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Problem Description
Objective

The student should perform measurements in the wake of a stationary body with cyclic vortex
shedding (e.g. the wake behind a cylinder) to study such flow fields. The student is free to choose a
suitable measurement technique for this purpose, the measurement technique chosen must
however have both excellent spatial and temporal resolution.

The following questions should be considered in the project work:

1.  The student shall investigate the performance of a suitable measurement
    technique for three-dimensional unsteady flows such as e.g. three component hot
    wire anemometry
2.  If the method is deemed suitable, he should perform measurements in the wake of a
    blunt body to see if the periodic flow may be picked up by the measurement
    technique.
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AbstractThe performance of a hot wire probe with three wires is investigated for two dif-ferent �ow cases. The wires are made of a platinum/rhodium alloy, and has adiameter of 5µm. The three wires make a probe volume with a cross section of ap-proximately 5 mm. A cosinus �t using the e�ective angle method gives a deviationof ±1
◦ for a variation of yaw angle equal to ±20

◦. First the probe was tested in afully developed turbulent pipe �ow, for <D = 10
5. Good results were obtained for

|y/R| < 0.8, both for mean velocities and turbulent stresses. Closer to the wall themean �ow gradient was too large relative to the probe resolution, giving large er-rors. The second �ow case was a cylinder wake. A traverse of the �ow at x/D = 10was performed at <D = 3 · 103. The mean velocities and turbulent stresses waspartly found to be in qualitative agreement with results found in litterature. Theshear stresses uw and vw were however found to be unphysically large, this is be-lived to be due to the velocity gradient in the wake. Conditional averaging of thewake results with respect to shedding frequency was also conducted.



SammendragEgenskapene til en hot wire probe med tre tråder har blitt undersøkt for to forskjel-lige strømnings tilfeller. Trådene er laget av en platinum/rhodium legering og haren diameter på 5µm. De tre trådene skaper eit probe volum med eit tverrsnitt påca 5 mm. E�ektiv vinkel metoden har blitt brukt og en tilpassning til en cosinusfunksjon gir et avik på ±1
◦ for en variasjon av yaw-vinkelen på ±20

◦. Først bleproben testet i en fullt utviklet rørstrømning, med <D = 10
5. Resultatene er i godtsamsvar med teori og litteratur for |y/R| < 0.8, både mhp middelhastigeter og tur-bulente spenninger. Nær veggen ble gradienten til middelhastigheten stor i forholdtil probens rommelige oppløsning, noe som ga store feil. Den andre strømningensom ble undersøkt var vaken bak ein sylinder for <D = 3 · 103. De målte middel-hastighetene og turbulente spenningene var delvis i overenstemmelse med resultaterfra litteratur. Skjærspenningene uw og vw var ufysisk store. Det antas at detteer på grunn av den store hastighetsgradienten i vaken. Midling med hensyn påvirvelavløsnings frekvensen er og forsøkt.
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1 IntroductionIn complex �ows it can be di�cult to obtain good velocity measurements. Manymeasurement techniques depend on knowledge of the �ow direction and is of limitedvalue if it is unknown or varying with time. The wake behind a wind turbine issuch a �ow where the exact �ow direction is both unknown and time varying. Toperform successful single-point measurements in such a �ow, a probe capable ofmeasuring the velocity in all three dimensions is needed.If the turbulent characteristics of the �ow is of interest the temporal resolutionmust be good. The number of three dimensional measurement techniques withgood temporal resolution is limited. 3D laser doppler anemometry is one option,hot wire probes with three or more wires is another. Both have their strengths andweaknesses.In this project 3-wire constant temperature hot wire anemometry is studied.The goal is to learn if three component hot wire can be used in a complex andtime varying �ow to measure the mean velocities and turbulent stresses. To testthe performance of the probe two di�erent �ow cases is examined. The �rst case isturbulent pipe �ow. For this classic �ow case, the measurements can be comparedwith analytic results, and it is therefore suitable as an initial test. The second caseis the near wake of a cylinder. The cylinder wake can be analyzed both with respectto the mean �ow and as a time varying �ow where vortices are shed at a constantfrequency from the cylinder. It is therefore suitable for assessing the capabilites ofthe probe in a dynamic �ow.
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2 TheoryThis section explains the theory behind multi wire hot wire measurements and thebasics of the �ows that are investigated.2.1 Theory of multi component hot wire measurementsThe theory of single hot wire anemometry also applies to the individual wires of a 2or 3 component hot wire. In this section the principles of multicomponent hot wireanemometry are investigated, knowledge of single hot wire anemometry is assumedto be a prerequisite.2.1.1 E�ective cooling velocityVelocity measurements can be divided into two types. In many cases the �owdirection is known or at least assumed to be known, the magnitude of the velocityis then of interest. In more complex �ows the �ow direction is unknown, and mustbe determined by measurements. A single hot wire can only determine the �owvelocity V when the �ow direction is known.
E2

= A+BV n (1)To also determine the �ow direction, one needs a probe with at least one wireper dimension of interest. These wires are placed at angles to one another, andexperience di�erent magnitudes of cooling. A useful de�nition in this context isthe e�ective cooling velocity de�ned by Jørgensen.
Ve

2
= Un

2
+ k2Ut

2
+ h2Ub

2 (2)The e�ective cooling velocity is de�ned as the velocity normal to the wire whichhas the same cooling e�ect as the actual velocity vector. Equation 2 decomposesthe e�ective cooling velocity into three components. Figure 1 shows how the dif-ferent components are de�ned. Un is the normal component, Ut is the tangentialcomponent and Ub is the binormal component which is normal to the n-t plane. Thethree components contribute unequally to the cooling of the wire. The coe�cientsk and h correct for the di�erences in cooling along the the di�erent axes. K and hare not constants but functions of the �ow direction given by α and β, the yaw andpitch angles, k = k(α) and h = h(β). The tangential component is signi�cantlyless e�cient at cooling the wire compared to the normal and binormal components.For an in�nitely long wire, normal and binormal cooling should be equally e�ec-tive. In the �nite case the �ow will be a�ected by the supporting prongs, but thee�ect is small and the normal and binormal velocity is often assumed to be equallye�ective, which implies that h can be set to 1.2.1.2 The e�ective angle methodThe e�ective cooling velocity can not be measured directly, but it can be estimatedas a function of α. Consider �rst the two dimensional case, with no binormal4



Figure 1: De�nition of angles and cooling velocities relative to a single wirecooling, as shown in �gure 2(a). The e�ective cooling velocity can be related tothe velocity vector S in the n-t plane by the function f(α). This the basis of thee�ective angle method, that the e�ective cooling velocity can be related to the �owvelocity trough the yaw-angle α.
Ve = (Un

2
+ k2Ut

2
)

1

2
= Sf(α) (3)F can be many di�erent functions, but a cosine is a natural choice.

Ve = S cos(αe + α) (4)In equation 4 a new constant, αe, is introduced. The wire in �gure 2(b) ispermanently yawed relative to the probe axis, yp by the angle αe. Equation 4therefore gives us the component of the velocity vector S which is normal to thewire, as a function of α and αe.When a velocity calibration of the wire is conducted, the probe axis xp is alignedwith the �ow direction, hence α is zero(see �gure 2(a)). The measured voltageoutput, E, then corresponds to a given velocity, U , which is the same as the knownvelocity vector S. Equation 4 can for this case be written:
Ve = S cos(αe) = U cos(αe) (5)If the probe is yawed an angle α (see �gure 2(b)), for the same velocity S, thevoltage output Eyawed will correspond to a velocity Uyawed which is obtained fromthe velocity calibration. Uyawed is di�erent from S. Two di�erent expressions forthe e�ective cooling velocity may now be written. Equation 6 gives the e�ectivecooling velocity as the component of S which is normal to the wire.5



(a) Unyawed (b) YawedFigure 2: Velocity de�nitions in the normal-tangential plane
Ve = S cos(αe + α) (6)The e�ective cooling velocity can also be written as the component of Uyawedwhich is normal to the wire. This relation will not depend on α since Uyawed hasa �xed �ow direction relative to the probe.
Ve = Uyawed cos(αe) (7)By combining equation 6 and 7 a relation between the true velocity vector S,the �ow direction alpha and the velocity Uyawed is found. From now on we willdenote Uyawed in the more general form U(E), referring to the fact that U is foundfrom the hot wire voltage E through the velocity calibration.

Ve = S cos(αe + α) = U(E) cos(αe) (8)In the case where S and α is unknown, equation 8 will have two unknowns andcan not be solved alone. By combining two wires at an angle two one another,a set of two equations is obtained. To reduce the number of unknowns all anglesand velocities are de�ned in the probe coordinate system, (xp, yp, zp) rather thanrelative to the individual wire. The coordinate transformation will be discussed insection X. The reduction of unknowns results in a set of two equations and twounknowns. The equations are implicit but can easily be solved. An alternative tothe e�ective angle method could be to tabulate f for di�erent values of α. When theequations are to be solved one can �rst guess a value for α, use the corresponding6



value of f and solve the equations. If the guessed angle and the calculated angle isequal, the �nal solution is found, if not another iteration is needed.In the case of three dimensional �ow the binormal cooling must also be consid-ered. Equation 8 describes the e�ect of the normal and tangential cooling, and canbe expanded by adding the binormal cooling on the right hand side of the equation.S is now the velocity component in the normal-tangential plane.
Ui
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2
cos

2
(αei + α) + Ubi

2 (9)The index i is used to refer to the di�erent wires of the probe. U(Ei) is obtainedfrom the velocity calibration curve as a function of the wire voltage, Ei.For a three wire probe we get a system of equations
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(αe3) = S3

2
cos

2
(αe3 + α) + Ub3

2 (12)To be able to solve this system the (xp, yp, zp) coordinate system is used, thetransformation from wire coordinate system to probe coordinate system is describedin the next section.2.1.3 Coordinate transformationTo reduce the number of unknowns in equation 10 it is necessary to express Si and
Ubi as functions of U,V and W which are de�ned in the probe �xed coordinatesystem, (xp, yp, zp). Figure 3 de�nes the coordinate system and the angles neededto relate the probe wires to the coordinate system.

φi is the angle between the projection of wire i in the (yp − zp) plane and the
yp axis. Figure 4 shows the projection of the wires in the (yp − zp) plane and thecorresponding φ angles.If the wires are placed in a perfect triangle, the values of the angles will be
90

◦, 330◦ and 210
◦ respectively. Two velocity components are de�ned in the (yp−zp)plane, Ubi is the binormal cooling of wire i and UTP i is the projection of thetangential cooling velocity of wire i, tp refers to tangential projection. UTP and Ubcan be calculated for the individual wires. They are functions of V,W and φi.

UTP i = V cosφi +W sinφi (13)
Ubi = V sinφi −W cosφi (14)The velocity component in the normal-tangential plane of wire i,Si, is a functionof U and the projection of the tangential cooling velocity.

Si
2
= U2

+ UTP i

2 (15)Substituting for UTP in equation 15 yields S as a function of U,V and W.7



Figure 3: De�nition of the angles relating the wires to the coordinate system

Figure 4: Velocities and angles in the (yp − zp) projection8



Si
2
= U2

+ (V cosφi +W sinφi)
2 (16)The �ow angle α in the normal tangential plane must also be de�ned. From�gure X an expression for α is easily found.

Figure 5: De�nition of α
α = arctan

(

UTP

U

)

= arctan
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V cosφi +W sinφi

U

) (17)Equations 13, 15 and 17 may be substituted into equation 10 to yield the �nalequation for three dimensional �ow over wire i.
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2For the three wire probe a set of three equations with three unknowns is ob-tained. 9



2.1.4 Obtaining the angular responseFor the individual wires the e�ective angle αe must be found. This obtained byplacing the probe in a uniform �ow with a velocity S, and measuring the responsefor multiple yaw angles, α, while the pitch angle β is held constant at zero. Equation8 describes the relation between the �ow velocity and the velocity measured by thewire, U(E). The ratio between S and U(E) can then be found from equation 8.
U(E)

S
=

cos(αe + α)

U(E) cos(αe)
(19)The results from measurements at di�erent angles α can then be curv�tted toequation 19 by adjusting αe to obtain the best �t to the datapoints. A typical setof calibration angles is α = −20 : 5 : 20. In section 2.1.2 αe was presented as thegeometric angle between the wire normal in the normal-tangential plane and the

xp axis. This is not entirely true, αe will also be a function of the properities ofthe individual wire and most importantly of the �ow angle. The e�ective angleapproach assumes that the e�ective angle is constant, this is however not true forlarge �ow angles. A litterature review by Lekakis [5] found several estimates ofthe limits for x-wire probes ranging from ±12
◦ − ±20

◦. Russ and Simon foundthat the range of valid angles were larger for three-wire probes, in the range of
±30

◦(reported in the litterature review of Aanesland [1]).2.2 Probe volume and frequency responseThe spatial resolution is an important property of a measurement technique. Allmeasurement techniques have a lower limit for spatial resolution, the variation islarge. The spatial resolution of a pitot equals the diameter of the probe at least, fora laser doppler the size of the crossection of the laser beams is the limit, in particleimage velocimetry it will depend on the window size and overlapping among otherfactors.For a single subminiature hot wire Ligrani and Bradshaw [6] found the ideal ra-tio between wire length and diameter to be approximately L/D > 260 for L < 1mmfor measurents in a turbulent boundary layer. For longer wires 'eddy averaging'was reported. The wires used in this project is not close to the dimensions of thewires used by Ligrani and Bradshaw, and can therefore not be expected to resolvethe smallest scales in the �ow accurately. The physical size of the three wire probewill however be a greater limiting factor than the dimesions of the individual wires.A velocity gradient across the measurement volume of the probe will mean thatthe wires in the probe experience di�erent velocities. In a �ow with a large velocitygradient, i.e. close to a wall, this can result in large di�erences across the probevolume and distort the result. The size of the probe volume will therefore limithow large gradients which can be measured.The response of the individual wires is also important to obtain a good result.If the frequency response of the hot wire anemomters are di�erent, some turbulentcomponents can be overestimated. If for example the goal of an experiment is tovalidate whether a �ow is isotropic or not, a di�erence in frequency response can10



be a source of error. Most likely the three wires will not have identical frequencyresponses. To reduce the e�ect of this, the signals should all be �ltered at the samecut o� frequency.2.3 Turbulent pipe �owA con�ned �ow such as a pipe �ow will develop until a steady state solution isreached. Assuming that the �ow entering the pipe is uniform, the boundary layerwill immediately start to grow at the wall. The �nal steady state solution is reachedwhen the inviscid core is gone, the �ow is then said to be fully developed. The formof the velocity pro�le will depend on whether the �ow is turbulent or laminar, thewall roughness and the pressure gradient.Fully developed turbulent pipe �ow will exhibit certain characteristics. In thissection a brief review of some of these characteristics is given.2.3.1 The pressure gradientA uniform �ow entering a pipe will be retarded by the shear stress from the walls.The pressure gradient will be greatest in the beginning, and gradually decreaseuntil the �ow is fully developed. At steady state the driving force of the pressuregradient will balance the shear stress on the wall.
∂P

∂x
=

τw4

D
(20)The wall shear stress can be related to the wall-friction velocity, u∗, which isan important parameter in pipe �ow.

τw = ρu∗

2 (21)By combining equation 20 and 21 the wall-friction velocity can be found fromthe pressure gradient.
u∗

2
=

∂P

∂X

D

4ρ
(22)2.3.2 Mean velocity pro�leA turbulent pipe �ow will consist of three regions.

• An inner layer close to the wall where viscous shear is dominating
• An outer layer where turbulent shear is dominating
• An overlap layer merging the two layers together, where both types of shearis important. 11



The di�erent regions of the pipe �ow can be analyzed in several ways. Acommon approach is to identify the important parameters in the di�erent regionsand apply dimensional analysis. In the inner region the velocity is assumed todepend on the wall shear, �uid properties and the distance from the wall. Freestream conditions are assumed not to be important. The wall shear will howeverdepend on freestream properties such as the pressure gradient.
ū = f(τw, ρ, µ, y) (23)Dimensional analysis yields two dimensionless parameters.
ū

u∗
= f

(

yu∗

ν

) (24)The two dimensionless groups are denoted u+ and y+ respectively, giving u+
=

f(y+). In the inner viscous shear dominated region turbulent shear can be ne-glected. Analysis of the momentum equation will then yield that u+
= (y+), seee.g. White [12]. In the outer region of the pipe �ow the velocity no longer dependson viscous shear, but on the freestream pressure gradient and the radius of thepipe, R.

Ucl − ū = f(τw, ρ, R,
∂P

∂x
), y (25)Dimensional analysis yields three dimensionless groups.

Ucl − ū

u∗
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R
,
R

τw

∂P

∂x

) (26)Somewhere between the inner and outer layer, the two layers must merge, givingthe same velocity. At a given axial position in the pipe, the shape of g is assumedto be a function of ξ =
R

τw

∂P

∂x
. The overlap law for a given ξ can then be found bymanipulating equation 24 and 26.
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) (27)The two regions can only be merged if the f and g are logarithmic functions.The resulting relation can be written both in terms of inner and outer variabels.
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+A (29)Di�erent values have been suggested for the constants κ and B, but they areconsidered to be nearly universial. A will depend on ξ.12



2.3.3 Turbulent shear stressesIn a fully developed pipe �ow the only mean velocity component is that in thestreamwise direction, U. In section 2.3.2 it was showed how U varies as a functionof y. The shear stresses in a �ow are closely linked to the mean velocity gradients.The generalized Boussinesq eddy viscosity hypothesis suggests a relation.
uiuj = νT

∂Ui

∂xj

−
2

3
ρkδij (30)Based on equation 30, one can make som assumptions on the magnitude of theshear stresses in a pipe �ow. The only mean velocity gradient is ∂U

∂y
, one wouldtherefore expect uv to be the dominant shear stress in the �ow.The variation of uv as a function of y can be found from manipulation ofthe Reynolds averaged Navier-Stokes equations. Equations 31 and 32 show thesimpli�ed RANS equations for the pipe �ow.
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] (32)By integrating equation 32 with respect to y, from 0 to y an expression for thepressure at a given y coordinate is found.
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(33)If one takes the derivative of the pressure with respect to x one will �nd that

∂P
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is constant with respect y, seeing that v2 is not a function of x.
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(34)The equation in the x-direction can be integrated in the same manner, withrespect to y from 0 to y. By using the fact that dP
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is constant the followingexpression is found.
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− ρuv (35)Substituting equation 21 for dU

dy 0
yields the following equation.
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ρ
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− uv − u∗

2 (36)At the center of the pipe at y = h, µ

ρ

dU

dy
− ūv = 0 due to symmetry. By usingthe known situation at the center line an expression for the variation of the totalstress can be found as a function of y. 13



−uv +
µ

ρ

∂U

∂y
= u∗

2

(

1−
y

h

) (37)Equation 37 provides valuable information about how uv vary as a function ofy. In the inviscid region viscous shear stress is neglible and the turbulent shearstress is expected to vary linearly with respect to y. And at the center line allshear stresses are expected to be zero.2.3.4 Turbulent normal stressesBoussinesq estimates the normal stresses to be one third of the turbulent kineticenergy k. In turbulent pipe �ow that is not the case. Equation 30 assumes isotropicand homogeneous turbulence, but in a shear �ow the production of the normalstresses will vary. In the case of a turbulent �ow the turbulent kinetic energyequation in the axial direction will be the only one with a production term.
Production = −uv

∂U

∂y
(38)The production depends on the mean �ow gradient, as mean velocity in the yand z direction is zero for a fully developed pipe �ow the production of the turbulentnormal stresses is zero. This does not mean that the other normal stresses will bezero. Energy is transfered from ū2 to v̄2 and w̄2 by nonlinear pressure-velocityinteractions [8].2.4 Cylinder wakeThe cylinder wake is a complex and Reynolds number dependent �ow. For very lowReynoldsnumbers, Re < 49, a laminar, symmetrical and steady recirculation regionis present behind the cylinder. As the Reynoldsnumber increases laminar vortexshedding will begin. When the Reynoldsnumber reaches about 194 streamwisevortices begin to form [4]. Up to about ReD = 1000 the Strouhal number increases[11]. The Strouhal number is de�ned as the ratio between fD and U, where f isthe vortex shedding frequency behind the cylinder.

St =
fD

U
(39)For ReD > 1000 the Strouhal number start to decrease untill it stabilizes for

10000 < ReD < 100000 at a value close to 0.21 [11]. The region from ReD = 1000to ReD < 200000 is named the subrcritical range [13]. In the subcritical range theboundary layer on the cylinder remains laminar. If the Reynoldsnumber increasesfurther the boundary layer starts to develop from laminar to turbulent, moving thepoint of transition upstream and the separation point downstream. This results inreduced drag and a narrowed wake.Unlike a pipe �ow, the wake is continually evolving. The mean velocity �eldwill continue to develop until free stream conditions are reached. Momentum iscontinually transported towards the center of the wake where the velocity de�cit is14



largest. This can be seen from the continuity equation, which in its incompressibleform yields the following.
∂V

∂y
= −

∂U

∂x
(40)The continuity equation tells us how the gradient of V with respect to y isexpected to vary. Far from the centerline dU

dx
will be negative, since the wake isexpanding. In this region dV

dy
will be positive. Closer to the center of the wake weexpect dU

dx
to be positive, dV

dy
must therefore be negative.By performing an order of magnitude analysis, the x-direction Reynolds av-eraged Navier-Stokes equation can be simpli�ed considerably. The two dominantterms are the U gradient with respect to x and crossectional gradient of the tur-bulent shear stress uv.

U
∂U

∂x
= −

∂

∂y
(uv) (41)Far downstream from the cylinder (x/D > 80) the �ow can be assumed to beself-preserving [ref], which means that the shape of the pro�le is preserved alongthe x-axis. The shape of the pro�le can be found by starting with equation 41 andmaking some additional assumptions.
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3 Experimental setup and procedure3.1 The hot-wire probeThe probe consist of three wires on six supporting prongs, as shown in �gure 3.The chosen geometry is de�ned by two properties:
• The projection of the wires in the yp − zp plane is a triangle with 60 degreeangles
• The wires are inclined an angle αe = 35.26◦ relative to the yp − zp planeThese properties give a geometry where the wires are orientated perpendicularto one another. The geometry is the same as recommended by Aanesland [1].It was chosen to reduce the probe volume and give a good cooling response inall directions. The probes are manufactured to �t the above description, but theangles will never be exactly correct. The e�ective angles must be found trough theprocedure described in section 2.1.4. By taking a picture of the probe trough amicroscope, the orientation of the wires in the yp − zp plane can be found, such aphoto can be seen in �gure 6. The angle φ1 is used to relate the rotation of theprobe in the yp − zp plane to coordinate system.

Figure 6: Picture of the yp − zp plane taken trough a microscopeThe length of the supporting prongs is chosen such that the �ow over the wiresare not in�uenced by the rest of the probes. It is also important that the prongsare not too long, as this can cause vibrations which in turn can be interpreted asa turbulent velocity component.A platinum(90 % ) , rhodium(10 % ) alloy is used in the wire. This alloy givesa good oxidation resistance, relatively high tensile strength but has a relativly low16



temperature coe�cient of resistance making it less sensitive to velocity change [2].The diameter also in�uences the sensitivity of the probe. In this project a wirewith d = 5µm is used. This is a relativley thick wire, which reduces sensitivitybut increases mechanical strength. The length of the wire between the probes isapproximatly 4 mm, of this approximatly 1.75 mm of the coating on the wire hasbeen etched away in the centre. This gives l/d ≈ 350. To reduce the interferenceon the �ow from the supporting prongs the distance between the supporting prongsshould not be to small, the shape of the prong tips will also a�ect the �ow [2].The crossection of the measurement volume is ≈ 5 mm, and the spatial resolu-tion of the probe is there for assumed to be 5 mm.3.2 Measurement chainsFigure 7 describes the measurement chain in the experiment.

Figure 7: Measurement chainThe hot wire anemometers are optimized for 1µm not for 5µm which is usedin this experiment. For the initial measurement setup a high frequency distur-bance appeared on the signal at high velocities (> 12m/s). This is a result of theinability of the control circuit to regulate the wire voltage. It could to a certaindegree be helped by changing the bias setting on the anemometer. This increasedthe damping in the control loop at the cost of a lower frequency response. Forthe pipe measurements this was su�cient, in the cylinder wake however the large�uctuations required that higher velocities could be measured. The solution wasto extend the cable, increasing Rcable, and thereby increasing the damping in theloop.3.3 Signal sampling rateThe sampling rate must be set according to the timescale of the smallest eddiesof interest. When the range of timescales expected is unknown, the sampling ratemust be set according to the smallest timescale on can expect. Kolmogorovs micro17



scales are the smallest scales present in a �ow. They can be estimated, this hasnot been done in this project.The limiting factor for the sampling rate is in this case is the frequency responseof the anemometers. The frequency response was found to vary between the wiresfrom approximatly 6.3 kHz to 8.0 kHz. A low pass �lter cut o� frequency of 6.5kHz was chosen. The sampling rate should be set according to the sampling ratetheorem or Nyquist criteria, which states that the sampling rate should be greaterthan twice the maximum frequency expected to avoid aliases [10].A suitable sampling time should be chosen such that repeated measurementsgive the same result, averaging over relevant timescales in the �ow.In the cylinder wake measurements a sampling rate of 13 kHz was used alongwith a sampling time of 20 seconds. For the pipe measurements the samplingfrequency was set to 7 kHz and the sampling time to 10 seconds. This was notintended to be the �nal measurements, but simply preliminary measurements, thereduced number of datapoints gave signi�cantly reduced datasize and was thereforechosen at the time.3.4 Data reduction programThe sampled signal from the velocity calibration, the e�ective angle calibrationand traverses, were stored in text �les and imported into a Fortran script. Thescript corrects the data for temperature change, �ts polynomials to the velocitycalibration data, calculates the e�ective angles, and uses the calibration data tocalculate timeseries of velocity vectors from the voltage timeseries.The solution of the equations (Eqs. 18) was be found by using a zero point�nder. Initially a fortran function called DNSQE from the SLATEC library wasused, this function had previously been used by Aanesland [1] with success. Thealgorithm worked �ne for averaged voltages, but convergens problems arised whenthe turbulent timeseries were analyzed. As an alternative Matlabs fzero functionwas used. The Matlab function is considerably slower than the Fortran routine butit does the job. Simple constraints were placed on the solution to insure that aphysically correct solution was found. The Fortran script used for data analysis isdescribed furher in appendix 6.3.5 Pipe �ow rigThe pipe rig consists of a hydraulically smooth PVC pipe, with a diameter of 186mm and a length of 83 diameters. Ten pressure taps are mounted on the pipe,making it easy to measure the pressure gradient. The pipe is �tted such that atraverse can be mounted on top, making it possible to traverse the �ow throughthe center of the pipe. Velocities in the pipe rig could be varied from 5 to 12.5 m/s.The coordinate system used in the pipe has its reference(y = 0) on the centreline of the pipe, y is positive above the centerline, and negative below the centreline.The velocities in the pipe are denoted Ux,Ur and Utheta and are the axial, radialand circumferential velocities respectively.18



3.6 Wind tunnelAn open loop wind tunnel is used for the cylinder wake measurements. The testsection is 45 cm x 45 cm and 110 cm long. A cylinder with a diameter of 47.5 mmis �tted in the center of the test section, leaving 50 cm of distance downstreamfor the �ow to develop. Measurements are taken at x/D = 10. Velocities in thewindtunnel could be varied from 4 to 30 m/s.In the wind tunnel the centre of the wake is the reference(y = 0) in the coordi-nate system, y is positive above the centerline, and negative below the centerline.U,V and W are the axial, vertical, and transverse velocity components respectively.

19



4 Results and disscusion4.1 Calibration and testing4.1.1 Velocity calibrationIn the pipe rig the velocity calibration was performed for velocities between 5 and12.5 m/s. A third order polynomial �t to the calibration data including the zerovelocity point gave a residual of the order of 10−1, while a second order �t to thedata without the zero velocity point gave a residual of the order of 10−3. A secondorder polynomial was therefore found most suitable for velocity calibration in thepipe rig. The residual is de�ned as the sum of the relative deviations between thepolynomial �t and the �tting data.In the wind tunnel the velocity ranged from 4 to 30 m/s. Figure 8 shows thedistribution of the measured velocity in a point in the cylinder wake.
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Figure 8: Distribution of streamwise velocity,U, in a measurement point in thewake behind a cylinderThe velocity scatter falls under the lowest freestream velocity obtainable inthe windtunnel. This is not ideal as the polynomial �t in that region most likelywill cause an error in the estimated velocity but it could not be avoided. A thirdorder polynomial �t to the calibration data including the zero velocity point waschosen and gave a residual of 10−1. The match between the polynomial �t and thecalibraton data for wire 1 is shown in �gure 9.4.1.2 E�ective angle calibrationFigure 10 shows the cosine �tting of the e�ective angle calibration data.20
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Wire αe1 31.692 35.883 35.64Table 1: E�ective angles found from calibrationTrue angle Upitot U V W Calc.angle |V | Rel.error-20.00 9.9692 9.3490 0.4565 -3.5968 -21.05 10.0275 0.0058-15.00 9.8884 9.6096 0.4545 -2.7205 -15.81 9.9976 0.0110-10.00 9.9434 9.7241 0.4218 -1.7365 -10.13 9.8869 0.0057-5.00 9.9169 9.8504 0.2921 -0.8429 -4.89 9.8907 0.00260.00 9.9007 9.8726 0.1849 0.1024 0.59 9.8749 0.00265.00 9.9608 9.8039 0.1368 0.9367 5.46 9.8495 0.011210.00 9.8936 9.6796 0.0971 1.7844 10.45 9.8431 0.005115.00 9.9672 9.5099 0.1003 2.6105 15.36 9.8622 0.010520.00 9.9852 9.2656 0.1193 3.3928 20.12 9.8680 0.0117Table 2: Test of solution on dataset for wire 1The residuals of the curve�t for the wires was of order 10
−
2. The e�ectiveangles given by the calibration is given in table 1.The angles are in the vicinity of the ideal value of 35.26◦ and vary within anaceptable range. To test the e�ective angles and the φ angles the data set from theangle calibration of wire 1 can be solved. Table 2 shows the true �ow angle, the Uvelocity measured by the pitot, the calculated velocity components, the calculated

α, the length of the calculated velocity vector and the relative error between thevelocity measured by the pitot and the length of the calculated velocity vector.Table 2 shows that the calculated α falls within ±1
◦ of the true �ow angle. Therelative error between Upitot and |V | is 1.2% at most. The Yp component velocity,V, should be zero but shows a variation with respect to α. The maximum value ofV corresponds to a �ow angle of 2.9◦ or a 4.7% relative error, which is a relativlylarge error. The variation in V corresponds to an angle of 2.2◦. Aanesland [1]performed the same measurements, and reports a 3 − 4% relative error in V andW for similar conditions.The large deviation seems to be a combination of misalignment of the proberelative to the �ow and a dependency of the solution on the true �ow angle. A probepitch angle di�erent from zero would give the misalignment, producing a permanento�set. The variation with α is most likely caused by a wrong value chosen for φ1,since φ1 is determined by visual observation and is not likely to be exact. Thevariation in V could be used to �nd the correct value of φ1, the calculations couldthen be rerunned, and the remaining constant error in V should be caused by thepitch. Such a procedure has not been attempted in this project. Several authors,i.e. Cantwell and Coles [3] uses yawing to perform similar corrections, Cantwelland Coles used it for a x-wire probe. 22



4.2 Turbulent pipe �owTwo pro�les of the turbulent pipe �ow has been taken at a Reynoldsnumber of aapproximately 10
5. The main di�erence between the two pro�les is that they aretaken at two di�erent values of φ1. This is done to investigate the e�ect of rotatingthe probe.4.2.1 Pressure gradientThe static pressure in the pipe is measured using the pressure taps distributedalong the pipe. Instead of measuring the absolute static pressure, the pressuredi�erence is measured between the di�erent points and a chosen reference point at

X/D = 70.5. Figure 11 shows the drop in static pressure along the pipe. The linedrawn in the plot is a straight line from the �rst measurement to the last.
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Figure 11:As expected the highest Reynoldsnumber gives the biggest pressure drop. Bothmeasurement series show a nearly linear drop in pressure, as one would expect fora fully developed �ow. The pressure gradient is approximated by considering thepressure drop from X/D = 11.3 to X/D = 70.5. Based on the pressure gradientthe friction velocity may be found from equation 22. The friction velocity can alsobe estimated from the friction factor,f.
u∗

= Uavg

(

f

8

)

1

2
(42)When the Reynoldsnumber and the roughness height of the pipe wall is knownthe friction factor can be found from the Moody diagram or from an equation. ThePVC pipe is hydraulically smooth, and the friction factor can therefor be found23



φ1 ReD
dP

dx
[Pa/m] u∗

dP
dx

[m/s] fReD
[−] u∗

fReD
[m/s]90 9.74× 10

4 3.2236 0.3534 0.0181 0.3736180 1.03× 10
5 3.5487 0.3708 0.0179 0.3937Table 3:from Prandtls equation for smooth pipes [11]. Table 3 gives the results for thedi�erent values of φ1The two means of calculating the friction velocity gives similar results, thevalues given by the friction factor are about 6% higher than that given by thepressure gradient. In the following the friction velocity obtained from the pressuregradient is assumed to be correct.4.2.2 Mean velocitiesFigure 12 shows the velocity pro�le for the axial velocity Ux, for both φ1 = 90 and

φ1 = 180.
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Figure 12: Normalized mean pro�le,U. Ux,max,φ1=90 = 8.75m/s, Ux,max,φ1=90 =

9.25m/sThe velocity on the centerline was measured a second time after the pro�le wastaken, the result was within 1% of the �rst measurement for both pro�les. Bothpro�les have the same shape.In �gure 13 the data for φ1 = 90 and φ1 = 180 is plotted against the logarithmiclaw. Torbergsen [9] did measurements in the same pipe rig for Re = 75000 andobtained a good �t with the logarithmic law using κ = 0.41andB = 5.5. White[12] claims that κ = 0.41andB = 5.0 give a better �t to experimental data. Both24



versions of the logarithmic law is plotted in �gure 13. The slope of the measurementdata matches the choice of κ = 0.41. B = 5.0 as suggested by White gives the best�t to the measurement data in the log-law region.
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Figure 13: Logarithmic regionIn a fully developed turbulent pipe �ow one would expect the transverse velocitycomponents Ur and Uθ to be zero. Figures 14 and 15 show that neither of thevelocity components are exactly zero across the pipe. The radial pipe velocity Ur, isfairly constant over the cross section of the pipe, but show some variation, especiallyclose to the pipe walls. The range of variation in velocity is about ±0.125m/s orapproximately an angle of ±0.8◦ relative to the average axial velocity. Both thepro�les for φ1 = 90 and φ1 = 180
◦ show the same kind of variation with respectto y/R but they are o�set relative to one another. The o�set equals about 1.6◦of probe pitch, which is within the error range one must expect when the probe isaligned with the �ow visually.The circumferential velocity Uθ show a peculiar variation over the crossectionof the pipe, varying over a range of ±0.45m/s or ±2.86◦ relative to the averagevelocity. If the deviation of the circumferential velocity is compared to the localaxial velocity the range of angle variation exceeds ±4

◦, this is shown in �gure 16.The variation of Uθ with respect to y/R follows the same pattern for both seriesof measurements and closely resembles a typical inverse tangent function. If thevariation were to be explained physically it would imply that the �ow inside thepipe was rotating about the centerline. The velocity does however not decreaseclose to the wall, but increases rapidly, this implies an unphysically large shearstress on the wall.Since the �ow is assumed to be unphysical the radial variation must be causedby one or more errors in the setup, data reduction or caused by limitations of the25
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Figure 14: Radial mean velocity,Ur

−0.5 0 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Uθ [m/s]

y/
R

 [−
]

 

 

Uθ,φ
1
 = 90

Uθ,φ
1
 = 180

Figure 15: Circumferential mean velocity,Uθ26



−5 0 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

arctan(Uθ/U
x
) [deg]

y/
R

 [−
]

 

 

Uθ,φ
1
 = 90

Uθ,φ
1
 = 180

Figure 16: Circumferential mean velocity,Uθ, expressed as angular deviation rela-tive to Uxprobe. The distinct shape of the pro�le can make one wonder if this variation couldbe linked to an error in the arctan expression in equation 18, but no such errorhas been found. An interesting observation can however be made by observing thedi�erence in the two centerline measurements, both for Ur and Uθ the relative errorbetween the two centerline points is large. While the repeated measurements gavesolutions for the axial velocity Ux within one percent of the �rst solution, the radialand circumferential repeated solutions can vary up to 0.5◦ and 1
◦ respectively.This is a large deviation compared to the range of the calculated values for Ur and

Uθ. By re-examining the measurement data there was found to be a small driftin wire voltage, which could not be corrected for by considering the temperaturechange. Ideally the measurement series should have been repeated, but the errorwas discovered to late. Based on this observation parts of the large variation for Urand Uθ might be caused by voltage drift. The shape of the variation of Ur and Uθdoes however seem to be a function of y or a some other property related to y, notonly a possible voltage drift. But what property could that be? Ux is a function ofy, but is symmtric about the centreline. The gradient of Ux also varies as a functionof y but is not symmtric. In section 2.2 the possible error of measuring in largevelocity gradients was dicussed, this could possibly be the cause. This discussionis continued in the next section on shear stresses.4.2.3 Turbulent shear stressesAs discussed in section 2.3.3, the uxur shear stress is expected to be the domi-nant shear stress and behave linearly across a large portion of the pipe crossectionaccording to equation 37. Figure 17 shows the theoretical relation and the experi-27



mental results.
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Figure 17: Turbulent shear stress uxur/u
∗The experimental results follow the linear relation well. The gradient is a bitsmaller than 1 in the centre region where viscous shear is assumed to be neglectablebut the deviation is small, a very similar result was found by Torbergesen [9]. Atthe centreline the measured shear stress is close to zero, as expected.Close to the pipe wall the turbulent shear stresses are expected to decay anddrop to zero in the viscous sublayer. The spatial resolution of the probe is not largeenough to measure closer to the wall than about y+ = 70 which is far outside theviscous sublayer. The measurement data show little tendency to drop of close to thewall. For φ1 = 90 there is a little drop for y/R < −0.9, while for y/R > 0.9 thereis actually an increase in shear stress measured for both datasets. The increasedshear stress could just be outliers, but it happens for both datasets.The two other shear stresses, uxuθ and uruθ should theoretically be zero asthere is no mean velocity gradient resulting in production of neither of them. In�gure 18 the normalized stresses are plotted. In the centre region the magnitude of

uxuθ and uruθ are relatively small compared to the maximum value of uxur, about3%, but not zero. Moving closer to the wall both shear stresses increase slowlyuntil |y/R| ≥ 0.8, where the shear stresses increase more rapidly. The magnitudeand variation of the shear stresses can not be explained physically, and must berelated to the measurement process.For |y/R| ≥ 0.8 the velocity gradient experienced by the probe volume is large.The exact e�ect of an exessively large velocity gradient compared to the probevolume is unknown. But it will result in calculated velocities di�erent from thetrue velocity, as the wall is approached. The result can be a gradient of both Urand Uθ with respect to y as observed in section 4.2.2. Subsequently this is likely to28
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Figure 18: Shear stresses uxuθ and uruθresult in unphysical shear stresses. In section 4.2.2 the deviation for both Ur and
Uθ was found to increase rapidly for |y/R| ≥ 0.8, this matches the result found for
uxuθ and uruθ and supports the theory that a large velocity gradient biases theresult.When comparing the results with that found by Aanesland [1], the data scatterfor the pro�les obtained in this project is larger and do not collapse as neatly intoa line as the results of Aanesland. What causes this is uncertain, but a to shortsampling time could potentially be the reason.4.2.4 Turbulent normal stressesFigure 19 displays the reduced normal stress for both measurement series, whichreveals that (ux)

+ is the largest normal stress, as one would expect.Torbergsen [9] found ux
+ on the centreline to be approximately 0.85 for < =

0.75e5. The results should be comparable as the Reynoldsnumbers is of the sameorder. According to the results of Torbergsen, ux
+ is fairly constant on the cen-treline for increasing Reynoldsnumbers, but increases closer to the wall due to theincreased velocity gradient. ux

+
cl. = 0.85 matches the obtained results fairly well,there is however some scatter in the data as is already mentioned in the end ofsection 4.2.3. The dataseries for the two di�erent probes also give slightly di�erentresults. Moving closer to the wall ux

+ is underestimated compared to the resultsof Torbergsen, but matches the results of Aanesland [1] better. ur
+ and uθ

+ showthe same variation as reported by Torbergsen for |y/R| ≥ 0.6 but the scatter islarge for variation of φ1.Values for ux
+,ur

+ and uθ
+ can not be estimated without giving a relativlylarge potential error. uθ

+ for y/D = ±0.6, can for instance be estimated as 1.1but29
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Figure 21: Normalized pro�le of U in cylinder wake for Re = 30717, x/D = 10the crossection. Whether this is a true property of the �ow or not is unclear, therange of variation in V equals 2.4 deg probe pitch relative to the reference velocity.If the velocity pro�le is corrected by subtracting the local freestream velocity, thepro�le will be as in �gure 23. This correction assumes that the �ow velocities canbe superpositioned. The result looks more like what one would expect, but whencompared to the results of others i.e. Ong and Wallace [7] the shape of the velocitypro�le is not a perfect match.The velocity component in the z-direction is plotted in �gure 24 along withthe freestream measurements. The same velocity pro�le corrected for freestreamconditions is plotted in �gure 23.The freestream velocity variation can not be explained by the �nite size of theprobe and it is not a constant o�set as a yaw angle would give. The variation ofW in freestream conditions is however rather small, it equals approximately 2
◦. Inthe wake of the cylinder the variation of W is sligtly larger.It is not straightforward to understand how the timevarying velocity gradientsin the wake of cylinder will a�ect the measurements. If the timeseries could beconditionally averaged on i.e. the pressure variation on the cylinder, the timeseriesfor di�erent y coordinates could be linked, and the gradients found. Even if thatcould be done it is not straightforward to decide what e�ect it would have on themean �ow pro�les. If the �nite geometry of the cylinder and the wind tunnel a�ectsthe shedding process that could also cause three dimensional e�ects.32
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Figure 22: Normalized pro�le of V in cylinder wake for Re = 30717, x/D = 10
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Figure 23: Normalized pro�le of V − Vfreestream and W −Wfreestream in cylinderwake for Re = 30717, x/D = 10 33
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Figure 24: Normalized pro�le of W in cylinder wake for Re = 30717, x/D = 104.3.2 Turbulent shear stressesThe largest turbulent shear stress is again expected to be uv as it has the largestmean velocity gradient production term. In �gure 25 the non-dimensionalized uvwake pro�le is plotted along with the freestream result.The pro�le shows the same distinct shape found by i.e. Wissink and Rodi [13].At the center where ∂U

∂y
is zero, uv should be zero, the results show that uv validatethis. The maximum/minimum values for uv is expected where the second gradientof U is zero. This occurs at y/D ≈ ±1 and matches the mean velocity pro�le fairlywell.The sign of uv can be found from a simple consideration of the mean pro�le. Ifan air-particle at the upper half of the wake were to be given a negative turbulentvelocity component, v′, it would experience a positive streamwise turbulent velocity,

u′. The product of these two would be negative, hence uv should be negative forthe upper half of the velocity pro�le. If the particle is moved up instead the resultis the same. The same line of reasoning will give a positive value of uv in the lowerhalf of the wake.Ong and Wallace found that the largest magnitude of uv/Uref
2 was about

±0.004 at x/D = 10. From �gure 25 one can see that the corresponding largestshear stress measured ranged from -0.005 to 0.008. The range of the variation isof the same order of magnitude, but it was expected that the variation would besymmetric about 0. The two other shear stresses are expected to be small for a 2D�ow. Figure 26 shows the shear stresses, normalized by the reference velocity.
uw and vw are not negligibly small as expected, rather they are of the sameorder of magnitude as uv. This can not be interpreted as a physically valid result,34
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Figure 25: Pro�le of normalized turbulent shear stress uv in cylinder wake for Re= 30717, x/D = 10
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Figure 26: Pro�le of normalized turbulent shear stresses uw and vw in cylinderwake for Re = 30717, x/D = 10 35



but must caused by either the spatial resolution of the probe or some other factorin the measurement setup or processing.4.3.3 Turbulent normal stressesThe largest normal stress measured in the turbulent wake is not the streamwisecomponent but the cross�ow normal stress v2. This in accordance with the re-sults reported by i.e. Ong and Wallace [7]. The centreline streamwise turbulenceintensity at x/D = 10 measured by Ong and Wallace is approximately 17% and�at in the centre region with a small reduction in turbulence intensity on the cen-treline. From �gure 27 one can �nd that the centreline turbulence intensity isapproximately 17.5%, which matches the result of Ong and Wallace but there isno reduction on the centreline. On the centreline Ong and Wallace found v2
/

U2

refto be 0.083, from �gure 27 a corresponding value of 0.06 is found, which gives a
28% deviation.
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Figure 27: Pro�le of normalized turbulent normal stresses in cylinder wake for Re= 30717, x/D = 10Ong and Wallace does not report the magnitude of w2 relative to the others.
w2 exhibits a very characteristic platou in the centre region.4.3.4 Analysis of the time varying wakeThe vortex shedding behind the cylinder causes the velocity in the wake to vary ina orderly fashion as the vortices pass by. Figure 28 shows a small part of a solvedtimeseries on the centreline at x/D = 10.All three velocity components exhibit variations in magnitude, but it is mostclear for V, which show a periodic variation about a mean value close to 0. In a36
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Figure 28: The solution of the �rst 1000 samples on the centreline at x/D = 10perfectly two dimensional �ow there should be no variation in W, which shouldbe zero. From �gure 28 one can however see that W varies over a range slightlysmaller than that of V.The frequency of the periodic variation of V can be found by analyzing thefrequency content of the signal. This is done by taking a fast Fourier transform(FFT) of the dataset, the built in function in MATLAB is used for this purpose.Figure 29 shows the FFT of the solution of a timeseries measured at the centerlineof V.The FFT shows a clear peak at f = 42.8Hz. From equation 39 the shedding fre-quency can be estimated by assuming a Strouhal number of 0.21, and as previouslymentioned the freestream velocity is assumed to be about 9.7m/s.
f =

0.21U

d
= 42.9Hz (43)This is a very close match to the result of the FFT. It is however worth inves-tigating the shedding frequency a bit closer. The analyzed dataseries is measuredover a timeperiod of 20 seconds. If the vortex shedding process is perfectly sta-ble, the peak frequency will be the shedding frequency. It is not likely that thefrequency is completely stable but rather that it will vary slightly as a function oftime. To investigate this, subsets of the measured data was investigated indepen-dently. Analyzing a subset of the measurement data will reduce the smoothing ofthe data and give a larger amplitude for the peak frequency. There is however andisadvantage of considering a small subset. When an FFT is found, the number offrequencies analyzed is taken as the largest power of two smaller than or equal tothe sample size, this is done to increase the calculation speed. This means that the37
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Figure 29: FFT of solution at centerline, x/D = 10, fs 13000Hz, Ts = 20sfrequency resolution is reduced when the sample size is reduced. The timeseriesis sampled at 13 kHz, the FFT can only �nd frequencies up to 6.5 kHz accordingto the Nyquist sampling criteria. To obtain a resolution of 1 Hz the FFT mustbe taken for 6500 frequencies. The smallest power of two larger than or equal to6500 is 213 = 8192, which equals a 0.63 seconds sampling time, or approximately26 shed vortices. Analysis of the �rst 0.63 seconds yield the FFT shown in �gure30. The shedding frequency was found to be almost the same, but the amplitude ofthe peak frequency is almost three times as large, indicating that frequency variessome over the span of one timeseries.The shedding frequency can be used to conditionally average the signal byassuming that the shedding process is stable. This done by splitting the timeperiod into N number of bins. A sampled timeseries is then analyzed, and theindividual samples is placed in bins according to their temporal position relativeto the other samples. In �gure 31 the conditional average of U, V and W for the�rst second of a timeseries aquired on the centerline is plotted. The mean valueof the di�erent velocities is substracted. The data is conditionally averaged usinghalf the calculated shedding frequency. I.e. the period averaged over equals thetime it takes for two vortexes to be shed, one from each side of the cylinder.The conditional averaging gives a clear variation of W with respect to theperiod over which the signal is averaged. The range of W is a bit smaller than thatobserved in �gure 28. This indicates that variation is dampened by the conditionalaveraging process due to a varying shedding frequency. The variation in U and W isless systematic, but should be studied further. Several other interesting correlationscould be investigated by conditional averaging, but there was not time for that.38
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Figure 30: FFT of solution at centerline, x/D = 10, fs 13000Hz, Ts = 0.63s
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4.4 Performance of the probeIn this section an attempt to assess the properties of the hot wire probe basedon the results presented is made. For the turbulent pipe �ow the results were inreasonably good agreement with theory, major discrepancies were only found closeto the pipe wall. Small errors most likely due to misalignment of the probe wereobserved at several occasions. From the e�ective angle calibration it was found thatexact positioning of the probe visually could only be done with a limited accuracy.This a�ected the calculated properties, but must be expected. The normal stresseson the centerline of the pipe is such an example. Theoretically the crosstreamnormal stresses should be identical on the centerline, but due to misaligment of theprobe the results deviated.The discrepancies close to the wall are belived to be caused by the large velocitygradient. By making an estimate using a two-point numeric scheme the velocitygradient is found and plotted in �gure 32.
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Figure 32: Gradient of Ux in the turbulent pipe �owThe shape of the velocity gradient pro�le look suspicously like the pro�le of
Ur and Uθ. This strenghtens the hypothesis put forward in section X, that thevariation of Ur and Uθ is linked to the velocity gradient. It is however worthnoting that the two di�erent values of φ1 gives very similar results, it does howevernot seem obvious that the large velocity gradient will give the same error in bothcases. Based on the pro�le for uw and vw(�gure 18) a rough estimate for thecritical magnitude of the velocity gradient can be found. Assuming that the resultsare good until |x/D| ≥ 0.8 the critical gradient can be estimated to be ±50s−1.Over the crossection of the hotwire probe this will equal a 0.25m/s di�erence invelocity. 40



The next interesting question is of course what kind of gradients one can ex-pect in the cylinder wake. As a start the gradient of the mean velocity �eld canbe estimated. The result is plotted in �gure 33. A maximum mean gradient ofapproximately ±40s−1 is found in the wake, which is just below what is estimatedas a critical gradient. The maximum value of the gradient could be larger than
±50s−1 as the real value will vary about the mean. Based on this a likely conclu-sion is that the spatial resolution of the probe could bias the measurements in thecylinder wake.

−50 0 50

−3

−2

−1

0

1

2

3

dU/dy [1/s]

y/
D

cy
l. [−

]

Figure 33: Gradient of U in the cylinder wakeBasing the estimate of the gradient on the streamwise velocity obtained fromthe hot wire is ofcourse a source of error in itself, as the gradient might bias thestreamwise velocity. However the results from the pipe �ow gave a relatively good�t to the logarithmic law even close to the wall, indicating that the streamwisevelocity is not severly a�ected by the large gradient. From the pipe �ow resultsone can conclude that all the turbulent properties are a�ected by the velocitygradient. In the cylinder wake the largest deviation from what was expected wasfound for uw and vw, both shear stresses had a magnitude similar to uv. It seemslikely that the error is caused by the velocity gradient. Compared to litteraturethe normal stresses also showed some deviation, but the order of the results werecorrect. It does therefore seem like the turbulent shear stresses in the wake is moreheavily a�ected by the large gradients than the turbulent normal stresses. A similarconclusion can to a certain degree also be made by studying the results from thepipe, but no decissive conclusion can be made, as the pipe data also shows scatteras a result of varying φ1. 41



5 Future work and recommendationsAnalysing the results obtained revealed that more work should have been put intoaligning the probe with the �ow. Designing of a holder which allowed for yawingand pitching of the probe as well as traversing could help this situation. By yawingand pitching the probe for a known velocity the results could be used to �nd theerror in the probe alignment and correct for it in the data reduction program whenanalyzing the results.If the probe is to be used in dynamic �ows, such as e.g. a turbin wake it would benecesarry to investigate further how the shed vortices a�ect the measurements. Thiscould be done by analysing a cylinder wake furter downstream, using both LDAand hot-wire, perhaps combined with pressure measurements on the cylinder toconditionally average the data. Going downstream the results are likely to convergeat some point when the spatial resolution of the probe is su�cient compared tothe gradient. The results from conditional averaging could then be used to �nd thegradients in the vortices etc.If possible it would of course be bene�cial to reduce the physical size of theprobe.
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6 ConclusionThe e�ective angle of the individual wires has been found from calibration in aturbulent pipe �ow, the results show that the e�ective angle approach can beapplied within a range og ±20 deg with an uncertainty of ±1 deg in yaw for theindividual wire. The velocities matched the reference velocity obtained by pitotwith a maximum relative error of 1.1%.Measurements in the turbulent pipe �ow gave a good match with the logarith-mic law and the theoretical distribution of uxur. The normal shear stresses werein agreement with the results found by Torbergsen [9], but were found to be sen-sitive to probe misalignment. Outside |y/R| > 0.8 the probe gave bad results forshear stresses and normal stresses, due to the large gradient of the axial velocity.The radial and circumferential mean velocity was also found to be biased by thegradient, especially close to the wall for |y/R| > 0.8.As long as the probe has a physical size an error must be accepted when mea-suring in a velocity gradient. A rough estimate of a critical gradient for the probewas set to 501/s based on assesment of the variation of crossstream turbulent shearstresses. The exact magnitude of the error given by the gradient is hard to �nd asseveral other sources of error also contribute to deviation from the expected result,such as probe yaw and pitch as well as inaccuratly estimated values for φ1.Measurements in the turbulent wake of the cylinder revealed the weaknesses ofthe measurement technique. The results give that the crosstream turbulent stresses,
uw and vw, are of the same order of magnitude as uv. The cause is belived to bespatial resolution of the probe.The results lead to the conclusion that the probe is capable of measuring bothmean velocities and turbulent stresses with good accuracy in �ows where the ve-locity gradient is smaller than the critcal gradient. A prerequisiteis however is thatthe probe is carefully aligned with the �ow or that the misalignment is correctedfor in the data reduction process.Further testing is recommended to verify to what extent the probe can be usedin �ows where vortices are shed, e.g. tip vortices from wind turbine models.
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AppendicesA Data reduction programA script (HW3Dv12.f95) has been written in Fortran to perform all calculationsneeded, from calibration to calculation of statistics. The program is written to begeneral, and easy to apply to di�erent datasets. A text�le (�ledata.txt) speci�eswhere the input data is to be gathered and where to stor the output data. Inaddtion every set of angle calibration or timeseries datasets is accompanied by a�le specifying transducer constants, wire temperature etc(settings.txt).To curve�t data a Fortran program kurve-mac.f written by Per-Åge Krogstadis used, the program �ts data to any equation speci�ed and reports the result andthe match between the equation and datapoints.
residual =

∑

∣

∣

∣

∣

∣

Y (i)datapoint − Y (i)fit
Y (i)datapoint+Y (i)fit

2

∣

∣

∣

∣

∣

(44)The datareduction was initially meant to be performed using a Fortran routinecalled dnsqe.f from the Slatec library. Dnsqe.f uses the more complex dnsq.f to�nd the zero of a system of nonlinear functions, using "a modi�cation of the Powellhybrid method". It did however prove di�cult to obtain convergence using dnsqe.f,it works for mean values but it did not �nd the solution in turbulent �ows. As theroutine was successfully used by Aanesland [1] this was suprising, and probablyindicates that the routine was not applied correctly. The solution was to use Mat-labs fzero function to do the same job. This was however a much slower solution,but it worked.The script is compilated as a project in Plato to be able to combine free-formatand �xed-format Fortran �les, since dnsqe.f is used to solve some meanvalues inthe script directly.The original idea was that the program should be general and user friendly, theend result works as intended but is too complex. Further work would be to includemore error checking, but also to dramatically simply the script.
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