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Abstract   
Further development of a two-dimensional thermal analysis code (G2DHeat) to include internal 
decomposition and charring ablation of insulation materials is presented. An overview of the 
structural changes made to the program code by implementing an implicit solution routine, including 
source term is given, before testing and verification of accuracy is performed. A kinetic model for 
decomposition reactions, as well as routines for handling the generated gas from the decomposition 
reactions, changes concerning the material properties and erosion of surface material are 
implemented and explained. Comparisons of results are made with similar results obtained by 
commercial programs. Possible reasons affecting the results are pointed out, before additional 
comparisons with experimentally observed measurements are performed. Based on the simulated 
results it is concluded that a great deal of testing remains for proper validation of the program. How 
to include better boundary conditions for simulating charring ablation is suggested and 
recommended for further development of the program.       
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Introduction 
Heat transfer in rocket motors is being increasingly investigated to better understand the physical 
material changes during the operational time of the motor. Material durability is important since the 
motor structure requires strength and manoeuvrability to bring off a successful flight. The more 
demanding the customer specifications are, the more challenging are the problems faced by the 
designers.  At Nammo AS, the research department is working on methods to better solve such 
problems. In this work they use a computer simulation program (G2DHeat) to estimate the transient 
heat transfer in rocket motor parts.  Using the results from this program, they decide on design 
modifications and changes necessary to enhance rocket performance. When the results from the 
simulations become satisfactory, they perform an actual physical firing test of the rocket motor. To 
ensure an adequate solution, they compare temperature measurements from the firing test with the 
temperatures from the computer simulations. If there are too large deviations in the results, they 
make adjustments to the program and perform new simulations. This process can become very 
expensive, especially if a great number of firing tests are necessary before they achieve satisfying 
results (Myklebust 2008). The purpose of this master thesis is to improve the program simulations by 
means of including more accurate models for the physics of heat transfer.  

G2DHeat has earlier been described by Riise (2008) in a project report.  In this report different 
suggestions on how to improve G2DHeat, by including more physical material behaviours, are 
presented. The work in this master thesis is a continuance of the mentioned project report, and 
includes implementation, as well as testing of the program routines suggested in the report. The 
project report is recommended for proper understanding of the G2DHeat program. It also elaborates 
the following points which are not included in this master thesis. 

- Grid configuration. 
- Boundary conditions. 
- The solution process (with calculations of the temperatures explicit in time). 
- Kinetic models for decomposition reactions. 
- Moving grid methods and issues concerning these. 
- Advantages and disadvantages with CMA3 (“The Aerotherm Charring Material Thermal 

Response and Ablation Computer Program, Version 3”)( Schoner 1970) and 
FSSIM2D(Austegard 1997).  

- Recommendations and suggestions for improvements of G2DHeat. 

The main objective of this master thesis is to further develop the G2DHeat program to include 
thermal degradation reactions of ablative insulation materials, and prepare the program for 
implementation of future heat source/-sink reactions.  

The thesis itself is divided into five parts which describe the changes, assumptions and tests of the 
modified G2DHeat program.    

In chapter 1, an explanation of why the program is made implicit in time is provided. The implicit 
formulation, in addition to a source term, is then presented. Further, a presentation of the implicit 
solution routine is given, together with an explanation of how the different grid blocks interact with 
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each other in the implicit simulations. At the end of the chapter, accuracy and computation times for 
the implicit and the explicit solution routines are compared. 

Chapter 2 contains the physical aspects of the decomposition reactions occurring within the material. 
This includes the kinetic model used, and how the thermodynamic and thermo-chemical properties 
of the materials are changed. Silica phenolic properties are given as example values.  

How to numerically handle the decomposition events is presented in chapter 3. In addition to the 
implicit formulation in chapter 1, explicit solution of continuity and the decomposition events are 
included in the programs calculations. The chapter also provides a presentation of the numerical 
aspects of solving pyrolysis and charring ablation in G2DHeat. This includes governing equations, 
boundary conditions, solution routine and discussion of changes made.  

Test simulations of G2DHeat are shown in chapter 4 and 5. In chapter 4 the program is compared to 
CMA3 and ASTHMA (Axi-Symmetric Transient Heating and Material Ablation Program) by using a 
simple geometry. In chapter 5 the program is compared to experimental data using a simple 
geometry and a more complex geometry. 

The conclusions and recommendations for further work are described in chapter 6.  
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Chapter 1: Initial changes to the program 
This chapter gives an overview of initial changes to the program code, the new program features and 
capabilities, and a comparison of accuracy with the old G2DHeat program and Comsol Multi Physics. 

1.1 General description of the modifications 
The old heat analysis program used by Nammo and explained by Riise(2008), is modified to handle 
the numerical calculations implicit in time, instead of explicit as before. In this manner, each cell in 
the grid contains the temperature for the next time step, so the transport of heat must be solved as a 
system of algebraic equations. The partial differential equations describing the two-dimensional 
problem are discretised, using the finite volume method, and solved by TDMA (Tri-diagonal matrix 
algorithm) in a numerical iteration procedure. 

The implicit formulation in time is selected because it provides a more stable solution regardless of 
time step size (Versteeg and Malalasekera 1995). For the explicit solution routine to ensure the same 
stable solution, a substantially smaller time step size is required. In the explicit formulation, the 
maximum time step size required to ensure stability is strongly dependent on the size of the cell 
volumes and the thermodynamic properties of the materials used. Riise (2008) suggested that the 
thermal conductivity can be set to a very large number and the specific heat capacity to a very small 
number, in the cell volume, to simulate the grid cell that represents the eroded material. But this is 
not preferred since it results in a very small time step for the explicit solver. The time step size for the 
implicit formulation however, should be small enough to model the physics of the heat transfer 
simulated (Rian 2003).               

A heat source/-sink term is included in the governing equation to allow heat contributions from 
endothermic and exothermic reactions within the cell volumes to be a part of the calculations.    

The grid mesh that is used in the program consists of quadrilateral cell volumes that are not 
necessarily orthogonal on each other (Riise 2008). The layout for an example grid is shown in figure 
1.1.      
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Figure 1.1: The curvilinear non-orthogonal coordinate system 

From the notation given in figure 1.1, the heat flux from cell volumes “W”,”E”,”S” and “N” are 
calculated through the cell walls “w”,”e”,”s” and “n” into cell volume “P”.  
  

1.1.1 The fully implicit scheme 
Versteeg and Malalasekera (1995) express the transient heat equation in two dimensions of the 
inner cell volumes by:  

T T Tc k k S
t i i j j

ρ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞= + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
  (1.1) 

By using the fully implicit discretisation approach on equation 1.1, a numerical approximation is 
found. The calculation molecule for the temperatures is shown in figure 1.2.  

 

Figure 1.2: The implicit calculation molecule (Rian 2003) 
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A first order backward differencing scheme is used in time, while a second order central differencing 
scheme is used in space (Rian 2003). The discretisation procedure is outlined in appendix A and 
yields: 

0

, , , , , , , ,
0

e w n s e w n s
p p E W N S p u

I e I w J n J s I e I w J n J s

pe w n s
p

A A A A A A A Ac V c VS T T T T T T S
t R R R R R R R R t

aa a a aa

ρ ρ⎛ ⎞∆ ∆+ + + + − = + + + + +⎜ ⎟⎜ ⎟∆ ∆⎝ ⎠
   (1.2) 

Here “0” denote the value at the previous time step. For simplicity, the terms in front of the 
temperatures are represented by “a” and a subscript of their position related to the cell volume. This 
terminology is also used in the program code.  

    

1.1.2 Source term         
By introducing a source term, the modified G2DHeat program can handle more complicated 
problems than the old program. That includes both internal endothermic (heat sink) and exothermic 
(heat source) reactions which can be caused by pyrolysis of rocket materials or self-heating fuels. By 
including such reactions in the calculations of heat problems, more accurate results can be achieved. 
The existence of internal endothermic and exothermic reactions is known, but has never been looked 
at, except through manipulation of the conductive heat transfer coefficient, or by other less effective 
means (Myklebust 2008).  

Linearisation of the source term in equation 1.1 gives:  

( )P P uS V t S T S t∆ ∆ = + ∆   (1.3) 

Here Sp and Su are the two terms representing the actual source. Sp is the temperature dependent 
part of the source, while Su is the non-temperature-dependent part.  

In the modified program, an input routine for using non-temperature-dependent sources is created. 
This routine requires that the implicit solution routine is used and the sources are specified in the 
input file according to the sequence:    

SOURCE  -> Indicate the start of defining sources in the input file 
3   -> Number of sources 
1   1 31   1 21  2500 -> Position and size of source[W.m-3], which is defined as:  
2   5 10   5 10 -3600     <Grid block><start I-><end I->< start J->< end J-coordinate><source 
strength> 
2 15 25 15 25    700 
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Figure 1.3: Example of heat sources and heat sinks in an insulated and initially temperature homogenous geometry 

The source terms are also used to include radiation terms, as shown in chapter 1.1.4. 

  

1.1.3 Collection of material properties 
Since material properties data are stored in tables inside an executable file in the previous version of 
the computer program, these are difficult to adjust and require a user with insight in computer 
programming to do so. In the modified program, however, this has been changed. Here material 
properties are stored in an external file where they are easily modified. In the modified program the 
user only needs to specify the filename containing the material properties in the input file before 
starting the program. This is executed by the sequence: 

DEFMATERIAL  -> Indicate the start of defining material properties in the input file 
2   -> Number of data files containing the material’s properties 
ALU.b   -> Filename with id=1   
TITAN.b  -> Filename with id=2 
0   -> Number of materials that are decomposing by pyrolysis (See chapter 3.4.1) 
3   -> Number of material areas that are specified 
1 2 1 81 1 11  -> Material area in the grid which is defined as:  
1 3 1 11 1 91            <Filename id><grid block><start I-><end I-><start J-><end J-coordinate>  
2 1 1 81 1 81  
    
In appendix F, data files with material properties are shown. 
 

1.1.4 Boundary conditions 
Multiple boundary conditions are available in the old G2DHeat program (See Riise 2008), and to 
incorporate these in the implicit solution routine some “numerical tricks” are performed. Initially, all 

the grid edges are insulated ( * 0a = ) until they are initiated with a boundary condition. In the 

following explanation one can imagine that there are fictive cell volumes outside the border. 
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 The heat flux is added directly to the source term at the border: 

uS Q=    (1.4) 

The convective heat contribution is added trough a modified thermal resistance at the border, and 
the ambient temperature is set as temperature of the fictive cell volume: 

 *
1

conductionR R
h

= +   (1.5) 

*T T∞=    (1.6) 

In the situation of radiation at the border, this is incorporated in both the temperature dependent 
and non-temperature dependent part of the source term: 

( )( )03
* * 4P PS A Tσε= −      (1.7) 

( )( )04 4
* * * *3u surrounding PS A T A Tε σ σε= +   (1.8) 

The entire linearisation process of the radiation terms is shown in appendix B.  

If the temperature history at the surface is known, it can be desirable to specify a temperature 
directly. This boundary condition is new to the program, and is easily added by: 

* conductionR R=    (1.9) 

* spesifiedT T=    (1.10) 

  

1.1.5 Input specification for the implicit solution routine 
In order to start the solution routine, it is required that the start and ending time, together with an 
appropriate time step size, are specified.  

The input specification for the implicit solution routine is a bit different from the explicit. While the 
explicit uses a combination of time and maximum number of iterations, the implicit uses time only. 
The implicit solution routine is executed by: 

IMPLICIT  -> Indicate the use of an implicit equation solver  
0.01 0.0 0.1 120.0  -> Convergence and time parameters that are defined as: 
         <Convergence parameter><start time><time step><end time> 

 How to select relevant time interval length and time step size depends on the thermodynamics. 
Rocket missiles, for example carried by airplanes, will at first be heated by their surrounding air, then 
by the heat from the internal combustion when they are fired. Finally they will be cooled in the same 
surrounding air (Myklebust 2008). In the input file, when calling the equation solver for different 
time spans, the user can perform changes to the boundary conditions, and therefore manage such 
situations.  
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It is sometimes essential for accuracy that a small time step size is used (Versteeg and Malalasekera 
1995). If this is done, the overall error in the solution is reduced, but comes at the expense of a 
longer total calculation time. The convergence parameter, however, controls the error in the 
iteration procedure. In detail, it checks the temperature deviation from the previous iteration and 
then decides if a new iteration is necessary. So by selecting small values for both of these 
parameters, the user is able to minimize the total error in the solutions.       

     

1.2 Multi-block grid 
Grid topology with multi-blocks is often used to describe a complex geometrical structure. The 
precision of the numerical calculations done with the grid, however, is strongly dependent on the 
user’s skills to create and select a suitable grid topology (Ørbekk 1994). 

 Generally, the computer program uses a multi-block grid to describe the geometry. It also allows 
grid blocks to be partially interfaced with each other, which reduces the total number of grid blocks 
used. As shown in figure 1.4.   

 

Figure 1.4: Example of two partially interfaced grid blocks 

1.2.1 Shadow cells 
Since the computer program works in an iterative fashion when solving the system of heat equations, 
grid block by grid block, shadow cells at the borders of each grid block are necessary. By using these, 
the temperature information from the previous iteration is passed to the interfacing grid blocks, and 
the next iteration procedure within the different grid blocks can start over again. When the system of 
heat equations in all grid blocks have converged, the program moves to the next time step. How the 
temperature information is exchanged can be seen in figure 1.5. 
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Figure 1.5: The information exchange between grid blocks   

 

1.2.2 Specifying interfaces between grid blocks  
Specifying the interfaces in the input file and which interfacing blocks the shadow cells should collect 
their information from, must be performed in the right manner. If not, temperature information will 
be collected from wrong cells and the solution result will contain discontinuities. 

The user first specifies the left side or top side block before its connected right side or bottom side 
block, in the interface layout. Also, in which directions these are specified must be according to the 
directions shown figure 1.6. The interface layout for the cell block in the top left corner of figure 1.6 
can be specified with neighbour block 2 (to the right) and neighbour block 3 (below) as follows: 

INTERFACES -> Indicate start of specifying interfaces in the input file 
2  -> Number of interfaces that are specified 
1   1   1  1  6 -> Interface between block 1 and 3 are specified by the two lines in the format:   
3   1 11  1  6                       <Grid block><start I><start J ><direction><number of steps in that direction> 
1   6   1  2  5 -> Similar for the interface between block 1 and 2.  
2   1   1  2  5     

Four different values of the direction parameter are used to describe the axis directions, namely: 1 
indicates positive I-direction, 2 positive J-direction, 3 negative I-direction and 4 negative J-direction.  

Even though grid blocks have their own coordinate system, which may result in different axis 
directions for two grid blocks interfacing each other, the user can select a local direction parameter 
for the grid blocks and still obtain the correct directions shown with red arrows in figure 1.6.  
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Figure 1.6: The border and interface directions 

 

1.3 The implicit solution routine 
The implicit solution routine consists of three main parts, an initialisation procedure, an update 
procedure and an equation solver. First the information pointers in the shadow cells are created in 
the initialisation procedure. This is done only once for both for the boundary edges and the 
interfacing grid block edges. When this is completed, the iterative part of the solution routine starts. 
Here a combination of both the equation solver and the update procedure is executed. Finally the 
results from the calculations are written to a file before the program moves to the next time step.   
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Figure 1.7: Step by step walkthrough of the implicit solution routine 
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1.3.1 Initialisation procedure 
The initialisation procedure consists of two subroutines that are executed, INIT_IMPLICIT and 
BORDERS_IMPLICIT. Both are shown in appendix D with their connections to the rest of the program. 

First, the pointer information for interfacing cells, together with the area of cell faces between the 
cells, are created and stored in shadow cells by the subroutine INIT_IMPLICIT. Then, the subroutine 
BORDERS_IMPLICIT uses the remaining shadow cells to store information of the boundary conditions 
and the face areas at the boundary. 

1.3.2 Update procedure 
The update procedure consists of the subroutines UPDATE_IMPLICIT, RESMAT and PICKMDATA, also 
shown in appendix D.  

Since the equation solver solves the different grid blocks sequentially rather than solving the entire 
grid, an update procedure to exchange the temperatures between the grid blocks is needed.  

To perform the temperature exchange, information pointers stored in the shadow cells by the 
initialisation procedure are used. Before the next iteration, the thermal conductivities are adjusted 
by the temperatures, and thermal resistances between the interfacing grid cells are created.  

This temperature exchange is the primary part of the update procedure, and is executed by the 
subroutine UPDATE_IMPLICIT. Nevertheless, the other subroutines PICKMDATA and RESMAT are also 
important parts of the update procedure, as they collect the new material properties for the grid 
cells and generate the new thermal resistances between them. 

1.3.3 Equation solver 
There are two types of solution techniques for linear algebraic equations; direct methods and 
indirect or iterative methods (Versteeg and Malalasekera 1995). The modified computer program 
uses an iterative method, where an application of TDMA solves the two-dimensional domain until 
convergence.  

TDMA is actually a direct method for one-dimensional cases, but can be applied iteratively for two-
dimensional situations, in a line-by-line fashion. This is done by including the values of the equation 
terms from all the neighbouring lines in a source term.    

Since grids of different sizes and boundary conditions of different complexness are solved by the 
iterative method, it sometimes requires a large number of iterations and time to reach convergence. 
To speed up the solution and reach convergence faster, the program uses a sweeping technique, 
from west to east and south to north, in the equation solver. This is shown in figure 1.8.   
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Figure 1.8: Sweeping technique used in the equation solver 

 

1.4 Accuracy of the calculations  
To validate the accuracy of the calculations done using the modified program, comparisons with the 
old explicit solver together with a commercial program (COMSOL Multiphysics) have been 
performed. 

1.4.1 Implicit or explicit? 
By using a simple heat problem with an analytical solution to assess the accuracy of the solution 
routines, the advantages and disadvantages of these routines are found by means of a comparison of 
the results. Hopefully, it will be easier for the user to decide which routine is the most favourable to 
use in other heat problems, when considering these. An overview of the initial and boundary 
conditions for the example problem is shown in figure 1.9.  
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Figure 1.9: Initial and boundary conditions for the example problem 

 

The analytical solution for the problem is given by Ozisik(Cited Versteeg and Malalasekera 1995): 

( ) ( ) ( )
1

2

1

4 ( 1), exp cos 200
2 1

n

n n
n

T i t t i
n

αλ λ
π

+∞

=

⎡ ⎤−= − +⎢ ⎥−⎣ ⎦
∑   (1.11) 

where 

(2 1)
2n
n
L

πλ −=   (1.12) 
 

and 

k
c

α
ρ

=    (1.13) 

To solve the problem numerically, a representative grid mesh of the plate geometry is created. In the 
grid mesh, all the cell volumes are created equal, with ∆i=0.004m and ∆j=0.004m. 

The thin plate from figure 1.9 measures 0.02m by 0.02m and consists of aluminium. The material 
properties are assumed to be constant since the plate is a solid and the temperature variations are 
relatively small. Table 1.1 shows the values of aluminium. 

Table 1.1: Material properties (COMSOL 3.4 2007) 

 
Material  Thermal conductivity 

(W. m-1K-1) 
Specific heat capacity  

(J.Kg-1K-1) 
Density  
(Kg.m-3) 

 
Aluminium 160 900 2700 

 
Titanium beta-21S 7,5 710 4940 
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The maximum time step size for the explicit equation solver is obtained using the criterion:

 

, , , ,

e w n s

I e I w I n I s

c Vt A A A A
R R R R

ρ
⎛ ⎞
⎜ ⎟∆⎜ ⎟∆ ≤
⎜ ⎟+ + +⎜ ⎟
⎝ ⎠

  (1.14) 

 This criterion ensures a physically correct and a convergent solution when using the explicit solution 
routine (Rian 2003). In this example problem the maximum time step size becomes approximately 13 
seconds. The following figure shows a comparison between the implicit, explicit and exact solutions 
after 136 seconds, all of which 8 seconds are used as time step size.  

 

Figure 1.10: Comparison of implicit, explicit and exact solution 

From figure 1.10 it can be observed that the explicit solution differs much more from the exact 
solution than the implicit does, which also agrees with the literature (Versteeg and Malalasekrea 
1995). Here the error in the explicit solution is very clear, because a relatively large time step size and 
only five grid points are used to represent the temperature distribution in the I-direction. When the 
number of grid points is increased, the total error for both solutions is drastically reduced. If the time 
step is reduced instead, both solutions are improved and especially the explicit. By reducing the time 
step even further, both solutions approach the exact solution, as seen in figure 1.11, and eventually 
no differences are noticeable. 
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these should give the same results, because the problem is unchanged and the same size and 
number of cell volumes are used.  

Control points for the temperatures are created randomly, and their positions together with the 
chosen constant temperature boundary conditions are shown in figure 1.13. The geometry consists 
of aluminium which is initially set to 200 Kelvin (K), and the properties from table 1.1 are used. An 
indication of the temperature profile is also shown in figure 1.13. Finally the results from the implicit 
solutions are compared with an explicit solution where the time step is set to an infinitesimal value 
so it more or less represents the analytical solution. 

 

Figure 1.13: The geometry used when comparing single- and multi-block grids 

Even after a simulation time of 150 seconds and using a time step size of 0.01 seconds, the results 
seem to be in agreement with the earlier predictions. There are no differences in accuracy when 
using the single- or the multi-block grid in the implicit solution routine. The results from the explicit 
routine however, yield some unexpected results. Even though a much smaller time step value of 
0.0001 seconds is used in the explicit routine, the results from the implicit routine match perfectly. A 
reason for this can be the simple boundary conditions used. However, it indicates that the implicit 
routine can give just as good results as the explicit, even when a much larger time step is used. 

 

1.4.3 A two-dimensional benchmark model 
For a two-dimensional accuracy test of the modified G2DHeat, a benchmark model for comparison is 
created using COMSOL Multiphysics. This is a commercial finite-element based program for 
simulating heat transfer caused by convection, conduction and/or radiation (Comsol 2008).  
Assuming that COMSOL delivers trustworthy results, comparisons with these can be used to find how 
accurate the two dimensional calculations from the modified G2DHeat program are. 
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The model consists of a two dimensional plate where the west and south side are isolated, while the 
east and north side are exposed to a convective heat flux. The plate measures 0.09m by 0.09m and 
consists mostly of titanium, but also a layer of aluminium facing the outer heat source. The material 
properties are given in table 1.1 and the model is shown in figure 1.14.   

Initially, the plate temperature, the convective heat transfer coefficient at the border and the 
external temperature are set to 350K, 8 W.m-2K-1 and 2000K. To numerically solve the problem, the 
plate geometry is divided into approximately 8000 cell volumes. Using these parameters, the model 
is simulated with a time step size of 0.01 seconds for 120 seconds both in COMSOL 3.4 and the 
modified G2DHeat program. These values are randomly selected, and are not necessarily physically 
correct.  

 

Figure 1.14: Shows the section cut where the temperatures are compared 

The final results are compared using temperature values along the diagonal line shown in figure 1.14, 
and the results when using COMSOL and the implicit solution procedure, are both shown in figure 
1.15.  
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Figure 1.15: Comparison of solutions from G2DHeat using the implicit solution routine and COMSOL 

 

When observing figure 1.15, it is hard to spot any differences between the solutions. Nevertheless, a 
maximal error of 0.1657K is found at the axial position 0.1124m by examining the results. And from 
analyzing the differences between the solutions through the entire graph interval, an average 
difference of 0.0746K is found. 

Sometimes a small error in the solution can be accepted, but it depends on the problem. For 
example, a small temperature error of a few degrees in a rocket engine is of less importance than in 
a freezer, because it is designed to withstand greater temperature variations. But if a similar error is 
neglected in the freezer, the ice cream may start to melt. 

There can be many reasons why some degree of error is observed in figure 1.15. For instance, since 
the programs use different cell layouts, this may cause an unfortunate distribution of the 
temperatures in the grid. Also, when an interpolation routine is used to find certain points, small 
errors are generated. To reduce this type of error, a better interpolation routine and/or more cell 
volumes in the grid can be applied (Versteeg and Malalasekera 1995). Another possible source of 
error can simply be a poor selection of precision for the variables in the computer programs. But this 
is not likely, because the different compilers and especially the newer compilers allow large number 
of significant digits. The reason for the error can also be the different ways the solution routines 
solve their grids. COMSOL uses a direct method, while G2DHeat uses an implicit iterative/indirect 
method or an explicit direct method. Assuming that the same number of cell volumes is used, the 
error can be reduced in G2DHeat by selecting a smaller time step (Rian 2003).      
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1.5 Measuring computation time 
To determine the amount of time used by the program before a solution is reached, the program 
uses an intrinsic subroutine which returns the CPU time in hundredths of a second. This represents 
the amount of time the CPU is actually executing instructions (Chapman 2004).    

For comparison, the explicit solution routine is modified from its original state to collect material 
properties after every time step and not in intervals of 25 time steps as previously. The implicit 
solution routine, however, updates these for every iteration, and hence also for every time step. 

In these simulations, the geometry, the boundary conditions and the material properties from 

chapter 1.4.2 are used. From the geometry new grids that measure 30×30, 60×60, 90×90 and 

120×120 cell volumes are created. Each is then divided into a single-block and a multi-block 

representation before the calculations are performed. The multi-block grids consist of nine equally 
large grid blocks and are similar to the grid shown in figure 1.12. Time step sizes of 0.01s and 0.0006s 
are used for the implicit and the explicit solution routines in all the simulations, respectively. The 
explicit time step size is within the limits given by the criterion in equation 1.14. The results are 
presented in figure 1.16. 

 

Figure 1.16: Shows the differences in computation time using the implicit solver or the explicit solver 

Figure 1.16 shows the amount of CPU time spent calculating one second when using a different 
number of cell volumes in the solution routines. During the execution of most programs, the CPU is 
idle much of the time while the computer fetches data from the keyboard or disk. The CPU time of an 
executing program, therefore, is generally much less than the total execution time of the program 
(Chapman 2004). 

For grids using less than 9000 cell volumes, it is seen from figure1.16 that the implicit routine has a 
smaller calculation time than the explicit. It can also be seen that using multi-block grids require 
more computational time than using single-block grids for both solution routines and all grid sizes. 
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This is because multi-block grids require additional subroutines to be executed. The single block 
calculation performed by the implicit routine remains lower than the explicit even when 14400 cell 
volumes are used. However, the gradient for the amount of time spent simulating one second, at this 
point, implies that the time spent by the implicit soon will pass the explicit. 

The amount of CPU time spent on calculating one second, increases almost at a constant rate for the 
explicit routine, as seen in figure 1.16. This is not the case for the actual time spent by the program, 
since the memory, at some point, is insufficient to store information from all the cell volumes at the 
same time. Therefore, information must be stored on the hard drive, causing more time for the CPU 
to collect information, thus more time is spent simulating by the program.     
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Chapter 2: Pyrolysis and charring ablation 
This chapter is intended to describe the physical mechanisms that involve pyrolysis and charring 
ablation in the modified G2DHeat program. In chapter 2.5 a proposal for further development of the 
boundary condition necessary for simulating charring ablation without specifying the recession rate 
is presented. Values for silica phenolic are used as an example of thermophysical and 
thermodynamic properties for an ablative material, and are also used for the simulations in chapter 4 
and 5. 

2.1 General 
In solid rocket motors it is often used ablative materials as insulation to protect components (Sutton 
and Biblarz 2001). With ablative cooling, part of the ablative material is sacrificed to absorb heat and 
prevent heat from travelling further into the protected structure. This involves transient heat 
transfer processes, reaction kinetics at the surfaces, transpiration cooled boundary layer phenomena 
and decomposition processes within the solid. Loss of mass from the ablative materials will generally 
be the limiting design factor when selecting an initial thickness for the insulation (Sutton and Biblarz 
2001).  

Some ablative materials simply melt or sublimate only at the surface, while others partially 
decompose to provide a char layer. Materials such as graphite lose surface material only through 
chemical erosion. The G2DHeat program simulates heat transfer in composite materials where a 
solid residue of char is created from the pyrolysis reactions. For the most part these materials are 
phenolic resins containing aramid, glass, graphite or silica fibres (Rønningen 2001). The presence of a 
char layer in such materials imposes an additional thermal barrier without losing the good thermal 
absorption characteristics of decomposing materials.  

The charring materials will pass through three distinct phases in their behaviour as times progresses 
(Rønningen 2001): 

1. The temperature gets high enough for pyrolysis of the virgin material to start. 
2.  A char layer will form at the outer parts of the material, as the decomposition zone moves 

further into the material. The char layer will then be cooled by the out flow of gaseous 
reaction products from the decomposition zone, and to some extent reduce the heat 
transfer from the hot combustion gases at the surface.   

3. Temperature at the surface will continue to rise, and eventually mechanical erosion, 
chemical erosion and/or melting of the material will begin to reduce the thickness of the char 
layer.    
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Figure 2.1: Schematic of layers associated with charring ablation (Rønningen 2001) 

 

2.2 Kinetic model for material decomposition reactions 
The thermal decomposition within the ablative material may consist of multiple reactions which 
separately break down the material components. These pyrolysis reactions reduce the density of the 
material due to gas generation, and therefore several physical considerations concerning the 
material must be dealt with (ASTHMA88/PC 1988): 

- The change of material properties due to loss of mass 
- Energy from the reactions occurring in the ablative material 
- Energy exchange due to flow of pyrolysis gas 

2.2.1 Independent parallel reactions 
Assuming the effect of cracking in the ablative material is small, the decomposition process can be 
represented as a series of independent parallel reactions of the many material components 
(Austegard 1997). 
  
Independent parallel reactions are described by: 
 

( )
( )

( ) ( )

( )
( )

( ) ( )

1

2

Reaction

Reaction

Mass A Residue A Gas A

Mass B Residue B Gas B

+

+

→
→

 (2.1) 

 
Where “A” and “B” are different chemical species and the reactions “1” and “2” are independent of 
each other. 
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2.2.2 Kinetic parameters 
Varhegyi and Antal(cited Austegaard 1997) describes the independent decomposition reaction of a 
single component by:    

( )1

1,2,3,....
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α α
−

= −
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  (2.2) 
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The initial ( 0iρ ) and residual ( r iρ ) densities of component “i” are known constants. In order to find 

the mass loss to volume it is necessary to rewrite equation 2.3 as follows:  

( )0 0i i i r i iρ ρ ρ ρ α= − −    (2.4)    

Differentiating equation 2.4 with respect to time and assuming 
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Here the rate of change of decomposing material density (
d
dt
ρ ρ− = ) is found. Finally, substituting 

equation 2.2 into equation 2.5 yields:         
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Thermal degradation kinetic parameter values for silica phenolic are shown in table 2.1. 
 

Table 2.1: Thermal degradation kinetic parameters of components in silica phenolic (ASTHMA88/PC 1988) 

 Activation energy [E] 
(J.kmol-1) 

Pre-exponential factor [A] 
(1.s-1) 

Order of reaction [n] 
(-) 

Resin A 71.14×106 1.4×104 3 

Resin B 169.98×106 9.75×108 3 

Reinforcement - - - 

 

By using TGA (Thermo-gravimetric analysis) the values of the different kinetic parameters are 
obtained. This method determines the weight loss of the material when it is heated with constant 
temperature increase (Austegard 1997).  
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The use of the kinetic model is limited to materials in which components decompose independently 
of each other. If ablative materials decompose differently, for example by additional reactions with 
each other, inaccurate results from the simulation can occur due to the fact that this is not 
accounted for in the calculations. Nevertheless it is considered to be a reasonable assumption, since 
the same kinetic model is employed in both CMA3 and ASTHMA. These programs are extensively 
used in thermal performance studies of spacecraft structures, ablating heat shields and rocket 
nozzles (Schoner 1970). Therefore, a great deal of testing and verification of the kinetic model has 
been performed, and the model proves to be adequate for application in G2DHeat. 

2.2.3 Definition of material densities   
In the G2DHeat program the initial and residual densities of a material component can be expressed 
in terms of a fraction of the total material volume. This makes it possible to separate the 
decomposing part of the material from the non-decomposing part as shown in equation 2.7. The sum 

of densities, from components that can decompose form:  decomposing partρ . Similar, the sum of densities 

from the non-decomposing components form:  decomposing partρ . The non-decomposing part consists 

mostly of reinforcement (ASTHMA88/PC 1988).    

( )  1material decomposing part non decomposing partρ ρ ρ −= Γ + − Γ    (2.7)    

It is not possible, however, to specify a mass fraction as input. For this, the program user must 
convert the mass fractions into volume fractions by hand. When differentiating equation 2.7 with 
respects to time, the non-decomposing term vanishes. Since the only contribution to the loss of mass 
comes from the decomposing part of the material, equation 2.6, can be rewritten into: 
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 (2.8) 

The program allows an infinite number of reactions to be specified for each of the decomposing 
materials. 

Table 2.2: Properties of components in silica phenolic (ASTHMA88/PC 1988 and Næss 1998a) 

 Initial density 
(Kg.m-3) 

Residual density 
(Kg.m-3) 

Volume fraction
(-) 

Pyrolysis temperature 
(K) 

Resin A 325.015 0.0 0.422 333 

Resin B 973.926 518.998 0.422 550 

Reinforcement 2066.380 2066.380 0.578 ∞ 

 

From table 2.2 the total initial density of silica phenolic is calculated to be 1742,52 Kg/m3. Similar, the 
residual density is found to be 1413,38 Kg/m3, which is approximately 80% of the initial density. 
Weight loss curves for silica phenolic when using heating rates of 10, 20 and 50 K/min are shown in 
figure 2.2.  
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Figure 2.2: Shows weight loss when the heat flux is increased    

The curves in figure 2.2 are calculated from equation 2.8 using the kinetic parameters in table 2.1 
and the properties in table 2.2. The curves represent the sum of mass losses generated from the 
different reactions as the temperature increases. Regardless of time, these show that the pyrolysis 
reactions are dependent on the heat flux into the material. Physically, the start of the pyrolysis 
reactions may differ from one another. Therefore the program also allows the user to specify a 
threshold temperature (pyrolysis temperature) for the different reactions. The threshold 
temperatures for silica phenolic are shown in table 2.2. For material components in the non-
decomposing part of the material the pyrolysis temperature is set to very high value, which is never 
obtained by the material.     

   

2.3 Material properties 
For an insulation material to become perfect, it should be made with components which have a low 
thermal conductivity, high specific heat capacity, some degree of elasticity, high heat of reaction and 
high threshold temperature for the pyrolysis (Rønningen 2001).     

Since the decomposition process involves removal of mass from the cell volume as time progresses, 
the material properties will also change. To make adjustments for this, the decomposition state 
together with a linearly dependence between the properties of the fully charred and the virgin 
material is used. The fraction parameter which represents the decomposition state is given by:  

0

r

r

x ρ ρ
ρ ρ

−=
−

   (2.9) 
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The material properties then become: 
 

0 (1 )p p prC xC x C= + −  (2.10) 

0 (1 ) rk xk x k= + −   (2.11) 

In addition to a thermal conductivity that is linearly dependent on the decomposition state, G2DHeat 
can use an anisotropic thermal conductivity. The thermal conductivities and the specific heat 
capacities as functions of the temperature for silica phenolic are shown in figure 2.3 and figure 2.4, 
respectively.  

 

Figure 2.3: Thermal conductivity for silica phenolic (Næss 1998a) 
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Figure 2.4: Specific heat capacities of silica phenolic (Næss 1998a)   

Considering the material data provided (see appendix F), the assumption of the thermal conductivity 
to be a linear function of decomposition state is considered reasonable. Physically, the thermal 
conductivity within the ablative material is a function of heating rate into the material 
(ASTHMA88/PC 1988). This means that different heating conditions during decomposition gives 
different conductive properties for the material. CMA3 allows a functional dependence of the 
decomposition state to be specified (Schoner 1970). This functionality is not available in G2DHeat, 
but can easily be included if necessary. 

2.4 Heat of pyrolysis and energy effects of transpiration  
In section 2.3 the change of thermodynamic and thermophysical properties are determined on the 
basis of decomposition state. The corresponding energy is presented in this section. There are two 
primary events that are associated with the energy contribution from the pyrolysis; the energy 
concerning the pyrolysis reactions that occur, and the exchange of energy due to pyrolysis gases that 
percolate through the decomposing material. For ablative materials these are called energy 
absorption events (Austegard 1997).   

In appendix C, the derivation of an energy balance for the material is described. The energy flux 
associated with the pyrolysis reactions is given by:    

pyr pyr pyrQ m h= ∆   (2.12)
 

Where pyrm is the rate of material pyrolysing, and pyrh∆ the energy that is used for producing gases, 

called the “heat of pyrolysis”. The heat of pyrolysis can be expressed in terms of an enthalpy 
difference between the gases and the solids:  

( )pyr gh h u∆ = −   (2.13)
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This term is determined by measurements using differential scanning calorimeter (DSC). This involves 
an apparatus which heats a sample of the material. The heat flux into the sample is kept at rates 
giving a constant increase in temperature in the sample and its holder. The heat flux is then logged 
together with time and the temperature of the sample holder. Since the sample is placed in a holder 
while it is heated, another similar test with an empty holder must be performed in order to find the 
base line (the reference holder). When there are no reactions left to occur in the sample, the heat 
flux into sample holder and the reference holder are equal when the temperatures inside them are 
kept constant. From the plots of heat flux versus time and versus temperature, the heat of pyrolysis, 
together with the specific heat capacity for the sample are obtained (Austegard 1997).  

Sometimes the enthalpies of formation for each of the material components are known. Then the 
heat of pyrolysis is found from the enthalpy difference in equation 2.13 and the following 
calculations (ASTHMA88/PC 1988):    

0 0

0

r r

r

h hu ρ ρ
ρ ρ

−=
−

  (2.14)
 

This represents the amount of energy per mass which can decompose. The enthalpies of formation 

for the virgin material ( 0
,0fh ) and the residue products ( 0

,f rh ) at a reference temperature can, 

together with the specific enthalpy difference, determine enthalpies at other temperatures. 
Assuming there is a constant pressure within the material, the specific enthalpy difference can be 
represented by the specific heat capacity and a temperature difference (Moran and Shapiro 2004). In 
an equation form, this is expressed as: 

0
0 ,0 0f ph h C T= + ∆   (2.15) 

0
,r f r prh h C T= + ∆   (2.16) 

Where 

evaluated referenceT T T∆ = −
 

The heat of formation for virgin silica phenolic and its residue products are at a reference 
temperature of 297.78K, -11.764×105 J/Kg and -123.115×105 J/Kg, respectively (Næss 1998a). In 
programs such as CMA3 and ASTHMA88, it is required that the pyrolysis gas specific enthalpy is 
specified as a function of temperature in their input file. These are then added to the heat of 
formation of pyrolysis gas which also is specified in the input file (Schoner 1970 and ASTHMA88/PC 
1988).   
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Figure 2.5: Enthalpy values for silica phenolic (Næss 1998a) 

 

 

Figure 2.6: Heat of pyrolysis for silica phenolic (Næss 1998a) 

 

As the temperature increases within the silica phenolic, it is seen from figure 2.5 that there is a slight 
increase of the virgin and residue enthalpies. In the same figure the pyrolysis gas enthalpy is 
observed to increase significantly more rapid than the others. From this, and the definition in 
equation 2.13, it is apparent that the heat of pyrolysis in figure 2.6 increases considerably due to the 
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increasing difference between pyrolysis gas and solid material. Therefore, the preliminary studies of 
the gas enthalpy are important to assure accuracy within reasonable limits when using the heat of 
pyrolysis in the calculations.  

Assuming the pressure in the material to be constant, the pyrolysis gas enthalpy differences can be 
approximated with a temperature difference and the specific heat capacity for the pyrolysis gas. For 
silica phenolic the specific heat capacity of pyrolysis gas is linearly approximated from its enthalpy 
(Næss 1998a) and shown in figure 2.7. 

 

Figure 2.7: Specific heat capacity of pyrolysis gas from silica phenolic 

To include the energy absorbed by pyrolysis gas when it is flowing through the material, the specific 
heat capacity of the gas is used. To calculate this, an analysis of the entire gas as a whole, or 
components alone, must be conducted (Grønli 1996).     

 

2.5 Heat of ablation 
In chapter 2.1 the behaviour of the ablative materials as time progresses is described. In the case 
when a char layer is present at the outer parts of the decomposing material, an increasing surface 
temperature can start different erosion events (Rønningen 2001). The G2DHeat program can 
simulate some of these events, but requires a recession rate to be specified. An explanation of these 
events is presented in chapter 3.2. In this chapter, however, a suggestion for how to obtain the 
recession rate is described.  

Assuming the ablation of the char layer to occur at a constant known temperature where the char 
layer “melts” (ablation temperature), and the heat of ablation to be known through experiments, 
then the recession rate can be explicitly calculated from the energy balance shown in figure 2.8. 
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Figure 2.8: Control volume at the boundary 

 

On equation form the energy balance in figure 2.8 becomes:

, , ( ) 0Convection Conduction Radiation in Radiation out g e i r ablQ Q Q Q m h h m h− + − − − − ∆ =  (2.17) 

When there is no surface recession present, the term ablationh∆ (Heat of ablation) is zero. It is also 

absent when only a mechanical erosion rate is specified. The term rm  represents the rate of residual 

mass leaving the control volume.  The term gm represents the rate of pyrolysis gases leaving the 

control volume, and together with the enthalpy difference ( )e ih h−  it expresses the rate at which 

energy is absorbed by the pyrolysis gases. This has just a minor impact on the overall heat transfer, 
and can therefore be neglected from equation 2.17, and instead be accounted for by a small 
reduction to the convective heat coefficient (Austegard 1997). Assuming the heat fluxes only are 
functions of the surface temperature within a time step, the following expressions are obtained:    

Using Fourier’s law (Moran and Shapiro 2004) for a temperature gradient in the x-direction the 
conduction heat transfer becomes: 

( )solid surface
Conduction surface surface

solid surface

T T
Q A k f T

x x
−

= =
−

    (2.18)  

Here solidT from the previous time step is used in the explicit method, while solidT from the previous 

iteration in the implicit method. Similar procedure also applies for the rest of the terms. 

The convective heat transfer becomes (Incropera and DeWitt 2002): 

( ) ( )Convection surface surface surfaceQ A h T T f T∞= − =      (2.19) 

The radiation heat transfer becomes (Incropera and DeWitt 2002): 

4
, radiation in surface surface surrounding surroundingQ A T constantε σε= =   (2.20) 

4 4
, ( )Radiation out surface surface surface surfaceQ A T f Tσε= =     (2.21) 



34 
 

From these terms the surface temperature can be found iteratively. When the surface temperature is 
lower than the ablation temperature, the heat is transferred as normal. But when the ablation 
temperature is reached, the temperature is assumed to be fixed, and the remaining energy in the 
energy balance is used in the ablation process. Since the temperature at the surface is fixed, the only 
unknown in equation 2.17 is the term rm . The recession rate ( r ) is then found from solving this 

equation and the assumption: 
 

r r
rm A
t

ρ ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
    (2.22) 

Where rρ is the char density and A  the surface area. How the recession rate is handled numerically 

is explained in chapter 3.2.2.   
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Chapter 3: Program for simulating charring ablation 
In this chapter, a presentation of the numerical aspects of solving pyrolysis and charring ablation in 
G2DHeat is provided. This includes governing equations, boundary conditions, a solution routine and 
a discussion of changes made.  

3.1 Conservation of energy for inner cell volumes 
The conservation of energy for a control volume is by Incropera and DeWitt (2002) stated as follows:  

“The amount of thermal and mechanical energy that enters a control volume, plus the amount of thermal 
energy generated within the control volume, minus the amount of thermal and mechanical energy that 
leaves the control volume must equal the increase in the amount of energy stored in the control volume”.  

 

Figure 3.1: Shows the conservation of energy for inner cell volumes  

One should consider the control volume shown in figure 3.1 and the same notation on the cell faces 
and cell volumes as in figure 1.1 when observing the derivations in this chapter.     

The following simplifying assumptions are made (Austegard 1997): 

- Thermal equilibrium exists between the solid material and the decomposition gases. The out-
flowing gases have the same temperature as the surrounding material. 

- No gases are accumulated in the cell volumes. 
- Decomposition gases are non-reactive. 
- The pressure throughout the ablative material is constant.  

 

 

 

 



36 
 

The energy equation on differential form can be expressed as (Rian 2003): 

u hu hv T Tk k S
t i j i i j j

ρ ρ ρ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + = + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
  (3.1) 

Where the first term represents the amount of energy stored in the control volume, and the 
remaining terms the amount of energy entering or leaving the control volume. 

The equation of mass transfer on differential form can be expressed as (Rian 2003): 

0u v
t i j
ρ ρ ρ∂ ∂ ∂+ + =

∂ ∂ ∂
  (3.2) 

To numerically solve equation 3.1, it is discretised using the finite volume method. Here an 
integration of energy contributions over a control volume is performed. To calculate the temperature 
gradients at the control volume faces, an approximate distribution of properties between 
neighbouring cell volumes is used. The approximation can for some situations cause unstable and 
oscillating solutions (Austegard 1997). To prevent this, the upwind differencing scheme is used on 
the diffusive terms. This takes into account the flow direction of pyrolysis gas when determining the 
temperature at the cell face. The entire discretisation process is shown in appendix C.  

The governing equation solved by G2DHeat becomes:  

( ) ( )

( ) ( )

,
, ,

, ,

, ,
, ,

max 0, max 0,

max 0, max 0,

v s e w
e w n s p p p g e E p g w W
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n s
p g n N p g s
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R R

a

ρ ⎛ ⎞ ⎛ ⎞∆⎛ ⎞
+ + + + − = + − + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∆⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞
+ + − + +⎜ ⎟⎜ ⎟
⎝ ⎠

, 0

0

v s
S p pyr pyr u

ps

C V
T T m h S

t
aa

ρ⎛ ⎞ ∆
+ + ∆ +⎜ ⎟⎜ ⎟ ∆⎝ ⎠

(3.3) 

The solution process for equation 3.3 is explained in chapter 3.3.      
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3.2 Boundary conditions for ablative materials 
In the G2DHeat program there are several boundary conditions available for both decomposing and 
non-decomposing materials (Backup materials) (Riise 2008). For materials that decompose, some 
additional conditions are available, to include the physics presented in chapter 2. 
  
The program allows the following boundary conditions for the ablative material to be specified: 

- Melting ablation with specified recession rate and surface temperature. 
- Internal decomposition with specified heat flux and mechanical erosion. 
- Internal decomposition with specified heat flux and no recession.  

These options are somewhat limited in terms of ablation, since a specification of the recession rate is 
required. For option 1 the mass is removed at a known rate to sustain the temperature at the border. 
The boundary in Option 2 is subjected to erosion which simply removes pieces of material from the 
surface. In option 3, recession of the material is absent, but mass losses due to out-flowing pyrolysis 
gas are present. 

The grid mesh and boundary conditions remains fixed throughout the simulation. The heat flux and 
the constant surface temperature are handled in the same way as in chapter 1.1.4. To cope with the 
movement of the decomposition- and the erosion front, these are calculated explicitly. An illustration 
is shown in figure 3.2.  

 
Figure 3.2: Interface definitions in the program 

To model the empty cell volumes, a very high value for the thermal conductivity and a low value for 
the specific heat capacity are used. 

    



38 
 

3.2.1 The virgin to residue interface 
The motive for finding the interfaces, especially the interface between virgin and residue, is so that 
directional vectors for the pyrolysis gas and the mechanical erosion are found.     

Identification parameters (ID) are used to save computational time and determine the current state 
of a cell volume. Initially, these are specified with a positive or negative value to separate cell 
volumes with ablative materials from cell volumes with backup materials. Events such as the 
decomposition and the erosion are only calculated for ablative cell volumes. Hence, less computation 
time is needed for the simulation. If a cell volume of the ablative material decomposes and becomes 
residue, the identification parameter is increased by 1 in this cell volume. To initiate the interface, 
the id is set to 3 for cell volumes at the original boundary which is specified by the user. In short 
terms:   

0  
0  

1    
2    
3     

id Backup material
id Ablative material
Virgin or decomposing material
Residue or eroded material
Material at the specified boundary

< →
> →

=
=
=

    (3.4) 

The different ablative identification parameters are used to determine the virgin to residue interface 
shown in figure 3.2. The cell volume centres closest to the decomposition zone are found by using a 
geometrical routine. For every cell volume with id=1, the directional vector from the centre of the 
cell volume points towards the closest part of the interface that is composed of these cell volume 
centres. 

To decide whether or not a cell volume is char or virgin, the fraction parameter(x) in chapter 2.3 is 
used. The standard decision value is set to 0.02, but can be adjusted by the user in the input file.  

0.02     
0.02  

x virgin or decomposing material
x residue

≥ →
< →

   (3.5) 

It is important to notice that this only makes adjustments to the ID of the cell volume, thereby still 
allowing decomposition reactions within the cell volume to finish. This is done so that the energy is 
conserved.  

3.2.2 Mechanical erosion and recession rate 
A routine for calculating the recession of material on the basis of known recession rates is created. 
The recession rates are specified as functions of the simulation time, and are given as depth eroded 
material per second (m.s-1). It is assumed that only residue (char) material is removed as the surface 
recedes. This states that the decomposition front must recede faster or equal to the erosion front.  

Initially, by using the direction vector in the cell volume, the routine calculates the length ( l ) to 
where erosion is started. This is shown in figure 3.3. Then, from this length and the known recession 
rates, the time ( t ) until erosion of the cell volume starts is calculated. The time to end of erosion is 
found in a similar way.       
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Figure 3.3: Shows the length which is used to calculate the erosion rate in the cell volume 

 

  
_

  

start of erosion
start erosion

start of erosion

l
t

r
=    (3.6) 

Here the term   start of erosionr is the mean recession rate for the present time interval of the   start of erosionl .  

To cope with simulation time steps of different values, the recession rate through the cell volume is 
assumed to be constant. When the current time of the simulation reaches the time “start of erosion” 

( _current start erosiont t≥ ), the recession rate of the cell volume becomes: 

  

cell
cell

end of erosion current

lr
t t

=
−

   (3.7) 

From this and the assumption of constant mass removal through the cell volume, the rate of density 
changes due to the recession of material is found: 

cell

cell cell

r
t l
ρ ρ∂⎛ ⎞ = −⎜ ⎟∂⎝ ⎠

    (3.8) 

Here ρ is the current density at “start of erosion” in the cell volume, and as earlier, it is assumed to 

be equal to the residue density.  

In chapter 2.3 the material properties of a decomposing material is stated to be linearly dependent 
on the virgin and residual property. Similar linear approximation for the material properties of 
eroding cell volumes is assumed, only that the current property of the cell volume at “start of 
erosion” and the property value for emulating empty cell volumes are used instead.    
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Mechanical erosion of backup materials could be performed in the same manner. The only 
requirement is that the materials are specified as an ablative material together with a very high 
threshold temperature for the pyrolysis, which is never obtained by the material.          

In chapter 2.5 a suggestion for finding the recession rate is outlined. The time to start of erosion in 
the cell volumes could be calculated similarly as in this chapter, only that it would be necessary to 
recalculate when there is a change in the recession rate. 

 

3.3 Solution routine 
In G2DHeat some additional computation events are necessary when ablative materials are present. 
For the program, each computational step is described by the main events:  

- Internal decomposition of the ablative material (pyrolysis) and calculation of surface 
recession. 

- Updating of direction vectors and iteratively solving of the continuity equation (mass 
transfer). 

- Energy balance for the entire system including the surface.   

From these events new values of densities, temperatures and pyrolysis gas production rates are 
found. In preparation of next computational step, specific heat capacities of solid and gas, thermal 
resistances and heats of pyrolysis are updated. The detail of the solution process is shown in figure 
3.4, while the source code of the program is shown in appendix J.         
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Figure 3.4: Flow chart for the solution routine 
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3.3.1 Numerically solving the pyrolysis 
In chapter 2.2 decomposition reactions of ablative materials are explained. Numerically these events 
are computed explicit in time. Hence, the previous temperature within the cell volume is used in the 
kinetic model to calculate the amount of pyrolysis gas generated. This is performed in a reaction-by-
reaction fashion. The sum of gas contributions become the total amount pyrolysis gas that is 
generated during a time step, and from this, the density of the cell volume is adjusted and the 
current gas production rate for use in the continuity equation is created. 

The fraction parameter in equation 2.9 is then created from the new cell volume density. With this 
parameter, material properties are adjusted in accordance with the temperature, equation 2.10 and 
equation 2.11. The specific heat capacity of pyrolysis gas and the heat of pyrolysis are adjusted only 
by means of the current temperature. The same temperature is also used for updating properties for 
backup materials. 

Next, the identification parameter for the cell volume is determined as described in chapter 3.2.1. If 
the cell volume is part of the interface between virgin and residue, it is inserted into a vector 
together with the rest of the cell volumes which also represent parts of the interface.  

3.3.2 Solving the continuity equation using vectors 
The pyrolysis gas in the ablative material is assumed to percolate in the direction of the vector 
calculated using the earlier described geometrical routine. Since cell volumes are not shaped 
according to the gas flow, the flow must be decomposed as shown in figure 3.5.  

 

 

Figure 3.5: Shows the decomposition in i- and j-direction of the gas direction vector  

To include the gas flow in the energy balance, it must be expressed in terms of the i- and j-
coordinate. The angle between the direction vector of gas and the i-axis of the current cell volume is 

assumed to be a fair representation for finding the fraction parameters iλ (i-direction) and jλ (j-

direction). This allows for the amount of out-flowing gas in the different directions to be found.   
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The mass transfer on differential form is shown in equation 3.2. By using the finite volume method 
with backward differencing in time and central differencing in space the following equation is 
obtained: 

( ) ( ) ( ) ( ) 0pyr e w n s
m uA uA vA vAρ ρ ρ ρ+ − + − =  (3.9) 

Here pyrm is the pyrolysis gas leaving the control volume (Note that this is negative). To deal with 

vector directions instead of pressure or other controlling means, some corrections to equation 3.9 
must be performed. Assuming that no gas is accumulated within the control volume, the amount of 
gas flowing into the control volume, plus the amount of gas generated within the control volume, 
must equal the gas flowing out of the control volume. This can be expressed as:  

1 2 3 4 0pyr e w n s out

in

m x m x m x m x m m
m

+ − + − + =
−

  (3.10)
 

1 2 3, ,x x x and 4x are controlled by the vector direction of gas in the cell volume. Values of these for 

different angles are shown in table 3.1. The amount of gas leaving the control volume in i- and j-
direction can be expressed by: 

 
out out i out j

i j

m m m
m m

λ λ= +      (3.11) 

And 

1i jλ λ+ =       (3.12) 

Using previous expressions, the mass transport for a control volume can be calculated by: 

2 1 4 3out w e s n pyrm x m x m x m x m m= − + − −
 

1 2e e i outm x m x mλ= +  

2 1w w i outm x m x mλ= +      (3.13) 

3 4n n j outm x m x mλ= +  

4 3s s j outm x m x mλ= +  

This solution sequence is performed in every cell volume of the ablative material, and is calculated 
iteratively until convergence.  

 Table 3.1: Direction variables for the continuity equation 

Angle X1 X2 X3 X4 λ i-direction λ j-direction 
0 ( 360) 0 1 1 1 1 0 

90 1 1 0 1 0 1 
180 1 0 1 1 1 0 
270 1 1 1 0 0 1 

     0< angle <90 0 1 0 1 (+) (+) 
     90< angle <180 1 0 0 1 (-) (+) 

     180< angle <270 1 0 1 0 (-) (-) 
     270< angle <360 0 1 1 0 (+) (-) 
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The subroutines executed by G2DHeat are shown in appendix E. 

  

3.4 New input modifications 
For handling the ablative materials in G2DHeat, some additional input specifications have been 
created.      

3.4.1 Material properties of decomposing materials  
For the ablative materials that undergo changes due to pyrolysis reactions, an additional input file 
describing the different reactions must be supplied. As functions of the temperature, the properties 
of gas and residue product from the pyrolysis reactions are included in the material properties file. 
For simplicity, the heats of pyrolysis are also included in this file. 

In the input file it is important that the user specifies the decomposing materials prior to the backup 
materials. The files with pyrolysis kinetics must be specified in the same order as its connected 
material properties file. Example:   

 
DEFMATERIAL  -> Indicate the start of defining material properties in the input file 
2   -> Number of data files containing a material’s properties 
SIPH.b   -> Filename with id=1   
ALU.b   -> Filename with id=2 
1   -> Number of materials that are decomposing by pyrolysis 
SIPHpyr.b  -> The file containing pyrolysis data’s that are attached with material id=1 
3   -> Number of material area’s that are specified 
1 2 1 81 1 11  -> Material area which is defined as:  
1 3 1 11 1 91            <Filename id><grid block><start I-><end I-><start J-><end J-coordinate>  
2 1 1 81 1 81  
 
Here aluminium (ALU) as backup material and silica phenolic (SiPh) as ablative material are applied. 
For ablative materials, the program automatically calculates the pyrolysis reactions without further 
specifications. 

3.4.2 Adjustments of the virgin to residue interface 
In chapter 3.2.1 the use of a decision variable to find the virgin to residue interface is explained. In 
the program it is possible to adjust this value by the input:  

PYROLYSIS  -> Indicate start of defining the decision value  
 0.1   -> The new decision value 

The default value of this decision parameter is 0.02, but chapter 3.4.4 describes various situations 
where it is desirable to change the parameter. 
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3.4.3 Mechanical erosion 
The specification of recession rate or mechanical erosion is performed by the input sequence:  

M_EROSION   -> Indicate start of specifying erosion/recession 
5    -> Number of erosion/recession rates 
1.0 0.0   -> Recession/erosion rates as function of time are specified by:  
2.0 0.000713540294      <End time for current recession>< recession rate [m.s-1]> 
3.0 0.000510695946 
4.0 0.000480400863 
100.0 0.0 

The specification is performed only once in the input file and applies to the entire simulation time.  

3.4.4 Printouts  
To visualize the results at certain times in the simulation, the visualization tool Tecplot is used. For 
saving densities, temperatures and pyrolysis gas production rates to file in the program, the 
following input specification is used: 

SAVERHO  ->Saves densities, temperatures and gas production rates to file. 
plot_1.b   -> Filename 

This file must first be converted by using another tool (g2dnoden) before Tecplot is able to read the 
data.  
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3.5 Discussion 
There has been a great deal of assumptions in the chapter. Mostly, these have been based on other 
literature, but also some of them have come naturally from the methods selected and used. It is 
important to have in mind that the numerical approximations will only give results which are in direct 
reflection of the theoretical models that are used to describe the physics. Even so, there are 
possibilities for improving the results by using better numerical approximations. 

3.5.1 Energy considerations  
The initial assumptions made for the energy balance in chapter 3.1, are only to some extent true. 
When the ablative material decomposes there is likely that cracks will form. Achieving thermal 
equilibrium between the solids and pyrolysis gas in a cell volume can then be a problem, since the 
gas flow possibly will tend to flow in the cracks where it is less resistance. 

In some cases the out-flowing gases accumulate within parts of the ablative material (Austegard 
1997). If this happens, the temperature in parts of the material could increase because the heat sink 
effects caused by pyrolysis gases flowing through the material cease to exist in these parts. If this 
occurs close to the surface, a pressure build-up here could cause parts of the material to be blown 
off. 

 Since different ablative materials produce different reaction products and gases, it is likely that these 
gases are still reactive when leaving the cell volume. How much these remaining reactions influence 
the calculations is unknown. But it is considered to be a fair assumption since the main reactions of 
creating the gases are finished.  

3.5.2 Limitations on Time Step Size 
For calculating the temperatures in G2DHeat, an implicit method is used. Generally, the implicit 
method is unconditionally stable regardless of the time step size (Versteeg and Malalasekera 1995). 
However, in G2DHeat the time step must be reduced when ablative materials are included in the 
simulation. This is because of the explicit solution of decomposition reactions and the continuity 
equation. Currently there are no available routines in G2DHeat for adjusting the time step size. By 
using common sense and experience, the program user should be able to perform this initially in the 
input file.  

3.5.3 Numerical techniques 
The erosion/recession method for fixed grids that is outlined in chapter 3.2.2, has some weaknesses. 
In figure 3.6 the recession of the material is shown at three different times in the simulation. For cell 
volume “A”, the ending time occurs at t+Δt2. Physically, there is still material left in the cell volume 
when it is numerically assumed to be empty. The recession starts at t+Δt1 for cell volume “B”. 
Physically, this is also inaccurate. Since the cell volume at this time is already reduced.  



47 
 

 

Figure 3.6: Assumption made for the mechanical erosion  

Somewhat, this error can be reduced, since the grid in G2DHeat can form itself according to the 
geometry. 

When calculating the flow of pyrolysis gas in the continuity equation, a problem with pyrolysis gas 
flowing in wrong directions can occur. To illustrate this, a rectangular geometry consisting of 
aluminium and silica phenolic is exposed to heat flux on the left and bottom side, while the top and 
right side is insulated. This is shown in figure 3.7 with an indication of how the heat distributes itself 
in the geometry. In this illustration case, the heat flux is set relatively high to achieve decomposition 
and gas generation within the silica phenolic. Since the aluminium conduct heat much better than 
the silica phenoic (see appendix F for parameter values), a decomposition front in the silica phenolic 
is moving from the border on the left side inwards in the material against the aluminium. For a better 
visualisation, the decomposition is present in all parts of the silica phenolic except the dark blue area 
shown in figure 3.7.  

 

Figure 3.7: Test case used to illustrate the problem with direction vectors 
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When using the standard decision value of 0.02 for the interface in the simulation, some gas is 
flowing in the wrong directions, as seen in figure 3.8. The decision value for the interface is explained 
in chapter 3.2.1. Physically, this gas is supposed to percolate through the partially decomposed 
material towards the surface on the left side of the geometry. It is the direction vectors, which are 
geometrically calculated, that cause gas to flow in the wrong directions. Because the routine 
calculating these vectors only accounts for the position of the virgin to residue interface, and not the 
pressure or the porosity of the material. Therefore the shortest distance to the interfaced is used. 
Since the interface is defined by cell volumes with id greater than 1, the decision value can be 
increased to allow a more suitable movement of the interface.    

 

Figure 3.8: Error caused by the vector routine 

By increasing the decision value to 0.1, the new interface is defined by cell volumes which have 10 
percent or less material left which can decompose. This adjustment to the decision value, results in 
correct directions for the gas flow, as shown in figure 3.9.  

To fully avoid this type of problems, a better method for calculating direction vectors or a method for 
including calculations of pressure and velocity fields in the material should be considered.    
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Figure 3.9: Pyrolysis gas flow with corrected vector directions 
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Chapter 4: Test simulation 
In order to validate the program, this chapter provides a comparison of a test simulation performed 
in two commercial programs (CMA3 and ASTHMA) in addition to G2DHeat. First, a short introduction 
to what separates G2DHeat from the two other programs is presented. Second, a description of the 
chosen model geometry is given, including the necessary input preparations and boundary 
conditions used in the simulations. Finally, the results from the simulations are discussed.  

4.1 Simulation programs for decomposing materials 
To ensure that G2DHeat is valid for engineering applications, it has been performed code-to-code 
comparison with the commercial programs CMA3 and ASTHMA. The implementation of models, the 
numerical approximations and other assumptions are verified to some extent by these comparisons. 
However, a proper validation of the physical phenomenon is only accomplished by comparing the 
simulation results with experimental data. This is performed in chapter 5.  

Before comparisons of the simulation results can be made, a fundamental question must be put 
forth: 

- What separates G2DHeat from CMA3 and ASTHMA? 

In answer to the question, both the numerical aspects and the physical aspects are handled a bit 
differently by the programs, and therefore detailed comments are necessary. The numerical aspects 
of interest are summarized and shown in table 4.1, while the physical aspects of interest are shown 
in table 4.2. 
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Table 4.1: Numerical aspects of interest for G2DHeat, CMA3 and ASTHMA  Aspects G2DHeat CMA3 ASTHMA 

Grid mesh 

-Two-dimensional grid mesh. -Quadrilateral cell volumes not necessarily orthogonal. -Multi-block grid configuration.  -2D and Axi-symmetrical options. -Nodal scheme with nodes in the centre of the cells.  -Eulerian method for moving grid. -Maximum number of grid nodes is currently 35000, but can be increased.    

-One-dimensional grid mesh. -Employ sub-mesh with nodelets (or sub-nodes) within each cell element. -Simple representation of plate-, sylinder-, sphere- or tube like geometries.  -Lagrangian method for moving grid. -Nodal scheme with nodes in the centre of the cells, and one at the cell face on the surface. -Maximum number of grid nodes is 100. 

-Two-dimensional grid mesh. -Quadrilateral cell volumes not necessarily orthogonal. -Axi-symmetrical option. -Two nodal schemes, nodes at the back-face or in the centre of the cells. -Lagrangian method for moving grid in a column-by-column fashion. -Maximum number of grid nodes is 600. 

Solution routines 

-Implicit solution of the internal energy balance.   -Explicit linkage to decomposition events and the mass conservation. -Implicit solution of the surface energy balance. Note:  Don’t include calculation of recession rate. -Finite volume type solution procedure. 

-Implicit solution of the internal energy balance. - Explicit linkage to the decomposition events and the mass conservation.  -Implicit solution of the surface energy balance, except the recession rate which is calculated explicitly.  -Finite difference type solution procedure. 

-Alternating-direction implicit, classical explicit, column-implicit/row-explicit or column-explicit/row-implicit solution of the internal energy balance. -Explicit or mixture of implicit-explicit linkage to the decomposition events and the mass conservation. -Explicit or implicit solution to the surface energy balance. -Finite difference type solution procedure. 
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Table 4.2: Physical aspects of interest for G2DHeat, CMA3 and ASTHMA  Aspects G2DHeat CMA3 ASTHMA 

Internal events 

-Kinetic model with series of independent parallel reactions of the material. -Maximum number of reactions is 20 for each material. -Allows different threshold temperature for the reactions. 

-Kinetic model with series of independent parallel reactions of the material. -Maximum number of reactions is three for each material. -Allows different threshold temperature for the reactions.  

-Kinetic model with series of independent parallel reactions of the material. -Maximum number of reactions is five for each material. -Fixed threshold temperature for the reactions (333 K). -Radiation within material gaps and contact thermal resistance. 

Boundary events 

-Melting ablation with specified recession rate and surface temperature. -Include radiation, convection and other specified heat fluxes. - Similar heat fluxes with specified mechanical erosion. -Adjusts/corrects the convective heat coefficient on basis of an isentropic flow at the surface. -Include calculation of recovery temperature.  

-Melting ablation with specified recession rate and surface temperature. -Include radiation, convection and other specified heat fluxes.  -General convective heating and thermo-chemical erosion. -Adjusts/corrects the convective heat coefficient for radius changes, char swell and transpiration effects at the surface (blowing). -Allows cracking or fissuring of the surface char layer. 

-Melting ablation with specified recession rate and surface temperature. -Include radiation, convection and other specified heat fluxes. -General convective heating and thermo-chemical erosion or mechanical erosion. Adjusts/corrects the convective heat coefficient for transpiration effects at the surface (blowing). 
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4.2 Problem description 
This example treats one-dimensional heat transfer in the radial direction of a simple model geometry 
subjected to heat causing melting ablation and internal decomposition of the ablative material. The 
model is taken as a sectional cut of a larger cylinder geometry that is similar to the blast pipe of a 
rocket motor. The model consists of silica phenolic as ablative material and aluminium as backup 
material. In the radial direction these measure 6,35mm and 1,8mm, respectively. Since the geometry 
is a long cylinder, the heat transfer in the axial direction is neglected. Hence, the left side and right 
side of the model geometry is assumed to be insulated. The schematic of the model geometry is 
shown in figure 4.1.   

 

Figure 4.1: Schematic of geometry and boundary conditions   

The programs have only one boundary condition in common that accounts for ablation reactions at 
the surface. This requires a recession rate and ablation temperature to be specified by the user. 
Physically, this means that the amount of material being sacrificed to sustain the fixed ablation 
temperature at the surface during thermal stress is known. In this simulation, the model is first 
exposed to heating/ ablation of the insulation side for a period of 5 seconds, and then cooled for 95 
seconds. The boundary conditions are outlined in chapter 4.2.2.         
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4.2.1 Input preparations for the simulation 
In order to simulate the example problem, large amounts of input to the programs are required. A 
great deal of this input has been found by examining old input files used in CMA3 and ASTHMA, and 
conversions and examples provided in ASTHMA 88/PC (1988). All data have been supplied by 
Nammo.  

The properties of silica phenolic are presented in chapter 2, while the properties for aluminium are 
given in appendix F. In G2DHeat these are stored in external files collected by the program from 
filenames specified in the input file. In ASTHMA and CMA3 they are specified directly in the input file 
of the program.   

Grid geometry must also be made for each of the programs individually. For the grid in ASTHMA, the 
corner points of the cell volumes are specified in the input file. In total, 17 cell volumes in the radial 
direction and 3 in the axial direction are used for the representation of the model. In CMA3 a one-
dimensional grid layout is used. For emulating the axi-symmetrical geometry, the cell volumes are 
created by multiplying the width of the cell with the relative area being proportional to the radius. In 
this grid, 18 cell nodes/volumes with 10 nodelets (sub-nodes/-volumes) are used. G2DHeat is using 
37 cell volumes in the radial direction and 11 in the axial direction.  

The estimate for the recession rate (the rate material is mechanically removed) is found using an 
empirical correlation with the pressure present on the outside of the insulation (SiPh)(Næss 1998b). 
Whether or not the pressure values and correlation are valid for this example is unknown. However, 
it is assumed to be a fair approximation since the same rates are employed in all the programs. 
Therefore the errors will be equally large. The recession rates used in this simulation are shown in 
figure 4.2. 

The input files used by CMA3, ASTHMA and G2DHeat are shown in appendix G, H and I, respectively.  
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Figure 4.2: The recession rates used in the simulations 

 

4.2.2 Boundary conditions 
Initially, the model geometry has a uniform temperature of 299.15 K. For the entire simulation time, 
the boundary condition on the outer face of the aluminium is exposed to free convection and 
radiation to the surrounding air. The boundary condition on the inside of the model geometry is 
more complex due to the moving boundary. Assuming that the heat transfer within the model to be 
relatively low before the surface reaches the ablation temperature, the surface temperature is 
initially set to the ablation temperature in the programs. This temperature remains fixed during the 
ablation period of five seconds, before radiation cooling of the surface is enabled. The boundary 
conditions associated with this example, are shown as the simulation time proceeds in table 4.3.  

Table 4.3: Boundary conditions as simulation time proceeds (Myklebust 2008) 

Time [s] Ablating surface (SiPh) External surface (Aluminium) 
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4.3 Results 
The accuracy of the program is first assessed by comparing the predicted temperatures from the 
programs. Measurements are taken at the outer surface of the aluminium, and the temperature 
histories are shown in figure 4.3. 

 

Figure 4.3: Comparison of temperature history at the outer surface 

As can be seen from figure 4.3, the results from ASTHMA differ greatly from those obtained using 
G2DHeat and CMA3. This big difference suggests that something is wrong with the program, the 
specification of input and/or the way the program performs its calculations. In ASTHMA 88/PC 
(1988), it is commented on discovered and corrected coding errors. This gives an indication of a 
program not fully tested. When trying to find a suitable case to be executed in all programs, without 
returning fatal program errors, ASTHMA limited the options. This is because even small changes to 
the emissivity caused ASTHMAs surface solution routine to fail. Some uncertainties around the input 
specifications therefore exist. Especially, this was a problem when combining the time dependent 
and temperature dependent parts of the boundary conditions, to achieve analogous input to the 
programs. Because of these arguments, and the fact that the results from G2DHeat and CMA3 are 
relatively close, CMA3 is considered to be more trustworthy than ASTHMA in this comparison. 

Since CMA3 is considered most reliable, G2DHeat produces conflicting results as shown in figure 4.3. 
Provided that the same amount of heat has entered the system, it seems to be a bigger heat sink in 
G2DHeat than in CMA3. This could also be the case for ASTHMA, but the heat sink would be much 
larger compared to the heat sink in G2DHeat. In the figure it is seen that the profiles of the 
temperature curves are quite similar, except the fact that they are at different temperatures. Also 
seen from the figure, ASTHMA and G2DHeat start their initial temperature increases at a later point 
than CMA3. This supports the probability that a greater heat sink or a greater thermal resistance is 
present in G2DHeat and ASTHMA than in CMA3.    
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Figure 4.4: Comparison of temperature profile at 5 seconds    
 

 

Figure 4.5: Comparison of density in the insulation at 5 seconds 
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To clarify what might cause differences in the results, the period after heat input (from t=5s) is 
considered. During this period the heat which has entered the system distributes itself in the model 
geometry, or is lost to the surrounding air by radiation and/or convection. The temperature 
distribution for the entire model and the density changes for the insulation (SiPh), at the end of the 
heat input period (t=5s), are used to illustrate some of the reasons why the differences in the results 
occur. Temperature distribution is shown in figure 4.4, while density changes are displayed in figure 
4.5. 

In the outer most part of the insulation, 25.15 mm to 25.65 mm, the simulated temperatures are 
relatively high, while the densities are low. As seen in figure 4.4, the temperatures simulated by 
G2DHeat are greater than the ones simulated by CMA3 and ASTHMA, but the densities are less, as 
displayed in figure 4.5. The density gradient is small in the radial direction in this part because the 
decomposition events stagnate, only leaving residue products (char) behind. Since decomposition 
events are controlling the rate at which mass is removed, and the mass loss increases as the 
temperature is rising, G2DHeats results are consistent with the results from CMA3. More detailed, a 
higher temperature is reached and more mass is removed, for this part of the insulation, in G2DHeats 
simulation than it is in CMA3s simulation. ASTHMAs simulation is inconsistent with CMA3s 
simulation, since a greater temperature is reached, while less mass is removed from this part of the 
insulation. The differences are small, but could be explained by a higher heat flux present in ASTHMA 
than in CMA3, because the mass loss is a function of heat input to the system as shown in figure 2.2. 
However, this is uncomprehending, due to the fact that the temperature at the surface remains fixed 
during the heat input period, hence the heat flux should initially be equal in all the programs. 

In the part spanning from 25.65 mm to 26.8 mm, ASTHMAs temperature sinks rapidly within the 
insulation compared to the temperatures of CMA3 and G2DHeat. ASTHMAs density, on the other 
hand, is larger since less insulation has decomposed. It seems that in ASTHMAs simulation there is a 
larger heat barrier at the outer parts of the insulation, since less heat is allowed to enter the inner 
parts, which again prevents decomposition events. In this part of the insulation, the programs share 
the fact that all the densities are reduced from the insulations virgin state towards the residue (char) 
state. The difference in density becomes very eminent in this part, as shown in figure 4.5. A 
difference between CMA3 and G2DHeat is also observed, where more insulation is removed in 
G2DHeats simulation. 

In the remaining part of the insulation the temperature simulated by CMA3 is the highest. At the 
same point the density of the insulation is close to the virgin state in all the simulations. This 
indicates that less thermal resistance is present in the outer parts of the insulation in CMA3 than in 
G2DHeat and ASTHMA. It is also important to notice that this allows more thermal energy to be 
stored, since the density is much larger.   

 The deviations in temperature at the outer surface of the aluminium simulated by G2DHeat and 
CMA3 are also shown in figure 4.3. These can be explained by the temperature and density 
distribution in the insulation, at the end of heat input (t=5s), for the different programs. G2DHeats 
temperature, which is higher than CMA3s in the outer parts of the insulation, is insufficient to heat 
the aluminium to the same temperature as that of CMA3. The total amount of energy used to heat 
aluminium is less for G2DHeat than for CMA3. This is because the density in the outer parts of the 
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insulation is lower in G2DHeats case, while temperature in CMA3s case is higher in the parts where 
the density is greater.  

It is clear that there is a larger heat sink in G2DHeat than in CMA3. For some reason, more insulation 
material is decomposed to provide this larger heat sink. The cause of this could be; different handling 
of the boundary condition, numerical handling of decomposition events, errors in the program code 
and/or the usage of incorrect input values.  

In G2DHeat the surface remains fixed and numerical manipulation is employed to model the receding 
surface as explained in chapter 3.2, while in CMA3 the grid follows the receding surface. The 
different ways the surface is handled could result in errors, causing a larger heat sink. It is unknown 
how big the errors can be or if they are present at all. 

When the cell volume has started to recede in G2DHeat, it is assumed that decomposition events are 
insignificant in this cell volume, since the material is close to or already fully decomposed in this cell 
volume, and therefore neglected. It is not likely that this alone causes the entire error, because there 
is too little mass remaining in the cell volume that can decompose and result in a significant heat 
sink. However, the error can be reduced by selecting smaller cell volumes for the representation of 
the model geometry. 

A great deal of modifications has been made to G2DHeat, and it is not unlikely that logical errors can 
exist in the program, since the program is not tested as much as CMA3. However, this error, if it 
exists, might give an additional contribution to the heat sink present in the insulation during 
decomposition events. More testing is necessary to discover such errors, because the FORTRAN 
compiler does not recognise these.        

Unit conversion of material properties and reformulation of kinetic parameters due to different 
definitions of these in the programs, are also possible sources of error. A misinterpretation can easily 
occur since the documentation describing the conversions (ASTHMA 88/PC 1988) is divergent. 

To support what has been stated as cause of differences in temperature, using simulation results at 
the end of heat input, simulation results from a later point in time (t = 10s) is considered. The 
temperature profile at this time is displayed in figure 4.6 and the density distribution in the insulation 
is shown in figure 4.7.     
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Figure 4.6: Comparison of temperature profile at 10 seconds  
 

 

Figure 4.7: Comparison of density of the insulation at 10 seconds 
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From figure 4.6 it is seen that the heat has started to distribute itself in the model geometry, the 
temperature in the aluminium increases while the temperature in the insulations outer parts 
decreases. At the same time the amount of energy remaining in the model for the different programs 
after the heat input becomes more eminent. The highest simulated temperature is obtained using 
CMA3, followed by G2DHeat and then ASTHMA.    

Since the temperature in the CMA3 simulation is higher than for G2DHeat, especially in the inner 
part of the insulation, decomposition events are more active, which can be seen from the change in 
density between figure 4.5 and figure 4.7. The density in the outer part gets closer to the density of 
G2DHeats, while in the inner parts of the insulation it becomes less than G2DHeat. This complies 
with the fact that there is a greater mass loss with increasing temperature in the inner parts of the 
insulation. However, there is not enough insulation decomposing or heat sink effect to lower the 
temperature in the aluminium to the same level as the temperature in G2DHeats simulation. Even 
though the density in CMA3 is closing in on the one simulated by G2Dheat, the decomposition 
reactions are occurring at a lower temperature than they did in G2DHeat, and less heat sink effect is 
generated. Because, as it can be seen from the curve for heat of pyrolysis in figure 2.6, it increases at 
a higher rate than the temperature, thus more energy is consumed by the same amount 
decomposed material, the higher the temperature becomes.        

At 10 seconds the temperature simulated by ASTHMA is lower than both CMA3 and G2DHeat, as 
shown in figure 4.6. This is quite compatible with the simulated temperature at 5 seconds, since from 
this point heat is lost to the surroundings and/or is used to decompose parts of the insulation. Hence, 
it becomes more apparent that there has been a larger heat sink, or that heat has been prevented to 
enter the system in some other way. When considering ASTHMA, the density is large in the outer 
parts of the insulation (25.65 mm to 26.15 mm), where the simulated temperatures are at their 
highest, as displayed in figure 4.4 and figure 4.6. These temperatures are not so high that the 
aluminium can be heated sufficiently to reach the same temperature as simulated by CMA3. The 
deviation is enhanced since the remaining insulation, in this part, continues to decompose, which 
provides a more powerful heat sink, compared to CMA3. 
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Chapter 5: Comparisons to experimental observations 
In this chapter two different geometric models are used to compare the program simulations with 
experimental observations. A simple model is applied to assess the simulated results for temperature 
and char depth. A more complex model is then used to show that the program can perform two 
dimensional simulation of heat transfer in decomposing materials. At the end, the simulated char 
depths are compared to those experimentally measured.    

5.1 The simple model 
The simple model described in chapter 5.1.1 is used in this comparison of simulation results from 
G2DHeat to experimental observations. Nammo has performed firing tests of the rocket motor, 
where the model geometry is taken from, to obtain these experimental observations. Here the 
rocket motor was mounted horizontally to a static vehicle. During the testing they monitored 
temperatures on the motors outer surface, before they examined the fired motor and measured the 
char depths of the insulation (SiPh). 

 The transient heat transfer from the hot combustion gases to the insulation material is simulated by 
assuming an isentropic flow through the motor. Local convective heat transfer coefficient and 
recovery temperature are then calculated from the properties of the combustion gases together with 
stagnation pressure and stagnation temperature. How this is performed is described by Riise(2008).   

5.1.1 Model definition 
The model is assumed to be insulated on its right and left side for the same reasons as stated in 
chapter 4.2. Since ablation temperature in this case is unknown for silica phenolic, it is only 
performed simulations with pyrolysis effects and mechanical erosion present. The model is shown in 
figure 5.1. 

 

Figure 5.1: Schematic of the simple model 
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Total time for the simulation is 60 seconds. The boundary condition for the outer surface is free 
convection to the surrounding air, with a convective heat coefficient value of 26 W.m-2K-1 and 
ambient temperature of 288.15 K. Inside the motor the boundary condition is divided into three time 
periods. In the two first time periods (0 - 4.4s and 4.4 - 5s), a subsonic flow of combustion gases 
through the motor is used to calculate the convective heat transfer coefficient and the recovery 
temperature (a temperature adjusted or corrected for the mechanism of decelerated combustion 
gases in the surface boundary layer)(Riise 2008). Properties of the combustion gas together with 
stagnation pressure for the two time periods are shown in table 5.1. In the cooling phase, the third 
time period (5 - 60s), a convective heat transfer coefficient of 50 W.m-2K-1 and ambient temperature 
of 473K are used. All values are supplied by Nammo.     

Table 5.1: Property values used for calculating recovery temperatures and convective heat transfer coefficients  

Property Unit Value 

Gas constant (R ) J.Kg-1K-1 313.18 

Adiabatic constant (γ ) - 1.1553 

Stagnation pressure ( 0P ) – time[s] 0 - 4.4  Pa 9.5×106 

Stagnation pressure ( 0P ) – time[s] 4.4 - 5  Pa 4.5×106 

Stagnation temperature ( 0T ) K 3165.9 

Prandtl number (Pr ) - 0.41 

Viscosity ( µ ) Ns.m-2 0.76×10-4 

Radius in the nozzle throat ( r ) m 0.01855 

 

Material properties of silica phenolic and aluminium are shown in appendix F, while the mechanical 
erosion rate used in the simulation is shown in figure 4.2.      
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5.1.2 Results  
The temperature histories at the top and bottom of the horizontally mounted motor were provided 
by Nammo, and show temperature variations on its outer surface. Figure 5.2 compares the 
temperature history on the external surface obtained from experimental observations and results 
from the computer simulations.    

 

Figure 5.2: Temperature history on the external surface 

From figure 5.2 it can be seen that there was a considerable difference in the measured 
temperatures on the top of the motor compared to those measured at the bottom of the motor. This 
difference might be reduced during flight, since the rocket no longer is restrained to the static 
vehicle, thus causing less accumulation of heat beneath the rocket motor. Considering this effect, it is 
probable that the temperature would have ended up somewhere in-between these measured 
results. Since such effects are absent in the simulation program, the simulated results also should 
have ended up in this region. 

 During motor burn (0 – 5s) the simulated temperatures on the outer surface remain unchanged, 
which is consistent with the measurements. At burn out (t=5s), the insulation depth for the case with 
mechanical erosion is reduced, while in the case where only pyrolysis is considered, the insulation 
depth is constant. The reduction of insulation depth should give an increase of the outer surface 
temperature at an earlier point than in the case where it remains constant. This is because the same 
temperature front now has a shorter distance to travel. The total temperature increase should also 
be lower in this case, since the removal of mass will give reductions to the amount of stored energy. 
The simulation results displayed in figure 5.2 is in agreement with these predictions. 

Comparing the simulated temperatures and the experimentally obtained temperatures shown in 
figure 5.2 it is clear that there are deviations. In the simulation including mechanical erosion the 
increase in temperature starts early as predicted, but looking at the two measured temperature 
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curves it is evident that the simulation results are not within the desired region. Choosing a different 
erosion rate might shift the simulated temperatures closer to the measured values. The total 
temperature increase will also be influenced by a change in the erosion rate, this by allowing more or 
less heat to enter the parts of the material remaining after the erosion.  

Considering the other simulated case, the temperature history for the top side of the rocket motor is 
a good match up to approximately 25 seconds. After the 25 seconds, the simulated temperatures 
increase even further. This is probably because energy is present in parts of the material which is 
eroded in the experimental case. 

Other reasons for the differences between the simulated and experimental results could be: 

- Unrealistic values of material properties used in the simulations. 
- Poor estimates of the heat of pyrolysis and specific heat capacities for the pyrolysis gas.  
- Too coarse assumptions made to the physical models implemented in the program.  
- Inadequate numerical approximations. 
- Insufficient specification of the boundary conditions. 
- Physical effects not accounted for in the program, such as chemical reactions on the material 

surface.  
- Experimental errors. 

The values for the material properties are collected from old input files used in CMA3. The origin of 
these values is unknown and could therefore be faulty. If the composition of silica phenolic used in 
this rocket motor is inconsistent with the properties collected from the input files, the simulation 
results could contain errors. Another possible source of error is the conversion of units between 
CMA3 and G2DHeat. 

The heat of pyrolysis and enthalpies of the pyrolysis gas are determined from analysing the pyrolysis 
gas as described in chapter 2.4. For the simulations performed in this chapter, relevant values are 
gathered from the old input files used in CMA3. The heat of pyrolysis is assumed to be a function of 
temperature only, or more detailed, a function of the pyrolysis gas enthalpy and the enthalpy of the 
decomposing material when neglecting the pressure changes in the material. This approximation and 
the values gathered from the input files might cause errors in the simulations, but the size of the 
errors is unknown. 

If the decomposition reactions that occur in silica phenolic are dependent on each other, it can be 
inadequate to use the kinetic model currently implemented in the program. The reason for this is the 
assumption that the decomposition reactions are independent of each other. Provided that the 
reactions are dependent on more variables than temperature alone, a different kinetic model for 
decomposition reactions should be considered. 

The numerical approximations made in the program could be insufficient for simulating the physical 
events occurring when the insulation material is decomposing. Suggested improvements are 
described in chapter 6.2. 

In the rocket motor, the flow of exhaust gases is assumed to be isentropic. Using this assumption in 
the program calculations of the heat transfer coefficient and recovery temperature, would result in a 
simulation of an ideal situation. But in real life, such ideal situations seldom occur, due to energy 
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losses such as chemical reactions, energy stored in solid particles etc. Assuming the temperature 
after the firing of the motor to be constant at 473K, is a rough estimate since the temperature will 
decrease from a very high temperature towards the ambient temperature on the outside of the 
rocket. To better approximate the boundary conditions, the boundary layer near the surface could be 
investigated. This could lead to better estimates of the actual heat flux entering the material, but the 
models are often more complicated and need accurate user specified values for improving the 
simulation results.  

If other physical effects such as fissuring of the material, chemical reactions at the surface and/or 
accumulated pressure in the material occur, are not accounted for by the program. This could lead to 
poorer quality of the simulation results.       

Experimental errors caused by the measuring equipment or the layout of how the firing tests are 
performed, could lead to inaccurate results. However, this is not likely, since there has been 
performed several firing tests with qualified personnel monitoring the tests.  

The remaining thickness of silica phenolic is 3.2 mm in the physically tested rocket, and 1.1 mm of 
this is char. In figure 5.3 and 5.4, the material densities for the simulated cases are shown at the end 
of the simulation.         

 

Figure 5.3: Densities in the case with pyrolysis and mechanical erosion (Time= 60 s) 
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Figure 5.4: Densities in the case with pyrolysis (Time= 60 s)  

For the situation with mechanical erosion, it is seen in figure 5.3 that the char depth is near the 
measured depth of 1.1 mm. The dark green area is more or less char in this figure, and it is easy to 
see how the material density in the partially decomposed region is varying. For the observed char 
depth in the tested motor, it can be hard to determine the actual density of the material or the 
variation of density in the partially decomposed region. To be certain that the simulated char depth 
is valid with the measured one, different tests with various char depths remaining after the tests 
should be compared with corresponding computer simulations.  

For the case with pyrolysis shown in figure 5.4, the thickness of the char layer is observed to be much 
grater than the measured one, but not as deep. This is probably because a great deal of the char 
layer is removed by erosion in the experimental tests, thus allowing the decomposition front to reach 
further into the material.                
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5.2 The complex model 
One of the unique features of G2DHeat is the possibility of simulating two-dimensional heat transfer 
in the decomposing materials. Therefore, more complex model geometry is selected so this can be 
visualised. Similar to the simple model, Nammo has performed analogue firing tests with the rocket 
motor where the geometry is taken from.      

5.2.1 Model definition 
The model includes an axial two dimensional cut of the blast pipe and nozzle of the rocket motor. 
The model consists of silica phenolic as insulation with a graphite nozzle throat insert to withstand 
erosion when high velocity combustion gases are flowing through the nozzle. The motor case consists 
of aluminium. The left side of the model is assumed to be insulated, since the axial heat transfer from 
the rest of the structure is neglected. The schematic of the model is shown in figure 5.5.           

 

Figure 5.5: Schematic of blast pipe and nozzle  

The total simulation time is 300 seconds. The boundary condition on the outer surface is free 
convection with a heat transfer coefficient of 20 W.m-2K-1 and an ambient temperature of 288 K. The 
motor is burned for a period of 15 seconds before it is cooled for a period of 285 seconds. For the 
boundary conditions on the inside of the motor, an isotropic flow is used to calculate the local 
convective heat transfer coefficient and recovery temperature until burn out of the motor (t=15s). 
The flow is assumed to be subsonic up to the nozzle throat, and supersonic after. Computer 
calculations are described by Riise(2008). Values for this simulation are given in table 5.2. In the first 
part of the cooling period (15 – 40s) the convective heat transfer coefficient 50 W.m-2K-1 and the 
ambient temperature is 473 K, while for the last part of the cooling period (40 – 300s) the convective 
heat transfer coefficient is 20 W.m-2K-1 and the ambient temperature is 288 K. All values are supplied 
by Nammo. 

Material properties for the silica phenolic, aluminium and graphite are given in appendix F. 
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Table 5.2: Property values used for calculating recovery temperatures and convective heat transfer coefficients  

Property Unit Value 

Gas constant (R ) J.Kg-1K-1 317.57 

Adiabatic constant (γ ) - 1.1553 

Stagnation pressure ( 0P )  Pa 6.5×106 

Stagnation temperature ( 0T ) K 2927 

Prandtl number (Pr ) - 0.41 

Viscosity ( µ ) Ns.m-2 0.76×10-4 

Radius in the nozzle throat ( r ) m 0.0115 

 

5.2.2 Results  
To verify that the simulation temperatures are representative for what happens physically, they are 
compared to a temperature measurement from the firing test at the surface point shown in figure 
5.5. These temperature histories are shown for both situations in figure 5.6.  

 

Figure 5.6: Temperature history for the complex model 

During motor burn (0 – 15s), it is seen from the figure 5.6 that the simulated temperature increases 
slower than the experimental. It is likely that the experimental temperature also should increase at a 
slower rate in the same time period. This is because it takes some time for the heat to reach the 
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point where the measurement is taken. Looking at the curve for the experimentally obtained 
temperatures, the marked points represent the eight measurements available. Thus, this only 
provides a rough indication of how the temperature changes.  

As figure 5.6 shows, the maximum temperature reached by the simulation does not agree with the 
one experimentally measured. The insulation depth where the point of measurement is projected to 
the symmetry axis is initially 8.3 mm, while after burn out (t = 15s) the depth is 6.5 mm. This erosion 
is not accounted for in the simulation. A reduction in the insulation depth will cause heat to reach 
the aluminium faster. Due to the long burn time this allows the aluminium to achieve a higher 
temperature than when the insulation is intact, and thus increasing the thermal resistance.  

 

Figure 5.7: Gas production rates as time proceeds    

To illustrate the rate at which the material is decomposing, gas production rates for the simulation 
are presented in figure 5.7. The decomposition rate is at its climax at the start of motor burn, and 
then decreases from burn out and throughout the cooling period. After about 30 seconds of 
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simulation time, insignificant amounts of gas generation occur. Corresponding density changes are 
shown in figure 5.8. 

 

Figure 5.8: Material densities as time proceeds 

From the start of motor burn till approximately 30 seconds have passed, the difference between char 
and virgin is eminent, because the decomposition zone is very narrow. During the cooling period the 
latent heat causes the decomposition zone to increase, this is especially visible after 300 seconds 
nearby the nozzle throat insert in figure 5.8. Studying the kinetic values given in table 2.2, it is natural 
for this phenomenon to happen, since the temperature, even at the end of the simulation, is greater 
than what is necessary for the decomposition reactions to occur. 

After the firing test, measurements of char depths were performed at the positions A, B, C and D 
shown in figure 5.9.   
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Figure 5.9: Positions where the char depth is measured   

When comparing the measured char depths with the simulated ones in table 5.3, it is assumed that 
material density up till approximately 1550 Kg.m3 of the initial 1742 Kg.m3 is defined as char 
compared to the experimentally measured. It is also important to have in mind that the 
experimentally measured depth is the actual char depth without including the depth of receded 
insulation, which for some of the positions is relatively large.  
 

Table 5.3: Char depths measured from the simulated and experimental results 

Position 
Simulated 

[mm] 
Experimental  

[mm] 

A 3.4 3.4 

B 9.3 8 

C 4.7 4.8 

D 3 3.1 

 

There is some deviation between the simulated and experimental char depths in table 5.3. One 
possible reason for this is the absence of erosion in the simulated case. Depending on what rate the 
insulation recedes during motor burn, the final char depth can become different. Therefore more 
physical models should be included in the program to calculate the recession, or studies of how the 
material recedes at different positions should be carried out. 
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At position C in figure 5.9 the material has not receded at all in the experimental case, therefore 
measurements at this point is representative for comparison with at the identical position in the 
simulated case. The predicted char depth in position C is in close range with the experimental results. 
Decomposition events in this part of the material are mainly influenced by temperature differences 
because the surface remains fixed, and is therefore not chemically or mechanically consumed.  

Many other sources of errors due to the assumptions made can also significantly affect the results. 
These are mentioned in chapter 5.1.2. 
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Chapter 6: Conclusions and further work 
In this chapter the present program development and results are concluded. Then, recommendation 
for further work to improve the program is presented.    

6.1 Conclusions 
From the development and testing of G2DHeat the following conclusions can be drawn: 

• The program is modified to solve the energy equation implicit in time for two-dimensional 
multi-block grids.  

• The implicit solution routine performs well compared to the explicit routine, especially when 
considering the possibility of using a larger time step in the simulation. In the explicit routine 
it is necessary to check, and possibly adjust, the time step size to ensure a convergent 
solution, while the implicit routine avoids this, and therefore saves computational time. The 
accuracy of the implicit routine, when only calculating conduction in solids, is in close range 
with the commercially available program COMSOL Multiphysics. Allowing the use of different 
time step to achieve adequate results, the computation time for the implicit routine is lower 
compared to the explicit when grids containing less than approximately 9000 cell volumes 
are used.  

• A source term that includes internal energy effects from endothermic and exothermic 
reactions in the heat transfer calculations is added to the energy balance in the program. In 
the present program this is used for endothermic pyrolysis reactions of ablative materials.  

• The pyrolysis gas flow is calculated explicitly in time by solving the continuity equation using 
direction vectors pointing from the center of the cell volume towards the interface between 
the residue zone and the decomposition zone of the ablative material.  

• A routine for calculating charring ablation with known recession rate is developed. While 
mechanical erosion of ablative materials is included as an additional input option when using 
other boundary conditions.    

• Comparing the results from the test simulations performed with the commercial programs, 
CMA3 and ASTHMA, to G2DHeat, it is evident that a greater heat sink is present in G2DHeat 
and ASTHMA, than in CMA3. Although the programs use the same kinetic model, significantly 
differences in results are observed. To determine the cause of error, extensively work with 
fault localisation is necessary.   

• Comparing the experimentally obtained measurements with simulations performed with 
G2DHeat in chapter 5, the char depths after simulation agree well with the experimental 
results. Even though a great deal of simplifying assumptions is made in the program, the 
results give an indication of a program being able to cope with two-dimensional heat transfer 
calculations for ablative materials. However, the boundary conditions currently available in 
G2DHeat are not sufficient to properly handle the ablative phenomenon, since the 
temperature history, as well as recession rate, must be included in the input file. These are 
difficult to predict, because, physically, they are functions of the heat transfer occurring 
within the material in addition to the events adjacent to the surface.  

• The many uncertainties that arises from the comparisons of results, suggests that more 
testing is necessary before G2DHeat can be considered trustworthy. 
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6.2 Recommendations for further work  
A considerable amount of changes and improvements have been made to G2DHeat during this work. 
However, there is still a great deal of improvements and testing necessary before the program can be 
considered trustworthy and fully qualified to simulate the physics of ablation. 

In chapter 4.3, the possibility of an additional heat sink present in G2DHeat is commented. To locate 
or determine its existence, the following suggestion is given. First, a case should be generated for 
CMA3, then verified with experimental results, before the same case is employed in ASTHMA. If 
these approximations yield satisfying results and can be supported by the experimental results, 
verification and troubleshooting of G2DHeat can be initiated. If an additional heat sink exists, the 
source of error should be found by comparing the input and output of the programs. The short time 
available in this thesis for testing and attempting to find the cause of the deviation in the results, 
thus the reason for believing that there exists an additional heat sink, has been hindered by too 
many uncertainties concerning CMA3 and ASTHMA. 

 Further work recommended for improving G2DHeat is given throughout the rest of the chapter.            

6.2.1 Improving the calculation of pyrolysis gas flow   
To compute the continuity of pyrolysis gas in G2DHeat, a generation of direction vectors to decide 
the directions of the gas flow are required. This determination of gas flow is not entirely correct, but 
is assumed to be a fair approximation, considering the lack of information on pressure relations 
within the decomposing materials. However, in further work this simplified assumption should be 
improved by including a calculation of pressure and velocity field of the pyrolysis gas. If the gas flow 
is governed by the pressures inside the material, there is no need for complicated routines for 
calculating the interfaces or direction vectors any more. The flow direction is given directly by the 
pressure differences within the material.  

To prevent the pressure controlled gas flow from entering impenetrable materials when flowing 
through the geometry, permeability values for the materials could be used. Where, values between 1 
and 0 represent the partially penetrable material and 1 the impenetrable. In some way, these values 
perhaps could be determined by the decomposition state of the ablative material. 

Another possibility, but less accurate, is to improve the geometrical routine to handle more complex 
situations as discussed in chapter 3.4.3.  

6.2.2 Improvements to the boundary conditions 
A method for calculating the local convective heat coefficient inside the rocket motor, assuming an 
isentropic flow adjacent the surface, is present in G2DHeat. This uses the radius at different axial 
positions in the motor, the pressure, and properties of the gases flowing at the surface to obtain the 
coefficients. However, the calculation is performed only once, which is in the initiation procedure of 
the program. To improve the method, this should be executed for every time step to include the 
effects of an increasing radius, as the ablative material is receding.      

To simulate charring ablation, the present G2DHeat program requires a recession rate and an 
ablation temperature to be specified in the input file. To cope with situations where the recession 
rate and/or ablation temperature are unknown, other methods should be developed. The method 
suggested in chapter 2.5 for instance, is a simple way of calculating the recession rate. Instead of 
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solving the chemical reactions, the heat of ablation is known and the recession rate is calculated 
from the energy balance at the surface. There are also methods that include the chemical reactions 
at the surface. A short introduction to how these methods can operate is given in the following 
suggestion. 

The chemical reactions at the surface are often complicated and require greater amount of 
information of the ablative material, reaction gases, and the boundary layer close to the surface 
(Schoner 1970). Programs, such as CMA3 and ASTHMA, include these chemical reactions in their 
surface boundary conditions.  

 

Figure 6.1: Energy balance of the surface  

Developing a routine for calculating the energy balance at the surface should be the first step for 
introducing chemical reactions to the G2DHeat program. The purpose of the routine is to provide a 
new surface temperature and a new recession rate for the internal energy balance. Numerically, this 
could be handled explicit or implicit in time. The present internal decomposition events and the 
internal mass transfer are using the explicit approach, and therefore it should be considered for the 
chemical reactions too. An energy balance of the surface using the film coefficient model is given by 
(Schoner 1970):  
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+ − − =

∑
 (6.1) 

This is actually a generalized case of the energy equation and includes unequal mass diffusion 
coefficients (ASTHMA3 1972 and Schoner 1970). Parameters with subscript “e” are defined at the 
boundary layer outer edge shown in figure 6.1, while parameters with subscript “w” are defined at 
the boundary surface. The convective term in equation 6.1 represents the diffusive heat flux from 
the gas phase to the surface, and excludes chemical energies. The second term represents the net of 
chemical energy fluxes at the surface. The rest of the terms are described in chapter 2.5. More 
information concerning specific terms is given in ASTHMA88/PC (1988). 
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In common, CMA3 and ASTHMA are using three sorts of pre-calculated tables for obtaining the 
parameters in the energy balance, namely: 

- Time tables (Parameters as functions of simulation time). 

Heat transfer coefficient( e e Hu Cρ ) 

Pressure (P) 

Recovery enthalpy ( rH ) 

Radiation flux ( ,radiation inQ ) 

Mass transfer coefficient ( e e Mu Cρ )(or the constant ratio /M HC C )  

 
- Thermo-chemistry tables (Parameters as function of pressure, dimensionless ablation rate (

' /c r e e MB m u Cρ= ) and dimensionless pyrolysis gas rate ( ' /g g e e MB m u Cρ= ). 

Surface temperature ( ' '( ,  B  and B )w c gT f P= ) 

Energy caused by diffusion driving force(“e”) ( * ' '
, , ( ,  B  and B )wT
i e f i c g

i
Z h f P=∑  

Enthalpy of gases adjacent to the surface ( ( )' ',  B  and Bw c gh f P= ) 

Energy caused by diffusion driving force(“w”) ( *
, , (  and )wT
i w f i w

i

Z h f P T=∑ ) 

Enthalpy of gases at outer boundary layer edge ( (  and )e wh f P T= ) 

 
- Material property tables (Parameters as functions of surface temperature). 

Enthalpy of residue products (char) ( rh ) 

Enthalpy of pyrolysis gas ( gh ) 

Surface emissivity ( surfaceε )  

These are generated by experiments and/or by separate chemistry programs, such as EST 
(Aerotherm Equilibrium Surface Thermochemistry Program, version 1, 2 or 3), ACE (Aerotherm 
Chemical Equilibrium Program) and GASKET (Aerotherm Graphite Surface Kinetics Computer 
Program). To create the thermo-chemistry tables, mass transfer coefficients (within the time range of 
the simulation)( e e Mu Cρ ) must be supplied to the chemistry program. Alternatively, heat transfer 

coefficients ( e e Hu Cρ ) and a ratio between the heat and mass transfer coefficients ( /M HC C ) 

instead. In addition, some of the programs must also be supplied with pre-exponential factors, which 
are used for kinetically controlling the surface reactions. Input of material and external gas 
compositions is obvious, and the remaining input is only used for limiting the output of the program. 
For instance, specifications of pressure, pyrolysis gas flow rate and ablation rate range (ASTHMA3 
1972).  
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To obtain the physical data necessary for simulating the surface in G2DHeat, this tabular approach 
should be considered. In this way, there are enough properties available for solving the surface 
energy balance at the current time step. For further development of G2DHeat, the following surface 
solution process (for a time step) is suggested: 
 

1. Solve the internal decomposition events to obtain the mass flow of pyrolysis gas ( gm ). 

2. Gather necessary values from the time tables at the current time in the simulation, and if 
necessary, perform corrections to the heat transfer coefficient for various effects adjacent to 
the surface (Schoner 1970). If the mass transfer coefficient is absent from the time tables, 
use its ratio to the heat transfer coefficient instead. 

3. Calculate the dimensionless pyrolysis gas rate.  

4. From an initial guess of the ablation rate( rm ), iteratively solve the energy balance in the 

sequence: 
 Calculate the dimensionless ablation rate. 
 Obtain the surface temperature and other parameters from the thermo-chemistry 

tables. 
 Obtain parameters from the material property tables using the surface temperature. 
  Calculate the radiative and the conductive heat flux using the surface temperature 

(See chapter 2.5). 
 Insert values into the energy balance and solve. If there is departure from zero, 

select a better guess for the ablation rate and start over. Otherwise, the ablation rate 
and surface temperature is determined, so move to the next solution step.      

5. Calculate the recession rate from the ablation rate (See chapter 2.5) and make adjustments 
to the cell volumes time “start of erosion” (See chapter 3.2.2). 

6. Solve the internal energy balance using the obtained surface temperature. 

 

6.2.3 Including slow cook-off calculations   
In tactical missile applications it is often important to characterise the thermal behaviour of the solid 
propellant, and consequently its sensitivity. If the missile is subjected to unplanned stimuli such as an 
external fire, it can be useful to predict the detonation or ignition time of the missile. To determine 
the response of the propellant, slow cook-off tests can be performed. These tests involve uniformly 
heating of the missile structure including its propellant at low heating rates. After some time, the 
propellant reaches a certain temperature where exothermic reactions (due to decomposition of the 
propellant) give an additional increase of the temperature. When this temperature is reached, the 
heating rate becomes self sustained, and eventually causing the propellant to ignite (Victor 1990). 
 
With the new feature of having a source term in G2Dheat, it is possible to simulate these exothermic 
reactions in the program. The reaction kinetics of the propellant can be implemented in the same 
way as the pyrolysis kinetics in the present program.    
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6.2.4 Improving physical models 
The kinetic model and boundary conditions in the program do not include all the relevant physics 
involved in charring ablation, but they provide a basis for further development of the program. In 
time, more of the physics can be added as experimental data becomes available. Some suggestions 
for improvements are: 

- Allowing decomposition of multiple materials, each producing a pyrolysis gas that can react with 
the other gases and the solid material it percolates through. 
- Allowing thermal and chemical non-equilibrium. 
- Ablation reactions at the surface of the material, not being fully charred. 
- Thermo chemical reactions at the surface of the material. 

6.2.5 Miscellaneous improvements 
When using a large amount of cell volumes in G2DHeats grid (greater than 9000 cell volumes), a 
parallelisation of the computer code would offer significant computational economies, since the 
work load is divided on multiple CPUs (Riise 2008). Especially an improvement for the implicit 
solution routine as it is seen from the comparison of computational time with the explicit solver in 
figure 1.16.      

Simplifying the input specification to the program can be performed by creating a graphical user 
interface. Potentially, this also reduces the human error when the input files are created. A 
visualization tool could also be integrated or connected to the user interface for making it more 
convenient for the user to verify the simulated results.  

To handle a complex motor structure in a two-dimensional grid representation can be difficult, since 
the motor structure can consist of an irregular geometry. Therefore in further development of the 
program, a three-dimensional expansion should be considered.    
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Appendix A: Discretisation of the Heat Balance Equation 
The transient heat transfer in two-dimensions can be expressed by (Versteeg and Malalasekera 
1995):  

T T Tc k k S
t i i j j

ρ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞= + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
  

 

First, the heat contribution is integrated over the control volume in time and space:  

t t t t t t t t

t t t t
CV CV CV CV

T T Tc dV k dVdt k dVdt SdVdt
t i i j j

ρ
+∆ +∆ +∆ +∆⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞= + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫

  

Then, the Gauss-theorem (from volume to face integral) is employed:  

t t t t t t t t

CV t t t t
e w CVn s

T T T T Tc dt dV kA kA dt kA kA dt SdVdt
t i i j j

ρ
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By using forward Euler in time and central differencing in space, the following terms are obtained:   
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Combining these using the fully implicit scheme, yields: 
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Introducing harmonic mean thermal conductivity defined as:
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PE Ee eP

E e e P E P

Ee eP I e

E P

T T T TT TQ k k k
i i i

T T T T T T
i i R
k k

δ δ δ

δ δ

⎛ ⎞ ⎛ ⎞⎛ ⎞ − −−= = =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟ ⎛ ⎞− + − −⎜ ⎟⇒ = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠+⎜ ⎟
⎝ ⎠

 

Performing linearisation of the source term: 

( )P P uS V t S T S t∆ ∆ = + ∆  

Rearranging and inserting terms into the final equation: 

0

, , , , , , , ,
0

e w n s e w n s
p p E W N S p u

I e I w J n J s I e I w J n J s

pe w n s
p

A A A A A A A Ac V c VS T T T T T T S
t R R R R R R R R t

aa a a aa

ρ ρ⎛ ⎞∆ ∆+ + + + − = + + + + +⎜ ⎟⎜ ⎟∆ ∆⎝ ⎠

 

0 ( )
( )

 
 

 
 

T Temperature time t
T Temperature time t t
R Thermal resistance
A Lateral surface

Density
c Heat capacity
V Cell volume

ρ

= =
= = + ∆
=
=
=
=

∆ =
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Appendix B: Linearisation of radiative heat transfer terms  
In order to include radiation heat transfer in the implicit solution routine, linearisation of the 
radiation terms from the explicit routine is performed (CFD-online 2008): 

4
, * *= =radiation in surroundingQ A T constantε σ

 

4 4
, * * ( )Radiation out P PQ A T f Tσε= =  

Combining the radiation in and out: 

 4 4
, * * * *= = −Radiation tot surrounding PS Q A T A Tε σ σε    

A Taylor series expansion of the source is expressed by: 

( )
0

0 0
P P

SS S T T
T

∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠  

Where
      

( )
0

03
* * 4 P

S A T
T

σε∂⎛ ⎞ = −⎜ ⎟∂⎝ ⎠  

Here ”0” denote values at the previous iteration. The source term becomes:   

( ) ( )( )( )0 04 4 3 0
* * * * * * 4= − + − −surrounding P P P PS A T A T A T T Tε σ σε σε   

Dividing the temperature dependent part from the non-temperature dependent part yields: 

( )( )03
* * 4P PS A Tσε= −    

( )( )04 4
* * * *3= +u surrounding PS A T A Tε σ σε    

These are used in the implicit solution routine.
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Appendix C: Discretisation of the Energy Balance Equation  

The energy equation on differential form can be expressed as (Rian 2003): 

u hu hv T Tk k S
t i j i i j j

ρ ρ ρ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + = + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠  

Rewriting the transient term: 

u uh vh T Tu k k S
t t i j i i j j

ρ ρ ρρ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + + + = + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠  

Assuming constant volume in the solid and employ specific heat capacity: 

,v s
u TC
t t

ρ ρ∂ ∂=
∂ ∂  

The equation then becomes: 

,v s
T uh vh T TC u k k S
t t i j i i j j

ρ ρ ρρ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + + = + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠  

Discretise this by using the finite volume method (Rian 2003):

 

,

t t t t t t t t

v st t t t
CV CV CV CV

t t t t t t

t t t
CV CV CV

T uh vhC dV u dVdt dVdt dVdt
t t i j

T Tk dVdt k dVdt SdVdt
i i j j

ρ ρ ρρ
+∆ +∆ +∆ +∆

+∆ +∆ +∆

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞= + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫
 

Where 

( ) ( ) ( ) ( )

,

t t t t

v sCV t CV t

t t t t

e w n st t

t t t t t t

t t t
e w CVn s

TC dt dV u dt dV
t t

uAh uAh dt vAh vAh dt

T T T TkA kA dt kA kA dt SdVdt
i i j j

ρρ

ρ ρ ρ ρ

+∆ +∆

+∆ +∆

+∆ +∆ +∆

∂ ∂⎡ ⎤ ⎡ ⎤+⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − + −⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − + − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∫ ∫ ∫ ∫

∫ ∫

∫ ∫ ∫ ∫
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Introduce the continuity equation to improve the numerical approximation (Rian 2003):  

0u v
t i j
ρ ρ ρ∂ ∂ ∂+ + =

∂ ∂ ∂  

The enthalpy for cell volume “P” is multiplied on both sides of the equal sign, and then the finite 
volume method is employed: 

( ) ( ) 0 
t t t t t t

Pt t t
CV CV CV

dVdt u dVdt v dVdt h
t
ρ ρ ρ

+∆ +∆ +∆∂ + + = ⋅
∂∫ ∫ ∫ ∫ ∫ ∫

 

( ) ( ) ( ) ( ) 0 
t t t t t t

P P Pe w n sCV t t t
h dt dV h uA uA dt h vA vA dt

t
ρ ρ ρ ρ ρ

+∆ +∆ +∆∂⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ − + − =⎣ ⎦ ⎣ ⎦⎢ ⎥∂⎣ ⎦∫ ∫ ∫ ∫
 

Subtracting this from the Energy equation: 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

,

t t t t

v s PCV t CV t

t t t t

e P w P n P s Pe w n st t

t t t

t t
e w n s

TC dt dV u h dt dV
t t

uA h h uA h h dt vA h h vA h h dt

T T T TkA kA dt kA kA
i i j j

ρρ

ρ ρ ρ ρ

+∆ +∆

+∆ +∆

+∆ +∆

∂ ∂⎡ ⎤ ⎡ ⎤+ −⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − − − + − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∫ ∫ ∫ ∫

∫ ∫

∫
t t t

t
CV

dt SdVdt
+∆

+∫ ∫ ∫
 

Assuming constant pressure and introduce specific heat capacities: 

( ) ( ),p g w P w PC T T h h− = −
 

( ) ( ),p g e P e PC T T h h− = −
 

( ) ( ),p g n P n PC T T h h− = −
 

( ) ( ),p g s P s PC T T h h− = −
 

The heat of pyrolysis is defined by (Austegard 1997): 

 
( )pyr Ph h u∆ = −
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Inserting these into the energy equation: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

,

, ,

t t t t

v s pyrCV t CV t

t t t t

p g e P w P p g n P s Pe w n st t

t t

t
e w n s

TC dt dV h dt dV
t t

C uA T T uA T T dt C vA T T vA T T dt

T T T TkA kA dt kA kA
i i j j

ρρ

ρ ρ ρ ρ

+∆ +∆

+∆ +∆

+∆

∂ ∂⎡ ⎤ ⎡ ⎤+ −∆⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − − − + − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ ∫ ∫ ∫

∫ ∫

∫
t t t t

t t
CV

dt SdVdt
+∆ +∆⎡ ⎤

+⎢ ⎥
⎣ ⎦

∫ ∫ ∫
 

Using the fully implicit time discretisation approach (Versteeg and Malalasekera 1995):  

0
, , ( )

t t

v s v s p pCV t

TC dt dV C T T V
t

ρ ρ
+∆ ∂⎡ ⎤ = − ∆⎢ ⎥∂⎣ ⎦∫ ∫

 

( )0t t

pyr pyr P PCV t
h dt dV h V

t
ρ ρ ρ

+∆ ∂⎡ ⎤−∆ = −∆ − ∆⎢ ⎥∂⎣ ⎦∫ ∫
 

t t P WE P
e e w wt

e w PE WP

T TT TT TkA kA dt k A k A t
i i i iδ δ

+∆ ⎡ ⎤⎛ ⎞⎛ ⎞⎡ ⎤ −−∂ ∂⎛ ⎞ ⎛ ⎞− = − ∆⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∫

 

t t N P P S
n n s st

PN SPn s

T T T TT TkA kA dt k A k A t
j j j jδ δ

+∆ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ − −∂ ∂− = − ∆⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦
∫

 

t t

t
CV

SdVdt S V t
+∆

= ∆ ∆∫ ∫
 

Apply the use of a harmonic mean thermal conductivity, represented by R, and estimated as:

 

,

E e e PE P
e e E P

PE Ee eP

E e e P E P

Ee eP I e

E P

T T T TT TQ k k k
i i i

T T T T T T
i i R
k k

δ δ δ

δ δ

⎛ ⎞ ⎛ ⎞⎛ ⎞ − −−= = =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟ ⎛ ⎞− + − −⎜ ⎟⇒ = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠+⎜ ⎟
⎝ ⎠  
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Applying the upwind differencing sheme: 

      e P w Wu positive T T and T T= ⇒ = =  
      e E w Pu negative T T and T T= ⇒ = =  
      n P s Sv positive T T and T T= ⇒ = =  
      n N s Pv negative T T and T T= ⇒ = =  

( )e e
m uAρ=

 

( )w w
m uAρ=

 

( )n n
m vAρ=

 

( )s s
m vAρ=

 
 
The pyrolysis gas production rate denotes: 

( )0
P P

pyr

V
m

t
ρ ρ− ∆

=
∆  

Linearisation of the source term gives: 

( )P P uS V t S T S t∆ ∆ = + ∆
 

Combining these terms the governing equation solved by G2DHeat becomes:  

( ) ( )

( ) ( )

,
, ,

, ,

, ,
, ,

max 0, max 0,

max 0, max 0,

v s e w
e w n s p p p g e E p g w W

I e I w

e wp

n s
p g n N p g s

J n J s

n

C V A Aa a a a S T C m T C m T
t R R

a aa

A AC m T C m
R R

a

ρ ⎛ ⎞ ⎛ ⎞∆⎛ ⎞+ + + + − = + − + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∆⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞
+ + − + +⎜ ⎟⎜ ⎟
⎝ ⎠

, 0

0

v s
S p pyr pyr u

ps

C V
T T m h S

t
aa

ρ⎛ ⎞ ∆
+ + ∆ +⎜ ⎟⎜ ⎟ ∆⎝ ⎠
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Appendix D: Block diagram of subroutines 
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Appendix E: Block diagram of subroutines 
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Appendix F: Material properties 
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Appendix G: Input file used in CMA3 
     1.0       1.0 
Case kap 4 SiPh.6.35mm, Alu.1.8mm, Indre dia. 44.00mm 
Tinit 26 C Cm/Ch=N.A. Forced erosion rates 
Jørn Riise  2008-07-14  fri konv. (26 W/m2K) og emis.0.05                  18 
  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 
A              20.29      0.00    14000.       3.0   15400.0     600. 
B              60.80     32.40   4.47 E9       3.0   36800.0    1000. 
C             129.00    129.00       0.0       0.0       0.0    8000. 
10 18            0.0     100.0      0.20      1.00       5.0      1.0        0.4 
      5.00      20.0   0.01000    -4805.    -5293.             0.422      536.0 
 1    538.47            0.3937-2    0.8661 
 1    538.47            0.7874-2 
 1    538.47            0.7874-2 
 1    538.47            0.9843-2 
 1    538.47            0.9843-2 
 1    538.47            1.9685-2 
 1    538.47            1.9685-2 
 1    538.47            1.9685-2 
 1    538.47            1.9685-2 
 1    538.47            3.9370-2 
 1    538.47            3.9370-2 
 1    538.47            1.9685-2 
 1    538.47            1.9685-2 
 1    538.47            1.3780-2 
 3    538.47              .02726 
 3    538.47              .02726 
 3    538.47              .00817 
 3    538.47              .00817 
  0.001287      0.05    527.67      0.02      0.98 
        410.      .142  0.99 E-4       .6 
        530.      .187  1.01 E-4       .6 
        760.      .255  1.02 E-4       .6 
       1160.      .307  1.03 E-4       .6 
       1500.      .332  1.03 E-4       .6 
       2000.      .346  1.03 E-4       .6 
       3000.      .360  1.03 E-4       .6 
       4000.      .364  1.03 E-4       .6 
       5000.      .365  1.03 E-4       .6 
-1     6000.      .366  1.03 E-4       .6 
        410.      .140  3.08 E-4       .6 
        530.      .176  3.11 E-4       .6 
        760.      .220  3.18 E-4       .6 
       1160.      .264  3.29 E-4       .6 
       1500.      .290  3.40 E-4       .6 
       2000.      .307  3.52 E-4       .6 
       3000.      .360  3.70 E-4       .6 
       4000.      .364  4.20 E-4       .6 
       5000.      .365  5.78 E-4       .6 
-1     6000.      .366  7.41 E-4       .6 
 3   175.0 
        310.    0.2280  .0176000       .0 
        528.    0.2293  .0209000       .0 
        672.    0.2300  .0237000       .0 
        852.    0.2310  .0269000       .0 
+1     1032.    0.2350  .0302000       .0   
1     500.     1000.     1500.     2000.     3000.     4000.     6000.     6500. 
    -2200.    -1900.    -1400.     -750.     1000.     2700.     5200.     6000. 
       0.0   4451.40    35.74 
      1.00   4451.40    35.74 
      1.00   4451.40    28.09 
      2.00   4451.40    28.09 
      2.00   4451.40    20.10 
      3.00   4451.40    20.10 
      3.00   4451.40    18.91 
      4.00   4451.40    18.91 
      4.00   4451.40    21.15 
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      5.00   4451.40    21.15 
      5.00      1.0     0.15      
2   100.00      1.0     0.15 
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Appendix H: Input file used in ASTHMA 
C  ASTHMA88 v1.00 Jørn Riise 2008-06-30 
C  SIMPL1 firing; simulation of blast pipe mid position 
C  Materials: SiPh (6.35mm)/ Alu (1.8 mm) 
C  CASE 299.15 C  Cm/Ch=N.A. 
C  Specified erosion profile (option2) and surface temp.= C 
C  Fri konveksjon og emissivitet=0.0 bakvegg 
C  1-D model; fixed erosion rate; Start time=0.0; End time=100.0 s 
   17    3   0.0     100.0                -1.0E-3   -.75                    
  .001287  0.05      527.67     0.0            00101000 
   0.2       1.0  
   0.5       5.0    
   0.5      10.0       
  -5.0     100.0 
 1.187E+00      0.00 
 1.163E+00      0.00 
 1.140E+00      0.00 
 1.116E+00      0.00 
 1.098E+00      0.00 
 1.080E+00      0.00 
 1.063E+00      0.00 
 1.045E+00      0.00 
 1.027E+00      0.00 
 1.009E+00      0.00 
 9.911E-01      0.00 
 9.733E-01      0.00 
 9.554E-01      0.00 
 9.376E-01      0.00 
 9.197E-01      0.00 
 9.019E-01      0.00 
 8.840E-01      0.00 
 8.661E-01      0.00 
 1.187E+00      1.00 
 1.163E+00      1.00 
 1.140E+00      1.00 
 1.116E+00      1.00 
 1.098E+00      1.00 
 1.080E+00      1.00 
 1.063E+00      1.00 
 1.045E+00      1.00 
 1.027E+00      1.00 
 1.009E+00      1.00 
 9.911E-01      1.00 
 9.733E-01      1.00 
 9.554E-01      1.00 
 9.376E-01      1.00 
 9.197E-01      1.00 
 9.019E-01      1.00 
 8.840E-01      1.00 
 8.661E-01      1.00 
 1.187E+00      2.00 
 1.163E+00      2.00 
 1.140E+00      2.00 
 1.116E+00      2.00 
 1.098E+00      2.00 
 1.080E+00      2.00 
 1.063E+00      2.00 
 1.045E+00      2.00 
 1.027E+00      2.00 
 1.009E+00      2.00 
 9.911E-01      2.00 
 9.733E-01      2.00 
 9.554E-01      2.00 
 9.376E-01      2.00 
 9.197E-01      2.00 
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 9.019E-01      2.00 
 8.840E-01      2.00 
 8.661E-01      2.00 
 1.187E+00      3.00 
 1.163E+00      3.00 
 1.140E+00      3.00 
 1.116E+00      3.00 
 1.098E+00      3.00 
 1.080E+00      3.00 
 1.063E+00      3.00 
 1.045E+00      3.00 
 1.027E+00      3.00 
 1.009E+00      3.00 
 9.911E-01      3.00 
 9.733E-01      3.00 
 9.554E-01      3.00 
 9.376E-01      3.00 
 9.197E-01      3.00 
 9.019E-01      3.00 
 8.840E-01      3.00 
 8.661E-01      3.00 
02130 0                 538.47                 0.0       1.0       1.0 
02100 0                 538.47                 0.0       0.0       1.0 
02100 0                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01110 1                 538.47                 0.0       0.0       1.0 
02130 0                 538.47                 0.0       1.0       1.0 
02100 0                 538.47                 0.0       0.0       1.0 
02100 0                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01110 1                 538.47                 0.0       0.0       1.0 
02130 0                 538.47                 0.0       1.0       1.0 
02100 0                 538.47                 0.0       0.0       1.0 
02100 0                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
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01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01100 1                 538.47                 0.0       0.0       1.0 
01110 1                 538.47                 0.0       0.0       1.0 
 2 1                                              
 2  0.422    129.     81.09      0.6              
 14000.     15400.     3.        0.417            
  9.753E+8  36800.     3.        0.583 
 8               0.0                                                                 
      500.     1000.     1500.     2000.     3000.     4000.     6000.     6500.          
    -2200.    -1900.    -1400.     -750.     1000.     2700.     5200.     6000.           
   -4805.0                                        
   -5293.0      0.0 
      410.      .142   .000099                 .6                                  
      530.      .187   .000101                 .6                                       
      760.      .255   .000102                 .6 
     1160.      .307   .000103                 .6 
     1500.      .332   .000103                 .6 
     2000.      .346   .000103                 .6 
     3000.      .360   .000103                 .6 
     4000.      .364   .000103                 .6 
     5000.      .365   .000103                 .6 
1    6000.      .366   .000103                 .6 
      410.      .140   .000308                 .6                                         
      530.      .176   .000311                 .6 
      760.      .220   .000318                 .6 
     1160.      .264   .000329                 .6 
     1500.      .290   .000340                 .6 
     2000.      .307   .000352                 .6 
     3000.      .360   .000370                 .6 
     4000.      .364   .000420                 .6 
     5000.      .365   .000578                 .6 
1    6000.      .366   .000741                 .6 
      175.                                                                                 
      310.    0.2280  .0176000                  
      528.    0.2293  .0209000                  
      672.    0.2300  .0237000                  
      852.    0.2310  .0269000                 
     1032.    0.2350  .0302000                  
1    2032.    0.2350  .0302000                 
      0.00   4451.40      0.00 
      1.00   4451.40     35.74 
      2.00   4451.40     63.83 
      3.00   4451.40     83.93 
      4.00   4451.40    102.84 
      5.00   4451.40    123.99 
      5.00               0.15 
+1  100.00               0.15                                    
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Appendix I: Input file used in G2DHeat 
### Simulation case chapter 4 
GRID 
simpl1.b 
 
SCALEMESH 
.001 
 
THICKNESS 
1. 
 
METRICS 
AXI 
 
INTERFACES 
0 
 
DEFMATERIAL 
2 
SIPH.b 
ALU.b 
1 
SIPHpyr.b 
2 
1 1  1 11 1 27 
2 1  1 11 27 37 
 
PROBES_T 
simpl1_T.d 
.1 
10 
1 5 1 
1 5 2 
1 5 8 
1 5 12 
1 5 16 
1 5 20 
1 5 27 
1 5 30 
1 5 33 
1 5 36 
 
INOUTBC 
2                                
  1  1  1 1 11  7 0 
    2473. 
  1  11  37 3 11  1 1   
   26.   293.15 
   0.05  293.15  
 
TINIT 
  299.15 
   
M_EROSION 
6 
1.   0.000907796 
2.   0.000713486 
3.   0.000510540 
4.   0.000480314 
5.   0.000537210 
100. 0. 
 
IMPLICIT 
0.0001 0.0 0.001 5.0 
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SAVESOL 
smod_05.b 
 
SAVERHO 
rmod_05.b 
 
INOUTBC 
2 
  1  1  1 1 11  2 1 
   0.0  
   0.6  473.15   
  1  11  37 3 11  1 1   
   26.   293.15 
   0.05  293.15  
    
IMPLICIT 
0.0001 5.0 0.01 10.0 
 
SAVESOL 
smod_10.b 
 
SAVERHO 
rmod_10.b 
 
IMPLICIT 
0.0001 10.0 0.01 15.0 
 
SAVESOL 
smod_15.b 
 
SAVERHO 
rmod_15.b 
 
IMPLICIT 
0.0001 15.0 0.01 30.0 
 
SAVESOL 
smod_30.b 
 
SAVERHO 
rmod_30.b 
 
IMPLICIT 
0.0001 30.0 0.01 60.0 
 
SAVESOL 
smod_60.b 
 
SAVERHO 
rmod_60.b 
 
IMPLICIT 
0.0001 60.0 0.01 100.0 
 
SAVESOL 
smod_100.b 
 
SAVERHO 
rmod_100.b 
END 
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Appendix J: The source code  

 !Name:GlobaleVariable 
 !Author: Jørn Riise 
 !Date: 30-06-2008 
 !Description: This module contains the globale variables used throughout the 
program 
 !Variables of importance:  PROP=PROPERTIES  TC=TERMAL CONDUCTANCE  C=SPESIFIC HEAT 
 MODULE GlobaleVariable 
      IMPLICIT NONE 
      !Variables for the implicit routine: 
      INTEGER, DIMENSION(5,1000,50)          :: boundNU,boundSU,boundWU,boundEU 
      DOUBLE PRECISION, DIMENSION(7,1000,50) :: boundN,boundS,boundW,boundE 
      DOUBLE PRECISION                       :: konvergenskrit,precisionP 
      DOUBLE PRECISION, DIMENSION(35000)     :: TEMPo 
      !Variables for the Pyrolysis and recession: 
      INTEGER                                :: 
NIFACE,NBFACE,NMEK,Pyrini,MREG,pyrolyse,M_EROSION 
      INTEGER,DIMENSION(50)                  :: AM_ANTPYR 
      INTEGER, DIMENSION(35000)              :: ANTPYR,IFACE,IFACEBULK,MEKSTART 
      DOUBLE PRECISION, DIMENSION(200)       :: MEKTIMES,MEK 
      DOUBLE PRECISION, DIMENSION(20,35000)  :: 
RHO,RHOO,RHOR,APYR,NPYR,TREAC,EPYR,VOLFRAC 
      DOUBLE PRECISION                       :: IFACEVALUE 
      DOUBLE PRECISION, DIMENSION(35000)     :: 
Angles,XCP,YCP,VX,VY,VMX,VMY,MI,MJ,MPYR,CPG,DHPYR,MEKRHOTOT, & 
                                                
MEKALFA,LENIBFACE,LENIBCELL,IBFACEX,IBFACEY,RHOFRAC,RHOOTOT, & 
                                                RHORTOT,MEKTIME,MEKTIMED,MEKEND 
      !Variables for input 
      INTEGER, DIMENSION(20,30)              :: M_DATA,M_TEMP,M_TCI,M_TCJ,M_CP,M_RO 
      DOUBLE PRECISION, DIMENSION(20,30)     :: 
AM_TEMP,AM_TCI,AM_CP,AM_RO,AM_TCJ,AM_RHOO,AM_RHOR,AM_APYR,AM_EPYR, & 
                                                
AM_NPYR,AM_TREAC,AM_CPG,AM_DHPYR,AM_VOLFRAC,AM_CPR, & 
                                                AM_TCIR,AM_TCJR 
      !Variables for time,grid,material properties ect. 
      DOUBLE PRECISION                       :: 
TIME,TSF,CFL,DTIME,TSTART,TSTOP,TIMEP,DTPROBE,TIMEPP,DTPROBEP 
      INTEGER, DIMENSION(20)                 :: IMPT,I0PT,J0PT,IDPT,NPPT 
      INTEGER                                :: NMESH,NPROBE,MODE,NREG,NIF,NBND 
      INTEGER, DIMENSION(50)                 :: 
NMP,NI,NJ,IMAIF,I0AIF,J0AIF,IDAIF,NPAIF,IMBIF,     & 
                                                I0BIF,J0BIF,IDBIF,NPBIF 
      DOUBLE PRECISION, DIMENSION(200)       :: AM_DATA,TPROBE 
      DOUBLE PRECISION, DIMENSION(35000)     :: 
XM,YM,SIX,SIY,SJX,SJY,AI,AJ,DI,DJ,VOL,RO,TCI,TCJ,C,RI,RJ,Su, & 
                                                TEMP,DTEMP,DQ 
      INTEGER, DIMENSION(200)                :: IMP,IP,JP,IMR,IR1,IR2,JR1,JR2,IMAT 
      INTEGER, DIMENSION(35000)              :: MAT 
      INTEGER, DIMENSION(200)                :: 
IMBND,I0BND,J0BND,IDBND,NPBND,ITBND,IRADBND 
      DOUBLE PRECISION, DIMENSION(50,500)    :: 
ROBND,UBND,VISCBND,CPBND,PRBND,TRBND,HCEBND,ALBND 
      DOUBLE PRECISION, DIMENSION(500)       :: 
HCBND,TUBND,QBND,DTHCBND,DTTUBND,EMSBND,TRADBND 
      DOUBLE PRECISION                       :: GCNT,RGAS,PRND,VISC,SCALEMESH 
      INTEGER                                :: ISUP,NPROBEP 
      DOUBLE PRECISION                       :: PTOT,TTOT,ATHROAT,PI 
      CHARACTER                              :: MATRFIL*32 
 
END MODULE GlobaleVariable 
 
 !Name: G2DHeat 
 !Author: Jørn Riise, * 
 !Date: 30-06-2008 
 !Description: Simulation program for heat transfer in solids. 
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      PROGRAM G2DHeat 
      USE GlobaleVariable 
      implicit none 
      !Local variables 
      INTEGER           :: ICOUNTP,ILOG,IPROBEP,IFIL,I,J,K,IMESH,NMPL,  & 
                           NIL,NJL,LP,NSTEP,ISTEP,K1,istat,istatt,steps,MatID,IM, & 
                           Istart,Iend,Jstart,Jend,IREG,t_start,t_stop,PREG 
      DOUBLE PRECISION  :: 
RTHROAT,TINITIAL,T_TEMP,T_TCI,T_CP,T_RO,T_TCJ,kildeSu,T_CPR, & 
                           
T_RHOO,T_RHOR,T_APYR,T_EPYR,T_NPYR,T_TREAC,T_CPG,T_DHPYR,T_VOLFRAC, & 
                           T_TCIR,T_TCJR 
      REAL              :: TEMPtmp,TCItmp,TCJtmp,RHOtmp,xmm,MPYRtmp,VXtmp,VYtmp 
      CHARACTER EVENT*32,TEXT*32 
 
      !Initialize variables 
      NIF=0 
      NPROBE=0 
      NPROBEP=0 
      ICOUNTP=0 
      ILOG=0 
      Su=Su*0 
      SCALEMESH=1. 
      PI=4.*ATAN(1.) 
      !Pyrolysis:Decision variable for the interface 
      IFACEVALUE=0 
      !Identification parameters for the ablative material 
      IFACEBULK=IFACEBULK*0 
      !Pyrolysis gas flow in I- and J-direction 
      MJ=MJ*0 
      MI=MI*0 
 
      !START LOOP FOR INPUT DATA 
      call timer ( t_start) 
      DO WHILE(.TRUE.) 
 
      READ(5,'(A32)')EVENT 
      IF(EVENT(1:1) .NE. '#')WRITE(6,'(A32)')EVENT 
       
      IF(EVENT .EQ. 'END')THEN 
        call timer ( t_stop ) 
        write(6,*) 'Elapsed CPU time = ', t_stop - t_start 
        IF(NPROBEP.GT.0)THEN 
          DO IPROBEP=1,NPROBEP 
            IFIL=11+IPROBEP 
            CLOSE(IFIL) 
          ENDDO 
          WRITE(6,*)'UPDATE MANUALLY NUMBER OF TIME POINTS ON DATAFILE' 
          WRITE(6,*)'Number of time points, ICOUNTP =',ICOUNTP 
        ENDIF 
        CLOSE(10) 
        STOP 'FINISHED' 
      ENDIF 
 
      IF(EVENT .EQ. 'SCALEMESH')THEN 
        READ(5,*) SCALEMESH 
      END IF 
 
      IF(EVENT .EQ. 'GRID')THEN 
        CALL GRID 
      ENDIF 
 
      IF(EVENT .EQ. 'METRICS')THEN 
        READ(5,'(A32)')EVENT 
        IF(EVENT .EQ. '2D')  MODE=0 
        IF(EVENT .EQ. 'AXI') MODE=1 
        CALL MTR 
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      ENDIF 
 
!      IF(EVENT .EQ. 'THICKNESS')THEN 
!        READ(5,*)DEPTH 
!      ENDIF 
 
      IF(EVENT.EQ.'LOGFILE')THEN 
        ILOG=1 
        READ(5,'(A32)') TEXT 
        OPEN(10,FILE=TEXT,STATUS='UNKNOWN',FORM='FORMATTED') 
      ENDIF 
 
      IF(EVENT .EQ. 'DEFMAT')THEN 
        READ(5,*)NREG 
        DO 1 I=1,NREG 
          READ(5,'(A32)')TEXT 
          IF(TEXT .EQ. 'ALUMINIUM'    )IMAT(I)=1 
          IF(TEXT .EQ. 'STEEL'        )IMAT(I)=2 
          IF(TEXT .EQ. 'SIPH'         )IMAT(I)=3 
          IF(TEXT .EQ. 'SIPH_COOL'    )IMAT(I)=11 
          IF(TEXT .EQ. 'MOLYBDEN'     )IMAT(I)=4 
          IF(TEXT .EQ. 'EPDM'         )IMAT(I)=5 
          IF(TEXT .EQ. 'HOTGAS'       )IMAT(I)=6 
          IF(TEXT .EQ. 'ARAMIDE-EPOXY')IMAT(I)=7 
          IF(TEXT .EQ. 'PROPELLANT'   )IMAT(I)=8 
          IF(TEXT .EQ. 'TITAN'        )IMAT(I)=9 
          IF(TEXT .EQ. 'GRAPHITE'     )IMAT(I)=10 
          IF(TEXT .EQ. 'CARBON'       )IMAT(I)=12 
          IF(TEXT .EQ. 'TZM'          )IMAT(I)=13 
          IF(TEXT .EQ. 'WL10'         )IMAT(I)=14 
          IF(TEXT .EQ. 'GRAPHITE-IG11')IMAT(I)=15 
          IF(TEXT .EQ. 'DLR_C-C/SiC')IMAT(I)=16 
 
          READ(5,*)IMR(I),IR1(I),IR2(I),JR1(I),JR2(I) 
    1   CONTINUE 
        CALL DEFMATDATA        !BOR KANSKJE VARE EN EGEN FIL 
        CALL MATERIALS 
      ENDIF 
      !******************************************* 
      !Initializing material properties from file. 
      !******************************************* 
      IF(EVENT .EQ. 'DEFMATERIAL')THEN 
         pyrolyse=0 
         !Material properties 
         READ(5,*)MREG 
         DO I=1,MREG 
           READ(5,'(A32)')TEXT 
           OPEN(19,FILE=TEXT,STATUS='UNKNOWN',FORM='FORMATTED',ACTION='READ') 
           istat=0 
           steps=0 
           READ(19,*)EVENT 
           WRITE(6,*) 'Event: ',EVENT 
           DO 
              
READ(19,91,IOSTAT=istat)T_TEMP,T_CP,T_TCI,T_TCJ,T_RO,T_CPG,T_CPR,T_TCIR,T_TCJR,T_DH
PYR 
              IF(istat.LT.0) EXIT 
              steps=steps+1 
              AM_TEMP(I,steps)=T_TEMP 
              AM_CP(I,steps)=T_CP 
              AM_TCI(I,steps)=T_TCI 
              AM_TCJ(I,steps)=T_TCJ 
              AM_RO(I,steps)=T_RO 
              AM_CPG(I,steps)=T_CPG 
              AM_TCIR(I,steps)=T_TCIR 
              AM_TCJR(I,steps)=T_TCJR 
              AM_DHPYR(I,steps)=T_DHPYR 
              AM_CPR(I,steps)=T_CPR 
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           END DO 
         AM_DATA(I)=steps 
      91 
FORMAT(G11.3,TR1,G11.3,TR1,G11.3,TR1,G11.3,TR1,G11.3,TR1,G11.3,TR1,G11.3,TR1,G11.3,
TR1,G11.3,TR1,G11.3) 
         CLOSE (19) 
         END DO 
 
         !Kinetic parameters for use in decomposition reactions 
         READ(5,*)PREG 
         DO I=1,PREG 
           READ(5,'(A32)')TEXT 
           OPEN(18,FILE=TEXT,STATUS='UNKNOWN',FORM='FORMATTED',ACTION='READ') 
           istatt=0 
           steps=0 
           READ(18,*)EVENT 
           WRITE(6,*)EVENT 
           DO 
              
READ(18,491,IOSTAT=istatt)T_RHOO,T_RHOR,T_APYR,T_EPYR,T_NPYR,T_TREAC,T_VOLFRAC 
              IF(istatt.LT.0) EXIT 
              steps=steps+1 
              AM_RHOO(steps,I)=T_RHOO 
              AM_RHOR(steps,I)=T_RHOR 
              AM_APYR(steps,I)=T_APYR 
              AM_EPYR(steps,I)=T_EPYR 
              AM_NPYR(steps,I)=T_NPYR 
              AM_TREAC(steps,I)=T_TREAC 
              AM_VOLFRAC(steps,I)=T_VOLFRAC 
           END DO 
         AM_ANTPYR(I)=steps 
     491 FORMAT(G11.3,TR1,G11.3,TR1,G11.3,TR1,G11.3,TR1,G11.3,TR1,G11.3,TR1,G11.3) 
         CLOSE (18) 
         pyrolyse=1 
         Pyrini=1 
         END DO 
         !Initializing identification parameters 
         READ(5,*)NREG 
         DO IREG=1,NREG 
          READ(5,*)MatID,IM,Istart,Iend,Jstart,Jend 
          NMPL=NMP(IM) 
          NIL = NI(IM) 
          DO J=Jstart,Jend-1 
           DO I=Istart,Iend-1 
             K=I+NIL*(J-1)+NMPL 
             MAT(K)=MatID 
             !(1 ->Ablative, -1 -> backup) 
             IF(MatID.GT.PREG) THEN 
              IFACEBULK(K)=-1 
             ELSE 
              IFACEBULK(K)=1 
             END IF 
           END DO 
          END DO 
         END DO 
 
      END IF 
 
      IF(EVENT .EQ. 'INTERFACES')THEN 
        READ(5,*)NIF 
        IF(NIF.NE.0)THEN 
          DO 2 I=1,NIF 
            READ(5,*)IMAIF(I),I0AIF(I),J0AIF(I),IDAIF(I),NPAIF(I) 
            READ(5,*)IMBIF(I),I0BIF(I),J0BIF(I),IDBIF(I),NPBIF(I) 
    2     CONTINUE 
        END IF 
      END IF 
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      IF(EVENT .EQ. 'INOUTBC')THEN 
        READ(5,*)NBND 
        IF(NBND.NE.0)THEN 
          DO 3 I=1,NBND 
            READ(5,*)IMBND(I),I0BND(I),J0BND(I),IDBND(I),NPBND(I),      & 
                     ITBND(I),IRADBND(I) 
            IF(ITBND(I).EQ.1) READ(5,*)HCBND(I),TUBND(I)        ! 
Varmeovergangstall + Gasstemperatur 
            IF(ITBND(I).EQ.2)READ(5,*)QBND(I)                   ! Varmefluks 
            IF(ITBND(I).EQ.3)THEN                               ! 
              READ(5,'(A32)')TEXT 
              OPEN(1,FILE=TEXT,FORM='FORMATTED',STATUS='UNKNOWN') 
              CALL GASDATA(1,I) 
            ENDIF 
            IF(ITBND(I).EQ.4)THEN 
              READ(5,'(A32)')TEXT 
              OPEN(1,FILE=TEXT,FORM='FORMATTED',STATUS='UNKNOWN') 
              CALL GASDATA(2,I) 
            ENDIF 
            IF(ITBND(I).EQ.5)READ(5,*)HCBND(I),TUBND(I),DTHCBND(I),DTTUBND(I)  
!V.overg. tall+gasstemp+rampe v.ovg.tall+rampe Tgass 
            IF(IRADBND(I).EQ.1)READ(5,*)EMSBND(I),TRADBND(I)     ! Emissivitet + 
strålingstemperatur 
 
!     1D isentropic nozzle flow used as input to heat coeff. computations 
            IF(ITBND(I).EQ.6)THEN                                ! Isentropisk 
dysestrøm 
!       subsonic,   isup=0 
!       supersonic, isup=1 
 
              READ(5,*)PTOT,TTOT,RTHROAT,ISUP 
              ATHROAT=PI*RTHROAT**2 
              CALL GASDATA(3,I) 
            ENDIF 
            !Constant surface temperature 
            IF(ITBND(I).EQ.7)READ(5,*)TUBND(I) 
    3     CONTINUE 
        END IF 
      END IF 
 
      IF(EVENT .EQ. 'GASDATA')THEN 
        READ(5,*)GCNT,RGAS,PRND,VISC 
      END IF 
 
      IF(EVENT .EQ. 'TINIT')THEN 
        READ(5,*)TINITIAL 
          DO 4 IMESH=1,NMESH 
          NMPL=NMP(IMESH) 
          NIL = NI(IMESH) 
          NJL = NJ(IMESH) 
          DO 5 J=1,NJL-1 
          DO 5 I=1,NIL-1 
            K=I+NIL*(J-1)+NMPL 
            TEMP(K)=TINITIAL 
 
    5     CONTINUE 
    4   CONTINUE 
      ENDIF 
 
      IF(EVENT .EQ. 'PROBES_T')THEN 
        READ(5,'(A32)')TEXT 
        OPEN(11,FILE=TEXT,FORM='FORMATTED',STATUS='UNKNOWN') 
        READ(5,*) DTPROBE 
        READ(5,*)NPROBE 
        DO LP=1,NPROBE 
          READ(5,*) IMP(LP),IP(LP),JP(LP) 
        ENDDO 
      ENDIF 
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      IF(EVENT .EQ. 'PROBES_PT')THEN 
        READ(5,*) DTPROBEP 
        READ(5,*)NPROBEP 
        DO I=1,NPROBEP 
          READ(5,'(A32)')TEXT 
          IFIL=11+I 
          OPEN(IFIL,FILE=TEXT,FORM='FORMATTED',STATUS='UNKNOWN') 
          WRITE(IFIL,*) 'TITLE = "HEAT 2D data"' 
          WRITE(IFIL,*) 'VARIABLES = "YM", "TIME", "TEMP"' 
          READ(5,*)IMPT(I),I0PT(I),J0PT(I),IDPT(I),NPPT(I) 
          WRITE(IFIL,*) 'ZONE I=',NPPT(I)-1,', J=',0,', F=POINT' 
        END DO 
      ENDIF 
 
      IF(EVENT .EQ. 'CFL')THEN 
        READ(5,*)CFL,TSTART,DTIME,TSTOP 
        TIME=TSTART 
        TIMEP=TSTART 
        TIMEPP=TSTART 
      ENDIF 
 
      IF(EVENT .EQ. 'TRANSIENT')THEN 
        READ(5,*)NSTEP 
        DO 8 ISTEP=1,NSTEP 
          CALL STEP(ISTEP) 
          TIME=TIME+TSF*CFL 
          !WRITE(6,*)ISTEP,TIME,TSF*CFL 
          IF(NPROBE .GT. 0)THEN 
            IF(TIME.GE.TIMEP)THEN 
              TIMEP=TIMEP+DTPROBE 
              DO LP=1,NPROBE 
                I=IP(LP) 
                J=JP(LP) 
                IMESH=IMP(LP) 
                K1=I+NI(IMESH)*(J-1)+NMP(IMESH) 
                TPROBE(LP+1)=TEMP(K1) 
              END DO 
              TPROBE(1)=TIME 
              WRITE(11,555)(TPROBE(I),I=1,NPROBE+1) 
            ENDIF 
          ENDIF 
 
          IF(NPROBEP .GT. 0)THEN 
            IF(TIME.GE.TIMEPP)THEN 
              TIMEPP=TIMEPP+DTPROBEP 
              CALL WRITE_PROBESP(TIME) 
             ICOUNTP=ICOUNTP+1 
            ENDIF 
          ENDIF 
  555     FORMAT(F10.3,200F9.4) 
          IF(TIME.GT.TSTOP) GOTO 99 
    8   CONTINUE 
        IF(ILOG.EQ.1)WRITE(10,*)                                        & 
           'INCREASE NUMBER OF ITERATIONS, TIME,TSTOP=',TIME,TSTOP 
        WRITE(6,*)'INCREASE NUMBER OF ITERATIONS, TIME,TSTOP=',TIME,TSTOP 
        STOP 
   99   CONTINUE 
      ENDIF 
 
      !***************************** 
      !Initializing recession rates. 
      !***************************** 
      IF(EVENT .EQ. 'M_EROSION')THEN 
        READ(5,*)NMEK 
        DO I=1,NMEK 
        READ(5,*)MEKTIMES(I),MEK(I) 
        END DO 
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        M_EROSION=1 
      END IF 
 
 
      !************************** 
      !Implicit solution routine. 
      !************************** 
      IF (EVENT .EQ. 'IMPLICIT') THEN 
       READ(5,*)konvergenskrit,TSTART,DTIME,TSTOP 
       !Initializing time parameters 
       TIME=TSTART 
       TIMEP=TSTART 
       TIMEPP=TSTART 
 
       !Initializing interfaces and boundaries 
       CALL INIT_IMPLICIT 
 
       !Initializing boundary conditions 
       CALL BORDERS_IMPLICIT 
 
       !Initializing Pyrolysis parameters 
       IF(pyrolyse.EQ.1) CALL INIT_PYROLYSIS 
 
       !Solution routine 
       DO 
 
          CALL IMPLICIT_ 
          TIME=TIME+DTIME 
 
          !Saving data 
          IF(NPROBE .GT. 0)THEN 
            IF(TIME.GE.TIMEP)THEN 
              TIMEP=TIMEP+DTPROBE 
              DO LP=1,NPROBE 
                I=IP(LP) 
                J=JP(LP) 
                IMESH=IMP(LP) 
                K1=I+NI(IMESH)*(J-1)+NMP(IMESH) 
                TPROBE(LP+1)=TEMP(K1) 
              END DO 
              TPROBE(1)=TIME 
              WRITE(11,551)(TPROBE(I),I=1,NPROBE+1) 
            ENDIF 
          ENDIF 
 
          IF(NPROBEP .GT. 0)THEN 
            IF(TIME.GE.TIMEPP)THEN 
              TIMEPP=TIMEPP+DTPROBEP 
              CALL WRITE_PROBESP(TIME) 
             ICOUNTP=ICOUNTP+1 
            ENDIF 
          ENDIF 
  551     FORMAT(F10.3,200F9.4) 
 
          IF (TIME.GE.TSTOP) EXIT 
 
       END DO 
      END IF 
 
      !*************************************************** 
      !Initializing selection parameter for the interface. 
      !*************************************************** 
      IF (EVENT .EQ. 'PYROLYSIS') THEN 
        READ(5,*)IFACEVALUE 
      END IF 
 
      !*********************************** 
      !Initializing heat source/sink term. 
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      !*********************************** 
      IF(EVENT .EQ. 'SOURCE')THEN 
      READ(5,*)NREG 
         DO IREG=1,NREG 
          READ(5,*)IM,Istart,Iend,Jstart,Jend,kildeSu 
          NMPL=NMP(IM) 
          NIL = NI(IM) 
          DO J=Jstart,Jend-1 
           DO I=Istart,Iend-1 
             K=I+NIL*(J-1)+NMPL 
             Su(K)=kildeSu 
           END DO 
          END DO 
         END DO 
 
 
      END IF 
 
      IF(EVENT .EQ. 'READSOL')THEN 
        READ(5,'(A32)')TEXT 
        OPEN(UNIT=8,FILE=TEXT,FORM='UNFORMATTED',STATUS='UNKNOWN') 
        DO 23 IMESH=1,NMESH 
          NMPL=NMP(IMESH) 
          NIL = NI(IMESH) 
          NJL = NJ(IMESH) 
          DO 24 J=1,NJL-1 
          DO 24 I=1,NIL-1 
            K=I+NIL*(J-1)+NMPL 
            READ(8) TEMPtmp,TCItmp,TCJtmp,xmm 
            TEMP(K)=REAL(TEMPtmp,8) 
            TCI(K)=REAL(TCItmp,8)/1000. 
            TCJ(K)=REAL(TCJtmp,8)/1000. 
            mat(k)=ifix(xmm) 
   24     CONTINUE 
   23   CONTINUE 
        CLOSE(8) 
      ENDIF 
 
 
      IF (EVENT .EQ. 'SAVEMATR') THEN 
         read(5,'(A32)')MATRFIL 
         CALL MATRSAVE 
      END IF 
 
      IF(EVENT .EQ. 'SAVESOL')THEN 
        READ(5,'(A32)')TEXT 
        OPEN(UNIT=9,FILE=TEXT,FORM='UNFORMATTED',STATUS='UNKNOWN') 
        DO 13 IMESH=1,NMESH 
          NMPL=NMP(IMESH) 
          NIL = NI(IMESH) 
          NJL = NJ(IMESH) 
          DO 14 J=1,NJL-1 
          DO 14 I=1,NIL-1 
            K=I+NIL*(J-1)+NMPL 
            xmm=REAL(mat(k)) 
            TEMPtmp=REAL(TEMP(K),4) 
            TCItmp=REAL(TCI(K),4)*1000. 
            TCJtmp=REAL(TCJ(K),4)*1000. 
            WRITE(9)TEMPtmp,TCItmp,TCJtmp,xmm 
   14     CONTINUE 
   13   CONTINUE 
      ENDIF 
 
      !***************************************************** 
      !Saving the solution:DENSITIES, TEMPERATURES and Mpyr. 
      !***************************************************** 
      IF(EVENT .EQ. 'SAVERHO')THEN 
        READ(5,'(A32)')TEXT 
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        OPEN(UNIT=15,FILE=TEXT,FORM='UNFORMATTED',STATUS='UNKNOWN') 
        DO IMESH=1,NMESH 
          NMPL=NMP(IMESH) 
          NIL = NI(IMESH) 
          NJL = NJ(IMESH) 
          DO J=1,NJL-1 
           DO I=1,NIL-1 
            K=I+NIL*(J-1)+NMPL 
            xmm=REAL(mat(k)) 
            RHOtmp=REAL(RO(K),4) 
            TEMPtmp=REAL(TEMP(K),4) 
            MPYRtmp=REAL(((-1)*(MPYR(K)/VOL(K))),4) 
            WRITE(15)RHOtmp,TEMPtmp,MPYRtmp,xmm 
           END DO 
          END DO 
         END DO 
      END IF 
 
      !**************************************************************** 
      !Saving the solution:VECTOR DIRECTIONS[RO,RU](Techplot) and Mpyr. 
      !**************************************************************** 
      IF(EVENT .EQ. 'SAVEVECTOR')THEN 
        READ(5,'(A32)')TEXT 
        OPEN(UNIT=15,FILE=TEXT,FORM='UNFORMATTED',STATUS='UNKNOWN') 
        DO IMESH=1,NMESH 
          NMPL=NMP(IMESH) 
          NIL = NI(IMESH) 
          NJL = NJ(IMESH) 
          DO J=1,NJL-1 
           DO I=1,NIL-1 
            K=I+NIL*(J-1)+NMPL 
            xmm=REAL(mat(k)) 
            VXtmp=REAL(VX(K),4) 
            VYtmp=REAL(VY(K),4) 
            MPYRtmp=REAL(MPYR(K),4) 
            WRITE(15)VXtmp,VYtmp,MPYRtmp,xmm 
           END DO 
          END DO 
         END DO 
      END IF 
 
      !**************************************************************** 
      !Saving the solution:VECTOR DIRECTIONS[RO,RU](Techplot) and Mpyr. 
      !**************************************************************** 
      IF(EVENT .EQ. 'SAVEM_EROSION')THEN 
        READ(5,'(A32)')TEXT 
        OPEN(UNIT=15,FILE=TEXT,FORM='UNFORMATTED',STATUS='UNKNOWN') 
        DO IMESH=1,NMESH 
          NMPL=NMP(IMESH) 
          NIL = NI(IMESH) 
          NJL = NJ(IMESH) 
          DO J=1,NJL-1 
           DO I=1,NIL-1 
            K=I+NIL*(J-1)+NMPL 
            xmm=REAL(mat(k)) 
            VXtmp=REAL(VMX(K),4) 
            VYtmp=REAL(VMY(K),4) 
            MPYRtmp=REAL(MPYR(K),4) 
            WRITE(15)VXtmp,VYtmp,MPYRtmp,xmm 
           END DO 
          END DO 
         END DO 
      END IF 
 
      !********************************************************** 
      !Saving the solution: Gas flow I- and J-direction and Mpyr. 
      !********************************************************** 
      IF(EVENT .EQ. 'SAVEGAS')THEN 
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        READ(5,'(A32)')TEXT 
        OPEN(UNIT=15,FILE=TEXT,FORM='UNFORMATTED',STATUS='UNKNOWN') 
        DO IMESH=1,NMESH 
          NMPL=NMP(IMESH) 
          NIL = NI(IMESH) 
          NJL = NJ(IMESH) 
          DO J=1,NJL-1 
           DO I=1,NIL-1 
            K=I+NIL*(J-1)+NMPL 
            xmm=REAL(mat(k)) 
            VXtmp=REAL(MI(K),4) 
            VYtmp=REAL(MJ(K),4) 
            MPYRtmp=REAL(MPYR(K),4) 
            WRITE(15)VXtmp,VYtmp,MPYRtmp,xmm 
           END DO 
          END DO 
         END DO 
      END IF 
 
 
       
      ENDDO 
 
      CLOSE(11) 
      STOP 
      END !End input routine 
 
      SUBROUTINE WRITE_PROBESP(tid) 
      USE GlobaleVariable 
      implicit none 
      !Local variables 
      INTEGER          :: ID,JD,IPROBEP,IFIL,IMS,I0S,J0S,IDS,NPIS,IPP,I, & 
                          J,K,K1,K2,K3,K4 
      DOUBLE PRECISION :: YC,tid!xc, 
      DIMENSION ID(4),JD(4) 
      DATA ID / 1, 0,-1, 0/ 
      DATA JD / 0, 1, 0,-1/  
      DO 1 IPROBEP=1,NPROBEP 
        IFIL=11+IPROBEP 
        IMS=IMPT(IPROBEP) 
        I0S=I0PT(IPROBEP) 
        J0S=J0PT(IPROBEP) 
        IDS=IDPT(IPROBEP) 
        NPIS=NPPT(IPROBEP) 
        DO 2 IPP=1,NPIS-1 
          I=I0S+ID(IDS)*(IPP-1) 
          J=J0S+JD(IDS)*(IPP-1) 
          K=I+NI(IMS)*(J-1)+NMP(IMS) 
          K1=I  +NI(IMS)*(J-1)+NMP(IMS) 
          K2=I+1+NI(IMS)*(J-1)+NMP(IMS) 
          K3=I  +NI(IMS)*(J-0)+NMP(IMS) 
          K4=I+1+NI(IMS)*(J-0)+NMP(IMS) 
          !XC=.25*(XM(K1)+XM(K2)+XM(K3)+XM(K4)) 
          YC=.25*(YM(K1)+YM(K2)+YM(K3)+YM(K4)) 
          WRITE(IFIL,*) REAL(YC*1000.,4),REAL(tid,4),REAL(TEMP(K)) 
    2   CONTINUE 
    1 CONTINUE 
      RETURN 
      END 
 
      SUBROUTINE GRID 
      USE GlobaleVariable 
      implicit none 
 
      !Local variables 
      INTEGER                  :: I,NTOT,NMESHtmp 
      INTEGER, DIMENSION (50)  :: NMPtmp,NItmp,NJtmp 
      REAL, DIMENSION (35000)  :: Xtmp,Ytmp 
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      CHARACTER TEXT*32 
 
      READ(5,'(A32)') TEXT 
      OPEN(7,FILE=TEXT,FORM='UNFORMATTED',STATUS='UNKNOWN') 
      READ(7) NMESHtmp 
      READ(7) (NMPtmp(I),NItmp(I),NJtmp(I),I=1,NMESHtmp) 
      NTOT=NMPtmp(NMESHtmp)+NItmp(NMESHtmp)*NJtmp(NMESHtmp) 
      READ(7)(Xtmp(I),Ytmp(I),I=1,NTOT) 
      DO I=1,NTOT 
        XM(I)=REAL(Xtmp(I),8) 
        YM(I)=REAL(Ytmp(I),8) 
      END DO 
      CLOSE(7) 
      NMESH=NMESHtmp 
      DO I=1,NMESHtmp 
         NMP(I)=NMPtmp(I) 
         NI(I)=NItmp(I) 
         NJ(I)=NJtmp(I) 
      END DO 
      RETURN 
      END 
 
      SUBROUTINE MTR 
      USE GlobaleVariable 
      implicit none 
 
      !Local variables 
      INTEGER          :: IMESH,I,J,K1,K2,K3,K4,IMMIN,IMIN,JMIN,IMMAX,  & 
                          IMAX,JMAX 
      DOUBLE PRECISION :: VMIN,VMAX 
      VMIN=+1.E20 
      VMAX=-1.E20 
      DO 1 IMESH=1,NMESH 
        DO 10 J=1,NJ(IMESH)                   ! scale grid 
        DO 10 I=1,NI(IMESH) 
          K1=I+NI(IMESH)*(J-1)+NMP(IMESH) 
          XM(K1)=XM(K1)*SCALEMESH 
          YM(K1)=YM(K1)*SCALEMESH 
   10   CONTINUE 
 
        DO 2 J=1,NJ(IMESH)-1                   ! 2D METRICS 
        DO 2 I=1,NI(IMESH) 
          K1=I+NI(IMESH)*(J-1)+NMP(IMESH) 
          K3=K1+NI(IMESH) 
          SIX(K1)= YM(K3)-YM(K1) 
          SIY(K1)=-XM(K3)+XM(K1) 
          AI(K1)=SQRT(SIX(K1)**2+SIY(K1)**2) 
    2   CONTINUE 
        DO 3 J=1,NJ(IMESH) 
        DO 3 I=1,NI(IMESH)-1 
          K1=I+NI(IMESH)*(J-1)+NMP(IMESH) 
          K2=K1+1 
          SJX(K1)=-YM(K2)+YM(K1) 
          SJY(K1)= XM(K2)-XM(K1) 
          AJ(K1)=SQRT(SJX(K1)**2+SJY(K1)**2) 
    3   CONTINUE 
 
        DO 4 J=1,NJ(IMESH)-1                   ! DI,DJ BASED 
        DO 4 I=1,NI(IMESH)-1                   ! ON 2D METRICS 
          K1=I+NI(IMESH)*(J-1)+NMP(IMESH)        !+ volumes 
          K2=K1+1 
          K3=K1+NI(IMESH) 
          K4=K3+1 
          DJ(K1)=0.5*(SQRT(SIX(K1)**2+SIY(K1)**2)+SQRT(SIX(K2)**2+SIY(K2)**2)) 
          DI(K1)=0.5*(SQRT(SJX(K1)**2+SJY(K1)**2)+SQRT(SJX(K3)**2+SJY(K3)**2)) 
 
          IF(MODE.EQ.1)THEN 
!            VOL(K1)=DEPTH*1./6.*((XM(K4)-XM(K1))*(YM(K3)**2-YM(K2)**2)  & 
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            VOL(K1)=1./6.*((XM(K4)-XM(K1))*(YM(K3)**2-YM(K2)**2)        & 
                         -(XM(K3)-XM(K2))*(YM(K4)**2-YM(K1)**2)         & 
                         +(XM(K4)*YM(K4)-XM(K1)*YM(K1))*(YM(K3)-YM(K2)) & 
                         -(XM(K3)*YM(K3)-XM(K2)*YM(K2))*(YM(K4)-YM(K1))) 
          ELSE 
!            VOL(K1)=DEPTH*.5*((XM(K4)-XM(K1))*(YM(K3)-YM(K2))           & 
            VOL(K1)=0.5*((XM(K4)-XM(K1))*(YM(K3)-YM(K2))                & 
                        -(XM(K3)-XM(K2))*(YM(K4)-YM(K1))) 
          ENDIF 
          IF(VOL(K1) .LT. VMIN)THEN 
            VMIN=VOL(K1) 
            IMMIN=IMESH 
            IMIN=I 
            JMIN=J 
          ENDIF 
          IF(VOL(K1) .GT. VMAX)THEN 
            VMAX=VOL(K1) 
            IMMAX=IMESH 
            IMAX=I 
            JMAX=J 
          ENDIF 
 
    4   CONTINUE 
 
        IF(MODE.EQ.1)THEN                       ! AXI- SYMMETRICAL 
          DO 5 J=1,NJ(IMESH)-1                  ! OPTION 
          DO 5 I=1,NI(IMESH) 
            K1=I+NI(IMESH)*(J-1)+NMP(IMESH) 
            K3=K1+NI(IMESH) 
            SIX(K1)= .5*(YM(K1)+YM(K3))*(YM(K3)-YM(K1)) 
            SIY(K1)=-.5*(YM(K1)+YM(K3))*(XM(K3)-XM(K1)) 
            AI(K1)=SQRT(SIX(K1)**2+SIY(K1)**2) 
    5     CONTINUE 
          DO 6 J=1,NJ(IMESH) 
          DO 6 I=1,NI(IMESH)-1 
            K1=I+NI(IMESH)*(J-1)+NMP(IMESH) 
            K2=K1+1 
            SJX(K1)=-.5*(YM(K1)+YM(K2))*(YM(K2)-YM(K1)) 
            SJY(K1)= .5*(YM(K1)+YM(K2))*(XM(K2)-XM(K1)) 
            AJ(K1)=SQRT(SJX(K1)**2+SJY(K1)**2) 
    6     CONTINUE 
        ENDIF 
 
    1 CONTINUE 
      WRITE(6,*)' MIN VOLUME:  ',IMMIN,IMIN,JMIN,VMIN 
      WRITE(6,*)' MAX VOLUME:  ',IMMAX,IMAX,JMAX,VMAX 
      RETURN 
      END 
 
      SUBROUTINE GASDATA(IOPT,IBOUND) 
      USE GlobaleVariable 
      implicit none 
      INTEGER          :: IOPT,IBOUND 
 
      !Local variables 
      INTEGER          :: ID,JD,IBND,IM,I0,IPP,J0,IDR,NP,K0,KD,   & 
                          K1,K2,I 
      DOUBLE PRECISION :: ERRMAX,EPS,CPGAS,RFACT,FACT,WGFLOW,XPOS,   & 
                          RADIUS,AREA,ARATIO,AM,AMN,DIFF,TC,PC,ROC,VEL, & 
                          RE,F,ST 
 
      DIMENSION ID(4),JD(4) 
      DATA ID / 1, 0,-1, 0/  
      DATA JD / 0, 1, 0,-1/ 
 
      PI=4.*ATAN(1.) 
      ERRMAX=1.D-06 
      EPS=1.D-06 
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      IF(IOPT.EQ.1)THEN 
        WRITE(6,*)' IP     RO        V      VISC*1.E06   CP        PR ',& 
                '       LENGTH' 
        DO 1 IBND=1,NBND 
          DO 2 IPP=1,NPBND(IBND)-1 
            READ(1,*)ROBND(IBND,IPP), UBND(IBND,IPP),VISCBND(IBND,IPP),    & 
                     CPBND(IBND,IPP),PRBND(IBND,IPP),  ALBND(IBND,IPP) 
            WRITE(6,100)IPP,ROBND(IBND,IPP),UBND(IBND,IPP),                & 
                        VISCBND(IBND,IPP)*1.E06,CPBND(IBND,IPP),          & 
                        PRBND(IBND,IPP),ALBND(IBND,IPP) 
    2     CONTINUE 
    1   CONTINUE 
      ENDIF 
      IF(IOPT.EQ.2)THEN 
        WRITE(6,*)' IP     TR       HC' 
        IBND=IBOUND 
      ENDIF 
 
      !1D isentropic nozzle flow(input) 
      IF(IOPT.EQ.3)THEN 
        WRITE(6,*)' XPOS   AM        PC     TR       HC' 
        CPGAS=GCNT*RGAS/(GCNT-1.) 
        RFACT=PRND**.33333333 
        FACT=.5*(GCNT+1.)/(GCNT-1.) 
        WGFLOW=(2./(GCNT+1.))**FACT*SQRT(GCNT/RGAS/TTOT)*PTOT*ATHROAT 
        IBND=IBOUND 
        IM =IMBND(IBND) 
        I0 =I0BND(IBND) 
        J0 =J0BND(IBND) 
        IDR=IDBND(IBND) 
        NP =NPBND(IBND) 
        K0 =I0        +NI(IM)*(J0        -1)+NMP(IM) 
        !K0C=I0+IC(IDR)+NI(IM)*(J0+JC(IDR)-1)+NMP(IM) 
        !K0I=I0        +NI(IM)*(J0+JC(IDR)-1)+NMP(IM) 
        !K0J=I0+IC(IDR)+NI(IM)*(J0        -1)+NMP(IM) 
        KD= ID(IDR)+NI(IM)* JD(IDR) 
        DO 5 IPP=1,NP-1 
          K1=K0+KD*(IPP-1) 
          K2=K0+KD* IPP 
          XPOS=.5*(XM(K1)+XM(K2)) 
          RADIUS=.5*(YM(K1)+YM(K2)) 
          AREA=PI*RADIUS**2 
          ARATIO=AREA/ATHROAT 
          IF(ARATIO.LT.1.0+EPS)THEN 
            AM=1.0 
            GOTO 10 
          ENDIF 
 
          !Subsonic 
          IF(ISUP.EQ.0)THEN 
            am=.5 
            DO 6 I=1,200 
              amn=(1.+.5*(gcnt-1.)*am**2)**fact*sqrt(rgas*ttot/gcnt)*   & 
                  wgflow/ptot/area 
              diff=abs(amn-am)/am 
              am=amn 
              IF(DIFF.LT.ERRMAX)GOTO 7 
    6       CONTINUE 
     WRITE(6,*)'ITERATION FAILED, SUBSONIC' 
    7       CONTINUE 
          ENDIF 
 
          !Supersonic 
          IF(ISUP.EQ.1)THEN 
            am=1.5 
            DO 8 I=1,200 
              amn=sqrt(2./(gcnt-1.)*((am/wgflow*ptot*area*              & 
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                  sqrt(gcnt/rgas/ttot))**(1./fact)-1.)) 
              diff=abs(amn-am)/am 
              am=amn 
       IF(DIFF.LT.ERRMAX)GOTO 9 
    8       CONTINUE 
     WRITE(6,*)'ITERATION FAILED, SUPERSONIC' 
    9       CONTINUE 
          ENDIF 
   10     CONTINUE 
  
          tc=ttot/(1.+.5*(gcnt-1.)*am**2) 
          pc=ptot/(1.+.5*(gcnt-1.)*am**2)**(gcnt/(gcnt-1.)) 
          roc=pc/rgas/tc 
          vel=wgflow/area/roc 
 
          !Viscosity power law from SPP 
          VISCBND(IBND,IPP)=VISC*(TC/TTOT)**.6728 
          TRBND(IBND,IPP)=RFACT*TTOT+(1.-RFACT)*TC 
          TRBND(IBND,IPP)=TRBND(IBND,IPP)-273. 
          RE=WGFLOW*2/(PI*RADIUS*VISCBND(IBND,IPP)) 
          F=0.0791/(RE**0.25) 
          ST=F/2/(1+1.99*RE**(-0.125)*(PRND-1)) 
          HCEBND(IBND,IPP)=ROC*VEL*ST*CPGAS 
 
          WRITE(6,*)XPOS*1000.,AM,PC/1.E6,TRBND(IBND,IPP),HCEBND(IBND,IPP) 
    5   CONTINUE 
      ENDIF 
 
      CLOSE(1) 
  100 FORMAT(I4,6F10.3) 
      RETURN 
      END 
 
      SUBROUTINE LTSP 
      USE GlobaleVariable 
      implicit none 
      !Local variables 
      INTEGER          :: IMESH,I,J,K1,K2,K3,printer 
      DOUBLE PRECISION :: TMAX,TS 
      printer=1 
      TS=DTIME 
      DO IMESH=1,NMESH 
        DO J=1,NJ(IMESH)-1 
        DO I=1,NI(IMESH)-1 
          K1=I+NI(IMESH)*(J-1)+NMP(IMESH) 
          K2=K1+1 
          K3=K1+NI(IMESH) 
          
TMAX=RO(K1)*C(K1)*VOL(K1)/((AI(K1)/RI(K1))+(AI(K2)/RI(K2))+(AJ(K1)/RJ(K1))+(AJ(K3)/
RJ(K3))) 
          IF (TS>TMAX) THEN 
            TS=TMAX 
            IF (printer.EQ.1) THEN 
             WRITE(6,*) 'Time step has been changed, dt= ',TS 
             printer=0 
            END IF 
          END IF 
        END DO 
        END DO 
      END DO 
      TSF=TS 
      RETURN 
      END 
 
 !Name:IMPLICIT 
 !Author: Jørn Riise 
 !Date: 30-06-2008 
 !Description: Solves the governing equation using TDMA line-by-line 2D. 
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       SUBROUTINE IMPLICIT_ 
       USE GlobaleVariable 
       implicit none 
 
       !Local variables 
       INTEGER                             :: IMESH,K1,K2,K3,I,pos,J,K4,K5,dummy 
       DOUBLE PRECISION, DIMENSION(1000)   :: ma,mb,mc,md,P,Q 
       DOUBLE PRECISION                    :: 
tempP,tempPo,tempE,tempN,tempS,aw,ae,an,as,ap,kildeP,kildeU,apo, & 
                                              
denomiator,tempOLD,SIGMA,RADIATION,EMMIS 
       LOGICAL                             :: ferdig 
 
       SIGMA=5.67*1.E-08 
       !Initializing convergence variable 
       ferdig = .FALSE. 
 
       !Pyrolysis decomposition reactions 
       IF (pyrolyse.EQ.1) THEN 
        CALL PYROLYSIS 
        CALL CONTINUITY 
       END IF 
 
       !Temporary storage of temperatures 
       TEMPo(:)=TEMP(:) 
 
       DO 
 
        dummy=1 
 
        IF(ferdig) EXIT 
 
        ferdig=.TRUE. 
 
        !Updating material properties 
        IF (pyrolyse.EQ.0) THEN 
        CALL PICKMDATA 
        END IF 
        CALL RESMAT 
 
 
       !Updating shadow cells 
       CALL UPDATE_IMPLICIT 
 
       !Sweeping(from South to North) in j-direction 
       DO IMESH=1,NMESH 
       DO J=1,NJ(IMESH)-1 
         DO I=1,NI(IMESH)-1 
                        kildeP=0 
                        kildeU=0 
                        pos=I+1 
                        !Coordinates in 1D-vector 
                        K1=I+NI(IMESH)*(J-1)+NMP(IMESH) 
                        K2=K1+1 
                        K3=K1+NI(IMESH) 
                        K4=K1-NI(IMESH) 
                        IF (J.EQ.1) THEN 
                           !South edge 
                           an=(AJ(K3)/RJ(K3))+(CPG(K1)*MAX(0.,(-MJ(K3)))) 
                           as=boundS(3,I,IMESH) 
                           
kildeU=boundS(5,I,IMESH)+(Su(K1)*VOL(K1))+(MPYR(K1)*DHPYR(K1)) 
                           !kildeP=0 
                           RADIATION=boundS(6,I,IMESH) 
                           EMMIS=boundS(7,I,IMESH) 
                           IF (RADIATION.GT.0) THEN 
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                            kildeP=(-
1)*boundS(1,I,IMESH)*SIGMA*EMMIS*(4*(TEMPo(K1)**3)) 
                            
kildeU=kildeU+(boundS(1,I,IMESH)*SIGMA*EMMIS*(RADIATION+(3*(TEMPo(K1)**4)))) 
                           END IF 
 
                           tempN=TEMP(K3) 
                           tempS=boundS(4,I,IMESH) 
                           tempPo=TEMPo(K1) 
                        ELSE IF (J.EQ.(NJ(IMESH)-1)) THEN 
                           !North edge 
                           an=boundN(3,I,IMESH) 
                           as=(AJ(K1)/RJ(K1))+(CPG(K1)*MAX(0.,MJ(K1))) 
                           
kildeU=boundN(5,I,IMESH)+(Su(K1)*VOL(K1))+(MPYR(K1)*DHPYR(K1)) 
                           RADIATION=boundN(6,I,IMESH) 
                           EMMIS=boundN(7,I,IMESH) 
                           IF (RADIATION.GT.0) THEN 
                            kildeP=(-
1)*boundN(1,I,IMESH)*SIGMA*EMMIS*(4*(TEMPo(K1)**3)) 
                            
kildeU=kildeU+(boundN(1,I,IMESH)*SIGMA*EMMIS*(RADIATION+(3*(TEMPo(K1)**4)))) 
                           END IF 
 
                           tempN=boundN(4,I,IMESH) 
                           tempS=TEMP(K4) 
                           tempPo=TEMPo(K1) 
 
                        ELSE 
                           !Internal cell volumes 
                           an=(AJ(K3)/RJ(K3))+(CPG(K1)*MAX(0.,(-MJ(K3)))) 
                           as=(AJ(K1)/RJ(K1))+(CPG(K1)*MAX(0.,MJ(K1))) 
                           kildeU=(Su(K1)*VOL(K1))+(MPYR(K1)*DHPYR(K1)) 
 
                           tempN=TEMP(K3) 
                           tempS=TEMP(K4) 
                           tempPo=TEMPo(K1) 
                        END IF 
 
                        IF (I.EQ.1) THEN 
                           !West edge 
                           aw=boundW(3,J,IMESH) 
                           ae=(AI(K2)/RI(K2))+(CPG(K1)*MAX(0.,(-MI(K2)))) 
                           kildeU=kildeU+boundW(5,J,IMESH) 
 
                           RADIATION=boundW(6,J,IMESH) 
                           EMMIS=boundW(7,J,IMESH) 
                           IF (RADIATION.GT.0) THEN 
                            kildeP=(-
1)*boundW(1,J,IMESH)*SIGMA*EMMIS*(4*(TEMPo(K1)**3)) 
                            
kildeU=kildeU+(boundW(1,J,IMESH)*SIGMA*EMMIS*(RADIATION+(3*(TEMPo(K1)**4)))) 
                           END IF 
 
                        ELSE IF (I.EQ.(NI(IMESH)-1)) THEN 
                           !East edge 
                           aw=(AI(K1)/RI(K1))+(CPG(K1)*MAX(0.,MI(K1))) 
                           ae=boundE(3,J,IMESH) 
                           kildeU=kildeU+boundE(5,J,IMESH) 
 
                           RADIATION=boundE(6,J,IMESH) 
                           EMMIS=boundE(7,J,IMESH) 
                           IF (RADIATION.GT.0) THEN 
                            kildeP=(-
1)*boundE(1,J,IMESH)*SIGMA*EMMIS*(4*(TEMPo(K1)**3)) 
                            
kildeU=kildeU+(boundE(1,J,IMESH)*SIGMA*EMMIS*(RADIATION+(3*(TEMPo(K1)**4)))) 
                           END IF 
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                        ELSE 
                           aw=(AI(K1)/RI(K1))+(CPG(K1)*MAX(0.,MI(K1))) 
                           ae=(AI(K2)/RI(K2))+(CPG(K1)*MAX(0.,(-MI(K2)))) 
                        END IF 
 
                        !Cell + source 
                        apo=(RO(K1)*C(K1)*VOL(K1))/DTIME 
                        ap=apo+aw+ae+an+as-kildeP 
 
 
                        !TDMA Part 1 (Forward substitution) 
 
                        !Initial temperature West 
                        IF (I.EQ.1) THEN 
                           P(1)=0 
                           Q(1)=boundW(4,J,IMESH) 
                        END IF 
 
                        !Internal coefficients 
                        ma(pos)=ap 
                        mb(pos)=ae 
                        mc(pos)=aw 
                        md(pos)=(an*tempN)+(as*tempS)+(apo*tempPo)+kildeU 
 
                        !Forward substitution 
                        denomiator=ma(pos)-(mc(pos)*P(pos-1)) 
                        P(pos)=mb(pos)/denomiator 
                        Q(pos)=((mc(pos)*Q(pos-1))+md(pos))/denomiator 
 
                END DO !End i and TDMA Part 11 
 
 
                !TDMA Part 2 (Backward substitution) 
                DO I=NI(IMESH)-1, 1, -1 
                    pos=I+1 
                    !Coordinates in 1D-vector 
                    K1=I+NI(IMESH)*(J-1)+NMP(IMESH) 
                    K2=K1+1 
                    K3=K1+NI(IMESH) 
                    K4=K1-NI(IMESH) 
 
                    !Initial temperature East 
                    IF(I.EQ.(NI(IMESH)-1)) THEN 
                    tempE=boundE(4,J,IMESH) 
                    ELSE 
                    tempE=temp(K2) 
                    END IF 
 
                    !Backward substitution 
                    tempP=(P(pos)*tempE)+Q(pos) 
                    temp(K1)=tempP 
 
                END DO !End TDMA Part 2 
 
                END DO !End j 
       END DO !End imesh 
 
       !Updating shadow cells 
       CALL UPDATE_IMPLICIT 
 
       !Sweeping(from West to East) in i-direction 
       DO IMESH=1,NMESH 
       DO I=1,NI(IMESH)-1 
         DO J=1,NJ(IMESH)-1 
                        kildeP=0 
                        kildeU=0 
                        pos=J+1 
                        !Coordinates in 1D-vector 
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                        K1=I+NI(IMESH)*(J-1)+NMP(IMESH) 
                        K2=K1+1 
                        K3=K1+NI(IMESH) 
                        K5=K1-1 
 
                        IF (I.EQ.1) THEN 
                           !North edge 
                           an=boundW(3,J,IMESH) 
                           as=(AI(K2)/RI(K2))+(CPG(K1)*MAX(0.,(-MI(K2)))) 
                           
kildeU=boundW(5,J,IMESH)+(Su(K1)*VOL(K1))+(MPYR(K1)*DHPYR(K1)) 
 
                           RADIATION=boundW(6,J,IMESH) 
                           EMMIS=boundW(7,J,IMESH) 
                           IF (RADIATION.GT.0) THEN 
                            kildeP=(-
1)*boundW(1,J,IMESH)*SIGMA*EMMIS*(4*(TEMPo(K1)**3)) 
                            
kildeU=kildeU+(boundW(1,J,IMESH)*SIGMA*EMMIS*(RADIATION+(3*(TEMPo(K1)**4)))) 
                           END IF 
 
                           tempN=boundW(4,J,IMESH) 
                           tempS=TEMP(K2) 
                           tempPo=TEMPo(K1) 
                        ELSE IF (I.EQ.(NI(IMESH)-1)) THEN 
                           !South edge 
                           an=(AI(K1)/RI(K1))+(CPG(K1)*MAX(0.,MI(K1))) 
                           as=boundE(3,J,IMESH) 
                           
kildeU=boundE(5,J,IMESH)+(Su(K1)*VOL(K1))+(MPYR(K1)*DHPYR(K1)) 
 
                           RADIATION=boundE(6,J,IMESH) 
                           EMMIS=boundE(7,J,IMESH) 
                           IF (RADIATION.GT.0) THEN 
                            kildeP=(-
1)*boundE(1,J,IMESH)*SIGMA*EMMIS*(4*(TEMPo(K1)**3)) 
                            
kildeU=kildeU+(boundE(1,J,IMESH)*SIGMA*EMMIS*(RADIATION+(3*(TEMPo(K1)**4)))) 
                           END IF 
 
                           tempN=TEMP(K5) 
                           tempS=boundE(4,J,IMESH) 
                           tempPo=TEMPo(K1) 
                        ELSE 
                           !Internal cell volumes 
                           an=(AI(K1)/RI(K1))+(CPG(K1)*MAX(0.,MI(K1))) 
                           as=(AI(K2)/RI(K2))+(CPG(K1)*MAX(0.,(-MI(K2)))) 
                           kildeU=(Su(K1)*VOL(K1))+(MPYR(K1)*DHPYR(K1)) 
 
                           tempN=TEMP(K5) 
                           tempS=TEMP(K2) 
                           tempPo=TEMPo(K1) 
                        END IF 
 
                        IF (J.EQ.1) THEN 
                           !West edge 
                           ae=(AJ(K3)/RJ(K3))+(CPG(K1)*MAX(0.,(-MJ(K3)))) 
                           aw=boundS(3,I,IMESH) 
                           kildeU=kildeU+boundS(5,I,IMESH) 
 
                           RADIATION=boundS(6,I,IMESH) 
                           EMMIS=boundS(7,I,IMESH) 
                           IF (RADIATION.GT.0) THEN 
                            kildeP=(-
1)*boundS(1,I,IMESH)*SIGMA*EMMIS*(4*(TEMPo(K1)**3)) 
                            
kildeU=kildeU+(boundS(1,I,IMESH)*SIGMA*EMMIS*(RADIATION+(3*(TEMPo(K1)**4)))) 
                           END IF 
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                        ELSE IF (J.EQ.(NJ(IMESH)-1)) THEN 
                           !East edge 
                           ae=boundN(3,I,IMESH) 
                           aw=(AJ(K1)/RJ(K1))+(CPG(K1)*MAX(0.,MJ(K1))) 
                           kildeU=kildeU+boundN(5,I,IMESH) 
 
                           RADIATION=boundN(6,I,IMESH) 
                           EMMIS=boundN(7,I,IMESH) 
                           IF (RADIATION.GT.0) THEN 
                            kildeP=(-
1)*boundN(1,I,IMESH)*SIGMA*EMMIS*(4*(TEMPo(K1)**3)) 
                            
kildeU=kildeU+(boundN(1,I,IMESH)*SIGMA*EMMIS*(RADIATION+(3*(TEMPo(K1)**4)))) 
                           END IF 
                        ELSE 
                           ae=(AJ(K3)/RJ(K3))+(CPG(K1)*MAX(0.,(-MJ(K3)))) 
                           aw=(AJ(K1)/RJ(K1))+(CPG(K1)*MAX(0.,MJ(K1))) 
                        END IF 
 
                        !Cell + source 
                        apo=(RO(K1)*C(K1)*VOL(K1))/DTIME 
                        ap=apo+aw+ae+an+as-kildeP 
 
                        !TDMA Part 1 (Forward substitution) 
 
                        !Initial temperature West 
                        IF (J.EQ.1) THEN 
                           P(1)=0 
                           Q(1)=boundS(4,I,IMESH) 
                        END IF 
 
                        !Internal coefficients 
                        ma(pos)=ap 
                        mb(pos)=ae 
                        mc(pos)=aw 
                        md(pos)=(an*tempN)+(as*tempS)+(apo*tempPo)+kildeU 
 
                        !Forward substitution 
                        denomiator=(ma(pos)-(mc(pos)*P(pos-1))) 
                        P(pos)=mb(pos)/denomiator 
                        Q(pos)=((mc(pos)*Q(pos-1))+md(pos))/denomiator 
 
 
                END DO !End j and TDMA part 1 
 
                !TDMA Part 2 (Backward substitution) 
                DO J=NJ(IMESH)-1, 1, -1 
                    pos=J+1 
                    !Coordinates in 1D-vector 
                    K1=I+NI(IMESH)*(J-1)+NMP(IMESH) 
                    K2=K1+1 
                    K3=K1+NI(IMESH) 
                    K5=K1-1 
 
                    !Initial temperature East 
                    tempOLD=temp(K1) 
                    IF(J.EQ.(NJ(IMESH)-1)) THEN 
                    tempE=boundN(4,I,IMESH) 
                    ELSE 
                    tempE=temp(K3) 
                    END IF 
 
                    !Backward substitution 
                    tempP=(P(pos)*tempE)+Q(pos) 
                    temp(K1)=tempP 
 
                    !Check for convergence 
                    IF(ABS(tempOLD-tempP).GT.konvergenskrit) THEN 
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                        ferdig=.FALSE. 
                    END IF !Check for convergence 
                END DO !End TDMA Part 2 
 
        END DO !End i 
       END DO !End imesh 
 
 
       END DO !End convergence 
 
       END SUBROUTINE !End Implicit 
 
 !Name: MECH_EROSION 
 !Author: Jørn Riise 
 !Date: 30-06-2008 
 !Description: Calculates the starting and ending time of the recession 
 
     SUBROUTINE MECH_EROSION 
     USE GlobaleVariable 
     implicit none 
 
     DOUBLE PRECISION                    :: 
LENIFACE,TLENIFACE,IDX,IDY,deltaSF,deltaCP,xcross,ycross,ykCP,ykSF, & 
                                            
xcross1,ycross1,xcross2,ycross2,IDXX,IDYY,TLEN1,TLEN2,SUMMEK,MAXLEN, & 
                                            LENIBFACED 
     INTEGER                             :: 
K1,K2,K3,K4,I,J,K,IMESH,R,B,IBPKT,donemek,cross,TNMEK,startMEK,FIRST1,FIRST2 
     DOUBLE PRECISION, DIMENSION(4)      :: dyB,dxB,XB,YB 
 
 
     DO IMESH=1,NMESH 
      DO I=1,NI(IMESH)-1 
       DO J=1,NJ(IMESH)-1 
          K1=I+NI(IMESH)*(J-1)+NMP(IMESH) 
          !For decomposing cell volumes 
          IF(IFACEBULK(K1).GT.0) THEN 
          !Calculates the recession vectors 
            K2=K1+1 
            K3=K1+NI(IMESH) 
            K4=K3+1 
            IDX=IBFACEX(1)-XCP(K1) 
            IDY=IBFACEY(1)-YCP(K1) 
            LENIFACE=SQRT((IDX**2)+(IDY**2))+1 
            DO K=1,NBFACE 
             IDX=IBFACEX(K)-XCP(K1) 
             IDY=IBFACEY(K)-YCP(K1) 
             TLENIFACE=SQRT((IDX**2)+(IDY**2)) 
             IF(TLENIFACE.LT.LENIFACE) THEN 
              VMX(K1)=IDX 
              VMY(K1)=IDY 
              IBPKT=K 
              LENIFACE=TLENIFACE 
             END IF 
            END DO 
            !Center points on cell volume edges 1=south,2=east,3=north and 4=west 
            dxB(1)=XM(K2)-XM(K1) 
            dyB(1)=YM(K2)-YM(K1) 
            dxB(2)=XM(K4)-XM(K2) 
            dyB(2)=YM(K4)-YM(K2) 
            dxB(3)=XM(K3)-XM(K4) 
            dyB(3)=YM(K3)-YM(K4) 
            dxB(4)=XM(K1)-XM(K3) 
            dyB(4)=YM(K1)-YM(K3) 
            XB(1)=XM(K1) 
            YB(1)=YM(K1) 
            XB(2)=XM(K2) 
            YB(2)=YM(K2) 
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            XB(3)=XM(K4) 
            YB(3)=YM(K4) 
            XB(4)=XM(K3) 
            YB(4)=YM(K3) 
 
 
            FIRST1=0 
            FIRST2=0 
            DO R=1,4 
             !Find the crossing points for recession length in cell volumes 
             cross=0 
             IF (ABS(VMX(K1)).GT.0) THEN 
              deltaCP=(VMY(K1)/VMX(K1)) 
              ykCP=YCP(K1)-(deltaCP*XCP(K1)) 
              IF (ABS(dxB(R)).GT.0) THEN 
               deltaSF=(dyB(R)/dxB(R)) 
               ykSF=YB(R)-(deltaSF*XB(R)) 
               IF (ABS(deltaSF-deltaCP).GT.0) THEN 
                xcross=(ykSF-ykCP)/(deltaCP-deltaSF) 
                ycross=ykSF+(deltaSF*xcross) 
                cross=1 
               END IF 
              ELSE 
                xcross=XB(R) 
                ycross=ykCP+(deltaCP*xcross) 
                cross=1 
              END IF 
             ELSE 
              IF (ABS(dxB(R)).GT.0) THEN 
               deltaSF=(dyB(R)/dxB(R)) 
               ykSF=YB(R)-(deltaSF*XB(R)) 
               xcross=XCP(K1) 
               ycross=ykSF+(deltaSF*xcross) 
               cross=1 
              END IF 
             END IF 
 
             !If crossing point is found: 
             IF (cross.EQ.1) THEN 
               IF (ABS(VMX(K1)).GT.0) THEN 
                IF (xcross.LT.XCP(K1)) THEN 
                  IF (FIRST1.EQ.0) THEN 
                   xcross1=xcross 
                   ycross1=ycross 
                   FIRST1=1 
                  ELSE IF (xcross.GT.xcross1) THEN 
                   xcross1=xcross 
                   ycross1=ycross 
                  END IF 
                ELSE 
                  IF (FIRST2.EQ.0) THEN 
                   xcross2=xcross 
                   ycross2=ycross 
                   FIRST2=1 
                  ELSE IF (xcross.LT.xcross2) THEN 
                   xcross2=xcross 
                   ycross2=ycross 
                  END IF 
                END IF 
               ELSE 
                IF (ycross.GT.YCP(K1)) THEN 
                  IF (FIRST1.EQ.0) THEN 
                   xcross1=xcross 
                   ycross1=ycross 
                   FIRST1=1 
                  ELSE IF (ycross.GT.ycross1) THEN 
                   xcross1=xcross 
                   ycross1=ycross 
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                  END IF 
                ELSE 
                  IF (FIRST2.EQ.0) THEN 
                   xcross2=xcross 
                   ycross2=ycross 
                   FIRST2=1 
                  ELSE IF (ycross.LT.ycross2) THEN 
                   xcross2=xcross 
                   ycross2=ycross 
                  END IF 
                END IF 
               END IF 
             END IF 
 
            END DO 
 
            !Crossing points: xcross1 og xcross2 
            IDX=IBFACEX(IBPKT)-xcross1 
            IDY=IBFACEY(IBPKT)-ycross1 
            TLEN1=SQRT((IDX**2)+(IDY**2)) 
            IDXX=IBFACEX(IBPKT)-xcross2 
            IDYY=IBFACEY(IBPKT)-ycross2 
            TLEN2=SQRT((IDXX**2)+(IDYY**2)) 
            !Calculates the length to start of recession and the length inside cell 
volume 
            IF (TLEN1.LT.TLEN2) THEN 
             LENIBFACE(K1)=TLEN1 
             LENIBCELL(K1)=TLEN2-TLEN1 
            ELSE 
             LENIBFACE(K1)=TLEN2 
             LENIBCELL(K1)=TLEN1-TLEN2 
            END IF 
            !Calculates starting and ending time of recession, erosjon VMEK()=m/s, 
NMEK=number of recession rates 
 
              !************** 
              !Starting time. 
              !************** 
              donemek=0 
              startMEK=1 
              TNMEK=NMEK !N ending times 
              DO 
               IF (donemek.EQ.1) EXIT 
                 !Mean recession rate 
                 SUMMEK=MEK(startMEK)*(MEKTIMES(startMEK)) 
                 IF (ABS(TNMEK-startMEK).GE.2) THEN 
                  DO B=(startMEK+1),(TNMEK-1) 
                   SUMMEK=SUMMEK+(MEK(B)*(MEKTIMES(B)-MEKTIMES(B-1))) 
                  END DO 
                 END IF 
                 IF(TNMEK.EQ.1) THEN 
                    MAXLEN=SUMMEK 
                 ELSE 
                    MAXLEN=SUMMEK+((MEKTIMES(TNMEK)-MEKTIMES(TNMEK-1))*MEK(TNMEK)) 
                 END IF 
                 IF (MAXLEN.GT.LENIBFACE(K1)) THEN 
                   IF(MEK(TNMEK).EQ.0) THEN 
                    MEKTIME(K1)=0 
                   ELSE IF(TNMEK.EQ.1) THEN 
                    MEKTIME(K1)=(LENIBFACE(K1)/MEK(TNMEK)) 
                   ELSE 
                    MEKTIME(K1)=((LENIBFACE(K1)-SUMMEK)/MEK(TNMEK))+MEKTIMES(TNMEK-
1) 
                   END IF 
                 ELSE 
                   MEKTIME(K1)=1.0E15 
                   donemek=1 
                 END IF 
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                 !Check for current recession 
                 IF (MEKTIME(K1).LT.MEKTIMES(TNMEK-1)) THEN 
                  TNMEK=TNMEK-1 
                 ELSE 
                  donemek=1 
                 END IF 
 
              END DO 
 
              !************ 
              !Ending time. 
              !************ 
              donemek=0 
              TNMEK=NMEK !N ending times 
              LENIBFACED=LENIBFACE(K1)+LENIBCELL(K1) 
              DO 
                 IF (donemek.EQ.1) EXIT 
                 !Mean recession rate 
                 SUMMEK=MEK(startMEK)*(MEKTIMES(startMEK)) 
                 IF (ABS(startMEK-TNMEK).GE.2) THEN 
                  DO B=(startMEK+1),(TNMEK-1) 
                   SUMMEK=SUMMEK+(MEK(B)*(MEKTIMES(B)-MEKTIMES(B-1))) 
                  END DO 
                 END IF 
                 IF (TNMEK.EQ.1) THEN 
                    MAXLEN=SUMMEK 
                 ELSE 
                    MAXLEN=SUMMEK+((MEKTIMES(TNMEK)-MEKTIMES(TNMEK-1))*MEK(TNMEK)) 
                 END IF 
                 IF (MAXLEN.GT.LENIBFACED) THEN 
                   IF(MEK(TNMEK).EQ.0) THEN 
                    MEKTIMED(K1)=0 
                   ELSE IF(TNMEK.EQ.1) THEN 
                    MEKTIMED(K1)=(LENIBFACED/MEK(TNMEK)) 
                    MEKEND(K1)=0. 
                   ELSE 
                    MEKTIMED(K1)=((LENIBFACED-SUMMEK)/MEK(TNMEK))+MEKTIMES(TNMEK-1) 
                    MEKEND(K1)=0. 
                   END IF 
                 ELSE 
                  IF(MEK(TNMEK).EQ.0) THEN 
                   MEKTIMED(K1)=0 
                  ELSE 
                   MEKTIMED(K1)=((MAXLEN-SUMMEK)/MEK(TNMEK))+MEKTIMES(TNMEK-1) 
                   donemek=1 
                   MEKEND(K1)=(((LENIBFACED-SUMMEK)/MEK(TNMEK))+MEKTIMES(TNMEK-1))-
MEKTIMED(K1) 
                  END IF 
                 END IF 
 
                 !Check for current recession 
                 IF (MEKTIMED(K1).LT.MEKTIMES(TNMEK-1)) THEN 
                  TNMEK=TNMEK-1 
                 ELSE 
                  donemek=1 
                 END IF 
              END DO 
         END IF !End decomposing cell volumes 
 
       END DO 
      END DO 
     END DO 
 
 
     END SUBROUTINE !End MECH_EROSION 
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 !Name: DIRECTIONVECTORS 
 !Author: Jørn Riise 
 !Date: 30-06-2008 
 !Description: Calculates the direction vectors for the decompoosing material. 
     SUBROUTINE directionVectors 
     USE GlobaleVariable 
     implicit none 
 
     DOUBLE PRECISION                    :: LENIFACE,TLENIFACE,IDX,IDY 
     INTEGER                             :: K1,I,J,K,IMESH 
 
 
     DO IMESH=1,NMESH 
      DO I=1,NI(IMESH)-1 
       DO J=1,NJ(IMESH)-1 
          K1=I+NI(IMESH)*(J-1)+NMP(IMESH) 
          !For decomposing cell volumes 
         IF(IFACEBULK(K1).EQ.1) THEN 
           IDX=XCP(IFACE(K))-XCP(K1) 
           IDY=YCP(IFACE(K))-YCP(K1) 
           LENIFACE=SQRT((IDX**2)+(IDY**2))+1 
           DO K=1,NIFACE 
            IDX=XCP(IFACE(K))-XCP(K1) 
            IDY=YCP(IFACE(K))-YCP(K1) 
            TLENIFACE=SQRT((IDX**2)+(IDY**2)) 
            IF(TLENIFACE.LT.LENIFACE) THEN 
              VX(K1)=IDX 
              VY(K1)=IDY 
              LENIFACE=TLENIFACE 
            END IF 
           END DO 
          ELSE IF(IFACEBULK(K1).GE.2 .AND. ABS(IFACEVALUE-0.02).LT.0.001) THEN 
            IDX=IBFACEX(1)-XCP(K1) 
            IDY=IBFACEY(1)-YCP(K1) 
            LENIFACE=SQRT((IDX**2)+(IDY**2))+1 
            DO K=1,NBFACE 
             IDX=IBFACEX(K)-XCP(K1) 
             IDY=IBFACEY(K)-YCP(K1) 
             TLENIFACE=SQRT((IDX**2)+(IDY**2)) 
             IF(TLENIFACE.LT.LENIFACE) THEN 
              VX(K1)=IDX 
              VY(K1)=IDY 
              LENIFACE=TLENIFACE 
             END IF 
            END DO 
          END IF !End decomposing cell volumes 
 
       END DO 
      END DO 
     END DO 
 
     END SUBROUTINE !End directionVectors 
 
 !Name: Continuity 
 !Author: Jørn Riise 
 !Date: 30-06-2008 
 !Description: Solves the continuity equation using vectors. 
     SUBROUTINE CONTINUITY 
     USE GlobaleVariable 
     implicit none 
 
     INTEGER                             :: IMESH,K1,K2,K3,I,J,done,W1,E1,S1,N1 
     DOUBLE PRECISION                    :: mOUT,Angle,iy,ix 
     INTEGER,DIMENSION(4)                :: aDIR 
     DOUBLE PRECISION, DIMENSION(35000)  :: lamdaX,lamdaY,mOLD 
     INTEGER,DIMENSION(35000,4)          :: bDIR 
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    done=0 
    MI=MI*0 
    MJ=MJ*0 
    CALL directionVectors 
 
    DO IMESH=1,NMESH 
     DO I=1,NI(IMESH)-1 
      DO J=1,NJ(IMESH)-1 
       !Coordinates in 1D-vector 
       K1=I+NI(IMESH)*(J-1)+NMP(IMESH) 
       K2=K1+1 
       !For decomposing cell volumes 
       IF(IFACEBULK(K1)>0) THEN 
        !Gas direction 
        ix=XM(K2)-XM(K1) 
        iy=YM(K2)-YM(K1) 
        Angle=ATAN2(VY(K1),VX(K1))-ATAN2(iy,ix) 
        IF (Angle.LT.0) THEN 
           Angle=Angle+(2*PI) 
        END IF 
 
        IF (Angle.LT.PI) THEN 
           IF (Angle.LT.(PI/2)) THEN 
              IF(Angle.EQ.0) THEN 
              aDIR=(/0,1,1,1/) 
              ELSE 
              aDIR=(/0,1,0,1/) 
              END IF 
              lamdaY(K1)=2*Angle/PI 
              lamdaX(K1)=1-lamdaY(K1) 
           ELSE 
              IF(ABS(Angle-(PI/2)).LT.0.001) THEN 
              aDIR=(/1,1,0,1/) 
              ELSE 
              aDIR=(/1,0,0,1/) 
              END IF 
              lamdaX(K1)=2*((PI/2)-Angle)/PI 
              lamdaY(K1)=1+lamdaX(K1) 
           END IF 
        ELSE 
           IF (Angle.LT.(3*PI/2)) THEN 
              IF (ABS(Angle-PI).LT.0.001) THEN 
              aDIR=(/1,0,1,1/) 
              ELSE 
              aDIR=(/1,0,1,0/) 
              END IF 
              lamdaY(K1)=2*(PI-Angle)/PI 
              lamdaX(K1)=(-1)-lamdaY(K1) 
           ELSE 
              IF (ABS(Angle-(3*PI/2)).LT.0.001) THEN 
              aDIR=(/1,1,1,0/) 
              ELSE IF (ABS(Angle-(2*PI)).LT.0.001) THEN 
              aDIR=(/0,1,1,1/) 
              ELSE 
              aDIR=(/0,1,1,0/) 
              END IF 
              lamdaX(K1)=2*(Angle-(3*PI/2))/PI 
              lamdaY(K1)=lamdaX(K1)-1 
           END IF 
        END IF 
        bDIR(K1,:)=aDIR(:) 
       END IF !End decomposing cell volumes 
      END DO !End J 
     END DO !End I 
    END DO !End IMESH 
 
      !Iteration routine 
      DO 
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       IF(done.EQ.1) EXIT 
       done=1 
 
       DO IMESH=1,NMESH 
         DO I=1,NI(IMESH)-1 
           DO J=1,NJ(IMESH)-1 
             !Coordinates in 1D-vector 
             K1=I+NI(IMESH)*(J-1)+NMP(IMESH) 
             !For decomposing cell volumes 
             IF(IFACEBULK(K1)>0) THEN 
              K2=K1+1 
              K3=K1+NI(IMESH) 
 
              mOUT=((-1)*MPYR(K1))-(bDIR(K1,1)*MI(K2))+(bDIR(K1,2)*MI(K1))- & 
                   (bDIR(K1,3)*MJ(K3))+(bDIR(K1,4)*MJ(K1)) 
 
              IF (I.EQ.1) THEN 
                 W1=boundWU(1,J,IMESH) 
                 IF (W1.EQ.1) THEN 
                   
MJ(boundWU(2,J,IMESH))=(bDIR(K1,2)*MI(K1))+(bDIR(K1,1)*lamdaX(K1)*mOUT) !WEST 
                 ELSEIF (W1.EQ.2) THEN 
                   
MI(boundWU(2,J,IMESH))=(bDIR(K1,2)*MI(K1))+(bDIR(K1,1)*lamdaX(K1)*mOUT) !WEST 
                 END IF 
              ELSE IF (I.EQ.(NI(IMESH)-1)) THEN 
                 E1=boundEU(1,J,IMESH) 
                 IF (E1.EQ.1) THEN 
                   
MJ(boundEU(2,J,IMESH))=(bDIR(K1,1)*MI(K2))+(bDIR(K1,2)*lamdaX(K1)*mOUT) !East 
                 ELSEIF (E1.EQ.2) THEN 
                   
MI(boundEU(2,J,IMESH))=(bDIR(K1,1)*MI(K2))+(bDIR(K1,2)*lamdaX(K1)*mOUT) !East 
                 END IF 
              END IF 
 
              IF (J.EQ.1) THEN 
                 S1=boundSU(1,I,IMESH) 
                 IF (S1.EQ.1) THEN 
                   
MJ(boundSU(2,I,IMESH))=(bDIR(K1,4)*MJ(K1))+(bDIR(K1,3)*lamdaY(K1)*mOUT) !SOUTH 
                 ELSEIF (S1.EQ.2) THEN 
                   
MI(boundSU(2,I,IMESH))=(bDIR(K1,4)*MJ(K1))+(bDIR(K1,3)*lamdaY(K1)*mOUT) !SOUTH 
                 END IF 
              ELSE IF (J.EQ.(NJ(IMESH)-1)) THEN 
                 N1=boundNU(1,I,IMESH) 
                 IF (N1.EQ.1) THEN 
                   
MJ(boundNU(2,I,IMESH))=(bDIR(K1,3)*MJ(K3))+(bDIR(K1,4)*lamdaY(K1)*mOUT) !NORTH 
                 ELSEIF (N1.EQ.2) THEN 
                   
MI(boundNU(2,I,IMESH))=(bDIR(K1,3)*MJ(K3))+(bDIR(K1,4)*lamdaY(K1)*mOUT) !NORTH 
                 END IF 
              END IF 
 
              MI(K1)=(bDIR(K1,2)*MI(K1))+(bDIR(K1,1)*lamdaX(K1)*mOUT) !WEST 
              MI(K2)=(bDIR(K1,1)*MI(K2))+(bDIR(K1,2)*lamdaX(K1)*mOUT) !EAST 
              MJ(K1)=(bDIR(K1,4)*MJ(K1))+(bDIR(K1,3)*lamdaY(K1)*mOUT) !SOUTH 
              MJ(K3)=(bDIR(K1,3)*MJ(K3))+(bDIR(K1,4)*lamdaY(K1)*mOUT) !NORTH 
 
              !Check for convergence 
              IF(ABS(mOLD(K1)-mOUT).GT.1E-12) THEN 
                 done=0 
              END IF 
              mOLD(K1)=mOUT 
             END IF !End decomposing cell volumes 
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           END DO !End J 
         END DO !End I 
       END DO !End MESH 
 
      END DO !End iterasjon 
 
     END SUBROUTINE !End Continuity 
 
 
 !Name: INIT_PYROLYSIS 
 !Author: Jørn Riise 
 !Date: 30-06-2008 
 !Description: Solves the continuity equation using vectors. 
     SUBROUTINE INIT_PYROLYSIS 
     USE GlobaleVariable 
     implicit none 
 
     INTEGER                             :: 
K1,K2,K3,K4,II,JJ,IIMESH,PYRMAT,REAC,switch 
     DOUBLE PRECISION                    :: 
xp1,yp1,xp2,yp2,xp3,yp3,xp4,yp4,a1to3,b1to3, & 
                                            a4to2,b4to2,tempx1,tempx2 
       !Decision variable for the interface 
       IF(IFACEVALUE.EQ.0) THEN 
         IFACEVALUE=0.02 
       END IF 
 
       !Initializing parameters 
       IF (Pyrini.EQ.1) THEN 
            Pyrini=0 
            RHORTOT=RHORTOT*0 
            RHOOTOT=RHOOTOT*0 
            VX=VX*0 
            VY=VY*0 
            VMX=VMX*0 
            VMY=VMY*0 
            MEKEND=MEKEND*0 
            precisionP=1.0E2 
         DO IIMESH=1,NMESH 
           DO JJ=1,NJ(IIMESH)-1 
             DO II=1,NI(IIMESH)-1 
              K1=II+NI(IIMESH)*(JJ-1)+NMP(IIMESH) 
              !For decomposing cell volumes 
              IF(IFACEBULK(K1)>0) THEN      
               PYRMAT=MAT(K1) 
               ANTPYR(K1)=AM_ANTPYR(PYRMAT) 
               DO REAC=1,ANTPYR(K1) 
                 VOLFRAC(REAC,K1)=AM_VOLFRAC(REAC,PYRMAT) 
                 RHO(REAC,K1)=AM_RHOO(REAC,PYRMAT)*VOLFRAC(REAC,K1) 
                 RHOO(REAC,K1)=AM_RHOO(REAC,PYRMAT)*VOLFRAC(REAC,K1) 
                 RHOR(REAC,K1)=AM_RHOR(REAC,PYRMAT)*VOLFRAC(REAC,K1) 
                 APYR(REAC,K1)=AM_APYR(REAC,PYRMAT) 
                 EPYR(REAC,K1)=AM_EPYR(REAC,PYRMAT) 
                 NPYR(REAC,K1)=AM_NPYR(REAC,PYRMAT) 
                 TREAC(REAC,K1)=AM_TREAC(REAC,PYRMAT) 
                 RHOOTOT(K1)=RHOOTOT(K1)+RHOO(REAC,K1) 
                 RHORTOT(K1)=RHORTOT(K1)+RHOR(REAC,K1) 
               END DO 
               RHOFRAC(K1)=1. 
               RO(K1)=RHOOTOT(K1) 
               MEKSTART(K1)=0 
               MEKTIME(K1)=1.0E15 
               MEKTIMED(K1)=1.0E15 
 
              END IF 
             END DO 
           END DO 
         END DO 
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       END IF 
 
       !Initializing parameters 
       NBFACE=0 
       IBFACEX=IBFACEX*0 
       IBFACEY=IBFACEY*0 
       DO IIMESH=1,NMESH 
         DO JJ=1,NJ(IIMESH)-1 
           DO II=1,NI(IIMESH)-1 
             !Defining centerpoints in the cell volume 
             K1=II+NI(IIMESH)*(JJ-1)+NMP(IIMESH) 
             !For decomposing cell volumes 
             IF(IFACEBULK(K1)>0) THEN 
              K2=K1+1 
              K3=K1+NI(IIMESH) 
              K4=K3+1 
 
              !Edge coordinated xp=x-point,yp=y-point, 1=south, 2=east, 3=north and 
4=west 
              xp1=XM(K1)+((XM(K2)-XM(K1))/2) 
              yp1=YM(K1)+((YM(K2)-YM(K1))/2) 
              xp2=XM(K2)+((XM(K4)-XM(K2))/2) 
              yp2=YM(K2)+((YM(K4)-YM(K2))/2) 
              xp3=XM(K4)+((XM(K3)-XM(K4))/2) 
              yp3=YM(K4)+((YM(K3)-YM(K4))/2) 
              xp4=XM(K3)+((XM(K1)-XM(K3))/2) 
              yp4=YM(K3)+((YM(K1)-YM(K3))/2) 
              !Line 1->3 and 4->2 makes an intersection (y=ax+b) 
              switch=1 
              tempx1=(xp3-xp1) 
              IF(ABS(tempx1).GT.0.0) THEN 
                a1to3=(yp3-yp1)/tempx1 
                b1to3=yp3-(a1to3*xp3) 
              ELSE 
                switch=0 
                XCP(K1)=xp3 
              END IF 
                tempx2=(xp2-xp4) 
              IF(ABS(tempx2).GT.0.0) THEN 
                a4to2=(yp2-yp4)/tempx2 
                b4to2=yp4-(a4to2*xp4) 
              ELSE 
                switch=0 
                XCP(K1)=xp2 
              END IF 
 
 
              !Center point in cell volume k1: XCP(K1),YCP(K1) 
              IF (switch.EQ.1) THEN 
               IF(ABS(a1to3).GT.0.0) THEN 
                XCP(K1)=(b4to2-b1to3)/(a1to3-a4to2) 
                YCP(K1)=(a1to3*XCP(K1))+b1to3 
               ELSE 
                XCP(K1)=(b4to2-b1to3)/(a1to3-a4to2) 
                YCP(K1)=(a4to2*XCP(K1))+b4to2 
               END IF 
              ELSE 
               IF(ABS(tempx1).GT.0.0) THEN 
                  YCP(K1)=b1to3+(a1to3*XCP(K1)) 
                ELSE 
                  YCP(K1)=b4to2+(a4to2*XCP(K1)) 
                END IF 
              END IF 
 
              IF(II.EQ.1) THEN 
                 IF(boundW(2,JJ,IIMESH).GT.0) THEN 
                   WRITE(6,*) 'west' 
                   IFACEBULK(K1)=3 
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                   VX(K1)=xp4-XCP(K1) 
                   VY(K1)=yp4-YCP(K1) 
                   NBFACE=NBFACE+1 
                   IBFACEX(NBFACE)=xp4 
                   IBFACEY(NBFACE)=yp4 
                 END IF 
              ELSEIF(II.EQ.(NI(IIMESH)-1)) THEN 
                 IF (boundE(2,JJ,IIMESH).GT.0) THEN 
                   WRITE(6,*) 'east' 
                   IFACEBULK(K1)=3 
                   VX(K1)=xp2-XCP(K1) 
                   VY(K1)=yp2-YCP(K1) 
                   NBFACE=NBFACE+1 
                   IBFACEX(NBFACE)=xp2 
                   IBFACEY(NBFACE)=yp2 
                   END IF 
              END IF 
 
              IF (JJ.EQ.1) THEN 
                 IF (boundS(2,II,IIMESH).GT.0) THEN 
                   WRITE(6,*) 'south' 
                   IFACEBULK(K1)=3 
                   VX(K1)=xp1-XCP(K1) 
                   VY(K1)=yp1-YCP(K1) 
                   NBFACE=NBFACE+1 
                   IBFACEX(NBFACE)=xp1 
                   IBFACEY(NBFACE)=yp1 
                 END IF 
                 IF(ABS(boundS(2,II,IIMESH)-1).LT.0.0001) THEN 
                   precisionP=1.0E14 
                 ELSE 
                   precisionP=1.0E2 
                 END IF 
              ELSEIF (JJ.EQ.(NJ(IIMESH)-1)) THEN 
                 IF (boundN(2,II,IIMESH).GT.0) THEN 
                   WRITE(6,*) 'north' 
                   IFACEBULK(K1)=3 
                   VX(K1)=xp3-XCP(K1) 
                   VY(K1)=yp3-YCP(K1) 
                   NBFACE=NBFACE+1 
                   IBFACEX(NBFACE)=xp3 
                   IBFACEY(NBFACE)=yp3 
                 END IF 
              END IF 
 
             END IF !End decomposing cell volumes 
           END DO !End J 
         END DO !End I 
       END DO !End Mesh 
 
       !If recession rates are specified 
       IF (M_EROSION.EQ.1) THEN 
        CALL MECH_EROSION 
        M_EROSION=0 
       END IF 
 
     END SUBROUTINE !End INIT_PYROLYSIS 
 
 
 !Name: PYROLYSIS 
 !Author: Jørn Riise 
 !Date: 30-06-2008 
 !Description: Solves the internal decomposition reactions and adjust material 
properties. 
     SUBROUTINE PYROLYSIS 
     USE GlobaleVariable 
     implicit none 
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     DOUBLE PRECISION                    :: 
DALFA,RHOTEMP,RHORTEMP,RHODIFF,ALFADIFF,ALFATEMP,T,TMIN,TMAX,XSI,T1,T2,XFRAC, & 
                                            MEKDTIME,MFRAC 
     INTEGER                             :: 
NREAC,REAC,K1,K2,K3,K4,K5,I,J,IMESH,IIMAT,IT,N 
 
     NIFACE=0 
     IFACE=IFACE*0 
 
     DO IMESH=1,NMESH 
        DO I=1,NI(IMESH)-1 
           DO J=1,NJ(IMESH)-1 
            K1=I+NI(IMESH)*(J-1)+NMP(IMESH) 
            K3=K1+NI(IMESH) 
            !For decomposing cell volumes 
            IF(IFACEBULK(K1).GT.0) THEN 
             !Check for starting time of recession (default=MEKTIME>TIME) 
            IF (TIME.GT.MEKTIME(K1)) THEN 
               IF (TIME.GE.MEKTIMED(K1)) THEN 
                IF (MEKEND(K1).LE.0) THEN 
                   C(K1)=0.01 
                   TCI(K1)=1*precisionP 
                   TCJ(K1)=1*precisionP 
                   RO(K1)=0.1 
                   MPYR(K1)=0. 
                   RHOFRAC(K1)=0. 
                   CPG(K1)=0. 
                   DHPYR(K1)=0. 
                END IF 
               ELSE 
                 !Calculates the recession rate of the cell volume 
                 IF(MEKSTART(K1).EQ.0) THEN 
                  MEKDTIME=(MEKTIMED(K1)+MEKEND(K1))-TIME 
                  MEKRHOTOT(K1)=RO(K1) 
                  MEKALFA(K1)=MEKRHOTOT(K1)/MEKDTIME 
                  MEKSTART(K1)=1 
                 END IF 
                 RO(K1)=RO(K1)-(MEKALFA(K1)*DTIME) 
                 MPYR(K1)=0. 
                 MFRAC=RO(K1)/MEKRHOTOT(K1) 
                 IF (MFRAC.LE.0.0) THEN 
                   RO(K1)=0.1 
                   MFRAC=0. 
                 END IF 
 
                 XFRAC=RHOFRAC(K1) 
 
                 !Update material properties 
                 T=TEMP(K1) 
                 IIMAT=MAT(K1) 
                 N=NINT(AM_DATA(IIMAT)) 
                 TMIN=AM_TEMP(IIMAT,1) 
                 TMAX=AM_TEMP(IIMAT,N) 
                 IF (T.LE.TMIN) THEN 
                  T1=TMIN 
                  T2=TMIN 
                  TCI(K1)=((AM_TCI(IIMAT,1)*XFRAC)+(AM_TCIR(IIMAT,1)*(1-
XFRAC))*MFRAC)+((1-MFRAC)*1.0*precisionP) 
                  TCJ(K1)=((AM_TCJ(IIMAT,1)*XFRAC)+(AM_TCJR(IIMAT,1)*(1-
XFRAC))*MFRAC)+((1-MFRAC)*1.0*precisionP) 
                  C(K1)  =(((AM_CP(IIMAT,1)*XFRAC)+(AM_CPR(IIMAT,1)*(1-
XFRAC)))*MFRAC)+((1-MFRAC)*(0.1E-1)) 
                  CPG(K1)=AM_CPG(IIMAT,1) 
                  DHPYR(K1)=AM_DHPYR(IIMAT,1) 
                 ELSE IF (T.GE.TMAX) THEN 
                  T1=TMAX 
                  T2=TMAX 
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                  TCI(K1)=((AM_TCI(IIMAT,N)*XFRAC)+(AM_TCIR(IIMAT,N)*(1-
XFRAC))*MFRAC)+((1-MFRAC)*1.0*precisionP) 
                TCJ(K1)=((AM_TCJ(IIMAT,N)*XFRAC)+(AM_TCJR(IIMAT,N)*(1-
XFRAC))*MFRAC)+((1-MFRAC)*1.0*precisionP) 
                  C(K1)  =(((AM_CP(IIMAT,N)*XFRAC)+(AM_CPR(IIMAT,N)*(1-
XFRAC)))*MFRAC)+((1-MFRAC)*(0.1E-1)) 
                  CPG(K1)=AM_CPG(IIMAT,N) 
                  DHPYR(K1)=AM_DHPYR(IIMAT,N) 
                 ELSE 
                  DO IT=1,N-1 
                   T1=AM_TEMP(IIMAT,IT) 
                   T2=AM_TEMP(IIMAT,IT+1) 
                   XSI=(T-T1)/(T2-T1) 
                   IF(T2.GT.T)EXIT 
                END DO 
                  TCI(K1)=((((((1.-
XSI)*AM_TCI(IIMAT,IT))+(XSI*AM_TCI(IIMAT,IT+1)))*XFRAC)+ & 
                          ((((1.-
XSI)*AM_TCIR(IIMAT,IT))+(XSI*AM_TCIR(IIMAT,IT+1)))*(1-XFRAC)))*MFRAC)+ & 
                          ((1-MFRAC)*1.0*precisionP) 
                  TCJ(K1)=((((((1.-
XSI)*AM_TCJ(IIMAT,IT))+(XSI*AM_TCJ(IIMAT,IT+1)))*XFRAC)+ & 
                          ((((1.-
XSI)*AM_TCJR(IIMAT,IT))+(XSI*AM_TCJR(IIMAT,IT+1)))*(1-XFRAC)))*MFRAC)+ & 
                          ((1-MFRAC)*1.0*precisionP) 
                C(K1)  =(((((1.-XSI)*AM_CP(IIMAT,IT) +XSI*AM_CP(IIMAT,IT+1))*XFRAC)+ 
& 
                           (((1.-XSI)*AM_CPR(IIMAT,IT)+XSI*AM_CPR(IIMAT,IT+1))*(1-
XFRAC)))* & 
                           MFRAC)+((1-MFRAC)*(0.1E-1)) 
                  CPG(K1)=((1.-XSI)*AM_CPG(IIMAT,IT)) +(XSI*AM_CPG(IIMAT,IT+1)) 
                  DHPYR(K1)=((1.-XSI)*AM_DHPYR(IIMAT,IT)) 
+(XSI*AM_DHPYR(IIMAT,IT+1)) 
               END IF 
               END IF 
 
             !End M_EROSION 
             ELSE 
               NREAC=ANTPYR(K1) 
               !Calculates the pyrolysis reactions 
               ALFATEMP=0. 
               DO REAC=1,NREAC 
                 RHORTEMP=RHOR(REAC,K1) 
                 RHOTEMP=RHO(REAC,K1) 
                 RHODIFF=RHOO(REAC,K1)-RHORTEMP 
                 IF (TEMP(K1).GT.TREAC(REAC,K1)) THEN 
                    DALFA=DTIME*RHODIFF*((((RHOTEMP-
RHORTEMP))/RHODIFF)**NPYR(REAC,K1))* & 
                       APYR(REAC,K1)*EXP(-EPYR(REAC,K1)/TEMP(K1)) 
                    IF (RHOTEMP.GT.RHORTEMP) THEN 
                       ALFADIFF=RHOTEMP-DALFA 
                       IF (ALFADIFF.GT.RHORTEMP) THEN 
                          ALFATEMP=ALFATEMP+DALFA 
                          RHO(REAC,K1)=ALFADIFF 
                       ELSE 
                          ALFATEMP=ALFATEMP+(RHOTEMP-RHORTEMP) 
                          RHO(REAC,K1)=RHORTEMP 
                       END IF 
                    END IF 
                 END IF 
               END DO 
 
 
                 !Update the density and pyrolysis gas rate 
                 MPYR(K1)=((-ALFATEMP)*VOL(K1))/DTIME 
                 RO(K1)=RO(K1)-ALFATEMP 
                 IF (RO(K1).LE.0) THEN 
                   RO(K1)=0.1 
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                 END IF 
 
                 !Fraction parameter 
                 XFRAC=(RO(K1)-RHORTOT(K1))/(RHOOTOT(K1)-RHORTOT(K1)) 
                 RHOFRAC(K1)=XFRAC 
 
                 !Update material properties 
                 T=TEMP(K1) 
           IIMAT=MAT(K1) 
           N=NINT(AM_DATA(IIMAT)) 
          TMIN=AM_TEMP(IIMAT,1) 
          TMAX=AM_TEMP(IIMAT,N) 
          IF (T.LE.TMIN) THEN 
             T1=TMIN 
             T2=TMIN 
             TCI(K1)=(AM_TCI(IIMAT,1)*XFRAC)+(AM_TCIR(IIMAT,1)*(1-XFRAC)) 
             TCJ(K1)=(AM_TCJ(IIMAT,1)*XFRAC)+(AM_TCJR(IIMAT,1)*(1-XFRAC)) 
             C(K1)  =(AM_CP(IIMAT,1)*XFRAC)+(AM_CPR(IIMAT,1)*(1-XFRAC)) 
                  CPG(K1)=AM_CPG(IIMAT,1) 
                  DHPYR(K1)=AM_DHPYR(IIMAT,1) 
          ELSE IF (T.GE.TMAX) THEN 
             T1=TMAX 
             T2=TMAX 
             TCI(K1)=(AM_TCI(IIMAT,N)*XFRAC)+(AM_TCIR(IIMAT,N)*(1-XFRAC)) 
             TCJ(K1)=(AM_TCJ(IIMAT,N)*XFRAC)+(AM_TCJR(IIMAT,N)*(1-XFRAC)) 
             C(K1)  =(AM_CP(IIMAT,N)*XFRAC)+(AM_CPR(IIMAT,N)*(1-XFRAC)) 
                  CPG(K1)=AM_CPG(IIMAT,N) 
                  DHPYR(K1)=AM_DHPYR(IIMAT,N) 
          ELSE 
             DO IT=1,N-1 
                T1=AM_TEMP(IIMAT,IT) 
                T2=AM_TEMP(IIMAT,IT+1) 
                XSI=(T-T1)/(T2-T1) 
                IF(T2.GE.T)EXIT 
             END DO 
                  TCI(K1)=((((1.-
XSI)*AM_TCI(IIMAT,IT))+(XSI*AM_TCI(IIMAT,IT+1)))*XFRAC)+ & 
                          ((((1.-
XSI)*AM_TCIR(IIMAT,IT))+(XSI*AM_TCIR(IIMAT,IT+1)))*(1-XFRAC)) 
                  TCJ(K1)=((((1.-
XSI)*AM_TCJ(IIMAT,IT))+(XSI*AM_TCJ(IIMAT,IT+1)))*XFRAC)+ & 
                          ((((1.-
XSI)*AM_TCJR(IIMAT,IT))+(XSI*AM_TCJR(IIMAT,IT+1)))*(1-XFRAC)) 
             C(K1)  =(((1.-XSI)*AM_CP(IIMAT,IT) +XSI*AM_CP(IIMAT,IT+1))*XFRAC)+ & 
                          (((1.-XSI)*AM_CPR(IIMAT,IT)+XSI*AM_CPR(IIMAT,IT+1))*(1-
XFRAC)) 
                  CPG(K1)=AM_CPG(IIMAT,IT) !((1.-XSI)*AM_CPG(IIMAT,IT)) 
+(XSI*AM_CPG(IIMAT,IT+1)) 
                  DHPYR(K1)=((1.-XSI)*AM_DHPYR(IIMAT,IT)) 
+(XSI*AM_DHPYR(IIMAT,IT+1)) 
          END IF 
             END IF !End material properties for decomposing cell volumes 
 
 
             !Updates the identification parameter 
             IF (RHOFRAC(K1).LT.IFACEVALUE) THEN 
               IF(IFACEBULK(K1).LT.3) THEN 
               IFACEBULK(K1)=2 
               END IF 
             END IF 
 
             !For residue or "empty" cell volumes 
             IF(IFACEBULK(K1).GE.2) THEN 
                !Find the cell volumes on the interface between virgin/decomposing 
material and residue material 
                !-> K2=east <-> K4=west <-> K3=north <-> K5=south <- of K1, check 
if id=1 is a neighbour 
                IF (I.EQ.1) THEN 
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                   !West 
                   K4=boundWU(5,J,IMESH) 
                   K2=K1+1 
                ELSE IF (I.EQ.(NI(IMESH)-1)) THEN 
                   !East 
                   K4=K1-1 
                   K2=boundEU(5,J,IMESH) 
                ELSE 
                   !Internal 
                   K4=K1-1 
                   K2=K1+1 
                END IF 
 
                IF (J.EQ.1) THEN 
                   !South 
                   K5=boundSU(5,I,IMESH) 
                   K3=K1+NI(IMESH) 
                ELSE IF (J.EQ.(NJ(IMESH)-1)) THEN 
                   !North 
                   K5=K1-NI(IMESH) 
                   K3=boundNU(5,I,IMESH) 
                ELSE 
                   K5=K1-NI(IMESH) 
                   K3=K1+NI(IMESH) 
                END IF 
 
                IF(K2.GT.0) THEN 
                  IF(RHOFRAC(K2).GT.IFACEVALUE) THEN 
                    NIFACE=NIFACE+1 
                    IFACE(NIFACE)=K1 
                    K3=0 
                    k4=0 
                    k5=0 
                  END IF 
                END IF 
                IF(K3.GT.0) THEN 
                  IF(RHOFRAC(K3).GT.IFACEVALUE) THEN 
                    NIFACE=NIFACE+1 
                    IFACE(NIFACE)=K1 
                    K4=0 
                    K5=0 
                  END IF 
                END IF 
                IF(K4.GT.0) THEN 
                  IF(RHOFRAC(K4).GT.IFACEVALUE) THEN 
                    NIFACE=NIFACE+1 
                    IFACE(NIFACE)=K1 
                    K5=0 
                  END IF 
                END IF 
                IF(K5.GT.0) THEN 
                  IF(RHOFRAC(K5).GT.IFACEVALUE) THEN 
                    NIFACE=NIFACE+1 
                    IFACE(NIFACE)=K1 
                  END IF 
                END IF 
 
             END IF !End decomposing cell volumes 
 
 
 
            ELSE  !Update properties of backup material 
 
                T=TEMP(K1) 
                IIMAT=MAT(K1) 
                N=NINT(AM_DATA(IIMAT)) 
                TMIN=AM_TEMP(IIMAT,1) 
                TMAX=AM_TEMP(IIMAT,N) 
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                IF (T.LE.TMIN) THEN 
                  T1=TMIN 
                  T2=TMIN 
                  RO(K1) =AM_RO(IIMAT,1) 
                  TCI(K1)=AM_TCI(IIMAT,1) 
                  TCJ(K1)=AM_TCJ(IIMAT,1) 
                  C(K1)  =AM_CP(IIMAT,1) 
                ELSE IF (T.GE.TMAX) THEN 
                  T1=TMAX 
                  T2=TMAX 
                  RO(K1) =AM_RO(IIMAT,N) 
                  TCI(K1)=AM_TCI(IIMAT,N) 
                  TCJ(K1)=AM_TCJ(IIMAT,N) 
                  C(K1)  =AM_CP(IIMAT,N) 
                ELSE 
                  DO IT=1,N-1 
                   T1=AM_TEMP(IIMAT,IT) 
                   T2=AM_TEMP(IIMAT,IT+1) 
                   XSI=(T-T1)/(T2-T1) 
                   IF(T2.GT.T)EXIT 
                  END DO 
                  RO(K1) =(1.-XSI)*AM_RO(IIMAT,IT) +XSI*AM_RO(IIMAT,IT+1) 
                  TCI(K1)=(1.-XSI)*AM_TCI(IIMAT,IT)+XSI*AM_TCI(IIMAT,IT+1) 
                  TCJ(K1)=(1.-XSI)*AM_TCJ(IIMAT,IT)+XSI*AM_TCJ(IIMAT,IT+1) 
                  C(K1)  =(1.-XSI)*AM_CP(IIMAT,IT) +XSI*AM_CP(IIMAT,IT+1) 
                END IF 
 
            END IF 
 
           END DO !End J 
        END DO !End I 
     END DO !End MESH 
 
 
     END SUBROUTINE !End pyrolysis 
 
 
 !Name: UPDATE_IMPLICIT 
 !Author: Jørn Riise 
 !Date: 30-06-2008 
 !Description: Updates the shadow cells, exchange information between grid blocks. 
      SUBROUTINE UPDATE_IMPLICIT 
      USE GlobaleVariable 
      implicit none 
 
      !Local variables 
      INTEGER                             :: IMESH,J,I,E1,E2,W1,W2,N1,N2,S1,S2 
      DOUBLE PRECISION                    :: REA,REB,RWA,RWB,RNA,RNB,RSA,RSB 
      DOUBLE PRECISION                    :: GEA,GWA,GNA,GSA 
 
 
 
      DO IMESH=1,NMESH 
        DO J=1,NJ(IMESH)-1 
           !East edge 
 
           !Choice 1 
           E1=boundEU(1,J,IMESH) 
 
           IF (E1.EQ.0) THEN 
              REA=0 
              GEA=0 
              !SourceTot=source * area 
              boundE(5,J,IMESH)=boundE(2,J,IMESH)*boundE(1,J,IMESH) 
           ELSE IF (E1.EQ.1) THEN 
              !Temp and resistance J-direction 
              REA=RJ(boundEU(2,J,IMESH)) 
              GEA=MJ(boundEU(2,J,IMESH)) 
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              boundE(4,J,IMESH)=TEMP(boundEU(5,J,IMESH)) 
           ELSE IF (E1.EQ.2) THEN 
              !Temp and resistance I-direction 
              REA=RI(boundEU(2,J,IMESH)) 
              GEA=MI(boundEU(2,J,IMESH)) 
              boundE(4,J,IMESH)=TEMP(boundEU(5,J,IMESH)) 
           ELSE IF (E1.EQ.3) THEN 
              GEA=0 
              !Convective resistance 
              REA=(1/boundE(2,J,IMESH)) 
           ELSE 
              REA=0 
              GEA=0 
           END IF 
 
           !Choice 2 
           E2=boundEU(3,J,IMESH) 
 
           IF (E2.EQ.1) THEN 
              REB=RJ(boundEU(4,J,IMESH)) 
           ELSE IF (E2.EQ.2) THEN 
              REB=RI(boundEU(4,J,IMESH)) 
           ELSE 
              REB=0 
           END IF 
 
           REA=REA+REB 
           !Calculates Area/Resistance 
           IF (REA.NE.0) THEN 
              
boundE(3,J,IMESH)=(boundE(1,J,IMESH)/REA)+(CPG(boundEU(5,J,IMESH))*MAX(0.,(-GEA))) 
           END IF 
           !End East edge 
 
           !West edge 
           W1=boundWU(1,J,IMESH) 
           IF (W1.EQ.0) THEN 
              RWA=0 
              GWA=0 
              boundW(5,J,IMESH)=boundW(2,J,IMESH)*boundW(1,J,IMESH) 
           ELSE IF (W1.EQ.1) THEN 
              RWA=RJ(boundWU(2,J,IMESH)) 
              GWA=MJ(boundWU(2,J,IMESH)) 
              boundW(4,J,IMESH)=TEMP(boundWU(5,J,IMESH)) 
           ELSE IF (W1.EQ.2) THEN 
              RWA=RI(boundWU(2,J,IMESH)) 
              GWA=MI(boundWU(2,J,IMESH)) 
              boundW(4,J,IMESH)=TEMP(boundWU(5,J,IMESH)) 
           ELSE IF (W1.EQ.3) THEN 
              GWA=0 
              RWA=1/boundW(2,J,IMESH) 
           ELSE 
              RWA=0 
              GWA=0 
           END IF 
 
           W2=boundWU(3,J,IMESH) 
           IF (W2.EQ.1) THEN 
              RWB=RJ(boundWU(4,J,IMESH)) 
           ELSE IF (W2.EQ.2) THEN 
              RWB=RI(boundWU(4,J,IMESH)) 
           ELSE 
              RWB=0 
           END IF 
 
           RWA=RWA+RWB 
           IF (RWA.NE.0) THEN 
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boundW(3,J,IMESH)=(boundW(1,J,IMESH)/RWA)+(CPG(boundWU(5,J,IMESH))*MAX(0.,GWA)) 
           END IF 
           !End West edge 
 
        END DO !End West and East 
 
        DO I=1,NI(IMESH)-1 
           !North edge 
           N1=boundNU(1,I,IMESH) 
           IF (N1.EQ.0) THEN 
              RNA=0 
              GNA=0 
              boundN(5,I,IMESH)=boundN(2,I,IMESH)*boundN(1,I,IMESH) 
           ELSE IF (N1.EQ.1) THEN 
              RNA=RJ(boundNU(2,I,IMESH)) 
              GNA=MJ(boundNU(2,I,IMESH)) 
              boundN(4,I,IMESH)=TEMP(boundNU(5,I,IMESH)) 
           ELSE IF (N1.EQ.2) THEN 
              RNA=RI(boundNU(2,I,IMESH)) 
              GNA=MI(boundNU(2,I,IMESH)) 
              boundN(4,I,IMESH)=TEMP(boundNU(5,I,IMESH)) 
           ELSE IF (N1.EQ.3) THEN 
              GNA=0 
              RNA=1/boundN(2,I,IMESH) 
           ELSE 
              RNA=0 
              GNA=0 
           END IF 
 
           N2=boundNU(3,I,IMESH) 
           IF (N2.EQ.1) THEN 
              RNB=RJ(boundNU(4,I,IMESH)) 
           ELSE IF (N2.EQ.2) THEN 
              RNB=RI(boundNU(4,I,IMESH)) 
           ELSE 
              RNB=0 
           END IF 
 
           RNA=RNA+RNB 
           IF (RNA.NE.0) THEN 
           
boundN(3,I,IMESH)=(boundN(1,I,IMESH)/RNA)+(CPG(boundNU(5,I,IMESH))*MAX(0.,(-GNA))) 
           END IF 
           !End North edge 
 
           !South edge 
           S1=boundSU(1,I,IMESH) 
           IF (S1.EQ.0) THEN 
              RSA=0 
              GSA=0 
              boundS(5,I,IMESH)=boundS(2,I,IMESH)*boundS(1,I,IMESH) 
           ELSE IF (S1.EQ.1) THEN 
              RSA=RJ(boundSU(2,I,IMESH)) 
              GSA=MJ(boundSU(2,I,IMESH)) 
              boundS(4,I,IMESH)=TEMP(boundSU(5,I,IMESH)) 
           ELSE IF (S1.EQ.2) THEN 
              RSA=RI(boundSU(2,I,IMESH)) 
              GSA=MI(boundSU(2,I,IMESH)) 
              boundS(4,I,IMESH)=TEMP(boundSU(5,I,IMESH)) 
           ELSE IF (S1.EQ.3) THEN 
              GSA=0 
              RSA=1/boundS(2,I,IMESH) 
           ELSE 
              RSA=0 
              GSA=0 
           END IF 
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           S2=boundSU(3,I,IMESH) 
           IF (S2.EQ.1) THEN 
              RSB=RJ(boundSU(4,I,IMESH)) 
           ELSE IF (S2.EQ.2) THEN 
              RSB=RI(boundSU(4,I,IMESH)) 
           ELSE 
              RSB=0 
           END IF 
 
           RSA=RSA+RSB 
           IF (RSA.NE.0) THEN 
           
boundS(3,I,IMESH)=(boundS(1,I,IMESH)/RSA)+(CPG(boundSU(5,I,IMESH))*MAX(0.,GSA)) 
           END IF 
           !End South edge 
        END DO !End North and South 
 
      END DO !End imesh 
 
      END SUBROUTINE !End UPDATE_IMPLICIT 
 
 
 
 !Name: BORDERS_IMPLICIT 
 !Author: Jørn Riise 
 !Date: 30-06-2008 
 !Description: Initializing boundary conditions. 
      SUBROUTINE BORDERS_IMPLICIT 
 
      USE GlobaleVariable 
      implicit none 
 
      !Local variables 
      INTEGER          :: ID,JD,IC,JC,IRS,JRS,IM,I0,J0,IDR,NP,K0,   & 
                          K0I,K0J,KD,K1,KRSI,KRSJ,IBND,IPP 
      DOUBLE PRECISION :: T,RADIUS,RE,ST 
      DIMENSION ID(4),JD(4),IC(4),JC(4),IRS(4),JRS(4) 
      INTEGER :: valg,step,pos 
 
      DATA ID / 1, 0,-1, 0/  
      DATA JD / 0, 1, 0,-1/ 
      DATA IC / 0,-1,-1, 0/   
      DATA JC / 0, 0,-1,-1/ 
      DATA IRS/ 1, 0, 1, 0/ 
      DATA JRS/ 0, 1, 0, 1/ 
 
      DO IBND=1,NBND 
        IM =IMBND(IBND) !Block 
        I0 =I0BND(IBND) !Start I 
        J0 =J0BND(IBND) !Start J 
        IDR=IDBND(IBND) !direction 
        NP =NPBND(IBND) !Number of nodes in the direction 
 
        !Pointer information for the cell volumes along the edge 
        K0 =I0        +NI(IM)*(J0        -1)+NMP(IM) 
        K0I=I0        +NI(IM)*(J0+JC(IDR)-1)+NMP(IM) 
        K0J=I0+IC(IDR)+NI(IM)*(J0        -1)+NMP(IM) 
        KD= ID(IDR)+NI(IM)* JD(IDR) 
 
        !Decides if RI or RJ is used in the thermal resistance 
        valg=JRS(IDR)+1 
 
        !I-direction(Startposition=I0, step=ID(IDR)) 
        IF (IRS(IDR).EQ.1) THEN 
          !North 
          IF (J0.GT.(NJ(IM)/2)) THEN 
               DO IPP=1,NP-1 
                 K1  =K0 +KD*(IPP-1) 
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                 KRSI=K0I+KD*(IPP-1) 
                 KRSJ=K0J+KD*(IPP-1) 
 
                 !Describe the movement in the edge vector 
                 step=(IPP)*ID(IDR) 
                 pos=I0+step 
 
                IF(ITBND(IBND).EQ.1 .OR. ITBND(IBND).EQ.5)THEN 
                  IF(ITBND(IBND).EQ.5)THEN 
                     T=(TIME-TSTART)/(TSTOP-TSTART) 
                     !Create pointers and save information(area,HC ect.) in vectors 
                     boundNU(1,pos,IM)=3 
                     boundNU(3,pos,IM)=valg 
                     boundNU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR) 
                     boundN(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
                     boundN(2,pos,IM)=HCBND(IBND)+T*DTHCBND(IBND) 
                     boundN(4,pos,IM)=TUBND(IBND)+T*DTTUBND(IBND) 
                  ELSE 
                     boundNU(1,pos,IM)=3 
                     boundNU(3,pos,IM)=valg 
                     boundNU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR) 
                     boundN(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
                     boundN(2,pos,IM)=HCBND(IBND) 
                     boundN(4,pos,IM)=TUBND(IBND) 
                  ENDIF 
 
                ENDIF 
 
                IF(ITBND(IBND).EQ.2)THEN 
                  boundN(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
                  boundN(2,pos,IM)=QBND(IBND) 
                ENDIF 
 
                IF(ITBND(IBND).EQ.3)THEN     !internal heat transfer 
                  RADIUS=YM(K1) 
                  RE=UBND(IBND,IPP)*RADIUS/VISCBND(IBND,IPP) 
                  ST=0.0791/RE**0.25*0.5/                                         & 
                  (1.+1.99*RE**(-0.125)*(PRBND(IBND,IPP)-1)) 
 
                  boundNU(1,pos,IM)=3 
                  boundNU(3,pos,IM)=valg 
                  boundNU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR) 
                  boundN(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
                  
boundN(2,pos,IM)=ROBND(IBND,IPP)*UBND(IBND,IPP)*CPBND(IBND,IPP)*ST 
                  boundN(4,pos,IM)=TUBND(IBND) 
                ENDIF 
                IF(ITBND(IBND).EQ.4.OR.ITBND(IBND).EQ.6)THEN 
                  boundNU(1,pos,IM)=3 
                  boundNU(3,pos,IM)=valg 
                  boundNU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR) 
                  boundN(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
                  boundN(2,pos,IM)=HCEBND(IBND,IPP) 
                  boundN(4,pos,IM)=TRBND(IBND,IPP) 
                ENDIF 
 
                IF(IRADBND(IBND).EQ.1)THEN   !add radiation heat transfer 
                  boundN(6,pos,IM)=(TRADBND(IBND)**4) 
                  boundN(7,pos,IM)=EMSBND(IBND) 
                ENDIF 
                IF(ITBND(IBND).EQ.7)THEN 
                  boundNU(1,pos,IM)=4 
                  boundNU(3,pos,IM)=valg 
                  boundNU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR) 
                  boundN(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
                  boundN(2,pos,IM)=1 !because of the pyrolysis, it has no 
functionality. 
                  boundN(4,pos,IM)=TUBND(IBND) 
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                ENDIF 
 
               END DO !End North 
 
 
          ELSE !South 
               DO IPP=1,NP-1 
                 K1  =K0 +KD*(IPP-1) 
                 KRSI=K0I+KD*(IPP-1) 
                 KRSJ=K0J+KD*(IPP-1) 
 
                 !Describe the movement in the edge vector 
                 step=(IPP-1)*ID(IDR) 
                 pos=I0+step 
 
 
                IF(ITBND(IBND).EQ.1 .OR. ITBND(IBND).EQ.5)THEN 
                  IF(ITBND(IBND).EQ.5)THEN 
                     T=(TIME-TSTART)/(TSTOP-TSTART) 
                     !Create pointers and save information(area,HC ect.) in vectors 
                     boundSU(1,pos,IM)=3 
                     boundSU(3,pos,IM)=valg 
                     boundSU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR) 
                     boundS(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
                     boundS(2,pos,IM)=HCBND(IBND)+T*DTHCBND(IBND) 
                     boundS(4,pos,IM)=TUBND(IBND)+T*DTTUBND(IBND) 
                  ELSE 
                     boundSU(1,pos,IM)=3 
                     boundSU(3,pos,IM)=valg 
                     boundSU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR) 
                     boundS(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
                     boundS(2,pos,IM)=HCBND(IBND) 
                     boundS(4,pos,IM)=TUBND(IBND) 
                  ENDIF 
 
                ENDIF 
 
                IF(ITBND(IBND).EQ.2)THEN 
                  boundS(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
                  boundS(2,pos,IM)=QBND(IBND) 
                ENDIF 
 
                IF(ITBND(IBND).EQ.3)THEN     !internal heat transfer 
                  RADIUS=YM(K1) 
                  RE=UBND(IBND,IPP)*RADIUS/VISCBND(IBND,IPP) 
                  ST=0.0791/RE**0.25*0.5/                                         & 
                  (1.+1.99*RE**(-0.125)*(PRBND(IBND,IPP)-1)) 
 
                  boundSU(1,pos,IM)=3 
                  boundSU(3,pos,IM)=valg 
                  boundSU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR) 
                  boundS(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
                  
boundS(2,pos,IM)=ROBND(IBND,IPP)*UBND(IBND,IPP)*CPBND(IBND,IPP)*ST 
                  boundS(4,pos,IM)=TUBND(IBND) 
                ENDIF 
                IF(ITBND(IBND).EQ.4.OR.ITBND(IBND).EQ.6)THEN 
                  boundSU(1,pos,IM)=3 
                  boundSU(3,pos,IM)=valg 
                  boundSU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR) 
                  boundS(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
                  boundS(2,pos,IM)=HCEBND(IBND,IPP) 
                  boundS(4,pos,IM)=TRBND(IBND,IPP) 
                ENDIF 
 
                IF(IRADBND(IBND).EQ.1)THEN   !add radiation heat transfer 
                  boundS(6,pos,IM)=(TRADBND(IBND)**4) 
                  boundS(7,pos,IM)=EMSBND(IBND) 
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                ENDIF 
 
                IF(ITBND(IBND).EQ.7)THEN 
                  boundSU(1,pos,IM)=4 
                  boundSU(3,pos,IM)=valg 
                  boundSU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR) 
                  boundS(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
                  boundS(2,pos,IM)=1 !because of the pyrolysis, it has no 
functionality. 
                  boundS(4,pos,IM)=TUBND(IBND) 
                ENDIF 
 
               END DO !End South 
 
          END IF !End North and South 
 
        ELSE !J-Direction (Startposition=J0, step=JD(IDR)) 
 
          !East 
          IF (I0.GT.(NI(IM)/2)) THEN 
               DO IPP=1,NP-1 
                 K1  =K0 +KD*(IPP-1) 
                 KRSI=K0I+KD*(IPP-1) 
                 KRSJ=K0J+KD*(IPP-1) 
 
                 !Describe the movement in the edge vector 
                 step=(IPP-1)*JD(IDR) 
                 pos=J0+step 
 
 
                IF(ITBND(IBND).EQ.1 .OR. ITBND(IBND).EQ.5)THEN 
                  IF(ITBND(IBND).EQ.5)THEN 
                     T=(TIME-TSTART)/(TSTOP-TSTART) 
                     !Create pointers and save information(area,HC ect.) in vectors 
                     boundEU(1,pos,IM)=3 
                     boundEU(3,pos,IM)=valg 
                     boundEU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR) 
                     boundE(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
                     boundE(2,pos,IM)=HCBND(IBND)+T*DTHCBND(IBND) 
                     boundE(4,pos,IM)=TUBND(IBND)+T*DTTUBND(IBND) 
                  ELSE 
                     boundEU(1,pos,IM)=3 
                     boundEU(3,pos,IM)=valg 
                     boundEU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR) 
                     boundE(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
                     boundE(2,pos,IM)=HCBND(IBND) 
                     boundE(4,pos,IM)=TUBND(IBND) 
                  ENDIF 
 
                ENDIF 
 
                IF(ITBND(IBND).EQ.2)THEN 
                     boundE(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
                     boundE(2,pos,IM)=QBND(IBND) 
                ENDIF 
 
                IF(ITBND(IBND).EQ.3)THEN     !internal heat transfer 
                  RADIUS=YM(K1) 
                  RE=UBND(IBND,IPP)*RADIUS/VISCBND(IBND,IPP) 
                  ST=0.0791/RE**0.25*0.5/                                         & 
                  (1.+1.99*RE**(-0.125)*(PRBND(IBND,IPP)-1)) 
 
                  boundEU(1,pos,IM)=3 
                  boundEU(3,pos,IM)=valg 
                  boundEU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR) 
                  boundE(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
                  
boundE(2,pos,IM)=ROBND(IBND,IPP)*UBND(IBND,IPP)*CPBND(IBND,IPP)*ST 
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                  boundE(4,pos,IM)=TUBND(IBND) 
                ENDIF 
                IF(ITBND(IBND).EQ.4.OR.ITBND(IBND).EQ.6)THEN 
                  boundEU(1,pos,IM)=3 
                  boundEU(3,pos,IM)=valg 
                  boundEU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR) 
                  boundE(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
                  boundE(2,pos,IM)=HCEBND(IBND,IPP) 
                  boundE(4,pos,IM)=TRBND(IBND,IPP) 
                ENDIF 
 
 
                IF(IRADBND(IBND).EQ.1)THEN   !add radiation heat transfer 
                  boundE(6,pos,IM)=(TRADBND(IBND)**4) 
                  boundE(7,pos,IM)=EMSBND(IBND) 
                ENDIF 
 
                IF(ITBND(IBND).EQ.7)THEN 
                  boundEU(1,pos,IM)=4 
                  boundEU(3,pos,IM)=valg 
                  boundEU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR) 
                  boundE(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
                  boundE(2,pos,IM)=1 !because of the pyrolysis, it has no 
functionality. 
                  boundE(4,pos,IM)=TUBND(IBND) 
                ENDIF 
 
               END DO !End East 
 
 
          ELSE !West 
               DO IPP=1,NP-1 
                 K1  =K0 +KD*(IPP-1) 
                 KRSI=K0I+KD*(IPP-1) 
                 KRSJ=K0J+KD*(IPP-1) 
 
                 !Describe the movement in the edge vector 
                 step=IPP*JD(IDR) 
                 pos=J0+step 
 
 
                IF(ITBND(IBND).EQ.1 .OR. ITBND(IBND).EQ.5)THEN 
                  IF(ITBND(IBND).EQ.5)THEN 
                     T=(TIME-TSTART)/(TSTOP-TSTART) 
                     !Create pointers and save information(area,HC ect.) in vectors 
                     boundWU(1,pos,IM)=3 
                     boundWU(3,pos,IM)=valg 
                     boundWU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR) 
                     boundW(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
                     boundW(2,pos,IM)=HCBND(IBND)+T*DTHCBND(IBND) 
                     boundW(4,pos,IM)=TUBND(IBND)+T*DTTUBND(IBND) 
                  ELSE 
                     boundWU(1,pos,IM)=3 
                     boundWU(3,pos,IM)=valg 
                     boundWU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR) 
                     boundW(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
                     boundW(2,pos,IM)=HCBND(IBND) 
                     boundW(4,pos,IM)=TUBND(IBND) 
                  ENDIF 
 
                ENDIF 
 
                IF(ITBND(IBND).EQ.2)THEN 
                  boundW(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
                  boundW(2,pos,IM)=QBND(IBND) 
                ENDIF 
 
                IF(ITBND(IBND).EQ.3)THEN     !internal heat transfer 
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                  RADIUS=YM(K1) 
                  RE=UBND(IBND,IPP)*RADIUS/VISCBND(IBND,IPP) 
                  ST=0.0791/RE**0.25*0.5/                                         & 
                  (1.+1.99*RE**(-0.125)*(PRBND(IBND,IPP)-1)) 
 
                  boundWU(1,pos,IM)=3 
                  boundWU(3,pos,IM)=valg 
                  boundWU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR) 
                  boundW(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
                  
boundW(2,pos,IM)=ROBND(IBND,IPP)*UBND(IBND,IPP)*CPBND(IBND,IPP)*ST 
                  boundW(4,pos,IM)=TUBND(IBND) 
                ENDIF 
                IF(ITBND(IBND).EQ.4.OR.ITBND(IBND).EQ.6)THEN 
                  boundWU(1,pos,IM)=3 
                  boundWU(3,pos,IM)=valg 
                  boundWU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR) 
                  boundW(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
                  boundW(2,pos,IM)=HCEBND(IBND,IPP) 
                  boundW(4,pos,IM)=TRBND(IBND,IPP) 
                ENDIF 
 
                IF(IRADBND(IBND).EQ.1)THEN   !add radiation heat transfer 
                  boundW(6,pos,IM)=(TRADBND(IBND)**4) 
                  boundW(7,pos,IM)=EMSBND(IBND) 
                ENDIF 
 
                IF(ITBND(IBND).EQ.7)THEN 
                  boundWU(1,pos,IM)=4 
                  boundWU(3,pos,IM)=valg 
                  boundWU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR) 
                  boundW(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
                  boundW(2,pos,IM)=1 !because of the pyrolysis, it has no 
functionality. 
                  boundW(4,pos,IM)=TUBND(IBND) 
                ENDIF 
 
               END DO !End West 
 
          END IF !End East and West 
 
 
        END IF !End directions 
 
 
      END DO !End Boundary condition 
 
  100 FORMAT(2I4,6F10.3) 
 
      END SUBROUTINE !BORDERS_IMPLICIT 
 
 
 
 
!Name: INIT_IMPLICIT 
 !Author: Jørn Riise 
 !Date: 30-06-2008 
 !Description: Initializing pointer information for the interfaces and boundaries 
      SUBROUTINE INIT_IMPLICIT 
      USE GlobaleVariable 
      implicit none 
 
      !Local variables 
      INTEGER          :: IIF,IMA,I0A,J0A,& 
                          IDA,NPA,IMB,I0B,J0B,IDB,K0A,K0B,K0IA,K0JA,    & 
                          K0IB,K0JB,KDA,KDB,KCA,KCB,KRSIA,KRSJA,KRSIB,  & 
                          KRSJB,IPP,valgA,valgB,pos,step,stepS 
      INTEGER, DIMENSION(4) :: ID,JD,ICA,JCA,ICB,JCB,IRS,JRS  



147 
 

 
 
      DATA ID/ 1, 0,-1, 0/ 
      DATA JD/ 0, 1, 0,-1/ 
      DATA ICA/ 0,-1,-1, 0/ 
      DATA JCA/ 0, 0,-1,-1/ 
      DATA ICB/ 0, 0,-1,-1/ 
      DATA JCB/-1, 0, 0,-1/ 
      DATA IRS/ 1, 0, 1, 0/ 
      DATA JRS/ 0, 1, 0, 1/ 
 
      !Initializing shadow cells: Flux=0 -> insulated 
      boundN=boundN*0 
      boundS=boundS*0 
      boundW=boundW*0 
      boundE=boundE*0 
      boundNU=boundNU*0 
      boundSU=boundSU*0 
      boundWU=boundWU*0 
      boundEU=boundEU*0 
 
      !Bestemme interfasegrenser 
 
      DO 1 IIF=1,NIF 
        IMA=IMAIF(IIF) !Block A 
        I0A=I0AIF(IIF) !Start I 
        J0A=J0AIF(IIF) !Start J 
        IDA=IDAIF(IIF) !Direction 
        NPA=NPAIF(IIF) !Number of nodes in the direction 
 
        IMB=IMBIF(IIF) !Block B 
        I0B=I0BIF(IIF) !Start I 
        J0B=J0BIF(IIF) !Start J 
        IDB=IDBIF(IIF) !Direction 
 
 
        !Pointer information for the cell volumes along the edge 
        K0A =I0A+ICA(IDA)+NI(IMA)*(J0A+JCA(IDA)-1)+NMP(IMA) 
        K0B =I0B+ICB(IDB)+NI(IMB)*(J0B+JCB(IDB)-1)+NMP(IMB) 
        K0IA=I0A         +NI(IMA)*(J0A+JCA(IDA)-1)+NMP(IMA) 
        K0JA=I0A+ICA(IDA)+NI(IMA)*(J0A         -1)+NMP(IMA) 
        K0IB=I0B         +NI(IMB)*(J0B+JCB(IDB)-1)+NMP(IMB) 
        K0JB=I0B+ICB(IDB)+NI(IMB)*(J0B         -1)+NMP(IMB) 
 
        !Similar coordinates in the 1D-vector along the edge 
        KDA =ID(IDA)+NI(IMA)*JD(IDA) 
        KDB =ID(IDB)+NI(IMB)*JD(IDB) 
 
        !Declare vector layout 
        valgA=JRS(IDA)+1 
        valgB=JRS(IDB)+1 
 
        !******** 
        !Block A. 
        !******** 
 
        !I-direction (Startposition=I0A, step=ID(IDA)) 
        IF (IRS(IDA).EQ.1) THEN 
               IF (J0A .GT. ( NJ(IMA)/2 )) THEN 
                       !Decide startposition in the edge vector 
                       !Positive if ID(IDA) > 0 
                       IF (ID(IDA) .GT. 0 ) THEN 
                          stepS=1 
                       ELSE 
                          stepS=0 
                       END IF 
 
                       DO IPP=1,NPA-1 
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                            !Pointer information of cell volumes and the edge face 
in 1D-vector 
                            KCA  =K0A +KDA*(IPP-1) 
                            KCB  =K0B +KDB*(IPP-1) 
                            KRSIA=K0IA+KDA*(IPP-1) 
                            KRSJA=K0JA+KDA*(IPP-1) 
                            KRSIB=K0IB+KDB*(IPP-1) 
                            KRSJB=K0JB+KDB*(IPP-1) 
 
                            step=(IPP-stepS)*ID(IDA) 
                            pos=I0A+step 
                            !Save pointer information in vectors along the edge 
                            boundNU(1,pos,IMA)=valgA 
                            boundNU(2,pos,IMA)=KRSJA 
                            boundNU(3,pos,IMA)=valgB 
                            boundNU(4,pos,IMA)=KRSJB*IRS(IDB)+KRSIB*JRS(IDB) 
                            boundNU(5,pos,IMA)=KCB 
                            boundN(1,pos,IMA)=AJ(KRSJA) 
                       END DO 
 
               ELSE 
                       IF (ID(IDA) .GT. 0 ) THEN 
                          stepS=1 
                       ELSE 
                          stepS=0 
                       END IF 
                       DO IPP=1,NPA-1 
                            !Pointer information of cell volumes and the edge face 
in 1D-vector 
                            KCA  =K0A +KDA*(IPP-1) 
                            KCB  =K0B +KDB*(IPP-1) 
                            KRSIA=K0IA+KDA*(IPP-1) 
                            KRSJA=K0JA+KDA*(IPP-1) 
                            KRSIB=K0IB+KDB*(IPP-1) 
                            KRSJB=K0JB+KDB*(IPP-1) 
 
                            step=(IPP-stepS)*ID(IDA) 
                            pos=I0A+step 
                            !Save pointer information in vectors along the edge 
                            boundSU(1,pos,IMA)=valgA 
                            boundSU(2,pos,IMA)=KRSJA 
                            boundSU(3,pos,IMA)=valgB 
                            boundSU(4,pos,IMA)=KRSJB*IRS(IDB)+KRSIB*JRS(IDB) 
                            boundSU(5,pos,IMA)=KCB 
                            boundS(1,pos,IMA)=AJ(KRSJA) 
                       END DO 
         
               END IF !End I-direction 
 
        !J-direction (Startposition=J0A, step=JD(IDA)) 
        ELSE 
               IF (I0A .GT. ( NI(IMA)/2 )) THEN 
                       IF (JD(IDA) .GT. 0 ) THEN 
                          stepS=1 
                       ELSE 
                          stepS=0 
                       END IF 
                       DO IPP=1,NPA-1 
                            !Pointer information of cell volumes and the edge face 
in 1D-vector 
                            KCA  =K0A +KDA*(IPP-1) 
                            KCB  =K0B +KDB*(IPP-1) 
                            KRSIA=K0IA+KDA*(IPP-1) 
                            KRSJA=K0JA+KDA*(IPP-1) 
                            KRSIB=K0IB+KDB*(IPP-1) 
                            KRSJB=K0JB+KDB*(IPP-1) 
 
                            step=(IPP-stepS)*JD(IDA) 
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                            pos=J0A+step 
                            !Save pointer information in vectors along the edge 
                            boundEU(1,pos,IMA)=valgA 
                            boundEU(2,pos,IMA)=KRSIA 
                            boundEU(3,pos,IMA)=valgB 
                            boundEU(4,pos,IMA)=KRSJB*IRS(IDB)+KRSIB*JRS(IDB) 
                            boundEU(5,pos,IMA)=KCB 
                            boundE(1,pos,IMA)=AI(KRSIA) 
                       END DO 
               ELSE 
                       IF (JD(IDA) .GT. 0 ) THEN 
                          stepS=1 
                       ELSE 
                          stepS=0 
                       END IF 
                       DO IPP=1,NPA-1 
                            !Pointer information of cell volumes and the edge face 
in 1D-vector 
                            KCA  =K0A +KDA*(IPP-1) 
                            KCB  =K0B +KDB*(IPP-1) 
                            KRSIA=K0IA+KDA*(IPP-1) 
                            KRSJA=K0JA+KDA*(IPP-1) 
                            KRSIB=K0IB+KDB*(IPP-1) 
                            KRSJB=K0JB+KDB*(IPP-1) 
 
                            step=(IPP-stepS)*JD(IDA) 
                            pos=J0A+step 
                            !Save pointer information in vectors along the edge 
                            boundWU(1,pos,IMA)=valgA 
                            boundWU(2,pos,IMA)=KRSIA 
                            boundWU(3,pos,IMA)=valgB 
                            boundWU(4,pos,IMA)=KRSJB*IRS(IDB)+KRSIB*JRS(IDB) 
                            boundWU(5,pos,IMA)=KCB 
                            boundW(1,pos,IMA)=AI(KRSIA) 
                       END DO 
         
               END IF !End J-direction 
 
        END IF !End Block A 
 
        !******** 
        !Block B. 
        !******** 
        !I-direction (Startposition=I0B, step=ID(IDB)) 
        IF (IRS(IDB).EQ.1) THEN 
               IF (J0B .GT. ( NJ(IMB)/2 )) THEN 
                       IF (ID(IDB) .GT. 0 ) THEN 
                          stepS=1 
                       ELSE 
                          stepS=0 
                       END IF 
                       DO IPP=1,NPA-1 
                            !Pointer information of cell volumes and the edge face 
in 1D-vector 
                            KCA  =K0A +KDA*(IPP-1) 
                            KCB  =K0B +KDB*(IPP-1) 
                            KRSIA=K0IA+KDA*(IPP-1) 
                            KRSJA=K0JA+KDA*(IPP-1) 
                            KRSIB=K0IB+KDB*(IPP-1) 
                            KRSJB=K0JB+KDB*(IPP-1) 
 
                            step=(IPP-stepS)*ID(IDB) 
                            pos=I0B+step 
                            !Save pointer information in vectors along the edge 
                            boundNU(1,pos,IMB)=valgA 
                            boundNU(2,pos,IMB)=KRSJA*IRS(IDA)+KRSIA*JRS(IDA) 
                            boundNU(3,pos,IMB)=valgB 
                            boundNU(4,pos,IMB)=KRSJB 
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                            boundNU(5,pos,IMB)=KCA 
                            boundN(1,pos,IMB)=AJ(KRSJA)*IRS(IDA)+AI(KRSIA)*JRS(IDA) 
                       END DO 
               ELSE 
                       IF (ID(IDB) .GT. 0 ) THEN 
                          stepS=1 
                       ELSE 
                          stepS=0 
                       END IF 
                       DO IPP=1,NPA-1 
                            !Pointer information of cell volumes and the edge face 
in 1D-vector 
                            KCA  =K0A +KDA*(IPP-1) 
                            KCB  =K0B +KDB*(IPP-1) 
                            KRSIA=K0IA+KDA*(IPP-1) 
                            KRSJA=K0JA+KDA*(IPP-1) 
                            KRSIB=K0IB+KDB*(IPP-1) 
                            KRSJB=K0JB+KDB*(IPP-1) 
 
                            step=(IPP-stepS)*ID(IDB) 
                            pos=I0B+step 
                            !Save pointer information in vectors along the edge 
                            boundSU(1,pos,IMB)=valgA 
                            boundSU(2,pos,IMB)=KRSJA*IRS(IDA)+KRSIA*JRS(IDA) 
                            boundSU(3,pos,IMB)=valgB 
                            boundSU(4,pos,IMB)=KRSJB 
                            boundSU(5,pos,IMB)=KCA 
                            boundS(1,pos,IMB)=AJ(KRSJA)*IRS(IDA)+AI(KRSIA)*JRS(IDA) 
                       END DO 
         
               END IF !End I-direction 
 
        !J-direction (Startposition=J0B, step=JD(IDB)) 
        ELSE 
               IF (I0B .GT. ( NI(IMB)/2 )) THEN 
                       IF (JD(IDB) .GT. 0 ) THEN 
                          stepS=1 
                       ELSE 
                          stepS=0 
                       END IF 
                       DO IPP=1,NPA-1 
                            !Pointer information of cell volumes and the edge face 
in 1D-vector 
                            KCA  =K0A +KDA*(IPP-1) 
                            KCB  =K0B +KDB*(IPP-1) 
                            KRSIA=K0IA+KDA*(IPP-1) 
                            KRSJA=K0JA+KDA*(IPP-1) 
                            KRSIB=K0IB+KDB*(IPP-1) 
                            KRSJB=K0JB+KDB*(IPP-1) 
 
                            step=(IPP-stepS)*JD(IDB) 
                            pos=J0B+step 
                            !Save pointer information in vectors along the edge 
                            boundEU(1,pos,IMB)=valgA 
                            boundEU(2,pos,IMB)=KRSJA*IRS(IDA)+KRSIA*JRS(IDA) 
                            boundEU(3,pos,IMB)=valgB 
                            boundEU(4,pos,IMB)=KRSIB 
                            boundEU(5,pos,IMB)=KCA 
                            boundE(1,pos,IMB)=AJ(KRSJA)*IRS(IDA)+AI(KRSIA)*JRS(IDA) 
                       END DO 
               ELSE 
                       IF (JD(IDB) .GT. 0 ) THEN 
                          stepS=1 
                       ELSE 
                          stepS=0 
                       END IF 
                       DO IPP=1,NPA-1 
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                            !Pointer information of cell volumes and the edge face 
in 1D-vector 
                            KCA  =K0A +KDA*(IPP-1) 
                            KCB  =K0B +KDB*(IPP-1) 
                            KRSIA=K0IA+KDA*(IPP-1) 
                            KRSJA=K0JA+KDA*(IPP-1) 
                            KRSIB=K0IB+KDB*(IPP-1) 
                            KRSJB=K0JB+KDB*(IPP-1) 
 
                            step=(IPP-stepS)*JD(IDB) 
                            pos=J0B+step 
                            !Save pointer information in vectors along the edge 
                            boundWU(1,pos,IMB)=valgA 
                            boundWU(2,pos,IMB)=KRSJA*IRS(IDA)+KRSIA*JRS(IDA) 
                            boundWU(3,pos,IMB)=valgB 
                            boundWU(4,pos,IMB)=KRSIB 
                            boundWU(5,pos,IMB)=KCA 
                            boundW(1,pos,IMB)=AJ(KRSJA)*IRS(IDA)+AI(KRSIA)*JRS(IDA) 
                       END DO 
               END IF !End J-direction 
 
        END IF 
 
 
    1 CONTINUE 
  100 FORMAT(I4,6F10.3) 
  101 FORMAT(10I4) 
 
      END SUBROUTINE !End INIT_IMPLICIT 
 
 
      SUBROUTINE FLUX 
      USE GlobaleVariable 
      implicit none 
 
      CALL FLUX1 
      IF(NIF .NE.0)CALL FLUX2 
      IF(NBND.NE.0)CALL FLUX3 
      CALL FLUX5 
      RETURN 
      END 
 
      SUBROUTINE FLUX1                !    INTERNAL 
      USE GlobaleVariable 
      implicit none 
 
! Lokale variable 
      INTEGER       :: IMESH,I,J,K1,K2,K3 
      DOUBLE PRECISION :: QI,QJ 
 
 
      DO 1 IMESH=1,NMESH 
        DO 2 J=1,NJ(IMESH)-1 
        DO 2 I=1,NI(IMESH)-1 
          K1=I +NI(IMESH)*(J-1)+NMP(IMESH) 
          DQ(K1)=0. 
   2    CONTINUE 
   1  CONTINUE 
 
      DO 3 IMESH=1,NMESH 
        DO 4 J=1,NJ(IMESH)-1 
        DO 4 I=1,NI(IMESH)-2 
          K1=I +NI(IMESH)*(J-1)+NMP(IMESH) 
          K2=K1+1 
!     I- DIRECTION FLUXES 
          QI=AI(K2)/RI(K2)*(TEMP(K1)-TEMP(K2)) 
!     UPDATE FLUX INTO CELL K2 
          DQ(K2)=DQ(K2)+QI 
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!     UPDATE FLUX OUT OF CELL K1 
          DQ(K1)=DQ(K1)-QI 
 
   4    CONTINUE 
        DO 5 J=1,NJ(IMESH)-2 
        DO 5 I=1,NI(IMESH)-1 
          K1=I +NI(IMESH)*(J-1)+NMP(IMESH) 
          K3=K1+NI(IMESH) 
!     J- DIRECTION FLUXES 
          QJ=AJ(K3)/RJ(K3)*(TEMP(K1)-TEMP(K3)) 
!     UPDATE FLUX INTO CELL K3 
          DQ(K3)=DQ(K3)+QJ 
!     UPDATE FLUX OUT OF CELL K1 
          DQ(K1)=DQ(K1)-QJ 
   5    CONTINUE 
   3  CONTINUE    
 
      RETURN 
      END 
!----------------------------------------------------------------------- 
      SUBROUTINE FLUX2                 !    INTERFACES 
      USE GlobaleVariable 
      implicit none 
 
! Lokale variable 
      INTEGER          :: IIF,IMA,I0A,J0A,& 
                          IDA,NPA,IMB,I0B,J0B,IDB,K0A,K0B,K0IA,K0JA,    & 
                          K0IB,K0JB,KDA,KDB,KCA,KCB,KRSIA,KRSJA,KRSIB,  & 
                          KRSJB,IPP !,k1,npb,K0AP 
      DOUBLE PRECISION :: RCONDA,RCONDB,RCOND,ABND,QIF 
      INTEGER, DIMENSION(4) :: ID,JD,ICA,JCA,ICB,JCB,IRS,JRS  
 
 
      DATA ID/ 1, 0,-1, 0/ 
      DATA JD/ 0, 1, 0,-1/ 
      DATA ICA/ 0,-1,-1, 0/ 
      DATA JCA/ 0, 0,-1,-1/ 
      DATA ICB/ 0, 0,-1,-1/ 
      DATA JCB/-1, 0, 0,-1/ 
      DATA IRS/ 1, 0, 1, 0/ 
      DATA JRS/ 0, 1, 0, 1/ 
 
!     START OUTERMOST LOOP OVER ALL INTERFACES 
 
      DO 1 IIF=1,NIF 
        IMA=IMAIF(IIF) 
        I0A=I0AIF(IIF) 
        J0A=J0AIF(IIF) 
        IDA=IDAIF(IIF) 
        NPA=NPAIF(IIF) 
 
        IMB=IMBIF(IIF) 
        I0B=I0BIF(IIF) 
        J0B=J0BIF(IIF) 
        IDB=IDBIF(IIF) 
!      NPB=NPBIF(IIF) 
 
!     COMPUTE NECESSARY POINTER INFORMATION 
 
!      K0AP=I0A         +NI(IMA)*(J0A         -1)+NMP(IMA) 
        K0A =I0A+ICA(IDA)+NI(IMA)*(J0A+JCA(IDA)-1)+NMP(IMA) 
        K0B =I0B+ICB(IDB)+NI(IMB)*(J0B+JCB(IDB)-1)+NMP(IMB) 
        K0IA=I0A         +NI(IMA)*(J0A+JCA(IDA)-1)+NMP(IMA) 
        K0JA=I0A+ICA(IDA)+NI(IMA)*(J0A         -1)+NMP(IMA) 
        K0IB=I0B         +NI(IMB)*(J0B+JCB(IDB)-1)+NMP(IMB) 
        K0JB=I0B+ICB(IDB)+NI(IMB)*(J0B         -1)+NMP(IMB) 
 
        KDA =ID(IDA)+NI(IMA)*JD(IDA) 
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        KDB =ID(IDB)+NI(IMB)*JD(IDB) 
 
        DO 2 IPP=1,NPA-1 
!          K1   =K0AP+KDA*(IPP-1) 
          KCA  =K0A +KDA*(IPP-1) 
          KCB  =K0B +KDB*(IPP-1) 
          KRSIA=K0IA+KDA*(IPP-1) 
          KRSJA=K0JA+KDA*(IPP-1) 
          KRSIB=K0IB+KDB*(IPP-1) 
          KRSJB=K0JB+KDB*(IPP-1) 
       
          RCONDA=RJ(KRSJA)*IRS(IDA)+RI(KRSIA)*JRS(IDA) 
          RCONDB=RJ(KRSJB)*IRS(IDB)+RI(KRSIB)*JRS(IDB) 
          RCOND=RCONDA+RCONDB 
          ABND =AJ(KRSJA)*IRS(IDA)+AI(KRSIA)*JRS(IDA) 
 
          QIF=ABND/RCOND*(TEMP(KCA)-TEMP(KCB)) 
!     UPDATE FLUX INTO CELL KCB 
          DQ(KCB)=DQ(KCB)+QIF 
!     UPDATE FLUX OUT OF CELL KCA 
          DQ(KCA)=DQ(KCA)-QIF 
    2   CONTINUE 
    1 CONTINUE 
  100 FORMAT(I4,6F10.3) 
  101 FORMAT(10I4) 
      RETURN 
      END 
!----------------------------------------------------------------------- 
      SUBROUTINE FLUX3                 !    BOUNDARIES 
      USE GlobaleVariable 
      implicit none 
 
! Lokale variable 
      INTEGER          :: ID,JD,IC,JC,IRS,JRS,IM,I0,J0,IDR,NP,K0,K0C,   & 
                          K0I,K0J,KD,K1,KC,KRSI,KRSJ,IBND,IPP,IT 
      DOUBLE PRECISION :: SIGMA,RCOND,ABND,T,HC,TU,RCONV,RADIUS,RE,ST,  & 
                          RBND,RA !,TWALL,AA 
      DOUBLE PRECISION :: TMIN,TMAX,T1,T2,XSI 
      DOUBLE PRECISION :: TEMPJ,KONDJ,RHOJ,CPJ,ALFAJ,KINJ,PRJ 
      INTEGER          :: IIMAT,N 
      DIMENSION ID(4),JD(4),IC(4),JC(4),IRS(4),JRS(4) 
      INTEGER :: done 
 
      DATA ID / 1, 0,-1, 0/  
      DATA JD / 0, 1, 0,-1/ 
      DATA IC / 0,-1,-1, 0/   
      DATA JC / 0, 0,-1,-1/ 
      DATA IRS/ 1, 0, 1, 0/ 
      DATA JRS/ 0, 1, 0, 1/ 
 
      SIGMA=5.67*1.E-08 
 
      DO 1 IBND=1,NBND 
        IM =IMBND(IBND) 
        I0 =I0BND(IBND) 
        J0 =J0BND(IBND) 
        IDR=IDBND(IBND) 
        NP =NPBND(IBND) 
        K0 =I0        +NI(IM)*(J0        -1)+NMP(IM) 
        K0C=I0+IC(IDR)+NI(IM)*(J0+JC(IDR)-1)+NMP(IM) 
        K0I=I0        +NI(IM)*(J0+JC(IDR)-1)+NMP(IM) 
        K0J=I0+IC(IDR)+NI(IM)*(J0        -1)+NMP(IM) 
        KD= ID(IDR)+NI(IM)* JD(IDR) 
        DO 2 IPP=1,NP-1 
          K1  =K0 +KD*(IPP-1) 
          KC  =K0C+KD*(IPP-1) 
          KRSI=K0I+KD*(IPP-1) 
          KRSJ=K0J+KD*(IPP-1) 
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          RCOND=RJ(KRSJ)*IRS(IDR)+RI(KRSI)*JRS(IDR) 
          ABND =AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR) 
 
 
          IF(ITBND(IBND).EQ.1 .OR. ITBND(IBND).EQ.5)THEN 
            IF(ITBND(IBND).EQ.5)THEN 
              !Material hente rutine 
                TEMPJ=TEMP(KC) 
                IIMAT= 6 
        N=NINT(AM_DATA(IIMAT)) 
        TMIN=AM_TEMP(IIMAT,1) 
        TMAX=AM_TEMP(IIMAT,N) 
 
       IF(TEMPJ.LE.TMIN)THEN 
         T1=TMIN 
         T2=TMIN 
         RHOJ=AM_RO(IIMAT,1) 
         KONDJ=AM_TCJ(IIMAT,1) 
                KINJ=AM_TCI(IIMAT,1) 
         CPJ=AM_CP(IIMAT,1) 
       ENDIF 
       IF(TEMPJ.GE.TMAX)THEN 
         T1=TMAX 
         T2=TMAX 
         RHOJ=AM_RO(IIMAT,N) 
         KONDJ=AM_TCJ(IIMAT,N) 
                KINJ=AM_TCI(IIMAT,N) 
         CPJ=AM_CP(IIMAT,N) 
       ENDIF 
       IF(TMIN.LT.TEMPJ .AND. TEMPJ.LT.TMAX)THEN 
        done=0 
        DO 3 IT=1,N-1 
         T1=AM_TEMP(IIMAT,IT) 
         T2=AM_TEMP(IIMAT,IT+1) 
         XSI=(TEMPJ-T1)/(T2-T1) 
        IF(T2.GT.TEMPJ .AND. done.EQ.0)THEN 
        RHOJ=(1.-XSI)*AM_RO(IIMAT,IT) +XSI*AM_RO(IIMAT,IT+1) 
         KONDJ=(1.-XSI)*AM_TCJ(IIMAT,IT)+XSI*AM_TCJ(IIMAT,IT+1) 
                KINJ=(1.-XSI)*AM_TCI(IIMAT,IT)+XSI*AM_TCI(IIMAT,IT+1) 
         CPJ=(1.-XSI)*AM_CP(IIMAT,IT) +XSI*AM_CP(IIMAT,IT+1) 
                done=1 
 
       ENDIF 
   3    CONTINUE 
        ENDIF 
 
 
 
 
              ! Slutt hente gassdata 
 
 
              ALFAJ=KONDJ/(RHOJ*CPJ) 
              PRJ=KINJ/ALFAJ 
              T=(TIME-TSTART)/(TSTOP-TSTART) 
              TU=TUBND(IBND)+T*DTTUBND(IBND) 
              RA=(9.81*(HCBND(IBND)**3)/(TU*KINJ*ALFAJ))*(TU-TEMP(KC)) 
              
HC=((06+((0.387*RA**(1/6))/((1+((0.559/PRJ)**(9/16)))**(8/27))))**2)*(KONDJ/HCBND(I
BND)) 
 
 
            !WRITE(6,*)RHOJ, CPJ, KINJ, KONDJ, ALFAJ, PRJ 
             ! HC=HCBND(IBND)+T*DTHCBND(IBND) 
 
            ELSE 
              HC=HCBND(IBND) 
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              TU=TUBND(IBND) 
            ENDIF 
 
            RCONV=1./HC 
            RBND=RCONV+RCOND 
 
            DQ(KC)=DQ(KC)+ABND/RBND*(TU-TEMP(KC)) 
          ENDIF 
 
          IF(ITBND(IBND).EQ.2)THEN 
            DQ(KC)=DQ(KC)+QBND(IBND)*ABND 
          ENDIF 
 
          IF(ITBND(IBND).EQ.3)THEN     !internal heat transfer 
            RADIUS=YM(K1) 
            RE=UBND(IBND,IPP)*RADIUS/VISCBND(IBND,IPP) 
            ST=0.0791/RE**0.25*0.5/                                         & 
               (1.+1.99*RE**(-0.125)*(PRBND(IBND,IPP)-1)) 
            HC=ROBND(IBND,IPP)*UBND(IBND,IPP)*CPBND(IBND,IPP)*ST 
            RCONV=1./HC 
            RBND=RCONV+RCOND 
            DQ(KC)=DQ(KC)+ABND/RBND*(TUBND(IBND)-TEMP(KC)) 
          ENDIF 
          IF(ITBND(IBND).EQ.4.OR.ITBND(IBND).EQ.6)THEN 
            RCONV=1./HCEBND(IBND,IPP) 
            RBND=RCONV+RCOND 
            DQ(KC)=DQ(KC)+ABND/RBND*(TRBND(IBND,IPP)-TEMP(KC)) 
          ENDIF 
 
          IF(IRADBND(IBND).EQ.1)THEN   !add radiation heat transfer 
!            TWALL=TEMP(KC)    !0 ORDENS TILNARMING BOR FORBEDRES 
            DQ(KC)=DQ(KC)+ABND*SIGMA*EMSBND(IBND)*                          & 
                          ((TRADBND(IBND))**4-(TEMP(KC))**4) 
!            aa=ABND*SIGMA*EMSBND(IBND)*(0-(TEMP(KC))**4) 
          ENDIF 
 
          !Konstant temperatur på grense 
          IF(ITBND(IBND).EQ.7) THEN 
            RBND=RCOND 
            DQ(KC)=DQ(KC)+ABND/RBND*(TUBND(IBND)-TEMP(KC)) 
 
          END IF 
 
 
    2   CONTINUE 
    1 CONTINUE 
 
  100 FORMAT(2I4,6F10.3) 
      RETURN 
      END 
!----------------------------------------------------------------------- 
      SUBROUTINE FLUX5 
      USE GlobaleVariable 
      implicit none 
 
! Lokale variable 
      INTEGER          :: IMESH,I,J,K 
 
 
      DO 1 IMESH=1,NMESH 
        DO 2 J=1,NJ(IMESH)-1 
        DO 2 I=1,NI(IMESH)-1 
          K=I +NI(IMESH)*(J-1)+NMP(IMESH) 
          DTEMP(K)=DQ(K)/(RO(K)*C(K)*VOL(K))*TSF 
   2    CONTINUE 
   1  CONTINUE 
      RETURN 
      END 
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      SUBROUTINE STEP(ISTEP) 
      USE GlobaleVariable 
      implicit none 
      INTEGER          :: ISTEP 
 
! Lokale variable 
      INTEGER          :: IMESH,I,J,K,IPR 
       
 
 
      IPR=MOD(ISTEP,25) 
      IF(ISTEP.EQ.1)IPR=0 
      IF(IPR.EQ.0)THEN 
        CALL PICKMDATA 
        CALL RESMAT 
        CALL LTSP 
      ENDIF 
 
      CALL FLUX 
       
      DO 3 IMESH=1,NMESH 
        DO 4 J=1,NJ(IMESH)-1 
        DO 4 I=1,NI(IMESH)-1 
          K=I+NI(IMESH)*(J-1)+NMP(IMESH) 
         TEMP(K)=TEMP(K)+CFL*DTEMP(K) 
    4   CONTINUE 
    3 CONTINUE 
      RETURN 
      END 
 
!----------------------------------------------------------------------------- 
    SUBROUTINE MATRSAVE 
    USE GlobaleVariable 
    IMPLICIT NONE 
 
    ! LOKALE VARIABLE 
    INTEGER          :: IMesh, I,J,K,L 
 
    L=1 
    OPEN(50,FILE=MATRFIL,FORM='FORMATTED',STATUS='REPLACE') 
    WRITE (50,*) 'TITLE = "MATERIAL"' 
    WRITE (50,*) 'VARIABLES = "X","Y","Matr"' 
 
    DO IMESH=1,NMESH 
      WRITE(50,*) 'ZONE F=POINT, I=',NI(IMESH),',J=',NJ(IMESH) 
      DO J=1,NJ(IMESH) 
        DO I=1,NI(IMESH) 
         K=I+NI(IMESH)*(J-1)+NMP(IMESH) 
         WRITE(50,*) XM(L),YM(L),Mat(K) 
         L=L+1 
        ENDDO 
      ENDDO 
    ENDDO 
 
    RETURN 
    END SUBROUTINE 
 
      SUBROUTINE MATERIALS 
      USE GlobaleVariable 
      IMPLICIT NONE 
 
 
! Lokale variable 
      INTEGER          :: IREG,IM,NMPL,NIL,I,J,K!,NJL 
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      DO 3 IREG=1,NREG 
      IM=IMR(IREG) 
      NMPL=NMP(IM) 
      NIL = NI(IM) 
!      NJL = NJ(IM) 
      DO 4 J=JR1(IREG),JR2(IREG)-1 
      DO 4 I=IR1(IREG),IR2(IREG)-1 
      K=I+NIL*(J-1)+NMPL 
      MAT(K)=IMAT(IREG) 
    4 CONTINUE 
    3 CONTINUE 
      RETURN 
      END 
!----------------------------------------------------------------------- 
      SUBROUTINE RESMAT 
      USE GlobaleVariable 
      IMPLICIT NONE 
 
! Lokale variable 
      INTEGER          :: IMESH,I,J,K1,K2,K3 
      DOUBLE PRECISION :: R1,R2 
 
 
      DO IMESH=1,NMESH 
       DO J=1,NJ(IMESH)-1 
        DO I=1,NI(IMESH)-1 
         K1=I+NI(IMESH)*(J-1)+NMP(IMESH) 
         K2=K1+1 
         K3=K1+NI(IMESH) 
!        I- DIRECTION RESISTANCE 
         IF (I.EQ.1) THEN 
           RI(K1)=.5*DI(K1)/TCI(K1) 
         END IF 
         IF (I.EQ.(NI(IMESH)-1)) THEN 
           RI(K2)=.5*DI(K1)/TCI(K1) 
         ELSE 
           R1=.5*DI(K1)/TCI(K1) 
           R2=.5*DI(K2)/TCI(K2) 
           RI(K2)=R1+R2 
         END IF 
!        J- DIRECTION RESISTANCE 
         IF (J.EQ.1) THEN 
           RJ(K1)=.5*DJ(K1)/TCJ(K1) 
         END IF 
         IF (J.EQ.(NJ(IMESH)-1)) THEN 
           RJ(K3)=.5*DJ(K1)/TCJ(K1) 
         ELSE 
           R1=.5*DJ(K1)/TCJ(K1) 
           R2=.5*DJ(K3)/TCJ(K3) 
           RJ(K3)=R1+R2 
         END IF 
        END DO 
       END DO 
      END DO 
 
      RETURN 
      END 
!----------------------------------------------------------------------- 
      SUBROUTINE PICKMDATA 
      USE GlobaleVariable 
      IMPLICIT NONE 
! Lokale variable 
      INTEGER          :: I,J,IMESH,K1,IIMAT,N,IT 
      DOUBLE PRECISION :: T,TMIN,TMAX,T1,T2,XSI 
 
 
 
      DO IMESH=1,NMESH 
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       DO J=1,NJ(IMESH)-1 
        DO I=1,NI(IMESH)-1 
         K1=I+NI(IMESH)*(J-1)+NMP(IMESH) 
         T=TEMP(K1) 
         IIMAT=MAT(K1) 
         N=NINT(AM_DATA(IIMAT)) 
         TMIN=AM_TEMP(IIMAT,1) 
         TMAX=AM_TEMP(IIMAT,N) 
         IF (T.LE.TMIN) THEN 
           T1=TMIN 
           T2=TMIN 
           RO(K1) =AM_RO(IIMAT,1) 
           TCI(K1)=AM_TCI(IIMAT,1) 
           TCJ(K1)=AM_TCJ(IIMAT,1) 
           C(K1)  =AM_CP(IIMAT,1) 
         ELSE IF (T.GE.TMAX) THEN 
           T1=TMAX 
           T2=TMAX 
           RO(K1) =AM_RO(IIMAT,N) 
           TCI(K1)=AM_TCI(IIMAT,N) 
           TCJ(K1)=AM_TCJ(IIMAT,N) 
           C(K1)  =AM_CP(IIMAT,N) 
         ELSE 
           DO IT=1,N-1 
             T1=AM_TEMP(IIMAT,IT) 
             T2=AM_TEMP(IIMAT,IT+1) 
             XSI=(T-T1)/(T2-T1) 
             IF(T2.GT.T)EXIT 
           END DO 
           RO(K1) =(1.-XSI)*AM_RO(IIMAT,IT) +XSI*AM_RO(IIMAT,IT+1) 
           TCI(K1)=(1.-XSI)*AM_TCI(IIMAT,IT)+XSI*AM_TCI(IIMAT,IT+1) 
           TCJ(K1)=(1.-XSI)*AM_TCJ(IIMAT,IT)+XSI*AM_TCJ(IIMAT,IT+1) 
           C(K1)  =(1.-XSI)*AM_CP(IIMAT,IT) +XSI*AM_CP(IIMAT,IT+1) 
         END IF 
        END DO !End I 
       END DO !End J 
      END DO !End MESH 
 
      RETURN 
      END 
!----------------------------------------------------------------------- 
      SUBROUTINE DEFMATDATA 
      USE GlobaleVariable 
      IMPLICIT NONE 
 
! aluminium (Typiske data for legert Al) 
      AM_DATA(1)=5 
      AM_TEMP(1,1)=  -100.+273.15 
      AM_TEMP(1,2)=  273.15+ 20. 
      AM_TEMP(1,3)=  273.15+ 100. 
      AM_TEMP(1,4)=  273.15+ 200. 
      AM_TEMP(1,5)=  273.15+ 300. 
 
      AM_CP  (1,1)=   955. 
      AM_CP  (1,2)=   960. 
      AM_CP  (1,3)=   962. 
      AM_CP  (1,4)=   967. 
      AM_CP  (1,5)=   983. 
 
      AM_TCI (1,1)=   110. 
      AM_TCI (1,2)=   130. 
      AM_TCI (1,3)=   148. 
      AM_TCI (1,4)=   168. 
      AM_TCI (1,5)=   188. 
 
      AM_TCJ (1,1)=   110. 
      AM_TCJ (1,2)=   130. 
      AM_TCJ (1,3)=   148. 
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      AM_TCJ (1,4)=   168. 
      AM_TCJ (1,5)=   188. 
 
      AM_RO  (1,1)=  1758. 
      AM_RO  (1,2)=  1758. 
      AM_RO  (1,3)=  1758. 
      AM_RO  (1,4)=  1758. 
      AM_RO  (1,5)=  1758. 
! titan (Typiske data for Ti-legering) 
      AM_DATA(9)=6 
      AM_TEMP(9,1)=  -173.+273.15 
      AM_TEMP(9,2)=  273.15+  25. 
      AM_TEMP(9,3)=  273.15+ 100. 
      AM_TEMP(9,4)=  273.15+ 204. 
      AM_TEMP(9,5)=  273.15+ 426. 
      AM_TEMP(9,6)=  273.15+ 648. 
 
      AM_CP  (9,1)=   298.2 
      AM_CP  (9,2)=   523.3 
      AM_CP  (9,3)=   546.2 
      AM_CP  (9,4)=   569. 
      AM_CP  (9,5)=   609.8 
      AM_CP  (9,6)=   660.4 
 
      AM_TCI (9,1)=    31.2 
      AM_TCI (9,2)=    21.9 
      AM_TCI (9,3)=    20.7 
      AM_TCI (9,4)=    20.1 
      AM_TCI (9,5)=    19.5 
      AM_TCI (9,6)=    16.3 
 
      AM_TCJ (9,1)=    31.2 
      AM_TCJ (9,2)=    21.9 
      AM_TCJ (9,3)=    20.7 
      AM_TCJ (9,4)=    20.1 
      AM_TCJ (9,5)=    19.5 
      AM_TCJ (9,6)=    16.3 
 
      AM_RO  (9,1)=  4500. 
      AM_RO  (9,2)=  4500. 
      AM_RO  (9,3)=  4500. 
      AM_RO  (9,4)=  4500. 
      AM_RO  (9,5)=  4500. 
      AM_RO  (9,6)=  4500. 
! steel (Typiske data .. ser ut som karbonstål) 
      AM_DATA(2)=5 
      AM_TEMP(2,1)=   -56.+273.15 
      AM_TEMP(2,2)=   204. +273.15 
      AM_TEMP(2,3)=   426. +273.15 
      AM_TEMP(2,4)=   648. +273.15 
      AM_TEMP(2,5)=  1500. +273.15 
 
      AM_CP  (2,1)=   419. 
      AM_CP  (2,2)=   519. 
      AM_CP  (2,3)=   620. 
      AM_CP  (2,4)=   754. 
      AM_CP  (2,5)=   800. 
 
      AM_TCI (2,1)=    43.1 
      AM_TCI (2,2)=    42.2 
      AM_TCI (2,3)=    38.6 
      AM_TCI (2,4)=    32.2 
      AM_TCI (2,5)=    25.0 
 
      AM_TCJ (2,1)=    43.1 
      AM_TCJ (2,2)=    42.2 
      AM_TCJ (2,3)=    38.6 
      AM_TCJ (2,4)=    32.2 
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      AM_TCJ (2,5)=    25.0 
 
      AM_RO  (2,1)=  7745. 
      AM_RO  (2,2)=  7745. 
      AM_RO  (2,3)=  7745. 
      AM_RO  (2,4)=  7745. 
      AM_RO  (2,5)=  7745. 
 
! SiPh (Inkludererer effekt av forgassing/forkulling) 
      AM_DATA(3)=10 
      AM_TEMP(3, 1)= 21. +273.15 
      AM_TEMP(3, 2)= 149.+273.15 
      AM_TEMP(3, 3)=   371.   +273.15 
      AM_TEMP(3, 4)=   560.   +273.15 
      AM_TEMP(3, 5)=   838.   +273.15 
      AM_TEMP(3, 6)=  1115.   +273.15 
      AM_TEMP(3, 7)=  1393.   +273.15 
      AM_TEMP(3, 8)=  1949.   +273.15 
      AM_TEMP(3, 9)=  2504.   +273.15 
      AM_TEMP(3,10)=  3060.   +273.15 
 
      AM_CP  (3, 1)=   754. 
      AM_CP  (3, 2)=  1005. 
      AM_CP  (3, 3)=  1193. 
      AM_CP  (3, 4)=  2190. 
      AM_CP  (3, 5)=  2400. 
      AM_CP  (3, 6)=  1298. 
      AM_CP  (3, 7)=  1486. 
      AM_CP  (3, 8)=  1486. 
      AM_CP  (3, 9)=  1486. 
      AM_CP  (3,10)=  1486. 
 
      AM_TCI (3, 1)=     0.459 
      AM_TCI (3, 2)=     0.513 
      AM_TCI (3, 3)=     0.600 
      AM_TCI (3, 4)=     0.627 
      AM_TCI (3, 5)=     0.750 
      AM_TCI (3, 6)=     0.850 
      AM_TCI (3, 7)=     1.000 
      AM_TCI (3, 8)=     1.812 
      AM_TCI (3, 9)=     3.744 
 
      AM_TCI (3,10)=     6.678 
      AM_TCJ (3, 1)=     0.303 
      AM_TCJ (3, 2)=     0.337 
      AM_TCJ (3, 3)=     0.396 
      AM_TCJ (3, 4)=     0.400 
      AM_TCJ (3, 5)=     0.439 
      AM_TCJ (3, 6)=     0.461 
      AM_TCJ (3, 7)=     0.492 
      AM_TCJ (3, 8)=     1.022 
      AM_TCJ (3, 9)=     2.819 
      AM_TCJ (3,10)=     3.112 
 
      AM_RO  (3, 1)=  1758. 
      AM_RO  (3, 2)=  1758. 
      AM_RO  (3, 3)=  1758. 
      AM_RO  (3, 4)=  1672. 
      AM_RO  (3, 5)=  1548. 
      AM_RO  (3, 6)=  1548. 
      AM_RO  (3, 7)=  1548. 
      AM_RO  (3, 8)=  1548. 
      AM_RO  (3, 9)=  1548. 
      AM_RO  (3,10)=  1548. 
 
! SiPh    COOLING PHASE 
      AM_DATA(11)=10 
      AM_TEMP(11, 1)=   21.+273.15 



161 
 

      AM_TEMP(11, 2)=  149.+273.15 
      AM_TEMP(11, 3)=  371.+273.15 
      AM_TEMP(11, 4)=  560.+273.15 
      AM_TEMP(11, 5)=  838.+273.15 
      AM_TEMP(11, 6)= 1115.+273.15 
      AM_TEMP(11, 7)= 1393.+273.15 
      AM_TEMP(11, 8)= 1949.+273.15 
      AM_TEMP(11, 9)= 2504.+273.15 
      AM_TEMP(11,10)= 3060.+273.15 
 
      AM_CP  (11, 1)=  754. 
      AM_CP  (11, 2)= 1005. 
      AM_CP  (11, 3)= 1193. 
      AM_CP  (11, 4)= 1200. 
      AM_CP  (11, 5)= 1250. 
      AM_CP  (11, 6)= 1298. 
      AM_CP  (11, 7)= 1486. 
      AM_CP  (11, 8)= 1486. 
      AM_CP  (11, 9)= 1486. 
      AM_CP  (11,10)= 1486. 
 
      AM_TCI (11, 1)=    0.459 
      AM_TCI (11, 2)=    0.513 
      AM_TCI (11, 3)=    0.600 
      AM_TCI (11, 4)=    0.627 
      AM_TCI (11, 5)=    0.750 
      AM_TCI (11, 6)=    0.850 
      AM_TCI (11, 7)=    1.000 
      AM_TCI (11, 8)=    1.812 
      AM_TCI (11, 9)=    3.744 
      AM_TCI (11,10)=    6.678 
 
      AM_TCJ (11, 1)=    0.303 
      AM_TCJ (11, 2)=    0.337 
      AM_TCJ (11, 3)=    0.396 
      AM_TCJ (11, 4)=    0.400 
      AM_TCJ (11, 5)=    0.439 
      AM_TCJ (11, 6)=    0.461 
      AM_TCJ (11, 7)=    0.492 
      AM_TCJ (11, 8)=    1.022 
      AM_TCJ (11, 9)=    2.819 
      AM_TCJ (11,10)=    3.112 
 
      AM_RO  (11, 1)= 1758. 
      AM_RO  (11, 2)= 1758. 
      AM_RO  (11, 3)= 1758. 
      AM_RO  (11, 4)= 1672. 
      AM_RO  (11, 5)= 1548. 
      AM_RO  (11, 6)= 1548. 
      AM_RO  (11, 7)= 1548. 
      AM_RO  (11, 8)= 1548. 
      AM_RO  (11, 9)= 1548. 
      AM_RO  (11,10)= 1548. 
 
! Molybden 
      AM_DATA(4)=10 
      AM_TEMP(4, 1)=  -100.+273.15 
      AM_TEMP(4, 2)=     0.+273.15 
      AM_TEMP(4, 3)=   100.+273.15 
      AM_TEMP(4, 4)=   200.+273.15 
      AM_TEMP(4, 5)=   300.+273.15 
      AM_TEMP(4, 6)=   400.+273.15 
      AM_TEMP(4, 7)=   600.+273.15 
      AM_TEMP(4, 8)=   800.+273.15 
      AM_TEMP(4, 9)=  1000.+273.15 
      AM_TEMP(4,10)=  2500.+273.15 
 
      AM_CP  (4, 1)=   250. 
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      AM_CP  (4, 2)=   255. 
      AM_CP  (4, 3)=   260. 
      AM_CP  (4, 4)=   265. 
      AM_CP  (4, 5)=   270. 
      AM_CP  (4, 6)=   275. 
      AM_CP  (4, 7)=   280. 
      AM_CP  (4, 8)=   285. 
      AM_CP  (4, 9)=   290. 
      AM_CP  (4,10)=   350. 
 
      AM_TCI (4, 1)=   138. 
      AM_TCI (4, 2)=   125. 
      AM_TCI (4, 3)=   118. 
      AM_TCI (4, 4)=   114. 
      AM_TCI (4, 5)=   111. 
      AM_TCI (4, 6)=   109. 
      AM_TCI (4, 7)=   106. 
      AM_TCI (4, 8)=   102. 
      AM_TCI (4, 9)=    99. 
      AM_TCI (4,10)=    75. 
 
      AM_TCJ (4, 1)=   138. 
      AM_TCJ (4, 2)=   125. 
      AM_TCJ (4, 3)=   118. 
      AM_TCJ (4, 4)=   114. 
      AM_TCJ (4, 5)=   111. 
      AM_TCJ (4, 6)=   109. 
      AM_TCJ (4, 7)=   106. 
      AM_TCJ (4, 8)=   102. 
      AM_TCJ (4, 9)=    99. 
      AM_TCJ (4,10)=    75. 
 
      AM_RO  (4, 1)= 10220. 
      AM_RO  (4, 2)= 10220. 
      AM_RO  (4, 3)= 10220. 
      AM_RO  (4, 4)= 10220. 
      AM_RO  (4, 5)= 10220. 
      AM_RO  (4, 6)= 10220. 
      AM_RO  (4, 7)= 10220. 
      AM_RO  (4, 8)= 10220. 
      AM_RO  (4, 9)= 10220. 
      AM_RO  (4,10)= 10220. 
 
! EPDM (kun "rene" termiske egenskaper; ikke kompensert for forgassing/forkulling) 
      AM_DATA(5)=10 
      AM_TEMP(5, 1)=  -73.+273.15 
      AM_TEMP(5, 2)=  -18.+273.15 
      AM_TEMP(5, 3)=   10.+273.15 
      AM_TEMP(5, 4)=   94.+273.15 
      AM_TEMP(5, 5)=  200.+273.15 
      AM_TEMP(5, 6)=  315.+273.15 
      AM_TEMP(5, 7)=  455.+273.15 
      AM_TEMP(5, 8)=  594.+273.15 
      AM_TEMP(5, 9)= 1093.+273.15 
      AM_TEMP(5,10)= 3316.+273.15 
 
      AM_CP  (5, 1)= 1000. 
      AM_CP  (5, 2)= 1330. 
      AM_CP  (5, 3)= 1280. 
      AM_CP  (5, 4)= 1520. 
      AM_CP  (5, 5)= 1890. 
      AM_CP  (5, 6)= 2020. 
      AM_CP  (5, 7)= 2902. 
      AM_CP  (5, 8)= 2300. 
      AM_CP  (5, 9)= 2050. 
      AM_CP  (5,10)= 2050. 
 
      AM_TCI (5, 1)=     .230 
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      AM_TCI (5, 2)=     .213 
      AM_TCI (5, 3)=     .204 
      AM_TCI (5, 4)=     .171 
      AM_TCI (5, 5)=     .147 
      AM_TCI (5, 6)=     .121 
      AM_TCI (5, 7)=     .113 
      AM_TCI (5, 8)=     .104 
      AM_TCI (5, 9)=     .100 
      AM_TCI (5,10)=     .100 
 
      AM_TCJ (5, 1)=     .230 
      AM_TCJ (5, 2)=     .213 
      AM_TCJ (5, 3)=     .204 
      AM_TCJ (5, 4)=     .171 
      AM_TCJ (5, 5)=     .147 
      AM_TCJ (5, 6)=     .121 
      AM_TCJ (5, 7)=     .113 
      AM_TCJ (5, 8)=     .104 
      AM_TCJ (5, 9)=     .100 
      AM_TCJ (5,10)=     .100 
 
      AM_RO  (5, 1)= 1100. 
      AM_RO  (5, 2)= 1100. 
      AM_RO  (5, 3)= 1100. 
      AM_RO  (5, 4)= 1100. 
      AM_RO  (5, 5)= 1100. 
      AM_RO  (5, 6)= 1100. 
      AM_RO  (5, 7)=  715. 
      AM_RO  (5, 8)=  325. 
      AM_RO  (5, 9)=  325. 
      AM_RO  (5,10)=  325. 
 
! Luft 
      AM_DATA(6)=11 
      AM_TEMP(6,1)= 300 
      AM_TEMP(6,2)=     350 
      AM_TEMP(6,3)=     400 
      AM_TEMP(6,4)=     550 
      AM_TEMP(6,5)=     600 
      AM_TEMP(6,6)=     650 
      AM_TEMP(6,7)=     700 
      AM_TEMP(6,8)=     800 
      AM_TEMP(6,9)=    1000 
      AM_TEMP(6,10)=   1200 
      AM_TEMP(6,11)=   1600 
 
      AM_CP  (6,1)=   1007. 
      AM_CP  (6,2)=   1009. 
      AM_CP  (6,3)=   1014. 
      AM_CP  (6,4)=   1040. 
      AM_CP  (6,5)=   1051. 
      AM_CP  (6,6)=   1063. 
      AM_CP  (6,7)=   1075. 
      AM_CP  (6,8)=   1099. 
      AM_CP  (6,9)=   1142. 
      AM_CP  (6,10)=  1172. 
      AM_CP  (6,11)=  1248. 
 
      AM_TCI (6,1)=       0.00001589 
      AM_TCI (6,2)=       0.00002092 
      AM_TCI (6,3)=       0.00002641 
      AM_TCI (6,4)=       0.00004557 
      AM_TCI (6,5)=       0.00005269 
      AM_TCI (6,6)=       0.00006021 
      AM_TCI (6,7)=       0.00006810 
      AM_TCI (6,8)=       0.00008493 
      AM_TCI (6,9)=       0.00012190 
      AM_TCI (6,10)=      0.00016290 
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      AM_TCI (6,11)=      0.00026800 
 
      AM_TCJ (6,1)=       0.0263 
      AM_TCJ (6,2)=       0.0300 
      AM_TCJ (6,3)=       0.0338 
      AM_TCJ (6,4)=       0.0439 
      AM_TCJ (6,5)=       0.0469 
      AM_TCJ (6,6)=       0.0497 
      AM_TCJ (6,7)=       0.0524 
      AM_TCJ (6,8)=       0.0573 
      AM_TCJ (6,9)=       0.0667 
      AM_TCJ (6,10)=      0.0763 
      AM_TCJ (6,11)=      0.1060 
 
      AM_RO  (6,1)=      1.1614 
      AM_RO  (6,2)=      0.9950 
      AM_RO  (6,3)=      0.8711 
      AM_RO  (6,4)=      0.6329 
      AM_RO  (6,5)=      0.5804 
      AM_RO  (6,6)=      0.5356 
      AM_RO  (6,7)=      0.4975 
      AM_RO  (6,8)=      0.4354 
      AM_RO  (6,9)=      0.3482 
      AM_RO  (6,10)=     0.2902 
      AM_RO  (6,11)=     0.2177 
 
! ARAMIDE-EPOXY 
      AM_DATA(7)=9 
 
      AM_TEMP(7, 1)=   -50.+273.15 
      AM_TEMP(7, 2)=     0.+273.15 
      AM_TEMP(7, 3)=    50.+273.15 
      AM_TEMP(7, 4)=   100.+273.15 
      AM_TEMP(7, 5)=   150.+273.15 
      AM_TEMP(7, 6)=   200.+273.15 
      AM_TEMP(7, 7)=   250.+273.15 
      AM_TEMP(7, 8)=   300.+273.15 
      AM_TEMP(7, 9)=   500.+273.15 
 
      AM_CP  (7, 1)=   858. 
      AM_CP  (7, 2)=  1080. 
      AM_CP  (7, 3)=  1382. 
      AM_CP  (7, 4)=  1696. 
      AM_CP  (7, 5)=  1696. 
      AM_CP  (7, 6)=  2198. 
      AM_CP  (7, 7)=  2303. 
      AM_CP  (7, 8)=  2382. 
      AM_CP  (7, 9)=  2400. 
 
      AM_TCI (7, 1)=      .198 
      AM_TCI (7, 2)=      .210 
      AM_TCI (7, 3)=      .214 
      AM_TCI (7, 4)=      .217 
      AM_TCI (7, 5)=      .217 
      AM_TCI (7, 6)=      .206 
      AM_TCI (7, 7)=      .154 
      AM_TCI (7, 8)=      .100 
      AM_TCI (7, 9)=      .070 
 
      AM_TCJ (7, 1)=      .198 
      AM_TCJ (7, 2)=      .210 
      AM_TCJ (7, 3)=      .214 
      AM_TCJ (7, 4)=      .217 
      AM_TCJ (7, 5)=      .217 
      AM_TCJ (7, 6)=      .206 
      AM_TCJ (7, 7)=      .154 
      AM_TCJ (7, 8)=      .100 
      AM_TCJ (7, 9)=      .070 
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      AM_RO  (7, 1)=  1380. 
      AM_RO  (7, 2)=  1380. 
      AM_RO  (7, 3)=  1380. 
      AM_RO  (7, 4)=  1380. 
      AM_RO  (7, 5)=  1380. 
      AM_RO  (7, 6)=  1380. 
      AM_RO  (7, 7)=  1380. 
      AM_RO  (7, 8)=  1380. 
      AM_RO  (7, 9)=  1380. 
 
! grain 
      AM_DATA(8)=6 
      AM_TEMP(8,1)=  -100.+273.15 
      AM_TEMP(8,2)=    20.+273.15 
      AM_TEMP(8,3)=    77.+273.15 
      AM_TEMP(8,4)=   149.+273.15 
      AM_TEMP(8,5)=   200.+273.15 
      AM_TEMP(8,6)=   371.+273.15 
 
      AM_CP  (8,1)=  1047. 
      AM_CP  (8,2)=  1047. 
      AM_CP  (8,3)=  1336. 
      AM_CP  (8,4)=  1336. 
      AM_CP  (8,5)=  1532. 
      AM_CP  (8,6)=  1570. 
 
      AM_TCI (8,1)=      .36 
      AM_TCI (8,2)=      .36 
      AM_TCI (8,3)=      .36 
      AM_TCI (8,4)=      .36 
      AM_TCI (8,5)=      .36 
      AM_TCI (8,6)=      .36 
 
      AM_TCJ (8,1)=      .36 
      AM_TCJ (8,2)=      .36 
      AM_TCJ (8,3)=      .36 
      AM_TCJ (8,4)=      .36 
      AM_TCJ (8,5)=      .36 
      AM_TCJ (8,6)=      .36 
 
      AM_RO  (8,1)=  1722. 
      AM_RO  (8,2)=  1722. 
      AM_RO  (8,3)=  1722. 
      AM_RO  (8,4)=  1722. 
      AM_RO  (8,5)=  1722. 
      AM_RO  (8,6)=  1722. 
! graphite 
      AM_DATA(10)=3 
      AM_TEMP(10,1)= -100.+273.15 
      AM_TEMP(10,2)=   20.+273.15 
      AM_TEMP(10,3)= 3000.+273.15 
 
      AM_CP  (10,1)= 2500. 
      AM_CP  (10,2)= 2500. 
      AM_CP  (10,3)= 2500. 
 
      AM_TCI (10,1)= 1163. 
      AM_TCI (10,2)= 1163. 
      AM_TCI (10,3)= 1163. 
 
      AM_TCJ (10,1)= 1163. 
      AM_TCJ (10,2)= 1163. 
      AM_TCJ (10,3)= 1163. 
 
      AM_RO  (10,1)= 1750. 
      AM_RO  (10,2)= 1750. 
      AM_RO  (10,3)= 1750. 
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! Carbon fiber composite, intermediate modulus (IM-7) 
 
      AM_DATA(12)=3 
      AM_TEMP(12,1)= -100.+273.15 
      AM_TEMP(12,2)=   20.+273.15 
      AM_TEMP(12,3)= 3000.+273.15 
 
      AM_CP  (12,1)=  750. 
      AM_CP  (12,2)=  750. 
      AM_CP  (12,3)=  750. 
 
      AM_TCI (12,1)=    6. 
      AM_TCI (12,2)=    6. 
      AM_TCI (12,3)=    6. 
 
      AM_TCJ (12,1)=     .6 
      AM_TCJ (12,2)=     .6 
      AM_TCJ (12,3)=     .6 
 
      AM_RO  (12,1)= 1600. 
      AM_RO  (12,2)= 1600. 
      AM_RO  (12,3)= 1600. 
 
! TZM (Molybdenlegering: Mo:0.4-0.55, Ti:0.06-1.2, Zr:0.01-0.04) (Plansee) 
      AM_DATA(13)=26 
      AM_TEMP(13, 1)=    0.+273.15 
      AM_TEMP(13, 2)=  100.+273.15 
      AM_TEMP(13, 3)=  200.+273.15 
      AM_TEMP(13, 4)=  300.+273.15 
      AM_TEMP(13, 5)=  400.+273.15 
      AM_TEMP(13, 6)=  500.+273.15 
      AM_TEMP(13, 7)=  600.+273.15 
      AM_TEMP(13, 8)=  700.+273.15 
      AM_TEMP(13, 9)=  800.+273.15 
      AM_TEMP(13,10)=  900.+273.15 
      AM_TEMP(13,11)= 1000.+273.15 
      AM_TEMP(13,12)= 1100.+273.15 
      AM_TEMP(13,13)= 1200.+273.15 
      AM_TEMP(13,14)= 1300.+273.15 
      AM_TEMP(13,15)= 1400.+273.15 
      AM_TEMP(13,16)= 1500.+273.15 
      AM_TEMP(13,17)= 1600.+273.15 
      AM_TEMP(13,18)= 1700.+273.15 
      AM_TEMP(13,19)= 1800.+273.15 
      AM_TEMP(13,20)= 1900.+273.15 
      AM_TEMP(13,21)= 2000.+273.15 
      AM_TEMP(13,22)= 2100.+273.15 
      AM_TEMP(13,23)= 2200.+273.15 
      AM_TEMP(13,24)= 2300.+273.15 
      AM_TEMP(13,25)= 2400.+273.15 
      AM_TEMP(13,26)= 2500.+273.15 
 
      AM_CP  (13, 1)=  229.5 
      AM_CP  (13, 2)=  231.3 
      AM_CP  (13, 3)=  236.7 
      AM_CP  (13, 4)=  242.1 
      AM_CP  (13, 5)=  247.5 
      AM_CP  (13, 6)=  256.5 
      AM_CP  (13, 7)=  263.7 
      AM_CP  (13, 8)=  272.7 
      AM_CP  (13, 9)=  279.9 
      AM_CP  (13,10)=  288.8 
      AM_CP  (13,11)=  296. 
      AM_CP  (13,12)=  303.2 
      AM_CP  (13,13)=  312.2 
      AM_CP  (13,14)=  319.4 
      AM_CP  (13,15)=  328.4 
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      AM_CP  (13,16)=  337.4 
      AM_CP  (13,17)=  348.2 
      AM_CP  (13,18)=  360.8 
      AM_CP  (13,19)=  373.4 
      AM_CP  (13,20)=  389.6 
      AM_CP  (13,21)=  404. 
      AM_CP  (13,22)=  421.6 
      AM_CP  (13,23)=  441.7 
      AM_CP  (13,24)=  461.8 
      AM_CP  (13,25)=  481.9 
      AM_CP  (13,26)=  502. 
 
      AM_TCI (13, 1)=  128.49 
      AM_TCI (13, 2)=  125.69 
      AM_TCI (13, 3)=  122.9 
      AM_TCI (13, 4)=  120.11 
      AM_TCI (13, 5)=  118.01 
      AM_TCI (13, 6)=  115.57 
      AM_TCI (13, 7)=  113.12 
      AM_TCI (13, 8)=  111.03 
      AM_TCI (13, 9)=  108.24 
      AM_TCI (13,10)=  106.14 
      AM_TCI (13,11)=  103.35 
      AM_TCI (13,12)=  100.21 
      AM_TCI (13,13)=   97.76 
      AM_TCI (13,14)=   94.62 
      AM_TCI (13,15)=   92.18 
      AM_TCI (13,16)=   89.03 
      AM_TCI (13,17)=   86.24 
      AM_TCI (13,18)=   83.45 
      AM_TCI (13,19)=   81. 
      AM_TCI (13,20)=   78.21 
      AM_TCI (13,21)=   75.42 
      AM_TCI (13,22)=   72.97 
      AM_TCI (13,23)=   71.23 
      AM_TCI (13,24)=   69.48 
      AM_TCI (13,25)=   68.43 
      AM_TCI (13,26)=   67.04 
 
      AM_TCJ (13, 1)=  128.49 
      AM_TCJ (13, 2)=  125.69 
      AM_TCJ (13, 3)=  122.9 
      AM_TCJ (13, 4)=  120.11 
      AM_TCJ (13, 5)=  118.01 
      AM_TCJ (13, 6)=  115.57 
      AM_TCJ (13, 7)=  113.12 
      AM_TCJ (13, 8)=  111.03 
      AM_TCJ (13, 9)=  108.24 
      AM_TCJ (13,10)=  106.14 
      AM_TCJ (13,11)=  103.35 
      AM_TCJ (13,12)=  100.21 
      AM_TCJ (13,13)=   97.76 
      AM_TCJ (13,14)=   94.62 
      AM_TCJ (13,15)=   92.18 
      AM_TCJ (13,16)=   89.03 
      AM_TCJ (13,17)=   86.24 
      AM_TCJ (13,18)=   83.45 
      AM_TCJ (13,19)=   81. 
      AM_TCJ (13,20)=   78.21 
      AM_TCJ (13,21)=   75.42 
      AM_TCJ (13,22)=   72.97 
      AM_TCJ (13,23)=   71.23 
      AM_TCJ (13,24)=   69.48 
      AM_TCJ (13,25)=   68.43 
      AM_TCJ (13,26)=   67.04 
 
      AM_RO  (13, 1)=10220. 
      AM_RO  (13, 2)=10220. 
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      AM_RO  (13, 3)=10220. 
      AM_RO  (13, 4)=10220. 
      AM_RO  (13, 5)=10220. 
      AM_RO  (13, 6)=10220. 
      AM_RO  (13, 7)=10220. 
      AM_RO  (13, 8)=10220. 
      AM_RO  (13, 9)=10220. 
      AM_RO  (13,10)=10220. 
      AM_RO  (13,11)=10220. 
      AM_RO  (13,12)=10220. 
      AM_RO  (13,13)=10220. 
      AM_RO  (13,14)=10220. 
      AM_RO  (13,15)=10220. 
      AM_RO  (13,16)=10220. 
      AM_RO  (13,17)=10220. 
      AM_RO  (13,18)=10220. 
      AM_RO  (13,19)=10220. 
      AM_RO  (13,20)=10220. 
      AM_RO  (13,21)=10220. 
      AM_RO  (13,22)=10220. 
      AM_RO  (13,23)=10220. 
      AM_RO  (13,24)=10220. 
      AM_RO  (13,25)=10220. 
      AM_RO  (13,26)=10220. 
 
! WL10 (Tungstenlegering) (Tungsten+1% La2O3) (Plansee) 
      AM_DATA(14)=17 
      AM_TEMP(14, 1)=     0.+273.15 
      AM_TEMP(14, 2)=    50.+273.15 
      AM_TEMP(14, 3)=   100.+273.15 
      AM_TEMP(14, 4)=   200.+273.15 
      AM_TEMP(14, 5)=   300.+273.15 
      AM_TEMP(14, 6)=   400.+273.15 
      AM_TEMP(14, 7)=   500.+273.15 
      AM_TEMP(14, 8)=   600.+273.15 
      AM_TEMP(14, 9)=   700.+273.15 
      AM_TEMP(14,10)=   800.+273.15 
      AM_TEMP(14,11)=   900.+273.15 
      AM_TEMP(14,12)=  1000.+273.15 
      AM_TEMP(14,13)=  1100.+273.15 
      AM_TEMP(14,14)=  1200.+273.15 
      AM_TEMP(14,15)=  1300.+273.15 
      AM_TEMP(14,16)=  1400.+273.15 
      AM_TEMP(14,17)=  2500.+273.15 
      AM_CP  (14, 1)=   122.3 
      AM_CP  (14, 2)=   130.8 
      AM_CP  (14, 3)=   139.3 
      AM_CP  (14, 4)=   142.6 
      AM_CP  (14, 5)=   143.7 
      AM_CP  (14, 6)=   145.3 
      AM_CP  (14, 7)=   145.9 
      AM_CP  (14, 8)=   147.5 
      AM_CP  (14, 9)=   148.6 
      AM_CP  (14,10)=   150.2 
      AM_CP  (14,11)=   151.6 
      AM_CP  (14,12)=   152.5 
      AM_CP  (14,13)=   153.4 
      AM_CP  (14,14)=   154.9 
      AM_CP  (14,15)=   155.5 
      AM_CP  (14,16)=   154.8 
      AM_CP  (14,17)=   147.1 
      AM_TCI (14, 1)=   123. 
      AM_TCI (14, 2)=   121.7 
      AM_TCI (14, 3)=   120.4 
      AM_TCI (14, 4)=   117.8 
      AM_TCI (14, 5)=   113.6 
      AM_TCI (14, 6)=   109. 
      AM_TCI (14, 7)=   105.8 
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      AM_TCI (14, 8)=   102.9 
      AM_TCI (14, 9)=   102.8 
      AM_TCI (14,10)=   100.3 
      AM_TCI (14,11)=   100.7 
      AM_TCI (14,12)=    98.5 
      AM_TCI (14,13)=    96.2 
      AM_TCI (14,14)=    94.8 
      AM_TCI (14,15)=    94.4 
      AM_TCI (14,16)=    94.2 
      AM_TCI (14,17)=    92. 
      AM_TCJ (14, 1)=   123. 
      AM_TCJ (14, 2)=   121.7 
      AM_TCJ (14, 3)=   120.4 
      AM_TCJ (14, 4)=   117.8 
      AM_TCJ (14, 5)=   113.6 
      AM_TCJ (14, 6)=   109. 
      AM_TCJ (14, 7)=   105.8 
      AM_TCJ (14, 8)=   102.9 
      AM_TCJ (14, 9)=   102.8 
      AM_TCJ (14,10)=   100.3 
      AM_TCJ (14,11)=   100.7 
      AM_TCJ (14,12)=    98.5 
      AM_TCJ (14,13)=    96.2 
      AM_TCJ (14,14)=    94.8 
      AM_TCJ (14,15)=    94.4 
      AM_TCJ (14,16)=    94.2 
      AM_TCJ (14,17)=    92. 
      AM_RO  (14, 1)= 19300. 
      AM_RO  (14, 2)= 19300. 
      AM_RO  (14, 3)= 19300. 
      AM_RO  (14, 4)= 19300. 
      AM_RO  (14, 5)= 19300. 
      AM_RO  (14, 6)= 19300. 
      AM_RO  (14, 7)= 19300. 
      AM_RO  (14, 8)= 19300. 
      AM_RO  (14, 9)= 19300. 
      AM_RO  (14,10)= 19300. 
      AM_RO  (14,11)= 19300. 
      AM_RO  (14,12)= 19300. 
      AM_RO  (14,13)= 19300. 
      AM_RO  (14,14)= 19300. 
      AM_RO  (14,15)= 19300. 
      AM_RO  (14,16)= 19300. 
      AM_RO  (14,17)= 19300. 
 
! graphite Toyo Tanso IG-11 
      AM_DATA(15)=13 
      AM_TEMP(15,1)=     0.+273.15 
      AM_TEMP(15,2)=   100.+273.15 
      AM_TEMP(15,3)=   200.+273.15 
      AM_TEMP(15,4)=   300.+273.15 
      AM_TEMP(15,5)=   400.+273.15 
      AM_TEMP(15,6)=   500.+273.15 
      AM_TEMP(15,7)=   600.+273.15 
      AM_TEMP(15,8)=   700.+273.15 
      AM_TEMP(15,9)=   800.+273.15 
      AM_TEMP(15,10)=  900.+273.15 
      AM_TEMP(15,11)= 1000.+273.15 
      AM_TEMP(15,12)= 1100.+273.15 
      AM_TEMP(15,13)= 2500.+273.15 
 
      AM_CP  (15,1)=   751.6 
      AM_CP  (15,2)=   977.7 
      AM_CP  (15,3)=  1203.7 
      AM_CP  (15,4)=  1387.8 
      AM_CP  (15,5)=  1508.4 
      AM_CP  (15,6)=  1628.9 
      AM_CP  (15,7)=  1688.7 
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      AM_CP  (15,8)=  1711.3 
      AM_CP  (15,9)=  1733.9 
      AM_CP  (15,10)= 1756.5 
      AM_CP  (15,11)= 1779.2 
      AM_CP  (15,12)= 1801.1 
      AM_CP  (15,13)= 1919. 
 
      AM_TCI (15,1)=   117.9 
      AM_TCI (15,2)=   106.4 
      AM_TCI (15,3)=    97. 
      AM_TCI (15,4)=    87.1 
      AM_TCI (15,5)=    79.3 
      AM_TCI (15,6)=    72.3 
      AM_TCI (15,7)=    66.6 
      AM_TCI (15,8)=    61.2 
      AM_TCI (15,9)=    57.1 
      AM_TCI (15,10)=   53. 
      AM_TCI (15,11)=   49.3 
      AM_TCI (15,12)=   46.4 
      AM_TCI (15,13)=   41.5 
 
      AM_TCJ (15,1)=   117.9 
      AM_TCJ (15,2)=   106.4 
      AM_TCJ (15,3)=    97. 
      AM_TCJ (15,4)=    87.1 
      AM_TCJ (15,5)=    79.3 
      AM_TCJ (15,6)=    72.3 
      AM_TCJ (15,7)=    66.6 
      AM_TCJ (15,8)=    61.2 
      AM_TCJ (15,9)=    57.1 
      AM_TCJ (15,10)=   53. 
      AM_TCJ (15,11)=   49.3 
      AM_TCJ (15,12)=   46.4 
      AM_TCJ (15,13)=   41.5 
 
      AM_RO  (15,1)=  1770. 
      AM_RO  (15,2)=  1770. 
      AM_RO  (15,3)=  1770. 
      AM_RO  (15,4)=  1770. 
      AM_RO  (15,5)=  1770. 
      AM_RO  (15,6)=  1770. 
      AM_RO  (15,7)=  1770. 
      AM_RO  (15,8)=  1770. 
      AM_RO  (15,9)=  1770. 
      AM_RO  (15,10)= 1770. 
      AM_RO  (15,11)= 1770. 
      AM_RO  (15,12)= 1770. 
      AM_RO  (15,13)= 1770. 
! C-C/SiC DLR materiale 
      AM_DATA(16)=5 
      AM_TEMP(16,1)=     0.             !lagt inn kunstig 
      AM_TEMP(16,2)=   473.15 
      AM_TEMP(16,3)=  1273.15 
      AM_TEMP(16,4)=  1923.15 
      AM_TEMP(16,5)=  5000.             ! lagt in kunstig 
 
      AM_CP  (16,1)=   748. 
      AM_CP  (16,2)=   748. 
      AM_CP  (16,3)=  1414. 
      AM_CP  (16,4)=  1514. 
      AM_CP  (16,5)=  1514. 
 
      AM_TCI (16,1)=   16.8        !langs fiber 
      AM_TCI (16,2)=   16.8 
      AM_TCI (16,3)=   18. 
      AM_TCI (16,4)=   16.8 
      AM_TCI (16,5)=   16.8 
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      AM_TCJ (16,1)=   9.2        !normalt til fiber 
      AM_TCJ (16,2)=   9.2 
      AM_TCJ (16,3)=   7.6 
      AM_TCJ (16,4)=   7.5 
      AM_TCJ (16,5)=   7.5 
 
      AM_RO  (16,1)=  2000. 
      AM_RO  (16,2)=  2000. 
      AM_RO  (16,3)=  2000. 
      AM_RO  (16,4)=  2000. 
      AM_RO  (16,5)=  2000. 
 
      RETURN 
      END 
 


	Title Page
	Problem Description
	Microsoft Word - Diplom.docx


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


