittivity models which are in common use:

���� = 1 −
�p

2

��� + i��
, �9�

���� = 1 +
�� − 1

1 − �2/�0
2 − i"�/�0

2 +
i�

�0�
, �10�

of which the former is the Drude model for metals, and the
latter describes a semiconductor. Here �p is the plasma fre-
quency, � the relaxation frequency, �0 the vacuum permittiv-
ity, and ��, ", and �0 material parameters. � is the dc con-
ductivity of the semiconductor. Some common models which
obey criterion 1 but not 2 are

1This is easily argued: Because � satisfies this relation by assump-
tion, so, one finds, does Dq. The logarithm of a complex function is
infinitely degenerate, and for ln Dq to give meaning we should in-
terpret it as its principal value, lnDq� ln�Dq�+ i ArgDq, which inci-
dentally also satisfies lnDq�−��= �lnDq����*.
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the plasma model2 for metals and a model of dielectrics with
 function dissipation at �=�0 �17�. Notice that �9� and �10�
obey criteria 1–3.

A. Propagating and evanescent waves

One notices that we seem to run into trouble with the
continuity criterion at ���=ck�, where �0=0, since, when
regarded as a double integral, �5� seems at first glance to
imply integration across the lines �= #ck�, which would
cause trouble with continuity: one sees from �3a� that Dq
=0 for �0=0; hence the real part of lnDq is undefined and the
imaginary part turns out to be discontinuous as these lines
are crossed.

The problem can be avoided, however. Let us define 
=k�c /� for short. For positive frequencies, =1 is the limit
in which the electromagnetic fields in the cavity travel par-
allel to the plates and become evanescent in vacuum as the
=1 barrier is crossed, a limit whose discontinuous proper-
ties are physically obvious: the waves just on the propagating
side �ck� just smaller than �� travel through the system just
gracing the surfaces, while the fields on the evanescent side
stay on the surfaces; they are qualitatively different phenom-
ena and the transition from one to the other can be expected
to be discontinuous.3 Negative frequencies have no direct
physical meaning; hence the terms “propagating” and “eva-
nescent” must be understood in a mathematical sense here,
defined by ��	1 and ���1, respectively.

In the original Lifshitz paper �12�, the k� integral is split
automatically into propagating and evanescent parts by sub-
stituting p= i�0c /�. Propagating contributions correspond to
integrating p from 1 to 0 and evanescent to an integral from
i0 to i�, thus avoiding the problem. We notice furthermore
that the issues related to ��=1 occur for any choice of ����
and hence can have nothing to do with the problems with
Nernst’s theorem, which all concern particular permittivity
models.

B. Continuity

In the classical treatment by Casimir, the vacuum energy
shift was found by summing over the cavity modes of the
system �18�, a method developed further by van Kampen et
al. by use of the so-called generalized argument principle
�19� and elaborated by Barash and Ginzburg �20�. The nor-
mal modes of the cavity solve the characteristic equation of
the set of electromagnetic boundary conditions which reduce
to the equation Dq=0. At these frequencies $��� would have

poles which would cause trouble with continuity.
With permittivity models such as �9� and �10� where dis-

sipation is included �i.e., ���� has a nonzero imaginary part�,
D�� ,k��=0 has no real-frequency solutions4 except possibly
�=0 since rq�1 everywhere. The same is the case with �12�
if an imaginary term is inserted in the denominator as in �10�
�otherwise �rq�=1 at �=�0�. The real-valued permittivities as
given in �11� and �12� cause rTM to diverge where ��0+�
=0, however, in transgression of the continuity criterion. We
conclude that the continuity of ���� is ensured for all �
�0 so long as rq

2 is finite, continuous and �1, sufficient
criteria for which are that ���� satisfies criteria 1–3.

What remains is the point �=0. A priori, this is the inter-
esting limit, since when T is very small, the coth function in
�5� differs from unity only very close to zero frequency. As is
well known, reflection coefficients are occasionally ill de-
fined in the limit where � and ck� both approach zero, as is
the case for the Drude model TE reflection coefficient, for
example. rq

2 is always bounded, however, so the integrand of
���� approaches zero in this limit due to the factor k� stem-
ming from the isotropic infinitesimal d2k�=2�k�dk� for
any �1. Hence ���� is continuous for all � if ���� obeys
criterion 3.

A more serious problem is caused by the simple poles of
coth�� /2�T� and its T derivative at �=0. As argued previ-
ously, the imaginary part of ���� is zero at �=0, so the
integrand of �7� does not diverge, but is in some cases finite
in this limit. For sufficiently small � and finite �, �9� and
�10� both have the form ��A+ iB /� where A and B are
constants, while if �=0 �10� instead has the form ��A
+ iB�. In both cases the imaginary part of rTE

2 falls off
quickly, as �3 and �5, respectively, but when A�1, Im�rTM

2 �
decreases only linearly. One easily verifies that, with respect
to �, Im������� Im�rq

2���� to leading order; hence the TM
mode term of ���� is proportional to � in the above men-
tioned cases.

To see how this is troublesome, consider the functions

H�x,t� = x
ex/2t + e−x/2t

ex/2t − e−x/2t , �13�

I�x,t� =
x2ex/t

t2�ex/t − 1�2
, �14�

which are essentially �up to a constant factor� the integrands
of �5� and �7�, respectively, when ������; here x and t are
suitably nondimensionalized frequency and temperature, re-
spectively, so that � /�T=x / t. Notice that �H /�t=2I. Equa-
tions �13� and �14� are plotted in Fig. 1 for x and t. If we
define H�0,0� to be its limiting value 0, the integrand of �5�
is continuous for all � and T as we hoped, but its T deriva-
tive �essentially I�x , t�� is not. As T→0, the integrand of �7�
becomes a spike of finite height and zero width. The integral
past this spike is clearly zero �so the entropy would be zero
as concluded above�, but we run into trouble with the conti-
nuity condition. Were the limit T→0 to be taken prior to2A generalized, causal form of the plasma model was recently

proposed �16�.
3Due to the nonzero imaginary part of � there are no similar prob-

lems for � near ck�= ����Re������.

4Sernelius has recently shown how the normal mode interpretation
may still be applied �21�.
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integration, I�0,0� would be zero instead, and I would be
continuous with respect to x but discontinuous with respect
to t.

Physically it does not matter whether I�0,0� is 1, 0, or
something in between, since the contribution from this single
point is zero in either case. Hence this one point should not
matter. Formally we could state this by excluding the point
�=0 from the � integrals �5� and �7�. Furthermore it is well
known that the notion that every ���� in the form A+ iB� or
A+ iB /� would violate Nernst’s theorem is incorrect; on the
contrary, we argue that so long as A and B are temperature
independent, none of these will. Using an analytical software
such as MAPLE, it is quick to check that integration of H�x , t�
with respect to x followed by differentiation with respect to t
gives the same result as when the order of the operations is
reversed. While this argument is not rigorous it should con-
vince the reader that the continuity issues at zero temperature
and frequency can be avoided since this point is of no physi-
cal significance.

A formally similar problem emerges when the permittivity
is temperature dependent all the way down to zero tempera-
ture, as we will see, and in the latter case the singularity at
zero temperature and frequencies does appear to give a
physical contribution and cannot be ignored.

C. Uniform convergence

An improper integral �8� is said to converge uniformly
��15� §4.42� if ∀ ��0 there exists a number a0�0 indepen-
dent of T such that for all a ,a��a0,

��
a

a�
dx f�x,T�� 	 � .

Let us briefly analyze the behavior of lnDq�� ,k�� as ��� and
k� approach infinity. The existence of the free energy inte-

gral �5� itself is well known; hence we need but check ex-
plicitly whether the integral �7� converges uniformly along
different directions in the � ,ck� plane; clearly, if the double
integral over � and k� converges uniformly, the � integral
�7� does so as well.

As argued, we consider propagating and evanescent con-
tributions separately, in which case uniform convergence is
straightforward to check. Reflection coefficients fall off rap-
idly as ���→� �e.g., for the Drude model the real and imagi-
nary parts of rq

2 fall off as �−4 and �−5, respectively� and for
���1, �0 is real and positive so the integrand furthermore
decreases exponentially. The factor exp�−2�0a� is oscillatory
for ��	1, but the Dirichlet integral �0

�dx sin x /x is known
to be uniformly convergent, and our integrand converges
more quickly than this. It is easy to check that this also holds
as ��→0 and ��→�.

The splitting of �2� into propagating and evanescent parts
may be done by integrating each part of the plane and taking
the relevant limit to ck�→ ��� in the end. Convergence prob-
lems are then avoided for the imaginary part of lnDq in �7�;
reflection coefficients fall off rapidly and further help is pro-
vided by the factor

exp��/�T�
�exp��/�T� − 1�2

� exp�− ���/�T�, ���%�T.

The rate of convergence due to this factor depends on T and
hence apparently cannot be used to demonstrate uniformity.
We are interested only in low temperatures, however, so, by

defining a finite upper temperature limit T̃ above which the
formalism is not valid, a0 can be made T independent �de-

pendent on T̃ only�. The fact that the convergence of this
factor alone is not uniform for infinite temperature is unprob-
lematic, of course.

Thus we conclude that Nernst’s theorem is satisfied for
T-independent ���� satisfying 1–3. The violation of Nernst’s
theorem in temperature-dependent cases, as we shall see, can
be understood as a direct consequence of violating the con-
tinuity criterion of Leibnitz’ rule for improper integrals.

III. TEMPERATURE-DEPENDENT PERMITTIVITY

In many models used in solid state physics, � is tempera-
ture dependent for all temperatures, and herein lies the
source of much of the controversy over what is the correct
theory of the Casimir force between plates of real materials.
The reader should note that the above theory only requires
that permittivity be temperature independent for a finite tem-
perature interval close to zero temperature. Rather than rig-
orously generalizing all of the above, suffice it here to dis-
cuss how the introduction of temperature-dependent
permittivity illuminates the entropy problems that emerge
and hints at possible resolutions. In the following we will
think physically in terms of positive frequencies, bearing in
mind that negative frequencies exert mathematically equiva-
lent behavior through the symmetry criterion 1.

The models which have caused bother so far are the TE
mode of �5� using the Drude model �9� when ��T�→0 as
T→0 �perfect lattice, no impurities� and the TM mode for
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integration, I�0,0� would be zero instead, and I would be
continuous with respect to x but discontinuous with respect
to t.

Physically it does not matter whether I�0,0� is 1, 0, or
something in between, since the contribution from this single
point is zero in either case. Hence this one point should not
matter. Formally we could state this by excluding the point
�=0 from the � integrals �5� and �7�. Furthermore it is well
known that the notion that every ���� in the form A+ iB� or
A+ iB /� would violate Nernst’s theorem is incorrect; on the
contrary, we argue that so long as A and B are temperature
independent, none of these will. Using an analytical software
such as MAPLE, it is quick to check that integration of H�x , t�
with respect to x followed by differentiation with respect to t
gives the same result as when the order of the operations is
reversed. While this argument is not rigorous it should con-
vince the reader that the continuity issues at zero temperature
and frequency can be avoided since this point is of no physi-
cal significance.

A formally similar problem emerges when the permittivity
is temperature dependent all the way down to zero tempera-
ture, as we will see, and in the latter case the singularity at
zero temperature and frequencies does appear to give a
physical contribution and cannot be ignored.

C. Uniform convergence

An improper integral �8� is said to converge uniformly
��15� §4.42� if ∀ ��0 there exists a number a0�0 indepen-
dent of T such that for all a ,a��a0,

��
a

a�
dx f�x,T�� 	 � .

Let us briefly analyze the behavior of lnDq�� ,k�� as ��� and
k� approach infinity. The existence of the free energy inte-

gral �5� itself is well known; hence we need but check ex-
plicitly whether the integral �7� converges uniformly along
different directions in the � ,ck� plane; clearly, if the double
integral over � and k� converges uniformly, the � integral
�7� does so as well.

As argued, we consider propagating and evanescent con-
tributions separately, in which case uniform convergence is
straightforward to check. Reflection coefficients fall off rap-
idly as ���→� �e.g., for the Drude model the real and imagi-
nary parts of rq

2 fall off as �−4 and �−5, respectively� and for
���1, �0 is real and positive so the integrand furthermore
decreases exponentially. The factor exp�−2�0a� is oscillatory
for ��	1, but the Dirichlet integral �0

�dx sin x /x is known
to be uniformly convergent, and our integrand converges
more quickly than this. It is easy to check that this also holds
as ��→0 and ��→�.

The splitting of �2� into propagating and evanescent parts
may be done by integrating each part of the plane and taking
the relevant limit to ck�→ ��� in the end. Convergence prob-
lems are then avoided for the imaginary part of lnDq in �7�;
reflection coefficients fall off rapidly and further help is pro-
vided by the factor

exp��/�T�
�exp��/�T� − 1�2

� exp�− ���/�T�, ���%�T.

The rate of convergence due to this factor depends on T and
hence apparently cannot be used to demonstrate uniformity.
We are interested only in low temperatures, however, so, by

defining a finite upper temperature limit T̃ above which the
formalism is not valid, a0 can be made T independent �de-

pendent on T̃ only�. The fact that the convergence of this
factor alone is not uniform for infinite temperature is unprob-
lematic, of course.

Thus we conclude that Nernst’s theorem is satisfied for
T-independent ���� satisfying 1–3. The violation of Nernst’s
theorem in temperature-dependent cases, as we shall see, can
be understood as a direct consequence of violating the con-
tinuity criterion of Leibnitz’ rule for improper integrals.

III. TEMPERATURE-DEPENDENT PERMITTIVITY

In many models used in solid state physics, � is tempera-
ture dependent for all temperatures, and herein lies the
source of much of the controversy over what is the correct
theory of the Casimir force between plates of real materials.
The reader should note that the above theory only requires
that permittivity be temperature independent for a finite tem-
perature interval close to zero temperature. Rather than rig-
orously generalizing all of the above, suffice it here to dis-
cuss how the introduction of temperature-dependent
permittivity illuminates the entropy problems that emerge
and hints at possible resolutions. In the following we will
think physically in terms of positive frequencies, bearing in
mind that negative frequencies exert mathematically equiva-
lent behavior through the symmetry criterion 1.

The models which have caused bother so far are the TE
mode of �5� using the Drude model �9� when ��T�→0 as
T→0 �perfect lattice, no impurities� and the TM mode for
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integration, I�0,0� would be zero instead, and I would be
continuous with respect to x but discontinuous with respect
to t.

Physically it does not matter whether I�0,0� is 1, 0, or
something in between, since the contribution from this single
point is zero in either case. Hence this one point should not
matter. Formally we could state this by excluding the point
�=0 from the � integrals �5� and �7�. Furthermore it is well
known that the notion that every ���� in the form A+ iB� or
A+ iB /� would violate Nernst’s theorem is incorrect; on the
contrary, we argue that so long as A and B are temperature
independent, none of these will. Using an analytical software
such as MAPLE, it is quick to check that integration of H�x , t�
with respect to x followed by differentiation with respect to t
gives the same result as when the order of the operations is
reversed. While this argument is not rigorous it should con-
vince the reader that the continuity issues at zero temperature
and frequency can be avoided since this point is of no physi-
cal significance.

A formally similar problem emerges when the permittivity
is temperature dependent all the way down to zero tempera-
ture, as we will see, and in the latter case the singularity at
zero temperature and frequencies does appear to give a
physical contribution and cannot be ignored.

C. Uniform convergence

An improper integral �8� is said to converge uniformly
��15� §4.42� if ∀ ��0 there exists a number a0�0 indepen-
dent of T such that for all a ,a��a0,

��
a

a�
dx f�x,T�� 	 � .

Let us briefly analyze the behavior of lnDq�� ,k�� as ��� and
k� approach infinity. The existence of the free energy inte-

gral �5� itself is well known; hence we need but check ex-
plicitly whether the integral �7� converges uniformly along
different directions in the � ,ck� plane; clearly, if the double
integral over � and k� converges uniformly, the � integral
�7� does so as well.

As argued, we consider propagating and evanescent con-
tributions separately, in which case uniform convergence is
straightforward to check. Reflection coefficients fall off rap-
idly as ���→� �e.g., for the Drude model the real and imagi-
nary parts of rq

2 fall off as �−4 and �−5, respectively� and for
���1, �0 is real and positive so the integrand furthermore
decreases exponentially. The factor exp�−2�0a� is oscillatory
for ��	1, but the Dirichlet integral �0

�dx sin x /x is known
to be uniformly convergent, and our integrand converges
more quickly than this. It is easy to check that this also holds
as ��→0 and ��→�.

The splitting of �2� into propagating and evanescent parts
may be done by integrating each part of the plane and taking
the relevant limit to ck�→ ��� in the end. Convergence prob-
lems are then avoided for the imaginary part of lnDq in �7�;
reflection coefficients fall off rapidly and further help is pro-
vided by the factor

exp��/�T�
�exp��/�T� − 1�2

� exp�− ���/�T�, ���%�T.

The rate of convergence due to this factor depends on T and
hence apparently cannot be used to demonstrate uniformity.
We are interested only in low temperatures, however, so, by

defining a finite upper temperature limit T̃ above which the
formalism is not valid, a0 can be made T independent �de-

pendent on T̃ only�. The fact that the convergence of this
factor alone is not uniform for infinite temperature is unprob-
lematic, of course.

Thus we conclude that Nernst’s theorem is satisfied for
T-independent ���� satisfying 1–3. The violation of Nernst’s
theorem in temperature-dependent cases, as we shall see, can
be understood as a direct consequence of violating the con-
tinuity criterion of Leibnitz’ rule for improper integrals.

III. TEMPERATURE-DEPENDENT PERMITTIVITY

In many models used in solid state physics, � is tempera-
ture dependent for all temperatures, and herein lies the
source of much of the controversy over what is the correct
theory of the Casimir force between plates of real materials.
The reader should note that the above theory only requires
that permittivity be temperature independent for a finite tem-
perature interval close to zero temperature. Rather than rig-
orously generalizing all of the above, suffice it here to dis-
cuss how the introduction of temperature-dependent
permittivity illuminates the entropy problems that emerge
and hints at possible resolutions. In the following we will
think physically in terms of positive frequencies, bearing in
mind that negative frequencies exert mathematically equiva-
lent behavior through the symmetry criterion 1.

The models which have caused bother so far are the TE
mode of �5� using the Drude model �9� when ��T�→0 as
T→0 �perfect lattice, no impurities� and the TM mode for
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integration, I�0,0� would be zero instead, and I would be
continuous with respect to x but discontinuous with respect
to t.

Physically it does not matter whether I�0,0� is 1, 0, or
something in between, since the contribution from this single
point is zero in either case. Hence this one point should not
matter. Formally we could state this by excluding the point
�=0 from the � integrals �5� and �7�. Furthermore it is well
known that the notion that every ���� in the form A+ iB� or
A+ iB /� would violate Nernst’s theorem is incorrect; on the
contrary, we argue that so long as A and B are temperature
independent, none of these will. Using an analytical software
such as MAPLE, it is quick to check that integration of H�x , t�
with respect to x followed by differentiation with respect to t
gives the same result as when the order of the operations is
reversed. While this argument is not rigorous it should con-
vince the reader that the continuity issues at zero temperature
and frequency can be avoided since this point is of no physi-
cal significance.

A formally similar problem emerges when the permittivity
is temperature dependent all the way down to zero tempera-
ture, as we will see, and in the latter case the singularity at
zero temperature and frequencies does appear to give a
physical contribution and cannot be ignored.

C. Uniform convergence

An improper integral �8� is said to converge uniformly
��15� §4.42� if ∀ ��0 there exists a number a0�0 indepen-
dent of T such that for all a ,a��a0,

��
a

a�
dx f�x,T�� 	 � .

Let us briefly analyze the behavior of lnDq�� ,k�� as ��� and
k� approach infinity. The existence of the free energy inte-

gral �5� itself is well known; hence we need but check ex-
plicitly whether the integral �7� converges uniformly along
different directions in the � ,ck� plane; clearly, if the double
integral over � and k� converges uniformly, the � integral
�7� does so as well.

As argued, we consider propagating and evanescent con-
tributions separately, in which case uniform convergence is
straightforward to check. Reflection coefficients fall off rap-
idly as ���→� �e.g., for the Drude model the real and imagi-
nary parts of rq

2 fall off as �−4 and �−5, respectively� and for
���1, �0 is real and positive so the integrand furthermore
decreases exponentially. The factor exp�−2�0a� is oscillatory
for ��	1, but the Dirichlet integral �0

�dx sin x /x is known
to be uniformly convergent, and our integrand converges
more quickly than this. It is easy to check that this also holds
as ��→0 and ��→�.

The splitting of �2� into propagating and evanescent parts
may be done by integrating each part of the plane and taking
the relevant limit to ck�→ ��� in the end. Convergence prob-
lems are then avoided for the imaginary part of lnDq in �7�;
reflection coefficients fall off rapidly and further help is pro-
vided by the factor

exp��/�T�
�exp��/�T� − 1�2

� exp�− ���/�T�, ���%�T.

The rate of convergence due to this factor depends on T and
hence apparently cannot be used to demonstrate uniformity.
We are interested only in low temperatures, however, so, by

defining a finite upper temperature limit T̃ above which the
formalism is not valid, a0 can be made T independent �de-

pendent on T̃ only�. The fact that the convergence of this
factor alone is not uniform for infinite temperature is unprob-
lematic, of course.

Thus we conclude that Nernst’s theorem is satisfied for
T-independent ���� satisfying 1–3. The violation of Nernst’s
theorem in temperature-dependent cases, as we shall see, can
be understood as a direct consequence of violating the con-
tinuity criterion of Leibnitz’ rule for improper integrals.

III. TEMPERATURE-DEPENDENT PERMITTIVITY

In many models used in solid state physics, � is tempera-
ture dependent for all temperatures, and herein lies the
source of much of the controversy over what is the correct
theory of the Casimir force between plates of real materials.
The reader should note that the above theory only requires
that permittivity be temperature independent for a finite tem-
perature interval close to zero temperature. Rather than rig-
orously generalizing all of the above, suffice it here to dis-
cuss how the introduction of temperature-dependent
permittivity illuminates the entropy problems that emerge
and hints at possible resolutions. In the following we will
think physically in terms of positive frequencies, bearing in
mind that negative frequencies exert mathematically equiva-
lent behavior through the symmetry criterion 1.

The models which have caused bother so far are the TE
mode of �5� using the Drude model �9� when ��T�→0 as
T→0 �perfect lattice, no impurities� and the TM mode for
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dielectrics �10� with ��T�→0. The two different cases share
many common traits, so analyzing one of them in detail will
suffice as illustration. Since the Drude model has already
been treated in numerous efforts by both sides of the dispute
�e.g., �2,5��, we choose the dielectric for the discussion be-
low.

As should be clear by now, the troubles with entropy
emerge for small frequencies at low temperatures. Let us
from now on consider the only interesting frequency range in
which �2 ,"��k�

2 c2 ,�0
2, but making no assumptions about

the relative magnitude of � and � /�0. Physically this corre-
sponds to bringing � and T close enough to the limit so that
for all quantities that depend on their absolute values sepa-
rately they may be replaced by zero, and only quantities that
depend on their relative values, specifically the TM reflection
coefficient, remains in question. In this case rTM with �10�
inserted simplifies to

rTM�
�i��0/����� − 1� − 1

�i��0/����� + 1� − 1
=

iv��� − 1� − 1

iv��� + 1� − 1
, �15�

where v���0 /��x /s where x and s are again suitably non-
dimensionalized variables proportional to � and �, respec-
tively. We have plotted the real and imaginary parts of the
squared reflection coefficients as shown in Fig. 2 for illustra-
tion, using ��=11.66 as reported for Si in �22�.

We find that Re�rTM
2 � is r0

2����−1�2 / ���+1�2�0.71 ex-
cept for x�s �v�0� where it is unitary. Likewise Im�rTM

2 �
for small s is approximately zero for the most part but in-
creases to an extremum for small �v� and thence decreases

linearly through 0 at v=0, the same linear behavior that led
to Im�������� and the discontinuity of Fig. 1 in the TM
case before, which we argued was not essential. This time,
however, there are additional discontinuities as s→0
�equivalent to �→0�. In particular, Im�rTM

2 � �which contrib-
utes to the integrals� is 0 everywhere except at x=0 where it
can take any value between its maximum and minimum
��#0.079 for ��=11.66�.

Now remember that the imaginary part of the squared
reflection coefficient shown in Fig. 2 is to be multiplied with
either the coth factor or its T derivative, both of which di-
verge as T /� as �→0. The result is an exceedingly volatile
behavior of the integrands of �5� and �7� near zero frequency
and temperature, and the limit where both are zero can take
any value between −� and � depending on the way the limit
is taken. This contrasts the bounded discontinuity shown in
Fig. 1 in the temperature-independent case.

Furthermore, when � contains temperature-dependent pa-
rameters, the entropy �7� will have an additional term

�

8�2i
�

−�

�

d��
q=TE

TM
e−2�0a coth��/2�T�

1 − rq
2e−2�0a

��rq
2�

�T
. �16�

Additional entropy problems stem from this term. From �15�
one finds with a little algebra that

�

�T
�rTM

2 � = − 4iv
iv��� − 1� − 1

�iv��� + 1� − 1�3
1

�

��

�T
. �17�

Assuming conductivity at low temperatures to behave as
�0 exp�−T0 /T� with �0 a constant �see below�,

1

�

��

�T
=

T0

T2 .

When ��0 this inverse quadratic temperature dependence is
no problem since �17� varies as v−1��, so the term �16� is
zero by a good measure when T=0. The limit �→0 may be
taken so that v has a finite value, however, in which case the
derivative �17� diverges as T−2. This corresponds to rTM

2 mak-
ing a sudden jump from 1 to r0

2 at T=0 for �=0. The term
��rq

2� /�T at T=0 is thus zero for all frequencies except �
=0, where it is infinite. We can no longer argue that this one
point does not contribute to the physical quantity S, and
while the purported zero-temperature entropy may be diffi-
cult to calculate in this way �it is straightforward to calculate
it in the imaginary frequency framework�, it seems likely
that the entropy obtains a finite value assuming the formal-
ism may be taken at face value.

A. Findings of the mathematical analysis

An important realization is thus that a violation of the
third law of thermodynamics is predicted in the present
framework when ���� changes the power of its leading order
term with respect to � at exactly zero temperature. When
���� changes from ��−2 to ��−1, a violation occurs in the
TE mode; when the change is from ��−1 to ��0, the TM
mode gives the zero-temperature entropy contribution.
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dielectrics �10� with ��T�→0. The two different cases share
many common traits, so analyzing one of them in detail will
suffice as illustration. Since the Drude model has already
been treated in numerous efforts by both sides of the dispute
�e.g., �2,5��, we choose the dielectric for the discussion be-
low.

As should be clear by now, the troubles with entropy
emerge for small frequencies at low temperatures. Let us
from now on consider the only interesting frequency range in
which �2 ,"��k�

2 c2 ,�0
2, but making no assumptions about

the relative magnitude of � and � /�0. Physically this corre-
sponds to bringing � and T close enough to the limit so that
for all quantities that depend on their absolute values sepa-
rately they may be replaced by zero, and only quantities that
depend on their relative values, specifically the TM reflection
coefficient, remains in question. In this case rTM with �10�
inserted simplifies to

rTM�
�i��0/����� − 1� − 1

�i��0/����� + 1� − 1
=

iv��� − 1� − 1

iv��� + 1� − 1
, �15�

where v���0 /��x /s where x and s are again suitably non-
dimensionalized variables proportional to � and �, respec-
tively. We have plotted the real and imaginary parts of the
squared reflection coefficients as shown in Fig. 2 for illustra-
tion, using ��=11.66 as reported for Si in �22�.

We find that Re�rTM
2 � is r0

2����−1�2 / ���+1�2�0.71 ex-
cept for x�s �v�0� where it is unitary. Likewise Im�rTM

2 �
for small s is approximately zero for the most part but in-
creases to an extremum for small �v� and thence decreases

linearly through 0 at v=0, the same linear behavior that led
to Im�������� and the discontinuity of Fig. 1 in the TM
case before, which we argued was not essential. This time,
however, there are additional discontinuities as s→0
�equivalent to �→0�. In particular, Im�rTM

2 � �which contrib-
utes to the integrals� is 0 everywhere except at x=0 where it
can take any value between its maximum and minimum
��#0.079 for ��=11.66�.

Now remember that the imaginary part of the squared
reflection coefficient shown in Fig. 2 is to be multiplied with
either the coth factor or its T derivative, both of which di-
verge as T /� as �→0. The result is an exceedingly volatile
behavior of the integrands of �5� and �7� near zero frequency
and temperature, and the limit where both are zero can take
any value between −� and � depending on the way the limit
is taken. This contrasts the bounded discontinuity shown in
Fig. 1 in the temperature-independent case.

Furthermore, when � contains temperature-dependent pa-
rameters, the entropy �7� will have an additional term
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Additional entropy problems stem from this term. From �15�
one finds with a little algebra that
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Assuming conductivity at low temperatures to behave as
�0 exp�−T0 /T� with �0 a constant �see below�,
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=
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When ��0 this inverse quadratic temperature dependence is
no problem since �17� varies as v−1��, so the term �16� is
zero by a good measure when T=0. The limit �→0 may be
taken so that v has a finite value, however, in which case the
derivative �17� diverges as T−2. This corresponds to rTM

2 mak-
ing a sudden jump from 1 to r0

2 at T=0 for �=0. The term
��rq

2� /�T at T=0 is thus zero for all frequencies except �
=0, where it is infinite. We can no longer argue that this one
point does not contribute to the physical quantity S, and
while the purported zero-temperature entropy may be diffi-
cult to calculate in this way �it is straightforward to calculate
it in the imaginary frequency framework�, it seems likely
that the entropy obtains a finite value assuming the formal-
ism may be taken at face value.

A. Findings of the mathematical analysis

An important realization is thus that a violation of the
third law of thermodynamics is predicted in the present
framework when ���� changes the power of its leading order
term with respect to � at exactly zero temperature. When
���� changes from ��−2 to ��−1, a violation occurs in the
TE mode; when the change is from ��−1 to ��0, the TM
mode gives the zero-temperature entropy contribution.
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dielectrics �10� with ��T�→0. The two different cases share
many common traits, so analyzing one of them in detail will
suffice as illustration. Since the Drude model has already
been treated in numerous efforts by both sides of the dispute
�e.g., �2,5��, we choose the dielectric for the discussion be-
low.

As should be clear by now, the troubles with entropy
emerge for small frequencies at low temperatures. Let us
from now on consider the only interesting frequency range in
which �2 ,"��k�

2 c2 ,�0
2, but making no assumptions about

the relative magnitude of � and � /�0. Physically this corre-
sponds to bringing � and T close enough to the limit so that
for all quantities that depend on their absolute values sepa-
rately they may be replaced by zero, and only quantities that
depend on their relative values, specifically the TM reflection
coefficient, remains in question. In this case rTM with �10�
inserted simplifies to

rTM�
�i��0/����� − 1� − 1

�i��0/����� + 1� − 1
=

iv��� − 1� − 1

iv��� + 1� − 1
, �15�

where v���0 /��x /s where x and s are again suitably non-
dimensionalized variables proportional to � and �, respec-
tively. We have plotted the real and imaginary parts of the
squared reflection coefficients as shown in Fig. 2 for illustra-
tion, using ��=11.66 as reported for Si in �22�.

We find that Re�rTM
2 � is r0

2����−1�2 / ���+1�2�0.71 ex-
cept for x�s �v�0� where it is unitary. Likewise Im�rTM

2 �
for small s is approximately zero for the most part but in-
creases to an extremum for small �v� and thence decreases

linearly through 0 at v=0, the same linear behavior that led
to Im�������� and the discontinuity of Fig. 1 in the TM
case before, which we argued was not essential. This time,
however, there are additional discontinuities as s→0
�equivalent to �→0�. In particular, Im�rTM

2 � �which contrib-
utes to the integrals� is 0 everywhere except at x=0 where it
can take any value between its maximum and minimum
��#0.079 for ��=11.66�.

Now remember that the imaginary part of the squared
reflection coefficient shown in Fig. 2 is to be multiplied with
either the coth factor or its T derivative, both of which di-
verge as T /� as �→0. The result is an exceedingly volatile
behavior of the integrands of �5� and �7� near zero frequency
and temperature, and the limit where both are zero can take
any value between −� and � depending on the way the limit
is taken. This contrasts the bounded discontinuity shown in
Fig. 1 in the temperature-independent case.

Furthermore, when � contains temperature-dependent pa-
rameters, the entropy �7� will have an additional term
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Additional entropy problems stem from this term. From �15�
one finds with a little algebra that
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Assuming conductivity at low temperatures to behave as
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When ��0 this inverse quadratic temperature dependence is
no problem since �17� varies as v−1��, so the term �16� is
zero by a good measure when T=0. The limit �→0 may be
taken so that v has a finite value, however, in which case the
derivative �17� diverges as T−2. This corresponds to rTM

2 mak-
ing a sudden jump from 1 to r0

2 at T=0 for �=0. The term
��rq

2� /�T at T=0 is thus zero for all frequencies except �
=0, where it is infinite. We can no longer argue that this one
point does not contribute to the physical quantity S, and
while the purported zero-temperature entropy may be diffi-
cult to calculate in this way �it is straightforward to calculate
it in the imaginary frequency framework�, it seems likely
that the entropy obtains a finite value assuming the formal-
ism may be taken at face value.

A. Findings of the mathematical analysis

An important realization is thus that a violation of the
third law of thermodynamics is predicted in the present
framework when ���� changes the power of its leading order
term with respect to � at exactly zero temperature. When
���� changes from ��−2 to ��−1, a violation occurs in the
TE mode; when the change is from ��−1 to ��0, the TM
mode gives the zero-temperature entropy contribution.
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dielectrics �10� with ��T�→0. The two different cases share
many common traits, so analyzing one of them in detail will
suffice as illustration. Since the Drude model has already
been treated in numerous efforts by both sides of the dispute
�e.g., �2,5��, we choose the dielectric for the discussion be-
low.

As should be clear by now, the troubles with entropy
emerge for small frequencies at low temperatures. Let us
from now on consider the only interesting frequency range in
which �2 ,"��k�
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sponds to bringing � and T close enough to the limit so that
for all quantities that depend on their absolute values sepa-
rately they may be replaced by zero, and only quantities that
depend on their relative values, specifically the TM reflection
coefficient, remains in question. In this case rTM with �10�
inserted simplifies to
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where v���0 /��x /s where x and s are again suitably non-
dimensionalized variables proportional to � and �, respec-
tively. We have plotted the real and imaginary parts of the
squared reflection coefficients as shown in Fig. 2 for illustra-
tion, using ��=11.66 as reported for Si in �22�.

We find that Re�rTM
2 � is r0

2����−1�2 / ���+1�2�0.71 ex-
cept for x�s �v�0� where it is unitary. Likewise Im�rTM
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for small s is approximately zero for the most part but in-
creases to an extremum for small �v� and thence decreases

linearly through 0 at v=0, the same linear behavior that led
to Im�������� and the discontinuity of Fig. 1 in the TM
case before, which we argued was not essential. This time,
however, there are additional discontinuities as s→0
�equivalent to �→0�. In particular, Im�rTM

2 � �which contrib-
utes to the integrals� is 0 everywhere except at x=0 where it
can take any value between its maximum and minimum
��#0.079 for ��=11.66�.

Now remember that the imaginary part of the squared
reflection coefficient shown in Fig. 2 is to be multiplied with
either the coth factor or its T derivative, both of which di-
verge as T /� as �→0. The result is an exceedingly volatile
behavior of the integrands of �5� and �7� near zero frequency
and temperature, and the limit where both are zero can take
any value between −� and � depending on the way the limit
is taken. This contrasts the bounded discontinuity shown in
Fig. 1 in the temperature-independent case.

Furthermore, when � contains temperature-dependent pa-
rameters, the entropy �7� will have an additional term
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When ��0 this inverse quadratic temperature dependence is
no problem since �17� varies as v−1��, so the term �16� is
zero by a good measure when T=0. The limit �→0 may be
taken so that v has a finite value, however, in which case the
derivative �17� diverges as T−2. This corresponds to rTM

2 mak-
ing a sudden jump from 1 to r0

2 at T=0 for �=0. The term
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2� /�T at T=0 is thus zero for all frequencies except �
=0, where it is infinite. We can no longer argue that this one
point does not contribute to the physical quantity S, and
while the purported zero-temperature entropy may be diffi-
cult to calculate in this way �it is straightforward to calculate
it in the imaginary frequency framework�, it seems likely
that the entropy obtains a finite value assuming the formal-
ism may be taken at face value.

A. Findings of the mathematical analysis

An important realization is thus that a violation of the
third law of thermodynamics is predicted in the present
framework when ���� changes the power of its leading order
term with respect to � at exactly zero temperature. When
���� changes from ��−2 to ��−1, a violation occurs in the
TE mode; when the change is from ��−1 to ��0, the TM
mode gives the zero-temperature entropy contribution.
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The bottom line is that, when viewed in the framework of
real frequencies, all apparent zero-temperature entropy
anomalies stem from divergencies of the Lifshitz integrand
in the double limit T→0 and �→0. The reader should note
that in this author’s understanding, this result does not con-
tradict the findings of either �1,3–7� or �2,8,9�. The last of
these references also notes a formal violation of Nernst’s
theorem due to rotation of permanent ionic dipole moments
in the materials. In light of the above, we may conclude that
the latter effect is only problematic in media where the rota-
tional degree of freedom of the ions vanishes with tempera-
ture in such a manner that its resonant frequency is finite at
T�0 and zero at T=0. This anomaly needs to be studied
further in the future.

B. Physical discussion of thermodynamical anomalies

In this section we will undertake a brief physical discus-
sion of the mathematical results in the previous sections,
reviewing the temperature debate for metals and semicon-
ductors in light of the above analysis. Models used when
studying the physics of real systems are founded on assump-
tions which we may categorize as modeling idealizations and
approximations in the description of the behavior of these
models, and there may be a need to distinguish between
these in the present context. A relevant modeling idealiza-
tion, for example, is that a metal sample has infinitely large
dimensions and a perfect crystal lattice structure. Much of
science is founded on such ideal models and corrections to
them. A relevant approximation in this context is the use of
simple dielectric functions such as �9�–�12� which in particu-
lar assume that the media in question have local dielectric
response �i.e., they depend only on frequency, not momen-
tum k�. Even for idealized systems, such approximations
typically have limitations.

An ideal model which can in principle be realized �not-
withstanding its infeasibility in practice� cannot be allowed
to violate the laws of nature, thermodynamics in particular.
An approximation, on the other hand, will typically have a
finite range of applicability, and cannot be expected to be-
have correctly outside this range. Given that the limits T=0
and �=0 are in some ways extreme cases, it is especially
important to investigate the latter point in relation to the
purported problems with the third law of thermodynamics.
Specifically, if an approximation which works well at room
temperature does not hold for T=0 one cannot conclude from
a formal violation of Nernst’s theorem that it cannot be used
within its applicability range.

The much investigated temperature anomaly for metals is
a good example of the above, and we will review it briefly
for illustration. For a perfect and infinitely large metal lattice,
the relaxation ��T� is due to electron-phonon interactions
only and follows the Bloch-Grüneisen formula �see Appen-
dix D of �3��, according to which � vanishes as T5 as tem-
perature tends to zero, leading to the above reported anoma-
lies. It has been pointed out that no real metal sample is ever

perfect �3� nor infinitely large,5 so relaxation does not vanish
in real systems. There is now consensus that for impure met-
als the Drude relation does not lead to thermodynamic incon-
sistencies.

However, the theoretical problem is thereby only halfway
solved, because as pointed out �2� the fulfilment of the laws
of nature cannot hinge upon the presence of imperfections:
the ideal system should accord with thermodynamics as well.
The solution according to the authors of �2� is to remove the
relaxation from the Drude model and, more recently, intro-
duce dissipation instead through a generalized plasma model
�16�, unfortunately at the expense of ignoring the manifest
presence of relaxation at room temperature. Experiments
seem to confirm the predictions from such a procedure and
rule out those implied by the use of the Drude model �9�
�e.g., �23�� but the theory has not been universally accepted.

While the ideal crystal lattice, when treated in all detail,
should certainly be found to abide by Nernst’s theorem, the
approximation that its dielectric response is well described
by the local formalism has been questioned for temperatures
approaching T=0. Svetovoy and Esquivel �26� and Sernelius
�27� conclude independently that at low temperatures nonlo-
cal effects �the anomalous skin effect� dominate, and the lo-
cal models are no longer reliable. Their analyses accounting
for spatially dispersive effects reveal that, within the ap-
proximations made in �26,27� Nernst’s theorem is satisfied
independently of the presence of imperfections, as it should
be. The spatial dispersion approach was criticized �28� on
several accounts with reference to a treatment by Barash and
Ginzburg many years ago �29� �see also �30��. The paradox
remains that such a careful procedure �albeit not free of ap-
proximations� does not accord with available experimental
data. Commendable efforts at a resolution include the recent
exploits by Bimonte �31�.

While mathematically analogous to the metal case, the
temperature anomaly for semiconductors is physically differ-
ent. Here the problem is not related to idealized models �the
conductivity of insulators truly does vanish at zero T�, but
approximations only.

One can argue intuitively that the approximate model �10�
probably cannot be taken at face value when conductivity is
very small since it implies that even an infinitesimal conduc-
tivity should give rise to large thermal corrections in the
Lifshitz formalism, contrary to physical intuition. For insu-
lators, by definition, conductivity vanishes at T=0, and for
many such materials the conductivity even at room tempera-
ture is so small it would be expected to make for a minor
perturbation only.6 If �10� is a poor approximation at low
frequencies as � vanishes, its violating thermodynamic laws
in this case may not be too worrisome.

A recent experiment �22� measured the force between a
substrate of the semiconductor silicon and a gold sphere. The

5The conductivity of very pure metals at low temperatures is
found experimentally to be sample size dependent �24� so even
assuming perfectly pure metal, � still reaches a finite value when its
Bloch-Grüneisen mean free path becomes comparable to the sample
dimensions.

6For an introduction to different types of semiconductors, see
Chap. 1 of �25�.
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The bottom line is that, when viewed in the framework of
real frequencies, all apparent zero-temperature entropy
anomalies stem from divergencies of the Lifshitz integrand
in the double limit T→0 and �→0. The reader should note
that in this author’s understanding, this result does not con-
tradict the findings of either �1,3–7� or �2,8,9�. The last of
these references also notes a formal violation of Nernst’s
theorem due to rotation of permanent ionic dipole moments
in the materials. In light of the above, we may conclude that
the latter effect is only problematic in media where the rota-
tional degree of freedom of the ions vanishes with tempera-
ture in such a manner that its resonant frequency is finite at
T�0 and zero at T=0. This anomaly needs to be studied
further in the future.

B. Physical discussion of thermodynamical anomalies

In this section we will undertake a brief physical discus-
sion of the mathematical results in the previous sections,
reviewing the temperature debate for metals and semicon-
ductors in light of the above analysis. Models used when
studying the physics of real systems are founded on assump-
tions which we may categorize as modeling idealizations and
approximations in the description of the behavior of these
models, and there may be a need to distinguish between
these in the present context. A relevant modeling idealiza-
tion, for example, is that a metal sample has infinitely large
dimensions and a perfect crystal lattice structure. Much of
science is founded on such ideal models and corrections to
them. A relevant approximation in this context is the use of
simple dielectric functions such as �9�–�12� which in particu-
lar assume that the media in question have local dielectric
response �i.e., they depend only on frequency, not momen-
tum k�. Even for idealized systems, such approximations
typically have limitations.

An ideal model which can in principle be realized �not-
withstanding its infeasibility in practice� cannot be allowed
to violate the laws of nature, thermodynamics in particular.
An approximation, on the other hand, will typically have a
finite range of applicability, and cannot be expected to be-
have correctly outside this range. Given that the limits T=0
and �=0 are in some ways extreme cases, it is especially
important to investigate the latter point in relation to the
purported problems with the third law of thermodynamics.
Specifically, if an approximation which works well at room
temperature does not hold for T=0 one cannot conclude from
a formal violation of Nernst’s theorem that it cannot be used
within its applicability range.

The much investigated temperature anomaly for metals is
a good example of the above, and we will review it briefly
for illustration. For a perfect and infinitely large metal lattice,
the relaxation ��T� is due to electron-phonon interactions
only and follows the Bloch-Grüneisen formula �see Appen-
dix D of �3��, according to which � vanishes as T5 as tem-
perature tends to zero, leading to the above reported anoma-
lies. It has been pointed out that no real metal sample is ever

perfect �3� nor infinitely large,5 so relaxation does not vanish
in real systems. There is now consensus that for impure met-
als the Drude relation does not lead to thermodynamic incon-
sistencies.

However, the theoretical problem is thereby only halfway
solved, because as pointed out �2� the fulfilment of the laws
of nature cannot hinge upon the presence of imperfections:
the ideal system should accord with thermodynamics as well.
The solution according to the authors of �2� is to remove the
relaxation from the Drude model and, more recently, intro-
duce dissipation instead through a generalized plasma model
�16�, unfortunately at the expense of ignoring the manifest
presence of relaxation at room temperature. Experiments
seem to confirm the predictions from such a procedure and
rule out those implied by the use of the Drude model �9�
�e.g., �23�� but the theory has not been universally accepted.

While the ideal crystal lattice, when treated in all detail,
should certainly be found to abide by Nernst’s theorem, the
approximation that its dielectric response is well described
by the local formalism has been questioned for temperatures
approaching T=0. Svetovoy and Esquivel �26� and Sernelius
�27� conclude independently that at low temperatures nonlo-
cal effects �the anomalous skin effect� dominate, and the lo-
cal models are no longer reliable. Their analyses accounting
for spatially dispersive effects reveal that, within the ap-
proximations made in �26,27� Nernst’s theorem is satisfied
independently of the presence of imperfections, as it should
be. The spatial dispersion approach was criticized �28� on
several accounts with reference to a treatment by Barash and
Ginzburg many years ago �29� �see also �30��. The paradox
remains that such a careful procedure �albeit not free of ap-
proximations� does not accord with available experimental
data. Commendable efforts at a resolution include the recent
exploits by Bimonte �31�.

While mathematically analogous to the metal case, the
temperature anomaly for semiconductors is physically differ-
ent. Here the problem is not related to idealized models �the
conductivity of insulators truly does vanish at zero T�, but
approximations only.

One can argue intuitively that the approximate model �10�
probably cannot be taken at face value when conductivity is
very small since it implies that even an infinitesimal conduc-
tivity should give rise to large thermal corrections in the
Lifshitz formalism, contrary to physical intuition. For insu-
lators, by definition, conductivity vanishes at T=0, and for
many such materials the conductivity even at room tempera-
ture is so small it would be expected to make for a minor
perturbation only.6 If �10� is a poor approximation at low
frequencies as � vanishes, its violating thermodynamic laws
in this case may not be too worrisome.

A recent experiment �22� measured the force between a
substrate of the semiconductor silicon and a gold sphere. The

5The conductivity of very pure metals at low temperatures is
found experimentally to be sample size dependent �24� so even
assuming perfectly pure metal, � still reaches a finite value when its
Bloch-Grüneisen mean free path becomes comparable to the sample
dimensions.

6For an introduction to different types of semiconductors, see
Chap. 1 of �25�.
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The bottom line is that, when viewed in the framework of
real frequencies, all apparent zero-temperature entropy
anomalies stem from divergencies of the Lifshitz integrand
in the double limit T→0 and �→0. The reader should note
that in this author’s understanding, this result does not con-
tradict the findings of either �1,3–7� or �2,8,9�. The last of
these references also notes a formal violation of Nernst’s
theorem due to rotation of permanent ionic dipole moments
in the materials. In light of the above, we may conclude that
the latter effect is only problematic in media where the rota-
tional degree of freedom of the ions vanishes with tempera-
ture in such a manner that its resonant frequency is finite at
T�0 and zero at T=0. This anomaly needs to be studied
further in the future.

B. Physical discussion of thermodynamical anomalies

In this section we will undertake a brief physical discus-
sion of the mathematical results in the previous sections,
reviewing the temperature debate for metals and semicon-
ductors in light of the above analysis. Models used when
studying the physics of real systems are founded on assump-
tions which we may categorize as modeling idealizations and
approximations in the description of the behavior of these
models, and there may be a need to distinguish between
these in the present context. A relevant modeling idealiza-
tion, for example, is that a metal sample has infinitely large
dimensions and a perfect crystal lattice structure. Much of
science is founded on such ideal models and corrections to
them. A relevant approximation in this context is the use of
simple dielectric functions such as �9�–�12� which in particu-
lar assume that the media in question have local dielectric
response �i.e., they depend only on frequency, not momen-
tum k�. Even for idealized systems, such approximations
typically have limitations.

An ideal model which can in principle be realized �not-
withstanding its infeasibility in practice� cannot be allowed
to violate the laws of nature, thermodynamics in particular.
An approximation, on the other hand, will typically have a
finite range of applicability, and cannot be expected to be-
have correctly outside this range. Given that the limits T=0
and �=0 are in some ways extreme cases, it is especially
important to investigate the latter point in relation to the
purported problems with the third law of thermodynamics.
Specifically, if an approximation which works well at room
temperature does not hold for T=0 one cannot conclude from
a formal violation of Nernst’s theorem that it cannot be used
within its applicability range.

The much investigated temperature anomaly for metals is
a good example of the above, and we will review it briefly
for illustration. For a perfect and infinitely large metal lattice,
the relaxation ��T� is due to electron-phonon interactions
only and follows the Bloch-Grüneisen formula �see Appen-
dix D of �3��, according to which � vanishes as T5 as tem-
perature tends to zero, leading to the above reported anoma-
lies. It has been pointed out that no real metal sample is ever

perfect �3� nor infinitely large,5 so relaxation does not vanish
in real systems. There is now consensus that for impure met-
als the Drude relation does not lead to thermodynamic incon-
sistencies.

However, the theoretical problem is thereby only halfway
solved, because as pointed out �2� the fulfilment of the laws
of nature cannot hinge upon the presence of imperfections:
the ideal system should accord with thermodynamics as well.
The solution according to the authors of �2� is to remove the
relaxation from the Drude model and, more recently, intro-
duce dissipation instead through a generalized plasma model
�16�, unfortunately at the expense of ignoring the manifest
presence of relaxation at room temperature. Experiments
seem to confirm the predictions from such a procedure and
rule out those implied by the use of the Drude model �9�
�e.g., �23�� but the theory has not been universally accepted.

While the ideal crystal lattice, when treated in all detail,
should certainly be found to abide by Nernst’s theorem, the
approximation that its dielectric response is well described
by the local formalism has been questioned for temperatures
approaching T=0. Svetovoy and Esquivel �26� and Sernelius
�27� conclude independently that at low temperatures nonlo-
cal effects �the anomalous skin effect� dominate, and the lo-
cal models are no longer reliable. Their analyses accounting
for spatially dispersive effects reveal that, within the ap-
proximations made in �26,27� Nernst’s theorem is satisfied
independently of the presence of imperfections, as it should
be. The spatial dispersion approach was criticized �28� on
several accounts with reference to a treatment by Barash and
Ginzburg many years ago �29� �see also �30��. The paradox
remains that such a careful procedure �albeit not free of ap-
proximations� does not accord with available experimental
data. Commendable efforts at a resolution include the recent
exploits by Bimonte �31�.

While mathematically analogous to the metal case, the
temperature anomaly for semiconductors is physically differ-
ent. Here the problem is not related to idealized models �the
conductivity of insulators truly does vanish at zero T�, but
approximations only.

One can argue intuitively that the approximate model �10�
probably cannot be taken at face value when conductivity is
very small since it implies that even an infinitesimal conduc-
tivity should give rise to large thermal corrections in the
Lifshitz formalism, contrary to physical intuition. For insu-
lators, by definition, conductivity vanishes at T=0, and for
many such materials the conductivity even at room tempera-
ture is so small it would be expected to make for a minor
perturbation only.6 If �10� is a poor approximation at low
frequencies as � vanishes, its violating thermodynamic laws
in this case may not be too worrisome.

A recent experiment �22� measured the force between a
substrate of the semiconductor silicon and a gold sphere. The

5The conductivity of very pure metals at low temperatures is
found experimentally to be sample size dependent �24� so even
assuming perfectly pure metal, � still reaches a finite value when its
Bloch-Grüneisen mean free path becomes comparable to the sample
dimensions.

6For an introduction to different types of semiconductors, see
Chap. 1 of �25�.
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ent. Here the problem is not related to idealized models �the
conductivity of insulators truly does vanish at zero T�, but
approximations only.

One can argue intuitively that the approximate model �10�
probably cannot be taken at face value when conductivity is
very small since it implies that even an infinitesimal conduc-
tivity should give rise to large thermal corrections in the
Lifshitz formalism, contrary to physical intuition. For insu-
lators, by definition, conductivity vanishes at T=0, and for
many such materials the conductivity even at room tempera-
ture is so small it would be expected to make for a minor
perturbation only.6 If �10� is a poor approximation at low
frequencies as � vanishes, its violating thermodynamic laws
in this case may not be too worrisome.

A recent experiment �22� measured the force between a
substrate of the semiconductor silicon and a gold sphere. The

5The conductivity of very pure metals at low temperatures is
found experimentally to be sample size dependent �24� so even
assuming perfectly pure metal, � still reaches a finite value when its
Bloch-Grüneisen mean free path becomes comparable to the sample
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semiconductor was excited into a metallic state by a pulsed
laser and it was concluded that while the model �10� was a
good representation in the metallic state, the inclusion of the
� term when the material was in the poorly conducting state
was excluded at 95% confidence. This conclusion may not be
surprising in light of the above argument, which indicates
that a Drude-type permittivity model overestimates the effect
of a small conductivity in the Lifshitz formalism. If so, it is
likely that the experimental result might be explained with-
out reference to the Nernst theorem, which concerns physics
far removed from laboratory conditions.

Attempts at a more careful description of the effect of a
small density of free charges were recently made by Pitae-
vskii �32� and by Dalvit and Lamoreaux �33�, based on the
effects of Debye-Hückel screening from free charges in
mean field theory. The resulting expressions do not fit experi-
mental data well �34�, and it is possible that a more detailed
screening model is needed.

CONCLUSION

While the Lifshitz formalism at real frequencies is much
more complicated than the imaginary frequency equivalent
normally considered, the consideration of quantities with di-
rect physical interpretations sheds added light on the prob-
lem of nonvanishing Lifshitz entropy at zero temperature.
We have argued that Nernst’s heat theorem is not violated for
any causal and continuous �except at �=0� ���� which is
independent of T near T=0. This accords with the findings of
Intravaia and Henkel �11� using a different approach. More

generally, this holds for dielectric plates whose squared
Fresnel TE and TM reflection coefficients are continuous for
all � and T and nonunitary except at �=0. It follows from
this that the entropy anomalies previously reported pertain to
the persistence of the permittivity’s temperature variance all
the way to zero temperature and are consequences of diver-
gencies in the Lifshitz formalism in the double limit �→0
and T→0.

When considering physical consistency in such limits as a
means to distinguish between candidate theories, particular
care must be taken. We emphasize that approximations can
be judged only based on their performance within their do-
main of applicability. Specifically, approximations which are
invalid at T=0 cannot be expected to be well behaved in this
limit, and hence cannot be rejected for causing violation of
Nernst’s theorem, which concerns zero temperature only. It is
therefore important to verify carefully that approximate
physical models probed by invoking Nernst’s theorem are
valid in this case. We finally argue that a recent experiment
using an optically excited semiconductor can probably be
explained without reference to the Nernst theorem by ac-
counting for the presence of free charges more carefully than
by the use of local Drude-type models.
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When considering physical consistency in such limits as a
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main of applicability. Specifically, approximations which are
invalid at T=0 cannot be expected to be well behaved in this
limit, and hence cannot be rejected for causing violation of
Nernst’s theorem, which concerns zero temperature only. It is
therefore important to verify carefully that approximate
physical models probed by invoking Nernst’s theorem are
valid in this case. We finally argue that a recent experiment
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explained without reference to the Nernst theorem by ac-
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good representation in the metallic state, the inclusion of the
� term when the material was in the poorly conducting state
was excluded at 95% confidence. This conclusion may not be
surprising in light of the above argument, which indicates
that a Drude-type permittivity model overestimates the effect
of a small conductivity in the Lifshitz formalism. If so, it is
likely that the experimental result might be explained with-
out reference to the Nernst theorem, which concerns physics
far removed from laboratory conditions.

Attempts at a more careful description of the effect of a
small density of free charges were recently made by Pitae-
vskii �32� and by Dalvit and Lamoreaux �33�, based on the
effects of Debye-Hückel screening from free charges in
mean field theory. The resulting expressions do not fit experi-
mental data well �34�, and it is possible that a more detailed
screening model is needed.

CONCLUSION

While the Lifshitz formalism at real frequencies is much
more complicated than the imaginary frequency equivalent
normally considered, the consideration of quantities with di-
rect physical interpretations sheds added light on the prob-
lem of nonvanishing Lifshitz entropy at zero temperature.
We have argued that Nernst’s heat theorem is not violated for
any causal and continuous �except at �=0� ���� which is
independent of T near T=0. This accords with the findings of
Intravaia and Henkel �11� using a different approach. More

generally, this holds for dielectric plates whose squared
Fresnel TE and TM reflection coefficients are continuous for
all � and T and nonunitary except at �=0. It follows from
this that the entropy anomalies previously reported pertain to
the persistence of the permittivity’s temperature variance all
the way to zero temperature and are consequences of diver-
gencies in the Lifshitz formalism in the double limit �→0
and T→0.

When considering physical consistency in such limits as a
means to distinguish between candidate theories, particular
care must be taken. We emphasize that approximations can
be judged only based on their performance within their do-
main of applicability. Specifically, approximations which are
invalid at T=0 cannot be expected to be well behaved in this
limit, and hence cannot be rejected for causing violation of
Nernst’s theorem, which concerns zero temperature only. It is
therefore important to verify carefully that approximate
physical models probed by invoking Nernst’s theorem are
valid in this case. We finally argue that a recent experiment
using an optically excited semiconductor can probably be
explained without reference to the Nernst theorem by ac-
counting for the presence of free charges more carefully than
by the use of local Drude-type models.
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Abstract. The controversy concerning the temperature correction to the Casimir force has
been ongoing for almost a decade with no view to a solution and has recently been extended to
include semiconducting materials. We review some theoretical aspects of formal violations
of Nernst’s heat theorem in the context of Casimir Lifshitz thermodynamics and the role
of the exponent of the leading term of the dielectric permittivity with respect to imaginary
frequency. A general formalism for calculating the temperature corrections to free energy at
low temperatures is developed for systems which do not exhibit such anomalies, and the low
temperature behaviour of the free energy in a gap between half-spaces of poorly conducting
materials modelled with a Drude type permittivity is calculated.

1. Introduction
The Casimir force [1], once merely a theoretical curiosity, is becoming the center of widespread
attention in the wake of rapid developments in microtechnology. The enormous experimental
progress made over the last decade towards accurately measuring this force [2–14] has created the
need to calculate the Casimir force with high accuracy in realistic settings, taking into account
such effects as material optical properties, surface roughness and geometry effects. Reviews of
recent progress include [15–17].

It was realised quite early that an ambiguity existed as to the interpretation of Lifshitz’
formula [18] for the Casimir attraction between dielectric half-spaces: when describing an ideal
metal by taking the permittivity to infinity, different results were obtained at finite temperatures
depending on the way the limit was taken. The ambiguity was originally sidestepped by
prescription [19] and re-examined only much later by Boström and Sernelius [20] who concluded
that due to the finite relaxation time of conduction electrons in a metal the transverse electric
(TE) reflection coefficient of a metal-vacuum interface must vanish in the zero frequency limit,
contrary to Casimir’s ideal metal approximation in which reflection coefficients are set to unity
at all energies. This was further supported by another study by Høye et al. [21]. For finite
temperatures this vanishing of the TE zero frequency reflection coefficient leads to a prediction
of a relatively large reduction of the Casimir force between metal plates at finite temperature, up
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to 15% at 300K. The Boström-Sernelius analysis was opposed on thermodynamical grounds for
violating Nernst’s theorem (the third law of thermodynamics) which states that a nondegenerate
system must have zero entropy at zero temperature [22]. Moreover it was concluded that the
series of high accuracy experiments at Purdue exclude the thermal correction predicted by
the theory in which the TE zero frequency mode does not contribute [11, 13]. The debate is
summarised in recent reviews [23,24].

Recently an analogous ambiguity in the Lifshitz formalism was brought up for the case of
semiconductors [25–28]. A formal violation of Nernst’s theorem is once again the difficulty,
this time due to discontinuous behaviour in the transverse magnetic (TM) reflection coefficient,
whose value in the limit of zero frequency depends intimitely on the way the small density of
conducting electrons in semiconducting materials at finite temperatures are taken into account.

However, we do not expect such formal violations of Nernst’s theorem stemming from the
mathematical subtleties of the Lifshitz formula to have implications for the physics of the
problem. In [21] it was concluded that on physical grounds, no TE zero mode should be
present for real metals, and recently a quantum statistical mechanical treatment came to the
same result [29]. For semiconductors, earlier statistical mechanical analyses by Jancovici and
Šamaj [30, 31] and by Buenzli and Martin [32] for ionic systems are of interest. What is
found is that the effective separation between the plates increases as twice the ionic shielding
length, which implies a non-local behaviour of the dielectric function. This increase in effective
separation also means that the ionic contribution to reflectivity vanishes with vanishing ionic
concentration. The results of refs. [30–32] are restricted to ionic systems, but in the high
temperature (classical) limit they recover the ideal metal result corresponding to no TE zero
mode.

Several others have also developed non-local approaches to the problem of Lifshitz theory for
poor conductors, notably Pitaevskii [33], Lamoreaux and Dalvit [34,35], Esquivel [36] and most
recently Svetovoy [37]. Also some these have not gone without objections [38–42]. We restrict
ourselves to local permittivity models in the present effort.

2. Formal violations of Nernst’s heat theorem; general theory
The Lifshitz formula expresses the Casimir free energy between parallel surfaces described by
polarisation specific reflection coefficients rq where q ∈ {p, s} is the polarisation (assuming
specular reflection and no coupling between p and s modes). For simplicity we shall assume the
surfaces to be identical in the following, in which case the Casimir free energy at temperature
T reads

F(a) =
T

2π

∞∑
m=0

′
∫ ∞

ζm

dκκ
∑

q=p,s

ln(1 − r2
qe

−2κa) (1)

wherein a is the plate separation, p, s denotes TM and TE polarisations respectively, and iζm

are the (imaginary) Matsubara frequencies so that ζm = 2πmT . As conventional, the prime on
the summation mark signifies that the m = 0 term be taken with half weight. We will be using
natural units kB = � = c = 1 throughout. Henceforth we will frequently omit the subscript
m on ζm and the various quantities depending on it. The integral in (1) is over all transverse
momenta k⊥ of the field (⊥ denotes a direction parallel to the surfaces) and the substitution
κ2 = k2

⊥ + ζ2 has been made.
In the case where the interfaces are between vacuum and a half-space made of dielectric

material, the Fresnel reflection coefficients read

rs =
κ − κ̃

κ + κ̃
; rp =

εκ − κ̃

εκ + κ̃
; κ̃ ≡

√
κ2 + ζ2(ε − 1). (2)

Here ε = ε(iζ) denotes the dielectric permittivity relative to vacuum.
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It is straightforward to verify that the values of rq in the limit ζ → 0 depend on the leading
exponent of ε(iζ) as this limit is approached. For materials with mobile charges, models of the
permittivity will typically diverge in the zero frequency limit, whereas that of a pure dielectric
isolator reaches a finite value, limζ→0 ε(iζ) = ε̄. Assuming ε(iζ) ∼ (ζ/ω̃)λ (ω̃ is a constant) as
ζ → 0, one readily obtains the limits arrayed in table 1 in which

r̃s(κ) = −κ2

ω̃2

(√
1 +

ω̃2

κ2
− 1

)2

≤ 0. (3)

λ rs rp

0 0 ε̄−1
ε̄+1

−1 0 1
−2 r̃s(κ) 1
< −2 −1 1

Table 1. Values of rq(iζ → 0, κ) for
different exponents λ.

The model permittivities which cause formal violation of Nernst’s theorem have the common
trait that the exponent λ takes one value at all finite temperatures which changes abruptly at
exactly T = 0. A general treatment demonstrates that such temperature dependence is necessary
in order for a formal violation of the theorem to occur [43,44] as we will briefly explain.

An example is the application of a Drude model to describe the dielectric response of an
infinitely large and perfectly pure metal lattice, for which ε(iζ) is modelled as

ε(iζ) = 1 +
ω2

p

ζ[ζ + ν(T )]
. (4)

For a real metal sample of finite size, ν(T ) reaches a nonzero value at zero temperature due to
electron scattering on boundaries, impurities and imperfections, and λ = −1 for all temperatures.
In this case entropy vanishes in the zero temperature limit as it should [45,46]. In a perfect lattice
of infinite size, however, electron relaxation is solely due to scattering on thermal phonons, so
that ν ∼ T 5 as T → 0. Thus λ changes from −1 to −2 at T = 0, making rs jump discontinuously
from zero to a finite value as seen in table 1. Clearly ω̃ = ωp in (3) in the case λ = −2.

Another example is the semiconductor whose conductivity vanishes as a function of T . If a
Drude model is used to model the permittivity of such a material,

ε(iζ) = 1 +
ε̄ − 1

1 + ζ2/ω2
0

+
4πσ(T )

ζ
, (5)

a formal violation occurs when σ(T ) vanishes at exactly T = 0. In this case λ = −1 at all T
until absolute zero, where it skips to λ = 0 and the magnitude of rp jumps discontinuously.

Let
lim
ζ→0

rq = Rq(κ; λ) (6)

as tabulated (note that apart from the λ = −2 s-mode, Rq is independent of κ). It can be
shown that when reflection coefficients jump discontinuously at ζ = 0, the free energy obtains
a term linear in temperature equal to the difference of the m = 0 terms of (1) as obtained with
the two zero-frequency reflection coefficients respectively. If the leading ζ exponent of ε changes
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permittivity will typically diverge in the zero frequency limit, whereas that of a pure dielectric
isolator reaches a finite value, limζ→0 ε(iζ) = ε̄. Assuming ε(iζ) ∼ (ζ/ω̃)λ (ω̃ is a constant) as
ζ → 0, one readily obtains the limits arrayed in table 1 in which

r̃s(κ) = −κ2

ω̃2

(√
1 +

ω̃2

κ2
− 1

)2

≤ 0. (3)

λ rs rp

0 0 ε̄−1
ε̄+1

−1 0 1
−2 r̃s(κ) 1
< −2 −1 1

Table 1. Values of rq(iζ → 0, κ) for
different exponents λ.

The model permittivities which cause formal violation of Nernst’s theorem have the common
trait that the exponent λ takes one value at all finite temperatures which changes abruptly at
exactly T = 0. A general treatment demonstrates that such temperature dependence is necessary
in order for a formal violation of the theorem to occur [43,44] as we will briefly explain.

An example is the application of a Drude model to describe the dielectric response of an
infinitely large and perfectly pure metal lattice, for which ε(iζ) is modelled as

ε(iζ) = 1 +
ω2

p

ζ[ζ + ν(T )]
. (4)

For a real metal sample of finite size, ν(T ) reaches a nonzero value at zero temperature due to
electron scattering on boundaries, impurities and imperfections, and λ = −1 for all temperatures.
In this case entropy vanishes in the zero temperature limit as it should [45,46]. In a perfect lattice
of infinite size, however, electron relaxation is solely due to scattering on thermal phonons, so
that ν ∼ T 5 as T → 0. Thus λ changes from −1 to −2 at T = 0, making rs jump discontinuously
from zero to a finite value as seen in table 1. Clearly ω̃ = ωp in (3) in the case λ = −2.

Another example is the semiconductor whose conductivity vanishes as a function of T . If a
Drude model is used to model the permittivity of such a material,

ε(iζ) = 1 +
ε̄ − 1

1 + ζ2/ω2
0

+
4πσ(T )

ζ
, (5)

a formal violation occurs when σ(T ) vanishes at exactly T = 0. In this case λ = −1 at all T
until absolute zero, where it skips to λ = 0 and the magnitude of rp jumps discontinuously.

Let
lim
ζ→0

rq = Rq(κ; λ) (6)

as tabulated (note that apart from the λ = −2 s-mode, Rq is independent of κ). It can be
shown that when reflection coefficients jump discontinuously at ζ = 0, the free energy obtains
a term linear in temperature equal to the difference of the m = 0 terms of (1) as obtained with
the two zero-frequency reflection coefficients respectively. If the leading ζ exponent of ε changes
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from λ1 to λ2 at exactly T = 0, therefore, it leads to a residual entropy S = −∂F/∂T at zero
temperature

Sλ1→λ2 =
1
4π

∑
q=p,s

∫ ∞

0
dκκ ln

1 − R2
q(κ;λ2)e−2κa

1 − R2
q(κ;λ1)e−2κa

. (7)

In particular, when Rq(κ;λ1) = Rq(λ1) and Rq(κ;λ2) = Rq(λ2) one may use the relation
∫ ∞

0
dκκ ln[1 − R2e−2κa] = − 1

4a2
Li3(R2) (8)

where Lin(x) is the nth order polylogarithmic function

Lin(x) =
∞∑
l=1

xl

ln
(9)

to write
Sλ1→λ2 =

1
16πa2

∑
q=p,s

{
Li3[R2

q(λ1)] − Li3[R2
q(λ2)]

}
. (10)

In the particular cases of Drude modelled metals and semiconductors discussed above it
follows immediately from table 1 and Eqs. (7) and (10) that, respectively,

S−1→−2 =
1
4π

∫ ∞

0
dκκ ln[1 − r̃2

s(κ)e−2κa]; (metals) (11a)

S−1→0 =
1

16πa2

{
ζ(3) − Li3[R2

p(0)]
}

(semiconductors) (11b)

where Rp(0) = (ε̄ − 1)/(ε̄ + 1) and where we have used Lin(1) = ζ(n), the Riemann zeta
function. These two exponent transitions are those which come into play for metals and
dielectrics respectively, or more precisely, upon plugging a Drude-type permittivity model with
vanishing ν(T ) or σ(T ) into the Lifshitz formula and extrapolating to zero temperature. Other
exponent transitions, naturally, would give other zero point entropy expressions.

Note that by letting ω̃ → ∞ in (3) so that r̃s(κ) → −1, the entropy (11a) becomes

S−1→−2
ω̃→∞−→ − ζ(3)

16πa2
, (12)

which is the well known result for the so-called modified ideal metal model obtained by this
procedure [21].

3. Free energy temperature correction for poor Drude conductor
The model for the conductivity we will be studying in the following is assumed not to depend
on T within a finite range of temperatures including T = 0, in which case it is clear from the
above that Nernst’s theorem will be satisfied. While the consideration of such a model cannot
resolve such anomalies as reported in the previous section, it is nonetheless useful to establish
benchmark results in various models within the Lifshitz formalism which exhibits very nontrivial
behaviour in the joint limit of zero temperature and frequency ζ.

We consider a semiconductor modelled by a Drude type permittivity such as (5), but where
we assume σ to be constant within a finite range of low temperatures including T = 0 (the case
σ = 0 was worked out in [25]). A more detailed treatment of this model may be found in [47].
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The method used is to note that F(a, T ) depends on T only through the prefactor T and the
Matsubara frequencies ζm = 2πmT , so we may write the free energy (1) on the form1

F = T
∑

q=p,s

fq(a)
∞∑

m=0

′
g(μ) (13)

where the function fq(a) is a convenient prefactor and we use the shorthand notation μ ≡ mt
where t = T/T0 is a dimensionless rescaled temperature to be defined in Eq. (18) below.

In the limit T = 0 the sum becomes an integral, and we are interested in the difference
between sum and integral, which may be found from the Euler-Maclaurin formula. It turns out
g(μ) is not analytical at m = 0 so it is necessary to start the sum at m = 1 (or a higher value),
writing

Γ̃ ≡
[ ∞∑

m=0

′
−

∫ ∞

0
dm

]
g(mt) =

1
2
g(0) −

∫ 1

0
g(mt)dm +

1
2
g(t) −

∞∑
k=1

B2k

(2k)!
g(2k−1)(t)

=
1
2
g(0) −

∫ 1

0
g(mt)dm +

1
2
g(t) − 1

12
g′(t) +

1
720

g′′′(t) − . . . . (14)

Since the correction terms in (14) are evaluated at m = 1 and we are considering small T , we
may choose T0 	 T so that μ 
 1. We anticipate that when expanded for small μ, the function
g(μ) is of the form

g(μ) ∼ c0 + c1μ + c 3
2
μ

3
2 + c2lμ

2 ln(μ) + c2μ
2 + c3μ

3 + ..., μ → 0 (15)

Upon insertion into (14) one finds that the c0 and c2 terms do not contribute. Terms of integer
powers of μ are determined by a finite number of terms in the series (14), but for the terms
containing logarithms or half-integer powers every term contributes. The series obtained is
asymptotic but a meaningful value may nonetheless be assigned to all terms of (15) by defining
the series by Borel summation2 or zeta regularisation. The result for polarisation mode q = p, s
is [47]

ΔFq = Tfq(a)Γ̃q = Tfq(a)
[
− c1

12
t + ζ(− 3

2
)c 3

2
t

3
2 +

ζ(3)c2l

4π2
t2 +

c3

120
t3 + ...

]
q

(16)

giving terms proportional to respectively T 2, T
5
2 , T 3 and T 4. It is understood that the coefficients

c1 through c3 are polarisation mode specific. We shall content ourselves with expanding free
energy to order T 3 in the present paper.

Equation (16) effectively reduces the problem to one of determining the expansion coefficients
of Eq. (15). This task is still not trivial, however, and we consider only the “intermediate
asymptotic” region in which conductivity is very small compared to inverse separation but
much greater than temperature

T 
 4πσ 
 1
a
. (17)

It is convenient now to define T0 = 2σ, that is

t =
T

T0
≡ ζ1

4πσ
=

2πT

4πσ
. (18)

1 Note that this convention differs sightly from that of [47].
2 See appendix of [47]
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2
)c 3

2
t

3
2 +

ζ(3)c2l

4π2
t2 +

c3

120
t3 + ...

]
q

(16)

giving terms proportional to respectively T 2, T
5
2 , T 3 and T 4. It is understood that the coefficients

c1 through c3 are polarisation mode specific. We shall content ourselves with expanding free
energy to order T 3 in the present paper.

Equation (16) effectively reduces the problem to one of determining the expansion coefficients
of Eq. (15). This task is still not trivial, however, and we consider only the “intermediate
asymptotic” region in which conductivity is very small compared to inverse separation but
much greater than temperature

T 
 4πσ 
 1
a
. (17)

It is convenient now to define T0 = 2σ, that is

t =
T

T0
≡ ζ1

4πσ
=

2πT

4πσ
. (18)

1 Note that this convention differs sightly from that of [47].
2 See appendix of [47]
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Assumption (17) ensures that t 
 1. The frequency which enters into (14) is ζ1 ∼ T 
 σ, so
ε(iζ) simplifies to

ε = ε̄ +
1
μ

(19)

We will consider the p and s modes individually in the following.

4. The TM mode
The TM mode expression for Casimir Lifshitz free energy exhibits highly nontrivial behaviour
near zero temperature. To simplify matters we note from (17) that the quantity

α ≡ 2a(4πσ) (20)

obeys α 
 1. We will determine free energy corrections perturbatively in powers of α in order
to obtain analytical results for the coefficients in (15).

Substituting the integration variable

x = 2κa =
καμ

ζ
(21)

the TM free energy may be written

Fp =
(4πσ)3t
4π2α2

∞∑
m=0

′
{∫ ∞

αμ
dxx ln(1 − r2

pe
−x)

}
≡ (4πσ)3t

4π2α2

∞∑
m=0

′
gp(m) (22)

where gp(m) is now chosen to be the expression within the curly braces. To leading order in α
one finds

ln(1 − r2
pe

−x) = ln(1 − Aμe−x) + O(α2); (23a)

Aμ ≡
(

1 + (ε̄ − 1)μ
1 + (ε̄ + 1)μ

)2

. (23b)

With the reflection squared coefficient now a constant with respect to x the integral in (22) can
be solved explicitly and expansion in μ as in (15) yields the coefficients c1 and c2l to leading
order in α as simply [47]

c1 =
2π2

3
; c2l = 8 (24)

and with (16) the low temperature correction to free energy is to leading order in α in terms of
T and σ reads:

ΔFp = − π2T 2

72(4πσ)a2
+

ζ(3)T 3

π(4πσ)2a2
. (25)

An examination shows that the correction to this result is approximately a factor α2 smaller as
anticipated.

5. The TE mode
A similar procedure is performed for the s (or TE) mode. With the substitution

x =
κ

ζ
√

ε(iζ) − 1
=

κμ

χζ
; χ ≡

√
μ + (ε̄ − 1)μ2, (26)
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the TE term of the free energy (1) may be written

Fs =
(4πσ)3t

4π2

∞∑
m=0

′
{

χ2

∫ ∞

μ/χ
dxx ln(1 − r2

se
−αχx)

}
=

(4πσ)3t
4π2

∞∑
m=0

′
gs(m). (27)

Again gs(m) is defined as the expression between the curly braces and in the new variables the
squared reflection coefficient reads

r2
s(x) = (

√
x2 + 1 − x)4. (28)

Expanding the logarithm of (27) to linear order in α,

ln(1 − r2
se

−αχx) = ln(1 − r2
s) +

αχxr2
s

1 − r2
s

+ O(α2) (29)

allows us to determine the temperature corrections for these orders of α. Both terms on the right
hand side of (29) give integrals over x which are explicitly solvable, and subsequent expansions
in powers of μ give the coefficients

c1 = −1
4
(2 ln 2 − 1); c2l = −1

4
; c 3

2
=

α

12
. (30)

Clearly c 3
2

 c1, c2l, being of linear order in α. The temperature corrections for the TE mode

thus read

ΔFs =
(4πσ)T 2

48
(2 ln 2 − 1) +

1
6

√
2πζ(− 3

2
)a(4πσ)

3
2 T

5
2 − ζ(3)T 3

8π
+ O(T

7
2 ). (31)

This result is in fact in perfect agreement with that obtained for Drude metals [45] but includes
one more order. Thus the concordance implies that a further expansion in α would only yield
corrections of higher orders in temperatures, and that for the case of the TE mode the expansion
in α was not essential for obtaining this result. Eq. (31) is therefore valid also when α is not
small, as is the case for a good conductor.

Notably the temperature corrections are independent of ε̄ to order T 3 for both polarisations
and only enters in higher orders, an insight not included in [45].

6. Numerical verification of results
The final results (25) and (31) have been checked numerically to verify their correctness [47].
A plot of the theoretical correction (25) compared to a direct numerical calculation of the free
energy is provided in figure 1.

A much more sensitive test is provided by the quantity

Rp =
ΔF th

p − ΔFnum
p

ΔF th
p

(32)

where ΔF th
p is the theoretically predicted free energy correction (25) and ΔFnum

p is that found
by direct numerical calculation. The data used for calculation are (in SI units) a = 1000nm,
σSI/ε0 = 1012s−1, ε̄ = 11.66 and ω0 = 8 · 1015s−1.

We have found that ΔF th
p is of the form ΔF th

p = −CT 2(1−C1T ) and assume ΔF th
p to have

the expansion
ΔFnum

p = −DT 2(1 − D1T + D2T
2 + . . . ), (33)
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Figure 1. Free energy Fp calculated
using direct numerical calculation and the
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In the special case where C = D and C1 = D1, this becomes

R = −D2T
2 + O(T 3). (35)

Thus if the coefficient C is incorrect R would not converge to 0 at T = 0, and an incorrect C1

would show as a linear behaviour at small temperatures. None of these effects are perceptible
in the figure, demonstrating that the corrections to (25) are small as predicted.

A similar high precision check of the result for the s mode (31) was not possible with these
numerical parameter values because the correction relative to the free energy at zero temperature
is extremely small, of order 10−9 at 1K. The correctness of the terms proportional to T 2 and
T

5
2 was however thoroughly verified for a good conductor in [45]. The term ∝ T 3 is numerically

elusive because while requiring very high accuracy for verification when α 
 1, it is completely
dominated by other terms for good conductors. A comparison of a direct numerical calculation
with the prediction (31) to order T 2 in figure 3 reveals that the difference between these graphs,
plotted in figure 4, is in the same order of magnitude as the T 3 term in (31), while the term
proportional to T

5
2 is too small to be visible at this level.

7. Conclusions
We have reviewed the theory of formal violations of Nernst’s heat theorem emphasising the
way such a formal violation can only occur when the leading order behaviour of ε(iζ) with
respect to ζ undergoes a discontinuous change at exactly T = 0. Such apparent problems with
the Lifshitz formalism occur when the double limit where T and ζ are both taken to zero is
not unique and depends intimately on the exact way in which a material’s dielectric (and, in
general, magnetic) response is modelled in this limit. As a general remark, Nernst’s theorem
concerns zero temperature only, and it is not a priori clear that one can simply extrapolate
between these two very different temperatures and use a result at one temperature to draw
conclusions at another. In particular, if a system behaves essentially different at T = 0 than
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at room temperature, a formal violation of Nernst’s theorem by extrapolation is not necessarily
worrisome. The results obtained complement those found in the case of zero conductivity in [25]
and generalise TE mode calculations for Drude metals in [45].

Using a Drude type model to describe a poor conductor whose conductivity stays finite at
zero temperature we establish the low temperature corrections to Casimir Lifshitz free energy
between two identical half-spaces separated by vacuum. As modelled, both TE and TM modes
exhibit a quadratic temperature behaviour at low temperatures.
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[31] Jancovici B and Šamaj L 2005 Europhys. Lett. 72 35
[32] Buenzli P R and Martin Ph A 2005 Europhys. Lett. 72 42
[33] Pitaevskii L P 2008 Phys. Rev. Lett 101 163202
[34] Lamoreaux S K 2008 Preprint quant-ph:0801.1283
[35] Dalvit D A R and Lamoreaux S K 2008 Preprint quant-ph:0805.1676
[36] Esquivel-Sirvent R 2008 Phys. Rev. A 77 042107
[37] Svetovoy V B 2008 Phys. Rev. Lett. 101 163603
[38] Klimchitskaya G L, Mohideen U and Mostepanenko V M 2008 J. Phys. A 41 432001
[39] Decca R S et al. 2008 Preprint quant-ph:0803.4247
[40] Geyer B, Klimchitskaya G L, Mohideen U and Mostepanenko 2008 Preprint quant-ph:0810.3243
[41] Decca R S et al. 2008 Preprint quant-ph:0810.3244
[42] Klimchitskaya G L, Mohideen U and Mostepanenko 2008 Preprint cond-mat:0810.3247
[43] Ellingsen S A 2008 Phys. Rev. E 78 021120
[44] Intravaia F and Henkel C 2008 J. Phys. A: Math. Theor. 41 164018
[45] Høye J S, Brevik I, Ellingsen S A, and Aarseth J B, 2007 Phys. Rev. E 75 051127
[46] Brevik I, Ellingsen S A, Høye J S, and Milton K A 2008 J.Phys. A: Math. Theor. 41 164017
[47] Ellingsen S A, Brevik I, Høye J S, and Milton K A 2008 Phys. Rev. E 78 021117

60 Years of the Casimir Effect IOP Publishing
Journal of Physics: Conference Series 161 (2009) 012010 doi:10.1088/1742-6596/161/1/012010

10

[25] Geyer B, Klimchitskaya G L, and Mostepanenko V M 2005 Phys. Rev. D 72 085009
[26] Klimchitskaya G L, Geyer B, and Mostepanenko V M 2006 J. Phys. A: Math. Gen. 39 6495
[27] Geyer B, Klimchitskaya G L, and Mostepanenko V M 2006 Int. J. Mod. Phys. A 21 5007
[28] Klimchitskaya G L and Geyer B 2008 J. Phys. A: Math. Theor. 41 164014
[29] Buenzli P R and Martin Ph A 2008 Phys. Rev. E 77 011114
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Abstract. The frequency spectrum of the Casimir force between real materials is studied
with a view to assess possible ways of by which its dramatic oscillatory behaviour might be
observed. Two simple attempts are made in which a model material is perturbed so as to
become semitransparent in a band of frequencies. It is found that the real frequency formalism
of the Casimir Lifshitz force is extremely volatile upon manipulations of optical properties
and produces nonsensical results when extreme care is not taken to ensure the physicality of
all perturbations, whereas the imaginary frequency formalism is highly robust and behaves
well even under unphysical manipulations. The indication is thus that the general physical
requirements of response functions preclude the observation of the frequency spectrum.

1. Introduction
The dependence of the Casimir force on the frequency dependent dielectric response of materials
has long been an issue of intense research and at times a source of controversy. Casimir’s
original calculation of the fluctuation induced attraction between parallel plates assumed ideal
conductors, perfectly reflecting at all field energies [1], and was generalised by Lifshitz a few
years later [2] to materials of arbitrary frequency dependent dielectric response. The Lifshitz
formula has since come to be recognised as a special case of a much more general formalism
of multiple scattering [3, 4], yet while much progress has been made in research on the Casimir
effect between more general bodies, the role of the inclusion of material dispersion properties
in the simple two-plate geometry is still imperfectly understood. This has been most clearly
demonstrated in the long ongoing disagreement over the thermal behaviour of the Casimir force
and free energy (e.g. [5,6] and references therein), a controversy centered in essence on the exact
optical properties of materials at very low frequencies.

Upon incorporating the dispersive properties of materials, the expression for the total Casimir
attraction between objects must necessarily include an integral over all frequencies of the
electromagnetic field. Since all real materials obey the laws of causality it is possible [7] to
shift the integral from the real to the positive imaginary frequency axis, which for the purposes
of calculation is most often preferable. While the integrand along the imaginary frequency axis
will typically be nicely peaked and exponentially decaying at high frequencies and therefore well
suited for numerical evaluation, the real-frequency integrand is the direct opposite. Ford and
others investigated the real-frequency spectrum of the Casimir force some time ago and showed
how it is wildly oscillating, with the area under one oscillation peak of the frequency integrand
much greater than the measurable Casimir force itself [8–10].

Formally, thus, the Casimir effect appears to emerge as the sum of an alternating series of very
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large and almost exactly canceling contributions. This inspired the suggestions that the optical
properties of materials may be tuned so as to produce a Casimir force of desired magnitude
and even sign [10, 11]. A handful of efforts have since elaborated this prospect [12–15], while
an analysis by Genet and co-workers concluded that due to general restrictions of causality and
analyticity such possibilities could not be realised [16].

Recently, the interpretation of an experiment by Iannuzzi and co-workers [17] was revisited in
light of the considerations of the frequency spectrum of the Casimir force [18]. The experiment
measured the Casimir attraction between so-called hydrogen switchable mirrors (HSMs). A
HSM is a material which is a good metallic reflector in its as-deposited state but becomes
transparent in the visible frequency range upon placement in a hydrogen rich atmosphere. While
the reflection properties of the HSM are quite drastically different in the two states, the group
was unable to detect a significant change in the Casimir attraction from one atmosphere to the
other at a precision in the order of 15%. At face value this negative result seems at odds with the
predictions of Ford, yet an alternative calculation of the effects of such a change of reflectivity
indicates that the expected effects on the force might indeed be rather modest. A more careful
analysis was made in [19].

In the following the recent analysis on the effect of perturbations of optical properties on the
real frequency axis is reviewed and extended.

2. Frequency spectrum of the Casimir Lifshitz force
The frequency spectrum of Casimir interactions may be taken from the Lifshitz formula for
real frequencies or worked out on more general grounds from the stress tensor operator of the
quantised electromagnetic field. The Lifshitz formula in the form most useful for this purpose
reads [2] (zero temperature is assumed henceforth)

P (a) = − 1
2π2

�e
∫ ∞

0
dωω3

∫
C

dpp2
∑

σ=s,p

r2
σ exp(2ipωa)

1 − r2
σ exp(2ipωa)

. (1)

Here P (a) is the Casimir pressure between the parallel plates separated by a distance a where
the minus sign signifies an attractive force. Natural units � = c = kB = 1 are used throughout.
ω is the real-valued frequency and the integral over the Lifshitz variable p =

√
(k⊥/ω)2 − 1

(physically the sum over all momentum components parallel to the surfaces) runs from 1 to 0
covering the propagating part of the spectrum, and thence to i∞ summing up all evanescent
field contributions.

The frequency spectrum Pω(a) is simply defined as

P (a) =
∫ ∞

0
dωPω(a) =

∫ ∞

0
dω

∑
σ=s,p

Pω,σ(a). (2)

This spectrum in fact equals that derived by Ford with a more fundamental procedure [8, 10].
With the special modelling assumption that reflection coefficients are constant with respect to
k⊥ the p-integral (1) may be solved explicitly by use of the polylogarithmic function

Lin(x) =
∞∑

k=1

xk

kn
(3)

which obeys the useful recursion relation (A and K are constants)∫
dyLin(Aeηy) =

1
η
Lin+1(Aeηy) + K (4)
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Pω,σ(a). (2)

This spectrum in fact equals that derived by Ford with a more fundamental procedure [8, 10].
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to yield the following frequency spectrum

Pω(a; {rσ}) =
−1

16π2a3

∑
σ=s,p

[
−ξ2�mLi1(r2

σeiξ) − 2ξ�eLi2(r2
σeiξ) + 2�mLi3(r2

σeiξ)
]

(5)

where the shorthand dimensionless quantity ξ = 2ωa is introduced. The spectrum (5) is plotted
in figure 1 assuming rσ are also constant with respect to frequency.

When the latter assumption is made, the frequency integral is explicitly solvable and the
Casimir zero temperature pressure is found as

P (a, {rσ}) = − 3
16π2a4

∑
σ=p,s

�eLi4(r2
σ). (6)

Casimir’s result PC(a) = −π2/(240a4) is regained by inserting r2
p = r2

s = 1 and Li4(1) = ζ(4) =
π4/90. Exactly the same treatment starting from the Lifshitz formula for the zero temperature
free energy rather than pressure yields

F (a, {rσ}, T = 0) = − 1
16π2a3

∑
σ=p,s

�eLi4(r2
σ) (7)

which again simplifies trivially to Casimir’s result in the limit rσ = 1.
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3. Frequency spectrum with real materials
When more realistic material properties are employed, the frequency spectrum of the Casimir
force is no longer as regular as that shown in figure 1, but shares the property of wild oscillation
of increasing amplitude throughout the frequency range in which optical data are typically
available. Given an explicit expression of reflection coefficients as functions of frequency and
transverse momentum, it is straightforward to calculate and plot the frequency spectrum, as
shown in figure 3. In these calculations the permittivity function for gold is used, represented
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by, respectively, the simple plasma model ε(ω) = 1 − ω2
p/ω2 with ωp = 9.0eV and interpolation

of experimental optical data tabulated in [20]. The graphs share the trait of large oscillations
which make them unsuitable for most numerical purposes. It is notable, however, that the two
spectra are radically different even though a calculation of the total Casimir force by the standard
method of rotating the integral onto the imaginary frequency axis gives almost identical results
whether the plasma model or the corresponding data set from [20] is used.
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Figure 3. Numerically calculated frequency spectrum using repectively data from [20] and
the plasma model, ε(ω) = 1 − ω2

p/ω2. Note that the spectrum is now a function of a and ω
individually, not only their product; a = 100nm is used in the figure.

The striking nature of these spectra naturally raises the question whether or not such giant
oscillations could be observable, and, if so, might even be used for experimental or technological
purposes as proposed in previous publications. On purely qualitative grounds one may conclude
from the extreme difference between the graphs in figure 3 that if observation of such a spectrum
were indeed possible, quantitative predictions cannot be made using simple models such as the
plasma or Drude model (the latter produces a spectrum reminiscent of that of the plasma model
in figure 3 with a greater number of sharp peaks), and the direct use of extremely accurate
optical data would be required.

4. Effects of a band perturbation of reflectivity
As figure 3 shows clearly, due to its highly oscillating nature the real frequency formalism is
not very helpful for calculating the absolute Casimir force [21]. One may think, however, that
it could nonetheless be fruitful for calculating a change of optical properties which was limited
to a small interval of frequencies, in which case an integral might not need to span the entire
frequency axis.

The experiment described above in which HSMs were used for the measurement of Casimir
forces would seem a natural candidate for the use of a real-frequency formalism. Upon
hydrogenation of the HSM, the material became transparent in the visible frequency range
whereas the optical properties in the infrared and ultraviolet remained largely unchanged. The
authors of [17, 19] propose a rough model for the description of the alteration of reflectivity
in which the metallic permittivity of the mirror in the as-deposited state is “switched off” at
ω1 ≈ 7.5 · 1014rad/s and “on” again at ω2 ≈ 9.4 · 1015rad/s. That is, ε(ω) = 1 + 4πχ(ω) −→
ε̃(ω) = 1 + 4πχ̃(ω) where

χ̃(ω) = χ(ω)[1 − θ(ω − ω1)θ(ω2 − ω)]. (8)
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Here θ(x) is the unit step function. In fact the transition alters the properties at all frequencies
to some extent [19], but as a first approximation one might expect that the “off/on” model
would give at least an idea of the magnitude of the effect.

Using the formalism of imaginary frequencies, the effect of such an “off/on” model can be
calculated by integration over the imaginary part of ε(ω) in the relevant Kramers-Kronig relation.
Using as an example the Drude model,

ε(ω) = 1 − ω2
p

ω(ω + iν)
, (9)

with ν being the electronic relaxation frequency (for gold ν = 35meV is often used [22]), one
may readily calculate the correction ε(iζ) → ε(iζ) − Δε(iζ) explicitly as

Δε(iζ) =
2
π

∫ ∞

0

dωω[ε′′(ω) − ε̃′′(ω)]
ω2 + ζ2

=
2
π

∫ ω2

ω1

dωωε′′(ω)
ω2 + ζ2

=
ω2

p

ζ2 − ν2

2
π

[
arctan

νΔω

ν2 + ω1ω2
− ν

ζ
arctan

ζΔω

ζ2 + ω1ω2

]
(10)

with Δω = ω2 − ω1. Here the real and imaginary parts of ε(ω) are denoted with a single
and double prime respectively. For moderate values of of Δω this gives only a relatively small
contribution to ε(iζ), on the level of a few percent for the values of ω1 and ω2 mentioned, and
the consequences for the pressure would be unobservable at the precision of the experiment [17],
in line with the negative conclusion of that paper. The “off/on” model is appealing as a first
approach due to its simplicity and intuitiveness and when applied this way provides a very
simple qualitative explanation of the effects of the introduction of a transparency window.

Using the real-frequency spectrum directly, however, gives very different results. The change
in the force is calculated by subtracting a band of frequencies from the spectrum plotted in
figure 3. To avoid possible troubles stemming from cutting the spectrum off sharply, an envelope
function is used,

ϕ(ω) = 1 − Δ
π
{arctan[sa(ω − ω1)] + arctan[sa(ω2 − ω)]}, (11)

so that ε(ω) → 1 + 4πχ(ω)ϕ(ω). The parameter Δ ∈ [0, 1] is the relative reduction of ε(ω)
in the band and s determines the smoothness of the edges. The limit s → ∞ giving the unit
step behaviour of (8) [18]. A numerical integration over a sufficiently large frequency integral
around Δω with and without ϕ(ω) yields a rough prediction of the change in the force, which is
plotted in figure 4. Clearly the change found this way is absurdly large and, counterintuitively,
has opposite sign whether the Drude or plasma model is employed. At separation a = 100nm as
used in this calculation, the absolute Casimir pressure between ideally conducting parallel plates
is approximately 13Pa, shown as a grey band in the figure for scale. It is immediately clear that
a simple “off/on” model such as this is not compatible with direct real frequency calculation.

5. Causal perturbation on narrow frequency band
For all its intuitive appeal, the “off/on” model, even in its smooth form (11) is not very realistic
and suffers from problems which could give rise to the dramatic failure when applied on the real
frequency axis. The sharp edges of the frequency band initially employed violate conditions of
continuity and analyticity, but the indication is that this is not important since the introduction
of smooth boundaries through the envelope function ϕ(ω) makes for only qualitative adjustments
of the results.
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More serious is the fact that the way the transparency band is calculated on the real axis
does not adhere to requirements of causality, in particular, that ε(ω) fulfils the Kramers-Kronig
relations. In the following an investigation is made of the feasibility of using real-frequency
calculation for the assessment of the effect of a narrow-band perturbation of ε(ω) in a way so
that (12) and the so-called f-sum rule are obeyed.

It is a standard procedure in the study of the optical properties of materials to model the
absorption spectrum ε′′(ω) of the material and work out ε′(ω) based on this using

ε′(ω) = 1 +
2
π

P

∫ ∞

0
dξ

ξε′′(ξ)
ξ2 − ω2

. (12)

Likewise, ε(iζ) is calculated using the corresponding Kramers Kronig relation (10). Remarkably
informative and useful information about different classes of materials can be extracted from
very simple models [23]. This provides motivation to regard the consequences of perturbing
ε′′(ω) in a causal way.

The perturbation in the dissipation function is modelled in the following way1:

ε′′(ω) → ε̃′′(ω) = ε′′(ω)[(1 + η) − Δ · θ(ω − ω0)θ(ω0 + δω − ω)], ω ≥ 0 (13)

that is, ε′′ is approximately unchanged everywhere except in a small frequency band at ω0 of
width δω in which dissipation is reduced by a constant quantity Δ. The small parameter η
has the same sign as Δ and is introduced because the imaginary part of the permittivity must
satisfy the f-sum rule (e.g. [24]):∫ ∞

0
dωωε′′(ω) = const. =

π

2

∑
α

4πℵαq2
α

m∗
α

≡ π

2
Ω2

p (14)

where sum is over the types of particles, α, causing dissipation, characterised by number density
ℵα, charge qα and effective mass m∗

α. When dissipation is due to conduction electrons only,
Ωp = ωp as in the Drude and plasma models. Insisting that (14) be satisfied both before and
after the perturbation implies

η =
2
π

Δ
Ω2

p

∫
δω

dωωε′′(ω) ≈ 2Δ
π

ω0

Ω2
p

ε′′(ω0)δω (15)

1 Causality requires that the perturbation is an odd function of ω, but only positive frequencies are considered
here.
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where
∫
δω dω denotes integration from ω0 to ω0 +δω and the latter form is true when δω is small

compared to all other frequency scales. Assuming δω small implies that η � 1.
To keep the considerations a little more concrete, consider the special case of the Drude model

(9), for which η becomes:

ηD =
2
π

Δ · arctan
(

ν · δω
ν2 + ω0(ω0 + δω)

)
≈ 2Δ

π

ν · δω
ν2 + ω2

0

. (16)

The perturbed real part ε̃′(ω) now follows from (12)

ε̃′(ω) = 1 +
2
π

P

{
(1 + η)

∫ ∞

0
dξ − Δ

∫
δω

dξ

}
ξε′′(ξ)
ξ2 − ω2

which gives, to linear order in δω or η, the change in ε′(ω)

δε′(ω) ≡ ε̃′(ω) − ε′(ω) ≈ η

[
ε′(ω) − 1 − Ω2

p

ω2
0 − ω2

]
(17)

where (15) was used. The case of the Drude model gives

δε′D(ω) = −ηD

ω2
p(ω2

0 + ν2)
(ω2 + ν2)(ω2

0 − ω2)
. (18)

In the same fashion, inserting (13) into the corresponding Kramers-Kronig integral for imaginary
argument, (10), yields to linear order in η

δε(iζ) ≡ ε̃(iζ) − ε(iζ) ≈ η

[
ε(iζ) − 1 − Ω2

p

ω2
0 + ζ2

]
. (19)

The important difference between (17) and (19) is that while δε(iζ) � ε(iζ) over the entire
imaginary frequency axis, the perturbation δε′(ω) grows large close to its pole at ω0. While the
perturbation (13) is negligible when calculated for imaginary frequencies, thus, it may be worth
taking a closer look at what happens in the real frequency setting, equation (1).

The permittivity ε(ω) for a Casimir cavity of two dielectric half-spaces (assumed to be made
of the same material for simplicity) enters into the Lifshitz formula through the Fresnel reflection
coefficients

rs =
p − s

p + s
; rp =

εp − s

εp + s
(20)

where s ≡
√

p2 + ε − 1. The reflection coefficients stay approximately unchanged by δε′ except
when ω is in the neighbourhood of ω0 where ε̃′(ω) becomes dominated by the otherwise negligible
correction δε′. Here, thus, s̃ ∼ √

δε′(ω) and s̃ therefore rises towards +∞, skips to +i∞
and decreases quickly thence to its unperturbed value once more. The effect for rp and rs is,
roughly, that over a frequency interval of order δω near ω0 they rise to unity and return to
their unperturbed value once more. Since δω is assumed smaller than all other frequency scales
involved, all other quantities can be seen as approximately constant over this interval from which
it follows that the change in Casimir pressure from (1) behaves as

δP (a) ∼ δω · Pω0(a; {rσ})|rs=rp=1 (21)

where Pω0(a; {rσ}) is the discontinuous spectrum function (5) at ω = ω0 taken with unity
reflection coefficients just as worked out by Ford [10] and shown in figure 1.
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The important difference between (17) and (19) is that while δε(iζ) � ε(iζ) over the entire
imaginary frequency axis, the perturbation δε′(ω) grows large close to its pole at ω0. While the
perturbation (13) is negligible when calculated for imaginary frequencies, thus, it may be worth
taking a closer look at what happens in the real frequency setting, equation (1).

The permittivity ε(ω) for a Casimir cavity of two dielectric half-spaces (assumed to be made
of the same material for simplicity) enters into the Lifshitz formula through the Fresnel reflection
coefficients
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where s ≡
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p2 + ε − 1. The reflection coefficients stay approximately unchanged by δε′ except
when ω is in the neighbourhood of ω0 where ε̃′(ω) becomes dominated by the otherwise negligible
correction δε′. Here, thus, s̃ ∼ √

δε′(ω) and s̃ therefore rises towards +∞, skips to +i∞
and decreases quickly thence to its unperturbed value once more. The effect for rp and rs is,
roughly, that over a frequency interval of order δω near ω0 they rise to unity and return to
their unperturbed value once more. Since δω is assumed smaller than all other frequency scales
involved, all other quantities can be seen as approximately constant over this interval from which
it follows that the change in Casimir pressure from (1) behaves as

δP (a) ∼ δω · Pω0(a; {rσ})|rs=rp=1 (21)

where Pω0(a; {rσ}) is the discontinuous spectrum function (5) at ω = ω0 taken with unity
reflection coefficients just as worked out by Ford [10] and shown in figure 1.
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The result (21) is again counterintuitive in that it depends sensitively on the frequency ω0

and could be either positive or negative depending on the quantity ω0a. Indeed the spectrum
Pω0(a)|rσ=1 is discontinous at ω0a = nπ, n ∈ N, meaning δP would make a leap were ω0a to be
shifted slightly past such a value, e.g. by changing the separation slightly close to a = nπ/ω0.

In conclusion it seemes that the fact that the perturbation is made causal by use of (12) and
made to fulfil the f-sum rule (14) does not in itself salvage the apparent paradox that a calculation
using the real frequency integral yields apparently nonsensical results while a calculation along
the imaginary axis appears robust. If the perturbation Δε′′(ω) fulfilled all the requirements
of analyticity and causality and were taken into account by an integral (12) spanning the
entire positive frequency axis, the real-frequency and imaginary frequency formalisms must
necessarily give the same results. The observation of the vast fluctuations of the Casimir
frequency spectrum, however, requires that access be somehow gained to finite intervals of the
spectrum, and although a somewhat coarse analysis, the above considerations strongly indicate
a pessimistic conclusion with regards to the feasibility of such an enterprise.

6. Conclusions and outlook
The frequency spectrum of the Casimir force between real materials is studied with a view
to assess whether it may be possible to observe the dramatic oscillatory behaviour of the real
frequency Casimir energy spectrum. A generalisation of Ford’s result for ideal conductors [10]
to a model of constant subunity reflection coefficients reveals a smoothening of the spectrum,
but the oscillatory behaviour remains unchanged.

Upon inserting more realistic optical data for real materials, the frequency spectra obtain
an even more wild and erratic behaviour. Observation of the dependence on real frequencies
requires that access be somehow gained to finite intervals of real frequencies as opposed to the
absolute force itself, which dependes only on the integral over all frequencies.

Two simple attempts are made to investigate the question whether a perturbation of the
optical properties of materials which is restricted to a finite band of real frequencies could reveal
a way to observe the large oscillations described. These have not been concerned with whether
and when such perturbations may be made in practice, but have focussed on a problem of
theoretical nature which occurs upon attempting to calculate the effects of such perturbations
on the Casimir force: the predictions are radically different whether it is performed using the
real frequency or imaginary frequency formulation of the Lifshitz formula. This paradox was
first reported in [18].

In the first and coarsest approach the materials involved are assumed to be made transparent
in a band of frequencies but remain unchanged outside this band. At a qualitative level this
mimics the situation created in a recent experiment by Iannuzzi and co-workers [17] in which
a hydrogen-switchable mirror is used which becomes transparent in the optical region upon
hydrogenation. Using an imaginary time formalism the change in the force predicted is quite
modest, in accordance with the experiment, whereas an exclusion of a part of the real frequency
axis leads to nonsensical predictions of enormous amplitude and apparently arbitrary sign.

In a second attempt the perturbation is made in the imaginary part of permittivity ε(ω) over
a very small frequency range and causality is ensured by the invocation of the Kramers Kronig
relations to calculate ε for imaginary frequencies and the real part of ε for real frequencies.
Again a real frequency calculation reveals highly counterintuitive results whereas the imaginary
frequency calculation appears reasonable in sign and magnitude and in accordance with intuition.

It is clear that the real frequency formalism of the Casimir Lifshitz force is very volatile upon
manipulations of optical properties whereas the imaginary frequency formalism is robust and
behaves well even with permittivities violating criteria of analyticity and causality. While it
may be shown that the two formalisms must yield the same result for measurable quantities
when the entire frequency integral is evaluated, both attempts to access the dependency on a
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finite frequency band made herein have yielded very different results in the two formalisms, of
which there are good reasons to believe the result in the imaginary frequency domain to be the
physical one. While this study is far from exhaustive, it indicates that the peculiar real-frequency
spectrum of the Casimir force is not observable.
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finite frequency band made herein have yielded very different results in the two formalisms, of
which there are good reasons to believe the result in the imaginary frequency domain to be the
physical one. While this study is far from exhaustive, it indicates that the peculiar real-frequency
spectrum of the Casimir force is not observable.
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It was recently found that thermodynamic anomalies which arise in the Casimir effect between metals described
by the Drude model can be attributed to the interaction of fluctuating Foucault (or eddy) currents [F. Intravaia and
C. Henkel, Phys. Rev. Lett. 103, 130405 (2009).] We focus on the transverse electric (TE) polarization, where the
anomalies occur, and show explicitly that the two leading terms of the low-temperature correction to the Casimir
free energy of interaction between two plates are identical to those pertaining to the Foucault current interaction
alone, up to a correction which is very small for good metals. Moreover, a mode density along real frequencies is
introduced, showing that the TE contribution to the Casimir free energy, as given by the Lifshitz theory, separates
in a natural manner into contributions from eddy currents and propagating cavity modes, respectively. The latter
have long been known to be of little importance to the low-temperature Casimir anomalies. This convincingly
demonstrates that eddy current modes are responsible for the large temperature correction to the Casimir effect
between Drude metals, predicted by the Lifshitz theory, but not observed in experiments.

DOI: 10.1103/PhysRevA.82.032504 PACS number(s): 31.30.jh, 11.10.Wx, 05.40.−a, 42.50.Lc

I. INTRODUCTION

For a decade the finite-temperature correction to the
Casimir force [1] between parallel metal plates has been a topic
of intense investigation and debate. Describing the metals by
a standard Drude model,

ε(ω) = 1 − �2

ω(ω + iγ )
, (1.1)

where � is the plasma frequency and where the relaxation
frequency γ does not vanish at T = 0, the Lifshitz theory
implies that the temperature dependence is considerably
different from perfect reflectors [2]: a significant thermal
contribution is predicted already at distances shorter than the
Wien wavelength h̄c/(2πkBT ), on the one hand, and there is
a difference of a factor of 1

2 in the large-distance limit, on the
other. This strong difference arises because one polarization
[transverse electric (TE)] gives a vanishing contribution at
large distance. Puzzlingly, such a large temperature depen-
dence is not found in recent precision experiments at Purdue
[3]. For reviews of the thermal debate around the Casimir
effect, cf. Refs. [4,5] and references therein.

The thermodynamics of the Casimir effect has been of
particular interest in this context. For metals described by
Eq. (1.1), the Gibbs-Helmholtz free energy of the Casimir
interaction is nonmonotonic as a function of temperature,
leading to a negative Casimir entropy in a large temperature
range [4]. Moreover, if γ vanishes faster than linearly as the
temperature T → 0, the Casimir entropy remains nonzero in
this limit; this was argued to violate Nernst’s theorem, the third
law of thermodynamics [6,7].

Recently two of the present authors investigated the
contribution to the Casimir force from Johnson-Nyquist noise,
focusing on specific solutions of the Maxwell equations for the

two-plate setup, namely, purely dissipative (i.e., overdamped)
modes which are physically Foucault current or “eddy current”
modes [8]. (A related investigation with a simplified model
is found in Bimonte [9].) These modes have pure imaginary
frequencies and are transverse, and their dynamics is described
by a diffusion equation. The diffusion constant is given by
D = γ λ2, where γ is the dissipation rate of the metal and
λ ≡ c/� is the plasma penetration depth, with � being the
corresponding plasma frequency. The electromagnetic field
associated with these currents is evanescent in vacuum; that
is, it exponentially decays with the distance from the surface
of the metal. It was shown that the eddy current contribution
alone accounts for the apparently anomalous thermodynamics
of the Casimir effect [8]. More specifically, the nonvanishing
entropy that appears when first γ → 0 and then T → 0 (taken
in this order and assumed to be independent parameters) is
due to an infinite degeneracy of quasistatic Foucault current
states, a glasslike situation for which the Nernst theorem does
not apply [10]. The situation is closely analogous to that of a
free particle coupled to a heat bath [11], which is essentially in
its high-temperature limit for any nonzero temperature when
no damping is present, and for which the Nernst theorem is
satisfied for a fixed friction rate [12].

The apparent thermodynamical anomaly of the Casimir
interaction is investigated in detail in Refs. [13–15]. It is now
established that, for nonvanishing dissipation rates, the Lifshitz
theory gives a low-temperature expansion of the TE Casimir
free energy between two Drude metals in the form [11,15–19]

�FCL(T ) = f
(2)
CL T 2 + f

(5/2)
CL T 5/2 + · · · , (1.2)

where the free energies are split into

F (T ) = F0 + �F (T ), (1.3)
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F0 being the zero temperature value. The derivation of these
results in Refs. [17–19], starting from a Matsubara sum, is
quite tricky (see Sec. 3 of Ref. [15]). They were confirmed
independently using a scattering approach by Ingold and
collaborators [11].

In this article we go one step further in showing how the
behavior of the TE contribution to the Casimir effect between
good Drude metals is dictated entirely by the contribution
from Foucault current modes. We introduce a free energy
of interaction between Foucault current modes in two Drude
plates and find it to have the same form at low temperatures:

�FD(T ) = f
(2)
D T 2 + f

(5/2)
D T 5/2 + · · · . (1.4)

We use throughout the subscript D to denote the eddy current
(or diffusive modes) contribution to the Casimir interaction.
We are able to calculate the coefficients f

(2)
D and f

(5/2)
D and,

quite remarkably, find

f
(2)
D = f

(2)
CL + O((γ /�)2); (1.5a)

f
(5/2)
D = f

(5/2)
CL . (1.5b)

The calculations are based on an analysis of the zeros and
branch cuts of the dispersion function for the Casimir energy,
similar to previous work based on the argument principle
[10,20,21]. This mode assignment permits us to identify a
density of states (DOS) for both the Foucault-current interac-
tion and the full electromagnetic Casimir interaction within
the Lifshitz theory. This method reveals a close relationship
between the two interactions and yields the results (1.5) in a
fairly simple way, including the correction term to f (2) of order
γ 2/�2 which we calculate in the limit of good conductors.

The low-temperature expansion is valid on a temperature
scale lower than

kBT � h̄D

L2
= h̄γ c2

�2L2
, (1.6)

where D is the diffusion coefficient of Foucault currents [22]
and L the distance between the plates. This scale (“Thouless
energy” [23]) has been identified in previous work [14,24,25]
and emerges naturally when spatially diffusive modes in two
half-spaces are coupled by electromagnetic fields across a gap
of width L [8]. It corresponds to a temperature around 20 K for
L = 100 nm and the conductivity of gold at room temperature.
We refer frequently to this parameter in the following.

The mode analysis we perform is similar in spirit to previous
work [26–28] where the role of surface plasmon modes and
their contribution to the Casimir interaction were examined.
Surface plasmons and eddy currents have in common being
associated with evanescent electromagnetic fields in vacuum.
However, they are connected with two physically distinct phe-
nomena. Conversely to eddy current modes, surface plasmons
appear only in the transverse magnetic (TM) polarization and
are associated with oscillations of the charge density at the
vacuum-metal interface. In the following we focus on good
conductors, where the thermal anomalies occur only in the TE
polarization, and therefore surface plasmon contributions do
not appear in our analysis.

The article is structured as follows: In Sec. II, we introduce a
general scheme for calculating the low-temperature expansion
of the Gibbs-Helmholtz free energy from DOS functions and

recapitulate the DOS for the Casimir-Lifshitz and Foucault
current interactions, respectively. We use a method of contour
integration to derive a relation between the DOS of the
two types of interaction. This provides an intuitive tool for
calculating the desired expansion coefficients f (2) and f (5/2)

in Sec. III, first to leading order in the small parameter γ /�

and then the correction term. Various mathematical results are
collected in the appendices.

Throughout the calculation we assume the material be
described by Eq. (1.1) and let h̄ = kB = 1. We use the terms
eddy current and Foucault current interchangably.

II. MODE DENSITIES

A. Introduction

The Gibbs-Helmholtz free energy F for a system with a
continuous distribution of bosonic normal modes is related to
the DOS ρ(ω) (modes per angular frequency) by the relation

�F (T ) = T

∫ ∞

0
dωρ(ω) ln(1 − e−ω/T )

=
∫ ∞

0
dω

M(ω)

eω/T − 1
, (2.1)

where M(ω) is the integrated mode density:

ρ(ω) = −∂ωM(ω). (2.2)

[We fix the integration constant with M(0) = 0.] The mode
density ρ(ω) (per angular frequency) specifies the physical
system. (Note the difference in the density of states per unit
energy introduced in Ref. [29].) In the low-temperature limit,
the exponential confines the integrand to small values of ω,
and we can expand M(ω) in powers of ω (see also Ref. [30]).
Integrating termwise, each power ων of the expansion yields
a contribution ∼T ν+1 according to∫ ∞

0

dω ων

eω/T − 1
= �(ν + 1)ζ (ν + 1)T ν+1. (2.3)

This method is the real-frequency analog of the method laid
out in Ref. [15] and used in Ref. [18] where Matsubara sums
were expanded at low temperatures. The exponential cutoff
from the temperature dependence makes the procedure con-
siderably more straightforward here, since standard methods
of asymptotic expansion are applicable.

For the two-plate geometry, F is a free energy per area and
also depends on their separation L, with the corresponding
pressure given by p = −∂F/∂L. The low-frequency expan-
sion of the mode density MD(ω) for the diffusive modes is
found to be of the form

MD(ω) ≈
[
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D
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(3/2)
D L

( ω

D

)3/2
. . .

]
, (2.4)

where the inverse diffusion constant 1/D conveniently pro-
vides the physical units and the Thouless frequency D/L2

gives the relevant frequency scale. The coefficients m
(1)
D and

m
(3/2)
D are dimensionless, the first of which relates quite

obviously to the static value of the mode density [see (2.2)]:

ρD(0) = −m
(1)
D

D
. (2.5)
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F0 being the zero temperature value. The derivation of these
results in Refs. [17–19], starting from a Matsubara sum, is
quite tricky (see Sec. 3 of Ref. [15]). They were confirmed
independently using a scattering approach by Ingold and
collaborators [11].

In this article we go one step further in showing how the
behavior of the TE contribution to the Casimir effect between
good Drude metals is dictated entirely by the contribution
from Foucault current modes. We introduce a free energy
of interaction between Foucault current modes in two Drude
plates and find it to have the same form at low temperatures:

�FD(T ) = f
(2)
D T 2 + f

(5/2)
D T 5/2 + · · · . (1.4)

We use throughout the subscript D to denote the eddy current
(or diffusive modes) contribution to the Casimir interaction.
We are able to calculate the coefficients f

(2)
D and f

(5/2)
D and,

quite remarkably, find

f
(2)
D = f

(2)
CL + O((γ /�)2); (1.5a)

f
(5/2)
D = f

(5/2)
CL . (1.5b)

The calculations are based on an analysis of the zeros and
branch cuts of the dispersion function for the Casimir energy,
similar to previous work based on the argument principle
[10,20,21]. This mode assignment permits us to identify a
density of states (DOS) for both the Foucault-current interac-
tion and the full electromagnetic Casimir interaction within
the Lifshitz theory. This method reveals a close relationship
between the two interactions and yields the results (1.5) in a
fairly simple way, including the correction term to f (2) of order
γ 2/�2 which we calculate in the limit of good conductors.

The low-temperature expansion is valid on a temperature
scale lower than

kBT � h̄D

L2
= h̄γ c2

�2L2
, (1.6)

where D is the diffusion coefficient of Foucault currents [22]
and L the distance between the plates. This scale (“Thouless
energy” [23]) has been identified in previous work [14,24,25]
and emerges naturally when spatially diffusive modes in two
half-spaces are coupled by electromagnetic fields across a gap
of width L [8]. It corresponds to a temperature around 20 K for
L = 100 nm and the conductivity of gold at room temperature.
We refer frequently to this parameter in the following.

The mode analysis we perform is similar in spirit to previous
work [26–28] where the role of surface plasmon modes and
their contribution to the Casimir interaction were examined.
Surface plasmons and eddy currents have in common being
associated with evanescent electromagnetic fields in vacuum.
However, they are connected with two physically distinct phe-
nomena. Conversely to eddy current modes, surface plasmons
appear only in the transverse magnetic (TM) polarization and
are associated with oscillations of the charge density at the
vacuum-metal interface. In the following we focus on good
conductors, where the thermal anomalies occur only in the TE
polarization, and therefore surface plasmon contributions do
not appear in our analysis.

The article is structured as follows: In Sec. II, we introduce a
general scheme for calculating the low-temperature expansion
of the Gibbs-Helmholtz free energy from DOS functions and

recapitulate the DOS for the Casimir-Lifshitz and Foucault
current interactions, respectively. We use a method of contour
integration to derive a relation between the DOS of the
two types of interaction. This provides an intuitive tool for
calculating the desired expansion coefficients f (2) and f (5/2)

in Sec. III, first to leading order in the small parameter γ /�

and then the correction term. Various mathematical results are
collected in the appendices.

Throughout the calculation we assume the material be
described by Eq. (1.1) and let h̄ = kB = 1. We use the terms
eddy current and Foucault current interchangably.

II. MODE DENSITIES

A. Introduction

The Gibbs-Helmholtz free energy F for a system with a
continuous distribution of bosonic normal modes is related to
the DOS ρ(ω) (modes per angular frequency) by the relation

�F (T ) = T

∫ ∞

0
dωρ(ω) ln(1 − e−ω/T )

=
∫ ∞

0
dω

M(ω)

eω/T − 1
, (2.1)

where M(ω) is the integrated mode density:

ρ(ω) = −∂ωM(ω). (2.2)

[We fix the integration constant with M(0) = 0.] The mode
density ρ(ω) (per angular frequency) specifies the physical
system. (Note the difference in the density of states per unit
energy introduced in Ref. [29].) In the low-temperature limit,
the exponential confines the integrand to small values of ω,
and we can expand M(ω) in powers of ω (see also Ref. [30]).
Integrating termwise, each power ων of the expansion yields
a contribution ∼T ν+1 according to∫ ∞

0

dω ων

eω/T − 1
= �(ν + 1)ζ (ν + 1)T ν+1. (2.3)

This method is the real-frequency analog of the method laid
out in Ref. [15] and used in Ref. [18] where Matsubara sums
were expanded at low temperatures. The exponential cutoff
from the temperature dependence makes the procedure con-
siderably more straightforward here, since standard methods
of asymptotic expansion are applicable.

For the two-plate geometry, F is a free energy per area and
also depends on their separation L, with the corresponding
pressure given by p = −∂F/∂L. The low-frequency expan-
sion of the mode density MD(ω) for the diffusive modes is
found to be of the form

MD(ω) ≈
[
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+ m

(3/2)
D L

( ω

D

)3/2
. . .

]
, (2.4)

where the inverse diffusion constant 1/D conveniently pro-
vides the physical units and the Thouless frequency D/L2

gives the relevant frequency scale. The coefficients m
(1)
D and
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(3/2)
D are dimensionless, the first of which relates quite

obviously to the static value of the mode density [see (2.2)]:

ρD(0) = −m
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D
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F0 being the zero temperature value. The derivation of these
results in Refs. [17–19], starting from a Matsubara sum, is
quite tricky (see Sec. 3 of Ref. [15]). They were confirmed
independently using a scattering approach by Ingold and
collaborators [11].

In this article we go one step further in showing how the
behavior of the TE contribution to the Casimir effect between
good Drude metals is dictated entirely by the contribution
from Foucault current modes. We introduce a free energy
of interaction between Foucault current modes in two Drude
plates and find it to have the same form at low temperatures:

�FD(T ) = f
(2)
D T 2 + f

(5/2)
D T 5/2 + · · · . (1.4)

We use throughout the subscript D to denote the eddy current
(or diffusive modes) contribution to the Casimir interaction.
We are able to calculate the coefficients f

(2)
D and f

(5/2)
D and,

quite remarkably, find

f
(2)
D = f

(2)
CL + O((γ /�)2); (1.5a)

f
(5/2)
D = f

(5/2)
CL . (1.5b)

The calculations are based on an analysis of the zeros and
branch cuts of the dispersion function for the Casimir energy,
similar to previous work based on the argument principle
[10,20,21]. This mode assignment permits us to identify a
density of states (DOS) for both the Foucault-current interac-
tion and the full electromagnetic Casimir interaction within
the Lifshitz theory. This method reveals a close relationship
between the two interactions and yields the results (1.5) in a
fairly simple way, including the correction term to f (2) of order
γ 2/�2 which we calculate in the limit of good conductors.

The low-temperature expansion is valid on a temperature
scale lower than

kBT � h̄D

L2
= h̄γ c2

�2L2
, (1.6)

where D is the diffusion coefficient of Foucault currents [22]
and L the distance between the plates. This scale (“Thouless
energy” [23]) has been identified in previous work [14,24,25]
and emerges naturally when spatially diffusive modes in two
half-spaces are coupled by electromagnetic fields across a gap
of width L [8]. It corresponds to a temperature around 20 K for
L = 100 nm and the conductivity of gold at room temperature.
We refer frequently to this parameter in the following.

The mode analysis we perform is similar in spirit to previous
work [26–28] where the role of surface plasmon modes and
their contribution to the Casimir interaction were examined.
Surface plasmons and eddy currents have in common being
associated with evanescent electromagnetic fields in vacuum.
However, they are connected with two physically distinct phe-
nomena. Conversely to eddy current modes, surface plasmons
appear only in the transverse magnetic (TM) polarization and
are associated with oscillations of the charge density at the
vacuum-metal interface. In the following we focus on good
conductors, where the thermal anomalies occur only in the TE
polarization, and therefore surface plasmon contributions do
not appear in our analysis.

The article is structured as follows: In Sec. II, we introduce a
general scheme for calculating the low-temperature expansion
of the Gibbs-Helmholtz free energy from DOS functions and

recapitulate the DOS for the Casimir-Lifshitz and Foucault
current interactions, respectively. We use a method of contour
integration to derive a relation between the DOS of the
two types of interaction. This provides an intuitive tool for
calculating the desired expansion coefficients f (2) and f (5/2)

in Sec. III, first to leading order in the small parameter γ /�

and then the correction term. Various mathematical results are
collected in the appendices.

Throughout the calculation we assume the material be
described by Eq. (1.1) and let h̄ = kB = 1. We use the terms
eddy current and Foucault current interchangably.

II. MODE DENSITIES

A. Introduction

The Gibbs-Helmholtz free energy F for a system with a
continuous distribution of bosonic normal modes is related to
the DOS ρ(ω) (modes per angular frequency) by the relation

�F (T ) = T

∫ ∞

0
dωρ(ω) ln(1 − e−ω/T )

=
∫ ∞

0
dω

M(ω)

eω/T − 1
, (2.1)

where M(ω) is the integrated mode density:

ρ(ω) = −∂ωM(ω). (2.2)

[We fix the integration constant with M(0) = 0.] The mode
density ρ(ω) (per angular frequency) specifies the physical
system. (Note the difference in the density of states per unit
energy introduced in Ref. [29].) In the low-temperature limit,
the exponential confines the integrand to small values of ω,
and we can expand M(ω) in powers of ω (see also Ref. [30]).
Integrating termwise, each power ων of the expansion yields
a contribution ∼T ν+1 according to∫ ∞

0

dω ων

eω/T − 1
= �(ν + 1)ζ (ν + 1)T ν+1. (2.3)

This method is the real-frequency analog of the method laid
out in Ref. [15] and used in Ref. [18] where Matsubara sums
were expanded at low temperatures. The exponential cutoff
from the temperature dependence makes the procedure con-
siderably more straightforward here, since standard methods
of asymptotic expansion are applicable.

For the two-plate geometry, F is a free energy per area and
also depends on their separation L, with the corresponding
pressure given by p = −∂F/∂L. The low-frequency expan-
sion of the mode density MD(ω) for the diffusive modes is
found to be of the form

MD(ω) ≈
[
m
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D
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]
, (2.4)

where the inverse diffusion constant 1/D conveniently pro-
vides the physical units and the Thouless frequency D/L2

gives the relevant frequency scale. The coefficients m
(1)
D and

m
(3/2)
D are dimensionless, the first of which relates quite

obviously to the static value of the mode density [see (2.2)]:

ρD(0) = −m
(1)
D

D
. (2.5)
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F0 being the zero temperature value. The derivation of these
results in Refs. [17–19], starting from a Matsubara sum, is
quite tricky (see Sec. 3 of Ref. [15]). They were confirmed
independently using a scattering approach by Ingold and
collaborators [11].

In this article we go one step further in showing how the
behavior of the TE contribution to the Casimir effect between
good Drude metals is dictated entirely by the contribution
from Foucault current modes. We introduce a free energy
of interaction between Foucault current modes in two Drude
plates and find it to have the same form at low temperatures:

�FD(T ) = f
(2)
D T 2 + f

(5/2)
D T 5/2 + · · · . (1.4)

We use throughout the subscript D to denote the eddy current
(or diffusive modes) contribution to the Casimir interaction.
We are able to calculate the coefficients f

(2)
D and f

(5/2)
D and,

quite remarkably, find

f
(2)
D = f

(2)
CL + O((γ /�)2); (1.5a)

f
(5/2)
D = f

(5/2)
CL . (1.5b)

The calculations are based on an analysis of the zeros and
branch cuts of the dispersion function for the Casimir energy,
similar to previous work based on the argument principle
[10,20,21]. This mode assignment permits us to identify a
density of states (DOS) for both the Foucault-current interac-
tion and the full electromagnetic Casimir interaction within
the Lifshitz theory. This method reveals a close relationship
between the two interactions and yields the results (1.5) in a
fairly simple way, including the correction term to f (2) of order
γ 2/�2 which we calculate in the limit of good conductors.

The low-temperature expansion is valid on a temperature
scale lower than

kBT � h̄D

L2
= h̄γ c2

�2L2
, (1.6)

where D is the diffusion coefficient of Foucault currents [22]
and L the distance between the plates. This scale (“Thouless
energy” [23]) has been identified in previous work [14,24,25]
and emerges naturally when spatially diffusive modes in two
half-spaces are coupled by electromagnetic fields across a gap
of width L [8]. It corresponds to a temperature around 20 K for
L = 100 nm and the conductivity of gold at room temperature.
We refer frequently to this parameter in the following.

The mode analysis we perform is similar in spirit to previous
work [26–28] where the role of surface plasmon modes and
their contribution to the Casimir interaction were examined.
Surface plasmons and eddy currents have in common being
associated with evanescent electromagnetic fields in vacuum.
However, they are connected with two physically distinct phe-
nomena. Conversely to eddy current modes, surface plasmons
appear only in the transverse magnetic (TM) polarization and
are associated with oscillations of the charge density at the
vacuum-metal interface. In the following we focus on good
conductors, where the thermal anomalies occur only in the TE
polarization, and therefore surface plasmon contributions do
not appear in our analysis.

The article is structured as follows: In Sec. II, we introduce a
general scheme for calculating the low-temperature expansion
of the Gibbs-Helmholtz free energy from DOS functions and

recapitulate the DOS for the Casimir-Lifshitz and Foucault
current interactions, respectively. We use a method of contour
integration to derive a relation between the DOS of the
two types of interaction. This provides an intuitive tool for
calculating the desired expansion coefficients f (2) and f (5/2)

in Sec. III, first to leading order in the small parameter γ /�

and then the correction term. Various mathematical results are
collected in the appendices.

Throughout the calculation we assume the material be
described by Eq. (1.1) and let h̄ = kB = 1. We use the terms
eddy current and Foucault current interchangably.

II. MODE DENSITIES

A. Introduction

The Gibbs-Helmholtz free energy F for a system with a
continuous distribution of bosonic normal modes is related to
the DOS ρ(ω) (modes per angular frequency) by the relation

�F (T ) = T

∫ ∞

0
dωρ(ω) ln(1 − e−ω/T )

=
∫ ∞

0
dω

M(ω)

eω/T − 1
, (2.1)

where M(ω) is the integrated mode density:

ρ(ω) = −∂ωM(ω). (2.2)

[We fix the integration constant with M(0) = 0.] The mode
density ρ(ω) (per angular frequency) specifies the physical
system. (Note the difference in the density of states per unit
energy introduced in Ref. [29].) In the low-temperature limit,
the exponential confines the integrand to small values of ω,
and we can expand M(ω) in powers of ω (see also Ref. [30]).
Integrating termwise, each power ων of the expansion yields
a contribution ∼T ν+1 according to∫ ∞

0

dω ων

eω/T − 1
= �(ν + 1)ζ (ν + 1)T ν+1. (2.3)

This method is the real-frequency analog of the method laid
out in Ref. [15] and used in Ref. [18] where Matsubara sums
were expanded at low temperatures. The exponential cutoff
from the temperature dependence makes the procedure con-
siderably more straightforward here, since standard methods
of asymptotic expansion are applicable.

For the two-plate geometry, F is a free energy per area and
also depends on their separation L, with the corresponding
pressure given by p = −∂F/∂L. The low-frequency expan-
sion of the mode density MD(ω) for the diffusive modes is
found to be of the form

MD(ω) ≈
[
m
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D
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D
+ m

(3/2)
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]
, (2.4)

where the inverse diffusion constant 1/D conveniently pro-
vides the physical units and the Thouless frequency D/L2

gives the relevant frequency scale. The coefficients m
(1)
D and

m
(3/2)
D are dimensionless, the first of which relates quite

obviously to the static value of the mode density [see (2.2)]:

ρD(0) = −m
(1)
D

D
. (2.5)

032504-2



CASIMIR-FOUCAULT INTERACTION: FREE ENERGY AND . . . PHYSICAL REVIEW A 82, 032504 (2010)

Applying the identities (2.3), we get the desired free energy
expansion:

�FD(T ) = ζ (2)
m

(1)
D

D
T 2 +

√
πζ
(

5
2

)
2

m
(3/2)
D

T 5/2L

D3/2
+ O(T 3),

(2.6)

where ζ (2) = π2/6 and ζ ( 5
2 ) ≈ 1.341 49. As we calculate in

Sec. III below,

m
(1)
D ≈ 2 ln 2 − 1

8π2
+ λ(γ /�)2

4π2(L + 2λ)
; (2.7a)

m
(3/2)
D = −

√
2

24π2
, (2.7b)

where an expansion for good conductors (γ � �) has been
performed, with corrections to m

(1)
D appearing at the order

O2(γ /�). The plasma penetration depth is defined as λ =
c/�. Note that the limit L → ∞ cannot be applied here, since
it conflicts with the small parameter T L2/D in the expansion
[Eq. (1.6)]; this is why the scaling with L in the third term
on the right-hand side of of Eq. (2.6) is not unphysical. In the
limit L → 0, �FD is nonzero and finite: this can be attributed
to the change in the bulk self-energy of the electromagnetic
excitations of the metallic medium, as a pair of surfaces is
introduced (the “cleavage energy” discussed by Barton [31]).
The surfaces introduce boundary conditions for the fluctuating
electromagnetic modes (eddy currents in this case), leading to
a change in energy per area with respect to a uniform bulk
medium.

We identify in the two following sections the mode densities
ρCL(ω) and ρD(ω) that determine, respectively, the free energy
due to all modes and due to diffusive modes. The former
quantity is calculated within the Lifshitz theory for the Casimir
effect [32].

B. All modes: Lifshitz mode density

Let us recall that the mode density ρCL(ω) counts how the
mode number at a given frequency ω for two half-spaces at
separation L differs from the situation of two plates at infinite
distance. The Lifshitz formula for the Casimir free energy [33]

can be written in the form of Eq. (2.1) so that the following
form of the mode density can be written as

ρCL(ω) = −Im ∂ωD(z = ω + i0). (2.8)

Here and henceforth, let z denote a complex frequency. The
“dispersion function” D(z) is given by the integral

D(z) ≡
∑
σ=p,s

Dσ

=
∑
σ=p,s

∫ ∞

0

kdk

2π2
ln
[
1 − r2

σ (κ,z) e−2κL
]
, (2.9)

Here, κ =
√

k2 − z2/c2, σ is a polarization index, and L is
the cavity width. In the following, we only consider the s (or
TE) polarization and drop the polarization label. The reflection
coefficient becomes [using the Drude dielectric function (1.1)]

r(κ,z) = rs(κ,z) =
κ −

√
κ2 + κ2

γ (z)

κ +
√

κ2 + κ2
γ (z)

; (2.10a)

κγ (z) = �

c

√
z

z + iγ
. (2.10b)

All square roots are chosen here with positive real parts; this
implies in particular that Im κ � 0 and Im

√
κ2 + κ2

γ (z) � 0
for z in the upper half plane.

C. Eddy current modes

The dispersion function D(z) is analytic in the upper half
plane. When it is analytically continued, singularities appear
on the real axis and in the lower half plane: branch points
where the argument of the logarithm in Eq. (2.9) vanishes, and
branch cuts from the square roots involved in the reflection
coefficients (see Fig. 1). These singularities are related to the
electromagnetic resonance frequencies of the two-plate setup
that determine the Lifshitz free energy from the argument
principle [10,13,21]. They also provide a physically motivated
way to isolate the contribution of a particular class of modes
to the Casimir interaction.

Re z

Im z

- iξ0(k)

- iγ

ω+i0 z  = ck

(a)

ωB(k)

Re z

Im z

CD

(b)

Cω

C+

(eddy
current
modes)

(propagating modes)

Re z

Im z
(c)

(all modes)

FIG. 1. (Color online) (a) Complex eigenfrequencies in the parallel plate geometry, for a fixed wave vector k (not to scale). The thick dotted
lines show branch cuts (three-dimensional mode continuum) and crosses mark poles (discrete frequencies). The circular dot is a pole of the first
factor in Eq. (2.18). The pole structure is symmetric with respect to the imaginary axis, according to Eq. (2.19). The frequency ωB(k) marks
the transition from discrete cavity modes to a continuum of bulk modes (see Ref. [27] for details). (b) Integration path: CD around the eddy
current continuum, Cω around the pole at z = ω + i0, C+ around cavity and propagating modes. The corresponding paths in the left half plane
are denoted C−ω and C−, respectively. (c) Integration path that encircles all modes, as relevant for the Lifshitz theory. Closing this contour in
the upper half plane, one gets the residue from the pole z = ω + i0 in the upper half plane.
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Applying the identities (2.3), we get the desired free energy
expansion:

�FD(T ) = ζ (2)
m

(1)
D

D
T 2 +

√
πζ
(

5
2

)
2

m
(3/2)
D

T 5/2L

D3/2
+ O(T 3),

(2.6)

where ζ (2) = π2/6 and ζ ( 5
2 ) ≈ 1.341 49. As we calculate in

Sec. III below,
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where an expansion for good conductors (γ � �) has been
performed, with corrections to m

(1)
D appearing at the order

O2(γ /�). The plasma penetration depth is defined as λ =
c/�. Note that the limit L → ∞ cannot be applied here, since
it conflicts with the small parameter T L2/D in the expansion
[Eq. (1.6)]; this is why the scaling with L in the third term
on the right-hand side of of Eq. (2.6) is not unphysical. In the
limit L → 0, �FD is nonzero and finite: this can be attributed
to the change in the bulk self-energy of the electromagnetic
excitations of the metallic medium, as a pair of surfaces is
introduced (the “cleavage energy” discussed by Barton [31]).
The surfaces introduce boundary conditions for the fluctuating
electromagnetic modes (eddy currents in this case), leading to
a change in energy per area with respect to a uniform bulk
medium.

We identify in the two following sections the mode densities
ρCL(ω) and ρD(ω) that determine, respectively, the free energy
due to all modes and due to diffusive modes. The former
quantity is calculated within the Lifshitz theory for the Casimir
effect [32].

B. All modes: Lifshitz mode density

Let us recall that the mode density ρCL(ω) counts how the
mode number at a given frequency ω for two half-spaces at
separation L differs from the situation of two plates at infinite
distance. The Lifshitz formula for the Casimir free energy [33]

can be written in the form of Eq. (2.1) so that the following
form of the mode density can be written as

ρCL(ω) = −Im ∂ωD(z = ω + i0). (2.8)

Here and henceforth, let z denote a complex frequency. The
“dispersion function” D(z) is given by the integral

D(z) ≡
∑
σ=p,s

Dσ

=
∑
σ=p,s

∫ ∞
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kdk

2π2
ln
[
1 − r2

σ (κ,z) e−2κL
]
, (2.9)

Here, κ =
√

k2 − z2/c2, σ is a polarization index, and L is
the cavity width. In the following, we only consider the s (or
TE) polarization and drop the polarization label. The reflection
coefficient becomes [using the Drude dielectric function (1.1)]

r(κ,z) = rs(κ,z) =
κ −
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κ2 + κ2

γ (z)

κ +
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κ2 + κ2
γ (z)

; (2.10a)
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All square roots are chosen here with positive real parts; this
implies in particular that Im κ � 0 and Im

√
κ2 + κ2

γ (z) � 0
for z in the upper half plane.

C. Eddy current modes

The dispersion function D(z) is analytic in the upper half
plane. When it is analytically continued, singularities appear
on the real axis and in the lower half plane: branch points
where the argument of the logarithm in Eq. (2.9) vanishes, and
branch cuts from the square roots involved in the reflection
coefficients (see Fig. 1). These singularities are related to the
electromagnetic resonance frequencies of the two-plate setup
that determine the Lifshitz free energy from the argument
principle [10,13,21]. They also provide a physically motivated
way to isolate the contribution of a particular class of modes
to the Casimir interaction.
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FIG. 1. (Color online) (a) Complex eigenfrequencies in the parallel plate geometry, for a fixed wave vector k (not to scale). The thick dotted
lines show branch cuts (three-dimensional mode continuum) and crosses mark poles (discrete frequencies). The circular dot is a pole of the first
factor in Eq. (2.18). The pole structure is symmetric with respect to the imaginary axis, according to Eq. (2.19). The frequency ωB(k) marks
the transition from discrete cavity modes to a continuum of bulk modes (see Ref. [27] for details). (b) Integration path: CD around the eddy
current continuum, Cω around the pole at z = ω + i0, C+ around cavity and propagating modes. The corresponding paths in the left half plane
are denoted C−ω and C−, respectively. (c) Integration path that encircles all modes, as relevant for the Lifshitz theory. Closing this contour in
the upper half plane, one gets the residue from the pole z = ω + i0 in the upper half plane.
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c/�. Note that the limit L → ∞ cannot be applied here, since
it conflicts with the small parameter T L2/D in the expansion
[Eq. (1.6)]; this is why the scaling with L in the third term
on the right-hand side of of Eq. (2.6) is not unphysical. In the
limit L → 0, �FD is nonzero and finite: this can be attributed
to the change in the bulk self-energy of the electromagnetic
excitations of the metallic medium, as a pair of surfaces is
introduced (the “cleavage energy” discussed by Barton [31]).
The surfaces introduce boundary conditions for the fluctuating
electromagnetic modes (eddy currents in this case), leading to
a change in energy per area with respect to a uniform bulk
medium.

We identify in the two following sections the mode densities
ρCL(ω) and ρD(ω) that determine, respectively, the free energy
due to all modes and due to diffusive modes. The former
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effect [32].
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mode number at a given frequency ω for two half-spaces at
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distance. The Lifshitz formula for the Casimir free energy [33]

can be written in the form of Eq. (2.1) so that the following
form of the mode density can be written as

ρCL(ω) = −Im ∂ωD(z = ω + i0). (2.8)

Here and henceforth, let z denote a complex frequency. The
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k2 − z2/c2, σ is a polarization index, and L is
the cavity width. In the following, we only consider the s (or
TE) polarization and drop the polarization label. The reflection
coefficient becomes [using the Drude dielectric function (1.1)]
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All square roots are chosen here with positive real parts; this
implies in particular that Im κ � 0 and Im
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for z in the upper half plane.

C. Eddy current modes

The dispersion function D(z) is analytic in the upper half
plane. When it is analytically continued, singularities appear
on the real axis and in the lower half plane: branch points
where the argument of the logarithm in Eq. (2.9) vanishes, and
branch cuts from the square roots involved in the reflection
coefficients (see Fig. 1). These singularities are related to the
electromagnetic resonance frequencies of the two-plate setup
that determine the Lifshitz free energy from the argument
principle [10,13,21]. They also provide a physically motivated
way to isolate the contribution of a particular class of modes
to the Casimir interaction.
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FIG. 1. (Color online) (a) Complex eigenfrequencies in the parallel plate geometry, for a fixed wave vector k (not to scale). The thick dotted
lines show branch cuts (three-dimensional mode continuum) and crosses mark poles (discrete frequencies). The circular dot is a pole of the first
factor in Eq. (2.18). The pole structure is symmetric with respect to the imaginary axis, according to Eq. (2.19). The frequency ωB(k) marks
the transition from discrete cavity modes to a continuum of bulk modes (see Ref. [27] for details). (b) Integration path: CD around the eddy
current continuum, Cω around the pole at z = ω + i0, C+ around cavity and propagating modes. The corresponding paths in the left half plane
are denoted C−ω and C−, respectively. (c) Integration path that encircles all modes, as relevant for the Lifshitz theory. Closing this contour in
the upper half plane, one gets the residue from the pole z = ω + i0 in the upper half plane.
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D appearing at the order

O2(γ /�). The plasma penetration depth is defined as λ =
c/�. Note that the limit L → ∞ cannot be applied here, since
it conflicts with the small parameter T L2/D in the expansion
[Eq. (1.6)]; this is why the scaling with L in the third term
on the right-hand side of of Eq. (2.6) is not unphysical. In the
limit L → 0, �FD is nonzero and finite: this can be attributed
to the change in the bulk self-energy of the electromagnetic
excitations of the metallic medium, as a pair of surfaces is
introduced (the “cleavage energy” discussed by Barton [31]).
The surfaces introduce boundary conditions for the fluctuating
electromagnetic modes (eddy currents in this case), leading to
a change in energy per area with respect to a uniform bulk
medium.

We identify in the two following sections the mode densities
ρCL(ω) and ρD(ω) that determine, respectively, the free energy
due to all modes and due to diffusive modes. The former
quantity is calculated within the Lifshitz theory for the Casimir
effect [32].

B. All modes: Lifshitz mode density

Let us recall that the mode density ρCL(ω) counts how the
mode number at a given frequency ω for two half-spaces at
separation L differs from the situation of two plates at infinite
distance. The Lifshitz formula for the Casimir free energy [33]

can be written in the form of Eq. (2.1) so that the following
form of the mode density can be written as

ρCL(ω) = −Im ∂ωD(z = ω + i0). (2.8)

Here and henceforth, let z denote a complex frequency. The
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Here, κ =
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k2 − z2/c2, σ is a polarization index, and L is
the cavity width. In the following, we only consider the s (or
TE) polarization and drop the polarization label. The reflection
coefficient becomes [using the Drude dielectric function (1.1)]
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All square roots are chosen here with positive real parts; this
implies in particular that Im κ � 0 and Im

√
κ2 + κ2

γ (z) � 0
for z in the upper half plane.

C. Eddy current modes

The dispersion function D(z) is analytic in the upper half
plane. When it is analytically continued, singularities appear
on the real axis and in the lower half plane: branch points
where the argument of the logarithm in Eq. (2.9) vanishes, and
branch cuts from the square roots involved in the reflection
coefficients (see Fig. 1). These singularities are related to the
electromagnetic resonance frequencies of the two-plate setup
that determine the Lifshitz free energy from the argument
principle [10,13,21]. They also provide a physically motivated
way to isolate the contribution of a particular class of modes
to the Casimir interaction.

Re z

Im z

- iξ0(k)

- iγ

ω+i0 z  = ck

(a)

ωB(k)

Re z

Im z

CD

(b)

Cω

C+

(eddy
current
modes)

(propagating modes)

Re z

Im z
(c)

(all modes)

FIG. 1. (Color online) (a) Complex eigenfrequencies in the parallel plate geometry, for a fixed wave vector k (not to scale). The thick dotted
lines show branch cuts (three-dimensional mode continuum) and crosses mark poles (discrete frequencies). The circular dot is a pole of the first
factor in Eq. (2.18). The pole structure is symmetric with respect to the imaginary axis, according to Eq. (2.19). The frequency ωB(k) marks
the transition from discrete cavity modes to a continuum of bulk modes (see Ref. [27] for details). (b) Integration path: CD around the eddy
current continuum, Cω around the pole at z = ω + i0, C+ around cavity and propagating modes. The corresponding paths in the left half plane
are denoted C−ω and C−, respectively. (c) Integration path that encircles all modes, as relevant for the Lifshitz theory. Closing this contour in
the upper half plane, one gets the residue from the pole z = ω + i0 in the upper half plane.
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The eddy current (diffusive) modes, for fixed k, are
identified as a branch cut of D(z) along the negative imaginary
frequency axis (see Fig. 1), z = −iξ0 · · · − iγ [ξ0 = ξ0(k) is
defined below]. This branch cut is an example of a dispersion
function that is not real on the imaginary frequency axis,
in distinction from the familiar behavior in the upper half
plane. Indeed, one can confirm from the macroscopic Maxwell
equations that purely imaginary eigenfrequencies appear in
a planar cavity of two half spaces described by the Drude
dielectric function [22]. As is well known in scattering theory
(see, e.g., Ref. [21,34]), the branch cut can be interpreted as a
dense coalescence of discrete modes, and the relevant quantity
is a mode density given by

μD(ξ ) = −Im ∂ξD(z = −iξ + 0), 0 � ξ � γ. (2.11)

The dispersion function is evaluated here to the right of the
branch cut. Continuing analytically from the upper half plane,
we find that κ is mainly real, while κγ (−iξ + 0) = −ikγ (ξ )
becomes mainly imaginary with

kγ (ξ ) = �

c

√
ξ

γ − ξ
. (2.12)

As a consequence, [κ2 − k2
γ (ξ )]1/2 moves to the (negative)

imaginary axis if κ is small enough; more precisely, we require

0 � κ � kγ (ξ ). (2.13)

This is equivalent to

ξ0(k) � ξ � γ, (2.14)

where the lower bound ξ0(k) solves

(γ − ξ0)(c2k2 + ξ 2
0 ) = �2ξ0. (2.15)

We note the limiting behavior ξ0(k) ≈ Dk2 as k → 0, where
D is the diffusion coefficient of Eq. (1.6). In the range (2.14),
the reflection coefficient becomes the unitary number,

r(κ,−iξ + 0) =
κ + i

√
k2
γ (ξ ) − κ2

κ − i
√

k2
γ (ξ ) − κ2

, (2.16)

where the sign of the square root applies on the right side of the
branch cut and follows by carefully evaluating the imaginary
parts of κ and kγ (ξ ). For imaginary frequencies outside the
range (2.14), the reflection coefficient is real (−1 < rs < 0),
and the eddy current mode density (2.11) vanishes.

After integrating over k, one gets a mode density, μD(ξ ),
that is nonzero in the range 0 � ξ � γ . Finally, the density
for eddy current modes ρD(ω) at real frequencies is defined by
associating with each overdamped mode z = −iξ a Lorentzian
spectrum centered at zero frequency whose width is ∼Im z.
Referring to Ref. [8] for details, we get

ρD(ω) =
∫ γ

0

dξ

π

ξ

ξ 2 + ω2
μD(ξ ). (2.17)

D. Contour integral representation

In this section we derive a contour integral represention for
the mode densities of the full Casimir-Lifshitz interaction and

of the eddy current contribution. This demonstrates a simple
relation between ρCL(ω) and ρD(ω). We thus prepare the low-
frequency analysis we perform in Sec. III focusing on the
particular case of a good Drude conductor (i.e., γ � �).

It is easy to see from the sign flip of the root involving
κγ (ξ ) in Eq. (2.10) that the dispersion function D(z) jumps
and changes into its complex conjugate across the branch cut
z = 0 · · · − iγ . This jump defines the eddy current DOS in
Eq. (2.11). The latter can thus be written as a contour integral
in the complex plane,

ρD(ω) = −
∮

CD

dz

2π

z

z2 − ω2
∂zD(z), (2.18)

where the path CD encircles the cut on the negative imaginary
axis in the positive sense as shown in Fig. 1(b). Now, shifting
the contour toward infinity, we encounter the poles at z = ±ω

from Eq. (2.18) and other singularities (poles and branch cuts)
of ∂zD(z). The behavior of the exponential e−2κL for |z| → ∞
makes D(z) vanish at infinity. Hence we conclude that the
integral around CD is equal to the negative residues of the poles
z = ±ω minus integrals over the contours C± in Fig. 1(b) that
encircle the singularities near the left and right half of the real
axis. We use here the link between the dispersion function and
the response (or Green) function of the two-plate cavity [20,21]
that entails the symmetry relation

D(−z∗) = D∗(z) . (2.19)

As a consequence, complex mode frequencies and branch cuts
appear in pairs on opposite sides of the imaginary axis. (In
Fig. 1, only the right half is shown.)

The residues at the poles are easily calculated from the
contours C±ω in Fig. 1(b):∮

Cω+C−ω

dz

2π

z

z2 − ω2
∂zD(z) = i

2
[∂zD(ω) + ∂zD(−ω)]

= −Im ∂ωD(ω) = ρCL(ω).

(2.20)

We thus recover the mode density for the Lifshitz theory as one
term in the eddy current DOS. This is actually not surprising,
since ρCL(ω) can be written as a contour integral similar to
Eq. (2.18), but evaluated along a contour just above the real axis
[Fig. 1(c)] and closed at infinity in the lower half plane. This
contour encircles all singularities of the dispersion function
as it should, since the Lifshitz theory accounts for all modes.
If this contour is shifted through infinity into the upper half
plane, only the two residues calculated in Eq. (2.20) contribute
since the dispersion function is analytic inside the contour.

In conclusion, we can write the following splitting of the
mode density for the Casimir effect:

ρCL(ω) = ρD(ω) + ρ±(ω), (2.21)

where the last term gives the contribution of modes near the
real axis [contour C+ in Fig. 1(b), and corresponding C− in the
left half plane]. By continuity with the limiting case γ → 0,
we can identify the latter modes with propagating modes in
the vacuum cavity, in the bulk, or with electromagnetic surface
modes (for example, surface plasmons that appear in the TM
polarization). We see in the next section that for nonzero, but
small γ � �, the mode density ρ±(ω) becomes small at low
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The eddy current (diffusive) modes, for fixed k, are
identified as a branch cut of D(z) along the negative imaginary
frequency axis (see Fig. 1), z = −iξ0 · · · − iγ [ξ0 = ξ0(k) is
defined below]. This branch cut is an example of a dispersion
function that is not real on the imaginary frequency axis,
in distinction from the familiar behavior in the upper half
plane. Indeed, one can confirm from the macroscopic Maxwell
equations that purely imaginary eigenfrequencies appear in
a planar cavity of two half spaces described by the Drude
dielectric function [22]. As is well known in scattering theory
(see, e.g., Ref. [21,34]), the branch cut can be interpreted as a
dense coalescence of discrete modes, and the relevant quantity
is a mode density given by

μD(ξ ) = −Im ∂ξD(z = −iξ + 0), 0 � ξ � γ. (2.11)

The dispersion function is evaluated here to the right of the
branch cut. Continuing analytically from the upper half plane,
we find that κ is mainly real, while κγ (−iξ + 0) = −ikγ (ξ )
becomes mainly imaginary with

kγ (ξ ) = �

c

√
ξ

γ − ξ
. (2.12)

As a consequence, [κ2 − k2
γ (ξ )]1/2 moves to the (negative)

imaginary axis if κ is small enough; more precisely, we require

0 � κ � kγ (ξ ). (2.13)

This is equivalent to

ξ0(k) � ξ � γ, (2.14)

where the lower bound ξ0(k) solves

(γ − ξ0)(c2k2 + ξ 2
0 ) = �2ξ0. (2.15)

We note the limiting behavior ξ0(k) ≈ Dk2 as k → 0, where
D is the diffusion coefficient of Eq. (1.6). In the range (2.14),
the reflection coefficient becomes the unitary number,

r(κ,−iξ + 0) =
κ + i

√
k2
γ (ξ ) − κ2

κ − i
√

k2
γ (ξ ) − κ2

, (2.16)

where the sign of the square root applies on the right side of the
branch cut and follows by carefully evaluating the imaginary
parts of κ and kγ (ξ ). For imaginary frequencies outside the
range (2.14), the reflection coefficient is real (−1 < rs < 0),
and the eddy current mode density (2.11) vanishes.

After integrating over k, one gets a mode density, μD(ξ ),
that is nonzero in the range 0 � ξ � γ . Finally, the density
for eddy current modes ρD(ω) at real frequencies is defined by
associating with each overdamped mode z = −iξ a Lorentzian
spectrum centered at zero frequency whose width is ∼Im z.
Referring to Ref. [8] for details, we get

ρD(ω) =
∫ γ

0

dξ

π

ξ

ξ 2 + ω2
μD(ξ ). (2.17)

D. Contour integral representation

In this section we derive a contour integral represention for
the mode densities of the full Casimir-Lifshitz interaction and

of the eddy current contribution. This demonstrates a simple
relation between ρCL(ω) and ρD(ω). We thus prepare the low-
frequency analysis we perform in Sec. III focusing on the
particular case of a good Drude conductor (i.e., γ � �).

It is easy to see from the sign flip of the root involving
κγ (ξ ) in Eq. (2.10) that the dispersion function D(z) jumps
and changes into its complex conjugate across the branch cut
z = 0 · · · − iγ . This jump defines the eddy current DOS in
Eq. (2.11). The latter can thus be written as a contour integral
in the complex plane,

ρD(ω) = −
∮

CD

dz

2π

z

z2 − ω2
∂zD(z), (2.18)

where the path CD encircles the cut on the negative imaginary
axis in the positive sense as shown in Fig. 1(b). Now, shifting
the contour toward infinity, we encounter the poles at z = ±ω

from Eq. (2.18) and other singularities (poles and branch cuts)
of ∂zD(z). The behavior of the exponential e−2κL for |z| → ∞
makes D(z) vanish at infinity. Hence we conclude that the
integral around CD is equal to the negative residues of the poles
z = ±ω minus integrals over the contours C± in Fig. 1(b) that
encircle the singularities near the left and right half of the real
axis. We use here the link between the dispersion function and
the response (or Green) function of the two-plate cavity [20,21]
that entails the symmetry relation

D(−z∗) = D∗(z) . (2.19)

As a consequence, complex mode frequencies and branch cuts
appear in pairs on opposite sides of the imaginary axis. (In
Fig. 1, only the right half is shown.)

The residues at the poles are easily calculated from the
contours C±ω in Fig. 1(b):∮

Cω+C−ω

dz

2π

z

z2 − ω2
∂zD(z) = i

2
[∂zD(ω) + ∂zD(−ω)]

= −Im ∂ωD(ω) = ρCL(ω).

(2.20)

We thus recover the mode density for the Lifshitz theory as one
term in the eddy current DOS. This is actually not surprising,
since ρCL(ω) can be written as a contour integral similar to
Eq. (2.18), but evaluated along a contour just above the real axis
[Fig. 1(c)] and closed at infinity in the lower half plane. This
contour encircles all singularities of the dispersion function
as it should, since the Lifshitz theory accounts for all modes.
If this contour is shifted through infinity into the upper half
plane, only the two residues calculated in Eq. (2.20) contribute
since the dispersion function is analytic inside the contour.

In conclusion, we can write the following splitting of the
mode density for the Casimir effect:

ρCL(ω) = ρD(ω) + ρ±(ω), (2.21)

where the last term gives the contribution of modes near the
real axis [contour C+ in Fig. 1(b), and corresponding C− in the
left half plane]. By continuity with the limiting case γ → 0,
we can identify the latter modes with propagating modes in
the vacuum cavity, in the bulk, or with electromagnetic surface
modes (for example, surface plasmons that appear in the TM
polarization). We see in the next section that for nonzero, but
small γ � �, the mode density ρ±(ω) becomes small at low
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frequencies (ω < D/L2,γ,c/L), so that in this range, the full
electromagnetic DOS ρCL(ω) nearly coincides with the eddy
current DOS ρD(ω).

III. LOW-FREQUENCY EXPANSION

We calculate now the small ω expansion of the density of
states for eddy current modes. According to Eq. (2.21), we start
with the full Casimir-Lifshitz interaction and discuss then the
differences between the two. We begin with a general estimate
of the scaling for good conductors.

A. Scaling for weak damping

The analysis in the complex plane, as illustrated in Fig. 1,
suggests that the density of diffusive modes is concentrated in a
range ∼γ near zero frequency. Anticipating from the analysis
below a total number of ∼1/L2 modes per unit area, one gets
for γ → 0 a scaling ρD(ω) ≈ 1/(γL2)θ (ω/γ,L/λ), where the
frequency appears in the function θ only in the dimensionless
form ω/γ (and similarly for the distance L/λ ≡ �L/c). A
different behavior emerges for propagating modes (inside the
contour C+ in Fig. 1): they move onto the real axis for small
γ and contribute to ρ±(ω) in the range ω ∼ c/L,�. Their
contribution at much lower frequencies that interests us here
is proportional to their imaginary part and therefore scales
linearly with γ . This observation provides us with a simple
rule to identify the respective contributions of eddy current
and propagating modes in the full (Lifshitz) mode density
(Sec. III B). Note that we consider here the case of a fixed
(temperature-independent) scattering rate γ .

Some further corroboration of these rough estimates is
desirable. Let us consider for the simplicity of argument that
the dispersion function ∂zD(z) has only discrete poles ωn(k)
in the lower half plane, labeled by the momentum quantum
number k. This can be achieved by enclosing the system in a
finite box [13,21]. One recovers the branch cuts by taking the
box size to infinity [34]. From the symmetry relation (2.19),
the poles occur either on the imaginary axis (as for diffusive
modes) or pairwise in the lower left and right quadrants (as for
propagating modes). The two terms ρD(ω) and ρ±(ω) collect
these poles, respectively.

We make the replacement dξμD(ξ ) 
→ d2k/(2π )2∑
n∈eddy

and find that the DOS for diffusive modes ρD(ω) can be written
in the following scaling form:

ρD(ω) = 1

γ

∫
kdk

2π2

[ ∑
n∈eddy

ξn(k)/γ

(ω/γ )2 + (ξn(k)/γ )2

]L

L→∞
,

where the limit of the mode branches for two separate plates
(L → ∞) is subtracted. We have already seen that the mode
frequencies satisfy ξn(k) � γ . As a consequence, the integral
tends toward a finite limit as γ → 0, ρD(ω) depends only on
the scaled frequency ω/γ and is proportional to the scaling
factor 1/γ . This implies in particular that the integral over the
diffusive mode density can give a nonzero contribution even
as γ → 0. We confirm these results in Eq. (3.9).

The density of propagating modes ρ±(ω) shows a different
scaling with γ . With the same rewriting, the contours C+ and

C− collect the modes away from the imaginary axis and lead
to the representation

ρ±(ω) = −
∮

C++C−

dz

2π

z

z2 − ω2
∂zD(z)

= −
∫ ∞

0

kdk

2π2
Im

[ ∑
n∈prop

ωn(k)

ω2 − ω2
n(k)

]L

L→∞
, (3.1)

where in the second line we represent the modes by the
poles in the lower right quadrant. Now, the imaginary part
of the eigenfrequency ωn(k) is negative and, for a small Drude
scattering rate, of the order γ . A typical scale for its real
part, on the other hand, is the lowest cavity eigenfrequency
c/L or the plasma frequency �. Although we do not need
them here, recall that the surface plasmon modes appear
at ≈�/

√
2 − iγ /2 for k � �/c [35]. For an estimate of

ρ±(ω), we focus on frequencies ω much smaller than the real
part, ω � c/L,� and take 1/L to estimate the relevant wave
vectors. This gives

ω → 0 : ρ±(ω) ∼ O

(
γ

�2L2

)
· · · O

(
γ

c2

)
, (3.2)

as we confirm in Eq. (3.17) below. This small “tail” of the
mode density near zero frequency can be understood from
the broadening of the discrete modes due to damping (a δ

peak becomes similar to a Lorentzian; see also Ref. [29]). In
particular, it vanishes in the limit γ → 0, where ρ±(ω) goes
over into the mode density of the plasma model which scales
proportional to ω2.

To summarize this estimate, we expect from Eq. (2.21) that,
as γ → 0, the low-frequency mode density for the Casimir-
Foucault interaction and for the full Casimir interaction
coincide in order 1/γ , with a small difference of ∼γ arising
from propagating modes. These contributions are calculated in
the following sections. We are thus able to check our approach
against the free-energy expansion of Refs. [17,18].

B. Lowest order: Lifshitz theory

Let us calculate the coefficients m
(1)
D and m

(3/2)
D defined in

Eq. (2.4), starting with the leading order in the small parameter
γ /�, which, as we have just seen, is provided by the full
Lifshitz theory. It is convenient to work with the integrated
mode density which from Eq. (2.8) we can write as

MCL(ω) = ImD(ω + i0). (3.3)

We therefore start by analyzing in detail the behavior of D(z)
in the complex frequency range of |z| � γ .

The k integral in Eq. (2.9) is rewritten in terms of a real
variable, y > 0, defined by κ = yκγ (z). This is equivalent to
a shift of the integration path in the complex κ plane along a
more convenient direction: one still has convergence from the
exponential exp(−2κL) because Re κγ (z) > 0 (keeping clear
of the branch cut for z on the negative imaginary axis). The
reflection coefficient (2.10) becomes real along this direction
and independent of z:

r(y) = y −
√

y2 + 1

y +
√

y2 + 1
= 1

(y +
√

y2 + 1)2
. (3.4)
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factor 1/γ . This implies in particular that the integral over the
diffusive mode density can give a nonzero contribution even
as γ → 0. We confirm these results in Eq. (3.9).

The density of propagating modes ρ±(ω) shows a different
scaling with γ . With the same rewriting, the contours C+ and

C− collect the modes away from the imaginary axis and lead
to the representation

ρ±(ω) = −
∮

C++C−

dz

2π

z

z2 − ω2
∂zD(z)

= −
∫ ∞

0

kdk

2π2
Im

[ ∑
n∈prop

ωn(k)

ω2 − ω2
n(k)

]L

L→∞
, (3.1)

where in the second line we represent the modes by the
poles in the lower right quadrant. Now, the imaginary part
of the eigenfrequency ωn(k) is negative and, for a small Drude
scattering rate, of the order γ . A typical scale for its real
part, on the other hand, is the lowest cavity eigenfrequency
c/L or the plasma frequency �. Although we do not need
them here, recall that the surface plasmon modes appear
at ≈�/

√
2 − iγ /2 for k � �/c [35]. For an estimate of

ρ±(ω), we focus on frequencies ω much smaller than the real
part, ω � c/L,� and take 1/L to estimate the relevant wave
vectors. This gives

ω → 0 : ρ±(ω) ∼ O

(
γ

�2L2

)
· · · O

(
γ

c2

)
, (3.2)

as we confirm in Eq. (3.17) below. This small “tail” of the
mode density near zero frequency can be understood from
the broadening of the discrete modes due to damping (a δ

peak becomes similar to a Lorentzian; see also Ref. [29]). In
particular, it vanishes in the limit γ → 0, where ρ±(ω) goes
over into the mode density of the plasma model which scales
proportional to ω2.

To summarize this estimate, we expect from Eq. (2.21) that,
as γ → 0, the low-frequency mode density for the Casimir-
Foucault interaction and for the full Casimir interaction
coincide in order 1/γ , with a small difference of ∼γ arising
from propagating modes. These contributions are calculated in
the following sections. We are thus able to check our approach
against the free-energy expansion of Refs. [17,18].

B. Lowest order: Lifshitz theory

Let us calculate the coefficients m
(1)
D and m

(3/2)
D defined in

Eq. (2.4), starting with the leading order in the small parameter
γ /�, which, as we have just seen, is provided by the full
Lifshitz theory. It is convenient to work with the integrated
mode density which from Eq. (2.8) we can write as

MCL(ω) = ImD(ω + i0). (3.3)

We therefore start by analyzing in detail the behavior of D(z)
in the complex frequency range of |z| � γ .

The k integral in Eq. (2.9) is rewritten in terms of a real
variable, y > 0, defined by κ = yκγ (z). This is equivalent to
a shift of the integration path in the complex κ plane along a
more convenient direction: one still has convergence from the
exponential exp(−2κL) because Re κγ (z) > 0 (keeping clear
of the branch cut for z on the negative imaginary axis). The
reflection coefficient (2.10) becomes real along this direction
and independent of z:

r(y) = y −
√

y2 + 1

y +
√

y2 + 1
= 1

(y +
√

y2 + 1)2
. (3.4)
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We get

D(z) = κ2
γ (z)

∫ ∞

χ (z)

ydy

2π2
ln[1 − r2(y) e−2yκγ (z)L], (3.5)

where the lower limit is given by the complex number

χ (z) = − iz

cκγ (z)
= − iz

�

√
z + iγ

z
. (3.6)

For |z| < γ , we have |χ (z)| �
√

2(γ /�) � 1 for a good
conductor, and to leading order, we can replace the lower limit
in Eq. (3.5) by zero. This defines D0(z), and via Eq. (3.3),
MCL,0(ω). We write MCL,γ (ω) for the error [i.e., the integral
from 0 to χ (z)] and calculate it in Eq. (3.10).

By inspection, D0(z) depends on z only via the function
κγ (z) that can be written as

κγ (z) = κ1(z/γ ) = �

c

√
z/γ

z/γ + i
, (3.7)

involving the scaled quantity z/γ . From the reflection coeffi-
cient r(y), the relevant integration domain is 0 � y <∼ 1. We
can therefore expand the exponential in Eq. (3.5) provided
κ1(z/γ )L � 1. This yields the condition (|z|/ξL)1/2 � 1,
where ξL is the Thouless frequency introduced in Eq. (1.6).
Expanding to the first order in this small parameter, we get (D
is the diffusion coefficient)

D0(z) ≈ z

iD

∫ ∞

0

ydy

2π2
ln[1 − r2(y)]

+ z

iD

(
z

iξL

)1/2 ∫ ∞

0

y2dy

2π2

2r2(y)

1 − r2(y)
+ O2(z/ξL),

(3.8)

where powers z and z3/2 have appeared. The integrals can be
solved exactly (see Appendix A), and we get from Eq. (3.3)
the following approximation of the Lifshitz integrated DOS:

MCL,0(ω) ≈ 2 ln 2 − 1

8π2

ω

D
− L

√
2

24π2

(
ω

D

)3/2

, (3.9)

valid for ω � ξL,γ . This proves the first term in Eqs. (2.7).
It is clear from this calculation [a power series in (ω/ξL)1/2]
that these results cannot be applied for γ → 0 at fixed ω > 0.
In other words, the limits γ → 0 and ω → 0 do not commute.
For a discussion, see Refs. [13,14].

Calculate now the small correction MCL,γ (ω) from the
lower integration limit in Eq. (3.5). This arises between the
boundaries y = 0 and y = χ (z). Recall that in the limit γ � �

we have |χ (z)| � 1 and expand the integrand for y � 1. This
gives

MCL,γ (ω) ≈ −Im κ2
γ (z)
∫ χ (z)

0

ydy

2π2
ln[2y(2 + κγ (z)L)]

≈ − 1

16π

ω2

c2
, (3.10)

one-half the mode density for the so-called plasma model
where γ = 0 is taken from the outset. Notably, this term gives
a contribution to the free energy proportional to T 3, which
exactly coincides with the expression given in Refs. [15,18].
Note that the term scaling with Eq. (3.2) has not appeared in

the full (Lifshitz) mode density. We outline an interpretation
in Sec. IV.

C. Eddy current modes

We now address the density of eddy current modes alone
that involves according to Eq. (2.17) an integral along the
branch cut ofD(z) on the imaginary axis. It is again convenient
to work out the integrated mode density MD(ω). A partial
integration leads to the integral representation

MD(ω) = −
∫ γ

0

dξ

π

ω

ξ 2 + ω2
MD(ξ ), (3.11)

where MD(ξ ) is the integrated mode density along the branch
cut. By changing the momentum variable from k to κ , this
function can be written as

MD(ξ ) = −
∫ kγ (ξ )

ξ/c

κdκ

2π2
Im ln[1 − r2(κ, − iξ ) e−2κL],

(3.12)

where the integrand is zero above the upper integration limit
kγ (ξ ) that was defined in Eq. (2.12).

The limiting behavior of this expression for a good
conductor can be worked out similar to Eq. (3.5). Writing the
integral in terms of x = ξ/γ , we see that MD(ω) [Eq. (3.11)]
depends on the scaled frequency ω/γ . The upper integration
limit takes a form similar to Eq. (3.7),

kγ (ξ ) = k1(x) = �

c

√
x

1 − x
, (3.13)

while the lower one, ξ/c = xγ /c, can be taken as small
compared to the typical values κ ∼ 1/L and κ ∼ k1(x) that
appear in the integrand.

This motivates again a splitting of MD(ξ ) into two terms:
a first one where the lower boundary in Eq. (3.12) is taken as
zero, and a correction, similar to what we did after Eq. (3.5).
The two terms produce a split of the mode density (3.11) into

MD,0(ω) + MD,γ (ω), (3.14a)

where the first term can be written as

MD,0(ω) =
∫ 1

0

dx

π

ω/γ

x2 + (ω/γ )2

×
∫ k1(x)

0

κdκ

2π2
Im ln[1 − r2(κ, − ixγ ) e−2κL].

(3.14b)

Here, we have succeeded in removing from the integrand all
dependence on γ , except for the frequency scaling. The second
term, MD,γ (ω), is discussed in Sec. III D, Eq. (3.17). This
term is related to the correction proportional to γ identified
in Sec. III A, the only difference being that we are dealing
here with integrated mode densities. The expression MD,0(ω)
[Eq. (3.14b)] is nonzero in the limit γ → 0, except for the
appearance of the scaled frequency ω/γ . Therefore, this term
corresponds to the (differential) mode density scaling with 1/γ

of Sec. III A. Since we know from Eq. (2.21) that the leading
orders for γ → 0 coincide for the diffusive modes and the
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valid for ω � ξL,γ . This proves the first term in Eqs. (2.7).
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where the integrand is zero above the upper integration limit
kγ (ξ ) that was defined in Eq. (2.12).

The limiting behavior of this expression for a good
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compared to the typical values κ ∼ 1/L and κ ∼ k1(x) that
appear in the integrand.

This motivates again a splitting of MD(ξ ) into two terms:
a first one where the lower boundary in Eq. (3.12) is taken as
zero, and a correction, similar to what we did after Eq. (3.5).
The two terms produce a split of the mode density (3.11) into

MD,0(ω) + MD,γ (ω), (3.14a)

where the first term can be written as

MD,0(ω) =
∫ 1

0

dx

π

ω/γ

x2 + (ω/γ )2

×
∫ k1(x)

0

κdκ

2π2
Im ln[1 − r2(κ, − ixγ ) e−2κL].

(3.14b)

Here, we have succeeded in removing from the integrand all
dependence on γ , except for the frequency scaling. The second
term, MD,γ (ω), is discussed in Sec. III D, Eq. (3.17). This
term is related to the correction proportional to γ identified
in Sec. III A, the only difference being that we are dealing
here with integrated mode densities. The expression MD,0(ω)
[Eq. (3.14b)] is nonzero in the limit γ → 0, except for the
appearance of the scaled frequency ω/γ . Therefore, this term
corresponds to the (differential) mode density scaling with 1/γ

of Sec. III A. Since we know from Eq. (2.21) that the leading
orders for γ → 0 coincide for the diffusive modes and the
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We get

D(z) = κ2
γ (z)

∫ ∞

χ (z)

ydy

2π2
ln[1 − r2(y) e−2yκγ (z)L], (3.5)

where the lower limit is given by the complex number

χ (z) = − iz

cκγ (z)
= − iz

�

√
z + iγ

z
. (3.6)

For |z| < γ , we have |χ (z)| �
√

2(γ /�) � 1 for a good
conductor, and to leading order, we can replace the lower limit
in Eq. (3.5) by zero. This defines D0(z), and via Eq. (3.3),
MCL,0(ω). We write MCL,γ (ω) for the error [i.e., the integral
from 0 to χ (z)] and calculate it in Eq. (3.10).

By inspection, D0(z) depends on z only via the function
κγ (z) that can be written as

κγ (z) = κ1(z/γ ) = �

c

√
z/γ

z/γ + i
, (3.7)

involving the scaled quantity z/γ . From the reflection coeffi-
cient r(y), the relevant integration domain is 0 � y <∼ 1. We
can therefore expand the exponential in Eq. (3.5) provided
κ1(z/γ )L � 1. This yields the condition (|z|/ξL)1/2 � 1,
where ξL is the Thouless frequency introduced in Eq. (1.6).
Expanding to the first order in this small parameter, we get (D
is the diffusion coefficient)

D0(z) ≈ z

iD

∫ ∞

0

ydy

2π2
ln[1 − r2(y)]

+ z

iD

(
z

iξL

)1/2 ∫ ∞

0

y2dy

2π2

2r2(y)

1 − r2(y)
+ O2(z/ξL),

(3.8)

where powers z and z3/2 have appeared. The integrals can be
solved exactly (see Appendix A), and we get from Eq. (3.3)
the following approximation of the Lifshitz integrated DOS:

MCL,0(ω) ≈ 2 ln 2 − 1

8π2

ω

D
− L

√
2

24π2

(
ω

D

)3/2

, (3.9)

valid for ω � ξL,γ . This proves the first term in Eqs. (2.7).
It is clear from this calculation [a power series in (ω/ξL)1/2]
that these results cannot be applied for γ → 0 at fixed ω > 0.
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γ (z)
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0

ydy

2π2
ln[2y(2 + κγ (z)L)]

≈ − 1

16π

ω2

c2
, (3.10)

one-half the mode density for the so-called plasma model
where γ = 0 is taken from the outset. Notably, this term gives
a contribution to the free energy proportional to T 3, which
exactly coincides with the expression given in Refs. [15,18].
Note that the term scaling with Eq. (3.2) has not appeared in

the full (Lifshitz) mode density. We outline an interpretation
in Sec. IV.

C. Eddy current modes
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MD(ω) = −
∫ γ

0

dξ

π

ω

ξ 2 + ω2
MD(ξ ), (3.11)

where MD(ξ ) is the integrated mode density along the branch
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MD(ξ ) = −
∫ kγ (ξ )

ξ/c

κdκ

2π2
Im ln[1 − r2(κ, − iξ ) e−2κL],

(3.12)

where the integrand is zero above the upper integration limit
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The limiting behavior of this expression for a good
conductor can be worked out similar to Eq. (3.5). Writing the
integral in terms of x = ξ/γ , we see that MD(ω) [Eq. (3.11)]
depends on the scaled frequency ω/γ . The upper integration
limit takes a form similar to Eq. (3.7),

kγ (ξ ) = k1(x) = �

c

√
x

1 − x
, (3.13)

while the lower one, ξ/c = xγ /c, can be taken as small
compared to the typical values κ ∼ 1/L and κ ∼ k1(x) that
appear in the integrand.

This motivates again a splitting of MD(ξ ) into two terms:
a first one where the lower boundary in Eq. (3.12) is taken as
zero, and a correction, similar to what we did after Eq. (3.5).
The two terms produce a split of the mode density (3.11) into

MD,0(ω) + MD,γ (ω), (3.14a)

where the first term can be written as

MD,0(ω) =
∫ 1

0

dx

π

ω/γ

x2 + (ω/γ )2

×
∫ k1(x)

0

κdκ

2π2
Im ln[1 − r2(κ, − ixγ ) e−2κL].

(3.14b)

Here, we have succeeded in removing from the integrand all
dependence on γ , except for the frequency scaling. The second
term, MD,γ (ω), is discussed in Sec. III D, Eq. (3.17). This
term is related to the correction proportional to γ identified
in Sec. III A, the only difference being that we are dealing
here with integrated mode densities. The expression MD,0(ω)
[Eq. (3.14b)] is nonzero in the limit γ → 0, except for the
appearance of the scaled frequency ω/γ . Therefore, this term
corresponds to the (differential) mode density scaling with 1/γ

of Sec. III A. Since we know from Eq. (2.21) that the leading
orders for γ → 0 coincide for the diffusive modes and the
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Lifshitz theory, we can conclude

MD,0(ω) = MCL,0(ω), (3.15)

provided the frequency ω is below the range where other
(propagating) modes appear that are not contained in MD(ω).
The identity (3.15) is checked by a direct calculation in
Appendix B.

D. Damping correction of eddy current modes

We now show that one gets for good conductors the
second term, of relative order (γ /�)2, in the coefficient m

(1)
D

[Eq. (2.7a)]. It arises from the correction MD,γ (ω) to the
diffusive mode density. It is interesting that this shows a scaling
of ∼γω, in distinction from the correction in the Lifshitz
theory, Eq. (3.10).

The second term in Eq. (3.14a), MD,γ (ω), is of the same
form as Eq. (3.14b), with the upper limit k1(x) replaced
by γ x/c. For good conductors, the upper integration limit
κ � γ x/c is small compared to the scale k1(x) [Eq. (3.13)]
that appears in the reflection coefficient. The argument of the
exponential is small if we take γ � c/L. Expanding both
quantities for small κ , we get

MD,γ (ω) ≈
∫ 1

0

dx

π

ω/γ

x2 + (ω/γ )2
(3.16)

×
∫ γ x/c

0

κdκ

2π2
Im ln[2κ(L + 2i/k1(x))].

The imaginary part does not depend on κ , and the integration
gives a factor of 1

2 (γ x/c)2. At this stage, we can take the
low-frequency limit (ω � γ ) and are left with

MD,γ (ω) ≈ ωγ

4π2c2

∫ 1

0

dx

π
arctan

(
2λ

L

√
1 − x

x

)

= ω

D

γ 2

4π2�2

λ

2λ + L
, (3.17)

where λ = c/� is the plasma wavelength. This yields the
correction to m

(1)
D appearing in Eq. (2.7a). We have checked

that MD,γ (ω) does not contain, at the next order, the fractional
power ω3/2, as found for MD,0(ω).

We suggest the following interpretation for this correction:
it is related to the mutual influence of the two types of modes,
overdamped and propagating waves. To wit, as the two slabs
approach each other, the different mode frequencies cannot
shift independently because, taken all together, they have to
satisfy a sum rule quoted in Ref. [13]:

∫
d2k

[ ∑
all modes

Im ωn(k)

]L

L→∞
= 0, (3.18)

where the notation assumes that branch cut continua have
been discretized (see Sec. III A). The eddy current modes
play a crucial role in satisfying this sum rule. Indeed, any
modification in the imaginary part of the propagating (cavity
and bulk) modes due to a change of the distance L (i.e., the
propagating modes leave the continuum above the plasma
frequency and become discrete cavity modes as the distance
L is increased) is simultaneously balanced by a shift in the

diffusive mode density on the imaginary axis that extends
down to −iγ .

Due to the sum rule (3.18), the small correction for eddy
currents appears also, with the opposite sign, in the propagating
modes. For this reason, the Lifshitz mode density does not
contain this term [see Eq. (3.9)], and its next-order correction,
Eq. (3.10), is independent of the damping rate γ .

IV. DISCUSSION AND CONCLUSIONS

We have calculated the low-temperature behavior of the
interaction between two parallel half-spaces across a gap of
width L due to low-frequency Johnson noise in the bulk of the
conducting medium, in particular eddy or Foucault currents
that are coupled to TE-polarized electromagnetic fields. The
interaction is calculated in orders T 2 and T 5/2 and is compared
to the Casimir free energy within the Lifshitz theory for Drude
metals. A striking result is uncovered: the low-temperature
correction to the Casimir effect between parallel slabs of
good Drude conductors is dictated entirely by the contribution
from eddy currents, as demonstrated by the two leading-order
correction terms as T → 0. This adds a further piece of support
to the findings of Ref. [8], where the unusual physics of the
thermal Casimir effect between Drude conductors is attributed
to the interaction between eddy currents.

Within our approach, we find small differences in the free
energy that are of the second order in the ratio scattering
rate to plasma frequency, γ /� [Eq. (2.7a)]. This correction
reflects the mutual influence between the modes that are
constrained by a sum rule, Eq. (3.18). Note the curious fact
that this makes �FD depend on L already at order T 2,
different from �FCL. Therefore the eddy current interaction
makes a tiny contribution to the pressure (p = −∂F/∂L)
quadratic in temperature. However this is exactly canceled by
a corresponding contribution from propagating modes and the
resulting Casimir pressure is proportional to T 5/2 to leading
order, as Eq. (3.9) shows.

Let us finally emphasize the analysis of the singularities
of the Lifshitz dispersion function that we performed in
the complex plane. This picture identifies in a natural way
the mode frequencies of the system, even in the presence
of dissipation, and justifies a natural splitting of the free
energy in contributions of specific types of modes. We gained
in particular the insight that the mode density for the full
Casimir-Lifshitz interaction is simply the sum of eddy current
modes and of propagating cavity and bulk modes. The second
contribution becomes small at low frequencies, weak damping,
and not too large distances because the complex mode
frequencies are located sufficiently far away from the origin.
This provides a deeper understanding of why propagating
modes are of little relevance to the temperature dependence
of the Casimir-Lifshitz interaction between Drude metals.
Indeed, this dependence was previously found to originate
primarily in low-frequency evanescent modes [24,25].
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Lifshitz theory, we can conclude

MD,0(ω) = MCL,0(ω), (3.15)

provided the frequency ω is below the range where other
(propagating) modes appear that are not contained in MD(ω).
The identity (3.15) is checked by a direct calculation in
Appendix B.

D. Damping correction of eddy current modes

We now show that one gets for good conductors the
second term, of relative order (γ /�)2, in the coefficient m

(1)
D

[Eq. (2.7a)]. It arises from the correction MD,γ (ω) to the
diffusive mode density. It is interesting that this shows a scaling
of ∼γω, in distinction from the correction in the Lifshitz
theory, Eq. (3.10).

The second term in Eq. (3.14a), MD,γ (ω), is of the same
form as Eq. (3.14b), with the upper limit k1(x) replaced
by γ x/c. For good conductors, the upper integration limit
κ � γ x/c is small compared to the scale k1(x) [Eq. (3.13)]
that appears in the reflection coefficient. The argument of the
exponential is small if we take γ � c/L. Expanding both
quantities for small κ , we get

MD,γ (ω) ≈
∫ 1

0

dx

π

ω/γ

x2 + (ω/γ )2
(3.16)

×
∫ γ x/c

0

κdκ

2π2
Im ln[2κ(L + 2i/k1(x))].

The imaginary part does not depend on κ , and the integration
gives a factor of 1

2 (γ x/c)2. At this stage, we can take the
low-frequency limit (ω � γ ) and are left with

MD,γ (ω) ≈ ωγ

4π2c2

∫ 1

0

dx

π
arctan

(
2λ

L

√
1 − x

x

)

= ω

D

γ 2

4π2�2

λ

2λ + L
, (3.17)

where λ = c/� is the plasma wavelength. This yields the
correction to m

(1)
D appearing in Eq. (2.7a). We have checked

that MD,γ (ω) does not contain, at the next order, the fractional
power ω3/2, as found for MD,0(ω).

We suggest the following interpretation for this correction:
it is related to the mutual influence of the two types of modes,
overdamped and propagating waves. To wit, as the two slabs
approach each other, the different mode frequencies cannot
shift independently because, taken all together, they have to
satisfy a sum rule quoted in Ref. [13]:

∫
d2k

[ ∑
all modes

Im ωn(k)

]L

L→∞
= 0, (3.18)

where the notation assumes that branch cut continua have
been discretized (see Sec. III A). The eddy current modes
play a crucial role in satisfying this sum rule. Indeed, any
modification in the imaginary part of the propagating (cavity
and bulk) modes due to a change of the distance L (i.e., the
propagating modes leave the continuum above the plasma
frequency and become discrete cavity modes as the distance
L is increased) is simultaneously balanced by a shift in the

diffusive mode density on the imaginary axis that extends
down to −iγ .

Due to the sum rule (3.18), the small correction for eddy
currents appears also, with the opposite sign, in the propagating
modes. For this reason, the Lifshitz mode density does not
contain this term [see Eq. (3.9)], and its next-order correction,
Eq. (3.10), is independent of the damping rate γ .

IV. DISCUSSION AND CONCLUSIONS

We have calculated the low-temperature behavior of the
interaction between two parallel half-spaces across a gap of
width L due to low-frequency Johnson noise in the bulk of the
conducting medium, in particular eddy or Foucault currents
that are coupled to TE-polarized electromagnetic fields. The
interaction is calculated in orders T 2 and T 5/2 and is compared
to the Casimir free energy within the Lifshitz theory for Drude
metals. A striking result is uncovered: the low-temperature
correction to the Casimir effect between parallel slabs of
good Drude conductors is dictated entirely by the contribution
from eddy currents, as demonstrated by the two leading-order
correction terms as T → 0. This adds a further piece of support
to the findings of Ref. [8], where the unusual physics of the
thermal Casimir effect between Drude conductors is attributed
to the interaction between eddy currents.

Within our approach, we find small differences in the free
energy that are of the second order in the ratio scattering
rate to plasma frequency, γ /� [Eq. (2.7a)]. This correction
reflects the mutual influence between the modes that are
constrained by a sum rule, Eq. (3.18). Note the curious fact
that this makes �FD depend on L already at order T 2,
different from �FCL. Therefore the eddy current interaction
makes a tiny contribution to the pressure (p = −∂F/∂L)
quadratic in temperature. However this is exactly canceled by
a corresponding contribution from propagating modes and the
resulting Casimir pressure is proportional to T 5/2 to leading
order, as Eq. (3.9) shows.

Let us finally emphasize the analysis of the singularities
of the Lifshitz dispersion function that we performed in
the complex plane. This picture identifies in a natural way
the mode frequencies of the system, even in the presence
of dissipation, and justifies a natural splitting of the free
energy in contributions of specific types of modes. We gained
in particular the insight that the mode density for the full
Casimir-Lifshitz interaction is simply the sum of eddy current
modes and of propagating cavity and bulk modes. The second
contribution becomes small at low frequencies, weak damping,
and not too large distances because the complex mode
frequencies are located sufficiently far away from the origin.
This provides a deeper understanding of why propagating
modes are of little relevance to the temperature dependence
of the Casimir-Lifshitz interaction between Drude metals.
Indeed, this dependence was previously found to originate
primarily in low-frequency evanescent modes [24,25].
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Lifshitz theory, we can conclude

MD,0(ω) = MCL,0(ω), (3.15)

provided the frequency ω is below the range where other
(propagating) modes appear that are not contained in MD(ω).
The identity (3.15) is checked by a direct calculation in
Appendix B.

D. Damping correction of eddy current modes

We now show that one gets for good conductors the
second term, of relative order (γ /�)2, in the coefficient m

(1)
D

[Eq. (2.7a)]. It arises from the correction MD,γ (ω) to the
diffusive mode density. It is interesting that this shows a scaling
of ∼γω, in distinction from the correction in the Lifshitz
theory, Eq. (3.10).

The second term in Eq. (3.14a), MD,γ (ω), is of the same
form as Eq. (3.14b), with the upper limit k1(x) replaced
by γ x/c. For good conductors, the upper integration limit
κ � γ x/c is small compared to the scale k1(x) [Eq. (3.13)]
that appears in the reflection coefficient. The argument of the
exponential is small if we take γ � c/L. Expanding both
quantities for small κ , we get

MD,γ (ω) ≈
∫ 1

0

dx

π

ω/γ

x2 + (ω/γ )2
(3.16)

×
∫ γ x/c

0

κdκ

2π2
Im ln[2κ(L + 2i/k1(x))].

The imaginary part does not depend on κ , and the integration
gives a factor of 1

2 (γ x/c)2. At this stage, we can take the
low-frequency limit (ω � γ ) and are left with

MD,γ (ω) ≈ ωγ

4π2c2

∫ 1

0

dx

π
arctan

(
2λ

L

√
1 − x

x

)

= ω

D

γ 2

4π2�2

λ

2λ + L
, (3.17)

where λ = c/� is the plasma wavelength. This yields the
correction to m

(1)
D appearing in Eq. (2.7a). We have checked

that MD,γ (ω) does not contain, at the next order, the fractional
power ω3/2, as found for MD,0(ω).

We suggest the following interpretation for this correction:
it is related to the mutual influence of the two types of modes,
overdamped and propagating waves. To wit, as the two slabs
approach each other, the different mode frequencies cannot
shift independently because, taken all together, they have to
satisfy a sum rule quoted in Ref. [13]:

∫
d2k

[ ∑
all modes

Im ωn(k)

]L

L→∞
= 0, (3.18)

where the notation assumes that branch cut continua have
been discretized (see Sec. III A). The eddy current modes
play a crucial role in satisfying this sum rule. Indeed, any
modification in the imaginary part of the propagating (cavity
and bulk) modes due to a change of the distance L (i.e., the
propagating modes leave the continuum above the plasma
frequency and become discrete cavity modes as the distance
L is increased) is simultaneously balanced by a shift in the

diffusive mode density on the imaginary axis that extends
down to −iγ .

Due to the sum rule (3.18), the small correction for eddy
currents appears also, with the opposite sign, in the propagating
modes. For this reason, the Lifshitz mode density does not
contain this term [see Eq. (3.9)], and its next-order correction,
Eq. (3.10), is independent of the damping rate γ .

IV. DISCUSSION AND CONCLUSIONS

We have calculated the low-temperature behavior of the
interaction between two parallel half-spaces across a gap of
width L due to low-frequency Johnson noise in the bulk of the
conducting medium, in particular eddy or Foucault currents
that are coupled to TE-polarized electromagnetic fields. The
interaction is calculated in orders T 2 and T 5/2 and is compared
to the Casimir free energy within the Lifshitz theory for Drude
metals. A striking result is uncovered: the low-temperature
correction to the Casimir effect between parallel slabs of
good Drude conductors is dictated entirely by the contribution
from eddy currents, as demonstrated by the two leading-order
correction terms as T → 0. This adds a further piece of support
to the findings of Ref. [8], where the unusual physics of the
thermal Casimir effect between Drude conductors is attributed
to the interaction between eddy currents.

Within our approach, we find small differences in the free
energy that are of the second order in the ratio scattering
rate to plasma frequency, γ /� [Eq. (2.7a)]. This correction
reflects the mutual influence between the modes that are
constrained by a sum rule, Eq. (3.18). Note the curious fact
that this makes �FD depend on L already at order T 2,
different from �FCL. Therefore the eddy current interaction
makes a tiny contribution to the pressure (p = −∂F/∂L)
quadratic in temperature. However this is exactly canceled by
a corresponding contribution from propagating modes and the
resulting Casimir pressure is proportional to T 5/2 to leading
order, as Eq. (3.9) shows.

Let us finally emphasize the analysis of the singularities
of the Lifshitz dispersion function that we performed in
the complex plane. This picture identifies in a natural way
the mode frequencies of the system, even in the presence
of dissipation, and justifies a natural splitting of the free
energy in contributions of specific types of modes. We gained
in particular the insight that the mode density for the full
Casimir-Lifshitz interaction is simply the sum of eddy current
modes and of propagating cavity and bulk modes. The second
contribution becomes small at low frequencies, weak damping,
and not too large distances because the complex mode
frequencies are located sufficiently far away from the origin.
This provides a deeper understanding of why propagating
modes are of little relevance to the temperature dependence
of the Casimir-Lifshitz interaction between Drude metals.
Indeed, this dependence was previously found to originate
primarily in low-frequency evanescent modes [24,25].
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Lifshitz theory, we can conclude

MD,0(ω) = MCL,0(ω), (3.15)

provided the frequency ω is below the range where other
(propagating) modes appear that are not contained in MD(ω).
The identity (3.15) is checked by a direct calculation in
Appendix B.

D. Damping correction of eddy current modes

We now show that one gets for good conductors the
second term, of relative order (γ /�)2, in the coefficient m

(1)
D

[Eq. (2.7a)]. It arises from the correction MD,γ (ω) to the
diffusive mode density. It is interesting that this shows a scaling
of ∼γω, in distinction from the correction in the Lifshitz
theory, Eq. (3.10).

The second term in Eq. (3.14a), MD,γ (ω), is of the same
form as Eq. (3.14b), with the upper limit k1(x) replaced
by γ x/c. For good conductors, the upper integration limit
κ � γ x/c is small compared to the scale k1(x) [Eq. (3.13)]
that appears in the reflection coefficient. The argument of the
exponential is small if we take γ � c/L. Expanding both
quantities for small κ , we get

MD,γ (ω) ≈
∫ 1

0

dx

π

ω/γ

x2 + (ω/γ )2
(3.16)

×
∫ γ x/c

0

κdκ

2π2
Im ln[2κ(L + 2i/k1(x))].

The imaginary part does not depend on κ , and the integration
gives a factor of 1

2 (γ x/c)2. At this stage, we can take the
low-frequency limit (ω � γ ) and are left with

MD,γ (ω) ≈ ωγ

4π2c2

∫ 1

0

dx

π
arctan

(
2λ

L

√
1 − x

x

)

= ω

D

γ 2

4π2�2

λ

2λ + L
, (3.17)

where λ = c/� is the plasma wavelength. This yields the
correction to m

(1)
D appearing in Eq. (2.7a). We have checked

that MD,γ (ω) does not contain, at the next order, the fractional
power ω3/2, as found for MD,0(ω).

We suggest the following interpretation for this correction:
it is related to the mutual influence of the two types of modes,
overdamped and propagating waves. To wit, as the two slabs
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∫
d2k

[ ∑
all modes

Im ωn(k)

]L

L→∞
= 0, (3.18)

where the notation assumes that branch cut continua have
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frequency and become discrete cavity modes as the distance
L is increased) is simultaneously balanced by a shift in the

diffusive mode density on the imaginary axis that extends
down to −iγ .

Due to the sum rule (3.18), the small correction for eddy
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modes. For this reason, the Lifshitz mode density does not
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Eq. (3.10), is independent of the damping rate γ .

IV. DISCUSSION AND CONCLUSIONS

We have calculated the low-temperature behavior of the
interaction between two parallel half-spaces across a gap of
width L due to low-frequency Johnson noise in the bulk of the
conducting medium, in particular eddy or Foucault currents
that are coupled to TE-polarized electromagnetic fields. The
interaction is calculated in orders T 2 and T 5/2 and is compared
to the Casimir free energy within the Lifshitz theory for Drude
metals. A striking result is uncovered: the low-temperature
correction to the Casimir effect between parallel slabs of
good Drude conductors is dictated entirely by the contribution
from eddy currents, as demonstrated by the two leading-order
correction terms as T → 0. This adds a further piece of support
to the findings of Ref. [8], where the unusual physics of the
thermal Casimir effect between Drude conductors is attributed
to the interaction between eddy currents.

Within our approach, we find small differences in the free
energy that are of the second order in the ratio scattering
rate to plasma frequency, γ /� [Eq. (2.7a)]. This correction
reflects the mutual influence between the modes that are
constrained by a sum rule, Eq. (3.18). Note the curious fact
that this makes �FD depend on L already at order T 2,
different from �FCL. Therefore the eddy current interaction
makes a tiny contribution to the pressure (p = −∂F/∂L)
quadratic in temperature. However this is exactly canceled by
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resulting Casimir pressure is proportional to T 5/2 to leading
order, as Eq. (3.9) shows.

Let us finally emphasize the analysis of the singularities
of the Lifshitz dispersion function that we performed in
the complex plane. This picture identifies in a natural way
the mode frequencies of the system, even in the presence
of dissipation, and justifies a natural splitting of the free
energy in contributions of specific types of modes. We gained
in particular the insight that the mode density for the full
Casimir-Lifshitz interaction is simply the sum of eddy current
modes and of propagating cavity and bulk modes. The second
contribution becomes small at low frequencies, weak damping,
and not too large distances because the complex mode
frequencies are located sufficiently far away from the origin.
This provides a deeper understanding of why propagating
modes are of little relevance to the temperature dependence
of the Casimir-Lifshitz interaction between Drude metals.
Indeed, this dependence was previously found to originate
primarily in low-frequency evanescent modes [24,25].

ACKNOWLEDGMENTS

We have benefited from discussions with Gert-Ludwig
Ingold. We also thank G. L. Klimchitskaya and V. M.
Mostepanenko for constructive comments. Support from the

032504-7



INTRAVAIA, ELLINGSEN, AND HENKEL PHYSICAL REVIEW A 82, 032504 (2010)

European Science Foundation (ESF) within the Research
Networking Programme “New Trends and Applications of the
Casimir Effect” is gratefully acknowledged. F.I. acknowledges
partial financial support by the Humboldt foundation and
LANL.

APPENDIX A: INTEGRALS FOR LIFSHITZ THEORY

The integrals in Eq. (3.8) can be evaluated with the sub-
stitution y = sinh t . This simplifies the reflection coefficient
(3.4) into r(y) = −e−2t . Hence∫ ∞

0
dy y ln[1 − r2(y)] =

∫ ∞

0
dt

sinh 2t

2
ln(1 − e−4t ).

(A1)

Expanding the logarithm, integrating term by term, and
evaluating the sum, we get∫ ∞

0

sinh 2t

2
ln(1 − e−4t ) = −2 ln 2 − 1

4
. (A2)

For the second integral in Eq. (3.8), the same substitution gives∫ ∞

0
dy

2y2r2(y)

1 − r2(y)
=
∫ ∞

0
dt

sinh t e−2t

2
= 1

6
. (A3)

APPENDIX B: INTEGRALS FOR EDDY CURRENTS

We prove here Eq. (3.15): the low-frequency mode densities
for eddy currents, MD,0(ω), and for all modes, MCL,0(ω),
coincide to leading order in γ .

Consider Eq. (3.14b) for the eddy current mode density. We
want to write this as a contour integral, similar to Eq. (2.18),
around the eddy current branch cut CD in Fig. 1. Note first
that the Im can be pulled in front of the κ integral and that
integral can be extended from k1(x) to ∞. This is possible
without changing the value of the integral if κ is taken just
below the real axis, the reflection coefficient (2.16) getting
real and smaller than unity in modulus. Hence, the logarithm
is real, and this part of the integration range does not make any
contribution to the imaginary part.

The contour integral in the variable z = −iγ x ± 0 finally
takes a form similar to that in Sec. II D:

MD,0(ω) = −
∮

CD

dz

2π

ω

ω2 − z2
DD,0(z), (B1)

where DD,0(z) is the integral

DD,0(z) =
∫ ∞

0

κdκ

2π2
ln[1 − r2(κ,z) e−2κL], (B2)

and the reflection coefficient is given by Eq. (2.10). Note that,
to the right of the branch cut, k1(x) = iκγ (z).

The variable change κ = yκγ (z) with y � 0 now shows
that the function DD,0(z) is indeed identical to the small-γ
approximation to the Lifshitz dispersion function, D0(z),
defined by setting the lower integration limit in Eq. (3.5) to
zero. Note that this actually shifts the integration path in the
lower right quadrant of the complex κ plane: from Re κγ (z) >

0, convergence at y → ∞ is secured. The reflection coefficient
r(y) [Eq. (3.4)] is analytic and of modulus smaller than unity
in this quadrant; hence the logarithm encounters no branch
points.

We still have to evaluate the integral (B1) and do this with
the same technique as in Sec. II D. Pulling the contour CD to
infinity, one encounters simple poles at z = ±ω. In the present
case, we can argue that the function D0(z) is analytic in the
right half plane and by the symmetry relation (2.19) also in the
left half plane: this is due to the way the integration variable y

keeps the wave vector κ clear of the branch cuts that are located
inside the contours C± (Fig. 1). Indeed, across these cuts either
κ or

√
κ2 + κ2

γ (z) are purely imaginary and jump in sign. This
never happens along the path parametrized as κ = yκγ (z), as
can be checked easily. Indeed, if z is in the right half plane,
κ remains in the lower right quadrant, excluding the real and
imaginary axes.

As a consequence of D0(z) being analytic in the left
and right half planes, the integral (B1) is given by the pole
contributions D0(±ω) only. Referring to Eq. (3.3), we thus get
the desired link to the approximated Lifshitz mode density

MD,0(ω) = ImD0(ω) = MCL,0(ω), (B3)

which is Eq. (3.15).
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We re-examine the electrodynamic Casimir effect in a wedge defined by two perfect conductors making
dihedral angle �=� / p. This system is analogous to the system defined by a cosmic string. We consider the
wedge region as filled with an azimuthally symmetric material, with permittivity and permeability �1, �1 for
distance from the axis r	a, and �2, �2 for r�a. The results are closely related to those for a circular-
cylindrical geometry, but with noninteger azimuthal quantum number mp. Apart from a zero-mode divergence,
which may be removed by choosing periodic boundary conditions on the wedge, and may be made finite if
dispersion is included, we obtain finite results for the free energy corresponding to changes in a for the case
when the speed of light is the same inside and outside the radius a, and for weak coupling, ��1−�2��1, for
purely dielectric media. We also consider the radiation produced by the sudden appearance of an infinite
cosmic string, situated along the cusp line of the pre-existing wedge.
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I. INTRODUCTION

Quantum field theory in the wedge geometry continues to
attract interest, especially in connection with the Casimir ef-
fect. Usually it is assumed that the interior region of the
wedge is a vacuum, and that the two plane surfaces &=0 and
&=� �� denotes the opening angle� are perfectly conducting.
The coordinate system is conventionally oriented such that
the z axis coincides with the singularity axis, i.e., the inter-
section line for the planes. For an introduction to the wedge
model one may consult the book of Mostepanenko and
Trunov �1�.

The Casimir energy and stress in a wedge geometry was
approached already in the 1970s �2,3�. Since that time, vari-
ous embodiments of the wedge with perfectly conducting
walls have been treated by Brevik and co-workers �4–6� and
others �7�. More recently a wedge intercut by a cylindrical
shell was considered by Nesterenko and collaborators, first
for a semicircular wedge �8�, then for arbitrary dihedral angle
�9�. Local Casimir stresses were examined by Saharian and
co-workers �10–12�. Rosa and collaborators studied the in-
teraction of an atom with a wedge �13,14�, the situation un-
der which the closely related Casimir-Polder force was in-
vestigated by Sukenik et al. some years ago �15�. That
interaction was first worked out by Barton �16�.

One reason for the interest in the wedge geometry is the
similarity with the formalism encountered in Casimir theory
of systems having circular symmetry. This applies to the case
of a perfectly conducting circular boundary �17–20�, as well
as to the case of a dielectric circular boundary �21–25�. An-
other reason for studying the wedge is the analogy—at least

in a formal sense—with the theory of a cosmic string �cf., for
instance, Ref. �26� or �4��. Let us briefly elaborate on the
last-mentioned point. The line element outside a cosmic
string is, in standard notation,

ds2 = − dt2 + dr2 + �1 − 4GM�2r2d&2 + dz2, �1.1�

where G is the gravitational constant and M the string mass
per unit length. This is the geometry of locally flat space,
with a deficit angle �=8�GM being removed. Let us intro-
duce the symbols  and p by

 = �1 − 4GM�−1 = �1 − �/2��−1, �1.2a�

p = �/� . �1.2b�

Now comparing the electromagnetic energy-momentum ten-
sor outside the string �27�

�T��� =
1

720�2r4 �
2 + 11��2 − 1�diag�1,− 3,1,1�

�1.3�

with the electromagnetic energy-momentum in the wedge
�2–4�

�T��� =
1

720�2r4	�2

�2 + 11
	�2

�2 − 1
diag�1,− 3,1,1� ,

�1.4�

we see that  corresponds to p. Hence the deficit angle �
corresponds to 2�−2�. We shall return to this analogy later.
Note that the stress tensor diverges at r=0, which makes the
definition of a total Casimir energy in these configurations
problematic. �Possible solutions to this problem were offered
by Khusnutdinov and Bordag �28�.�

A particular variant of the wedge model occurs if we in-
troduce a cylindrical boundary of radius a in the cavity. The
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corresponds to 2�−2�. We shall return to this analogy later.
Note that the stress tensor diverges at r=0, which makes the
definition of a total Casimir energy in these configurations
problematic. �Possible solutions to this problem were offered
by Khusnutdinov and Bordag �28�.�

A particular variant of the wedge model occurs if we in-
troduce a cylindrical boundary of radius a in the cavity. The
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I. INTRODUCTION
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Trunov �1�.
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in a formal sense—with the theory of a cosmic string �cf., for
instance, Ref. �26� or �4��. Let us briefly elaborate on the
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ds2 = − dt2 + dr2 + �1 − 4GM�2r2d&2 + dz2, �1.1�
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p = �/� . �1.2b�
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we see that  corresponds to p. Hence the deficit angle �
corresponds to 2�−2�. We shall return to this analogy later.
Note that the stress tensor diverges at r=0, which makes the
definition of a total Casimir energy in these configurations
problematic. �Possible solutions to this problem were offered
by Khusnutdinov and Bordag �28�.�

A particular variant of the wedge model occurs if we in-
troduce a cylindrical boundary of radius a in the cavity. The

*iver.h.brevik@ntnu.no
†simen.a.ellingsen@ntnu.no
‡milton@nhn.ou.edu

PHYSICAL REVIEW E 79, 041120 �2009�

1539-3755/2009/79�4�/041120�14� ©2009 The American Physical Society041120-1



situation is sketched in Fig. 1. This model has been studied
in particular by Nesterenko et al. and by Saharian et al.; cf.
Refs. �8–12� with a wealth of further references therein. �For
example, the fermionic situation for the circular case was
discussed by Bezzera de Mello et al. �29�.� The model can be
looked upon as being intermediate between that of a conven-
tional wedge, and an optical fiber. And that brings us to the
main theme of the present paper, namely to study the situa-
tion of Fig. 1 in the presence of a dielectric medium, both in
the interior r	a as well as in the exterior, r�a. We desig-
nate the two regions by indices 1 and 2. Thus in the interior
the refractive index is n1=��1�1 with �1 and �1 being the
permittivity and the permeability, whereas in the exterior we
have analogously n2=��2�2. We take all material quantities
�1 ,�1 and �2 ,�2 to be constant and nondispersive. The spe-
cial case when the circular boundary is perfectly conducting
is included in the general situation when there is simply a
dielectric/diamagnetic boundary. The plane surfaces &=0 and
&=� are taken to be perfectly conducting, as usual.

We begin in Sec. II by considering the Fourier decompo-
sition of the TE and TM modes when the circular boundary
is perfectly conducting. This is the simplest case. Then we
move on to give an expression for the Casimir energy. The
case of a dielectric/diamagnetic boundary is considered
thereafter �Fig. 2�. The results for the wedge are in general
divergent, not because of the divergence associated with the
apex of the wedge, which does not contribute to the outward
stress on the circular arc, but because of the corners where
the arc meets the sides of the wedge. This divergence may be
isolated in the azimuthal zero modes, independent of the an-
gular coordinates. We propose isolation and removal of this
divergence; alternatively, if the perfectly conducting bound-
aries at &=0,� are replaced by periodic boundary conditions,
these divergences disappear. When either of these devices are
employed, we obtain numerical results for the resulting finite

Casimir energy, referring to the boundary between the two
regions, r	a and r�a, both for weak and strong coupling.
Finally, we exploit the analogy with a cosmic string to cal-
culate, via the Bogoliubov transformation, the production of
electromagnetic energy associated with a “sudden” creation
of the full wedge situation, as compared with the initial case
of a single-medium-filled wedge.

II. ZERO-POINT ENERGY IN THE INTERIOR REGION—
PERFECTLY CONDUCTING ARC

As mentioned, we consider an isotropic and homogeneous
medium with permittivity �1 and permeability �1 enclosed
within a wedge region limited by the conducting plane sur-
faces &=0 and &=� �'2��. In an xy plane, the cusp is situ-
ated at the origin. We use cylindrical coordinates �r ,& ,z�. We
employ Heaviside-Lorentz units, and put � and c equal to
unity.

Assume, to begin with, that the wedge is closed by a
perfectly conducting singular arc at r=a. We write down the
fundamental modes for stationary electromagnetic modes in
the interior wedge, by invoking the expansions given in Ref.
�30�,

Er = �
m=1

� �− 2k

�1
Jmp� ��1r�am

i −
2i�1�mp

�1
2r

Jmp��1r�bm
i �


F0 sin mp& , �2.1a�

E& = − �
m=0

� �2kmp

�1
2r

Jmp��1r�am
i +

2i�1�

�1
Jmp� ��1r�bm

i �

F0 cos mp& , �2.1b�

Ez = 2i�
m=1

�

Jmp��1r�am
i F0 sin mp& , �2.1c�

Hr = �
m=0

� �2mp�1�

�1
2r

Jmp��1r�am
i +

2ik

�1
Jmp� ��1r�bm

i �F0 cos mp& ,

�2.1d�

H& = − �
m=1

� �2�1�

�1
Jmp� ��1r�am

i +
2ikmp

�1
2r

Jmp��1r�bm
i �


F0 sin mp& , �2.1e�

Hz = 2�
m=0

�

Jmp��1r�bm
i F0 cos mp& . �2.1f�

Here k is the axial wave number and �1 is the transverse
wave number given by

�1
2 = n1

2�2 − k2. �2.2�

The Jmp’s are ordinary Bessel functions of order mp, which
are finite at the origin for mp(0, for p nonintegral, while

α x

y

ε1,μ1

ε2,μ2

a
FIG. 1. The geometry considered in Secs. II and III. There is a

cylindrical perfectly conducting shell at radius a. In these sections
the indices of refraction are equal, n2=�1�1=�2�2.
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a
FIG. 2. The wedge with a dielectric/diamagnetic boundary at

r=a. In Sec. IV we will allow n1�n2.
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example, the fermionic situation for the circular case was
discussed by Bezzera de Mello et al. �29�.� The model can be
looked upon as being intermediate between that of a conven-
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permittivity and the permeability, whereas in the exterior we
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is included in the general situation when there is simply a
dielectric/diamagnetic boundary. The plane surfaces &=0 and
&=� are taken to be perfectly conducting, as usual.
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sition of the TE and TM modes when the circular boundary
is perfectly conducting. This is the simplest case. Then we
move on to give an expression for the Casimir energy. The
case of a dielectric/diamagnetic boundary is considered
thereafter �Fig. 2�. The results for the wedge are in general
divergent, not because of the divergence associated with the
apex of the wedge, which does not contribute to the outward
stress on the circular arc, but because of the corners where
the arc meets the sides of the wedge. This divergence may be
isolated in the azimuthal zero modes, independent of the an-
gular coordinates. We propose isolation and removal of this
divergence; alternatively, if the perfectly conducting bound-
aries at &=0,� are replaced by periodic boundary conditions,
these divergences disappear. When either of these devices are
employed, we obtain numerical results for the resulting finite

Casimir energy, referring to the boundary between the two
regions, r	a and r�a, both for weak and strong coupling.
Finally, we exploit the analogy with a cosmic string to cal-
culate, via the Bogoliubov transformation, the production of
electromagnetic energy associated with a “sudden” creation
of the full wedge situation, as compared with the initial case
of a single-medium-filled wedge.

II. ZERO-POINT ENERGY IN THE INTERIOR REGION—
PERFECTLY CONDUCTING ARC

As mentioned, we consider an isotropic and homogeneous
medium with permittivity �1 and permeability �1 enclosed
within a wedge region limited by the conducting plane sur-
faces &=0 and &=� �'2��. In an xy plane, the cusp is situ-
ated at the origin. We use cylindrical coordinates �r ,& ,z�. We
employ Heaviside-Lorentz units, and put � and c equal to
unity.

Assume, to begin with, that the wedge is closed by a
perfectly conducting singular arc at r=a. We write down the
fundamental modes for stationary electromagnetic modes in
the interior wedge, by invoking the expansions given in Ref.
�30�,
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Here k is the axial wave number and �1 is the transverse
wave number given by
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permittivity and the permeability, whereas in the exterior we
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is included in the general situation when there is simply a
dielectric/diamagnetic boundary. The plane surfaces &=0 and
&=� are taken to be perfectly conducting, as usual.
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sition of the TE and TM modes when the circular boundary
is perfectly conducting. This is the simplest case. Then we
move on to give an expression for the Casimir energy. The
case of a dielectric/diamagnetic boundary is considered
thereafter �Fig. 2�. The results for the wedge are in general
divergent, not because of the divergence associated with the
apex of the wedge, which does not contribute to the outward
stress on the circular arc, but because of the corners where
the arc meets the sides of the wedge. This divergence may be
isolated in the azimuthal zero modes, independent of the an-
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divergence; alternatively, if the perfectly conducting bound-
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F0 = exp�ikz − i�t� �2.3�

is the m=0 version of the more general quantity
Fm=exp�imp&+ ikz− i�t�. Expressions �2.1a�, �2.1b�, �2.1c�,
�2.1d�, �2.1e�, and �2.1f� satisfy the electromagnetic bound-
ary conditions on the surfaces &=0 and &=� automatically,
for arbitrary values of the coefficients am and bm. The i su-
perscript on the coefficient refers to the interior region. The
am modes and the bm modes are independent of each other.

Because of the closure of the region at r=a the problem
becomes an eigenvalue problem. Only discrete values of the
transverse wave number �1 can occur. Let us distinguish be-
tween the two kinds of modes:
�i� TM polarization �the am

i modes�, which correspond to

Jmp��1a� = 0. �2.4�
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by a straight line along the imaginary z axis from �= iR to
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In the plane spanned by the axes n1� and k we may introduce
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Y = k = �1 sin & , �2.14b�

fulfilling the relation X2+Y2=�1
2. The area element in the XY
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where the last term represents the TE m=0 mode. No regu-
larization procedure has been applied at this stage.

III. EXTERIOR REGION INCLUDED, ASSUMING
PERFECTLY CONDUCTING CIRCULAR ARC

We now include the exterior region r(a, still assuming
the circular arc at r=a to be perfectly conducting.
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A choice has to be made for what kind of medium to fill
the space r�a. One possible choice might be to assume a
vacuum on the outside. Another natural choice would be to
take the exterior medium to be identical to the interior one.
We will in this section allow for a generalization of the last
option, namely, to assume that the exterior space is filled
with a medium with arbitrary constants �2 and �2, but with
the restriction that their product is the same as in the interior,

�2�2 = �1�1 = n2. �3.1�

We will refer to this situation as “diaphanous.” This condi-
tion implying the constancy of light everywhere has under
several occasions turned out to be convenient mathemati-
cally, for instance in connection with the Casimir theory for
dielectric balls �31–37�, and in the Casimir theory for the
relativistic piecewise uniform string �38–42� �a review is
given in Ref. �43��. In the latter case, the velocity of light is
to be replaced with the velocity of sound. Condition �3.1�
means in the present problem that � takes the same value on
the outside as on the inside �assuming k to take the same
values on the two sides�. The principal advantage of this
assumption, which is not easily satisfied in nature, is that in
simple cases Casimir self-energies will turn out then to be
finite.

In the exterior region r�a we have the expansions, keep-
ing the formalism at first quite general,
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Ez = 2i�
m=1

�

Hmp
�1���2r�am

e F0 sin mp& , �3.2c�
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As before, F0 is given by Eq. �2.3�. The presence of the
Hankel function of the first kind, Hmp

�1�, ensures proper behav-
ior �outgoing waves� at infinity. The e superscript refers to
exterior modes.

Let us now take into account condition �3.1�, implying
�1=�2��, and consider the boundary conditions. For the
TM polarization �the am

e modes� we get

Hmp
�1���a� = 0, m ( 1, �3.3�

whereas for the TE polarization �the bm
e modes�,

Hmp
�1����a� = 0, m ( 0. �3.4�

The roots of these eigenvalue equations are complex—
nevertheless, the argument principle may be applied as has
been explained in detail in many places �17,44,45�. We can
now calculate the exterior zero-point energy Eext in the same
way as above. The modified Bessel function K� is introduced
via H�

�1��ix�= �2 /��i−��+1�K��x�. For the total zero-point
energy/length E=Eint+Eext we obtain
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We now must face up to the fact that our result contains
an irremovable divergence, associated with the nonzero a2
heat kernel coefficient found by Nesterenko et al. �8,9�. This
occurs precisely because of the m=0 terms in Eq. �3.5�. If we
were to write that expression as
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where the prime on the summation sign means that the m
=0 terms are counted with half weight, we see in the follow-

ing that the summation, Ẽ, may now be rendered finite �see

Appendix A�, but the residual correction, Ê, is divergent.
It is instructive to break up this residual zero-mode con-

tribution into its Dirichlet �TM� and Neumann �TE� parts.
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A choice has to be made for what kind of medium to fill
the space r�a. One possible choice might be to assume a
vacuum on the outside. Another natural choice would be to
take the exterior medium to be identical to the interior one.
We will in this section allow for a generalization of the last
option, namely, to assume that the exterior space is filled
with a medium with arbitrary constants �2 and �2, but with
the restriction that their product is the same as in the interior,

�2�2 = �1�1 = n2. �3.1�

We will refer to this situation as “diaphanous.” This condi-
tion implying the constancy of light everywhere has under
several occasions turned out to be convenient mathemati-
cally, for instance in connection with the Casimir theory for
dielectric balls �31–37�, and in the Casimir theory for the
relativistic piecewise uniform string �38–42� �a review is
given in Ref. �43��. In the latter case, the velocity of light is
to be replaced with the velocity of sound. Condition �3.1�
means in the present problem that � takes the same value on
the outside as on the inside �assuming k to take the same
values on the two sides�. The principal advantage of this
assumption, which is not easily satisfied in nature, is that in
simple cases Casimir self-energies will turn out then to be
finite.

In the exterior region r�a we have the expansions, keep-
ing the formalism at first quite general,
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As before, F0 is given by Eq. �2.3�. The presence of the
Hankel function of the first kind, Hmp

�1�, ensures proper behav-
ior �outgoing waves� at infinity. The e superscript refers to
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Let us now take into account condition �3.1�, implying
�1=�2��, and consider the boundary conditions. For the
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e modes� we get
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whereas for the TE polarization �the bm
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The roots of these eigenvalue equations are complex—
nevertheless, the argument principle may be applied as has
been explained in detail in many places �17,44,45�. We can
now calculate the exterior zero-point energy Eext in the same
way as above. The modified Bessel function K� is introduced
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We now must face up to the fact that our result contains
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�3.6�

where the prime on the summation sign means that the m
=0 terms are counted with half weight, we see in the follow-
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We now must face up to the fact that our result contains
an irremovable divergence, associated with the nonzero a2
heat kernel coefficient found by Nesterenko et al. �8,9�. This
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so the 1 /x terms cancel between the two modes �alternatively
those terms may be removed by contact terms, as we will see
in the following�, but the subleading 1 /x3 terms constitute an
irremovable logarithmic divergence. Here, we have indicated
an analytic regularization by taking s to zero through positive
values, which corresponds to the following divergent terms
as s→0:

−
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2
�

0

�

dxx2−s d

dx
ln I0�x�K0�x� �

1

8s
, �3.9a�
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dx
ln I0��x�K0��x� �

3

8s
. �3.9b�

These precisely correspond to the two mode contributions,
adding up to 1 /2s, found by Nesterenko et al. �8�.

This zero-mode divergence is due to the sharp corners
where the arc meets the wedge. We will proceed by setting
this term aside, and computing the balance of the Casimir
free energy. We note there is a closely related problem which
Nesterenko et al. �9� dubbed a cone. That is, we identify the
two wedge boundaries at &=0 and �, and impose periodic
boundary conditions there. This means that we may take the
angular function in the mode sums to be eimp&, where m may
be either positive or negative, and where now p=2� /�. Now
all modes, including the zero modes �m=0� contribute
equally, and the summation on m becomes

�
m=−�

�

= 2�
m=0

�

� �3.10�

with the zero modes both having 1/2 weight in the latter
form. �For the radial function in the interior we can only use
I��� in order that the solution be finite at the origin.� Thus we

get precisely 2Ẽ �Eq. �3.6�� without the residual zero-mode

term Ê, and we have eliminated the irremovable logarithmic
divergence. This is because the sharp corners, where the arc
meets the wedge, have been removed because there is no
wedge boundary. So if the reader prefers, he or she may
regard the rest of the discussion in this and the following
section to refer to this situation, which will introduce an
additional factor of two into the Casimir free energy, and
with the restriction p(1, where p=1 corresponds to the cir-
cular cylinder first considered in Ref. �17�.

So in any case disregarding in the following the residual

zero-mode pieces Ê, we consider now the regularization of

the �m=0
�� terms in Eq. �3.6�, Ẽ, which, in order to be a Ca-

simir energy, ought to be given in such a form that it reduces
to zero in the limit when a→�. This will eliminate the di-
vergence associated with the apex, which is not relevant to

the force on the circular arc. It is easy to satisfy this require-
ment by observing that for large values of x, and for general
�, we can approximate

I��x� �
1
�2�x

ex, K��x� �� �

2x
e−x, x → � ,

�3.11�

implying that I��� I� and K���−K�. Accordingly,

d

dx
ln�− I�K�I��K��� � 2

d

dx
ln�I�K�� � −

2

x
�3.12�

to leading order in x. This term is to be subtracted off from
the integrand in Eq. �3.5�. The Casimir energy for the wedge
becomes then
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We may here perform a partial integration �the boundary
terms at x=0 and x=� do not contribute�,

Ẽ =
1

4�na2�
m=0

�

��
0

�

xdx


 ln�− 4x2Imp�x�Imp� �x�Kmp�x�Kmp� �x�� . �3.14�

It is helpful to introduce a quantity ���x� for arbitrary order
�,

���x� = �I��x�K��x���, �3.15�

and to take into account the Wronskian W�I� ,K��=−1 /x.
From this we calculate the following useful relationship:

− 4x2I��x�I���x�K��x�K���x� = 1 − x2��
2�x� , �3.16�

and so end up with the following convenient form for the
Casimir energy,

Ẽ =
1

4�na2�
m=0

�

��
0

�

xdx ln�1 − x2�mp
2 �x�� . �3.17�

This is thus the boundary-induced contribution to the zero-
point energy. If the boundary r=a were removed and either
the interior or the exterior medium were chosen to fill the

whole wedge region, we would get Ẽ=0. This is a property
relying on condition �3.1� above. The temperature is assumed
to be zero.

Although the leading behavior of the Bessel functions has
been subtracted in Eq. �3.17�, it is still not in general finite.
We will see in the following section how a finite self-energy
may be extracted from this formula. For now, we observe
that this is a generalization of the standard formal result for a
conducting circular cylinder, which is obtained from this re-
sult in the special case p=1 �17�. �The overall 1 /n comes
from an elementary scaling argument �46�.� When p=1 ex-
pression �3.17� is one-half that for a conducting circular cyl-
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in the following�, but the subleading 1 /x3 terms constitute an
irremovable logarithmic divergence. Here, we have indicated
an analytic regularization by taking s to zero through positive
values, which corresponds to the following divergent terms
as s→0:
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These precisely correspond to the two mode contributions,
adding up to 1 /2s, found by Nesterenko et al. �8�.

This zero-mode divergence is due to the sharp corners
where the arc meets the wedge. We will proceed by setting
this term aside, and computing the balance of the Casimir
free energy. We note there is a closely related problem which
Nesterenko et al. �9� dubbed a cone. That is, we identify the
two wedge boundaries at &=0 and �, and impose periodic
boundary conditions there. This means that we may take the
angular function in the mode sums to be eimp&, where m may
be either positive or negative, and where now p=2� /�. Now
all modes, including the zero modes �m=0� contribute
equally, and the summation on m becomes

�
m=−�

�

= 2�
m=0

�

� �3.10�

with the zero modes both having 1/2 weight in the latter
form. �For the radial function in the interior we can only use
I��� in order that the solution be finite at the origin.� Thus we

get precisely 2Ẽ �Eq. �3.6�� without the residual zero-mode

term Ê, and we have eliminated the irremovable logarithmic
divergence. This is because the sharp corners, where the arc
meets the wedge, have been removed because there is no
wedge boundary. So if the reader prefers, he or she may
regard the rest of the discussion in this and the following
section to refer to this situation, which will introduce an
additional factor of two into the Casimir free energy, and
with the restriction p(1, where p=1 corresponds to the cir-
cular cylinder first considered in Ref. �17�.

So in any case disregarding in the following the residual

zero-mode pieces Ê, we consider now the regularization of

the �m=0
�� terms in Eq. �3.6�, Ẽ, which, in order to be a Ca-

simir energy, ought to be given in such a form that it reduces
to zero in the limit when a→�. This will eliminate the di-
vergence associated with the apex, which is not relevant to

the force on the circular arc. It is easy to satisfy this require-
ment by observing that for large values of x, and for general
�, we can approximate
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1
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implying that I��� I� and K���−K�. Accordingly,
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to leading order in x. This term is to be subtracted off from
the integrand in Eq. �3.5�. The Casimir energy for the wedge
becomes then
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We may here perform a partial integration �the boundary
terms at x=0 and x=� do not contribute�,
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It is helpful to introduce a quantity ���x� for arbitrary order
�,

���x� = �I��x�K��x���, �3.15�

and to take into account the Wronskian W�I� ,K��=−1 /x.
From this we calculate the following useful relationship:

− 4x2I��x�I���x�K��x�K���x� = 1 − x2��
2�x� , �3.16�

and so end up with the following convenient form for the
Casimir energy,
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This is thus the boundary-induced contribution to the zero-
point energy. If the boundary r=a were removed and either
the interior or the exterior medium were chosen to fill the

whole wedge region, we would get Ẽ=0. This is a property
relying on condition �3.1� above. The temperature is assumed
to be zero.

Although the leading behavior of the Bessel functions has
been subtracted in Eq. �3.17�, it is still not in general finite.
We will see in the following section how a finite self-energy
may be extracted from this formula. For now, we observe
that this is a generalization of the standard formal result for a
conducting circular cylinder, which is obtained from this re-
sult in the special case p=1 �17�. �The overall 1 /n comes
from an elementary scaling argument �46�.� When p=1 ex-
pression �3.17� is one-half that for a conducting circular cyl-
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get precisely 2Ẽ �Eq. �3.6�� without the residual zero-mode

term Ê, and we have eliminated the irremovable logarithmic
divergence. This is because the sharp corners, where the arc
meets the wedge, have been removed because there is no
wedge boundary. So if the reader prefers, he or she may
regard the rest of the discussion in this and the following
section to refer to this situation, which will introduce an
additional factor of two into the Casimir free energy, and
with the restriction p(1, where p=1 corresponds to the cir-
cular cylinder first considered in Ref. �17�.

So in any case disregarding in the following the residual
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inder. Referring to the perfectly conducting wedge bound-
aries, we see that the Casimir energy for periodic boundary
conditions, with period 2�, is twice the Casimir energy for a
perfectly conducting boundary condition imposed on the &
interval of �, a result obvious from the replacement of eim&

for m of either sign in the former case by sin m& or cos m&,
m(0, in the latter. This general observation, which is the
theorem stated in Eq. �2.49� of Ref. �47� �see also Ref. �48��
will allow us to obtain numerical results rather immediately.
For the periodic boundary-condition situation, which elimi-
nates the zero-mode problem, p=1 is exactly the circular
cylinder problem, and there is no additional factor of 1/2.

IV. DIELECTRIC BOUNDARY AT r=a

Assume now that the perfectly conducting arc at r=a is
removed and replaced by a dielectric boundary, wherewith
the interior and exterior regions become coupled via electro-
magnetic boundary conditions at r=a. As before, we assume
that the plane surfaces &=0 and &=� are perfectly conduct-
ing for all values of r. �Alternatively, we may impose peri-
odic boundary conditions there.�

We shall assume in the following that the media are arbi-
trary, with real and constant parameters �1 ,�1 in the interior
and �2 ,�2 in the exterior, without any restriction imposed on
their product. This will, however, result in general in a diver-
gent Casimir self-energy.

Let �2 be the transverse wave number in the exterior re-
gion,

�2
2 = n2

2�2 − k2, �4.1�

with n2
2=�2�2. The basic expansions are Eqs. �2.1a�, �2.1b�,

�2.1c�, �2.1d�, �2.1e�, and �2.1f� in the interior and Eqs.
�3.2a�, �3.2b�, �3.2c�, �3.2d�, �3.2e�, and �3.2f� in the exterior.

As for the boundary conditions at r=a, only the tangential
field components have to be taken into account. From the
continuity of Ez and Hz we get, respectively,

Jmp�u�am
i = Hmp

�1��v�am
e �4.2�

and

Jmp�u�bm
i = Hmp

�1��v�bm
e , �4.3�

where we have defined

u = �1a, v = �2a . �4.4�

From the component E& we get
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and from the component H&,
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v2 Hmp
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e . �4.6�

The two last equations mean that a superposition of the TM
and TE waves is in general necessary to satisfy the boundary
conditions. The exception is the axially symmetric case
m=0. The condition for solution of the set of linear equations
is that the system determinant vanishes. Observing the rela-
tion

u2 − v2 = �n1
2 − n2

2��2a2 �4.7�

which follows from Eqs. �4.1� and �4.4�, we obtain after
some manipulations the condition
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1
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This is essentially the same transcendental eigenvalue equa-
tion as found for a step-index optical fiber �cf., for instance,
Ref. �30� or �49��. In transmission problems, one is usually
interested in calculating the discrete values of the propaga-
tion constant k, assuming that the waveguide is fed with
some frequency �. Here our intention is different, namely, to
calculate the discrete values of � on the basis of an input
value for the continuous axial wave vector k. As we noted in
Sec. III, this dispersion relation generalizes that for a circular
cylinder, the special case p=1.

It may be noted that the roots of Eq. �4.8� are both real
and complex. Application of the argument principle to such a
problem is discussed in Ref. �50�.

A. n1=n2

The TE and TM modes decouple in the special case when
n1=��1�1=n2=��2�2. In this case, dispersion relation �4.8�
reduces to ��̃=0, where � and �̃ are the two factors on the
left-hand side of Eq. �4.8�, and then using the Wronskian, we
find after Euclidean rotation, �→ i�,

��̃ =
��1 + �2�
4c2�1�2
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x2Imp
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2 �x�
, �4.9�

where x=�a, c=1 /n, and the reflection coefficient �for either
polarization�

� =
�2 − �1

�2 + �1
. �4.10�

We conclude that the formula for the �zero-mode subtracted�
Casimir energy is
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where
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value for the continuous axial wave vector k. As we noted in
Sec. III, this dispersion relation generalizes that for a circular
cylinder, the special case p=1.

It may be noted that the roots of Eq. �4.8� are both real
and complex. Application of the argument principle to such a
problem is discussed in Ref. �50�.

A. n1=n2

The TE and TM modes decouple in the special case when
n1=��1�1=n2=��2�2. In this case, dispersion relation �4.8�
reduces to ��̃=0, where � and �̃ are the two factors on the
left-hand side of Eq. �4.8�, and then using the Wronskian, we
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inder. Referring to the perfectly conducting wedge bound-
aries, we see that the Casimir energy for periodic boundary
conditions, with period 2�, is twice the Casimir energy for a
perfectly conducting boundary condition imposed on the &
interval of �, a result obvious from the replacement of eim&

for m of either sign in the former case by sin m& or cos m&,
m(0, in the latter. This general observation, which is the
theorem stated in Eq. �2.49� of Ref. �47� �see also Ref. �48��
will allow us to obtain numerical results rather immediately.
For the periodic boundary-condition situation, which elimi-
nates the zero-mode problem, p=1 is exactly the circular
cylinder problem, and there is no additional factor of 1/2.

IV. DIELECTRIC BOUNDARY AT r=a

Assume now that the perfectly conducting arc at r=a is
removed and replaced by a dielectric boundary, wherewith
the interior and exterior regions become coupled via electro-
magnetic boundary conditions at r=a. As before, we assume
that the plane surfaces &=0 and &=� are perfectly conduct-
ing for all values of r. �Alternatively, we may impose peri-
odic boundary conditions there.�

We shall assume in the following that the media are arbi-
trary, with real and constant parameters �1 ,�1 in the interior
and �2 ,�2 in the exterior, without any restriction imposed on
their product. This will, however, result in general in a diver-
gent Casimir self-energy.

Let �2 be the transverse wave number in the exterior re-
gion,

�2
2 = n2

2�2 − k2, �4.1�

with n2
2=�2�2. The basic expansions are Eqs. �2.1a�, �2.1b�,

�2.1c�, �2.1d�, �2.1e�, and �2.1f� in the interior and Eqs.
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As for the boundary conditions at r=a, only the tangential
field components have to be taken into account. From the
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The two last equations mean that a superposition of the TM
and TE waves is in general necessary to satisfy the boundary
conditions. The exception is the axially symmetric case
m=0. The condition for solution of the set of linear equations
is that the system determinant vanishes. Observing the rela-
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gm�x� = 1 − �2x2�mp
2 , �4.12�

where �mp is given by Eq. �3.15�. Here, we have again sub-
tracted off the terms that would be present if either medium
filled the entire wedge. �The divergence structure of the zero-
mode term subtracted from Eq. �4.11� is analyzed in Appen-
dix B.� Again cavalierly integrating by parts, we obtain, us-
ing the change of variables �2.14�,

Ẽ =
1

4�na2�
m=0

�

��
0

�

dxx ln�1 − �2x2�mp
2 � . �4.13�

As expected, this differs from conducting case �3.17� by the
appearance of �2 in front of �mp. The conducting case is
obtained by setting �=1. All of this is just as for the circular
cylinder case, which is obtained from the p=1 result by mul-
tiplying by a factor of 2.

Let us now extract both the �=1 �perfect conducting� and
the small � results for arbitrary p. A simple route is to follow
the method given in �18� or in Chap. 7 of Ref. �47�. The
point is simply that the uniform asymptotic expansion for the
modified Bessel functions yields an asymptotic expansion for
large p. Thus we can write �see the Appendix A for details�

2nẼ =
�2

16�a2 ln�2�/p� + E0 + 2�
m=1

�

Em, �4.14�

where

E0 =
1
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�4.15a�

Em =
1

4�a2�
0

�
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2 �x�� +

�2

4

x4

�m2p2 + x2�3� .
�4.15b�

�Further details are given in the cited references.� Because of
the subtractions in the integrals, they are convergent.

Let us first consider � as small, and keep only the terms of
order �2. Using the uniform asymptotic approximants, we
find for large mp,

Em�
�2

4�a2	 1

96m2p2 −
7

3840m4p4 + ¯
 , �4.16�

while numerical integration gives

E0 =
�2

4�a2 �− 0.490 877 5� . �4.17�

Thus

Ẽ =
�2

8�na2	− 0.490 877 5 +
1

4
ln 2�/p +
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288

1

p2 −
7�4

172800

1

p4

+ 2�
1

M

�f�mp� − g�mp��
 � �2

8�na2e�p� , �4.18�

where we have added and subtracted the first two terms in
the uniform asymptotic expansion,

g��� =
1

96�2 −
7

3840�4 , �4.19�

and f is the integral appearing in Em,

f��� = �
0

�

dxx3�− ��
2 +

1

4

x2

�x2 + �2�3� . �4.20�

In principle we are to take the M→� limit in Eq. �4.18�. In
practice, we may keep only a few terms in the m sum. For
example, keeping none of those corrections, that is setting
M =0, we get for p=1, e�1��−0.001 084 7. Keeping three
terms is sufficient to find that e�1� is less than 1
10−6;
indeed, the circular cylinder value is e�1�=0 �21–25�. This
function e�p� is plotted in Fig. 3, for p�1, where it is suf-
ficient to keep the leading asymptotic approximations; for p
between 1/2 and 1 �� between � and 2�� we must retain at
least one correction, M =1, as shown in Fig. 4. �No observ-
able change occurs with larger M.� Numerically, we see that
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FIG. 3. Casimir energy for weak coupling, �2�1, as a function
of p which is related to the dihedral angle �=� / p. This graph
shows the energy for p�1.
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FIG. 4. Casimir energy for weak coupling, �2�1, as a function
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shows the energy for 0.5	p	1. The upper curve shows the exact
energy, the lower the leading asymptotic approximation, obtained
from Eq. �4.18� by setting M =0.
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gm�x� = 1 − �2x2�mp
2 , �4.12�

where �mp is given by Eq. �3.15�. Here, we have again sub-
tracted off the terms that would be present if either medium
filled the entire wedge. �The divergence structure of the zero-
mode term subtracted from Eq. �4.11� is analyzed in Appen-
dix B.� Again cavalierly integrating by parts, we obtain, us-
ing the change of variables �2.14�,

Ẽ =
1

4�na2�
m=0

�

��
0

�

dxx ln�1 − �2x2�mp
2 � . �4.13�

As expected, this differs from conducting case �3.17� by the
appearance of �2 in front of �mp. The conducting case is
obtained by setting �=1. All of this is just as for the circular
cylinder case, which is obtained from the p=1 result by mul-
tiplying by a factor of 2.

Let us now extract both the �=1 �perfect conducting� and
the small � results for arbitrary p. A simple route is to follow
the method given in �18� or in Chap. 7 of Ref. �47�. The
point is simply that the uniform asymptotic expansion for the
modified Bessel functions yields an asymptotic expansion for
large p. Thus we can write �see the Appendix A for details�

2nẼ =
�2

16�a2 ln�2�/p� + E0 + 2�
m=1

�

Em, �4.14�

where

E0 =
1

4�a2�
0

�

dxx�ln�1 − �2x2�0
2�x�� +

�2

4

x4

�1 + x2�3� ,
�4.15a�

Em =
1

4�a2�
0

�

dxx�ln�1 − �2x2�mp
2 �x�� +

�2

4

x4

�m2p2 + x2�3� .
�4.15b�

�Further details are given in the cited references.� Because of
the subtractions in the integrals, they are convergent.

Let us first consider � as small, and keep only the terms of
order �2. Using the uniform asymptotic approximants, we
find for large mp,

Em�
�2

4�a2	 1

96m2p2 −
7

3840m4p4 + ¯
 , �4.16�

while numerical integration gives

E0 =
�2

4�a2 �− 0.490 877 5� . �4.17�

Thus

Ẽ =
�2

8�na2	− 0.490 877 5 +
1

4
ln 2�/p +

�2

288

1

p2 −
7�4

172800

1

p4

+ 2�
1

M

�f�mp� − g�mp��
 � �2

8�na2e�p� , �4.18�

where we have added and subtracted the first two terms in
the uniform asymptotic expansion,

g��� =
1

96�2 −
7

3840�4 , �4.19�

and f is the integral appearing in Em,

f��� = �
0

�

dxx3�− ��
2 +

1

4

x2

�x2 + �2�3� . �4.20�

In principle we are to take the M→� limit in Eq. �4.18�. In
practice, we may keep only a few terms in the m sum. For
example, keeping none of those corrections, that is setting
M =0, we get for p=1, e�1��−0.001 084 7. Keeping three
terms is sufficient to find that e�1� is less than 1
10−6;
indeed, the circular cylinder value is e�1�=0 �21–25�. This
function e�p� is plotted in Fig. 3, for p�1, where it is suf-
ficient to keep the leading asymptotic approximations; for p
between 1/2 and 1 �� between � and 2�� we must retain at
least one correction, M =1, as shown in Fig. 4. �No observ-
able change occurs with larger M.� Numerically, we see that
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the value for a cylinder with a conducting septum �p=1 /2� is
indistinguishable from e�0.5�=1 /4.

Recall for periodic boundary conditions on the wedge �the
“cone”� p=2� /�(1, and an additional factor of two ap-
pears in the energy. Similarly, following the same references,
we can obtain the strong coupling �perfect conductor� limit,
�=1. This time the formula for the energy is

Ẽ =
1

8�na2e�p� , �4.21�

where

e�p� = − 0.651 752 +
1

4
ln 2�/p +

7�2

2880

1

p2 −
�4

32256

1

p4

+ 2�
m=1

M

�f�mp� − g�mp�� , �4.22�

where again the limit M→� is understood. Now f is given
by

f��� = �
0

�

dxx�ln�1 − x2��
2� +

1

4

x4

�x2 + �2�3� , �4.23�

and now the asymptotic terms are

g��� =
7

960�2 −
5

3584�4 . �4.24�

Keeping no correction terms is already very good at p=1,
where with M =0 e�1� / �4���−0.013 633, only slightly dif-
ferent from the exact answer of −0.013 56 �17�. Keeping just
M =1 gives exact coincidence to the indicated accuracy. This
function e�p� is plotted in Fig. 5 for p�0 where the
asymptotic approximation is sufficient, while two correction
terms are included in the region 0.5	p	1, as shown in Fig.
6. It is curious that the energy vanishes now not at p=1, but
at p=0.583.
�Again, recall only p(1 is relevant for periodic boundary

conditions on the wedge.�

B. n1Ån2, �1=�2=1

Finally, we can follow Ref. �21� to obtain the weak-
coupling Casimir self-energy for a purely dielectric wedge,
where �1=�2=1. We can only examine the coefficient of

��1−�2�2 because the result is divergent in higher orders. It is
hardly necessary to give details since all that is necessary is
to replace m by mp in the analysis given in that reference.
The energy per area in the wedge is

Ẽ =
��1 − �2�2

32�na2 �
m=0

�

��
0

�

dyy4gm�y� , �4.25�

where the exact form of gm is elaborate, but has the
asymptotic form

gm�y� �
1

2m2p2�
k=1

�
1

�mp�k
fk�z�, mp → � , �4.26�

where y=mpz, and fk are rational functions of z, given in
Ref. �21�, about which all we need to know here is

p2lim
s→0
�
m=1

�

m2−s�
0

�

dzz4−sf1�z� = − p2 ��3�
16�2 , �4.27a�

�
0

�

dz�z4f2�z� −
1

8
� = 0, �4.27b�

lim
s→0
�
m=0

�

��mp�−s�
0

�

dzz4−sf3�z� =
5

32
ln 2�/p ,

�4.27c�

�
0

�

dzz4f4�z� = 0, �4.27d�

1

p2�
m=1

�
1

m2�
0

�

dzz4f5�z� =
19�2

7680

1

p2 , �4.27e�

�
0

�

dzz4f6�x� = 0, �4.27f�

1

p4�
m=1

�
1

m4�
0

�

dzz4f7�z� = −
209�4

5 806 080

1

p4 . �4.27g�

Here a contact term, which cannot contribute to any observ-
able force, has been removed from Eq. �4.27b�. Again, for
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the value for a cylinder with a conducting septum �p=1 /2� is
indistinguishable from e�0.5�=1 /4.

Recall for periodic boundary conditions on the wedge �the
“cone”� p=2� /�(1, and an additional factor of two ap-
pears in the energy. Similarly, following the same references,
we can obtain the strong coupling �perfect conductor� limit,
�=1. This time the formula for the energy is

Ẽ =
1

8�na2e�p� , �4.21�

where

e�p� = − 0.651 752 +
1

4
ln 2�/p +

7�2

2880

1

p2 −
�4

32256

1

p4

+ 2�
m=1

M

�f�mp� − g�mp�� , �4.22�

where again the limit M→� is understood. Now f is given
by

f��� = �
0

�

dxx�ln�1 − x2��
2� +

1

4

x4

�x2 + �2�3� , �4.23�

and now the asymptotic terms are

g��� =
7

960�2 −
5

3584�4 . �4.24�

Keeping no correction terms is already very good at p=1,
where with M =0 e�1� / �4���−0.013 633, only slightly dif-
ferent from the exact answer of −0.013 56 �17�. Keeping just
M =1 gives exact coincidence to the indicated accuracy. This
function e�p� is plotted in Fig. 5 for p�0 where the
asymptotic approximation is sufficient, while two correction
terms are included in the region 0.5	p	1, as shown in Fig.
6. It is curious that the energy vanishes now not at p=1, but
at p=0.583.
�Again, recall only p(1 is relevant for periodic boundary

conditions on the wedge.�

B. n1Ån2, �1=�2=1

Finally, we can follow Ref. �21� to obtain the weak-
coupling Casimir self-energy for a purely dielectric wedge,
where �1=�2=1. We can only examine the coefficient of

��1−�2�2 because the result is divergent in higher orders. It is
hardly necessary to give details since all that is necessary is
to replace m by mp in the analysis given in that reference.
The energy per area in the wedge is

Ẽ =
��1 − �2�2

32�na2 �
m=0

�

��
0

�

dyy4gm�y� , �4.25�

where the exact form of gm is elaborate, but has the
asymptotic form

gm�y� �
1

2m2p2�
k=1

�
1

�mp�k
fk�z�, mp → � , �4.26�

where y=mpz, and fk are rational functions of z, given in
Ref. �21�, about which all we need to know here is

p2lim
s→0
�
m=1

�

m2−s�
0

�

dzz4−sf1�z� = − p2 ��3�
16�2 , �4.27a�

�
0

�

dz�z4f2�z� −
1

8
� = 0, �4.27b�

lim
s→0
�
m=0

�

��mp�−s�
0

�

dzz4−sf3�z� =
5

32
ln 2�/p ,

�4.27c�
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0
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dzz4f4�z� = 0, �4.27d�
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1
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Here a contact term, which cannot contribute to any observ-
able force, has been removed from Eq. �4.27b�. Again, for
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the value for a cylinder with a conducting septum �p=1 /2� is
indistinguishable from e�0.5�=1 /4.

Recall for periodic boundary conditions on the wedge �the
“cone”� p=2� /�(1, and an additional factor of two ap-
pears in the energy. Similarly, following the same references,
we can obtain the strong coupling �perfect conductor� limit,
�=1. This time the formula for the energy is

Ẽ =
1

8�na2e�p� , �4.21�

where

e�p� = − 0.651 752 +
1

4
ln 2�/p +

7�2

2880

1

p2 −
�4

32256

1

p4

+ 2�
m=1

M

�f�mp� − g�mp�� , �4.22�

where again the limit M→� is understood. Now f is given
by

f��� = �
0

�

dxx�ln�1 − x2��
2� +

1

4

x4

�x2 + �2�3� , �4.23�

and now the asymptotic terms are

g��� =
7

960�2 −
5

3584�4 . �4.24�

Keeping no correction terms is already very good at p=1,
where with M =0 e�1� / �4���−0.013 633, only slightly dif-
ferent from the exact answer of −0.013 56 �17�. Keeping just
M =1 gives exact coincidence to the indicated accuracy. This
function e�p� is plotted in Fig. 5 for p�0 where the
asymptotic approximation is sufficient, while two correction
terms are included in the region 0.5	p	1, as shown in Fig.
6. It is curious that the energy vanishes now not at p=1, but
at p=0.583.
�Again, recall only p(1 is relevant for periodic boundary

conditions on the wedge.�

B. n1Ån2, �1=�2=1

Finally, we can follow Ref. �21� to obtain the weak-
coupling Casimir self-energy for a purely dielectric wedge,
where �1=�2=1. We can only examine the coefficient of

��1−�2�2 because the result is divergent in higher orders. It is
hardly necessary to give details since all that is necessary is
to replace m by mp in the analysis given in that reference.
The energy per area in the wedge is

Ẽ =
��1 − �2�2

32�na2 �
m=0

�

��
0

�

dyy4gm�y� , �4.25�

where the exact form of gm is elaborate, but has the
asymptotic form

gm�y� �
1

2m2p2�
k=1

�
1

�mp�k
fk�z�, mp → � , �4.26�

where y=mpz, and fk are rational functions of z, given in
Ref. �21�, about which all we need to know here is

p2lim
s→0
�
m=1

�

m2−s�
0

�

dzz4−sf1�z� = − p2 ��3�
16�2 , �4.27a�

�
0
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dz�z4f2�z� −
1

8
� = 0, �4.27b�

lim
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Here a contact term, which cannot contribute to any observ-
able force, has been removed from Eq. �4.27b�. Again, for

-0.2

-0.4

-0.7

2 10864
p

e(
p)

-0.6
-0.5

-0.3

FIG. 5. Casimir energy for strong coupling, �2=1, as a function
of p, related to the dihedral angle by �=� / p, for p�1. In this
region M =0 in Eq. �4.22� is sufficient.

0.05

0.00

-0.05

-0.10

-0.15
0.5 1.00.6 0.90.80.7

p

e(
p)

FIG. 6. Casimir energy for strong coupling, �2=1, as a function
of p, related to the dihedral angle by �=� / p, for 0.5	p	1. In this
region M =2 in Eq. �4.22� is sufficient, and the comparison with the
M =0 result �lower curve� is made.

BREVIK, ELLINGSEN, AND MILTON PHYSICAL REVIEW E 79, 041120 �2009�

041120-8

the value for a cylinder with a conducting septum �p=1 /2� is
indistinguishable from e�0.5�=1 /4.

Recall for periodic boundary conditions on the wedge �the
“cone”� p=2� /�(1, and an additional factor of two ap-
pears in the energy. Similarly, following the same references,
we can obtain the strong coupling �perfect conductor� limit,
�=1. This time the formula for the energy is

Ẽ =
1

8�na2e�p� , �4.21�

where

e�p� = − 0.651 752 +
1

4
ln 2�/p +

7�2

2880

1

p2 −
�4

32256

1

p4

+ 2�
m=1

M

�f�mp� − g�mp�� , �4.22�

where again the limit M→� is understood. Now f is given
by

f��� = �
0

�

dxx�ln�1 − x2��
2� +

1

4

x4

�x2 + �2�3� , �4.23�

and now the asymptotic terms are

g��� =
7

960�2 −
5

3584�4 . �4.24�

Keeping no correction terms is already very good at p=1,
where with M =0 e�1� / �4���−0.013 633, only slightly dif-
ferent from the exact answer of −0.013 56 �17�. Keeping just
M =1 gives exact coincidence to the indicated accuracy. This
function e�p� is plotted in Fig. 5 for p�0 where the
asymptotic approximation is sufficient, while two correction
terms are included in the region 0.5	p	1, as shown in Fig.
6. It is curious that the energy vanishes now not at p=1, but
at p=0.583.
�Again, recall only p(1 is relevant for periodic boundary

conditions on the wedge.�

B. n1Ån2, �1=�2=1

Finally, we can follow Ref. �21� to obtain the weak-
coupling Casimir self-energy for a purely dielectric wedge,
where �1=�2=1. We can only examine the coefficient of

��1−�2�2 because the result is divergent in higher orders. It is
hardly necessary to give details since all that is necessary is
to replace m by mp in the analysis given in that reference.
The energy per area in the wedge is

Ẽ =
��1 − �2�2

32�na2 �
m=0
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0
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dyy4gm�y� , �4.25�

where the exact form of gm is elaborate, but has the
asymptotic form

gm�y� �
1
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fk�z�, mp → � , �4.26�

where y=mpz, and fk are rational functions of z, given in
Ref. �21�, about which all we need to know here is
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the precise definition of Eq. �4.27c� see Appendix A. Then
the Casimir energy per unit length of the dilute dielectric
wedge is

Ẽ� ��1 − �2�2

64�na2 w�p� , �4.28�

where

w�p� � − p2 ��3�
16�2 +

5

32
ln�2�/p� +

19�2

7680p2 − 0.301590

+ �
m=1

4

r�mp� −
0.000 012

p2 , �4.29�

where

r��� = 2�
0

�

dyy4�g��y� −
1

2�2�
k=1

5
1

�k fk�y/��� , �4.30�

and we have used the next term in the asymptotic series to
estimate the contribution for m(5. This, numerically, yields
the correct value of zero for p=1. The values for the Casimir
energy for larger values of p are shown in Fig. 7, and for
smaller values of p in Fig. 8.

For the septum case, the numerical value of
w�0.5�=0.1666, which seems likely to represent exactly 1/6.
�Periodic boundary conditions restrict p(1.�

V. ENERGY PRODUCTION IN THE SUDDEN FORMATION
OF A COSMIC STRING

As already mentioned, the electromagnetic theory of the
wedge is related to the theory of cosmic strings. In general,
cosmic strings are believed to be possible ingredients in the
very early Universe; they are related to phase transitions.
One particular aspect of this study is to estimate the energy
production in the form of massless particles when a string is
formed “suddenly” at some instant t= t0, where t0 is a char-
acteristic time usually taken to be of order 1
10−40 s as is
typical for grand unified theories �GUTs�. One can calculate
the number of particles associated with the formation of the
string in terms of Bogoliubov coefficients relating the initial
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H& =
i��

�
NJmp� ��r�F0 sin mp& . �5.6�

As before, �=�n2�2−k2, F0=exp�ikz− i�t�, and m(1. The
boundary condition on the arc is Jmp��a�=0, giving the so-
lutions �ms, s=1,2 ,3 , . . . for the transverse wave number �.

It is now convenient as an intermediate step to make use
of the formalism of scalar field theory. Define the scalar field
mode �msk, satisfying Dirichlet boundary conditions on all
surfaces, as

�msk = NJmp��msr�F0 sin mp& . �5.7�

It is seen to have the same form as the m ,s ,k mode of the
field component Ez. For reasons to become clear later, we
choose the magnitude �N� of the normalization constant N to
be

�N� =
1

n
� 2

���msk

�ms

a�Jmp+1��msa��
, �5.8�

with �msk= �1 /n���ms
2 +k2.

We define the Klein-Gordon product as

��msk,�m�s�k�� =
− i�n2

�ms
2 � �msk�I0�m�s�k�

� rdrd&dz , �5.9�

and then get by direct calculation

��msk,�m�s�k�� = 2� �k − k�� mm� ss�. �5.10�

Consider now the electromagnetic energy W in the wedge
region. We may calculate it by integrating the energy density
w over the volume,

W =� wdV =
1

4
� ���E�2 + ��H�2�rdrd&dz , �5.11�

using the general recursion equation �J�=J��x��

�J���
2 +

�2

x2 J�
2 =

1

2
�J�−1

2 + J�+1
2 � , �5.12�

as well as the integral formula

�
0

a

�Jmp−1
2 ��msr� + Jmp+1

2 ��msr��rdr = a2Jmp+1
2 ��msa� ,

�5.13�

which holds when Jmp��msa�=0. It is however simpler to go
via the axial energy flux P, given as

P =� SzdA , �5.14�

where dA=rdrd& is the cross-sectional area element, and
where

Sz =
1

2
R�ErH&

� − E&Hr
�� �5.15�

is the Poynting vector. As in any linear wave theory we can
set �54�

P =
W

L
cg, �5.16�

where cg is the axial group velocity. From Eqs. �5.14� and
�5.15� we then get

P =
��ka2�mks

8�ms
2 �N�2Jmp+1

2 ��msa� . �5.17�

In geometric units P has the dimension cm−2. As
cg=d� /dk=k / �n2�� we get for the energy per unit length

W

L
=
��n2a2�msk

2

8�ms
2 �N�2Jmp+1

2 ��msa� . �5.18�

We see that W /L is expressible in terms of �Ez�2 integrated
over the cross section,

W

L
=
�n2�msk

2

2�ms
2 � �Ez�2dA . �5.19�

This relation will turn out to be useful in the following.
Quantum theory. We assume henceforth the real represen-

tation for the fields. The component Ez�r , t��Ez�x�, consid-
ered quantum mechanically as a Hermitian operator, is ex-
panded as

Ez�x� = �
−�

� dk

2��m=1

�

�
s

�amsk�msk�x� + amsk
† �msk

� �x�� ,

�5.20�

where amsk and amsk
† are annihilation and creation operators

satisfying the commutation relations

�amsk,am�s�k�
† � = 2� �k − k�� mm� ss�. �5.21�

We now go back to relation �5.19�, and require that the total
energy W associated with the m ,k ,s mode is equal to the
occupation number �amsk

† amsk� times the photon energy �msk,

�n2�msk
2

�ms
2 � �Ez

2�rdrd&dz = �amsk
† amsk +

1

2
��msk.

�5.22�

Here we insert expansion �5.20�. Because of the orthogonal-
ity of Eq. �5.21�, the various modes decouple so that the total
energy is a sum over the mode energies. For the mode �msk,
written in the form of Eq. �5.7�, we get from the condition
above the expression for the normalization constant �N� al-
ready given in Eq. �5.8�. If n=1 and �=2�, we recover the
expression given in Ref. �52�.

B. t� t0 case: The Bogoliubov transformation

After the sudden creation of the cosmic string along the
cusp line �the z axis� at the instant t= t0, we assume that the
string metric is static. All transient phenomena are intended
to be taken care of via the use of the quantum mechanical
sudden transformation below. We first have to establish the
field expressions in the presence of the string metric. The
central gravitational quantity appearing in the formalism will
be
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field expressions in the presence of the string metric. The
central gravitational quantity appearing in the formalism will
be
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NJmp� ��r�F0 sin mp& . �5.6�

As before, �=�n2�2−k2, F0=exp�ikz− i�t�, and m(1. The
boundary condition on the arc is Jmp��a�=0, giving the so-
lutions �ms, s=1,2 ,3 , . . . for the transverse wave number �.

It is now convenient as an intermediate step to make use
of the formalism of scalar field theory. Define the scalar field
mode �msk, satisfying Dirichlet boundary conditions on all
surfaces, as

�msk = NJmp��msr�F0 sin mp& . �5.7�

It is seen to have the same form as the m ,s ,k mode of the
field component Ez. For reasons to become clear later, we
choose the magnitude �N� of the normalization constant N to
be

�N� =
1

n
� 2

���msk

�ms

a�Jmp+1��msa��
, �5.8�

with �msk= �1 /n���ms
2 +k2.

We define the Klein-Gordon product as
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� rdrd&dz , �5.9�

and then get by direct calculation

��msk,�m�s�k�� = 2� �k − k�� mm� ss�. �5.10�

Consider now the electromagnetic energy W in the wedge
region. We may calculate it by integrating the energy density
w over the volume,

W =� wdV =
1

4
� ���E�2 + ��H�2�rdrd&dz , �5.11�

using the general recursion equation �J�=J��x��

�J���
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�2

x2 J�
2 =

1

2
�J�−1

2 + J�+1
2 � , �5.12�

as well as the integral formula
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2 ��msr��rdr = a2Jmp+1
2 ��msa� ,

�5.13�

which holds when Jmp��msa�=0. It is however simpler to go
via the axial energy flux P, given as

P =� SzdA , �5.14�

where dA=rdrd& is the cross-sectional area element, and
where

Sz =
1

2
R�ErH&

� − E&Hr
�� �5.15�

is the Poynting vector. As in any linear wave theory we can
set �54�

P =
W

L
cg, �5.16�

where cg is the axial group velocity. From Eqs. �5.14� and
�5.15� we then get

P =
��ka2�mks

8�ms
2 �N�2Jmp+1

2 ��msa� . �5.17�

In geometric units P has the dimension cm−2. As
cg=d� /dk=k / �n2�� we get for the energy per unit length
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We see that W /L is expressible in terms of �Ez�2 integrated
over the cross section,
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2 � �Ez�2dA . �5.19�

This relation will turn out to be useful in the following.
Quantum theory. We assume henceforth the real represen-

tation for the fields. The component Ez�r , t��Ez�x�, consid-
ered quantum mechanically as a Hermitian operator, is ex-
panded as
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−�

� dk
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�

�
s
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�5.20�

where amsk and amsk
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2
��msk.

�5.22�

Here we insert expansion �5.20�. Because of the orthogonal-
ity of Eq. �5.21�, the various modes decouple so that the total
energy is a sum over the mode energies. For the mode �msk,
written in the form of Eq. �5.7�, we get from the condition
above the expression for the normalization constant �N� al-
ready given in Eq. �5.8�. If n=1 and �=2�, we recover the
expression given in Ref. �52�.

B. t� t0 case: The Bogoliubov transformation
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cusp line �the z axis� at the instant t= t0, we assume that the
string metric is static. All transient phenomena are intended
to be taken care of via the use of the quantum mechanical
sudden transformation below. We first have to establish the
field expressions in the presence of the string metric. The
central gravitational quantity appearing in the formalism will
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string metric is static. All transient phenomena are intended
to be taken care of via the use of the quantum mechanical
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field expressions in the presence of the string metric. The
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 = �1 − 4GM�−1, �5.23�

already introduced above in Eq. �1.2b�. In a string context, 
is believed to be very close to unity. Writing the field com-
ponent Ez as Ez�r�exp�ikz− i�t�sin mp& we obtain the fol-
lowing equation for the quantity Ez�r�:

	 d2

dr2 +
1

r

d

dr
+ �2 −

2m2p2

r2 
Ez�r� = 0, �5.24�

with �2=n2�2−k2 as before. Introducing the symbol � as

� = m , �5.25�

we can write the fundamental � ,s ,k mode as

��sk = N�J�p���sr�F0 sin mp& , �5.26�

with F0=exp�ikz− i��skt�. The boundary condition on r=a is
J�p��a�=0, giving solutions ��s, s=1,2 ,3. . . for the trans-
verse wave number.

The formalism now becomes quite similar to that given
before in the nongravitational case. We list the main formu-
las. The normalization constant �N�� becomes

�N�� =
1

n
� 2

����sk

��s

a�J�p+1���sa��
, �5.27�

and the Klein-Gordon product, defined as

���sk,���s�k�� =
− i�n2

��s
2 � ��sk�I0���s�k�

� rdrd&dz ,

�5.28�

leads to

���sk,���s�k�� = 2� �k − k�� ��� ss�. �5.29�

The quantum-mechanical expansion for Ez becomes

Ez�x� = �
−�

� dk

2��m=1

�

�
s

�a�sk��sk�x� + a�sk
† ��sk

� �x�� ,

�5.30�

with associated commutation relations

�a�sk,a��s�k�
† � = 2� �k − k�� ��� ss�. �5.31�

We have to specify the continuity conditions for the fields at
the transition time t0. The component Ez will be required to
be continuous,

Ez�x��t0− = Ez�x��t0+, �5.32�

as well as the Klein-Gordon product,

− i

�ms
2 � �Ez�I0Ez

��t0−rdrd&dz =
− i

��s
2 � ��Ez�I0Ez

���t0+rdrd&dz ,

�5.33�

from which we get

��0Ez�x��t0− =
�ms

2

��s
2 ��0Ez�x��t0+. �5.34�

The Bogoliubov transformation. We have now two kinds of
basic modes, namely �msk for t	 t0, and ��sk for t� t0. There
are correspondingly two vacuum states, satisfying the rela-
tions amsk�0�msk=0 and a�sk�0��sk=0. As in Refs. �52,53� we
may expand the modes in terms of each other,

��sk�x� = �
−�

� dk�

2� �
m�s�

�"��sk�m�s�k���m�s�k��x�

+  ��sk�m�s�k���m�s�k�
� �x�� , �5.35�

where " and  are the Bogoliubov coefficients �55�. The
corresponding expansions for the operators are

a�sk = �
−�

� dk�

2� �
m�s�

�"��sk�m�s�k��am�s�k�

+  ���sk�m�s�k��am�s�k�
† � . �5.36�

It means that the average number of particles produced in the
m ,s ,k mode per unit k space interval becomes

dNmsk

dk
= �

−�

� dk�

2� �
m�s�

� ��sk�m�s�k���2. �5.37�

From Eq. �5.35� we obtain, when making use of the normal-
ization of the scalar product corresponding to string space,

 ��sk�m�s�k�� = − ���sk,�m�s�k�
� �

=
i�n2

��s
2 � ��sk�I0�m�s�k�rdrd&dz .

�5.38�

Here we insert expressions �5.26� and �5.7� for ��sk and
�m�s�k�, and for simplicity we put t0=0. Defining the quantity
Iss� as

Iss� =

�
0

a

J�p���sr�Jmp��ms�r�rdr

a2�J�p+1���sr�Jmp+1��ms�r��
, �5.39�

we then obtain after some calculation

 ��sk�m�s�k�� = −
1
�

�ms

��s
2� �k + k�� mm�


����sk

�msk
−��msk

��sk
�Iss�. �5.40�

As the value of  is very close to unity, we put =1 every-
where except in the difference between the square roots.
With J�p→Jmp and ��s�→�ms�, the numerator in Eq. �5.39�
reduces to �a2 /2�Jmp+1

2 ��msa� ss�, so that approximately

Iss� =
1

2
 ss�. �5.41�

Moreover, by applying the integral operator �dk� /2� on
�2��k+k���2 we obtain effectively the length L of the string.
For the electromagnetic energy produced in the mode m ,s ,k,
per unit wave-number interval, we then get
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As the value of  is very close to unity, we put =1 every-
where except in the difference between the square roots.
With J�p→Jmp and ��s�→�ms�, the numerator in Eq. �5.39�
reduces to �a2 /2�Jmp+1

2 ��msa� ss�, so that approximately

Iss� =
1

2
 ss�. �5.41�

Moreover, by applying the integral operator �dk� /2� on
�2��k+k���2 we obtain effectively the length L of the string.
For the electromagnetic energy produced in the mode m ,s ,k,
per unit wave-number interval, we then get
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are correspondingly two vacuum states, satisfying the rela-
tions amsk�0�msk=0 and a�sk�0��sk=0. As in Refs. �52,53� we
may expand the modes in terms of each other,

��sk�x� = �
−�

� dk�

2� �
m�s�

�"��sk�m�s�k���m�s�k��x�

+  ��sk�m�s�k���m�s�k�
� �x�� , �5.35�
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It means that the average number of particles produced in the
m ,s ,k mode per unit k space interval becomes

dNmsk

dk
= �

−�

� dk�

2� �
m�s�

� ��sk�m�s�k���2. �5.37�
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As the value of  is very close to unity, we put =1 every-
where except in the difference between the square roots.
With J�p→Jmp and ��s�→�ms�, the numerator in Eq. �5.39�
reduces to �a2 /2�Jmp+1

2 ��msa� ss�, so that approximately

Iss� =
1
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Moreover, by applying the integral operator �dk� /2� on
�2��k+k���2 we obtain effectively the length L of the string.
For the electromagnetic energy produced in the mode m ,s ,k,
per unit wave-number interval, we then get
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�msk

L
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1

4
�msk	 ��sk

�msk
+
�msk

��sk
− 2
 .

�5.42�

There are two properties of this expression worth notic-
ing:
�1� It is independent of the opening angle �. The physical

reason for this appears to be related to the fact that our region
of quantization is the interior wedge region only. All the
produced energy is taken to be channeled into the wedge
region �we are thus not cutting out a fraction � /2� of the
total produced energy�. This contrasts the behavior in the
cylindrically symmetric case, where the produced energy is
azimuthally symmetric in the whole region 0	&	2� �51�.
�2� The produced energy, when expressed in terms of fre-

quencies, does not contain the refractive index n explicitly.
Equation �5.42� is formally the same as Eq. �52� in Ref. �52�.

We may process the expression further by making use of
the asymptotic formula for the roots of the Bessel function,

�msa = s� + 	m −
1

2

�

2
. �5.43�

Here it is of physical interest to consider the region around
zero axial wave number, k�0. Then ��sk→��s0=��s /n,
�msk→�ms0=�ms /n, leading to

���s0

�ms0
−��ms0

��s0
= � − 1�

m

2s + m − 1
2

, �5.44�

where we have expanded in the small quantity �−1� to
second order. Then,

�dWmsk

dk
�

k�0
=

�

8na
� − 1�2

m2

2s + m − 1
2

. �5.45�

We thus see that finally the factor n turns up in the denomi-
nator; this is a characteristic property of Casimir energy ex-
pressions for dielectrics �46�.

The simplest possibility m=s=1 yields

�dW11k

dk
�

k�0
=

�

20na
� − 1�2 =

4�

5na
�GM�2. �5.46�

The total energy W produced per unit length follows by
multiplying Eq. �5.46� with the wave-number width
�k�1 /L�1 /a around k=0. We may take a to be of the
same order as the horizon size �t, t being the time just after
the Big Bang. We thus get, when leaving n unspecified,

W�
1

n
	GM

t

2. �5.47�

This is a characteristic property of cosmic string theory.

VI. CONCLUSIONS

We have computed the Casimir free energy for a wedge-
shaped region bounded by perfectly conducting planes meet-
ing in an angle. The wedge region is filled with an azimuth-
ally symmetric material which is discontinuous at a radius a

from the intersection axis. In general the wedge geometry is
plagued with divergence problems. Familiar is the diver-
gence associated with the apex, which is not relevant to the
force on the circular boundary. But there are also divergences
associated with the corners where the circular arc meets the
wedge boundary. These divergences are manifested only in
the m=0 modes, which possess no dependence on the angu-
lar coordinate, and have here been isolated and disregarded
in the calculational part of this paper. They will not be
present if the perfectly conducting boundary conditions on
the wedge are replaced by periodic boundary conditions,
which restrict the parameter p to be greater than unity. Then,
if the speed of light is the same both inside and outside the
radius a, the energy corresponding to changes in a is finite. If
the speed of light differs for r	a and r�a, the Casimir
energy is finite only through second order in the discontinu-
ity of the speed of light. These results are seen to be straight-
forward generalizations of results holding for dielectric/
diamagnetic circular cylinders, which are recovered if p=1.
We also consider, in the “sudden” approximation, the elec-
tromagnetic radiation produced by the appearance of a cos-
mic string in this geometry.
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APPENDIX A: ANALYTIC REGULARIZATION OF
LOGARITHMICALLY DIVERGENT TERM

The only subtlety in the numerical calculations in Sec. IV
is how the superficially logarithmically divergent terms are
regulated. Starting from Eq. �4.13� we have

Ẽ = �
m=0

�

�Ẽm, �A1�

where

nẼ0 = E0 −
�2

4�a2�
0

�

dx
x5

4�1 + x2�3
, �A2a�

nẼm = Em −
�2

4�a2�
0

�

dx
x5

4�m2p2 + x2�3
. �A2b�

Here, it will be observed that the integrals over x are loga-
rithmically divergent. We will regulate them analytically by
replacing in the numerator of both x5→x5−s, where we will
at the end take s to zero through positive values. Thus we
have
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There are two properties of this expression worth notic-
ing:
�1� It is independent of the opening angle �. The physical

reason for this appears to be related to the fact that our region
of quantization is the interior wedge region only. All the
produced energy is taken to be channeled into the wedge
region �we are thus not cutting out a fraction � /2� of the
total produced energy�. This contrasts the behavior in the
cylindrically symmetric case, where the produced energy is
azimuthally symmetric in the whole region 0	&	2� �51�.
�2� The produced energy, when expressed in terms of fre-

quencies, does not contain the refractive index n explicitly.
Equation �5.42� is formally the same as Eq. �52� in Ref. �52�.

We may process the expression further by making use of
the asymptotic formula for the roots of the Bessel function,
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Here it is of physical interest to consider the region around
zero axial wave number, k�0. Then ��sk→��s0=��s /n,
�msk→�ms0=�ms /n, leading to
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second order. Then,
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We thus see that finally the factor n turns up in the denomi-
nator; this is a characteristic property of Casimir energy ex-
pressions for dielectrics �46�.

The simplest possibility m=s=1 yields
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The total energy W produced per unit length follows by
multiplying Eq. �5.46� with the wave-number width
�k�1 /L�1 /a around k=0. We may take a to be of the
same order as the horizon size �t, t being the time just after
the Big Bang. We thus get, when leaving n unspecified,
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This is a characteristic property of cosmic string theory.

VI. CONCLUSIONS

We have computed the Casimir free energy for a wedge-
shaped region bounded by perfectly conducting planes meet-
ing in an angle. The wedge region is filled with an azimuth-
ally symmetric material which is discontinuous at a radius a

from the intersection axis. In general the wedge geometry is
plagued with divergence problems. Familiar is the diver-
gence associated with the apex, which is not relevant to the
force on the circular boundary. But there are also divergences
associated with the corners where the circular arc meets the
wedge boundary. These divergences are manifested only in
the m=0 modes, which possess no dependence on the angu-
lar coordinate, and have here been isolated and disregarded
in the calculational part of this paper. They will not be
present if the perfectly conducting boundary conditions on
the wedge are replaced by periodic boundary conditions,
which restrict the parameter p to be greater than unity. Then,
if the speed of light is the same both inside and outside the
radius a, the energy corresponding to changes in a is finite. If
the speed of light differs for r	a and r�a, the Casimir
energy is finite only through second order in the discontinu-
ity of the speed of light. These results are seen to be straight-
forward generalizations of results holding for dielectric/
diamagnetic circular cylinders, which are recovered if p=1.
We also consider, in the “sudden” approximation, the elec-
tromagnetic radiation produced by the appearance of a cos-
mic string in this geometry.
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regulated. Starting from Eq. �4.13� we have

Ẽ = �
m=0
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�Ẽm, �A1�

where

nẼ0 = E0 −
�2
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0
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4�1 + x2�3
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4�m2p2 + x2�3
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Here, it will be observed that the integrals over x are loga-
rithmically divergent. We will regulate them analytically by
replacing in the numerator of both x5→x5−s, where we will
at the end take s to zero through positive values. Thus we
have
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There are two properties of this expression worth notic-
ing:
�1� It is independent of the opening angle �. The physical

reason for this appears to be related to the fact that our region
of quantization is the interior wedge region only. All the
produced energy is taken to be channeled into the wedge
region �we are thus not cutting out a fraction � /2� of the
total produced energy�. This contrasts the behavior in the
cylindrically symmetric case, where the produced energy is
azimuthally symmetric in the whole region 0	&	2� �51�.
�2� The produced energy, when expressed in terms of fre-

quencies, does not contain the refractive index n explicitly.
Equation �5.42� is formally the same as Eq. �52� in Ref. �52�.

We may process the expression further by making use of
the asymptotic formula for the roots of the Bessel function,
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Here it is of physical interest to consider the region around
zero axial wave number, k�0. Then ��sk→��s0=��s /n,
�msk→�ms0=�ms /n, leading to
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second order. Then,
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We thus see that finally the factor n turns up in the denomi-
nator; this is a characteristic property of Casimir energy ex-
pressions for dielectrics �46�.

The simplest possibility m=s=1 yields
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The total energy W produced per unit length follows by
multiplying Eq. �5.46� with the wave-number width
�k�1 /L�1 /a around k=0. We may take a to be of the
same order as the horizon size �t, t being the time just after
the Big Bang. We thus get, when leaving n unspecified,
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This is a characteristic property of cosmic string theory.
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We have computed the Casimir free energy for a wedge-
shaped region bounded by perfectly conducting planes meet-
ing in an angle. The wedge region is filled with an azimuth-
ally symmetric material which is discontinuous at a radius a

from the intersection axis. In general the wedge geometry is
plagued with divergence problems. Familiar is the diver-
gence associated with the apex, which is not relevant to the
force on the circular boundary. But there are also divergences
associated with the corners where the circular arc meets the
wedge boundary. These divergences are manifested only in
the m=0 modes, which possess no dependence on the angu-
lar coordinate, and have here been isolated and disregarded
in the calculational part of this paper. They will not be
present if the perfectly conducting boundary conditions on
the wedge are replaced by periodic boundary conditions,
which restrict the parameter p to be greater than unity. Then,
if the speed of light is the same both inside and outside the
radius a, the energy corresponding to changes in a is finite. If
the speed of light differs for r	a and r�a, the Casimir
energy is finite only through second order in the discontinu-
ity of the speed of light. These results are seen to be straight-
forward generalizations of results holding for dielectric/
diamagnetic circular cylinders, which are recovered if p=1.
We also consider, in the “sudden” approximation, the elec-
tromagnetic radiation produced by the appearance of a cos-
mic string in this geometry.
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The only subtlety in the numerical calculations in Sec. IV
is how the superficially logarithmically divergent terms are
regulated. Starting from Eq. �4.13� we have
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Here, it will be observed that the integrals over x are loga-
rithmically divergent. We will regulate them analytically by
replacing in the numerator of both x5→x5−s, where we will
at the end take s to zero through positive values. Thus we
have
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There are two properties of this expression worth notic-
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�1� It is independent of the opening angle �. The physical

reason for this appears to be related to the fact that our region
of quantization is the interior wedge region only. All the
produced energy is taken to be channeled into the wedge
region �we are thus not cutting out a fraction � /2� of the
total produced energy�. This contrasts the behavior in the
cylindrically symmetric case, where the produced energy is
azimuthally symmetric in the whole region 0	&	2� �51�.
�2� The produced energy, when expressed in terms of fre-

quencies, does not contain the refractive index n explicitly.
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ally symmetric material which is discontinuous at a radius a
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if the speed of light is the same both inside and outside the
radius a, the energy corresponding to changes in a is finite. If
the speed of light differs for r	a and r�a, the Casimir
energy is finite only through second order in the discontinu-
ity of the speed of light. These results are seen to be straight-
forward generalizations of results holding for dielectric/
diamagnetic circular cylinders, which are recovered if p=1.
We also consider, in the “sudden” approximation, the elec-
tromagnetic radiation produced by the appearance of a cos-
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The only subtlety in the numerical calculations in Sec. IV
is how the superficially logarithmically divergent terms are
regulated. Starting from Eq. �4.13� we have
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Here, it will be observed that the integrals over x are loga-
rithmically divergent. We will regulate them analytically by
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�

Em = −
�2
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0

�
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�1 + x2�3


	1 + 2�
m=1

�

�mp�−s
 , �A3�

where we have let in the m terms x=mpz. Now the last factor
is, as s→0,
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We consider the Casimir energy in a geometry of an infinite magnetodielectric wedge closed by a circularly
cylindrical, perfectly reflecting arc embedded in another magnetodielectric medium, under the condition that
the speed of light be the same in both media. An expression for the Casimir energy corresponding to the arc is
obtained and it is found that in the limit where the reflectivity of the wedge boundaries tends to unity the finite
part of the Casimir energy of a perfectly conducting wedge-shaped sheet closed by a circular cylinder is
regained. The energy of the latter geometry possesses divergences due to the presence of sharp corners. We
argue how this is a pathology of the assumption of ideal conductor boundaries and that no analogous term
enters in the present geometry.
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I. INTRODUCTION

The Casimir effect �1� may be understood as an effect of
the fluctuations of the quantum vacuum. Casimir’s original
geometry involved two infinite and parallel ideal metal
planes which were found to attract each other with a negative
pressure scaling quartically with the inverse interplate sepa-
ration. In a seminal paper, Lifshitz generalized Casimir’s
original calculation to imperfectly reflecting plates �2�. Since
its feeble beginnings research on the Casimir effect has
grown from being of peripheral interest to a few theorists to
a bustling field of research both experimental and theoretical
with publications numbering in the hundreds each year. Re-
cent reviews include �3–6�.

Progress on Casimir force calculations for other geom-
etries has been slower in coming. Spherical and cylindrical
geometries have naturally been objects of focus, the latter of
direct interest to the effort reported herein. Only in 1981 was
the Casimir energy of an infinitely long perfectly conducting
cylindrical shell calculated �7� and the more physical but also
significantly more involved case of a dielectric cylinder was
considered only in recent years �8–14�. We might also men-
tion recent work on the cylinder defined by a  -function
potential, a so-called semitransparent cylinder �15�; for weak
coupling, both the semitransparent cylinder and the dielectric
cylinder have vanishing Casimir energy.

Closely related to the cylindrical geometry is the infinite
wedge. The problem was first approached in the late 1970s
�16,17� as part of the still ongoing debate about how to in-
terpret various divergences in quantum field theory with
sharp boundaries. Since, various embodiments of the wedge
have been treated by Brevik and co-workers �18–20� and
others �21,22�. A review may be found in �23�. A wedge

intercut by a cylindrical shell was considered by Nesterenko
and co-workers, first for a semicylinder �24�, then for arbi-
trary opening angle �25�, and the corresponding local stresses
were studied by Saharian �26–28�. The group at Los Alamos
studied the interaction of an atom with a wedge �29,30� pre-
viously investigated by Barton �31� and others �32,33�, the
geometry realized in an experiment by Sukenik et al. some
years ago �34�. A recent calculation of the Casimir energy of
a magnetodielectric cylinder intercut by a perfectly reflecting
wedge filled with magnetodielectric material was recently
reported by the current authors �35�. Common to all of these
theoretical efforts is the assumption that the wedge be
bounded by perfectly conducting walls.

While until recently relatively few treatments of the
vacuum energy of the wedge existed, the problem of calcu-
lating the diffraction of electromagnetic fields by a dielectric
wedge within classical eletromagnetics is an old one and
several powerful methods have been developed within this
field. The Green’s function of the potential �Poisson� equa-
tion in the vicinity of a perfectly conducting wedge was
found more than a century ago by Macdonald �36� and ex-
tended to the wave equation with a plane wave source by
Sommerfeld �37�. Generalizing Sommerfeld’s method, the
first theoretical solution to the scattering problem involving a
wedge of finite conductivity was found by Malyuzhinets in
his Ph.D. work �38� �see �39� for a review; cf. also �40��.

A different method was proposed by Kontorovich and
Lebedev in 1938 �41� and used by Oberhettinger to solve the
Green’s function problem some time later �42�. The method
has been given attention in recent analytical and numerical
studies of the diffraction problem �43–46�.

In the present effort we study the Casimir energy in a
magnetodielectric wedge of opening angle � inside and out-
side a perfectly conducting cylindrical shell of radius a—see
Fig. 1. The interior and exterior of the wedge are both filled
with magnetodielectric material under the restriction of
isorefractivity �or diaphanousness�, that is, the index of re-
fraction n2���=�������� is the same everywhere for a given
frequency. This condition is adopted because without it the
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We consider the Casimir energy in a geometry of an infinite magnetodielectric wedge closed by a circularly
cylindrical, perfectly reflecting arc embedded in another magnetodielectric medium, under the condition that
the speed of light be the same in both media. An expression for the Casimir energy corresponding to the arc is
obtained and it is found that in the limit where the reflectivity of the wedge boundaries tends to unity the finite
part of the Casimir energy of a perfectly conducting wedge-shaped sheet closed by a circular cylinder is
regained. The energy of the latter geometry possesses divergences due to the presence of sharp corners. We
argue how this is a pathology of the assumption of ideal conductor boundaries and that no analogous term
enters in the present geometry.
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I. INTRODUCTION

The Casimir effect �1� may be understood as an effect of
the fluctuations of the quantum vacuum. Casimir’s original
geometry involved two infinite and parallel ideal metal
planes which were found to attract each other with a negative
pressure scaling quartically with the inverse interplate sepa-
ration. In a seminal paper, Lifshitz generalized Casimir’s
original calculation to imperfectly reflecting plates �2�. Since
its feeble beginnings research on the Casimir effect has
grown from being of peripheral interest to a few theorists to
a bustling field of research both experimental and theoretical
with publications numbering in the hundreds each year. Re-
cent reviews include �3–6�.

Progress on Casimir force calculations for other geom-
etries has been slower in coming. Spherical and cylindrical
geometries have naturally been objects of focus, the latter of
direct interest to the effort reported herein. Only in 1981 was
the Casimir energy of an infinitely long perfectly conducting
cylindrical shell calculated �7� and the more physical but also
significantly more involved case of a dielectric cylinder was
considered only in recent years �8–14�. We might also men-
tion recent work on the cylinder defined by a  -function
potential, a so-called semitransparent cylinder �15�; for weak
coupling, both the semitransparent cylinder and the dielectric
cylinder have vanishing Casimir energy.

Closely related to the cylindrical geometry is the infinite
wedge. The problem was first approached in the late 1970s
�16,17� as part of the still ongoing debate about how to in-
terpret various divergences in quantum field theory with
sharp boundaries. Since, various embodiments of the wedge
have been treated by Brevik and co-workers �18–20� and
others �21,22�. A review may be found in �23�. A wedge

intercut by a cylindrical shell was considered by Nesterenko
and co-workers, first for a semicylinder �24�, then for arbi-
trary opening angle �25�, and the corresponding local stresses
were studied by Saharian �26–28�. The group at Los Alamos
studied the interaction of an atom with a wedge �29,30� pre-
viously investigated by Barton �31� and others �32,33�, the
geometry realized in an experiment by Sukenik et al. some
years ago �34�. A recent calculation of the Casimir energy of
a magnetodielectric cylinder intercut by a perfectly reflecting
wedge filled with magnetodielectric material was recently
reported by the current authors �35�. Common to all of these
theoretical efforts is the assumption that the wedge be
bounded by perfectly conducting walls.

While until recently relatively few treatments of the
vacuum energy of the wedge existed, the problem of calcu-
lating the diffraction of electromagnetic fields by a dielectric
wedge within classical eletromagnetics is an old one and
several powerful methods have been developed within this
field. The Green’s function of the potential �Poisson� equa-
tion in the vicinity of a perfectly conducting wedge was
found more than a century ago by Macdonald �36� and ex-
tended to the wave equation with a plane wave source by
Sommerfeld �37�. Generalizing Sommerfeld’s method, the
first theoretical solution to the scattering problem involving a
wedge of finite conductivity was found by Malyuzhinets in
his Ph.D. work �38� �see �39� for a review; cf. also �40��.

A different method was proposed by Kontorovich and
Lebedev in 1938 �41� and used by Oberhettinger to solve the
Green’s function problem some time later �42�. The method
has been given attention in recent analytical and numerical
studies of the diffraction problem �43–46�.

In the present effort we study the Casimir energy in a
magnetodielectric wedge of opening angle � inside and out-
side a perfectly conducting cylindrical shell of radius a—see
Fig. 1. The interior and exterior of the wedge are both filled
with magnetodielectric material under the restriction of
isorefractivity �or diaphanousness�, that is, the index of re-
fraction n2���=�������� is the same everywhere for a given
frequency. This condition is adopted because without it the
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problem is no longer separable and not readily solvable.
Moreover, we suspect that nondiaphanous media will lead to
divergences, at least in the absence of dispersion.

As a natural extension of the considerations in �35� we
derive an expression for the free energy of such a system by
use of the argument principle �47�. �By free energy, we mean
that bulk terms not referring to the circular arc boundary are
subtracted.� The necessary dispersion relation provided by
the electromagnetic boundary conditions at the wedge sides
is derived in two different ways: by a standard route of ex-
pansion of the solutions in Bessel function partial waves and
by use of the Kontorovich-Lebedev �KL� transform. �Still a
third method, based on the Green’s function formulation, is
sketched in the Appendix.� The corresponding boundary con-
dition equation at the cylindrical shell is well known. These
together allow us to sum the energy of the eigenmodes of the
geometry satisfying eigenvalue equations for the frequency
and azimuthal wave number � by means of the argument
principle.

There are important differences between the diaphanous
geometry considered herein and the standard geometry of a
perfectly conducting wedge. Assuming diaphanous electro-
magnetic boundary conditions, the interior and exterior
wedge sectors are coupled and remain so also in the limit
where the reflectivity of the wedge boundaries tends to unity
�for example, by letting �→� ,�→0 so that their product is
constant�. Assuming the wedge be perfectly conducting from
the outset, however, the interior of the wedge is severed
cleanly from its exterior at all frequencies, a significantly
different situation.

The Casimir energy of the perfectly conducting wedge
and magnetodielectric arc considered in �35� was found to
possess an unremovable divergent term associated with the
corners where the arc meets the wedge. This is a typical
artifact of quantum field theory with nonflat boundary con-
ditions �e.g., �21,24,25��. We will argue in Sec. III B that
there is no such term present in the geometry considered
herein and that the direct generalization of the finite part of
the energy of the system considered in �35� to the present
system is in fact the full regularized Casimir energy. The
reason for this rests upon two unphysical effects of perfectly
conducting boundary conditions at the wedge sides �the van-
ishing of the tangential components of the electric field
there�. Namely, such boundary conditions exclude the exis-

tence of an azimuthally constant TM mode and divide space
cleanly into an interior and an exterior sector with no cou-
pling allowed between modes in the two sectors. Moreover,
for a wedge consisting of perfectly conducting thin sheets
dividing space into two complementary wedges, the ideal
conductor boundary conditions will count the azimuthally
constant TE mode twice whereas with more realistic bound-
ary conditions such as considered here, such a mode must be
common to the both sectors, 0'&	2�. In these two re-
spects the perfectly conducting wedge differs from the di-
aphanous one and put together these redefinitions provided
by the diaphanous wedge exactly remove the divergent extra
energy term found in �35� and previously in �25�.

We show numerically that except for the singular term,
the energy of a perfectly conducting wedge closed by a mag-
netodielectric cylinder whose reflectivity tends to unity is
regained in the limit where we let the wedge boundaries
become perfectly reflecting.

II. BOUNDARY CONDITIONS AND DISPERSION
RELATIONS

We begin by considering in general the form of an expres-
sion of the energy of a diaphanous wedge inside and outside
a cylindrical shell such as depicted in Fig. 1. We assume the
cylindrical shell to be perfectly reflecting. Let the interior
sector −� /2	&	� /2 have permittivity and permeability �1
and �1 relative to vacuum and the corresponding values for
the exterior sector �( �&��� /2 be �2 and �2 so that
�1����1���=�2����2����n2���. The cusp of the wedge is
chosen to lie along the z axis, which is also the center of the
cylindrical shell, and the interfaces are found at &= #� /2
and at )=a �) is the distance to the z axis�.

We will calculate the Casimir energy by “summing” over
the eigenmodes of the geometry using the so-called argument
principle, now a standard method in the Casimir literature.
The eigenmodes of a given geometry are given by the solu-
tions of the homogeneous Helmholtz equation,

��2 − n2�t
2�u�r,t� = 0, �2.1�

which also satisfy the system’s boundary conditions. Here u
symbolizes a chosen field component of either the electric or
magnetic field. We will choose Ez and Hz as the two inde-
pendent field components from which the rest of the compo-
nents can be derived by means of Maxwell’s equations.

The translational symmetry with respect to z and time
makes it natural to introduce the Fourier transform,

Ez�r,t� = �
−�

� d�

2�
e−i�t�

−�

� dkz

2�
eikzzEz��;�,kz� ,

where �= �) ,&� and )=�x2+y2. The Helmholtz equation
now simplifies to the scalar Bessel equation,

���
2 + k�

2 �Ez��;kz,�� = 0, �2.2�

where
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FIG. 1. The wedge geometry considered.
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different situation.

The Casimir energy of the perfectly conducting wedge
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The eigenmodes of a given geometry are given by the solu-
tions of the homogeneous Helmholtz equation,

��2 − n2�t
2�u�r,t� = 0, �2.1�

which also satisfy the system’s boundary conditions. Here u
symbolizes a chosen field component of either the electric or
magnetic field. We will choose Ez and Hz as the two inde-
pendent field components from which the rest of the compo-
nents can be derived by means of Maxwell’s equations.

The translational symmetry with respect to z and time
makes it natural to introduce the Fourier transform,

Ez�r,t� = �
−�

� d�

2�
e−i�t�

−�

� dkz

2�
eikzzEz��;�,kz� ,

where �= �) ,&� and )=�x2+y2. The Helmholtz equation
now simplifies to the scalar Bessel equation,

���
2 + k�

2 �Ez��;kz,�� = 0, �2.2�

where

��
2 = �)

2 +
1

)
�) +

1

)2�&
2 �2.3�

and k�
2 =���2−kz

2.

x

y

ε2,μ2

ε1,μ1

α

FIG. 1. The wedge geometry considered.

ELLINGSEN, BREVIK, AND MILTON PHYSICAL REVIEW E 80, 021125 �2009�

021125-2
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Moreover, we suspect that nondiaphanous media will lead to
divergences, at least in the absence of dispersion.

As a natural extension of the considerations in �35� we
derive an expression for the free energy of such a system by
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subtracted.� The necessary dispersion relation provided by
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pansion of the solutions in Bessel function partial waves and
by use of the Kontorovich-Lebedev �KL� transform. �Still a
third method, based on the Green’s function formulation, is
sketched in the Appendix.� The corresponding boundary con-
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wedge sectors are coupled and remain so also in the limit
where the reflectivity of the wedge boundaries tends to unity
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different situation.
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there is no such term present in the geometry considered
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Moreover, we suspect that nondiaphanous media will lead to
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We will define the quantity � as

� = �kz
2 − ���2 = − ik�, �2.4�

where the root of � is to be taken in the fourth complex
quadrant. When in the end we take frequencies to lie on the
positive imaginary axis, � becomes real and positive, some-
thing we bear in mind in the subsequent calculations.

A general solution to Eq. �2.2� is of the form

Ez = �A�H�
�1��k�)� + B�J��k�)���aei�& + be−i�&� , �2.5�

where A�, B�, a, b, and � are arbitrary. If, as in our case, � is
allowed to take noninteger values, we must restrict it to �
(0 because except at integers J��z� and J−��z� are linearly
independent.

Solutions of the electromagnetic field in a wedge geom-
etry are expressed as a sum over cylindrical partial waves
whose kernels are Bessel and Hankel functions of argument
k�). Thus it is clear that the boundary conditions on the
wedge surfaces can only be solved for each partial wave if
the speed of light is the same in both sectors since k� would
otherwise take different values in the two media for given kz
and � and the kernel functions would be linearly indepen-
dent functions of these. The diaphanous condition is thus
prerequisite for the explicit solution of boundary conditions
below. Without this condition the problem at hand is not
analytically solvable with the methods used herein. We ex-
pect that even if we could solve the nondiaphanous problem
we would encounter divergences that might or might not be
curable by the inclusion of dispersion.

The presence of the wedge primarily has the role of dic-
tating which values of � are allowed. If one were to consider
a cylinder �periodic boundary conditions�, only integer val-
ues of � �both positive and negative� would be acceptable
and expressing the solution as a sum over these integer val-
ues would be appropriate. If one instead let the wedge be
perfectly reflecting �Dirichlet and Neumann boundaries at
#� /2, where � is arbitrary� � would be forced to take values
that are non-negative integer multiples of � /�. The diapha-
nous magnetodielectric boundaries present here also restrict
� to discrete values for given �’s and �’s, but explicitly de-
termining these values is no longer immediate because
modes existing in the exterior and interior sectors now
couple to each other. For a given frequency we therefore
make use of an appropriate dispersion function representing
these boundaries in order to sum over the appropriate values
of � by means of the argument principle, whereupon we may
sum over the eigenfrequencies of the modes inside and out-
side the cylindrical shell to obtain the energy.

The boundary condition dispersion relation pertaining to
the circular boundary is known �e.g., Eq. �4.12� in �35�, with
�2=1�,

g��kz,�� � 1 − x2��
2�x� = 0, �2.6�

where x=a�,

���x� =
d

dx
�I��x�K��x�� , �2.7�

and I� ,K� are the modified Bessel functions of the first and
second kinds of order �. We can simply use this equation to
sum modes satisfying the boundary condition on both sides
because the wedge boundaries at #� /2 impose the same
discretization of � inside and outside the cylindrical shell �if
we were to have, e.g., a third medium in the sector �&�
	� /2, )�a different from medium 1, this would no longer
be the case as we will see: the field solutions would take
different values of � inside and outside the cylindrical
boundary and the boundary conditions at the cylinder could
no longer be solved for each eigenvalue of ��. We now turn
to a derivation of the dispersion relation pertaining to the
interfaces at &= #� /2.

In the following we shall use the term TE to denote elec-
tromagnetic modes whose E field has no component in the z
direction and TM denotes those modes whose H field has no
z component. This is not “transverse electric” and “trans-
verse magnetic” with respect to the wedge boundaries at &
= #� /2, but this does not matter since we will find that the
eigenequation of these boundaries is the same for all field
components by virtue of the diaphanous condition.

A. Kontorovich-Lebedev approach

We will first employ the technique of the KL transforma-
tion �41� and its inverse transform which may be written as

Ez��� = i�
0

i�

d��ei��/2 sin����K���)�Ez�&;�� , �2.8a�

Ez�&;�� =
2

�2�
0

� d)

)
e−i��/2K���)�Ez��� �2.8b�

�dependence on kz and � is implicit�. While less extensively
covered in the literature than most other integral transforms,
some tables of KL transforms exist �48,49�. Numerical meth-
ods for evaluating such transforms were recently developed
by Gautschi �50�. We will ignore the presence of the cylin-
drical shell in this section and only study how the presence
of the walls of the wedge discretizes the spectrum of allowed
values of the Bessel function order �.

With this, Eq. �2.2�, after multiplying with )2, transforms
to

��&
2 + �2�Ez�&;�,kz,�� = 0. �2.9�

Equation �2.9� is now in a form fully analogous to that en-
countered in a planar geometry �e.g., �51–53��. We follow
now roughly the scheme in �53� and determine the dispersion
relation �condition for eigensolutions of Eq. �2.2�� by means
of summation over multiple reflection paths. By noting that
the solutions to Eq. �2.9� have the form of propagating plane
waves traveling clockwise or anticlockwise along the now
formally straight & axis �� playing the role of a reciprocal
azimuthal angle� the analogy to a plane parallel system is
obvious.

We write the solution of Eq. �2.9� in the interior sector,
�&�	� /2, in the form
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We will define the quantity � as

� = �kz
2 − ���2 = − ik�, �2.4�

where the root of � is to be taken in the fourth complex
quadrant. When in the end we take frequencies to lie on the
positive imaginary axis, � becomes real and positive, some-
thing we bear in mind in the subsequent calculations.

A general solution to Eq. �2.2� is of the form

Ez = �A�H�
�1��k�)� + B�J��k�)���aei�& + be−i�&� , �2.5�

where A�, B�, a, b, and � are arbitrary. If, as in our case, � is
allowed to take noninteger values, we must restrict it to �
(0 because except at integers J��z� and J−��z� are linearly
independent.

Solutions of the electromagnetic field in a wedge geom-
etry are expressed as a sum over cylindrical partial waves
whose kernels are Bessel and Hankel functions of argument
k�). Thus it is clear that the boundary conditions on the
wedge surfaces can only be solved for each partial wave if
the speed of light is the same in both sectors since k� would
otherwise take different values in the two media for given kz
and � and the kernel functions would be linearly indepen-
dent functions of these. The diaphanous condition is thus
prerequisite for the explicit solution of boundary conditions
below. Without this condition the problem at hand is not
analytically solvable with the methods used herein. We ex-
pect that even if we could solve the nondiaphanous problem
we would encounter divergences that might or might not be
curable by the inclusion of dispersion.

The presence of the wedge primarily has the role of dic-
tating which values of � are allowed. If one were to consider
a cylinder �periodic boundary conditions�, only integer val-
ues of � �both positive and negative� would be acceptable
and expressing the solution as a sum over these integer val-
ues would be appropriate. If one instead let the wedge be
perfectly reflecting �Dirichlet and Neumann boundaries at
#� /2, where � is arbitrary� � would be forced to take values
that are non-negative integer multiples of � /�. The diapha-
nous magnetodielectric boundaries present here also restrict
� to discrete values for given �’s and �’s, but explicitly de-
termining these values is no longer immediate because
modes existing in the exterior and interior sectors now
couple to each other. For a given frequency we therefore
make use of an appropriate dispersion function representing
these boundaries in order to sum over the appropriate values
of � by means of the argument principle, whereupon we may
sum over the eigenfrequencies of the modes inside and out-
side the cylindrical shell to obtain the energy.

The boundary condition dispersion relation pertaining to
the circular boundary is known �e.g., Eq. �4.12� in �35�, with
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where x=a�,
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and I� ,K� are the modified Bessel functions of the first and
second kinds of order �. We can simply use this equation to
sum modes satisfying the boundary condition on both sides
because the wedge boundaries at #� /2 impose the same
discretization of � inside and outside the cylindrical shell �if
we were to have, e.g., a third medium in the sector �&�
	� /2, )�a different from medium 1, this would no longer
be the case as we will see: the field solutions would take
different values of � inside and outside the cylindrical
boundary and the boundary conditions at the cylinder could
no longer be solved for each eigenvalue of ��. We now turn
to a derivation of the dispersion relation pertaining to the
interfaces at &= #� /2.

In the following we shall use the term TE to denote elec-
tromagnetic modes whose E field has no component in the z
direction and TM denotes those modes whose H field has no
z component. This is not “transverse electric” and “trans-
verse magnetic” with respect to the wedge boundaries at &
= #� /2, but this does not matter since we will find that the
eigenequation of these boundaries is the same for all field
components by virtue of the diaphanous condition.

A. Kontorovich-Lebedev approach

We will first employ the technique of the KL transforma-
tion �41� and its inverse transform which may be written as

Ez��� = i�
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d��ei��/2 sin����K���)�Ez�&;�� , �2.8a�

Ez�&;�� =
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�dependence on kz and � is implicit�. While less extensively
covered in the literature than most other integral transforms,
some tables of KL transforms exist �48,49�. Numerical meth-
ods for evaluating such transforms were recently developed
by Gautschi �50�. We will ignore the presence of the cylin-
drical shell in this section and only study how the presence
of the walls of the wedge discretizes the spectrum of allowed
values of the Bessel function order �.

With this, Eq. �2.2�, after multiplying with )2, transforms
to

��&
2 + �2�Ez�&;�,kz,�� = 0. �2.9�

Equation �2.9� is now in a form fully analogous to that en-
countered in a planar geometry �e.g., �51–53��. We follow
now roughly the scheme in �53� and determine the dispersion
relation �condition for eigensolutions of Eq. �2.2�� by means
of summation over multiple reflection paths. By noting that
the solutions to Eq. �2.9� have the form of propagating plane
waves traveling clockwise or anticlockwise along the now
formally straight & axis �� playing the role of a reciprocal
azimuthal angle� the analogy to a plane parallel system is
obvious.

We write the solution of Eq. �2.9� in the interior sector,
�&�	� /2, in the form

ELECTRODYNAMIC CASIMIR EFFECT IN A MEDIUM-… PHYSICAL REVIEW E 80, 021125 �2009�

021125-3

We will define the quantity � as

� = �kz
2 − ���2 = − ik�, �2.4�

where the root of � is to be taken in the fourth complex
quadrant. When in the end we take frequencies to lie on the
positive imaginary axis, � becomes real and positive, some-
thing we bear in mind in the subsequent calculations.

A general solution to Eq. �2.2� is of the form

Ez = �A�H�
�1��k�)� + B�J��k�)���aei�& + be−i�&� , �2.5�

where A�, B�, a, b, and � are arbitrary. If, as in our case, � is
allowed to take noninteger values, we must restrict it to �
(0 because except at integers J��z� and J−��z� are linearly
independent.

Solutions of the electromagnetic field in a wedge geom-
etry are expressed as a sum over cylindrical partial waves
whose kernels are Bessel and Hankel functions of argument
k�). Thus it is clear that the boundary conditions on the
wedge surfaces can only be solved for each partial wave if
the speed of light is the same in both sectors since k� would
otherwise take different values in the two media for given kz
and � and the kernel functions would be linearly indepen-
dent functions of these. The diaphanous condition is thus
prerequisite for the explicit solution of boundary conditions
below. Without this condition the problem at hand is not
analytically solvable with the methods used herein. We ex-
pect that even if we could solve the nondiaphanous problem
we would encounter divergences that might or might not be
curable by the inclusion of dispersion.

The presence of the wedge primarily has the role of dic-
tating which values of � are allowed. If one were to consider
a cylinder �periodic boundary conditions�, only integer val-
ues of � �both positive and negative� would be acceptable
and expressing the solution as a sum over these integer val-
ues would be appropriate. If one instead let the wedge be
perfectly reflecting �Dirichlet and Neumann boundaries at
#� /2, where � is arbitrary� � would be forced to take values
that are non-negative integer multiples of � /�. The diapha-
nous magnetodielectric boundaries present here also restrict
� to discrete values for given �’s and �’s, but explicitly de-
termining these values is no longer immediate because
modes existing in the exterior and interior sectors now
couple to each other. For a given frequency we therefore
make use of an appropriate dispersion function representing
these boundaries in order to sum over the appropriate values
of � by means of the argument principle, whereupon we may
sum over the eigenfrequencies of the modes inside and out-
side the cylindrical shell to obtain the energy.

The boundary condition dispersion relation pertaining to
the circular boundary is known �e.g., Eq. �4.12� in �35�, with
�2=1�,

g��kz,�� � 1 − x2��
2�x� = 0, �2.6�

where x=a�,

���x� =
d

dx
�I��x�K��x�� , �2.7�

and I� ,K� are the modified Bessel functions of the first and
second kinds of order �. We can simply use this equation to
sum modes satisfying the boundary condition on both sides
because the wedge boundaries at #� /2 impose the same
discretization of � inside and outside the cylindrical shell �if
we were to have, e.g., a third medium in the sector �&�
	� /2, )�a different from medium 1, this would no longer
be the case as we will see: the field solutions would take
different values of � inside and outside the cylindrical
boundary and the boundary conditions at the cylinder could
no longer be solved for each eigenvalue of ��. We now turn
to a derivation of the dispersion relation pertaining to the
interfaces at &= #� /2.

In the following we shall use the term TE to denote elec-
tromagnetic modes whose E field has no component in the z
direction and TM denotes those modes whose H field has no
z component. This is not “transverse electric” and “trans-
verse magnetic” with respect to the wedge boundaries at &
= #� /2, but this does not matter since we will find that the
eigenequation of these boundaries is the same for all field
components by virtue of the diaphanous condition.

A. Kontorovich-Lebedev approach

We will first employ the technique of the KL transforma-
tion �41� and its inverse transform which may be written as

Ez��� = i�
0

i�

d��ei��/2 sin����K���)�Ez�&;�� , �2.8a�

Ez�&;�� =
2

�2�
0

� d)

)
e−i��/2K���)�Ez��� �2.8b�

�dependence on kz and � is implicit�. While less extensively
covered in the literature than most other integral transforms,
some tables of KL transforms exist �48,49�. Numerical meth-
ods for evaluating such transforms were recently developed
by Gautschi �50�. We will ignore the presence of the cylin-
drical shell in this section and only study how the presence
of the walls of the wedge discretizes the spectrum of allowed
values of the Bessel function order �.

With this, Eq. �2.2�, after multiplying with )2, transforms
to

��&
2 + �2�Ez�&;�,kz,�� = 0. �2.9�

Equation �2.9� is now in a form fully analogous to that en-
countered in a planar geometry �e.g., �51–53��. We follow
now roughly the scheme in �53� and determine the dispersion
relation �condition for eigensolutions of Eq. �2.2�� by means
of summation over multiple reflection paths. By noting that
the solutions to Eq. �2.9� have the form of propagating plane
waves traveling clockwise or anticlockwise along the now
formally straight & axis �� playing the role of a reciprocal
azimuthal angle� the analogy to a plane parallel system is
obvious.

We write the solution of Eq. �2.9� in the interior sector,
�&�	� /2, in the form
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We will define the quantity � as

� = �kz
2 − ���2 = − ik�, �2.4�

where the root of � is to be taken in the fourth complex
quadrant. When in the end we take frequencies to lie on the
positive imaginary axis, � becomes real and positive, some-
thing we bear in mind in the subsequent calculations.

A general solution to Eq. �2.2� is of the form

Ez = �A�H�
�1��k�)� + B�J��k�)���aei�& + be−i�&� , �2.5�

where A�, B�, a, b, and � are arbitrary. If, as in our case, � is
allowed to take noninteger values, we must restrict it to �
(0 because except at integers J��z� and J−��z� are linearly
independent.

Solutions of the electromagnetic field in a wedge geom-
etry are expressed as a sum over cylindrical partial waves
whose kernels are Bessel and Hankel functions of argument
k�). Thus it is clear that the boundary conditions on the
wedge surfaces can only be solved for each partial wave if
the speed of light is the same in both sectors since k� would
otherwise take different values in the two media for given kz
and � and the kernel functions would be linearly indepen-
dent functions of these. The diaphanous condition is thus
prerequisite for the explicit solution of boundary conditions
below. Without this condition the problem at hand is not
analytically solvable with the methods used herein. We ex-
pect that even if we could solve the nondiaphanous problem
we would encounter divergences that might or might not be
curable by the inclusion of dispersion.

The presence of the wedge primarily has the role of dic-
tating which values of � are allowed. If one were to consider
a cylinder �periodic boundary conditions�, only integer val-
ues of � �both positive and negative� would be acceptable
and expressing the solution as a sum over these integer val-
ues would be appropriate. If one instead let the wedge be
perfectly reflecting �Dirichlet and Neumann boundaries at
#� /2, where � is arbitrary� � would be forced to take values
that are non-negative integer multiples of � /�. The diapha-
nous magnetodielectric boundaries present here also restrict
� to discrete values for given �’s and �’s, but explicitly de-
termining these values is no longer immediate because
modes existing in the exterior and interior sectors now
couple to each other. For a given frequency we therefore
make use of an appropriate dispersion function representing
these boundaries in order to sum over the appropriate values
of � by means of the argument principle, whereupon we may
sum over the eigenfrequencies of the modes inside and out-
side the cylindrical shell to obtain the energy.

The boundary condition dispersion relation pertaining to
the circular boundary is known �e.g., Eq. �4.12� in �35�, with
�2=1�,

g��kz,�� � 1 − x2��
2�x� = 0, �2.6�

where x=a�,

���x� =
d

dx
�I��x�K��x�� , �2.7�

and I� ,K� are the modified Bessel functions of the first and
second kinds of order �. We can simply use this equation to
sum modes satisfying the boundary condition on both sides
because the wedge boundaries at #� /2 impose the same
discretization of � inside and outside the cylindrical shell �if
we were to have, e.g., a third medium in the sector �&�
	� /2, )�a different from medium 1, this would no longer
be the case as we will see: the field solutions would take
different values of � inside and outside the cylindrical
boundary and the boundary conditions at the cylinder could
no longer be solved for each eigenvalue of ��. We now turn
to a derivation of the dispersion relation pertaining to the
interfaces at &= #� /2.

In the following we shall use the term TE to denote elec-
tromagnetic modes whose E field has no component in the z
direction and TM denotes those modes whose H field has no
z component. This is not “transverse electric” and “trans-
verse magnetic” with respect to the wedge boundaries at &
= #� /2, but this does not matter since we will find that the
eigenequation of these boundaries is the same for all field
components by virtue of the diaphanous condition.

A. Kontorovich-Lebedev approach

We will first employ the technique of the KL transforma-
tion �41� and its inverse transform which may be written as

Ez��� = i�
0
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d��ei��/2 sin����K���)�Ez�&;�� , �2.8a�

Ez�&;�� =
2

�2�
0
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e−i��/2K���)�Ez��� �2.8b�

�dependence on kz and � is implicit�. While less extensively
covered in the literature than most other integral transforms,
some tables of KL transforms exist �48,49�. Numerical meth-
ods for evaluating such transforms were recently developed
by Gautschi �50�. We will ignore the presence of the cylin-
drical shell in this section and only study how the presence
of the walls of the wedge discretizes the spectrum of allowed
values of the Bessel function order �.

With this, Eq. �2.2�, after multiplying with )2, transforms
to

��&
2 + �2�Ez�&;�,kz,�� = 0. �2.9�

Equation �2.9� is now in a form fully analogous to that en-
countered in a planar geometry �e.g., �51–53��. We follow
now roughly the scheme in �53� and determine the dispersion
relation �condition for eigensolutions of Eq. �2.2�� by means
of summation over multiple reflection paths. By noting that
the solutions to Eq. �2.9� have the form of propagating plane
waves traveling clockwise or anticlockwise along the now
formally straight & axis �� playing the role of a reciprocal
azimuthal angle� the analogy to a plane parallel system is
obvious.

We write the solution of Eq. �2.9� in the interior sector,
�&�	� /2, in the form

ELECTRODYNAMIC CASIMIR EFFECT IN A MEDIUM-… PHYSICAL REVIEW E 80, 021125 �2009�

021125-3



Ez = e+ei�& + e−e−i�&, �2.10�

where e# are undetermined integration coefficients which are
field amplitudes at &=0 to be determined from boundary
conditions at &= #� /2.

Likewise the solutions in the exterior sector �the “comple-
mentary wedge”� �( �&��� /2 may be written

Ẽz = ẽ+ei��&−�� + ẽ−e−i��&−��, �2.11�

where the undetermined amplitudes ẽ# are “measured” at &
=�. The choice to measure the amplitudes in sectors 1 and 2
at &=0 and �, respectively, is arbitrary but makes for maxi-
mally symmetric boundary equations.

The homogeneous Helmholtz equation thus solves the
scattered part of Ez given some source field Ez

0. Let us as-
sume there is a source field in the form of an infinitely thin
phased line source parallel to the z axis at some position &0
in the interior sector. The direct field �which only propagates
away from the source� may be written in the form

Ez
0 = *�& − &0�e0

+ei�& + *�&0 − &�e0
−e−i�&, �2.12�

where *�x� is the unit step function and the field amplitudes
are “measured” at &=0. We do not need to know the con-
stants e0

# explicitly and take these to be known constants.
The multiple reflection problem �or equivalently, boundary
condition problem� is now a system of four equations for the
four amplitudes e# , ẽ# as functions of e0

#.
We define the reflection coefficients at the boundaries &

= #� /2 as the ratio of reflected vs incoming field amplitude,
r=Ez,refl /Ez,in, as seen by a wave coming from and reflected
back into sector 1 �a wave going the opposite way experi-
ences a coefficient −r�. With the assumption �1�1=�2�2 the
reflection coefficients of the s and p modes differ only by a
sign,

rp =
�2 − �1

�2 + �1
= − rs = −

�2 − �1

�2 + �1
. �2.13�

We will simply use r in the following, representing either of
the modes. We also define the transmission coefficient, the
ratio of the transmitted to the incoming amplitude, going
from sector i to sector j, tij, where i , j=1,2 denotes the sec-
tors in Fig. 1,

tij� tij,s =
� j

�i

2� j

� j + �i
= tij,p =

2� j

� j + �i
. �2.14�

Since these coefficients are invariant under KL transforma-
tion, they are the sought-after single interface reflection and
transmission coefficients also in the KL regime. Note that
with the diaphanous condition, reflection coefficients are in-
dependent of �, something which would not be true in gen-
eral. If r depended on � this would give rise to corrections to
the energy expression derived in Sec. III A. �See also the
Appendix, where such � dependence does occur.�

We formulate the electromagnetic boundary conditions in
terms of reflection and transmission. In the KL domain the
system looks and behaves analogously to the planar system
�see �53� for details on this case�, but with one important
difference, namely, that a & directed partial wave which is

transmitted at a wedge boundary does not disappear from the
system but is partly transmitted back into sector 1 again cir-
cularly. Thus we obtain four equations for the four ampli-
tudes, e+, e−, ẽ+, and ẽ−, coupling to each other through paths
reflected or transmitted at one interface,

e+ = re0
−ei�� + re−ei�� + t21ẽ

+ei��, �2.15a�

e− = re0
+ei�� + re+ei�� + t21ẽ

−ei��, �2.15b�

ẽ+ = t12e0
+ei�� + t12e

+ei�� − rẽ−ei��2�−��, �2.15c�

ẽ− = t12e0
−ei�� + t12e

−ei�� − rẽ+ei��2�−��. �2.15d�

Eigenvalues of � for the wedge correspond to solutions of
these boundary conditions, which exist when the secular
equation of the set of linear equations for e# and ẽ# is ful-
filled. The characteristic matrix is

D =�
1 − rei�� − t21e

i�� 0

− rei�� 1 0 − t21e
i��

− t12e
i�� 0 1 rei��2�−��

0 − t12e
i�� rei��2�−�� 1

�
�2.16�

and the dispersion relation sought after is

D��,�� � det D = 0. �2.17�

The matrix form �Eq. �2.16�� is rather instructive. Note that
D is a block matrix of the form

D = 	 D1 G21

G12 D2

 ,

where Di describes multiple scattering within sector i and Gij
describes coupling between the sectors by transmission from
sector i to j. Since the G matrices commute with the D
matrices, det D can be written as

det D = det�D1D2 − G21G12� . �2.18�

We may use the energy conservation relation,

t12t21 + r2 = 1, �2.19�

together with Eq. �2.18� to find the simple expression

D��,�� = �1 − e2�i��2 − r2�ei��2�−�� − ei���2

= − 4e2�i��sin2���� − r2 sin2���� − ���� .
�2.20�

It is noteworthy that this dispersion relation only has an im-
plicit dependence on � through the quantity r2���. As an
example we plot the solutions to Eq. �2.17� as a function of
� and r in Fig. 2 for �=0.75 rad.

Note at this point that whenever r is real, all zeros of
D�� ,�� in Eq. �2.20� are real. In the following we shall think
of r as well as the eigenvalues of � as real quantities. For real
frequencies � reflection coefficients will in general be com-
plex, while after a standard rotation of frequencies onto the
imaginary frequency axis these coefficients are always real
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Ez = e+ei�& + e−e−i�&, �2.10�

where e# are undetermined integration coefficients which are
field amplitudes at &=0 to be determined from boundary
conditions at &= #� /2.

Likewise the solutions in the exterior sector �the “comple-
mentary wedge”� �( �&��� /2 may be written

Ẽz = ẽ+ei��&−�� + ẽ−e−i��&−��, �2.11�

where the undetermined amplitudes ẽ# are “measured” at &
=�. The choice to measure the amplitudes in sectors 1 and 2
at &=0 and �, respectively, is arbitrary but makes for maxi-
mally symmetric boundary equations.

The homogeneous Helmholtz equation thus solves the
scattered part of Ez given some source field Ez

0. Let us as-
sume there is a source field in the form of an infinitely thin
phased line source parallel to the z axis at some position &0
in the interior sector. The direct field �which only propagates
away from the source� may be written in the form

Ez
0 = *�& − &0�e0

+ei�& + *�&0 − &�e0
−e−i�&, �2.12�

where *�x� is the unit step function and the field amplitudes
are “measured” at &=0. We do not need to know the con-
stants e0

# explicitly and take these to be known constants.
The multiple reflection problem �or equivalently, boundary
condition problem� is now a system of four equations for the
four amplitudes e# , ẽ# as functions of e0

#.
We define the reflection coefficients at the boundaries &

= #� /2 as the ratio of reflected vs incoming field amplitude,
r=Ez,refl /Ez,in, as seen by a wave coming from and reflected
back into sector 1 �a wave going the opposite way experi-
ences a coefficient −r�. With the assumption �1�1=�2�2 the
reflection coefficients of the s and p modes differ only by a
sign,

rp =
�2 − �1

�2 + �1
= − rs = −

�2 − �1

�2 + �1
. �2.13�

We will simply use r in the following, representing either of
the modes. We also define the transmission coefficient, the
ratio of the transmitted to the incoming amplitude, going
from sector i to sector j, tij, where i , j=1,2 denotes the sec-
tors in Fig. 1,

tij� tij,s =
� j

�i

2� j

� j + �i
= tij,p =

2� j

� j + �i
. �2.14�

Since these coefficients are invariant under KL transforma-
tion, they are the sought-after single interface reflection and
transmission coefficients also in the KL regime. Note that
with the diaphanous condition, reflection coefficients are in-
dependent of �, something which would not be true in gen-
eral. If r depended on � this would give rise to corrections to
the energy expression derived in Sec. III A. �See also the
Appendix, where such � dependence does occur.�

We formulate the electromagnetic boundary conditions in
terms of reflection and transmission. In the KL domain the
system looks and behaves analogously to the planar system
�see �53� for details on this case�, but with one important
difference, namely, that a & directed partial wave which is

transmitted at a wedge boundary does not disappear from the
system but is partly transmitted back into sector 1 again cir-
cularly. Thus we obtain four equations for the four ampli-
tudes, e+, e−, ẽ+, and ẽ−, coupling to each other through paths
reflected or transmitted at one interface,

e+ = re0
−ei�� + re−ei�� + t21ẽ

+ei��, �2.15a�

e− = re0
+ei�� + re+ei�� + t21ẽ

−ei��, �2.15b�

ẽ+ = t12e0
+ei�� + t12e

+ei�� − rẽ−ei��2�−��, �2.15c�

ẽ− = t12e0
−ei�� + t12e

−ei�� − rẽ+ei��2�−��. �2.15d�

Eigenvalues of � for the wedge correspond to solutions of
these boundary conditions, which exist when the secular
equation of the set of linear equations for e# and ẽ# is ful-
filled. The characteristic matrix is

D =�
1 − rei�� − t21e

i�� 0

− rei�� 1 0 − t21e
i��

− t12e
i�� 0 1 rei��2�−��

0 − t12e
i�� rei��2�−�� 1

�
�2.16�

and the dispersion relation sought after is

D��,�� � det D = 0. �2.17�

The matrix form �Eq. �2.16�� is rather instructive. Note that
D is a block matrix of the form

D = 	 D1 G21

G12 D2

 ,

where Di describes multiple scattering within sector i and Gij
describes coupling between the sectors by transmission from
sector i to j. Since the G matrices commute with the D
matrices, det D can be written as

det D = det�D1D2 − G21G12� . �2.18�

We may use the energy conservation relation,

t12t21 + r2 = 1, �2.19�

together with Eq. �2.18� to find the simple expression

D��,�� = �1 − e2�i��2 − r2�ei��2�−�� − ei���2

= − 4e2�i��sin2���� − r2 sin2���� − ���� .
�2.20�

It is noteworthy that this dispersion relation only has an im-
plicit dependence on � through the quantity r2���. As an
example we plot the solutions to Eq. �2.17� as a function of
� and r in Fig. 2 for �=0.75 rad.

Note at this point that whenever r is real, all zeros of
D�� ,�� in Eq. �2.20� are real. In the following we shall think
of r as well as the eigenvalues of � as real quantities. For real
frequencies � reflection coefficients will in general be com-
plex, while after a standard rotation of frequencies onto the
imaginary frequency axis these coefficients are always real

ELLINGSEN, BREVIK, AND MILTON PHYSICAL REVIEW E 80, 021125 �2009�

021125-4

Ez = e+ei�& + e−e−i�&, �2.10�

where e# are undetermined integration coefficients which are
field amplitudes at &=0 to be determined from boundary
conditions at &= #� /2.

Likewise the solutions in the exterior sector �the “comple-
mentary wedge”� �( �&��� /2 may be written

Ẽz = ẽ+ei��&−�� + ẽ−e−i��&−��, �2.11�

where the undetermined amplitudes ẽ# are “measured” at &
=�. The choice to measure the amplitudes in sectors 1 and 2
at &=0 and �, respectively, is arbitrary but makes for maxi-
mally symmetric boundary equations.

The homogeneous Helmholtz equation thus solves the
scattered part of Ez given some source field Ez

0. Let us as-
sume there is a source field in the form of an infinitely thin
phased line source parallel to the z axis at some position &0
in the interior sector. The direct field �which only propagates
away from the source� may be written in the form

Ez
0 = *�& − &0�e0

+ei�& + *�&0 − &�e0
−e−i�&, �2.12�

where *�x� is the unit step function and the field amplitudes
are “measured” at &=0. We do not need to know the con-
stants e0

# explicitly and take these to be known constants.
The multiple reflection problem �or equivalently, boundary
condition problem� is now a system of four equations for the
four amplitudes e# , ẽ# as functions of e0

#.
We define the reflection coefficients at the boundaries &

= #� /2 as the ratio of reflected vs incoming field amplitude,
r=Ez,refl /Ez,in, as seen by a wave coming from and reflected
back into sector 1 �a wave going the opposite way experi-
ences a coefficient −r�. With the assumption �1�1=�2�2 the
reflection coefficients of the s and p modes differ only by a
sign,

rp =
�2 − �1

�2 + �1
= − rs = −

�2 − �1

�2 + �1
. �2.13�

We will simply use r in the following, representing either of
the modes. We also define the transmission coefficient, the
ratio of the transmitted to the incoming amplitude, going
from sector i to sector j, tij, where i , j=1,2 denotes the sec-
tors in Fig. 1,

tij� tij,s =
� j
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2� j

� j + �i
= tij,p =

2� j
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. �2.14�

Since these coefficients are invariant under KL transforma-
tion, they are the sought-after single interface reflection and
transmission coefficients also in the KL regime. Note that
with the diaphanous condition, reflection coefficients are in-
dependent of �, something which would not be true in gen-
eral. If r depended on � this would give rise to corrections to
the energy expression derived in Sec. III A. �See also the
Appendix, where such � dependence does occur.�

We formulate the electromagnetic boundary conditions in
terms of reflection and transmission. In the KL domain the
system looks and behaves analogously to the planar system
�see �53� for details on this case�, but with one important
difference, namely, that a & directed partial wave which is

transmitted at a wedge boundary does not disappear from the
system but is partly transmitted back into sector 1 again cir-
cularly. Thus we obtain four equations for the four ampli-
tudes, e+, e−, ẽ+, and ẽ−, coupling to each other through paths
reflected or transmitted at one interface,

e+ = re0
−ei�� + re−ei�� + t21ẽ

+ei��, �2.15a�
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these boundary conditions, which exist when the secular
equation of the set of linear equations for e# and ẽ# is ful-
filled. The characteristic matrix is
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and the dispersion relation sought after is

D��,�� � det D = 0. �2.17�

The matrix form �Eq. �2.16�� is rather instructive. Note that
D is a block matrix of the form

D = 	 D1 G21

G12 D2

 ,

where Di describes multiple scattering within sector i and Gij
describes coupling between the sectors by transmission from
sector i to j. Since the G matrices commute with the D
matrices, det D can be written as

det D = det�D1D2 − G21G12� . �2.18�

We may use the energy conservation relation,

t12t21 + r2 = 1, �2.19�

together with Eq. �2.18� to find the simple expression

D��,�� = �1 − e2�i��2 − r2�ei��2�−�� − ei���2

= − 4e2�i��sin2���� − r2 sin2���� − ���� .
�2.20�

It is noteworthy that this dispersion relation only has an im-
plicit dependence on � through the quantity r2���. As an
example we plot the solutions to Eq. �2.17� as a function of
� and r in Fig. 2 for �=0.75 rad.

Note at this point that whenever r is real, all zeros of
D�� ,�� in Eq. �2.20� are real. In the following we shall think
of r as well as the eigenvalues of � as real quantities. For real
frequencies � reflection coefficients will in general be com-
plex, while after a standard rotation of frequencies onto the
imaginary frequency axis these coefficients are always real
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where e# are undetermined integration coefficients which are
field amplitudes at &=0 to be determined from boundary
conditions at &= #� /2.

Likewise the solutions in the exterior sector �the “comple-
mentary wedge”� �( �&��� /2 may be written

Ẽz = ẽ+ei��&−�� + ẽ−e−i��&−��, �2.11�

where the undetermined amplitudes ẽ# are “measured” at &
=�. The choice to measure the amplitudes in sectors 1 and 2
at &=0 and �, respectively, is arbitrary but makes for maxi-
mally symmetric boundary equations.

The homogeneous Helmholtz equation thus solves the
scattered part of Ez given some source field Ez

0. Let us as-
sume there is a source field in the form of an infinitely thin
phased line source parallel to the z axis at some position &0
in the interior sector. The direct field �which only propagates
away from the source� may be written in the form
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0 = *�& − &0�e0

+ei�& + *�&0 − &�e0
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where *�x� is the unit step function and the field amplitudes
are “measured” at &=0. We do not need to know the con-
stants e0

# explicitly and take these to be known constants.
The multiple reflection problem �or equivalently, boundary
condition problem� is now a system of four equations for the
four amplitudes e# , ẽ# as functions of e0

#.
We define the reflection coefficients at the boundaries &

= #� /2 as the ratio of reflected vs incoming field amplitude,
r=Ez,refl /Ez,in, as seen by a wave coming from and reflected
back into sector 1 �a wave going the opposite way experi-
ences a coefficient −r�. With the assumption �1�1=�2�2 the
reflection coefficients of the s and p modes differ only by a
sign,

rp =
�2 − �1

�2 + �1
= − rs = −
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�2 + �1
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We will simply use r in the following, representing either of
the modes. We also define the transmission coefficient, the
ratio of the transmitted to the incoming amplitude, going
from sector i to sector j, tij, where i , j=1,2 denotes the sec-
tors in Fig. 1,

tij� tij,s =
� j
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2� j
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= tij,p =

2� j
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Since these coefficients are invariant under KL transforma-
tion, they are the sought-after single interface reflection and
transmission coefficients also in the KL regime. Note that
with the diaphanous condition, reflection coefficients are in-
dependent of �, something which would not be true in gen-
eral. If r depended on � this would give rise to corrections to
the energy expression derived in Sec. III A. �See also the
Appendix, where such � dependence does occur.�

We formulate the electromagnetic boundary conditions in
terms of reflection and transmission. In the KL domain the
system looks and behaves analogously to the planar system
�see �53� for details on this case�, but with one important
difference, namely, that a & directed partial wave which is

transmitted at a wedge boundary does not disappear from the
system but is partly transmitted back into sector 1 again cir-
cularly. Thus we obtain four equations for the four ampli-
tudes, e+, e−, ẽ+, and ẽ−, coupling to each other through paths
reflected or transmitted at one interface,

e+ = re0
−ei�� + re−ei�� + t21ẽ

+ei��, �2.15a�

e− = re0
+ei�� + re+ei�� + t21ẽ

−ei��, �2.15b�

ẽ+ = t12e0
+ei�� + t12e

+ei�� − rẽ−ei��2�−��, �2.15c�

ẽ− = t12e0
−ei�� + t12e

−ei�� − rẽ+ei��2�−��. �2.15d�

Eigenvalues of � for the wedge correspond to solutions of
these boundary conditions, which exist when the secular
equation of the set of linear equations for e# and ẽ# is ful-
filled. The characteristic matrix is

D =�
1 − rei�� − t21e

i�� 0

− rei�� 1 0 − t21e
i��

− t12e
i�� 0 1 rei��2�−��

0 − t12e
i�� rei��2�−�� 1
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�2.16�

and the dispersion relation sought after is

D��,�� � det D = 0. �2.17�

The matrix form �Eq. �2.16�� is rather instructive. Note that
D is a block matrix of the form

D = 	 D1 G21

G12 D2

 ,

where Di describes multiple scattering within sector i and Gij
describes coupling between the sectors by transmission from
sector i to j. Since the G matrices commute with the D
matrices, det D can be written as

det D = det�D1D2 − G21G12� . �2.18�

We may use the energy conservation relation,

t12t21 + r2 = 1, �2.19�

together with Eq. �2.18� to find the simple expression

D��,�� = �1 − e2�i��2 − r2�ei��2�−�� − ei���2

= − 4e2�i��sin2���� − r2 sin2���� − ���� .
�2.20�

It is noteworthy that this dispersion relation only has an im-
plicit dependence on � through the quantity r2���. As an
example we plot the solutions to Eq. �2.17� as a function of
� and r in Fig. 2 for �=0.75 rad.

Note at this point that whenever r is real, all zeros of
D�� ,�� in Eq. �2.20� are real. In the following we shall think
of r as well as the eigenvalues of � as real quantities. For real
frequencies � reflection coefficients will in general be com-
plex, while after a standard rotation of frequencies onto the
imaginary frequency axis these coefficients are always real
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as dictated by causality. Although zeros are complex the ar-
gument principle may still be used; the discussion of con-
nected subtleties may be found in, e.g., �7,54,55�.

It is easy to see that this dispersion relation generalizes
that for a cylinder �of infinite radius� and a perfectly conduct-
ing wedge. In the latter limit, r=1, the determinant det D has
zeros where �=m� /� and at �=m� / �2�−��, where m is an
integer. This becomes obvious when noting that

D��,��→
r→1

− 4e2�i� sin �� sin ��2� − �� . �2.21�

This reproduces, in other words, the case where the wedge is
made up of thin perfectly conducting sheets. For the per-
fectly conducting wedge it is customary to restrict � to val-
ues that are integer multiples of � /� from the beginning.

Likewise when the two materials become equal,

D��,��→
r=0

− 4e2�i� sin2 ��� D0��� , �2.22�

which has double zeros where �=m, a positive integer, cor-
responding to a clockwise and an anticlockwise mode or, if
the reader prefers, the sum over �=+m and −m. This is just
the cylinder case �7–14�. We see from Fig. 2 that except for
�=0 which remains degenerate, the double zeroes split into
two separate simple zeros for finite r. For special opening
angles which are rational multiples of � there will be other
zeroes which remain degenerate as well.

One sees directly that if we were to solve Eq. �2.2� for Hz
instead of Ez the dispersion relation would be identical to Eq.
�2.17� since the only difference would be the sign of the
reflection coefficient �we would employ rs rather than rp�,
which only enters squared. One should note that the distinc-
tion between rs and rp here does not correspond to the dis-
tinction between TE and TM modes of the entire cavity, but
this is of no consequence in the following because dispersion
relation �2.17� is the same for all field components.

B. Derivation by standard expansion

We will now sketch how result �2.20� may be derived by
a more standard method similar to that made use of in �35�.
The solutions of Eq. �2.5� that correspond to outgoing waves
at )→� may be expanded following the scheme in �35� in

an obvious generalization of those found in �56�. Due to
criteria of outgoing-wave boundary conditions at )→� and
nonsingularity at the origin the solution must consist purely
of Hankel functions H�

�1��k�)� far from the origin and only of
terms containing J��k�)� near )=0. Following the scheme in
�35� we choose H�

�1��k�)� for )(a and J��k�)� for )'a
both in the interior sector −� /2	&	� /2 and outside and
couple the solutions across these straight boundaries. It will
not matter which Bessel function we choose for the present
purposes: the resulting solution expansions are identical but
for the replacement of one Bessel function with another.

In a straightforward generalization of the expansion used
in �35� we write down the following general solutions in
sector 1 of Fig. 1 for )�a:

Er,1 = �
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H�
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�1�ā1 +

i�1�

k�

H�
�1��b�1�sin �&ei��/2,

�2.23b�

Ez,1 = �
0

�

d�H�
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where we have omitted the arguments of H�
�1��k�)� and its

derivative, of ā1��� , b̄1���, etc., the latter being undetermined
coefficient functions of �.
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FIG. 2. �Color online� The solutions of dispersion relation �2.20�
as a function of r and � for �=0.75. The eigenvalues of � for a
given r are marked; the energy is calculated by summing over these
values and then integrating over all �.
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as dictated by causality. Although zeros are complex the ar-
gument principle may still be used; the discussion of con-
nected subtleties may be found in, e.g., �7,54,55�.

It is easy to see that this dispersion relation generalizes
that for a cylinder �of infinite radius� and a perfectly conduct-
ing wedge. In the latter limit, r=1, the determinant det D has
zeros where �=m� /� and at �=m� / �2�−��, where m is an
integer. This becomes obvious when noting that

D��,��→
r→1

− 4e2�i� sin �� sin ��2� − �� . �2.21�

This reproduces, in other words, the case where the wedge is
made up of thin perfectly conducting sheets. For the per-
fectly conducting wedge it is customary to restrict � to val-
ues that are integer multiples of � /� from the beginning.

Likewise when the two materials become equal,

D��,��→
r=0

− 4e2�i� sin2 ��� D0��� , �2.22�

which has double zeros where �=m, a positive integer, cor-
responding to a clockwise and an anticlockwise mode or, if
the reader prefers, the sum over �=+m and −m. This is just
the cylinder case �7–14�. We see from Fig. 2 that except for
�=0 which remains degenerate, the double zeroes split into
two separate simple zeros for finite r. For special opening
angles which are rational multiples of � there will be other
zeroes which remain degenerate as well.

One sees directly that if we were to solve Eq. �2.2� for Hz
instead of Ez the dispersion relation would be identical to Eq.
�2.17� since the only difference would be the sign of the
reflection coefficient �we would employ rs rather than rp�,
which only enters squared. One should note that the distinc-
tion between rs and rp here does not correspond to the dis-
tinction between TE and TM modes of the entire cavity, but
this is of no consequence in the following because dispersion
relation �2.17� is the same for all field components.
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We will now sketch how result �2.20� may be derived by
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criteria of outgoing-wave boundary conditions at )→� and
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�1�ā1 +

i�1�

k�

H�
�1��b�1�sin �&ei��/2,

�2.23b�

Ez,1 = �
0

�

d�H�
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�1�ā1 +

ikz

k�

H�
�1��b�1�sin �&ei��/2,

�2.23d�

H&,1 = �
0

�

d��� i��1

k�

H�
�1��ā1 −
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FIG. 2. �Color online� The solutions of dispersion relation �2.20�
as a function of r and � for �=0.75. The eigenvalues of � for a
given r are marked; the energy is calculated by summing over these
values and then integrating over all �.
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as dictated by causality. Although zeros are complex the ar-
gument principle may still be used; the discussion of con-
nected subtleties may be found in, e.g., �7,54,55�.

It is easy to see that this dispersion relation generalizes
that for a cylinder �of infinite radius� and a perfectly conduct-
ing wedge. In the latter limit, r=1, the determinant det D has
zeros where �=m� /� and at �=m� / �2�−��, where m is an
integer. This becomes obvious when noting that

D��,��→
r→1

− 4e2�i� sin �� sin ��2� − �� . �2.21�

This reproduces, in other words, the case where the wedge is
made up of thin perfectly conducting sheets. For the per-
fectly conducting wedge it is customary to restrict � to val-
ues that are integer multiples of � /� from the beginning.

Likewise when the two materials become equal,

D��,��→
r=0

− 4e2�i� sin2 ��� D0��� , �2.22�

which has double zeros where �=m, a positive integer, cor-
responding to a clockwise and an anticlockwise mode or, if
the reader prefers, the sum over �=+m and −m. This is just
the cylinder case �7–14�. We see from Fig. 2 that except for
�=0 which remains degenerate, the double zeroes split into
two separate simple zeros for finite r. For special opening
angles which are rational multiples of � there will be other
zeroes which remain degenerate as well.

One sees directly that if we were to solve Eq. �2.2� for Hz
instead of Ez the dispersion relation would be identical to Eq.
�2.17� since the only difference would be the sign of the
reflection coefficient �we would employ rs rather than rp�,
which only enters squared. One should note that the distinc-
tion between rs and rp here does not correspond to the dis-
tinction between TE and TM modes of the entire cavity, but
this is of no consequence in the following because dispersion
relation �2.17� is the same for all field components.

B. Derivation by standard expansion

We will now sketch how result �2.20� may be derived by
a more standard method similar to that made use of in �35�.
The solutions of Eq. �2.5� that correspond to outgoing waves
at )→� may be expanded following the scheme in �35� in

an obvious generalization of those found in �56�. Due to
criteria of outgoing-wave boundary conditions at )→� and
nonsingularity at the origin the solution must consist purely
of Hankel functions H�

�1��k�)� far from the origin and only of
terms containing J��k�)� near )=0. Following the scheme in
�35� we choose H�

�1��k�)� for )(a and J��k�)� for )'a
both in the interior sector −� /2	&	� /2 and outside and
couple the solutions across these straight boundaries. It will
not matter which Bessel function we choose for the present
purposes: the resulting solution expansions are identical but
for the replacement of one Bessel function with another.

In a straightforward generalization of the expansion used
in �35� we write down the following general solutions in
sector 1 of Fig. 1 for )�a:
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where we have omitted the arguments of H�
�1��k�)� and its

derivative, of ā1��� , b̄1���, etc., the latter being undetermined
coefficient functions of �.
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FIG. 2. �Color online� The solutions of dispersion relation �2.20�
as a function of r and � for �=0.75. The eigenvalues of � for a
given r are marked; the energy is calculated by summing over these
values and then integrating over all �.
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FIG. 2. �Color online� The solutions of dispersion relation �2.20�
as a function of r and � for �=0.75. The eigenvalues of � for a
given r are marked; the energy is calculated by summing over these
values and then integrating over all �.
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We write the solution in sector 2 in exactly the same form
but with the simple replacements &→&−�, �1→�2, and �1
→�2 and the same for the coefficient functions. With the
isorefractive assumption k� is the same in both media for
given � and kz, so the boundary conditions at the interfaces
can be solved under the integral signs. In general there are
eight unknown functions and eight equations, yet one finds
that the s and p modes decouple into linear equation sets of
4
4 in the form

D̃ · a = 0, �2.24�

where D̃ equals

�
cos��2 0 − cos ���2 − �� 0

0 sin��
2 0 − sin ���2 − ��

− �1 sin��
2 0 �2 sin ���2 − �� 0

0 − �1 cos��2 0 �2 cos ���2 − ��
�

and a is a vector, either �ā1 ,a�1 , ā2 ,a�2� or �b̄1 ,b�1 , b̄2 ,b�2�.
As before the eigenmodes of the system solve the equa-

tion det D̃=0. With some manipulation we find that the de-
terminant can be written simply as

det D̃ = 1
4 ��2 − �1�2 sin2 ��� − �� − 1

4 ��2 + �1�2 sin2 �� .

�2.25�

Under the assumption that �2+�1�0 the equation det D̃=0 is
equivalent to Eq. �2.17� with Eq. �2.20�.

III. CASIMIR ENERGY

In order to find the Casimir energy we shall employ the
argument principle, introduced to the field of Casimir energy
by van Kampen et al. �47� who rederived Lifshitz’s result in
a simple way. For a very readable review of the technique,
see �57�.

A similar system to that shown in Fig. 1 was considered in
�35� where the plane sides of the wedge were instead made
up of perfectly reflecting interfaces and the circular boundary
was diaphanous. We will start from the result in �35� and
generalize this step by step to approach the desired energy
expression for the current situation. Except for the formally
singular energy term associated with the sharp corners where
the arc meets the wedge walls found in that paper �we shall
regard this term separately below�, the Casimir energy per
unit length of that system in the limit of perfectly reflecting
circular arc was �Eq. �4.11� in �35��
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d�
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with g��kz ,�� given in Eq. �2.6� and we define the shorthand

p =
�

�
. �3.2�

The prime on the summation mark means that the m=0 term
is taken with half-weight. The integration contour + is cho-

sen to follow the imaginary axis and is closed to the right by
a large semicircle thus encircling the positive real axis. The
roots of Eq. �2.6� are in general complex; the applicability of
the argument principle for such situations was discussed in

�7,54,55,58�. The energy Ẽ has been normalized so as to be
zero when the circular arc is moved to infinity.

Each frequency satisfying gmp�kz ,��=0 gives a pole
which adds the zero temperature energy �

2 of that mode
through Cauchy’s integral theorem. In the end there are sums
over the eigenvalues of �, mp, the eigenvalues found when
the sides of the wedge are assumed to be perfectly conduct-
ing. Employing such an assumption from the start com-
pletely decouples the interior sector �&�	� /2 from the exte-
rior. If we were to interpret the perfectly reflecting wedge as
the limit of an isorefractive wedge such as that described by
the dispersion relation Eq. �2.20� as �r�→1, however �for
example, by letting �2→� and �2→0 so that their product is
constant�, the interior and exterior sectors remain coupled
and we obtain an additional m sum, namely, that over �
=mp� of the complementary wedge, where

p� =
�

2� − �
=

p

2p − 1
. �3.3�

To obtain direct correspondence we therefore modify Eq.
�3.1� by also including the energy of the modes of the
complementary wedge, fulfilling �=mp�. Since we will soon
generalize this result to the case where the wedge is diapha-
nous, it is reasonable to subtract the energy corresponding to
the absence of the boundaries at #� /2 by subtracting off the
energy obtained if � fulfilled periodic boundary conditions
�i.e., a circular cylinder�. The result is

Ẽid → 1

4�i
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ln
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gm
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The periodic function gm�kz ,�� is squared since both positive
and negative integer orders contribute equally in the periodic
case and the symmetry under m→−m makes for a factor of 2
except for m=0. The latter exception is automatically ac-
counted for by the prime on the sum.

Note that employing g��kz ,�� with the argument principle
automatically takes care of the sum over the two polariza-
tions since, by virtue of the diaphanous condition, g� is a
product of boundary conditions for TE and TM modes �see,
e.g., Appendix B in �35��.

Let us now perform the generalization of Eq. �3.4� to the
present case. The sum over �=mp and mp� may be general-
ized to a sum over the solutions of Eq. �2.17� using the
argument principle once more to count the zeros of Eq.
�2.20�, and the subtraction of the periodic modes in the ab-
sence of the boundary is performed by subtracting the solu-
tions of D0���=0 with D0 from Eq. �2.22� �note that the
zeros of D0 are double, automatically giving the factor 2
manually introduced in Eq. �3.4� by taking the square of gm�.
We obtain

ELLINGSEN, BREVIK, AND MILTON PHYSICAL REVIEW E 80, 021125 �2009�

021125-6

We write the solution in sector 2 in exactly the same form
but with the simple replacements &→&−�, �1→�2, and �1
→�2 and the same for the coefficient functions. With the
isorefractive assumption k� is the same in both media for
given � and kz, so the boundary conditions at the interfaces
can be solved under the integral signs. In general there are
eight unknown functions and eight equations, yet one finds
that the s and p modes decouple into linear equation sets of
4
4 in the form

D̃ · a = 0, �2.24�

where D̃ equals

�
cos��2 0 − cos ���2 − �� 0

0 sin��
2 0 − sin ���2 − ��

− �1 sin��
2 0 �2 sin ���2 − �� 0

0 − �1 cos��2 0 �2 cos ���2 − ��
�
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and a is a vector, either �ā1 ,a�1 , ā2 ,a�2� or �b̄1 ,b�1 , b̄2 ,b�2�.
As before the eigenmodes of the system solve the equa-

tion det D̃=0. With some manipulation we find that the de-
terminant can be written simply as

det D̃ = 1
4 ��2 − �1�2 sin2 ��� − �� − 1

4 ��2 + �1�2 sin2 �� .

�2.25�

Under the assumption that �2+�1�0 the equation det D̃=0 is
equivalent to Eq. �2.17� with Eq. �2.20�.

III. CASIMIR ENERGY

In order to find the Casimir energy we shall employ the
argument principle, introduced to the field of Casimir energy
by van Kampen et al. �47� who rederived Lifshitz’s result in
a simple way. For a very readable review of the technique,
see �57�.

A similar system to that shown in Fig. 1 was considered in
�35� where the plane sides of the wedge were instead made
up of perfectly reflecting interfaces and the circular boundary
was diaphanous. We will start from the result in �35� and
generalize this step by step to approach the desired energy
expression for the current situation. Except for the formally
singular energy term associated with the sharp corners where
the arc meets the wedge walls found in that paper �we shall
regard this term separately below�, the Casimir energy per
unit length of that system in the limit of perfectly reflecting
circular arc was �Eq. �4.11� in �35��
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counted for by the prime on the sum.

Note that employing g��kz ,�� with the argument principle
automatically takes care of the sum over the two polariza-
tions since, by virtue of the diaphanous condition, g� is a
product of boundary conditions for TE and TM modes �see,
e.g., Appendix B in �35��.

Let us now perform the generalization of Eq. �3.4� to the
present case. The sum over �=mp and mp� may be general-
ized to a sum over the solutions of Eq. �2.17� using the
argument principle once more to count the zeros of Eq.
�2.20�, and the subtraction of the periodic modes in the ab-
sence of the boundary is performed by subtracting the solu-
tions of D0���=0 with D0 from Eq. �2.22� �note that the
zeros of D0 are double, automatically giving the factor 2
manually introduced in Eq. �3.4� by taking the square of gm�.
We obtain
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III. CASIMIR ENERGY

In order to find the Casimir energy we shall employ the
argument principle, introduced to the field of Casimir energy
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and negative integer orders contribute equally in the periodic
case and the symmetry under m→−m makes for a factor of 2
except for m=0. The latter exception is automatically ac-
counted for by the prime on the sum.

Note that employing g��kz ,�� with the argument principle
automatically takes care of the sum over the two polariza-
tions since, by virtue of the diaphanous condition, g� is a
product of boundary conditions for TE and TM modes �see,
e.g., Appendix B in �35��.

Let us now perform the generalization of Eq. �3.4� to the
present case. The sum over �=mp and mp� may be general-
ized to a sum over the solutions of Eq. �2.17� using the
argument principle once more to count the zeros of Eq.
�2.20�, and the subtraction of the periodic modes in the ab-
sence of the boundary is performed by subtracting the solu-
tions of D0���=0 with D0 from Eq. �2.22� �note that the
zeros of D0 are double, automatically giving the factor 2
manually introduced in Eq. �3.4� by taking the square of gm�.
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d�� d

d�
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d�
ln

D��,��
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. �3.5�

The contour of the � integral is the same as that for the �
integral.

Neither of the contour integrals obtains contributions
from the semicircular contour arcs so we are left with inte-
grals over imaginary order and frequency. Performing substi-
tutions �= i� and �= i, we obtain

Ẽ =
1

16�3i
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dkz�
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�

d��


 �
−�

�

d,� d

d�
ln gi,�kz,i��� d

d,
ln

D�i,,i��
D0�i,�

. �3.6�

This is the general form of the Casimir energy of the system
presented herein.

To be very explicit about the regularizations performed,
Eq. �3.6� is the energy of the geometry of Fig. 1, minus the
energy when the cylinder is pushed to infinity �the double
wedge alone� and minus the renormalized energy of the cyl-
inder relative to uniform space,

Ẽ = �E	� − E	� − Ẽ�, �3.7�

where Ẽ� is the �-renormalized energy of a cylindrical shell
�relative to uniform space� considered in �10� and 	� ,	 sym-
bolize the double wedge with and without the cylindrical
shell. It is thus clear that the energy should vanish when
either the cylindrical boundary tends to infinity �E	�→E	
and Ẽ�→0� or when the wedge becomes completely trans-

parent �E	�−E	→ Ẽ��.
The corresponding free energy at finite temperature T is

found by simply substituting the integral over � in Eq. �3.6�
with the well known Matsubara sum over the frequencies
�k=2�kT, where k�Z,

�
−�

�

d�f�i��→ 2�T�
k=−�

�

f�i�k� . �3.8�

We will not consider finite temperature numerically in the
present effort.

A. Nondispersive approximation

In order to proceed to producing numerical results we
make the simplifying assumption that r be approximately
constant with respect to � over the important range of � val-
ues: dr /d��0. This a version of the constant reflection co-
efficient model which was previously found to be useful for
the planar geometry �59�. While it is true that for any real
material, reflectivity must tend to zero at infinite frequency,
the nondispersive approximation is a useful one and allows a
simpler expression to be derived. We will find below that the
resulting Casimir energy expression is finite even when r
=1 for all frequencies except when �=0 or 2�. There is
therefore no need to assume high-frequency transparency for
the sake of finiteness in this case.

With this assumption we can easily perform a partial in-
tegration in �. We note that, when r is independent of � as in
the diaphanous case �see the Appendix for a situation where
this is not so�,

d

d,
�ln D

D0
� = � sinh ,�2� − �� − �2� − ��sinh ,�

sinh2 ,� − r2 sinh2 ,�� − ��



r2 sinh ,�� − ��

sinh ,�
, �3.9�

which is now approximated as independent of � and kz. It is
then opportune to perform a change in integration into the
polar coordinates,

X = n� = � cos &; Y = kz = � sin & , �3.10�

so that X2+Y2=�2 and

�
−�

�

dkz�
−�

�

d�f�a�� =
2�

na2�
0

�

dxxf�x� , �3.11�

where x=a� as before. We obtain after integrating by parts

Ẽ =
i

8�2na2�
−�

�

d,
r2 sinh ,�� − ���� sinh ,�2� − �� − �2� − ��sinh ,��

sinh ,��sinh2 ,� − r2 sinh2 ,�� − ��� �
0

�

dxx ln�1 − x2�i,
2 �x�� . �3.12�

Despite appearances this expression is in fact real. This is
because the dispersion function in the first integral is an odd
function of , while the real and imaginary parts of the loga-
rithm are even and odd, respectively �provided the appropri-
ate branch of the logarithm is taken�, hence the imaginary

part of Ẽ vanishes under symmetrical integration. It is
straightforward to write down the correction terms contain-

ing dr
d� or dr

d� should the reader wish to do so. Such is neces-
sary if one were to study the role of dispersion on the energy;
we shall not consider this herein—but see the Appendix for
dr /d��0.

The energy expression �3.12� has the reasonable proper-
ties of being zero at �=� and symmetrical under the substi-
tution �↔2�−�. We will study Eq. �3.12� numerically in
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Ẽ = �E	� − E	� − Ẽ�, �3.7�
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shell. It is thus clear that the energy should vanish when
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We will not consider finite temperature numerically in the
present effort.

A. Nondispersive approximation

In order to proceed to producing numerical results we
make the simplifying assumption that r be approximately
constant with respect to � over the important range of � val-
ues: dr /d��0. This a version of the constant reflection co-
efficient model which was previously found to be useful for
the planar geometry �59�. While it is true that for any real
material, reflectivity must tend to zero at infinite frequency,
the nondispersive approximation is a useful one and allows a
simpler expression to be derived. We will find below that the
resulting Casimir energy expression is finite even when r
=1 for all frequencies except when �=0 or 2�. There is
therefore no need to assume high-frequency transparency for
the sake of finiteness in this case.

With this assumption we can easily perform a partial in-
tegration in �. We note that, when r is independent of � as in
the diaphanous case �see the Appendix for a situation where
this is not so�,
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which is now approximated as independent of � and kz. It is
then opportune to perform a change in integration into the
polar coordinates,
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so that X2+Y2=�2 and
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Despite appearances this expression is in fact real. This is
because the dispersion function in the first integral is an odd
function of , while the real and imaginary parts of the loga-
rithm are even and odd, respectively �provided the appropri-
ate branch of the logarithm is taken�, hence the imaginary

part of Ẽ vanishes under symmetrical integration. It is
straightforward to write down the correction terms contain-

ing dr
d� or dr

d� should the reader wish to do so. Such is neces-
sary if one were to study the role of dispersion on the energy;
we shall not consider this herein—but see the Appendix for
dr /d��0.

The energy expression �3.12� has the reasonable proper-
ties of being zero at �=� and symmetrical under the substi-
tution �↔2�−�. We will study Eq. �3.12� numerically in
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shell. It is thus clear that the energy should vanish when
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We will not consider finite temperature numerically in the
present effort.

A. Nondispersive approximation

In order to proceed to producing numerical results we
make the simplifying assumption that r be approximately
constant with respect to � over the important range of � val-
ues: dr /d��0. This a version of the constant reflection co-
efficient model which was previously found to be useful for
the planar geometry �59�. While it is true that for any real
material, reflectivity must tend to zero at infinite frequency,
the nondispersive approximation is a useful one and allows a
simpler expression to be derived. We will find below that the
resulting Casimir energy expression is finite even when r
=1 for all frequencies except when �=0 or 2�. There is
therefore no need to assume high-frequency transparency for
the sake of finiteness in this case.

With this assumption we can easily perform a partial in-
tegration in �. We note that, when r is independent of � as in
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this is not so�,
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Ẽ =
i

8�2na2�
−�

�

d,
r2 sinh ,�� − ���� sinh ,�2� − �� − �2� − ��sinh ,��

sinh ,��sinh2 ,� − r2 sinh2 ,�� − ��� �
0

�

dxx ln�1 − x2�i,
2 �x�� . �3.12�

Despite appearances this expression is in fact real. This is
because the dispersion function in the first integral is an odd
function of , while the real and imaginary parts of the loga-
rithm are even and odd, respectively �provided the appropri-
ate branch of the logarithm is taken�, hence the imaginary

part of Ẽ vanishes under symmetrical integration. It is
straightforward to write down the correction terms contain-

ing dr
d� or dr

d� should the reader wish to do so. Such is neces-
sary if one were to study the role of dispersion on the energy;
we shall not consider this herein—but see the Appendix for
dr /d��0.

The energy expression �3.12� has the reasonable proper-
ties of being zero at �=� and symmetrical under the substi-
tution �↔2�−�. We will study Eq. �3.12� numerically in
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In order to proceed to producing numerical results we
make the simplifying assumption that r be approximately
constant with respect to � over the important range of � val-
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the planar geometry �59�. While it is true that for any real
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Despite appearances this expression is in fact real. This is
because the dispersion function in the first integral is an odd
function of , while the real and imaginary parts of the loga-
rithm are even and odd, respectively �provided the appropri-
ate branch of the logarithm is taken�, hence the imaginary

part of Ẽ vanishes under symmetrical integration. It is
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ing dr
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d� should the reader wish to do so. Such is neces-
sary if one were to study the role of dispersion on the energy;
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Sec. IV. We argue in Sec. III B that Eq. �3.6� is the full
Casimir energy of this system �after subtracting that of the
cylinder alone�. Thus the zero energy at �=� demonstrates a
particular generalization of the theorem of Ambjørn and
Wolfram ��60�, stated in Eq. �2.49� in �3��: the energy of a
semicircular compact diaphanous cylinder is half that of a
full cylinder �there is an equal contribution from the exterior
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in Eq. �3.12� behaves for �−��0 as

d
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2�r2
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with a similar behavior for the term proportional to 2�−�
and so is exponentially convergent. With perfect reflectivity
Eq. �3.12� is finite except when � equals 0 or 2� when �r�
=1.

B. No additional corner term

In the geometry considered in �35�, which differed from
the present one primarily by the assumption that the wedge
be perfectly conducting, the Casimir energy was found to
possess a divergent term which could be associated with the
corners where the arc meets the wedge sides. When the arc
was instead made diaphanous it was shown that this term
could be rendered finite by virtue of high-frequency transpar-
ency as displayed by any real material boundary.

The energy �3.6� is the direct generalization of the finite
part of the energy of the system considered in �35�. We will
argue that when the wedge is also diaphanous, this is indeed
the full energy of the system, regularized by the subtraction
of the energy of the cylinder alone �which in turn is regular-
ized by subtracting the energy of uniform space�.

Let us recapitulate how the divergent term in �35� came
about. The zeta function regularized energy expression �Eq.
�4.13� in �35�� adds the m=0 modes of both polarizations
with half-weight. There should be no m=0 TM mode, how-
ever, because the perfectly conducting wedge forces any azi-
muthally constant electric field to have zero amplitude every-
where, thus the half-weight zero TM mode should be
subtracted. Moreover, since for arbitrary opening angles only
positive values of m are allowed, the zero TE mode should
be counted with full rather than half-weight, and thus the
correction term equals one half the m=0 energy of the TE
mode minus one half that of the TM mode.

In contrast we are here not considering perfectly conduct-
ing wedge boundaries so the TM m=0 mode should be in-
cluded. The question becomes whether the �=0 TE and TM
modes have been counted with only half the weight they
should. In a system such as ours the interior and exterior
sectors are coupled and all allowed modes are modes satis-
fying boundary conditions of the whole double wedge. Thus
there can be only one azimuthally constant mode for all &
�not one for each sector as one obtains for a perfectly con-
ducting wedge sheet� hence the zero mode should be counted
once. This is exactly what is done in Eq. �3.6� because the
dispersion function �Eq. �2.20�� has a double zero at �=0
canceling the factor 1/2. Hence no additional correction term

is necessary and the use of dispersion relations with the ar-
gument principle automatically gives the full result.

In our numerical considerations reported in Sec. IV we
find correspondence with the finite part of the energy re-
ported in �35� when applied to two complementary wedges
separated by a perfectly conducting sheet. Note how this
correspondence is somewhat peculiar: in the energy expres-
sion of that reference the zero mode was counted with half-
weight where it should have been accounted for fully, but in
adding the energy of the complementary wedge as in Eq.
�4.9� each of the complementary wedges contribute a half of
the m=0 mode energy, amounting to the full energy when we
insist that this mode be common to the whole system.

It is thus made clear how the divergent term found in
�24,25,35� can be seen as a pathology of the ideal conductor
boundary conditions at &= #� /2 which �a� completely re-
moves the azimuthally constant TM mode and �b� cleanly
severs the connection between the interior and exterior of the
wedge. Whether a similar term would appear—perhaps with
a finite value—for a nondiaphanous wedge remains an open
question since the diaphanous condition employed herein is
also a special case.

IV. NUMERICAL INVESTIGATION

It is useful to introduce the shorthand notation,

Ẽ = −
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where Y is the imaginary part of the integral over the loga-
rithm in Eq. �3.12�,
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where we take the argument of the logarithm to lie in
�−�
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Near x=0 this integrand �Eq. �4.2�� behaves like

x sin�ln x�, oscillating increasingly fast. Techniques of rotat-
ing the integration path are restricted by the scarcity of meth-
ods for evaluating Bessel functions of general complex order
and will anyway come at the cost of making d

d, ln D /D0 os-
cillatory. For numerical purposes it is more useful to perform
the substitution x=ey,
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dye2y arctan
− e2y Im��i,
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1 − e2y Re��i,

2 �ey��
. �4.3�

For moderate values of , this integrand is numerically man-
ageable �there are O�4,� significant oscillations to integrate
over�, the remaining challenge being the evaluation of �i,�x�.

Rather than consider the complex function Ii,�x� it is nu-
merically useful to consider the real function

Li,�x� = 1
2 �Ii,�x� + I−i,�x�� . �4.4�

When , is real, Li,�x�=Re Ii,�x�. We find, using the Wronsk-
ian relation
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Sec. IV. We argue in Sec. III B that Eq. �3.6� is the full
Casimir energy of this system �after subtracting that of the
cylinder alone�. Thus the zero energy at �=� demonstrates a
particular generalization of the theorem of Ambjørn and
Wolfram ��60�, stated in Eq. �2.49� in �3��: the energy of a
semicircular compact diaphanous cylinder is half that of a
full cylinder �there is an equal contribution from the exterior
“half-cylinder” so the difference is zero�.

For large , the term proportional to � in the big fraction
in Eq. �3.12� behaves for �−��0 as
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with a similar behavior for the term proportional to 2�−�
and so is exponentially convergent. With perfect reflectivity
Eq. �3.12� is finite except when � equals 0 or 2� when �r�
=1.

B. No additional corner term

In the geometry considered in �35�, which differed from
the present one primarily by the assumption that the wedge
be perfectly conducting, the Casimir energy was found to
possess a divergent term which could be associated with the
corners where the arc meets the wedge sides. When the arc
was instead made diaphanous it was shown that this term
could be rendered finite by virtue of high-frequency transpar-
ency as displayed by any real material boundary.

The energy �3.6� is the direct generalization of the finite
part of the energy of the system considered in �35�. We will
argue that when the wedge is also diaphanous, this is indeed
the full energy of the system, regularized by the subtraction
of the energy of the cylinder alone �which in turn is regular-
ized by subtracting the energy of uniform space�.

Let us recapitulate how the divergent term in �35� came
about. The zeta function regularized energy expression �Eq.
�4.13� in �35�� adds the m=0 modes of both polarizations
with half-weight. There should be no m=0 TM mode, how-
ever, because the perfectly conducting wedge forces any azi-
muthally constant electric field to have zero amplitude every-
where, thus the half-weight zero TM mode should be
subtracted. Moreover, since for arbitrary opening angles only
positive values of m are allowed, the zero TE mode should
be counted with full rather than half-weight, and thus the
correction term equals one half the m=0 energy of the TE
mode minus one half that of the TM mode.

In contrast we are here not considering perfectly conduct-
ing wedge boundaries so the TM m=0 mode should be in-
cluded. The question becomes whether the �=0 TE and TM
modes have been counted with only half the weight they
should. In a system such as ours the interior and exterior
sectors are coupled and all allowed modes are modes satis-
fying boundary conditions of the whole double wedge. Thus
there can be only one azimuthally constant mode for all &
�not one for each sector as one obtains for a perfectly con-
ducting wedge sheet� hence the zero mode should be counted
once. This is exactly what is done in Eq. �3.6� because the
dispersion function �Eq. �2.20�� has a double zero at �=0
canceling the factor 1/2. Hence no additional correction term

is necessary and the use of dispersion relations with the ar-
gument principle automatically gives the full result.

In our numerical considerations reported in Sec. IV we
find correspondence with the finite part of the energy re-
ported in �35� when applied to two complementary wedges
separated by a perfectly conducting sheet. Note how this
correspondence is somewhat peculiar: in the energy expres-
sion of that reference the zero mode was counted with half-
weight where it should have been accounted for fully, but in
adding the energy of the complementary wedge as in Eq.
�4.9� each of the complementary wedges contribute a half of
the m=0 mode energy, amounting to the full energy when we
insist that this mode be common to the whole system.

It is thus made clear how the divergent term found in
�24,25,35� can be seen as a pathology of the ideal conductor
boundary conditions at &= #� /2 which �a� completely re-
moves the azimuthally constant TM mode and �b� cleanly
severs the connection between the interior and exterior of the
wedge. Whether a similar term would appear—perhaps with
a finite value—for a nondiaphanous wedge remains an open
question since the diaphanous condition employed herein is
also a special case.

IV. NUMERICAL INVESTIGATION

It is useful to introduce the shorthand notation,
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where we take the argument of the logarithm to lie in
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Near x=0 this integrand �Eq. �4.2�� behaves like

x sin�ln x�, oscillating increasingly fast. Techniques of rotat-
ing the integration path are restricted by the scarcity of meth-
ods for evaluating Bessel functions of general complex order
and will anyway come at the cost of making d
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cillatory. For numerical purposes it is more useful to perform
the substitution x=ey,
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For moderate values of , this integrand is numerically man-
ageable �there are O�4,� significant oscillations to integrate
over�, the remaining challenge being the evaluation of �i,�x�.

Rather than consider the complex function Ii,�x� it is nu-
merically useful to consider the real function

Li,�x� = 1
2 �Ii,�x� + I−i,�x�� . �4.4�

When , is real, Li,�x�=Re Ii,�x�. We find, using the Wronsk-
ian relation
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Sec. IV. We argue in Sec. III B that Eq. �3.6� is the full
Casimir energy of this system �after subtracting that of the
cylinder alone�. Thus the zero energy at �=� demonstrates a
particular generalization of the theorem of Ambjørn and
Wolfram ��60�, stated in Eq. �2.49� in �3��: the energy of a
semicircular compact diaphanous cylinder is half that of a
full cylinder �there is an equal contribution from the exterior
“half-cylinder” so the difference is zero�.

For large , the term proportional to � in the big fraction
in Eq. �3.12� behaves for �−��0 as
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with a similar behavior for the term proportional to 2�−�
and so is exponentially convergent. With perfect reflectivity
Eq. �3.12� is finite except when � equals 0 or 2� when �r�
=1.

B. No additional corner term

In the geometry considered in �35�, which differed from
the present one primarily by the assumption that the wedge
be perfectly conducting, the Casimir energy was found to
possess a divergent term which could be associated with the
corners where the arc meets the wedge sides. When the arc
was instead made diaphanous it was shown that this term
could be rendered finite by virtue of high-frequency transpar-
ency as displayed by any real material boundary.

The energy �3.6� is the direct generalization of the finite
part of the energy of the system considered in �35�. We will
argue that when the wedge is also diaphanous, this is indeed
the full energy of the system, regularized by the subtraction
of the energy of the cylinder alone �which in turn is regular-
ized by subtracting the energy of uniform space�.

Let us recapitulate how the divergent term in �35� came
about. The zeta function regularized energy expression �Eq.
�4.13� in �35�� adds the m=0 modes of both polarizations
with half-weight. There should be no m=0 TM mode, how-
ever, because the perfectly conducting wedge forces any azi-
muthally constant electric field to have zero amplitude every-
where, thus the half-weight zero TM mode should be
subtracted. Moreover, since for arbitrary opening angles only
positive values of m are allowed, the zero TE mode should
be counted with full rather than half-weight, and thus the
correction term equals one half the m=0 energy of the TE
mode minus one half that of the TM mode.

In contrast we are here not considering perfectly conduct-
ing wedge boundaries so the TM m=0 mode should be in-
cluded. The question becomes whether the �=0 TE and TM
modes have been counted with only half the weight they
should. In a system such as ours the interior and exterior
sectors are coupled and all allowed modes are modes satis-
fying boundary conditions of the whole double wedge. Thus
there can be only one azimuthally constant mode for all &
�not one for each sector as one obtains for a perfectly con-
ducting wedge sheet� hence the zero mode should be counted
once. This is exactly what is done in Eq. �3.6� because the
dispersion function �Eq. �2.20�� has a double zero at �=0
canceling the factor 1/2. Hence no additional correction term

is necessary and the use of dispersion relations with the ar-
gument principle automatically gives the full result.

In our numerical considerations reported in Sec. IV we
find correspondence with the finite part of the energy re-
ported in �35� when applied to two complementary wedges
separated by a perfectly conducting sheet. Note how this
correspondence is somewhat peculiar: in the energy expres-
sion of that reference the zero mode was counted with half-
weight where it should have been accounted for fully, but in
adding the energy of the complementary wedge as in Eq.
�4.9� each of the complementary wedges contribute a half of
the m=0 mode energy, amounting to the full energy when we
insist that this mode be common to the whole system.

It is thus made clear how the divergent term found in
�24,25,35� can be seen as a pathology of the ideal conductor
boundary conditions at &= #� /2 which �a� completely re-
moves the azimuthally constant TM mode and �b� cleanly
severs the connection between the interior and exterior of the
wedge. Whether a similar term would appear—perhaps with
a finite value—for a nondiaphanous wedge remains an open
question since the diaphanous condition employed herein is
also a special case.

IV. NUMERICAL INVESTIGATION

It is useful to introduce the shorthand notation,

Ẽ = −
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Near x=0 this integrand �Eq. �4.2�� behaves like

x sin�ln x�, oscillating increasingly fast. Techniques of rotat-
ing the integration path are restricted by the scarcity of meth-
ods for evaluating Bessel functions of general complex order
and will anyway come at the cost of making d

d, ln D /D0 os-
cillatory. For numerical purposes it is more useful to perform
the substitution x=ey,

Y�,� = �
−�

�

dye2y arctan
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For moderate values of , this integrand is numerically man-
ageable �there are O�4,� significant oscillations to integrate
over�, the remaining challenge being the evaluation of �i,�x�.

Rather than consider the complex function Ii,�x� it is nu-
merically useful to consider the real function

Li,�x� = 1
2 �Ii,�x� + I−i,�x�� . �4.4�

When , is real, Li,�x�=Re Ii,�x�. We find, using the Wronsk-
ian relation
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Sec. IV. We argue in Sec. III B that Eq. �3.6� is the full
Casimir energy of this system �after subtracting that of the
cylinder alone�. Thus the zero energy at �=� demonstrates a
particular generalization of the theorem of Ambjørn and
Wolfram ��60�, stated in Eq. �2.49� in �3��: the energy of a
semicircular compact diaphanous cylinder is half that of a
full cylinder �there is an equal contribution from the exterior
“half-cylinder” so the difference is zero�.

For large , the term proportional to � in the big fraction
in Eq. �3.12� behaves for �−��0 as
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with a similar behavior for the term proportional to 2�−�
and so is exponentially convergent. With perfect reflectivity
Eq. �3.12� is finite except when � equals 0 or 2� when �r�
=1.

B. No additional corner term

In the geometry considered in �35�, which differed from
the present one primarily by the assumption that the wedge
be perfectly conducting, the Casimir energy was found to
possess a divergent term which could be associated with the
corners where the arc meets the wedge sides. When the arc
was instead made diaphanous it was shown that this term
could be rendered finite by virtue of high-frequency transpar-
ency as displayed by any real material boundary.

The energy �3.6� is the direct generalization of the finite
part of the energy of the system considered in �35�. We will
argue that when the wedge is also diaphanous, this is indeed
the full energy of the system, regularized by the subtraction
of the energy of the cylinder alone �which in turn is regular-
ized by subtracting the energy of uniform space�.

Let us recapitulate how the divergent term in �35� came
about. The zeta function regularized energy expression �Eq.
�4.13� in �35�� adds the m=0 modes of both polarizations
with half-weight. There should be no m=0 TM mode, how-
ever, because the perfectly conducting wedge forces any azi-
muthally constant electric field to have zero amplitude every-
where, thus the half-weight zero TM mode should be
subtracted. Moreover, since for arbitrary opening angles only
positive values of m are allowed, the zero TE mode should
be counted with full rather than half-weight, and thus the
correction term equals one half the m=0 energy of the TE
mode minus one half that of the TM mode.

In contrast we are here not considering perfectly conduct-
ing wedge boundaries so the TM m=0 mode should be in-
cluded. The question becomes whether the �=0 TE and TM
modes have been counted with only half the weight they
should. In a system such as ours the interior and exterior
sectors are coupled and all allowed modes are modes satis-
fying boundary conditions of the whole double wedge. Thus
there can be only one azimuthally constant mode for all &
�not one for each sector as one obtains for a perfectly con-
ducting wedge sheet� hence the zero mode should be counted
once. This is exactly what is done in Eq. �3.6� because the
dispersion function �Eq. �2.20�� has a double zero at �=0
canceling the factor 1/2. Hence no additional correction term

is necessary and the use of dispersion relations with the ar-
gument principle automatically gives the full result.

In our numerical considerations reported in Sec. IV we
find correspondence with the finite part of the energy re-
ported in �35� when applied to two complementary wedges
separated by a perfectly conducting sheet. Note how this
correspondence is somewhat peculiar: in the energy expres-
sion of that reference the zero mode was counted with half-
weight where it should have been accounted for fully, but in
adding the energy of the complementary wedge as in Eq.
�4.9� each of the complementary wedges contribute a half of
the m=0 mode energy, amounting to the full energy when we
insist that this mode be common to the whole system.

It is thus made clear how the divergent term found in
�24,25,35� can be seen as a pathology of the ideal conductor
boundary conditions at &= #� /2 which �a� completely re-
moves the azimuthally constant TM mode and �b� cleanly
severs the connection between the interior and exterior of the
wedge. Whether a similar term would appear—perhaps with
a finite value—for a nondiaphanous wedge remains an open
question since the diaphanous condition employed herein is
also a special case.

IV. NUMERICAL INVESTIGATION

It is useful to introduce the shorthand notation,
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Near x=0 this integrand �Eq. �4.2�� behaves like

x sin�ln x�, oscillating increasingly fast. Techniques of rotat-
ing the integration path are restricted by the scarcity of meth-
ods for evaluating Bessel functions of general complex order
and will anyway come at the cost of making d
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cillatory. For numerical purposes it is more useful to perform
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For moderate values of , this integrand is numerically man-
ageable �there are O�4,� significant oscillations to integrate
over�, the remaining challenge being the evaluation of �i,�x�.

Rather than consider the complex function Ii,�x� it is nu-
merically useful to consider the real function

Li,�x� = 1
2 �Ii,�x� + I−i,�x�� . �4.4�

When , is real, Li,�x�=Re Ii,�x�. We find, using the Wronsk-
ian relation
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W�K�,I���x� = 1/x �4.5�

and relations between the two modified Bessel functions, that
�i, can be written as

�i,�x� =
1

x
+ 2Ki,� �x�Li,�x� −

2i sinh ,�

�
Ki,� �x�Ki,�x� .

�4.6�

For obtaining the right limit of the integrand near ,=0 one
may notice that Y�,� for small , is

Y�,� � − ,�
0

�

dxx24K0K1�1 − 2xI0K1�
x2 − �1 − 2xI0K1�2

+ O�,2�

plus higher orders. Numerically one finds

Y�,� � 0.874 42, + O�,2� . �4.7�

A complete algorithm for evaluating K and L for imaginary
order and real argument was developed by Gil et al. �61,62�.
Since we are only calculating products of Bessel functions
and the methods for calculating one is much like that for
another, the code performance could be increased signifi-
cantly by reprogramming �we used programming language
C#�.

Different calculation methods are appropriate in different
areas of the x ,, plane as shown in Fig. 3�a�. For K and K�
we use Maclaurin-type series expansion in region I in the
figure �bounded by ,�0.044�x−3.1�1.9+x−3.1� and in re-
gions II and III �bounded by ,	380� x−3

2300�
0.572� a method of

continued fractions is used �63� �the continued fraction
method in �64� may be used for imaginary orders also�. No

continued fraction method is available for L, but series ex-
pansions turn out to be more robust than for K ,K�; for x
	60 �region II� Maclaurin series expansion is used, and
asymptotic series expansion is used above this �region III�.
In the remaining area �region IV� Airy function-type
asymptotic expansions were used �61,65,66�. In addition a
fast method for evaluating complex gamma functions was
necessary—we used that of Spouge �67�. The resulting algo-
rithm was able to calculate �i,�x� with at least eight signifi-
cant digits on x ,,� �0,100�, more than sufficient for our
purposes.

Because the calculation of � is rather elaborate we do not
do the double integral �Eq. �4.1�� directly but calculate a
number of discrete values of Y�,� and use spline interpola-
tion to represent Y in the integration over ,, which then
converges rapidly. The function Y�,� is zero at ,=0 and
increases smoothly thence to approach a positive constant,
obtained already at modest values of ,, as plotted in Fig.
3�b�. The factor �ln D /D0�� behaves as e−2,� for large ,
�assuming �	�� assuring rapid convergence when � is not
close to zero or 2�.

In the limit r2→1 we should obtain correspondence with
�35� where the energy of a perfectly reflecting wedge closed
by a diaphanous arc was considered. In this strong coupling
case �the arc becoming perfectly reflecting� the energy of the
sector inside the wedge only �modulo a singular term� was
written on the form

Ẽid =
1

8�na2e�p� , �4.8�

where the dimensionless function e�p� is given in Eq. �4.22�
in �35� and p=� /� as before. In the present case the modes
in the interior and exterior sectors never decouple even in the
limit r→1 and Eq. �3.12� thus calculates the energy of the
whole system, regularized by subtracting the energy of free
space, that is, by subtracting the result when the arc is moved
to infinity �this is already implicitly subtracted by use of Eq.
�2.6�� and the wedge boundaries become transparent. The
energy to compare with is therefore on the form given in �35�
where the energy of the complementary wedge is added and
that of a cylinder is subtracted. We can therefore write Eq.

�3.4� in the form Ẽid= ẽid�p� /8�na2 where

ẽid�p� = e�p� + e�p�� − 2e�1� �4.9�

and p� was defined in Eq. �3.3�.
For our system the corresponding function is

ẽ�p� = −
2

�
�

0

�

d,�ln D

D0
��Y�i,;r� . �4.10�

We plot ẽ�p� as a function of p and as a function of � in Fig.
4. When r→1 full agreement with ẽid�p� of Eq. �4.9� is
obtained.

V. CONCLUSIONS

We have analyzed the Casimir energy of a magnetodielec-
tric cylinder whose cross section is a wedge closed by a
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FIG. 3. �a� Different methods of calculation used in different
areas of the x ,, plane �see text�. �b� The function Y�,�.
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�i, can be written as
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For obtaining the right limit of the integrand near ,=0 one
may notice that Y�,� for small , is
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plus higher orders. Numerically one finds

Y�,� � 0.874 42, + O�,2� . �4.7�

A complete algorithm for evaluating K and L for imaginary
order and real argument was developed by Gil et al. �61,62�.
Since we are only calculating products of Bessel functions
and the methods for calculating one is much like that for
another, the code performance could be increased signifi-
cantly by reprogramming �we used programming language
C#�.

Different calculation methods are appropriate in different
areas of the x ,, plane as shown in Fig. 3�a�. For K and K�
we use Maclaurin-type series expansion in region I in the
figure �bounded by ,�0.044�x−3.1�1.9+x−3.1� and in re-
gions II and III �bounded by ,	380� x−3

2300�
0.572� a method of

continued fractions is used �63� �the continued fraction
method in �64� may be used for imaginary orders also�. No

continued fraction method is available for L, but series ex-
pansions turn out to be more robust than for K ,K�; for x
	60 �region II� Maclaurin series expansion is used, and
asymptotic series expansion is used above this �region III�.
In the remaining area �region IV� Airy function-type
asymptotic expansions were used �61,65,66�. In addition a
fast method for evaluating complex gamma functions was
necessary—we used that of Spouge �67�. The resulting algo-
rithm was able to calculate �i,�x� with at least eight signifi-
cant digits on x ,,� �0,100�, more than sufficient for our
purposes.

Because the calculation of � is rather elaborate we do not
do the double integral �Eq. �4.1�� directly but calculate a
number of discrete values of Y�,� and use spline interpola-
tion to represent Y in the integration over ,, which then
converges rapidly. The function Y�,� is zero at ,=0 and
increases smoothly thence to approach a positive constant,
obtained already at modest values of ,, as plotted in Fig.
3�b�. The factor �ln D /D0�� behaves as e−2,� for large ,
�assuming �	�� assuring rapid convergence when � is not
close to zero or 2�.

In the limit r2→1 we should obtain correspondence with
�35� where the energy of a perfectly reflecting wedge closed
by a diaphanous arc was considered. In this strong coupling
case �the arc becoming perfectly reflecting� the energy of the
sector inside the wedge only �modulo a singular term� was
written on the form

Ẽid =
1

8�na2e�p� , �4.8�

where the dimensionless function e�p� is given in Eq. �4.22�
in �35� and p=� /� as before. In the present case the modes
in the interior and exterior sectors never decouple even in the
limit r→1 and Eq. �3.12� thus calculates the energy of the
whole system, regularized by subtracting the energy of free
space, that is, by subtracting the result when the arc is moved
to infinity �this is already implicitly subtracted by use of Eq.
�2.6�� and the wedge boundaries become transparent. The
energy to compare with is therefore on the form given in �35�
where the energy of the complementary wedge is added and
that of a cylinder is subtracted. We can therefore write Eq.

�3.4� in the form Ẽid= ẽid�p� /8�na2 where

ẽid�p� = e�p� + e�p�� − 2e�1� �4.9�

and p� was defined in Eq. �3.3�.
For our system the corresponding function is

ẽ�p� = −
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We plot ẽ�p� as a function of p and as a function of � in Fig.
4. When r→1 full agreement with ẽid�p� of Eq. �4.9� is
obtained.
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tric cylinder whose cross section is a wedge closed by a
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circular arc under the restriction that the cylinder be diapha-
nous, i.e., that the speed of light be spatially uniform. We
obtain an expression for the Casimir energy per unit length
of the cylinder, regularized by subtraction of the energy of
the wedge alone and the cylinder alone. The energy is then
zero when the opening angle of the wedge, �, equals �, it is
symmetrical under the substitution �↔2�−�, and it re-
mains finite as � tends to zero or 2� except when the abso-
lute reflection coefficients of the wedge boundaries are equal
to unity.

A numerical investigation confirms that this generalizes a
previously known result for a perfectly conducting wedge
closed by a diaphanous magnetodielectric arc in the limit
where the arc becomes perfectly reflecting, except for a sin-
gular term present in that geometry which we argue does not
present itself in the present configuration. This implies that
the singular term found and discussed in �35� is an artifact of
the use of ideal conductor boundary conditions and does not
enter for a diaphanous wedge.

We mention finally that the diaphanous condition ��
=const is an important simplifying element in the analysis. If
this condition were given up, the problem would be very
difficult to solve. As mentioned also in �35�, the effect is the
same as that encountered in the Casimir theory of a solid
ball: the condition of diaphanousness causes the divergent
terms to vanish �68�. Analogously, when calculating the Ca-
simir energy for a piecewise uniform string, the same effect
turns up. If the velocity of sound �in this case sound replaces
light� is the same �=c� in the different pieces of the string,

then the theory works smoothly �69�. If this condition is
relaxed, the problem becomes in practice intractable.

ACKNOWLEDGMENTS

The work of K.A.M. was supported in part by grants from
the �U.S.� National Science Foundation and the �U.S.� De-
partment of Energy. S.Å.E. thanks Carsten Henkel and
Francesco Intravaia for stimulating discussions on this topic.
K.A.M. thanks Klaus Kirsten, Prachi Parashar, and Jef Wag-
ner for collaboration. The authors are grateful to Vladimir
Nesterenko for useful remarks on the paper.

APPENDIX: SEMITRANSPARENT WEDGE

In this appendix we sketch another way of deriving the
azimuthal dependence, based on an analogous scalar model,
in which the wedge is described by a  -function potential,

V�&� = �1 �& − �/2� + �2 �& + �/2� . �A1�

This has the diaphanous property of preserving the speed of
light both within and outside the wedge. We can solve this
cylindrical problem in terms of the two-dimensional Green’s
function G, which satisfies
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The azimuthal eigenvalue � is determined by Eq. �A3�. For
the wedge  -function potential �Eq. �A1�� it is easy to deter-
mine � by writing the solutions to Eq. �A3� as linear combi-
nations of e#i�&, with different coefficients in the sectors
�&�	� /2 and �( �&��� /2. Continuity of the function and
discontinuity of its derivative are imposed at the wedge
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circular arc under the restriction that the cylinder be diapha-
nous, i.e., that the speed of light be spatially uniform. We
obtain an expression for the Casimir energy per unit length
of the cylinder, regularized by subtraction of the energy of
the wedge alone and the cylinder alone. The energy is then
zero when the opening angle of the wedge, �, equals �, it is
symmetrical under the substitution �↔2�−�, and it re-
mains finite as � tends to zero or 2� except when the abso-
lute reflection coefficients of the wedge boundaries are equal
to unity.

A numerical investigation confirms that this generalizes a
previously known result for a perfectly conducting wedge
closed by a diaphanous magnetodielectric arc in the limit
where the arc becomes perfectly reflecting, except for a sin-
gular term present in that geometry which we argue does not
present itself in the present configuration. This implies that
the singular term found and discussed in �35� is an artifact of
the use of ideal conductor boundary conditions and does not
enter for a diaphanous wedge.

We mention finally that the diaphanous condition ��
=const is an important simplifying element in the analysis. If
this condition were given up, the problem would be very
difficult to solve. As mentioned also in �35�, the effect is the
same as that encountered in the Casimir theory of a solid
ball: the condition of diaphanousness causes the divergent
terms to vanish �68�. Analogously, when calculating the Ca-
simir energy for a piecewise uniform string, the same effect
turns up. If the velocity of sound �in this case sound replaces
light� is the same �=c� in the different pieces of the string,

then the theory works smoothly �69�. If this condition is
relaxed, the problem becomes in practice intractable.
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circular arc under the restriction that the cylinder be diapha-
nous, i.e., that the speed of light be spatially uniform. We
obtain an expression for the Casimir energy per unit length
of the cylinder, regularized by subtraction of the energy of
the wedge alone and the cylinder alone. The energy is then
zero when the opening angle of the wedge, �, equals �, it is
symmetrical under the substitution �↔2�−�, and it re-
mains finite as � tends to zero or 2� except when the abso-
lute reflection coefficients of the wedge boundaries are equal
to unity.

A numerical investigation confirms that this generalizes a
previously known result for a perfectly conducting wedge
closed by a diaphanous magnetodielectric arc in the limit
where the arc becomes perfectly reflecting, except for a sin-
gular term present in that geometry which we argue does not
present itself in the present configuration. This implies that
the singular term found and discussed in �35� is an artifact of
the use of ideal conductor boundary conditions and does not
enter for a diaphanous wedge.

We mention finally that the diaphanous condition ��
=const is an important simplifying element in the analysis. If
this condition were given up, the problem would be very
difficult to solve. As mentioned also in �35�, the effect is the
same as that encountered in the Casimir theory of a solid
ball: the condition of diaphanousness causes the divergent
terms to vanish �68�. Analogously, when calculating the Ca-
simir energy for a piecewise uniform string, the same effect
turns up. If the velocity of sound �in this case sound replaces
light� is the same �=c� in the different pieces of the string,

then the theory works smoothly �69�. If this condition is
relaxed, the problem becomes in practice intractable.
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azimuthal dependence, based on an analogous scalar model,
in which the wedge is described by a  -function potential,

V�&� = �1 �& − �/2� + �2 �& + �/2� . �A1�

This has the diaphanous property of preserving the speed of
light both within and outside the wedge. We can solve this
cylindrical problem in terms of the two-dimensional Green’s
function G, which satisfies
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The azimuthal eigenvalue � is determined by Eq. �A3�. For
the wedge  -function potential �Eq. �A1�� it is easy to deter-
mine � by writing the solutions to Eq. �A3� as linear combi-
nations of e#i�&, with different coefficients in the sectors
�&�	� /2 and �( �&��� /2. Continuity of the function and
discontinuity of its derivative are imposed at the wedge
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circular arc under the restriction that the cylinder be diapha-
nous, i.e., that the speed of light be spatially uniform. We
obtain an expression for the Casimir energy per unit length
of the cylinder, regularized by subtraction of the energy of
the wedge alone and the cylinder alone. The energy is then
zero when the opening angle of the wedge, �, equals �, it is
symmetrical under the substitution �↔2�−�, and it re-
mains finite as � tends to zero or 2� except when the abso-
lute reflection coefficients of the wedge boundaries are equal
to unity.

A numerical investigation confirms that this generalizes a
previously known result for a perfectly conducting wedge
closed by a diaphanous magnetodielectric arc in the limit
where the arc becomes perfectly reflecting, except for a sin-
gular term present in that geometry which we argue does not
present itself in the present configuration. This implies that
the singular term found and discussed in �35� is an artifact of
the use of ideal conductor boundary conditions and does not
enter for a diaphanous wedge.

We mention finally that the diaphanous condition ��
=const is an important simplifying element in the analysis. If
this condition were given up, the problem would be very
difficult to solve. As mentioned also in �35�, the effect is the
same as that encountered in the Casimir theory of a solid
ball: the condition of diaphanousness causes the divergent
terms to vanish �68�. Analogously, when calculating the Ca-
simir energy for a piecewise uniform string, the same effect
turns up. If the velocity of sound �in this case sound replaces
light� is the same �=c� in the different pieces of the string,

then the theory works smoothly �69�. If this condition is
relaxed, the problem becomes in practice intractable.
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boundaries. The four simultaneous linear homogeneous
equations have a solution only if the secular equation is sat-
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single  -function interface is ri= �1+2i� /�i�−1, so,

Re r1
−1r2

−1 = 1 −
4�2

�1�2
, Im r1

−1r2
−1 =

2�

�1
+

2�

�2
, �A7�

we see that this dispersion relation coincides with that in Eq.
�2.20� when the reflection coefficient is purely real. Note that
the �=0 root of Eq. �A6� is spurious and must be excluded;
there are no �=0 modes for the semitransparent wedge.

Now the full Green’s function can be constructed as
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where we have recognized that because the eigenvalue equa-
tion for � is a Sturm-Liuoville problem, the integration over
the & eigenfunctions is 2�. As above, we can enforce the
eigenvalue condition by the argument principle, so we have
the expression after again converting to polar coordinates as
in Eq. �3.10�,
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leaving us with an expression for the Casimir energy analo-
gous to Eq. �3.12�. This can be further simplified by noting

that d
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Details of the calculation of the Casimir energy for a semi-
transparent wedge will appear elsewhere.
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�2.20� when the reflection coefficient is purely real. Note that
the �=0 root of Eq. �A6� is spurious and must be excluded;
there are no �=0 modes for the semitransparent wedge.

Now the full Green’s function can be constructed as

G�x,x�� =� d�

2�
e−i��t−t��� dk

2�
eik�z−z��



1

2��� *��&�*�
��&��g��),)�� , �A8�

from which the Casimir energy per length can be computed
from

E =
1

2i
�

−�

� d�

2�
2�2�

−�

� dk

2��� �0
�

d))g��),)� , �A9�

where we have recognized that because the eigenvalue equa-
tion for � is a Sturm-Liuoville problem, the integration over
the & eigenfunctions is 2�. As above, we can enforce the
eigenvalue condition by the argument principle, so we have
the expression after again converting to polar coordinates as
in Eq. �3.10�,

E =
1

8�2i
�

0

�

d��3�
−�

�

d,	 d

d,
ln D�i,�
�

0

�

d))gi,�),)� .

�A10�

Further, we must subtract off the free radial Green’s function
without the arc at r=a, which then implies

�
0

�

d))gi,�),)�→ a

2�

d

d�a
ln�Ii,��a�Ki,��a�� ,

�A11�

as well as remove the term present without the wedge poten-
tial,

D���→ D̃��� =
�1�2

4�2

D���
sin2 ��

, �A12�

leaving us with an expression for the Casimir energy analo-
gous to Eq. �3.12�. This can be further simplified by noting

that d
d, ln D̃�i,� is odd, which then yields the expression

E = −
1

4�2a2�
0

�

dxx�
0

�

d,	 d

d,
ln D̃�i,�
arctan

Ki,�x�
Li,�x�

,

�A13�

where

K��x� = −
�

2 sin ��
�I��x� − I−��x�� , �A14a�

L��x� =
i�

2 sin ��
�I��x� + I−��x�� , �A14b�

where both Li,�x� and Ki,�x� are real for real , and x, and

Ii,�x� =
sinh ,�

�
�Li,�x� − iKi,�x�� . �A15�

Details of the calculation of the Casimir energy for a semi-
transparent wedge will appear elsewhere.
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I. INTRODUCTION

The Casimir effect [1] is the name given to energies and
forces due to field fluctuations in the presence of bounda-
ries. Once a theoretical curiosity, the effect has gained
enormous and still increasing attention since its first quan-
titative measurement a good decade ago [2]. Reviews of
recent progress include Refs. [3–5].

The first geometry, considered in Casimir’s classic paper
[1] was that of two perfectly conducting plates, generalized
to arbitrary dispersive materials by Lifshitz [6]. The force
between parallel plates of any purely dielectric material is
attractive, and it was therefore surprising when it was
shown by Boyer that the Casimir stress on a perfectly
conducting spherical shell is repulsive [7].

While it was clear from Boyer’s result that the Casimir
effect has a strong geometry dependence, results for new
geometries were slow in coming for a long time, and it was
only in 1981 that DeRaad and Milton calculated the
Casimir energy for a circularly cylindrical shell [8].
Since then a number of analytical efforts have added to
the knowledge of the Casimir effect in cylindrical cavities,
both perfectly conducting [9–12] and (magneto)dielectric
[13–18]. Most treatments of the cylindrical geometry have
dealt with the zero-temperature situation, and only a few
calculations have concerned finite temperature [19–21],
and in these references only the high-temperature asymp-
totics were derived. No analytical expression valid for all
temperatures exists for the cylindrical geometry to our
knowledge.

A related geometry is the wedge. First considered with
respect to the Casimir effect in the 1970s [22,23], it has
been the subject of several treatments later [24–28]. The
geometry is inviting in that it is analytically solvable and
contains the geometries of parallel plates and a single semi-
infinite plate as limiting cases. The geometry of a wedge
intercut by a cylindrical shell was considered by
Nesterenko and coworkers [29,30] and energy densities
in the same geometry were calculated by Saharian and
coworkers [31–33]. We are not aware of any previous
efforts to tackle the Casimir energy problem for a wedge
at nonzero temperature.
We recently revisited the latter geometry to calculate the

energy, at zero temperature, of a perfectly conducting
wedge closed by a cylindrical boundary, either perfectly
conducting or magnetodielectric [34]. We showed how that
energy could be written on the form (subscript 0 indicates
zero-temperature)

E 0 ¼ ~E0ðpÞ þ Ê; (1.1)

where ~E0 is a finite, regularizable energy closely analogous

to that found for a cylinder [8,10], whereas Ê is a divergent
term associated with the corners where the arc meets the
wedge.
Here and in the following we will make frequent use of

the symbol

p ¼ �=�; (1.2)

where the physical range is p 2 ½1
2 ;1Þ, but which we will

in general allow to take any real positive value. Throughout
our calculations we set c ¼ @ ¼ kB ¼ 1. It was shown [34]

that Ê could be rendered finite provided the arc become
transparent at high frequencies.
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that Ê could be rendered finite provided the arc become
transparent at high frequencies.

*simen.a.ellingsen@ntnu.no
†iver.h.brevik@ntnu.no
‡milton@nhn.ou.edu

PHYSICAL REVIEW D 81, 065031 (2010)

1550-7998=2010=81(6)=065031(9) 065031-1 � 2010 The American Physical Society

Casimir effect at nonzero temperature for wedges and cylinders
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The calculations in [34] were extended to the first con-
sideration of a wedge which is not perfectly conducting but
instead assumed to be isorefractive (diaphanous), i.e., spa-

tially uniform speed of light [35]. In that case the term Ê is
not present at all. The diaphanous wedge is analogous to
the system of an annular region between two perfectly
conducting cylinders, intercut by two semitransparent, ra-
dially directed interfaces [36,37]. Notably, while the en-
ergy expressions for a perfectly conducting wedge or
circularly cylindrical shell require some regularization
scheme in order to give numerical meaning, the energy
expression obtained for the diaphanous wedge is immedi-
ately finite. A review of the Casimir wedge problem and an
early exposition of the issue we elaborate herein are found
in Ref. [38].

Naturally, for the geometry of a perfectly conducting

cylinder there is no divergent term Ê since there are no
sharp corners. It turns out (c.f. the discussion in Section III
of Ref. [34]) that the Casimir energy of a perfectly con-
ducting cylindrical shell is

~E cyl ¼ 2~Eðp ¼ 1Þ: (1.3)

Thus, all of the calculations in the following sections,
which are carried out for general p, are valid also for a
cylindrical shell by letting p ! 1 and multiplying by an
overall factor of 2.

In the following we derive an analytical expression for
the Casimir energy of a perfectly conducting wedge (mod-
ulo a singular term as encountered in the past) and a
perfectly conducting cylindrical shell, valid for arbitrary
opening angles and all temperatures. This extends the
calculations for the perfectly conducting wedge presented
in Ref. [34], and simultaneously those for a circularly
cylindrical conducting shell [8,10], to the case of finite
temperature. We show how the energy expression, which
for T > 0 is the Helmholtz free energy, may be regularized
by a scheme of Epstein-zeta functions to obtain a numeri-
cally useful expression. We show explicitly that the ex-
pression thus obtained reduces to the previously derived
zero-temperature limit, and that the two leading terms of
the high-temperature asymptotic expansion, derived by
Bordag, Nesterenko, and Pirozhenko [21], are reproduced
exactly as a special case.

II. CASIMIR-HELMHOLTZ FREE ENERGY OF
WEDGE AND CYLINDER

We take as our starting point the zero-temperature en-
ergy derived in [34] for the geometry of a perfectly con-
ducting wedge of opening angle � closed by a perfectly
conducting cylindrical arc of radius a, shown on the left
side of Fig. 1.

Henceforth we shall focus on the term ~E0, which may be
written [34]

~E 0 ¼
X1
m¼0

0
Em0 (2.1)

with

E m0 ¼ � 1

8�2

Z 1

�1
dk

Z 1

�1
d��

d

d�

� ln½ImpðxÞI0mpðxÞKmpðxÞK0
mpðxÞ�; (2.2)

where we define the shorthand x2 ¼ a2ðk2 þ n2�2Þ where
n is the index of refraction of the medium inside the wedge.
We assume n to be constant with respect to � and uniform
in space. Here ! ¼ i� is the reciprocal of imaginary
(Euclidian) time. By means of partial integration with
respect to � , adding a trivial constant and noting that the
integrand is symmetrical under � ! �� and k ! �k, this
may be written on the familiar form

E m0 ¼ 1

2�2

Z 1

0
dk

Z 1

0
d� ln½1� x2�2

mpðxÞ�; (2.3)

wherein we use the shorthand

��ðxÞ ¼ d

dx
½I�ðxÞK�ðxÞ�: (2.4)

The Helmholtz free energy at T > 0 is obtained from the
‘trace-log’ formula (2.3) by compactifying the Euclidean
time axis as is well known. Technically this amounts to the
transition

Z 1

0
d�fð�Þ ! 2�T

X1
j¼0

0
fð�jÞ; (2.5)

where �j ¼ 2�jT are the Matsubara frequencies.

Changing the integration variable from axial momentum
k to x, the resulting expression for the finite part of the free
energy may be written

~E ¼ T

�a

X1
m¼0

0X1
j¼0

0
em;j; (2.6)

where

FIG. 1 (color online). The geometry considered: (left) a wedge
of opening angle � closed by a cylindrical shell at radius a. The
results are automatically applicable to a cylindrical shell of
radius a (right) when � ¼ � [Eq. (1.3)].
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expression obtained for the diaphanous wedge is immedi-
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of Ref. [34]) that the Casimir energy of a perfectly con-
ducting cylindrical shell is

~E cyl ¼ 2~Eðp ¼ 1Þ: (1.3)

Thus, all of the calculations in the following sections,
which are carried out for general p, are valid also for a
cylindrical shell by letting p ! 1 and multiplying by an
overall factor of 2.

In the following we derive an analytical expression for
the Casimir energy of a perfectly conducting wedge (mod-
ulo a singular term as encountered in the past) and a
perfectly conducting cylindrical shell, valid for arbitrary
opening angles and all temperatures. This extends the
calculations for the perfectly conducting wedge presented
in Ref. [34], and simultaneously those for a circularly
cylindrical conducting shell [8,10], to the case of finite
temperature. We show how the energy expression, which
for T > 0 is the Helmholtz free energy, may be regularized
by a scheme of Epstein-zeta functions to obtain a numeri-
cally useful expression. We show explicitly that the ex-
pression thus obtained reduces to the previously derived
zero-temperature limit, and that the two leading terms of
the high-temperature asymptotic expansion, derived by
Bordag, Nesterenko, and Pirozhenko [21], are reproduced
exactly as a special case.
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k to x, the resulting expression for the finite part of the free
energy may be written
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FIG. 1 (color online). The geometry considered: (left) a wedge
of opening angle � closed by a cylindrical shell at radius a. The
results are automatically applicable to a cylindrical shell of
radius a (right) when � ¼ � [Eq. (1.3)].
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and where we have defined the dimensionless temperature

� ¼ 2�naT: (2.8)

Similarly to the case at zero-temperature this simple ex-
pression is in need of regularization in order to give nu-
merical meaning since it is formally divergent.

III. REGULARIZATION OF THE FREE ENERGY
EXPRESSION

We here follow a scheme closely reminiscent of that of
DeRaad and Milton [8], and particularly Milton,
Nesterenko, and Nesterenko [10] (cf. also Appendix A of
Ref. [34]).

As follows from the uniform asymptotic expansion of
modified cylindrical Bessel functions, e.g. Sec. 9.7 of
Ref. [39], the logarithmic factor in the integrand of (2.7)
has the asymptotic behavior
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ln½1� x2�2
0� �� x4

4ð1þ x2Þ3 ; x!1: (3.1b)

To see how this behavior gives rise to a formal diver-
gence, consider the case of large m for which
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where we substituted y2 ¼ x2 � j2�2 and defined the short-
hand
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2m2 þ �2j2

q
: (3.3)

The three terms of (3.2b) correspond to the three terms of
the integrand of (3.2a). All of the terms of (3.2b) clearly
diverge when summed over j and m.

The first step in regularization is to add and subtract the
asymptotic behavior (3.1) in the form (3.2a)

~E ¼ �E þ E1 (3.4)

where we define the energy with the leading asymptotic
term subtracted,
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and the additional, nonregularized energy
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where as in Eq. (3.2b) we have used the evaluation,
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which is valid for�1< s < 5, so it may be used for s near
0, near 2, or near 4. We use the relations [@� ¼ @=@�]
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The sum in (3.11) can be regularized by analytical
continuation. We will write it in the following form, using
symmetry properties with respect to m $ �m and j $
�j:
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asymptotic behavior (3.1) in the form (3.2a)

~E ¼ �E þ E1 (3.4)

where we define the energy with the leading asymptotic
term subtracted,
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which is valid for�1< s < 5, so it may be used for s near
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The sum in (3.11) can be regularized by analytical
continuation. We will write it in the following form, using
symmetry properties with respect to m $ �m and j $
�j:
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Here we have defined

S ð�; pÞ ¼ lim
s!0þ
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wherein the double prime on the summation mark means
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Clearly, Kð�Þ is finite for all � > 0.
The function Sð�; pÞ may be regularized by use of the

Chowla-Selberg formula [see e.g. Eq. (4.33) of Ref. [40]]
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p
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where

� ¼ 4ac� b2; (3.16)

�wðlÞ ¼
X
�jl
�w; (3.17)

where � are summed over the divisors of l and it is assumed
that �> 0. K is again the modified Bessel function of the
second kind. The apparent pole as q ! 1

2 now vanishes due

to a cancellation between the first two terms of (3.15), and
we find that letting q ¼ 1

2 þ s
2 and taking the limit s ! 0þ

(here a ¼ p2, b ¼ 0, c ¼ �2)

S ð�; pÞ ¼ 2

p

�
	� ln

4�p

�

�
þ 8

p
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l¼1

�0ðlÞK0ð2�l�=pÞ

(3.18)

where 	 ¼ 0:577216 . . . is Euler’s constant. Now �0ðlÞ is
simply the number of positive divisors of l, �0ð1Þ ¼ 1,
�0ð2Þ ¼ �0ð3Þ ¼ 2, �0ð4Þ ¼ 3 etc. Note that Eq. (3.18) is
valid for all �; although it appears most convenient for
large �, it is, by the symmetry property seen in Eq. (3.13),
equally useful for small �.

We finally write down the final, regularized energy of
the wedge (and, simultaneously, cylinder) at finite T, using
the convention used in Ref. [34]

~Eð�; p; aÞ ¼ 1

8�na2
eð�; pÞ; (3.19)

in terms of

eð�; pÞ ¼ 4�

�

X1
m¼0
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0
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64
ð3� 3�@� þ �2@2�Þ

� ½1þ 2Kð�Þ þ Sð�; pÞ�: (3.20)

with ~em;j;K, and S given in Eqs. (3.5), (3.14), and (3.18),

respectively. The differentiations with respect to � are now
straightforward, should the full expanded expression be
desirable.
In Fig. 2 we plot the three additional terms in the second

line of Eq. (3.20) where we have defined the shorthand

T̂ ¼ ð3� 3�@� þ �2@2�Þ; (3.21a)

ESð�; pÞ ¼ �

64
T̂ Sð�; pÞ;

EKð�; pÞ ¼ �

32
T̂Kð�Þ: (3.21b)

Figure 3 shows a numerical calculation of eð�; p ¼ 3Þ as
a function of � along with its high and low � asymptotes
(see derivations in the following sections). The calculation
was performed by ‘‘brute force’’ by truncating the sums
after a number of terms, and has somewhat limited accu-
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FIG. 2 (color online). The additional terms of the regularized
energy in Eq. (3.20) which are subtracted from the double sum
there in the case p ¼ 3. Shown also is the sum of the three
additional terms and their low-temperature asymptotic value
from Eq. (4.11).
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valid for all �; although it appears most convenient for
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equally useful for small �.

We finally write down the final, regularized energy of
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~Eð�; p; aÞ ¼ 1

8�na2
eð�; pÞ; (3.19)

in terms of

eð�; pÞ ¼ 4�

�

X1
m¼0

0X1
j¼0

0
~em;jð�; pÞ � �

64
ð3� 3�@� þ �2@2�Þ

� ½1þ 2Kð�Þ þ Sð�; pÞ�: (3.20)

with ~em;j;K, and S given in Eqs. (3.5), (3.14), and (3.18),
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desirable.
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Figure 3 shows a numerical calculation of eð�; p ¼ 3Þ as
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(see derivations in the following sections). The calculation
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FIG. 2 (color online). The additional terms of the regularized
energy in Eq. (3.20) which are subtracted from the double sum
there in the case p ¼ 3. Shown also is the sum of the three
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from Eq. (4.11).
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simply the number of positive divisors of l, �0ð1Þ ¼ 1,
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desirable.
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line of Eq. (3.20) where we have defined the shorthand

T̂ ¼ ð3� 3�@� þ �2@2�Þ; (3.21a)

ESð�; pÞ ¼ �

64
T̂ Sð�; pÞ;

EKð�; pÞ ¼ �

32
T̂Kð�Þ: (3.21b)

Figure 3 shows a numerical calculation of eð�; p ¼ 3Þ as
a function of � along with its high and low � asymptotes
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FIG. 2 (color online). The additional terms of the regularized
energy in Eq. (3.20) which are subtracted from the double sum
there in the case p ¼ 3. Shown also is the sum of the three
additional terms and their low-temperature asymptotic value
from Eq. (4.11).
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2�2

p : (3.14)

Clearly, Kð�Þ is finite for all � > 0.
The function Sð�; pÞ may be regularized by use of the

Chowla-Selberg formula [see e.g. Eq. (4.33) of Ref. [40]]

X
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a
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�

p
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where

� ¼ 4ac� b2; (3.16)

�wðlÞ ¼
X
�jl
�w; (3.17)

where � are summed over the divisors of l and it is assumed
that �> 0. K is again the modified Bessel function of the
second kind. The apparent pole as q ! 1

2 now vanishes due

to a cancellation between the first two terms of (3.15), and
we find that letting q ¼ 1

2 þ s
2 and taking the limit s ! 0þ

(here a ¼ p2, b ¼ 0, c ¼ �2)
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where 	 ¼ 0:577216 . . . is Euler’s constant. Now �0ðlÞ is
simply the number of positive divisors of l, �0ð1Þ ¼ 1,
�0ð2Þ ¼ �0ð3Þ ¼ 2, �0ð4Þ ¼ 3 etc. Note that Eq. (3.18) is
valid for all �; although it appears most convenient for
large �, it is, by the symmetry property seen in Eq. (3.13),
equally useful for small �.

We finally write down the final, regularized energy of
the wedge (and, simultaneously, cylinder) at finite T, using
the convention used in Ref. [34]

~Eð�; p; aÞ ¼ 1

8�na2
eð�; pÞ; (3.19)

in terms of

eð�; pÞ ¼ 4�

�
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0
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� ½1þ 2Kð�Þ þ Sð�; pÞ�: (3.20)

with ~em;j;K, and S given in Eqs. (3.5), (3.14), and (3.18),

respectively. The differentiations with respect to � are now
straightforward, should the full expanded expression be
desirable.
In Fig. 2 we plot the three additional terms in the second

line of Eq. (3.20) where we have defined the shorthand

T̂ ¼ ð3� 3�@� þ �2@2�Þ; (3.21a)
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64
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EKð�; pÞ ¼ �

32
T̂Kð�Þ: (3.21b)

Figure 3 shows a numerical calculation of eð�; p ¼ 3Þ as
a function of � along with its high and low � asymptotes
(see derivations in the following sections). The calculation
was performed by ‘‘brute force’’ by truncating the sums
after a number of terms, and has somewhat limited accu-
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racy due to the large number of terms in the j sum in
Eq. (3.20) required for small �, scaling as ��1.

IV. REGAINING THE LIMIT OF ZERO
TEMPERATURE

Comparing Eq. (3.20) with the zero-temperature result
derived in Ref. [34], and previously known for the cylin-
drical shell [8,10], it is not obvious that our expression
simplifies to the zero-temperature result as � ! 0. In this
section we show that upon careful examination the correct
limit is in fact obtained.

Let us write down the zero-temperature result ~E0 for
general p in its regularized form suitable for comparison1

[c.f. Ref. [34], Eq. (4.14)]:

~E0 ¼ 1

2
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lnð2�=pÞ; (4.1a)

�E0 ¼ 1

4�na2

Z 1

0
dxx

�
�
lnð1� x2�2

0Þ þ
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; (4.1b)
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lnð1� x2�2

mpÞ þ x4

4ðm2p2 þ x2Þ3
�
: (4.1c)

The finite temperature quantity �E of Eq. (3.5) is analytic
as � ! 0 and inverse application of the transition (2.5)
simply gives us

�E !�!0 1

2
�E0 þ

X1
m¼1

�Em: (4.2)

What remains is essentially to determine the low � behav-
ior of Kð�Þ and Sð�; aÞ to check that the last term of
Eq. (4.1a) may be regained.
To study the behavior of S it is convenient to employ the

symmetry relation Sð�; pÞ ¼ Sðp; �Þ which gives
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(4.3)

For large arguments K0ðxÞ / expð�xÞ, so the sum over l is
exponentially small as � ! 0. This immediately gives the
asymptotic behavior:
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�
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(4.4)

Next we turn to Kð�Þ. Using the Euler-Maclaurin for-
mula (e.g. Ref. [39], p. 806) we have
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ð2lÞ! ßð2l�1Þð�Þ

(4.5)

with
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6
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as � ! 0. Moreover, ßð�Þ ¼ �1=�þ 1� 1
2 �

2 þ . . . , and

upon inspection we recognize that

�2l�1ßð2l�1Þð�Þ ¼ ð2l� 1Þ!
�

þ ð�1Þl
�ð2lÞ!
2ll!

�
2
�2l þ . . .

(4.8)

To leading order in �, thus, the sum in Eq. (4.5) reads 1
� �P1

l¼1 B2l=2l. As is typically the case for series expansions

close to nonanalytical points, the series is formally diver-
gent. It can, however, be regularized by means of Borel
summation [41]. For a highly similar problem and details
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FIG. 3 (color online). Dimensionless energy eð�; pÞ for the
case p ¼ 3, i.e. opening angle � ¼ �=3, approximated by a
‘‘brute force’’ calculation truncating the sums. The zero-
temperature limit and high-� asymptote are shown as dashed
lines.

1These definitions of �E0 and �Em0 differ from those of Ref. [34]
by a prefactor n.
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racy due to the large number of terms in the j sum in
Eq. (3.20) required for small �, scaling as ��1.

IV. REGAINING THE LIMIT OF ZERO
TEMPERATURE

Comparing Eq. (3.20) with the zero-temperature result
derived in Ref. [34], and previously known for the cylin-
drical shell [8,10], it is not obvious that our expression
simplifies to the zero-temperature result as � ! 0. In this
section we show that upon careful examination the correct
limit is in fact obtained.

Let us write down the zero-temperature result ~E0 for
general p in its regularized form suitable for comparison1

[c.f. Ref. [34], Eq. (4.14)]:

~E0 ¼ 1
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X1
m¼1

�Em þ 1

32�na2
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The finite temperature quantity �E of Eq. (3.5) is analytic
as � ! 0 and inverse application of the transition (2.5)
simply gives us

�E !�!0 1

2
�E0 þ

X1
m¼1

�Em: (4.2)

What remains is essentially to determine the low � behav-
ior of Kð�Þ and Sð�; aÞ to check that the last term of
Eq. (4.1a) may be regained.
To study the behavior of S it is convenient to employ the

symmetry relation Sð�; pÞ ¼ Sðp; �Þ which gives

S ð�; pÞ ¼ 2
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For large arguments K0ðxÞ / expð�xÞ, so the sum over l is
exponentially small as � ! 0. This immediately gives the
asymptotic behavior:

S ð�; pÞ � 2
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½	� lnð2�=pÞ � ln2� ln��; � ! 0:

(4.4)

Next we turn to Kð�Þ. Using the Euler-Maclaurin for-
mula (e.g. Ref. [39], p. 806) we have
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with
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The integral has the solution
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as � ! 0. Moreover, ßð�Þ ¼ �1=�þ 1� 1
2 �

2 þ . . . , and

upon inspection we recognize that

�2l�1ßð2l�1Þð�Þ ¼ ð2l� 1Þ!
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To leading order in �, thus, the sum in Eq. (4.5) reads 1
� �P1

l¼1 B2l=2l. As is typically the case for series expansions

close to nonanalytical points, the series is formally diver-
gent. It can, however, be regularized by means of Borel
summation [41]. For a highly similar problem and details
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FIG. 3 (color online). Dimensionless energy eð�; pÞ for the
case p ¼ 3, i.e. opening angle � ¼ �=3, approximated by a
‘‘brute force’’ calculation truncating the sums. The zero-
temperature limit and high-� asymptote are shown as dashed
lines.

1These definitions of �E0 and �Em0 differ from those of Ref. [34]
by a prefactor n.
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racy due to the large number of terms in the j sum in
Eq. (3.20) required for small �, scaling as ��1.

IV. REGAINING THE LIMIT OF ZERO
TEMPERATURE

Comparing Eq. (3.20) with the zero-temperature result
derived in Ref. [34], and previously known for the cylin-
drical shell [8,10], it is not obvious that our expression
simplifies to the zero-temperature result as � ! 0. In this
section we show that upon careful examination the correct
limit is in fact obtained.

Let us write down the zero-temperature result ~E0 for
general p in its regularized form suitable for comparison1

[c.f. Ref. [34], Eq. (4.14)]:

~E0 ¼ 1

2
�E0 þ
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lnð2�=pÞ; (4.1a)
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4ðm2p2 þ x2Þ3
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: (4.1c)

The finite temperature quantity �E of Eq. (3.5) is analytic
as � ! 0 and inverse application of the transition (2.5)
simply gives us

�E !�!0 1

2
�E0 þ

X1
m¼1

�Em: (4.2)

What remains is essentially to determine the low � behav-
ior of Kð�Þ and Sð�; aÞ to check that the last term of
Eq. (4.1a) may be regained.
To study the behavior of S it is convenient to employ the

symmetry relation Sð�; pÞ ¼ Sðp; �Þ which gives

S ð�; pÞ ¼ 2
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For large arguments K0ðxÞ / expð�xÞ, so the sum over l is
exponentially small as � ! 0. This immediately gives the
asymptotic behavior:

S ð�; pÞ � 2
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½	� lnð2�=pÞ � ln2� ln��; � ! 0:

(4.4)

Next we turn to Kð�Þ. Using the Euler-Maclaurin for-
mula (e.g. Ref. [39], p. 806) we have
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with
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The integral has the solution
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as � ! 0. Moreover, ßð�Þ ¼ �1=�þ 1� 1
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2 þ . . . , and

upon inspection we recognize that

�2l�1ßð2l�1Þð�Þ ¼ ð2l� 1Þ!
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To leading order in �, thus, the sum in Eq. (4.5) reads 1
� �P1

l¼1 B2l=2l. As is typically the case for series expansions

close to nonanalytical points, the series is formally diver-
gent. It can, however, be regularized by means of Borel
summation [41]. For a highly similar problem and details
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FIG. 3 (color online). Dimensionless energy eð�; pÞ for the
case p ¼ 3, i.e. opening angle � ¼ �=3, approximated by a
‘‘brute force’’ calculation truncating the sums. The zero-
temperature limit and high-� asymptote are shown as dashed
lines.

1These definitions of �E0 and �Em0 differ from those of Ref. [34]
by a prefactor n.
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racy due to the large number of terms in the j sum in
Eq. (3.20) required for small �, scaling as ��1.

IV. REGAINING THE LIMIT OF ZERO
TEMPERATURE

Comparing Eq. (3.20) with the zero-temperature result
derived in Ref. [34], and previously known for the cylin-
drical shell [8,10], it is not obvious that our expression
simplifies to the zero-temperature result as � ! 0. In this
section we show that upon careful examination the correct
limit is in fact obtained.

Let us write down the zero-temperature result ~E0 for
general p in its regularized form suitable for comparison1

[c.f. Ref. [34], Eq. (4.14)]:

~E0 ¼ 1
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The finite temperature quantity �E of Eq. (3.5) is analytic
as � ! 0 and inverse application of the transition (2.5)
simply gives us

�E !�!0 1

2
�E0 þ

X1
m¼1

�Em: (4.2)

What remains is essentially to determine the low � behav-
ior of Kð�Þ and Sð�; aÞ to check that the last term of
Eq. (4.1a) may be regained.
To study the behavior of S it is convenient to employ the

symmetry relation Sð�; pÞ ¼ Sðp; �Þ which gives
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For large arguments K0ðxÞ / expð�xÞ, so the sum over l is
exponentially small as � ! 0. This immediately gives the
asymptotic behavior:

S ð�; pÞ � 2
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½	� lnð2�=pÞ � ln2� ln��; � ! 0:

(4.4)

Next we turn to Kð�Þ. Using the Euler-Maclaurin for-
mula (e.g. Ref. [39], p. 806) we have
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with
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as � ! 0. Moreover, ßð�Þ ¼ �1=�þ 1� 1
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upon inspection we recognize that
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�

þ ð�1Þl
�ð2lÞ!
2ll!

�
2
�2l þ . . .

(4.8)

To leading order in �, thus, the sum in Eq. (4.5) reads 1
� �P1

l¼1 B2l=2l. As is typically the case for series expansions

close to nonanalytical points, the series is formally diver-
gent. It can, however, be regularized by means of Borel
summation [41]. For a highly similar problem and details
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FIG. 3 (color online). Dimensionless energy eð�; pÞ for the
case p ¼ 3, i.e. opening angle � ¼ �=3, approximated by a
‘‘brute force’’ calculation truncating the sums. The zero-
temperature limit and high-� asymptote are shown as dashed
lines.

1These definitions of �E0 and �Em0 differ from those of Ref. [34]
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on how to approach it, see Ref. [42]. We show in
Appendix A that the Borel regularized sum evaluates to

X1
l¼1

B2l

2l
¼ 	� 1

2
: (4.9)

Thus we have found the low-� expansion of Kð�Þ:

K ð�Þ� 1

�
ðln�þ ln2�	Þ� 1

2
þ . . . ; �! 0: (4.10)

Further terms cancel at least to order �2, the leading order
correction being at least of order �4.

Combining (4.4) and (4.10) we find, to leading order in
�, the expression in square brackets in (3.20):

½1þ2KþS���2

�
lnð2�=pÞþOð�4Þ; �! 0 (4.11)

and using

ð3� 3�@� þ �2@2�Þ 1� ¼ 8

�
(4.12)

we regain exactly the zero-temperature result (4.1). As
illustrated in Fig. 3 this limit is reached very rapidly as � !
0. While we have ascertained in the above that the correc-
tion term in (4.11) is at least of order �4, there is reason to
suspect that the behavior is in fact exponential, as is the
case for S as seen from Eq. (4.3).

V. HIGH-� ASYMPTOTICS: AGREEMENT WITH
PREVIOUS RESULTS FOR CYLINDRICAL SHELL

We will finally determine the asymptotic behavior in the

limit � � 1. Here the contribution from �E is given by the
zeroth Matsubara term only. Consider the reduced energy
eð�; pÞ of Eq. (3.20) in which

4�

�

X1
m¼0

0X1
j¼0

0
~em;jð�; pÞ � 2�

�
CðpÞ; � ! 1; (5.1)

with

CðpÞ ¼ 1

2

Z 1

0
dx

�
lnð1� x2�2

0Þ þ
x4

4ð1þ x2Þ3
�

þ X1
m¼1

Z 1

0
dx

�
lnð1� x2�2

mpÞ þ x4

4ðm2p2 þ x2Þ3
�
:

(5.2)

Some numerical values are

Cð1Þ ¼ �0:75814; (5.3a)

Cð2Þ ¼ �0:76558; (5.3b)

Cð3Þ ¼ �0:76645: (5.3c)

These values were obtained with Mathematica, including
100 terms in the sum while checking convergence.
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The high-temperature asymptotics of perfectly conduct-
ing spherical and cylindrical shells with vacuum inside and
outside were calculated by Bordag, Nesterenko, and
Pirozhenko [20,21] using the method of heat kernel coef-
ficients. They, like us, found that the two leading order
terms were of order T and T lnT as T ! 1. The latter of
these terms had been worked out some time previously by
Balian and Duplantier [19], who also found an approxi-
mate (though not very accurate) value for the former.
The result of the calculations reported in [21] was, in our
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on how to approach it, see Ref. [42]. We show in
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As previously mentioned, ~Ecyl ¼ 2~Ep¼1. With the ex-

pansion (5.8) we find, using (5.3a),
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The slight numerical difference we believe to be due to the
approximate numerical method used in [21]. We show
analytically in Appendix B that the correspondence is in
fact exact.

One may note the absence in Eq. (5.8) of a specific term
proportional to T2 found for the non-closed wedge in
Ref. [27]and attributed to the presence of the wedge
apex. This term does not refer to the radius a, however,
and has thus been subtracted from our free energy expres-
sion ab initio. Likewise, a Stefan-Boltzmann energy term
proportional to T4 is in general present, but is geometry
independent and does not contribute to the free energy (c.f.
Ref. [21] for a discussion)

VI. WEDGE WITH DIAPHANOUS ARC

The above results can easily be extended to the case
where the perfectly conducting arc is replaced by a diapha-
nous arc, that is, a magnetodielectric interface so that the
product n2 ¼ "� is the same for radii both smaller than
and greater than a as shown in Fig. 4. This geometry was
considered at zero temperature in Ref. [34]. The electro-
magnetic boundary conditions at the arc separate in a
simple way in this case and the dependence on material
properties enters only through the reflection coefficient

� ¼ "2 � "1
"2 þ "1

¼ ��2 ��1

�2 þ�1

: (6.1)

The change in geometry leaves the energy expression
(2.3) unaltered but for the simple replacement

ln½1� x2�2
mpðxÞ� ! ln½1� �2x2�2

mpðxÞ�: (6.2)

This merely introduces a prefactor �2 in all correction
terms, and we can write down the result for the diaphanous
wedge, and simultaneously cylinder (by letting p ¼ 1 and
multiplying by 2 as discussed above), as:

~E�ð�; p; aÞ ¼ 1

8�na2
e�ð�; pÞ; (6.3a)
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Since � enters the correction terms from renormalization
only through the prefactor, generalization of the weak-
coupling expansions (to leading order in �2) considered
in [34] to nonzero � is trivial.

VII. CONCLUDING REMARKS

We have given for the first time results for the tempera-
ture dependence of the Casimir energy for a wedge, closed
by a circular arc, all boundaries being perfectly conduct-
ing. This includes, as a special case, the perfectly conduct-
ing cylindrical shell case. (Except for that case, there is a
divergent term, due to the corner where the circular arc
meets the wedge boundaries, which we here simply omit.)
The low-temperature result agrees with the zero-
temperature result found previously, except for what is
probably an exponentially small correction, while the
high-temperature result agrees with that of Bordag,
Nesterenko, and Pirozhenko for the case of a cylinder [21].
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APPENDIX A: EVALUATION OF EQ. (4.9) BY
BOREL SUMMATION

To evaluate a (possibly divergent) series Z ¼ P1
l¼1 al by

Borel summation [41] we define the function

FIG. 4 (color online). Same geometry as in Fig. 1 but now with
diaphanous instead of perfectly conducting arc, i.e., so that n2 ¼
"� is the same both sides of the interface. We still assume
nondispersive media.
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Since � enters the correction terms from renormalization
only through the prefactor, generalization of the weak-
coupling expansions (to leading order in �2) considered
in [34] to nonzero � is trivial.

VII. CONCLUDING REMARKS

We have given for the first time results for the tempera-
ture dependence of the Casimir energy for a wedge, closed
by a circular arc, all boundaries being perfectly conduct-
ing. This includes, as a special case, the perfectly conduct-
ing cylindrical shell case. (Except for that case, there is a
divergent term, due to the corner where the circular arc
meets the wedge boundaries, which we here simply omit.)
The low-temperature result agrees with the zero-
temperature result found previously, except for what is
probably an exponentially small correction, while the
high-temperature result agrees with that of Bordag,
Nesterenko, and Pirozhenko for the case of a cylinder [21].
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Ref. [27]and attributed to the presence of the wedge
apex. This term does not refer to the radius a, however,
and has thus been subtracted from our free energy expres-
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proportional to T4 is in general present, but is geometry
independent and does not contribute to the free energy (c.f.
Ref. [21] for a discussion)

VI. WEDGE WITH DIAPHANOUS ARC

The above results can easily be extended to the case
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IfðxÞ is finite for sufficiently small x, we define the Borel
transform as
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Bð1Þ. We consider the sum
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The generating function of the Bernoulli numbers is
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which allows us to evaluate
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where c ðnÞðxÞ is the polygamma function, whose integral
representation was recognized (Ref. [39] Eq. 6.4.1) by
making the substitution u ¼ xt. Thus we evaluate the in-
tegral to
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where from the requirement that Bð0Þ ¼ 0 we see that the
integration constant is zero. Thus we find the Borel value
of the sum (A3) to be
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noting that c ð2Þ ¼ 1� 	.

APPENDIX B: CORRESPONDENCEWITH HIGH-T
ASYMPTOTICS FOR THE CYLINDER IN VACUUM

The heat kernel expansion for high temperatures calcu-
lated in Ref. [21] for the cylindrical shell in vacuum begins
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where the ‘‘zeta determinant’’ � 0ð0Þ is a constant defined in
Ref. [21] and we have inserted their value [20,21]
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The term proportional to � ln� is obviously identical to our
expression in Eq. (5.10). We consider only the term linear
in �. Comparison with (5.10) gives, with minimal manipu-
lation, that the asymptotes correspond exactly according to
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with t ¼ 1=
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1þ y2

p
. Let us call the two integrals in (B4)

X0 and Xm, where the latter is the integral inside the sum.
After a partial integration and, in the case of Xm, a sub-
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since 1
4

R1
0 dxx4=ð1þ x2Þ3 ¼ 3�=64. We have thus shown

the correspondence analytically.
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with t ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

p
. Let us call the two integrals in (B4)

X0 and Xm, where the latter is the integral inside the sum.
After a partial integration and, in the case of Xm, a sub-
stitution ym ¼ x, these can be written on the familiar form

X0 ¼�
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0
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Comparing with (5.2) we see that
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since 1
4

R1
0 dxx4=ð1þ x2Þ3 ¼ 3�=64. We have thus shown

the correspondence analytically.
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l!
xl: (A1)

IfðxÞ is finite for sufficiently small x, we define the Borel
transform as

B ðxÞ ¼
Z 1

0
dte�tðxtÞ; (A2)

from which the Borel regularized value of the sum Z is Z ¼
Bð1Þ. We consider the sum
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since B1 ¼ �1=2 and B3 ¼ B5 ¼ B7 ¼ . . . ¼ 0. The
Borel transform of the latter sum is thus
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The generating function of the Bernoulli numbers is
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which allows us to evaluate
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where c ðnÞðxÞ is the polygamma function, whose integral
representation was recognized (Ref. [39] Eq. 6.4.1) by
making the substitution u ¼ xt. Thus we evaluate the in-
tegral to
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where from the requirement that Bð0Þ ¼ 0 we see that the
integration constant is zero. Thus we find the Borel value
of the sum (A3) to be

X1
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B2l

2l
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2
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2
; (A8)

noting that c ð2Þ ¼ 1� 	.

APPENDIX B: CORRESPONDENCEWITH HIGH-T
ASYMPTOTICS FOR THE CYLINDER IN VACUUM

The heat kernel expansion for high temperatures calcu-
lated in Ref. [21] for the cylindrical shell in vacuum begins
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where the ‘‘zeta determinant’’ � 0ð0Þ is a constant defined in
Ref. [21] and we have inserted their value [20,21]
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The term proportional to � ln� is obviously identical to our
expression in Eq. (5.10). We consider only the term linear
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[35] S. Å. Ellingsen, I. Brevik, and K.A. Milton, Phys. Rev. E
80, 021125 (2009).

[36] K. A. Milton, J. Wagner, and K. Kirsten, Phys. Rev. D 80,
125028 (2009).

[37] J. Wagner, K.A. Milton, and K. Kirsten, arXiv:0912.2374,
to appear in the Proceedings of the 9th Conference on
Quantum Field Theory Under the Influence of External
Conditions (QFEXT09).
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polarizability. A dynamical calculation reveals how the spatial oscillations die out on a typical time scale of
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I. INTRODUCTION

Cold ensembles of polar molecules such as YbF have re-
cently received particular attention due to their potential use
as ultrasensitive probes of the permanent electric dipole mo-
ment of the electron �1�, measurements of which allow for
investigating the possible existence of physics beyond the
standard model �2�. The need for longer interrogation times
has led to the development of Stark deceleration techniques
for these heavy molecules �3,4�, with a view to ultimately be
able to trap molecules near microstructured surfaces �chips�.
Recently, trapping of light molecules such as metastable CO
in traveling potential wells near a chip surface was achieved
�5�. Another light diatomic molecule that has received con-
siderable attention due to its large dipole moment is LiH, and
the production of supersonic beams of cold LiH has been
reported �6�.

When attempting to trap polar molecules in close proxim-
ity to a surface, attractive Casimir-Polder �CP� forces
�7�—effective electromagnetic forces between a neutral and
polarizable particle and a macroscopic object—need to be
taken into account as an important limiting factor. Thermal
CP forces on atoms at thermal equilibrium with both the
electromagnetic field and the present macroscopic bodies
have been intensively studied in the past on the basis of
Lifshitz theory �8–11�, linear response theory �12,13�, or
normal-mode techniques �14,15�. At room temperature, the
energies associated with atomic transitions are much larger
than the thermal energy, ��A%kBT, resulting in very low
thermal photon numbers. A “high-temperature limit” is only
accessible in a geometric sense when the atom-surface sepa-
ration zA is much larger than the thermal wavelength, zA

%�c / �2�kBT�; in this case the thermal CP force on the atom
can be approximated by �12,13�

F�rA� � −
�dA�2

8��0zA
4

kBT

��A
ez �1�

for a two-level atom �transition frequency �A, dipole matrix
element dA� interacting with a perfectly conducting plate
�unit normal ez�.

The situation is different for molecules: whereas transition
energies of atoms are typically much larger than attainable
thermal energies, the energies associated with rotational and
vibrational transitions of molecules, heavy molecules in par-
ticular, are often small compared to the thermal energy even
at room temperature. A genuine high-temperature limit ��A
�kBT is hence realized with an associated large number of
thermal photons being present. An additional consequence of
the long transition wavelengths is the fact that CP forces on
molecules are expected to have a long range with the nonre-
tarded regime zA�c /�A extending quite far out from the
surface. A naive application of above formula �1� for atoms
beyond its scope to the high-temperature limit ��A�kBT
would suggest that the force can get arbitrarily strong for
molecules of smaller and smaller transition energies, which
already indicates that CP forces on molecules must be treated
with care.

Supersonic beam expansions typically produce cold mol-
ecules that are to a large fraction in their rovibrational
ground states. For example, in the experiment reported in
Ref. �6�, 90% of the observed cold LiH molecules were in
their electronic and rovibrational ground state X 1.+. The
cold molecule and the room-temperature surface are thus
strongly out of equilibrium with respect to each other, so a
study of the CP interaction necessitates that account be taken
of the full nonequilibrium dynamics of the rotational and
vibrational degrees of freedom of the cold molecule coupled
to its thermal environment. In contrast, in the context of
nonequilibrium forces on thermalized atoms in an environ-
ment of nonuniform temperature, as recently proposed �16�
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and measured �17�, a study of the full internal atomic dynam-
ics was not necessary.

In this paper, we study the nonequilibrium thermal CP
force on a polar molecule which is initially in its electronic
and rovibrational ground state in the vicinity of a metal sur-
face. A recently developed dynamical theory of forces on
single atoms or molecules in arbitrary internal states and ar-
bitrary uniform temperature environments �18� provides the
necessary framework �note that a similar theory has been
developed for two-atom van der Waals forces �19��. In par-
ticular, we will show that in contrast to the above intuitive
expectation obtained from comparison with the atom case,
the attractive CP force on a molecule saturates in the high-
temperature limit.

II. CASIMIR–POLDER FORCE FOR GIVEN
MOLECULAR STATES

We consider a polar molecule �energy eigenstates �n�,
eigenenergies ��n, transition frequencies �mn=�m−�n, and
dipole matrix elements dmn� which is prepared in an incoher-
ent superposition of its energy eigenstates with probabilities
pn. As shown in Ref. �18�, the thermal CP force on such a
molecule is given by

F�rA� =�
n

pnFn�rA� �2�

with perturbative force components

Fn�rA� = − �0kBT�
N=0

� 	1 −
1

2
 N0
�N

2


 �A Tr��n�i�N� · G�1��rA,rA,i�N��

+ �0�
k

�nk
2 �*��nk��n��nk� + 1� − *��kn�n��kn��


 �Adnk · Re G�1��rA,rA, ��nk�� · dkn �3�

and molecular polarizability

�n��� = lim
�→0

1

�
�

k
� dkndnk

� + �kn + i�
−

dnkdkn

� − �kn + i�
� . �4�

Here, G�1� is the scattering part of the classical Green tensor
for the electromagnetic field in the given environment and
�N=2�kBTN /� denotes the Matsubara frequencies. The CP
force �3� contains both nonresonant contributions �first term�
and resonant ones �second term�, where the former would
also follow from applying Lifshitz theory in conjunction
with the ground-state polarizability �we refer to it as Lifshitz-
type force in the following� and the latter are due to the
absorption and emission of thermal photons with photon
number

n��� =
1

e��/�kBT� − 1
. �5�

Given a probability distribution pn, Eq. �3� allows us to com-
pute the thermal CP force. In particular, if the molecule is in
an isotropic state such as the ground state or a thermal state
�see below�, the force simplifies to �18�

Fn�rA� = − �0kBT�
N=0

� 	1 −
1

2
 N0
�N

2�n�i�N�


 �A Tr�G�1��rA,rA,i�N��

+
�0

3 �k �nk
2 �*��nk��n��nk� + 1� − *��kn�n��kn��


 �dnk�2�A Tr Re G�1��rA,rA, ��nk�� �6�

with

�n��� = lim
�→0

1

3��k � �dnk�2

� + �kn + i�
−

�dnk�2

� − �kn + i�
� . �7�

A. Molecule near a plane surface

For example, let us consider a molecule at a distance zA
from the planar surface of a �nonmagnetic� substrate. The
respective scattering Green’s tensor is given by �20�

G�1��r,r,�� =
i

8�
�

0

�

dq
q


e2iz


 �	rs −
2c2

�2 rp
�exex + eyey� + 2
q2c2

�2 rpezez� ,
�8�

where

rs =
 − 1

 + 1
, rp =

���� − 1

���� + 1
�9�

with Im , Im 1(0 are the Fresnel reflection coefficients
for s- and p-polarized waves, =��2 /c2−q2 and 1
=������2 /c2−q2 are the z components of the wave vectors
in free space and inside the substrate, and ���� is the �rela-
tive� permittivity of the substrate. Substitution of G�1��r ,r ,��
into Eq. �6� above leads to an explicit form for the CP force.

The results simplify in the nonretarded and retarded limits
of small and large atom-surface separations. In the nonre-
tarded limit maxi������i���i�zA /c�1 ��i: relevant molecular
and medium frequencies�, the approximation  1 iq
leads to

Fn�rA� = −
3kBT

8��0zA
4�

N=0

� 	1 −
1

2
 N0
�n�i�N�

��i�N� − 1

��i�N� + 1
ez

−
1

8��0zA
4�

k

�dnk�2�*��nk��n��nk� + 1�
����nk��2 − 1

����nk� + 1�2

− *��kn�n��kn�
����kn��2 − 1

����kn� + 1�2ez. �10�

Note that while applying well to dielectrics, the nonretarded
limit often provides a very poor approximation for metals
because the large factor �����i�� may restrict its range of
applicability to extremely small distances.
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single atoms or molecules in arbitrary internal states and ar-
bitrary uniform temperature environments �18� provides the
necessary framework �note that a similar theory has been
developed for two-atom van der Waals forces �19��. In par-
ticular, we will show that in contrast to the above intuitive
expectation obtained from comparison with the atom case,
the attractive CP force on a molecule saturates in the high-
temperature limit.

II. CASIMIR–POLDER FORCE FOR GIVEN
MOLECULAR STATES

We consider a polar molecule �energy eigenstates �n�,
eigenenergies ��n, transition frequencies �mn=�m−�n, and
dipole matrix elements dmn� which is prepared in an incoher-
ent superposition of its energy eigenstates with probabilities
pn. As shown in Ref. �18�, the thermal CP force on such a
molecule is given by
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with perturbative force components
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Here, G�1� is the scattering part of the classical Green tensor
for the electromagnetic field in the given environment and
�N=2�kBTN /� denotes the Matsubara frequencies. The CP
force �3� contains both nonresonant contributions �first term�
and resonant ones �second term�, where the former would
also follow from applying Lifshitz theory in conjunction
with the ground-state polarizability �we refer to it as Lifshitz-
type force in the following� and the latter are due to the
absorption and emission of thermal photons with photon
number
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Given a probability distribution pn, Eq. �3� allows us to com-
pute the thermal CP force. In particular, if the molecule is in
an isotropic state such as the ground state or a thermal state
�see below�, the force simplifies to �18�
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with Im , Im 1(0 are the Fresnel reflection coefficients
for s- and p-polarized waves, =��2 /c2−q2 and 1
=������2 /c2−q2 are the z components of the wave vectors
in free space and inside the substrate, and ���� is the �rela-
tive� permittivity of the substrate. Substitution of G�1��r ,r ,��
into Eq. �6� above leads to an explicit form for the CP force.

The results simplify in the nonretarded and retarded limits
of small and large atom-surface separations. In the nonre-
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Note that while applying well to dielectrics, the nonretarded
limit often provides a very poor approximation for metals
because the large factor �����i�� may restrict its range of
applicability to extremely small distances.
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necessary framework �note that a similar theory has been
developed for two-atom van der Waals forces �19��. In par-
ticular, we will show that in contrast to the above intuitive
expectation obtained from comparison with the atom case,
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in free space and inside the substrate, and ���� is the �rela-
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into Eq. �6� above leads to an explicit form for the CP force.

The results simplify in the nonretarded and retarded limits
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In the retarded limit �minzA /c%1 ��min: minimum of the
relevant molecular and medium frequencies�, the resonant
part of the force is well approximated by letting q 0, while
the approximations �n�i�N� �n�0� and ��i�N� ��0� hold
for those �N giving the main contribution to the nonresonant
part. The q integral for the N=0 term can then be carried out
immediately, while those for the remaining part of the sum
can be rewritten in a more convenient form by introducing
the integration variable v=c /�N. Performing the sum ac-
cording to

�
N=1

�
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y4 + 11y3 + 11y2 + 1
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where x=2�kBTzA / ��c�. In particular, for a conductor whose
plasma frequency �P is large compared to �nk �cf. Eq. �14�
below� one has ���%1 and the retarded CP force is well
approximated by

Fn�rA� � −
3kBT�n�0�
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Note that the retarded limit as given above holds for all dis-
tances which are sufficiently large with respect to the atomic
and medium wavelengths, irrespective of the temperature.
When in addition the distance is very large with respect to
the thermal wavelength �such that x%1�, the contribution
from the second terms in above Eqs. �12� and �13� vanishes

and the nonresonant force approaches its well-known �geo-
metric� high-temperature limit �cf. Eq. �1��. In the opposite
case of a distance which is much smaller than the thermal
wavelength �x�1�, the first terms vanish and the nonreso-
nant force reduces to its �retarded� zero-temperature form
�cf. Ref. �21��. Our results, in particular those for the nonre-
tarded limit, agree with the ones previously obtained in Ref.
�15�. Note that resonant force components and their oscilla-
tory behavior in the retarded regime were first discussed for
excited atoms at zero temperature �cf., e.g., Refs. �22,23��.

The limits reveal that the CP force follows a 1 /zA
4 power

law for nonretarded distances. In the retarded regime, the
nonresonant force components again follow an inverse
power law whereas the resonant force components give rise
to spatially oscillating forces whose amplitude is propor-
tional to 1 /zA. If present, the resonant force components are
dominating over the nonresonant ones, in general. The mag-
nitude of the contributions from various molecular transi-
tions to the force �3� is determined by their dipole matrix
elements and frequencies, where Eqs. �10� and �12� together
with Eq. �7� imply that the strength of the nonresonant force
is roughly proportional to 1 /�kn, while that of the resonant
force is governed by n��nk�+1 or n��kn� in the nonretarded
limit and by �nk

3 �n��nk�+1� or �kn
3 n��kn� in the retarded re-

gime. Equations �10� and �12� furthermore show that the
force becomes larger for larger permittivity of the surface
material and saturates in the high-conductivity limit.

The general results and discussion given above can be
easily applied to various polar molecules interacting with
different surface materials. The qualitative behavior of the
forces will be similar for all molecules and materials, i.e., a
power-law dependence for nonretarded distances will give
way to an oscillating force in the retarded regime. The exact
magnitude of the force as well as the length scale of the
oscillations will depend on the dipole moments and frequen-
cies associated with the specific molecular transitions in-
volved and the electric response of the surface in the way
indicated above. Tabulated data for a variety of molecules
and metal surfaces can be found in Ref. �24�. In the follow-
ing, we will consider two representative examples.

B. Examples: LiH and YbF near a Au surface

We first consider a LiH molecule in its electronic, vibra-
tional, and rotational ground states �pn= n0� near a Au sur-
face at room temperature T=300 K. With the help of the
Green tensor �Eq. �8��, we are able to compute the force
components according to Eq. �6� which are displayed in Fig.
1. For this molecule, the contribution from rotational transi-
tions with �kn=2.79
1012 rad /s and d=1.96
10−29 C m
�24� ��kd0kdk0=d2I, where I is the unit tensor� is strongly
dominant over those of vibrational and electronic transitions
with their considerably higher transition frequencies. Mol-
ecules with a similar behavior include NH, OH, OD, NaCs,
and KCs. For the relative permittivity of the Au surface we
have used a Drude model

���� = 1 −
�P

2

��� + i"�
�14�

with �P=1.37
1016 rad /s and "=5.32
1013 rad /s �25�.
In view of the current debate regarding the thermal Casimir
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to spatially oscillating forces whose amplitude is propor-
tional to 1 /zA. If present, the resonant force components are
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volved and the electric response of the surface in the way
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components according to Eq. �6� which are displayed in Fig.
1. For this molecule, the contribution from rotational transi-
tions with �kn=2.79
1012 rad /s and d=1.96
10−29 C m
�24� ��kd0kdk0=d2I, where I is the unit tensor� is strongly
dominant over those of vibrational and electronic transitions
with their considerably higher transition frequencies. Mol-
ecules with a similar behavior include NH, OH, OD, NaCs,
and KCs. For the relative permittivity of the Au surface we
have used a Drude model
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In the retarded limit �minzA /c%1 ��min: minimum of the
relevant molecular and medium frequencies�, the resonant
part of the force is well approximated by letting q 0, while
the approximations �n�i�N� �n�0� and ��i�N� ��0� hold
for those �N giving the main contribution to the nonresonant
part. The q integral for the N=0 term can then be carried out
immediately, while those for the remaining part of the sum
can be rewritten in a more convenient form by introducing
the integration variable v=c /�N. Performing the sum ac-
cording to
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where x=2�kBTzA / ��c�. In particular, for a conductor whose
plasma frequency �P is large compared to �nk �cf. Eq. �14�
below� one has ���%1 and the retarded CP force is well
approximated by
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Note that the retarded limit as given above holds for all dis-
tances which are sufficiently large with respect to the atomic
and medium wavelengths, irrespective of the temperature.
When in addition the distance is very large with respect to
the thermal wavelength �such that x%1�, the contribution
from the second terms in above Eqs. �12� and �13� vanishes

and the nonresonant force approaches its well-known �geo-
metric� high-temperature limit �cf. Eq. �1��. In the opposite
case of a distance which is much smaller than the thermal
wavelength �x�1�, the first terms vanish and the nonreso-
nant force reduces to its �retarded� zero-temperature form
�cf. Ref. �21��. Our results, in particular those for the nonre-
tarded limit, agree with the ones previously obtained in Ref.
�15�. Note that resonant force components and their oscilla-
tory behavior in the retarded regime were first discussed for
excited atoms at zero temperature �cf., e.g., Refs. �22,23��.

The limits reveal that the CP force follows a 1 /zA
4 power

law for nonretarded distances. In the retarded regime, the
nonresonant force components again follow an inverse
power law whereas the resonant force components give rise
to spatially oscillating forces whose amplitude is propor-
tional to 1 /zA. If present, the resonant force components are
dominating over the nonresonant ones, in general. The mag-
nitude of the contributions from various molecular transi-
tions to the force �3� is determined by their dipole matrix
elements and frequencies, where Eqs. �10� and �12� together
with Eq. �7� imply that the strength of the nonresonant force
is roughly proportional to 1 /�kn, while that of the resonant
force is governed by n��nk�+1 or n��kn� in the nonretarded
limit and by �nk

3 �n��nk�+1� or �kn
3 n��kn� in the retarded re-

gime. Equations �10� and �12� furthermore show that the
force becomes larger for larger permittivity of the surface
material and saturates in the high-conductivity limit.

The general results and discussion given above can be
easily applied to various polar molecules interacting with
different surface materials. The qualitative behavior of the
forces will be similar for all molecules and materials, i.e., a
power-law dependence for nonretarded distances will give
way to an oscillating force in the retarded regime. The exact
magnitude of the force as well as the length scale of the
oscillations will depend on the dipole moments and frequen-
cies associated with the specific molecular transitions in-
volved and the electric response of the surface in the way
indicated above. Tabulated data for a variety of molecules
and metal surfaces can be found in Ref. �24�. In the follow-
ing, we will consider two representative examples.

B. Examples: LiH and YbF near a Au surface

We first consider a LiH molecule in its electronic, vibra-
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Green tensor �Eq. �8��, we are able to compute the force
components according to Eq. �6� which are displayed in Fig.
1. For this molecule, the contribution from rotational transi-
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1012 rad /s and d=1.96
10−29 C m
�24� ��kd0kdk0=d2I, where I is the unit tensor� is strongly
dominant over those of vibrational and electronic transitions
with their considerably higher transition frequencies. Mol-
ecules with a similar behavior include NH, OH, OD, NaCs,
and KCs. For the relative permittivity of the Au surface we
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the thermal wavelength �such that x%1�, the contribution
from the second terms in above Eqs. �12� and �13� vanishes
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metric� high-temperature limit �cf. Eq. �1��. In the opposite
case of a distance which is much smaller than the thermal
wavelength �x�1�, the first terms vanish and the nonreso-
nant force reduces to its �retarded� zero-temperature form
�cf. Ref. �21��. Our results, in particular those for the nonre-
tarded limit, agree with the ones previously obtained in Ref.
�15�. Note that resonant force components and their oscilla-
tory behavior in the retarded regime were first discussed for
excited atoms at zero temperature �cf., e.g., Refs. �22,23��.
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law for nonretarded distances. In the retarded regime, the
nonresonant force components again follow an inverse
power law whereas the resonant force components give rise
to spatially oscillating forces whose amplitude is propor-
tional to 1 /zA. If present, the resonant force components are
dominating over the nonresonant ones, in general. The mag-
nitude of the contributions from various molecular transi-
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elements and frequencies, where Eqs. �10� and �12� together
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gime. Equations �10� and �12� furthermore show that the
force becomes larger for larger permittivity of the surface
material and saturates in the high-conductivity limit.

The general results and discussion given above can be
easily applied to various polar molecules interacting with
different surface materials. The qualitative behavior of the
forces will be similar for all molecules and materials, i.e., a
power-law dependence for nonretarded distances will give
way to an oscillating force in the retarded regime. The exact
magnitude of the force as well as the length scale of the
oscillations will depend on the dipole moments and frequen-
cies associated with the specific molecular transitions in-
volved and the electric response of the surface in the way
indicated above. Tabulated data for a variety of molecules
and metal surfaces can be found in Ref. �24�. In the follow-
ing, we will consider two representative examples.

B. Examples: LiH and YbF near a Au surface

We first consider a LiH molecule in its electronic, vibra-
tional, and rotational ground states �pn= n0� near a Au sur-
face at room temperature T=300 K. With the help of the
Green tensor �Eq. �8��, we are able to compute the force
components according to Eq. �6� which are displayed in Fig.
1. For this molecule, the contribution from rotational transi-
tions with �kn=2.79
1012 rad /s and d=1.96
10−29 C m
�24� ��kd0kdk0=d2I, where I is the unit tensor� is strongly
dominant over those of vibrational and electronic transitions
with their considerably higher transition frequencies. Mol-
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force �cf. �26,27� and references therein�, we have also cal-
culated the force using the alternative plasma model and
found that the difference between the two models is of no
importance in our case.

Figure 1 shows the contributions from the nonresonant
force component �thin solid line� which is seen to be strictly
attractive and the resonant force components �dashed and
dotted lines�. With regard to the latter, we have separately
shown the propagating part ��q� �0,� /c�� in Eq. �8�, dashed
line� and the evanescent part ��q� �� /c ,���, dotted line�.
The rather astonishing result is that the evanescent part of the
resonant force almost exactly cancels the nonresonant force
component. Hence, in this highly nonequilibrium situation
the largest contribution to the CP force arises from the propa-
gating part of the resonant force. The total force �thick solid
line in Fig. 1� thus closely follows the latter. Only at very
small molecule-wall separation zA the force is given by its
near-field part which, for a two-level isotropic molecule with
��A�kBT, reads

F�rA� =
�dA�2
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The approximation in the second line of Eq. �15� holds for
good conductors. The force saturates in the high-temperature
limit where the factor in square brackets approaches −1 /2. In
contrast, the nonresonant �Lifshitz-type� force alone would
formally diverge. The predicted high-temperature saturation
agrees with the previously found vanishing of the leading
linear contribution in kBT / ���A� in the good-conductor limit
�15�.

Let us next consider a molecule that is at thermal equilib-
rium with its environment, so that the probabilities pn are
given by a Boltzmann distribution,

pn =
e−��n/�kBT�

� j
e−��j/�kBT�

. �16�

Here, all resonant force components cancel and the force is
given by a single nonresonant force contribution given by the
first term in Eq. �6� where the molecular polarizability has to
be replaced by its thermal counterpart �18�,

�T��� =�
n

pn�n��� . �17�

In Fig. 2, we compare this equilibrium force on a thermali-
zed molecule �solid line� with the nonequilibrium ground-
state force �dotted line� for the case of YbF. In contrast to
LiH, both rotational ��kn=9.05
1010 rad /s , d=1.31

10−29 C m� and vibrational transitions ��kn=9.54

1013 rad /s , d=8.60
10−31 C m� �24� give relevant con-
tributions to the force because at room temperature the fre-
quency of the latter is very close to the peak of the spectrum
�kn

3 n��kn� determining the resonant force contributions in the
retarded limit. The results for YbF are thus representative of
those to be expected for CaF, BaF, LiRb, NaRb, and LiCs,
which also have considerable contributions from vibrational
transitions at room temperature. Figure 2 shows that in con-
trast to the ground-state force, which oscillates as a function
of molecule-wall separation �due to the influence of vibra-
tional transitions�, the force on a fully thermalized atom is
monotonous and attractive �dominated by rotational transi-
tions�. We emphasize that the force at thermal equilibrium
between the atom and its environment �solid line� is vastly
overestimated by a Lifshitz-type macroscopic calculation
�dashed line� that uses the ground-state polarizability �0���
as input parameter. The reduction factor in the near-field
limit is approximately given in �18� as

�F�
�FLifshitz�

 
1

2n��10� + 1
�18�

for all zA. Its dependence on the relevant transition frequency
clearly makes it species dependent. The potentially very
large reduction factors ��1 /870 for YbF at room tempera-
ture� imply that these molecules can be brought much closer
to metallic surfaces than previously thought.
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found that the difference between the two models is of no
importance in our case.

Figure 1 shows the contributions from the nonresonant
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attractive and the resonant force components �dashed and
dotted lines�. With regard to the latter, we have separately
shown the propagating part ��q� �0,� /c�� in Eq. �8�, dashed
line� and the evanescent part ��q� �� /c ,���, dotted line�.
The rather astonishing result is that the evanescent part of the
resonant force almost exactly cancels the nonresonant force
component. Hence, in this highly nonequilibrium situation
the largest contribution to the CP force arises from the propa-
gating part of the resonant force. The total force �thick solid
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The approximation in the second line of Eq. �15� holds for
good conductors. The force saturates in the high-temperature
limit where the factor in square brackets approaches −1 /2. In
contrast, the nonresonant �Lifshitz-type� force alone would
formally diverge. The predicted high-temperature saturation
agrees with the previously found vanishing of the leading
linear contribution in kBT / ���A� in the good-conductor limit
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given by a single nonresonant force contribution given by the
first term in Eq. �6� where the molecular polarizability has to
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In Fig. 2, we compare this equilibrium force on a thermali-
zed molecule �solid line� with the nonequilibrium ground-
state force �dotted line� for the case of YbF. In contrast to
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1010 rad /s , d=1.31
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quency of the latter is very close to the peak of the spectrum
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3 n��kn� determining the resonant force contributions in the
retarded limit. The results for YbF are thus representative of
those to be expected for CaF, BaF, LiRb, NaRb, and LiCs,
which also have considerable contributions from vibrational
transitions at room temperature. Figure 2 shows that in con-
trast to the ground-state force, which oscillates as a function
of molecule-wall separation �due to the influence of vibra-
tional transitions�, the force on a fully thermalized atom is
monotonous and attractive �dominated by rotational transi-
tions�. We emphasize that the force at thermal equilibrium
between the atom and its environment �solid line� is vastly
overestimated by a Lifshitz-type macroscopic calculation
�dashed line� that uses the ground-state polarizability �0���
as input parameter. The reduction factor in the near-field
limit is approximately given in �18� as
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force �cf. �26,27� and references therein�, we have also cal-
culated the force using the alternative plasma model and
found that the difference between the two models is of no
importance in our case.
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limit where the factor in square brackets approaches −1 /2. In
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agrees with the previously found vanishing of the leading
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overestimated by a Lifshitz-type macroscopic calculation
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force �cf. �26,27� and references therein�, we have also cal-
culated the force using the alternative plasma model and
found that the difference between the two models is of no
importance in our case.

Figure 1 shows the contributions from the nonresonant
force component �thin solid line� which is seen to be strictly
attractive and the resonant force components �dashed and
dotted lines�. With regard to the latter, we have separately
shown the propagating part ��q� �0,� /c�� in Eq. �8�, dashed
line� and the evanescent part ��q� �� /c ,���, dotted line�.
The rather astonishing result is that the evanescent part of the
resonant force almost exactly cancels the nonresonant force
component. Hence, in this highly nonequilibrium situation
the largest contribution to the CP force arises from the propa-
gating part of the resonant force. The total force �thick solid
line in Fig. 1� thus closely follows the latter. Only at very
small molecule-wall separation zA the force is given by its
near-field part which, for a two-level isotropic molecule with
��A�kBT, reads

F�rA� =
�dA�2

8��0zA
4 �n��A�

����A��2 − 1

����A� + 1�2
−

kBT

��A

��0� − 1

��0� + 1
�ez

�
�dA�2

8��0zA
4 �n��A� −

kBT

��A
�ez. �15�

The approximation in the second line of Eq. �15� holds for
good conductors. The force saturates in the high-temperature
limit where the factor in square brackets approaches −1 /2. In
contrast, the nonresonant �Lifshitz-type� force alone would
formally diverge. The predicted high-temperature saturation
agrees with the previously found vanishing of the leading
linear contribution in kBT / ���A� in the good-conductor limit
�15�.

Let us next consider a molecule that is at thermal equilib-
rium with its environment, so that the probabilities pn are
given by a Boltzmann distribution,

pn =
e−��n/�kBT�

� j
e−��j/�kBT�

. �16�

Here, all resonant force components cancel and the force is
given by a single nonresonant force contribution given by the
first term in Eq. �6� where the molecular polarizability has to
be replaced by its thermal counterpart �18�,

�T��� =�
n

pn�n��� . �17�

In Fig. 2, we compare this equilibrium force on a thermali-
zed molecule �solid line� with the nonequilibrium ground-
state force �dotted line� for the case of YbF. In contrast to
LiH, both rotational ��kn=9.05
1010 rad /s , d=1.31

10−29 C m� and vibrational transitions ��kn=9.54

1013 rad /s , d=8.60
10−31 C m� �24� give relevant con-
tributions to the force because at room temperature the fre-
quency of the latter is very close to the peak of the spectrum
�kn

3 n��kn� determining the resonant force contributions in the
retarded limit. The results for YbF are thus representative of
those to be expected for CaF, BaF, LiRb, NaRb, and LiCs,
which also have considerable contributions from vibrational
transitions at room temperature. Figure 2 shows that in con-
trast to the ground-state force, which oscillates as a function
of molecule-wall separation �due to the influence of vibra-
tional transitions�, the force on a fully thermalized atom is
monotonous and attractive �dominated by rotational transi-
tions�. We emphasize that the force at thermal equilibrium
between the atom and its environment �solid line� is vastly
overestimated by a Lifshitz-type macroscopic calculation
�dashed line� that uses the ground-state polarizability �0���
as input parameter. The reduction factor in the near-field
limit is approximately given in �18� as

�F�
�FLifshitz�

 
1

2n��10� + 1
�18�

for all zA. Its dependence on the relevant transition frequency
clearly makes it species dependent. The potentially very
large reduction factors ��1 /870 for YbF at room tempera-
ture� imply that these molecules can be brought much closer
to metallic surfaces than previously thought.
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III. DYNAMICAL CASIMIR-POLDER FORCE

In order to understand the transition between the nonequi-
librium ground-state force and the fully thermalized one, we
need to investigate the full internal molecular dynamics in
the presence of the Au surface. The time-dependent prob-
abilities pn= pn�t� are governed by the rate equations

ṗn�t� = −�
k

�nkpn�t� +�
k

�knpk�t� , �19�

where the transition rates are given by �24�

�nk =
2�0

�
�nk

2 �*��nk��n��nk� + 1� + *��kn�n��kn��


 dnk · Im G�rA,rA, ��nk�� · dkn. �20�

The transition rates for LiH near a Au surface can easily
be calculated using the Green tensor �Eq. �8��. The resulting
time-dependent probabilities pn�t� are displayed for the
ground state and the first manifold of rotationally excited
states in the lower panels in Fig. 3, with the respective tran-
sition matrix elements being given by d�0,0�→�1,M�=duM, u0
=ez /�3, and u#1= �/ex+ iey� /�6 �24�. For large molecule-
wall separation the transition rates to the different substates
of the first manifold are very similar and so are the resulting
probabilities �lower right panel�. When moving closer to the
surface, the transition rates become affected by the evanes-
cent and propagating parts of the reflected field. The contri-
butions of the latter are strongly oscillating so that the rates
��0,0�→�1,#1� exhibit a pronounced minimum at zA=11 �m.
This is not the case for the rate ��0,0�→�1,0� due to the 1/zA
contribution from the evanescent fields �lower left panel in
Fig. 3�. Hence, at first only the occupation of the level �1,0�
reaches equilibrium with the level �0,0�, and full thermaliza-
tion is realized only at a much later time.

The dynamics of the CP force is then governed by the
internal molecular dynamics according to

F�rA,t� =�
n

pn�t�Fn�rA� . �21�

This time-dependent force is shown for a LiH molecule ini-
tially prepared in its ground state pn�t=0�= n0 in the top
panel of Fig. 3. We observe a gradual disappearance of the
oscillating force components on a time scale of approxi-
mately 3 s. The attractive near-field force reaches its equilib-
rium value only much later due to the above-mentioned
strongly reduced rate ��0,0�→�1,#1�. Note that during the ther-
malization the molecule is in an anisotropic state so that we
have to use the general expression �3� for the force compo-
nents rather than its isotropic special case �6�.

IV. CONCLUSIONS AND OUTLOOK

Studying the CP force on polar molecules near a planar
surface at finite temperature, we have found that even
ground-state molecules are subject to resonant spatially os-
cillating force components at finite temperature. They are
due to the thermal nonequilibrium between the molecule and
its environment. A full dynamical treatment has shown that
these transient forces disappear in the course of thermaliza-
tion of the molecule. The remaining equilibrium force can be
vastly different from that calculated using a Lifshitz-type
force expression for ground-state molecules.

In our numerical example of ground-state LiH, we have
explicitly shown that the nonresonant force component and
the evanescent part of the resonant force component cancel
almost exactly, leaving a strongly reduced attractive force in
the nonretarded limit which saturates at high temperatures.
The force in the retarded limit is dominated by resonant con-
tributions from rotational transitions. In contrast, the force on
the heavier molecule YbF is dominated by resonant contri-
butions from vibrational transitions. Moreover, in thermal
equilibrium at room temperature the resulting force is a fac-
tor 1/870 smaller than would be expected from a Lifshitz-
type calculation for the corresponding ground-state mol-
ecule.

Whereas the CP force on a fully thermalized molecule is
always attractive, the nonequilibrium force on a ground-state
molecule near a Au surface at room temperature has been
found to show an oscillating behavior as a function of the
molecule-wall separation zA, with stable equilibrium posi-
tions away from the surface. Therefore, one might be
tempted to use these �transient� minima for trapping pur-
poses. It turns out, however, that for LiH the first potential
well �with its minimum at zA=300 �m� has a depth of ap-
proximately 10−12 K which is immeasurably small. In order
to increase the trap depth, one might envisage a situation in
which the molecule is embedded in a planar cavity of size
l consisting of two such Au surfaces. Then, the Fresnel re-
flection coefficients in Eq. �8� have to be replaced by r̃s,p
=rs,p / �1−rs,p

2 e2il�. For very good conductors such as Au,
one can set �rs,p��1−, with ,�1. Hence, for l=n�
�n�N�, the modified Fresnel coefficients increase as �r̃s,p�
�2 /,. Choosing l close to a cavity resonance n�c /�A, the
contribution from propagating modes with small q can thus
be boosted by several orders of magnitude. Thus, if by use of
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FIG. 3. Transient CP force and internal dynamics of a LiH mol-
ecule initially prepared in its ground state. For details, see text.

DYNAMICS OF THERMAL CASIMIR-POLDER FORCES ON… PHYSICAL REVIEW A 79, 052903 �2009�

052903-5

III. DYNAMICAL CASIMIR-POLDER FORCE

In order to understand the transition between the nonequi-
librium ground-state force and the fully thermalized one, we
need to investigate the full internal molecular dynamics in
the presence of the Au surface. The time-dependent prob-
abilities pn= pn�t� are governed by the rate equations

ṗn�t� = −�
k

�nkpn�t� +�
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�knpk�t� , �19�

where the transition rates are given by �24�
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The transition rates for LiH near a Au surface can easily
be calculated using the Green tensor �Eq. �8��. The resulting
time-dependent probabilities pn�t� are displayed for the
ground state and the first manifold of rotationally excited
states in the lower panels in Fig. 3, with the respective tran-
sition matrix elements being given by d�0,0�→�1,M�=duM, u0
=ez /�3, and u#1= �/ex+ iey� /�6 �24�. For large molecule-
wall separation the transition rates to the different substates
of the first manifold are very similar and so are the resulting
probabilities �lower right panel�. When moving closer to the
surface, the transition rates become affected by the evanes-
cent and propagating parts of the reflected field. The contri-
butions of the latter are strongly oscillating so that the rates
��0,0�→�1,#1� exhibit a pronounced minimum at zA=11 �m.
This is not the case for the rate ��0,0�→�1,0� due to the 1/zA
contribution from the evanescent fields �lower left panel in
Fig. 3�. Hence, at first only the occupation of the level �1,0�
reaches equilibrium with the level �0,0�, and full thermaliza-
tion is realized only at a much later time.

The dynamics of the CP force is then governed by the
internal molecular dynamics according to

F�rA,t� =�
n

pn�t�Fn�rA� . �21�

This time-dependent force is shown for a LiH molecule ini-
tially prepared in its ground state pn�t=0�= n0 in the top
panel of Fig. 3. We observe a gradual disappearance of the
oscillating force components on a time scale of approxi-
mately 3 s. The attractive near-field force reaches its equilib-
rium value only much later due to the above-mentioned
strongly reduced rate ��0,0�→�1,#1�. Note that during the ther-
malization the molecule is in an anisotropic state so that we
have to use the general expression �3� for the force compo-
nents rather than its isotropic special case �6�.

IV. CONCLUSIONS AND OUTLOOK

Studying the CP force on polar molecules near a planar
surface at finite temperature, we have found that even
ground-state molecules are subject to resonant spatially os-
cillating force components at finite temperature. They are
due to the thermal nonequilibrium between the molecule and
its environment. A full dynamical treatment has shown that
these transient forces disappear in the course of thermaliza-
tion of the molecule. The remaining equilibrium force can be
vastly different from that calculated using a Lifshitz-type
force expression for ground-state molecules.

In our numerical example of ground-state LiH, we have
explicitly shown that the nonresonant force component and
the evanescent part of the resonant force component cancel
almost exactly, leaving a strongly reduced attractive force in
the nonretarded limit which saturates at high temperatures.
The force in the retarded limit is dominated by resonant con-
tributions from rotational transitions. In contrast, the force on
the heavier molecule YbF is dominated by resonant contri-
butions from vibrational transitions. Moreover, in thermal
equilibrium at room temperature the resulting force is a fac-
tor 1/870 smaller than would be expected from a Lifshitz-
type calculation for the corresponding ground-state mol-
ecule.

Whereas the CP force on a fully thermalized molecule is
always attractive, the nonequilibrium force on a ground-state
molecule near a Au surface at room temperature has been
found to show an oscillating behavior as a function of the
molecule-wall separation zA, with stable equilibrium posi-
tions away from the surface. Therefore, one might be
tempted to use these �transient� minima for trapping pur-
poses. It turns out, however, that for LiH the first potential
well �with its minimum at zA=300 �m� has a depth of ap-
proximately 10−12 K which is immeasurably small. In order
to increase the trap depth, one might envisage a situation in
which the molecule is embedded in a planar cavity of size
l consisting of two such Au surfaces. Then, the Fresnel re-
flection coefficients in Eq. �8� have to be replaced by r̃s,p
=rs,p / �1−rs,p

2 e2il�. For very good conductors such as Au,
one can set �rs,p��1−, with ,�1. Hence, for l=n�
�n�N�, the modified Fresnel coefficients increase as �r̃s,p�
�2 /,. Choosing l close to a cavity resonance n�c /�A, the
contribution from propagating modes with small q can thus
be boosted by several orders of magnitude. Thus, if by use of
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III. DYNAMICAL CASIMIR-POLDER FORCE

In order to understand the transition between the nonequi-
librium ground-state force and the fully thermalized one, we
need to investigate the full internal molecular dynamics in
the presence of the Au surface. The time-dependent prob-
abilities pn= pn�t� are governed by the rate equations

ṗn�t� = −�
k

�nkpn�t� +�
k

�knpk�t� , �19�

where the transition rates are given by �24�
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The transition rates for LiH near a Au surface can easily
be calculated using the Green tensor �Eq. �8��. The resulting
time-dependent probabilities pn�t� are displayed for the
ground state and the first manifold of rotationally excited
states in the lower panels in Fig. 3, with the respective tran-
sition matrix elements being given by d�0,0�→�1,M�=duM, u0
=ez /�3, and u#1= �/ex+ iey� /�6 �24�. For large molecule-
wall separation the transition rates to the different substates
of the first manifold are very similar and so are the resulting
probabilities �lower right panel�. When moving closer to the
surface, the transition rates become affected by the evanes-
cent and propagating parts of the reflected field. The contri-
butions of the latter are strongly oscillating so that the rates
��0,0�→�1,#1� exhibit a pronounced minimum at zA=11 �m.
This is not the case for the rate ��0,0�→�1,0� due to the 1/zA
contribution from the evanescent fields �lower left panel in
Fig. 3�. Hence, at first only the occupation of the level �1,0�
reaches equilibrium with the level �0,0�, and full thermaliza-
tion is realized only at a much later time.

The dynamics of the CP force is then governed by the
internal molecular dynamics according to

F�rA,t� =�
n

pn�t�Fn�rA� . �21�

This time-dependent force is shown for a LiH molecule ini-
tially prepared in its ground state pn�t=0�= n0 in the top
panel of Fig. 3. We observe a gradual disappearance of the
oscillating force components on a time scale of approxi-
mately 3 s. The attractive near-field force reaches its equilib-
rium value only much later due to the above-mentioned
strongly reduced rate ��0,0�→�1,#1�. Note that during the ther-
malization the molecule is in an anisotropic state so that we
have to use the general expression �3� for the force compo-
nents rather than its isotropic special case �6�.

IV. CONCLUSIONS AND OUTLOOK

Studying the CP force on polar molecules near a planar
surface at finite temperature, we have found that even
ground-state molecules are subject to resonant spatially os-
cillating force components at finite temperature. They are
due to the thermal nonequilibrium between the molecule and
its environment. A full dynamical treatment has shown that
these transient forces disappear in the course of thermaliza-
tion of the molecule. The remaining equilibrium force can be
vastly different from that calculated using a Lifshitz-type
force expression for ground-state molecules.

In our numerical example of ground-state LiH, we have
explicitly shown that the nonresonant force component and
the evanescent part of the resonant force component cancel
almost exactly, leaving a strongly reduced attractive force in
the nonretarded limit which saturates at high temperatures.
The force in the retarded limit is dominated by resonant con-
tributions from rotational transitions. In contrast, the force on
the heavier molecule YbF is dominated by resonant contri-
butions from vibrational transitions. Moreover, in thermal
equilibrium at room temperature the resulting force is a fac-
tor 1/870 smaller than would be expected from a Lifshitz-
type calculation for the corresponding ground-state mol-
ecule.

Whereas the CP force on a fully thermalized molecule is
always attractive, the nonequilibrium force on a ground-state
molecule near a Au surface at room temperature has been
found to show an oscillating behavior as a function of the
molecule-wall separation zA, with stable equilibrium posi-
tions away from the surface. Therefore, one might be
tempted to use these �transient� minima for trapping pur-
poses. It turns out, however, that for LiH the first potential
well �with its minimum at zA=300 �m� has a depth of ap-
proximately 10−12 K which is immeasurably small. In order
to increase the trap depth, one might envisage a situation in
which the molecule is embedded in a planar cavity of size
l consisting of two such Au surfaces. Then, the Fresnel re-
flection coefficients in Eq. �8� have to be replaced by r̃s,p
=rs,p / �1−rs,p

2 e2il�. For very good conductors such as Au,
one can set �rs,p��1−, with ,�1. Hence, for l=n�
�n�N�, the modified Fresnel coefficients increase as �r̃s,p�
�2 /,. Choosing l close to a cavity resonance n�c /�A, the
contribution from propagating modes with small q can thus
be boosted by several orders of magnitude. Thus, if by use of
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In order to understand the transition between the nonequi-
librium ground-state force and the fully thermalized one, we
need to investigate the full internal molecular dynamics in
the presence of the Au surface. The time-dependent prob-
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The transition rates for LiH near a Au surface can easily
be calculated using the Green tensor �Eq. �8��. The resulting
time-dependent probabilities pn�t� are displayed for the
ground state and the first manifold of rotationally excited
states in the lower panels in Fig. 3, with the respective tran-
sition matrix elements being given by d�0,0�→�1,M�=duM, u0
=ez /�3, and u#1= �/ex+ iey� /�6 �24�. For large molecule-
wall separation the transition rates to the different substates
of the first manifold are very similar and so are the resulting
probabilities �lower right panel�. When moving closer to the
surface, the transition rates become affected by the evanes-
cent and propagating parts of the reflected field. The contri-
butions of the latter are strongly oscillating so that the rates
��0,0�→�1,#1� exhibit a pronounced minimum at zA=11 �m.
This is not the case for the rate ��0,0�→�1,0� due to the 1/zA
contribution from the evanescent fields �lower left panel in
Fig. 3�. Hence, at first only the occupation of the level �1,0�
reaches equilibrium with the level �0,0�, and full thermaliza-
tion is realized only at a much later time.

The dynamics of the CP force is then governed by the
internal molecular dynamics according to

F�rA,t� =�
n

pn�t�Fn�rA� . �21�

This time-dependent force is shown for a LiH molecule ini-
tially prepared in its ground state pn�t=0�= n0 in the top
panel of Fig. 3. We observe a gradual disappearance of the
oscillating force components on a time scale of approxi-
mately 3 s. The attractive near-field force reaches its equilib-
rium value only much later due to the above-mentioned
strongly reduced rate ��0,0�→�1,#1�. Note that during the ther-
malization the molecule is in an anisotropic state so that we
have to use the general expression �3� for the force compo-
nents rather than its isotropic special case �6�.

IV. CONCLUSIONS AND OUTLOOK

Studying the CP force on polar molecules near a planar
surface at finite temperature, we have found that even
ground-state molecules are subject to resonant spatially os-
cillating force components at finite temperature. They are
due to the thermal nonequilibrium between the molecule and
its environment. A full dynamical treatment has shown that
these transient forces disappear in the course of thermaliza-
tion of the molecule. The remaining equilibrium force can be
vastly different from that calculated using a Lifshitz-type
force expression for ground-state molecules.

In our numerical example of ground-state LiH, we have
explicitly shown that the nonresonant force component and
the evanescent part of the resonant force component cancel
almost exactly, leaving a strongly reduced attractive force in
the nonretarded limit which saturates at high temperatures.
The force in the retarded limit is dominated by resonant con-
tributions from rotational transitions. In contrast, the force on
the heavier molecule YbF is dominated by resonant contri-
butions from vibrational transitions. Moreover, in thermal
equilibrium at room temperature the resulting force is a fac-
tor 1/870 smaller than would be expected from a Lifshitz-
type calculation for the corresponding ground-state mol-
ecule.

Whereas the CP force on a fully thermalized molecule is
always attractive, the nonequilibrium force on a ground-state
molecule near a Au surface at room temperature has been
found to show an oscillating behavior as a function of the
molecule-wall separation zA, with stable equilibrium posi-
tions away from the surface. Therefore, one might be
tempted to use these �transient� minima for trapping pur-
poses. It turns out, however, that for LiH the first potential
well �with its minimum at zA=300 �m� has a depth of ap-
proximately 10−12 K which is immeasurably small. In order
to increase the trap depth, one might envisage a situation in
which the molecule is embedded in a planar cavity of size
l consisting of two such Au surfaces. Then, the Fresnel re-
flection coefficients in Eq. �8� have to be replaced by r̃s,p
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�n�N�, the modified Fresnel coefficients increase as �r̃s,p�
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a cavity with a high Q factor could increase the trap depth by
a factor, e.g., 106, the energy difference would be in the
microkelvin regime which could be sufficiently deep to trap
cold polar molecules with thermal photons. This question
will be addressed in more detail in a future investigation.
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We analyze the thermal Casimir-Polder potential experienced by a ground-state molecule in a planar cavity
and investigate the prospects for using such a setup for molecular guiding. The resonant atom-field interaction
associated with this nonequilibrium situation manifests itself in oscillating standing-wave components of the
potential. While the respective potential wells are normally too shallow to be useful, they may be amplified by
a highly reflecting cavity whose width equals a half-integer multiple of a particular molecular transition
frequency. We find that with an ideal choice of molecule and the use of a cavity bounded by Bragg mirrors of
ultrahigh reflectivity, it may be possible to boost the potential by up to two orders of magnitude. We analyti-
cally derive the scaling of the potential depth as a function of reflectivity and analyze how it varies with
temperature and molecular properties. It is also shown how the potential depth decreases for standing waves
with a larger number of nodes. Finally, we investigate the lifetime of the molecular ground state in a thermal
environment and find that it is not greatly influenced by the cavity and remains in the order of several seconds.
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I. INTRODUCTION

Casimir-Polder �CP� forces are a particular example of
dispersion forces, which arise due to the fluctuations of the
quantized electromagnetic field �1�. These forces occur be-
tween polarizable atoms or molecules and metallic or dielec-
tric bodies and can be intuitively understood as the dipole-
dipole force that arises from spontaneous and mutually
correlated polarization of the atom or molecule and the mat-
ter comprising the body. Casimir-Polder forces at thermal
equilibrium have been commonly investigated in the linear-
response formalism �2–4�. Studies of a wide range of geom-
etries such as semi-infinite half-spaces �2–5�, thin plates
�6,7�, planar cavities �8�, spheres, and cylinders �9� as well as
cylindrical shells �5,6,10� have revealed that thermal CP
forces are typically attractive in the absence of magnetic ef-
fects.

Recent theoretical predictions �11� as well as experimen-
tal realizations �12� for CP forces in thermal nonequilibrium
situations have pointed toward interesting effects which arise
when an atom at equilibrium with its local environment in-
teracts with a body held at different temperature. In particu-
lar, depending on the temperatures of the macroscopic body
and the environment, the force can change its character from
being attractive to repulsive and vice versa.

Nonequilibrium between atom and local environment can
be investigated by means of normal-mode quantum electro-
dynamics �QED� �13,14� or macroscopic QED in absorbing
and dispersing media �15,16�. In this case, thermal excitation
and de-excitation processes lead to resonant contributions to
the force. As discussed in a recent Letter by two of the
present authors �17� �cf. similar findings reported in Ref.
�18��, these resonant forces produce a different force from
that obtained through the standard approach, a perturbative

expansion of the Lifshitz formula using the ground-state po-
larizability of the atom. Only when the atom is fully thermal-
ized, i.e., when it is in a superposition of energy states as
given by the Boltzmann distribution, do the two approaches
yield the same result, and only when the correct thermal
polarizability is employed. For most atoms the resonant con-
tribution is small because the respective excitation energies
are much larger than the thermal energies; hence the atom is
essentially always in its ground state.

For diatomic polar molecules such as LiH or YbF, how-
ever, whose lowest rovibrational eigenstates are typically
separated by energies that are small on a thermal scale, the
situation is changed, and the thermalized CP force can differ
drastically from the standard “Lifshitz-like” expression. An
investigation into these effects was undertaken in Ref. �19�,
where it was found that for a ground-state YbF molecule
outside a metallic half-space at room temperature the fully
thermalized CP force is smaller than the nonresonant force
alone by a factor of 870. These results could be of impor-
tance for the trapping of Stark-decelerated polar molecules
�20� near macroscopic bodies.

Equally interesting is the observation that even for an
atom or a molecule in its ground state the resonant part of the
Casimir-Polder force has a long-range and spatially oscillat-
ing contribution, due to propagating modes �14,19�. While
this oscillatory behavior dies out as the system thermalizes,
the thermalization time of a ground-state molecule can be
quite long, often several seconds �21�. The oscillating propa-
gating potential reported in �19�, unfortunately, was found to
be too small in amplitude to be useful for guiding purposes,
but nonetheless points to interesting applications if a way
could be found to enhance these oscillations.

In the present article we investigate the use of a planar
cavity to enhance the amplitude of the potential oscillations.
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dynamics �QED� �13,14� or macroscopic QED in absorbing
and dispersing media �15,16�. In this case, thermal excitation
and de-excitation processes lead to resonant contributions to
the force. As discussed in a recent Letter by two of the
present authors �17� �cf. similar findings reported in Ref.
�18��, these resonant forces produce a different force from
that obtained through the standard approach, a perturbative

expansion of the Lifshitz formula using the ground-state po-
larizability of the atom. Only when the atom is fully thermal-
ized, i.e., when it is in a superposition of energy states as
given by the Boltzmann distribution, do the two approaches
yield the same result, and only when the correct thermal
polarizability is employed. For most atoms the resonant con-
tribution is small because the respective excitation energies
are much larger than the thermal energies; hence the atom is
essentially always in its ground state.

For diatomic polar molecules such as LiH or YbF, how-
ever, whose lowest rovibrational eigenstates are typically
separated by energies that are small on a thermal scale, the
situation is changed, and the thermalized CP force can differ
drastically from the standard “Lifshitz-like” expression. An
investigation into these effects was undertaken in Ref. �19�,
where it was found that for a ground-state YbF molecule
outside a metallic half-space at room temperature the fully
thermalized CP force is smaller than the nonresonant force
alone by a factor of 870. These results could be of impor-
tance for the trapping of Stark-decelerated polar molecules
�20� near macroscopic bodies.

Equally interesting is the observation that even for an
atom or a molecule in its ground state the resonant part of the
Casimir-Polder force has a long-range and spatially oscillat-
ing contribution, due to propagating modes �14,19�. While
this oscillatory behavior dies out as the system thermalizes,
the thermalization time of a ground-state molecule can be
quite long, often several seconds �21�. The oscillating propa-
gating potential reported in �19�, unfortunately, was found to
be too small in amplitude to be useful for guiding purposes,
but nonetheless points to interesting applications if a way
could be found to enhance these oscillations.

In the present article we investigate the use of a planar
cavity to enhance the amplitude of the potential oscillations.
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This geometry has been discussed in detail in conjunction
with excited atoms in a zero-temperature environment,
where an oscillating standing-wave potential is known to oc-
cur �22–28�. For ground-state molecules in a cavity at finite
temperature, an enhancement of up to two orders of magni-
tude will indeed be shown to be possible when the cavity
width is fixed at the resonant length a=��c /E10, where E10
is the energy separation of the ground state and first-excited
state of the molecule.

The paper is organized as follows: The general formalism
of the CP force on a molecule in a cavity is developed in Sec.
II, and numerical calculations for a gold cavity are under-
taken in Sec. II A, where we also show how the potential is
enhanced as the cavity approaches the resonant width. In
Secs. II B and II C we investigate the strategies for further
enhancing the potential by considering different cavity reso-
nances and molecular species. The scaling of the potential
with the reflectivity of the cavity is investigated numerically
and analytically in Sec. II D, and we thereafter discuss how
further enhancement can be achieved using a cavity of par-
allel Bragg mirrors tuned to frequency �01=E01 /� and nor-
mal incidence �Sec. II E�. Finally, in Sec. II F we investigate
the effect of the cavity on the thermalization time of a mol-
ecule initially prepared in its ground state and find that this
remains in the same order of magnitude as in free space,
typically in the order of seconds. We summarize our result in
Sec. III and provide a guide to further investigations.

II. THERMAL CASIMIR-POLDER POTENTIAL IN A
PLANAR CAVITY

We consider a polar molecule with energy eigenstates �n�,
eigenenergies ��n, transition frequencies �mn=�m−�n, and
dipole matrix elements dmn, which is prepared in an incoher-
ent superposition of its energy eigenstates with probabilities
pn. As shown in Ref. �17�, the CP force is conservative in the
perturbative limit, F�r�=−�U�r�, where the associated CP
potential is given by

U�r� = −�
n

pnUn�r� , �1�

and the potential components for an isotropic molecule read

Un�r� = �0kBT�
j=0

�

�� j
2�n�i� j�Re Tr G�1��r,r,i� j�

+
�0

3 �k �nk
2 �dnk�2


�*��kn�n��kn� − *��nk��n��nk� + 1��


Re Tr G�1��r,r, ��nk�� , �2�

where �0 is the free-space permeability, kB is Boltzmann’s
constant, � j =2�jkBT /� is the jth Matsubara frequency, and
G�1��r ,r� ,�� is the scattering part of the classical Green ten-
sor of the geometry the molecule is placed in. The prime on
the Matsubara sum indicates that the j=0 term is to be taken
with half weight. The molecular polarizability is given by

�n��� = lim
�→0

1

3��k � �dnk�2

� + �kn + i�
−

�dnk�2

� − �kn + i�
� . �3�

The photon number follows the Bose-Einstein distribution,

n��� = �exp	 ��
kBT

 − 1�−1

. �4�

The first sum in Eq. �2� is the nonresonant force, reminiscent
of that obtained by a dilute-gas expansion of the Lifshitz
formula �2�. The second sum is the resonant contribution to
the force. We will see how it splits naturally into a propagat-
ing plus an evanescent part.

We assume the molecule to be placed within an empty
planar cavity bounded by two identical plates of infinite lat-
eral extension with plane parallel surfaces, separated by a
distance a. We choose the coordinate system such that the
cavity walls are normal to the z axis at z= #a /2 �z=0 being
the center of the cavity� and denote directions in the xy plane
by the symbol �. The scattering Green tensor of the system
is well known �cf., e.g., Ref. �29��, and the relevant diagonal
elements inside the cavity are given by

Gxx
�1��z,z,k�,�� = −

ic2

�2

rp

Dp
eia cos 2z , �5a�

Gyy
�1��z,z, ,k��� =

i



rs

Ds
eia cos 2z , �5b�

Gzz
�1��z,z, ,k��� =

ic2k�
2

�2

rp

Dp
eia cos 2z , �5c�

where we have performed a Weyl expansion,

G�1��r,r��� =� d2k�

�2��2
G�1��z,z�,k�,��eik�·�r − r���, �6�

taken the coincidence limit r→r�, and dropped all position-
independent terms �which give rise to an irrelevant constant
contribution to the CP potential�. Here, rs ,rp are the reflec-
tion coefficients of the �identical� cavity walls for s , p polar-
ized waves and we have defined

D� = 1 − r�
2e2ia, �7�

 = ��2/c2 − k�
2 . �8�

The square root is to be taken such that Im (0. When the
cavity walls are homogeneous semi-infinite half-spaces of an
electric material of permittivity ����, the reflection coeffi-
cients can be written simply as

rs =
 − �2 + �� − 1��2/c2

 + �2 + �� − 1��2/c2
, �9a�

rp =
� − �2 + �� − 1��2/c2

� + �2 + �� − 1��2/c2
, �9b�

where again the square roots are chosen such that their
imaginary part is positive.
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, �9b�

where again the square roots are chosen such that their
imaginary part is positive.
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This geometry has been discussed in detail in conjunction
with excited atoms in a zero-temperature environment,
where an oscillating standing-wave potential is known to oc-
cur �22–28�. For ground-state molecules in a cavity at finite
temperature, an enhancement of up to two orders of magni-
tude will indeed be shown to be possible when the cavity
width is fixed at the resonant length a=��c /E10, where E10
is the energy separation of the ground state and first-excited
state of the molecule.

The paper is organized as follows: The general formalism
of the CP force on a molecule in a cavity is developed in Sec.
II, and numerical calculations for a gold cavity are under-
taken in Sec. II A, where we also show how the potential is
enhanced as the cavity approaches the resonant width. In
Secs. II B and II C we investigate the strategies for further
enhancing the potential by considering different cavity reso-
nances and molecular species. The scaling of the potential
with the reflectivity of the cavity is investigated numerically
and analytically in Sec. II D, and we thereafter discuss how
further enhancement can be achieved using a cavity of par-
allel Bragg mirrors tuned to frequency �01=E01 /� and nor-
mal incidence �Sec. II E�. Finally, in Sec. II F we investigate
the effect of the cavity on the thermalization time of a mol-
ecule initially prepared in its ground state and find that this
remains in the same order of magnitude as in free space,
typically in the order of seconds. We summarize our result in
Sec. III and provide a guide to further investigations.

II. THERMAL CASIMIR-POLDER POTENTIAL IN A
PLANAR CAVITY

We consider a polar molecule with energy eigenstates �n�,
eigenenergies ��n, transition frequencies �mn=�m−�n, and
dipole matrix elements dmn, which is prepared in an incoher-
ent superposition of its energy eigenstates with probabilities
pn. As shown in Ref. �17�, the CP force is conservative in the
perturbative limit, F�r�=−�U�r�, where the associated CP
potential is given by

U�r� = −�
n

pnUn�r� , �1�

and the potential components for an isotropic molecule read

Un�r� = �0kBT�
j=0

�

�� j
2�n�i� j�Re Tr G�1��r,r,i� j�

+
�0

3 �k �nk
2 �dnk�2


�*��kn�n��kn� − *��nk��n��nk� + 1��


Re Tr G�1��r,r, ��nk�� , �2�

where �0 is the free-space permeability, kB is Boltzmann’s
constant, � j =2�jkBT /� is the jth Matsubara frequency, and
G�1��r ,r� ,�� is the scattering part of the classical Green ten-
sor of the geometry the molecule is placed in. The prime on
the Matsubara sum indicates that the j=0 term is to be taken
with half weight. The molecular polarizability is given by

�n��� = lim
�→0

1

3��k � �dnk�2

� + �kn + i�
−

�dnk�2

� − �kn + i�
� . �3�

The photon number follows the Bose-Einstein distribution,

n��� = �exp	 ��
kBT

 − 1�−1

. �4�

The first sum in Eq. �2� is the nonresonant force, reminiscent
of that obtained by a dilute-gas expansion of the Lifshitz
formula �2�. The second sum is the resonant contribution to
the force. We will see how it splits naturally into a propagat-
ing plus an evanescent part.

We assume the molecule to be placed within an empty
planar cavity bounded by two identical plates of infinite lat-
eral extension with plane parallel surfaces, separated by a
distance a. We choose the coordinate system such that the
cavity walls are normal to the z axis at z= #a /2 �z=0 being
the center of the cavity� and denote directions in the xy plane
by the symbol �. The scattering Green tensor of the system
is well known �cf., e.g., Ref. �29��, and the relevant diagonal
elements inside the cavity are given by

Gxx
�1��z,z,k�,�� = −

ic2

�2

rp

Dp
eia cos 2z , �5a�

Gyy
�1��z,z, ,k��� =

i



rs

Ds
eia cos 2z , �5b�

Gzz
�1��z,z, ,k��� =

ic2k�
2

�2

rp

Dp
eia cos 2z , �5c�

where we have performed a Weyl expansion,

G�1��r,r��� =� d2k�

�2��2
G�1��z,z�,k�,��eik�·�r − r���, �6�

taken the coincidence limit r→r�, and dropped all position-
independent terms �which give rise to an irrelevant constant
contribution to the CP potential�. Here, rs ,rp are the reflec-
tion coefficients of the �identical� cavity walls for s , p polar-
ized waves and we have defined

D� = 1 − r�
2e2ia, �7�

 = ��2/c2 − k�
2 . �8�

The square root is to be taken such that Im (0. When the
cavity walls are homogeneous semi-infinite half-spaces of an
electric material of permittivity ����, the reflection coeffi-
cients can be written simply as

rs =
 − �2 + �� − 1��2/c2

 + �2 + �� − 1��2/c2
, �9a�

rp =
� − �2 + �� − 1��2/c2

� + �2 + �� − 1��2/c2
, �9b�

where again the square roots are chosen such that their
imaginary part is positive.
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Adding Eqs. �5a�–�5c� and partially performing the Fou-
rier integral by introducing polar coordinates in the xy plane,
the trace of the Green tensor of the cavity reads

Tr G�1��r,r,�� =
1

2�i
�

0

� k�dk�




�2c22

�2

rp

Dp
− �

�=s,p

r�
D�
�eia cos 2z .

�10�

This result can be substituted into Eq. �2� to obtain the ther-
mal CP potential of a molecule in an arbitrary incoherent
internal state. In the following, we will assume the molecule
to be prepared in its ground state, so that the thermal CP
potential is given by

U�r� = �0kBT�
j=0

�

�� j
2��i� j�Re Tr G�1��r,r,i� j�

+
�0

3 �k�0
�0k

2 n��k0��d0k�2Re Tr G�1��r,r,�k0� ,

�11�

�������0���, ground-state polarizability� together with Eq.
�10�. The first term is the nonresonant part of the potential, it
depends on the Green tensor taken at purely imaginary fre-
quencies. Since  is purely imaginary in this case, Green
tensor �10� and hence the nonresonant potential is nonoscil-
lating as a function of position. The second term in the CP
potential is the resonant contribution, which depends on the
Green tensor taken at real frequencies. The integral over k�

in this case naturally splits into a region 0'k�	�nk of
propagating waves in which  is real and positive, and a
region �nk'k� of evanescent waves in which  is purely
imaginary. The contributions from propagating waves are os-
cillating as a function of position due to the term cos 2z,
while those from evanescent waves are nonoscillating, just
like the nonresonant part of the potential. The total potential
�11� can thus be separated into nonresonant �first term�,
propagating �contributions to second term with
0'k�	�nk�, and evanescent components �contributions to
second term with �nk'k�� according to

U�z� = Unr�z� + Upr�z� + Uev�z� . �12�

To illustrate the behavior of the total potential and its
three components, we consider a LiH molecule in its elec-
tronic and rovibrational ground state placed inside a gold
cavity. The permittivity of the �semi-infinite� cavity walls
may be computed using the Drude model

���� = 1 −
�p

2

��� + i"�
�13�

with �p=1.37
1016 rad /s and "=5.32
1013 rad /s �30�.
As shown in Ref. �19�, the CP potential of ground-state LiH
is dominated by contributions from the rotational transitions
to the first excited manifold, with the respective transition
frequency and dipole matrix elements being given by �0k
=2.78973
1012 rad /s and �k�d0k�2=3.847
10−58 C2 m2,

respectively �21�. Potential �11� and its three components
�Eq. �12�� for a cavity of length a=500 �m at room tem-
perature �T=300 K� is shown in Fig. 1 as the result of a
numerical integration, where Eqs. �7�, �8�, �9a�, �9b�, and
�10� have been used. For transparency, we have shifted all
three components such that they vanish at the center of the
cavity. It is seen that the nonresonant potential is attractive
and has a maximum at the center of the cavity, while the
evanescent potential is repulsive and has a minimum at the
cavity center. As in the case of a single surface �19� these
two contributions partially cancel, where the attractive non-
resonant contribution is slightly larger and leads to an attrac-
tive total potential in the vicinity of the cavity walls. The
propagating part of the potential is spatially oscillating and
finite at the cavity walls, it dominates in the central region of
the cavity where it gives rise to well-pronounced maxima
and minima.

It is natural to wonder whether these potential minima
might be used for the purpose of guiding of polar molecules.
With this in mind, we will in the following discuss strategies
of enhancing the depth of the potential well by analyzing the
dependence of the potential on the molecular species as well
as the geometric and material parameters of the cavity.

A. Cavity-induced enhancement of the potential

We begin our analysis by discussing the dependence of
the potential on the cavity width. The one-dimensional con-
finement of the propagating modes in a cavity of highly re-
flecting mirrors leads to the formation of standing waves and
associated cavity resonances. When the molecular transition
frequency coincides with one of these resonances, the ther-
mal CP potential can be strongly enhanced: When the
squared reflection coefficient r�

2 is close to unity, the denomi-
nator D� of Eq. �7�, featuring in the Green tensor, becomes
small if the exponential exp�2ia� is equal to unity, resulting
in a strong enhancement of the potential Upr. This happens
for normal incidence �k�=0� of the propagating waves,
when the resonance condition 2�0ka /c=2�� , ��N is ful-
filled. In other words, the cavity length has to be equal to a
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FIG. 1. �Color online� Casimir-Polder potential of a ground-
state LiH molecule inside a gold cavity of width a=500 �m at
room temperature �T=300 K�. The nonresonant, propagating, and
evanescent contributions to the total potential are shown separately.
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Adding Eqs. �5a�–�5c� and partially performing the Fou-
rier integral by introducing polar coordinates in the xy plane,
the trace of the Green tensor of the cavity reads

Tr G�1��r,r,�� =
1

2�i
�

0

� k�dk�




�2c22

�2

rp

Dp
− �

�=s,p

r�
D�
�eia cos 2z .

�10�

This result can be substituted into Eq. �2� to obtain the ther-
mal CP potential of a molecule in an arbitrary incoherent
internal state. In the following, we will assume the molecule
to be prepared in its ground state, so that the thermal CP
potential is given by

U�r� = �0kBT�
j=0

�

�� j
2��i� j�Re Tr G�1��r,r,i� j�

+
�0

3 �k�0
�0k

2 n��k0��d0k�2Re Tr G�1��r,r,�k0� ,

�11�

�������0���, ground-state polarizability� together with Eq.
�10�. The first term is the nonresonant part of the potential, it
depends on the Green tensor taken at purely imaginary fre-
quencies. Since  is purely imaginary in this case, Green
tensor �10� and hence the nonresonant potential is nonoscil-
lating as a function of position. The second term in the CP
potential is the resonant contribution, which depends on the
Green tensor taken at real frequencies. The integral over k�

in this case naturally splits into a region 0'k�	�nk of
propagating waves in which  is real and positive, and a
region �nk'k� of evanescent waves in which  is purely
imaginary. The contributions from propagating waves are os-
cillating as a function of position due to the term cos 2z,
while those from evanescent waves are nonoscillating, just
like the nonresonant part of the potential. The total potential
�11� can thus be separated into nonresonant �first term�,
propagating �contributions to second term with
0'k�	�nk�, and evanescent components �contributions to
second term with �nk'k�� according to

U�z� = Unr�z� + Upr�z� + Uev�z� . �12�

To illustrate the behavior of the total potential and its
three components, we consider a LiH molecule in its elec-
tronic and rovibrational ground state placed inside a gold
cavity. The permittivity of the �semi-infinite� cavity walls
may be computed using the Drude model

���� = 1 −
�p

2

��� + i"�
�13�

with �p=1.37
1016 rad /s and "=5.32
1013 rad /s �30�.
As shown in Ref. �19�, the CP potential of ground-state LiH
is dominated by contributions from the rotational transitions
to the first excited manifold, with the respective transition
frequency and dipole matrix elements being given by �0k
=2.78973
1012 rad /s and �k�d0k�2=3.847
10−58 C2 m2,

respectively �21�. Potential �11� and its three components
�Eq. �12�� for a cavity of length a=500 �m at room tem-
perature �T=300 K� is shown in Fig. 1 as the result of a
numerical integration, where Eqs. �7�, �8�, �9a�, �9b�, and
�10� have been used. For transparency, we have shifted all
three components such that they vanish at the center of the
cavity. It is seen that the nonresonant potential is attractive
and has a maximum at the center of the cavity, while the
evanescent potential is repulsive and has a minimum at the
cavity center. As in the case of a single surface �19� these
two contributions partially cancel, where the attractive non-
resonant contribution is slightly larger and leads to an attrac-
tive total potential in the vicinity of the cavity walls. The
propagating part of the potential is spatially oscillating and
finite at the cavity walls, it dominates in the central region of
the cavity where it gives rise to well-pronounced maxima
and minima.

It is natural to wonder whether these potential minima
might be used for the purpose of guiding of polar molecules.
With this in mind, we will in the following discuss strategies
of enhancing the depth of the potential well by analyzing the
dependence of the potential on the molecular species as well
as the geometric and material parameters of the cavity.

A. Cavity-induced enhancement of the potential

We begin our analysis by discussing the dependence of
the potential on the cavity width. The one-dimensional con-
finement of the propagating modes in a cavity of highly re-
flecting mirrors leads to the formation of standing waves and
associated cavity resonances. When the molecular transition
frequency coincides with one of these resonances, the ther-
mal CP potential can be strongly enhanced: When the
squared reflection coefficient r�

2 is close to unity, the denomi-
nator D� of Eq. �7�, featuring in the Green tensor, becomes
small if the exponential exp�2ia� is equal to unity, resulting
in a strong enhancement of the potential Upr. This happens
for normal incidence �k�=0� of the propagating waves,
when the resonance condition 2�0ka /c=2�� , ��N is ful-
filled. In other words, the cavity length has to be equal to a
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FIG. 1. �Color online� Casimir-Polder potential of a ground-
state LiH molecule inside a gold cavity of width a=500 �m at
room temperature �T=300 K�. The nonresonant, propagating, and
evanescent contributions to the total potential are shown separately.
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Adding Eqs. �5a�–�5c� and partially performing the Fou-
rier integral by introducing polar coordinates in the xy plane,
the trace of the Green tensor of the cavity reads

Tr G�1��r,r,�� =
1

2�i
�

0

� k�dk�




�2c22

�2

rp

Dp
− �

�=s,p

r�
D�
�eia cos 2z .

�10�

This result can be substituted into Eq. �2� to obtain the ther-
mal CP potential of a molecule in an arbitrary incoherent
internal state. In the following, we will assume the molecule
to be prepared in its ground state, so that the thermal CP
potential is given by

U�r� = �0kBT�
j=0

�

�� j
2��i� j�Re Tr G�1��r,r,i� j�

+
�0

3 �k�0
�0k

2 n��k0��d0k�2Re Tr G�1��r,r,�k0� ,

�11�

�������0���, ground-state polarizability� together with Eq.
�10�. The first term is the nonresonant part of the potential, it
depends on the Green tensor taken at purely imaginary fre-
quencies. Since  is purely imaginary in this case, Green
tensor �10� and hence the nonresonant potential is nonoscil-
lating as a function of position. The second term in the CP
potential is the resonant contribution, which depends on the
Green tensor taken at real frequencies. The integral over k�

in this case naturally splits into a region 0'k�	�nk of
propagating waves in which  is real and positive, and a
region �nk'k� of evanescent waves in which  is purely
imaginary. The contributions from propagating waves are os-
cillating as a function of position due to the term cos 2z,
while those from evanescent waves are nonoscillating, just
like the nonresonant part of the potential. The total potential
�11� can thus be separated into nonresonant �first term�,
propagating �contributions to second term with
0'k�	�nk�, and evanescent components �contributions to
second term with �nk'k�� according to

U�z� = Unr�z� + Upr�z� + Uev�z� . �12�

To illustrate the behavior of the total potential and its
three components, we consider a LiH molecule in its elec-
tronic and rovibrational ground state placed inside a gold
cavity. The permittivity of the �semi-infinite� cavity walls
may be computed using the Drude model

���� = 1 −
�p

2

��� + i"�
�13�

with �p=1.37
1016 rad /s and "=5.32
1013 rad /s �30�.
As shown in Ref. �19�, the CP potential of ground-state LiH
is dominated by contributions from the rotational transitions
to the first excited manifold, with the respective transition
frequency and dipole matrix elements being given by �0k
=2.78973
1012 rad /s and �k�d0k�2=3.847
10−58 C2 m2,

respectively �21�. Potential �11� and its three components
�Eq. �12�� for a cavity of length a=500 �m at room tem-
perature �T=300 K� is shown in Fig. 1 as the result of a
numerical integration, where Eqs. �7�, �8�, �9a�, �9b�, and
�10� have been used. For transparency, we have shifted all
three components such that they vanish at the center of the
cavity. It is seen that the nonresonant potential is attractive
and has a maximum at the center of the cavity, while the
evanescent potential is repulsive and has a minimum at the
cavity center. As in the case of a single surface �19� these
two contributions partially cancel, where the attractive non-
resonant contribution is slightly larger and leads to an attrac-
tive total potential in the vicinity of the cavity walls. The
propagating part of the potential is spatially oscillating and
finite at the cavity walls, it dominates in the central region of
the cavity where it gives rise to well-pronounced maxima
and minima.

It is natural to wonder whether these potential minima
might be used for the purpose of guiding of polar molecules.
With this in mind, we will in the following discuss strategies
of enhancing the depth of the potential well by analyzing the
dependence of the potential on the molecular species as well
as the geometric and material parameters of the cavity.

A. Cavity-induced enhancement of the potential

We begin our analysis by discussing the dependence of
the potential on the cavity width. The one-dimensional con-
finement of the propagating modes in a cavity of highly re-
flecting mirrors leads to the formation of standing waves and
associated cavity resonances. When the molecular transition
frequency coincides with one of these resonances, the ther-
mal CP potential can be strongly enhanced: When the
squared reflection coefficient r�

2 is close to unity, the denomi-
nator D� of Eq. �7�, featuring in the Green tensor, becomes
small if the exponential exp�2ia� is equal to unity, resulting
in a strong enhancement of the potential Upr. This happens
for normal incidence �k�=0� of the propagating waves,
when the resonance condition 2�0ka /c=2�� , ��N is ful-
filled. In other words, the cavity length has to be equal to a
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Adding Eqs. �5a�–�5c� and partially performing the Fou-
rier integral by introducing polar coordinates in the xy plane,
the trace of the Green tensor of the cavity reads

Tr G�1��r,r,�� =
1
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0
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This result can be substituted into Eq. �2� to obtain the ther-
mal CP potential of a molecule in an arbitrary incoherent
internal state. In the following, we will assume the molecule
to be prepared in its ground state, so that the thermal CP
potential is given by

U�r� = �0kBT�
j=0
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+
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3 �k�0
�0k

2 n��k0��d0k�2Re Tr G�1��r,r,�k0� ,

�11�

�������0���, ground-state polarizability� together with Eq.
�10�. The first term is the nonresonant part of the potential, it
depends on the Green tensor taken at purely imaginary fre-
quencies. Since  is purely imaginary in this case, Green
tensor �10� and hence the nonresonant potential is nonoscil-
lating as a function of position. The second term in the CP
potential is the resonant contribution, which depends on the
Green tensor taken at real frequencies. The integral over k�

in this case naturally splits into a region 0'k�	�nk of
propagating waves in which  is real and positive, and a
region �nk'k� of evanescent waves in which  is purely
imaginary. The contributions from propagating waves are os-
cillating as a function of position due to the term cos 2z,
while those from evanescent waves are nonoscillating, just
like the nonresonant part of the potential. The total potential
�11� can thus be separated into nonresonant �first term�,
propagating �contributions to second term with
0'k�	�nk�, and evanescent components �contributions to
second term with �nk'k�� according to

U�z� = Unr�z� + Upr�z� + Uev�z� . �12�

To illustrate the behavior of the total potential and its
three components, we consider a LiH molecule in its elec-
tronic and rovibrational ground state placed inside a gold
cavity. The permittivity of the �semi-infinite� cavity walls
may be computed using the Drude model

���� = 1 −
�p

2

��� + i"�
�13�

with �p=1.37
1016 rad /s and "=5.32
1013 rad /s �30�.
As shown in Ref. �19�, the CP potential of ground-state LiH
is dominated by contributions from the rotational transitions
to the first excited manifold, with the respective transition
frequency and dipole matrix elements being given by �0k
=2.78973
1012 rad /s and �k�d0k�2=3.847
10−58 C2 m2,

respectively �21�. Potential �11� and its three components
�Eq. �12�� for a cavity of length a=500 �m at room tem-
perature �T=300 K� is shown in Fig. 1 as the result of a
numerical integration, where Eqs. �7�, �8�, �9a�, �9b�, and
�10� have been used. For transparency, we have shifted all
three components such that they vanish at the center of the
cavity. It is seen that the nonresonant potential is attractive
and has a maximum at the center of the cavity, while the
evanescent potential is repulsive and has a minimum at the
cavity center. As in the case of a single surface �19� these
two contributions partially cancel, where the attractive non-
resonant contribution is slightly larger and leads to an attrac-
tive total potential in the vicinity of the cavity walls. The
propagating part of the potential is spatially oscillating and
finite at the cavity walls, it dominates in the central region of
the cavity where it gives rise to well-pronounced maxima
and minima.

It is natural to wonder whether these potential minima
might be used for the purpose of guiding of polar molecules.
With this in mind, we will in the following discuss strategies
of enhancing the depth of the potential well by analyzing the
dependence of the potential on the molecular species as well
as the geometric and material parameters of the cavity.

A. Cavity-induced enhancement of the potential

We begin our analysis by discussing the dependence of
the potential on the cavity width. The one-dimensional con-
finement of the propagating modes in a cavity of highly re-
flecting mirrors leads to the formation of standing waves and
associated cavity resonances. When the molecular transition
frequency coincides with one of these resonances, the ther-
mal CP potential can be strongly enhanced: When the
squared reflection coefficient r�

2 is close to unity, the denomi-
nator D� of Eq. �7�, featuring in the Green tensor, becomes
small if the exponential exp�2ia� is equal to unity, resulting
in a strong enhancement of the potential Upr. This happens
for normal incidence �k�=0� of the propagating waves,
when the resonance condition 2�0ka /c=2�� , ��N is ful-
filled. In other words, the cavity length has to be equal to a
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half-integer multiple of the molecular transition wavelength
�k0=2�c /�k0,

a = ��k0/2, � � N . �14�

We say that the molecular transition coincides with the �th
cavity resonance.

The cavity-induced enhancement of the thermal CP poten-
tial is illustrated in Fig. 2, where we show the total thermal
CP potential of a ground-state LiH molecule in gold cavities
of widths such that the molecular transition is close to the
second cavity resonance �k0. As seen, the amplitude of the
spatial oscillations, associated with the propagating part of
the potential Upr, sharply increases as the cavity width ap-
proaches �k0. For comparison, we have also displayed the
potential of a single plate at z=−�k0 /2, where Eq. �10� for
the cavity Green tensor has been replaced with the single-
plate result �19�

Tr G�1��r,r�,�� =
i
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�
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� k�dk�


�
�=s,p
�r� − 2
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�2 rp�ei�a+2z�.
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The comparison shows that the amplitude of the oscillations,
while hardly visible for the single plate, is strongly enhanced
for a cavity. The depth of the potential minimum at the center
of the cavity with respect to the neighboring maxima is in-
creased by a factor 6.7 when using a resonant cavity rather
than a single plate.

B. Different cavity resonances

In the following, we are interested in the cavity-enhanced
oscillations of the thermal potential. As seen from Fig. 2,
they set in at some distance away from the cavity walls
where the potential is well approximated by its propagating-
wave contribution Upr. We can therefore restrict our attention
to this part of the total CP potential. The �propagating-wave�
potentials associated with different cavity resonances � are

shown in Fig. 3. It is seen that the order � of the resonance
corresponds to the number of maxima of the potential. Po-
tentials associated with resonances of order �(2 have
minima. The amplitudes of the oscillations become generally
smaller for higher resonance orders �. As seen from the case
�=3, the minima and maxima are slightly more pronounced
toward the cavity walls.

The scaling of the potential minima with the resonance
order as observed in Fig. 3 can be confirmed by an analytical
analysis. For each cavity order �, we define �U� to be the
depth of the deepest potential minimum with respect to the
neighboring maxima. As suggested by Fig. 3, this deepest
minimum will always be the one closest to the cavity walls.
Cavity QED problems can often be solved analytically under
the simplifying assumption that reflection coefficients are in-
dependent of the transverse wave number k� �31,32�, and
this method is also successful here. As shown in Appendix
A, in the perfect conductor limit rp=−rs�r→1, we have the
simple scaling law

�U� �
1

�
. �16�

For imperfect conductors, the �U� will decrease somewhat
less slowly with �.

The analytical scaling law obtained on the basis of sim-
plifying assumptions supports the observation from the nu-
merical results in Fig. 3 that the �=2 resonance provides the
deepest potential minimum. In view of potential guiding, we
can therefore restrict our attention to this case, �U��U2.

C. Different molecular species

The CP potential depends on the molecular transition in
question via the respective transition frequencies and dipole
matrix elements. Using the molecular data as listed in Ref.
�21�, we have calculated the depth of the �=2 potential mini-
mum for both rotational and vibrational transitions of the
polar molecules LiH, NH, OH, OD, CaF, BaF, YbF, LiRb,
NaRb, KRb, LiCs, NaCs, KCs, and RbCs; the results are
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half-integer multiple of the molecular transition wavelength
�k0=2�c /�k0,

a = ��k0/2, � � N . �14�

We say that the molecular transition coincides with the �th
cavity resonance.

The cavity-induced enhancement of the thermal CP poten-
tial is illustrated in Fig. 2, where we show the total thermal
CP potential of a ground-state LiH molecule in gold cavities
of widths such that the molecular transition is close to the
second cavity resonance �k0. As seen, the amplitude of the
spatial oscillations, associated with the propagating part of
the potential Upr, sharply increases as the cavity width ap-
proaches �k0. For comparison, we have also displayed the
potential of a single plate at z=−�k0 /2, where Eq. �10� for
the cavity Green tensor has been replaced with the single-
plate result �19�
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The comparison shows that the amplitude of the oscillations,
while hardly visible for the single plate, is strongly enhanced
for a cavity. The depth of the potential minimum at the center
of the cavity with respect to the neighboring maxima is in-
creased by a factor 6.7 when using a resonant cavity rather
than a single plate.

B. Different cavity resonances

In the following, we are interested in the cavity-enhanced
oscillations of the thermal potential. As seen from Fig. 2,
they set in at some distance away from the cavity walls
where the potential is well approximated by its propagating-
wave contribution Upr. We can therefore restrict our attention
to this part of the total CP potential. The �propagating-wave�
potentials associated with different cavity resonances � are

shown in Fig. 3. It is seen that the order � of the resonance
corresponds to the number of maxima of the potential. Po-
tentials associated with resonances of order �(2 have
minima. The amplitudes of the oscillations become generally
smaller for higher resonance orders �. As seen from the case
�=3, the minima and maxima are slightly more pronounced
toward the cavity walls.

The scaling of the potential minima with the resonance
order as observed in Fig. 3 can be confirmed by an analytical
analysis. For each cavity order �, we define �U� to be the
depth of the deepest potential minimum with respect to the
neighboring maxima. As suggested by Fig. 3, this deepest
minimum will always be the one closest to the cavity walls.
Cavity QED problems can often be solved analytically under
the simplifying assumption that reflection coefficients are in-
dependent of the transverse wave number k� �31,32�, and
this method is also successful here. As shown in Appendix
A, in the perfect conductor limit rp=−rs�r→1, we have the
simple scaling law

�U� �
1

�
. �16�

For imperfect conductors, the �U� will decrease somewhat
less slowly with �.

The analytical scaling law obtained on the basis of sim-
plifying assumptions supports the observation from the nu-
merical results in Fig. 3 that the �=2 resonance provides the
deepest potential minimum. In view of potential guiding, we
can therefore restrict our attention to this case, �U��U2.

C. Different molecular species

The CP potential depends on the molecular transition in
question via the respective transition frequencies and dipole
matrix elements. Using the molecular data as listed in Ref.
�21�, we have calculated the depth of the �=2 potential mini-
mum for both rotational and vibrational transitions of the
polar molecules LiH, NH, OH, OD, CaF, BaF, YbF, LiRb,
NaRb, KRb, LiCs, NaCs, KCs, and RbCs; the results are
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half-integer multiple of the molecular transition wavelength
�k0=2�c /�k0,

a = ��k0/2, � � N . �14�

We say that the molecular transition coincides with the �th
cavity resonance.

The cavity-induced enhancement of the thermal CP poten-
tial is illustrated in Fig. 2, where we show the total thermal
CP potential of a ground-state LiH molecule in gold cavities
of widths such that the molecular transition is close to the
second cavity resonance �k0. As seen, the amplitude of the
spatial oscillations, associated with the propagating part of
the potential Upr, sharply increases as the cavity width ap-
proaches �k0. For comparison, we have also displayed the
potential of a single plate at z=−�k0 /2, where Eq. �10� for
the cavity Green tensor has been replaced with the single-
plate result �19�
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The comparison shows that the amplitude of the oscillations,
while hardly visible for the single plate, is strongly enhanced
for a cavity. The depth of the potential minimum at the center
of the cavity with respect to the neighboring maxima is in-
creased by a factor 6.7 when using a resonant cavity rather
than a single plate.

B. Different cavity resonances

In the following, we are interested in the cavity-enhanced
oscillations of the thermal potential. As seen from Fig. 2,
they set in at some distance away from the cavity walls
where the potential is well approximated by its propagating-
wave contribution Upr. We can therefore restrict our attention
to this part of the total CP potential. The �propagating-wave�
potentials associated with different cavity resonances � are

shown in Fig. 3. It is seen that the order � of the resonance
corresponds to the number of maxima of the potential. Po-
tentials associated with resonances of order �(2 have
minima. The amplitudes of the oscillations become generally
smaller for higher resonance orders �. As seen from the case
�=3, the minima and maxima are slightly more pronounced
toward the cavity walls.

The scaling of the potential minima with the resonance
order as observed in Fig. 3 can be confirmed by an analytical
analysis. For each cavity order �, we define �U� to be the
depth of the deepest potential minimum with respect to the
neighboring maxima. As suggested by Fig. 3, this deepest
minimum will always be the one closest to the cavity walls.
Cavity QED problems can often be solved analytically under
the simplifying assumption that reflection coefficients are in-
dependent of the transverse wave number k� �31,32�, and
this method is also successful here. As shown in Appendix
A, in the perfect conductor limit rp=−rs�r→1, we have the
simple scaling law

�U� �
1

�
. �16�

For imperfect conductors, the �U� will decrease somewhat
less slowly with �.

The analytical scaling law obtained on the basis of sim-
plifying assumptions supports the observation from the nu-
merical results in Fig. 3 that the �=2 resonance provides the
deepest potential minimum. In view of potential guiding, we
can therefore restrict our attention to this case, �U��U2.

C. Different molecular species

The CP potential depends on the molecular transition in
question via the respective transition frequencies and dipole
matrix elements. Using the molecular data as listed in Ref.
�21�, we have calculated the depth of the �=2 potential mini-
mum for both rotational and vibrational transitions of the
polar molecules LiH, NH, OH, OD, CaF, BaF, YbF, LiRb,
NaRb, KRb, LiCs, NaCs, KCs, and RbCs; the results are
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half-integer multiple of the molecular transition wavelength
�k0=2�c /�k0,

a = ��k0/2, � � N . �14�

We say that the molecular transition coincides with the �th
cavity resonance.

The cavity-induced enhancement of the thermal CP poten-
tial is illustrated in Fig. 2, where we show the total thermal
CP potential of a ground-state LiH molecule in gold cavities
of widths such that the molecular transition is close to the
second cavity resonance �k0. As seen, the amplitude of the
spatial oscillations, associated with the propagating part of
the potential Upr, sharply increases as the cavity width ap-
proaches �k0. For comparison, we have also displayed the
potential of a single plate at z=−�k0 /2, where Eq. �10� for
the cavity Green tensor has been replaced with the single-
plate result �19�
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The comparison shows that the amplitude of the oscillations,
while hardly visible for the single plate, is strongly enhanced
for a cavity. The depth of the potential minimum at the center
of the cavity with respect to the neighboring maxima is in-
creased by a factor 6.7 when using a resonant cavity rather
than a single plate.

B. Different cavity resonances

In the following, we are interested in the cavity-enhanced
oscillations of the thermal potential. As seen from Fig. 2,
they set in at some distance away from the cavity walls
where the potential is well approximated by its propagating-
wave contribution Upr. We can therefore restrict our attention
to this part of the total CP potential. The �propagating-wave�
potentials associated with different cavity resonances � are

shown in Fig. 3. It is seen that the order � of the resonance
corresponds to the number of maxima of the potential. Po-
tentials associated with resonances of order �(2 have
minima. The amplitudes of the oscillations become generally
smaller for higher resonance orders �. As seen from the case
�=3, the minima and maxima are slightly more pronounced
toward the cavity walls.

The scaling of the potential minima with the resonance
order as observed in Fig. 3 can be confirmed by an analytical
analysis. For each cavity order �, we define �U� to be the
depth of the deepest potential minimum with respect to the
neighboring maxima. As suggested by Fig. 3, this deepest
minimum will always be the one closest to the cavity walls.
Cavity QED problems can often be solved analytically under
the simplifying assumption that reflection coefficients are in-
dependent of the transverse wave number k� �31,32�, and
this method is also successful here. As shown in Appendix
A, in the perfect conductor limit rp=−rs�r→1, we have the
simple scaling law

�U� �
1

�
. �16�

For imperfect conductors, the �U� will decrease somewhat
less slowly with �.

The analytical scaling law obtained on the basis of sim-
plifying assumptions supports the observation from the nu-
merical results in Fig. 3 that the �=2 resonance provides the
deepest potential minimum. In view of potential guiding, we
can therefore restrict our attention to this case, �U��U2.

C. Different molecular species

The CP potential depends on the molecular transition in
question via the respective transition frequencies and dipole
matrix elements. Using the molecular data as listed in Ref.
�21�, we have calculated the depth of the �=2 potential mini-
mum for both rotational and vibrational transitions of the
polar molecules LiH, NH, OH, OD, CaF, BaF, YbF, LiRb,
NaRb, KRb, LiCs, NaCs, KCs, and RbCs; the results are
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displayed in order of descending �U in Fig. 4. The figure
shows that the deepest potential minima are realized when
using the rotational transition of LiH, the vibrational transi-
tion of BaF or the dominant rotational transition of OH, fol-
lowed by YbF �vibrational�, LiRb �vibrational�, NH �rota-
tional�, OD �dominant rotational transition�, and CaF
�vibrational�.

The variation in the depth for different molecules is partly
due to its dependence on the molecular transition frequency.
As shown in Ref. �19�, the resonant part of the CP potential
of a single plate is proportional to �k0

2 n��k0� for a good con-
ductor with frequency–independent reflectivities. This re-
mains true in the case of a cavity. In addition, the amplitude
of the oscillations is inversely proportional to the molecule-
wall separation. The largest potential maximum being situ-
ated at z−a /2=�k0 /4�1 /�k0, its height carries an additional
�k0 proportionality. The dependence of the potential-
minimum depth on molecular transition frequency can thus
be given as

�U� � �k0
3 n��k0� � ��k0

2 , for ��k0 � kBT

e−��k0/kBT, for ��k0 % kBT .

�17�

As shown in Sec. II D, this scaling becomes exact for cavi-
ties with frequency- and k�-independent reflectivities. For
real conductors, the decrease in �U� for high frequencies
will be stronger than given in Eq. �17� due to the decrease in
the reflection coefficients. Note that Eq. �17� also shows that
�U� becomes larger for higher temperatures due to the in-
creased thermal-photon number. Again, this only holds when
disregarding the temperature dependence of the reflection co-
efficients, cf. also Sec. II E below.

The frequency dependence of �Upr is illustrated in Fig. 5
where we have plotted its values normalized by dividing by
the transition-dipole moments d2 �d2��k�d0k�2 with the sum
running over the degenerate submanifold�. The
transition frequencies of some of the molecules investigated
are indicated in the figure. In particular, the vibrational
transitions of BaF and YbF, which have been seen in Fig. 4
to give rise to large potential-minimum depths, are very close
to the peak of the function �k0

3 n��k0�, which is at
�k0=1.11
1014 rad /s for room temperature.

The other main dependence of �U� on the molecular spe-
cies and transition is the proportionality to the modulus
squared of the transition-dipole moments,

�U� ��
k

�d0k�2 = d2. �18�

The transition-dipole moments are typically larger for rota-
tional transitions than for vibrational ones. For this reason,
the rotational transition of LiH gives rise to the largest mini-
mum depth although the vibrational transition frequencies of
BaF and YbF are much closer to the peak frequency
1.11
1014 rad /s.

D. Scaling with reflectivity

The cavity-induced enhancement of the thermal CP force
strongly depends on the reflectivity of the cavity walls. To
understand this dependence in more detail, let us for simplic-
ity investigate how the height of the single maximum for a
�=1 resonance depends on reflectivity. The scaling of the
potential extrema with reflectivity is the same for all � as is
shown in Appendix A, so considering the simplest case will
suffice.

We begin by writing the propagating part of the resonant
CP potential associated with a single transition in the form

Upr�z� =
1

3�0
n��k0��d01�2I��� , �19�

where we have introduced the dimensionless position

� =
z

a
�20�

and the integral

I��� = Im�
0

�k0/c dk�k�

2� �22 rp

Dp
−
�k0

2

c2 �
�=s,p

r�
D�
�


 eia cos 2a� . �21�

As in Sec. II B, we consider the simple model case of
frequency- and k�-independent reflection coefficients
rp=−rs�r. With this assumption,
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displayed in order of descending �U in Fig. 4. The figure
shows that the deepest potential minima are realized when
using the rotational transition of LiH, the vibrational transi-
tion of BaF or the dominant rotational transition of OH, fol-
lowed by YbF �vibrational�, LiRb �vibrational�, NH �rota-
tional�, OD �dominant rotational transition�, and CaF
�vibrational�.

The variation in the depth for different molecules is partly
due to its dependence on the molecular transition frequency.
As shown in Ref. �19�, the resonant part of the CP potential
of a single plate is proportional to �k0

2 n��k0� for a good con-
ductor with frequency–independent reflectivities. This re-
mains true in the case of a cavity. In addition, the amplitude
of the oscillations is inversely proportional to the molecule-
wall separation. The largest potential maximum being situ-
ated at z−a /2=�k0 /4�1 /�k0, its height carries an additional
�k0 proportionality. The dependence of the potential-
minimum depth on molecular transition frequency can thus
be given as

�U� � �k0
3 n��k0� � ��k0

2 , for ��k0 � kBT

e−��k0/kBT, for ��k0 % kBT .

�17�

As shown in Sec. II D, this scaling becomes exact for cavi-
ties with frequency- and k�-independent reflectivities. For
real conductors, the decrease in �U� for high frequencies
will be stronger than given in Eq. �17� due to the decrease in
the reflection coefficients. Note that Eq. �17� also shows that
�U� becomes larger for higher temperatures due to the in-
creased thermal-photon number. Again, this only holds when
disregarding the temperature dependence of the reflection co-
efficients, cf. also Sec. II E below.

The frequency dependence of �Upr is illustrated in Fig. 5
where we have plotted its values normalized by dividing by
the transition-dipole moments d2 �d2��k�d0k�2 with the sum
running over the degenerate submanifold�. The
transition frequencies of some of the molecules investigated
are indicated in the figure. In particular, the vibrational
transitions of BaF and YbF, which have been seen in Fig. 4
to give rise to large potential-minimum depths, are very close
to the peak of the function �k0

3 n��k0�, which is at
�k0=1.11
1014 rad /s for room temperature.

The other main dependence of �U� on the molecular spe-
cies and transition is the proportionality to the modulus
squared of the transition-dipole moments,

�U� ��
k

�d0k�2 = d2. �18�

The transition-dipole moments are typically larger for rota-
tional transitions than for vibrational ones. For this reason,
the rotational transition of LiH gives rise to the largest mini-
mum depth although the vibrational transition frequencies of
BaF and YbF are much closer to the peak frequency
1.11
1014 rad /s.

D. Scaling with reflectivity

The cavity-induced enhancement of the thermal CP force
strongly depends on the reflectivity of the cavity walls. To
understand this dependence in more detail, let us for simplic-
ity investigate how the height of the single maximum for a
�=1 resonance depends on reflectivity. The scaling of the
potential extrema with reflectivity is the same for all � as is
shown in Appendix A, so considering the simplest case will
suffice.

We begin by writing the propagating part of the resonant
CP potential associated with a single transition in the form

Upr�z� =
1

3�0
n��k0��d01�2I��� , �19�

where we have introduced the dimensionless position
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and the integral
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As in Sec. II B, we consider the simple model case of
frequency- and k�-independent reflection coefficients
rp=−rs�r. With this assumption,
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displayed in order of descending �U in Fig. 4. The figure
shows that the deepest potential minima are realized when
using the rotational transition of LiH, the vibrational transi-
tion of BaF or the dominant rotational transition of OH, fol-
lowed by YbF �vibrational�, LiRb �vibrational�, NH �rota-
tional�, OD �dominant rotational transition�, and CaF
�vibrational�.

The variation in the depth for different molecules is partly
due to its dependence on the molecular transition frequency.
As shown in Ref. �19�, the resonant part of the CP potential
of a single plate is proportional to �k0

2 n��k0� for a good con-
ductor with frequency–independent reflectivities. This re-
mains true in the case of a cavity. In addition, the amplitude
of the oscillations is inversely proportional to the molecule-
wall separation. The largest potential maximum being situ-
ated at z−a /2=�k0 /4�1 /�k0, its height carries an additional
�k0 proportionality. The dependence of the potential-
minimum depth on molecular transition frequency can thus
be given as

�U� � �k0
3 n��k0� � ��k0

2 , for ��k0 � kBT

e−��k0/kBT, for ��k0 % kBT .

�17�

As shown in Sec. II D, this scaling becomes exact for cavi-
ties with frequency- and k�-independent reflectivities. For
real conductors, the decrease in �U� for high frequencies
will be stronger than given in Eq. �17� due to the decrease in
the reflection coefficients. Note that Eq. �17� also shows that
�U� becomes larger for higher temperatures due to the in-
creased thermal-photon number. Again, this only holds when
disregarding the temperature dependence of the reflection co-
efficients, cf. also Sec. II E below.

The frequency dependence of �Upr is illustrated in Fig. 5
where we have plotted its values normalized by dividing by
the transition-dipole moments d2 �d2��k�d0k�2 with the sum
running over the degenerate submanifold�. The
transition frequencies of some of the molecules investigated
are indicated in the figure. In particular, the vibrational
transitions of BaF and YbF, which have been seen in Fig. 4
to give rise to large potential-minimum depths, are very close
to the peak of the function �k0

3 n��k0�, which is at
�k0=1.11
1014 rad /s for room temperature.

The other main dependence of �U� on the molecular spe-
cies and transition is the proportionality to the modulus
squared of the transition-dipole moments,

�U� ��
k

�d0k�2 = d2. �18�

The transition-dipole moments are typically larger for rota-
tional transitions than for vibrational ones. For this reason,
the rotational transition of LiH gives rise to the largest mini-
mum depth although the vibrational transition frequencies of
BaF and YbF are much closer to the peak frequency
1.11
1014 rad /s.

D. Scaling with reflectivity

The cavity-induced enhancement of the thermal CP force
strongly depends on the reflectivity of the cavity walls. To
understand this dependence in more detail, let us for simplic-
ity investigate how the height of the single maximum for a
�=1 resonance depends on reflectivity. The scaling of the
potential extrema with reflectivity is the same for all � as is
shown in Appendix A, so considering the simplest case will
suffice.

We begin by writing the propagating part of the resonant
CP potential associated with a single transition in the form

Upr�z� =
1

3�0
n��k0��d01�2I��� , �19�

where we have introduced the dimensionless position

� =
z

a
�20�

and the integral
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As in Sec. II B, we consider the simple model case of
frequency- and k�-independent reflection coefficients
rp=−rs�r. With this assumption,
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displayed in order of descending �U in Fig. 4. The figure
shows that the deepest potential minima are realized when
using the rotational transition of LiH, the vibrational transi-
tion of BaF or the dominant rotational transition of OH, fol-
lowed by YbF �vibrational�, LiRb �vibrational�, NH �rota-
tional�, OD �dominant rotational transition�, and CaF
�vibrational�.

The variation in the depth for different molecules is partly
due to its dependence on the molecular transition frequency.
As shown in Ref. �19�, the resonant part of the CP potential
of a single plate is proportional to �k0

2 n��k0� for a good con-
ductor with frequency–independent reflectivities. This re-
mains true in the case of a cavity. In addition, the amplitude
of the oscillations is inversely proportional to the molecule-
wall separation. The largest potential maximum being situ-
ated at z−a /2=�k0 /4�1 /�k0, its height carries an additional
�k0 proportionality. The dependence of the potential-
minimum depth on molecular transition frequency can thus
be given as

�U� � �k0
3 n��k0� � ��k0

2 , for ��k0 � kBT

e−��k0/kBT, for ��k0 % kBT .

�17�

As shown in Sec. II D, this scaling becomes exact for cavi-
ties with frequency- and k�-independent reflectivities. For
real conductors, the decrease in �U� for high frequencies
will be stronger than given in Eq. �17� due to the decrease in
the reflection coefficients. Note that Eq. �17� also shows that
�U� becomes larger for higher temperatures due to the in-
creased thermal-photon number. Again, this only holds when
disregarding the temperature dependence of the reflection co-
efficients, cf. also Sec. II E below.

The frequency dependence of �Upr is illustrated in Fig. 5
where we have plotted its values normalized by dividing by
the transition-dipole moments d2 �d2��k�d0k�2 with the sum
running over the degenerate submanifold�. The
transition frequencies of some of the molecules investigated
are indicated in the figure. In particular, the vibrational
transitions of BaF and YbF, which have been seen in Fig. 4
to give rise to large potential-minimum depths, are very close
to the peak of the function �k0

3 n��k0�, which is at
�k0=1.11
1014 rad /s for room temperature.

The other main dependence of �U� on the molecular spe-
cies and transition is the proportionality to the modulus
squared of the transition-dipole moments,

�U� ��
k

�d0k�2 = d2. �18�

The transition-dipole moments are typically larger for rota-
tional transitions than for vibrational ones. For this reason,
the rotational transition of LiH gives rise to the largest mini-
mum depth although the vibrational transition frequencies of
BaF and YbF are much closer to the peak frequency
1.11
1014 rad /s.

D. Scaling with reflectivity

The cavity-induced enhancement of the thermal CP force
strongly depends on the reflectivity of the cavity walls. To
understand this dependence in more detail, let us for simplic-
ity investigate how the height of the single maximum for a
�=1 resonance depends on reflectivity. The scaling of the
potential extrema with reflectivity is the same for all � as is
shown in Appendix A, so considering the simplest case will
suffice.

We begin by writing the propagating part of the resonant
CP potential associated with a single transition in the form

Upr�z� =
1

3�0
n��k0��d01�2I��� , �19�

where we have introduced the dimensionless position
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z

a
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and the integral
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As in Sec. II B, we consider the simple model case of
frequency- and k�-independent reflection coefficients
rp=−rs�r. With this assumption,
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�
�=s,p

r�
D�

= 0. �22�

After introducing the dimensionless integration variable
x=2a with k�dk�=−4a2xdx, the integral above takes the
form

I��� =
r

8�a3 Im�
0

x0

dx
x2eix/2 cos �x

1 − r2eix , �23�

where x0=2�k0a /c. For the �=1 resonance, we have
a=�0k /2=�c /�k0, so x0=2�.

The required height of the potential maximum at the
cavity center �z=0� with respect to the value of Upr at the
cavity walls z= #a /2 is proportional to the difference
I�0�− I�1 / 2 �. We have

I�1/2� =
r

16�a3 Im�
0

2�

dxx2 eix + 1

1 − r2eix

=
r

16�a3 Im�
0

2�

dxx2�1 + �1 + r−2�Li0�r2eix�� ,

�24�

where the polylogarithmic function is defined as

Lis�z� =�
k=1

�
zk

ks . �25�

The first term in Eq. �24� is real and does not contribute. The
second one is easily calculated using the relation

� dzLis�Aebz� =
1

b
Lis+1�Aebz� + C , �26�

valid for arbitrary constants A ,b, where �A�	1. Partially in-
tegrating this relation twice and substituting the result for
A=r2, b= i into Eq. �24�, one finds

I�1/2� =
r + r−1

16�a3 Im�4�2

i
Li1�r2� + 4�Li2�r2�

=
��r + r−1�

4a3 ln�1 − r2� , �27�

where we have noted that Li1�z�=−ln�1−z�. In the limit of
high reflectivity,  �1−r→0+ this exact result shows the
asymptotic behavior

I�1/2� �
�

2a3 �ln  + ln 2� for  → 0+, �28�

with the first correction term being of order  .
The calculation of I�0� is only slightly more involved. We

have

I�0� =
r

8�a3 Im�
0

2�

dx
x2eix/2

1 − r2eix

=
r

8�a3�
l=0

�

r2k Im�
0

2�

dxx2eix�l+1/2�. �29�

By partial integration we obtain

Im�
0

2�

dxx2eix�l+1/2� =
4�2

	l +
1

2

 −

4

	l +
1

2

3 . �30�

After substitution of this result, the sum over l can be per-
formed by using the relations �cf. Sec. 1.513 in Ref. �33��

�
l=0

�
r2l

l +
1

2

=
1

r
ln

1 + r

1 − r
� − ln  + ln 2 for  → 0+ �31�

�leading corrections being of the order  ln  � and

�
l=0

�
r2l

	l +
1

2

3 � 8��

l=1

�
1

l3 −�
l=1

�
1

�2l�3� = 7��3� for  → 0+,

where ��z� is the Riemann zeta function. We thus find

I�0� � −
�

2a3�ln  − ln 2 +
7

�2��3�� for  → 0+,

�32�

with the first correction again being of order  ln  .
Substituting results �28� and �32� into Eq. �19�, the differ-

ence between the maximum and minimum values of the
�=1 propagating potential reads

Upr�0� − Upr�a/2� � −
��k�d0k�2n��k0�

3�0a3 �ln  +
7��3�
2�2 �

for  → 0+. �33�

This result being representative of the case of arbitrary �, we
can conclude that

�U� � ln�1 − r� �34�

in the limit r→1. In the case where the reflection coefficients
are not the same for both polarizations but still assumed
constant, the coefficient of the term � ln  in Eq. �33� will
change, leading to a slight quantitative but no qualitative
difference to the scaling of the potential-minimum depth.
Note that Eq. �33� immediately implies scaling law �17� for
the frequency dependence of �U�.

The fact that the potential depth diverges only logarithmi-
cally as reflectivity tends to unity poses severe restrictions on
the potential which is obtainable using a planar cavity. The
mathematical reason for the relative weakness of the reso-
nance is that the integrand of the k� integral only becomes
large at a single point, at k�=0. The physical reason is that
the photonic modes in the cavity are only confined in one out
of three spatial dimensions. We conjecture that the potential
due to the resonant CP force on a ground-state molecule can
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� − ln  + ln 2 for  → 0+ �31�

�leading corrections being of the order  ln  � and

�
l=0

�
r2l

	l +
1

2

3 � 8��

l=1

�
1

l3 −�
l=1

�
1

�2l�3� = 7��3� for  → 0+,

where ��z� is the Riemann zeta function. We thus find

I�0� � −
�

2a3�ln  − ln 2 +
7

�2��3�� for  → 0+,

�32�

with the first correction again being of order  ln  .
Substituting results �28� and �32� into Eq. �19�, the differ-

ence between the maximum and minimum values of the
�=1 propagating potential reads

Upr�0� − Upr�a/2� � −
��k�d0k�2n��k0�

3�0a3 �ln  +
7��3�
2�2 �

for  → 0+. �33�

This result being representative of the case of arbitrary �, we
can conclude that

�U� � ln�1 − r� �34�

in the limit r→1. In the case where the reflection coefficients
are not the same for both polarizations but still assumed
constant, the coefficient of the term � ln  in Eq. �33� will
change, leading to a slight quantitative but no qualitative
difference to the scaling of the potential-minimum depth.
Note that Eq. �33� immediately implies scaling law �17� for
the frequency dependence of �U�.

The fact that the potential depth diverges only logarithmi-
cally as reflectivity tends to unity poses severe restrictions on
the potential which is obtainable using a planar cavity. The
mathematical reason for the relative weakness of the reso-
nance is that the integrand of the k� integral only becomes
large at a single point, at k�=0. The physical reason is that
the photonic modes in the cavity are only confined in one out
of three spatial dimensions. We conjecture that the potential
due to the resonant CP force on a ground-state molecule can
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�
�=s,p

r�
D�

= 0. �22�

After introducing the dimensionless integration variable
x=2a with k�dk�=−4a2xdx, the integral above takes the
form

I��� =
r

8�a3 Im�
0

x0

dx
x2eix/2 cos �x

1 − r2eix , �23�

where x0=2�k0a /c. For the �=1 resonance, we have
a=�0k /2=�c /�k0, so x0=2�.

The required height of the potential maximum at the
cavity center �z=0� with respect to the value of Upr at the
cavity walls z= #a /2 is proportional to the difference
I�0�− I�1 / 2 �. We have

I�1/2� =
r

16�a3 Im�
0

2�

dxx2 eix + 1

1 − r2eix

=
r

16�a3 Im�
0

2�

dxx2�1 + �1 + r−2�Li0�r2eix�� ,

�24�

where the polylogarithmic function is defined as

Lis�z� =�
k=1

�
zk

ks . �25�

The first term in Eq. �24� is real and does not contribute. The
second one is easily calculated using the relation

� dzLis�Aebz� =
1

b
Lis+1�Aebz� + C , �26�

valid for arbitrary constants A ,b, where �A�	1. Partially in-
tegrating this relation twice and substituting the result for
A=r2, b= i into Eq. �24�, one finds

I�1/2� =
r + r−1

16�a3 Im�4�2

i
Li1�r2� + 4�Li2�r2�

=
��r + r−1�

4a3 ln�1 − r2� , �27�

where we have noted that Li1�z�=−ln�1−z�. In the limit of
high reflectivity,  �1−r→0+ this exact result shows the
asymptotic behavior

I�1/2� �
�

2a3 �ln  + ln 2� for  → 0+, �28�

with the first correction term being of order  .
The calculation of I�0� is only slightly more involved. We

have

I�0� =
r

8�a3 Im�
0

2�

dx
x2eix/2

1 − r2eix

=
r

8�a3�
l=0

�

r2k Im�
0

2�

dxx2eix�l+1/2�. �29�

By partial integration we obtain

Im�
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2

 −

4

	l +
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2

3 . �30�

After substitution of this result, the sum over l can be per-
formed by using the relations �cf. Sec. 1.513 in Ref. �33��
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r
ln
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�leading corrections being of the order  ln  � and
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2
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�
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l=1

�
1

�2l�3� = 7��3� for  → 0+,

where ��z� is the Riemann zeta function. We thus find

I�0� � −
�

2a3�ln  − ln 2 +
7

�2��3�� for  → 0+,

�32�

with the first correction again being of order  ln  .
Substituting results �28� and �32� into Eq. �19�, the differ-

ence between the maximum and minimum values of the
�=1 propagating potential reads

Upr�0� − Upr�a/2� � −
��k�d0k�2n��k0�

3�0a3 �ln  +
7��3�
2�2 �

for  → 0+. �33�

This result being representative of the case of arbitrary �, we
can conclude that

�U� � ln�1 − r� �34�

in the limit r→1. In the case where the reflection coefficients
are not the same for both polarizations but still assumed
constant, the coefficient of the term � ln  in Eq. �33� will
change, leading to a slight quantitative but no qualitative
difference to the scaling of the potential-minimum depth.
Note that Eq. �33� immediately implies scaling law �17� for
the frequency dependence of �U�.

The fact that the potential depth diverges only logarithmi-
cally as reflectivity tends to unity poses severe restrictions on
the potential which is obtainable using a planar cavity. The
mathematical reason for the relative weakness of the reso-
nance is that the integrand of the k� integral only becomes
large at a single point, at k�=0. The physical reason is that
the photonic modes in the cavity are only confined in one out
of three spatial dimensions. We conjecture that the potential
due to the resonant CP force on a ground-state molecule can

ELLINGSEN, BUHMANN, AND SCHEEL PHYSICAL REVIEW A 80, 022901 �2009�

022901-6

�
�=s,p

r�
D�

= 0. �22�

After introducing the dimensionless integration variable
x=2a with k�dk�=−4a2xdx, the integral above takes the
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where x0=2�k0a /c. For the �=1 resonance, we have
a=�0k /2=�c /�k0, so x0=2�.

The required height of the potential maximum at the
cavity center �z=0� with respect to the value of Upr at the
cavity walls z= #a /2 is proportional to the difference
I�0�− I�1 / 2 �. We have
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where the polylogarithmic function is defined as
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The first term in Eq. �24� is real and does not contribute. The
second one is easily calculated using the relation

� dzLis�Aebz� =
1

b
Lis+1�Aebz� + C , �26�

valid for arbitrary constants A ,b, where �A�	1. Partially in-
tegrating this relation twice and substituting the result for
A=r2, b= i into Eq. �24�, one finds

I�1/2� =
r + r−1

16�a3 Im�4�2

i
Li1�r2� + 4�Li2�r2�

=
��r + r−1�

4a3 ln�1 − r2� , �27�

where we have noted that Li1�z�=−ln�1−z�. In the limit of
high reflectivity,  �1−r→0+ this exact result shows the
asymptotic behavior

I�1/2� �
�

2a3 �ln  + ln 2� for  → 0+, �28�

with the first correction term being of order  .
The calculation of I�0� is only slightly more involved. We

have

I�0� =
r
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x2eix/2

1 − r2eix

=
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8�a3�
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By partial integration we obtain

Im�
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After substitution of this result, the sum over l can be per-
formed by using the relations �cf. Sec. 1.513 in Ref. �33��

�
l=0
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r2l
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=
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r
ln

1 + r
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� − ln  + ln 2 for  → 0+ �31�

�leading corrections being of the order  ln  � and

�
l=0
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2
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l=1

�
1
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�
1

�2l�3� = 7��3� for  → 0+,

where ��z� is the Riemann zeta function. We thus find

I�0� � −
�

2a3�ln  − ln 2 +
7

�2��3�� for  → 0+,

�32�

with the first correction again being of order  ln  .
Substituting results �28� and �32� into Eq. �19�, the differ-

ence between the maximum and minimum values of the
�=1 propagating potential reads

Upr�0� − Upr�a/2� � −
��k�d0k�2n��k0�

3�0a3 �ln  +
7��3�
2�2 �

for  → 0+. �33�

This result being representative of the case of arbitrary �, we
can conclude that

�U� � ln�1 − r� �34�

in the limit r→1. In the case where the reflection coefficients
are not the same for both polarizations but still assumed
constant, the coefficient of the term � ln  in Eq. �33� will
change, leading to a slight quantitative but no qualitative
difference to the scaling of the potential-minimum depth.
Note that Eq. �33� immediately implies scaling law �17� for
the frequency dependence of �U�.

The fact that the potential depth diverges only logarithmi-
cally as reflectivity tends to unity poses severe restrictions on
the potential which is obtainable using a planar cavity. The
mathematical reason for the relative weakness of the reso-
nance is that the integrand of the k� integral only becomes
large at a single point, at k�=0. The physical reason is that
the photonic modes in the cavity are only confined in one out
of three spatial dimensions. We conjecture that the potential
due to the resonant CP force on a ground-state molecule can
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be much increased by a resonant cavity if confinement is
imposed in two or even three dimensions, i.e., in a cylindri-
cal or spherical cavity.

The logarithmic scaling law of the potential-minimum
depth �U� for the case �=2 is confirmed by a numerical
calculation in which reflection coefficients are set constant,
rp=−rs�r and close to unity. The result for the rotational
transition of LiH is shown in Fig. 6 where the exact result for
a gold cavity is also included. By comparing the latter curve
to the potentials for constant reflection coefficients, one can
read off the relatively small “effective” reflectivity of gold
between 1–10−2 and 1–10−3 at the respective transition fre-
quency of LiH. For a molecule with a smaller eigenfre-
quency �k0 the gold cavity does slightly better because the
permittivity is larger. Consider the vibrational transition of
YbF with �k0�9
1010 rad /s as an example, for which the
effective reflectivity of the gold cavity �in the sense of Fig. 6�
increases to about 1–10−3.5.

E. Enhanced reflectivity using Bragg mirrors

In contrast with the nonresonant CP force which depends
on a very broad band of frequencies, the resonant part of the
ground-state force on a two-level molecule depends on the
reflection properties of the cavity at a single frequency,
�=�k0. In addition, the resonance of the cavity is also asso-
ciated with a single value of the wave vector k�, namely,
normal incidence. An enhancement of the propagating poten-
tial hence does not require a good conductor like gold which
is a good reflector for a broad range of frequencies and all
angles of incidence; instead, cavity walls whose reflectivity
has a sharp peak at normal incidence and the single fre-
quency �k0 are sufficient. The obvious candidate is to use
multilayer Bragg mirrors, which consist of alternating layers
of two different materials, each layer of thickness being
equal to one quarter of the wavelength �10=2� /n�k0 in that
layer, where n is the respective refractive index.

The reflection coefficient of a stack of layers with permit-
tivities � j and thicknesses dj is found by recursive use of the
formula

rijk¯ =
rij + rjk�l¯�e2ijdj

1 + rijrjk�l¯�e2ijdj
�35�

� j =�nj
2�2 /c2−k�

2 �, which relates the reflection coefficient
of a set of three adjacent layers ijk¯ �and all the layers
behind� to the respective result for the next set of adjacent
layers jkl¯. If the kth layer is the last one of the stack, the
coefficients rjk�l¯� reduce to the two-layer coefficients rjk. In
straightforward generalization of Eqs. �9a� and �9b�, the two-
layer coefficients read

rij
s =

i −  j

i +  j
, �36a�

rij
p =

� ji − �i j

� ji + �i j
�36b�

for s- and p-polarized waves, respectively. The Casimir ef-
fect for such multilayer stacks has been extensively studied
in the past �34–37�.

A very common pair of materials to use for Bragg mirrors
is GaAs and AlAs. At the rotational transition frequency of
LiH, the permittivity of the two materials can be roughly
given as �GaAs=12.96+0.02i �38,39� and �AlAs=10.96
+0.02i �40�. The reflection coefficient of a GaAs/AlAs Bragg
mirror is plotted as a function of the number of �double�
layers N in the upper panel of Fig. 7. For a given N, the
Bragg mirror consists of 2N+1 layers in total, i.e., N pairs of
GaAs and AlAs layers of thickness �10 /4 �beginning with
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be much increased by a resonant cavity if confinement is
imposed in two or even three dimensions, i.e., in a cylindri-
cal or spherical cavity.

The logarithmic scaling law of the potential-minimum
depth �U� for the case �=2 is confirmed by a numerical
calculation in which reflection coefficients are set constant,
rp=−rs�r and close to unity. The result for the rotational
transition of LiH is shown in Fig. 6 where the exact result for
a gold cavity is also included. By comparing the latter curve
to the potentials for constant reflection coefficients, one can
read off the relatively small “effective” reflectivity of gold
between 1–10−2 and 1–10−3 at the respective transition fre-
quency of LiH. For a molecule with a smaller eigenfre-
quency �k0 the gold cavity does slightly better because the
permittivity is larger. Consider the vibrational transition of
YbF with �k0�9
1010 rad /s as an example, for which the
effective reflectivity of the gold cavity �in the sense of Fig. 6�
increases to about 1–10−3.5.

E. Enhanced reflectivity using Bragg mirrors

In contrast with the nonresonant CP force which depends
on a very broad band of frequencies, the resonant part of the
ground-state force on a two-level molecule depends on the
reflection properties of the cavity at a single frequency,
�=�k0. In addition, the resonance of the cavity is also asso-
ciated with a single value of the wave vector k�, namely,
normal incidence. An enhancement of the propagating poten-
tial hence does not require a good conductor like gold which
is a good reflector for a broad range of frequencies and all
angles of incidence; instead, cavity walls whose reflectivity
has a sharp peak at normal incidence and the single fre-
quency �k0 are sufficient. The obvious candidate is to use
multilayer Bragg mirrors, which consist of alternating layers
of two different materials, each layer of thickness being
equal to one quarter of the wavelength �10=2� /n�k0 in that
layer, where n is the respective refractive index.

The reflection coefficient of a stack of layers with permit-
tivities � j and thicknesses dj is found by recursive use of the
formula

rijk¯ =
rij + rjk�l¯�e2ijdj

1 + rijrjk�l¯�e2ijdj
�35�

� j =�nj
2�2 /c2−k�

2 �, which relates the reflection coefficient
of a set of three adjacent layers ijk¯ �and all the layers
behind� to the respective result for the next set of adjacent
layers jkl¯. If the kth layer is the last one of the stack, the
coefficients rjk�l¯� reduce to the two-layer coefficients rjk. In
straightforward generalization of Eqs. �9a� and �9b�, the two-
layer coefficients read
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, �36a�
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p =

� ji − �i j

� ji + �i j
�36b�

for s- and p-polarized waves, respectively. The Casimir ef-
fect for such multilayer stacks has been extensively studied
in the past �34–37�.

A very common pair of materials to use for Bragg mirrors
is GaAs and AlAs. At the rotational transition frequency of
LiH, the permittivity of the two materials can be roughly
given as �GaAs=12.96+0.02i �38,39� and �AlAs=10.96
+0.02i �40�. The reflection coefficient of a GaAs/AlAs Bragg
mirror is plotted as a function of the number of �double�
layers N in the upper panel of Fig. 7. For a given N, the
Bragg mirror consists of 2N+1 layers in total, i.e., N pairs of
GaAs and AlAs layers of thickness �10 /4 �beginning with
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be much increased by a resonant cavity if confinement is
imposed in two or even three dimensions, i.e., in a cylindri-
cal or spherical cavity.

The logarithmic scaling law of the potential-minimum
depth �U� for the case �=2 is confirmed by a numerical
calculation in which reflection coefficients are set constant,
rp=−rs�r and close to unity. The result for the rotational
transition of LiH is shown in Fig. 6 where the exact result for
a gold cavity is also included. By comparing the latter curve
to the potentials for constant reflection coefficients, one can
read off the relatively small “effective” reflectivity of gold
between 1–10−2 and 1–10−3 at the respective transition fre-
quency of LiH. For a molecule with a smaller eigenfre-
quency �k0 the gold cavity does slightly better because the
permittivity is larger. Consider the vibrational transition of
YbF with �k0�9
1010 rad /s as an example, for which the
effective reflectivity of the gold cavity �in the sense of Fig. 6�
increases to about 1–10−3.5.

E. Enhanced reflectivity using Bragg mirrors

In contrast with the nonresonant CP force which depends
on a very broad band of frequencies, the resonant part of the
ground-state force on a two-level molecule depends on the
reflection properties of the cavity at a single frequency,
�=�k0. In addition, the resonance of the cavity is also asso-
ciated with a single value of the wave vector k�, namely,
normal incidence. An enhancement of the propagating poten-
tial hence does not require a good conductor like gold which
is a good reflector for a broad range of frequencies and all
angles of incidence; instead, cavity walls whose reflectivity
has a sharp peak at normal incidence and the single fre-
quency �k0 are sufficient. The obvious candidate is to use
multilayer Bragg mirrors, which consist of alternating layers
of two different materials, each layer of thickness being
equal to one quarter of the wavelength �10=2� /n�k0 in that
layer, where n is the respective refractive index.

The reflection coefficient of a stack of layers with permit-
tivities � j and thicknesses dj is found by recursive use of the
formula

rijk¯ =
rij + rjk�l¯�e2ijdj

1 + rijrjk�l¯�e2ijdj
�35�

� j =�nj
2�2 /c2−k�

2 �, which relates the reflection coefficient
of a set of three adjacent layers ijk¯ �and all the layers
behind� to the respective result for the next set of adjacent
layers jkl¯. If the kth layer is the last one of the stack, the
coefficients rjk�l¯� reduce to the two-layer coefficients rjk. In
straightforward generalization of Eqs. �9a� and �9b�, the two-
layer coefficients read

rij
s =

i −  j

i +  j
, �36a�

rij
p =

� ji − �i j

� ji + �i j
�36b�

for s- and p-polarized waves, respectively. The Casimir ef-
fect for such multilayer stacks has been extensively studied
in the past �34–37�.

A very common pair of materials to use for Bragg mirrors
is GaAs and AlAs. At the rotational transition frequency of
LiH, the permittivity of the two materials can be roughly
given as �GaAs=12.96+0.02i �38,39� and �AlAs=10.96
+0.02i �40�. The reflection coefficient of a GaAs/AlAs Bragg
mirror is plotted as a function of the number of �double�
layers N in the upper panel of Fig. 7. For a given N, the
Bragg mirror consists of 2N+1 layers in total, i.e., N pairs of
GaAs and AlAs layers of thickness �10 /4 �beginning with
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be much increased by a resonant cavity if confinement is
imposed in two or even three dimensions, i.e., in a cylindri-
cal or spherical cavity.

The logarithmic scaling law of the potential-minimum
depth �U� for the case �=2 is confirmed by a numerical
calculation in which reflection coefficients are set constant,
rp=−rs�r and close to unity. The result for the rotational
transition of LiH is shown in Fig. 6 where the exact result for
a gold cavity is also included. By comparing the latter curve
to the potentials for constant reflection coefficients, one can
read off the relatively small “effective” reflectivity of gold
between 1–10−2 and 1–10−3 at the respective transition fre-
quency of LiH. For a molecule with a smaller eigenfre-
quency �k0 the gold cavity does slightly better because the
permittivity is larger. Consider the vibrational transition of
YbF with �k0�9
1010 rad /s as an example, for which the
effective reflectivity of the gold cavity �in the sense of Fig. 6�
increases to about 1–10−3.5.

E. Enhanced reflectivity using Bragg mirrors

In contrast with the nonresonant CP force which depends
on a very broad band of frequencies, the resonant part of the
ground-state force on a two-level molecule depends on the
reflection properties of the cavity at a single frequency,
�=�k0. In addition, the resonance of the cavity is also asso-
ciated with a single value of the wave vector k�, namely,
normal incidence. An enhancement of the propagating poten-
tial hence does not require a good conductor like gold which
is a good reflector for a broad range of frequencies and all
angles of incidence; instead, cavity walls whose reflectivity
has a sharp peak at normal incidence and the single fre-
quency �k0 are sufficient. The obvious candidate is to use
multilayer Bragg mirrors, which consist of alternating layers
of two different materials, each layer of thickness being
equal to one quarter of the wavelength �10=2� /n�k0 in that
layer, where n is the respective refractive index.

The reflection coefficient of a stack of layers with permit-
tivities � j and thicknesses dj is found by recursive use of the
formula

rijk¯ =
rij + rjk�l¯�e2ijdj

1 + rijrjk�l¯�e2ijdj
�35�

� j =�nj
2�2 /c2−k�

2 �, which relates the reflection coefficient
of a set of three adjacent layers ijk¯ �and all the layers
behind� to the respective result for the next set of adjacent
layers jkl¯. If the kth layer is the last one of the stack, the
coefficients rjk�l¯� reduce to the two-layer coefficients rjk. In
straightforward generalization of Eqs. �9a� and �9b�, the two-
layer coefficients read

rij
s =

i −  j

i +  j
, �36a�

rij
p =

� ji − �i j

� ji + �i j
�36b�

for s- and p-polarized waves, respectively. The Casimir ef-
fect for such multilayer stacks has been extensively studied
in the past �34–37�.

A very common pair of materials to use for Bragg mirrors
is GaAs and AlAs. At the rotational transition frequency of
LiH, the permittivity of the two materials can be roughly
given as �GaAs=12.96+0.02i �38,39� and �AlAs=10.96
+0.02i �40�. The reflection coefficient of a GaAs/AlAs Bragg
mirror is plotted as a function of the number of �double�
layers N in the upper panel of Fig. 7. For a given N, the
Bragg mirror consists of 2N+1 layers in total, i.e., N pairs of
GaAs and AlAs layers of thickness �10 /4 �beginning with
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GaAs� and a terminating GaAs layer of infinite thickness. As
Fig. 7 shows, the reflectivity initially increases for increasing
N and then eventually saturates for N030 to some finite
value where 1−Re r 10−2. This saturation is due to absorp-
tion, as is illustrated by the other two curves, where we have
given the results that would be obtained for a reduced or
vanishing imaginary part of the permittivities. For a reduced
imaginary part, the saturation sets in for higher N, and con-
sequently to a lower  . In the absence of absorption, the
reflectivity could be brought arbitrarily close to unity by add-
ing more and more layers.

A higher reflectivity could hence be obtained by using
materials with very small dielectric loss. One example of
such a Bragg mirror could be alternating layers of vacuum
and sapphire, which can have an extremely low loss tangent
�Im � /Re � 10−5 and 10−7 at room temperature and 77 K,
respectively �41�� combined with a refractive index
considerably larger than unity �Re � 10 �42��. Using the
approximative values �sapph=10+10−4i at 300 K and
�sapph=10+10−6i at 77 K, we have computed the reflection
coefficients of the vacuum/sapphire mirror as displayed in
the lower panel of Fig. 7. At room temperature, the coeffi-
cient saturates at N06 to  =5.5
10−6. At T=77 K, the
reflection coefficient saturates at N08 to  =5.5
10−8, the
increase in reflectivity is obviously due to the reduction in
material absorption for the lower temperature. Note that in
comparison to the GaAs/AlAs mirror, the number of layers
required for saturation is significantly lower because of the
larger dielectric contrast; and the room-temperature reflectiv-
ity at saturation is increased by about four orders of magni-
tude.

The resulting propagating part of the resonant CP poten-
tial at resonant-cavity width using the sapphire/vacuum
Bragg mirror at T=77 K and 300 K are shown in Fig. 8,
where the corresponding graphs at various constant reflection
coefficients have also been displayed for reference. The ef-
fective reflection coefficients achieved at the two tempera-
tures are around  =10−4.8 and  =10−6.7, respectively, and the
potential depths approximately a factor 2.45 and 1.77 greater
than that of the gold cavity at the same temperatures. Note,
however, that the effect of the enhanced reflectivity at 77 K
is counteracted by the overall decrease of the potential due to
the lower photon number.

F. Lifetime of the ground state in the cavity

Resonant CP potentials are only present for molecules
which are not at equilibrium with their thermal environment,
i.e., on a time scale given by the inverse heating rate �19�.
When enhancing the thermal CP potential via a resonant cav-
ity, it is necessary to ascertain that the simultaneous cavity
enhancement of heating rates does not reduce the lifetime of
the resonant potential by so much as to render it experimen-
tally inaccessible. We show in the following that the lifetime
of the molecular ground state is not radically changed even
by the presence of a resonant planar cavity.

The total heating rate of an isotropic molecule out of its
ground state may be written as �17� �=�0+�cav, where

�0 =
�k�d0k�2�k0

3 n��k0�
3��c3�0

�37�

is the heating rate in free space and

�cav =
2�0

3� �k �d0k�2�k0
2 n��k0�Im Tr G�1��r,r,�k0� �38�

is its change due to the presence of the cavity. Apart from the
prefactor, this additional term has the same form as the ex-
pression for the potential, except that the imaginary part of
the Green tensor is taken rather than the real part.

In Sec. II D, we had shown that for real and constant
reflection coefficients, the Green tensor exhibits a logarith-
mic divergence as r→1 with a purely real coefficient,
whereas all other contributions remain finite. This shows that
the imaginary part of the Green tensor responsible for the
decay rate can be expected to remain finite even for strongly
increased reflectivity. It follows that the presence of the cav-
ity does not drastically change the lifetime of the ground
state of the molecule, which will typically be in the order of
seconds. This is confirmed in Fig. 9 where we display the
ground-state heating rate of a LiH molecule inside a �=1
gold cavity and near a gold half-space. The lifetime is re-
duced by only a factor 2 at the center of the cavity, remaining
in the order of seconds.
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FIG. 8. �Color online� Resonant part of the thermal CP potential
associated with the rotational transitions of a ground-state LiH mol-
ecule at �=2 resonance with a gold cavity and a cavity bounded by
vacuum/sapphire Bragg mirrors at two different temperatures: 77 K
above, 300 K below. The solid black lines represent calculations at
constant reflection coefficients as in Fig. 6; the corresponding val-
ues of 1−r decrease in powers of 10 from 10−2 �lowest curve� to
10−7 �highest curve�. The same permittivity is used for gold for both
temperatures.
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GaAs� and a terminating GaAs layer of infinite thickness. As
Fig. 7 shows, the reflectivity initially increases for increasing
N and then eventually saturates for N030 to some finite
value where 1−Re r 10−2. This saturation is due to absorp-
tion, as is illustrated by the other two curves, where we have
given the results that would be obtained for a reduced or
vanishing imaginary part of the permittivities. For a reduced
imaginary part, the saturation sets in for higher N, and con-
sequently to a lower  . In the absence of absorption, the
reflectivity could be brought arbitrarily close to unity by add-
ing more and more layers.

A higher reflectivity could hence be obtained by using
materials with very small dielectric loss. One example of
such a Bragg mirror could be alternating layers of vacuum
and sapphire, which can have an extremely low loss tangent
�Im � /Re � 10−5 and 10−7 at room temperature and 77 K,
respectively �41�� combined with a refractive index
considerably larger than unity �Re � 10 �42��. Using the
approximative values �sapph=10+10−4i at 300 K and
�sapph=10+10−6i at 77 K, we have computed the reflection
coefficients of the vacuum/sapphire mirror as displayed in
the lower panel of Fig. 7. At room temperature, the coeffi-
cient saturates at N06 to  =5.5
10−6. At T=77 K, the
reflection coefficient saturates at N08 to  =5.5
10−8, the
increase in reflectivity is obviously due to the reduction in
material absorption for the lower temperature. Note that in
comparison to the GaAs/AlAs mirror, the number of layers
required for saturation is significantly lower because of the
larger dielectric contrast; and the room-temperature reflectiv-
ity at saturation is increased by about four orders of magni-
tude.

The resulting propagating part of the resonant CP poten-
tial at resonant-cavity width using the sapphire/vacuum
Bragg mirror at T=77 K and 300 K are shown in Fig. 8,
where the corresponding graphs at various constant reflection
coefficients have also been displayed for reference. The ef-
fective reflection coefficients achieved at the two tempera-
tures are around  =10−4.8 and  =10−6.7, respectively, and the
potential depths approximately a factor 2.45 and 1.77 greater
than that of the gold cavity at the same temperatures. Note,
however, that the effect of the enhanced reflectivity at 77 K
is counteracted by the overall decrease of the potential due to
the lower photon number.

F. Lifetime of the ground state in the cavity

Resonant CP potentials are only present for molecules
which are not at equilibrium with their thermal environment,
i.e., on a time scale given by the inverse heating rate �19�.
When enhancing the thermal CP potential via a resonant cav-
ity, it is necessary to ascertain that the simultaneous cavity
enhancement of heating rates does not reduce the lifetime of
the resonant potential by so much as to render it experimen-
tally inaccessible. We show in the following that the lifetime
of the molecular ground state is not radically changed even
by the presence of a resonant planar cavity.

The total heating rate of an isotropic molecule out of its
ground state may be written as �17� �=�0+�cav, where

�0 =
�k�d0k�2�k0

3 n��k0�
3��c3�0

�37�

is the heating rate in free space and

�cav =
2�0

3� �k �d0k�2�k0
2 n��k0�Im Tr G�1��r,r,�k0� �38�

is its change due to the presence of the cavity. Apart from the
prefactor, this additional term has the same form as the ex-
pression for the potential, except that the imaginary part of
the Green tensor is taken rather than the real part.

In Sec. II D, we had shown that for real and constant
reflection coefficients, the Green tensor exhibits a logarith-
mic divergence as r→1 with a purely real coefficient,
whereas all other contributions remain finite. This shows that
the imaginary part of the Green tensor responsible for the
decay rate can be expected to remain finite even for strongly
increased reflectivity. It follows that the presence of the cav-
ity does not drastically change the lifetime of the ground
state of the molecule, which will typically be in the order of
seconds. This is confirmed in Fig. 9 where we display the
ground-state heating rate of a LiH molecule inside a �=1
gold cavity and near a gold half-space. The lifetime is re-
duced by only a factor 2 at the center of the cavity, remaining
in the order of seconds.
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FIG. 8. �Color online� Resonant part of the thermal CP potential
associated with the rotational transitions of a ground-state LiH mol-
ecule at �=2 resonance with a gold cavity and a cavity bounded by
vacuum/sapphire Bragg mirrors at two different temperatures: 77 K
above, 300 K below. The solid black lines represent calculations at
constant reflection coefficients as in Fig. 6; the corresponding val-
ues of 1−r decrease in powers of 10 from 10−2 �lowest curve� to
10−7 �highest curve�. The same permittivity is used for gold for both
temperatures.
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GaAs� and a terminating GaAs layer of infinite thickness. As
Fig. 7 shows, the reflectivity initially increases for increasing
N and then eventually saturates for N030 to some finite
value where 1−Re r 10−2. This saturation is due to absorp-
tion, as is illustrated by the other two curves, where we have
given the results that would be obtained for a reduced or
vanishing imaginary part of the permittivities. For a reduced
imaginary part, the saturation sets in for higher N, and con-
sequently to a lower  . In the absence of absorption, the
reflectivity could be brought arbitrarily close to unity by add-
ing more and more layers.

A higher reflectivity could hence be obtained by using
materials with very small dielectric loss. One example of
such a Bragg mirror could be alternating layers of vacuum
and sapphire, which can have an extremely low loss tangent
�Im � /Re � 10−5 and 10−7 at room temperature and 77 K,
respectively �41�� combined with a refractive index
considerably larger than unity �Re � 10 �42��. Using the
approximative values �sapph=10+10−4i at 300 K and
�sapph=10+10−6i at 77 K, we have computed the reflection
coefficients of the vacuum/sapphire mirror as displayed in
the lower panel of Fig. 7. At room temperature, the coeffi-
cient saturates at N06 to  =5.5
10−6. At T=77 K, the
reflection coefficient saturates at N08 to  =5.5
10−8, the
increase in reflectivity is obviously due to the reduction in
material absorption for the lower temperature. Note that in
comparison to the GaAs/AlAs mirror, the number of layers
required for saturation is significantly lower because of the
larger dielectric contrast; and the room-temperature reflectiv-
ity at saturation is increased by about four orders of magni-
tude.

The resulting propagating part of the resonant CP poten-
tial at resonant-cavity width using the sapphire/vacuum
Bragg mirror at T=77 K and 300 K are shown in Fig. 8,
where the corresponding graphs at various constant reflection
coefficients have also been displayed for reference. The ef-
fective reflection coefficients achieved at the two tempera-
tures are around  =10−4.8 and  =10−6.7, respectively, and the
potential depths approximately a factor 2.45 and 1.77 greater
than that of the gold cavity at the same temperatures. Note,
however, that the effect of the enhanced reflectivity at 77 K
is counteracted by the overall decrease of the potential due to
the lower photon number.

F. Lifetime of the ground state in the cavity

Resonant CP potentials are only present for molecules
which are not at equilibrium with their thermal environment,
i.e., on a time scale given by the inverse heating rate �19�.
When enhancing the thermal CP potential via a resonant cav-
ity, it is necessary to ascertain that the simultaneous cavity
enhancement of heating rates does not reduce the lifetime of
the resonant potential by so much as to render it experimen-
tally inaccessible. We show in the following that the lifetime
of the molecular ground state is not radically changed even
by the presence of a resonant planar cavity.

The total heating rate of an isotropic molecule out of its
ground state may be written as �17� �=�0+�cav, where

�0 =
�k�d0k�2�k0

3 n��k0�
3��c3�0

�37�

is the heating rate in free space and

�cav =
2�0

3� �k �d0k�2�k0
2 n��k0�Im Tr G�1��r,r,�k0� �38�

is its change due to the presence of the cavity. Apart from the
prefactor, this additional term has the same form as the ex-
pression for the potential, except that the imaginary part of
the Green tensor is taken rather than the real part.

In Sec. II D, we had shown that for real and constant
reflection coefficients, the Green tensor exhibits a logarith-
mic divergence as r→1 with a purely real coefficient,
whereas all other contributions remain finite. This shows that
the imaginary part of the Green tensor responsible for the
decay rate can be expected to remain finite even for strongly
increased reflectivity. It follows that the presence of the cav-
ity does not drastically change the lifetime of the ground
state of the molecule, which will typically be in the order of
seconds. This is confirmed in Fig. 9 where we display the
ground-state heating rate of a LiH molecule inside a �=1
gold cavity and near a gold half-space. The lifetime is re-
duced by only a factor 2 at the center of the cavity, remaining
in the order of seconds.
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FIG. 8. �Color online� Resonant part of the thermal CP potential
associated with the rotational transitions of a ground-state LiH mol-
ecule at �=2 resonance with a gold cavity and a cavity bounded by
vacuum/sapphire Bragg mirrors at two different temperatures: 77 K
above, 300 K below. The solid black lines represent calculations at
constant reflection coefficients as in Fig. 6; the corresponding val-
ues of 1−r decrease in powers of 10 from 10−2 �lowest curve� to
10−7 �highest curve�. The same permittivity is used for gold for both
temperatures.
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GaAs� and a terminating GaAs layer of infinite thickness. As
Fig. 7 shows, the reflectivity initially increases for increasing
N and then eventually saturates for N030 to some finite
value where 1−Re r 10−2. This saturation is due to absorp-
tion, as is illustrated by the other two curves, where we have
given the results that would be obtained for a reduced or
vanishing imaginary part of the permittivities. For a reduced
imaginary part, the saturation sets in for higher N, and con-
sequently to a lower  . In the absence of absorption, the
reflectivity could be brought arbitrarily close to unity by add-
ing more and more layers.

A higher reflectivity could hence be obtained by using
materials with very small dielectric loss. One example of
such a Bragg mirror could be alternating layers of vacuum
and sapphire, which can have an extremely low loss tangent
�Im � /Re � 10−5 and 10−7 at room temperature and 77 K,
respectively �41�� combined with a refractive index
considerably larger than unity �Re � 10 �42��. Using the
approximative values �sapph=10+10−4i at 300 K and
�sapph=10+10−6i at 77 K, we have computed the reflection
coefficients of the vacuum/sapphire mirror as displayed in
the lower panel of Fig. 7. At room temperature, the coeffi-
cient saturates at N06 to  =5.5
10−6. At T=77 K, the
reflection coefficient saturates at N08 to  =5.5
10−8, the
increase in reflectivity is obviously due to the reduction in
material absorption for the lower temperature. Note that in
comparison to the GaAs/AlAs mirror, the number of layers
required for saturation is significantly lower because of the
larger dielectric contrast; and the room-temperature reflectiv-
ity at saturation is increased by about four orders of magni-
tude.

The resulting propagating part of the resonant CP poten-
tial at resonant-cavity width using the sapphire/vacuum
Bragg mirror at T=77 K and 300 K are shown in Fig. 8,
where the corresponding graphs at various constant reflection
coefficients have also been displayed for reference. The ef-
fective reflection coefficients achieved at the two tempera-
tures are around  =10−4.8 and  =10−6.7, respectively, and the
potential depths approximately a factor 2.45 and 1.77 greater
than that of the gold cavity at the same temperatures. Note,
however, that the effect of the enhanced reflectivity at 77 K
is counteracted by the overall decrease of the potential due to
the lower photon number.

F. Lifetime of the ground state in the cavity

Resonant CP potentials are only present for molecules
which are not at equilibrium with their thermal environment,
i.e., on a time scale given by the inverse heating rate �19�.
When enhancing the thermal CP potential via a resonant cav-
ity, it is necessary to ascertain that the simultaneous cavity
enhancement of heating rates does not reduce the lifetime of
the resonant potential by so much as to render it experimen-
tally inaccessible. We show in the following that the lifetime
of the molecular ground state is not radically changed even
by the presence of a resonant planar cavity.

The total heating rate of an isotropic molecule out of its
ground state may be written as �17� �=�0+�cav, where

�0 =
�k�d0k�2�k0

3 n��k0�
3��c3�0

�37�

is the heating rate in free space and

�cav =
2�0

3� �k �d0k�2�k0
2 n��k0�Im Tr G�1��r,r,�k0� �38�

is its change due to the presence of the cavity. Apart from the
prefactor, this additional term has the same form as the ex-
pression for the potential, except that the imaginary part of
the Green tensor is taken rather than the real part.

In Sec. II D, we had shown that for real and constant
reflection coefficients, the Green tensor exhibits a logarith-
mic divergence as r→1 with a purely real coefficient,
whereas all other contributions remain finite. This shows that
the imaginary part of the Green tensor responsible for the
decay rate can be expected to remain finite even for strongly
increased reflectivity. It follows that the presence of the cav-
ity does not drastically change the lifetime of the ground
state of the molecule, which will typically be in the order of
seconds. This is confirmed in Fig. 9 where we display the
ground-state heating rate of a LiH molecule inside a �=1
gold cavity and near a gold half-space. The lifetime is re-
duced by only a factor 2 at the center of the cavity, remaining
in the order of seconds.
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FIG. 8. �Color online� Resonant part of the thermal CP potential
associated with the rotational transitions of a ground-state LiH mol-
ecule at �=2 resonance with a gold cavity and a cavity bounded by
vacuum/sapphire Bragg mirrors at two different temperatures: 77 K
above, 300 K below. The solid black lines represent calculations at
constant reflection coefficients as in Fig. 6; the corresponding val-
ues of 1−r decrease in powers of 10 from 10−2 �lowest curve� to
10−7 �highest curve�. The same permittivity is used for gold for both
temperatures.
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III. CONCLUSIONS AND OUTLOOK

We have studied the thermal Casimir-Polder potential of
ground-state polar molecules placed within a planar cavity at
room temperature. As was previously found in Ref. �19�, the
resonant absorption of thermal photons by a molecule gives
rise to spatial oscillations of that potential. Our results dem-
onstrate that the amplitude of these oscillations is enhanced
when placing the molecule inside a suitable cavity such that
a molecular transition frequency coincides with a cavity
resonance. We have analyzed the dependence of this oscillat-
ing potential on the parameters of the molecule and the cav-
ity by both analytical and numerical means and found that
the depth of potential minima
�i� �Cavity resonance� decreases with increasing order of

the cavity resonance approximately as 1 /�;
�ii� �Molecular eigenfrequency� is proportional to

�k0
3 n��k0� for good conductors, where n��k0� is the thermal-

photon number;
�iii� �Molecular dipole moments� is proportional to the

modulus squared �k�d0k�2=d2 of the respective transition-
dipole moment;
�iv� �Temperature� increases with temperature due to an

increase of the thermal-photon number n��k0�;
�v� �Reflectivity of cavity walls� scales as ln�1−r� for

high reflectivity r.
In view of observing this potential and possibly utilizing

it for the guiding of cold polar molecules, these observations
imply the following strategies for enhancing the depth of the
potential minima:
�i� Cavity resonance. The �=2 resonance is most suitable

since it gives the deepest minimum.
�ii� Molecular species. At room temperature, the deepest

minima are realized for molecules whose transitions are not
too far from the peak frequency 1.11
1014 rad /s and which
at the same time feature suitably large transition-dipole mo-
ments. Good candidates are, e.g., LiH �rotational transitions�,
BaF �vibrational transitions�, or OH �rotational transitions�.
�iii� Cavity walls. Highly reflecting cavities are required

in order to enhance the potential. Bragg mirrors consisting of
materials with small absorption such as sapphire are favor-

able to single layers of good conductors like gold.
�iv� Temperature. Temperatures should be in the range of

room temperature or even higher in order to achieve large
photon numbers. This should be balanced, however, against
the adverse reduction of reflectivity of most materials with
increasing temperature.

With an optimum choice of all these parameters, the pla-
nar cavity can be used to enhance the resonant potential by
one or at most two orders of magnitude with respect to the
single-plate case. However, the thermal potentials achievable
with planar cavities are in all likelihood still too small to
facilitate the guiding of polar molecules.

The limitations of the enhancement of the potential in a
planar cavity are ultimately due to the weak �logarithmic�
scaling with reflectivity. A stronger scaling may be expected
in geometries providing mode confinement in more than just
one dimension such as cylindrical or spherical cavities. This
will be investigated in a future publication. Note that apart
from the different expected scaling with reflectivity, all other
conclusions regarding the dependence of the potential on the
relevant molecular and material parameters as given above
hold irrespective of the geometry under consideration. The
strategies for the enhancement of thermal CP potentials de-
veloped in this work will thus present a valuable basis when
considering more complicated cavity geometries.
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is hence given by
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We have studied the thermal Casimir-Polder potential of
ground-state polar molecules placed within a planar cavity at
room temperature. As was previously found in Ref. �19�, the
resonant absorption of thermal photons by a molecule gives
rise to spatial oscillations of that potential. Our results dem-
onstrate that the amplitude of these oscillations is enhanced
when placing the molecule inside a suitable cavity such that
a molecular transition frequency coincides with a cavity
resonance. We have analyzed the dependence of this oscillat-
ing potential on the parameters of the molecule and the cav-
ity by both analytical and numerical means and found that
the depth of potential minima
�i� �Cavity resonance� decreases with increasing order of

the cavity resonance approximately as 1 /�;
�ii� �Molecular eigenfrequency� is proportional to

�k0
3 n��k0� for good conductors, where n��k0� is the thermal-

photon number;
�iii� �Molecular dipole moments� is proportional to the

modulus squared �k�d0k�2=d2 of the respective transition-
dipole moment;
�iv� �Temperature� increases with temperature due to an

increase of the thermal-photon number n��k0�;
�v� �Reflectivity of cavity walls� scales as ln�1−r� for

high reflectivity r.
In view of observing this potential and possibly utilizing

it for the guiding of cold polar molecules, these observations
imply the following strategies for enhancing the depth of the
potential minima:
�i� Cavity resonance. The �=2 resonance is most suitable

since it gives the deepest minimum.
�ii� Molecular species. At room temperature, the deepest

minima are realized for molecules whose transitions are not
too far from the peak frequency 1.11
1014 rad /s and which
at the same time feature suitably large transition-dipole mo-
ments. Good candidates are, e.g., LiH �rotational transitions�,
BaF �vibrational transitions�, or OH �rotational transitions�.
�iii� Cavity walls. Highly reflecting cavities are required

in order to enhance the potential. Bragg mirrors consisting of
materials with small absorption such as sapphire are favor-

able to single layers of good conductors like gold.
�iv� Temperature. Temperatures should be in the range of

room temperature or even higher in order to achieve large
photon numbers. This should be balanced, however, against
the adverse reduction of reflectivity of most materials with
increasing temperature.

With an optimum choice of all these parameters, the pla-
nar cavity can be used to enhance the resonant potential by
one or at most two orders of magnitude with respect to the
single-plate case. However, the thermal potentials achievable
with planar cavities are in all likelihood still too small to
facilitate the guiding of polar molecules.

The limitations of the enhancement of the potential in a
planar cavity are ultimately due to the weak �logarithmic�
scaling with reflectivity. A stronger scaling may be expected
in geometries providing mode confinement in more than just
one dimension such as cylindrical or spherical cavities. This
will be investigated in a future publication. Note that apart
from the different expected scaling with reflectivity, all other
conclusions regarding the dependence of the potential on the
relevant molecular and material parameters as given above
hold irrespective of the geometry under consideration. The
strategies for the enhancement of thermal CP potentials de-
veloped in this work will thus present a valuable basis when
considering more complicated cavity geometries.
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We have studied the thermal Casimir-Polder potential of
ground-state polar molecules placed within a planar cavity at
room temperature. As was previously found in Ref. �19�, the
resonant absorption of thermal photons by a molecule gives
rise to spatial oscillations of that potential. Our results dem-
onstrate that the amplitude of these oscillations is enhanced
when placing the molecule inside a suitable cavity such that
a molecular transition frequency coincides with a cavity
resonance. We have analyzed the dependence of this oscillat-
ing potential on the parameters of the molecule and the cav-
ity by both analytical and numerical means and found that
the depth of potential minima
�i� �Cavity resonance� decreases with increasing order of

the cavity resonance approximately as 1 /�;
�ii� �Molecular eigenfrequency� is proportional to

�k0
3 n��k0� for good conductors, where n��k0� is the thermal-

photon number;
�iii� �Molecular dipole moments� is proportional to the

modulus squared �k�d0k�2=d2 of the respective transition-
dipole moment;
�iv� �Temperature� increases with temperature due to an

increase of the thermal-photon number n��k0�;
�v� �Reflectivity of cavity walls� scales as ln�1−r� for

high reflectivity r.
In view of observing this potential and possibly utilizing

it for the guiding of cold polar molecules, these observations
imply the following strategies for enhancing the depth of the
potential minima:
�i� Cavity resonance. The �=2 resonance is most suitable

since it gives the deepest minimum.
�ii� Molecular species. At room temperature, the deepest

minima are realized for molecules whose transitions are not
too far from the peak frequency 1.11
1014 rad /s and which
at the same time feature suitably large transition-dipole mo-
ments. Good candidates are, e.g., LiH �rotational transitions�,
BaF �vibrational transitions�, or OH �rotational transitions�.
�iii� Cavity walls. Highly reflecting cavities are required

in order to enhance the potential. Bragg mirrors consisting of
materials with small absorption such as sapphire are favor-

able to single layers of good conductors like gold.
�iv� Temperature. Temperatures should be in the range of

room temperature or even higher in order to achieve large
photon numbers. This should be balanced, however, against
the adverse reduction of reflectivity of most materials with
increasing temperature.

With an optimum choice of all these parameters, the pla-
nar cavity can be used to enhance the resonant potential by
one or at most two orders of magnitude with respect to the
single-plate case. However, the thermal potentials achievable
with planar cavities are in all likelihood still too small to
facilitate the guiding of polar molecules.

The limitations of the enhancement of the potential in a
planar cavity are ultimately due to the weak �logarithmic�
scaling with reflectivity. A stronger scaling may be expected
in geometries providing mode confinement in more than just
one dimension such as cylindrical or spherical cavities. This
will be investigated in a future publication. Note that apart
from the different expected scaling with reflectivity, all other
conclusions regarding the dependence of the potential on the
relevant molecular and material parameters as given above
hold irrespective of the geometry under consideration. The
strategies for the enhancement of thermal CP potentials de-
veloped in this work will thus present a valuable basis when
considering more complicated cavity geometries.
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ground-state polar molecules placed within a planar cavity at
room temperature. As was previously found in Ref. �19�, the
resonant absorption of thermal photons by a molecule gives
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onstrate that the amplitude of these oscillations is enhanced
when placing the molecule inside a suitable cavity such that
a molecular transition frequency coincides with a cavity
resonance. We have analyzed the dependence of this oscillat-
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room temperature or even higher in order to achieve large
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the adverse reduction of reflectivity of most materials with
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nar cavity can be used to enhance the resonant potential by
one or at most two orders of magnitude with respect to the
single-plate case. However, the thermal potentials achievable
with planar cavities are in all likelihood still too small to
facilitate the guiding of polar molecules.

The limitations of the enhancement of the potential in a
planar cavity are ultimately due to the weak �logarithmic�
scaling with reflectivity. A stronger scaling may be expected
in geometries providing mode confinement in more than just
one dimension such as cylindrical or spherical cavities. This
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from the different expected scaling with reflectivity, all other
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strategies for the enhancement of thermal CP potentials de-
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performed by using the relation �formula 9.559 in Ref. �33��

�
j=0

�
r2j

j + b
=

1

b
F�1,b;1 + b;r2� , �A7�

valid for any b�0,−1,−2, . . . Here, F�a ,b ;c ;z�
� 2F1�a ,b ;c ;z� is a hypergeometric function which in turn
has the following expansion in powers of  =1−r �formula
15.3.10 in Ref. �43��:

1

b
F�1,b;1 + b;r2� � − ln  − ln 2 − " − ��b� �A8�

as  →0+, the correction terms being of order  ln  . Here,
��x� is the logarithmic derivative of the gamma function and
��1�=−", where "=0.577 216 is Euler’s constant.

For the sums in Eq. �A6� with cubic denominators, one
can set r=1 with an error of order  . The sums are then
simply Hurwitz zeta functions ��3,b�,

�
l=0

�
1

�l + b�3
� ��3,b� . �A9�

We thus find

I	1
2

−
3

2�

 − I	1

2
−

1

�

 = −

8�

��0k
3 �ln  + $���� + ¯

�A10�

as  →0+ with corrections being of order  ln  and

$��� � ln 2 + " +
1

4
�	1 −

3

2�

 + 1

4
�	 3

2�

 + 1

4
�	1 −

1

�



+
1

4
�	1

�

 + 1

4�2�2��	3,1 −
3

2�

 + �	3,

3

2�

� .
�A11�

Some numerical values of $��� are
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FIG. 10. �Color online� Graph of $��� /� �solid line� and its
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We demonstrate that Casimir-Polder potentials can be entirely independent of temperature even when

allowing for the relevant thermal photon numbers to become large. This statement holds for potentials that

are due to low-energy transitions of a molecule placed near a plane metal surface whose plasma frequency

is much larger than any atomic resonance frequencies. For a molecule in an energy eigenstate, the

temperature independence is a consequence of strong cancellations between nonresonant potential

components and those due to evanescent waves. For a molecule with a single dominant transition in a

thermal state, upward and downward transitions combine to form a temperature-independent potential.

The results are contrasted with the case of an atom whose potential exhibits a regime of linear temperature

dependence. Contact with the Casimir force between a weakly dielectric and a metallic plate is made.
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Dispersion forces between polarizable objects were
originally predicted by Casimir and Polder as a conse-
quence of quantum zero-point fluctuations [1]. Recent
measurements of both Casimir-Polder (CP) forces between
atoms and surfaces [2] and Casimir forces between macro-
scopic bodies [3,4] typically operate at room temperature,
where thermal fluctuations also come into play [5–8]. The
temperature dependence of dispersion forces is of rele-
vance for both fundamental and practical reasons.

On the theoretical side, the correct description of the
Casimir force between metals at finite temperature is sub-
ject to an ongoing debate [4,9]. To wit, predictions differ
for the high-temperature behavior of the Casimir force
between metals, for which employing a standard dissipa-
tive description of the surfaces fails to reproduce the
experimental observations [10]. This suggests that progress
can be made by directly observing the variation of the
Casimir force with temperature.

On the practical side, CP forces become increasingly
relevant when trying to trap and coherently manipulate
cold atoms near surfaces [11]. Current endeavours aim at
extending these techniques to more complex systems such
as polar molecules [12]. Such systems typically exhibit
long-wavelength transitions so that CP forces become in-
creasingly long-ranged. This raises the question of whether
they can be controlled by lowering the ambient tempera-
ture and hence suppressing thermal force components.

Thermal contributions to the CP potential are governed

by the photon number nð!Þ ¼ ½e@!=ðkBTÞ � 1��1. A notice-
able deviation of the potential from its zero-temperature
value is to be expected when nð!Þ * 1 in the relevant
frequency range. This is the case, for instance, for mole-
cules with small transition frequencies, j!knj & kBT=@ ¼
3:93� 1013 rad=s at room temperature (300 K). The asso-
ciated wavelengths are much larger than typical experi-
mental molecule-surface separations in the nanometer to

micrometer range [2], zA 	 c=j!knj. Furthermore, experi-
mental realizations typically involve metal surfaces with
j"ð!knÞj � 1 which act like perfect reflectors.
As we will show in this Letter, the above three condi-

tions combined result in potentials which are independent
of temperature over the entire range from zero to room
temperature and beyond. We will first discuss the case of a
molecule prepared in an energy eigenstate and then con-
sider molecules at thermal equilibrium with their environ-
ment, comparing our results with those for atoms whose
transitions involve higher energies.
Molecule vs atom in an eigenstate.—As shown in

Ref. [13], the CP potential of a molecule prepared in an
isotropic energy eigenstate jni at distance zA from the
plane surface of a metal,

UnðzAÞ ¼ Unr
n ðzAÞ þUev

n ðzAÞ þUpr
n ðzAÞ; (1)

may be separated into three contributions: a nonresonant
term Unr

n due to virtual photons that is formally similar to
that produced by the Lifshitz theory [5], and a resonant
contribution due to real photons which may be further split
into contributions from evanescent (Uev

n ) and propagating
(Upr

n ) waves. The nonresonant potential is given by [13]
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plane surface of a metal,

UnðzAÞ ¼ Unr
n ðzAÞ þUev

n ðzAÞ þUpr
n ðzAÞ; (1)
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tions. These two contributions dominate in the region
zAj!knj=c 	 1 that we are interested in, while the spa-
tially oscillating U

pr
n becomes relevant only in the far-field

range zAj!knj=c � 1. The reflection coefficients of the
surface for s- and p-polarized waves are given by rsð!Þ ¼
ðb� b1Þ=ðbþ b1Þ and rpð!Þ ¼ ½"ð!Þb� b1�=½"ð!Þbþ
b1� with b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ½"ð!Þ � 1�!2=c2

p
, Reðb1Þ> 0.

For our analytical investigations, we will model the
metal surface by a perfect reflector with frequency-
independent reflection coefficients rs 
 �1 and rp 
 1.

This is well justified, as the plasma frequency is typically
much larger than the molecular transition frequency !kn,
and hence j"ð!Þj � 1 in the relevant frequency range. The
b integrals can then be performed to give
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The asymptotic temperature dependence of the potential
for a given distance zA is governed by two characteristic
temperatures: The molecular transition frequency defines a
spectroscopic temperature T! ¼ @j!knj=kB, which is
roughly the temperature required to noticeably populate
the upper level. Similarly, the distance introduces a geo-
metric temperature Tz ¼ @c=ðzAkBÞ, i.e., the temperature
of radiation whose wavelength is of the order zA.

We will now show that the total potential becomes
independent of temperature in both the geometric low-
temperature limit T 	 Tz and the spectroscopic high-
temperature limit T � T!. For a typical molecule with its
long-wavelength transitions, the potential is nonretarded
for typical molecule-surface distances, zAj!knj=c 	 1. As
depicted in Fig. 1 (i), this implies T! 	 Tz; hence, the two
regions of constant potential overlap and the potential is
constant for all temperatures. For an atom, on the contrary,
the transition wavelengths are much shorter, so that we
may have zAj!knj=c � 1. In this case, an intermediate
regime Tz 	 T 	 T! exists where the potential increases
linearly with temperature, cf. Fig. 1 (ii).

We begin with a typical molecule with zAj!knj=c 	 1.
In the geometric low-temperature limit T 	 Tz, we have
zA�=c 	 1; hence, the sum in Eq. (4) is densely spaced.
The factor 1=ð!2

kn þ j2�2Þ restricts it to values where

jzA�=c � zAj!knj=c 	 1. With this approximation, the
summation can be performed as
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noting that coth½@!kn=ð2kBTÞ� ¼ 2nð!knÞ þ 1. Adding
the evanescent contribution (5), we find the temperature-
independent total potential
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in agreement with the well-known nonretarded zero-
temperature result [1].
In the spectroscopic high-temperature limit T � T!, we

have �=j!knj � 1. Because of the denominator !2
kn þ

j2�2, the j ¼ 0 term strongly dominates the sum in
Eq. (4) and we find
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Under the condition T � T!, i.e., kBT � @j!knj, the eva-
nescent contribution (5) reduces to
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Adding the two results, the total potential is again tem-
perature independent and given by Eq. (8). This limit is just
the high-temperature saturation found in Refs. [7,13].
The thermal CP potential of a typical molecule with its

long-wavelength transitions has thus been found to be
temperature independent in the geometric low-temperature
and spectroscopic high-temperature regimes. Because of
the condition zAj!knj=c 	 1, at least one of the conditions
T 	 Tz or T � T! always holds, implying that the poten-
tial is constant for all temperatures and it agrees with its
zero-temperature value. The independence of the total
potential in both regimes is a result of cancellations be-
tween nonresonant and evanescent potential components,
which both strongly depend on temperature. This is illus-
trated in Fig. 2, where we display the total temperature-
independent potential as well as its nonresonant and eva-
nescent parts for a ground-state LiH molecule in front of a
Au surface for various temperatures. It is seen that very
strong cancellations occur, especially at high temperatures.
Note that, while our theoretical arguments are based on the
perfect-conductor limit, all numerical examples use the
reflectivities of real metals.
We now turn to the case of atoms, whose electronic

wavelengths are short compared to typical experimental
separations: zAj!knj=c � 1. The exponential restricts the
sum in Eq. (4) to terms with j� & c=zA 	 j!knj, so the

FIG. 1 (color online). Sketch of the temperature dependence of
the CP potential for a typical molecule vs a typical atom.
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tions. These two contributions dominate in the region
zAj!knj=c 	 1 that we are interested in, while the spa-
tially oscillating U

pr
n becomes relevant only in the far-field

range zAj!knj=c � 1. The reflection coefficients of the
surface for s- and p-polarized waves are given by rsð!Þ ¼
ðb� b1Þ=ðbþ b1Þ and rpð!Þ ¼ ½"ð!Þb� b1�=½"ð!Þbþ
b1� with b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ½"ð!Þ � 1�!2=c2

p
, Reðb1Þ> 0.

For our analytical investigations, we will model the
metal surface by a perfect reflector with frequency-
independent reflection coefficients rs 
 �1 and rp 
 1.

This is well justified, as the plasma frequency is typically
much larger than the molecular transition frequency !kn,
and hence j"ð!Þj � 1 in the relevant frequency range. The
b integrals can then be performed to give
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The asymptotic temperature dependence of the potential
for a given distance zA is governed by two characteristic
temperatures: The molecular transition frequency defines a
spectroscopic temperature T! ¼ @j!knj=kB, which is
roughly the temperature required to noticeably populate
the upper level. Similarly, the distance introduces a geo-
metric temperature Tz ¼ @c=ðzAkBÞ, i.e., the temperature
of radiation whose wavelength is of the order zA.

We will now show that the total potential becomes
independent of temperature in both the geometric low-
temperature limit T 	 Tz and the spectroscopic high-
temperature limit T � T!. For a typical molecule with its
long-wavelength transitions, the potential is nonretarded
for typical molecule-surface distances, zAj!knj=c 	 1. As
depicted in Fig. 1 (i), this implies T! 	 Tz; hence, the two
regions of constant potential overlap and the potential is
constant for all temperatures. For an atom, on the contrary,
the transition wavelengths are much shorter, so that we
may have zAj!knj=c � 1. In this case, an intermediate
regime Tz 	 T 	 T! exists where the potential increases
linearly with temperature, cf. Fig. 1 (ii).

We begin with a typical molecule with zAj!knj=c 	 1.
In the geometric low-temperature limit T 	 Tz, we have
zA�=c 	 1; hence, the sum in Eq. (4) is densely spaced.
The factor 1=ð!2

kn þ j2�2Þ restricts it to values where

jzA�=c � zAj!knj=c 	 1. With this approximation, the
summation can be performed as
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noting that coth½@!kn=ð2kBTÞ� ¼ 2nð!knÞ þ 1. Adding
the evanescent contribution (5), we find the temperature-
independent total potential
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in agreement with the well-known nonretarded zero-
temperature result [1].
In the spectroscopic high-temperature limit T � T!, we

have �=j!knj � 1. Because of the denominator !2
kn þ

j2�2, the j ¼ 0 term strongly dominates the sum in
Eq. (4) and we find
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Under the condition T � T!, i.e., kBT � @j!knj, the eva-
nescent contribution (5) reduces to
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Adding the two results, the total potential is again tem-
perature independent and given by Eq. (8). This limit is just
the high-temperature saturation found in Refs. [7,13].
The thermal CP potential of a typical molecule with its

long-wavelength transitions has thus been found to be
temperature independent in the geometric low-temperature
and spectroscopic high-temperature regimes. Because of
the condition zAj!knj=c 	 1, at least one of the conditions
T 	 Tz or T � T! always holds, implying that the poten-
tial is constant for all temperatures and it agrees with its
zero-temperature value. The independence of the total
potential in both regimes is a result of cancellations be-
tween nonresonant and evanescent potential components,
which both strongly depend on temperature. This is illus-
trated in Fig. 2, where we display the total temperature-
independent potential as well as its nonresonant and eva-
nescent parts for a ground-state LiH molecule in front of a
Au surface for various temperatures. It is seen that very
strong cancellations occur, especially at high temperatures.
Note that, while our theoretical arguments are based on the
perfect-conductor limit, all numerical examples use the
reflectivities of real metals.
We now turn to the case of atoms, whose electronic

wavelengths are short compared to typical experimental
separations: zAj!knj=c � 1. The exponential restricts the
sum in Eq. (4) to terms with j� & c=zA 	 j!knj, so the

FIG. 1 (color online). Sketch of the temperature dependence of
the CP potential for a typical molecule vs a typical atom.
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tions. These two contributions dominate in the region
zAj!knj=c 	 1 that we are interested in, while the spa-
tially oscillating U

pr
n becomes relevant only in the far-field

range zAj!knj=c � 1. The reflection coefficients of the
surface for s- and p-polarized waves are given by rsð!Þ ¼
ðb� b1Þ=ðbþ b1Þ and rpð!Þ ¼ ½"ð!Þb� b1�=½"ð!Þbþ
b1� with b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ½"ð!Þ � 1�!2=c2

p
, Reðb1Þ> 0.

For our analytical investigations, we will model the
metal surface by a perfect reflector with frequency-
independent reflection coefficients rs 
 �1 and rp 
 1.

This is well justified, as the plasma frequency is typically
much larger than the molecular transition frequency !kn,
and hence j"ð!Þj � 1 in the relevant frequency range. The
b integrals can then be performed to give
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The asymptotic temperature dependence of the potential
for a given distance zA is governed by two characteristic
temperatures: The molecular transition frequency defines a
spectroscopic temperature T! ¼ @j!knj=kB, which is
roughly the temperature required to noticeably populate
the upper level. Similarly, the distance introduces a geo-
metric temperature Tz ¼ @c=ðzAkBÞ, i.e., the temperature
of radiation whose wavelength is of the order zA.

We will now show that the total potential becomes
independent of temperature in both the geometric low-
temperature limit T 	 Tz and the spectroscopic high-
temperature limit T � T!. For a typical molecule with its
long-wavelength transitions, the potential is nonretarded
for typical molecule-surface distances, zAj!knj=c 	 1. As
depicted in Fig. 1 (i), this implies T! 	 Tz; hence, the two
regions of constant potential overlap and the potential is
constant for all temperatures. For an atom, on the contrary,
the transition wavelengths are much shorter, so that we
may have zAj!knj=c � 1. In this case, an intermediate
regime Tz 	 T 	 T! exists where the potential increases
linearly with temperature, cf. Fig. 1 (ii).

We begin with a typical molecule with zAj!knj=c 	 1.
In the geometric low-temperature limit T 	 Tz, we have
zA�=c 	 1; hence, the sum in Eq. (4) is densely spaced.
The factor 1=ð!2

kn þ j2�2Þ restricts it to values where

jzA�=c � zAj!knj=c 	 1. With this approximation, the
summation can be performed as
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noting that coth½@!kn=ð2kBTÞ� ¼ 2nð!knÞ þ 1. Adding
the evanescent contribution (5), we find the temperature-
independent total potential
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in agreement with the well-known nonretarded zero-
temperature result [1].
In the spectroscopic high-temperature limit T � T!, we

have �=j!knj � 1. Because of the denominator !2
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j2�2, the j ¼ 0 term strongly dominates the sum in
Eq. (4) and we find
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Under the condition T � T!, i.e., kBT � @j!knj, the eva-
nescent contribution (5) reduces to
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Adding the two results, the total potential is again tem-
perature independent and given by Eq. (8). This limit is just
the high-temperature saturation found in Refs. [7,13].
The thermal CP potential of a typical molecule with its

long-wavelength transitions has thus been found to be
temperature independent in the geometric low-temperature
and spectroscopic high-temperature regimes. Because of
the condition zAj!knj=c 	 1, at least one of the conditions
T 	 Tz or T � T! always holds, implying that the poten-
tial is constant for all temperatures and it agrees with its
zero-temperature value. The independence of the total
potential in both regimes is a result of cancellations be-
tween nonresonant and evanescent potential components,
which both strongly depend on temperature. This is illus-
trated in Fig. 2, where we display the total temperature-
independent potential as well as its nonresonant and eva-
nescent parts for a ground-state LiH molecule in front of a
Au surface for various temperatures. It is seen that very
strong cancellations occur, especially at high temperatures.
Note that, while our theoretical arguments are based on the
perfect-conductor limit, all numerical examples use the
reflectivities of real metals.
We now turn to the case of atoms, whose electronic

wavelengths are short compared to typical experimental
separations: zAj!knj=c � 1. The exponential restricts the
sum in Eq. (4) to terms with j� & c=zA 	 j!knj, so the

FIG. 1 (color online). Sketch of the temperature dependence of
the CP potential for a typical molecule vs a typical atom.
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tions. These two contributions dominate in the region
zAj!knj=c 	 1 that we are interested in, while the spa-
tially oscillating U

pr
n becomes relevant only in the far-field

range zAj!knj=c � 1. The reflection coefficients of the
surface for s- and p-polarized waves are given by rsð!Þ ¼
ðb� b1Þ=ðbþ b1Þ and rpð!Þ ¼ ½"ð!Þb� b1�=½"ð!Þbþ
b1� with b1 ¼
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b2 � ½"ð!Þ � 1�!2=c2

p
, Reðb1Þ> 0.

For our analytical investigations, we will model the
metal surface by a perfect reflector with frequency-
independent reflection coefficients rs 
 �1 and rp 
 1.

This is well justified, as the plasma frequency is typically
much larger than the molecular transition frequency !kn,
and hence j"ð!Þj � 1 in the relevant frequency range. The
b integrals can then be performed to give
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The asymptotic temperature dependence of the potential
for a given distance zA is governed by two characteristic
temperatures: The molecular transition frequency defines a
spectroscopic temperature T! ¼ @j!knj=kB, which is
roughly the temperature required to noticeably populate
the upper level. Similarly, the distance introduces a geo-
metric temperature Tz ¼ @c=ðzAkBÞ, i.e., the temperature
of radiation whose wavelength is of the order zA.

We will now show that the total potential becomes
independent of temperature in both the geometric low-
temperature limit T 	 Tz and the spectroscopic high-
temperature limit T � T!. For a typical molecule with its
long-wavelength transitions, the potential is nonretarded
for typical molecule-surface distances, zAj!knj=c 	 1. As
depicted in Fig. 1 (i), this implies T! 	 Tz; hence, the two
regions of constant potential overlap and the potential is
constant for all temperatures. For an atom, on the contrary,
the transition wavelengths are much shorter, so that we
may have zAj!knj=c � 1. In this case, an intermediate
regime Tz 	 T 	 T! exists where the potential increases
linearly with temperature, cf. Fig. 1 (ii).

We begin with a typical molecule with zAj!knj=c 	 1.
In the geometric low-temperature limit T 	 Tz, we have
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independent total potential
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in agreement with the well-known nonretarded zero-
temperature result [1].
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Adding the two results, the total potential is again tem-
perature independent and given by Eq. (8). This limit is just
the high-temperature saturation found in Refs. [7,13].
The thermal CP potential of a typical molecule with its

long-wavelength transitions has thus been found to be
temperature independent in the geometric low-temperature
and spectroscopic high-temperature regimes. Because of
the condition zAj!knj=c 	 1, at least one of the conditions
T 	 Tz or T � T! always holds, implying that the poten-
tial is constant for all temperatures and it agrees with its
zero-temperature value. The independence of the total
potential in both regimes is a result of cancellations be-
tween nonresonant and evanescent potential components,
which both strongly depend on temperature. This is illus-
trated in Fig. 2, where we display the total temperature-
independent potential as well as its nonresonant and eva-
nescent parts for a ground-state LiH molecule in front of a
Au surface for various temperatures. It is seen that very
strong cancellations occur, especially at high temperatures.
Note that, while our theoretical arguments are based on the
perfect-conductor limit, all numerical examples use the
reflectivities of real metals.
We now turn to the case of atoms, whose electronic
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term j2�2 in the denominator may be neglected. The sum
can then be performed according to
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in agreement with the famous zero-temperature result of
Casimir and Polder [1]. Moreover, the condition
zAj!knj=c � 1 implies that T 	 Tz 	 T!: The geomet-
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in the geometric low-temperature regime.
For intermediate temperatures Tz 	 T 	 T!, we have

zA�=c � 1, so using a � 1 in the sum (11), the nonreso-
nant potential (4) is found to read as in Eq. (9). The
evanescent contribution is still given by Eq. (13), so the
total potential varies linearly with temperature,
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In the spectroscopic high-temperature limit T � T!, the
evanescent contribution is given by Eq. (10) as already
shown. It cancels with the nonresonant contribution, still
agreeing with Eq. (9), to give a saturated potential of the
form (8). However, with, e.g., T! 
 18:000 K for Rb, this

saturation is unobservable. Moreover, as the electronic
transition frequencies can be comparable to the plasma
frequency of the metal, the assumptions rs 
 �1 and rp 

1 do not hold. As a consequence, the cancellations required
to achieve saturation do not occur for atoms near realistic
metal surfaces.
We have thus seen that for an atom with zAj!knj=c � 1,

separate geometric low-temperature and spectroscopic
high-temperature regimes exist, with the potential exhibit-
ing a linear temperature dependence between these two
regions. The difference between the thermal CP potentials
of typical atoms vs molecules is illustrated in Fig. 3, where
we show the temperature dependence of the potential at
fixed distance from a Au surface for different species. The
potentials associated with the long-wavelength, rotational
transitions of LiH and OH are virtually temperature inde-
pendent, while the short-wavelength electronic transition
of Rb shows a linear increase over a large range of tem-
peratures. YbF, with its dominant vibrational transition,
lies in between the two extremes of typical long-
wavelength molecular and short-wavelength atomic tran-
sitions; its potential increases by about 30% in the dis-
played temperature range. In contrast to the other
examples, the potential of YbF noticeably deviates from
the corresponding ideal conductor result due to imperfect
reflection. Note that contributions to the molecular CP
potentials due to electronic transitions are smaller than
the rotational and vibrational ones (8) by factors
c=ðzA!knÞ 	 1 (14) or kBT=ð@!knÞ 	 1 (15) within the
displayed temperature range and are hence negligible.
Molecule at thermal equilibrium.—The proven tempera-

ture independence immediately generalizes to molecules in
incoherent superpositions of energy eigenstates with
temperature-independent probabilities pn � pnðTÞ and to-
tal potential UðzAÞ ¼ P

npnUnðzAÞ. The situation is differ-
ent for a molecule at thermal equilibrium with its
environment because the respective probabilities pnðTÞ ¼
exp½�En=ðkBTÞ�=

P
k exp½�Ek=ðkBTÞ� do depend on T. At

thermal equilibrium, all resonant potential components

FIG. 2 (color online). CP potential of a ground-state LiH
molecule in front of a Au surface. We show the total potential
(solid line) as well as its evanescent (dashed line) and non-
resonant (dotted line) contributions for temperatures 10 K, 50 K,
100 K, 200 K, 300 K (left to right).

FIG. 3 (color online). Temperature dependence of the CP
potential of various ground-state atoms and molecules at dis-
tance zA ¼ 5 �m from a Au surface. The transition frequencies
of these species are such that zA!kn=c ¼ 0:046 (LiH), 0.26
(OH), 1.59 (YbF), 40.2 (Rb). For comparison, the perfect-
conductor result for YbF is also shown (dotted line).
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term j2�2 in the denominator may be neglected. The sum
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in agreement with the famous zero-temperature result of
Casimir and Polder [1]. Moreover, the condition
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in the geometric low-temperature regime.
For intermediate temperatures Tz 	 T 	 T!, we have

zA�=c � 1, so using a � 1 in the sum (11), the nonreso-
nant potential (4) is found to read as in Eq. (9). The
evanescent contribution is still given by Eq. (13), so the
total potential varies linearly with temperature,
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In the spectroscopic high-temperature limit T � T!, the
evanescent contribution is given by Eq. (10) as already
shown. It cancels with the nonresonant contribution, still
agreeing with Eq. (9), to give a saturated potential of the
form (8). However, with, e.g., T! 
 18:000 K for Rb, this

saturation is unobservable. Moreover, as the electronic
transition frequencies can be comparable to the plasma
frequency of the metal, the assumptions rs 
 �1 and rp 

1 do not hold. As a consequence, the cancellations required
to achieve saturation do not occur for atoms near realistic
metal surfaces.
We have thus seen that for an atom with zAj!knj=c � 1,

separate geometric low-temperature and spectroscopic
high-temperature regimes exist, with the potential exhibit-
ing a linear temperature dependence between these two
regions. The difference between the thermal CP potentials
of typical atoms vs molecules is illustrated in Fig. 3, where
we show the temperature dependence of the potential at
fixed distance from a Au surface for different species. The
potentials associated with the long-wavelength, rotational
transitions of LiH and OH are virtually temperature inde-
pendent, while the short-wavelength electronic transition
of Rb shows a linear increase over a large range of tem-
peratures. YbF, with its dominant vibrational transition,
lies in between the two extremes of typical long-
wavelength molecular and short-wavelength atomic tran-
sitions; its potential increases by about 30% in the dis-
played temperature range. In contrast to the other
examples, the potential of YbF noticeably deviates from
the corresponding ideal conductor result due to imperfect
reflection. Note that contributions to the molecular CP
potentials due to electronic transitions are smaller than
the rotational and vibrational ones (8) by factors
c=ðzA!knÞ 	 1 (14) or kBT=ð@!knÞ 	 1 (15) within the
displayed temperature range and are hence negligible.
Molecule at thermal equilibrium.—The proven tempera-

ture independence immediately generalizes to molecules in
incoherent superpositions of energy eigenstates with
temperature-independent probabilities pn � pnðTÞ and to-
tal potential UðzAÞ ¼ P

npnUnðzAÞ. The situation is differ-
ent for a molecule at thermal equilibrium with its
environment because the respective probabilities pnðTÞ ¼
exp½�En=ðkBTÞ�=

P
k exp½�Ek=ðkBTÞ� do depend on T. At

thermal equilibrium, all resonant potential components

FIG. 2 (color online). CP potential of a ground-state LiH
molecule in front of a Au surface. We show the total potential
(solid line) as well as its evanescent (dashed line) and non-
resonant (dotted line) contributions for temperatures 10 K, 50 K,
100 K, 200 K, 300 K (left to right).

FIG. 3 (color online). Temperature dependence of the CP
potential of various ground-state atoms and molecules at dis-
tance zA ¼ 5 �m from a Au surface. The transition frequencies
of these species are such that zA!kn=c ¼ 0:046 (LiH), 0.26
(OH), 1.59 (YbF), 40.2 (Rb). For comparison, the perfect-
conductor result for YbF is also shown (dotted line).
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in agreement with the famous zero-temperature result of
Casimir and Polder [1]. Moreover, the condition
zAj!knj=c � 1 implies that T 	 Tz 	 T!: The geomet-
ric low-temperature regime is also a spectroscopic one, and
hence the evanescent potential reduces to
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in the geometric low-temperature regime.
For intermediate temperatures Tz 	 T 	 T!, we have

zA�=c � 1, so using a � 1 in the sum (11), the nonreso-
nant potential (4) is found to read as in Eq. (9). The
evanescent contribution is still given by Eq. (13), so the
total potential varies linearly with temperature,
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In the spectroscopic high-temperature limit T � T!, the
evanescent contribution is given by Eq. (10) as already
shown. It cancels with the nonresonant contribution, still
agreeing with Eq. (9), to give a saturated potential of the
form (8). However, with, e.g., T! 
 18:000 K for Rb, this

saturation is unobservable. Moreover, as the electronic
transition frequencies can be comparable to the plasma
frequency of the metal, the assumptions rs 
 �1 and rp 

1 do not hold. As a consequence, the cancellations required
to achieve saturation do not occur for atoms near realistic
metal surfaces.
We have thus seen that for an atom with zAj!knj=c � 1,

separate geometric low-temperature and spectroscopic
high-temperature regimes exist, with the potential exhibit-
ing a linear temperature dependence between these two
regions. The difference between the thermal CP potentials
of typical atoms vs molecules is illustrated in Fig. 3, where
we show the temperature dependence of the potential at
fixed distance from a Au surface for different species. The
potentials associated with the long-wavelength, rotational
transitions of LiH and OH are virtually temperature inde-
pendent, while the short-wavelength electronic transition
of Rb shows a linear increase over a large range of tem-
peratures. YbF, with its dominant vibrational transition,
lies in between the two extremes of typical long-
wavelength molecular and short-wavelength atomic tran-
sitions; its potential increases by about 30% in the dis-
played temperature range. In contrast to the other
examples, the potential of YbF noticeably deviates from
the corresponding ideal conductor result due to imperfect
reflection. Note that contributions to the molecular CP
potentials due to electronic transitions are smaller than
the rotational and vibrational ones (8) by factors
c=ðzA!knÞ 	 1 (14) or kBT=ð@!knÞ 	 1 (15) within the
displayed temperature range and are hence negligible.
Molecule at thermal equilibrium.—The proven tempera-

ture independence immediately generalizes to molecules in
incoherent superpositions of energy eigenstates with
temperature-independent probabilities pn � pnðTÞ and to-
tal potential UðzAÞ ¼ P

npnUnðzAÞ. The situation is differ-
ent for a molecule at thermal equilibrium with its
environment because the respective probabilities pnðTÞ ¼
exp½�En=ðkBTÞ�=

P
k exp½�Ek=ðkBTÞ� do depend on T. At

thermal equilibrium, all resonant potential components

FIG. 2 (color online). CP potential of a ground-state LiH
molecule in front of a Au surface. We show the total potential
(solid line) as well as its evanescent (dashed line) and non-
resonant (dotted line) contributions for temperatures 10 K, 50 K,
100 K, 200 K, 300 K (left to right).

FIG. 3 (color online). Temperature dependence of the CP
potential of various ground-state atoms and molecules at dis-
tance zA ¼ 5 �m from a Au surface. The transition frequencies
of these species are such that zA!kn=c ¼ 0:046 (LiH), 0.26
(OH), 1.59 (YbF), 40.2 (Rb). For comparison, the perfect-
conductor result for YbF is also shown (dotted line).
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in agreement with the famous zero-temperature result of
Casimir and Polder [1]. Moreover, the condition
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in the geometric low-temperature regime.
For intermediate temperatures Tz 	 T 	 T!, we have

zA�=c � 1, so using a � 1 in the sum (11), the nonreso-
nant potential (4) is found to read as in Eq. (9). The
evanescent contribution is still given by Eq. (13), so the
total potential varies linearly with temperature,
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In the spectroscopic high-temperature limit T � T!, the
evanescent contribution is given by Eq. (10) as already
shown. It cancels with the nonresonant contribution, still
agreeing with Eq. (9), to give a saturated potential of the
form (8). However, with, e.g., T! 
 18:000 K for Rb, this

saturation is unobservable. Moreover, as the electronic
transition frequencies can be comparable to the plasma
frequency of the metal, the assumptions rs 
 �1 and rp 

1 do not hold. As a consequence, the cancellations required
to achieve saturation do not occur for atoms near realistic
metal surfaces.
We have thus seen that for an atom with zAj!knj=c � 1,

separate geometric low-temperature and spectroscopic
high-temperature regimes exist, with the potential exhibit-
ing a linear temperature dependence between these two
regions. The difference between the thermal CP potentials
of typical atoms vs molecules is illustrated in Fig. 3, where
we show the temperature dependence of the potential at
fixed distance from a Au surface for different species. The
potentials associated with the long-wavelength, rotational
transitions of LiH and OH are virtually temperature inde-
pendent, while the short-wavelength electronic transition
of Rb shows a linear increase over a large range of tem-
peratures. YbF, with its dominant vibrational transition,
lies in between the two extremes of typical long-
wavelength molecular and short-wavelength atomic tran-
sitions; its potential increases by about 30% in the dis-
played temperature range. In contrast to the other
examples, the potential of YbF noticeably deviates from
the corresponding ideal conductor result due to imperfect
reflection. Note that contributions to the molecular CP
potentials due to electronic transitions are smaller than
the rotational and vibrational ones (8) by factors
c=ðzA!knÞ 	 1 (14) or kBT=ð@!knÞ 	 1 (15) within the
displayed temperature range and are hence negligible.
Molecule at thermal equilibrium.—The proven tempera-

ture independence immediately generalizes to molecules in
incoherent superpositions of energy eigenstates with
temperature-independent probabilities pn � pnðTÞ and to-
tal potential UðzAÞ ¼ P

npnUnðzAÞ. The situation is differ-
ent for a molecule at thermal equilibrium with its
environment because the respective probabilities pnðTÞ ¼
exp½�En=ðkBTÞ�=

P
k exp½�Ek=ðkBTÞ� do depend on T. At

thermal equilibrium, all resonant potential components

FIG. 2 (color online). CP potential of a ground-state LiH
molecule in front of a Au surface. We show the total potential
(solid line) as well as its evanescent (dashed line) and non-
resonant (dotted line) contributions for temperatures 10 K, 50 K,
100 K, 200 K, 300 K (left to right).

FIG. 3 (color online). Temperature dependence of the CP
potential of various ground-state atoms and molecules at dis-
tance zA ¼ 5 �m from a Au surface. The transition frequencies
of these species are such that zA!kn=c ¼ 0:046 (LiH), 0.26
(OH), 1.59 (YbF), 40.2 (Rb). For comparison, the perfect-
conductor result for YbF is also shown (dotted line).
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cancel pairwise [8]. Introducing potential components Unk

due to a particular transition n $ k (such that Un ¼P
kUnk) and the associated statistical weights pnk ¼ pn þ

pk, and exploiting the fact that Ukn ¼ �Unk, we can write
the total potential in the form

UðzAÞ¼
X
n<k

ðpn�pkÞUnr
nkðzAÞ

¼X
n<k

pnk tanh

�
@!kn

2kBT

�
Unr

nkðzAÞ: (16)

The behavior of this potential in the two limits relevant
for a molecule with zAj!knj=c 	 1 follows immediately
from the asymptotes given in the previous section. For
T 	 Tz, U

nr
nk from Eq. (7) leads to

UðzAÞ ¼T	Tz � 1

48�"0z
3
A

X
n<k

pnkjdnkj2; (17)

where nð!knÞ þ 1=2 ¼ coth½@!kn=ð2kBTÞ�=2 has been
used once more. For T � T!, we recall U

nr
nk from Eq. (9)

and note that tanh½@!kn=ð2kBTÞ� 
 @!kn=ð2kBTÞ to again
find the potential (17).

Combining the two results, we may use the main argu-
ment of the previous section to conclude that the potential
components Unk associated with a particular transition
n $ k are independent of temperature for all temperatures.
The independence is a result of cancellations between the
purely nonresonant contributions from lower state n and
upper state k. Note, however, that the statistical weights
pnk introduce a weak temperature dependence, in general:
The total potential is only strictly temperature independent
when dominated by a single transition. For instance, when
accounting for the presence of the first vibrational transi-
tion in LiH (labeled as 2), the weight p01 for the dominant
rotational transition varies from its zero-temperature value

unity to p01ðTÞ ¼ ð1þ e�@!10=kBTÞ=ð1þ e�@!10=kBT þ
e�@!20=kBTÞ ¼ 0:9994 at room temperature.

Relevance to Casimir forces.—To illustrate the rele-
vance of the demonstrated temperature independence to
the Casimir force, let us consider an infinite dielectric half-
space filled with molecules of number density � at a
distance z from a metal plane. For a weakly dielectric
medium, the Casimir energy per unit area is given by
EðzÞ ¼ R1

z dzA�UðzAÞ [14]. Using Eq. (17), we find that

EðzÞ ¼ �

96�"0z
2

X
n<k

pnkjdnkj2; (18)

which is temperature independent under the conditions
mentioned above. Note that Lifshitz’s expression only
agrees with this statement if the correct thermal permittiv-
ity is used [8]. If the ground-state permittivity is used, one
describes a system out of equilibrium, and the Lifshitz
formula does not apply.

For dielectrics with a stronger response (such that "�
1 	 1 does not hold), many-body effects will lead to

temperature-dependent corrections of higher order in the
molecular polarizability. They are suppressed in the spec-
troscopic high-temperature limit T � T!, since they are of
higher order in tanh½@!kn=ð2kBTÞ� 	 1. Our results hence
remain valid in this latter limit even for moderately strong
dielectrics. On the contrary, they do not immediately gen-
eralize to the force between two metals.
Summary.—The temperature independence encountered

for molecules with long-wavelength transitions shows that
CP forces on such systems cannot be altered via the
ambient temperature. Instead, the original zero-
temperature results of Casimir and Polder apply univer-
sally across the whole temperature range. It is worth em-
phasizing that a ‘‘classical’’ regime of linear temperature
dependence is never reached. Our results further indicate
that when accounting for the thermal excitation of the
media, the temperature dependence of Casimir forces in-
volving dielectrics may be weaker than previously thought.
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The behavior of this potential in the two limits relevant
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from the asymptotes given in the previous section. For
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upper state k. Note, however, that the statistical weights
pnk introduce a weak temperature dependence, in general:
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tion in LiH (labeled as 2), the weight p01 for the dominant
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mentioned above. Note that Lifshitz’s expression only
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describes a system out of equilibrium, and the Lifshitz
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molecular polarizability. They are suppressed in the spec-
troscopic high-temperature limit T � T!, since they are of
higher order in tanh½@!kn=ð2kBTÞ� 	 1. Our results hence
remain valid in this latter limit even for moderately strong
dielectrics. On the contrary, they do not immediately gen-
eralize to the force between two metals.
Summary.—The temperature independence encountered

for molecules with long-wavelength transitions shows that
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Rydberg atoms—atoms excited to large principal quantum
numbers n—have attracted much attention in recent decades
[1,2]. Aside from the inherent interest of studying such extreme
states, the exaggerated properties of these highly excited atoms
make them ideal for examining the properties of a variety of
systems that would be awkward to probe by other means.
The large cross sections and weakly bound outer electrons
associated with Rydberg atoms make them extremely sensitive
to small-scale perturbations and dispersion potentials, such as
the van der Waals (vdW) and Casimir–Polder (CP) potentials
[3].

For example, the strong scaling of the free-space vdW
potential between two Rydberg atoms with n (∝ n11) leads
to the Rydberg blockade mechanism which has been put
forward as a candidate for implementing controlled gate
operations between isolated atoms [4,5]. The effect relies on
the massive level shift that one Rydberg atom experiences in
close proximity to another.

Level shifts of similar origin arise if the atoms are brought
into the vicinity of a macroscopic body. With the increasing
ability to trap and manipulate atoms close to macroscopic
bodies, the effects of these surface (CP) potentials have become
a subject of great interest. Applications range from novel
atom trapping methods [6] to atom chip physics [7]. Thus,
it is of both fundamental and practical interest to understand
the interplay between atoms in highly excited states and field
fluctuations emanating from macroscopic bodies.

In this Rapid Communication we provide evidence that
dispersion forces have a sizable effect on the energy levels of
highly excited Rydberg atoms when brought close to metallic
surfaces, with shifts on the order of several GHz expected
at micrometer distances. Due to the large atom size, next-to-
leading order terms in the multipole expansion of the radiation
field give additional contributions in the MHz range. Despite
the existence of large numbers of thermal photons at 300 K at
the relevant atomic transition frequencies, the level shifts are
in fact temperature independent [8].

For a given atom-field coupling Ĥint, the CP potential for
an atom in state |n〉 and the radiation field in state |q〉 is given

*jac00@imperial.ac.uk

by the position-dependent part of the energy shift which, to
second order in perturbation theory, reads

δEn = 〈n,q|Ĥint|n,q〉 +
∑

n′,q ′ �=n,q

|〈n,q|Ĥint|n′,q ′〉|2
En+q − En′+q ′

, (1)

where En+q are the unperturbed energy eigenvalues
of the atom-field system. In the long-wavelength approxima-
tion, the electric field couples to the atomic dipole moment d̂
via the interaction Hamiltonian,

Ĥint = −d̂ · Ê(rA), (2)

with the electric field given in terms of the classical Green
tensor (for a recent review see, e.g., [9]),

Ê(r) =
∑

λ=e,m

∫
d3r ′

∫
dω Gλ(r,r′,ω) · f̂λ(r′,ω) + h.c., (3)

with

Ge(r,r′,ω) = i
ω2

c2

√
h̄

πε0
Imε(r′,ω)G(r,r′,ω), (4)

Gm(r,r′,ω) = −i
ω

c

√
h̄

πε0

Imμ(r′,ω)

|μ(r′,ω)|2 [G(r,r′,ω) × ←−∇ ′
]. (5)

The Green tensor G(r,r′,ω) solves the Helmholtz equation
for a point source and contains all the information about the
geometry of the system. The bosonic vector fields f̂λ(r,ω)
describe collective excitations of the electromagnetic field and
the linearly absorbing dielectric matter.

The CP potential at temperature T acting on an atom in
state |n〉 via a dipole interaction (2) is given by [10]

U
dip
CP (rA)

= μ0kBT

∞∑
j=0

′ξ 2
j

[
α(iξj ) • G(1)(rA,rA,iξj )

]
+μ0

∑
k �=n

ω2
knn(ωkn)(dnk ⊗ dkn) • ReG(1)(rA,rA,ωkn),

(6)

where • denotes the Frobenius inner product (A • B =∑
i1...ik

Ai1...ikBi1...ik ) and the primed summation means that
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temperature are discussed. As an example, the CP potential and transition rates of a rubidium atom above a
copper surface at 300 K are computed. Close to the surface we show that the quadrupole correction to the force
is significant and increases with increasing principal quantum number n. For both the CP potential and decay
rates one finds that the dominant contribution comes from the longest wavelength transition and the potential
is independent of temperature. We provide explicit scaling laws for potential and decay rates as functions of
atom-surface distance and principal quantum number of the initial Rydberg state.
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Rydberg atoms—atoms excited to large principal quantum
numbers n—have attracted much attention in recent decades
[1,2]. Aside from the inherent interest of studying such extreme
states, the exaggerated properties of these highly excited atoms
make them ideal for examining the properties of a variety of
systems that would be awkward to probe by other means.
The large cross sections and weakly bound outer electrons
associated with Rydberg atoms make them extremely sensitive
to small-scale perturbations and dispersion potentials, such as
the van der Waals (vdW) and Casimir–Polder (CP) potentials
[3].

For example, the strong scaling of the free-space vdW
potential between two Rydberg atoms with n (∝ n11) leads
to the Rydberg blockade mechanism which has been put
forward as a candidate for implementing controlled gate
operations between isolated atoms [4,5]. The effect relies on
the massive level shift that one Rydberg atom experiences in
close proximity to another.

Level shifts of similar origin arise if the atoms are brought
into the vicinity of a macroscopic body. With the increasing
ability to trap and manipulate atoms close to macroscopic
bodies, the effects of these surface (CP) potentials have become
a subject of great interest. Applications range from novel
atom trapping methods [6] to atom chip physics [7]. Thus,
it is of both fundamental and practical interest to understand
the interplay between atoms in highly excited states and field
fluctuations emanating from macroscopic bodies.

In this Rapid Communication we provide evidence that
dispersion forces have a sizable effect on the energy levels of
highly excited Rydberg atoms when brought close to metallic
surfaces, with shifts on the order of several GHz expected
at micrometer distances. Due to the large atom size, next-to-
leading order terms in the multipole expansion of the radiation
field give additional contributions in the MHz range. Despite
the existence of large numbers of thermal photons at 300 K at
the relevant atomic transition frequencies, the level shifts are
in fact temperature independent [8].

For a given atom-field coupling Ĥint, the CP potential for
an atom in state |n〉 and the radiation field in state |q〉 is given
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by the position-dependent part of the energy shift which, to
second order in perturbation theory, reads

δEn = 〈n,q|Ĥint|n,q〉 +
∑

n′,q ′ �=n,q

|〈n,q|Ĥint|n′,q ′〉|2
En+q − En′+q ′

, (1)

where En+q are the unperturbed energy eigenvalues
of the atom-field system. In the long-wavelength approxima-
tion, the electric field couples to the atomic dipole moment d̂
via the interaction Hamiltonian,

Ĥint = −d̂ · Ê(rA), (2)

with the electric field given in terms of the classical Green
tensor (for a recent review see, e.g., [9]),

Ê(r) =
∑

λ=e,m

∫
d3r ′

∫
dω Gλ(r,r′,ω) · f̂λ(r′,ω) + h.c., (3)

with

Ge(r,r′,ω) = i
ω2

c2

√
h̄

πε0
Imε(r′,ω)G(r,r′,ω), (4)

Gm(r,r′,ω) = −i
ω

c

√
h̄

πε0

Imμ(r′,ω)

|μ(r′,ω)|2 [G(r,r′,ω) × ←−∇ ′
]. (5)

The Green tensor G(r,r′,ω) solves the Helmholtz equation
for a point source and contains all the information about the
geometry of the system. The bosonic vector fields f̂λ(r,ω)
describe collective excitations of the electromagnetic field and
the linearly absorbing dielectric matter.

The CP potential at temperature T acting on an atom in
state |n〉 via a dipole interaction (2) is given by [10]

U
dip
CP (rA)

= μ0kBT

∞∑
j=0

′ξ 2
j

[
α(iξj ) • G(1)(rA,rA,iξj )

]
+μ0

∑
k �=n

ω2
knn(ωkn)(dnk ⊗ dkn) • ReG(1)(rA,rA,ωkn),

(6)

where • denotes the Frobenius inner product (A • B =∑
i1...ik

Ai1...ikBi1...ik ) and the primed summation means that
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the term with j = 0 contributes only with half-weight. Here
G(1)(rA,rA,ω) is the scattering part of the Green tensor. The
atomic polarizability is defined as

α(ω) =
⎡
⎣1

h̄

∑
k �=n

dnk ⊗ dkn

(ωkn + ω)
+ dnk ⊗ dkn

(ωkn − ω)

⎤
⎦ , (7)

with ωkn = (Ek − En)/h̄ denoting the atomic transition fre-
quencies. The frequencies ξj = 2πkBTj/h̄, j ∈ N are the
Matsubara frequencies and n(ω) = [eh̄ω/kBT − 1]−1 is the
thermal photon number distribution.

The reflective part of the scattering Green tensor of an
infinitely extended planar metal that fills the lower half-space
z < 0 is given by [11]

G(1)(r,r′,ω) =
∫

d2k‖
(2π )2

R(k‖,z,z′,ω)eik‖·(r‖−r′
‖), (8)

with r‖ = (x,y,0), k‖ = (kx,ky,0), and k‖ = |k‖|. The reflec-
tion tensor R(k‖,z,z′,ω) has the form,

R(k‖,z,z′,ω) = −i

8π2β+

∑
σ=s,p

rσ eiβ+(z+z′)e+
σ ⊗ e−

σ . (9)

Here, the unit vectors for s-polarized and p-polarized waves
are e±

s = ek‖ × ez and e±
p = (k‖ez ∓ β+ek‖)/q. The func-

tions rs = [ε(ω)β+ − β−]/[ε(ω)β+ + β−] and rp = [β+ −
β−]/[β+ + β−] are the usual Fresnel reflection coefficients
for those waves with wave numbers β− = √q2ε(ω) − k2‖
and β+ = √q2 − k2‖ , and q = ω/c. The permittivity of the
metal surface is modeled by the Drude relation, ε(ω) =
1 − ωp/ω(ω + iγ ), where ωp and γ are the plasma frequency
and the relaxation rate of the metal, respectively. Magnetic
effects will be neglected.

Matrix elements of the dipole operator d̂ = er̂ = er̂er for
the transition between two electronic states |n,l,j,m〉 (n,
principal quantum number; l,j ,m, quantum numbers for orbital
and total angular momentum and z component of the latter) and
|n′,l′,j ′,m′〉 factor into a radial and an angular part according
to

〈n′,l′,j,m′|d̂|n,l,j,m〉 = e〈Rn′,l′,j ′ |r̂|Rn,l,j 〉〈l′j ′m′|er |ljm〉,
(10)

where |Rn,l,j 〉 are the radial wave functions. The radial
matrix elements are computed numerically using the Numerov
method [12,13] in which the suitably scaled radial Schrödinger
equation is integrated inward until an inner cutoff point
(commonly the radius of the rump ion). The eigenenergies are
computed as En,l,j = −R/n∗2 (R is the Rydberg constant)
where n∗ = n − δn,l,j is the effective quantum number and
δn,l,j the quantum defect [14] whose values are tabulated in
the literature [15].

To evaluate the angular part, we first convert from the jm

basis to a mlms basis (ml , ms are the z components of orbital
angular momentum and spin) by summing over the relevant
Clebsch-Gordan coefficients,

〈l′j ′m′|er |ljm〉=
∑
mlm

′
l

ms

Cj,l,1/2
m,ml,ms

C
j ′,l′,1/2
m′,m′

l ,ms
〈Yl′,m′

l
|er |Yl,ml

〉, (11)

with the orbital-angular momentum eigenstates |Yl,ml
〉 being

spherical harmonics. Matrix elements in the mlms basis are
computed by rewriting the radial unit vector in terms of
spherical harmonics [Ylm ≡ Ylm(ϑ,ϕ)],

er =
√

2π

3

⎛
⎜⎝

Y1,−1 − Y1,1

i(Y1,−1 + Y1,1)√
2Y1,0

⎞
⎟⎠ , (12)

and using the integral relation [d� ≡ sin ϑ dϑ dϕ],∫
d�Yl1,m1Yl2,m2Yl3,m3

=
√√√√ 1

4π

3∏
ν=1

(2lν + 1)

(
l1 l2 l3

0 0 0

)(
l1 l2 l3

ml1 ml2 ml3

)

(13)

that expresses the angular integral over three spherical har-
monics in terms of Wigner 3j symbols.

When Rydberg atoms are held sufficiently close to a surface,
their effective radius 〈r〉 � a0n

2 (a0 is the Bohr radius) can be
on the order of micrometers and therefore a significant fraction
of the surface distance. The dipole approximation is then no
longer appropriate. In other words, the atom cannot be viewed
as a point-like particle, and its non-negligible size requires the
inclusion of contributions from higher-order multipoles. This
correction can be found via a similar method as described
previously, with the dipole interaction Hamiltonian replaced
by the quadrupole interaction Hamiltonian [16],

Ĥint = −Q̂ • [∇ ⊗ Ê(rA)]. (14)

In close analogy to the dipole case the CP potential for a
quadrupole interaction is found to be

U
quad
CP (rA) = μ0kBT

∞∑
j=0

′ξ 2
j α(4)(iξj )

• [∇ ⊗ G(rA,rA,iξj ) ⊗ ←−∇ ] + μ0

∑
k �=n

ω2
knn(ωkn)

× (Qnk ⊗ Qkn) • [∇ ⊗ ReG(rA,rA,ωkn) ⊗ ←−∇ ],

(15)

with the quadrupole moment operator Q̂ = e(r̂ ⊗ r̂)/2 and the
atomic quadrupole polarizability defined as

α(4)(ω) = 1

h̄

∑
k �=n

[
Qnk ⊗ Qkn

(ωkn + ω)
+ Qnk ⊗ Qkn

(ωkn − ω)

]
. (16)

The matrix elements for the quadrupole transitions can again
be evaluated by factoring Q̂ = (e/2)r̂2er ⊗ er and computing
the matrix elements between the radial and angular parts of
the wave functions separately. Evaluation of the radial integral
is again performed numerically. The tensor product of unit
vectors in spherical harmonic form reads er ⊗ er =

√
2π
15 A

with

Axx
yy

= ±Y2,−2 ± Y2,2 −
√

2

3
Y2,0 +

√
10

3
Y0,0, (17a)

Axy = Ayx = i(Y2,−2 − Y2,2), (17b)
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computed as En,l,j = −R/n∗2 (R is the Rydberg constant)
where n∗ = n − δn,l,j is the effective quantum number and
δn,l,j the quantum defect [14] whose values are tabulated in
the literature [15].

To evaluate the angular part, we first convert from the jm

basis to a mlms basis (ml , ms are the z components of orbital
angular momentum and spin) by summing over the relevant
Clebsch-Gordan coefficients,

〈l′j ′m′|er |ljm〉=
∑
mlm

′
l

ms

Cj,l,1/2
m,ml,ms

C
j ′,l′,1/2
m′,m′

l ,ms
〈Yl′,m′

l
|er |Yl,ml

〉, (11)

with the orbital-angular momentum eigenstates |Yl,ml
〉 being

spherical harmonics. Matrix elements in the mlms basis are
computed by rewriting the radial unit vector in terms of
spherical harmonics [Ylm ≡ Ylm(ϑ,ϕ)],

er =
√

2π

3

⎛
⎜⎝

Y1,−1 − Y1,1

i(Y1,−1 + Y1,1)√
2Y1,0

⎞
⎟⎠ , (12)

and using the integral relation [d� ≡ sin ϑ dϑ dϕ],∫
d�Yl1,m1Yl2,m2Yl3,m3

=
√√√√ 1

4π

3∏
ν=1

(2lν + 1)

(
l1 l2 l3

0 0 0

)(
l1 l2 l3

ml1 ml2 ml3

)

(13)

that expresses the angular integral over three spherical har-
monics in terms of Wigner 3j symbols.

When Rydberg atoms are held sufficiently close to a surface,
their effective radius 〈r〉 � a0n

2 (a0 is the Bohr radius) can be
on the order of micrometers and therefore a significant fraction
of the surface distance. The dipole approximation is then no
longer appropriate. In other words, the atom cannot be viewed
as a point-like particle, and its non-negligible size requires the
inclusion of contributions from higher-order multipoles. This
correction can be found via a similar method as described
previously, with the dipole interaction Hamiltonian replaced
by the quadrupole interaction Hamiltonian [16],

Ĥint = −Q̂ • [∇ ⊗ Ê(rA)]. (14)

In close analogy to the dipole case the CP potential for a
quadrupole interaction is found to be

U
quad
CP (rA) = μ0kBT

∞∑
j=0

′ξ 2
j α(4)(iξj )

• [∇ ⊗ G(rA,rA,iξj ) ⊗ ←−∇ ] + μ0

∑
k �=n

ω2
knn(ωkn)

× (Qnk ⊗ Qkn) • [∇ ⊗ ReG(rA,rA,ωkn) ⊗ ←−∇ ],

(15)

with the quadrupole moment operator Q̂ = e(r̂ ⊗ r̂)/2 and the
atomic quadrupole polarizability defined as

α(4)(ω) = 1

h̄

∑
k �=n

[
Qnk ⊗ Qkn

(ωkn + ω)
+ Qnk ⊗ Qkn

(ωkn − ω)

]
. (16)

The matrix elements for the quadrupole transitions can again
be evaluated by factoring Q̂ = (e/2)r̂2er ⊗ er and computing
the matrix elements between the radial and angular parts of
the wave functions separately. Evaluation of the radial integral
is again performed numerically. The tensor product of unit
vectors in spherical harmonic form reads er ⊗ er =

√
2π
15 A

with

Axx
yy

= ±Y2,−2 ± Y2,2 −
√

2

3
Y2,0 +

√
10

3
Y0,0, (17a)

Axy = Ayx = i(Y2,−2 − Y2,2), (17b)
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(ωkn − ω)

⎤
⎦ , (7)
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σ ⊗ e−

σ . (9)
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(10)

where |Rn,l,j 〉 are the radial wave functions. The radial
matrix elements are computed numerically using the Numerov
method [12,13] in which the suitably scaled radial Schrödinger
equation is integrated inward until an inner cutoff point
(commonly the radius of the rump ion). The eigenenergies are
computed as En,l,j = −R/n∗2 (R is the Rydberg constant)
where n∗ = n − δn,l,j is the effective quantum number and
δn,l,j the quantum defect [14] whose values are tabulated in
the literature [15].

To evaluate the angular part, we first convert from the jm

basis to a mlms basis (ml , ms are the z components of orbital
angular momentum and spin) by summing over the relevant
Clebsch-Gordan coefficients,
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with the orbital-angular momentum eigenstates |Yl,ml
〉 being

spherical harmonics. Matrix elements in the mlms basis are
computed by rewriting the radial unit vector in terms of
spherical harmonics [Ylm ≡ Ylm(ϑ,ϕ)],
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that expresses the angular integral over three spherical har-
monics in terms of Wigner 3j symbols.

When Rydberg atoms are held sufficiently close to a surface,
their effective radius 〈r〉 � a0n

2 (a0 is the Bohr radius) can be
on the order of micrometers and therefore a significant fraction
of the surface distance. The dipole approximation is then no
longer appropriate. In other words, the atom cannot be viewed
as a point-like particle, and its non-negligible size requires the
inclusion of contributions from higher-order multipoles. This
correction can be found via a similar method as described
previously, with the dipole interaction Hamiltonian replaced
by the quadrupole interaction Hamiltonian [16],

Ĥint = −Q̂ • [∇ ⊗ Ê(rA)]. (14)

In close analogy to the dipole case the CP potential for a
quadrupole interaction is found to be

U
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CP (rA) = μ0kBT

∞∑
j=0

′ξ 2
j α(4)(iξj )

• [∇ ⊗ G(rA,rA,iξj ) ⊗ ←−∇ ] + μ0

∑
k �=n

ω2
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× (Qnk ⊗ Qkn) • [∇ ⊗ ReG(rA,rA,ωkn) ⊗ ←−∇ ],

(15)

with the quadrupole moment operator Q̂ = e(r̂ ⊗ r̂)/2 and the
atomic quadrupole polarizability defined as

α(4)(ω) = 1

h̄

∑
k �=n

[
Qnk ⊗ Qkn

(ωkn + ω)
+ Qnk ⊗ Qkn

(ωkn − ω)

]
. (16)

The matrix elements for the quadrupole transitions can again
be evaluated by factoring Q̂ = (e/2)r̂2er ⊗ er and computing
the matrix elements between the radial and angular parts of
the wave functions separately. Evaluation of the radial integral
is again performed numerically. The tensor product of unit
vectors in spherical harmonic form reads er ⊗ er =

√
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15 A

with
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yy

= ±Y2,−2 ± Y2,2 −
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FIG. 1. (Color online) Relative contributions from different tran-
sitions to the CP dipole and quadrupole level shift of the state 43s of
87Rb.
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The angular matrix elements can then be evaluated using
Eq. (13).

As can be seen from Eqs. (6) and (15), the CP potential
is comprised of a pair of sums, one over the Matsubara fre-
quencies and one over all available atomic transitions. It turns
out, however, that due to the finite-temperature environment
only a limited number of dipole and quadrupole transitions
contribute significantly to the total level shift. This effect
is depicted in Fig. 1, where we show the relative contributions
of the dipole transitions 43s → np and quadrupole transitions
43s → nd to the total level shift of the 43s state of 87Rb.
Note that the dominant transitions are different for dipole
and quadrupole shifts. This is due to the differing quantum
defects for the respective target p and d states. Moreover,
for each of these individual (long-wavelength) transitions the
first term in the Matsubara sum (with j = 0) dominates at
the micrometer atom-surface distances envisaged here, and all
other terms can be safely neglected. Remarkably, we observe
that the CP potential is independent of temperature from
T = 0 − 300 K and beyond. As was recently shown [8], this is
due to the dominance of contributions from transitions whose
wavelengths far exceed atom-surface separations.

Figure 2(a) shows the total CP potential (and hence level
shifts) UCP = U

dip
CP + U

quad
CP for various ns states (with n =

32,43,54) of 87Rb near a copper surface at 300 K. As we are
not interested in a particular transition channel, the weighted
sum over all possible final states has been taken.

One observes that for very small (yet experimentally
achievable and indeed desirable) distances of less than 2 μm
the expected level shifts rapidly grow to GHz sizes. At
these distances, we also observe significant deviations of the
total shift from the dipole contribution (6) alone due to the
increasingly important quadrupole shifts [Eq. (15)] which
themselves can be as large as several MHz [inset in Fig. 2(a)].

Related to the energy level shift is a line broadening effect
(i.e., an increased rate of spontaneous decay due to strong
nonradiative processes) as the atom approaches the surface
[9,16]. This strongly enhanced body-induced spontaneous
decay partially counteracts the expected increase in lifetime
as a function of the principal quantum number n in free space
(�0 ∝ n−3) [1].
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FIG. 2. (Color online) (a) Casimir-Polder level shifts of the states
32s (dotted line), 43s (dashed line), and 54s (solid line) of 87Rb near
a copper surface at 300 K; total shift and quadrupole contribution
alone (inset). (b) Spontaneous decay rate near a copper surface at
300 K for the initial states 32s (dotted line), 43s (dashed line), and
54s (solid line) of 87Rb.

In Fig. 2(b) we show the total decay rates of the Rydberg
states ns (n = 32,43,54) of 87Rb as a function of atom-surface
distance. The body-induced decay rates for electric dipole and
quadrupole transitions are calculated from Ref. [16] as [�nk =
�

dip
nk + �

quad
nk ]

�
dip
nk (rA) = ω2

nk

h̄ε0c2
(dnk ⊗ dkn) • Im G(rA,rA,|ωnk|)

×{�(ωnk)[n(ωnk) + 1] + �(ωkn)n(ωkn)}, (18)

�
quad
nk (rA) = ω2

nk

h̄ε0c2
(Qnk ⊗ Qkn)

• [∇ ⊗ Im G(rA,rA,|ωnk|) ⊗ ←−∇ ]

×{�(ωnk)[n(ωnk) + 1] + �(ωkn)n(ωkn)}. (19)

Note that, unlike the CP potential, the decay rates are always
temperature dependent. One observes a strong increase of the
decay rates near the surface (z � 10 μm) which becomes more
pronounced for states with higher principal quantum number
n. This translates into a relative line broadening of more than
three orders of magnitude that potentially limits trapping and
manipulation times of high-lying states near surfaces. For
larger distances (z � 15 μm) the rates quickly approach their
free-space values and show the expected suppression with
increasing n.

Finally, we will briefly consider how the CP potential and
transition rates scale with atom-surface distance z and the
principal quantum number n. For metal surfaces, the reflection
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FIG. 1. (Color online) Relative contributions from different tran-
sitions to the CP dipole and quadrupole level shift of the state 43s of
87Rb.
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The angular matrix elements can then be evaluated using
Eq. (13).

As can be seen from Eqs. (6) and (15), the CP potential
is comprised of a pair of sums, one over the Matsubara fre-
quencies and one over all available atomic transitions. It turns
out, however, that due to the finite-temperature environment
only a limited number of dipole and quadrupole transitions
contribute significantly to the total level shift. This effect
is depicted in Fig. 1, where we show the relative contributions
of the dipole transitions 43s → np and quadrupole transitions
43s → nd to the total level shift of the 43s state of 87Rb.
Note that the dominant transitions are different for dipole
and quadrupole shifts. This is due to the differing quantum
defects for the respective target p and d states. Moreover,
for each of these individual (long-wavelength) transitions the
first term in the Matsubara sum (with j = 0) dominates at
the micrometer atom-surface distances envisaged here, and all
other terms can be safely neglected. Remarkably, we observe
that the CP potential is independent of temperature from
T = 0 − 300 K and beyond. As was recently shown [8], this is
due to the dominance of contributions from transitions whose
wavelengths far exceed atom-surface separations.

Figure 2(a) shows the total CP potential (and hence level
shifts) UCP = U

dip
CP + U

quad
CP for various ns states (with n =

32,43,54) of 87Rb near a copper surface at 300 K. As we are
not interested in a particular transition channel, the weighted
sum over all possible final states has been taken.

One observes that for very small (yet experimentally
achievable and indeed desirable) distances of less than 2 μm
the expected level shifts rapidly grow to GHz sizes. At
these distances, we also observe significant deviations of the
total shift from the dipole contribution (6) alone due to the
increasingly important quadrupole shifts [Eq. (15)] which
themselves can be as large as several MHz [inset in Fig. 2(a)].

Related to the energy level shift is a line broadening effect
(i.e., an increased rate of spontaneous decay due to strong
nonradiative processes) as the atom approaches the surface
[9,16]. This strongly enhanced body-induced spontaneous
decay partially counteracts the expected increase in lifetime
as a function of the principal quantum number n in free space
(�0 ∝ n−3) [1].
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FIG. 2. (Color online) (a) Casimir-Polder level shifts of the states
32s (dotted line), 43s (dashed line), and 54s (solid line) of 87Rb near
a copper surface at 300 K; total shift and quadrupole contribution
alone (inset). (b) Spontaneous decay rate near a copper surface at
300 K for the initial states 32s (dotted line), 43s (dashed line), and
54s (solid line) of 87Rb.

In Fig. 2(b) we show the total decay rates of the Rydberg
states ns (n = 32,43,54) of 87Rb as a function of atom-surface
distance. The body-induced decay rates for electric dipole and
quadrupole transitions are calculated from Ref. [16] as [�nk =
�

dip
nk + �

quad
nk ]

�
dip
nk (rA) = ω2

nk

h̄ε0c2
(dnk ⊗ dkn) • Im G(rA,rA,|ωnk|)

×{�(ωnk)[n(ωnk) + 1] + �(ωkn)n(ωkn)}, (18)

�
quad
nk (rA) = ω2

nk

h̄ε0c2
(Qnk ⊗ Qkn)

• [∇ ⊗ Im G(rA,rA,|ωnk|) ⊗ ←−∇ ]

×{�(ωnk)[n(ωnk) + 1] + �(ωkn)n(ωkn)}. (19)

Note that, unlike the CP potential, the decay rates are always
temperature dependent. One observes a strong increase of the
decay rates near the surface (z � 10 μm) which becomes more
pronounced for states with higher principal quantum number
n. This translates into a relative line broadening of more than
three orders of magnitude that potentially limits trapping and
manipulation times of high-lying states near surfaces. For
larger distances (z � 15 μm) the rates quickly approach their
free-space values and show the expected suppression with
increasing n.

Finally, we will briefly consider how the CP potential and
transition rates scale with atom-surface distance z and the
principal quantum number n. For metal surfaces, the reflection
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The angular matrix elements can then be evaluated using
Eq. (13).

As can be seen from Eqs. (6) and (15), the CP potential
is comprised of a pair of sums, one over the Matsubara fre-
quencies and one over all available atomic transitions. It turns
out, however, that due to the finite-temperature environment
only a limited number of dipole and quadrupole transitions
contribute significantly to the total level shift. This effect
is depicted in Fig. 1, where we show the relative contributions
of the dipole transitions 43s → np and quadrupole transitions
43s → nd to the total level shift of the 43s state of 87Rb.
Note that the dominant transitions are different for dipole
and quadrupole shifts. This is due to the differing quantum
defects for the respective target p and d states. Moreover,
for each of these individual (long-wavelength) transitions the
first term in the Matsubara sum (with j = 0) dominates at
the micrometer atom-surface distances envisaged here, and all
other terms can be safely neglected. Remarkably, we observe
that the CP potential is independent of temperature from
T = 0 − 300 K and beyond. As was recently shown [8], this is
due to the dominance of contributions from transitions whose
wavelengths far exceed atom-surface separations.

Figure 2(a) shows the total CP potential (and hence level
shifts) UCP = U

dip
CP + U

quad
CP for various ns states (with n =

32,43,54) of 87Rb near a copper surface at 300 K. As we are
not interested in a particular transition channel, the weighted
sum over all possible final states has been taken.

One observes that for very small (yet experimentally
achievable and indeed desirable) distances of less than 2 μm
the expected level shifts rapidly grow to GHz sizes. At
these distances, we also observe significant deviations of the
total shift from the dipole contribution (6) alone due to the
increasingly important quadrupole shifts [Eq. (15)] which
themselves can be as large as several MHz [inset in Fig. 2(a)].

Related to the energy level shift is a line broadening effect
(i.e., an increased rate of spontaneous decay due to strong
nonradiative processes) as the atom approaches the surface
[9,16]. This strongly enhanced body-induced spontaneous
decay partially counteracts the expected increase in lifetime
as a function of the principal quantum number n in free space
(�0 ∝ n−3) [1].
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FIG. 2. (Color online) (a) Casimir-Polder level shifts of the states
32s (dotted line), 43s (dashed line), and 54s (solid line) of 87Rb near
a copper surface at 300 K; total shift and quadrupole contribution
alone (inset). (b) Spontaneous decay rate near a copper surface at
300 K for the initial states 32s (dotted line), 43s (dashed line), and
54s (solid line) of 87Rb.

In Fig. 2(b) we show the total decay rates of the Rydberg
states ns (n = 32,43,54) of 87Rb as a function of atom-surface
distance. The body-induced decay rates for electric dipole and
quadrupole transitions are calculated from Ref. [16] as [�nk =
�

dip
nk + �

quad
nk ]

�
dip
nk (rA) = ω2

nk

h̄ε0c2
(dnk ⊗ dkn) • Im G(rA,rA,|ωnk|)

×{�(ωnk)[n(ωnk) + 1] + �(ωkn)n(ωkn)}, (18)

�
quad
nk (rA) = ω2

nk

h̄ε0c2
(Qnk ⊗ Qkn)

• [∇ ⊗ Im G(rA,rA,|ωnk|) ⊗ ←−∇ ]

×{�(ωnk)[n(ωnk) + 1] + �(ωkn)n(ωkn)}. (19)

Note that, unlike the CP potential, the decay rates are always
temperature dependent. One observes a strong increase of the
decay rates near the surface (z � 10 μm) which becomes more
pronounced for states with higher principal quantum number
n. This translates into a relative line broadening of more than
three orders of magnitude that potentially limits trapping and
manipulation times of high-lying states near surfaces. For
larger distances (z � 15 μm) the rates quickly approach their
free-space values and show the expected suppression with
increasing n.

Finally, we will briefly consider how the CP potential and
transition rates scale with atom-surface distance z and the
principal quantum number n. For metal surfaces, the reflection
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The angular matrix elements can then be evaluated using
Eq. (13).

As can be seen from Eqs. (6) and (15), the CP potential
is comprised of a pair of sums, one over the Matsubara fre-
quencies and one over all available atomic transitions. It turns
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only a limited number of dipole and quadrupole transitions
contribute significantly to the total level shift. This effect
is depicted in Fig. 1, where we show the relative contributions
of the dipole transitions 43s → np and quadrupole transitions
43s → nd to the total level shift of the 43s state of 87Rb.
Note that the dominant transitions are different for dipole
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that the CP potential is independent of temperature from
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due to the dominance of contributions from transitions whose
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Figure 2(a) shows the total CP potential (and hence level
shifts) UCP = U

dip
CP + U

quad
CP for various ns states (with n =

32,43,54) of 87Rb near a copper surface at 300 K. As we are
not interested in a particular transition channel, the weighted
sum over all possible final states has been taken.

One observes that for very small (yet experimentally
achievable and indeed desirable) distances of less than 2 μm
the expected level shifts rapidly grow to GHz sizes. At
these distances, we also observe significant deviations of the
total shift from the dipole contribution (6) alone due to the
increasingly important quadrupole shifts [Eq. (15)] which
themselves can be as large as several MHz [inset in Fig. 2(a)].

Related to the energy level shift is a line broadening effect
(i.e., an increased rate of spontaneous decay due to strong
nonradiative processes) as the atom approaches the surface
[9,16]. This strongly enhanced body-induced spontaneous
decay partially counteracts the expected increase in lifetime
as a function of the principal quantum number n in free space
(�0 ∝ n−3) [1].
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FIG. 2. (Color online) (a) Casimir-Polder level shifts of the states
32s (dotted line), 43s (dashed line), and 54s (solid line) of 87Rb near
a copper surface at 300 K; total shift and quadrupole contribution
alone (inset). (b) Spontaneous decay rate near a copper surface at
300 K for the initial states 32s (dotted line), 43s (dashed line), and
54s (solid line) of 87Rb.

In Fig. 2(b) we show the total decay rates of the Rydberg
states ns (n = 32,43,54) of 87Rb as a function of atom-surface
distance. The body-induced decay rates for electric dipole and
quadrupole transitions are calculated from Ref. [16] as [�nk =
�

dip
nk + �

quad
nk ]

�
dip
nk (rA) = ω2

nk

h̄ε0c2
(dnk ⊗ dkn) • Im G(rA,rA,|ωnk|)

×{�(ωnk)[n(ωnk) + 1] + �(ωkn)n(ωkn)}, (18)

�
quad
nk (rA) = ω2

nk

h̄ε0c2
(Qnk ⊗ Qkn)

• [∇ ⊗ Im G(rA,rA,|ωnk|) ⊗ ←−∇ ]

×{�(ωnk)[n(ωnk) + 1] + �(ωkn)n(ωkn)}. (19)

Note that, unlike the CP potential, the decay rates are always
temperature dependent. One observes a strong increase of the
decay rates near the surface (z � 10 μm) which becomes more
pronounced for states with higher principal quantum number
n. This translates into a relative line broadening of more than
three orders of magnitude that potentially limits trapping and
manipulation times of high-lying states near surfaces. For
larger distances (z � 15 μm) the rates quickly approach their
free-space values and show the expected suppression with
increasing n.

Finally, we will briefly consider how the CP potential and
transition rates scale with atom-surface distance z and the
principal quantum number n. For metal surfaces, the reflection
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coefficients are nearly independent of ω at infrared frequencies
and below. In the low-temperature limit, when the thermal
photon number is negligible, there is no ω dependence for
either the CP potential or the transition rates. The dipole and
quadrupole moments for the dominant ns → (n − 1)p and
ns → (n − 1)d transitions scale as n2 and n4, respectively, for
large n. In the nonretarded limit (valid for surface distances
beyond even 100 μm), the body-induced rates and the CP
potential scale as z−3 and z−5 for the dipole and quadrupole
contributions, respectively [16]. Combining these results leads
to a scaling behavior of

∣∣U dip
CP

∣∣, �
dip
nk ∝ n4

z3
,
∣∣U quad

CP

∣∣, �
quad
nk ∝ n8

z5
, (20)

for the dipole and quadrupole components of the CP potential
UCP and the decay rate �nk .

In the high-temperature limit, the scaling of the CP
shifts remains the same due to the temperature independence
demonstrated in Ref. [8], whereas the transition rates become
proportional to the mean photon number n(ω) ≈ kBT /(h̄ω).
For the dominant dipole and quadrupole transitions (Fig. 1),

one finds ω ∝ n−3, and the transition rates scale as �
dip
nk ∝

n7/z3 and �
quad
nk ∝ n11/z5, respectively.

We have shown in this Rapid Communication that the
interaction between highly excited atoms and macroscopic
surfaces leads to energy level shifts that can be as large as
several GHz. This implies that any scheme that relies on
the manipulation of (trapped) Rydberg atoms near surfaces
has to account for this major adjustment. Moreover, some
of the advantages of using highly excited Rydberg atoms, in
particular their rapidly decreasing Einstein coefficients with
increasing principal quantum number n, are counteracted by
the atom-surface interactions.
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Erratum: Thermal Casimir-Polder shifts in Rydberg atoms near metallic surfaces
[Phys. Rev. A 82, 010901(R) (2010)]

J. A. Crosse,* Simen Å. Ellingsen, Kate Clements, Stefan Y. Buhmann, and Stefan Scheel
(Received 21 July 2010; published 11 August 2010)

DOI: 10.1103/PhysRevA.82.029902 PACS number(s): 34.35.+a, 32.80.Ee, 42.50.Ct, 42.50.Nn, 99.10.Cd

An error occurred in the numerical examples presented in the original article, as the contribution from the ns → np transition
was neglected in the calculation of the dipole Casimir-Polder (CP) shift and transition rates. This transition is relevant for
rubidium as a result of differing quantum defects for the ns and np states. As seen in the corrected Fig. 1, the 43s → 43p

transition contributes about 50% to the total level shift. As a result, the CP shifts of rubidium in Rydberg states are even larger
than stated in the original article, roughly by a factor of 2, as can be seen from the corrected Fig. 2(a). The decay rates are affected
in a similar way [cf. the corrected Fig. 2(b)]. Note that these quantitative changes do not affect any of the conclusions made in
the original article regarding the physics of Rydberg atoms near surfaces.

Also, in the text following Eq. (9), the Drude relation for the permittivity of a metal should read ε(ω) = 1 − ω2
p/ω(ω + iγ ).

We thank R. Fermani for bringing these issues to our attention.
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FIG. 1. (Color online) Relative contributions from different transitions to the CP dipole and quadrupole level shift of the state
43s of 87Rb.
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FIG. 2. (Color online) (a) Casimir-Polder level shifts of the states 32s (short-dashed line), 43s (long-dashed line), and 54s (solid line)
of 87Rb near a copper surface at 300 K. Total shift and quadrupole contribution alone (inset). (b) Spontaneous decay rate near a copper surface
at 300 K for the initial states 32s (short-dashed line), 43s (long-dashed line), and 54s (solid line) of 87Rb.
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Erratum: Thermal Casimir-Polder shifts in Rydberg atoms near metallic surfaces
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(Received 21 July 2010; published 11 August 2010)
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An error occurred in the numerical examples presented in the original article, as the contribution from the ns → np transition
was neglected in the calculation of the dipole Casimir-Polder (CP) shift and transition rates. This transition is relevant for
rubidium as a result of differing quantum defects for the ns and np states. As seen in the corrected Fig. 1, the 43s → 43p

transition contributes about 50% to the total level shift. As a result, the CP shifts of rubidium in Rydberg states are even larger
than stated in the original article, roughly by a factor of 2, as can be seen from the corrected Fig. 2(a). The decay rates are affected
in a similar way [cf. the corrected Fig. 2(b)]. Note that these quantitative changes do not affect any of the conclusions made in
the original article regarding the physics of Rydberg atoms near surfaces.

Also, in the text following Eq. (9), the Drude relation for the permittivity of a metal should read ε(ω) = 1 − ω2
p/ω(ω + iγ ).

We thank R. Fermani for bringing these issues to our attention.

38 39 40 41 42 44 45 46 470

0.2

0.4

0.6

0.8

1

43
Principal quantum number n

Dipole
Quadrupole

FIG. 1. (Color online) Relative contributions from different transitions to the CP dipole and quadrupole level shift of the state
43s of 87Rb.

0 5 10 15 20

−10 9

−10 8

−10 7

−10 6

−10 5

−10 4 UCP (Hz)

−108

−107

−106

−105

1 1.2 1.4 1.6 1.8 2

U
CP

    (Hz)
quad

Distance (μm)

Distance (μm)

32s
43s
54s

0 5 10 15 20
Distance (μm)

Γ (s-1)

104

106

105

(a)

(b)

−10 10

FIG. 2. (Color online) (a) Casimir-Polder level shifts of the states 32s (short-dashed line), 43s (long-dashed line), and 54s (solid line)
of 87Rb near a copper surface at 300 K. Total shift and quadrupole contribution alone (inset). (b) Spontaneous decay rate near a copper surface
at 300 K for the initial states 32s (short-dashed line), 43s (long-dashed line), and 54s (solid line) of 87Rb.

*jac00@imperial.ac.uk

1050-2947/2010/82(2)/029902(1) 029902-1 ©2010 The American Physical Society





Article [p]

Casimir-Polder potential and transition rate in resonating cylindrical cavities

S.Å. Ellingsen, S.Y. Buhmann, S. Scheel

Physical Review A 82, 032516 (2010)

Article [p]

Casimir-Polder potential and transition rate in resonating cylindrical cavities

S.Å. Ellingsen, S.Y. Buhmann, S. Scheel

Physical Review A 82, 032516 (2010)

Article [p]

Casimir-Polder potential and transition rate in resonating cylindrical cavities

S.Å. Ellingsen, S.Y. Buhmann, S. Scheel

Physical Review A 82, 032516 (2010)

Article [p]

Casimir-Polder potential and transition rate in resonating cylindrical cavities

S.Å. Ellingsen, S.Y. Buhmann, S. Scheel

Physical Review A 82, 032516 (2010)





PHYSICAL REVIEW A 82, 032516 (2010)

Casimir-Polder potential and transition rate in resonating cylindrical cavities
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We consider the Casimir-Polder potential of particles placed inside a metallic cylindrical cavity at finite
temperatures, taking account of thermal nonequilibrium effects. In particular, we study how the resonant (thermal
nonequilibrium) potential and transition rates can be enhanced by fine tuning the radius of the cavity to match
the transition wavelength of the dominant transitions of the particle. Numerical calculations show that the
cavity-induced energy-level shift of atoms prepared in low-lying Rydberg states can be enhanced beyond
30 kHz, which is within the range of observability of modern experiments. Because the magnitude of the
resonance peaks depends sensitively on the low-frequency dissipation of the cavity metal, experiments in this
setup could be a critical test of the disputed thermal correction to the Casimir force between metal plates.
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I. INTRODUCTION

Casimir-Polder (CP) forces [1] belong to the group of
of dispersion forces, which arise due to the fluctuations
of the quantized electromagnetic field. They occur between
polarizable atoms or molecules and metallic or dielectric
macroscopic bodies and can be intuitively thought of as
the dipole-dipole force caused by spontaneous and mutually
correlated polarization of the atom or molecule and the
matter comprising the body. Under the assumption of thermal
equilibrium, CP forces have been commonly investigated in
the linear-response formalism [2–4].

Recent theoretical predictions [5] as well as experimental
realizations [6] for CP forces in thermal nonequilibrium
situations have pointed toward interesting effects which arise
when an atom at equilibrium with its local environment
interacts with a body held at a different temperature. In
particular, depending on the temperatures of the macro-
scopic body and the environment, the force can change
its character from being attractive to repulsive and vice
versa.

Nonequilibrium situations between atom and local environ-
ment can be investigated by means of normal-mode QED [7,8]
or macroscopic QED in absorbing and dispersing media [9,10].
In this case, thermal excitation and de-excitation processes lead
to resonant contributions to the force [11] (cf. similar findings
reported in Ref. [12]). At particle-body separations that are
larger than the wavelengths associated with the dominating
atomic transitions (retarded regime), the interaction potential
becomes spatially oscillating [13]. Similar behavior has been
observed for the transition rate of molecules in the past
[14,15].

The spatially oscillating nonequilibrium forces on ground-
state atoms or molecules are proportional to the thermal
photon number. In order to observe them, it is necessary to
make use of atomic systems whose internal eigenstates exhibit
energy separations of order kBT or less (T , temperature; kB,
Boltzmann constant). We have investigated polar molecules
with their low-energy rotational and vibrational transitions as

possible candidates [13]. However, the large photon numbers
obtained using molecules with small excitation energies come
at a cost: Due to the large wavelengths associated with such
molecular transitions, the retarded regime where oscillations
might be observed sets in at very large distances, typically
of the order of tens to hundreds of micrometers. As the CP
potential decays away rapidly from the body surface, it is very
small at such distances.

As already discussed in conjunction with excited atoms
in a zero-temperature environment, resonant forces can be
enhanced in a planar cavity whose width is fine tuned to
match the wavelength of the transition [16–22]. Note that
resonating cavities have been employed experimentally for
enhancement and inhibition of spontaneous emission rates
for excited systems for a long time (cf. e.g., [23–26]). We
have previously investigated the potential of such a setup
to enhance the predicted spatial oscillations of the thermal
force on ground-state molecules [27]. Unfortunately, the cavity
enhancement factor turns out to scale logarithmically with
the cavity Q factor, which strongly limits the possibilities
of the scheme. As we have shown, it is unlikely to achieve
more than an order of magnitude’s enhancement of the force
amplitudes, which is still insufficient for detection using polar
molecules.

In the present article, we present a scheme by which
oscillations of the resonant thermal CP force can be brought
into the measurable regime. This is achieved by replacing
the planar cavity with a cylindrical cavity [28] and employing
Rydberg atoms rather than polar molecules [29]. The geometry
is shown in Fig. 1. The limited cavity enhancement in a
planar setup is due to the insufficient, purely one-dimensional
confinement of the electromagnetic modes. A cylindrical
cavity is therefore an obvious candidate for improvement: It
confines the modes in two of the three spatial dimensions
so that a stronger resonant enhancement may be expected.
At the same time, it is a practical geometry for experimental
and guiding purposes, allowing particles to travel freely along
the axial direction (we will only consider particles at rest
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FIG. 1. (Color online) Cross section of the geometry considered:
a particle in a vacuum-filled circularly cylindrical cavity.

herein, leaving moving atoms [30] in this geometry for future
study). As a caveat, one has to bear in mind that a cylindrical
cavity will simultaneously enhance both the CP potential and
the relaxation rates; thus reducing the time scales on which
nonequilibrium effects can be observed. A similar geometry,
that is, an (anisotropic) particle above a spherical hole in a
thin metal plate, has recently been suggested as a candidate
for observing repulsive Casimir forces [31].

Rydberg atoms are ideal candidates for observing resonant
thermal CP potentials. Their valence electrons are excited
to relatively stable states with very large principal quantum
numbers n, typically in the range 30–60. The spatial extent of
such highly excited atoms is then enormous on an atomic scale,
exceeding 1 μm in diameter, and the transition dipole moments
consequently orders of magnitude larger than those of ground-
state atoms or polar molecules. Resonant CP interactions
being proportional to the respective transition dipole moment
squared, a strong enhancement follows. Moreover, an atom
excited to a particular eigenstate with large n is necessarily out
of thermal equilibrium with its environment, and the energy
difference to neighboring states is typically small compared
to kBT at room temperature, hence fulfilling the condition for
observing an oscillating potential.

The structure of the article is as follows. In Sec. II we
present the general formalism of the thermal CP interaction and
transition rates in a cylindrical cavity, including the necessary
Green tensor. Thereafter, in Sec. III we derive the cylinder
radii which resonate with the atomic transition frequency.
We begin with the simplest case of a perfectly conducting
cavity and then discuss how the optimal radii deviate from the
perfect conductor results when realistic metallic permittivity
functions are employed. We provide simple formulas for the
optimal radii when the permittivity of the cylinder medium is
large. In Sec. IV, we discuss how the potential and heating
rate enhancements scale with the relevant atomic and cavity
parameters, with emphasis on the dependence on the cavity
permittivity. Finally we undertake numerical calculations of
resonant CP potential and heating rates for two example cases:
the 32s1/2 → 31p3/2 transition of Rydberg Rb in a cylindrical
Au cavity at temperature T = 300 K and a ground-state LiH
molecule in a similar cavity.

II. GENERAL FORMALISM

We consider an atomic system (in what follows we study the
cases of Rydberg atoms and polar molecules) with internal en-
ergy eigenstates |n〉, eigenenergies h̄ωn, transition frequencies

ωmn = ωm − ωn, and dipole matrix elements dmn = 〈m|d̂|n〉,
which is prepared in an incoherent superposition of its energy
eigenstates with probabilities pn.

A. Thermal Casimir-Polder potential

The thermal CP force on such a system in an environment
of uniform temperature T was derived in detail in Ref. [11].
As shown, it is conservative in the perturbative limit, F(r) =
−∇U (r), where the associated CP potential is given by

U (r) =
∑

n

pnUn(r). (2.1)

The potential components associated with a given eigenstate
n splits naturally into a nonresonant contribution U nr

n and a
resonant one U res

n ,

Un(r) = U nr
n (r) + U res

n (r). (2.2)

The nonresonant potential U nr
n is due to virtual photons and

is reminiscent of that obtained by a dilute-gas expansion of
Lifshitz’ formula [2]. The resonant contribution U res

n is due
to absorption and emission of thermal photons; it is present
because the particle in its ground state is out of thermal
equilibrium with its environment.

The nonresonant potential reads

U nr
n (r) = kBT

ε0

∞∑
j=0

′ ξ
2
j

c2
Tr[αn(iξj ) · G(1)(r,r,iξj )], (2.3)

where μ0 is the free-space permeability, ξj = 2πjkBT/h̄ is the
j th Matsubara frequency, and the prime on the Matsubara sum
indicates that the j = 0 term is to be taken with half weight.
The atomic or molecular polarizability is given by

αn(ω) = lim
ε→0

1

h̄

∑
k

(
dkndnk

ω + ωkn + iε
− dnkdkn

ω − ωkn + iε

)
(2.4)

and G(1)(r,r′,ω) is the scattering part of the classical Green
tensor of the geometry the particle is placed in. Note that
dyadic multiplication is implied for products of vectors without
multiplication symbol: AB ≡ A ⊗ B. For an isotropic particle,
the nonresonant potential components may be simplified to

U nr
n (r) = kBT

ε0

∞∑
j=0

′ ξ
2
j

c2
αn(iξj )TrG(1)(r,r,iξj ), (2.5)

with

αn(ω) = lim
ε→0

2

3h̄

∑
k

|dnk|2ωkn

ω2
kn − ω2 − iεω

. (2.6)

The resonant potential reads

U res
n (r) = μ0

∑
k

ω2
kndnk · Re G(1)(r,r,|ωkn|) · dkn

×{�(ωkn)n(ωkn) − �(ωnk)[n(ωnk) + 1]}, (2.7)

where μ0 is the free-space permeability and �(x) denotes
the Heaviside step function. The photon number follows the
Bose-Einstein distribution

n(ω) =
[

exp

(
h̄ω

kBT

)
− 1

]−1

. (2.8)
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herein, leaving moving atoms [30] in this geometry for future
study). As a caveat, one has to bear in mind that a cylindrical
cavity will simultaneously enhance both the CP potential and
the relaxation rates; thus reducing the time scales on which
nonequilibrium effects can be observed. A similar geometry,
that is, an (anisotropic) particle above a spherical hole in a
thin metal plate, has recently been suggested as a candidate
for observing repulsive Casimir forces [31].

Rydberg atoms are ideal candidates for observing resonant
thermal CP potentials. Their valence electrons are excited
to relatively stable states with very large principal quantum
numbers n, typically in the range 30–60. The spatial extent of
such highly excited atoms is then enormous on an atomic scale,
exceeding 1 μm in diameter, and the transition dipole moments
consequently orders of magnitude larger than those of ground-
state atoms or polar molecules. Resonant CP interactions
being proportional to the respective transition dipole moment
squared, a strong enhancement follows. Moreover, an atom
excited to a particular eigenstate with large n is necessarily out
of thermal equilibrium with its environment, and the energy
difference to neighboring states is typically small compared
to kBT at room temperature, hence fulfilling the condition for
observing an oscillating potential.

The structure of the article is as follows. In Sec. II we
present the general formalism of the thermal CP interaction and
transition rates in a cylindrical cavity, including the necessary
Green tensor. Thereafter, in Sec. III we derive the cylinder
radii which resonate with the atomic transition frequency.
We begin with the simplest case of a perfectly conducting
cavity and then discuss how the optimal radii deviate from the
perfect conductor results when realistic metallic permittivity
functions are employed. We provide simple formulas for the
optimal radii when the permittivity of the cylinder medium is
large. In Sec. IV, we discuss how the potential and heating
rate enhancements scale with the relevant atomic and cavity
parameters, with emphasis on the dependence on the cavity
permittivity. Finally we undertake numerical calculations of
resonant CP potential and heating rates for two example cases:
the 32s1/2 → 31p3/2 transition of Rydberg Rb in a cylindrical
Au cavity at temperature T = 300 K and a ground-state LiH
molecule in a similar cavity.

II. GENERAL FORMALISM

We consider an atomic system (in what follows we study the
cases of Rydberg atoms and polar molecules) with internal en-
ergy eigenstates |n〉, eigenenergies h̄ωn, transition frequencies

ωmn = ωm − ωn, and dipole matrix elements dmn = 〈m|d̂|n〉,
which is prepared in an incoherent superposition of its energy
eigenstates with probabilities pn.

A. Thermal Casimir-Polder potential

The thermal CP force on such a system in an environment
of uniform temperature T was derived in detail in Ref. [11].
As shown, it is conservative in the perturbative limit, F(r) =
−∇U (r), where the associated CP potential is given by

U (r) =
∑

n

pnUn(r). (2.1)

The potential components associated with a given eigenstate
n splits naturally into a nonresonant contribution U nr

n and a
resonant one U res

n ,

Un(r) = U nr
n (r) + U res

n (r). (2.2)

The nonresonant potential U nr
n is due to virtual photons and

is reminiscent of that obtained by a dilute-gas expansion of
Lifshitz’ formula [2]. The resonant contribution U res

n is due
to absorption and emission of thermal photons; it is present
because the particle in its ground state is out of thermal
equilibrium with its environment.

The nonresonant potential reads

U nr
n (r) = kBT

ε0

∞∑
j=0

′ ξ
2
j

c2
Tr[αn(iξj ) · G(1)(r,r,iξj )], (2.3)

where μ0 is the free-space permeability, ξj = 2πjkBT/h̄ is the
j th Matsubara frequency, and the prime on the Matsubara sum
indicates that the j = 0 term is to be taken with half weight.
The atomic or molecular polarizability is given by

αn(ω) = lim
ε→0

1

h̄

∑
k

(
dkndnk

ω + ωkn + iε
− dnkdkn

ω − ωkn + iε

)
(2.4)

and G(1)(r,r′,ω) is the scattering part of the classical Green
tensor of the geometry the particle is placed in. Note that
dyadic multiplication is implied for products of vectors without
multiplication symbol: AB ≡ A ⊗ B. For an isotropic particle,
the nonresonant potential components may be simplified to

U nr
n (r) = kBT

ε0

∞∑
j=0

′ ξ
2
j

c2
αn(iξj )TrG(1)(r,r,iξj ), (2.5)

with

αn(ω) = lim
ε→0

2

3h̄

∑
k

|dnk|2ωkn

ω2
kn − ω2 − iεω

. (2.6)

The resonant potential reads

U res
n (r) = μ0

∑
k

ω2
kndnk · Re G(1)(r,r,|ωkn|) · dkn

×{�(ωkn)n(ωkn) − �(ωnk)[n(ωnk) + 1]}, (2.7)

where μ0 is the free-space permeability and �(x) denotes
the Heaviside step function. The photon number follows the
Bose-Einstein distribution

n(ω) =
[

exp

(
h̄ω

kBT

)
− 1

]−1

. (2.8)
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herein, leaving moving atoms [30] in this geometry for future
study). As a caveat, one has to bear in mind that a cylindrical
cavity will simultaneously enhance both the CP potential and
the relaxation rates; thus reducing the time scales on which
nonequilibrium effects can be observed. A similar geometry,
that is, an (anisotropic) particle above a spherical hole in a
thin metal plate, has recently been suggested as a candidate
for observing repulsive Casimir forces [31].

Rydberg atoms are ideal candidates for observing resonant
thermal CP potentials. Their valence electrons are excited
to relatively stable states with very large principal quantum
numbers n, typically in the range 30–60. The spatial extent of
such highly excited atoms is then enormous on an atomic scale,
exceeding 1 μm in diameter, and the transition dipole moments
consequently orders of magnitude larger than those of ground-
state atoms or polar molecules. Resonant CP interactions
being proportional to the respective transition dipole moment
squared, a strong enhancement follows. Moreover, an atom
excited to a particular eigenstate with large n is necessarily out
of thermal equilibrium with its environment, and the energy
difference to neighboring states is typically small compared
to kBT at room temperature, hence fulfilling the condition for
observing an oscillating potential.

The structure of the article is as follows. In Sec. II we
present the general formalism of the thermal CP interaction and
transition rates in a cylindrical cavity, including the necessary
Green tensor. Thereafter, in Sec. III we derive the cylinder
radii which resonate with the atomic transition frequency.
We begin with the simplest case of a perfectly conducting
cavity and then discuss how the optimal radii deviate from the
perfect conductor results when realistic metallic permittivity
functions are employed. We provide simple formulas for the
optimal radii when the permittivity of the cylinder medium is
large. In Sec. IV, we discuss how the potential and heating
rate enhancements scale with the relevant atomic and cavity
parameters, with emphasis on the dependence on the cavity
permittivity. Finally we undertake numerical calculations of
resonant CP potential and heating rates for two example cases:
the 32s1/2 → 31p3/2 transition of Rydberg Rb in a cylindrical
Au cavity at temperature T = 300 K and a ground-state LiH
molecule in a similar cavity.

II. GENERAL FORMALISM

We consider an atomic system (in what follows we study the
cases of Rydberg atoms and polar molecules) with internal en-
ergy eigenstates |n〉, eigenenergies h̄ωn, transition frequencies

ωmn = ωm − ωn, and dipole matrix elements dmn = 〈m|d̂|n〉,
which is prepared in an incoherent superposition of its energy
eigenstates with probabilities pn.

A. Thermal Casimir-Polder potential

The thermal CP force on such a system in an environment
of uniform temperature T was derived in detail in Ref. [11].
As shown, it is conservative in the perturbative limit, F(r) =
−∇U (r), where the associated CP potential is given by

U (r) =
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The potential components associated with a given eigenstate
n splits naturally into a nonresonant contribution U nr

n and a
resonant one U res

n ,
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n (r). (2.2)

The nonresonant potential U nr
n is due to virtual photons and

is reminiscent of that obtained by a dilute-gas expansion of
Lifshitz’ formula [2]. The resonant contribution U res

n is due
to absorption and emission of thermal photons; it is present
because the particle in its ground state is out of thermal
equilibrium with its environment.

The nonresonant potential reads
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where μ0 is the free-space permeability, ξj = 2πjkBT/h̄ is the
j th Matsubara frequency, and the prime on the Matsubara sum
indicates that the j = 0 term is to be taken with half weight.
The atomic or molecular polarizability is given by

αn(ω) = lim
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1
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k
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ω + ωkn + iε
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)
(2.4)

and G(1)(r,r′,ω) is the scattering part of the classical Green
tensor of the geometry the particle is placed in. Note that
dyadic multiplication is implied for products of vectors without
multiplication symbol: AB ≡ A ⊗ B. For an isotropic particle,
the nonresonant potential components may be simplified to
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with
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where μ0 is the free-space permeability and �(x) denotes
the Heaviside step function. The photon number follows the
Bose-Einstein distribution
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herein, leaving moving atoms [30] in this geometry for future
study). As a caveat, one has to bear in mind that a cylindrical
cavity will simultaneously enhance both the CP potential and
the relaxation rates; thus reducing the time scales on which
nonequilibrium effects can be observed. A similar geometry,
that is, an (anisotropic) particle above a spherical hole in a
thin metal plate, has recently been suggested as a candidate
for observing repulsive Casimir forces [31].

Rydberg atoms are ideal candidates for observing resonant
thermal CP potentials. Their valence electrons are excited
to relatively stable states with very large principal quantum
numbers n, typically in the range 30–60. The spatial extent of
such highly excited atoms is then enormous on an atomic scale,
exceeding 1 μm in diameter, and the transition dipole moments
consequently orders of magnitude larger than those of ground-
state atoms or polar molecules. Resonant CP interactions
being proportional to the respective transition dipole moment
squared, a strong enhancement follows. Moreover, an atom
excited to a particular eigenstate with large n is necessarily out
of thermal equilibrium with its environment, and the energy
difference to neighboring states is typically small compared
to kBT at room temperature, hence fulfilling the condition for
observing an oscillating potential.

The structure of the article is as follows. In Sec. II we
present the general formalism of the thermal CP interaction and
transition rates in a cylindrical cavity, including the necessary
Green tensor. Thereafter, in Sec. III we derive the cylinder
radii which resonate with the atomic transition frequency.
We begin with the simplest case of a perfectly conducting
cavity and then discuss how the optimal radii deviate from the
perfect conductor results when realistic metallic permittivity
functions are employed. We provide simple formulas for the
optimal radii when the permittivity of the cylinder medium is
large. In Sec. IV, we discuss how the potential and heating
rate enhancements scale with the relevant atomic and cavity
parameters, with emphasis on the dependence on the cavity
permittivity. Finally we undertake numerical calculations of
resonant CP potential and heating rates for two example cases:
the 32s1/2 → 31p3/2 transition of Rydberg Rb in a cylindrical
Au cavity at temperature T = 300 K and a ground-state LiH
molecule in a similar cavity.

II. GENERAL FORMALISM

We consider an atomic system (in what follows we study the
cases of Rydberg atoms and polar molecules) with internal en-
ergy eigenstates |n〉, eigenenergies h̄ωn, transition frequencies

ωmn = ωm − ωn, and dipole matrix elements dmn = 〈m|d̂|n〉,
which is prepared in an incoherent superposition of its energy
eigenstates with probabilities pn.

A. Thermal Casimir-Polder potential

The thermal CP force on such a system in an environment
of uniform temperature T was derived in detail in Ref. [11].
As shown, it is conservative in the perturbative limit, F(r) =
−∇U (r), where the associated CP potential is given by

U (r) =
∑
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pnUn(r). (2.1)

The potential components associated with a given eigenstate
n splits naturally into a nonresonant contribution U nr

n and a
resonant one U res

n ,
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n (r) + U res

n (r). (2.2)

The nonresonant potential U nr
n is due to virtual photons and

is reminiscent of that obtained by a dilute-gas expansion of
Lifshitz’ formula [2]. The resonant contribution U res

n is due
to absorption and emission of thermal photons; it is present
because the particle in its ground state is out of thermal
equilibrium with its environment.

The nonresonant potential reads

U nr
n (r) = kBT
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∞∑
j=0
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2
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Tr[αn(iξj ) · G(1)(r,r,iξj )], (2.3)

where μ0 is the free-space permeability, ξj = 2πjkBT/h̄ is the
j th Matsubara frequency, and the prime on the Matsubara sum
indicates that the j = 0 term is to be taken with half weight.
The atomic or molecular polarizability is given by

αn(ω) = lim
ε→0

1

h̄

∑
k

(
dkndnk

ω + ωkn + iε
− dnkdkn

ω − ωkn + iε

)
(2.4)

and G(1)(r,r′,ω) is the scattering part of the classical Green
tensor of the geometry the particle is placed in. Note that
dyadic multiplication is implied for products of vectors without
multiplication symbol: AB ≡ A ⊗ B. For an isotropic particle,
the nonresonant potential components may be simplified to

U nr
n (r) = kBT

ε0

∞∑
j=0
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2
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αn(iξj )TrG(1)(r,r,iξj ), (2.5)

with

αn(ω) = lim
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The resonant potential reads
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kndnk · Re G(1)(r,r,|ωkn|) · dkn
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where μ0 is the free-space permeability and �(x) denotes
the Heaviside step function. The photon number follows the
Bose-Einstein distribution

n(ω) =
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]−1
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For an isotropic particle, the resonant potential components
reduce to

U res
n (r) = μ0

3

∑
k

ω2
kn|dnk|2Tr Re G(1)(r,r,|ωkn|)

×{�(ωkn)n(ωkn) − �(ωnk)[n(ωnk) + 1]}. (2.9)

B. Environment-assisted transition rates

An atomic system initially prepared in a given energy
eigenstate |n〉 and placed in an environment of uniform
temperature T will undergo transitions to different eigenstates
due to absorption and emission of thermal photons. As shown
in Ref. [32], the total rate

�n(r) = �(0)
n + �(1)

n (r) (2.10)

for transitions out of state |n〉 consists of a free-space part
�(0)

n and an environment-induced part �(1)
n . In the perturbative

limit, these are given as

�(0)
n =

∑
k

|ωkn|3|dnk|2
3πh̄ε0h̄

{�(ωnk)[n(ωnk) + 1]

+�(ωkn)n(ωkn)} (2.11a)
and

�(1)
n (r) = 2

ε0h̄

∑
k

ω2
kn

c2
dnk · Im G(1)(r,r,|ωkn|) · dkn

×{�(ωnk)[n(ωnk) + 1] + �(ωkn)n(ωkn)}. (2.11b)

The environment-induced rate simplifies for an isotropic
particle to

�(1)
n (r) = 2

3ε0h̄

∑
k

ω2
kn

c2
|dnk|2Tr Im G(1)(r,r,|ωkn|)

×{�(ωnk)[n(ωnk) + 1] + �(ωkn)n(ωkn)}. (2.12)

C. The Green tensor in a cylindrical cavity

We are going to study atomic systems placed at position
r = (ρ,ϕ,z) inside a circularly cylindrical free-space cavity
of radius R in a bulk nonmagnetic medium with permittivity
ε = ε(ω) as shown in Fig. 1. The respective scattering Green
tensor can be found in Ref. [33] (see also Appendix A4.2
of [10]):

G(1)(r,r,ω)

= i

4π

∫ ∞

−∞
dq

∞∑
m=0

′η−2
[
rMMMe

omη(q)Mo
emη(−q)

± rNMNo
emη(q)Me

omη(−q) ± rMNMo
emη(q)

× Ne
omη(−q) + rNNNe

omη(q)No
emη(−q)

]
, (2.13)

where η =
√

k2 − q2 and k = ω/c. The cylindrical vector
wave functions inside the cavity are [10,33,34]

Me
omη(q) =

[
∓m

ρ
Jm(ηρ)

sin
cos mϕ�̂ −ηJ ′

m(ηρ)
cos
sin nϕϕ̂

]
eiqz,

(2.14a)

Ne
omη(q) =

(
iqη

k
J ′

m(ηρ)
cos
sin mϕ�̂ ∓ iqm

kρ
Jm(ηρ)

sin
cos mϕϕ̂

+ η2

k
J (ηρ)

cos
sin mϕẑ

)
eiqz. (2.14b)

The compact wave vector notation used here implies Ae
o
Be

o
=

AeBe + AoBo, etc., and the upper (lower) sign in (2.13)
corresponds to upper (lower) index e,o of the vector wave
functions. Jm are cylindrical Bessel functions of the first kind.
The reflection coefficients r can be found from a system of
linear equations as described in Ref. [33]. For the single-
interface cylindrical cavity in a bulk medium as considered
here, the result for the diagonal coefficients rM ≡ rMM and
rN ≡ rNN may be written as

rM,N = −H (1)
m (x)

Jm(x)
r̃M,N , (2.15)

with

r̃σ = A + Bσ

A + BD

, σ = M,N, (2.16)

and 2.17

A = −m2(kR)2(qR)2(ε − 1)2, (2.17a)

BM = x2
1x

2
[
εh̃2

1x
2 − (h̃1j̃ + εh̃1h̃)x1x + h̃j̃x2

1

]
, (2.17b)

BN = x2
1x

2
[
εh̃2

1x
2 − (εh̃1j̃ + h̃1h̃)x1x + h̃j̃x2

1

]
, (2.17c)

BD = x2
1x

2
[
εh̃2

1x
2 − (ε + 1)h̃1j̃x1x + j̃2x2

1

]
. (2.17d)

Here, x = ηR, x1 = η1R, η1 =
√

ε(ω)ω2/c2 − q2, ε = ε(ω)
is the permittivity of the cylinder, H (1)

m are Hankel functions
of the first kind, and we have defined the shorthand quantities

h̃ = h̃(x), h̃1 = h̃(x1), j̃ = j̃(x), j̃1 = j̃(x1), (2.18)

where the reduced Bessel functions denoted h̃(x) and j̃(x) are
2.19

h̃(x) = H (1)′
m (x)

H
(1)
m (x)

= d

dx
ln H (1)

m (x); (2.19a)

j̃(x) = J ′
m(x)

Jm(x)
= d

dx
ln Jm(x). (2.19b)

Note that j̃ is a real function for real arguments, whereas
h̃ is complex for real arguments. Explicit knowledge of
the off-diagonal reflection coefficients is not required; for
our purposes, it is sufficient to note that rMN = rNM (cf.
Refs. [10,33] for details).

Substituting the vector wave functions (2.14a) and (2.14b)
into Eq. (2.13), making use of rMN = rNM and the fact that
odd functions of q do not contribute to the integral, the Green
tensor is found to take the diagonal form

G(1)(r,r,ω)

= i

2π

∫ ∞

0
dq

∞∑
m=0

′
[(

m2

η2ρ2
J 2

m(ηρ)rM + q2

k2
J ′2

m (ηρ)rN

)
�̂�̂

+
(

J ′2
m (ηρ)rM + m2q2

k2η2ρ2
J 2

m(ηρ)rN

)
ϕ̂ϕ̂

+ η2

k2
J 2

m(ηρ)rN ẑẑ
]
. (2.20)
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For an isotropic particle, the resonant potential components
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B. Environment-assisted transition rates

An atomic system initially prepared in a given energy
eigenstate |n〉 and placed in an environment of uniform
temperature T will undergo transitions to different eigenstates
due to absorption and emission of thermal photons. As shown
in Ref. [32], the total rate
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C. The Green tensor in a cylindrical cavity

We are going to study atomic systems placed at position
r = (ρ,ϕ,z) inside a circularly cylindrical free-space cavity
of radius R in a bulk nonmagnetic medium with permittivity
ε = ε(ω) as shown in Fig. 1. The respective scattering Green
tensor can be found in Ref. [33] (see also Appendix A4.2
of [10]):
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where η =
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k2 − q2 and k = ω/c. The cylindrical vector
wave functions inside the cavity are [10,33,34]
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)
eiqz. (2.14b)

The compact wave vector notation used here implies Ae
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Be
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=

AeBe + AoBo, etc., and the upper (lower) sign in (2.13)
corresponds to upper (lower) index e,o of the vector wave
functions. Jm are cylindrical Bessel functions of the first kind.
The reflection coefficients r can be found from a system of
linear equations as described in Ref. [33]. For the single-
interface cylindrical cavity in a bulk medium as considered
here, the result for the diagonal coefficients rM ≡ rMM and
rN ≡ rNN may be written as

rM,N = −H (1)
m (x)
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r̃M,N , (2.15)

with
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Here, x = ηR, x1 = η1R, η1 =
√

ε(ω)ω2/c2 − q2, ε = ε(ω)
is the permittivity of the cylinder, H (1)

m are Hankel functions
of the first kind, and we have defined the shorthand quantities

h̃ = h̃(x), h̃1 = h̃(x1), j̃ = j̃(x), j̃1 = j̃(x1), (2.18)

where the reduced Bessel functions denoted h̃(x) and j̃(x) are
2.19

h̃(x) = H (1)′
m (x)

H
(1)
m (x)

= d

dx
ln H (1)

m (x); (2.19a)

j̃(x) = J ′
m(x)

Jm(x)
= d

dx
ln Jm(x). (2.19b)

Note that j̃ is a real function for real arguments, whereas
h̃ is complex for real arguments. Explicit knowledge of
the off-diagonal reflection coefficients is not required; for
our purposes, it is sufficient to note that rMN = rNM (cf.
Refs. [10,33] for details).

Substituting the vector wave functions (2.14a) and (2.14b)
into Eq. (2.13), making use of rMN = rNM and the fact that
odd functions of q do not contribute to the integral, the Green
tensor is found to take the diagonal form

G(1)(r,r,ω)

= i

2π

∫ ∞

0
dq

∞∑
m=0

′
[(

m2

η2ρ2
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(
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m(ηρ)rN ẑẑ
]
. (2.20)
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For an isotropic particle, the resonant potential components
reduce to

U res
n (r) = μ0

3

∑
k

ω2
kn|dnk|2Tr Re G(1)(r,r,|ωkn|)

×{�(ωkn)n(ωkn) − �(ωnk)[n(ωnk) + 1]}. (2.9)

B. Environment-assisted transition rates

An atomic system initially prepared in a given energy
eigenstate |n〉 and placed in an environment of uniform
temperature T will undergo transitions to different eigenstates
due to absorption and emission of thermal photons. As shown
in Ref. [32], the total rate

�n(r) = �(0)
n + �(1)

n (r) (2.10)

for transitions out of state |n〉 consists of a free-space part
�(0)

n and an environment-induced part �(1)
n . In the perturbative

limit, these are given as

�(0)
n =

∑
k

|ωkn|3|dnk|2
3πh̄ε0h̄

{�(ωnk)[n(ωnk) + 1]

+�(ωkn)n(ωkn)} (2.11a)
and

�(1)
n (r) = 2

ε0h̄

∑
k

ω2
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c2
dnk · Im G(1)(r,r,|ωkn|) · dkn

×{�(ωnk)[n(ωnk) + 1] + �(ωkn)n(ωkn)}. (2.11b)

The environment-induced rate simplifies for an isotropic
particle to

�(1)
n (r) = 2

3ε0h̄

∑
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ω2
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c2
|dnk|2Tr Im G(1)(r,r,|ωkn|)

×{�(ωnk)[n(ωnk) + 1] + �(ωkn)n(ωkn)}. (2.12)

C. The Green tensor in a cylindrical cavity

We are going to study atomic systems placed at position
r = (ρ,ϕ,z) inside a circularly cylindrical free-space cavity
of radius R in a bulk nonmagnetic medium with permittivity
ε = ε(ω) as shown in Fig. 1. The respective scattering Green
tensor can be found in Ref. [33] (see also Appendix A4.2
of [10]):

G(1)(r,r,ω)

= i

4π

∫ ∞

−∞
dq
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′η−2
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rMMMe

omη(q)Mo
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emη(q)Me
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emη(q)

× Ne
omη(−q) + rNNNe

omη(q)No
emη(−q)

]
, (2.13)

where η =
√

k2 − q2 and k = ω/c. The cylindrical vector
wave functions inside the cavity are [10,33,34]

Me
omη(q) =
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ρ
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cos
sin nϕϕ̂
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cos
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kρ
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sin
cos mϕϕ̂

+ η2

k
J (ηρ)

cos
sin mϕẑ

)
eiqz. (2.14b)

The compact wave vector notation used here implies Ae
o
Be

o
=

AeBe + AoBo, etc., and the upper (lower) sign in (2.13)
corresponds to upper (lower) index e,o of the vector wave
functions. Jm are cylindrical Bessel functions of the first kind.
The reflection coefficients r can be found from a system of
linear equations as described in Ref. [33]. For the single-
interface cylindrical cavity in a bulk medium as considered
here, the result for the diagonal coefficients rM ≡ rMM and
rN ≡ rNN may be written as
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Note that j̃ is a real function for real arguments, whereas
h̃ is complex for real arguments. Explicit knowledge of
the off-diagonal reflection coefficients is not required; for
our purposes, it is sufficient to note that rMN = rNM (cf.
Refs. [10,33] for details).

Substituting the vector wave functions (2.14a) and (2.14b)
into Eq. (2.13), making use of rMN = rNM and the fact that
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tensor is found to take the diagonal form
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our purposes, it is sufficient to note that rMN = rNM (cf.
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Substituting the vector wave functions (2.14a) and (2.14b)
into Eq. (2.13), making use of rMN = rNM and the fact that
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The trace of the Green tensor required for isotropic molecules
hence reads

Tr G(1)(r,r,ω)

= i

2π

∫ ∞

0
dq

∞∑
m=0

′
{(

rM + q2

k2
rN

)

×
[

m2

η2ρ2
J 2

m(ηρ) + J ′2
m (ηρ)

]
+ rN

η2

k2
J 2

m(ηρ)

}
. (2.21)

It should be noted that the terms containing m2/η2ρ2 exhibit
third-order poles at q = k, where η vanishes. The physically
correct treatment of such poles consists of adding a small
imaginary part to the free-space wave vector k = ω/c + iδ

and performing the limit δ → 0. In this way, the pole is
circumvented from below as q is integrated along the positive
real axis [see Fig. 2(a)]. Correspondingly, η is integrated along
a part of the real axis, around the singularity at the origin and
along the positive imaginary axis [Fig. 2(c)]. Recall that in
planar geometries the Green tensor at real frequencies may
be separated into a propagating part (q < k), which exhibits
an oscillating behavior due to interference of incoming and
reflected photons and an evanescent part (q > k), which falls
off monotonously away from a surface [13]. In the present case,
however, such a distinction cannot be made in a straightforward
manner due to the pole at the separation point q = k; the
individual propagating and evanescent parts would diverge.

For numerical purposes, the original integration contour
is unfavorable since it involves subtraction of almost equal
numbers, associated with a considerable loss of accuracy.
Instead, we rotate the contour of the integral over the
variable q to lie along a line at a small negative angle θ ,
below the real axis as shown in Fig. 2(b). As shown in
Fig. 2(d), the corresponding path for η is slightly shifted
with respect to the original one but still contained within the
first quadrant: When θ � 1, the point of closest approach
to the pole at η = 0 is approximately θ (1 + i) and the
integration path thence approaches an asymptote at an angle
π/2 − θ .

q=k Re(q)

Im(q)

θ

)b()a(

k

θ

≈θ

≈θ

)d()c(

q=0q=0q=k

Re(q)

Im(q)

Im(η)

Re(η)

Im(η)

Re(η)
k

q=k

FIG. 2. (Color online) (a, b) Rotation of the q-integration path by
an angle θ . (c, d) Resulting paths for η.

We show in Sec. III B that all the poles of the reflection
coefficients lie below the real η axis when |ε| < ∞, approach-
ing the real axis from below in the perfect conductor limit.
There are no other possible singularities in the integrands in
Eqs. (2.20) and (2.21), so the area contained between the
original and deformed integration contours for η is free of
poles. As the integrands vanish along a path at imaginary
infinity connecting the two paths, they are equivalent by virtue
of Cauchy’s theorem as long as θ < π/2; we typically choose
θ = 0.1 rad. An additional benifit of the rotated integration
path is the fact that the integral becomes exponentially
convergent.

The Green tensor becomes particularly simple on the cavity
axis, ρ = 0 where only a few of the functions Jm(ηρ), J ′

m(ηρ)
are different from zero. We have for m = 0,1,2, . . .

m2

η2ρ2
J 2

m(ηρ) → 0, 1
4 ,0,0, . . . , (2.22a)

J ′2
m (ηρ) → 0, 1

4 ,0,0, . . . , (2.22b)

J 2
m(ηρ) → 1,0,0,0, . . . , (2.22c)

so that

G(1)(r,r,ω)|ρ=0 = i

8π

∫ ∞

0
dq

[
2η2

k2
rm=0
N ẑẑ

+
(

rm=1
M + q2

k2
rm=1
N

)
(�̂�̂ + ϕ̂ϕ̂)

]
(2.23)

and

Tr G(1)(r,r,ω)ρ=0

= i

4π

∫ ∞

0
dq

(
η2

k2
rm=0
N + rm=1

M + q2

k2
rm=1
N

)
. (2.24)

Finally, let us briefly discuss the Green tensor at purely
imaginary frequencies ω = iξ as required for the nonresonant
potentials (2.3) and (2.5). We have η = i

√
ξ 2/c2 + q2 ≡ iζ , so

the arguments of the cylindrical Bessel and Hankel functions
appearing in the reflection coefficients (2.15)–(2.17) become
purely imaginary. One has

Jm(iy) = imIm(y), (2.25a)

J ′
m(iy) = im−1I ′

m(y), (2.25b)

H (1)
m (iy) = 2

π
i−(m+1)Km(y), (2.25c)

H (1)′
m (iy) = 2

π
i−mK ′

m(y); (2.25d)

hence, the reflection coefficients become (σ = M,N ),

rσ (iξ ) = 2i

π
(−1)m

Km(y)

Im(y)
r̃σ (iξ ). (2.26)

The reduced reflection coefficients are found from (2.16)
with the substitutions x → iy = iζR, x1 → iy1 = iζ1R with
ζ1 =

√
ε(iξ )ξ 2/c2 + q2, and j̃ → ı̃/i,h̃ → k̃/ i with reduced

modified Bessel functions analogous to (2.19):

ı̃(y) = I ′
n(y)

In(y)
; k̃(y) = K ′

n(y)

Kn(y)
.
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i−(m+1)Km(y), (2.25c)

H (1)′
m (iy) = 2

π
i−mK ′

m(y); (2.25d)

hence, the reflection coefficients become (σ = M,N ),

rσ (iξ ) = 2i

π
(−1)m

Km(y)

Im(y)
r̃σ (iξ ). (2.26)

The reduced reflection coefficients are found from (2.16)
with the substitutions x → iy = iζR, x1 → iy1 = iζ1R with
ζ1 =

√
ε(iξ )ξ 2/c2 + q2, and j̃ → ı̃/i,h̃ → k̃/ i with reduced

modified Bessel functions analogous to (2.19):

ı̃(y) = I ′
n(y)

In(y)
; k̃(y) = K ′

n(y)

Kn(y)
.
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The trace of the Green tensor required for isotropic molecules
hence reads

Tr G(1)(r,r,ω)

= i

2π

∫ ∞

0
dq

∞∑
m=0

′
{(

rM + q2

k2
rN

)

×
[

m2

η2ρ2
J 2

m(ηρ) + J ′2
m (ηρ)

]
+ rN

η2

k2
J 2

m(ηρ)

}
. (2.21)

It should be noted that the terms containing m2/η2ρ2 exhibit
third-order poles at q = k, where η vanishes. The physically
correct treatment of such poles consists of adding a small
imaginary part to the free-space wave vector k = ω/c + iδ

and performing the limit δ → 0. In this way, the pole is
circumvented from below as q is integrated along the positive
real axis [see Fig. 2(a)]. Correspondingly, η is integrated along
a part of the real axis, around the singularity at the origin and
along the positive imaginary axis [Fig. 2(c)]. Recall that in
planar geometries the Green tensor at real frequencies may
be separated into a propagating part (q < k), which exhibits
an oscillating behavior due to interference of incoming and
reflected photons and an evanescent part (q > k), which falls
off monotonously away from a surface [13]. In the present case,
however, such a distinction cannot be made in a straightforward
manner due to the pole at the separation point q = k; the
individual propagating and evanescent parts would diverge.

For numerical purposes, the original integration contour
is unfavorable since it involves subtraction of almost equal
numbers, associated with a considerable loss of accuracy.
Instead, we rotate the contour of the integral over the
variable q to lie along a line at a small negative angle θ ,
below the real axis as shown in Fig. 2(b). As shown in
Fig. 2(d), the corresponding path for η is slightly shifted
with respect to the original one but still contained within the
first quadrant: When θ � 1, the point of closest approach
to the pole at η = 0 is approximately θ (1 + i) and the
integration path thence approaches an asymptote at an angle
π/2 − θ .
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FIG. 2. (Color online) (a, b) Rotation of the q-integration path by
an angle θ . (c, d) Resulting paths for η.

We show in Sec. III B that all the poles of the reflection
coefficients lie below the real η axis when |ε| < ∞, approach-
ing the real axis from below in the perfect conductor limit.
There are no other possible singularities in the integrands in
Eqs. (2.20) and (2.21), so the area contained between the
original and deformed integration contours for η is free of
poles. As the integrands vanish along a path at imaginary
infinity connecting the two paths, they are equivalent by virtue
of Cauchy’s theorem as long as θ < π/2; we typically choose
θ = 0.1 rad. An additional benifit of the rotated integration
path is the fact that the integral becomes exponentially
convergent.

The Green tensor becomes particularly simple on the cavity
axis, ρ = 0 where only a few of the functions Jm(ηρ), J ′

m(ηρ)
are different from zero. We have for m = 0,1,2, . . .
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J 2

m(ηρ) → 0, 1
4 ,0,0, . . . , (2.22a)
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4 ,0,0, . . . , (2.22b)
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m(ηρ) → 1,0,0,0, . . . , (2.22c)
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. (2.24)

Finally, let us briefly discuss the Green tensor at purely
imaginary frequencies ω = iξ as required for the nonresonant
potentials (2.3) and (2.5). We have η = i
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poles. As the integrands vanish along a path at imaginary
infinity connecting the two paths, they are equivalent by virtue
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θ = 0.1 rad. An additional benifit of the rotated integration
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Using the reflection coefficients (2.26), the Green tensor (2.20)
at purely imaginary frequencies is seen to be purely real and
given by (κ = ξ/c)

G(1)(r,r,iξ ) = 1

π2

∫ ∞

0
dq

∞∑
m=0

′ Km(ζR)

Im(ζR)

×
[(

m2

ζ 2ρ2
I 2
m(ζρ)r̃M − q2

κ2
I ′2
m (ζρ)r̃N

)
�̂�̂

+
(

I ′2
m (ζρ)r̃M − m2q2

κ2ζ 2ρ2
I 2
m(ζρ)r̃N

)
ϕ̂ϕ̂

− ζ 2

κ2
I 2
m(ζρ)r̃N ẑẑ

]
. (2.27)

Correspondingly, its trace reads

Tr G(1)(ρ,ρ,iξ ) = 1

π2

∫ ∞

0
dq

∞∑
m=0

′
[(

r̃M − q2

κ2
r̃N

)

×
(

m2

ζ 2ρ2
I 2
m(ζρ) + I ′2

m (ζρ)

)

− ζ 2

κ2
r̃N I 2

m(ζρ)

]
Km(ζR)

Im(ζR)
. (2.28)

Note that for purely imaginary frequencies, the q integration
in the Green tensor is unproblematic as the integrand remains
finite along the real q axis.

III. RESONANT RADII

Combining the general expressions for the CP potential
given in Sec. II A with the Green tensor of the cylindrical
cavity as laid out in Sec. II C, we can explicitly calculate
the full potential of any particular atom or molecule in a
given state placed in a cavity of given size and material. Such
examples, which require a numerical analysis, will be given in
Sec. V.

Our main intention is to enhance the resonant potential by
means of the cavity. To that end, it is worth recalling the case
of the planar cavity: The resonant CP potential of an atom
placed between two plane surfaces is enhanced for certain
interplate separations [27]. For a given transition frequency
there exists a series of such resonant separations corresponding
to integer multiples of the atomic transition wavelength. In
such a case, the transition is (near-)resonant with a standing-
wave mode of the planar cavity. Mathematically speaking,
the enhancement results from a closest matching of the
transition frequency with a pole of the scattering Green
tensor.

Similarly, for the cylindrical cavity we find that for a given
transition frequency there exists a series of discrete radii such
that the transition is near-resonant with one of the cavity
modes. In this section, we explore analytically the structure
of these resonances.

A. Perfect reflector

Let us begin with the limit |ε| → ∞ of a perfectly
conducting cavity. For large |ε|, the leading order terms of
the coefficients A and BM,N,D in Eqs. (2.17) read

A ∼ −m2(kR)2(qR)2ε2 + O(ε), (3.1a)

BM ∼ −(kR)3(ηR)3h̃1h̃ε5/2 + O(ε2), (3.1b)

BN ∼ BD ∼ −(kR)3(ηR)3h̃1j̃ε
5/2 + O(ε2). (3.1c)

Hence, in the limit |ε| → ∞, Eq. (2.16) simplifies to

r̃M

|ε|→∞−→ h̃

j̃
; r̃N

|ε|→∞−→ 1, (3.2)

and so the reflection coefficients (2.15) become [34]

rM

|ε|→∞−→ −H (1)′
m (x)

J ′
m(x)

; rN

|ε|→∞−→ −H (1)
m (x)

Jm(x)
. (3.3)

The potential (2.2) diverges, and is thus truly resonant,
when at least one of these coefficients has a pole at q = 0.
Since x = ηR = kR for h = 0, it is clear that resonances occur
in the perfectly reflecting limit when either Jm(kR) = 0 or
J ′

m(kR) = 0, that is, when the radius equals one of the radii
given as

R
(′)
mj = c

ω
j

(′)
mj , (3.4)

where jmj and j ′
mj are the j th zero of Jm(x) and J ′

m(x),

respectively (only zeros j
(′)
mj > 0 are considered).

For each mode m and each polarization, there is hence
a number of possible radii Rmj leading to a resonant en-
hancement of the CP potential. The strongest resonance is
that corresponding to the smallest resonant radius, which is
R′

11, corresponding to the first zero of J ′
1, j ′

11 ≈ 1.841 183 8. If
the dominant transition |n〉 → |k〉 is a downward one, that is,
ωkn < 0, this resonance corresponds to a potential minimum
which can act as a guiding potential. For an upward transition
(such as will be the case, e.g., for a ground-state molecule), the
strongest resonance which corresponds to a potential minimum
in the cylinder center is R = R11 = R′

01, which happens to be
a double resonance since j11 = j ′

01 ≈ 3.831 706 0. We will
analyze these examples further in Sec. V.

B. Good conductor

In reality, any metal has a finite conductivity so that |ε| <

∞. As we now show, this results in a shifting of the values of
kR which give poles at q = 0 away from the zeros of the Bessel
functions. As a consequence, the optimal radii for enhancing
the CP potential or transition rates deviate from their perfect-
conductor values as given by Eq. (3.4). We derive approximate
formulas for the new optimal radii, valid for good conductors.

In the following we consider a metal described by the Drude
model,

ε(ω) = 1 − ω2
p

ω(ω + iγ )
= 1 − ω2

p

ω2 + γ 2
+ i

γ

ω

ω2
p

ω2 + γ 2
,

(3.5)

where ωp is the plasma frequency and γ is the relaxation
frequency. For good conductors one has ωp � γ , and we
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modes. In this section, we explore analytically the structure
of these resonances.

A. Perfect reflector

Let us begin with the limit |ε| → ∞ of a perfectly
conducting cavity. For large |ε|, the leading order terms of
the coefficients A and BM,N,D in Eqs. (2.17) read

A ∼ −m2(kR)2(qR)2ε2 + O(ε), (3.1a)

BM ∼ −(kR)3(ηR)3h̃1h̃ε5/2 + O(ε2), (3.1b)

BN ∼ BD ∼ −(kR)3(ηR)3h̃1j̃ε
5/2 + O(ε2). (3.1c)

Hence, in the limit |ε| → ∞, Eq. (2.16) simplifies to

r̃M

|ε|→∞−→ h̃

j̃
; r̃N

|ε|→∞−→ 1, (3.2)

and so the reflection coefficients (2.15) become [34]

rM

|ε|→∞−→ −H (1)′
m (x)

J ′
m(x)

; rN

|ε|→∞−→ −H (1)
m (x)

Jm(x)
. (3.3)

The potential (2.2) diverges, and is thus truly resonant,
when at least one of these coefficients has a pole at q = 0.
Since x = ηR = kR for h = 0, it is clear that resonances occur
in the perfectly reflecting limit when either Jm(kR) = 0 or
J ′

m(kR) = 0, that is, when the radius equals one of the radii
given as

R
(′)
mj = c

ω
j

(′)
mj , (3.4)

where jmj and j ′
mj are the j th zero of Jm(x) and J ′

m(x),

respectively (only zeros j
(′)
mj > 0 are considered).

For each mode m and each polarization, there is hence
a number of possible radii Rmj leading to a resonant en-
hancement of the CP potential. The strongest resonance is
that corresponding to the smallest resonant radius, which is
R′

11, corresponding to the first zero of J ′
1, j ′

11 ≈ 1.841 183 8. If
the dominant transition |n〉 → |k〉 is a downward one, that is,
ωkn < 0, this resonance corresponds to a potential minimum
which can act as a guiding potential. For an upward transition
(such as will be the case, e.g., for a ground-state molecule), the
strongest resonance which corresponds to a potential minimum
in the cylinder center is R = R11 = R′

01, which happens to be
a double resonance since j11 = j ′

01 ≈ 3.831 706 0. We will
analyze these examples further in Sec. V.

B. Good conductor

In reality, any metal has a finite conductivity so that |ε| <

∞. As we now show, this results in a shifting of the values of
kR which give poles at q = 0 away from the zeros of the Bessel
functions. As a consequence, the optimal radii for enhancing
the CP potential or transition rates deviate from their perfect-
conductor values as given by Eq. (3.4). We derive approximate
formulas for the new optimal radii, valid for good conductors.

In the following we consider a metal described by the Drude
model,

ε(ω) = 1 − ω2
p

ω(ω + iγ )
= 1 − ω2

p

ω2 + γ 2
+ i

γ

ω

ω2
p

ω2 + γ 2
,

(3.5)

where ωp is the plasma frequency and γ is the relaxation
frequency. For good conductors one has ωp � γ , and we
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]
. (2.27)
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assume this is true in the following. Since we are considering
transitions in Rydberg atoms or molecules, we will restrict our
interest to low frequencies and therefore also assume ω � ωp.
Under these assumptions, the following is true:

Re ε < 0; Im ε > 0; |Re ε|,Im ε � 1. (3.6)

Let us consider the reflection coefficients rM,N as given
by Eqs. (2.15)–(2.17) once more. We are looking for the
complex resonant value of kR which corresponds to a zero
of the denominator of rM,N when q = 0. The coefficient A

vanishes quadratically for small q, so we can set A = 0 in the
following and consider the coefficients BM,N,D . The sought
value of kR is hence the solution of the equation BD|q=0 = 0,1

which may be written as

h̃(
√

εkR)

j̃(kR)
+ j̃(kR)

h̃(
√

εkR)
= √

ε + 1√
ε
. (3.7)

The two roots of this second-order equation in j̃(kR) give all
the resonances since BD is the denominator of both reduced
reflection coefficients for q = 0. The perfect conductor limit
|ε| → ∞ is easily recovered from this equation, in which case
the solutions j̃(kR) = ∞ and j̃(kR) = 0 are just the solutions
(3.4), that is, kR = jmn and kR = j ′

mn.
Approximate solutions to (3.7) when |ε| is large but finite

are straightforward to find. We write

kR = j
(′)
mj + δ(′), (3.8)

where δ(′) are small complex numbers. The prime corresponds
to solutions close to a zero of J ′

m. Solving Eq. (3.7) to leading
order in ε−1 then gives

δ ≈ − i√
ε

; (3.9a)

δ′ = δ′
mj ≈ Jm(j ′

mj )

J ′′
m(j ′

mj )

i√
ε

; (3.9b)

note that h̃(z) ∼ i + O(z−1),|z| → ∞ (cf. e.g., [35],
Sec. 9.2). The fraction Jm(j ′

mj )/J ′′
m(j ′

mj ) is a real and negative
number of order unity which tends asymptotically to −1 for
large arguments. For a good conductor (3.6), ε is in the second
quadrant of the complex plane, so

√
ε is in the first quadrant

for an absorbing medium, and i/
√

ε is in the first complex
quadrant. The shifts δ and δ′ to the poles at q = 0 lie in the
third quadrant.

Similarly, one can show that all poles of the integrand of
the scattering Green tensor of a well conducting surface are
displaced from the Bessel zeros ηR = jmj and ηR = j ′

mj by
small quantities which lie in the third complex quadrant. This
means that the poles of the reflection coefficients all lie in the
lower half of the complex η plane when |ε| < ∞, justifying the
rotation of q-integral path mentioned in Sec. II C and shown
in Fig. 2.

1One may note here that the original pole due to the zero of Jm(x)
in the prefactor (2.15) is canceled by the presence of j̃2 in the
denominator, whereas j̃ only enters to linear order in the numerator.
This is how the pole is moved to the value of kR which solves
Eq. (3.7).

For real frequencies, the cavity radius can never be chosen
such that it lies exactly on one of the complex-valued
resonances. Instead, we will derive optimal real radii close
to the resonances that maximize the real or imaginary parts of
the Green tensor. As these optimal radii turn out to be different
for the real vs imaginary parts, we have to distinguish between
radii which maximize the resonant potential (2.7) and those
which maximize the transition rate (2.11b).

C. Optimal radii for enhancing the potential

Consider first a resonance associated with a pole of rN . We
represent the pole in the form (3.8) and let q and δ be small
so that

x = ηR ≈ jnj + δ − 1

2
jnj

q2

k2
.

Keeping only leading orders in the small quantities δ, q2, and
1/

√
ε, that is, using Eqs. (3.1a)–(3.1c) with

BN ∼ −(kR)3(ηR)3h̃1j̃ε
5/2 + (kR)4(ηR)2j̃2ε2 + O(ε3/2),

(3.10)

the reflection coefficient as given by (2.15)–(2.17) becomes

rN ≈ i
√

εH (1)
m (x)

i
√

εJm(x) − J ′
m(x)

≈ − iYm(jmj )

J ′
m(jmj )

1

q2jmj/(2k2) − ζ
, (3.11)

with

ζ = δ + i/
√

ε. (3.12)

We have used that h̃1 ≈ i because of its argument being large
with positive imaginary part (see the asymptotic expansions,
Sec. 9.2 of [35]) and noted that H (1)

m (x) ≈ iYn(x).
Now we note that in the integrand of the integral (2.20),

the term which resonates is the last one, which does not
have a prefactor q2. For this term there is no other resonating
structures in the integrand, and we can simply conclude that
close to a strong resonance

U res
n (r) ∝ Re G(r,r,ω) ∝ Im

∫ ∞

0
dqrN

∝ Re
∫ ∞

0

dq

q2 − ζ
∝ Re

√
1

−ζ
∝ Im

√
1

ζ
, (3.13)

where we have made the substitution q → √
2/jmjq/k at the

beginning of the second line. Explicitly, we have

Im

√
1

ζ
= −|ζ |−1/2 sin

(
1

2
arctan

Im ζ

Re ζ

)

= −1√
2 4
√

Re2ζ + Im2ζ

√
1 − Re ζ√

Re2ζ + Im2ζ
. (3.14)

where Re ζ = δ − Im{ε−1/2} and Imζ = Re{ε−1/2}. Differen-
tiating this result with respect to δ, we find that the maximum
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Re2ζ + Im2ζ

√
1 − Re ζ√

Re2ζ + Im2ζ
. (3.14)

where Re ζ = δ − Im{ε−1/2} and Imζ = Re{ε−1/2}. Differen-
tiating this result with respect to δ, we find that the maximum
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assume this is true in the following. Since we are considering
transitions in Rydberg atoms or molecules, we will restrict our
interest to low frequencies and therefore also assume ω � ωp.
Under these assumptions, the following is true:

Re ε < 0; Im ε > 0; |Re ε|,Im ε � 1. (3.6)

Let us consider the reflection coefficients rM,N as given
by Eqs. (2.15)–(2.17) once more. We are looking for the
complex resonant value of kR which corresponds to a zero
of the denominator of rM,N when q = 0. The coefficient A

vanishes quadratically for small q, so we can set A = 0 in the
following and consider the coefficients BM,N,D . The sought
value of kR is hence the solution of the equation BD|q=0 = 0,1

which may be written as

h̃(
√

εkR)

j̃(kR)
+ j̃(kR)

h̃(
√

εkR)
= √

ε + 1√
ε
. (3.7)

The two roots of this second-order equation in j̃(kR) give all
the resonances since BD is the denominator of both reduced
reflection coefficients for q = 0. The perfect conductor limit
|ε| → ∞ is easily recovered from this equation, in which case
the solutions j̃(kR) = ∞ and j̃(kR) = 0 are just the solutions
(3.4), that is, kR = jmn and kR = j ′

mn.
Approximate solutions to (3.7) when |ε| is large but finite

are straightforward to find. We write

kR = j
(′)
mj + δ(′), (3.8)

where δ(′) are small complex numbers. The prime corresponds
to solutions close to a zero of J ′

m. Solving Eq. (3.7) to leading
order in ε−1 then gives

δ ≈ − i√
ε

; (3.9a)

δ′ = δ′
mj ≈ Jm(j ′

mj )

J ′′
m(j ′

mj )

i√
ε

; (3.9b)

note that h̃(z) ∼ i + O(z−1),|z| → ∞ (cf. e.g., [35],
Sec. 9.2). The fraction Jm(j ′

mj )/J ′′
m(j ′

mj ) is a real and negative
number of order unity which tends asymptotically to −1 for
large arguments. For a good conductor (3.6), ε is in the second
quadrant of the complex plane, so

√
ε is in the first quadrant

for an absorbing medium, and i/
√

ε is in the first complex
quadrant. The shifts δ and δ′ to the poles at q = 0 lie in the
third quadrant.

Similarly, one can show that all poles of the integrand of
the scattering Green tensor of a well conducting surface are
displaced from the Bessel zeros ηR = jmj and ηR = j ′

mj by
small quantities which lie in the third complex quadrant. This
means that the poles of the reflection coefficients all lie in the
lower half of the complex η plane when |ε| < ∞, justifying the
rotation of q-integral path mentioned in Sec. II C and shown
in Fig. 2.

1One may note here that the original pole due to the zero of Jm(x)
in the prefactor (2.15) is canceled by the presence of j̃2 in the
denominator, whereas j̃ only enters to linear order in the numerator.
This is how the pole is moved to the value of kR which solves
Eq. (3.7).

For real frequencies, the cavity radius can never be chosen
such that it lies exactly on one of the complex-valued
resonances. Instead, we will derive optimal real radii close
to the resonances that maximize the real or imaginary parts of
the Green tensor. As these optimal radii turn out to be different
for the real vs imaginary parts, we have to distinguish between
radii which maximize the resonant potential (2.7) and those
which maximize the transition rate (2.11b).

C. Optimal radii for enhancing the potential

Consider first a resonance associated with a pole of rN . We
represent the pole in the form (3.8) and let q and δ be small
so that

x = ηR ≈ jnj + δ − 1

2
jnj

q2

k2
.

Keeping only leading orders in the small quantities δ, q2, and
1/

√
ε, that is, using Eqs. (3.1a)–(3.1c) with

BN ∼ −(kR)3(ηR)3h̃1j̃ε
5/2 + (kR)4(ηR)2j̃2ε2 + O(ε3/2),

(3.10)

the reflection coefficient as given by (2.15)–(2.17) becomes

rN ≈ i
√

εH (1)
m (x)

i
√

εJm(x) − J ′
m(x)

≈ − iYm(jmj )

J ′
m(jmj )

1

q2jmj/(2k2) − ζ
, (3.11)

with

ζ = δ + i/
√

ε. (3.12)

We have used that h̃1 ≈ i because of its argument being large
with positive imaginary part (see the asymptotic expansions,
Sec. 9.2 of [35]) and noted that H (1)

m (x) ≈ iYn(x).
Now we note that in the integrand of the integral (2.20),

the term which resonates is the last one, which does not
have a prefactor q2. For this term there is no other resonating
structures in the integrand, and we can simply conclude that
close to a strong resonance

U res
n (r) ∝ Re G(r,r,ω) ∝ Im

∫ ∞

0
dqrN

∝ Re
∫ ∞

0

dq

q2 − ζ
∝ Re

√
1

−ζ
∝ Im

√
1

ζ
, (3.13)

where we have made the substitution q → √
2/jmjq/k at the

beginning of the second line. Explicitly, we have

Im

√
1

ζ
= −|ζ |−1/2 sin

(
1

2
arctan

Im ζ

Re ζ

)

= −1√
2 4
√

Re2ζ + Im2ζ

√
1 − Re ζ√

Re2ζ + Im2ζ
. (3.14)

where Re ζ = δ − Im{ε−1/2} and Imζ = Re{ε−1/2}. Differen-
tiating this result with respect to δ, we find that the maximum
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lies at

Re ζ = −Im ζ/
√

3, (3.15)

so that

δ ≈ Im{ε−1/2} − 1√
3

Re{ε−1/2}. (3.16)

Note that δ is independent of m and j to leading order in
the large parameter ε. The resonant radii associated with
resonances of rN are hence given by

kR ≈ jmj + Im{ε−1/2} − 1√
3

Re{ε−1/2}. (3.17)

For resonances due to rM , we present the poles of J ′
m(x) in

the form (3.8). A virtually identical procedure then leads to

δ′ = δ′
mj ≈ −Jm(j ′

mj )

J ′′
m(j ′

mj )
δ. (3.18)

Consequently, the respective resonant radii read

kR ≈ j ′
jm − Jm(j ′

mj )

J ′′
m(j ′

mj )

(
Im{ε−1/2} − 1√

3
Re{ε−1/2}

)
. (3.19)

As a numerical example, take Rb in its 32s1/2 Ryd-
berg state whose strongest downward |n〉 = 32s1/2 → |k〉 =
31p3/2 transition has frequency ωkn ≈ −9.013 × 1011 rad/s
and a cylinder made of Au using ωp ≈ 1.4 × 1016, γ ≈
5.4 × 1013 [36]. In this case, the shifts of the maxima away
from the Bessel zero for for resonances due to rN are found to
be δ ≈ −0.00056.

In Fig. 3, we show the potential as a function of radius
close to the resonance at kR01 ≈ j01, resonating with the
downward transition to 31p3/2. More details on the specifics
of CP potentials on Rydberg atoms are found in Ref. [29]
and summarized in Sec. V. It is interesting to note that even
though gold is a good conductor whose permittivity is much
greater than unity as assumed previously, the shift of the
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FIG. 3. (Color online) The potential of Rydberg Rb in its 32s1/2

state at the center (ρ = 0) of a Au cavity as a function of radius close
to the resonance corresponding to the first zero j01 ≈ 2.4 of J0. The
cavity resonantly enhances the contribution from the 32s1/2 → 31p3/2

transition. R01 = 799.9 μm as given by Eq. (3.4) is the corresponding
perfect conductor resonant radius.

resonant radius away from the perfect-conductor result is not
negligible. We see in Fig. 3 that the potential at the optimal
radius is about a factor 2.5 greater than its value for kR01 = j01.
The resonant radius is given with excellent approximation by
Eq. (3.17), which for this example predicts the maximum at
R − R01 ≈ −187 nm.

We note furthermore that the width of the radius resonances
is on the order of 500 nm, which is expected to be well within
the accuracy obtainable for production of pipes with diameters
on the order of hundreds of micrometers. It is also much wider
than surface roughness amplitudes of good metal surfaces,
indicating that the associated diminishing of the CP-potential
enhancement is not expected to be important. The narrowness
of the peaks are thus on the order of 1/3000th of the cylinder
radius, and we do not expect observation and utilization of
the resonant behavior to be hampered by issues of production
accuracy.

D. Optimal radii for enhancing transition rates

Optimal radii for resonantly enhancing transition rates in
a conducting cavity can be derived in close analogy to the
previous section. We again start with resonances of rN as
approximated by Eq. (3.11). The transition rates (2.11b) close
to a resonance are found just as in (3.13) to be proportional to

�(1)
n (r) ∝ Im G(r,r,ω) ∝ Re

√
1

ζ
, (3.20)

where

Re

√
1

ζ
= |ζ |−1/2 cos

(
1

2
arctan

Im ζ

Re ζ

)

= 1√
2 4
√

Re2ζ + Im2ζ

√
1 + Re ζ√

Re2ζ + Im2ζ
. (3.21)

The maximum of the preceding function is again found
by differentiation with respect to δ. It now lies at Re ζ =
Im ζ/

√
3, so that

δ ≈ Im{ε−1/2} + 1√
3

Re{ε−1/2} (3.22)

is again independent of m and j to leading order in ε. The
resonant radii associated with resonances of rN for enhancing
transition rates

kR ≈ jmj + Im{ε−1/2} + 1√
3

Re{ε−1/2} (3.23)

are thus different from the corresponding radii (3.17) for
enhancing the CP potential.

As for the potential, the resonances due to rM are found to
be maximal at

δ′
mj ≈ −Jm(j ′

mj )

J ′′
m(j ′

mj )
δ; (3.24)

that is,

kR ≈ j ′
jm − Jm(j ′

mj )

J ′′
m(j ′

mj )

(
Im{ε−1/2} + 1√

3
Re{ε−1/2}

)
. (3.25)
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lies at

Re ζ = −Im ζ/
√

3, (3.15)

so that

δ ≈ Im{ε−1/2} − 1√
3

Re{ε−1/2}. (3.16)

Note that δ is independent of m and j to leading order in
the large parameter ε. The resonant radii associated with
resonances of rN are hence given by

kR ≈ jmj + Im{ε−1/2} − 1√
3

Re{ε−1/2}. (3.17)

For resonances due to rM , we present the poles of J ′
m(x) in

the form (3.8). A virtually identical procedure then leads to

δ′ = δ′
mj ≈ −Jm(j ′

mj )

J ′′
m(j ′

mj )
δ. (3.18)

Consequently, the respective resonant radii read

kR ≈ j ′
jm − Jm(j ′

mj )

J ′′
m(j ′

mj )

(
Im{ε−1/2} − 1√

3
Re{ε−1/2}

)
. (3.19)

As a numerical example, take Rb in its 32s1/2 Ryd-
berg state whose strongest downward |n〉 = 32s1/2 → |k〉 =
31p3/2 transition has frequency ωkn ≈ −9.013 × 1011 rad/s
and a cylinder made of Au using ωp ≈ 1.4 × 1016, γ ≈
5.4 × 1013 [36]. In this case, the shifts of the maxima away
from the Bessel zero for for resonances due to rN are found to
be δ ≈ −0.00056.

In Fig. 3, we show the potential as a function of radius
close to the resonance at kR01 ≈ j01, resonating with the
downward transition to 31p3/2. More details on the specifics
of CP potentials on Rydberg atoms are found in Ref. [29]
and summarized in Sec. V. It is interesting to note that even
though gold is a good conductor whose permittivity is much
greater than unity as assumed previously, the shift of the
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FIG. 3. (Color online) The potential of Rydberg Rb in its 32s1/2

state at the center (ρ = 0) of a Au cavity as a function of radius close
to the resonance corresponding to the first zero j01 ≈ 2.4 of J0. The
cavity resonantly enhances the contribution from the 32s1/2 → 31p3/2

transition. R01 = 799.9 μm as given by Eq. (3.4) is the corresponding
perfect conductor resonant radius.

resonant radius away from the perfect-conductor result is not
negligible. We see in Fig. 3 that the potential at the optimal
radius is about a factor 2.5 greater than its value for kR01 = j01.
The resonant radius is given with excellent approximation by
Eq. (3.17), which for this example predicts the maximum at
R − R01 ≈ −187 nm.

We note furthermore that the width of the radius resonances
is on the order of 500 nm, which is expected to be well within
the accuracy obtainable for production of pipes with diameters
on the order of hundreds of micrometers. It is also much wider
than surface roughness amplitudes of good metal surfaces,
indicating that the associated diminishing of the CP-potential
enhancement is not expected to be important. The narrowness
of the peaks are thus on the order of 1/3000th of the cylinder
radius, and we do not expect observation and utilization of
the resonant behavior to be hampered by issues of production
accuracy.

D. Optimal radii for enhancing transition rates

Optimal radii for resonantly enhancing transition rates in
a conducting cavity can be derived in close analogy to the
previous section. We again start with resonances of rN as
approximated by Eq. (3.11). The transition rates (2.11b) close
to a resonance are found just as in (3.13) to be proportional to

�(1)
n (r) ∝ Im G(r,r,ω) ∝ Re

√
1

ζ
, (3.20)

where

Re

√
1

ζ
= |ζ |−1/2 cos

(
1

2
arctan

Im ζ

Re ζ

)

= 1√
2 4
√

Re2ζ + Im2ζ

√
1 + Re ζ√

Re2ζ + Im2ζ
. (3.21)

The maximum of the preceding function is again found
by differentiation with respect to δ. It now lies at Re ζ =
Im ζ/

√
3, so that

δ ≈ Im{ε−1/2} + 1√
3

Re{ε−1/2} (3.22)

is again independent of m and j to leading order in ε. The
resonant radii associated with resonances of rN for enhancing
transition rates

kR ≈ jmj + Im{ε−1/2} + 1√
3

Re{ε−1/2} (3.23)

are thus different from the corresponding radii (3.17) for
enhancing the CP potential.

As for the potential, the resonances due to rM are found to
be maximal at

δ′
mj ≈ −Jm(j ′

mj )

J ′′
m(j ′

mj )
δ; (3.24)

that is,

kR ≈ j ′
jm − Jm(j ′

mj )

J ′′
m(j ′

mj )

(
Im{ε−1/2} + 1√

3
Re{ε−1/2}

)
. (3.25)
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lies at

Re ζ = −Im ζ/
√

3, (3.15)

so that

δ ≈ Im{ε−1/2} − 1√
3

Re{ε−1/2}. (3.16)

Note that δ is independent of m and j to leading order in
the large parameter ε. The resonant radii associated with
resonances of rN are hence given by

kR ≈ jmj + Im{ε−1/2} − 1√
3

Re{ε−1/2}. (3.17)

For resonances due to rM , we present the poles of J ′
m(x) in

the form (3.8). A virtually identical procedure then leads to

δ′ = δ′
mj ≈ −Jm(j ′

mj )

J ′′
m(j ′

mj )
δ. (3.18)

Consequently, the respective resonant radii read

kR ≈ j ′
jm − Jm(j ′

mj )

J ′′
m(j ′

mj )

(
Im{ε−1/2} − 1√

3
Re{ε−1/2}

)
. (3.19)

As a numerical example, take Rb in its 32s1/2 Ryd-
berg state whose strongest downward |n〉 = 32s1/2 → |k〉 =
31p3/2 transition has frequency ωkn ≈ −9.013 × 1011 rad/s
and a cylinder made of Au using ωp ≈ 1.4 × 1016, γ ≈
5.4 × 1013 [36]. In this case, the shifts of the maxima away
from the Bessel zero for for resonances due to rN are found to
be δ ≈ −0.00056.

In Fig. 3, we show the potential as a function of radius
close to the resonance at kR01 ≈ j01, resonating with the
downward transition to 31p3/2. More details on the specifics
of CP potentials on Rydberg atoms are found in Ref. [29]
and summarized in Sec. V. It is interesting to note that even
though gold is a good conductor whose permittivity is much
greater than unity as assumed previously, the shift of the
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FIG. 3. (Color online) The potential of Rydberg Rb in its 32s1/2

state at the center (ρ = 0) of a Au cavity as a function of radius close
to the resonance corresponding to the first zero j01 ≈ 2.4 of J0. The
cavity resonantly enhances the contribution from the 32s1/2 → 31p3/2

transition. R01 = 799.9 μm as given by Eq. (3.4) is the corresponding
perfect conductor resonant radius.

resonant radius away from the perfect-conductor result is not
negligible. We see in Fig. 3 that the potential at the optimal
radius is about a factor 2.5 greater than its value for kR01 = j01.
The resonant radius is given with excellent approximation by
Eq. (3.17), which for this example predicts the maximum at
R − R01 ≈ −187 nm.

We note furthermore that the width of the radius resonances
is on the order of 500 nm, which is expected to be well within
the accuracy obtainable for production of pipes with diameters
on the order of hundreds of micrometers. It is also much wider
than surface roughness amplitudes of good metal surfaces,
indicating that the associated diminishing of the CP-potential
enhancement is not expected to be important. The narrowness
of the peaks are thus on the order of 1/3000th of the cylinder
radius, and we do not expect observation and utilization of
the resonant behavior to be hampered by issues of production
accuracy.

D. Optimal radii for enhancing transition rates

Optimal radii for resonantly enhancing transition rates in
a conducting cavity can be derived in close analogy to the
previous section. We again start with resonances of rN as
approximated by Eq. (3.11). The transition rates (2.11b) close
to a resonance are found just as in (3.13) to be proportional to

�(1)
n (r) ∝ Im G(r,r,ω) ∝ Re

√
1

ζ
, (3.20)

where

Re

√
1

ζ
= |ζ |−1/2 cos

(
1

2
arctan

Im ζ

Re ζ

)

= 1√
2 4
√

Re2ζ + Im2ζ

√
1 + Re ζ√

Re2ζ + Im2ζ
. (3.21)

The maximum of the preceding function is again found
by differentiation with respect to δ. It now lies at Re ζ =
Im ζ/

√
3, so that

δ ≈ Im{ε−1/2} + 1√
3

Re{ε−1/2} (3.22)

is again independent of m and j to leading order in ε. The
resonant radii associated with resonances of rN for enhancing
transition rates

kR ≈ jmj + Im{ε−1/2} + 1√
3

Re{ε−1/2} (3.23)

are thus different from the corresponding radii (3.17) for
enhancing the CP potential.

As for the potential, the resonances due to rM are found to
be maximal at

δ′
mj ≈ −Jm(j ′

mj )

J ′′
m(j ′

mj )
δ; (3.24)

that is,

kR ≈ j ′
jm − Jm(j ′

mj )

J ′′
m(j ′

mj )

(
Im{ε−1/2} + 1√

3
Re{ε−1/2}

)
. (3.25)
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lies at

Re ζ = −Im ζ/
√

3, (3.15)

so that

δ ≈ Im{ε−1/2} − 1√
3

Re{ε−1/2}. (3.16)

Note that δ is independent of m and j to leading order in
the large parameter ε. The resonant radii associated with
resonances of rN are hence given by

kR ≈ jmj + Im{ε−1/2} − 1√
3

Re{ε−1/2}. (3.17)

For resonances due to rM , we present the poles of J ′
m(x) in

the form (3.8). A virtually identical procedure then leads to

δ′ = δ′
mj ≈ −Jm(j ′

mj )

J ′′
m(j ′

mj )
δ. (3.18)

Consequently, the respective resonant radii read

kR ≈ j ′
jm − Jm(j ′

mj )

J ′′
m(j ′

mj )

(
Im{ε−1/2} − 1√

3
Re{ε−1/2}

)
. (3.19)

As a numerical example, take Rb in its 32s1/2 Ryd-
berg state whose strongest downward |n〉 = 32s1/2 → |k〉 =
31p3/2 transition has frequency ωkn ≈ −9.013 × 1011 rad/s
and a cylinder made of Au using ωp ≈ 1.4 × 1016, γ ≈
5.4 × 1013 [36]. In this case, the shifts of the maxima away
from the Bessel zero for for resonances due to rN are found to
be δ ≈ −0.00056.

In Fig. 3, we show the potential as a function of radius
close to the resonance at kR01 ≈ j01, resonating with the
downward transition to 31p3/2. More details on the specifics
of CP potentials on Rydberg atoms are found in Ref. [29]
and summarized in Sec. V. It is interesting to note that even
though gold is a good conductor whose permittivity is much
greater than unity as assumed previously, the shift of the
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FIG. 3. (Color online) The potential of Rydberg Rb in its 32s1/2

state at the center (ρ = 0) of a Au cavity as a function of radius close
to the resonance corresponding to the first zero j01 ≈ 2.4 of J0. The
cavity resonantly enhances the contribution from the 32s1/2 → 31p3/2

transition. R01 = 799.9 μm as given by Eq. (3.4) is the corresponding
perfect conductor resonant radius.

resonant radius away from the perfect-conductor result is not
negligible. We see in Fig. 3 that the potential at the optimal
radius is about a factor 2.5 greater than its value for kR01 = j01.
The resonant radius is given with excellent approximation by
Eq. (3.17), which for this example predicts the maximum at
R − R01 ≈ −187 nm.

We note furthermore that the width of the radius resonances
is on the order of 500 nm, which is expected to be well within
the accuracy obtainable for production of pipes with diameters
on the order of hundreds of micrometers. It is also much wider
than surface roughness amplitudes of good metal surfaces,
indicating that the associated diminishing of the CP-potential
enhancement is not expected to be important. The narrowness
of the peaks are thus on the order of 1/3000th of the cylinder
radius, and we do not expect observation and utilization of
the resonant behavior to be hampered by issues of production
accuracy.

D. Optimal radii for enhancing transition rates

Optimal radii for resonantly enhancing transition rates in
a conducting cavity can be derived in close analogy to the
previous section. We again start with resonances of rN as
approximated by Eq. (3.11). The transition rates (2.11b) close
to a resonance are found just as in (3.13) to be proportional to

�(1)
n (r) ∝ Im G(r,r,ω) ∝ Re

√
1

ζ
, (3.20)

where

Re

√
1

ζ
= |ζ |−1/2 cos

(
1
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arctan

Im ζ

Re ζ

)

= 1√
2 4
√

Re2ζ + Im2ζ

√
1 + Re ζ√

Re2ζ + Im2ζ
. (3.21)

The maximum of the preceding function is again found
by differentiation with respect to δ. It now lies at Re ζ =
Im ζ/

√
3, so that

δ ≈ Im{ε−1/2} + 1√
3

Re{ε−1/2} (3.22)

is again independent of m and j to leading order in ε. The
resonant radii associated with resonances of rN for enhancing
transition rates

kR ≈ jmj + Im{ε−1/2} + 1√
3

Re{ε−1/2} (3.23)

are thus different from the corresponding radii (3.17) for
enhancing the CP potential.

As for the potential, the resonances due to rM are found to
be maximal at

δ′
mj ≈ −Jm(j ′

mj )

J ′′
m(j ′

mj )
δ; (3.24)

that is,

kR ≈ j ′
jm − Jm(j ′

mj )

J ′′
m(j ′

mj )

(
Im{ε−1/2} + 1√

3
Re{ε−1/2}

)
. (3.25)
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FIG. 4. (Color online) Same setup as Fig. 3, but for the cavity-
assisted transition rate from state 32s1/2 to 32p3/2.

The resonant enhancement of the transition rate 32s1/2 →
32p3/2 of a Rydberg Rb atom placed at the center of a
Au cavity is shown in Fig. 4, again for the j01 resonance
of rN . The true optimal radius is seen to be well approxi-
mated by Eq. (3.23); it is smaller than the perfect-conductor
value by 0.006%, with δ ≈ −0.000 15. The optimal radii
for enhancing potential vs rate thus differ notably, by about
135 nm.

IV. GENERAL SCALING PROPERTIES

In this section we discuss the scaling properties of resonant
thermal CP forces, that is, their dependencies on the relevant
molecular, material, thermal, and geometric parameters. These
were discussed in detail for the case of a planar cavity in
Ref. [27], and many of the results remain valid also in the
cylindrical geometry. The resonant potential corresponding to
a dipole transition from state n to state k is proportional to the
absolute square of the transition dipole moment, |dkn|2.

We recently showed that the monotonously decaying,
short-distance part of the CP potential on a Rydberg atom is
virtually independent of temperature from room temperature
down to absolute zero [37]. This is not so for the oscillatory
part considered herein, however, which is proportional to the
photon number n(|ωkn|) just as was found in the planar case.
For temperatures larger than the transition frequency the tem-
perature dependence is thus approximately linear, U res(ρ) ∝
T ,kBT � h̄ωkn. In the opposite limit the resonant poten-
tial is exponentially suppressed: U res(ρ) ∝ exp(−h̄ωkn/kBT ),
kBT � h̄ωkn. For a Rydberg atom at room temperature, the
former limit applies.

On the contrary, the scaling of the potential with the
permittivity of the cavity walls depends strongly on the
geometry. For the cylindrical cavity, this scaling follows
immediately from the discussion of the resonant radii in
Sec. III C. As shown by Eq. (3.13), the resonant poten-
tial is proportional to

√
1/ζ . This function (3.14) has its

maximum at Re ζ = −Im ζ/
√

3, where it takes the value
4
√

3/(2
√

2Im ζ ) with Im ζ = Re{ε−1/2}. To leading order in the
large quantity ε, the potential for near-resonant radius hence
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FIG. 5. (Color online) The dependence of the peak potential at
resonance on θ = arg(ε). The solid graph is U res calculated for a 32s

Rydberg atom whose 32s1/2 → 31p3/2 transition is in resonance with
the j01 zero of J0(x), varying the phase of ε throughout the physical
range but keeping |ε| constant and equal to its value using Eq. (3.5).
The dashed graph is the theoretical curve based on the approximate
scaling of Eq. (4.1). Both functions have been normalized by their
values at arg ε = π/2.

scales as

U res
n (r) ∝ |ε|1/4√

cos
[

1
2 arg(ε)

] . (4.1)

Note that this scaling is an improvement with respect to the
enhancement achievable in a planar cavity for which we found
the potential to be proportional to ln ε [27]. The resonant
enhancement in the preceding approximation diverges as
arg(ε) → π . A full numerical investigation shows that the
potential in fact remains finite in this limit (cf. Fig. 5). In the
displayed example for the arg(ε) dependence of the potential
of Rydberg Rb in its 32s1/2 state, the value of the potential
changes by more than a factor of three as the phase of ε is
varied from π/2 (purely imaginary permittivity) to π (purely
real permittivity). This implies that decreasing the dissipation
rate of the cavity material can increase the enhancement
significantly. Note that with γ ≈ 5.4 × 1013 [36], the actual
phase of Au at the relevant transition frequency is close
to π/2.

The shown dependence of the resonant potential on the
phase of the permittivity is also interesting in light of the
thermal anomaly of the Casimir effect for metals [38,39]. This
dispute centers in an essential way on the description of the
dissipation of the metal: Employing the standard Drude model
(3.5) with measured optical dissipation data gives a different
prediction of the force at high temperature than that using a
nondissipative plasma model in which one sets γ = 0 at the
outset. Experiments appear to favor the latter approach [39,40].
The cavity enhancement of the CP potential as a related
quantum vacuum effect is good system for investigating the
thermal anomaly further: As Eq. (4.1) shows, the potential at
resonance using a plasma model predicts a signal more than
three times that calculated for the Drude model (note that |ε|
is also larger using a plasma model, adding to the relative
difference in prediction).

Finally, let us consider the scaling of the potential with the
transition frequency. The frequency influences the potential
(2.7) in three ways: First, there is a prefactor ω2

knn(|ωkn|),
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FIG. 4. (Color online) Same setup as Fig. 3, but for the cavity-
assisted transition rate from state 32s1/2 to 32p3/2.

The resonant enhancement of the transition rate 32s1/2 →
32p3/2 of a Rydberg Rb atom placed at the center of a
Au cavity is shown in Fig. 4, again for the j01 resonance
of rN . The true optimal radius is seen to be well approxi-
mated by Eq. (3.23); it is smaller than the perfect-conductor
value by 0.006%, with δ ≈ −0.000 15. The optimal radii
for enhancing potential vs rate thus differ notably, by about
135 nm.

IV. GENERAL SCALING PROPERTIES

In this section we discuss the scaling properties of resonant
thermal CP forces, that is, their dependencies on the relevant
molecular, material, thermal, and geometric parameters. These
were discussed in detail for the case of a planar cavity in
Ref. [27], and many of the results remain valid also in the
cylindrical geometry. The resonant potential corresponding to
a dipole transition from state n to state k is proportional to the
absolute square of the transition dipole moment, |dkn|2.

We recently showed that the monotonously decaying,
short-distance part of the CP potential on a Rydberg atom is
virtually independent of temperature from room temperature
down to absolute zero [37]. This is not so for the oscillatory
part considered herein, however, which is proportional to the
photon number n(|ωkn|) just as was found in the planar case.
For temperatures larger than the transition frequency the tem-
perature dependence is thus approximately linear, U res(ρ) ∝
T ,kBT � h̄ωkn. In the opposite limit the resonant poten-
tial is exponentially suppressed: U res(ρ) ∝ exp(−h̄ωkn/kBT ),
kBT � h̄ωkn. For a Rydberg atom at room temperature, the
former limit applies.

On the contrary, the scaling of the potential with the
permittivity of the cavity walls depends strongly on the
geometry. For the cylindrical cavity, this scaling follows
immediately from the discussion of the resonant radii in
Sec. III C. As shown by Eq. (3.13), the resonant poten-
tial is proportional to

√
1/ζ . This function (3.14) has its

maximum at Re ζ = −Im ζ/
√

3, where it takes the value
4
√

3/(2
√

2Im ζ ) with Im ζ = Re{ε−1/2}. To leading order in the
large quantity ε, the potential for near-resonant radius hence
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FIG. 5. (Color online) The dependence of the peak potential at
resonance on θ = arg(ε). The solid graph is U res calculated for a 32s

Rydberg atom whose 32s1/2 → 31p3/2 transition is in resonance with
the j01 zero of J0(x), varying the phase of ε throughout the physical
range but keeping |ε| constant and equal to its value using Eq. (3.5).
The dashed graph is the theoretical curve based on the approximate
scaling of Eq. (4.1). Both functions have been normalized by their
values at arg ε = π/2.

scales as

U res
n (r) ∝ |ε|1/4√

cos
[

1
2 arg(ε)

] . (4.1)

Note that this scaling is an improvement with respect to the
enhancement achievable in a planar cavity for which we found
the potential to be proportional to ln ε [27]. The resonant
enhancement in the preceding approximation diverges as
arg(ε) → π . A full numerical investigation shows that the
potential in fact remains finite in this limit (cf. Fig. 5). In the
displayed example for the arg(ε) dependence of the potential
of Rydberg Rb in its 32s1/2 state, the value of the potential
changes by more than a factor of three as the phase of ε is
varied from π/2 (purely imaginary permittivity) to π (purely
real permittivity). This implies that decreasing the dissipation
rate of the cavity material can increase the enhancement
significantly. Note that with γ ≈ 5.4 × 1013 [36], the actual
phase of Au at the relevant transition frequency is close
to π/2.

The shown dependence of the resonant potential on the
phase of the permittivity is also interesting in light of the
thermal anomaly of the Casimir effect for metals [38,39]. This
dispute centers in an essential way on the description of the
dissipation of the metal: Employing the standard Drude model
(3.5) with measured optical dissipation data gives a different
prediction of the force at high temperature than that using a
nondissipative plasma model in which one sets γ = 0 at the
outset. Experiments appear to favor the latter approach [39,40].
The cavity enhancement of the CP potential as a related
quantum vacuum effect is good system for investigating the
thermal anomaly further: As Eq. (4.1) shows, the potential at
resonance using a plasma model predicts a signal more than
three times that calculated for the Drude model (note that |ε|
is also larger using a plasma model, adding to the relative
difference in prediction).

Finally, let us consider the scaling of the potential with the
transition frequency. The frequency influences the potential
(2.7) in three ways: First, there is a prefactor ω2

knn(|ωkn|),
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FIG. 4. (Color online) Same setup as Fig. 3, but for the cavity-
assisted transition rate from state 32s1/2 to 32p3/2.

The resonant enhancement of the transition rate 32s1/2 →
32p3/2 of a Rydberg Rb atom placed at the center of a
Au cavity is shown in Fig. 4, again for the j01 resonance
of rN . The true optimal radius is seen to be well approxi-
mated by Eq. (3.23); it is smaller than the perfect-conductor
value by 0.006%, with δ ≈ −0.000 15. The optimal radii
for enhancing potential vs rate thus differ notably, by about
135 nm.

IV. GENERAL SCALING PROPERTIES

In this section we discuss the scaling properties of resonant
thermal CP forces, that is, their dependencies on the relevant
molecular, material, thermal, and geometric parameters. These
were discussed in detail for the case of a planar cavity in
Ref. [27], and many of the results remain valid also in the
cylindrical geometry. The resonant potential corresponding to
a dipole transition from state n to state k is proportional to the
absolute square of the transition dipole moment, |dkn|2.

We recently showed that the monotonously decaying,
short-distance part of the CP potential on a Rydberg atom is
virtually independent of temperature from room temperature
down to absolute zero [37]. This is not so for the oscillatory
part considered herein, however, which is proportional to the
photon number n(|ωkn|) just as was found in the planar case.
For temperatures larger than the transition frequency the tem-
perature dependence is thus approximately linear, U res(ρ) ∝
T ,kBT � h̄ωkn. In the opposite limit the resonant poten-
tial is exponentially suppressed: U res(ρ) ∝ exp(−h̄ωkn/kBT ),
kBT � h̄ωkn. For a Rydberg atom at room temperature, the
former limit applies.

On the contrary, the scaling of the potential with the
permittivity of the cavity walls depends strongly on the
geometry. For the cylindrical cavity, this scaling follows
immediately from the discussion of the resonant radii in
Sec. III C. As shown by Eq. (3.13), the resonant poten-
tial is proportional to

√
1/ζ . This function (3.14) has its

maximum at Re ζ = −Im ζ/
√

3, where it takes the value
4
√

3/(2
√

2Im ζ ) with Im ζ = Re{ε−1/2}. To leading order in the
large quantity ε, the potential for near-resonant radius hence
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resonance on θ = arg(ε). The solid graph is U res calculated for a 32s

Rydberg atom whose 32s1/2 → 31p3/2 transition is in resonance with
the j01 zero of J0(x), varying the phase of ε throughout the physical
range but keeping |ε| constant and equal to its value using Eq. (3.5).
The dashed graph is the theoretical curve based on the approximate
scaling of Eq. (4.1). Both functions have been normalized by their
values at arg ε = π/2.

scales as

U res
n (r) ∝ |ε|1/4√

cos
[

1
2 arg(ε)

] . (4.1)

Note that this scaling is an improvement with respect to the
enhancement achievable in a planar cavity for which we found
the potential to be proportional to ln ε [27]. The resonant
enhancement in the preceding approximation diverges as
arg(ε) → π . A full numerical investigation shows that the
potential in fact remains finite in this limit (cf. Fig. 5). In the
displayed example for the arg(ε) dependence of the potential
of Rydberg Rb in its 32s1/2 state, the value of the potential
changes by more than a factor of three as the phase of ε is
varied from π/2 (purely imaginary permittivity) to π (purely
real permittivity). This implies that decreasing the dissipation
rate of the cavity material can increase the enhancement
significantly. Note that with γ ≈ 5.4 × 1013 [36], the actual
phase of Au at the relevant transition frequency is close
to π/2.

The shown dependence of the resonant potential on the
phase of the permittivity is also interesting in light of the
thermal anomaly of the Casimir effect for metals [38,39]. This
dispute centers in an essential way on the description of the
dissipation of the metal: Employing the standard Drude model
(3.5) with measured optical dissipation data gives a different
prediction of the force at high temperature than that using a
nondissipative plasma model in which one sets γ = 0 at the
outset. Experiments appear to favor the latter approach [39,40].
The cavity enhancement of the CP potential as a related
quantum vacuum effect is good system for investigating the
thermal anomaly further: As Eq. (4.1) shows, the potential at
resonance using a plasma model predicts a signal more than
three times that calculated for the Drude model (note that |ε|
is also larger using a plasma model, adding to the relative
difference in prediction).

Finally, let us consider the scaling of the potential with the
transition frequency. The frequency influences the potential
(2.7) in three ways: First, there is a prefactor ω2

knn(|ωkn|),
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The resonant enhancement of the transition rate 32s1/2 →
32p3/2 of a Rydberg Rb atom placed at the center of a
Au cavity is shown in Fig. 4, again for the j01 resonance
of rN . The true optimal radius is seen to be well approxi-
mated by Eq. (3.23); it is smaller than the perfect-conductor
value by 0.006%, with δ ≈ −0.000 15. The optimal radii
for enhancing potential vs rate thus differ notably, by about
135 nm.

IV. GENERAL SCALING PROPERTIES

In this section we discuss the scaling properties of resonant
thermal CP forces, that is, their dependencies on the relevant
molecular, material, thermal, and geometric parameters. These
were discussed in detail for the case of a planar cavity in
Ref. [27], and many of the results remain valid also in the
cylindrical geometry. The resonant potential corresponding to
a dipole transition from state n to state k is proportional to the
absolute square of the transition dipole moment, |dkn|2.

We recently showed that the monotonously decaying,
short-distance part of the CP potential on a Rydberg atom is
virtually independent of temperature from room temperature
down to absolute zero [37]. This is not so for the oscillatory
part considered herein, however, which is proportional to the
photon number n(|ωkn|) just as was found in the planar case.
For temperatures larger than the transition frequency the tem-
perature dependence is thus approximately linear, U res(ρ) ∝
T ,kBT � h̄ωkn. In the opposite limit the resonant poten-
tial is exponentially suppressed: U res(ρ) ∝ exp(−h̄ωkn/kBT ),
kBT � h̄ωkn. For a Rydberg atom at room temperature, the
former limit applies.

On the contrary, the scaling of the potential with the
permittivity of the cavity walls depends strongly on the
geometry. For the cylindrical cavity, this scaling follows
immediately from the discussion of the resonant radii in
Sec. III C. As shown by Eq. (3.13), the resonant poten-
tial is proportional to

√
1/ζ . This function (3.14) has its

maximum at Re ζ = −Im ζ/
√

3, where it takes the value
4
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3/(2
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2Im ζ ) with Im ζ = Re{ε−1/2}. To leading order in the
large quantity ε, the potential for near-resonant radius hence
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FIG. 5. (Color online) The dependence of the peak potential at
resonance on θ = arg(ε). The solid graph is U res calculated for a 32s

Rydberg atom whose 32s1/2 → 31p3/2 transition is in resonance with
the j01 zero of J0(x), varying the phase of ε throughout the physical
range but keeping |ε| constant and equal to its value using Eq. (3.5).
The dashed graph is the theoretical curve based on the approximate
scaling of Eq. (4.1). Both functions have been normalized by their
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scales as

U res
n (r) ∝ |ε|1/4√

cos
[

1
2 arg(ε)

] . (4.1)

Note that this scaling is an improvement with respect to the
enhancement achievable in a planar cavity for which we found
the potential to be proportional to ln ε [27]. The resonant
enhancement in the preceding approximation diverges as
arg(ε) → π . A full numerical investigation shows that the
potential in fact remains finite in this limit (cf. Fig. 5). In the
displayed example for the arg(ε) dependence of the potential
of Rydberg Rb in its 32s1/2 state, the value of the potential
changes by more than a factor of three as the phase of ε is
varied from π/2 (purely imaginary permittivity) to π (purely
real permittivity). This implies that decreasing the dissipation
rate of the cavity material can increase the enhancement
significantly. Note that with γ ≈ 5.4 × 1013 [36], the actual
phase of Au at the relevant transition frequency is close
to π/2.

The shown dependence of the resonant potential on the
phase of the permittivity is also interesting in light of the
thermal anomaly of the Casimir effect for metals [38,39]. This
dispute centers in an essential way on the description of the
dissipation of the metal: Employing the standard Drude model
(3.5) with measured optical dissipation data gives a different
prediction of the force at high temperature than that using a
nondissipative plasma model in which one sets γ = 0 at the
outset. Experiments appear to favor the latter approach [39,40].
The cavity enhancement of the CP potential as a related
quantum vacuum effect is good system for investigating the
thermal anomaly further: As Eq. (4.1) shows, the potential at
resonance using a plasma model predicts a signal more than
three times that calculated for the Drude model (note that |ε|
is also larger using a plasma model, adding to the relative
difference in prediction).

Finally, let us consider the scaling of the potential with the
transition frequency. The frequency influences the potential
(2.7) in three ways: First, there is a prefactor ω2

knn(|ωkn|),
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independent of the particular cavity geometry considered.
Second, there is an additional factor of ωnk because the
magnitude of oscillations fall off as J 2

m,J ′2
m ∼ 1/(R − ρ) away

from the cavity walls and the resonant cavity radius is in turn
proportional to ωkn. This geometric frequency-dependence is
closely similar to that found for a planar cavity [27]; it is a
consequence of the general scaling law for the Green tensor
as established in Ref. [41]. Third, the ε scaling introduces an
additional frequency dependence. For ωkn � γ , Eq. (4.1) leads
to a 4

√
1/ωkn scaling. Combining these three effects, the peak

resonant potentials scale as ω2.75
kn n(|ωkn|). For comparison, the

scaling ω3
knn(|ωkn|) for a planar cavity is slightly stronger due

to the much weaker ε dependence.
For atoms in highly excited Rydberg states (cf. Sec. V),

the CP potential is dominated by transitions to neighboring
states. For these transitions, the frequencies and dipole matrix
elements depend in a simple way on the principal quantum
number n of the initial atomic Rydberg state: For sufficiently
large n, the transition frequencies can be given as ωkn =
2Ry/(h̄n3) (Ry, Rydberg energy), while the dipole moments
scale as n2. Combining this with the dependencies discussed
previously, one finds that the CP potential of a Rydberg atom
scales as

U res
n ∝ n−4.25n(ωkn)

∝
{
n−1.25, n � nT ;
exp[−(nT /n)3], n � nT ,

(4.2)

where we have introduced a characteristic thermal principal
quantum number

nT =
(

2Ry

kBT

) 1
3

. (4.3)

The maximum potential is found for states with a principal
quantum number around n ∼ nT . At T = 300 K we have nT ≈
10.2; hence, the maximum potential is found for principal
quantum numbers below the Rydberg range. For this reason
we have chosen a low Rydberg state, 32s, for our preceding
numerical examples and in the following.

V. NUMERICAL RESULTS

We now present numerical studies of the CP potential inside
a cylindrical cavity based on the exact formulas presented in
Sec. II. Due to the complexity of the formulaic apparatus for the
case of the cylinder, it is necessary to first ascertain the correct-
ness of the numerical calculations. As a numerical benchmark,
we verified that for positions sufficiently close to the cylinder
wall (R − ρ � R) the potential tends asymptotically to that
outside a half space (cf. e.g., [13]).

We are interested in an observable resonant enhancement
of the potential predicted for the radii derived in Sec. III.
As is clear from Sec. IV, this requires a cavity made of
a good conductor and an atomic system whose transition
frequencies lie close to the peak of the thermal spectrum
ω

11/4
kn n(|ωkn|) at room temperature and whose respective dipole

matrix elements are large. Rydberg atoms with their enormous

matrix elements and relatively small transition frequencies
fulfill both of these requirements.

In practice, Rydberg states with principal quantum
number n in the range 30–50 can readily be prepared using
standard Rydberg lasers. As shown at the end of Sec. IV, the
optimal choice of n for measuring the resonant enhancement
is smaller than the standard Rydberg regime, around n = 10:
While transition dipole moments increase with higher n,
transition frequencies of the dominant transitions decrease
further away from the optimal frequency value ∼kBT , resulting
together in a low optimum n. As a compromise, we use
the value n = 32 for our numerical examples, being a level
in the lower part of the Rydberg spectrum while still being
readily available with standard equipment. In all calculations
the temperature was 300 K.

The resonant potential is calculated only for the strongest
downward transition to 31p3/2. The transition to 32p states are
approximately the same strength, but being upward transitions
they correspond to potential maxima on the axis at the strongest
cavity resonances, and we find it preferable to consider a
downward transition whose maximally enhanced potential
has a minimum, potentially useful for guiding purposes.
Transitions to higher and lower n contribute significantly
only in the nonretarded regime close to the cylinder walls
which we are not interested in in the present investigation
(but see [29] for details). Results are shown in Fig. 6 for the
first eight resonances of the coefficient rN [corresponding to
zeros of Jm(x)] and rM [corresponding to zeros of J ′

m(x)].
Note how some radii resonate both with rM and rN since
J ′

0(x) = −J1(x).
For the considered case of a resonantly enhanced downward

transition, we observe that a potential at the resonant radius
corresponding to j

(′)
mj has j local minima. Potentials for jmj

have minima on the cylinder axis for even m and maxima for
odd m. For the j ′

mj resonances, the situation is reversed. The
double resonances are dominated by the jmj contribution, so
the first of the two rules applies. For a given m, the maximum
potential depth decreases with j .

One might expect that smaller radii give the deeper potential
minima, based on the fact that the amplitude of oscillations
decrease away from a boundary (outside a planar half space
the oscillation amplitude decreases proportional to inverse
distance [13]). Unlike the planar case [27], however, this is
not true in general. The lowest Bessel zeros are j ′

11 ≈ 1.8412,
j01 ≈ 2.4048, j ′

21 ≈ 3.0542, and j ′
01 = j11 ≈ 3.8317. The first

two on this list indeed correspond to the two largest potential
extrema in the same order, but j ′

21 in fact represents the
shallowest of the eight enhanced potentials considered in
Fig. 6. Compared to the situation outside a half space, spatial
energy level oscillation amplitudes are enhanced by two orders
of magnitude.

The corresponding enhancement of the transition rate from
32s1/2 to 31p3/2 is shown in Fig. 7, where the cylinder radii
are picked according to Eqs. (3.23) and (3.25) as appropriate.
The figure thus shows the maximally enhanced transition rate
between these two levels. The transition rate is increased by
about a factor 5.0 for the smallest cavity corresponding to j ′

11
compared to the transition rate in free space, which for the
32s state is about 105 kHz. In comparison, the transition rate
outside a half space oscillates about its free-space value within
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independent of the particular cavity geometry considered.
Second, there is an additional factor of ωnk because the
magnitude of oscillations fall off as J 2

m,J ′2
m ∼ 1/(R − ρ) away

from the cavity walls and the resonant cavity radius is in turn
proportional to ωkn. This geometric frequency-dependence is
closely similar to that found for a planar cavity [27]; it is a
consequence of the general scaling law for the Green tensor
as established in Ref. [41]. Third, the ε scaling introduces an
additional frequency dependence. For ωkn � γ , Eq. (4.1) leads
to a 4

√
1/ωkn scaling. Combining these three effects, the peak

resonant potentials scale as ω2.75
kn n(|ωkn|). For comparison, the

scaling ω3
knn(|ωkn|) for a planar cavity is slightly stronger due

to the much weaker ε dependence.
For atoms in highly excited Rydberg states (cf. Sec. V),

the CP potential is dominated by transitions to neighboring
states. For these transitions, the frequencies and dipole matrix
elements depend in a simple way on the principal quantum
number n of the initial atomic Rydberg state: For sufficiently
large n, the transition frequencies can be given as ωkn =
2Ry/(h̄n3) (Ry, Rydberg energy), while the dipole moments
scale as n2. Combining this with the dependencies discussed
previously, one finds that the CP potential of a Rydberg atom
scales as

U res
n ∝ n−4.25n(ωkn)

∝
{
n−1.25, n � nT ;
exp[−(nT /n)3], n � nT ,

(4.2)

where we have introduced a characteristic thermal principal
quantum number

nT =
(

2Ry

kBT

) 1
3

. (4.3)

The maximum potential is found for states with a principal
quantum number around n ∼ nT . At T = 300 K we have nT ≈
10.2; hence, the maximum potential is found for principal
quantum numbers below the Rydberg range. For this reason
we have chosen a low Rydberg state, 32s, for our preceding
numerical examples and in the following.

V. NUMERICAL RESULTS

We now present numerical studies of the CP potential inside
a cylindrical cavity based on the exact formulas presented in
Sec. II. Due to the complexity of the formulaic apparatus for the
case of the cylinder, it is necessary to first ascertain the correct-
ness of the numerical calculations. As a numerical benchmark,
we verified that for positions sufficiently close to the cylinder
wall (R − ρ � R) the potential tends asymptotically to that
outside a half space (cf. e.g., [13]).

We are interested in an observable resonant enhancement
of the potential predicted for the radii derived in Sec. III.
As is clear from Sec. IV, this requires a cavity made of
a good conductor and an atomic system whose transition
frequencies lie close to the peak of the thermal spectrum
ω

11/4
kn n(|ωkn|) at room temperature and whose respective dipole

matrix elements are large. Rydberg atoms with their enormous

matrix elements and relatively small transition frequencies
fulfill both of these requirements.

In practice, Rydberg states with principal quantum
number n in the range 30–50 can readily be prepared using
standard Rydberg lasers. As shown at the end of Sec. IV, the
optimal choice of n for measuring the resonant enhancement
is smaller than the standard Rydberg regime, around n = 10:
While transition dipole moments increase with higher n,
transition frequencies of the dominant transitions decrease
further away from the optimal frequency value ∼kBT , resulting
together in a low optimum n. As a compromise, we use
the value n = 32 for our numerical examples, being a level
in the lower part of the Rydberg spectrum while still being
readily available with standard equipment. In all calculations
the temperature was 300 K.

The resonant potential is calculated only for the strongest
downward transition to 31p3/2. The transition to 32p states are
approximately the same strength, but being upward transitions
they correspond to potential maxima on the axis at the strongest
cavity resonances, and we find it preferable to consider a
downward transition whose maximally enhanced potential
has a minimum, potentially useful for guiding purposes.
Transitions to higher and lower n contribute significantly
only in the nonretarded regime close to the cylinder walls
which we are not interested in in the present investigation
(but see [29] for details). Results are shown in Fig. 6 for the
first eight resonances of the coefficient rN [corresponding to
zeros of Jm(x)] and rM [corresponding to zeros of J ′

m(x)].
Note how some radii resonate both with rM and rN since
J ′

0(x) = −J1(x).
For the considered case of a resonantly enhanced downward

transition, we observe that a potential at the resonant radius
corresponding to j

(′)
mj has j local minima. Potentials for jmj

have minima on the cylinder axis for even m and maxima for
odd m. For the j ′

mj resonances, the situation is reversed. The
double resonances are dominated by the jmj contribution, so
the first of the two rules applies. For a given m, the maximum
potential depth decreases with j .

One might expect that smaller radii give the deeper potential
minima, based on the fact that the amplitude of oscillations
decrease away from a boundary (outside a planar half space
the oscillation amplitude decreases proportional to inverse
distance [13]). Unlike the planar case [27], however, this is
not true in general. The lowest Bessel zeros are j ′

11 ≈ 1.8412,
j01 ≈ 2.4048, j ′

21 ≈ 3.0542, and j ′
01 = j11 ≈ 3.8317. The first

two on this list indeed correspond to the two largest potential
extrema in the same order, but j ′

21 in fact represents the
shallowest of the eight enhanced potentials considered in
Fig. 6. Compared to the situation outside a half space, spatial
energy level oscillation amplitudes are enhanced by two orders
of magnitude.

The corresponding enhancement of the transition rate from
32s1/2 to 31p3/2 is shown in Fig. 7, where the cylinder radii
are picked according to Eqs. (3.23) and (3.25) as appropriate.
The figure thus shows the maximally enhanced transition rate
between these two levels. The transition rate is increased by
about a factor 5.0 for the smallest cavity corresponding to j ′

11
compared to the transition rate in free space, which for the
32s state is about 105 kHz. In comparison, the transition rate
outside a half space oscillates about its free-space value within
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independent of the particular cavity geometry considered.
Second, there is an additional factor of ωnk because the
magnitude of oscillations fall off as J 2

m,J ′2
m ∼ 1/(R − ρ) away

from the cavity walls and the resonant cavity radius is in turn
proportional to ωkn. This geometric frequency-dependence is
closely similar to that found for a planar cavity [27]; it is a
consequence of the general scaling law for the Green tensor
as established in Ref. [41]. Third, the ε scaling introduces an
additional frequency dependence. For ωkn � γ , Eq. (4.1) leads
to a 4

√
1/ωkn scaling. Combining these three effects, the peak

resonant potentials scale as ω2.75
kn n(|ωkn|). For comparison, the

scaling ω3
knn(|ωkn|) for a planar cavity is slightly stronger due

to the much weaker ε dependence.
For atoms in highly excited Rydberg states (cf. Sec. V),

the CP potential is dominated by transitions to neighboring
states. For these transitions, the frequencies and dipole matrix
elements depend in a simple way on the principal quantum
number n of the initial atomic Rydberg state: For sufficiently
large n, the transition frequencies can be given as ωkn =
2Ry/(h̄n3) (Ry, Rydberg energy), while the dipole moments
scale as n2. Combining this with the dependencies discussed
previously, one finds that the CP potential of a Rydberg atom
scales as

U res
n ∝ n−4.25n(ωkn)

∝
{
n−1.25, n � nT ;
exp[−(nT /n)3], n � nT ,

(4.2)

where we have introduced a characteristic thermal principal
quantum number

nT =
(

2Ry

kBT

) 1
3

. (4.3)

The maximum potential is found for states with a principal
quantum number around n ∼ nT . At T = 300 K we have nT ≈
10.2; hence, the maximum potential is found for principal
quantum numbers below the Rydberg range. For this reason
we have chosen a low Rydberg state, 32s, for our preceding
numerical examples and in the following.

V. NUMERICAL RESULTS

We now present numerical studies of the CP potential inside
a cylindrical cavity based on the exact formulas presented in
Sec. II. Due to the complexity of the formulaic apparatus for the
case of the cylinder, it is necessary to first ascertain the correct-
ness of the numerical calculations. As a numerical benchmark,
we verified that for positions sufficiently close to the cylinder
wall (R − ρ � R) the potential tends asymptotically to that
outside a half space (cf. e.g., [13]).

We are interested in an observable resonant enhancement
of the potential predicted for the radii derived in Sec. III.
As is clear from Sec. IV, this requires a cavity made of
a good conductor and an atomic system whose transition
frequencies lie close to the peak of the thermal spectrum
ω

11/4
kn n(|ωkn|) at room temperature and whose respective dipole

matrix elements are large. Rydberg atoms with their enormous

matrix elements and relatively small transition frequencies
fulfill both of these requirements.

In practice, Rydberg states with principal quantum
number n in the range 30–50 can readily be prepared using
standard Rydberg lasers. As shown at the end of Sec. IV, the
optimal choice of n for measuring the resonant enhancement
is smaller than the standard Rydberg regime, around n = 10:
While transition dipole moments increase with higher n,
transition frequencies of the dominant transitions decrease
further away from the optimal frequency value ∼kBT , resulting
together in a low optimum n. As a compromise, we use
the value n = 32 for our numerical examples, being a level
in the lower part of the Rydberg spectrum while still being
readily available with standard equipment. In all calculations
the temperature was 300 K.

The resonant potential is calculated only for the strongest
downward transition to 31p3/2. The transition to 32p states are
approximately the same strength, but being upward transitions
they correspond to potential maxima on the axis at the strongest
cavity resonances, and we find it preferable to consider a
downward transition whose maximally enhanced potential
has a minimum, potentially useful for guiding purposes.
Transitions to higher and lower n contribute significantly
only in the nonretarded regime close to the cylinder walls
which we are not interested in in the present investigation
(but see [29] for details). Results are shown in Fig. 6 for the
first eight resonances of the coefficient rN [corresponding to
zeros of Jm(x)] and rM [corresponding to zeros of J ′

m(x)].
Note how some radii resonate both with rM and rN since
J ′

0(x) = −J1(x).
For the considered case of a resonantly enhanced downward

transition, we observe that a potential at the resonant radius
corresponding to j

(′)
mj has j local minima. Potentials for jmj

have minima on the cylinder axis for even m and maxima for
odd m. For the j ′

mj resonances, the situation is reversed. The
double resonances are dominated by the jmj contribution, so
the first of the two rules applies. For a given m, the maximum
potential depth decreases with j .

One might expect that smaller radii give the deeper potential
minima, based on the fact that the amplitude of oscillations
decrease away from a boundary (outside a planar half space
the oscillation amplitude decreases proportional to inverse
distance [13]). Unlike the planar case [27], however, this is
not true in general. The lowest Bessel zeros are j ′

11 ≈ 1.8412,
j01 ≈ 2.4048, j ′

21 ≈ 3.0542, and j ′
01 = j11 ≈ 3.8317. The first

two on this list indeed correspond to the two largest potential
extrema in the same order, but j ′

21 in fact represents the
shallowest of the eight enhanced potentials considered in
Fig. 6. Compared to the situation outside a half space, spatial
energy level oscillation amplitudes are enhanced by two orders
of magnitude.

The corresponding enhancement of the transition rate from
32s1/2 to 31p3/2 is shown in Fig. 7, where the cylinder radii
are picked according to Eqs. (3.23) and (3.25) as appropriate.
The figure thus shows the maximally enhanced transition rate
between these two levels. The transition rate is increased by
about a factor 5.0 for the smallest cavity corresponding to j ′

11
compared to the transition rate in free space, which for the
32s state is about 105 kHz. In comparison, the transition rate
outside a half space oscillates about its free-space value within
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independent of the particular cavity geometry considered.
Second, there is an additional factor of ωnk because the
magnitude of oscillations fall off as J 2

m,J ′2
m ∼ 1/(R − ρ) away

from the cavity walls and the resonant cavity radius is in turn
proportional to ωkn. This geometric frequency-dependence is
closely similar to that found for a planar cavity [27]; it is a
consequence of the general scaling law for the Green tensor
as established in Ref. [41]. Third, the ε scaling introduces an
additional frequency dependence. For ωkn � γ , Eq. (4.1) leads
to a 4

√
1/ωkn scaling. Combining these three effects, the peak

resonant potentials scale as ω2.75
kn n(|ωkn|). For comparison, the

scaling ω3
knn(|ωkn|) for a planar cavity is slightly stronger due

to the much weaker ε dependence.
For atoms in highly excited Rydberg states (cf. Sec. V),

the CP potential is dominated by transitions to neighboring
states. For these transitions, the frequencies and dipole matrix
elements depend in a simple way on the principal quantum
number n of the initial atomic Rydberg state: For sufficiently
large n, the transition frequencies can be given as ωkn =
2Ry/(h̄n3) (Ry, Rydberg energy), while the dipole moments
scale as n2. Combining this with the dependencies discussed
previously, one finds that the CP potential of a Rydberg atom
scales as

U res
n ∝ n−4.25n(ωkn)

∝
{
n−1.25, n � nT ;
exp[−(nT /n)3], n � nT ,

(4.2)

where we have introduced a characteristic thermal principal
quantum number

nT =
(

2Ry

kBT

) 1
3

. (4.3)

The maximum potential is found for states with a principal
quantum number around n ∼ nT . At T = 300 K we have nT ≈
10.2; hence, the maximum potential is found for principal
quantum numbers below the Rydberg range. For this reason
we have chosen a low Rydberg state, 32s, for our preceding
numerical examples and in the following.

V. NUMERICAL RESULTS

We now present numerical studies of the CP potential inside
a cylindrical cavity based on the exact formulas presented in
Sec. II. Due to the complexity of the formulaic apparatus for the
case of the cylinder, it is necessary to first ascertain the correct-
ness of the numerical calculations. As a numerical benchmark,
we verified that for positions sufficiently close to the cylinder
wall (R − ρ � R) the potential tends asymptotically to that
outside a half space (cf. e.g., [13]).

We are interested in an observable resonant enhancement
of the potential predicted for the radii derived in Sec. III.
As is clear from Sec. IV, this requires a cavity made of
a good conductor and an atomic system whose transition
frequencies lie close to the peak of the thermal spectrum
ω

11/4
kn n(|ωkn|) at room temperature and whose respective dipole

matrix elements are large. Rydberg atoms with their enormous

matrix elements and relatively small transition frequencies
fulfill both of these requirements.

In practice, Rydberg states with principal quantum
number n in the range 30–50 can readily be prepared using
standard Rydberg lasers. As shown at the end of Sec. IV, the
optimal choice of n for measuring the resonant enhancement
is smaller than the standard Rydberg regime, around n = 10:
While transition dipole moments increase with higher n,
transition frequencies of the dominant transitions decrease
further away from the optimal frequency value ∼kBT , resulting
together in a low optimum n. As a compromise, we use
the value n = 32 for our numerical examples, being a level
in the lower part of the Rydberg spectrum while still being
readily available with standard equipment. In all calculations
the temperature was 300 K.

The resonant potential is calculated only for the strongest
downward transition to 31p3/2. The transition to 32p states are
approximately the same strength, but being upward transitions
they correspond to potential maxima on the axis at the strongest
cavity resonances, and we find it preferable to consider a
downward transition whose maximally enhanced potential
has a minimum, potentially useful for guiding purposes.
Transitions to higher and lower n contribute significantly
only in the nonretarded regime close to the cylinder walls
which we are not interested in in the present investigation
(but see [29] for details). Results are shown in Fig. 6 for the
first eight resonances of the coefficient rN [corresponding to
zeros of Jm(x)] and rM [corresponding to zeros of J ′

m(x)].
Note how some radii resonate both with rM and rN since
J ′

0(x) = −J1(x).
For the considered case of a resonantly enhanced downward

transition, we observe that a potential at the resonant radius
corresponding to j

(′)
mj has j local minima. Potentials for jmj

have minima on the cylinder axis for even m and maxima for
odd m. For the j ′

mj resonances, the situation is reversed. The
double resonances are dominated by the jmj contribution, so
the first of the two rules applies. For a given m, the maximum
potential depth decreases with j .

One might expect that smaller radii give the deeper potential
minima, based on the fact that the amplitude of oscillations
decrease away from a boundary (outside a planar half space
the oscillation amplitude decreases proportional to inverse
distance [13]). Unlike the planar case [27], however, this is
not true in general. The lowest Bessel zeros are j ′

11 ≈ 1.8412,
j01 ≈ 2.4048, j ′

21 ≈ 3.0542, and j ′
01 = j11 ≈ 3.8317. The first

two on this list indeed correspond to the two largest potential
extrema in the same order, but j ′

21 in fact represents the
shallowest of the eight enhanced potentials considered in
Fig. 6. Compared to the situation outside a half space, spatial
energy level oscillation amplitudes are enhanced by two orders
of magnitude.

The corresponding enhancement of the transition rate from
32s1/2 to 31p3/2 is shown in Fig. 7, where the cylinder radii
are picked according to Eqs. (3.23) and (3.25) as appropriate.
The figure thus shows the maximally enhanced transition rate
between these two levels. The transition rate is increased by
about a factor 5.0 for the smallest cavity corresponding to j ′

11
compared to the transition rate in free space, which for the
32s state is about 105 kHz. In comparison, the transition rate
outside a half space oscillates about its free-space value within
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FIG. 6. (Color online) (Left) Casimir-Polder potential at the eight smallest resonant radii acting on isotropic Rb in the state 32s1/2, whose
transition to 31p3/2 resonates with various modes of a gold cavity described by Eq. (3.5). The radii are chosen according to Eq. (3.17) (j01, j02,
j11 = j ′

01, j12 = j ′
02, and j21) and Eq. (3.19) (j ′

11, j ′
12, j ′

21). (Right) The potential outside a plane half space.

variations of about 10 kHz in the far zone, hence showing
that the cavity can enhance the oscillating contribution to
the rate alone by about a factor 50. The lifetime of the
initial state against spontaneous and stimulated decay is thus
reduced from its free-space value of 9.5–1.9 μs inside the
cylindrical cavity for the j ′

11 resonance. Recall from Sec. III
that the potentials and transition rates peak at different radii.
In Fig. 7, we have chosen the optimal radii for enhancing the
rates. By contrast, the transition rates at the optimal radii for
enhancing potentials (not displayed) are smaller by about a
factor 2.

For comparison, we consider the case of the polar molecule
LiH. Polar molecules also exhibit transitions in the frequency
regime ideal for enhancement, but with the respective dipole
matrix elements being much smaller than those of Rydberg

atoms. LiH has a lowest transition frequency (rotational) of
ω10 = 2.79 × 1012 rad/s and corresponding transition dipole
moment |d10|2 = 3.85 × 10−58 C2 m2. As a result of the
smaller dipole moment, the CP potential of polar molecules is
much smaller than that of Rydberg atoms. In spite of a relative
enhancement of about a factor 50–100 in a cylindrical cavity,
the achievable potential depth is still less than 1 Hz, which is
insufficient for molecular guiding purposes.

While a cavity enhancement of two orders of magnitude
is modest for the CP potential of a polar molecule, it is of
interest when regarding the ground-state heating rates. As
Fig. 8 shows, the transition to a particular state (in this case the
lowest rotational state) can be enhanced by a factor of about
30, considerably reducing the lifetime of the rotational ground
state against heating from 2.1 to 0.064 s.
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FIG. 6. (Color online) (Left) Casimir-Polder potential at the eight smallest resonant radii acting on isotropic Rb in the state 32s1/2, whose
transition to 31p3/2 resonates with various modes of a gold cavity described by Eq. (3.5). The radii are chosen according to Eq. (3.17) (j01, j02,
j11 = j ′
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02, and j21) and Eq. (3.19) (j ′
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variations of about 10 kHz in the far zone, hence showing
that the cavity can enhance the oscillating contribution to
the rate alone by about a factor 50. The lifetime of the
initial state against spontaneous and stimulated decay is thus
reduced from its free-space value of 9.5–1.9 μs inside the
cylindrical cavity for the j ′

11 resonance. Recall from Sec. III
that the potentials and transition rates peak at different radii.
In Fig. 7, we have chosen the optimal radii for enhancing the
rates. By contrast, the transition rates at the optimal radii for
enhancing potentials (not displayed) are smaller by about a
factor 2.

For comparison, we consider the case of the polar molecule
LiH. Polar molecules also exhibit transitions in the frequency
regime ideal for enhancement, but with the respective dipole
matrix elements being much smaller than those of Rydberg

atoms. LiH has a lowest transition frequency (rotational) of
ω10 = 2.79 × 1012 rad/s and corresponding transition dipole
moment |d10|2 = 3.85 × 10−58 C2 m2. As a result of the
smaller dipole moment, the CP potential of polar molecules is
much smaller than that of Rydberg atoms. In spite of a relative
enhancement of about a factor 50–100 in a cylindrical cavity,
the achievable potential depth is still less than 1 Hz, which is
insufficient for molecular guiding purposes.

While a cavity enhancement of two orders of magnitude
is modest for the CP potential of a polar molecule, it is of
interest when regarding the ground-state heating rates. As
Fig. 8 shows, the transition to a particular state (in this case the
lowest rotational state) can be enhanced by a factor of about
30, considerably reducing the lifetime of the rotational ground
state against heating from 2.1 to 0.064 s.
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transition to 31p3/2 resonates with various modes of in a gold cavity described by Eq. (3.5). The radii are chosen according to Eq. (3.23) (j01,
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FIG. 6. (Color online) (Left) Casimir-Polder potential at the eight smallest resonant radii acting on isotropic Rb in the state 32s1/2, whose
transition to 31p3/2 resonates with various modes of a gold cavity described by Eq. (3.5). The radii are chosen according to Eq. (3.17) (j01, j02,
j11 = j ′

01, j12 = j ′
02, and j21) and Eq. (3.19) (j ′

11, j ′
12, j ′

21). (Right) The potential outside a plane half space.

variations of about 10 kHz in the far zone, hence showing
that the cavity can enhance the oscillating contribution to
the rate alone by about a factor 50. The lifetime of the
initial state against spontaneous and stimulated decay is thus
reduced from its free-space value of 9.5–1.9 μs inside the
cylindrical cavity for the j ′

11 resonance. Recall from Sec. III
that the potentials and transition rates peak at different radii.
In Fig. 7, we have chosen the optimal radii for enhancing the
rates. By contrast, the transition rates at the optimal radii for
enhancing potentials (not displayed) are smaller by about a
factor 2.

For comparison, we consider the case of the polar molecule
LiH. Polar molecules also exhibit transitions in the frequency
regime ideal for enhancement, but with the respective dipole
matrix elements being much smaller than those of Rydberg

atoms. LiH has a lowest transition frequency (rotational) of
ω10 = 2.79 × 1012 rad/s and corresponding transition dipole
moment |d10|2 = 3.85 × 10−58 C2 m2. As a result of the
smaller dipole moment, the CP potential of polar molecules is
much smaller than that of Rydberg atoms. In spite of a relative
enhancement of about a factor 50–100 in a cylindrical cavity,
the achievable potential depth is still less than 1 Hz, which is
insufficient for molecular guiding purposes.

While a cavity enhancement of two orders of magnitude
is modest for the CP potential of a polar molecule, it is of
interest when regarding the ground-state heating rates. As
Fig. 8 shows, the transition to a particular state (in this case the
lowest rotational state) can be enhanced by a factor of about
30, considerably reducing the lifetime of the rotational ground
state against heating from 2.1 to 0.064 s.
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LiH. Polar molecules also exhibit transitions in the frequency
regime ideal for enhancement, but with the respective dipole
matrix elements being much smaller than those of Rydberg

atoms. LiH has a lowest transition frequency (rotational) of
ω10 = 2.79 × 1012 rad/s and corresponding transition dipole
moment |d10|2 = 3.85 × 10−58 C2 m2. As a result of the
smaller dipole moment, the CP potential of polar molecules is
much smaller than that of Rydberg atoms. In spite of a relative
enhancement of about a factor 50–100 in a cylindrical cavity,
the achievable potential depth is still less than 1 Hz, which is
insufficient for molecular guiding purposes.

While a cavity enhancement of two orders of magnitude
is modest for the CP potential of a polar molecule, it is of
interest when regarding the ground-state heating rates. As
Fig. 8 shows, the transition to a particular state (in this case the
lowest rotational state) can be enhanced by a factor of about
30, considerably reducing the lifetime of the rotational ground
state against heating from 2.1 to 0.064 s.
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VI. CONCLUSIONS

We have presented the detailed theory for a particle (atom
or molecule) in an eigenstate inside a cylindrical cavity carved
out of a homogeneous and nonmagnetic material. A particle
out of thermal equilibrium with its environment is subject
to spatially oscillating CP forces near surfaces, and we have
focused particularly on a scheme to enhance the oscillating
force components by fine tuning the cavity radius to resonate
with the particle’s internal transition wavelength. A similar
oscillating behavior is observed for the transition rates between
eigenstates.

Formulas for calculating appropriate radii for maximal
enhancement of potential and rates have been derived. For
a perfectly conducting cylinder, the resonant radii are exactly
given as the zeros of the Bessel function Jm and its derivatives
divided by the wave number of the resonating transition.
The optimal radii are slightly shifted when the cavity is not

perfectly conducting, and simple expressions for the correction
have been derived for good conductors. The corrected optimal
radii for enhancing potential vs transition rates are now slightly
different.

We have shown how the cavity enhancement scales with
the relevant paramaters of the setup. In particular, we have
paid attention to the dependence of the enhancement on the
permittivity ε(ωkn) of the cavity material. We have shown that
the potential at resonance scales as U ∝ |ε(ωkn)|1/4, which is
a noticeable improvement over the planar geometry, for which
the scaling was found to be logarithmic, U ∝ ln ε(ωkn) [27].
A strong dependence is also found on the phase arg ε(ωkn) of
the permittivity. This is interesting in light of the controversy
surrounding the temperature correction to the Casimir force
between metals, for which the complex phase of ε for the
metal in question is of the essence. A precision experiment of
the potential enhancement in a cylindrical cavity could be a
critical experiment in this respect.

The cases of a Rydberg atom and a ground-state LiH
molecule have been studied numerically, both of which are
of experimental and technological interest. We have found
that the deepest potential minima for Rydberg atoms can be
obtained for quantum numbers in the lower end of the Rydberg
regime. With the smallest cavity enhancement [corresponding
to the first zero of J ′

1(x)], a guiding potential depth in excess
of 25 kHz is obtainable, which is within the region of
observability of modern experiments. The enhancement factor
obtained is more than 100, at least an order of magnitude better
than what we obtained for a planar gold cavity [27]. For the
polar molecule LiH, the cavity enhancement was found to be
insufficient to bring the potential into the observable regime.
Instead, a considerable enhancement of ground-state heating
rates can be achieved.
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VI. CONCLUSIONS

We have presented the detailed theory for a particle (atom
or molecule) in an eigenstate inside a cylindrical cavity carved
out of a homogeneous and nonmagnetic material. A particle
out of thermal equilibrium with its environment is subject
to spatially oscillating CP forces near surfaces, and we have
focused particularly on a scheme to enhance the oscillating
force components by fine tuning the cavity radius to resonate
with the particle’s internal transition wavelength. A similar
oscillating behavior is observed for the transition rates between
eigenstates.

Formulas for calculating appropriate radii for maximal
enhancement of potential and rates have been derived. For
a perfectly conducting cylinder, the resonant radii are exactly
given as the zeros of the Bessel function Jm and its derivatives
divided by the wave number of the resonating transition.
The optimal radii are slightly shifted when the cavity is not

perfectly conducting, and simple expressions for the correction
have been derived for good conductors. The corrected optimal
radii for enhancing potential vs transition rates are now slightly
different.
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the relevant paramaters of the setup. In particular, we have
paid attention to the dependence of the enhancement on the
permittivity ε(ωkn) of the cavity material. We have shown that
the potential at resonance scales as U ∝ |ε(ωkn)|1/4, which is
a noticeable improvement over the planar geometry, for which
the scaling was found to be logarithmic, U ∝ ln ε(ωkn) [27].
A strong dependence is also found on the phase arg ε(ωkn) of
the permittivity. This is interesting in light of the controversy
surrounding the temperature correction to the Casimir force
between metals, for which the complex phase of ε for the
metal in question is of the essence. A precision experiment of
the potential enhancement in a cylindrical cavity could be a
critical experiment in this respect.

The cases of a Rydberg atom and a ground-state LiH
molecule have been studied numerically, both of which are
of experimental and technological interest. We have found
that the deepest potential minima for Rydberg atoms can be
obtained for quantum numbers in the lower end of the Rydberg
regime. With the smallest cavity enhancement [corresponding
to the first zero of J ′

1(x)], a guiding potential depth in excess
of 25 kHz is obtainable, which is within the region of
observability of modern experiments. The enhancement factor
obtained is more than 100, at least an order of magnitude better
than what we obtained for a planar gold cavity [27]. For the
polar molecule LiH, the cavity enhancement was found to be
insufficient to bring the potential into the observable regime.
Instead, a considerable enhancement of ground-state heating
rates can be achieved.
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thank R. Messina for pointing out some misprints in the
original manuscript. This work was supported by the UK
Engineering and Physical Sciences Research Council. Support
from the European Science Foundation (ESF) within the
program “New Trends and Applications of the Casimir Effect”
(www.casimir-network.com) is gratefully acknowledged.

[1] H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).
[2] E. M. Lifshitz, Zh. Eksp. Teor. Fiz. 29, 94 (1955) [Sov. Phys.

JETP 2, 73 (1956)].
[3] A. D. McLachlan, Proc. R. Soc. Lond. A 274, 80 (1963).
[4] C. Henkel, K. Joulain, J. P. Mulet, and J.-J. Greffet, J. Opt. A 4,

S109 (2002).
[5] M. Antezza, L. P. Pitaevskii, and S. Stringari, Phys. Rev. Lett.

95, 113202 (2005).
[6] J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii,

S. Stringari, and E. A. Cornell, Phys. Rev. Lett. 98, 063201
(2007).

[7] T. Nakajima, P. Lambropoulos, and H. Walther, Phys. Rev. A
56, 5100 (1997).

[8] S.-T. Wu and C. Eberlein, Proc. R. Soc. London A 456, 1931
(2000).

[9] S. Y. Buhmann and D.-G. Welsch, Prog. Quantum Electron. 31,
51 (2007).

[10] S. Scheel and S. Y. Buhmann, Acta Phys. Slov. 58, 675 (2008).
[11] S. Y. Buhmann and S. Scheel, Phys. Rev. Lett. 100, 253201

(2008).
[12] M.-P. Gorza and M. Ducloy, Eur. Phys. J. D 40, 343

(2006).
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VI. CONCLUSIONS

We have presented the detailed theory for a particle (atom
or molecule) in an eigenstate inside a cylindrical cavity carved
out of a homogeneous and nonmagnetic material. A particle
out of thermal equilibrium with its environment is subject
to spatially oscillating CP forces near surfaces, and we have
focused particularly on a scheme to enhance the oscillating
force components by fine tuning the cavity radius to resonate
with the particle’s internal transition wavelength. A similar
oscillating behavior is observed for the transition rates between
eigenstates.

Formulas for calculating appropriate radii for maximal
enhancement of potential and rates have been derived. For
a perfectly conducting cylinder, the resonant radii are exactly
given as the zeros of the Bessel function Jm and its derivatives
divided by the wave number of the resonating transition.
The optimal radii are slightly shifted when the cavity is not

perfectly conducting, and simple expressions for the correction
have been derived for good conductors. The corrected optimal
radii for enhancing potential vs transition rates are now slightly
different.

We have shown how the cavity enhancement scales with
the relevant paramaters of the setup. In particular, we have
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permittivity ε(ωkn) of the cavity material. We have shown that
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the permittivity. This is interesting in light of the controversy
surrounding the temperature correction to the Casimir force
between metals, for which the complex phase of ε for the
metal in question is of the essence. A precision experiment of
the potential enhancement in a cylindrical cavity could be a
critical experiment in this respect.

The cases of a Rydberg atom and a ground-state LiH
molecule have been studied numerically, both of which are
of experimental and technological interest. We have found
that the deepest potential minima for Rydberg atoms can be
obtained for quantum numbers in the lower end of the Rydberg
regime. With the smallest cavity enhancement [corresponding
to the first zero of J ′

1(x)], a guiding potential depth in excess
of 25 kHz is obtainable, which is within the region of
observability of modern experiments. The enhancement factor
obtained is more than 100, at least an order of magnitude better
than what we obtained for a planar gold cavity [27]. For the
polar molecule LiH, the cavity enhancement was found to be
insufficient to bring the potential into the observable regime.
Instead, a considerable enhancement of ground-state heating
rates can be achieved.

ACKNOWLEDGMENTS

We have benefited from discussions with J. Fortágh, and
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VI. CONCLUSIONS

We have presented the detailed theory for a particle (atom
or molecule) in an eigenstate inside a cylindrical cavity carved
out of a homogeneous and nonmagnetic material. A particle
out of thermal equilibrium with its environment is subject
to spatially oscillating CP forces near surfaces, and we have
focused particularly on a scheme to enhance the oscillating
force components by fine tuning the cavity radius to resonate
with the particle’s internal transition wavelength. A similar
oscillating behavior is observed for the transition rates between
eigenstates.

Formulas for calculating appropriate radii for maximal
enhancement of potential and rates have been derived. For
a perfectly conducting cylinder, the resonant radii are exactly
given as the zeros of the Bessel function Jm and its derivatives
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[27] S. Å. Ellingsen, S. Y. Buhmann, and S. Scheel, Phys. Rev. A 80,

022901 (2009).
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Abstract. The Casimir effect, reflecting quantum vacuum fluctuations in the
electromagnetic field in a region with material boundaries, has been studied
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and metallic surfaces both plane and curved have been measured at the 10–1%
level in a variety of room temperature experiments, and remarkable agreement
with the zero-temperature theory has been achieved. In fitting the data various
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have been incorporated. It is the latter that is the subject of the present paper.
We point out that, in fact, no temperature dependence has yet been detected,
and that the experimental situation is still too fluid to permit conclusions
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1. Introduction

About the same time that Schwinger and Feynman were inventing renormalized quantum elec-
trodynamics, Casimir discovered that quantum electrodynamic fluctuations resulted in macro-
scopic forces between conductors and dielectrics [1]. The theory was a natural outgrowth of
the Casimir–Polder theory of the retarded dispersion force between molecules [2]. The gen-
eral theory for the forces between parallel dielectrics was worked out by Lifshitz et al [3],
who also included temperature corrections, which were considered further by Sauer [4] and
Mehra [5]. Some years later, the whole theory was rederived by Schwinger et al [6].

The early experiments on Casimir forces were rather inconclusive—for a review see [7].
However, the corresponding Lifshitz theory was verified rather impressively by Sabisky and
Anderson [8], so there could hardly be any doubt of the validity of the essential ideas. Starting
about a decade ago, modern experiments by Lamoreaux [9]–[12], Mohideen et al [13]–[15],
and by Ederth [16] brought the experimental measurement of the Casimir force between curved
metal surfaces (mapped to the plane geometry by the proximity approximation [17, 18]) into the
percent accuracy region. (Exact results have now apparently rendered the use of the proximity
approximation, which cannot be extended beyond leading order, unnecessary. See, for example,
[19]–[21].) Application of such Casimir forces to nanoelectromechanical devices have been
suggested by experiments at Bell Labs and Harvard [22]–[24]. Only one experiment so far,
of limited accuracy (∼15%), has employed parallel plates [25]. The difficulty of maintaining
parallelism in that geometry limits the accuracy of the experiment, but the forces are much
larger than those between a sphere and a plate, so the forces can, in principle, be determined
at much larger separations. Proposals to perform measurements of the force between a cylinder
and a plane [26] and between eccentric cylinders [27] have advantages because the forces are
stronger than between a sphere and a plane, yet the difficulties in assuring parallelism are not so
severe as with two plane surfaces. The most precise experiments so far, based on both static and
dynamical procedures between a plate and a spherical surface, have been performed at Purdue
[28]–[30], where the accuracy is claimed to be better than 1% at separations down to less than
100 nm.
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All present experiments agree well with the zero-temperature Casimir theory when surface
roughness and finite conductivity corrections are included [31, 32]. The issue about which
controversy has recently erupted is the temperature dependence. (For recent statements of
both sides of the controversy, see [30], [33]–[36].) All experiments reported to date have been
conducted at room temperature, so there is no direct evidence for or against any particular model
of the temperature dependence. Indirect evidence for this dependence has been inferred based
on the nonzero shift in the theoretical Casimir force between the surfaces due to the difference
between the force at zero temperature and at 300 K. Surprisingly, this temperature shift is not so
straightforwardly computed as one would have at first suspected.

It is the purpose of the present paper to frame the question of the temperature dependence
of the Casimir force in the context of the history of the subject and the present experimental
constraints, as well as to point out ways of reconciling the ambiguities both from the theoretical
and experimental sides. In the following section, we review the standard approach given in [6] for
both dielectric and metal surfaces. Then, in section 3, we give the arguments why the transverse
electric (TE) zero mode should not be included, and how this impacts the temperature dependence
of the force, and the resulting impact on the free energy and entropy. Other theoretical arguments
for and against this point of view are discussed in section 4. The status of the experimental
situation, and the possibility of dedicated experiments to search for the temperature dependence
of the Casimir effect, will be reviewed in section 5. Some new calculations are presented in
section 6 in the hope of providing signatures to help resolve the controversy. Finally, concluding
remarks are offered in section 7.

2. Conventional temperature approach

The zero-temperature Casimir effect between parallel conducting plates, or between parallel
dielectrics, is very well understood, and is not controversial. The formula for the latter, which
includes the former as a singular limit, may be derived by a multitude of formalisms, which will
not be reviewed here [6, 31], [37]–[39]. For a system of parallel dielectric media, characterized
by a permittivity

ε(z) =
⎧⎨
⎩

ε1, z < 0,

ε3, 0 < z < a,

ε2, a < z,

(2.1)

where the various permittivities are functions of frequency, the Lifshitz force per unit area on
one of the surfaces is at zero temperature

PT=0 = − 1

4π2

∫ ∞

0
dζ

∫ ∞

0
dk2

⊥ κ3(d
−1 + d ′−1), (2.2)

where ζ is the imaginary frequency, ζ = −iω, and the longitudinal wavenumber is

κi =
√

k2
⊥ + ζ2εi(iζ), (2.3)
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while the TE and transverse magnetic (TM) Green’s functions are characterized by the
denominators

d = κ3 + κ1

κ3 − κ1

κ3 + κ2

κ3 − κ2
e2κ3a − 1, d ′ = κ′

3 + κ′
1

κ′
3 − κ′

1

κ′
3 + κ′

2

κ′
3 − κ′

2

e2κ3a − 1, (2.4)

respectively, where κ′
i = κi/εi.

The attractive Casimir pressure between parallel perfectly conducting planes separated by
a vacuum space of thickness a is obtained by setting ε1,2 → ∞ and ε3 = 1. In that case the TE
and TM contributions are equal, and we have

PC = − 1

8π2

∫ ∞

0
dζ

∫ ∞

ζ2

dκ2 4κ

e2κa − 1
= − 1

π2

∫ ∞

0
dζ

ζ3

e2ζa − 1
= − π2 h̄c

240a4
, (2.5)

which is Casimir’s celebrated result [1].
The controversy surrounds the question of how to incorporate thermal corrections into the

latter result. At first glance, the procedure to do this seems straightforward. It is well-known
that thermal Green’s functions must be periodic in imaginary time, with period β = 1/T [40].
This implies a Fourier series decomposition, rather than a Fourier transform, where in place of
the imaginary frequency integral in (2.5), we have a sum over Matsubara frequencies

ζ2
m = 4π2m2

β2
, (2.6)

that is, the replacement∫ ∞

0

dζ

2π
→ 1

β

∞∑
m=0

′, (2.7)

the prime being an instruction to count the m = 0 term in the sum with half weight. This
prescription leads to the following formula for the Casimir pressure between perfect conductors
at temperature T ,

PT = − 1

4πβa3

∞∑
m=0

′
∫ ∞

mt

y2 dy
1

ey − 1
, (2.8)

where

t = 4πa

β
. (2.9)

From this, it is straightforward to find the high and low temperature limits,

PT ∼ − 1

4πβa3
ζ(3) − 1

2πβa3

(
1 + t +

t2

2

)
e−t, β � 4πa, (2.10a)

PT ∼ − π2

240a4

[
1 +

16

3

a4

β4
− 240

π

a

β
e−πβ/a

]
, β � 4πa. (2.10b)
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These are the results found by Sauer [4] and Mehra [5], and by Lifshitz [3]. The two limits
are connected by the duality symmetry found by Brown and Maclay [41]. The pressure may be
obtained by differentiating the free energy,

P = − ∂

∂a
F, (2.11)

which takes the following form for low temperature (now omitting the exponentially small terms)

F ∼ − π2

720a3
− ζ(3)

2π
T 3 +

π2

45
T 4a, aT � 1, (2.12)

from which the entropy follows,

S ∼ − ∂

∂T
F ∼ 3ζ(3)

2π
T 2 − 4π2

45
T 3a, aT � 1, (2.13)

which vanishes as T goes to zero, in accordance with the third law of thermodynamics, the Nernst
heat theorem.

3. Exclusion of TE zero mode

However, there is something peculiar about the procedure adopted above for a perfect metal.
(This seems first to have been appreciated by Boström and Sernelius [42].) It has to do with the
TE mode of zero frequency, which we shall refer to as the TE zero mode. If we examine the
zero frequency behaviour of the reflection coefficients for a dielectric appearing in (2.4), we see
that providing ζ2ε(iζ) → 0 as ζ → 0, the longitudinal wavenumber κi → k as ζ → 0, and hence
d → ∞ as ζ → 0. This means that there is no TE zero mode for a dielectric. This statement does
not appear to be controversial [43]. However, if a metal is modelled as the ε → ∞ limit of a
dielectric, the same conclusion would apply. Because that would spoil the concordance with the
third law noted in the previous section, the prescription was promulgated in [6] that the ε → ∞
limit be taken before the ζ → 0 limit. But, of course, a real metal is not described by such a
mathematical limit, so we must examine the physics carefully.

A simple model for the dielectric function is the plasma dispersion relation,

ε(ω) = 1 − ω2
p

ω2
, (3.1)

where ωp is the plasma frequency. For this dispersion relation, the condition ζ2ε(iζ) → 0 fails
to hold as ζ → 0, and the idealized prescription result, namely the contribution of the TE zero
mode, holds. However, real metals are not well described by this dispersion relation. Rather, the
Drude model,

ε(iζ) = 1 +
ω2

p

ζ(ζ + γ)
, (3.2)

where the relaxation frequency γ represents dissipation, very accurately fits optical experimental
data for the permittivity for ζ < 2 × 1015 rad s−1 [44, 45]. For example, for gold, appropriate
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values of the parameters are [46]

ωp = 9.03 eV, γ = 0.0345 eV. (3.3)

In this case, the arguments given above for the exclusion of the TE zero mode apply.
The arguments are somewhat subtle [38, 39], so we review and extend them here. Let us

write the Lifshitz formula at finite temperature in the form

PT =
∞∑

m=0

′fm =
∫ ∞

0
dmf(m) −

∞∑
k=0

B2k

(2k)!
f (2k−1)(0), (3.4)

where the second equality uses the Euler–Maclaurin sum formula, in terms of

f(m) = − 1

2πβ

∫ ∞

0
dk2

⊥κ(ζm)
(
d−1

m + d ′−1
m

)
, (3.5)

according to (2.2) and (2.7), where we assume that vacuum separates the two plates so
κ3(ζm) = κ(ζm) =

√
k2

⊥ + ζ2
m. Here, the denominators (2.4) are functions of ζm. By changing

the integration variable from m to ζm, we immediately see that the integral term in the Euler–
Maclaurin sum formula corresponds precisely to the zero-temperature result (2.2).

One must, however, be careful in computing the low temperature corrections to this. One
cannot directly expand the denominator d in powers of ζ because the k⊥ integral in (3.5) ranges
down to zero. Let us rewrite the TE term there as follows:

f (TE)(m) = − 1

πβ

∫ ∞

2mπ/β

dκ κ2

⎧⎨
⎩
[

1 +
√

1 + ζ2
m(ε(iζm) − 1)/κ2

1 −√1 + ζ2
m(ε(iζm) − 1)/κ2

]2

e2κa − 1

⎫⎬
⎭

−1

. (3.6)

Evidently, for the Drude model, or more generally, whenever

lim
ζ→0

ζ2[ε(iζ) − 1] = 0, (3.7)

f (TE)(0) = 0. However, it is important to appreciate the physical discontinuity between m = 0
and m = 1 for room temperature. At 300 K, while ζ0 = 0, ζ1 = 2πT = 0.16 eV, large compared
the relaxation frequency γ . Therefore, for m > 0,

f (TE)(m) ≈ − 1

πβ

∫ ∞

ζm

dκ κ2

⎡
⎢⎣
⎛
⎝
√

1 + ω2
p/κ

2 + 1√
1 + ω2

p/κ
2 − 1

⎞
⎠

2

e2κa − 1

⎤
⎥⎦

−1

≈ − 1

πβ

∫ ∞

ζm

dκ κ2 1

e2κa − 1
,

(3.8)

provided the significant values of ζm and κ are small compared to the plasma frequency ωp. This
is just the ideal metal result contained in (2.8). Insofar as this is accurate, this expression yields
the low- and high-temperature corrections seen in (2.10b) and (2.10a). However, there is now a
discontinuity in the function f (TE). As ζm → 0,

f (TE)(m) → − 1

πβ

∫ ∞

0
dκ

κ2

e2κa − 1
= − ζ(3)

4πβa3
, (3.9)
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rather than zero. This implies an additional linear term in the pressure at low temperatures

PT ∼ PT=0 +
ζ(3)

8πa3
T, aT � 1. (3.10)

Exclusion of the TE zero mode will also reduce the linear temperature dependence expected at
high temperatures,

PT ∼ − ζ(3)

8πa3
T, aT � 1, (3.11)

one-half the usual ideal metal result seen in (2.10a), and this is indeed predicted in numerical
results (see figure 4 of [38] for a > 5 μm, for example).

Most experiments are carried out between a sphere (of radius R) and a plane. In this
circumstance, if R � a, a being the separation between the sphere and the plate at the closest
point, the force may be obtained from the proximity force approximation,

F = 2πRF(a), (3.12)

F(a) being the free energy for the case of parallel plates separated by a distance a. Thus in the
idealized description, the low temperature dependence including our linear term is

F ∼ − π3R

360a3

[
1 − 45

π3
ζ(3)aT +

360

π3
ζ(3)(aT)3 − 16(aT)4

]
, aT � 1. (3.13)

Since this conversion is trivial, in the following we will restrict attention to the straightforward
parallel plate situation.

These results are only approximate, because they assume the metal is ideal except for the
exclusion of the TE zero. Elsewhere, we have referred to this model as the Modified Ideal
Metal (MIM) model [38, 39]. Evidently, for sufficiently low temperatures the approximation
used here, that ζ1 � γ , breaks down, the function f(m) becomes continuous, and the linear term
disappears. Indeed, numerical calculations based on real optical data for the permittivity show
this transition. An example of such a calculation is presented in section 6. There, in figure 1,
we see a negative slope in the quantity P/PC as a function of the plate separation a in the region
between 1 and 2 μm. This slope is approximately −0.1 μm−1. Here P is the pressure between
the plates at 300 K, while PC is the ideal Casimir pressure (2.5). If we compare this to our
approximate prediction (3.10),

PT=300 K

PC
≈ 1 − 30

7.62

ζ(3)

π3

a

μm
= 1 − 0.15

a

μm
, (3.14)

the slope and intercepts agree at the 20% level. Accurate numerical results between real metal
plates and spheres are given in [33].

Because this linear behaviour does not persist at arbitrarily small temperatures, it is clear
that the conflict with the third law anticipated in the arguments in the previous section do not
apply. In fact, as we shall now see, the entropy does go to zero at zero temperature.
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parallel plate situation.

These results are only approximate, because they assume the metal is ideal except for the
exclusion of the TE zero. Elsewhere, we have referred to this model as the Modified Ideal
Metal (MIM) model [38, 39]. Evidently, for sufficiently low temperatures the approximation
used here, that ζ1 � γ , breaks down, the function f(m) becomes continuous, and the linear term
disappears. Indeed, numerical calculations based on real optical data for the permittivity show
this transition. An example of such a calculation is presented in section 6. There, in figure 1,
we see a negative slope in the quantity P/PC as a function of the plate separation a in the region
between 1 and 2 μm. This slope is approximately −0.1 μm−1. Here P is the pressure between
the plates at 300 K, while PC is the ideal Casimir pressure (2.5). If we compare this to our
approximate prediction (3.10),

PT=300 K

PC
≈ 1 − 30

7.62

ζ(3)

π3

a

μm
= 1 − 0.15

a

μm
, (3.14)

the slope and intercepts agree at the 20% level. Accurate numerical results between real metal
plates and spheres are given in [33].

Because this linear behaviour does not persist at arbitrarily small temperatures, it is clear
that the conflict with the third law anticipated in the arguments in the previous section do not
apply. In fact, as we shall now see, the entropy does go to zero at zero temperature.
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4. Arguments in favour of and against the TE zero mode

As noted above, there are strong thermodynamic and electrodynamic arguments in favour of the
exclusion of the TE zero mode. Essentially, the point is that a realistic physical system can have
only one state of lowest energy. Electrodynamically, one can start from the Kramers–Kronig
relation that relates the real and imaginary part of the permittivity, required by causality, which
can be written in the form of a dispersion relation for the electric susceptibility [47]

χ(ω) = ω2
p

4π

∫ ∞

0
dω′ p(ω′)

ω′2 − (ω + iε)2
. (4.1)

If the spectral function p(ω′) � 0 is nonsingular at the origin, it is easily seen that ω2χ(ω) → 0
as ω → 0, which as shown in the previous section implies the absence of the TE zero mode.
Conversely, p(ω′) must have a δ-function singularity at the origin to negate this conclusion.
This would seem implausible for any but an overly idealized model. In contrast, in the
Drude model

p(ω′) = 2

π

γ

ω′2 + γ2
→ 2δ(ω′) γ → 0. (4.2)

It has been objected that rather than employing bulk permittivities as done in the usual
expression for the Lifshitz formula, one should use surface impedances instead [30, 34, 48, 49].
Indeed this may be done, but it leads to identical results. The surface impedance merely expresses
the linear relation between tangential components of the electric and magnetic fields at the
interface between the two media,

E⊥ = Z(ω, k⊥)B⊥ × n, n × E⊥ = Z(ω, k⊥)B⊥, (4.3)

where n is the normal to the interface at the point in question. From Maxwell’s equations we
deduce [39, 47] for the reflection coefficient for the TE modes

rTE = − ζ + Zκ

ζ − Zκ
, κ2 = ζ2 + k2

⊥, (4.4)

and the surface impedance is 4

Z = − ζ√
ζ2[ε(iζ) − 1] + κ2

. (4.5)

From this reflection coefficient, the Lifshitz formula is constructed according to d =
(rTE)−2e2κa − 1. Evidently the resultant expression for the Lifshitz pressure coincides with that
found from the permittivity, seen for example in (3.6). This coincidence has been well recognized
by previous authors [51, 52]. The reason why Mostepanenko and co-workers obtain a different
result is that they omit the transverse momentum dependence in (4.5) and thereby argue that

4 Here we have assumed that the permittivity is independent of transverse momentum. In principle this is incorrect,
although optical data suggest that the transverse momentum dependence of ε is rather small. See also [50].
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at zero frequency Z vanishes,

Z → − 1√
ε(iζ)

∼
√

γ

ωp

√
ζ, (4.6)

which is the content of the normal skin effect formula

Z(ω) = −(1 − i)

√
ω

8πσ
, (4.7)

where σ is the conductivity. (These two formulae are seen to be identical if we replace ω = iζ and
recognize that γ = ω2

p/(4πσ).) These formulae apply when we have the restriction appropriate to
real photons k2

⊥ � ω2. However, no such mass-shell condition applies to the virtual or evanescent
photons involved in the thermal Casimir effect. The same sort of error seems to be made by
Torgerson and Lamoreaux [53, 54], and by Bimonte [55, 56].

As noted above, use of the plasma model in the reflection coefficients would lead to the
conventional temperature dependence, but this dispersion relation is inconsistent with real data.
However, it has been argued that in the ideal Bloch–Grüneisen model [57], the relaxation
parameter goes to zero at zero temperature. However, real metals exhibit scattering by impurities;
in any case, at sufficiently low temperatures the residual value of the relaxation parameter does
not play a role, as the frequency characteristic of the anomalous skin effect becomes dominant
[58]. Moreover, the authors of [30, 34] also extrapolate the plasma formula from the infrared
region down to zero frequency, whereas in fact frequencies very small compared to the frequency
corresponding to the separation distance play a dominant role in the temperature dependence
[58]. Finally, we emphasize that all present experiments are carried out at room temperature,
where the known room temperature data are relevant.

The principal reason for the theoretical controversy has to do with the purported violation
of the third law of thermodynamics if the TE zero mode is not included. If ideal metal reflection
coefficients are used otherwise (the MIM model) such a violation indeed occurs, because the
free energy per unit area for small temperature then behaves like

F = F0 + T
ζ(3)

16πa2
. (4.8)

However, we and others have shown [39], [58]–[60] that for real metals, the free energy per area
has a vanishing slope at the origin. Indeed, in the Drude model we have

F = F0 + T 2
ω2

p

48γ
(2 ln 2 − 1), (4.9)

for sufficiently low temperatures. There is, however, an intermediate range of temperatures where
it is expected that the entropy is negative. We do not believe that this presents a thermodynamic
difficulty, and reflects the fact that the electrodynamic fluctuations being considered represent
only part of the complete physical system [33, 38, 59], although this is not a universal opinion
[58]. (See also the further remarks in section 7.) New calculations are underway, showing
explicitly the zero slope of the curve for the free energy near T = 0, thus corresponding to zero
entropy [61].
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only part of the complete physical system [33, 38, 59], although this is not a universal opinion
[58]. (See also the further remarks in section 7.) New calculations are underway, showing
explicitly the zero slope of the curve for the free energy near T = 0, thus corresponding to zero
entropy [61].

New Journal of Physics 8 (2006) 236 (http://www.njp.org/)



10 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Two other recent papers also lend support to our point of view. Jancovici and Šamaj [62]
and Buenzli and Martin [63] have examined the Casimir force between ideal-conductor walls
with emphasis on the high-temperature limit. Not surprisingly, ideal inert boundary conditions
are shown to be inadequate, and fluctuations within the walls, modelled by the classical Debye–
Hückel theory, determine the high temperature behaviour. The linear in temperature behaviour
of the Casimir force is found to be reduced by a factor of two from the behaviour predicted by
an ideal metal, just as in (3.11). This is precisely the signal of the omission of the m = 0 TE
mode. Thus, it is very hard to see how the corresponding modification of the low-temperature
behaviour can be avoided.

Further support for our conclusions can be found in the recent paper of Sernelius [64], who
calculates the van der Waals–Casimir force between gold plates using the Lindhard or random
phase approximation dielectric function. The central theme of his work is to describe the thermal
Casimir effect in terms of spatial dispersion. Physically, spatially nonlocal effects play a role at
low frequencies because charge carriers can move freely over large distances. Deviations from
standard local electromagnetic theory can then be expected. Spatial dispersion implies that the
standard Fresnel equations no longer apply. Moreover, because of lack of experimental data, one
has to rely on theoretical model-dielectric functions.

Sernelius finds [64] that for large separations the force is one-half that of the ideal metal,
just as in the calculation in [62, 63]. This agreement is not quite trivial; it means that the
thermal Casimir effect can be explained in two, apparently unrelated ways: one way is to include
spatial dispersion in the formalism from the beginning, omitting dissipation. The other way
is the conventional one, namely to describe the thermal effect in terms of dissipation alone, by
introducing the relaxation frequency γ as we have done above. Sernelius shows that, for arbitrary
separation between the plates, the spatial-dispersion results nearly exactly coincide with the local
dissipation-based results [42, 65].

5. Experimental constraints

We have marshaled theoretical arguments that seem to us quite overwhelming in favour of the
absence of the TE zero mode in the temperature dependence of the Casimir force between real
metal plates, which seem to imply unambiguously that there should be large (∼15%) thermal
corrections to the Casimir force at separations of order 1 μm. New detailed calculations based
on this theory, and using real optical data for aluminum, are discussed in the following section.
The difficulty is that, experimentally, it is not easy to perform Casimir force measurements at
other than room temperature, so current constraints on the theory all come from room temperature
experiments. Then all one can do is compare the theory at room temperature with the experimental
results, which must be corrected for a variety of effects, such as surface roughness, finite
conductivity and patch potentials. A deviation between the corrected zero temperature theory
and the room temperature observations then is taken as a measure of the temperature correction.

The temperature correction is evidently relatively largest at the largest separations, where,
unfortunately, the total Casimir force is weakest. Lamoreaux’s early experiments [9] were con-
ducted at the 1 μm scale, so if they were accurate to 10% they would have seen the effect our
theory predicts, but probably, in spite of Lamoreaux’s assertion, they were not so accurate, be-
cause few essential corrections were included [66]. The experiments of Mohideen et al [13]–[15]
were much more accurate, but because they were conducted at much smaller distances, even our
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rather large temperature correction would have remained inaccessible. It is the most recent ex-
periments of the Purdue group [29, 30] that claim the extraordinarily high precision to be able to
see our effect at distances as small as 100 nm. Indeed, they see no deviation from the corrected
zero-temperature Lifshitz theory using optical permittivities, and hence assert that our theory
is decisively ruled out. The effect we predict for the temperature correction is only 1.5% at a
distance of 160 nm [35], so the measurement must be performed at the 1% level to see the effect
there. (For the usually employed sphere-plate configuration, �F/F ≈ 2.5% at a = 160 nm.)
Although they claim this degree of accuracy, it is doubtful that they have achieved it, because,
for example, to achieve 1% accuracy, the separation would have to be determined to better than
0.3%, or 0.5 nm at a = 160 nm. Since the roughness in the surfaces involved is much larger than
this (see also [67]), and other corrections (such as the fact that the metallic surfaces are actually
thin films, and the effects of surface plasmons [68, 69]) have not been included, we have reason
to be skeptical of such claims [70].

In any case, it would seem imperative to perform experiments at different temperatures in
order to provide evidence for or against temperature dependence of Casimir forces.We understand
such experiments are in progress. We encourage experimentalists to redouble their efforts to
determine the presence or absence of such an effect in an unbiased manner, for the issues involved
touch at the heart of our fundamental theoretical understanding of electrodynamics, statistical
mechanics and quantum field theory.

6. New calculations

To aid in the experimental disentanglement of this effect, we have carried out new calculations
of the Casimir force between two infinite half-spaces made of aluminum, separated by a vacuum
space of width a. (Other recent calculations appear in [35, 46, 71].) The results are shown in
figure 1. (Figures 1–9 are taken from the Master’s Thesis of SAE [72].) Formulae made use of
are read off from (2.2) and are now given in usual dimensional units
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2π2

∫ ∞

0
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0
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Figure 1. Temperature dependence of the Casimir force between aluminum
plates.
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√
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ζ2
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Here, ε(iζ) = ε(iζ)/ε0 is the usual permittivity relative to the vacuum. In the case of finite
temperatures, ζ = ζm = 2πmkBT/ h̄, and a standard Lifshitz substitution of integration variables
was made during calculations (see for example (3.2b) of [38]). The results are plotted relative to
the standard Casimir pressure PC in (2.5). Calculations have been carried to a relative accuracy
of better than 10−4. Even at T = 0, there are large deviations from the ideal Casimir result at all
distance scales.

To illustrate the contributions of the TE and TM modes, figures 2–4 depict the TE and TM
integrands of a Casimir pressure expression of the type

PT=0 =
∫ ∞

0
dζ

∫ ∞

0
dk⊥[ITE(iζ, k⊥) + ITM(iζ, k⊥)]. (6.3)

It is clear that the TE term in the integrand falls off rapidly to zero as ζ → 0 whereas the TM term
remains finite. The relative contributions to the pressure by the TE and TM modes are illustrated
in figures 5 and 6. Evidently, the contribution of the TE mode rapidly decreases with increasing
temperature and increasing plate separation.

6.1. Results for a five-layer model

Because many experiments have been carried out with a conducting surface between parallel
capacitor plates it is useful to consider the five layer geometry which has been treated repeatedly
by Tomaš in recent years [73]. The geometry is defined by figure 7. All three slabs are assumed
to be made of aluminum. We assume one intermediate plate of width b, immersed in a cavity
of total width c = a + a′ + b. Between the central plate and the two outer semi-infinite media,
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temperatures, ζ = ζm = 2πmkBT/ h̄, and a standard Lifshitz substitution of integration variables
was made during calculations (see for example (3.2b) of [38]). The results are plotted relative to
the standard Casimir pressure PC in (2.5). Calculations have been carried to a relative accuracy
of better than 10−4. Even at T = 0, there are large deviations from the ideal Casimir result at all
distance scales.

To illustrate the contributions of the TE and TM modes, figures 2–4 depict the TE and TM
integrands of a Casimir pressure expression of the type

PT=0 =
∫ ∞

0
dζ

∫ ∞

0
dk⊥[ITE(iζ, k⊥) + ITM(iζ, k⊥)]. (6.3)

It is clear that the TE term in the integrand falls off rapidly to zero as ζ → 0 whereas the TM term
remains finite. The relative contributions to the pressure by the TE and TM modes are illustrated
in figures 5 and 6. Evidently, the contribution of the TE mode rapidly decreases with increasing
temperature and increasing plate separation.

6.1. Results for a five-layer model

Because many experiments have been carried out with a conducting surface between parallel
capacitor plates it is useful to consider the five layer geometry which has been treated repeatedly
by Tomaš in recent years [73]. The geometry is defined by figure 7. All three slabs are assumed
to be made of aluminum. We assume one intermediate plate of width b, immersed in a cavity
of total width c = a + a′ + b. Between the central plate and the two outer semi-infinite media,
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we assume a vacuum (εg = 1). The quantity h is defined as h = c − b. The quantity δ is the
deviation of the centre of the plate from the midline of the cavity. The Casimir pressure at zero
and finite temperature is given by

PT=0(δ; b, c) = h̄

2π2

∫ ∞

0
dζ

∫ ∞

0
dk⊥

TM∑
q=TE

Iq(iζ, k⊥; δ, b, c), (6.4a)

PT>0(δ; b, c) = kBT

π

∞∑
m=0

′
∫ ∞

0
dk⊥

TM∑
q=TE

Iq(iζm, k⊥; δ, b, c). (6.4b)
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Figure 5. TE and TM contributions to the pressure shown in figure 1.

Here, the integrand is

Iq(iζ, k⊥; δ, b, c) = k⊥κ02�1q�2q(1 − e−2κ2b)e−κ0h sinh 2κ0δ
[

− �2
2qe−2κ2b + 1

− �2
1qe−2κ0h(e−2κ2b − �2

2q) − 2�1q�2q(1 − e−2κ2b)e−κ0h cosh 2κ0δ
]−1

. (6.5)

The Casimir force is positive for positive δ, and is antisymmetric around the cavity centre δ = 0.
The index q in the �’s in the formulae runs over the polarizations TE and TM, which are given
by equations (6.2a) and (6.2b). These results are equivalent to those found earlier by Tomaš [74],
but presented in a more illustrative form.

Numerically, we choose c = 3 μm and b = 500 nm. The pressure P(δ), calculated from
δ = 0 to δ = (c − b)/2 − 50 nm, is shown in figure 8. All calculations are done with an accuracy
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Figure 6. Ratio of the TE and TM mode pressures contributing to the pressure
shown in figure 1.

Figure 7. The 5-zone geometry. Here, we have set εg = 1.

of better that 10−4 in the final result, which should be sufficient for practical purposes. Figure 9
shows the pressure relative to Casimir’s result for ideal conductors,

PC = −π2h̄c

240

(
1

(h/2 + δ)4
− 1

(h/2 − δ)4

)
. (6.6)

As for the finite temperature calculations, it has been checked that all terms in the sum
(except for the zero mode) lie within the frequency domain covered by Lambrecht’s data. There
is thus no extra assumption made in the calculation, such as the property εζ2/c2 → 0 as ζ → 0,
following from the Drude relation, except to ensure that there is no contribution from the TE
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shows the pressure relative to Casimir’s result for ideal conductors,

PC = −π2h̄c

240

(
1

(h/2 + δ)4
− 1

(h/2 − δ)4

)
. (6.6)

As for the finite temperature calculations, it has been checked that all terms in the sum
(except for the zero mode) lie within the frequency domain covered by Lambrecht’s data. There
is thus no extra assumption made in the calculation, such as the property εζ2/c2 → 0 as ζ → 0,
following from the Drude relation, except to ensure that there is no contribution from the TE
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Figure 9. Pressure on the plate at a distance δ from the cavity centre relative
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zero mode. In the T = 0 case, the Drude relation is used for low frequencies. The contribution to
the force coming from frequencies outside the Lambrecht region is very small, smaller than the
accuracy of the calculation. Again, we see large deviations from the ideal Casimir result at all
temperatures, as well as relatively large temperature corrections, which we hope will be readily
detectable in future experiments.
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It would be very interesting to conduct experiments which are sensitive to the 5-zone
geometry we have considered, namely a slab in a cavity. In particular, one could study the
case of a slab oscillating about the centre of a cavity, detecting how the oscillation frequency
varies with temperature. Using a cavity of width 2–4 μm, say, one finds that the temperature
corrections are largest for slab-wall separations on the order of 1 μm.

7. Conclusions

We have shown how the Casimir pressure between parallel plates can be calculated with the
inclusion, as well as with the exclusion, of the TE zero mode. We emphasized (section 4) that
there are strong thermodynamic and electrodynamic arguments in favour of the latter option.
As is known in general, instead of employing bulk permittivities, it is possible to use surface
impedances instead. We pointed out that in such a case it becomes necessary to take into account
also the transverse momentum dependence in the expression (4.5) for the surface impedance.
Otherwise, if one leaves out the transverse momentum, one will obtain erroneous results as has
often been the case in the literature [30, 34, 48, 49], [53]–[56].

We advocate the use of Drude’s dispersion relation (3.2) throughout. The alternative plasma
relation (3.1) is inconsistent with real dispersive data. One peculiar effect arising from use of
the Drude relation is the appearance of negative Casimir entropy in a finite frequency interval.
The physical reason for this kind of behaviour is the following: it reflects the fact that we are
dealing with only a part of the complete physical system. The effect may appear counterintuitive,
but is not so uncommon in physics after all. One cannot apply usual thermodynamic restrictions
such as positiveness of entropy to a ‘subsystem’ formed by the induced interaction part of the
free energy of the full system. This issue was discussed in detail in a previous paper [38].
In section 4 of that paper we introduced, as an illustrative mechanical model, a system of
two harmonic oscillators interacting via a third one. Such oscillators represent a simplified
picture of two parallel plates interacting via the electromagnetic field. We calculated the
classical as well as the quantum free energy of this mechanical system, and found there to
be a finite temperature interval for which the interaction free energy increases with increasing
temperature, thus leading to a negative interaction entropy term S = −∂F/∂T . In this way, a
mechanical analogy with the Casimir interaction energy (and corresponding interaction entropy)
was demonstrated.

The new developments of our paper are the establishment of the complete mathematical
formalism necessary to calculate the temperature correction to the Casimir force. We assumed
infinite, parallel, plates, with no surface roughness included, and assumed in all calculations the
tabulated dispersive data for bulk materials. Then, we showed calculated results in figures
1–9 which are all new. They all assume aluminum plates. We gave results for three-layer
geometry, and also some for a five-layer geometry. Our general suggestion for experimentally
measuring the influence from finite temperature is to keep the geometry of the setup as constant
as possible (by using an invar material, for instance), and then measure the force at two
accessible temperatures in the laboratory, for instance 300 and 350 K. It would be even better if
experiments could be carried out at liquid He temperatures; we understand such experiments are
underway.
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Abstract
A powerful procedure is presented for calculating the Casimir attraction
between plane parallel multilayers made up of homogeneous regions with
arbitrary magnetic and dielectric properties by the use of the Minkowski
energy–momentum tensor. The theory is applied to numerous geometries and
shown to reproduce a number of results obtained by other authors. Although
the various pieces of theory drawn upon are well known, the relative ease
with which the Casimir force density in even complex planar structures may
be calculated, appears not to be widely appreciated, and no single paper to
the author’s knowledge renders explicitly the procedure demonstrated herein.
Results may be seen as an important building block in the settling of issues
of fundamental interest, such as the long-standing dispute over the thermal
behaviour of the Casimir force or the question of what is the correct stress
tensor to apply, a discussion requickened by the newly suggested alternative
theory due to Raabe and Welsch.
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1. Introduction

Over the last decade or so enormous progress has been made in experimental tests of the Casimir
effect [1]. This macroscopic manifestation of quantum electrodynamics, once something of
a curiosity subject mainly to the scrutiny of a few theorists, has been measured with high
precision and is now spoken of as possibly exploitable in nanoelectromechanical applications
[2].
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Although only a single modern experiment has so far employed parallel plates and with
moderate accuracy [3]2, experiments employing other geometries (typically a sphere and a
plate) have normally had to resort to planar geometries for theoretical support, accompanied
by the necessary corrections to account for curved surfaces (see e.g. [5]).

The individual pieces of theory assembled in this paper are not in themselves new; the
paper draws heavily on several references, many of which more than a decade old. The theory
of Green’s functions in a dielectric multilayer was treated by Tomaš 11 years ago [6], building
in turn on previous work by Mills and Maradudin [7] two decades earlier. Companioned by the
now classical theory by Lifshitz and co-workers [8] and standard optical theory of reflection
it provides all the necessary tools. Despite this fact however, the ease with which the Casimir
forces in plane parallel systems may be expressed appears not to be commonly recognized,
although it has been implicitly employed by Tomaš ([9] and later papers). Furthermore, no
publication exists to the author’s knowledge, explaining explicitly the procedure derived and
demonstrated herein.

This paper provides background theory to aid the settlement of at least two ongoing
disputes in the Casimir branch. First, the as yet unsettled disagreement over the temperature
effect of the Casimir force (for a recent discussion see [10] and references therein); numerical
and theoretical treatment of the expressions obtained, e.g., in chapter 4 using dispersion data
for real materials provide predictions to settle experimentally the existence or non-existence
of the large thermal variations of the force upheld by many. Second, doubts have been raised
recently about the applicability of the Minkowski stress tensor and an alternative, Lorentz
force-based tensor was suggested [11], in turn disputed by Pitaevskii [12]. A procedure
similar to that presented here seems to have been employed by Tomaš in his calculations of
the effects of the Lorentz-type tensors [13, 14]. The discussion of the applicability or indeed
correctness of their theory, however, is not within the scope of this paper.

We have structured the paper as follows. In chapters 2 to 4 the background theory
of Green’s function calculation of the Casimir attraction is derived briefly, arriving at
equation (15), the main result of the paper. In chapter 5 we demonstrate the strength of the
procedure by using it to readily reproduce an array of previous results in various configurations:
two half-spaces, a plate and a wall, a plate in a cavity and two plates.

Many detailed calculations which are straightforward in principle have been omitted. For
details, the reader may refer to [15].

2. Background theory: force on an interface

When electro- and magnetostrictive contributions are neglected, forces acting inside
magnetodielectric media assuming no net external charge or currents are present, may in
general be expressed through space components of the Minkowski energy–momentum tensor
[16]. Assuming isotropic, homogeneous and linear media the electromagnetic force density
acting at position r is

fi(r) = ∂kTik = − 1
2ε0E

2∂iε(r) − 1
2μ0H

2∂iμ(r), (1)

where Tik is the Maxwell stress tensor,

Tik = EiDk + HiBk − 1
2δik(E ·D + H · B), (2)

where indices i, k ∈ {x, y, z} denote Cartesian vector components. We have suppressed the
frequency dependence of the permittivity and permeability, respectively ε and μ, both defined
relative to vacuum so that Di = ε0εEi and Bi = μ0μHi .
2 The first experimental demonstration of the Casimir force by Sparnaay in 1958 also employed parallel plates [4]
with low accuracy by today’s standards.

1952 S A Ellingsen

Although only a single modern experiment has so far employed parallel plates and with
moderate accuracy [3]2, experiments employing other geometries (typically a sphere and a
plate) have normally had to resort to planar geometries for theoretical support, accompanied
by the necessary corrections to account for curved surfaces (see e.g. [5]).

The individual pieces of theory assembled in this paper are not in themselves new; the
paper draws heavily on several references, many of which more than a decade old. The theory
of Green’s functions in a dielectric multilayer was treated by Tomaš 11 years ago [6], building
in turn on previous work by Mills and Maradudin [7] two decades earlier. Companioned by the
now classical theory by Lifshitz and co-workers [8] and standard optical theory of reflection
it provides all the necessary tools. Despite this fact however, the ease with which the Casimir
forces in plane parallel systems may be expressed appears not to be commonly recognized,
although it has been implicitly employed by Tomaš ([9] and later papers). Furthermore, no
publication exists to the author’s knowledge, explaining explicitly the procedure derived and
demonstrated herein.

This paper provides background theory to aid the settlement of at least two ongoing
disputes in the Casimir branch. First, the as yet unsettled disagreement over the temperature
effect of the Casimir force (for a recent discussion see [10] and references therein); numerical
and theoretical treatment of the expressions obtained, e.g., in chapter 4 using dispersion data
for real materials provide predictions to settle experimentally the existence or non-existence
of the large thermal variations of the force upheld by many. Second, doubts have been raised
recently about the applicability of the Minkowski stress tensor and an alternative, Lorentz
force-based tensor was suggested [11], in turn disputed by Pitaevskii [12]. A procedure
similar to that presented here seems to have been employed by Tomaš in his calculations of
the effects of the Lorentz-type tensors [13, 14]. The discussion of the applicability or indeed
correctness of their theory, however, is not within the scope of this paper.

We have structured the paper as follows. In chapters 2 to 4 the background theory
of Green’s function calculation of the Casimir attraction is derived briefly, arriving at
equation (15), the main result of the paper. In chapter 5 we demonstrate the strength of the
procedure by using it to readily reproduce an array of previous results in various configurations:
two half-spaces, a plate and a wall, a plate in a cavity and two plates.

Many detailed calculations which are straightforward in principle have been omitted. For
details, the reader may refer to [15].

2. Background theory: force on an interface

When electro- and magnetostrictive contributions are neglected, forces acting inside
magnetodielectric media assuming no net external charge or currents are present, may in
general be expressed through space components of the Minkowski energy–momentum tensor
[16]. Assuming isotropic, homogeneous and linear media the electromagnetic force density
acting at position r is

fi(r) = ∂kTik = − 1
2ε0E

2∂iε(r) − 1
2μ0H

2∂iμ(r), (1)

where Tik is the Maxwell stress tensor,

Tik = EiDk + HiBk − 1
2δik(E ·D + H · B), (2)

where indices i, k ∈ {x, y, z} denote Cartesian vector components. We have suppressed the
frequency dependence of the permittivity and permeability, respectively ε and μ, both defined
relative to vacuum so that Di = ε0εEi and Bi = μ0μHi .
2 The first experimental demonstration of the Casimir force by Sparnaay in 1958 also employed parallel plates [4]
with low accuracy by today’s standards.

1952 S A Ellingsen

Although only a single modern experiment has so far employed parallel plates and with
moderate accuracy [3]2, experiments employing other geometries (typically a sphere and a
plate) have normally had to resort to planar geometries for theoretical support, accompanied
by the necessary corrections to account for curved surfaces (see e.g. [5]).

The individual pieces of theory assembled in this paper are not in themselves new; the
paper draws heavily on several references, many of which more than a decade old. The theory
of Green’s functions in a dielectric multilayer was treated by Tomaš 11 years ago [6], building
in turn on previous work by Mills and Maradudin [7] two decades earlier. Companioned by the
now classical theory by Lifshitz and co-workers [8] and standard optical theory of reflection
it provides all the necessary tools. Despite this fact however, the ease with which the Casimir
forces in plane parallel systems may be expressed appears not to be commonly recognized,
although it has been implicitly employed by Tomaš ([9] and later papers). Furthermore, no
publication exists to the author’s knowledge, explaining explicitly the procedure derived and
demonstrated herein.

This paper provides background theory to aid the settlement of at least two ongoing
disputes in the Casimir branch. First, the as yet unsettled disagreement over the temperature
effect of the Casimir force (for a recent discussion see [10] and references therein); numerical
and theoretical treatment of the expressions obtained, e.g., in chapter 4 using dispersion data
for real materials provide predictions to settle experimentally the existence or non-existence
of the large thermal variations of the force upheld by many. Second, doubts have been raised
recently about the applicability of the Minkowski stress tensor and an alternative, Lorentz
force-based tensor was suggested [11], in turn disputed by Pitaevskii [12]. A procedure
similar to that presented here seems to have been employed by Tomaš in his calculations of
the effects of the Lorentz-type tensors [13, 14]. The discussion of the applicability or indeed
correctness of their theory, however, is not within the scope of this paper.

We have structured the paper as follows. In chapters 2 to 4 the background theory
of Green’s function calculation of the Casimir attraction is derived briefly, arriving at
equation (15), the main result of the paper. In chapter 5 we demonstrate the strength of the
procedure by using it to readily reproduce an array of previous results in various configurations:
two half-spaces, a plate and a wall, a plate in a cavity and two plates.

Many detailed calculations which are straightforward in principle have been omitted. For
details, the reader may refer to [15].

2. Background theory: force on an interface

When electro- and magnetostrictive contributions are neglected, forces acting inside
magnetodielectric media assuming no net external charge or currents are present, may in
general be expressed through space components of the Minkowski energy–momentum tensor
[16]. Assuming isotropic, homogeneous and linear media the electromagnetic force density
acting at position r is

fi(r) = ∂kTik = − 1
2ε0E

2∂iε(r) − 1
2μ0H

2∂iμ(r), (1)

where Tik is the Maxwell stress tensor,

Tik = EiDk + HiBk − 1
2δik(E ·D + H · B), (2)

where indices i, k ∈ {x, y, z} denote Cartesian vector components. We have suppressed the
frequency dependence of the permittivity and permeability, respectively ε and μ, both defined
relative to vacuum so that Di = ε0εEi and Bi = μ0μHi .
2 The first experimental demonstration of the Casimir force by Sparnaay in 1958 also employed parallel plates [4]
with low accuracy by today’s standards.

1952 S A Ellingsen

Although only a single modern experiment has so far employed parallel plates and with
moderate accuracy [3]2, experiments employing other geometries (typically a sphere and a
plate) have normally had to resort to planar geometries for theoretical support, accompanied
by the necessary corrections to account for curved surfaces (see e.g. [5]).

The individual pieces of theory assembled in this paper are not in themselves new; the
paper draws heavily on several references, many of which more than a decade old. The theory
of Green’s functions in a dielectric multilayer was treated by Tomaš 11 years ago [6], building
in turn on previous work by Mills and Maradudin [7] two decades earlier. Companioned by the
now classical theory by Lifshitz and co-workers [8] and standard optical theory of reflection
it provides all the necessary tools. Despite this fact however, the ease with which the Casimir
forces in plane parallel systems may be expressed appears not to be commonly recognized,
although it has been implicitly employed by Tomaš ([9] and later papers). Furthermore, no
publication exists to the author’s knowledge, explaining explicitly the procedure derived and
demonstrated herein.

This paper provides background theory to aid the settlement of at least two ongoing
disputes in the Casimir branch. First, the as yet unsettled disagreement over the temperature
effect of the Casimir force (for a recent discussion see [10] and references therein); numerical
and theoretical treatment of the expressions obtained, e.g., in chapter 4 using dispersion data
for real materials provide predictions to settle experimentally the existence or non-existence
of the large thermal variations of the force upheld by many. Second, doubts have been raised
recently about the applicability of the Minkowski stress tensor and an alternative, Lorentz
force-based tensor was suggested [11], in turn disputed by Pitaevskii [12]. A procedure
similar to that presented here seems to have been employed by Tomaš in his calculations of
the effects of the Lorentz-type tensors [13, 14]. The discussion of the applicability or indeed
correctness of their theory, however, is not within the scope of this paper.

We have structured the paper as follows. In chapters 2 to 4 the background theory
of Green’s function calculation of the Casimir attraction is derived briefly, arriving at
equation (15), the main result of the paper. In chapter 5 we demonstrate the strength of the
procedure by using it to readily reproduce an array of previous results in various configurations:
two half-spaces, a plate and a wall, a plate in a cavity and two plates.

Many detailed calculations which are straightforward in principle have been omitted. For
details, the reader may refer to [15].

2. Background theory: force on an interface

When electro- and magnetostrictive contributions are neglected, forces acting inside
magnetodielectric media assuming no net external charge or currents are present, may in
general be expressed through space components of the Minkowski energy–momentum tensor
[16]. Assuming isotropic, homogeneous and linear media the electromagnetic force density
acting at position r is

fi(r) = ∂kTik = − 1
2ε0E

2∂iε(r) − 1
2μ0H

2∂iμ(r), (1)

where Tik is the Maxwell stress tensor,

Tik = EiDk + HiBk − 1
2δik(E ·D + H · B), (2)

where indices i, k ∈ {x, y, z} denote Cartesian vector components. We have suppressed the
frequency dependence of the permittivity and permeability, respectively ε and μ, both defined
relative to vacuum so that Di = ε0εEi and Bi = μ0μHi .
2 The first experimental demonstration of the Casimir force by Sparnaay in 1958 also employed parallel plates [4]
with low accuracy by today’s standards.



Casimir attraction in plane parallel systems 1953

We introduce the classical Green’s dyadic �ik according to the convention of Schwinger
and co-workers [17] defined according to

E(x) = 1

ε0

∫
d4x ′ ↔

Γ(x, x ′) · P (x ′) (3)

where x = (r, t). Due to causality, t ′ is only integrated over the region t ′ � t : the polarization
at a time t ′ cannot influence the resulting electric field at time t prior to t ′. The definition (3)
ensures that � is a generalized susceptibility. It is well known that according to Maxwell’s
equations, � satisfies

∇ × ∇ × ↔
Γ(r, r′;ω) − ε(r)μ(r)ω2

c2

↔
Γ(r, r′;ω) = μ(r)ω2

c2
δ(r − r′)

↔
1 , (4)

where we have performed a Fourier transformation according to
↔
Γ(x, x ′) =

∫ ∞

−∞

dω

2π
e−iωτ

↔
Γ(r, r′;ω), (5)

with τ ≡ t − t ′.
Invoking the fluctuation-dissipation theorem in a standard manner (e.g. [8]) yields3

i〈Ei(r)Ek(r
′)〉ω = h̄

ε0
coth

(
h̄ω

2kBT

)
Im{�ik(r, r′;ω)} (6a)

i〈Hi(r)Hk(r
′)〉ω = h̄

μ0
coth

(
h̄ω

2kBT

)
c2

μμ′ω2
Curlij Curl′kl Im{�jl(r, r′;ω)}, (6b)

where we have used the notation Curlik ≡ εijk∂j (εijk being the Levi-Civita symbol and
summation over identical indices is implied), Curl′ik ≡ εijk∂

′
j where ∂ ′

j is differentiation with
respect to component j of r′, and μ′ ≡ μ(r′). The brackets denote the mean value of the ω

Fourier component of the field component products with respect to fluctuations. For now let
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Figure 1. The multilayer geometry as discussed. We need to calculate the homogeneous part of
Green’s function in layer (j).

the homogeneous solution of (4) is included. A solution of (4) generally takes the form
f (z − z′) + g(z + z′) and the superscript ‘−’ denotes that terms of � dependent on z + z′ are
discarded4. The limit r → r′ is taken so that (8) is evaluated entirely on one side of the
interface.

Prior to solving (4) explicitly in some planar geometry, we introduce one further Fourier
transformation:

↔
Γ(r, r′;ω) =

∫
d2k⊥
(2π)2

eik⊥·(r⊥−r′
⊥)

↔
Γ(z, z′;k⊥, ω), (9)

where the subscript ⊥ denotes a direction perpendicular to the longitudinal or z-axis, i.e. in
the xy-plane.

3. Green’s functions in a multilayer geometry

We regard a multilayered geometry with a total of n + 1 layers such as depicted in figure 1.
Each layer is assumed homogeneous, isotropic and of infinite transverse size. The thickness
of some layer (l) is denoted al . The Casimir attractive force per unit transverse area between
multilayers (+) and (−) bordering on either side of some (not arbitrarily chosen) layer (j) so
that 0 < j < n may be calculated using (8) by evaluating Green’s function near any of the
boundaries of layer (j). In a real setting, layers (0) and (n) will both typically be vacuum or
air, and it should be obvious that the two multilayers exert forces on each other in a reciprocal
manner (there is a subtlety when material 0 does not equal material n as discussed below).

Tomaš shows [6] how the homogeneous solution of (4) in layer (j) is found in the (k⊥, ω)

Fourier domain (now treating z and z′ as parameters and k⊥ and ω as variables, not the other

4 The terms of � omitted from (8) are non-physical in our formalism. The particular solution of (4) equals the
Green function in an infinitely large and homogeneous magnetodielectric, and is thus geometry independent. The
z+z′-terms, argues Lifshitz, make no contribution to the net flux of momentum inside a single homogeneous medium,
and it is straightforward to show formally that they make zero contribution to (8) if included [15]. These terms may
be understood as a constant background of radiation contributing to what Milton in his book refers to as ‘bulk energy’
[17], generally of different values in different materials. Notably, if one followed the procedure Schwinger, Milton
et al used to include the stress tensor, all terms of the homogeneous solution must be included since Green’s function
is evaluated on both sides of an interface, i.e. in two different media. Both approaches yield the same end result as
they should.
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way around)5. We have repeated his procedure allowing μ(r) �= 1, yielding

↔
Γ

h

j (k⊥, ω; z, z′) = μj

2κj

ω2

c2

TM∑
q=TE

e−κj aj

Dqj

ξq

[
ê+

qj (k⊥) e−κj zr−
qjE>

qj (−k⊥, ω; z′)

+ ê−
qj (k⊥) eκj zr+

qj e−κj aj E<
qj (−k⊥, ω; z′)

]
.

Here z, z′ ∈ (j) and we use the notation AB ≡ A ⊗ B. The vectors

E>
qj (k⊥, ω; z) ≡ ê+

qj (k⊥) e−κj (z−aj ) + r+
qj ê

−
qj (k⊥) eκj (z−aj ), (10)

E<
qj (k⊥, ω; z) ≡ ê−

qj (k⊥) eκj z + r−
qj ê

+
qj (k⊥) e−κj z (11)

describe waves propagating in layer (j) towards right and left respectively and which are
reflected off the bordering interfaces. Here

ê±
TM,j (k⊥) = 1

kj

(k⊥ẑ ∓ iκj k̂⊥) = ê∓
TM,j (−k⊥)

ê±
TE,j (k⊥) = k̂⊥ × ẑ = −ê∓

TE,j (−k⊥)

are direction vectors in a Cartesian coordinate system (k̂⊥, ẑ, k̂⊥ × ẑ) defined relative to the
wave vector: k = k⊥k̂⊥ + k‖ẑ. Furthermore one has introduced the quantities

κj =
√

k2
⊥ − εjμjω2/c2, kj =

√
εjμjω2/c2,

Dqj = 1 − r+
qj r

−
qj e−2κj aj , ξq = δq,TM − δq,TE.

For physical reasons, recognizing that k‖(z)|z∈(j) = iκj we must choose Im{κj } < 0. The
polarization mode q runs over the polarizations TE and TM and the Fresnel coefficients r±

qj

are the relative reflected amplitudes of a q-polarized field from the entire stack of layers to the
left (−) or right (+) of layer (j).

We may thus write the attraction between multilayers on either side of (j) as (it is sufficient
to regard an interface on one side of (j) since attraction is reciprocal)〈F0

z

〉 = h̄

∫ ∞

0

dζ

2π

∫
d2k⊥
(2π)2

[
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(
�

E,h−
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)
+

1

μj

(
�

H,h−
xx,j + �

H,h−
yy,j − �

H,h−
zz,j

)]
(12)

where Green’s function components are taken in the limit z → z′ ∈ (j) close to either of the
interfaces bounding on (j). We assume in this expression that aj may be varied whereas the
thicknesses of other layers are treated as parameters.

The rather complicated expression for �h
ik,j above may be vastly simplified for our

purposes. We introduce ordinary co-ordinates according to the convention of Schwinger et al
[17] by choosing x̂ = k̂⊥ so that (k̂⊥, ẑ, k̂⊥ × ẑ) → (x̂, ẑ,−ŷ). Introducing the important
quantity

1

dqj

= r−
qj r

+
qj e−2κj aj

1 − r−
qj r

+
qj e−2κj aj

, (13)

and keeping only terms dependent on z − z′ we show with some lengthy but straightforward
manipulation that Green’s function may be written very elegantly as
↔
Γ

h−
j (k⊥, ω; z, z′) =

[
k2
⊥

εjκj

1

dTM,j

ẑẑ − κj

εj

1

dTM,j

x̂x̂ +
μjω

2

κj c2

1

dTE,j

ŷŷ

]
cosh(z − z′)

+
ik⊥
εj

1

dTM,j

(ẑx̂ + x̂ẑ) sinh(z − z′). (14)

5 For the sake of comparison, [6] makes use of the quantity Gik = 4πc2

ω2 �ik
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−
qj (k⊥) eκj (z−aj ), (10)

E<
qj (k⊥, ω; z) ≡ ê−
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where Green’s function components are taken in the limit z → z′ ∈ (j) close to either of the
interfaces bounding on (j). We assume in this expression that aj may be varied whereas the
thicknesses of other layers are treated as parameters.
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Figure 2. Multiple reflections between interfaces. The scrambled area represents all possible
paths originating and ending in layer (i).

It is now simple matter to calculate �E
ik and �H

ik and take the limit z → z′ to find that our
final result at zero temperature becomes beautifully simple:

〈F0(aj )〉 = − h̄

2π2

∫ ∞

0
dζ

∫ ∞

0
dk⊥ · k⊥κj

TM∑
q=TE

1

dqj

. (15)

At finite temperatures, the integral over all positive imaginary frequencies in (1) becomes
the sum of the residues of the coth factors of (6a) and (6b), the Matsubara frequencies
iζm = 2π ikBT m/h̄,

〈FT (aj )〉 = −kBT

π

∞∑
m=0

′ ∫ ∞

0
dk⊥ · k⊥κj

TM∑
q=TE

1

dqj

, (16)

where the prime on the summation indicates that the m = 0 term is given half weight.

4. Generalized reflection coefficients

The task remaining is to evaluate the generalized Fresnel reflection coefficients r±
q of a stack

of magnetodielectric layers.
For a single interface between media (i) and (j), the reflected amplitude ratio of a

q-polarized wave arriving from (i) and is partly reflected back into (i) is found from Maxwell’s
equations to be [18]

rq,ij ≡ �q,ij = κi − γq,ij κj

κi + γq,ij κj

(17)

with κ as defined above and

γq,ij =
{

μi/μj ; q = TE

εi/εj ; q = TM.

Second, the reflection coefficient of a system of two interfaces such as depicted in
figure 2 may be calculated as the sum of coefficients pertaining to each of the infinitely
many optical paths originating and ending in (i). We let the transmission coefficient of a
wave transmitted from (i) to (j) be tij (omitting for now polarization q) and recognize the

longitudinal wave vector in (j) to be k‖,j =
√

εjμjω2/c2 − k2
⊥ = iκj so that a wave travelling

a distance aj must be multiplied by exp(ik‖,j aj ) = exp(−κjaj ); a phase shift if κj is imaginary
(propagating wave) or attenuation if κj is real (evanescent wave). Thus,

rijk = rij + tij e−κj aj rjk e−κj aj tj i + · · · = rij + tij tj irjk e−2κj aj

∞∑
n=0

(rjkrji e−2κj aj )n

= rij + rjk e−2κj aj

1 + rij rjk e−2κj aj
(18)
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Figure 3. The trizone configuration of two half-spaces separated by a gap region.

where we have made use of the properties tij tj i − rij rji = 1 and rij = −rji . Equation (18) is
valid for either polarization, respectively.

This provides a simple procedure for calculating the reflection coefficient of a multilayer
containing any finite number of interfaces. To calculate r−

qj , say, as it appears in figure 1, we
start with the leftmost interface between zones (1) and (0) and find rq,10 = �q,10 and invoke
(18) recursively to find the reflection coefficient of the two leftmost interfaces, then the three
leftmost and so on until the closest interface, between (j) and (j − 1), is reached.

5. The Casimir attraction calculated in various configurations

We go on to demonstrate the strength of the above procedure by calculating the Casimir force
in an array of different plane parallel configurations so as to reproduce the results of several
references.

5.1. Two half-spaces

Consider first the simplest system of two half-spaces of some magnetodielectric material
separated by a gap of width a, generally made of some other material. We denote the half-
spaces 1 and 2 (see figure 3) and the gap 3.

There is now only one interface on either side of the gap and obtaining the force expression
is almost trivial. The reflection coefficients to the right and left are

r+
q = �q,32 and r−

q = �q,31

as defined in (17). We get the force density expression (suppressing the averaging notation
henceforth)

F0(a) = − h̄

2π2

∫ ∞

0
dζ

∫ ∞

0
dk⊥ · k⊥κ3

TM∑
q=TE

�q,32�q,31 e−2κ3a

1 − �q,32�q,31 e−2κ3a
, (19)

which is the classical Lifshitz result quoted in numerous references, e.g. [8, 17] (this expression,
notably, is a generalization of both references since it allows for μ �= 1).

5.2. A plate outside a wall

We consider a plate of finite thickness b and material denoted 2 separated by a distance a from
an infinitely thick wall of material 1 as depicted in figure 4. Such a system has recently been
considered by Tomaš [14] for the sake of discussing the consequences of using an alternative
Lorentz force stress tensor, and his results using the Minkowski tensor for comparison agrees
with ours. The gap material, denoted with subscript g is allowed to be different from the
material of the exterior, denoted with subscript e. Green’s function is calculated in the gap
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which is the classical Lifshitz result quoted in numerous references, e.g. [8, 17] (this expression,
notably, is a generalization of both references since it allows for μ �= 1).

5.2. A plate outside a wall

We consider a plate of finite thickness b and material denoted 2 separated by a distance a from
an infinitely thick wall of material 1 as depicted in figure 4. Such a system has recently been
considered by Tomaš [14] for the sake of discussing the consequences of using an alternative
Lorentz force stress tensor, and his results using the Minkowski tensor for comparison agrees
with ours. The gap material, denoted with subscript g is allowed to be different from the
material of the exterior, denoted with subscript e. Green’s function is calculated in the gap
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Figure 4. The four-layered configuration of a plate and a wall.

Figure 5. The system of a slab in a cavity.

region, and r−
q and r+

q are the relative reflected amplitude of a wave originating in the gap and
propagating towards the left and right, respectively.

We see immediately that r+
q = (κg − γq,g1κ1)/(κg + γq,g1κ1) = −�q,1g and combining

(17) and (18) readily yields

r−
q = −�q,2g + �q,2e e−2κ2b

1 − �q,2g�q,2e e−2κ2b
,

so that

1

dqj

= (�q,1g�q,2g − �q,1g�q,2e e−2κ2b) e−2κga

1 − �q,1g�q,2g e−2κ2b − (�q,1g�q,2g − �q,1g�q,2e e−2κ2b) e−2κga
,

from which Green’s function and the Casimir attraction per unit area between plate and wall
follow neatly from (14) and (15).

5.3. A slab in a cavity

We go on to study the five-layered system of a slab between two walls as defined in figure 5.
A general system of five layers was first considered by Zhou and Spruch [19] and the special
case of a slab in a cavity was treated, apparently using the method presented here, by Tomaš
[9]. Some manipulation shows that our result coincide with the finds of both references. We
calculate the attraction with respect to each of the gaps in turn and subsequently find the force
acting on the slab as the difference between these. The procedure is identical to that above so
the details of the somewhat more lengthy but in principle uncomplicated calculations are left
out.

1958 S A Ellingsen

Figure 4. The four-layered configuration of a plate and a wall.

Figure 5. The system of a slab in a cavity.

region, and r−
q and r+

q are the relative reflected amplitude of a wave originating in the gap and
propagating towards the left and right, respectively.

We see immediately that r+
q = (κg − γq,g1κ1)/(κg + γq,g1κ1) = −�q,1g and combining

(17) and (18) readily yields

r−
q = −�q,2g + �q,2e e−2κ2b

1 − �q,2g�q,2e e−2κ2b
,

so that

1

dqj

= (�q,1g�q,2g − �q,1g�q,2e e−2κ2b) e−2κga

1 − �q,1g�q,2g e−2κ2b − (�q,1g�q,2g − �q,1g�q,2e e−2κ2b) e−2κga
,

from which Green’s function and the Casimir attraction per unit area between plate and wall
follow neatly from (14) and (15).

5.3. A slab in a cavity

We go on to study the five-layered system of a slab between two walls as defined in figure 5.
A general system of five layers was first considered by Zhou and Spruch [19] and the special
case of a slab in a cavity was treated, apparently using the method presented here, by Tomaš
[9]. Some manipulation shows that our result coincide with the finds of both references. We
calculate the attraction with respect to each of the gaps in turn and subsequently find the force
acting on the slab as the difference between these. The procedure is identical to that above so
the details of the somewhat more lengthy but in principle uncomplicated calculations are left
out.

1958 S A Ellingsen

Figure 4. The four-layered configuration of a plate and a wall.

Figure 5. The system of a slab in a cavity.

region, and r−
q and r+

q are the relative reflected amplitude of a wave originating in the gap and
propagating towards the left and right, respectively.

We see immediately that r+
q = (κg − γq,g1κ1)/(κg + γq,g1κ1) = −�q,1g and combining

(17) and (18) readily yields

r−
q = −�q,2g + �q,2e e−2κ2b

1 − �q,2g�q,2e e−2κ2b
,

so that

1

dqj

= (�q,1g�q,2g − �q,1g�q,2e e−2κ2b) e−2κga

1 − �q,1g�q,2g e−2κ2b − (�q,1g�q,2g − �q,1g�q,2e e−2κ2b) e−2κga
,

from which Green’s function and the Casimir attraction per unit area between plate and wall
follow neatly from (14) and (15).

5.3. A slab in a cavity

We go on to study the five-layered system of a slab between two walls as defined in figure 5.
A general system of five layers was first considered by Zhou and Spruch [19] and the special
case of a slab in a cavity was treated, apparently using the method presented here, by Tomaš
[9]. Some manipulation shows that our result coincide with the finds of both references. We
calculate the attraction with respect to each of the gaps in turn and subsequently find the force
acting on the slab as the difference between these. The procedure is identical to that above so
the details of the somewhat more lengthy but in principle uncomplicated calculations are left
out.

1958 S A Ellingsen

Figure 4. The four-layered configuration of a plate and a wall.

Figure 5. The system of a slab in a cavity.

region, and r−
q and r+

q are the relative reflected amplitude of a wave originating in the gap and
propagating towards the left and right, respectively.

We see immediately that r+
q = (κg − γq,g1κ1)/(κg + γq,g1κ1) = −�q,1g and combining

(17) and (18) readily yields

r−
q = −�q,2g + �q,2e e−2κ2b

1 − �q,2g�q,2e e−2κ2b
,

so that

1

dqj

= (�q,1g�q,2g − �q,1g�q,2e e−2κ2b) e−2κga

1 − �q,1g�q,2g e−2κ2b − (�q,1g�q,2g − �q,1g�q,2e e−2κ2b) e−2κga
,

from which Green’s function and the Casimir attraction per unit area between plate and wall
follow neatly from (14) and (15).

5.3. A slab in a cavity

We go on to study the five-layered system of a slab between two walls as defined in figure 5.
A general system of five layers was first considered by Zhou and Spruch [19] and the special
case of a slab in a cavity was treated, apparently using the method presented here, by Tomaš
[9]. Some manipulation shows that our result coincide with the finds of both references. We
calculate the attraction with respect to each of the gaps in turn and subsequently find the force
acting on the slab as the difference between these. The procedure is identical to that above so
the details of the somewhat more lengthy but in principle uncomplicated calculations are left
out.



Casimir attraction in plane parallel systems 1959

We denote the left- and right-hand gaps with superscript + and − respectively for reasons
which will become obvious and for simplicity we assume both walls to be made of the same
material, denoted 1, whereas the slab is made of a material indexed 2. Furthermore, we use the
simplifying notation �iq ≡ �q,ig with i = 1, 2. With this we find for the left- and right-hand
gaps

1

d±
q

= U∓
q e−2κga

±

V ∓
q − U∓

q e−2κga± ,

where

U±
q = �1q�2q

(
1 − �1q�2q e−2κga

±)− �1q

(
�2q − �1q e−2κga

±)
e−2κ2b,

V ±
q = 1 − �1q�2q e−2κga

± − �2q

(
�2q − �1q e−2κga

±)
e−2κ2b,

and the resulting force on the centre slab is accordingly (a function of either a+ or a− when b
and c are assumed constant parameters)

F0(a±; b, c) = h̄

2π2

∫ ∞

0
dζ

∫ ∞

0
dk⊥ · k⊥κg

TM∑
q=TE

(
1

d−
q

− 1

d+
q

)
. (20)

Notice how, if we let the gap be either very wide (b → ∞) or the slab perfectly reflecting
(κ2 → ∞), the terms containing the factor exp(−2κ2b) vanish, and we get back Lifshitz’
expression for two separate gaps as we should.

A rather more instructive expression is obtained if the position of the slab is given not
by a+ and a−, but the deviation δ of the centre of the slab from the midline of the cavity.
Introducing the quantity h = c − b = a+ + a−, we write a± = h/2 ± δ and the force density
expression becomes after some shuffling of symbols

F0(δ; b, c) = h̄

2π2

∫ ∞

0
dζ

∫ ∞

0
dk⊥ · k⊥κg

TM∑
q=TE

Aq sinh 2κgδ

Bq − Aq cosh 2κgδ
(21)

with

Aq = 2�1q�2q(1 − e−2κ2b) e−κgh,

Bq = 1 − �2
2q e−2κ2b + �2

1q

(
�2

2q − e−2κ2b
)

e−2κgh.

One should note in this context that this is the geometry treated by Raabe and Welsch [11]
and later by Tomaš [13], making use of their alternative, Lorentz-type stress tensor.

5.4. Two plates of finite thickness

The system of two plates each of finite thickness has been treated by numerous authors.
First to do so was Kupiszewska [20], who employed an effectively one-dimensional model
by insisting that waves be reflected at normal incidence, as have several authors after her.
A three-dimensional geometry, allowing nonzero values of k⊥, appears first to have been
considered by Jaekel and Reynaud in 1991 [21] whose result is found to be smaller than ours
by a factor 1/2 (it should be noted that comparison is not trivial due to formal differences).
A number of other references [19, 22, 23], however, obtain results agreeing perfectly with
that found by using the above procedure. The in principle identical system of two semispaces
each covered with a thin layer of a different substance was considered by Klimchitskaya and
co-workers [24], again in agreement with the below.
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Figure 6. A system of two plates of finite thickness.

The geometry is defined in figure 6. Just as before we determine the reflection coefficients
of either slab as seen from the gap,

r+
q = −�q,2g + �q,2e e−2κ2b2

1 − �q,2g�q,2e e−2κ2b2
r−
q = −�q,1g + �q,1e e−2κ1b1

1 − �q,1g�q,1e e−2κ1b1
, (22)

and the Casimir attractive force per unit area of the plates is found neatly from (13) and (15).

6. The neglected bulk force

In the case that materials 0 and n in figure 1 are different, a second force appears in addition
to the Casimir force. It is a force acting on the entire multilayer system and we shall refer to it

as a bulk force. Quantitatively the electromagnetic force density was found to be f =
↔
T · ←

∇
and the force acting on some volume V is

F =
∫
V

d3r f =
∮

∂V

↔
T · dS

where the divergence theorem has been invoked and dS points normally out of V , enclosed
by the surface ∂V . Let V be a box enclosing all interfaces of the multilayer system so that
its z-boundaries lie at z− ∈ (0) and z+ ∈ (n). Only the sides of V parallel to the xy-plane
contribute to the bulk force, which is evaluated per unit transverse area as (averaging with
respect to fluctuations is understood)
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If now media (0) and (n) are the same, the mean squared fluctuating fields will be the same on
either side of the multilayer, and the bulk force is zero, otherwise Fbulk is generally nonzero.

This force is typically neglected, and an argument in favour of doing so is surely that in
a real system, layers are not infinitely thick. The outmost layers of a multiple configuration
should realistically be air or vacuum, and if they are not, it simply means that V does not
contain the entire system and the bulk force is identically cancelled by reflections at surfaces
(not necessarily parallel with the system, or even plane) outside V , as it should be according
to Newton’s third law.
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The geometry is defined in figure 6. Just as before we determine the reflection coefficients
of either slab as seen from the gap,

r+
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and the Casimir attractive force per unit area of the plates is found neatly from (13) and (15).
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If now media (0) and (n) are the same, the mean squared fluctuating fields will be the same on
either side of the multilayer, and the bulk force is zero, otherwise Fbulk is generally nonzero.

This force is typically neglected, and an argument in favour of doing so is surely that in
a real system, layers are not infinitely thick. The outmost layers of a multiple configuration
should realistically be air or vacuum, and if they are not, it simply means that V does not
contain the entire system and the bulk force is identically cancelled by reflections at surfaces
(not necessarily parallel with the system, or even plane) outside V , as it should be according
to Newton’s third law.
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If now media (0) and (n) are the same, the mean squared fluctuating fields will be the same on
either side of the multilayer, and the bulk force is zero, otherwise Fbulk is generally nonzero.

This force is typically neglected, and an argument in favour of doing so is surely that in
a real system, layers are not infinitely thick. The outmost layers of a multiple configuration
should realistically be air or vacuum, and if they are not, it simply means that V does not
contain the entire system and the bulk force is identically cancelled by reflections at surfaces
(not necessarily parallel with the system, or even plane) outside V , as it should be according
to Newton’s third law.
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7. Conclusion

With the above procedure, the calculation of Casimir forces in even complex multilayered
geometries is both quick and straightforward and shown able to reproduce the results of a
number of previous works. Various configurations may thus be considered theoretically and
numerically with ease to study the various dependences, e.g., on material properties and
temperatures. The procedure may furthermore be repeated to reveal differences between
various electromagnetic stress tensors, a subject of dispute for decades [16, 25].
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Abstract
We analyse the potential of the geometry of a slab in a planar cavity for
the purpose of Casimir force experiments. The force and its dependence
on temperature, material properties and finite slab thickness are investigated
both analytically and numerically for the slab and walls made of aluminium
and teflon FEP respectively. We conclude that such a setup is ideal for
measurements of the temperature dependence of the Casimir force. By
numerical calculation it is shown that temperature effects are dramatically
larger for dielectrics, suggesting that a dielectric such as teflon FEP whose
properties vary little within a moderate temperature range, should be considered
for experimental purposes. We finally discuss the subtle but fundamental matter
of the various Green’s two-point function approaches present in the literature
and show how they are different formulations describing the same phenomenon.
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1. Introduction

The Casimir effect [1] can be seen as an effect of the zero-point energy of vacuum which
emerges due to the non-commutativity of quantum operators upon quantization of the
electromagnetic (EM) field. Although formally infinite in magnitude, the EM field density
in bulk undergoes finite alterations when dielectric or metal boundaries are introduced in
the system, giving rise to finite and measurable forces. As is well known, at nanometre to
micrometre separations the Casimir attraction between bodies becomes significant, and the
effect has attracted much attention during the last decade in the wake of the rapid advances in
nanotechnology. The existence of the Casimir force was shown experimentally as early as 1958
by Spaarnay [2], yet only recently new and much more precise measurements of Lamoreaux
and others (see the review [3]) have boosted the interest in the effect from a much broader
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Abstract
We analyse the potential of the geometry of a slab in a planar cavity for
the purpose of Casimir force experiments. The force and its dependence
on temperature, material properties and finite slab thickness are investigated
both analytically and numerically for the slab and walls made of aluminium
and teflon FEP respectively. We conclude that such a setup is ideal for
measurements of the temperature dependence of the Casimir force. By
numerical calculation it is shown that temperature effects are dramatically
larger for dielectrics, suggesting that a dielectric such as teflon FEP whose
properties vary little within a moderate temperature range, should be considered
for experimental purposes. We finally discuss the subtle but fundamental matter
of the various Green’s two-point function approaches present in the literature
and show how they are different formulations describing the same phenomenon.
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audience. Experiments like that of Mohideen and Roy [4], and the very recent one of Harber
et al [5], making use of the oscillations of a magnetically trapped Bose–Einstein condensate,
were subject to widespread regard. The same was true for the nonlinear micromechanical
Casimir oscillator experiment of Chan et al [6, 7].

Recent reviews on the Casimir effect are given in [3, 8–11]. Much information about
recent developments can also be found in the special issues of J. Phys. A: Math. Gen. (May
2006) [12] and of New J. Phys. (October 2006) [13].

Actual calculations of Casimir forces are usually performed via two different routes
[8]; either by summation of the energy of discrete quantum modes of the EM field (cf, for
instance, [14]), or via a Green’s function method first developed by Lifshitz [15]. Mode
summation, despite its advantage of a simpler and more transparent formalism, is usually far
inferior. In practice it is only in systems where quantum energy states are known that energy
summation can be carried out explicitly. This requires the system to be highly symmetric, and
favour assumptions such as perfectly conducting walls like in the original Casimir problem.
Geometries in which quantum states are known exactly, unfortunately, are few.

The method of calculating the force through Green’s functions avoids some but not all of
these problems; exact solutions are still only known in highly symmetrical systems such as
infinitely large parallel plates or concentric spheres. Via the fluctuation–dissipation theorem,
the EM field energy density is linked directly to the photonic Green’s function, and the force
surface density acting on boundaries can be calculated, at least in principle. The theory of
Green’s functions and the application of them will be central in the present paper.

The purpose of the present work is twofold. First, we intend to explore some of the
delicate issues that occur in the Green’s function formalism in typical settings involving
dielectric boundaries. Upon relating the two-point functions to Green’s function one may
choose to calculate the Green function in full [8, 16]. The method is complete but may
appear cumbersome, at least so in the presence of several dielectric surfaces. It is possible to
reduce the calculational burden somewhat by simplifying the Green function expressions, by
omitting those parts that do not contribute to the Casimir force. This means that one works
with ‘effective’ Green functions. This method is employed and briefly discussed by Lifshitz
and co-workers; cf e.g. [17]. The connections between the different kinds of Green’s functions
are in our opinion far from trivial, and we therefore believe it of interest to present some of
the formulae that we have compiled and which have turned out to be useful in practice.

As for the calculational technique for the Casimir force in a multilayer system, there exists
a powerful formalism worked out, in particular, by Tomaš [18]. In turn, this formalism was
based on work by Mills and Maradudin two decades earlier [19]. One of us recently made a
review of this technique, with various applications [20]. We shall make use of this technique
in the following. In company with the by now classic theory of Lifshitz and co-workers
[15, 21] and the standard Fresnel theory in optics, the necessary set of tools is provided.

Our second purpose is to apply the formalism to concrete calculations of the Casimir
pressure on a dielectric plate in a multilayer setting. Especially, we will consider the pressure
on a plate situated in a cavity (five-zone system). We work out force expressions and
eigenfrequency changes when the plate is acted upon by a harmonic-oscillator mechanical force
(spring constant k) in addition to the Casimir force, and is brought to oscillate horizontally. To
our knowledge, explicit calculations of this sort have not been made before. A chief motivation
for this kind of calculation is that we wish to evaluate the magnitudes of thermal corrections to
the Casimir pressure. In recent years there have been lively discussions in the literature about
the thermal corrections; for some statements of both sides of the controversy; see [16, 22–29].
We hope that the consideration of planar multilayer systems may provide additional insight
into the temperature problem.
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Casimir force on slab in cavity 3645

We will be considering uniformly heated systems only. The recent experiment of Harber
et al [5] investigated the surface-atom force at thermal equilibrium at room temperature, the
goal being to measure the surface-atom force at very large distances, taking into account
the peculiar properties of a Bose–Einstein condensate gas. Later, the same group investigated
the non-equilibrium effect [30]. This paper seems to have reported the first accurate
measurement of the thermal effect (of any kind) of the Casimir force, in good agreement
with earlier theoretical predictions [31] (cf also the prior theory of Pitaevskii on the non-
equilibrium dynamics of EM fluctuations [32]). Consideration of such systems lies, however,
outside the scope of the present paper.

The following point ought also to be commented upon, although it is not a chief ingredient
of the present paper: Our problem bears a relationship to the famous Abraham–Minkowski
controversy, or more generally the question of how one should construct the correct form of the
EM energy–momentum tensor in a medium. This problem has been discussed more and less
intensely ever since Abraham and Minkowski proposed their energy–momentum expressions
around 1910. The advent of accurate experiments, in particular, has aided a better insight
into this complicated aspect of field–matter interacting systems. Some years ago, one of the
present authors wrote a review of the experimental status in the field [33] (cf also [34]). There
is by now a rather extensive literature in this field; some papers are listed in [35–42]. In the
present case, where the EM surface force on a dielectric boundary results from integration of
the volume force density across the boundary region, the Abraham and Minkowski predictions
actually become equal. Recently, in a series of papers Raabe and Welsch have expressed the
opinion that the Abraham–Minkowski theory is inadequate and that a different form of the EM
energy–momentum tensor has to be employed [43–46]. We cannot agree with this statement,
however. All the experiments in optics that we are aware of can be explained in terms of
the Abraham–Minkowski theory in a straightforward way. One typical example is provided,
for instance, by the oscillations of a water droplet illuminated by a laser pulse. Some years
ago, Zhang and Chang made an experiment in which the oscillations of the droplet surface
were clearly detectable [47]. It was later shown theoretically how the use of the Abraham–
Minkowski theory could reproduce the observed results to a reasonable accuracy [48, 49]. In
our theory below, we will use the Abraham–Minkowski theory throughout.

SI units are used throughout the calculations, and permittivity ε and permeability μ are
defined as relative (nondimensional) quantities. We thus write D = ε0εE, B = μ0μH.

The outline of the paper is as follows. In the next section we analyse the 5-layered
magnetodielectric system (figure 1), presenting the full Green’s function as well as its effective
(or reduced) counterpart. We here aim at elucidating some points in the formalism that in our
opinion are rather delicate. Section 3 is devoted to a study of an oscillating slab in a Casimir
cavity, permitting, in principle at least, how the change in the eigenfrequency of the slab with
respect to the temperature can give us information about the temperature dependence of the
Casimir force. Section 4 discusses more extensively the relationships between the Green’s
two-point functions as introduced by Lifshitz et al and by Schwinger et al. In section 5 we
present results of numerical Casimir force calculations for selected substances, taking Al as
example of a metal, and teflon FEP as example of a dielectric2. In section 6 we consider the
effect of finite slab thickness, i.e. the ‘leakage’ of vacuum radiation from one gap to the other.

2 As a word of caution, we mention here that our permittivity data for metals are intended to hold in the bulk, whereas
in practice the real and imaginary parts of the index of refraction for metals come from ellipsometry measurements,
and are thus really surface measurements. There is an inherent uncertainty in the calculated results coming from
this circumstance, of unknown magnitude, although in our opinion the corrections will hardly exceed the 1% level
due to the general robustness of the force expression against permittivity variations. Ideally, information about the
permittivity versus imaginary frequency would be desirable, for a metallic film. We thank Steve Lamoreaux for
comments on this point.
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SI units are used throughout the calculations, and permittivity ε and permeability μ are
defined as relative (nondimensional) quantities. We thus write D = ε0εE, B = μ0μH.

The outline of the paper is as follows. In the next section we analyse the 5-layered
magnetodielectric system (figure 1), presenting the full Green’s function as well as its effective
(or reduced) counterpart. We here aim at elucidating some points in the formalism that in our
opinion are rather delicate. Section 3 is devoted to a study of an oscillating slab in a Casimir
cavity, permitting, in principle at least, how the change in the eigenfrequency of the slab with
respect to the temperature can give us information about the temperature dependence of the
Casimir force. Section 4 discusses more extensively the relationships between the Green’s
two-point functions as introduced by Lifshitz et al and by Schwinger et al. In section 5 we
present results of numerical Casimir force calculations for selected substances, taking Al as
example of a metal, and teflon FEP as example of a dielectric2. In section 6 we consider the
effect of finite slab thickness, i.e. the ‘leakage’ of vacuum radiation from one gap to the other.

2 As a word of caution, we mention here that our permittivity data for metals are intended to hold in the bulk, whereas
in practice the real and imaginary parts of the index of refraction for metals come from ellipsometry measurements,
and are thus really surface measurements. There is an inherent uncertainty in the calculated results coming from
this circumstance, of unknown magnitude, although in our opinion the corrections will hardly exceed the 1% level
due to the general robustness of the force expression against permittivity variations. Ideally, information about the
permittivity versus imaginary frequency would be desirable, for a metallic film. We thank Steve Lamoreaux for
comments on this point.
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We find the striking result that for dielectrics the relative finite thickness correction is much
larger than for metals. For teflon FEP versus Al the relative correction is almost two orders in
magnitude higher.

A word is called for, as regards the permeability μ. As anticipated above, we allow μ to be
different from 1. This is motivated chiefly by completeness, and is physically an idealization.
It is known that the permeability for most materials is lossy at high frequencies, corresponding
to imaginary values for μ. That phenomenon is limited to a restricted frequency interval,
however, (10–100 GHz), and loses effect at the higher frequencies.

2. Casimir force on a slab in a cavity

We shall consider a five-layered magnetodielectric system such as depicted in figure 1. The
analytical calculation of the Casimir force density acting on the slab in such a geometry is
well known; it may be calculated, quite simply, by a straightforward generalization of the
famous calculation by Lifshitz and co-workers used for the simpler, three-layered system of
two half-spaces separated by a gap [17, 21].

Rather than starting from the photonic Green’s function as a propagator as known
from quantum electrodynamics, we introduce classical and macroscopic two-point (Green’s)
function according to the convention of Schwinger et al [52] as

E(x) = 1

ε0

∫
d4x ′ ↔

Γ(x, x ′) · P (x ′), (1)

where x = (r, t). Due to causality, t ′ is only integrated over the region t ′ � t . It follows from
Maxwell’s equations that � obeys the relation

∇ × ∇×↔
Γ(r, r′;ω) − ε(r)μ(r)ω2

c2

↔
Γ(r, r′;ω) = μ(r)ω2

c2
δ(r − r′)

↔
1, (2)

where we have performed a Fourier transformation according to

↔
Γ(x, x ′) =

∫ ∞

−∞

dω

2π
e−iωτ

↔
Γ(r, r′;ω), (3)

with τ ≡ t − t ′.
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A comparison of (2) with the corresponding equation in [17, 21] shows formally that � is
essentially equivalent with the retarded photonic Green’s function in a medium3. The physical
connection is not entirely trivial, however. As motivation we note that (1) expresses the linear
relation between the dipole density at x ′ and the resulting electric field at x, in essence the
extent to which an EM field is able to propagate from x ′ to x. This is exactly the classical
analogy of the quantum definition of a Green’s function propagator, in accordance with the
correspondence principle as introduced by Niels Bohr in 1923. We note furthermore that
insisting that t ′ � t ensures that account is taken of retardation, corresponding to the Lifshitz
definition of the retarded photonic Green’s function (e.g. [17, section 75]) which is 0 for t < t ′.

We make use of the fluctuation–dissipation theorem at zero temperature, rendered
conveniently as

i〈Ei(r)Ek(r
′)〉ω = h̄

ε0
�m{�ik(r, r′;ω)} (4a)

i〈Hi(r)Hk(r
′)〉ω = h̄

μ0

c2

μμ′ω2
Curlij Curl′kl �m{�jl(r, r′;ω)}, (4b)

with the notation Curlik ≡ εijk∂j (εijk being the Levi-Civita symbol and summation over
identical indices is implied), Curl′ik ≡ εijk∂

′
j where ∂ ′

j is differentiation with respect to
component j of r′, and μ′ ≡ μ(r′). The brackets denote the mean value with respect to
fluctuations. The Casimir pressure acting on some surface is now given by the zz-component
of the Abraham–Minkowski stress tensor, found by simple insertion to become [17, 21]4

Fz = h̄

∫ ∞

0

dζ

2π

[
ε
(
�E

xx + �E
yy − �E

zz

)
+

1

μ

(
�H

xx + �H
yy − �H

zz

)]
r=r′

, (5)

where a standard frequency rotation ω = iζ has been performed and the convenient quantities
�E and �H have been defined according to

�E
ik(r, r′;ω) ≡ �ik(r, r′;ω), (6a)

�H
ik (r, r′;ω) ≡ c2

ω2
Curlil Curl′km �lm(r, r′;ω). (6b)

In (5) only the homogeneous (geometry dependent) solution of (2) is included; the
inhomogeneous solution pertaining to the delta function represents the solution inside a
homogeneous medium filling all of space. This term is geometry independent, and cannot
contribute to any physically observable quantity. Importantly, however, any such simplification
from the full Green’s function to its ‘effective’ counterpart must only be made subsequent to
all other calculations.

The system is symmetrical with respect to translation and rotation in the xy-plane and we
transform the Green’s function once more:

↔
Γ(r, r′;ω) =

∫
d2k⊥
(2π)2

eik⊥·(r⊥−r′
⊥)↔g (z, z′; k⊥, ω). (7)

Here and henceforth, the subscript ⊥ refers to a direction in the xy-plane. In the k⊥, ω Fourier
domain one finds [8, 52] that the component equations (2) combine to (among others) the
equations (

∂2
z − κ2

)
gxx(z, z

′; k⊥, ω) = κ2

εμ
δ(z − z′) (8)

3 Compared to Lifshitz et al D = −h̄c2�/ω2, which is only a matter of definition.
4 The expression is generalized compared to the original reference to allow μ �= 1.
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and (
∂2
z − κ2

)
gyy(z, z

′; k⊥, ω) = −μω2

c2
δ(z − z′), (9)

which readily give us these two components in each homogeneous zone. We have defined the
quantity κ ≡ (

k2
⊥ − εμω2/c2

)1/2
. The final diagonal component is found by means of the

relations

gzz(z, z
′; k⊥, ω) = − ik⊥

κ2
∂zgxz(z, z

′; k⊥, ω) +
1

κ2

μω2

c2
δ(z − z′) (10a)

gzx(z, z
′; k⊥, ω) = − ik⊥

κ2
∂zgxx(z, z

′; k⊥, ω) (10b)

gxz(z, z
′; k⊥, ω) = gzx(z

′, z;−k⊥, ω), (10c)

of which the first two are components of (2) and the last was shown by Lifshitz (e.g. [17]).
We return to the geometry of figure 1. An important point to emphasize is that unlike

certain authors in the past (e.g. [53]) we make no principal difference between the walls
of the cavity and the slab; they are both made of real materials with finite permittivity and
conductivity at all frequencies as is the case in any real experimental setting. The net force
density per unit transverse area acting on the slab is found by first placing the source (i.e.
z′) in one of the gaps and calculate the resulting Green’s function in this gap. This yields
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using the single-interface Fresnel reflection coefficients

�i,q = κi − γi,qκg

κi + γi,qκg

, γi,q =
{
μi/μg, q = TE
εi/εg, q = TM,

i = 1, 2. (13)

Note already how the quantity (d±)−1 is a generalization of the quantity d−1 as it was defined
for the three-layer system by Schwinger et al [8, 52] (dubbed � in the Lifshitz et al literature).
In the limit κ2 → κg we immediately get

(
d±

q

)−1 → (
�−2

1q e2κgc − 1
)−1

, i.e. the three-layer
standard result for a cavity of width c with no slab.

Following the above described procedure we get

gzz(+) = k2
⊥

2κgεg

{
1

d+
TM

[
2 cosh κg(z − z′) − eκg(z+z′)

�TM
1

− �TM
1 e−κg(z+z′)

]
+ �TM

1 e−κg(z+z′)

}
.

Exactly the same procedure as for gxx is followed to obtain the yy-component. One finds
that gyy and μ−1∂zgyy are continuous across boundaries, giving eight new equations solved as
above to yield:

gyy(+) = μg

2κg

ω2

c2

{
1

d+
TE

[
2 cosh κg(z − z′) − eκg(z+z′)

�TE
1

− �TE
1 e−κg(z+z′)

]
− �TE

1 e−κg(z+z′)

}
.

The results for the right-hand (−) gap is found by transforming the above results according
to a± → a∓ and z → c − z, z′ → c − z′.

To obtain the force density on each side of the slab, the solutions are now inserted into (5).
One may show [54] that the terms depending on z + z′ do not contribute to the force density
(this is a subtle point which will be discussed further below). Upon omitting these terms, the
right-hand expressions are simply given by swapping + and − indices everywhere and we are
left with the effective Green’s function solution in the ω, k⊥-domain:

gxx(±) = −κg

εg

1

d±
TM

cosh κg(z − z′) (14a)

gyy(±) = ω2μg

c2κg

1

d±
TE

cosh κg(z − z′) (14b)

gzz(±) = k2
⊥

κgεg

1

d±
TM

cosh κg(z − z′). (14c)

Upon insertion into (5) we find the force on either side of the slab yielding the net Casimir
pressure acting on the slab towards the right as

F0(a+, a−; b, c) = h̄

2π2

∫ ∞

0
dζ

∫ ∞

0
dk⊥ · k⊥κg

TM∑
q=TE

(
1

d−
q

− 1

d+
q

)
. (15)

Naturally, the force will always point away from the centre position. Superscript 0 here denotes
that the expression is taken at zero temperature. The finite temperature expression, as is well
known, is found by replacing the frequency integral by a sum over Matsubara frequencies
according to the transition

h̄

∫ ∞

0

dζ

2π
f (iζ ) → kBT

∞∑
m=0

′
f (iζm), iζm = i(2πkBT /h̄) · m

yielding

FT (a+, a−; b, c) = kBT

π

∞∑
m=0

′ ∫ ∞

0
dk⊥ · k⊥κg

TM∑
q=TE

(
1

d−
q

− 1

d+
q

)
. (16)
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δ

Figure 2. The slab oscillates about the cavity midline. We imagine a spring is attached to the slab
exercising a Hooke-force towards the equilibrium position.

The prime on the summation mark denotes that the zeroth term is given half weight as is
conventional.

Rather than painstakingly solving the eight continuity equations to obtain the Green’s
function as above, the result (15) is found much more readily using a powerful procedure
following Tomaš as presented recently by one of us [20]. The above result was obtained
by Tomaš [55] presumably using this procedure. It was worth going through the above
calculations, however, for the sake of shedding light on some in our opinion non-trivial details
which are often tacitly bypassed.

3. Casimir measurement by means of an oscillating slab

Equation (16) may be written on a more handy form in terms of the distance δ from the centre
of the slab to the midline of the cavity as depicted in figure 2. We introduce the system
parameter h = c − b = a+ + a− and substitute according to a± = h/2 ± δ. With some
straightforward manipulation we are able to write (16) as
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We write the force on the slab at finite temperatures as a Taylor expansion to first order in
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Assume now the slab is attached to a spring with spring constant k per unit transverse
area. For small δ we may assume the slab to oscillate in a harmonic fashion (assuming k > a1

now) with frequency given by Newton’s second law as

� = �0 − ��(T ) =
√

k − a1(T )

m
,
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where �0 = √
k/m and m is the mass of the slab per unit transverse area. In the case that

k � a1 we get

��(T ) ≈ a1(T )

2
√

km
= �0

a1(T )

2k
.

We show by numerical calculation in section 5 how the Taylor coefficient a1(T ) varies
significantly with T rendering an oscillating slab-in-cavity setup possibly suitable for future
experimental investigation of the true temperature dependence of the Casimir force.

The setup as described is somewhat reminiscent of the setup currently employed by
Onofrio and co-workers in Grenoble [50] where plates mounted on a double torsion balance
are attracted to a pair of fixed plates. In their planned experiment, the distance from plate to
wall will however kept constant during force measurements. Indeed, a double torsion balance
might be one way of envisioning an experimental realization essentially equivalent to the
system described (if thickness corrections are neglected) if the plates are mounted such that
when one pair of plates approach each other, separation is increased between the pair on the
opposite side of the pendulum. An even closer relative might be the recent experiments in
Colorado where perturbations of the eigenfrequency of a magnetically trapped Bose–Einstein
substrate in the vicinity of a surface provides a sensitive force measurement technique [5, 30,
51]. Both of these experiments involve a plate (in the widest sense) attracted to a wall on only
one side; an ‘open cavity’.

While a one-sided configuration is possibly experimentally simpler, there are two physical
advantages of the sandwich geometry as presented here: the frequency shift ��(T ) is
essentially twice as large using a closed cavity and, perhaps more importantly, in a symmetrical
geometry the harmonical approximation (FT ∝ δ) is accurate for larger deviations δ from the
equilibrium position than is the case for an open geometry. These points are elaborated further
in appendix.

4. Fundamental discussion: two-point functions and Green’s functions

In the standard Casimir literature there are two famous and somewhat different derivations
of the classical Lifshitz expression5, namely that of Lifshitz and co-workers in 1956–1961
[15, 17] and that of Schwinger and co-workers some years later [8, 52]. The two both make
use of a Green’s two-point function but in two different ways which upon comparison seem
somewhat contradictory at first glance. Understanding how they relate to each other is not
trivial in our opinion.

In order to calculate the force acting on an interface between two different media,
both schools calculate what in our coordinates is the zz component of the Abraham–
Minkowski energy–momentum tensor as described above using the Green’s function through
the fluctuation–dissipation theorem as in (4a) and (4b). Lifshitz argues as recited above
that in his formalism some terms of the Green’s function (those dependent on z + z′) make
no contribution to the force6. These are consequently omitted, leaving an effective Green’s
function. Schwinger et al, however, make use of the entire Green’s function ultimately arriving
at an expression similar to (5) in which the z + z′ terms are included and indeed necessary
in order to reproduce Lifshitz’ result. The |z − z′|-dependent source term is geometry
independent and eventually omitted in both references.

5 By ‘Lifshitz force’ is henceforth meant the Casimir force between two plane parallel (magneto) dielectric half-
spaces separated by a medium different from both. By the ‘Lifshitz expression’ is meant the mathematical expression
for this force as derived by Lifshitz and co-workers [21].
6 This is shown formally in [54].
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To solve the paradox we recognize one important difference between the two procedures:
Lifshitz takes the limit r → r′ so that r and r′ are both on the same side of one of the
sharp interfaces, whereas in Schwinger’s method, r is on one side whilst r′ is on the other.
By using continuity conditions for the EM field, calculations can be carried out with analytic
knowledge of the Green’s function only on one side of the interface in both cases, thus masking
this principal difference. Remembering that Tzz is the density of momentum flux in the
z-direction, the physical difference between the methods is that whilst Lifshitz calculates
the force density as the net stream of momentum into one side of the interface, Schwinger
et al’s expression represents the entire stream into one side minus the entire stream out
of the other side. Due to conservation of momentum, the procedures are physically
equivalent.

The question remains how to interpret the terms dependent on z + z′. Arguably, the
absolute value of such terms must be arbitrary, since they will depend on the position of an
arbitrarily placed origin7. Furthermore, since these terms cancel each other perfectly in (5),
one may think of them as representing an isotropic flux of photonic momentum, flowing in
equal amounts in both directions along the z-axis, giving rise to no measurable effect inside a
homogeneous medium.

Schwinger, however, insists r and r′ lie infinitesimally close to either side of an interface.
While the z + z′ terms cancel each other when all calculated in the same medium, their values
depend on ε and μ, so when ε �= ε′ or μ �= μ′, their net contribution is finite.

This is exactly made up for in Lifshitz’ approach by the fact that a sudden change in
permittivity and permeability (such as at an interface between a dilute and an opaque medium)
causes some of the radiation to be reflected off the interface in accordance with Fresnel’s theory.
Thus although z and z′ both lie inside the same medium, there is a net flow of momentum
either out of (attractive) or into (repulsive) the gap giving rise to a Casimir force. Such an
analysis of the use of Green’s functions gives way for an understanding of how three different
representations of the Casimir effect come together; the derivation by Lifshitz starting from
photonic propagators in quantum electrodynamics, that by Schwinger et al based on Green’s
function calculations from classical electrodynamics and a third approach based on Fresnel
theory which we may refer to as the ‘optical approach’ (originally in form of non-retarded Van
der Waals theory [56, 57], recently revisited by Scardicchio and Jaffe; see [58] and references
therein).

We showed that the factors
(
d±

q

)−1
were generalized versions of the factors denoted by

d−1 and (d ′)−1 in Schwinger et al’s theory for the three-layer model. These are both special
cases of a more general quantity

1

dq

= rqLrqR e−2κga

1 − rqLrqR e−2κga

pertaining to a gap of width a separating planar bodies to the left (L) and right (R) of it whose
Fresnel reflection coefficients are rqL and rqR respectively. If the media are infinitely large
and homogeneous media indexed 1 and 2 respectively, say, rqL and rqR are simply −�1q

and −�2q from (13); if the bodies are more complex, e.g. has a multilayered structure, their
corresponding Fresnel coefficients will be more complicated. This is discussed in detail in
[20]. An EM plane wave with momentum h̄k is described as ei(k⊥·r⊥+kzz). In medium g,
furthermore, kz = iκg according to Maxwell’s equations, i.e. the wave is evanescent in the
z-direction if k2

⊥ > εgμgω
2/c2 (otherwise propagating). After frequency rotation ω2 → −ζ 2

7 The notion of arbitrarily large energy densities, of course, is not foreign to Casimir calculations; Casimir’s original
calculation involved the difference between the apparently infinite energy density of the zero-point photon field in the
absence and presence of perfectly conducting interfaces.
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of the other side. Due to conservation of momentum, the procedures are physically
equivalent.

The question remains how to interpret the terms dependent on z + z′. Arguably, the
absolute value of such terms must be arbitrary, since they will depend on the position of an
arbitrarily placed origin7. Furthermore, since these terms cancel each other perfectly in (5),
one may think of them as representing an isotropic flux of photonic momentum, flowing in
equal amounts in both directions along the z-axis, giving rise to no measurable effect inside a
homogeneous medium.

Schwinger, however, insists r and r′ lie infinitesimally close to either side of an interface.
While the z + z′ terms cancel each other when all calculated in the same medium, their values
depend on ε and μ, so when ε �= ε′ or μ �= μ′, their net contribution is finite.

This is exactly made up for in Lifshitz’ approach by the fact that a sudden change in
permittivity and permeability (such as at an interface between a dilute and an opaque medium)
causes some of the radiation to be reflected off the interface in accordance with Fresnel’s theory.
Thus although z and z′ both lie inside the same medium, there is a net flow of momentum
either out of (attractive) or into (repulsive) the gap giving rise to a Casimir force. Such an
analysis of the use of Green’s functions gives way for an understanding of how three different
representations of the Casimir effect come together; the derivation by Lifshitz starting from
photonic propagators in quantum electrodynamics, that by Schwinger et al based on Green’s
function calculations from classical electrodynamics and a third approach based on Fresnel
theory which we may refer to as the ‘optical approach’ (originally in form of non-retarded Van
der Waals theory [56, 57], recently revisited by Scardicchio and Jaffe; see [58] and references
therein).

We showed that the factors
(
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)−1
were generalized versions of the factors denoted by

d−1 and (d ′)−1 in Schwinger et al’s theory for the three-layer model. These are both special
cases of a more general quantity
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pertaining to a gap of width a separating planar bodies to the left (L) and right (R) of it whose
Fresnel reflection coefficients are rqL and rqR respectively. If the media are infinitely large
and homogeneous media indexed 1 and 2 respectively, say, rqL and rqR are simply −�1q

and −�2q from (13); if the bodies are more complex, e.g. has a multilayered structure, their
corresponding Fresnel coefficients will be more complicated. This is discussed in detail in
[20]. An EM plane wave with momentum h̄k is described as ei(k⊥·r⊥+kzz). In medium g,
furthermore, kz = iκg according to Maxwell’s equations, i.e. the wave is evanescent in the
z-direction if k2

⊥ > εgμgω
2/c2 (otherwise propagating). After frequency rotation ω2 → −ζ 2

7 The notion of arbitrarily large energy densities, of course, is not foreign to Casimir calculations; Casimir’s original
calculation involved the difference between the apparently infinite energy density of the zero-point photon field in the
absence and presence of perfectly conducting interfaces.
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Figure 3. Contributions to
↔
g in a gap between two bodies in the optical visualization. The distance

between the bodies is a. Each term has a weight factor as shown on the right-hand side. The sum
of the infinitely many reflections of a q-polarized wave is d−1

q .

this is always true (k⊥ is assumed real), so every wave is described as an evanescent wave.
The attenuation of an EM field of frequency iζ propagating a distance l along the z-axis in
medium g is exp(−κgl), so one readily shows that d−1

q is the sum of relative amplitudes of the
electric fields having travelled all paths starting and ending at the same z-coordinate and with
the same direction:

1

dq

= rqLrqR e−2κga + (rqLrqR e−2κga)2 + · · · =
∞∑

n=1

(rqLrqR e−2κga)n.

An illustration of this is found in figure 3. Since the phase shift from propagation in the ⊥
direction is disregarded in this respect, one might think of d−1

q as a sum over all closed paths,
parallel to the z-axis and starting and ending in the same point.

Considering again the expressions for the complete Green’s functions gxx, gyy and gzz in
section 2, we see that the last terms of all three components are the only ones not multiplied by
a factor d−1

q (indices ± suppressed). Since this factor is the only part of
↔
g containing geometry

information, the last term is geometry independent, and can obviously make no contribution
to a physical force. Hence, all contributing terms are proportional with d−1

q which leads us
to the conclusion that the Casimir attraction between bodies on either side of a gap region at
a given temperature depends solely on the extent to which some EM field originating in the
gap, stays in the gap.

To sum it all up, we argued that Schwinger’s classical Green’s function as introduced is the
exact macroscopic analogy of Lifshitz’ QED propagator according to Bohr’s correspondence
principle. In its Fourier transformed form it expresses the probability amplitude that an electric
field which has transverse momentum h̄k⊥, energy h̄ω and coordinate z′ will give rise to a field
of the same energy and momentum at z. When then z and z′ are only infinitesimally different,
the only way this can happen by classical reasoning is that the two are in fact exactly the same
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Figure 4. The force on an Al slab in a vacuum-filled cavity between Al walls. δ is the distance
from the centre of the slab to the midline of the cavity. For negative δ one gets the antisymmetrical
extension of the graph.

(corresponding to the |z − z′|-dependent source term) or that the field has been reflected off
both walls once or more. This is what figure 3 demonstrates.

5. Numerical investigation and temperature effects

For our numerical calculations, we have used permittivity data for aluminium, gold and copper
supplied by Astrid Lambrecht (personal communication). For ease of comparison, aluminium
is used in figures throughout; all variations acquired by replacing one metal by another are
of a quantitative, not qualitative nature, and are not included here. In all our numerical
investigations, we have assumed non-magnetic media, i.e. μ1 = μ2 = μg = 1.

As an example of a dielectric, we have chosen teflon-fluorinated ethylene propylene (teflon
FEP) because its chemical and physical properties are remarkably invariant with respect to
temperature. Permittivity data for teflon FEP are taken from [59].

Figure 4 shows the Casimir force acting on a relatively thick aluminium slab in a cavity as
a function of δ. For negative values of δ the situation is identical but the force has the opposite
direction. We have chosen a gap width of 3 μm and a slab thickness of 500 nm. These values
are not arbitrary: first, the relative temperature corrections of the Casimir force are predicted
to be large at plate separations of 1–3 μm, so a slab-to-wall distance in this region is desirable
(here h/2 = 1250 nm). Secondly, choosing the slab significantly thicker than the penetration
depth of the EM field makes the five-zone geometry instantly comparable to the well-known
three-zone Lifshitz geometry of two half-spaces; for slabs of a good metal thicker than ∼50 nm
there is virtually no difference between the five-zone expression as derived above and that
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to be large at plate separations of 1–3 μm, so a slab-to-wall distance in this region is desirable
(here h/2 = 1250 nm). Secondly, choosing the slab significantly thicker than the penetration
depth of the EM field makes the five-zone geometry instantly comparable to the well-known
three-zone Lifshitz geometry of two half-spaces; for slabs of a good metal thicker than ∼50 nm
there is virtually no difference between the five-zone expression as derived above and that
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which one would acquire applying the standard Lifshitz expression to each gap in turn and
finding the net force density on the slab as the difference between the two.

Figure 5 shows the net vacuum pressure acting on the slab relative to Casimir’s result for
ideal conductors,

FC = h̄cπ2

240

[
1

(h/2 − δ)4
− 1

(h/2 + δ)4

]
. (20)

In such a plot we see clearly how a slab and cavity set-up might be suitable for measurements
of temperature effects; whereas such effects are small for very small separations, they grow
most considerable near the centre position where slab-to-wall distance is in the order of a
micrometre.

An altogether different result is obtained upon replacing metal with a dielectric in both
walls and slab. In figure 6 the same calculation as in figure 5 has been performed with both slab
and walls of teflon FEP. Casimir experiments using dielectrics were proposed by Torgerson
and Lamoreaux [60] where the use of diamond was suggested.

It is important to note here that we have not taken into account variations of the dielectric
properties of teflon FEP with temperature; much as teflon FEP is renowned for its constancy
in electrical and chemical properties over a large temperature range and is used in space
technology for this very reason, one must assume there are corrections at extremely low
temperatures. We shall not enter into a discussion on material properties here; the point to
take on board is rather that temperature effects are found to be very large indeed near the
centre position, a fact that does not change should the calculated values be several percent off.
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Figure 6. The force on a teflon FEP slab in a vacuum-filled cavity between teflon FEP walls
relative to the result for ideally conducting slab and walls, equation (20). Note that dielectric
properties are assumed constant with temperature.

This strongly indicates that the use of dielectrics in Casimir experiments could be an excellent
means of measuring the still controversial temperature dependence of the force.

We note furthermore that whilst for metals the force decreases with rising temperatures,
the opposite is the case for the dielectric. Mathematically this is readily explained from e.g.
(16). Temperature enters into the expression in two ways; first, each term of the Matsubara
sum has a prefactor T, secondly the distancing of the discrete imaginary frequencies increases
linearly with T. The first dependence tends to increase the force with respect to T whilst the
other decreases it (bearing in mind that the integrand, which is proportional with exp(−κgh),
decreases rapidly with respect to ζ for ζ larger than roughly the m = 1 Matsubara frequency
at room temperature). As temperature rises, thus, the higher order terms of the sum quickly
become negligible, leaving the first few terms to dominate8. In the high temperature limit,
m = 0 becomes the sole significant term and the force becomes proportional9 to T. This
is true for metals and dielectrics alike, but while the trend is seen at low temperatures for
dielectrics, for metals the T-linear trend typically becomes visible only at temperatures much
higher than room temperature. In metals the low (nonzero) frequency terms are boosted since
εi � εg for ζ much smaller than the plasma frequency, in which case reflection coefficients
|�iq | approximately equal unity. The first few Matsubara terms thus remain significant as
temperature rises, countering the T-proportionality effect, at the same time as each m > 0
term decreases in value as the Matsubara frequencies take higher values, allowing the resulting
force to decrease with increasing temperature.

8 The same phenomenon for increasing distances rather than temperatures is treated in [62].
9 For the three-layer Lifshitz set-up, the zero term and thus the force becomes proportional to T/a3 where a is the
gap width, as shown formally in [11].
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Figure 7. The Casimir force density on the slab of figure 1 as a function of the distance δ

from the centre of the slab to the cavity midline as compared to its first-order Taylor expansion,
equation (18) at temperature 300 K.

Figure 7 shows the force acting on the slab in the previously described geometry (such
as plotted in figure 4) as well the first-order Taylor expansion. The figure gives a rough idea
as to the size of the central cavity region in which one may regard the force density as linear
with respect to δ. With the system parameters as chosen we see that, depending on precision
one may allow oscillation amplitudes δ of several tens of nanometres, a length which is not
small relative to the system.

The first-order Taylor coefficient itself has been calculated and plotted in figure 8 for
aluminium and teflon FEP slabs in an aluminium cavity. These are furthermore compared to
Casimir’s ideal result (20) whose first-order Taylor coefficient is readily found to be

a1C = 16h̄cπ2

15
h−5 ≈ 3.3283 × 10−25 N m2 h−5. (21)

6. The effect of finite slab thickness

As measurements of the Casimir force have become drastically more accurate over the last
few years, with researchers claiming to reproduce theoretical results to within 1% [3, 22], it
is well worth asking whether any theoretical calculation may rightly claim such an accuracy.
A point of particular interest in this respect is the strong dependence of the Casimir force on
the permittivity of the media involved. The permittivity data for aluminium, copper and gold
supplied by Lambrecht and Reynaud were calculated by using experimental values for the
susceptibility at a wide range of real frequencies (approx. 1.5 × 1014 rad s−1 < ω < 1.5 ×
1019 rad s−1), extrapolating towards zero frequency by means of the Drude relation (for small
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Figure 8. The first-order Taylor coefficient of equation (18) for aluminium and teflon FEP slabs in
an Al cavity. The horizontal dotted line is the coefficient pertaining to the Casimir result for ideal
conductors (both slab and walls), equation (21). One should note that the dielectric properties of
the materials at extremely low temperatures are not known.

ω < approx 1.5×1014 rad s−1). ε(ω) was subsequently mapped onto the imaginary frequency
axis invoking Kramers–Kronig relations numerically. Thus, although matching theoretical
values (Drude mode l) excellently for imaginary frequencies up to about 1015 rad s−1 [24], the
data have intrinsic uncertainties. Recently, Lambrecht and co-workers addressed the question
of the uncertainty related to calculation of the Casimir force due to uncertainty in the Drude
parameters used for extrapolation, found to add up to as much as 5%, considerably more than
the accuracy claimed for the best experiments to date [61].

The effect of the ‘leakage’ of vacuum radiation from one gap region to the other in our
five-zone geometry is worth a brief investigation in this context. Excepting the zero frequency
term, it is unambiguous from e.g. the definition of κ that when the slab is metallic, the factor
exp(−2κ2b) is small compared to unity for sufficiently large values of b, due to the large
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The first term is immediately recognized as giving the Lifshitz expression for the Casimir
attraction between two half-spaces of materials 1 and 2 separated by a gap of width a± and
material g, and the second term is the first-order correction due to penetration of radiation
through the slab.

In terms of δ we may write in the case where exp(−2κ2b) � 1 for all relevant frequencies
(again subsequent to some manipulation) the force on the slab as FT(δ) ≈ FT

L + �FT where

FT
L (δ;h) = kBT

π

∞∑
m=0

′ ∫ ∞

0
dk⊥k⊥κg

TM∑
q=TE

AqL sinh 2κgδ

BqL − AqL cosh 2κgδ

is the result using the Lifshitz expression on both gaps and taking the difference; here

AqL ≡ 2�1q�2q e−κgh and BqL ≡ 1 + �2
1q�

2
2q e−2κgh, (23)

and

�FT (δ;h, b) = −kBT

π

∞∑
m=0

′ ∫ ∞

0
dk⊥k⊥κg

TM∑
q=TE

e−2κ2b

× AqL
(
BqL − �2

2q − �2
1q e−2κgh

)
sinh 2κgδ

(BqL − AqL cosh 2κgδ)2
. (24)

The factor exp(−2κ2b) and consequently the first-order correction is very sensitive with
respect to even small changes in ε2(iζ ). For very thin slabs (b < 50 nm) and small cavities, the
correction could be in the order of magnitude of the currently claimed measurement accuracy.
Furthermore, we see that the integrand of (24) depends on ε2 in an exponential way. In
conclusion: to the extent that the thickness correction is of significance in an experimental
measurement, exact knowledge of the permittivity as a function of imaginary frequency is
of the essence. In such a scenario, approximate knowledge of the dispersion function could
effectively limit our ability to even calculate the force with the precision that recent experiments
claim to reproduce theory [22]. A calculation of the thickness correction for aluminium slab
and walls is shown in figure 9.

In the case of dielectrics, as shown in figure 10, the correction is almost two orders
of magnitude larger and should be readily measurable. Experiments in a geometry involving
dielectric plates of finite thickness might even be a possible means of evaluating the correctness
of the dielectric function employed.

7. Conclusion and final remarks

The main conclusion from the work presented is that from a theoretical point of view the five-
zone setup (figure 1) as discussed could be ideal for detection of the temperature dependence
of the Casimir force when the wall-to-slab distance is in the order of 1 μm. One method as
suggested is a measurement of the difference in the eigenfrequency of an oscillating slab in
the absence and presence of a cavity.

When metal is replaced by a dielectric in slab and walls, relative temperature corrections
become much larger, suggesting that using dielectrics whose dielectric properties vary little
with respect to temperature be excellent for such measurements.

Our treatment of the effect of finite slab thickness shows that the effect of finite thickness
varies dramatically with respect to the properties of the materials involved, specifically ε and μ.
Much as the effect is generally quite small for metals, to the extent such effects do play a role

Casimir force on slab in cavity 3659

The first term is immediately recognized as giving the Lifshitz expression for the Casimir
attraction between two half-spaces of materials 1 and 2 separated by a gap of width a± and
material g, and the second term is the first-order correction due to penetration of radiation
through the slab.

In terms of δ we may write in the case where exp(−2κ2b) � 1 for all relevant frequencies
(again subsequent to some manipulation) the force on the slab as FT(δ) ≈ FT

L + �FT where

FT
L (δ;h) = kBT

π

∞∑
m=0

′ ∫ ∞

0
dk⊥k⊥κg

TM∑
q=TE

AqL sinh 2κgδ

BqL − AqL cosh 2κgδ

is the result using the Lifshitz expression on both gaps and taking the difference; here

AqL ≡ 2�1q�2q e−κgh and BqL ≡ 1 + �2
1q�

2
2q e−2κgh, (23)

and

�FT (δ;h, b) = −kBT

π

∞∑
m=0

′ ∫ ∞

0
dk⊥k⊥κg

TM∑
q=TE

e−2κ2b

× AqL
(
BqL − �2

2q − �2
1q e−2κgh

)
sinh 2κgδ

(BqL − AqL cosh 2κgδ)2
. (24)

The factor exp(−2κ2b) and consequently the first-order correction is very sensitive with
respect to even small changes in ε2(iζ ). For very thin slabs (b < 50 nm) and small cavities, the
correction could be in the order of magnitude of the currently claimed measurement accuracy.
Furthermore, we see that the integrand of (24) depends on ε2 in an exponential way. In
conclusion: to the extent that the thickness correction is of significance in an experimental
measurement, exact knowledge of the permittivity as a function of imaginary frequency is
of the essence. In such a scenario, approximate knowledge of the dispersion function could
effectively limit our ability to even calculate the force with the precision that recent experiments
claim to reproduce theory [22]. A calculation of the thickness correction for aluminium slab
and walls is shown in figure 9.

In the case of dielectrics, as shown in figure 10, the correction is almost two orders
of magnitude larger and should be readily measurable. Experiments in a geometry involving
dielectric plates of finite thickness might even be a possible means of evaluating the correctness
of the dielectric function employed.

7. Conclusion and final remarks

The main conclusion from the work presented is that from a theoretical point of view the five-
zone setup (figure 1) as discussed could be ideal for detection of the temperature dependence
of the Casimir force when the wall-to-slab distance is in the order of 1 μm. One method as
suggested is a measurement of the difference in the eigenfrequency of an oscillating slab in
the absence and presence of a cavity.

When metal is replaced by a dielectric in slab and walls, relative temperature corrections
become much larger, suggesting that using dielectrics whose dielectric properties vary little
with respect to temperature be excellent for such measurements.

Our treatment of the effect of finite slab thickness shows that the effect of finite thickness
varies dramatically with respect to the properties of the materials involved, specifically ε and μ.
Much as the effect is generally quite small for metals, to the extent such effects do play a role

Casimir force on slab in cavity 3659

The first term is immediately recognized as giving the Lifshitz expression for the Casimir
attraction between two half-spaces of materials 1 and 2 separated by a gap of width a± and
material g, and the second term is the first-order correction due to penetration of radiation
through the slab.

In terms of δ we may write in the case where exp(−2κ2b) � 1 for all relevant frequencies
(again subsequent to some manipulation) the force on the slab as FT(δ) ≈ FT

L + �FT where

FT
L (δ;h) = kBT

π

∞∑
m=0

′ ∫ ∞

0
dk⊥k⊥κg

TM∑
q=TE

AqL sinh 2κgδ

BqL − AqL cosh 2κgδ

is the result using the Lifshitz expression on both gaps and taking the difference; here

AqL ≡ 2�1q�2q e−κgh and BqL ≡ 1 + �2
1q�

2
2q e−2κgh, (23)

and

�FT (δ;h, b) = −kBT

π

∞∑
m=0

′ ∫ ∞

0
dk⊥k⊥κg

TM∑
q=TE

e−2κ2b

× AqL
(
BqL − �2

2q − �2
1q e−2κgh

)
sinh 2κgδ

(BqL − AqL cosh 2κgδ)2
. (24)

The factor exp(−2κ2b) and consequently the first-order correction is very sensitive with
respect to even small changes in ε2(iζ ). For very thin slabs (b < 50 nm) and small cavities, the
correction could be in the order of magnitude of the currently claimed measurement accuracy.
Furthermore, we see that the integrand of (24) depends on ε2 in an exponential way. In
conclusion: to the extent that the thickness correction is of significance in an experimental
measurement, exact knowledge of the permittivity as a function of imaginary frequency is
of the essence. In such a scenario, approximate knowledge of the dispersion function could
effectively limit our ability to even calculate the force with the precision that recent experiments
claim to reproduce theory [22]. A calculation of the thickness correction for aluminium slab
and walls is shown in figure 9.

In the case of dielectrics, as shown in figure 10, the correction is almost two orders
of magnitude larger and should be readily measurable. Experiments in a geometry involving
dielectric plates of finite thickness might even be a possible means of evaluating the correctness
of the dielectric function employed.

7. Conclusion and final remarks

The main conclusion from the work presented is that from a theoretical point of view the five-
zone setup (figure 1) as discussed could be ideal for detection of the temperature dependence
of the Casimir force when the wall-to-slab distance is in the order of 1 μm. One method as
suggested is a measurement of the difference in the eigenfrequency of an oscillating slab in
the absence and presence of a cavity.

When metal is replaced by a dielectric in slab and walls, relative temperature corrections
become much larger, suggesting that using dielectrics whose dielectric properties vary little
with respect to temperature be excellent for such measurements.

Our treatment of the effect of finite slab thickness shows that the effect of finite thickness
varies dramatically with respect to the properties of the materials involved, specifically ε and μ.
Much as the effect is generally quite small for metals, to the extent such effects do play a role

Casimir force on slab in cavity 3659

The first term is immediately recognized as giving the Lifshitz expression for the Casimir
attraction between two half-spaces of materials 1 and 2 separated by a gap of width a± and
material g, and the second term is the first-order correction due to penetration of radiation
through the slab.

In terms of δ we may write in the case where exp(−2κ2b) � 1 for all relevant frequencies
(again subsequent to some manipulation) the force on the slab as FT(δ) ≈ FT

L + �FT where

FT
L (δ;h) = kBT

π

∞∑
m=0

′ ∫ ∞

0
dk⊥k⊥κg

TM∑
q=TE

AqL sinh 2κgδ

BqL − AqL cosh 2κgδ

is the result using the Lifshitz expression on both gaps and taking the difference; here

AqL ≡ 2�1q�2q e−κgh and BqL ≡ 1 + �2
1q�

2
2q e−2κgh, (23)

and

�FT (δ;h, b) = −kBT

π

∞∑
m=0

′ ∫ ∞

0
dk⊥k⊥κg

TM∑
q=TE

e−2κ2b

× AqL
(
BqL − �2

2q − �2
1q e−2κgh

)
sinh 2κgδ

(BqL − AqL cosh 2κgδ)2
. (24)

The factor exp(−2κ2b) and consequently the first-order correction is very sensitive with
respect to even small changes in ε2(iζ ). For very thin slabs (b < 50 nm) and small cavities, the
correction could be in the order of magnitude of the currently claimed measurement accuracy.
Furthermore, we see that the integrand of (24) depends on ε2 in an exponential way. In
conclusion: to the extent that the thickness correction is of significance in an experimental
measurement, exact knowledge of the permittivity as a function of imaginary frequency is
of the essence. In such a scenario, approximate knowledge of the dispersion function could
effectively limit our ability to even calculate the force with the precision that recent experiments
claim to reproduce theory [22]. A calculation of the thickness correction for aluminium slab
and walls is shown in figure 9.

In the case of dielectrics, as shown in figure 10, the correction is almost two orders
of magnitude larger and should be readily measurable. Experiments in a geometry involving
dielectric plates of finite thickness might even be a possible means of evaluating the correctness
of the dielectric function employed.

7. Conclusion and final remarks

The main conclusion from the work presented is that from a theoretical point of view the five-
zone setup (figure 1) as discussed could be ideal for detection of the temperature dependence
of the Casimir force when the wall-to-slab distance is in the order of 1 μm. One method as
suggested is a measurement of the difference in the eigenfrequency of an oscillating slab in
the absence and presence of a cavity.

When metal is replaced by a dielectric in slab and walls, relative temperature corrections
become much larger, suggesting that using dielectrics whose dielectric properties vary little
with respect to temperature be excellent for such measurements.

Our treatment of the effect of finite slab thickness shows that the effect of finite thickness
varies dramatically with respect to the properties of the materials involved, specifically ε and μ.
Much as the effect is generally quite small for metals, to the extent such effects do play a role



3660 S A Ellingsen and I Brevik

0 5 10 15 20 25 30 35 40 45 50
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
x 10

δ/nm

Finite slab thickness correction

(
F

∞
F
b
)/
F

∞

T= 10K
T=100K
T=200K
T=300K

Slab and walls: Aluminium
Slab thickness: 30nm
Cavity thickness: 230nm

Figure 9. Thickness correction due to ‘leakage’ of radiation through a thin slab in a small
cavity. The absolute value of the correction is approximately exponentially decreasing with the
thickness b.

0 5 10 15 20 25 30 35 40 45 50
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

δ/nm

Finite slab thickness correction, teflon FEP

(
F

∞
F
b
)/
F

∞

T= 10K
T=100K
T=200K
T=300K

Slab and walls: teflon FEP
Slab thickness: 30nm
Cavity width: 230nm

Figure 10. Thickness correction due for teflon FEP.

3660 S A Ellingsen and I Brevik

0 5 10 15 20 25 30 35 40 45 50
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
x 10

δ/nm

Finite slab thickness correction

(
F

∞
F
b
)/
F

∞

T= 10K
T=100K
T=200K
T=300K

Slab and walls: Aluminium
Slab thickness: 30nm
Cavity thickness: 230nm

Figure 9. Thickness correction due to ‘leakage’ of radiation through a thin slab in a small
cavity. The absolute value of the correction is approximately exponentially decreasing with the
thickness b.

0 5 10 15 20 25 30 35 40 45 50
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

δ/nm

Finite slab thickness correction, teflon FEP

(
F

∞
F
b
)/
F

∞

T= 10K
T=100K
T=200K
T=300K

Slab and walls: teflon FEP
Slab thickness: 30nm
Cavity width: 230nm

Figure 10. Thickness correction due for teflon FEP.

3660 S A Ellingsen and I Brevik

0 5 10 15 20 25 30 35 40 45 50
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
x 10

δ/nm

Finite slab thickness correction

(
F

∞
F
b
)/
F

∞

T= 10K
T=100K
T=200K
T=300K

Slab and walls: Aluminium
Slab thickness: 30nm
Cavity thickness: 230nm

Figure 9. Thickness correction due to ‘leakage’ of radiation through a thin slab in a small
cavity. The absolute value of the correction is approximately exponentially decreasing with the
thickness b.

0 5 10 15 20 25 30 35 40 45 50
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

δ/nm

Finite slab thickness correction, teflon FEP

(
F

∞
F
b
)/
F

∞

T= 10K
T=100K
T=200K
T=300K

Slab and walls: teflon FEP
Slab thickness: 30nm
Cavity width: 230nm

Figure 10. Thickness correction due for teflon FEP.

3660 S A Ellingsen and I Brevik

0 5 10 15 20 25 30 35 40 45 50
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
x 10

δ/nm

Finite slab thickness correction

(
F

∞
F
b
)/
F

∞

T= 10K
T=100K
T=200K
T=300K

Slab and walls: Aluminium
Slab thickness: 30nm
Cavity thickness: 230nm

Figure 9. Thickness correction due to ‘leakage’ of radiation through a thin slab in a small
cavity. The absolute value of the correction is approximately exponentially decreasing with the
thickness b.

0 5 10 15 20 25 30 35 40 45 50
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

δ/nm

Finite slab thickness correction, teflon FEP

(
F

∞
F
b
)/
F

∞

T= 10K
T=100K
T=200K
T=300K

Slab and walls: teflon FEP
Slab thickness: 30nm
Cavity width: 230nm

Figure 10. Thickness correction due for teflon FEP.



Casimir force on slab in cavity 3661

even a moderately good estimate of their exact magnitude requires very accurate dielectricity
data for the material in question. This is but one example of the more general point that
the still considerable uncertainties associated with the best available permittivity data for real
materials call for soberness in any assessment of our ability to numerically calculate Casimir
forces with great precision.

Finally, a couple of remarks: it ought to be pointed out that our proposed method of
investigating the thermal Casimir force via observing the oscillations of a slab in a cavity, can
be classified as belonging to the subfield usually called the ‘dynamic Casimir effect’. The use
of mechanical microlevers has turned out to be very effective components for high sensitivity
position measurements, of interest even in the context of gravitational waves detection. As for
the basic principles of the method see, for instance Jaekel et al [63] with further references
therein, especially [64]. For more recent papers on microlevers, see [65–68].

Moreover, we note the connection between our approach and the statistical mechanical
approach of Buenzli and Martin [69]. These authors computed the force between two quantum
plasma slabs within the framework of non-relativistic quantum electrodynamics including
quantum and thermal fluctuations of both matter and field. It was found that the difference in
the predictions for the temperature dependence of the Casimir effect is satisfactorily explained
by taking into account the fluctuations inside the material. Their predictions for the force are
in agreement with ours.
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Appendix. Closed geometry versus open configuration

We will demonstrate briefly the two physical properties favouring a closed cavity configuration
(figure 1) as compared to an open configuration in which a similarly oscillating plate is held
in equilibrium by an external spring system. For the purpose of comparison we will disregard
effects due to finite plate thickness, so that the net force experienced by a slab in a cavity
is the difference between standard Lifshitz forces on both sides, whist that between plate
and wall in a one-sided geometry (like figure 1 but with the right-hand wall removed) is
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where a = h/2 is here the distance from slab to wall in equilibrium position (FL(d) < 0).
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even a moderately good estimate of their exact magnitude requires very accurate dielectricity
data for the material in question. This is but one example of the more general point that
the still considerable uncertainties associated with the best available permittivity data for real
materials call for soberness in any assessment of our ability to numerically calculate Casimir
forces with great precision.

Finally, a couple of remarks: it ought to be pointed out that our proposed method of
investigating the thermal Casimir force via observing the oscillations of a slab in a cavity, can
be classified as belonging to the subfield usually called the ‘dynamic Casimir effect’. The use
of mechanical microlevers has turned out to be very effective components for high sensitivity
position measurements, of interest even in the context of gravitational waves detection. As for
the basic principles of the method see, for instance Jaekel et al [63] with further references
therein, especially [64]. For more recent papers on microlevers, see [65–68].

Moreover, we note the connection between our approach and the statistical mechanical
approach of Buenzli and Martin [69]. These authors computed the force between two quantum
plasma slabs within the framework of non-relativistic quantum electrodynamics including
quantum and thermal fluctuations of both matter and field. It was found that the difference in
the predictions for the temperature dependence of the Casimir effect is satisfactorily explained
by taking into account the fluctuations inside the material. Their predictions for the force are
in agreement with ours.
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Figure A1. The relative correction to the linear Taylor expansion, FLin, of the Casimir force
near equilibrium position for the open and closed geometries plotted for positive δ. Calculations
assume aluminium plate and walls, equilibrium plate-to-wall separation of a = 1250 nm in both
configurations and temperature 300 K. For the sandwich geometry, F is given by (16) whilst in the
open geometry F = FL(a + δ) −FL(a) with FL the standard Lifshitz expression for the attraction
between two half-spaces.

Now consider an open configuration in which a plate is held in equilibrium by an external
spring, also of spring constant k per unit transverse area. Assume that the forces are in
equilibrium when the plate is a distance a from the cavity wall. The net force on the plate is

Fopen = FL(a + δ) − FL(a) − kδ

= −[ka − 4|FL(a)|] δ

a
− 10|FL(a)| δ

2

a2
+ · · · . (A.2)

There are thus two properties that favour the closed geometry. First, the first-order
perturbation of the spring constant is twice as large and second, that the leading-order
correction to the harmonical approximation (FT ∝ δ/a) is cubical whist it is quadratic for the
open configuration11. The closed geometry thus allows considerably larger deviations from
equilibrium position at a given accuracy without taking non-harmonic effects into account. In
figure A1 this is demonstrated by plotting the relative nonharmonic correction as a function of δ

at a separation 1250 nm. In accordance with our results, the relative correction (F −FLin)/F
is approximately linear for an open geometry

(≈− 5
2

δ
a

)
and approximately quadratic for a

sandwich
(≈5 δ2

a2

)
.

11 Note that the specific assumption FL(d) ∝ d−4 is not necessary for either of these results; they pertain almost
exclusively to geometry. A more general power FL(d) ∝ d−σ , σ > 0, say, gives the same properties.
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Transverse radiation force in a tailored optical fiber
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We show, by means of simple model calculations, how a weak laser beam sent though an optical fiber exerts a
transverse radiation force if there is an azimuthal asymmetry present in the fiber such that one side has a slightly
different refractive index than the other. The refractive index difference �n needs only to be very low, of order
10−3, to produce an appreciable transverse displacement of order 10 μm. We argue that the effect has probably
already been seen in a recent experiment by W. She et al. [Phys. Rev. Lett. 101, 243601 (2008)], and we discuss
the correspondence between these observations and the theory presented. The effect could be used to bend optical
fibers in a predictable and controlled manner and we propose that it could be useful for micron-scale devices.
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Recent years have seen increased interest in radiation
forces in optics. Optical tweezers, atom traps, and optical
manipulation of soft materials such as interfaces between
liquids—especially near the critical point, where surface
tension is low—are typical examples. This trend will, in all
probability, continue in the near-future.

Our objective in the present Rapid Communication is to
point toward the possibility of creating a tailored transverse
optical force in a fiber transmitted by a laser beam. The
beam may be pulsed, or it may be continuous. The gist of
the principle is to introduce an accurate mechanical imbalance
in the fiber, implying a slight asymmetry in the refractive
index n. (In practice, such a deviation from axisymmetry may
easily result inadvertently, during the mechanical drawing of
the fiber.) If one side of the fiber is harder than the other, there
may be a slight refractive index difference �n between the
two sides, resulting in a transverse optical force. As fibers of
micron-scale cross sections are very light and bend easily, a
sideways motion may easily occur. The effect, besides being
of basic interest, may be of practical utility. We describe the
effect, making use of simple models for the fiber, and thereafter
compare the theory with a recent experiment which, in our
opinion, has most likely already observed this effect.

The problem is to some extent related to the 100-year-old
Abraham-Minkowski debate on the correct electromagnetic
energy-momentum tensor in dielectric media. From a physical
point of view the key issue is that one is dealing with a
nonclosed system, matter and field. Macroscopic or phe-
nomenological electromagnetic theory, implying the use of
a permittivity ε and permeability μ, means that one is dealing
with a complicated interaction system involving external
fields, internal fields, and constituent molecules, by using
only simple material parameters. The solution to the problem
lies in extracting the energy-momentum form that leads to
a theoretical description of observable effects in a clean and
simple manner. For an overview of the Abraham-Minkowski
debate, see, for example, Ref. [1]. At present there are a
great number of papers discussing the Abraham-Minkowski
problem, for instance, the recent Ref. [2] and the review
Ref. [3].

*simen.a.ellingsen@ntnu.no

Assume now, for definiteness, that the fiber is hanging
vertically and that a laser pulse is transmitted through it. The
general expression for the electromagnetic force density in the
medium, assumed hereafter to be nonmagnetic, is derived from
a given stress tensor σik as fi = ∂kσik . For the Abraham and
Minkowski tensors this implies (see Refs. [1,4] for details)

f = fAM + n2 − 1

c2

∂

∂t
(Ẽ × H̃). (1)

Here fAM = −(ε0/2)Ẽ2∇n2 is nonvanishing in any region
where n varies, especially in surface regions. We use the
notation Ẽ(r, t) = Re{E(x)ei(ωt−βz)} and skip the exponential
factor in the following (see Ref. [5], Chap. 1.3, for notational
details). As this force is common for the Abraham and
Minkowski tensors, it may appropriately be denoted fAM.
The Abraham momentum density gA = (1/c2)Ẽ × H̃ occurs
in the second term. We henceforth ignore it, for the following
two reasons: (i) for a stationary beam the term fluctuates out
when averaged over an optical period; (ii) under perfectly
axisymmetric conditions the force exerted on the fiber during
the transient entrance and exit periods necessarily has to be
vertical, thus being unable to initiate any sideways motion.

In the following we investigate the effect of the force fAM

when the refractive index contrast �n is assumed to be known
from the mechanical production process. Two simple planar
models are considered, in order of increasing complexity.
Finally, we compare the theory with a recent experiment by She
et al. [6] and demonstrate how the deflection observed could
very plausibly be a demonstration of the effect mentioned.

We henceforth limit ourselves to planar geometries for
the fiber. This is mathematically simplifying, but the model
is nevertheless expected to incorporate the essentials of the
imbalance effect. Probably the simplest arrangement is to
consider a uniform slab, infinite in the horizontal y direction,
having a finite width 2a in the horizontal x direction.

The setup is sketched in Fig. 1(a); it is essentially the
same as Fig. 2.1 in Ref. [5]. The beam is propagating into
the plane, in the z direction. On the lower side of the slab
(x < −a) we assume vacuum (or air), with refractive index
n0 = 1. On the upper side (x > a), we assume that there is
a dilute medium, extending to x = ∞, with refractive index
n2 = 1 + �n, �n � 1. When light propagates through the
fiber, there will thus be an imbalance in the surface force

1050-2947/2010/81(1)/011806(4) 011806-1 ©2010 The American Physical Society
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models are considered, in order of increasing complexity.
Finally, we compare the theory with a recent experiment by She
et al. [6] and demonstrate how the deflection observed could
very plausibly be a demonstration of the effect mentioned.

We henceforth limit ourselves to planar geometries for
the fiber. This is mathematically simplifying, but the model
is nevertheless expected to incorporate the essentials of the
imbalance effect. Probably the simplest arrangement is to
consider a uniform slab, infinite in the horizontal y direction,
having a finite width 2a in the horizontal x direction.

The setup is sketched in Fig. 1(a); it is essentially the
same as Fig. 2.1 in Ref. [5]. The beam is propagating into
the plane, in the z direction. On the lower side of the slab
(x < −a) we assume vacuum (or air), with refractive index
n0 = 1. On the upper side (x > a), we assume that there is
a dilute medium, extending to x = ∞, with refractive index
n2 = 1 + �n, �n � 1. When light propagates through the
fiber, there will thus be an imbalance in the surface force
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Recent years have seen increased interest in radiation
forces in optics. Optical tweezers, atom traps, and optical
manipulation of soft materials such as interfaces between
liquids—especially near the critical point, where surface
tension is low—are typical examples. This trend will, in all
probability, continue in the near-future.

Our objective in the present Rapid Communication is to
point toward the possibility of creating a tailored transverse
optical force in a fiber transmitted by a laser beam. The
beam may be pulsed, or it may be continuous. The gist of
the principle is to introduce an accurate mechanical imbalance
in the fiber, implying a slight asymmetry in the refractive
index n. (In practice, such a deviation from axisymmetry may
easily result inadvertently, during the mechanical drawing of
the fiber.) If one side of the fiber is harder than the other, there
may be a slight refractive index difference �n between the
two sides, resulting in a transverse optical force. As fibers of
micron-scale cross sections are very light and bend easily, a
sideways motion may easily occur. The effect, besides being
of basic interest, may be of practical utility. We describe the
effect, making use of simple models for the fiber, and thereafter
compare the theory with a recent experiment which, in our
opinion, has most likely already observed this effect.

The problem is to some extent related to the 100-year-old
Abraham-Minkowski debate on the correct electromagnetic
energy-momentum tensor in dielectric media. From a physical
point of view the key issue is that one is dealing with a
nonclosed system, matter and field. Macroscopic or phe-
nomenological electromagnetic theory, implying the use of
a permittivity ε and permeability μ, means that one is dealing
with a complicated interaction system involving external
fields, internal fields, and constituent molecules, by using
only simple material parameters. The solution to the problem
lies in extracting the energy-momentum form that leads to
a theoretical description of observable effects in a clean and
simple manner. For an overview of the Abraham-Minkowski
debate, see, for example, Ref. [1]. At present there are a
great number of papers discussing the Abraham-Minkowski
problem, for instance, the recent Ref. [2] and the review
Ref. [3].

*simen.a.ellingsen@ntnu.no

Assume now, for definiteness, that the fiber is hanging
vertically and that a laser pulse is transmitted through it. The
general expression for the electromagnetic force density in the
medium, assumed hereafter to be nonmagnetic, is derived from
a given stress tensor σik as fi = ∂kσik . For the Abraham and
Minkowski tensors this implies (see Refs. [1,4] for details)

f = fAM + n2 − 1

c2

∂

∂t
(Ẽ × H̃). (1)

Here fAM = −(ε0/2)Ẽ2∇n2 is nonvanishing in any region
where n varies, especially in surface regions. We use the
notation Ẽ(r, t) = Re{E(x)ei(ωt−βz)} and skip the exponential
factor in the following (see Ref. [5], Chap. 1.3, for notational
details). As this force is common for the Abraham and
Minkowski tensors, it may appropriately be denoted fAM.
The Abraham momentum density gA = (1/c2)Ẽ × H̃ occurs
in the second term. We henceforth ignore it, for the following
two reasons: (i) for a stationary beam the term fluctuates out
when averaged over an optical period; (ii) under perfectly
axisymmetric conditions the force exerted on the fiber during
the transient entrance and exit periods necessarily has to be
vertical, thus being unable to initiate any sideways motion.

In the following we investigate the effect of the force fAM

when the refractive index contrast �n is assumed to be known
from the mechanical production process. Two simple planar
models are considered, in order of increasing complexity.
Finally, we compare the theory with a recent experiment by She
et al. [6] and demonstrate how the deflection observed could
very plausibly be a demonstration of the effect mentioned.

We henceforth limit ourselves to planar geometries for
the fiber. This is mathematically simplifying, but the model
is nevertheless expected to incorporate the essentials of the
imbalance effect. Probably the simplest arrangement is to
consider a uniform slab, infinite in the horizontal y direction,
having a finite width 2a in the horizontal x direction.

The setup is sketched in Fig. 1(a); it is essentially the
same as Fig. 2.1 in Ref. [5]. The beam is propagating into
the plane, in the z direction. On the lower side of the slab
(x < −a) we assume vacuum (or air), with refractive index
n0 = 1. On the upper side (x > a), we assume that there is
a dilute medium, extending to x = ∞, with refractive index
n2 = 1 + �n, �n � 1. When light propagates through the
fiber, there will thus be an imbalance in the surface force
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Minkowski tensors, it may appropriately be denoted fAM.
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in the second term. We henceforth ignore it, for the following
two reasons: (i) for a stationary beam the term fluctuates out
when averaged over an optical period; (ii) under perfectly
axisymmetric conditions the force exerted on the fiber during
the transient entrance and exit periods necessarily has to be
vertical, thus being unable to initiate any sideways motion.

In the following we investigate the effect of the force fAM

when the refractive index contrast �n is assumed to be known
from the mechanical production process. Two simple planar
models are considered, in order of increasing complexity.
Finally, we compare the theory with a recent experiment by She
et al. [6] and demonstrate how the deflection observed could
very plausibly be a demonstration of the effect mentioned.

We henceforth limit ourselves to planar geometries for
the fiber. This is mathematically simplifying, but the model
is nevertheless expected to incorporate the essentials of the
imbalance effect. Probably the simplest arrangement is to
consider a uniform slab, infinite in the horizontal y direction,
having a finite width 2a in the horizontal x direction.

The setup is sketched in Fig. 1(a); it is essentially the
same as Fig. 2.1 in Ref. [5]. The beam is propagating into
the plane, in the z direction. On the lower side of the slab
(x < −a) we assume vacuum (or air), with refractive index
n0 = 1. On the upper side (x > a), we assume that there is
a dilute medium, extending to x = ∞, with refractive index
n2 = 1 + �n, �n � 1. When light propagates through the
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FIG. 1. (Color online) (a) The simplest model, a slab waveguide
with a slight difference in refractive index above and below. (b) The
geometry of a vertically hanging optical fiber subject to sideways
motion.

densities on the lower and upper surfaces. Let us choose a
TE mode (following the notation in Ref. [5]). This means
that the electric field has only a y component different from
zero, E = (0, Ey, 0). In the dielectric boundary layers located
around x = −a and x = a, the transverse force component is
f AM

x = −(ε0/4)E2
y d(n2)/dx, yielding the respective surface

force densities,

σx(−a) = − 1
4ε0E

2
y(−a)(n2 − 1), (2)

σx(a) = − 1
4ε0E

2
y (a)

(
n2

2 − n2
)
. (3)

We have taken into account here that the longitudinal compo-
nent Ey is continuous across the surfaces and that 〈Ẽ2

y〉 = 1
2E2

y ,
where 〈 〉 is averaged over oscillations in time and the z

direction.
The net transverse surface force density is σx = σx(−a) +

σx(a). As �n is small, we can make use of the expression
for E2

y corresponding to a symmetric fiber, thus with the
assumption n2 = 1. Accordingly we get to first order in �n,

σx = − 1
2ε0E

2
y (a) · �n, (4)

where now E2
y (a) refers to the symmetric situation. We see

that for positive �n, the surface force is directed downward in
Fig. 1(a), that is, in the negative x direction. This is as it should
be, as surface forces are always directed toward the optically
thinner region at a dielectric surface.

The presence of σx makes it possible to regard the fiber as
an elastic rod exposed to a constant transverse load. Let us
first, however, relate σx to the total power P in the fiber. For
the TE mode we have, using the same notation as in Ref. [5],

Ey =

⎧⎪⎨
⎪⎩

A cos(κa − φ)e−ξ (x−a), x > a,

A cos(κx − φ), −a � x � a,

A cos(κa + φ)eξ (x+a), x < −a.

(5)

Here κ =
√

(n2ω2/c2) − β2 and ξ =
√

β2 − (ω2/c2), where
β, lying in the interval ω/c � β � nω/c, is the wave-number
component in the z direction. The corresponding nondimen-
sional transverse wave vectors are u = κa and w = ξa.

The electromagnetic boundary conditions, requiring that
dEy/dx be continuous, yield the following equations:

u = 1
2mπ + arctan(w/u) , φ = 1

2mπ, (6)

with m = 0, 1, 2, . . . , while u and w are related via

u2 + w2 = ω2a2

c2
(n2 − 1). (7)

From these two equations β and w can be calculated, and we
can find the relationship between P and the constant A in
Eq. (5) using formula (2.34) of Ref. [5]:

A2 = 2ωμ0P

βab[1 + (1/w)]
. (8)

Recall that P refers to the total power transmitted by the fiber.
In the planar model, we let b denote the fiber width in the y

direction. The cross-sectional area of the model fiber is thus
2ab, and the power per unit length in the y direction is P/b.
Edge effects because of the finite value of b are ignored. The
transverse surface force density can now be expressed as

σx = − P

abnec[1 + (1/w)]

n2 − n2
e

n2 − 1
�n, (9)

where we have defined

ne = βc/ω (10)

and used that the continuity of dEy/dx across the interface at
x = a implies that

cos2(u − φ) = cos2(u + φ) = κ2

ξ 2 + κ2
= n2 − n2

e

n2 − 1
. (11)

For practical purposes it may be convenient to express �n

in Eq. (9) in terms of the corresponding increase in material
density �ρ. We can make use of the Clausius-Mossotti
relation, which is a good approximation, at least for nonpolar
materials. Then we get

�n2 = 1

3ρ
(n2 − 1)(n2 + 2)�ρ. (12)

Consider next the fiber as an elastic rod of rectangular cross
section, clamped at one end (z = 0) and free at the other end
(z = L). For convenience we let the z axis be horizontal.
We choose b = 2a, implying a square cross section of the
fiber. The transverse load per unit length in the longitudinal
direction is σxb acting downward in the negative x direction.
The governing equation for the elastic deflection is (ignoring
gravity) x ′′′′(z) = σxb/(EI ), where E is Young’s modulus and
I = b4/12 is the moment of inertia of the cross-sectional area
about its centroidal axis [7]. The solution of the governing
equation is

x(z) = − σxb

24EI
z2(z2 − 4Lz + 6L2). (13)

The deflection at the tip, termed simply �x, is thus

�x = −σxbL4

8EI
. (14)

We can now calculate the perturbation �n required to produce
a relative deflection �x/L at the tip:

|�n| = 8EI

L3P
neac

(
1 + 1

w

)
n2 − 1

n2 − n2
e

|�x|
L

. (15)

To obtain an order-of-magnitude estimate for the required
difference in n to yield a prescribed value for �x, we insert
numerical values that are appropriate for a low-intensity laser
beam in a fiber (the values are typical and the same as used
in Ref. [6]): λ = 650 nm, P = 6.4 mW, L = 1.5 mm, and
b = 2a = 450 nm.
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FIG. 1. (Color online) (a) The simplest model, a slab waveguide
with a slight difference in refractive index above and below. (b) The
geometry of a vertically hanging optical fiber subject to sideways
motion.
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IVER BREVIK AND SIMEN Å. ELLINGSEN PHYSICAL REVIEW A 81, 011806(R) (2010)

FIG. 1. (Color online) (a) The simplest model, a slab waveguide
with a slight difference in refractive index above and below. (b) The
geometry of a vertically hanging optical fiber subject to sideways
motion.

densities on the lower and upper surfaces. Let us choose a
TE mode (following the notation in Ref. [5]). This means
that the electric field has only a y component different from
zero, E = (0, Ey, 0). In the dielectric boundary layers located
around x = −a and x = a, the transverse force component is
f AM

x = −(ε0/4)E2
y d(n2)/dx, yielding the respective surface

force densities,

σx(−a) = − 1
4ε0E

2
y(−a)(n2 − 1), (2)

σx(a) = − 1
4ε0E

2
y (a)

(
n2

2 − n2
)
. (3)

We have taken into account here that the longitudinal compo-
nent Ey is continuous across the surfaces and that 〈Ẽ2
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section, clamped at one end (z = 0) and free at the other end
(z = L). For convenience we let the z axis be horizontal.
We choose b = 2a, implying a square cross section of the
fiber. The transverse load per unit length in the longitudinal
direction is σxb acting downward in the negative x direction.
The governing equation for the elastic deflection is (ignoring
gravity) x ′′′′(z) = σxb/(EI ), where E is Young’s modulus and
I = b4/12 is the moment of inertia of the cross-sectional area
about its centroidal axis [7]. The solution of the governing
equation is

x(z) = − σxb

24EI
z2(z2 − 4Lz + 6L2). (13)

The deflection at the tip, termed simply �x, is thus

�x = −σxbL4

8EI
. (14)

We can now calculate the perturbation �n required to produce
a relative deflection �x/L at the tip:

|�n| = 8EI

L3P
neac

(
1 + 1

w

)
n2 − 1

n2 − n2
e

|�x|
L

. (15)

To obtain an order-of-magnitude estimate for the required
difference in n to yield a prescribed value for �x, we insert
numerical values that are appropriate for a low-intensity laser
beam in a fiber (the values are typical and the same as used
in Ref. [6]): λ = 650 nm, P = 6.4 mW, L = 1.5 mm, and
b = 2a = 450 nm.
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FIG. 1. (Color online) (a) The simplest model, a slab waveguide
with a slight difference in refractive index above and below. (b) The
geometry of a vertically hanging optical fiber subject to sideways
motion.

densities on the lower and upper surfaces. Let us choose a
TE mode (following the notation in Ref. [5]). This means
that the electric field has only a y component different from
zero, E = (0, Ey, 0). In the dielectric boundary layers located
around x = −a and x = a, the transverse force component is
f AM

x = −(ε0/4)E2
y d(n2)/dx, yielding the respective surface

force densities,

σx(−a) = − 1
4ε0E

2
y(−a)(n2 − 1), (2)

σx(a) = − 1
4ε0E

2
y (a)

(
n2

2 − n2
)
. (3)

We have taken into account here that the longitudinal compo-
nent Ey is continuous across the surfaces and that 〈Ẽ2

y〉 = 1
2E2

y ,
where 〈 〉 is averaged over oscillations in time and the z

direction.
The net transverse surface force density is σx = σx(−a) +

σx(a). As �n is small, we can make use of the expression
for E2

y corresponding to a symmetric fiber, thus with the
assumption n2 = 1. Accordingly we get to first order in �n,

σx = − 1
2ε0E

2
y (a) · �n, (4)

where now E2
y (a) refers to the symmetric situation. We see

that for positive �n, the surface force is directed downward in
Fig. 1(a), that is, in the negative x direction. This is as it should
be, as surface forces are always directed toward the optically
thinner region at a dielectric surface.

The presence of σx makes it possible to regard the fiber as
an elastic rod exposed to a constant transverse load. Let us
first, however, relate σx to the total power P in the fiber. For
the TE mode we have, using the same notation as in Ref. [5],

Ey =

⎧⎪⎨
⎪⎩

A cos(κa − φ)e−ξ (x−a), x > a,

A cos(κx − φ), −a � x � a,

A cos(κa + φ)eξ (x+a), x < −a.

(5)

Here κ =
√

(n2ω2/c2) − β2 and ξ =
√

β2 − (ω2/c2), where
β, lying in the interval ω/c � β � nω/c, is the wave-number
component in the z direction. The corresponding nondimen-
sional transverse wave vectors are u = κa and w = ξa.

The electromagnetic boundary conditions, requiring that
dEy/dx be continuous, yield the following equations:

u = 1
2mπ + arctan(w/u) , φ = 1

2mπ, (6)

with m = 0, 1, 2, . . . , while u and w are related via

u2 + w2 = ω2a2

c2
(n2 − 1). (7)

From these two equations β and w can be calculated, and we
can find the relationship between P and the constant A in
Eq. (5) using formula (2.34) of Ref. [5]:

A2 = 2ωμ0P

βab[1 + (1/w)]
. (8)

Recall that P refers to the total power transmitted by the fiber.
In the planar model, we let b denote the fiber width in the y

direction. The cross-sectional area of the model fiber is thus
2ab, and the power per unit length in the y direction is P/b.
Edge effects because of the finite value of b are ignored. The
transverse surface force density can now be expressed as

σx = − P

abnec[1 + (1/w)]

n2 − n2
e

n2 − 1
�n, (9)

where we have defined

ne = βc/ω (10)

and used that the continuity of dEy/dx across the interface at
x = a implies that

cos2(u − φ) = cos2(u + φ) = κ2

ξ 2 + κ2
= n2 − n2

e

n2 − 1
. (11)

For practical purposes it may be convenient to express �n

in Eq. (9) in terms of the corresponding increase in material
density �ρ. We can make use of the Clausius-Mossotti
relation, which is a good approximation, at least for nonpolar
materials. Then we get

�n2 = 1

3ρ
(n2 − 1)(n2 + 2)�ρ. (12)

Consider next the fiber as an elastic rod of rectangular cross
section, clamped at one end (z = 0) and free at the other end
(z = L). For convenience we let the z axis be horizontal.
We choose b = 2a, implying a square cross section of the
fiber. The transverse load per unit length in the longitudinal
direction is σxb acting downward in the negative x direction.
The governing equation for the elastic deflection is (ignoring
gravity) x ′′′′(z) = σxb/(EI ), where E is Young’s modulus and
I = b4/12 is the moment of inertia of the cross-sectional area
about its centroidal axis [7]. The solution of the governing
equation is

x(z) = − σxb

24EI
z2(z2 − 4Lz + 6L2). (13)

The deflection at the tip, termed simply �x, is thus

�x = −σxbL4

8EI
. (14)

We can now calculate the perturbation �n required to produce
a relative deflection �x/L at the tip:

|�n| = 8EI

L3P
neac

(
1 + 1

w

)
n2 − 1

n2 − n2
e

|�x|
L

. (15)

To obtain an order-of-magnitude estimate for the required
difference in n to yield a prescribed value for �x, we insert
numerical values that are appropriate for a low-intensity laser
beam in a fiber (the values are typical and the same as used
in Ref. [6]): λ = 650 nm, P = 6.4 mW, L = 1.5 mm, and
b = 2a = 450 nm.
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FIG. 2. (Color online) A two-layered model.

For the eigenvalues of the transverse wave number β (or,
equivalently, ne), corresponding to the guiding modes of the
planar fiber, we again use the solutions for the symmetrical
situations, as corrections to this enter beyond leading order
only in �n. Following [5], the eigenvalue of index m =
0, 1, 2, . . . , solves

f (b) = v
√

1 − b − arctan

√
b

1 − b
− mπ

2
= 0, (16)

where v = (ωa/c)
√

n2 − 1 and b = (n2
e − 1)/(n2 − 1). With

the current numbers there are only two modes, ne,0 = 1.3635
and ne,1 = 1.1072.

As an example, assume now that we desire a lateral
displacement �x = 15 μm. With the preceding numbers
we find that the required �n is only 5.5 × 10−4 for m = 0
and 1.6 × 10−4 for m = 1. Minor mechanical defects from
production could easily give rise to changes of this magnitude
in the reflective index. While the planar model is likely to
slightly underestimate the required �n compared to a circular
fiber, as an order-of-magnitude estimate it demonstrates the
feasibility of the scheme.

Regard now a slightly more realistic model where the slab
has a layer of slightly higher refractive index on one side.
The geometry is as considered in Fig. 2, where the slab, still
of width 2a and refractive index n, has a refractive index
increased by �n in a layer of thickness �a. Again, we consider
the TE mode, whose solution for the electric field component
Ey is written [in layers (3) to (0) from top to bottom]

Ey = A ×

⎧⎪⎨
⎪⎩

cos(u − �u − φ) cos(�v − ψ)e−ξ (x−a),

cos(u − �u − φ) cos[κ ′(x − a + �a) − ψ],
cos(κx − φ) cos ψ,

cos(u + φ) cos ψ · eξ (x+a),

(17)

where �u = κ�a,�v = κ ′�a, φ, and ψ are unknown
phase angles and κ ′2 = (n + �n)2k2 − β2 ≈ κ2 + 2nk2�n.
The net surface force per unit area is now given by σx =
−(ε0/4)E2

y(x)|x=a
x=−a .

σx = − 1
4ε0A

2[cos2(u − �u − φ) cos2(�v − ψ)

− cos2(u + φ) cos2 ψ]. (18)

To leading order in �n we may again use relation (8) for A,
and cos2(u + φ) is again given by Eq. (11).

From the continuity of dEy/dx at x = a, it follows that
cos2(�v − ψ) = κ ′2/(ξ 2 + κ ′2), that is,

cos2(�v − ψ) ≈ cos2(u + φ)

(
1 − 2n�n

n2 − 1

)
+ 2n�n

n2 − 1
.

Similarly, from the condition of continuity of dEy/dx at x =
a − �a, we derive that, to linear order in �n, we have

cos2(u − �u − φ) ≈ cos2 ψ

(
1 − 2n�n

n2 − n2
e

sin2 ψ

)
.

Thus we find with some calculation that the surface force per
unit area may be written as

σx ≈ 1

2
ε0A

2 n�n

n2 − 1
cos2 ψ

(
n2 − n2

e

n2 − 1
− cos2 ψ

)
. (19)

We can express cos2 ψ by means of the parameter �u by using
the equation of continuity of dEy/dx at x = a, which can
be written ψ = − arctan(ξ/κ) + �v − mπ , m = 0, 1, . . . , to
derive the relation, valid to leading order in �n,

cos2 ψ ≈ n2 − n2
e

n2 − 1

(
cos �u + w

u
sin �u

)2
. (20)

When �n is small we may use the same eigenvalues of ne as
before.

Assuming once again that a displacement of �x = 15 μm
is sought, Fig. 3(a) shows how the required �n changes with
varying values of �a/a. For the m = 0 mode values of �n

are somewhat larger when �a/a is low. This is because σx ∝
�n�a as �a → 0. The required �n remains small, however,
as long as the layer of slightly increased n is nonvanishing.
For �n > 1%, for example, �a/a must be less than ∼0.035
to achieve the observed deflection.

The surface force density σx/�n to leading order is plotted
as a function of �a/a in Fig. 3(b). As in the simplest model in
Fig. 1 the force is directed downward when �a/a is lower than
approximately unity. In the present example it is reasonable
to assume that it is a small number compared to 1. We also
performed the calculation using different laser wavelengths, in
which case the graph in Fig. 3(b) looks qualitatively similar,

FIG. 3. (Color online) (a) Required �n as a function of �a/a

to obtain �x = 15 μm with parameters as given in the text. The
dashed and solid horizontal lines show the corresponding values for
the simple model in Fig. 1. (b) Surface force per unit area divided by
�n as a function of �a/a.
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For the eigenvalues of the transverse wave number β (or,
equivalently, ne), corresponding to the guiding modes of the
planar fiber, we again use the solutions for the symmetrical
situations, as corrections to this enter beyond leading order
only in �n. Following [5], the eigenvalue of index m =
0, 1, 2, . . . , solves

f (b) = v
√

1 − b − arctan

√
b

1 − b
− mπ

2
= 0, (16)

where v = (ωa/c)
√

n2 − 1 and b = (n2
e − 1)/(n2 − 1). With

the current numbers there are only two modes, ne,0 = 1.3635
and ne,1 = 1.1072.

As an example, assume now that we desire a lateral
displacement �x = 15 μm. With the preceding numbers
we find that the required �n is only 5.5 × 10−4 for m = 0
and 1.6 × 10−4 for m = 1. Minor mechanical defects from
production could easily give rise to changes of this magnitude
in the reflective index. While the planar model is likely to
slightly underestimate the required �n compared to a circular
fiber, as an order-of-magnitude estimate it demonstrates the
feasibility of the scheme.

Regard now a slightly more realistic model where the slab
has a layer of slightly higher refractive index on one side.
The geometry is as considered in Fig. 2, where the slab, still
of width 2a and refractive index n, has a refractive index
increased by �n in a layer of thickness �a. Again, we consider
the TE mode, whose solution for the electric field component
Ey is written [in layers (3) to (0) from top to bottom]

Ey = A ×

⎧⎪⎨
⎪⎩

cos(u − �u − φ) cos(�v − ψ)e−ξ (x−a),

cos(u − �u − φ) cos[κ ′(x − a + �a) − ψ],
cos(κx − φ) cos ψ,

cos(u + φ) cos ψ · eξ (x+a),

(17)

where �u = κ�a,�v = κ ′�a, φ, and ψ are unknown
phase angles and κ ′2 = (n + �n)2k2 − β2 ≈ κ2 + 2nk2�n.
The net surface force per unit area is now given by σx =
−(ε0/4)E2

y(x)|x=a
x=−a .

σx = − 1
4ε0A

2[cos2(u − �u − φ) cos2(�v − ψ)

− cos2(u + φ) cos2 ψ]. (18)

To leading order in �n we may again use relation (8) for A,
and cos2(u + φ) is again given by Eq. (11).

From the continuity of dEy/dx at x = a, it follows that
cos2(�v − ψ) = κ ′2/(ξ 2 + κ ′2), that is,

cos2(�v − ψ) ≈ cos2(u + φ)

(
1 − 2n�n

n2 − 1

)
+ 2n�n

n2 − 1
.

Similarly, from the condition of continuity of dEy/dx at x =
a − �a, we derive that, to linear order in �n, we have

cos2(u − �u − φ) ≈ cos2 ψ

(
1 − 2n�n

n2 − n2
e

sin2 ψ

)
.

Thus we find with some calculation that the surface force per
unit area may be written as

σx ≈ 1

2
ε0A

2 n�n

n2 − 1
cos2 ψ

(
n2 − n2

e

n2 − 1
− cos2 ψ

)
. (19)

We can express cos2 ψ by means of the parameter �u by using
the equation of continuity of dEy/dx at x = a, which can
be written ψ = − arctan(ξ/κ) + �v − mπ , m = 0, 1, . . . , to
derive the relation, valid to leading order in �n,

cos2 ψ ≈ n2 − n2
e

n2 − 1

(
cos �u + w

u
sin �u

)2
. (20)

When �n is small we may use the same eigenvalues of ne as
before.

Assuming once again that a displacement of �x = 15 μm
is sought, Fig. 3(a) shows how the required �n changes with
varying values of �a/a. For the m = 0 mode values of �n

are somewhat larger when �a/a is low. This is because σx ∝
�n�a as �a → 0. The required �n remains small, however,
as long as the layer of slightly increased n is nonvanishing.
For �n > 1%, for example, �a/a must be less than ∼0.035
to achieve the observed deflection.

The surface force density σx/�n to leading order is plotted
as a function of �a/a in Fig. 3(b). As in the simplest model in
Fig. 1 the force is directed downward when �a/a is lower than
approximately unity. In the present example it is reasonable
to assume that it is a small number compared to 1. We also
performed the calculation using different laser wavelengths, in
which case the graph in Fig. 3(b) looks qualitatively similar,

FIG. 3. (Color online) (a) Required �n as a function of �a/a

to obtain �x = 15 μm with parameters as given in the text. The
dashed and solid horizontal lines show the corresponding values for
the simple model in Fig. 1. (b) Surface force per unit area divided by
�n as a function of �a/a.
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For the eigenvalues of the transverse wave number β (or,
equivalently, ne), corresponding to the guiding modes of the
planar fiber, we again use the solutions for the symmetrical
situations, as corrections to this enter beyond leading order
only in �n. Following [5], the eigenvalue of index m =
0, 1, 2, . . . , solves

f (b) = v
√

1 − b − arctan

√
b

1 − b
− mπ

2
= 0, (16)

where v = (ωa/c)
√

n2 − 1 and b = (n2
e − 1)/(n2 − 1). With

the current numbers there are only two modes, ne,0 = 1.3635
and ne,1 = 1.1072.

As an example, assume now that we desire a lateral
displacement �x = 15 μm. With the preceding numbers
we find that the required �n is only 5.5 × 10−4 for m = 0
and 1.6 × 10−4 for m = 1. Minor mechanical defects from
production could easily give rise to changes of this magnitude
in the reflective index. While the planar model is likely to
slightly underestimate the required �n compared to a circular
fiber, as an order-of-magnitude estimate it demonstrates the
feasibility of the scheme.

Regard now a slightly more realistic model where the slab
has a layer of slightly higher refractive index on one side.
The geometry is as considered in Fig. 2, where the slab, still
of width 2a and refractive index n, has a refractive index
increased by �n in a layer of thickness �a. Again, we consider
the TE mode, whose solution for the electric field component
Ey is written [in layers (3) to (0) from top to bottom]

Ey = A ×

⎧⎪⎨
⎪⎩

cos(u − �u − φ) cos(�v − ψ)e−ξ (x−a),

cos(u − �u − φ) cos[κ ′(x − a + �a) − ψ],
cos(κx − φ) cos ψ,

cos(u + φ) cos ψ · eξ (x+a),

(17)

where �u = κ�a,�v = κ ′�a, φ, and ψ are unknown
phase angles and κ ′2 = (n + �n)2k2 − β2 ≈ κ2 + 2nk2�n.
The net surface force per unit area is now given by σx =
−(ε0/4)E2

y(x)|x=a
x=−a .

σx = − 1
4ε0A

2[cos2(u − �u − φ) cos2(�v − ψ)

− cos2(u + φ) cos2 ψ]. (18)

To leading order in �n we may again use relation (8) for A,
and cos2(u + φ) is again given by Eq. (11).

From the continuity of dEy/dx at x = a, it follows that
cos2(�v − ψ) = κ ′2/(ξ 2 + κ ′2), that is,

cos2(�v − ψ) ≈ cos2(u + φ)

(
1 − 2n�n

n2 − 1

)
+ 2n�n

n2 − 1
.

Similarly, from the condition of continuity of dEy/dx at x =
a − �a, we derive that, to linear order in �n, we have

cos2(u − �u − φ) ≈ cos2 ψ

(
1 − 2n�n

n2 − n2
e

sin2 ψ

)
.

Thus we find with some calculation that the surface force per
unit area may be written as

σx ≈ 1

2
ε0A

2 n�n

n2 − 1
cos2 ψ

(
n2 − n2

e

n2 − 1
− cos2 ψ

)
. (19)

We can express cos2 ψ by means of the parameter �u by using
the equation of continuity of dEy/dx at x = a, which can
be written ψ = − arctan(ξ/κ) + �v − mπ , m = 0, 1, . . . , to
derive the relation, valid to leading order in �n,

cos2 ψ ≈ n2 − n2
e

n2 − 1

(
cos �u + w

u
sin �u

)2
. (20)

When �n is small we may use the same eigenvalues of ne as
before.

Assuming once again that a displacement of �x = 15 μm
is sought, Fig. 3(a) shows how the required �n changes with
varying values of �a/a. For the m = 0 mode values of �n

are somewhat larger when �a/a is low. This is because σx ∝
�n�a as �a → 0. The required �n remains small, however,
as long as the layer of slightly increased n is nonvanishing.
For �n > 1%, for example, �a/a must be less than ∼0.035
to achieve the observed deflection.

The surface force density σx/�n to leading order is plotted
as a function of �a/a in Fig. 3(b). As in the simplest model in
Fig. 1 the force is directed downward when �a/a is lower than
approximately unity. In the present example it is reasonable
to assume that it is a small number compared to 1. We also
performed the calculation using different laser wavelengths, in
which case the graph in Fig. 3(b) looks qualitatively similar,

FIG. 3. (Color online) (a) Required �n as a function of �a/a

to obtain �x = 15 μm with parameters as given in the text. The
dashed and solid horizontal lines show the corresponding values for
the simple model in Fig. 1. (b) Surface force per unit area divided by
�n as a function of �a/a.
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For the eigenvalues of the transverse wave number β (or,
equivalently, ne), corresponding to the guiding modes of the
planar fiber, we again use the solutions for the symmetrical
situations, as corrections to this enter beyond leading order
only in �n. Following [5], the eigenvalue of index m =
0, 1, 2, . . . , solves

f (b) = v
√

1 − b − arctan

√
b

1 − b
− mπ

2
= 0, (16)

where v = (ωa/c)
√

n2 − 1 and b = (n2
e − 1)/(n2 − 1). With

the current numbers there are only two modes, ne,0 = 1.3635
and ne,1 = 1.1072.

As an example, assume now that we desire a lateral
displacement �x = 15 μm. With the preceding numbers
we find that the required �n is only 5.5 × 10−4 for m = 0
and 1.6 × 10−4 for m = 1. Minor mechanical defects from
production could easily give rise to changes of this magnitude
in the reflective index. While the planar model is likely to
slightly underestimate the required �n compared to a circular
fiber, as an order-of-magnitude estimate it demonstrates the
feasibility of the scheme.

Regard now a slightly more realistic model where the slab
has a layer of slightly higher refractive index on one side.
The geometry is as considered in Fig. 2, where the slab, still
of width 2a and refractive index n, has a refractive index
increased by �n in a layer of thickness �a. Again, we consider
the TE mode, whose solution for the electric field component
Ey is written [in layers (3) to (0) from top to bottom]

Ey = A ×

⎧⎪⎨
⎪⎩

cos(u − �u − φ) cos(�v − ψ)e−ξ (x−a),

cos(u − �u − φ) cos[κ ′(x − a + �a) − ψ],
cos(κx − φ) cos ψ,

cos(u + φ) cos ψ · eξ (x+a),

(17)

where �u = κ�a,�v = κ ′�a, φ, and ψ are unknown
phase angles and κ ′2 = (n + �n)2k2 − β2 ≈ κ2 + 2nk2�n.
The net surface force per unit area is now given by σx =
−(ε0/4)E2

y(x)|x=a
x=−a .

σx = − 1
4ε0A

2[cos2(u − �u − φ) cos2(�v − ψ)

− cos2(u + φ) cos2 ψ]. (18)

To leading order in �n we may again use relation (8) for A,
and cos2(u + φ) is again given by Eq. (11).

From the continuity of dEy/dx at x = a, it follows that
cos2(�v − ψ) = κ ′2/(ξ 2 + κ ′2), that is,

cos2(�v − ψ) ≈ cos2(u + φ)

(
1 − 2n�n

n2 − 1

)
+ 2n�n

n2 − 1
.

Similarly, from the condition of continuity of dEy/dx at x =
a − �a, we derive that, to linear order in �n, we have

cos2(u − �u − φ) ≈ cos2 ψ

(
1 − 2n�n

n2 − n2
e

sin2 ψ

)
.

Thus we find with some calculation that the surface force per
unit area may be written as

σx ≈ 1

2
ε0A

2 n�n

n2 − 1
cos2 ψ

(
n2 − n2

e

n2 − 1
− cos2 ψ

)
. (19)

We can express cos2 ψ by means of the parameter �u by using
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FIG. 3. (Color online) (a) Required �n as a function of �a/a
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�n as a function of �a/a.
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but the abscissa is rescaled. Because the point where the force
density changes sign [about �a/a = 0.75 in Fig. 3(b)] then
moves along the abscissa, it is possible to change the sign of
the force by changing the optical frequency, provided �a/a is
chosen carefully.

The recent experiment by She et al. [6] appears to be a
natural example of application of the present theory. This
experiment tested precisely the sideways motion of a vertical
fiber when transmitted by a laser beam. Whereas the authors
actually related their observations to the Abraham-Minkowski
problem mentioned previously, we do not think that such a
conclusion is right, and one of us has discussed this issue in
more detail elsewhere [8]. In the experiment [6] one side of the
fiber was slightly harder than the other from fabrication [9],
and it is natural to suggest that this could have given rise to an
appreciable �n.

Noting how even a very small �n can cause deflections of
the magnitude observed, and how the surface force depends
on the geometry of the hardened layer in a nontrivial way,
it is much more likely, in our opinion, that all the observed
transverse deviations reported in [6] were due to the force

fAM. As such the experiment is a striking demonstration of the
theory presented here. For ease of comparison, our preceding
numerical examples use data taken from the experiment [6],
including a deflection of the order of 15 μm. A change in
the refractive index on one side of the fiber of the order of
<1% is shown to be sufficient to produce deflections of such
magnitude.

In conclusion, even a minute change in the refractive index,
∼10−3, in a layer on one side of an optical fiber of centimeter
length and micron-scale cross section is sufficient to produce
an appreciable transverse deflection of the fiber. A tailored fiber
of this kind, where �n is prescribed accurately, should provide
the possibility of bending fibers in a controlled and predictable
way. Because the lateral force acting on the fiber depends on
the laser frequency in a nontrivial way, it would, moreover,
be possible to design a fiber which bends one way at one
frequency and changes direction of movement when a different
frequency is used. The force can be used to carry a small load,
and one can envisage uses within micro- and nanorobotics.
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Critical experimental tests of the time-dependent Abraham force in phenomenological electrodynamics are
scarce. In this paper, we analyze the possibility of making use of intensity-modulated whispering gallery modes
in a microresonator for this purpose. Systems of this kind appear attractive, as the strong concentration of
electromagnetic fields near the rim of the resonator serves to enhance the Abraham torque exerted by the field.
We analyze mainly spherical resonators, although as an introductory step we consider also the cylinder geometry.
The orders of magnitude of the Abraham torques are estimated by inserting reasonable and common values for
the various input parameters. As expected, the predicted torques turn out to be very small, although probably not
beyond reach experimentally. Our main idea is essentially a generalization of the method used by G. B. Walker
et al. [Can. J. Phys. 53, 2577 (1975)] for low-frequency fields, to the optical case.
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I. INTRODUCTION

The 100-year-old Abraham-Minkowski energy-momentum
problem in phenomenological electrodynamics [1,2] has re-
cently attracted considerable interest. Assume henceforth for
simplicity that the medium is nonmagnetic and nondispersive,
with refractive index n. In our opinion—as expressed in the
review article some years ago by one of the present authors
[3]—the most physical expression for the electromagnetic
force density is the Abraham expression (International System
(SI) of units assumed)

fA = fAM + n2 − 1

c2

∂

∂t
(E × H). (1.1)

Here the first term fAM = −(ε0/2)E2∇n2 is different from
zero in regions where n varies with position, especially in
the surface regions of dielectrics. This term is common for
the Abraham and Minkowski tensors, and may appropriately
be called the Abraham-Minkowski term. The second, time-
dependent term in Eq. (1.1) is the Abraham term. It may be
noted that the expression (1.1) is in agreement with Ginzburg
[4], as well as with Landau and Lifshitz [5].

One may ask the question: Is it possible to detect the
Abraham term in an experiment? The answer is yes, but the
task has proven to be surprisingly difficult. The magnitude
of the electromagnetic frequency is a significant factor in
this context. Let us give a brief account of three important
experimental cases:

(1) The first case is the quasistationary torque experiment
of Walker et al. [6,7]. Strong, time-varying, orthogonal electric
and magnetic fields were applied across a dielectric shell of
high permittivity, making it possible to detect the oscillations
themselves. In this way the Abraham term was measured
quantitatively.

(2) When considering instead high-frequency fields such as
in optics, the Abraham term fluctuates out when averaged over
a period. One can thus no longer detect this force directly. The
physical effect of this force is, however, to produce an accom-
panying mechanical momentum propagating together with the

*iver.h.brevik@ntnu.no

Abraham momentum. The resulting total momentum is the
Minkowski momentum, corresponding to the divergence-
free Minkowski energy-momentum tensor. This tensor has
the particular property of being spacelike, corresponding to
the possibility of getting negative field energy in certain inertial
frames. An authoritative experiment measuring the Minkowski
momentum is that of Jones et al. [8,9], measuring the radiation
pressure on a mirror immersed in a dielectric liquid. Both cases
(1) and (2) are discussed in some detail in Ref. [3].

(3) The third example to be mentioned is the photon recoil
experiment of Campbell et al. [10], where the photon momen-
tum in a medium (in this case a Bose-Einstein condensate) was
found to be equal to the Minkowski value h̄k.

Most other experiments are measuring not the Abraham
term but rather the surface force fAM, although claims are
sometimes made to the contrary. In our opinion this is the case
also for the interesting new fiber optical experiment of She
et al. [11]; see the remarks in Refs. [12,13].

Our main purpose in the present paper is, however, not
to interpret already existing experiments, but instead to
propose the idea of using whispering gallery modes as a
convenient experimental tool to detect the Abraham term in
optics. Whispering gallery modes are commonly produced in
microspheres; they have a large circulating power, about 100 W
typically, and the field energy is concentrated along the rim
of the sphere. That means, if such a sphere is suspended in
the gravitational field and fed with an appropriate intensity
modulated field, the sphere becomes exposed to a vertical
torque according to Eq. (1.1). With the field energy essentially
concentrated along the rim, the arm in the torque calculation is
essentially the same as the radius, thus maximizing the torque.
In effect, this is the idea of the experiment of Walker et al. [6,7],
generalized to optical frequencies. We have actually suggested
this idea qualitatively before, in Refs. [12,13].

The next two sections give quantitative estimates for
performing such an experiment. The torque turns out to
be small, as expected, but not beyond any possibility for
experimental detection. Spherical geometry, as mentioned,
is most typical for the whispering gallery setup. In the next
section, however, we consider as an introductory step the
somewhat more simple geometry of a cylindrical shell.
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tum in a medium (in this case a Bose-Einstein condensate) was
found to be equal to the Minkowski value h̄k.

Most other experiments are measuring not the Abraham
term but rather the surface force fAM, although claims are
sometimes made to the contrary. In our opinion this is the case
also for the interesting new fiber optical experiment of She
et al. [11]; see the remarks in Refs. [12,13].

Our main purpose in the present paper is, however, not
to interpret already existing experiments, but instead to
propose the idea of using whispering gallery modes as a
convenient experimental tool to detect the Abraham term in
optics. Whispering gallery modes are commonly produced in
microspheres; they have a large circulating power, about 100 W
typically, and the field energy is concentrated along the rim
of the sphere. That means, if such a sphere is suspended in
the gravitational field and fed with an appropriate intensity
modulated field, the sphere becomes exposed to a vertical
torque according to Eq. (1.1). With the field energy essentially
concentrated along the rim, the arm in the torque calculation is
essentially the same as the radius, thus maximizing the torque.
In effect, this is the idea of the experiment of Walker et al. [6,7],
generalized to optical frequencies. We have actually suggested
this idea qualitatively before, in Refs. [12,13].

The next two sections give quantitative estimates for
performing such an experiment. The torque turns out to
be small, as expected, but not beyond any possibility for
experimental detection. Spherical geometry, as mentioned,
is most typical for the whispering gallery setup. In the next
section, however, we consider as an introductory step the
somewhat more simple geometry of a cylindrical shell.
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c2

∂

∂t
(E × H). (1.1)
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*iver.h.brevik@ntnu.no

Abraham momentum. The resulting total momentum is the
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tum in a medium (in this case a Bose-Einstein condensate) was
found to be equal to the Minkowski value h̄k.

Most other experiments are measuring not the Abraham
term but rather the surface force fAM, although claims are
sometimes made to the contrary. In our opinion this is the case
also for the interesting new fiber optical experiment of She
et al. [11]; see the remarks in Refs. [12,13].

Our main purpose in the present paper is, however, not
to interpret already existing experiments, but instead to
propose the idea of using whispering gallery modes as a
convenient experimental tool to detect the Abraham term in
optics. Whispering gallery modes are commonly produced in
microspheres; they have a large circulating power, about 100 W
typically, and the field energy is concentrated along the rim
of the sphere. That means, if such a sphere is suspended in
the gravitational field and fed with an appropriate intensity
modulated field, the sphere becomes exposed to a vertical
torque according to Eq. (1.1). With the field energy essentially
concentrated along the rim, the arm in the torque calculation is
essentially the same as the radius, thus maximizing the torque.
In effect, this is the idea of the experiment of Walker et al. [6,7],
generalized to optical frequencies. We have actually suggested
this idea qualitatively before, in Refs. [12,13].

The next two sections give quantitative estimates for
performing such an experiment. The torque turns out to
be small, as expected, but not beyond any possibility for
experimental detection. Spherical geometry, as mentioned,
is most typical for the whispering gallery setup. In the next
section, however, we consider as an introductory step the
somewhat more simple geometry of a cylindrical shell.
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Before closing this section, let us give a few more references
to the Abraham-Minkowski problem, in addition to the
references given above. A nice introduction can be found in
Møller’s book [14]. A review, up to 2007, is given by Pfeifer
et al. [15]. Some more recent papers are Refs. [16–18].

II. CYLINDRICAL GEOMETRY

Consider first as the simplest case a compact cylinder of
length L and radius a. On the inside, r < a, the permittivity
is ε and the permeability μ. On the outside, r > a, a vacuum
is assumed. The dispersion relation for stationary modes is
known to be [19][

μ

u

J ′
m(u)

Jm(u)
− 1

v

H (1)
m

′
(v)

H
(1)
m (v)

][
ε ω2

u

J ′
m(u)

Jm(u)
− ω2

v

H (1)
m

′
(v)

H
(1)
m (v)

]

= m2k2

(
1

v2
− 1

u2

)2

. (2.1)

We are working with SI units and let ε and μ be dimensional,
so that D = εE, B = μH. The transverse wave vectors on the
inside and the outside are

λ1 = nω/c, λ2 = ω/c, (2.2)

respectively, while their nondimensional counterparts are

u = λ1a, v = λ2a. (2.3)

An important property of this equation is that when the axial
wave vector k = 0—as is of interest here since we consider
azimuthal modes only—the right-hand side vanishes and the
problem becomes separable into TE and TM modes.

We write the mode expansions for the fields in the inner
region [19] as

Er = −μω

λ2
1r

∞∑
m=−∞

mJm(λ1r) bmFm, (2.4a)

Eθ = − iμω

λ1

∞∑
m=−∞

J ′
m(λ1r) bmFm, (2.4b)

Ez =
∞∑

m=−∞
Jm(λ1r) amFm, (2.4c)

and

Hr = εω

λ2
1r

∞∑
m=−∞

mJm(λ1r) amFm, (2.5a)

Hθ = iεω

λ1

∞∑
m=−∞

J ′
m(λ1r) amFm, (2.5b)

Hz =
∞∑

m=−∞
Jm(λ1r) bmFm, (2.5c)

where

Fm = eimθ−iωt . (2.6)

The coefficients am and bm, corresponding to the transverse
magnetic (TM) and the transverse electric (TE) modes, give
the weight of each mode.

In our considerations below, we will for simplicity extract
one single TE mode of high order m, such that there is an
azimuthally moving momentum concentrated in the vicinity
of the boundary r = a. (In reality, the incident power may be
distributed over a band of neighboring m modes, but this does
not influence the essence of our argument.) We first need to
determine the magnitude of the radial argument λ1r ≈ u. Let
us take

m = 100, n = 1.5, a = 100 μm. (2.7)

It is known that for a large value of the order m the first
maximum of the function Jm(x) occurs when x is very close to
m. This maximum is the one of interest here. Thus the lowest
resonance frequency ω is determined by the equation

naω/c = m. (2.8)

With the numbers given above,

ω = 2 × 1016 s−1. (2.9)

In this manner, we manage to make the beam strongly
concentrated near the rim, as desired. One has in this case
Ez = 0, Hr = 0, while the nonvanishing field components of
interest are

Er = − μω

λ2
1 r

mJm(λ1r) bmFm, (2.10)

Hz = Jm(λ1r)bmFm. (2.11)

The azimuthal component of the Poynting vector S(r) in the
interior is

Sθ (r) = −1

2
Re[ErH

∗
z ] = μωm

2λ2
1r

J 2
m(λ1r)|bm|2, (2.12)

corresponding to the azimuthal power

P = L

∫ a

0
Sθ dr = μωmL

2λ2
1

|bm|2
∫ u

0

dx

x
J 2

m(x). (2.13)

In our case the factor 1/x can be extracted outside the integral,
so that

P = μωmL

2λ2
1u

|bm|2
∫ u

0
dxJ 2

m(x). (2.14)

Assume now that the beam is intensity modulated with a
frequency ω0 (ω0 is low compared with optical frequencies),

P = P0 cos ω0t, Sθ = S0 cos ω0t. (2.15)

Then the azimuthal Abraham force density f A
φ is

f A
φ = n2 − 1

c2

∂Sθ

∂t
= −n2 − 1

c2
ω0S0 sin ω0t, (2.16)

giving rise to the following Abraham torque NA
z around the

vertical symmetry axis:

NA
z = 2πL

∫ a

0
r2f A

φ dr ≈ 2πLa2
∫ a

0
f A

φ dr. (2.17)

Defining the quantity K as

K = −n2 − 1

c2
2πa2P0, (2.18)
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∫ u

0
dxJ 2

m(x). (2.14)

Assume now that the beam is intensity modulated with a
frequency ω0 (ω0 is low compared with optical frequencies),

P = P0 cos ω0t, Sθ = S0 cos ω0t. (2.15)

Then the azimuthal Abraham force density f A
φ is

f A
φ = n2 − 1

c2

∂Sθ

∂t
= −n2 − 1

c2
ω0S0 sin ω0t, (2.16)

giving rise to the following Abraham torque NA
z around the

vertical symmetry axis:

NA
z = 2πL

∫ a

0
r2f A

φ dr ≈ 2πLa2
∫ a

0
f A

φ dr. (2.17)

Defining the quantity K as

K = −n2 − 1

c2
2πa2P0, (2.18)
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we thus see that the torque can be written as

NA
z = Kω0 sin ω0t. (2.19)

As expected, the torque becomes very small. As order of
magnitude we get

K ∼ 2πa2

c2
P0 ∼ (0.7 × 10−24 s2)P0, (2.20)

and the Abraham torque is estimated as

NA
z ∼ (0.7 × 10−24 s2)ω0P0. (2.21)

Insert first the very low value of ω0 ∼ 1 s−1, and take P0 ∼
100 W. We get Nz ∼ 0.7 × 10−22 N m, which is much less than
the value 10−16 N m obtained in the classic Beth experiment
[20], for example, in which the angular momentum of light was
measured. It is, however, possible to improve the situation by
exploiting the fact that the buildup and ringdown times for this
kind of resonator are known to be very small, in the order of
tens to hundreds of ns (see discussion below). It is thus realistic
to insert a much higher value for ω0. Inserting tentatively ω0 =
1000 s−1, we get Nz ∼ 0.7 × 10−19 N m, which is perhaps not
so unrealistic after all.

It is physically instructive to look at the system in another
way, by considering the angular deflection φ of the cylinder
instead of the magnitude of the torque. Let the cylinder be
hanging vertically in the gravitational field, suspended by a thin
wire of known torsion constant κ . Denoting the eigenfrequency
of the cylinder in the absence of any torque by �, and denoting
the damping coefficient by γ , we have as the equation of
motion

φ̈ + γ φ̇ + �2φ = K

I
ω0 sin ω0t. (2.22)

Here I = 1
2Ma2 is the moment of inertia about the z axis, M =

ρa2L being the cylinder mass with ρ the material density. In
our notation, κ = I�2. With a = 100 μm as above we obtain,
when choosing L = 1 mm and assuming ρ ∼ 103 kg/m3,

� =
√

κ/I ∼ 108√κ. (2.23)

For the magnitude of κ we may choose a typical value
characteristic of torsion experiments testing the equivalence
principle, κ ∼ 10−9 N m/rad [21,22]. Then,

� ∼ 103 rad s−1. (2.24)

The magnitude of � is large because a is assumed small.
The largest oscillations occur at resonance, when ω0 is

chosen equal to �. Then,

φ = − K

Iγ
cos �t. (2.25)

The maximum value, when P0 ∼ 100 W, is

φmax = n2 − 1

c2

4

M

P0

γ
∼ 10−7

γ
rad s−1. (2.26)

It would be of interest to make an estimate of the damping
constant γ here, but we postpone that until the next section.

Notice that the very existence of a oscillatory movement
would be enough to make the experiment critical with respect
to the Abraham force. The Minkowski tensor does not predict
an azimuthal movement at all.

III. SPHERICAL GEOMETRY

As mentioned above, whispering gallery modes are usually
associated with microspheres. Let the radius of the sphere be
denoted by a. As above, we look for the eigenmodes, and we
will for simplicity focus on the TE modes only. (The meaning
of the symbol TE is here that the electric field is transverse to
the radius vector r.) We introduce quantities α and r̃ defined
by

α = ωa/c, r̃ = r/a. (3.1)

Thus α is the magnitude of the nondimensional wave vector in
the exterior region (vacuum), whereas r̃ = 1 at the boundary.
Making use of the Riccati-Bessel function

ψl(x) = xjl(x), (3.2)

the basic TE modes in the interior can conveniently be written
as

Er = 0, (3.3a)

Eθ = − imAlm

nαr̃

P m
l (cos θ )

sin θ
ψl(nαr̃) Fm, (3.3b)

Eφ = Alm

nαr̃

dP m
l (cos θ )

dθ
ψl(nαr̃) Fm, (3.3c)

and

Hr = − l(l + 1)

iωμ

Alm

nαr̃2

1

a
P m

l (cos θ )ψl(nαr̃) Fm, (3.4a)

Hθ = − 1

iωμ

Alm

r̃

1

a

dP m
l (cos θ )

dθ
ψ ′

l (nαr̃)Fm, (3.4b)

Hφ = − m

ωμ sin θ

Alm

r̃

1

a
P m

l (cos θ ) ψ ′
l (nαr̃)Fm, (3.4c)

where Alm are constants, and

Fm = eimφ−iωt . (3.5)

The mode expansions above essentially follow Stratton [19].
The components of Poynting’s vector are, when averaged

over an optical period,

Sr = 1
2 Re[EθH

∗
φ − EφH ∗

θ ], (3.6a)

Sθ = 1
2 Re[EφH ∗

r ], (3.6b)

Sφ = − 1
2 Re[EθH

∗
r ]. (3.6c)

Assume that the sphere is fed by an incident flux from the
outside such that only the component Sφ of S in the interior is
different from zero. With an intensity modulated energy flux
such as above, Sφ = S0 cos ω0t , we thus get for the azimuthally
directed Abraham force density in the interior

f A
φ = −n2 − 1

c2
ω0S0 sin ω0t. (3.7)

From the above expressions,

S0 = m

2(nα)2 r̃3

l(l + 1)

ωμ

|Alm|2
a

[
P m

l (cos θ )
]2

sin θ
ψ2

l . (3.8)
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we thus see that the torque can be written as

NA
z = Kω0 sin ω0t. (2.19)

As expected, the torque becomes very small. As order of
magnitude we get

K ∼ 2πa2

c2
P0 ∼ (0.7 × 10−24 s2)P0, (2.20)

and the Abraham torque is estimated as

NA
z ∼ (0.7 × 10−24 s2)ω0P0. (2.21)

Insert first the very low value of ω0 ∼ 1 s−1, and take P0 ∼
100 W. We get Nz ∼ 0.7 × 10−22 N m, which is much less than
the value 10−16 N m obtained in the classic Beth experiment
[20], for example, in which the angular momentum of light was
measured. It is, however, possible to improve the situation by
exploiting the fact that the buildup and ringdown times for this
kind of resonator are known to be very small, in the order of
tens to hundreds of ns (see discussion below). It is thus realistic
to insert a much higher value for ω0. Inserting tentatively ω0 =
1000 s−1, we get Nz ∼ 0.7 × 10−19 N m, which is perhaps not
so unrealistic after all.

It is physically instructive to look at the system in another
way, by considering the angular deflection φ of the cylinder
instead of the magnitude of the torque. Let the cylinder be
hanging vertically in the gravitational field, suspended by a thin
wire of known torsion constant κ . Denoting the eigenfrequency
of the cylinder in the absence of any torque by �, and denoting
the damping coefficient by γ , we have as the equation of
motion

φ̈ + γ φ̇ + �2φ = K

I
ω0 sin ω0t. (2.22)

Here I = 1
2Ma2 is the moment of inertia about the z axis, M =

ρa2L being the cylinder mass with ρ the material density. In
our notation, κ = I�2. With a = 100 μm as above we obtain,
when choosing L = 1 mm and assuming ρ ∼ 103 kg/m3,

� =
√

κ/I ∼ 108√κ. (2.23)

For the magnitude of κ we may choose a typical value
characteristic of torsion experiments testing the equivalence
principle, κ ∼ 10−9 N m/rad [21,22]. Then,

� ∼ 103 rad s−1. (2.24)

The magnitude of � is large because a is assumed small.
The largest oscillations occur at resonance, when ω0 is

chosen equal to �. Then,

φ = − K

Iγ
cos �t. (2.25)

The maximum value, when P0 ∼ 100 W, is

φmax = n2 − 1

c2

4

M

P0

γ
∼ 10−7

γ
rad s−1. (2.26)

It would be of interest to make an estimate of the damping
constant γ here, but we postpone that until the next section.

Notice that the very existence of a oscillatory movement
would be enough to make the experiment critical with respect
to the Abraham force. The Minkowski tensor does not predict
an azimuthal movement at all.

III. SPHERICAL GEOMETRY

As mentioned above, whispering gallery modes are usually
associated with microspheres. Let the radius of the sphere be
denoted by a. As above, we look for the eigenmodes, and we
will for simplicity focus on the TE modes only. (The meaning
of the symbol TE is here that the electric field is transverse to
the radius vector r.) We introduce quantities α and r̃ defined
by

α = ωa/c, r̃ = r/a. (3.1)

Thus α is the magnitude of the nondimensional wave vector in
the exterior region (vacuum), whereas r̃ = 1 at the boundary.
Making use of the Riccati-Bessel function

ψl(x) = xjl(x), (3.2)

the basic TE modes in the interior can conveniently be written
as

Er = 0, (3.3a)

Eθ = − imAlm

nαr̃

P m
l (cos θ )

sin θ
ψl(nαr̃) Fm, (3.3b)

Eφ = Alm

nαr̃

dP m
l (cos θ )

dθ
ψl(nαr̃) Fm, (3.3c)

and

Hr = − l(l + 1)

iωμ

Alm

nαr̃2

1

a
P m

l (cos θ )ψl(nαr̃) Fm, (3.4a)

Hθ = − 1

iωμ

Alm

r̃

1

a

dP m
l (cos θ )

dθ
ψ ′

l (nαr̃)Fm, (3.4b)

Hφ = − m

ωμ sin θ

Alm

r̃

1

a
P m

l (cos θ ) ψ ′
l (nαr̃)Fm, (3.4c)

where Alm are constants, and

Fm = eimφ−iωt . (3.5)

The mode expansions above essentially follow Stratton [19].
The components of Poynting’s vector are, when averaged

over an optical period,

Sr = 1
2 Re[EθH

∗
φ − EφH ∗

θ ], (3.6a)

Sθ = 1
2 Re[EφH ∗

r ], (3.6b)

Sφ = − 1
2 Re[EθH

∗
r ]. (3.6c)

Assume that the sphere is fed by an incident flux from the
outside such that only the component Sφ of S in the interior is
different from zero. With an intensity modulated energy flux
such as above, Sφ = S0 cos ω0t , we thus get for the azimuthally
directed Abraham force density in the interior

f A
φ = −n2 − 1

c2
ω0S0 sin ω0t. (3.7)

From the above expressions,

S0 = m

2(nα)2 r̃3

l(l + 1)

ωμ

|Alm|2
a

[
P m

l (cos θ )
]2

sin θ
ψ2

l . (3.8)
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we thus see that the torque can be written as

NA
z = Kω0 sin ω0t. (2.19)

As expected, the torque becomes very small. As order of
magnitude we get

K ∼ 2πa2

c2
P0 ∼ (0.7 × 10−24 s2)P0, (2.20)

and the Abraham torque is estimated as

NA
z ∼ (0.7 × 10−24 s2)ω0P0. (2.21)

Insert first the very low value of ω0 ∼ 1 s−1, and take P0 ∼
100 W. We get Nz ∼ 0.7 × 10−22 N m, which is much less than
the value 10−16 N m obtained in the classic Beth experiment
[20], for example, in which the angular momentum of light was
measured. It is, however, possible to improve the situation by
exploiting the fact that the buildup and ringdown times for this
kind of resonator are known to be very small, in the order of
tens to hundreds of ns (see discussion below). It is thus realistic
to insert a much higher value for ω0. Inserting tentatively ω0 =
1000 s−1, we get Nz ∼ 0.7 × 10−19 N m, which is perhaps not
so unrealistic after all.

It is physically instructive to look at the system in another
way, by considering the angular deflection φ of the cylinder
instead of the magnitude of the torque. Let the cylinder be
hanging vertically in the gravitational field, suspended by a thin
wire of known torsion constant κ . Denoting the eigenfrequency
of the cylinder in the absence of any torque by �, and denoting
the damping coefficient by γ , we have as the equation of
motion

φ̈ + γ φ̇ + �2φ = K

I
ω0 sin ω0t. (2.22)

Here I = 1
2Ma2 is the moment of inertia about the z axis, M =

ρa2L being the cylinder mass with ρ the material density. In
our notation, κ = I�2. With a = 100 μm as above we obtain,
when choosing L = 1 mm and assuming ρ ∼ 103 kg/m3,

� =
√

κ/I ∼ 108√κ. (2.23)

For the magnitude of κ we may choose a typical value
characteristic of torsion experiments testing the equivalence
principle, κ ∼ 10−9 N m/rad [21,22]. Then,

� ∼ 103 rad s−1. (2.24)

The magnitude of � is large because a is assumed small.
The largest oscillations occur at resonance, when ω0 is

chosen equal to �. Then,

φ = − K

Iγ
cos �t. (2.25)

The maximum value, when P0 ∼ 100 W, is

φmax = n2 − 1

c2

4

M

P0

γ
∼ 10−7

γ
rad s−1. (2.26)

It would be of interest to make an estimate of the damping
constant γ here, but we postpone that until the next section.

Notice that the very existence of a oscillatory movement
would be enough to make the experiment critical with respect
to the Abraham force. The Minkowski tensor does not predict
an azimuthal movement at all.

III. SPHERICAL GEOMETRY

As mentioned above, whispering gallery modes are usually
associated with microspheres. Let the radius of the sphere be
denoted by a. As above, we look for the eigenmodes, and we
will for simplicity focus on the TE modes only. (The meaning
of the symbol TE is here that the electric field is transverse to
the radius vector r.) We introduce quantities α and r̃ defined
by

α = ωa/c, r̃ = r/a. (3.1)

Thus α is the magnitude of the nondimensional wave vector in
the exterior region (vacuum), whereas r̃ = 1 at the boundary.
Making use of the Riccati-Bessel function

ψl(x) = xjl(x), (3.2)

the basic TE modes in the interior can conveniently be written
as

Er = 0, (3.3a)

Eθ = − imAlm

nαr̃

P m
l (cos θ )

sin θ
ψl(nαr̃) Fm, (3.3b)

Eφ = Alm

nαr̃

dP m
l (cos θ )

dθ
ψl(nαr̃) Fm, (3.3c)

and

Hr = − l(l + 1)

iωμ

Alm

nαr̃2

1

a
P m

l (cos θ )ψl(nαr̃) Fm, (3.4a)

Hθ = − 1

iωμ

Alm

r̃

1

a

dP m
l (cos θ )

dθ
ψ ′

l (nαr̃)Fm, (3.4b)

Hφ = − m

ωμ sin θ

Alm

r̃

1

a
P m

l (cos θ ) ψ ′
l (nαr̃)Fm, (3.4c)

where Alm are constants, and

Fm = eimφ−iωt . (3.5)

The mode expansions above essentially follow Stratton [19].
The components of Poynting’s vector are, when averaged

over an optical period,

Sr = 1
2 Re[EθH

∗
φ − EφH ∗

θ ], (3.6a)

Sθ = 1
2 Re[EφH ∗

r ], (3.6b)

Sφ = − 1
2 Re[EθH

∗
r ]. (3.6c)

Assume that the sphere is fed by an incident flux from the
outside such that only the component Sφ of S in the interior is
different from zero. With an intensity modulated energy flux
such as above, Sφ = S0 cos ω0t , we thus get for the azimuthally
directed Abraham force density in the interior

f A
φ = −n2 − 1

c2
ω0S0 sin ω0t. (3.7)

From the above expressions,

S0 = m

2(nα)2 r̃3

l(l + 1)

ωμ

|Alm|2
a

[
P m

l (cos θ )
]2

sin θ
ψ2

l . (3.8)
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we thus see that the torque can be written as

NA
z = Kω0 sin ω0t. (2.19)

As expected, the torque becomes very small. As order of
magnitude we get

K ∼ 2πa2

c2
P0 ∼ (0.7 × 10−24 s2)P0, (2.20)

and the Abraham torque is estimated as

NA
z ∼ (0.7 × 10−24 s2)ω0P0. (2.21)

Insert first the very low value of ω0 ∼ 1 s−1, and take P0 ∼
100 W. We get Nz ∼ 0.7 × 10−22 N m, which is much less than
the value 10−16 N m obtained in the classic Beth experiment
[20], for example, in which the angular momentum of light was
measured. It is, however, possible to improve the situation by
exploiting the fact that the buildup and ringdown times for this
kind of resonator are known to be very small, in the order of
tens to hundreds of ns (see discussion below). It is thus realistic
to insert a much higher value for ω0. Inserting tentatively ω0 =
1000 s−1, we get Nz ∼ 0.7 × 10−19 N m, which is perhaps not
so unrealistic after all.

It is physically instructive to look at the system in another
way, by considering the angular deflection φ of the cylinder
instead of the magnitude of the torque. Let the cylinder be
hanging vertically in the gravitational field, suspended by a thin
wire of known torsion constant κ . Denoting the eigenfrequency
of the cylinder in the absence of any torque by �, and denoting
the damping coefficient by γ , we have as the equation of
motion

φ̈ + γ φ̇ + �2φ = K

I
ω0 sin ω0t. (2.22)

Here I = 1
2Ma2 is the moment of inertia about the z axis, M =

ρa2L being the cylinder mass with ρ the material density. In
our notation, κ = I�2. With a = 100 μm as above we obtain,
when choosing L = 1 mm and assuming ρ ∼ 103 kg/m3,

� =
√

κ/I ∼ 108√κ. (2.23)

For the magnitude of κ we may choose a typical value
characteristic of torsion experiments testing the equivalence
principle, κ ∼ 10−9 N m/rad [21,22]. Then,

� ∼ 103 rad s−1. (2.24)

The magnitude of � is large because a is assumed small.
The largest oscillations occur at resonance, when ω0 is

chosen equal to �. Then,

φ = − K

Iγ
cos �t. (2.25)

The maximum value, when P0 ∼ 100 W, is

φmax = n2 − 1

c2

4

M

P0

γ
∼ 10−7

γ
rad s−1. (2.26)

It would be of interest to make an estimate of the damping
constant γ here, but we postpone that until the next section.

Notice that the very existence of a oscillatory movement
would be enough to make the experiment critical with respect
to the Abraham force. The Minkowski tensor does not predict
an azimuthal movement at all.

III. SPHERICAL GEOMETRY

As mentioned above, whispering gallery modes are usually
associated with microspheres. Let the radius of the sphere be
denoted by a. As above, we look for the eigenmodes, and we
will for simplicity focus on the TE modes only. (The meaning
of the symbol TE is here that the electric field is transverse to
the radius vector r.) We introduce quantities α and r̃ defined
by

α = ωa/c, r̃ = r/a. (3.1)

Thus α is the magnitude of the nondimensional wave vector in
the exterior region (vacuum), whereas r̃ = 1 at the boundary.
Making use of the Riccati-Bessel function

ψl(x) = xjl(x), (3.2)

the basic TE modes in the interior can conveniently be written
as

Er = 0, (3.3a)

Eθ = − imAlm

nαr̃

P m
l (cos θ )

sin θ
ψl(nαr̃) Fm, (3.3b)

Eφ = Alm

nαr̃

dP m
l (cos θ )

dθ
ψl(nαr̃) Fm, (3.3c)

and

Hr = − l(l + 1)

iωμ

Alm

nαr̃2

1

a
P m

l (cos θ )ψl(nαr̃) Fm, (3.4a)

Hθ = − 1

iωμ

Alm

r̃

1

a

dP m
l (cos θ )

dθ
ψ ′

l (nαr̃)Fm, (3.4b)

Hφ = − m

ωμ sin θ

Alm

r̃

1

a
P m

l (cos θ ) ψ ′
l (nαr̃)Fm, (3.4c)

where Alm are constants, and

Fm = eimφ−iωt . (3.5)

The mode expansions above essentially follow Stratton [19].
The components of Poynting’s vector are, when averaged

over an optical period,

Sr = 1
2 Re[EθH

∗
φ − EφH ∗

θ ], (3.6a)

Sθ = 1
2 Re[EφH ∗

r ], (3.6b)

Sφ = − 1
2 Re[EθH

∗
r ]. (3.6c)

Assume that the sphere is fed by an incident flux from the
outside such that only the component Sφ of S in the interior is
different from zero. With an intensity modulated energy flux
such as above, Sφ = S0 cos ω0t , we thus get for the azimuthally
directed Abraham force density in the interior

f A
φ = −n2 − 1

c2
ω0S0 sin ω0t. (3.7)

From the above expressions,

S0 = m

2(nα)2 r̃3

l(l + 1)

ωμ

|Alm|2
a

[
P m

l (cos θ )
]2

sin θ
ψ2

l . (3.8)
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The Abraham torque, directed along the z axis, then becomes

NA
z =

∫
(r × fA)zdV =

∫
rf A

φ sin θ dV, (3.9)

where the integration is over the sphere, with dV =
r2 sin θ dr dθ dφ. Making use of Eqs. (3.7) and (3.8), we
obtain

NA
z = −n2 − 1

c2

πma3

(nα)2

l(l + 1)

ωμ
|Alm|2ω0 KIKII sin ω0t,

(3.10)

where KI and KII are the integrals

KI =
∫ 1

0
ψ2

l (nαr̃)dr̃

= 1

2

[
ψ2

l (nα) − ψl−1(nα)ψl+1(nα)
]
, (3.11a)

KII =
∫ π

0

[
P m

l (cos θ )
]2

sin θ dθ

= 2

2l + 1

(l + m)!

(l − m)!
. (3.11b)

We want to relate this to the total power P flowing in
the azimuthal direction in the sphere. We calculate P by
integrating Sφ over the area of a semicircle with radius a,

P =
∫ π

0
dθ

∫ a

0
r drSφ

= ma

2(nα)2

l(l + 1)

ωμ
|Alm|2KIIIKIV cos ω0t, (3.12)

where

KIII =
∫ 1

0

dr̃

r̃2
ψ2

l (nαr̃), (3.13a)

KIV =
∫ π

0

[
P m

l (cos θ )
]2

sin θ
dθ. (3.13b)

As before, it is assumed that the supplied power is intensity
modulated, P = P0 cos ω0t .

The two last integrals can be processed further, at least
approximatively. First, we can rewrite KIII as

KIII = 1

2
πnα

∫ nα

0

dx

x
J 2

ν (x), (3.14)

with ν = l + 1/2. For actual physical values, nα � 1. We can
thus replace the upper limit with infinity, and make use of
formula 6.574.2 in Ref. [23] to get

KIII ≈ πnα

2(2l + 1)
. (3.15)

Finally, the integral KIV is simply (cf. formula 8.14.14 in
Ref. [24])

KIV = (l + m)!

m(l − m)!
. (3.16)

We are now able to relate the torque NA
z to the power P . The

result becomes quite simple:

NA
z = −n2 − 1

c2

4ma2ω0

nα
P0 sin ω0t

× [
ψ2

l (nα) − ψl−1(nα)ψl+1(nα)
]
. (3.17)

The radius of the sphere is seen to appear in the prefactor a2,
as well as in the nondimensional parameter α = ωa/c. The
parameter l occurs only as an order parameter in the function
ψl . We see that the torque is proportional to m. This is as
we would expect, because the whispering gallery modes are
associated with m = l, i.e., the maximum value of m. It should
correspond to a maximum angular momentum and accordingly
a maximum torque.

To proceed quantitatively, the value of α has to be deter-
mined. For the TE modes it is determined by the dispersion
relation [19]

nμ0

μ

ψ ′
l (nα)

ψl(nα)
= ξ

(1)
l

′
(α)

ξ
(1)
l (α)

, (3.18)

where ξ
(1)
l (x) = xh

(1)
l (x) is another member of the Riccati-

Bessel functions. The equation (3.18) is complex and does not
in general have real solutions, but approximate solutions with
only a small imaginary inequality are found close to α ≈ l for
l � 1.

As at the end of the previous section, we focus attention
now on the magnitude of the angular deflection φ, as this is
most likely the quantity of main experimental interest. Without
changing the notation, we write the Abraham torque in the form
NA

z = Kω0 sin ω0t as before, where now

K = −n2 − 1

c2

4ma2

nα

× [
ψ2

l (nα) − ψl−1(nα)ψl+1(nα)
]
P0. (3.19)

The equation of motion for φ takes the same form (2.22) as
before, where now the moment of inertia is

I = 2

5
Ma2 = 8π

15
ρa5, (3.20)

M being the mass of the sphere. For definiteness let us take
a = 100 μm. Then, with ρ ∼ 103 kg/m3, we get M ≈ 4 μg
and so, with κ ∼ 10−9 N m/rad as before,

� ∼ 108√κ ∼ 103 rad s−1. (3.21)

With these numerical choices, the value of � becomes of the
same order as in the cylinder case. The magnitude φmax of the
maximum deflection at resonance ω0 = � is now

φmax = 10m

Mnα

n2 − 1

c2

× [
ψ2

l (nα) − ψl−1(nα)ψl+1(nα)
] P0

γ
. (3.22)

As we have assumed l � 1 and nα � 1 but otherwise left the
ratio of these quantities unspecified, the ψl functions ought to
be calculated numerically.

Let us finally make an estimate of the magnitude of the
damping coefficient γ , assuming for definiteness that the
damping is due to the viscosity of air only. We then need
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The Abraham torque, directed along the z axis, then becomes

NA
z =

∫
(r × fA)zdV =

∫
rf A

φ sin θ dV, (3.9)

where the integration is over the sphere, with dV =
r2 sin θ dr dθ dφ. Making use of Eqs. (3.7) and (3.8), we
obtain

NA
z = −n2 − 1

c2

πma3

(nα)2

l(l + 1)

ωμ
|Alm|2ω0 KIKII sin ω0t,

(3.10)

where KI and KII are the integrals

KI =
∫ 1

0
ψ2

l (nαr̃)dr̃

= 1

2

[
ψ2

l (nα) − ψl−1(nα)ψl+1(nα)
]
, (3.11a)

KII =
∫ π

0

[
P m

l (cos θ )
]2

sin θ dθ

= 2

2l + 1

(l + m)!

(l − m)!
. (3.11b)

We want to relate this to the total power P flowing in
the azimuthal direction in the sphere. We calculate P by
integrating Sφ over the area of a semicircle with radius a,

P =
∫ π

0
dθ

∫ a

0
r drSφ

= ma

2(nα)2

l(l + 1)

ωμ
|Alm|2KIIIKIV cos ω0t, (3.12)

where

KIII =
∫ 1

0

dr̃

r̃2
ψ2

l (nαr̃), (3.13a)

KIV =
∫ π

0

[
P m

l (cos θ )
]2

sin θ
dθ. (3.13b)

As before, it is assumed that the supplied power is intensity
modulated, P = P0 cos ω0t .

The two last integrals can be processed further, at least
approximatively. First, we can rewrite KIII as

KIII = 1

2
πnα

∫ nα

0

dx

x
J 2

ν (x), (3.14)

with ν = l + 1/2. For actual physical values, nα � 1. We can
thus replace the upper limit with infinity, and make use of
formula 6.574.2 in Ref. [23] to get

KIII ≈ πnα

2(2l + 1)
. (3.15)

Finally, the integral KIV is simply (cf. formula 8.14.14 in
Ref. [24])

KIV = (l + m)!

m(l − m)!
. (3.16)

We are now able to relate the torque NA
z to the power P . The

result becomes quite simple:

NA
z = −n2 − 1

c2

4ma2ω0

nα
P0 sin ω0t

× [
ψ2

l (nα) − ψl−1(nα)ψl+1(nα)
]
. (3.17)

The radius of the sphere is seen to appear in the prefactor a2,
as well as in the nondimensional parameter α = ωa/c. The
parameter l occurs only as an order parameter in the function
ψl . We see that the torque is proportional to m. This is as
we would expect, because the whispering gallery modes are
associated with m = l, i.e., the maximum value of m. It should
correspond to a maximum angular momentum and accordingly
a maximum torque.

To proceed quantitatively, the value of α has to be deter-
mined. For the TE modes it is determined by the dispersion
relation [19]

nμ0

μ

ψ ′
l (nα)

ψl(nα)
= ξ

(1)
l

′
(α)

ξ
(1)
l (α)

, (3.18)

where ξ
(1)
l (x) = xh

(1)
l (x) is another member of the Riccati-

Bessel functions. The equation (3.18) is complex and does not
in general have real solutions, but approximate solutions with
only a small imaginary inequality are found close to α ≈ l for
l � 1.

As at the end of the previous section, we focus attention
now on the magnitude of the angular deflection φ, as this is
most likely the quantity of main experimental interest. Without
changing the notation, we write the Abraham torque in the form
NA

z = Kω0 sin ω0t as before, where now

K = −n2 − 1

c2

4ma2

nα

× [
ψ2

l (nα) − ψl−1(nα)ψl+1(nα)
]
P0. (3.19)

The equation of motion for φ takes the same form (2.22) as
before, where now the moment of inertia is

I = 2

5
Ma2 = 8π

15
ρa5, (3.20)

M being the mass of the sphere. For definiteness let us take
a = 100 μm. Then, with ρ ∼ 103 kg/m3, we get M ≈ 4 μg
and so, with κ ∼ 10−9 N m/rad as before,

� ∼ 108√κ ∼ 103 rad s−1. (3.21)

With these numerical choices, the value of � becomes of the
same order as in the cylinder case. The magnitude φmax of the
maximum deflection at resonance ω0 = � is now

φmax = 10m

Mnα

n2 − 1

c2

× [
ψ2

l (nα) − ψl−1(nα)ψl+1(nα)
] P0

γ
. (3.22)

As we have assumed l � 1 and nα � 1 but otherwise left the
ratio of these quantities unspecified, the ψl functions ought to
be calculated numerically.

Let us finally make an estimate of the magnitude of the
damping coefficient γ , assuming for definiteness that the
damping is due to the viscosity of air only. We then need
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The Abraham torque, directed along the z axis, then becomes

NA
z =

∫
(r × fA)zdV =

∫
rf A

φ sin θ dV, (3.9)

where the integration is over the sphere, with dV =
r2 sin θ dr dθ dφ. Making use of Eqs. (3.7) and (3.8), we
obtain

NA
z = −n2 − 1

c2

πma3

(nα)2

l(l + 1)

ωμ
|Alm|2ω0 KIKII sin ω0t,

(3.10)

where KI and KII are the integrals

KI =
∫ 1

0
ψ2

l (nαr̃)dr̃

= 1

2

[
ψ2

l (nα) − ψl−1(nα)ψl+1(nα)
]
, (3.11a)

KII =
∫ π

0

[
P m

l (cos θ )
]2

sin θ dθ

= 2

2l + 1

(l + m)!

(l − m)!
. (3.11b)

We want to relate this to the total power P flowing in
the azimuthal direction in the sphere. We calculate P by
integrating Sφ over the area of a semicircle with radius a,

P =
∫ π

0
dθ

∫ a

0
r drSφ

= ma

2(nα)2

l(l + 1)

ωμ
|Alm|2KIIIKIV cos ω0t, (3.12)

where

KIII =
∫ 1

0

dr̃

r̃2
ψ2

l (nαr̃), (3.13a)

KIV =
∫ π

0

[
P m

l (cos θ )
]2

sin θ
dθ. (3.13b)

As before, it is assumed that the supplied power is intensity
modulated, P = P0 cos ω0t .

The two last integrals can be processed further, at least
approximatively. First, we can rewrite KIII as

KIII = 1

2
πnα

∫ nα

0

dx

x
J 2

ν (x), (3.14)

with ν = l + 1/2. For actual physical values, nα � 1. We can
thus replace the upper limit with infinity, and make use of
formula 6.574.2 in Ref. [23] to get

KIII ≈ πnα

2(2l + 1)
. (3.15)

Finally, the integral KIV is simply (cf. formula 8.14.14 in
Ref. [24])

KIV = (l + m)!

m(l − m)!
. (3.16)

We are now able to relate the torque NA
z to the power P . The

result becomes quite simple:

NA
z = −n2 − 1

c2

4ma2ω0

nα
P0 sin ω0t

× [
ψ2

l (nα) − ψl−1(nα)ψl+1(nα)
]
. (3.17)

The radius of the sphere is seen to appear in the prefactor a2,
as well as in the nondimensional parameter α = ωa/c. The
parameter l occurs only as an order parameter in the function
ψl . We see that the torque is proportional to m. This is as
we would expect, because the whispering gallery modes are
associated with m = l, i.e., the maximum value of m. It should
correspond to a maximum angular momentum and accordingly
a maximum torque.

To proceed quantitatively, the value of α has to be deter-
mined. For the TE modes it is determined by the dispersion
relation [19]

nμ0

μ

ψ ′
l (nα)

ψl(nα)
= ξ

(1)
l

′
(α)

ξ
(1)
l (α)

, (3.18)

where ξ
(1)
l (x) = xh

(1)
l (x) is another member of the Riccati-

Bessel functions. The equation (3.18) is complex and does not
in general have real solutions, but approximate solutions with
only a small imaginary inequality are found close to α ≈ l for
l � 1.

As at the end of the previous section, we focus attention
now on the magnitude of the angular deflection φ, as this is
most likely the quantity of main experimental interest. Without
changing the notation, we write the Abraham torque in the form
NA

z = Kω0 sin ω0t as before, where now

K = −n2 − 1

c2

4ma2

nα

× [
ψ2

l (nα) − ψl−1(nα)ψl+1(nα)
]
P0. (3.19)

The equation of motion for φ takes the same form (2.22) as
before, where now the moment of inertia is

I = 2

5
Ma2 = 8π

15
ρa5, (3.20)

M being the mass of the sphere. For definiteness let us take
a = 100 μm. Then, with ρ ∼ 103 kg/m3, we get M ≈ 4 μg
and so, with κ ∼ 10−9 N m/rad as before,

� ∼ 108√κ ∼ 103 rad s−1. (3.21)

With these numerical choices, the value of � becomes of the
same order as in the cylinder case. The magnitude φmax of the
maximum deflection at resonance ω0 = � is now

φmax = 10m

Mnα

n2 − 1

c2

× [
ψ2

l (nα) − ψl−1(nα)ψl+1(nα)
] P0

γ
. (3.22)

As we have assumed l � 1 and nα � 1 but otherwise left the
ratio of these quantities unspecified, the ψl functions ought to
be calculated numerically.

Let us finally make an estimate of the magnitude of the
damping coefficient γ , assuming for definiteness that the
damping is due to the viscosity of air only. We then need
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The Abraham torque, directed along the z axis, then becomes

NA
z =

∫
(r × fA)zdV =

∫
rf A

φ sin θ dV, (3.9)

where the integration is over the sphere, with dV =
r2 sin θ dr dθ dφ. Making use of Eqs. (3.7) and (3.8), we
obtain

NA
z = −n2 − 1

c2

πma3

(nα)2

l(l + 1)

ωμ
|Alm|2ω0 KIKII sin ω0t,

(3.10)

where KI and KII are the integrals

KI =
∫ 1

0
ψ2

l (nαr̃)dr̃

= 1

2

[
ψ2

l (nα) − ψl−1(nα)ψl+1(nα)
]
, (3.11a)

KII =
∫ π

0

[
P m

l (cos θ )
]2

sin θ dθ

= 2

2l + 1

(l + m)!

(l − m)!
. (3.11b)

We want to relate this to the total power P flowing in
the azimuthal direction in the sphere. We calculate P by
integrating Sφ over the area of a semicircle with radius a,

P =
∫ π

0
dθ

∫ a

0
r drSφ

= ma

2(nα)2

l(l + 1)

ωμ
|Alm|2KIIIKIV cos ω0t, (3.12)

where

KIII =
∫ 1

0

dr̃

r̃2
ψ2

l (nαr̃), (3.13a)

KIV =
∫ π

0

[
P m

l (cos θ )
]2

sin θ
dθ. (3.13b)

As before, it is assumed that the supplied power is intensity
modulated, P = P0 cos ω0t .

The two last integrals can be processed further, at least
approximatively. First, we can rewrite KIII as

KIII = 1

2
πnα

∫ nα

0

dx

x
J 2

ν (x), (3.14)

with ν = l + 1/2. For actual physical values, nα � 1. We can
thus replace the upper limit with infinity, and make use of
formula 6.574.2 in Ref. [23] to get

KIII ≈ πnα

2(2l + 1)
. (3.15)

Finally, the integral KIV is simply (cf. formula 8.14.14 in
Ref. [24])

KIV = (l + m)!

m(l − m)!
. (3.16)

We are now able to relate the torque NA
z to the power P . The

result becomes quite simple:

NA
z = −n2 − 1

c2

4ma2ω0

nα
P0 sin ω0t

× [
ψ2

l (nα) − ψl−1(nα)ψl+1(nα)
]
. (3.17)

The radius of the sphere is seen to appear in the prefactor a2,
as well as in the nondimensional parameter α = ωa/c. The
parameter l occurs only as an order parameter in the function
ψl . We see that the torque is proportional to m. This is as
we would expect, because the whispering gallery modes are
associated with m = l, i.e., the maximum value of m. It should
correspond to a maximum angular momentum and accordingly
a maximum torque.

To proceed quantitatively, the value of α has to be deter-
mined. For the TE modes it is determined by the dispersion
relation [19]

nμ0

μ

ψ ′
l (nα)

ψl(nα)
= ξ

(1)
l

′
(α)

ξ
(1)
l (α)

, (3.18)

where ξ
(1)
l (x) = xh

(1)
l (x) is another member of the Riccati-

Bessel functions. The equation (3.18) is complex and does not
in general have real solutions, but approximate solutions with
only a small imaginary inequality are found close to α ≈ l for
l � 1.

As at the end of the previous section, we focus attention
now on the magnitude of the angular deflection φ, as this is
most likely the quantity of main experimental interest. Without
changing the notation, we write the Abraham torque in the form
NA

z = Kω0 sin ω0t as before, where now

K = −n2 − 1

c2

4ma2

nα

× [
ψ2

l (nα) − ψl−1(nα)ψl+1(nα)
]
P0. (3.19)

The equation of motion for φ takes the same form (2.22) as
before, where now the moment of inertia is

I = 2

5
Ma2 = 8π

15
ρa5, (3.20)

M being the mass of the sphere. For definiteness let us take
a = 100 μm. Then, with ρ ∼ 103 kg/m3, we get M ≈ 4 μg
and so, with κ ∼ 10−9 N m/rad as before,

� ∼ 108√κ ∼ 103 rad s−1. (3.21)

With these numerical choices, the value of � becomes of the
same order as in the cylinder case. The magnitude φmax of the
maximum deflection at resonance ω0 = � is now

φmax = 10m

Mnα

n2 − 1

c2

× [
ψ2

l (nα) − ψl−1(nα)ψl+1(nα)
] P0

γ
. (3.22)

As we have assumed l � 1 and nα � 1 but otherwise left the
ratio of these quantities unspecified, the ψl functions ought to
be calculated numerically.

Let us finally make an estimate of the magnitude of the
damping coefficient γ , assuming for definiteness that the
damping is due to the viscosity of air only. We then need
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to know the viscous torque on a sphere executing rotary
oscillations about its symmetry axis. The solution of this
problem is shown in Ref. [25]. An important parameter in
this context is the penetration depth δ = √

2ν/�, where ν

is the kinematic viscosity of the surrounding medium. For
air, ν = 1.5 × 10−5 m2 s−1. Thus with � ∼ 103 rad s−1 we get
δ ∼ 170 μm, which is of the same order as a. Strictly speaking
we should therefore have to use the complete expression for
the viscous torque, which is somewhat complicated. For our
order-of-magnitude considerations, however, it is sufficient to
use the simple expression

(Nz)viscous ≈ 8πηa3� (3.23)

(corresponding mathematically to the a/δ � 1 limit), where
η = 1.8 × 10−5 Pa s is the dynamic viscosity for air. Identify-
ing (Nz)viscous with Iγ � in accordance with Eq. (2.22), we get
for the damping coefficient

γ = 8πη

I
a3 ∼ 30 s−1, (3.24)

and the expression (3.22) for the maximum deflection can
finally be written as

φmax = m

2πnαηa

n2 − 1

c2

× [
ψ2

l (nα) − ψl−1(nα)ψl+1(nα)
]
P0. (3.25)

As expected, the deflection is very small. Whereas numerical
evaluation of the ψl functions in general is called for, as
mentioned, we may note that in cases where l � nα the
approximation ψl(nα) ≈ sin(nα − lπ

2 ) is useful. Moreover,
one can obtain a simple estimate of the magnitude in the
cylinder case by inserting γ from Eq. (3.24) into Eq. (2.26),
whereby one finds φmax ∼ 10−8 rad. Careful adjustments of
input parameters are obviously needed if the effect is to be
verified experimentally.

IV. MAGNITUDE OF TORQUES IN EXISTING
EXPERIMENTS

We close this investigation by making some estimates of
radiation torques on spheres, as well as on ring resonators (a
closely related geometry), for already existing experiments.
As a first example, we take the setup reported in Ref. [26],
where an infrared laser of wavelength λ = 1500 nm was used.
Two different sphere radii were investigated, a = 40 μm and
a = 70 μm, corresponding to values of α ≈ l = m equal to
162 and 283, respectively. Although the feeding laser had a
power on the order of tens of microwatts to milliwatts, the

extremely high Q factor of the silica sphere meant the buildup
of circulating modes in the sphere grew enormous. Circulating
powers in excess of 100 W are routinely reported in such
systems (e.g., [27]) (although this quantity was not explicitly
given in Ref. [26]). The refractive index of materials used for
ultrahigh-Q spherical resonators, such as fused silica [26,28]
and quartz [29], are about n = 1.5. With these values as input
for P0 we obtain the torques [NA

z = N0 sin ω0t]

N0 ≈
{

(4 × 10−24 N m s) ω0,

(1 × 10−23 N m s) ω0,
for a =

{
40 μm,

70 μm.
(4.1)

Note in general that for a sphere, NA
z ∝ a according to

Eq. (3.17), whereas φmax ∝ a−2 according to Eq. (3.25) when
the viscous damping is accounted for.

The geometry of Ref. [27], which reports circulating powers
in excess of 100 W, employs the toroidal ring resonator. This
geometry has the benefit of having smaller mass and therefore
smaller moment of inertia than a sphere of the same radius,
allowing for larger angular deflections. For a thin ring, the
moment of inertia is

Itoroid ≈ 2πρAa3, (4.2)

where A is the area of cross section. The torque on such a
toroid would be roughly similar to that on a sphere, so it is
reasonable to assume the angular deflection to be larger and
scale as a−1. This could allow larger radii, which could be
beneficial for detection. See also the review article [30].

We wish finally to reemphasize the possibility of using quite
high frequencies ω0 in order to produce measurable values
for the Abraham torque. We assumed above the strong field
inside the microcavity to react instantaneously to the sinusoidal
variations of the input signal, an approximation which is good
provided the buildup and ringdown time (τ ) of the resonator
is small compared to 2π/ω0. For the 45 μm radius toroidal
resonator in Ref. [31], for example, a ringdown time of about
43 ns was measured. For cavities of even higher Q factor,
ringdown times are somewhat longer, yet this implies that
we may choose tuning frequencies ω0 as high as 106 without
invalidating the theory. Due to the proportionality of the torque
with ω0, going close to the megahertz regime could increase
the torque to perhaps 10−17 N m for a sphere with radius of
some tens of micrometers.
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to know the viscous torque on a sphere executing rotary
oscillations about its symmetry axis. The solution of this
problem is shown in Ref. [25]. An important parameter in
this context is the penetration depth δ = √

2ν/�, where ν

is the kinematic viscosity of the surrounding medium. For
air, ν = 1.5 × 10−5 m2 s−1. Thus with � ∼ 103 rad s−1 we get
δ ∼ 170 μm, which is of the same order as a. Strictly speaking
we should therefore have to use the complete expression for
the viscous torque, which is somewhat complicated. For our
order-of-magnitude considerations, however, it is sufficient to
use the simple expression

(Nz)viscous ≈ 8πηa3� (3.23)

(corresponding mathematically to the a/δ � 1 limit), where
η = 1.8 × 10−5 Pa s is the dynamic viscosity for air. Identify-
ing (Nz)viscous with Iγ � in accordance with Eq. (2.22), we get
for the damping coefficient

γ = 8πη

I
a3 ∼ 30 s−1, (3.24)

and the expression (3.22) for the maximum deflection can
finally be written as

φmax = m

2πnαηa

n2 − 1

c2

× [
ψ2

l (nα) − ψl−1(nα)ψl+1(nα)
]
P0. (3.25)

As expected, the deflection is very small. Whereas numerical
evaluation of the ψl functions in general is called for, as
mentioned, we may note that in cases where l � nα the
approximation ψl(nα) ≈ sin(nα − lπ

2 ) is useful. Moreover,
one can obtain a simple estimate of the magnitude in the
cylinder case by inserting γ from Eq. (3.24) into Eq. (2.26),
whereby one finds φmax ∼ 10−8 rad. Careful adjustments of
input parameters are obviously needed if the effect is to be
verified experimentally.

IV. MAGNITUDE OF TORQUES IN EXISTING
EXPERIMENTS

We close this investigation by making some estimates of
radiation torques on spheres, as well as on ring resonators (a
closely related geometry), for already existing experiments.
As a first example, we take the setup reported in Ref. [26],
where an infrared laser of wavelength λ = 1500 nm was used.
Two different sphere radii were investigated, a = 40 μm and
a = 70 μm, corresponding to values of α ≈ l = m equal to
162 and 283, respectively. Although the feeding laser had a
power on the order of tens of microwatts to milliwatts, the

extremely high Q factor of the silica sphere meant the buildup
of circulating modes in the sphere grew enormous. Circulating
powers in excess of 100 W are routinely reported in such
systems (e.g., [27]) (although this quantity was not explicitly
given in Ref. [26]). The refractive index of materials used for
ultrahigh-Q spherical resonators, such as fused silica [26,28]
and quartz [29], are about n = 1.5. With these values as input
for P0 we obtain the torques [NA

z = N0 sin ω0t]

N0 ≈
{

(4 × 10−24 N m s) ω0,

(1 × 10−23 N m s) ω0,
for a =

{
40 μm,

70 μm.
(4.1)

Note in general that for a sphere, NA
z ∝ a according to

Eq. (3.17), whereas φmax ∝ a−2 according to Eq. (3.25) when
the viscous damping is accounted for.

The geometry of Ref. [27], which reports circulating powers
in excess of 100 W, employs the toroidal ring resonator. This
geometry has the benefit of having smaller mass and therefore
smaller moment of inertia than a sphere of the same radius,
allowing for larger angular deflections. For a thin ring, the
moment of inertia is

Itoroid ≈ 2πρAa3, (4.2)

where A is the area of cross section. The torque on such a
toroid would be roughly similar to that on a sphere, so it is
reasonable to assume the angular deflection to be larger and
scale as a−1. This could allow larger radii, which could be
beneficial for detection. See also the review article [30].

We wish finally to reemphasize the possibility of using quite
high frequencies ω0 in order to produce measurable values
for the Abraham torque. We assumed above the strong field
inside the microcavity to react instantaneously to the sinusoidal
variations of the input signal, an approximation which is good
provided the buildup and ringdown time (τ ) of the resonator
is small compared to 2π/ω0. For the 45 μm radius toroidal
resonator in Ref. [31], for example, a ringdown time of about
43 ns was measured. For cavities of even higher Q factor,
ringdown times are somewhat longer, yet this implies that
we may choose tuning frequencies ω0 as high as 106 without
invalidating the theory. Due to the proportionality of the torque
with ω0, going close to the megahertz regime could increase
the torque to perhaps 10−17 N m for a sphere with radius of
some tens of micrometers.
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to know the viscous torque on a sphere executing rotary
oscillations about its symmetry axis. The solution of this
problem is shown in Ref. [25]. An important parameter in
this context is the penetration depth δ = √

2ν/�, where ν

is the kinematic viscosity of the surrounding medium. For
air, ν = 1.5 × 10−5 m2 s−1. Thus with � ∼ 103 rad s−1 we get
δ ∼ 170 μm, which is of the same order as a. Strictly speaking
we should therefore have to use the complete expression for
the viscous torque, which is somewhat complicated. For our
order-of-magnitude considerations, however, it is sufficient to
use the simple expression

(Nz)viscous ≈ 8πηa3� (3.23)

(corresponding mathematically to the a/δ � 1 limit), where
η = 1.8 × 10−5 Pa s is the dynamic viscosity for air. Identify-
ing (Nz)viscous with Iγ � in accordance with Eq. (2.22), we get
for the damping coefficient

γ = 8πη

I
a3 ∼ 30 s−1, (3.24)

and the expression (3.22) for the maximum deflection can
finally be written as

φmax = m

2πnαηa

n2 − 1

c2

× [
ψ2

l (nα) − ψl−1(nα)ψl+1(nα)
]
P0. (3.25)

As expected, the deflection is very small. Whereas numerical
evaluation of the ψl functions in general is called for, as
mentioned, we may note that in cases where l � nα the
approximation ψl(nα) ≈ sin(nα − lπ

2 ) is useful. Moreover,
one can obtain a simple estimate of the magnitude in the
cylinder case by inserting γ from Eq. (3.24) into Eq. (2.26),
whereby one finds φmax ∼ 10−8 rad. Careful adjustments of
input parameters are obviously needed if the effect is to be
verified experimentally.

IV. MAGNITUDE OF TORQUES IN EXISTING
EXPERIMENTS

We close this investigation by making some estimates of
radiation torques on spheres, as well as on ring resonators (a
closely related geometry), for already existing experiments.
As a first example, we take the setup reported in Ref. [26],
where an infrared laser of wavelength λ = 1500 nm was used.
Two different sphere radii were investigated, a = 40 μm and
a = 70 μm, corresponding to values of α ≈ l = m equal to
162 and 283, respectively. Although the feeding laser had a
power on the order of tens of microwatts to milliwatts, the

extremely high Q factor of the silica sphere meant the buildup
of circulating modes in the sphere grew enormous. Circulating
powers in excess of 100 W are routinely reported in such
systems (e.g., [27]) (although this quantity was not explicitly
given in Ref. [26]). The refractive index of materials used for
ultrahigh-Q spherical resonators, such as fused silica [26,28]
and quartz [29], are about n = 1.5. With these values as input
for P0 we obtain the torques [NA

z = N0 sin ω0t]

N0 ≈
{

(4 × 10−24 N m s) ω0,

(1 × 10−23 N m s) ω0,
for a =
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40 μm,

70 μm.
(4.1)

Note in general that for a sphere, NA
z ∝ a according to

Eq. (3.17), whereas φmax ∝ a−2 according to Eq. (3.25) when
the viscous damping is accounted for.

The geometry of Ref. [27], which reports circulating powers
in excess of 100 W, employs the toroidal ring resonator. This
geometry has the benefit of having smaller mass and therefore
smaller moment of inertia than a sphere of the same radius,
allowing for larger angular deflections. For a thin ring, the
moment of inertia is

Itoroid ≈ 2πρAa3, (4.2)

where A is the area of cross section. The torque on such a
toroid would be roughly similar to that on a sphere, so it is
reasonable to assume the angular deflection to be larger and
scale as a−1. This could allow larger radii, which could be
beneficial for detection. See also the review article [30].

We wish finally to reemphasize the possibility of using quite
high frequencies ω0 in order to produce measurable values
for the Abraham torque. We assumed above the strong field
inside the microcavity to react instantaneously to the sinusoidal
variations of the input signal, an approximation which is good
provided the buildup and ringdown time (τ ) of the resonator
is small compared to 2π/ω0. For the 45 μm radius toroidal
resonator in Ref. [31], for example, a ringdown time of about
43 ns was measured. For cavities of even higher Q factor,
ringdown times are somewhat longer, yet this implies that
we may choose tuning frequencies ω0 as high as 106 without
invalidating the theory. Due to the proportionality of the torque
with ω0, going close to the megahertz regime could increase
the torque to perhaps 10−17 N m for a sphere with radius of
some tens of micrometers.
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this context is the penetration depth δ = √
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δ ∼ 170 μm, which is of the same order as a. Strictly speaking
we should therefore have to use the complete expression for
the viscous torque, which is somewhat complicated. For our
order-of-magnitude considerations, however, it is sufficient to
use the simple expression

(Nz)viscous ≈ 8πηa3� (3.23)

(corresponding mathematically to the a/δ � 1 limit), where
η = 1.8 × 10−5 Pa s is the dynamic viscosity for air. Identify-
ing (Nz)viscous with Iγ � in accordance with Eq. (2.22), we get
for the damping coefficient
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I
a3 ∼ 30 s−1, (3.24)

and the expression (3.22) for the maximum deflection can
finally be written as
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As expected, the deflection is very small. Whereas numerical
evaluation of the ψl functions in general is called for, as
mentioned, we may note that in cases where l � nα the
approximation ψl(nα) ≈ sin(nα − lπ

2 ) is useful. Moreover,
one can obtain a simple estimate of the magnitude in the
cylinder case by inserting γ from Eq. (3.24) into Eq. (2.26),
whereby one finds φmax ∼ 10−8 rad. Careful adjustments of
input parameters are obviously needed if the effect is to be
verified experimentally.

IV. MAGNITUDE OF TORQUES IN EXISTING
EXPERIMENTS

We close this investigation by making some estimates of
radiation torques on spheres, as well as on ring resonators (a
closely related geometry), for already existing experiments.
As a first example, we take the setup reported in Ref. [26],
where an infrared laser of wavelength λ = 1500 nm was used.
Two different sphere radii were investigated, a = 40 μm and
a = 70 μm, corresponding to values of α ≈ l = m equal to
162 and 283, respectively. Although the feeding laser had a
power on the order of tens of microwatts to milliwatts, the

extremely high Q factor of the silica sphere meant the buildup
of circulating modes in the sphere grew enormous. Circulating
powers in excess of 100 W are routinely reported in such
systems (e.g., [27]) (although this quantity was not explicitly
given in Ref. [26]). The refractive index of materials used for
ultrahigh-Q spherical resonators, such as fused silica [26,28]
and quartz [29], are about n = 1.5. With these values as input
for P0 we obtain the torques [NA

z = N0 sin ω0t]

N0 ≈
{

(4 × 10−24 N m s) ω0,

(1 × 10−23 N m s) ω0,
for a =

{
40 μm,

70 μm.
(4.1)

Note in general that for a sphere, NA
z ∝ a according to

Eq. (3.17), whereas φmax ∝ a−2 according to Eq. (3.25) when
the viscous damping is accounted for.

The geometry of Ref. [27], which reports circulating powers
in excess of 100 W, employs the toroidal ring resonator. This
geometry has the benefit of having smaller mass and therefore
smaller moment of inertia than a sphere of the same radius,
allowing for larger angular deflections. For a thin ring, the
moment of inertia is

Itoroid ≈ 2πρAa3, (4.2)

where A is the area of cross section. The torque on such a
toroid would be roughly similar to that on a sphere, so it is
reasonable to assume the angular deflection to be larger and
scale as a−1. This could allow larger radii, which could be
beneficial for detection. See also the review article [30].

We wish finally to reemphasize the possibility of using quite
high frequencies ω0 in order to produce measurable values
for the Abraham torque. We assumed above the strong field
inside the microcavity to react instantaneously to the sinusoidal
variations of the input signal, an approximation which is good
provided the buildup and ringdown time (τ ) of the resonator
is small compared to 2π/ω0. For the 45 μm radius toroidal
resonator in Ref. [31], for example, a ringdown time of about
43 ns was measured. For cavities of even higher Q factor,
ringdown times are somewhat longer, yet this implies that
we may choose tuning frequencies ω0 as high as 106 without
invalidating the theory. Due to the proportionality of the torque
with ω0, going close to the megahertz regime could increase
the torque to perhaps 10−17 N m for a sphere with radius of
some tens of micrometers.

ACKNOWLEDGMENTS

I.B. thanks Giovanni Carugno for correspondence concern-
ing measurement accuracies.

[1] M. Abraham, Rend. Circ. Matem. Palermo 28, 1 (1909); 30, 33
(1910).

[2] H. Minkowski, Nachr. Königl. Ges. Wiss. Göttingen, p. 53
(1908) [reprinted as Math. Ann. 68, 472 (1910)].

[3] I. Brevik, Phys. Rep. 52, 133 (1979).
[4] V. L. Ginzburg, Applications of Electrodynamics in Theoretical

Physics and Astrophysics (Gordon and Breach, New York,
1989).

[5] L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous
Media, 2nd ed. (Butterworth-Heinemann, Oxford, 1984).

[6] G. B. Walker, D. G. Lahoz, and G. Walker, Can. J. Phys. 53,
2577 (1975).

[7] G. B. Walker and D. G. Lahoz, Nature (London) 253, 339
(1975).

[8] R. V. Jones and J. C. Richards, Proc. R. Soc. A 221, 480 (1954).
[9] R. V. Jones and B. Leslie, Proc. R. Soc. A 360, 347 (1978).

063830-5
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A gravity-driven flow of grains through a narrow pipe in vacuum is studied by means of a one-dimensional
model with two coefficients of restitution. Numerical simulations show clearly how density waves form when
a strikingly simple criterion is fulfilled: that dissipation due to collisions between the grains and the walls of the
pipe is greater per collision than that which stems from collisions between particles. Counterintuitively, the
highest flow rate is observed when the number of grains per density wave grows large. We find strong
indication that the number of grains per density wave always approaches a constant as the particle number
tends to infinity, and that collapse to a single wave, which was often observed also in previous simulations,
occurs because the number of grains is insufficient for multiple wave formation.
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I. INTRODUCTION

Transport of dry granular media through pipes and chan-
nels is a problem of fundamental interest which is of consid-
erable industrial importance �1�, and it has been studied in-
tensely both experimentally and theoretically in recent
decades �2–5�. Granular media behave radically different
from both liquids and solids �3� and in granular pipe flow
driven either by gravity or pressurized gas, nonlinear dy-
namical phenomena such as clogging �density waves� are
observed, but not yet well understood.

We consider dry grains falling inside a pipe. In this sys-
tem, encountered industrially, e.g., in emptying of silos and
transportation of sand or powder, there are three main
mechanisms of interaction: �a� collisions between grains, �b�
collisions between grains and walls, and �c� interaction of the
grains with air in the system. Assuming the pipe is narrow,
we approach this problem by means of a simple one-
dimensional model with periodic boundary conditions in
which collisions are modeled by means of two coefficients of
restitution � and �, corresponding to the collisions of mecha-
nisms �a� and �b�, respectively. We demonstrate that this is
sufficient to observe the formation of density waves.

Granular media has frequently been investigated by
means of numerical simulations. Features such as clustering
through dissipative collisions �6,7� and inelastic collapse
�8,9� are among those reported. Various driving mechanisms
have been considered, which can roughly be divided into two
categories: vibrating walls �10–12� and interior heating
�13–18�. The case of an emptying hopper has been studied,
see e.g. �19,20�, as has the decompaction transient associated
with the release of an initially dense packing �21�.

The particular case of gravity-driven granular flow
through channels and pipes has been studied for some time,
both experimentally and theoretically. In previous experi-
mental investigations �22–28�, the importance of the pres-
ence of air in the flow has been emphasized and the forma-
tion of density waves in falling sand has been explained with
primary reference to the air-grain interaction. Although
clearly of importance in real systems, we demonstrate that

the introduction of air in the model is not necessary to ob-
serve density waves. Our simulation suggests that such floc-
culent behavior, while certainly influenced by the presence of
air, can occur also in evacuated pipes, provided dissipation
from collisions between grains and walls is faster than dissi-
pation from grain-grain collisions.

Previous simulations of granular pipe flow have also re-
ported density waves �6,29–34�. Several mechanisms for
velocity dissipation through inelastic collisions, damping
and static friction have been employed, see, e.g. �35�. Early
papers �6,29� were unable to study sufficiently large num-
bers of grains and collisions to reach a state independent of
initial conditions. The model used by Lee �30� was a
2+1-dimensional time-driven molecular dynamics �MD�
simulation, with at least eight significant parameters. In the
model of Peng and Herrmann �31,32�, a 2+1-dimensional
lattice gas automaton is used in which various events are
assigned probabilistic collision rules. Another model was
proposed by Liss, Conway and Glasser �33�. Again, this is a
2+1-dimensional model with more complicated collision
rules than ours. In their simulation, the grain-wall coefficient
of restitution was found to be of little importance. In all these
models stable density waves were seen.

Our model is one-dimensional and much simpler, yet re-
produces similar qualitative phenomena, dictated essentially
by two coefficients of restitution whose interpretation is
physically transparent. We present our model and the results
of our simulations and demonstrate that the model has two
clearly distinct regimes in the parameter plane, one in which
density waves form �flocculent regime� and one where no
such are present �gaseous regime�. Average number of grains
per density wave and flow rate as functions of the two coef-
ficients of restitution are studied.

II. MODEL

The pipe of our model is sufficiently narrow to prevent
grains from passing each other, and sufficiently wide to al-
low them to fall approximately freely between collisions. As
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a consequence, grain-wall collisions are triggered by, and
occur immediately subsequent to, grain-grain collisions. The
pipe is therefore assumed to be too narrow for arching effects
to play a role. We thus propose that the system is essentially
one-dimensional in behavior and may be captured qualita-
tively by a one-dimensional model where collisions with
walls are incorporated into the grain-grain collision rules
themselves.

The setup is the following. Let N grains move in one
dimension so that grain i has position xi and velocity vi. We
use periodic boundary conditions, with grains falling beneath
x=0 reinserted at x=L, where L is the length of the pipe. The
grains are accelerated by a constant gravity g toward x=0. In
the dilute limit dN�L, where d is the diameter of a single
grain, we find that the behavior is independent of d, and we
set d=0 for simplicity.

As mentioned, the collision rules employed are based on
the idea that the falling grains lose energy due to two differ-
ent types of collisions, with the walls and with each other.
Grain-grain collisions are modeled by reducing the relative
velocity of the colliding grains through a coefficient of res-
titution �� �0,1�. Thus, vR,ab

+ =−�vR,ab
− where vR,ab=va−vb,

grain “a” is directly above grain “b,” and we use superscripts
“−” and “+” to denote times just before and after a collision,
respectively.

Grain-wall collisions tend to decrease the average veloc-
ity of the system, vav=N−1�i=1

N vi, which would otherwise di-
verge in time. Instead, vav eventually reaches and fluctuates
around a constant value at which dissipated energy is in equi-
librium with energy gained from the gravitational field. We
model the interaction with the walls at each collision by a
coefficient of restitution �� �0,1� which dissipates grain en-
ergy by reducing the center of mass �CM� velocity of the two
colliding grains according to vCM,ab

+ =�vCM,ab
− , where the CM

velocity of the pair is vCM,ab= 1
2 �va+vb�. These rules combine

to

va
+ =

1

2
�� − ��va

− +
1

2
�� + ��vb

−, �1a�

vb
+ =

1

2
�� + ��va

− +
1

2
�� − ��vb

−. �1b�

Note that introducing a restitution of vCM, momentum is
transferred for each collision from the grains to the �infinitely
massive� pipe, and the momentum of the grains alone is not
conserved. This causes the flow to approach a constant flow
rate as observed in experiments.

While a collision changes the velocities of just two grains,
the relative and CM velocities of three pairs of grains are
affected: the colliding pair plus the neighboring pairs above
and below. In particular, a collision increases the relative
velocity of the pair above the collision in proportion to the
lost CM velocity of the colliding pair. Thus, relative veloci-
ties are constantly regenerated, and the phenomenon of in-
elastic collapse �8,9� is avoided for ��0 and �	1.

III. SIMULATION AND RESULTS

We use event-driven molecular dynamics for our simula-
tions. Each grain is given an initial velocity which is as-
signed randomly according to various initialization schemes.
The grains are also given equidistant starting positions be-
tween 0 and L.

Simulations are run for different grain numbers N at con-
stant grain density )=N /L. After a “thermalization” time the
system reaches a steady state where the flow rate of the
whole system fluctuates about a mean value. Initializing the
simulations with different initial conditions yields the same
dynamic steady state, characterized by average flow rate, col-
lision frequency and the average number of density waves.

In Fig. 1, we plot grain trajectories in space and time. In
these plots we have used, in arbitrary units, L=1, g=0.01,
and N=100. In these simulations initial velocities between 0
and 1 were drawn randomly from a uniform distribution.

We observe two distinct regimes in the � ,� plane. When
�	�, dense regions tend to spread out. In this “gaseous”
regime, shown in Fig. 1�a�, no steady density waves are ob-
served. Whenever ���, density waves are observed, and the
transition from gaseous to flocculent behavior at �=� is sud-
den.

For the special case �=� seen in Fig. 1�b�, the Eq. �1�
simplify to va

+=�vb
− and vb

+=�va
−. Now the velocity of grain

“a” after a collision is only a function of the velocity of grain
“b” before the collision, and vice versa. After “thermaliza-
tion,” we observe that the grain velocities are organized
about two values: a lower velocity for the grains whose last
collision was with the grain below it and a higher velocity
for those which last collided with the grain above it.

While the qualitative behavior in the gaseous regime, �
��, is insensitive to the values of � and �, the situation in
the flocculent regime is quite different. As exemplified for
the parameter pairs in Fig. 1, the wave patterns vary strongly
in this half of the parameter plane. Both the magnitude and
velocity of the density waves depend sensitively on the val-
ues of � and �. Moreover, the qualitative picture varies from
a few large and stable waves with approximately constant
velocity to many small and volatile waves which emerge,
merge and dissolve and vary greatly in velocity even for a
single set of parameters. Two examples are shown in Figs.
1�c� and 1�d�, but a multitude of different multiwave patterns
may be observed.

Beyond rescaling the time axis, the values of L and g do
not affect the wave patterns, so long as the grain number N is
large compared to the average number of grains per density
wave. For N below some ��, ��-dependent threshold, the
grains will gather in one or a few stable or metastable waves,
as exemplified in panels �e� and �f� of Fig. 1.

When N is increased beyond this threshold, however, we
find that the number of density waves increases linearly,
while the number of grains per density wave remain con-
stant. Average flow rate and the average velocity of density
waves also remain independent of N in the limit of large N.
This represents the asymptotic limit of our system, where
there is no dependence on density ), which we illustrate for
three pairs of coefficients in Fig. 2. Due to limitations of
computer time we have not investigated this limit when Nw
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whole system fluctuates about a mean value. Initializing the
simulations with different initial conditions yields the same
dynamic steady state, characterized by average flow rate, col-
lision frequency and the average number of density waves.

In Fig. 1, we plot grain trajectories in space and time. In
these plots we have used, in arbitrary units, L=1, g=0.01,
and N=100. In these simulations initial velocities between 0
and 1 were drawn randomly from a uniform distribution.

We observe two distinct regimes in the � ,� plane. When
�	�, dense regions tend to spread out. In this “gaseous”
regime, shown in Fig. 1�a�, no steady density waves are ob-
served. Whenever ���, density waves are observed, and the
transition from gaseous to flocculent behavior at �=� is sud-
den.

For the special case �=� seen in Fig. 1�b�, the Eq. �1�
simplify to va

+=�vb
− and vb

+=�va
−. Now the velocity of grain

“a” after a collision is only a function of the velocity of grain
“b” before the collision, and vice versa. After “thermaliza-
tion,” we observe that the grain velocities are organized
about two values: a lower velocity for the grains whose last
collision was with the grain below it and a higher velocity
for those which last collided with the grain above it.

While the qualitative behavior in the gaseous regime, �
��, is insensitive to the values of � and �, the situation in
the flocculent regime is quite different. As exemplified for
the parameter pairs in Fig. 1, the wave patterns vary strongly
in this half of the parameter plane. Both the magnitude and
velocity of the density waves depend sensitively on the val-
ues of � and �. Moreover, the qualitative picture varies from
a few large and stable waves with approximately constant
velocity to many small and volatile waves which emerge,
merge and dissolve and vary greatly in velocity even for a
single set of parameters. Two examples are shown in Figs.
1�c� and 1�d�, but a multitude of different multiwave patterns
may be observed.

Beyond rescaling the time axis, the values of L and g do
not affect the wave patterns, so long as the grain number N is
large compared to the average number of grains per density
wave. For N below some ��, ��-dependent threshold, the
grains will gather in one or a few stable or metastable waves,
as exemplified in panels �e� and �f� of Fig. 1.

When N is increased beyond this threshold, however, we
find that the number of density waves increases linearly,
while the number of grains per density wave remain con-
stant. Average flow rate and the average velocity of density
waves also remain independent of N in the limit of large N.
This represents the asymptotic limit of our system, where
there is no dependence on density ), which we illustrate for
three pairs of coefficients in Fig. 2. Due to limitations of
computer time we have not investigated this limit when Nw
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a consequence, grain-wall collisions are triggered by, and
occur immediately subsequent to, grain-grain collisions. The
pipe is therefore assumed to be too narrow for arching effects
to play a role. We thus propose that the system is essentially
one-dimensional in behavior and may be captured qualita-
tively by a one-dimensional model where collisions with
walls are incorporated into the grain-grain collision rules
themselves.

The setup is the following. Let N grains move in one
dimension so that grain i has position xi and velocity vi. We
use periodic boundary conditions, with grains falling beneath
x=0 reinserted at x=L, where L is the length of the pipe. The
grains are accelerated by a constant gravity g toward x=0. In
the dilute limit dN�L, where d is the diameter of a single
grain, we find that the behavior is independent of d, and we
set d=0 for simplicity.

As mentioned, the collision rules employed are based on
the idea that the falling grains lose energy due to two differ-
ent types of collisions, with the walls and with each other.
Grain-grain collisions are modeled by reducing the relative
velocity of the colliding grains through a coefficient of res-
titution �� �0,1�. Thus, vR,ab

+ =−�vR,ab
− where vR,ab=va−vb,

grain “a” is directly above grain “b,” and we use superscripts
“−” and “+” to denote times just before and after a collision,
respectively.

Grain-wall collisions tend to decrease the average veloc-
ity of the system, vav=N−1�i=1

N vi, which would otherwise di-
verge in time. Instead, vav eventually reaches and fluctuates
around a constant value at which dissipated energy is in equi-
librium with energy gained from the gravitational field. We
model the interaction with the walls at each collision by a
coefficient of restitution �� �0,1� which dissipates grain en-
ergy by reducing the center of mass �CM� velocity of the two
colliding grains according to vCM,ab
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velocity of the pair is vCM,ab= 1
2 �va+vb�. These rules combine
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Note that introducing a restitution of vCM, momentum is
transferred for each collision from the grains to the �infinitely
massive� pipe, and the momentum of the grains alone is not
conserved. This causes the flow to approach a constant flow
rate as observed in experiments.

While a collision changes the velocities of just two grains,
the relative and CM velocities of three pairs of grains are
affected: the colliding pair plus the neighboring pairs above
and below. In particular, a collision increases the relative
velocity of the pair above the collision in proportion to the
lost CM velocity of the colliding pair. Thus, relative veloci-
ties are constantly regenerated, and the phenomenon of in-
elastic collapse �8,9� is avoided for ��0 and �	1.

III. SIMULATION AND RESULTS

We use event-driven molecular dynamics for our simula-
tions. Each grain is given an initial velocity which is as-
signed randomly according to various initialization schemes.
The grains are also given equidistant starting positions be-
tween 0 and L.

Simulations are run for different grain numbers N at con-
stant grain density )=N /L. After a “thermalization” time the
system reaches a steady state where the flow rate of the
whole system fluctuates about a mean value. Initializing the
simulations with different initial conditions yields the same
dynamic steady state, characterized by average flow rate, col-
lision frequency and the average number of density waves.

In Fig. 1, we plot grain trajectories in space and time. In
these plots we have used, in arbitrary units, L=1, g=0.01,
and N=100. In these simulations initial velocities between 0
and 1 were drawn randomly from a uniform distribution.

We observe two distinct regimes in the � ,� plane. When
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collision was with the grain below it and a higher velocity
for those which last collided with the grain above it.

While the qualitative behavior in the gaseous regime, �
��, is insensitive to the values of � and �, the situation in
the flocculent regime is quite different. As exemplified for
the parameter pairs in Fig. 1, the wave patterns vary strongly
in this half of the parameter plane. Both the magnitude and
velocity of the density waves depend sensitively on the val-
ues of � and �. Moreover, the qualitative picture varies from
a few large and stable waves with approximately constant
velocity to many small and volatile waves which emerge,
merge and dissolve and vary greatly in velocity even for a
single set of parameters. Two examples are shown in Figs.
1�c� and 1�d�, but a multitude of different multiwave patterns
may be observed.

Beyond rescaling the time axis, the values of L and g do
not affect the wave patterns, so long as the grain number N is
large compared to the average number of grains per density
wave. For N below some ��, ��-dependent threshold, the
grains will gather in one or a few stable or metastable waves,
as exemplified in panels �e� and �f� of Fig. 1.

When N is increased beyond this threshold, however, we
find that the number of density waves increases linearly,
while the number of grains per density wave remain con-
stant. Average flow rate and the average velocity of density
waves also remain independent of N in the limit of large N.
This represents the asymptotic limit of our system, where
there is no dependence on density ), which we illustrate for
three pairs of coefficients in Fig. 2. Due to limitations of
computer time we have not investigated this limit when Nw
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one-dimensional in behavior and may be captured qualita-
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set d=0 for simplicity.
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Note that introducing a restitution of vCM, momentum is
transferred for each collision from the grains to the �infinitely
massive� pipe, and the momentum of the grains alone is not
conserved. This causes the flow to approach a constant flow
rate as observed in experiments.
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affected: the colliding pair plus the neighboring pairs above
and below. In particular, a collision increases the relative
velocity of the pair above the collision in proportion to the
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ties are constantly regenerated, and the phenomenon of in-
elastic collapse �8,9� is avoided for ��0 and �	1.
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tions. Each grain is given an initial velocity which is as-
signed randomly according to various initialization schemes.
The grains are also given equidistant starting positions be-
tween 0 and L.

Simulations are run for different grain numbers N at con-
stant grain density )=N /L. After a “thermalization” time the
system reaches a steady state where the flow rate of the
whole system fluctuates about a mean value. Initializing the
simulations with different initial conditions yields the same
dynamic steady state, characterized by average flow rate, col-
lision frequency and the average number of density waves.

In Fig. 1, we plot grain trajectories in space and time. In
these plots we have used, in arbitrary units, L=1, g=0.01,
and N=100. In these simulations initial velocities between 0
and 1 were drawn randomly from a uniform distribution.

We observe two distinct regimes in the � ,� plane. When
�	�, dense regions tend to spread out. In this “gaseous”
regime, shown in Fig. 1�a�, no steady density waves are ob-
served. Whenever ���, density waves are observed, and the
transition from gaseous to flocculent behavior at �=� is sud-
den.

For the special case �=� seen in Fig. 1�b�, the Eq. �1�
simplify to va
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“a” after a collision is only a function of the velocity of grain
“b” before the collision, and vice versa. After “thermaliza-
tion,” we observe that the grain velocities are organized
about two values: a lower velocity for the grains whose last
collision was with the grain below it and a higher velocity
for those which last collided with the grain above it.

While the qualitative behavior in the gaseous regime, �
��, is insensitive to the values of � and �, the situation in
the flocculent regime is quite different. As exemplified for
the parameter pairs in Fig. 1, the wave patterns vary strongly
in this half of the parameter plane. Both the magnitude and
velocity of the density waves depend sensitively on the val-
ues of � and �. Moreover, the qualitative picture varies from
a few large and stable waves with approximately constant
velocity to many small and volatile waves which emerge,
merge and dissolve and vary greatly in velocity even for a
single set of parameters. Two examples are shown in Figs.
1�c� and 1�d�, but a multitude of different multiwave patterns
may be observed.

Beyond rescaling the time axis, the values of L and g do
not affect the wave patterns, so long as the grain number N is
large compared to the average number of grains per density
wave. For N below some ��, ��-dependent threshold, the
grains will gather in one or a few stable or metastable waves,
as exemplified in panels �e� and �f� of Fig. 1.

When N is increased beyond this threshold, however, we
find that the number of density waves increases linearly,
while the number of grains per density wave remain con-
stant. Average flow rate and the average velocity of density
waves also remain independent of N in the limit of large N.
This represents the asymptotic limit of our system, where
there is no dependence on density ), which we illustrate for
three pairs of coefficients in Fig. 2. Due to limitations of
computer time we have not investigated this limit when Nw
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grows beyond �400, which happens in the limit of either
small �, or ��1, but we conjecture that such an asymptotic
regime always exists when � and � are both on the open
interval �0,1�. Single-wave pictures such as panels �e� and
�f� of Fig. 1, seen also in various other simulations �30–33�,
thus appear in our model simply because there are not
enough particles in the system to form more than one wave
�36�.

In Fig. 3�a�, we estimate the number of grains per wave in
the flocculent regime, Nw, after “thermalization” �calculated
as N divided by the number of density waves� in the
asymptotic �large N� regime. In practice, we choose N large
enough that the observed value of Nw is constant with in-
creasing N. We have used N ranging from 500 to 4000 in
different areas of the plotted region. Nw varies nonmonoto-
nously and spans several orders of magnitude. Indeed, when
� decreases below 0.2 or � approaches 1, both Nw and “ther-
malization” time diverge rapidly, making calculation in this
region expensive.

In Fig. 3�b�, the average flow rate is given for all values of
� and �. In the gaseous regime we see a monotonous varia-
tion supporting our observation that there is no significant
parameter dependency on the structures formed in this re-
gion. Within the flocculent regime the pattern is similar to
that observed for the number of grains per density wave.

Counterintuitively, flow rate is highest in areas of the � ,�
plane in which the density waves are large, and conversely,
smaller waves correspond to a low flow rate. Since wave
velocity is always lower than the flow rate, each grain will
approach a density wave from above, collide its way through
it, and fall into a low-density area beneath it once more be-

FIG. 1. Spatiotemporal plots of grain trajectories. �a� Gaseous regime �=0.8, �=0.3. �b� Split velocity transition point �=�=0.55. �c�
and �d�: Different multiwave patterns, �� ,��= �0.55,0.65� and �0.30,0.85�, respectively. �e� and �f�: Collapse to a single wave; �� ,��
= �0.70,0.95� and �0.15, 0.85�, respectively. Further details in text.
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FIG. 2. �Color online� �a� Number of grains per waves and �b�
average grain velocity as functions of particle number N for three
sets of parameters �same in both panels�. The dashed line in the
above panel is N=Nw, i.e., a single density wave is present.

MODEL FOR DENSITY WAVES IN GRAVITY-DRIVEN… PHYSICAL REVIEW E 81, 061302 �2010�

061302-3

grows beyond �400, which happens in the limit of either
small �, or ��1, but we conjecture that such an asymptotic
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�f� of Fig. 1, seen also in various other simulations �30–33�,
thus appear in our model simply because there are not
enough particles in the system to form more than one wave
�36�.
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the flocculent regime, Nw, after “thermalization” �calculated
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enough that the observed value of Nw is constant with in-
creasing N. We have used N ranging from 500 to 4000 in
different areas of the plotted region. Nw varies nonmonoto-
nously and spans several orders of magnitude. Indeed, when
� decreases below 0.2 or � approaches 1, both Nw and “ther-
malization” time diverge rapidly, making calculation in this
region expensive.

In Fig. 3�b�, the average flow rate is given for all values of
� and �. In the gaseous regime we see a monotonous varia-
tion supporting our observation that there is no significant
parameter dependency on the structures formed in this re-
gion. Within the flocculent regime the pattern is similar to
that observed for the number of grains per density wave.

Counterintuitively, flow rate is highest in areas of the � ,�
plane in which the density waves are large, and conversely,
smaller waves correspond to a low flow rate. Since wave
velocity is always lower than the flow rate, each grain will
approach a density wave from above, collide its way through
it, and fall into a low-density area beneath it once more be-
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tion supporting our observation that there is no significant
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gion. Within the flocculent regime the pattern is similar to
that observed for the number of grains per density wave.

Counterintuitively, flow rate is highest in areas of the � ,�
plane in which the density waves are large, and conversely,
smaller waves correspond to a low flow rate. Since wave
velocity is always lower than the flow rate, each grain will
approach a density wave from above, collide its way through
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tion supporting our observation that there is no significant
parameter dependency on the structures formed in this re-
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it, and fall into a low-density area beneath it once more be-
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fore meeting another wave. Although large waves move
more slowly than smaller waves, we find that this is more
than compensated by the presence of large low density areas
between waves in which the grains can fall freely. Hence the
total flow rate is governed by the length of these acceleration
stretches whereas we find no clear connection between flow
rate and wave velocity.

We have analyzed the power spectrum of a typical wave
pattern �that of Fig. 1�d�� shown in Fig. 4. The analysis was
performed by recording density in a region of length L /10 as
a function of time. With sampling frequency 10 per time
unit, about 107 data points were recorded. The series was
then divided into subsamples which were Fourier trans-
formed individually, and the average of the power for all

subsamples were then taken �different number of sub-
samples were used for comparison; 200 subsamples are used
in Fig. 4�. The spectrum is peaked at a few frequencies,
demonstrating how the wave pattern has a number of pre-
ferred wave-front velocities. This is not obvious from study-
ing spatiotemporal diagrams such as Fig. 1�d�. In the high-
frequency regime the power dies off in a manner consistent
with a power law with exponent −2, consistent with the
wave-fronts undergoing Brownian fluctuations.

IV. CONCLUSIONS

We have studied granular pipe flow by means of a one-
dimensional two-parameter model. The two parameters are
the coefficients of restitution for collisions between grains
and collisions between grains and walls. The very simple
collision rules are contrasted by the amount of structure ex-
hibited by the model, and formation of density waves vary-
ing greatly in magnitude and qualitative behavior is ob-
served. We find a criterion for the formation of density
waves: that the dissipation from collisions with walls be
greater than that from grain-grain collision. Under this crite-
rion our model predicts that density waves can form also in
the absence of any interstitial gas.

Contrary to intuition, the flow rate is largest when density
waves are large, slow and far between. This indicates that in
some circumstances, the flow rate in gravity-driven granular
pipe flow can be increased by softening or roughening the
pipe walls. For example, with soft grains described by �
=0.3, a “rough” pipe with �=0.5 gives a flow rate two to
three times faster than a “smoother” pipe for which �=0.7.
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fore meeting another wave. Although large waves move
more slowly than smaller waves, we find that this is more
than compensated by the presence of large low density areas
between waves in which the grains can fall freely. Hence the
total flow rate is governed by the length of these acceleration
stretches whereas we find no clear connection between flow
rate and wave velocity.

We have analyzed the power spectrum of a typical wave
pattern �that of Fig. 1�d�� shown in Fig. 4. The analysis was
performed by recording density in a region of length L /10 as
a function of time. With sampling frequency 10 per time
unit, about 107 data points were recorded. The series was
then divided into subsamples which were Fourier trans-
formed individually, and the average of the power for all

subsamples were then taken �different number of sub-
samples were used for comparison; 200 subsamples are used
in Fig. 4�. The spectrum is peaked at a few frequencies,
demonstrating how the wave pattern has a number of pre-
ferred wave-front velocities. This is not obvious from study-
ing spatiotemporal diagrams such as Fig. 1�d�. In the high-
frequency regime the power dies off in a manner consistent
with a power law with exponent −2, consistent with the
wave-fronts undergoing Brownian fluctuations.

IV. CONCLUSIONS

We have studied granular pipe flow by means of a one-
dimensional two-parameter model. The two parameters are
the coefficients of restitution for collisions between grains
and collisions between grains and walls. The very simple
collision rules are contrasted by the amount of structure ex-
hibited by the model, and formation of density waves vary-
ing greatly in magnitude and qualitative behavior is ob-
served. We find a criterion for the formation of density
waves: that the dissipation from collisions with walls be
greater than that from grain-grain collision. Under this crite-
rion our model predicts that density waves can form also in
the absence of any interstitial gas.

Contrary to intuition, the flow rate is largest when density
waves are large, slow and far between. This indicates that in
some circumstances, the flow rate in gravity-driven granular
pipe flow can be increased by softening or roughening the
pipe walls. For example, with soft grains described by �
=0.3, a “rough” pipe with �=0.5 gives a flow rate two to
three times faster than a “smoother” pipe for which �=0.7.

ACKNOWLEDGMENTS

We have benefited from discussions with J. P. Hulin and
the Granular Media Group at FAST laboratory, Orsay.

0.2 0.4 0.6 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

ν

μ

a

f

e

d

cb

ν

μ

Log10(Nw)

0.2 0.4 0.6 0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8

a

f

e

d

cb

Log10(vav)

(a)

(b)

FIG. 3. �Color online� �a�: Plot of log Nw where Nw is number of
grains per density wave as a function of � and � in the asymptotic
limit. �b�: Plot of average flow rate as a function of � and � in the
asymptotic limit. In both panels, encircled letters refer to parameter
pairs in Fig. 1.

0.01 110−1

100

101

102

103

104

105

Frequency

Po
we
r

0.1

μ=0.30
ν=0.85

5

FIG. 4. Frequency spectrum of the wave pattern of Fig. 1�d�.
The graph is the average over the power spectra of 200 subsamples
of a long time series of �107 data points.

ELLINGSEN et al. PHYSICAL REVIEW E 81, 061302 �2010�

061302-4

fore meeting another wave. Although large waves move
more slowly than smaller waves, we find that this is more
than compensated by the presence of large low density areas
between waves in which the grains can fall freely. Hence the
total flow rate is governed by the length of these acceleration
stretches whereas we find no clear connection between flow
rate and wave velocity.

We have analyzed the power spectrum of a typical wave
pattern �that of Fig. 1�d�� shown in Fig. 4. The analysis was
performed by recording density in a region of length L /10 as
a function of time. With sampling frequency 10 per time
unit, about 107 data points were recorded. The series was
then divided into subsamples which were Fourier trans-
formed individually, and the average of the power for all

subsamples were then taken �different number of sub-
samples were used for comparison; 200 subsamples are used
in Fig. 4�. The spectrum is peaked at a few frequencies,
demonstrating how the wave pattern has a number of pre-
ferred wave-front velocities. This is not obvious from study-
ing spatiotemporal diagrams such as Fig. 1�d�. In the high-
frequency regime the power dies off in a manner consistent
with a power law with exponent −2, consistent with the
wave-fronts undergoing Brownian fluctuations.

IV. CONCLUSIONS

We have studied granular pipe flow by means of a one-
dimensional two-parameter model. The two parameters are
the coefficients of restitution for collisions between grains
and collisions between grains and walls. The very simple
collision rules are contrasted by the amount of structure ex-
hibited by the model, and formation of density waves vary-
ing greatly in magnitude and qualitative behavior is ob-
served. We find a criterion for the formation of density
waves: that the dissipation from collisions with walls be
greater than that from grain-grain collision. Under this crite-
rion our model predicts that density waves can form also in
the absence of any interstitial gas.

Contrary to intuition, the flow rate is largest when density
waves are large, slow and far between. This indicates that in
some circumstances, the flow rate in gravity-driven granular
pipe flow can be increased by softening or roughening the
pipe walls. For example, with soft grains described by �
=0.3, a “rough” pipe with �=0.5 gives a flow rate two to
three times faster than a “smoother” pipe for which �=0.7.
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fore meeting another wave. Although large waves move
more slowly than smaller waves, we find that this is more
than compensated by the presence of large low density areas
between waves in which the grains can fall freely. Hence the
total flow rate is governed by the length of these acceleration
stretches whereas we find no clear connection between flow
rate and wave velocity.

We have analyzed the power spectrum of a typical wave
pattern �that of Fig. 1�d�� shown in Fig. 4. The analysis was
performed by recording density in a region of length L /10 as
a function of time. With sampling frequency 10 per time
unit, about 107 data points were recorded. The series was
then divided into subsamples which were Fourier trans-
formed individually, and the average of the power for all

subsamples were then taken �different number of sub-
samples were used for comparison; 200 subsamples are used
in Fig. 4�. The spectrum is peaked at a few frequencies,
demonstrating how the wave pattern has a number of pre-
ferred wave-front velocities. This is not obvious from study-
ing spatiotemporal diagrams such as Fig. 1�d�. In the high-
frequency regime the power dies off in a manner consistent
with a power law with exponent −2, consistent with the
wave-fronts undergoing Brownian fluctuations.

IV. CONCLUSIONS

We have studied granular pipe flow by means of a one-
dimensional two-parameter model. The two parameters are
the coefficients of restitution for collisions between grains
and collisions between grains and walls. The very simple
collision rules are contrasted by the amount of structure ex-
hibited by the model, and formation of density waves vary-
ing greatly in magnitude and qualitative behavior is ob-
served. We find a criterion for the formation of density
waves: that the dissipation from collisions with walls be
greater than that from grain-grain collision. Under this crite-
rion our model predicts that density waves can form also in
the absence of any interstitial gas.

Contrary to intuition, the flow rate is largest when density
waves are large, slow and far between. This indicates that in
some circumstances, the flow rate in gravity-driven granular
pipe flow can be increased by softening or roughening the
pipe walls. For example, with soft grains described by �
=0.3, a “rough” pipe with �=0.5 gives a flow rate two to
three times faster than a “smoother” pipe for which �=0.7.
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