
July 2008
Erling Næss, EPT

Master of Science in Engineering and ICT
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Energy and Process Engineering

Computer Code for Thermal Analysis of
Rocket Motors

Jørn Arnold Kvistad Riise

Problem Description
1. Det eksisterende numeriske beregningsverktøyet skal modifiseres for bedre å kunne håndtere
transiente beregninger, samt mer realistiske beregningsmodeller for ablative materialer. I dette
inngår å endre det numeriske beregningsskjemaet til implisitt skjema for tidsintegrasjonen, samt
at kildeledd skal inkluderes i den løste energilikningen. Endringene skal presenteres,
implementeres og diskuteres.
2. Anbefalte modeller for ablasjon og pyrolyse av isolasjonsmaterialer presentert i
prosjektoppgaven skal implementeres. Det skal legges vekt på at modellene benytter informasjon
som allerede er tilgjengelige for de materialene Nammo Raufoss benytter.
3. Beregninger skal gjenomføres med det modifiserte programmet, og resultatene skal
sammenliknes med tilsvarende beregninger foretatt med de kommersielle verktøyene CMA3 og
ASTHMA, samt resultater fra målinger tilgjengelige fra Nammo Raufoss. Resultatene skal
kommenteres og eventuelle avvik/forskjeller skal diskuteres.
4. Det skal utarbeides forslag til videre arbeid.

Assignment given: 04. February 2008
Supervisor: Erling Næss, EPT

i

Preface
This thesis is submitted as a conclusion of a Master of Science degree in Engineering & ICT with
specialisation in the field of energy and process engineering at the Norwegian University of Science
and Technology (NTNU). The work was performed during the spring semester 2008.

The supervisors for this thesis have been Professor Erling Næss from the Norwegian University
of Science and Technology (NTNU) and Erland Ørbekk from Nammo AS.

Jørn Arnold Kvistad Riise
Trondheim, 14.07.2008

Acknowledgements

First I would like to express a special thank to my primary supervisor for this thesis, Professor Erling
Næss from the Norwegian University of Science and Technology (NTNU), for guiding and helping me
through the work, encouraging me to follow my ideas, and giving me directions on how to best
carry out the thesis.

I would also like to thank Erland Ørbekk, Nils Kubberud, Kristian Lium and John Myklebust for giving
me an introduction to the field of rocket technology during my stay at Nammo Raufoss the summer
of 2007. The work performed by John Myklebust to provide me with necessary background
information is also highly appreciated.

Special thanks to Audun Bråthen, Solveig Slepvold and Mari Aass for reading the report and giving me
feedback, which helped me correct a few errors and improve the overall report.

Last, but by no means least, thanks to all of my friends and family for their support during this work,
and for engaging me in other activities, making me regain energy and motivation.

ii

iii

Abstract
Further development of a two-dimensional thermal analysis code (G2DHeat) to include internal
decomposition and charring ablation of insulation materials is presented. An overview of the
structural changes made to the program code by implementing an implicit solution routine, including
source term is given, before testing and verification of accuracy is performed. A kinetic model for
decomposition reactions, as well as routines for handling the generated gas from the decomposition
reactions, changes concerning the material properties and erosion of surface material are
implemented and explained. Comparisons of results are made with similar results obtained by
commercial programs. Possible reasons affecting the results are pointed out, before additional
comparisons with experimentally observed measurements are performed. Based on the simulated
results it is concluded that a great deal of testing remains for proper validation of the program. How
to include better boundary conditions for simulating charring ablation is suggested and
recommended for further development of the program.

iv

v

List of contents
Preface .. i

Abstract ... iii

List of figures ... ix

List of tables ... x

Nomenclature .. xi

Introduction ... 1

Chapter 1: Initial changes to the program .. 3

1.1 General description of the modifications .. 3

1.1.1 The fully implicit scheme .. 4

1.1.2 Source term .. 5

1.1.3 Collection of material properties ... 6

1.1.4 Boundary conditions .. 6

1.1.5 Input specification for the implicit solution routine .. 7

1.2 Multi-block grid ... 8

1.2.1 Shadow cells ... 8

1.2.2 Specifying interfaces between grid blocks ... 9

1.3 The implicit solution routine ... 10

1.3.1 Initialisation procedure .. 12

1.3.2 Update procedure .. 12

1.3.3 Equation solver ... 12

1.4 Accuracy of the calculations .. 13

1.4.1 Implicit or explicit? ... 13

1.4.2 Using a multi-block grid .. 16

1.4.3 A two-dimensional benchmark model ... 17

1.5 Measuring computation time .. 20

Chapter 2: Pyrolysis and charring ablation.. 23

2.1 General .. 23

2.2 Kinetic model for material decomposition reactions .. 24

2.2.1 Independent parallel reactions .. 24

2.2.2 Kinetic parameters ... 25

2.2.3 Definition of material densities .. 26

2.3 Material properties ... 27

2.4 Heat of pyrolysis and energy effects of transpiration ... 29

vi

2.5 Heat of ablation ... 32

Chapter 3: Program for simulating charring ablation ... 35

3.1 Conservation of energy for inner cell volumes ... 35

3.2 Boundary conditions for ablative materials .. 37

3.2.1 The virgin to residue interface ... 38

3.2.2 Mechanical erosion and recession rate .. 38

3.3 Solution routine ... 40

3.3.1 Numerically solving the pyrolysis ... 42

3.3.2 Solving the continuity equation using vectors ... 42

3.4 New input modifications ... 44

3.4.1 Material properties of decomposing materials .. 44

3.4.2 Adjustments of the virgin to residue interface .. 44

3.4.3 Mechanical erosion .. 45

3.4.4 Printouts ... 45

3.5 Discussion .. 46

3.5.1 Energy considerations .. 46

3.5.2 Limitations on Time Step Size ... 46

3.5.3 Numerical techniques .. 46

Chapter 4: Test simulation .. 51

4.1 Simulation programs for decomposing materials ... 51

4.2 Problem description .. 54

4.2.1 Input preparations for the simulation .. 55

4.2.2 Boundary conditions .. 56

4.3 Results ... 57

Chapter 5: Comparisons to experimental observations.. 63

5.1 The simple model .. 63

5.1.1 Model definition ... 63

5.1.2 Results .. 65

5.2 The complex model ... 69

5.2.1 Model definition ... 69

5.2.2 Results .. 70

Chapter 6: Conclusions and further work ... 75

6.1 Conclusions .. 75

6.2 Recommendations for further work ... 76

vii

6.2.1 Improving the calculation of pyrolysis gas flow ... 76

6.2.2 Improvements to the boundary conditions ... 76

6.2.3 Including slow cook-off calculations .. 79

6.2.4 Improving physical models ... 80

6.2.5 Miscellaneous improvements .. 80

References ... 81

Appendix A: Discretisation of the Heat Balance Equation .. 83

Appendix B: Linearisation of radiative heat transfer terms .. 85

Appendix C: Discretisation of the Energy Balance Equation ... 86

Appendix D: Block diagram of subroutines ... 91

Appendix E: Block diagram of subroutines .. 93

Appendix F: Material properties ... 95

Appendix G: Input file used in CMA3 .. 97

Appendix H: Input file used in ASTHMA .. 99

Appendix I: Input file used in G2DHeat ... 103

Appendix J: The source code ... 105

viii

ix

List of figures
Figure 1.1: The curvilinear non-orthogonal coordinate system………………………………………………………. 4
Figure 1.2: The implicit calculation molecule (Rian 2003) …..………………………………………………………….. 4
Figure 1.3: Example of heat sources and heat sinks in an insulated and initially temperature………..
homogenous geometry…… 6
Figure 1.4: Example of two partially interfaced grid blocks………………………………………………………….…. 8
Figure 1.5: The information exchange between grid blocks……………………………………………………………. 9
Figure 1.6: The border and interface directions……………………………………………………………………………… 10
Figure 1.7: Step by step walkthrough of the implicit solution routine…………………………………………….. 11
Figure 1.8: Sweeping technique used in the equation solver………………………………………………………….. 13
Figure 1.9: Initial and boundary conditions for the example problem………………………………………….... 14
Figure 1.10: Comparison of implicit, explicit and exact solution…………………………………………………..…. 15
Figure 1.11: Comparison of implicit, explicit and exact solution…………………………………………………..…. 16
Figure 1.12: A multi-block grid with different coordinate systems……………………………………………….... 16
Figure 1.13: The geometry used when comparing single- and multi-block grids…………………………..... 17
Figure 1.14: Shows the section cut where the temperatures are compared……………………………....…. 18
Figure 1.15: Comparison of solutions from G2DHeat using the implicit solution routine and………….
COMSOL……................. 19
Figure 1.16: Shows the differences in computation time using the implicit solver or the explicit……
solver…….20
Figure 2.1: Schematic of layers associated with charring ablation (Rønningen 2001)………………….….. 24
Figure 2.2: Shows weight loss when the heat flux is increased………………………………………………….……. 27
Figure 2.3: Thermal conductivity for silica phenolic (Næss 1998a)………………………………………………..... 28
Figure 2.4: Specific heat capacities of silica phenolic (Næss 1998a)………………………………………………… 28
Figure 2.5: Enthalpy values for silica phenolic (Næss 1998a)…………………………………………………………… 31
Figure 2.6: Heat of pyrolysis for silica phenolic (Næss 1998a)……………………………………………………….... 31
Figure 2.7: Specific heat capacity of pyrolysis gas from silica phenolic……………………………………………. 32
Figure 2.8: Control volume at the boundary……………………………………………..………………………………...…. 33
Figure 3.1: Shows the conservation of energy for inner cell volumes…………………………………..……..…. 35
Figure 3.2: Interface definitions in the program…………………………………..…………………………………..….... 37
Figure 3.3: Shows the length which is used to calculate the erosion rate in the cell volume……….…. 39
Figure 3.4: Flow chart for the solution routine…………………………………..………………………………………..…. 41
Figure 3.5: Shows the decomposition in i- and j-direction of the gas direction vector………………...…. 42
Figure 3.6: Assumption made for the mechanical erosion…………………………………..……………………….... 47
Figure 3.7: Test case used to illustrate the problem with direction vectors……………………………….…… 47
Figure 3.8: Error caused by the vector routine…………………………………..………………………………………..…. 48
Figure 3.9: Pyrolysis gas flow with corrected vector directions…………………………………..……………….…. 49
Figure 4.1: Schematic of geometry and boundary conditions………...……………………………………….....…. 54
Figure 4.2: The recession rates used in the simulations………………...…………………………………………….…. 56
Figure 4.3: Comparison of temperature history at the outer surface……………………………………………… 57
Figure 4.4: Comparison of temperature profile at 5 seconds………………………………………………………….. 58
Figure 4.5: Comparison of density in the insulation at 5 seconds……………………………………………………. 58
Figure 4.6: Comparison of temperature profile at 10 seconds…………………………………………………..…… 61
Figure 4.7: Comparison of density of the insulation at 10 seconds……………………………………..……...…. 61
Figure 5.1: Schematic of the simple model…………………………………………………………………………………..... 63
Figure 5.2: Temperature history on the external surface…………………………………………………………….…. 65
Figure 5.3: Densities in the case with pyrolysis and mechanical erosion (Time= 60 s)………………….... 67
Figure 5.4: Densities in the case with pyrolysis (Time= 60 s)……………………………………………………...….. 68
Figure 5.5: Schematic of blast pipe and nozzle…………………………………………………………………………..….. 69
Figure 5.6: Temperature history for the complex model………………………………………………………...….…. 70

x

Figure 5.7: Gas production rates as time proceeds………………………………………………………………..…..…. 71
Figure 5.8: Material densities as time proceeds…………………………………………………………………………….. 72
Figure 5.9: Positions where the char depth is measured……………………………………………………………….. 73
Figure 6.1: Energy balance of the surface………………………………………………………………………………………. 77

List of tables

Table 1.1: Material properties (COMSOL 3.4 2007)………………………………………..…………………………….... 14
Table 2.1: Thermal degradation kinetic parameters of components in silica phenolic…………………….
(ASTHMA88/PC1988)……….25
Table 2.2: Properties of components in silica phenolic (ASTHMA88/PC 1988 and Næss 1998a)…..... 26
Table 3.1: Direction variables for the continuity equation………………………………………………………………. 43
Table 4.1: Numerical aspects of interest for G2DHeat, CMA3 and ASTHMA……………………………………. 52
Table 4.2: Physical aspects of interest for G2DHeat, CMA3 and ASTHMA…………………………………..…… 53
Table 4.3: Boundary conditions as simulation time proceeds (Myklebust 2008)……………………………… 56
Table 5.1: Property values used for calculating recovery temperatures and convective heat.…………
Transfer coefficients……….. 64
Table 5.2: Property values used for calculating recovery temperatures and convective heat.………..
Transfer coefficients……….. 70
Table 5.3: Char depths measured from the simulated and experimental results………………………..….. 73

xi

Nomenclature
eA east cell face [m2]

wA west cell face [m2]

nA north cell face [m2]

sA south cell face [m2]

iA frequency factor of component “i” [s-1]
'
cB dimensionless ablation rate [-]
'
gB dimensionless pyrolysis gas rate [-]

c specific heat [J.Kg-1K-1]

pC specific heat capacity of a cell volumes material [J.Kg-1K-1]

ppC specific heat capacity of virgin material [J.Kg-1K-1]

prC specific heat capacity of residual mass [J.Kg-1K-1]

,p gC specific heat capacity of pyrolysis gas [J.Kg-1K-1]

,v sC specific heat capacity of solid material [J.Kg-1K-1]

HC Stanton number for heat transfer [-]

MC Stanton number for mass transfer [-]

iE activation energy for component “i” [J.kmol-1]

h convective heat transfer coefficient [W. m-2K-1]
h∗ enthalpy at face *(=e,w,n or s) [J.Kg-1]

gh enthalpy of pyrolysis gas [J.Kg-1]
0

,*fh enthalpy of formation *(=residue, virgin) [J.Kg-1]

,*
wT
fh enthalpy of formation evaluated at wall temperature (Tw) [J.Kg-1]

Ph enthalpy in cell volume P [J.Kg-1]

rh enthalpy of residual mass [J.Kg-1]

0h enthalpy of virgin material [J.Kg-1]

rH recovery enthalpy [J.Kg-1]

i denotes i-direction
j denotes j-direction

k thermal conductivity [W. m-1K-1]

pk thermal conductivity for virgin material [W. m-1K-1]

rk thermal conductivity for residual mass [W. m-1K-1]

m∗ mass flow rate of gases at face *(=e,w,n or s) [Kg. s-1]

gm mass flow rate of pyrolysis gases [Kg. s-1]

rm mass flow rate of residual mass(char) which is eroded [Kg. s-1]

xii

pyrm mass rate of gases produced by pyrolysis [Kg. s-1]

P total pressure [J. m-2]
r recession rate [m.s-1]

cellr mean recession rate for the cell volume [m.s-1]

R universal gas constant [J.kmol-1K-1]

,*IR thermal resistance in I-direction [m2K.W-1]

,*JR thermal resistance in J-direction [m2K.W-1]

S source term [W]

uS cell source term [W]

pS source term as a function of cell temperature [W.K-1]

S source term [W.m-3]
T temperature [K]

PT cell temperature [K]

ET east cell temperature [K]

WT west cell temperature [K]

NT north cell temperature [K]

ST south cell temperature [K]

u internal energy [J.Kg-1]
u gas velocity in i-direction [m.s-1]

Q heat flux [W]

x fraction parameter [-]
*
iZ diffusion driving force (See ASTHMA3 1972) [-]

ε emissivity [-]
v gas velocity in j-direction [m.s-1]

iα degree of weight loss component “i”

V∆ cell volume [m3]

t∆ time step [s]

pyrh∆ heat of pyrolysis [J.Kg-1]

ablh∆

heat of ablation [J.Kg-1]

*λ fraction parameter for direction *(=i,j) [-]
ρ current density [Kg.m-3]

0ρ initial density [Kg.m-3]

rρ residual density (often the same as the char density) [Kg.m-3]

iρ current density of component “i” [Kg.m-3]

0iρ initial density of component “i” [Kg.m-3]

r iρ residual density of component “i” [Kg.m-3]

ρ weight loss to volume [Kg.m-3s-1]

xiii

Γ volume fraction
σ Stefan-boltzmann constant (=5,67×10-8 [W/m2K4]).
0 denote values at the previous time step

xiv

1

Introduction
Heat transfer in rocket motors is being increasingly investigated to better understand the physical
material changes during the operational time of the motor. Material durability is important since the
motor structure requires strength and manoeuvrability to bring off a successful flight. The more
demanding the customer specifications are, the more challenging are the problems faced by the
designers. At Nammo AS, the research department is working on methods to better solve such
problems. In this work they use a computer simulation program (G2DHeat) to estimate the transient
heat transfer in rocket motor parts. Using the results from this program, they decide on design
modifications and changes necessary to enhance rocket performance. When the results from the
simulations become satisfactory, they perform an actual physical firing test of the rocket motor. To
ensure an adequate solution, they compare temperature measurements from the firing test with the
temperatures from the computer simulations. If there are too large deviations in the results, they
make adjustments to the program and perform new simulations. This process can become very
expensive, especially if a great number of firing tests are necessary before they achieve satisfying
results (Myklebust 2008). The purpose of this master thesis is to improve the program simulations by
means of including more accurate models for the physics of heat transfer.

G2DHeat has earlier been described by Riise (2008) in a project report. In this report different
suggestions on how to improve G2DHeat, by including more physical material behaviours, are
presented. The work in this master thesis is a continuance of the mentioned project report, and
includes implementation, as well as testing of the program routines suggested in the report. The
project report is recommended for proper understanding of the G2DHeat program. It also elaborates
the following points which are not included in this master thesis.

- Grid configuration.
- Boundary conditions.
- The solution process (with calculations of the temperatures explicit in time).
- Kinetic models for decomposition reactions.
- Moving grid methods and issues concerning these.
- Advantages and disadvantages with CMA3 (“The Aerotherm Charring Material Thermal

Response and Ablation Computer Program, Version 3”)(Schoner 1970) and
FSSIM2D(Austegard 1997).

- Recommendations and suggestions for improvements of G2DHeat.

The main objective of this master thesis is to further develop the G2DHeat program to include
thermal degradation reactions of ablative insulation materials, and prepare the program for
implementation of future heat source/-sink reactions.

The thesis itself is divided into five parts which describe the changes, assumptions and tests of the
modified G2DHeat program.

In chapter 1, an explanation of why the program is made implicit in time is provided. The implicit
formulation, in addition to a source term, is then presented. Further, a presentation of the implicit
solution routine is given, together with an explanation of how the different grid blocks interact with

2

each other in the implicit simulations. At the end of the chapter, accuracy and computation times for
the implicit and the explicit solution routines are compared.

Chapter 2 contains the physical aspects of the decomposition reactions occurring within the material.
This includes the kinetic model used, and how the thermodynamic and thermo-chemical properties
of the materials are changed. Silica phenolic properties are given as example values.

How to numerically handle the decomposition events is presented in chapter 3. In addition to the
implicit formulation in chapter 1, explicit solution of continuity and the decomposition events are
included in the programs calculations. The chapter also provides a presentation of the numerical
aspects of solving pyrolysis and charring ablation in G2DHeat. This includes governing equations,
boundary conditions, solution routine and discussion of changes made.

Test simulations of G2DHeat are shown in chapter 4 and 5. In chapter 4 the program is compared to
CMA3 and ASTHMA (Axi-Symmetric Transient Heating and Material Ablation Program) by using a
simple geometry. In chapter 5 the program is compared to experimental data using a simple
geometry and a more complex geometry.

The conclusions and recommendations for further work are described in chapter 6.

3

Chapter 1: Initial changes to the program
This chapter gives an overview of initial changes to the program code, the new program features and
capabilities, and a comparison of accuracy with the old G2DHeat program and Comsol Multi Physics.

1.1 General description of the modifications
The old heat analysis program used by Nammo and explained by Riise(2008), is modified to handle
the numerical calculations implicit in time, instead of explicit as before. In this manner, each cell in
the grid contains the temperature for the next time step, so the transport of heat must be solved as a
system of algebraic equations. The partial differential equations describing the two-dimensional
problem are discretised, using the finite volume method, and solved by TDMA (Tri-diagonal matrix
algorithm) in a numerical iteration procedure.

The implicit formulation in time is selected because it provides a more stable solution regardless of
time step size (Versteeg and Malalasekera 1995). For the explicit solution routine to ensure the same
stable solution, a substantially smaller time step size is required. In the explicit formulation, the
maximum time step size required to ensure stability is strongly dependent on the size of the cell
volumes and the thermodynamic properties of the materials used. Riise (2008) suggested that the
thermal conductivity can be set to a very large number and the specific heat capacity to a very small
number, in the cell volume, to simulate the grid cell that represents the eroded material. But this is
not preferred since it results in a very small time step for the explicit solver. The time step size for the
implicit formulation however, should be small enough to model the physics of the heat transfer
simulated (Rian 2003).

A heat source/-sink term is included in the governing equation to allow heat contributions from
endothermic and exothermic reactions within the cell volumes to be a part of the calculations.

The grid mesh that is used in the program consists of quadrilateral cell volumes that are not
necessarily orthogonal on each other (Riise 2008). The layout for an example grid is shown in figure
1.1.

4

Figure 1.1: The curvilinear non-orthogonal coordinate system

From the notation given in figure 1.1, the heat flux from cell volumes “W”,”E”,”S” and “N” are
calculated through the cell walls “w”,”e”,”s” and “n” into cell volume “P”.

1.1.1 The fully implicit scheme
Versteeg and Malalasekera (1995) express the transient heat equation in two dimensions of the
inner cell volumes by:

T T Tc k k S
t i i j j

ρ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞= + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (1.1)

By using the fully implicit discretisation approach on equation 1.1, a numerical approximation is
found. The calculation molecule for the temperatures is shown in figure 1.2.

Figure 1.2: The implicit calculation molecule (Rian 2003)

5

A first order backward differencing scheme is used in time, while a second order central differencing
scheme is used in space (Rian 2003). The discretisation procedure is outlined in appendix A and
yields:

0

, , , , , , , ,
0

e w n s e w n s
p p E W N S p u

I e I w J n J s I e I w J n J s

pe w n s
p

A A A A A A A Ac V c VS T T T T T T S
t R R R R R R R R t

aa a a aa

ρ ρ⎛ ⎞∆ ∆+ + + + − = + + + + +⎜ ⎟⎜ ⎟∆ ∆⎝ ⎠
 (1.2)

Here “0” denote the value at the previous time step. For simplicity, the terms in front of the
temperatures are represented by “a” and a subscript of their position related to the cell volume. This
terminology is also used in the program code.

1.1.2 Source term
By introducing a source term, the modified G2DHeat program can handle more complicated
problems than the old program. That includes both internal endothermic (heat sink) and exothermic
(heat source) reactions which can be caused by pyrolysis of rocket materials or self-heating fuels. By
including such reactions in the calculations of heat problems, more accurate results can be achieved.
The existence of internal endothermic and exothermic reactions is known, but has never been looked
at, except through manipulation of the conductive heat transfer coefficient, or by other less effective
means (Myklebust 2008).

Linearisation of the source term in equation 1.1 gives:

()P P uS V t S T S t∆ ∆ = + ∆ (1.3)

Here Sp and Su are the two terms representing the actual source. Sp is the temperature dependent
part of the source, while Su is the non-temperature-dependent part.

In the modified program, an input routine for using non-temperature-dependent sources is created.
This routine requires that the implicit solution routine is used and the sources are specified in the
input file according to the sequence:

SOURCE -> Indicate the start of defining sources in the input file
3 -> Number of sources
1 1 31 1 21 2500 -> Position and size of source[W.m-3], which is defined as:
2 5 10 5 10 -3600 <Grid block><start I-><end I->< start J->< end J-coordinate><source
strength>
2 15 25 15 25 700

6

Figure 1.3: Example of heat sources and heat sinks in an insulated and initially temperature homogenous geometry

The source terms are also used to include radiation terms, as shown in chapter 1.1.4.

1.1.3 Collection of material properties
Since material properties data are stored in tables inside an executable file in the previous version of
the computer program, these are difficult to adjust and require a user with insight in computer
programming to do so. In the modified program, however, this has been changed. Here material
properties are stored in an external file where they are easily modified. In the modified program the
user only needs to specify the filename containing the material properties in the input file before
starting the program. This is executed by the sequence:

DEFMATERIAL -> Indicate the start of defining material properties in the input file
2 -> Number of data files containing the material’s properties
ALU.b -> Filename with id=1
TITAN.b -> Filename with id=2
0 -> Number of materials that are decomposing by pyrolysis (See chapter 3.4.1)
3 -> Number of material areas that are specified
1 2 1 81 1 11 -> Material area in the grid which is defined as:
1 3 1 11 1 91 <Filename id><grid block><start I-><end I-><start J-><end J-coordinate>
2 1 1 81 1 81

In appendix F, data files with material properties are shown.

1.1.4 Boundary conditions
Multiple boundary conditions are available in the old G2DHeat program (See Riise 2008), and to
incorporate these in the implicit solution routine some “numerical tricks” are performed. Initially, all

the grid edges are insulated (* 0a =) until they are initiated with a boundary condition. In the

following explanation one can imagine that there are fictive cell volumes outside the border.

7

 The heat flux is added directly to the source term at the border:

uS Q= (1.4)

The convective heat contribution is added trough a modified thermal resistance at the border, and
the ambient temperature is set as temperature of the fictive cell volume:

 *
1

conductionR R
h

= + (1.5)

*T T∞= (1.6)

In the situation of radiation at the border, this is incorporated in both the temperature dependent
and non-temperature dependent part of the source term:

()()03
* * 4P PS A Tσε= − (1.7)

()()04 4
* * * *3u surrounding PS A T A Tε σ σε= + (1.8)

The entire linearisation process of the radiation terms is shown in appendix B.

If the temperature history at the surface is known, it can be desirable to specify a temperature
directly. This boundary condition is new to the program, and is easily added by:

* conductionR R= (1.9)

* spesifiedT T= (1.10)

1.1.5 Input specification for the implicit solution routine
In order to start the solution routine, it is required that the start and ending time, together with an
appropriate time step size, are specified.

The input specification for the implicit solution routine is a bit different from the explicit. While the
explicit uses a combination of time and maximum number of iterations, the implicit uses time only.
The implicit solution routine is executed by:

IMPLICIT -> Indicate the use of an implicit equation solver
0.01 0.0 0.1 120.0 -> Convergence and time parameters that are defined as:
 <Convergence parameter><start time><time step><end time>

 How to select relevant time interval length and time step size depends on the thermodynamics.
Rocket missiles, for example carried by airplanes, will at first be heated by their surrounding air, then
by the heat from the internal combustion when they are fired. Finally they will be cooled in the same
surrounding air (Myklebust 2008). In the input file, when calling the equation solver for different
time spans, the user can perform changes to the boundary conditions, and therefore manage such
situations.

8

It is sometimes essential for accuracy that a small time step size is used (Versteeg and Malalasekera
1995). If this is done, the overall error in the solution is reduced, but comes at the expense of a
longer total calculation time. The convergence parameter, however, controls the error in the
iteration procedure. In detail, it checks the temperature deviation from the previous iteration and
then decides if a new iteration is necessary. So by selecting small values for both of these
parameters, the user is able to minimize the total error in the solutions.

1.2 Multi-block grid
Grid topology with multi-blocks is often used to describe a complex geometrical structure. The
precision of the numerical calculations done with the grid, however, is strongly dependent on the
user’s skills to create and select a suitable grid topology (Ørbekk 1994).

 Generally, the computer program uses a multi-block grid to describe the geometry. It also allows
grid blocks to be partially interfaced with each other, which reduces the total number of grid blocks
used. As shown in figure 1.4.

Figure 1.4: Example of two partially interfaced grid blocks

1.2.1 Shadow cells
Since the computer program works in an iterative fashion when solving the system of heat equations,
grid block by grid block, shadow cells at the borders of each grid block are necessary. By using these,
the temperature information from the previous iteration is passed to the interfacing grid blocks, and
the next iteration procedure within the different grid blocks can start over again. When the system of
heat equations in all grid blocks have converged, the program moves to the next time step. How the
temperature information is exchanged can be seen in figure 1.5.

9

Figure 1.5: The information exchange between grid blocks

1.2.2 Specifying interfaces between grid blocks
Specifying the interfaces in the input file and which interfacing blocks the shadow cells should collect
their information from, must be performed in the right manner. If not, temperature information will
be collected from wrong cells and the solution result will contain discontinuities.

The user first specifies the left side or top side block before its connected right side or bottom side
block, in the interface layout. Also, in which directions these are specified must be according to the
directions shown figure 1.6. The interface layout for the cell block in the top left corner of figure 1.6
can be specified with neighbour block 2 (to the right) and neighbour block 3 (below) as follows:

INTERFACES -> Indicate start of specifying interfaces in the input file
2 -> Number of interfaces that are specified
1 1 1 1 6 -> Interface between block 1 and 3 are specified by the two lines in the format:
3 1 11 1 6 <Grid block><start I><start J ><direction><number of steps in that direction>
1 6 1 2 5 -> Similar for the interface between block 1 and 2.
2 1 1 2 5

Four different values of the direction parameter are used to describe the axis directions, namely: 1
indicates positive I-direction, 2 positive J-direction, 3 negative I-direction and 4 negative J-direction.

Even though grid blocks have their own coordinate system, which may result in different axis
directions for two grid blocks interfacing each other, the user can select a local direction parameter
for the grid blocks and still obtain the correct directions shown with red arrows in figure 1.6.

10

Figure 1.6: The border and interface directions

1.3 The implicit solution routine
The implicit solution routine consists of three main parts, an initialisation procedure, an update
procedure and an equation solver. First the information pointers in the shadow cells are created in
the initialisation procedure. This is done only once for both for the boundary edges and the
interfacing grid block edges. When this is completed, the iterative part of the solution routine starts.
Here a combination of both the equation solver and the update procedure is executed. Finally the
results from the calculations are written to a file before the program moves to the next time step.

11

Figure 1.7: Step by step walkthrough of the implicit solution routine

12

1.3.1 Initialisation procedure
The initialisation procedure consists of two subroutines that are executed, INIT_IMPLICIT and
BORDERS_IMPLICIT. Both are shown in appendix D with their connections to the rest of the program.

First, the pointer information for interfacing cells, together with the area of cell faces between the
cells, are created and stored in shadow cells by the subroutine INIT_IMPLICIT. Then, the subroutine
BORDERS_IMPLICIT uses the remaining shadow cells to store information of the boundary conditions
and the face areas at the boundary.

1.3.2 Update procedure
The update procedure consists of the subroutines UPDATE_IMPLICIT, RESMAT and PICKMDATA, also
shown in appendix D.

Since the equation solver solves the different grid blocks sequentially rather than solving the entire
grid, an update procedure to exchange the temperatures between the grid blocks is needed.

To perform the temperature exchange, information pointers stored in the shadow cells by the
initialisation procedure are used. Before the next iteration, the thermal conductivities are adjusted
by the temperatures, and thermal resistances between the interfacing grid cells are created.

This temperature exchange is the primary part of the update procedure, and is executed by the
subroutine UPDATE_IMPLICIT. Nevertheless, the other subroutines PICKMDATA and RESMAT are also
important parts of the update procedure, as they collect the new material properties for the grid
cells and generate the new thermal resistances between them.

1.3.3 Equation solver
There are two types of solution techniques for linear algebraic equations; direct methods and
indirect or iterative methods (Versteeg and Malalasekera 1995). The modified computer program
uses an iterative method, where an application of TDMA solves the two-dimensional domain until
convergence.

TDMA is actually a direct method for one-dimensional cases, but can be applied iteratively for two-
dimensional situations, in a line-by-line fashion. This is done by including the values of the equation
terms from all the neighbouring lines in a source term.

Since grids of different sizes and boundary conditions of different complexness are solved by the
iterative method, it sometimes requires a large number of iterations and time to reach convergence.
To speed up the solution and reach convergence faster, the program uses a sweeping technique,
from west to east and south to north, in the equation solver. This is shown in figure 1.8.

13

Figure 1.8: Sweeping technique used in the equation solver

1.4 Accuracy of the calculations
To validate the accuracy of the calculations done using the modified program, comparisons with the
old explicit solver together with a commercial program (COMSOL Multiphysics) have been
performed.

1.4.1 Implicit or explicit?
By using a simple heat problem with an analytical solution to assess the accuracy of the solution
routines, the advantages and disadvantages of these routines are found by means of a comparison of
the results. Hopefully, it will be easier for the user to decide which routine is the most favourable to
use in other heat problems, when considering these. An overview of the initial and boundary
conditions for the example problem is shown in figure 1.9.

14

Figure 1.9: Initial and boundary conditions for the example problem

The analytical solution for the problem is given by Ozisik(Cited Versteeg and Malalasekera 1995):

() () ()
1

2

1

4 (1), exp cos 200
2 1

n

n n
n

T i t t i
n

αλ λ
π

+∞

=

⎡ ⎤−= − +⎢ ⎥−⎣ ⎦
∑ (1.11)

where

(2 1)
2n
n
L

πλ −= (1.12)

and

k
c

α
ρ

= (1.13)

To solve the problem numerically, a representative grid mesh of the plate geometry is created. In the
grid mesh, all the cell volumes are created equal, with ∆i=0.004m and ∆j=0.004m.

The thin plate from figure 1.9 measures 0.02m by 0.02m and consists of aluminium. The material
properties are assumed to be constant since the plate is a solid and the temperature variations are
relatively small. Table 1.1 shows the values of aluminium.

Table 1.1: Material properties (COMSOL 3.4 2007)

Material Thermal conductivity

(W. m-1K-1)
Specific heat capacity

(J.Kg-1K-1)
Density
(Kg.m-3)

Aluminium 160 900 2700

Titanium beta-21S 7,5 710 4940

15

The maximum time step size for the explicit equation solver is obtained using the criterion:

, , , ,

e w n s

I e I w I n I s

c Vt A A A A
R R R R

ρ
⎛ ⎞
⎜ ⎟∆⎜ ⎟∆ ≤
⎜ ⎟+ + +⎜ ⎟
⎝ ⎠

 (1.14)

 This criterion ensures a physically correct and a convergent solution when using the explicit solution
routine (Rian 2003). In this example problem the maximum time step size becomes approximately 13
seconds. The following figure shows a comparison between the implicit, explicit and exact solutions
after 136 seconds, all of which 8 seconds are used as time step size.

Figure 1.10: Comparison of implicit, explicit and exact solution

From figure 1.10 it can be observed that the explicit solution differs much more from the exact
solution than the implicit does, which also agrees with the literature (Versteeg and Malalasekrea
1995). Here the error in the explicit solution is very clear, because a relatively large time step size and
only five grid points are used to represent the temperature distribution in the I-direction. When the
number of grid points is increased, the total error for both solutions is drastically reduced. If the time
step is reduced instead, both solutions are improved and especially the explicit. By reducing the time
step even further, both solutions approach the exact solution, as seen in figure 1.11, and eventually
no differences are noticeable.

1.4.2 U
As previo
system.

Note: Fig
always t

The next
block gri

Using a mu
ously mentio
An example

gure 1.12 sh
he case, as s

t example is
id from figur

Figure 1.1

ulti-block
oned, the gri
is shown in

Figure 1.12

ows all the g
shown in figu

used to dete
re 1.12, or a s

11: Comparison

k grid
id may consi
figure 1.12.

2: A multi-bloc

grid blocks w
ure 1.1.

ermine if the
similar single

16

n of implicit, ex

st of multipl

k grid with diff

with orthogon

ere are any d
e-block grid

xplicit and exac

e grid blocks

ferent coordina

nal axis syste

differences in
in the implic

ct solution

s, each with

ate systems

ems, even th

n accuracy w
cit solution ro

its own coor

ough this is

when using th
outine. Theo

rdinate

not

he multi-
oretically

17

these should give the same results, because the problem is unchanged and the same size and
number of cell volumes are used.

Control points for the temperatures are created randomly, and their positions together with the
chosen constant temperature boundary conditions are shown in figure 1.13. The geometry consists
of aluminium which is initially set to 200 Kelvin (K), and the properties from table 1.1 are used. An
indication of the temperature profile is also shown in figure 1.13. Finally the results from the implicit
solutions are compared with an explicit solution where the time step is set to an infinitesimal value
so it more or less represents the analytical solution.

Figure 1.13: The geometry used when comparing single- and multi-block grids

Even after a simulation time of 150 seconds and using a time step size of 0.01 seconds, the results
seem to be in agreement with the earlier predictions. There are no differences in accuracy when
using the single- or the multi-block grid in the implicit solution routine. The results from the explicit
routine however, yield some unexpected results. Even though a much smaller time step value of
0.0001 seconds is used in the explicit routine, the results from the implicit routine match perfectly. A
reason for this can be the simple boundary conditions used. However, it indicates that the implicit
routine can give just as good results as the explicit, even when a much larger time step is used.

1.4.3 A two-dimensional benchmark model
For a two-dimensional accuracy test of the modified G2DHeat, a benchmark model for comparison is
created using COMSOL Multiphysics. This is a commercial finite-element based program for
simulating heat transfer caused by convection, conduction and/or radiation (Comsol 2008).
Assuming that COMSOL delivers trustworthy results, comparisons with these can be used to find how
accurate the two dimensional calculations from the modified G2DHeat program are.

18

The model consists of a two dimensional plate where the west and south side are isolated, while the
east and north side are exposed to a convective heat flux. The plate measures 0.09m by 0.09m and
consists mostly of titanium, but also a layer of aluminium facing the outer heat source. The material
properties are given in table 1.1 and the model is shown in figure 1.14.

Initially, the plate temperature, the convective heat transfer coefficient at the border and the
external temperature are set to 350K, 8 W.m-2K-1 and 2000K. To numerically solve the problem, the
plate geometry is divided into approximately 8000 cell volumes. Using these parameters, the model
is simulated with a time step size of 0.01 seconds for 120 seconds both in COMSOL 3.4 and the
modified G2DHeat program. These values are randomly selected, and are not necessarily physically
correct.

Figure 1.14: Shows the section cut where the temperatures are compared

The final results are compared using temperature values along the diagonal line shown in figure 1.14,
and the results when using COMSOL and the implicit solution procedure, are both shown in figure
1.15.

19

Figure 1.15: Comparison of solutions from G2DHeat using the implicit solution routine and COMSOL

When observing figure 1.15, it is hard to spot any differences between the solutions. Nevertheless, a
maximal error of 0.1657K is found at the axial position 0.1124m by examining the results. And from
analyzing the differences between the solutions through the entire graph interval, an average
difference of 0.0746K is found.

Sometimes a small error in the solution can be accepted, but it depends on the problem. For
example, a small temperature error of a few degrees in a rocket engine is of less importance than in
a freezer, because it is designed to withstand greater temperature variations. But if a similar error is
neglected in the freezer, the ice cream may start to melt.

There can be many reasons why some degree of error is observed in figure 1.15. For instance, since
the programs use different cell layouts, this may cause an unfortunate distribution of the
temperatures in the grid. Also, when an interpolation routine is used to find certain points, small
errors are generated. To reduce this type of error, a better interpolation routine and/or more cell
volumes in the grid can be applied (Versteeg and Malalasekera 1995). Another possible source of
error can simply be a poor selection of precision for the variables in the computer programs. But this
is not likely, because the different compilers and especially the newer compilers allow large number
of significant digits. The reason for the error can also be the different ways the solution routines
solve their grids. COMSOL uses a direct method, while G2DHeat uses an implicit iterative/indirect
method or an explicit direct method. Assuming that the same number of cell volumes is used, the
error can be reduced in G2DHeat by selecting a smaller time step (Rian 2003).

20

1.5 Measuring computation time
To determine the amount of time used by the program before a solution is reached, the program
uses an intrinsic subroutine which returns the CPU time in hundredths of a second. This represents
the amount of time the CPU is actually executing instructions (Chapman 2004).

For comparison, the explicit solution routine is modified from its original state to collect material
properties after every time step and not in intervals of 25 time steps as previously. The implicit
solution routine, however, updates these for every iteration, and hence also for every time step.

In these simulations, the geometry, the boundary conditions and the material properties from

chapter 1.4.2 are used. From the geometry new grids that measure 30×30, 60×60, 90×90 and

120×120 cell volumes are created. Each is then divided into a single-block and a multi-block

representation before the calculations are performed. The multi-block grids consist of nine equally
large grid blocks and are similar to the grid shown in figure 1.12. Time step sizes of 0.01s and 0.0006s
are used for the implicit and the explicit solution routines in all the simulations, respectively. The
explicit time step size is within the limits given by the criterion in equation 1.14. The results are
presented in figure 1.16.

Figure 1.16: Shows the differences in computation time using the implicit solver or the explicit solver

Figure 1.16 shows the amount of CPU time spent calculating one second when using a different
number of cell volumes in the solution routines. During the execution of most programs, the CPU is
idle much of the time while the computer fetches data from the keyboard or disk. The CPU time of an
executing program, therefore, is generally much less than the total execution time of the program
(Chapman 2004).

For grids using less than 9000 cell volumes, it is seen from figure1.16 that the implicit routine has a
smaller calculation time than the explicit. It can also be seen that using multi-block grids require
more computational time than using single-block grids for both solution routines and all grid sizes.

21

This is because multi-block grids require additional subroutines to be executed. The single block
calculation performed by the implicit routine remains lower than the explicit even when 14400 cell
volumes are used. However, the gradient for the amount of time spent simulating one second, at this
point, implies that the time spent by the implicit soon will pass the explicit.

The amount of CPU time spent on calculating one second, increases almost at a constant rate for the
explicit routine, as seen in figure 1.16. This is not the case for the actual time spent by the program,
since the memory, at some point, is insufficient to store information from all the cell volumes at the
same time. Therefore, information must be stored on the hard drive, causing more time for the CPU
to collect information, thus more time is spent simulating by the program.

22

23

Chapter 2: Pyrolysis and charring ablation
This chapter is intended to describe the physical mechanisms that involve pyrolysis and charring
ablation in the modified G2DHeat program. In chapter 2.5 a proposal for further development of the
boundary condition necessary for simulating charring ablation without specifying the recession rate
is presented. Values for silica phenolic are used as an example of thermophysical and
thermodynamic properties for an ablative material, and are also used for the simulations in chapter 4
and 5.

2.1 General
In solid rocket motors it is often used ablative materials as insulation to protect components (Sutton
and Biblarz 2001). With ablative cooling, part of the ablative material is sacrificed to absorb heat and
prevent heat from travelling further into the protected structure. This involves transient heat
transfer processes, reaction kinetics at the surfaces, transpiration cooled boundary layer phenomena
and decomposition processes within the solid. Loss of mass from the ablative materials will generally
be the limiting design factor when selecting an initial thickness for the insulation (Sutton and Biblarz
2001).

Some ablative materials simply melt or sublimate only at the surface, while others partially
decompose to provide a char layer. Materials such as graphite lose surface material only through
chemical erosion. The G2DHeat program simulates heat transfer in composite materials where a
solid residue of char is created from the pyrolysis reactions. For the most part these materials are
phenolic resins containing aramid, glass, graphite or silica fibres (Rønningen 2001). The presence of a
char layer in such materials imposes an additional thermal barrier without losing the good thermal
absorption characteristics of decomposing materials.

The charring materials will pass through three distinct phases in their behaviour as times progresses
(Rønningen 2001):

1. The temperature gets high enough for pyrolysis of the virgin material to start.
2. A char layer will form at the outer parts of the material, as the decomposition zone moves

further into the material. The char layer will then be cooled by the out flow of gaseous
reaction products from the decomposition zone, and to some extent reduce the heat
transfer from the hot combustion gases at the surface.

3. Temperature at the surface will continue to rise, and eventually mechanical erosion,
chemical erosion and/or melting of the material will begin to reduce the thickness of the char
layer.

24

Figure 2.1: Schematic of layers associated with charring ablation (Rønningen 2001)

2.2 Kinetic model for material decomposition reactions
The thermal decomposition within the ablative material may consist of multiple reactions which
separately break down the material components. These pyrolysis reactions reduce the density of the
material due to gas generation, and therefore several physical considerations concerning the
material must be dealt with (ASTHMA88/PC 1988):

- The change of material properties due to loss of mass
- Energy from the reactions occurring in the ablative material
- Energy exchange due to flow of pyrolysis gas

2.2.1 Independent parallel reactions
Assuming the effect of cracking in the ablative material is small, the decomposition process can be
represented as a series of independent parallel reactions of the many material components
(Austegard 1997).

Independent parallel reactions are described by:

()
()

() ()

()
()

() ()

1

2

Reaction

Reaction

Mass A Residue A Gas A

Mass B Residue B Gas B

+

+

→
→

 (2.1)

Where “A” and “B” are different chemical species and the reactions “1” and “2” are independent of
each other.

25

2.2.2 Kinetic parameters
Varhegyi and Antal(cited Austegaard 1997) describes the independent decomposition reaction of a
single component by:

()1

1,2,3,....

i
i

E
ni RT

i i
d Ae
dt
i N

α α
−

= −

=
 (2.2)

Where

0

0

i i
i

i r i

ρ ρα
ρ ρ

−=
−

 (2.3)

The initial (0iρ) and residual (r iρ) densities of component “i” are known constants. In order to find

the mass loss to volume it is necessary to rewrite equation 2.3 as follows:

()0 0i i i r i iρ ρ ρ ρ α= − − (2.4)

Differentiating equation 2.4 with respect to time and assuming
n

i
i

ρ ρ=∑ yields the expression:

()0
1

n
i

i r i
i

dd
dt dt

αρ ρ ρ
=

− = −∑ (2.5)

Here the rate of change of decomposing material density (
d
dt
ρ ρ− =) is found. Finally, substituting

equation 2.2 into equation 2.5 yields:

()0
1 0

i
i

n
En

i r i RT
i r i i

i i r i

A e
ρ ρ

ρ ρ ρ
ρ ρ

−

=

⎛ ⎞−
= − ⎜ ⎟⎜ ⎟−⎝ ⎠
∑ (2.6)

Thermal degradation kinetic parameter values for silica phenolic are shown in table 2.1.

Table 2.1: Thermal degradation kinetic parameters of components in silica phenolic (ASTHMA88/PC 1988)

 Activation energy [E]
(J.kmol-1)

Pre-exponential factor [A]
(1.s-1)

Order of reaction [n]
(-)

Resin A 71.14×106 1.4×104 3

Resin B 169.98×106 9.75×108 3

Reinforcement - - -

By using TGA (Thermo-gravimetric analysis) the values of the different kinetic parameters are
obtained. This method determines the weight loss of the material when it is heated with constant
temperature increase (Austegard 1997).

26

The use of the kinetic model is limited to materials in which components decompose independently
of each other. If ablative materials decompose differently, for example by additional reactions with
each other, inaccurate results from the simulation can occur due to the fact that this is not
accounted for in the calculations. Nevertheless it is considered to be a reasonable assumption, since
the same kinetic model is employed in both CMA3 and ASTHMA. These programs are extensively
used in thermal performance studies of spacecraft structures, ablating heat shields and rocket
nozzles (Schoner 1970). Therefore, a great deal of testing and verification of the kinetic model has
been performed, and the model proves to be adequate for application in G2DHeat.

2.2.3 Definition of material densities
In the G2DHeat program the initial and residual densities of a material component can be expressed
in terms of a fraction of the total material volume. This makes it possible to separate the
decomposing part of the material from the non-decomposing part as shown in equation 2.7. The sum

of densities, from components that can decompose form: decomposing partρ . Similar, the sum of densities

from the non-decomposing components form: decomposing partρ . The non-decomposing part consists

mostly of reinforcement (ASTHMA88/PC 1988).

() 1material decomposing part non decomposing partρ ρ ρ −= Γ + − Γ (2.7)

It is not possible, however, to specify a mass fraction as input. For this, the program user must
convert the mass fractions into volume fractions by hand. When differentiating equation 2.7 with
respects to time, the non-decomposing term vanishes. Since the only contribution to the loss of mass
comes from the decomposing part of the material, equation 2.6, can be rewritten into:

()0
1 0

i
i

n
En

i r i RT
material i r i i

i i r i

A e
ρ ρ

ρ ρ ρ
ρ ρ

−

=

⎛ ⎞−
= Γ − ⎜ ⎟⎜ ⎟−⎝ ⎠

∑

 (2.8)

The program allows an infinite number of reactions to be specified for each of the decomposing
materials.

Table 2.2: Properties of components in silica phenolic (ASTHMA88/PC 1988 and Næss 1998a)

 Initial density
(Kg.m-3)

Residual density
(Kg.m-3)

Volume fraction
(-)

Pyrolysis temperature
(K)

Resin A 325.015 0.0 0.422 333

Resin B 973.926 518.998 0.422 550

Reinforcement 2066.380 2066.380 0.578 ∞

From table 2.2 the total initial density of silica phenolic is calculated to be 1742,52 Kg/m3. Similar, the
residual density is found to be 1413,38 Kg/m3, which is approximately 80% of the initial density.
Weight loss curves for silica phenolic when using heating rates of 10, 20 and 50 K/min are shown in
figure 2.2.

27

Figure 2.2: Shows weight loss when the heat flux is increased

The curves in figure 2.2 are calculated from equation 2.8 using the kinetic parameters in table 2.1
and the properties in table 2.2. The curves represent the sum of mass losses generated from the
different reactions as the temperature increases. Regardless of time, these show that the pyrolysis
reactions are dependent on the heat flux into the material. Physically, the start of the pyrolysis
reactions may differ from one another. Therefore the program also allows the user to specify a
threshold temperature (pyrolysis temperature) for the different reactions. The threshold
temperatures for silica phenolic are shown in table 2.2. For material components in the non-
decomposing part of the material the pyrolysis temperature is set to very high value, which is never
obtained by the material.

2.3 Material properties
For an insulation material to become perfect, it should be made with components which have a low
thermal conductivity, high specific heat capacity, some degree of elasticity, high heat of reaction and
high threshold temperature for the pyrolysis (Rønningen 2001).

Since the decomposition process involves removal of mass from the cell volume as time progresses,
the material properties will also change. To make adjustments for this, the decomposition state
together with a linearly dependence between the properties of the fully charred and the virgin
material is used. The fraction parameter which represents the decomposition state is given by:

0

r

r

x ρ ρ
ρ ρ

−=
−

 (2.9)

28

The material properties then become:

0 (1)p p prC xC x C= + − (2.10)

0 (1) rk xk x k= + − (2.11)

In addition to a thermal conductivity that is linearly dependent on the decomposition state, G2DHeat
can use an anisotropic thermal conductivity. The thermal conductivities and the specific heat
capacities as functions of the temperature for silica phenolic are shown in figure 2.3 and figure 2.4,
respectively.

Figure 2.3: Thermal conductivity for silica phenolic (Næss 1998a)

29

Figure 2.4: Specific heat capacities of silica phenolic (Næss 1998a)

Considering the material data provided (see appendix F), the assumption of the thermal conductivity
to be a linear function of decomposition state is considered reasonable. Physically, the thermal
conductivity within the ablative material is a function of heating rate into the material
(ASTHMA88/PC 1988). This means that different heating conditions during decomposition gives
different conductive properties for the material. CMA3 allows a functional dependence of the
decomposition state to be specified (Schoner 1970). This functionality is not available in G2DHeat,
but can easily be included if necessary.

2.4 Heat of pyrolysis and energy effects of transpiration
In section 2.3 the change of thermodynamic and thermophysical properties are determined on the
basis of decomposition state. The corresponding energy is presented in this section. There are two
primary events that are associated with the energy contribution from the pyrolysis; the energy
concerning the pyrolysis reactions that occur, and the exchange of energy due to pyrolysis gases that
percolate through the decomposing material. For ablative materials these are called energy
absorption events (Austegard 1997).

In appendix C, the derivation of an energy balance for the material is described. The energy flux
associated with the pyrolysis reactions is given by:

pyr pyr pyrQ m h= ∆ (2.12)

Where pyrm is the rate of material pyrolysing, and pyrh∆ the energy that is used for producing gases,

called the “heat of pyrolysis”. The heat of pyrolysis can be expressed in terms of an enthalpy
difference between the gases and the solids:

()pyr gh h u∆ = − (2.13)

30

This term is determined by measurements using differential scanning calorimeter (DSC). This involves
an apparatus which heats a sample of the material. The heat flux into the sample is kept at rates
giving a constant increase in temperature in the sample and its holder. The heat flux is then logged
together with time and the temperature of the sample holder. Since the sample is placed in a holder
while it is heated, another similar test with an empty holder must be performed in order to find the
base line (the reference holder). When there are no reactions left to occur in the sample, the heat
flux into sample holder and the reference holder are equal when the temperatures inside them are
kept constant. From the plots of heat flux versus time and versus temperature, the heat of pyrolysis,
together with the specific heat capacity for the sample are obtained (Austegard 1997).

Sometimes the enthalpies of formation for each of the material components are known. Then the
heat of pyrolysis is found from the enthalpy difference in equation 2.13 and the following
calculations (ASTHMA88/PC 1988):

0 0

0

r r

r

h hu ρ ρ
ρ ρ

−=
−

 (2.14)

This represents the amount of energy per mass which can decompose. The enthalpies of formation

for the virgin material (0
,0fh) and the residue products (0

,f rh) at a reference temperature can,

together with the specific enthalpy difference, determine enthalpies at other temperatures.
Assuming there is a constant pressure within the material, the specific enthalpy difference can be
represented by the specific heat capacity and a temperature difference (Moran and Shapiro 2004). In
an equation form, this is expressed as:

0
0 ,0 0f ph h C T= + ∆ (2.15)

0
,r f r prh h C T= + ∆ (2.16)

Where

evaluated referenceT T T∆ = −

The heat of formation for virgin silica phenolic and its residue products are at a reference
temperature of 297.78K, -11.764×105 J/Kg and -123.115×105 J/Kg, respectively (Næss 1998a). In
programs such as CMA3 and ASTHMA88, it is required that the pyrolysis gas specific enthalpy is
specified as a function of temperature in their input file. These are then added to the heat of
formation of pyrolysis gas which also is specified in the input file (Schoner 1970 and ASTHMA88/PC
1988).

31

Figure 2.5: Enthalpy values for silica phenolic (Næss 1998a)

Figure 2.6: Heat of pyrolysis for silica phenolic (Næss 1998a)

As the temperature increases within the silica phenolic, it is seen from figure 2.5 that there is a slight
increase of the virgin and residue enthalpies. In the same figure the pyrolysis gas enthalpy is
observed to increase significantly more rapid than the others. From this, and the definition in
equation 2.13, it is apparent that the heat of pyrolysis in figure 2.6 increases considerably due to the

32

increasing difference between pyrolysis gas and solid material. Therefore, the preliminary studies of
the gas enthalpy are important to assure accuracy within reasonable limits when using the heat of
pyrolysis in the calculations.

Assuming the pressure in the material to be constant, the pyrolysis gas enthalpy differences can be
approximated with a temperature difference and the specific heat capacity for the pyrolysis gas. For
silica phenolic the specific heat capacity of pyrolysis gas is linearly approximated from its enthalpy
(Næss 1998a) and shown in figure 2.7.

Figure 2.7: Specific heat capacity of pyrolysis gas from silica phenolic

To include the energy absorbed by pyrolysis gas when it is flowing through the material, the specific
heat capacity of the gas is used. To calculate this, an analysis of the entire gas as a whole, or
components alone, must be conducted (Grønli 1996).

2.5 Heat of ablation
In chapter 2.1 the behaviour of the ablative materials as time progresses is described. In the case
when a char layer is present at the outer parts of the decomposing material, an increasing surface
temperature can start different erosion events (Rønningen 2001). The G2DHeat program can
simulate some of these events, but requires a recession rate to be specified. An explanation of these
events is presented in chapter 3.2. In this chapter, however, a suggestion for how to obtain the
recession rate is described.

Assuming the ablation of the char layer to occur at a constant known temperature where the char
layer “melts” (ablation temperature), and the heat of ablation to be known through experiments,
then the recession rate can be explicitly calculated from the energy balance shown in figure 2.8.

33

Figure 2.8: Control volume at the boundary

On equation form the energy balance in figure 2.8 becomes:

, , () 0Convection Conduction Radiation in Radiation out g e i r ablQ Q Q Q m h h m h− + − − − − ∆ = (2.17)

When there is no surface recession present, the term ablationh∆ (Heat of ablation) is zero. It is also

absent when only a mechanical erosion rate is specified. The term rm represents the rate of residual

mass leaving the control volume. The term gm represents the rate of pyrolysis gases leaving the

control volume, and together with the enthalpy difference ()e ih h− it expresses the rate at which

energy is absorbed by the pyrolysis gases. This has just a minor impact on the overall heat transfer,
and can therefore be neglected from equation 2.17, and instead be accounted for by a small
reduction to the convective heat coefficient (Austegard 1997). Assuming the heat fluxes only are
functions of the surface temperature within a time step, the following expressions are obtained:

Using Fourier’s law (Moran and Shapiro 2004) for a temperature gradient in the x-direction the
conduction heat transfer becomes:

()solid surface
Conduction surface surface

solid surface

T T
Q A k f T

x x
−

= =
−

 (2.18)

Here solidT from the previous time step is used in the explicit method, while solidT from the previous

iteration in the implicit method. Similar procedure also applies for the rest of the terms.

The convective heat transfer becomes (Incropera and DeWitt 2002):

() ()Convection surface surface surfaceQ A h T T f T∞= − = (2.19)

The radiation heat transfer becomes (Incropera and DeWitt 2002):

4
, radiation in surface surface surrounding surroundingQ A T constantε σε= = (2.20)

4 4
, ()Radiation out surface surface surface surfaceQ A T f Tσε= = (2.21)

34

From these terms the surface temperature can be found iteratively. When the surface temperature is
lower than the ablation temperature, the heat is transferred as normal. But when the ablation
temperature is reached, the temperature is assumed to be fixed, and the remaining energy in the
energy balance is used in the ablation process. Since the temperature at the surface is fixed, the only
unknown in equation 2.17 is the term rm . The recession rate (r) is then found from solving this

equation and the assumption:

r r
rm A
t

ρ ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
 (2.22)

Where rρ is the char density and A the surface area. How the recession rate is handled numerically

is explained in chapter 3.2.2.

35

Chapter 3: Program for simulating charring ablation
In this chapter, a presentation of the numerical aspects of solving pyrolysis and charring ablation in
G2DHeat is provided. This includes governing equations, boundary conditions, a solution routine and
a discussion of changes made.

3.1 Conservation of energy for inner cell volumes
The conservation of energy for a control volume is by Incropera and DeWitt (2002) stated as follows:

“The amount of thermal and mechanical energy that enters a control volume, plus the amount of thermal
energy generated within the control volume, minus the amount of thermal and mechanical energy that
leaves the control volume must equal the increase in the amount of energy stored in the control volume”.

Figure 3.1: Shows the conservation of energy for inner cell volumes

One should consider the control volume shown in figure 3.1 and the same notation on the cell faces
and cell volumes as in figure 1.1 when observing the derivations in this chapter.

The following simplifying assumptions are made (Austegard 1997):

- Thermal equilibrium exists between the solid material and the decomposition gases. The out-
flowing gases have the same temperature as the surrounding material.

- No gases are accumulated in the cell volumes.
- Decomposition gases are non-reactive.
- The pressure throughout the ablative material is constant.

36

The energy equation on differential form can be expressed as (Rian 2003):

u hu hv T Tk k S
t i j i i j j

ρ ρ ρ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + = + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (3.1)

Where the first term represents the amount of energy stored in the control volume, and the
remaining terms the amount of energy entering or leaving the control volume.

The equation of mass transfer on differential form can be expressed as (Rian 2003):

0u v
t i j
ρ ρ ρ∂ ∂ ∂+ + =

∂ ∂ ∂
 (3.2)

To numerically solve equation 3.1, it is discretised using the finite volume method. Here an
integration of energy contributions over a control volume is performed. To calculate the temperature
gradients at the control volume faces, an approximate distribution of properties between
neighbouring cell volumes is used. The approximation can for some situations cause unstable and
oscillating solutions (Austegard 1997). To prevent this, the upwind differencing scheme is used on
the diffusive terms. This takes into account the flow direction of pyrolysis gas when determining the
temperature at the cell face. The entire discretisation process is shown in appendix C.

The governing equation solved by G2DHeat becomes:

() ()

() ()

,
, ,

, ,

, ,
, ,

max 0, max 0,

max 0, max 0,

v s e w
e w n s p p p g e E p g w W

I e I w

e wp

n s
p g n N p g s

J n J s

n

C V A Aa a a a S T C m T C m T
t R R

a aa

A AC m T C m
R R

a

ρ ⎛ ⎞ ⎛ ⎞∆⎛ ⎞
+ + + + − = + − + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∆⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞
+ + − + +⎜ ⎟⎜ ⎟
⎝ ⎠

, 0

0

v s
S p pyr pyr u

ps

C V
T T m h S

t
aa

ρ⎛ ⎞ ∆
+ + ∆ +⎜ ⎟⎜ ⎟ ∆⎝ ⎠

(3.3)

The solution process for equation 3.3 is explained in chapter 3.3.

37

3.2 Boundary conditions for ablative materials
In the G2DHeat program there are several boundary conditions available for both decomposing and
non-decomposing materials (Backup materials) (Riise 2008). For materials that decompose, some
additional conditions are available, to include the physics presented in chapter 2.

The program allows the following boundary conditions for the ablative material to be specified:

- Melting ablation with specified recession rate and surface temperature.
- Internal decomposition with specified heat flux and mechanical erosion.
- Internal decomposition with specified heat flux and no recession.

These options are somewhat limited in terms of ablation, since a specification of the recession rate is
required. For option 1 the mass is removed at a known rate to sustain the temperature at the border.
The boundary in Option 2 is subjected to erosion which simply removes pieces of material from the
surface. In option 3, recession of the material is absent, but mass losses due to out-flowing pyrolysis
gas are present.

The grid mesh and boundary conditions remains fixed throughout the simulation. The heat flux and
the constant surface temperature are handled in the same way as in chapter 1.1.4. To cope with the
movement of the decomposition- and the erosion front, these are calculated explicitly. An illustration
is shown in figure 3.2.

Figure 3.2: Interface definitions in the program

To model the empty cell volumes, a very high value for the thermal conductivity and a low value for
the specific heat capacity are used.

38

3.2.1 The virgin to residue interface
The motive for finding the interfaces, especially the interface between virgin and residue, is so that
directional vectors for the pyrolysis gas and the mechanical erosion are found.

Identification parameters (ID) are used to save computational time and determine the current state
of a cell volume. Initially, these are specified with a positive or negative value to separate cell
volumes with ablative materials from cell volumes with backup materials. Events such as the
decomposition and the erosion are only calculated for ablative cell volumes. Hence, less computation
time is needed for the simulation. If a cell volume of the ablative material decomposes and becomes
residue, the identification parameter is increased by 1 in this cell volume. To initiate the interface,
the id is set to 3 for cell volumes at the original boundary which is specified by the user. In short
terms:

0
0

1
2
3

id Backup material
id Ablative material
Virgin or decomposing material
Residue or eroded material
Material at the specified boundary

< →
> →

=
=
=

 (3.4)

The different ablative identification parameters are used to determine the virgin to residue interface
shown in figure 3.2. The cell volume centres closest to the decomposition zone are found by using a
geometrical routine. For every cell volume with id=1, the directional vector from the centre of the
cell volume points towards the closest part of the interface that is composed of these cell volume
centres.

To decide whether or not a cell volume is char or virgin, the fraction parameter(x) in chapter 2.3 is
used. The standard decision value is set to 0.02, but can be adjusted by the user in the input file.

0.02
0.02

x virgin or decomposing material
x residue

≥ →
< →

 (3.5)

It is important to notice that this only makes adjustments to the ID of the cell volume, thereby still
allowing decomposition reactions within the cell volume to finish. This is done so that the energy is
conserved.

3.2.2 Mechanical erosion and recession rate
A routine for calculating the recession of material on the basis of known recession rates is created.
The recession rates are specified as functions of the simulation time, and are given as depth eroded
material per second (m.s-1). It is assumed that only residue (char) material is removed as the surface
recedes. This states that the decomposition front must recede faster or equal to the erosion front.

Initially, by using the direction vector in the cell volume, the routine calculates the length (l) to
where erosion is started. This is shown in figure 3.3. Then, from this length and the known recession
rates, the time (t) until erosion of the cell volume starts is calculated. The time to end of erosion is
found in a similar way.

39

Figure 3.3: Shows the length which is used to calculate the erosion rate in the cell volume

_

start of erosion
start erosion

start of erosion

l
t

r
= (3.6)

Here the term start of erosionr is the mean recession rate for the present time interval of the start of erosionl .

To cope with simulation time steps of different values, the recession rate through the cell volume is
assumed to be constant. When the current time of the simulation reaches the time “start of erosion”

(_current start erosiont t≥), the recession rate of the cell volume becomes:

cell
cell

end of erosion current

lr
t t

=
−

 (3.7)

From this and the assumption of constant mass removal through the cell volume, the rate of density
changes due to the recession of material is found:

cell

cell cell

r
t l
ρ ρ∂⎛ ⎞ = −⎜ ⎟∂⎝ ⎠

 (3.8)

Here ρ is the current density at “start of erosion” in the cell volume, and as earlier, it is assumed to

be equal to the residue density.

In chapter 2.3 the material properties of a decomposing material is stated to be linearly dependent
on the virgin and residual property. Similar linear approximation for the material properties of
eroding cell volumes is assumed, only that the current property of the cell volume at “start of
erosion” and the property value for emulating empty cell volumes are used instead.

40

Mechanical erosion of backup materials could be performed in the same manner. The only
requirement is that the materials are specified as an ablative material together with a very high
threshold temperature for the pyrolysis, which is never obtained by the material.

In chapter 2.5 a suggestion for finding the recession rate is outlined. The time to start of erosion in
the cell volumes could be calculated similarly as in this chapter, only that it would be necessary to
recalculate when there is a change in the recession rate.

3.3 Solution routine
In G2DHeat some additional computation events are necessary when ablative materials are present.
For the program, each computational step is described by the main events:

- Internal decomposition of the ablative material (pyrolysis) and calculation of surface
recession.

- Updating of direction vectors and iteratively solving of the continuity equation (mass
transfer).

- Energy balance for the entire system including the surface.

From these events new values of densities, temperatures and pyrolysis gas production rates are
found. In preparation of next computational step, specific heat capacities of solid and gas, thermal
resistances and heats of pyrolysis are updated. The detail of the solution process is shown in figure
3.4, while the source code of the program is shown in appendix J.

41

Figure 3.4: Flow chart for the solution routine

42

3.3.1 Numerically solving the pyrolysis
In chapter 2.2 decomposition reactions of ablative materials are explained. Numerically these events
are computed explicit in time. Hence, the previous temperature within the cell volume is used in the
kinetic model to calculate the amount of pyrolysis gas generated. This is performed in a reaction-by-
reaction fashion. The sum of gas contributions become the total amount pyrolysis gas that is
generated during a time step, and from this, the density of the cell volume is adjusted and the
current gas production rate for use in the continuity equation is created.

The fraction parameter in equation 2.9 is then created from the new cell volume density. With this
parameter, material properties are adjusted in accordance with the temperature, equation 2.10 and
equation 2.11. The specific heat capacity of pyrolysis gas and the heat of pyrolysis are adjusted only
by means of the current temperature. The same temperature is also used for updating properties for
backup materials.

Next, the identification parameter for the cell volume is determined as described in chapter 3.2.1. If
the cell volume is part of the interface between virgin and residue, it is inserted into a vector
together with the rest of the cell volumes which also represent parts of the interface.

3.3.2 Solving the continuity equation using vectors
The pyrolysis gas in the ablative material is assumed to percolate in the direction of the vector
calculated using the earlier described geometrical routine. Since cell volumes are not shaped
according to the gas flow, the flow must be decomposed as shown in figure 3.5.

Figure 3.5: Shows the decomposition in i- and j-direction of the gas direction vector

To include the gas flow in the energy balance, it must be expressed in terms of the i- and j-
coordinate. The angle between the direction vector of gas and the i-axis of the current cell volume is

assumed to be a fair representation for finding the fraction parameters iλ (i-direction) and jλ (j-

direction). This allows for the amount of out-flowing gas in the different directions to be found.

43

The mass transfer on differential form is shown in equation 3.2. By using the finite volume method
with backward differencing in time and central differencing in space the following equation is
obtained:

() () () () 0pyr e w n s
m uA uA vA vAρ ρ ρ ρ+ − + − = (3.9)

Here pyrm is the pyrolysis gas leaving the control volume (Note that this is negative). To deal with

vector directions instead of pressure or other controlling means, some corrections to equation 3.9
must be performed. Assuming that no gas is accumulated within the control volume, the amount of
gas flowing into the control volume, plus the amount of gas generated within the control volume,
must equal the gas flowing out of the control volume. This can be expressed as:

1 2 3 4 0pyr e w n s out

in

m x m x m x m x m m
m

+ − + − + =
−

 (3.10)

1 2 3, ,x x x and 4x are controlled by the vector direction of gas in the cell volume. Values of these for

different angles are shown in table 3.1. The amount of gas leaving the control volume in i- and j-
direction can be expressed by:

out out i out j

i j

m m m
m m

λ λ= + (3.11)

And

1i jλ λ+ = (3.12)

Using previous expressions, the mass transport for a control volume can be calculated by:

2 1 4 3out w e s n pyrm x m x m x m x m m= − + − −

1 2e e i outm x m x mλ= +

2 1w w i outm x m x mλ= + (3.13)

3 4n n j outm x m x mλ= +

4 3s s j outm x m x mλ= +

This solution sequence is performed in every cell volume of the ablative material, and is calculated
iteratively until convergence.

 Table 3.1: Direction variables for the continuity equation

Angle X1 X2 X3 X4 λ i-direction λ j-direction
0 (360) 0 1 1 1 1 0

90 1 1 0 1 0 1
180 1 0 1 1 1 0
270 1 1 1 0 0 1

 0< angle <90 0 1 0 1 (+) (+)
 90< angle <180 1 0 0 1 (-) (+)

 180< angle <270 1 0 1 0 (-) (-)
 270< angle <360 0 1 1 0 (+) (-)

44

The subroutines executed by G2DHeat are shown in appendix E.

3.4 New input modifications
For handling the ablative materials in G2DHeat, some additional input specifications have been
created.

3.4.1 Material properties of decomposing materials
For the ablative materials that undergo changes due to pyrolysis reactions, an additional input file
describing the different reactions must be supplied. As functions of the temperature, the properties
of gas and residue product from the pyrolysis reactions are included in the material properties file.
For simplicity, the heats of pyrolysis are also included in this file.

In the input file it is important that the user specifies the decomposing materials prior to the backup
materials. The files with pyrolysis kinetics must be specified in the same order as its connected
material properties file. Example:

DEFMATERIAL -> Indicate the start of defining material properties in the input file
2 -> Number of data files containing a material’s properties
SIPH.b -> Filename with id=1
ALU.b -> Filename with id=2
1 -> Number of materials that are decomposing by pyrolysis
SIPHpyr.b -> The file containing pyrolysis data’s that are attached with material id=1
3 -> Number of material area’s that are specified
1 2 1 81 1 11 -> Material area which is defined as:
1 3 1 11 1 91 <Filename id><grid block><start I-><end I-><start J-><end J-coordinate>
2 1 1 81 1 81

Here aluminium (ALU) as backup material and silica phenolic (SiPh) as ablative material are applied.
For ablative materials, the program automatically calculates the pyrolysis reactions without further
specifications.

3.4.2 Adjustments of the virgin to residue interface
In chapter 3.2.1 the use of a decision variable to find the virgin to residue interface is explained. In
the program it is possible to adjust this value by the input:

PYROLYSIS -> Indicate start of defining the decision value
 0.1 -> The new decision value

The default value of this decision parameter is 0.02, but chapter 3.4.4 describes various situations
where it is desirable to change the parameter.

45

3.4.3 Mechanical erosion
The specification of recession rate or mechanical erosion is performed by the input sequence:

M_EROSION -> Indicate start of specifying erosion/recession
5 -> Number of erosion/recession rates
1.0 0.0 -> Recession/erosion rates as function of time are specified by:
2.0 0.000713540294 <End time for current recession>< recession rate [m.s-1]>
3.0 0.000510695946
4.0 0.000480400863
100.0 0.0

The specification is performed only once in the input file and applies to the entire simulation time.

3.4.4 Printouts
To visualize the results at certain times in the simulation, the visualization tool Tecplot is used. For
saving densities, temperatures and pyrolysis gas production rates to file in the program, the
following input specification is used:

SAVERHO ->Saves densities, temperatures and gas production rates to file.
plot_1.b -> Filename

This file must first be converted by using another tool (g2dnoden) before Tecplot is able to read the
data.

46

3.5 Discussion
There has been a great deal of assumptions in the chapter. Mostly, these have been based on other
literature, but also some of them have come naturally from the methods selected and used. It is
important to have in mind that the numerical approximations will only give results which are in direct
reflection of the theoretical models that are used to describe the physics. Even so, there are
possibilities for improving the results by using better numerical approximations.

3.5.1 Energy considerations
The initial assumptions made for the energy balance in chapter 3.1, are only to some extent true.
When the ablative material decomposes there is likely that cracks will form. Achieving thermal
equilibrium between the solids and pyrolysis gas in a cell volume can then be a problem, since the
gas flow possibly will tend to flow in the cracks where it is less resistance.

In some cases the out-flowing gases accumulate within parts of the ablative material (Austegard
1997). If this happens, the temperature in parts of the material could increase because the heat sink
effects caused by pyrolysis gases flowing through the material cease to exist in these parts. If this
occurs close to the surface, a pressure build-up here could cause parts of the material to be blown
off.

 Since different ablative materials produce different reaction products and gases, it is likely that these
gases are still reactive when leaving the cell volume. How much these remaining reactions influence
the calculations is unknown. But it is considered to be a fair assumption since the main reactions of
creating the gases are finished.

3.5.2 Limitations on Time Step Size
For calculating the temperatures in G2DHeat, an implicit method is used. Generally, the implicit
method is unconditionally stable regardless of the time step size (Versteeg and Malalasekera 1995).
However, in G2DHeat the time step must be reduced when ablative materials are included in the
simulation. This is because of the explicit solution of decomposition reactions and the continuity
equation. Currently there are no available routines in G2DHeat for adjusting the time step size. By
using common sense and experience, the program user should be able to perform this initially in the
input file.

3.5.3 Numerical techniques
The erosion/recession method for fixed grids that is outlined in chapter 3.2.2, has some weaknesses.
In figure 3.6 the recession of the material is shown at three different times in the simulation. For cell
volume “A”, the ending time occurs at t+Δt2. Physically, there is still material left in the cell volume
when it is numerically assumed to be empty. The recession starts at t+Δt1 for cell volume “B”.
Physically, this is also inaccurate. Since the cell volume at this time is already reduced.

47

Figure 3.6: Assumption made for the mechanical erosion

Somewhat, this error can be reduced, since the grid in G2DHeat can form itself according to the
geometry.

When calculating the flow of pyrolysis gas in the continuity equation, a problem with pyrolysis gas
flowing in wrong directions can occur. To illustrate this, a rectangular geometry consisting of
aluminium and silica phenolic is exposed to heat flux on the left and bottom side, while the top and
right side is insulated. This is shown in figure 3.7 with an indication of how the heat distributes itself
in the geometry. In this illustration case, the heat flux is set relatively high to achieve decomposition
and gas generation within the silica phenolic. Since the aluminium conduct heat much better than
the silica phenoic (see appendix F for parameter values), a decomposition front in the silica phenolic
is moving from the border on the left side inwards in the material against the aluminium. For a better
visualisation, the decomposition is present in all parts of the silica phenolic except the dark blue area
shown in figure 3.7.

Figure 3.7: Test case used to illustrate the problem with direction vectors

48

When using the standard decision value of 0.02 for the interface in the simulation, some gas is
flowing in the wrong directions, as seen in figure 3.8. The decision value for the interface is explained
in chapter 3.2.1. Physically, this gas is supposed to percolate through the partially decomposed
material towards the surface on the left side of the geometry. It is the direction vectors, which are
geometrically calculated, that cause gas to flow in the wrong directions. Because the routine
calculating these vectors only accounts for the position of the virgin to residue interface, and not the
pressure or the porosity of the material. Therefore the shortest distance to the interfaced is used.
Since the interface is defined by cell volumes with id greater than 1, the decision value can be
increased to allow a more suitable movement of the interface.

Figure 3.8: Error caused by the vector routine

By increasing the decision value to 0.1, the new interface is defined by cell volumes which have 10
percent or less material left which can decompose. This adjustment to the decision value, results in
correct directions for the gas flow, as shown in figure 3.9.

To fully avoid this type of problems, a better method for calculating direction vectors or a method for
including calculations of pressure and velocity fields in the material should be considered.

49

Figure 3.9: Pyrolysis gas flow with corrected vector directions

50

51

Chapter 4: Test simulation
In order to validate the program, this chapter provides a comparison of a test simulation performed
in two commercial programs (CMA3 and ASTHMA) in addition to G2DHeat. First, a short introduction
to what separates G2DHeat from the two other programs is presented. Second, a description of the
chosen model geometry is given, including the necessary input preparations and boundary
conditions used in the simulations. Finally, the results from the simulations are discussed.

4.1 Simulation programs for decomposing materials
To ensure that G2DHeat is valid for engineering applications, it has been performed code-to-code
comparison with the commercial programs CMA3 and ASTHMA. The implementation of models, the
numerical approximations and other assumptions are verified to some extent by these comparisons.
However, a proper validation of the physical phenomenon is only accomplished by comparing the
simulation results with experimental data. This is performed in chapter 5.

Before comparisons of the simulation results can be made, a fundamental question must be put
forth:

- What separates G2DHeat from CMA3 and ASTHMA?

In answer to the question, both the numerical aspects and the physical aspects are handled a bit
differently by the programs, and therefore detailed comments are necessary. The numerical aspects
of interest are summarized and shown in table 4.1, while the physical aspects of interest are shown
in table 4.2.

52

Table 4.1: Numerical aspects of interest for G2DHeat, CMA3 and ASTHMA Aspects G2DHeat CMA3 ASTHMA

Grid mesh

-Two-dimensional grid mesh. -Quadrilateral cell volumes not necessarily orthogonal. -Multi-block grid configuration. -2D and Axi-symmetrical options. -Nodal scheme with nodes in the centre of the cells. -Eulerian method for moving grid. -Maximum number of grid nodes is currently 35000, but can be increased.

-One-dimensional grid mesh. -Employ sub-mesh with nodelets (or sub-nodes) within each cell element. -Simple representation of plate-, sylinder-, sphere- or tube like geometries. -Lagrangian method for moving grid. -Nodal scheme with nodes in the centre of the cells, and one at the cell face on the surface. -Maximum number of grid nodes is 100.

-Two-dimensional grid mesh. -Quadrilateral cell volumes not necessarily orthogonal. -Axi-symmetrical option. -Two nodal schemes, nodes at the back-face or in the centre of the cells. -Lagrangian method for moving grid in a column-by-column fashion. -Maximum number of grid nodes is 600.

Solution routines

-Implicit solution of the internal energy balance. -Explicit linkage to decomposition events and the mass conservation. -Implicit solution of the surface energy balance. Note: Don’t include calculation of recession rate. -Finite volume type solution procedure.

-Implicit solution of the internal energy balance. - Explicit linkage to the decomposition events and the mass conservation. -Implicit solution of the surface energy balance, except the recession rate which is calculated explicitly. -Finite difference type solution procedure.

-Alternating-direction implicit, classical explicit, column-implicit/row-explicit or column-explicit/row-implicit solution of the internal energy balance. -Explicit or mixture of implicit-explicit linkage to the decomposition events and the mass conservation. -Explicit or implicit solution to the surface energy balance. -Finite difference type solution procedure.

53

Table 4.2: Physical aspects of interest for G2DHeat, CMA3 and ASTHMA Aspects G2DHeat CMA3 ASTHMA

Internal events

-Kinetic model with series of independent parallel reactions of the material. -Maximum number of reactions is 20 for each material. -Allows different threshold temperature for the reactions.

-Kinetic model with series of independent parallel reactions of the material. -Maximum number of reactions is three for each material. -Allows different threshold temperature for the reactions.

-Kinetic model with series of independent parallel reactions of the material. -Maximum number of reactions is five for each material. -Fixed threshold temperature for the reactions (333 K). -Radiation within material gaps and contact thermal resistance.

Boundary events

-Melting ablation with specified recession rate and surface temperature. -Include radiation, convection and other specified heat fluxes. - Similar heat fluxes with specified mechanical erosion. -Adjusts/corrects the convective heat coefficient on basis of an isentropic flow at the surface. -Include calculation of recovery temperature.

-Melting ablation with specified recession rate and surface temperature. -Include radiation, convection and other specified heat fluxes. -General convective heating and thermo-chemical erosion. -Adjusts/corrects the convective heat coefficient for radius changes, char swell and transpiration effects at the surface (blowing). -Allows cracking or fissuring of the surface char layer.

-Melting ablation with specified recession rate and surface temperature. -Include radiation, convection and other specified heat fluxes. -General convective heating and thermo-chemical erosion or mechanical erosion. Adjusts/corrects the convective heat coefficient for transpiration effects at the surface (blowing).

54

4.2 Problem description
This example treats one-dimensional heat transfer in the radial direction of a simple model geometry
subjected to heat causing melting ablation and internal decomposition of the ablative material. The
model is taken as a sectional cut of a larger cylinder geometry that is similar to the blast pipe of a
rocket motor. The model consists of silica phenolic as ablative material and aluminium as backup
material. In the radial direction these measure 6,35mm and 1,8mm, respectively. Since the geometry
is a long cylinder, the heat transfer in the axial direction is neglected. Hence, the left side and right
side of the model geometry is assumed to be insulated. The schematic of the model geometry is
shown in figure 4.1.

Figure 4.1: Schematic of geometry and boundary conditions

The programs have only one boundary condition in common that accounts for ablation reactions at
the surface. This requires a recession rate and ablation temperature to be specified by the user.
Physically, this means that the amount of material being sacrificed to sustain the fixed ablation
temperature at the surface during thermal stress is known. In this simulation, the model is first
exposed to heating/ ablation of the insulation side for a period of 5 seconds, and then cooled for 95
seconds. The boundary conditions are outlined in chapter 4.2.2.

55

4.2.1 Input preparations for the simulation
In order to simulate the example problem, large amounts of input to the programs are required. A
great deal of this input has been found by examining old input files used in CMA3 and ASTHMA, and
conversions and examples provided in ASTHMA 88/PC (1988). All data have been supplied by
Nammo.

The properties of silica phenolic are presented in chapter 2, while the properties for aluminium are
given in appendix F. In G2DHeat these are stored in external files collected by the program from
filenames specified in the input file. In ASTHMA and CMA3 they are specified directly in the input file
of the program.

Grid geometry must also be made for each of the programs individually. For the grid in ASTHMA, the
corner points of the cell volumes are specified in the input file. In total, 17 cell volumes in the radial
direction and 3 in the axial direction are used for the representation of the model. In CMA3 a one-
dimensional grid layout is used. For emulating the axi-symmetrical geometry, the cell volumes are
created by multiplying the width of the cell with the relative area being proportional to the radius. In
this grid, 18 cell nodes/volumes with 10 nodelets (sub-nodes/-volumes) are used. G2DHeat is using
37 cell volumes in the radial direction and 11 in the axial direction.

The estimate for the recession rate (the rate material is mechanically removed) is found using an
empirical correlation with the pressure present on the outside of the insulation (SiPh)(Næss 1998b).
Whether or not the pressure values and correlation are valid for this example is unknown. However,
it is assumed to be a fair approximation since the same rates are employed in all the programs.
Therefore the errors will be equally large. The recession rates used in this simulation are shown in
figure 4.2.

The input files used by CMA3, ASTHMA and G2DHeat are shown in appendix G, H and I, respectively.

56

Figure 4.2: The recession rates used in the simulations

4.2.2 Boundary conditions
Initially, the model geometry has a uniform temperature of 299.15 K. For the entire simulation time,
the boundary condition on the outer face of the aluminium is exposed to free convection and
radiation to the surrounding air. The boundary condition on the inside of the model geometry is
more complex due to the moving boundary. Assuming that the heat transfer within the model to be
relatively low before the surface reaches the ablation temperature, the surface temperature is
initially set to the ablation temperature in the programs. This temperature remains fixed during the
ablation period of five seconds, before radiation cooling of the surface is enabled. The boundary
conditions associated with this example, are shown as the simulation time proceeds in table 4.3.

Table 4.3: Boundary conditions as simulation time proceeds (Myklebust 2008)

Time [s] Ablating surface (SiPh) External surface (Aluminium)

0.0 – 5.0
2473

()
surfaceT K

r f Time

=

=
 2

293.15

26 /
0.05

convection

surface

T K

h W m K
ε

∞ =

=
=

5.0 – 100.0
0.6

473.15
ablative

surroundingT K
ε =

=
 2

293.15

26 /
0.05

convection

surface

T K

h W m K
ε

∞ =

=
=

57

4.3 Results
The accuracy of the program is first assessed by comparing the predicted temperatures from the
programs. Measurements are taken at the outer surface of the aluminium, and the temperature
histories are shown in figure 4.3.

Figure 4.3: Comparison of temperature history at the outer surface

As can be seen from figure 4.3, the results from ASTHMA differ greatly from those obtained using
G2DHeat and CMA3. This big difference suggests that something is wrong with the program, the
specification of input and/or the way the program performs its calculations. In ASTHMA 88/PC
(1988), it is commented on discovered and corrected coding errors. This gives an indication of a
program not fully tested. When trying to find a suitable case to be executed in all programs, without
returning fatal program errors, ASTHMA limited the options. This is because even small changes to
the emissivity caused ASTHMAs surface solution routine to fail. Some uncertainties around the input
specifications therefore exist. Especially, this was a problem when combining the time dependent
and temperature dependent parts of the boundary conditions, to achieve analogous input to the
programs. Because of these arguments, and the fact that the results from G2DHeat and CMA3 are
relatively close, CMA3 is considered to be more trustworthy than ASTHMA in this comparison.

Since CMA3 is considered most reliable, G2DHeat produces conflicting results as shown in figure 4.3.
Provided that the same amount of heat has entered the system, it seems to be a bigger heat sink in
G2DHeat than in CMA3. This could also be the case for ASTHMA, but the heat sink would be much
larger compared to the heat sink in G2DHeat. In the figure it is seen that the profiles of the
temperature curves are quite similar, except the fact that they are at different temperatures. Also
seen from the figure, ASTHMA and G2DHeat start their initial temperature increases at a later point
than CMA3. This supports the probability that a greater heat sink or a greater thermal resistance is
present in G2DHeat and ASTHMA than in CMA3.

58

Figure 4.4: Comparison of temperature profile at 5 seconds

Figure 4.5: Comparison of density in the insulation at 5 seconds

59

To clarify what might cause differences in the results, the period after heat input (from t=5s) is
considered. During this period the heat which has entered the system distributes itself in the model
geometry, or is lost to the surrounding air by radiation and/or convection. The temperature
distribution for the entire model and the density changes for the insulation (SiPh), at the end of the
heat input period (t=5s), are used to illustrate some of the reasons why the differences in the results
occur. Temperature distribution is shown in figure 4.4, while density changes are displayed in figure
4.5.

In the outer most part of the insulation, 25.15 mm to 25.65 mm, the simulated temperatures are
relatively high, while the densities are low. As seen in figure 4.4, the temperatures simulated by
G2DHeat are greater than the ones simulated by CMA3 and ASTHMA, but the densities are less, as
displayed in figure 4.5. The density gradient is small in the radial direction in this part because the
decomposition events stagnate, only leaving residue products (char) behind. Since decomposition
events are controlling the rate at which mass is removed, and the mass loss increases as the
temperature is rising, G2DHeats results are consistent with the results from CMA3. More detailed, a
higher temperature is reached and more mass is removed, for this part of the insulation, in G2DHeats
simulation than it is in CMA3s simulation. ASTHMAs simulation is inconsistent with CMA3s
simulation, since a greater temperature is reached, while less mass is removed from this part of the
insulation. The differences are small, but could be explained by a higher heat flux present in ASTHMA
than in CMA3, because the mass loss is a function of heat input to the system as shown in figure 2.2.
However, this is uncomprehending, due to the fact that the temperature at the surface remains fixed
during the heat input period, hence the heat flux should initially be equal in all the programs.

In the part spanning from 25.65 mm to 26.8 mm, ASTHMAs temperature sinks rapidly within the
insulation compared to the temperatures of CMA3 and G2DHeat. ASTHMAs density, on the other
hand, is larger since less insulation has decomposed. It seems that in ASTHMAs simulation there is a
larger heat barrier at the outer parts of the insulation, since less heat is allowed to enter the inner
parts, which again prevents decomposition events. In this part of the insulation, the programs share
the fact that all the densities are reduced from the insulations virgin state towards the residue (char)
state. The difference in density becomes very eminent in this part, as shown in figure 4.5. A
difference between CMA3 and G2DHeat is also observed, where more insulation is removed in
G2DHeats simulation.

In the remaining part of the insulation the temperature simulated by CMA3 is the highest. At the
same point the density of the insulation is close to the virgin state in all the simulations. This
indicates that less thermal resistance is present in the outer parts of the insulation in CMA3 than in
G2DHeat and ASTHMA. It is also important to notice that this allows more thermal energy to be
stored, since the density is much larger.

 The deviations in temperature at the outer surface of the aluminium simulated by G2DHeat and
CMA3 are also shown in figure 4.3. These can be explained by the temperature and density
distribution in the insulation, at the end of heat input (t=5s), for the different programs. G2DHeats
temperature, which is higher than CMA3s in the outer parts of the insulation, is insufficient to heat
the aluminium to the same temperature as that of CMA3. The total amount of energy used to heat
aluminium is less for G2DHeat than for CMA3. This is because the density in the outer parts of the

60

insulation is lower in G2DHeats case, while temperature in CMA3s case is higher in the parts where
the density is greater.

It is clear that there is a larger heat sink in G2DHeat than in CMA3. For some reason, more insulation
material is decomposed to provide this larger heat sink. The cause of this could be; different handling
of the boundary condition, numerical handling of decomposition events, errors in the program code
and/or the usage of incorrect input values.

In G2DHeat the surface remains fixed and numerical manipulation is employed to model the receding
surface as explained in chapter 3.2, while in CMA3 the grid follows the receding surface. The
different ways the surface is handled could result in errors, causing a larger heat sink. It is unknown
how big the errors can be or if they are present at all.

When the cell volume has started to recede in G2DHeat, it is assumed that decomposition events are
insignificant in this cell volume, since the material is close to or already fully decomposed in this cell
volume, and therefore neglected. It is not likely that this alone causes the entire error, because there
is too little mass remaining in the cell volume that can decompose and result in a significant heat
sink. However, the error can be reduced by selecting smaller cell volumes for the representation of
the model geometry.

A great deal of modifications has been made to G2DHeat, and it is not unlikely that logical errors can
exist in the program, since the program is not tested as much as CMA3. However, this error, if it
exists, might give an additional contribution to the heat sink present in the insulation during
decomposition events. More testing is necessary to discover such errors, because the FORTRAN
compiler does not recognise these.

Unit conversion of material properties and reformulation of kinetic parameters due to different
definitions of these in the programs, are also possible sources of error. A misinterpretation can easily
occur since the documentation describing the conversions (ASTHMA 88/PC 1988) is divergent.

To support what has been stated as cause of differences in temperature, using simulation results at
the end of heat input, simulation results from a later point in time (t = 10s) is considered. The
temperature profile at this time is displayed in figure 4.6 and the density distribution in the insulation
is shown in figure 4.7.

61

Figure 4.6: Comparison of temperature profile at 10 seconds

Figure 4.7: Comparison of density of the insulation at 10 seconds

62

From figure 4.6 it is seen that the heat has started to distribute itself in the model geometry, the
temperature in the aluminium increases while the temperature in the insulations outer parts
decreases. At the same time the amount of energy remaining in the model for the different programs
after the heat input becomes more eminent. The highest simulated temperature is obtained using
CMA3, followed by G2DHeat and then ASTHMA.

Since the temperature in the CMA3 simulation is higher than for G2DHeat, especially in the inner
part of the insulation, decomposition events are more active, which can be seen from the change in
density between figure 4.5 and figure 4.7. The density in the outer part gets closer to the density of
G2DHeats, while in the inner parts of the insulation it becomes less than G2DHeat. This complies
with the fact that there is a greater mass loss with increasing temperature in the inner parts of the
insulation. However, there is not enough insulation decomposing or heat sink effect to lower the
temperature in the aluminium to the same level as the temperature in G2DHeats simulation. Even
though the density in CMA3 is closing in on the one simulated by G2Dheat, the decomposition
reactions are occurring at a lower temperature than they did in G2DHeat, and less heat sink effect is
generated. Because, as it can be seen from the curve for heat of pyrolysis in figure 2.6, it increases at
a higher rate than the temperature, thus more energy is consumed by the same amount
decomposed material, the higher the temperature becomes.

At 10 seconds the temperature simulated by ASTHMA is lower than both CMA3 and G2DHeat, as
shown in figure 4.6. This is quite compatible with the simulated temperature at 5 seconds, since from
this point heat is lost to the surroundings and/or is used to decompose parts of the insulation. Hence,
it becomes more apparent that there has been a larger heat sink, or that heat has been prevented to
enter the system in some other way. When considering ASTHMA, the density is large in the outer
parts of the insulation (25.65 mm to 26.15 mm), where the simulated temperatures are at their
highest, as displayed in figure 4.4 and figure 4.6. These temperatures are not so high that the
aluminium can be heated sufficiently to reach the same temperature as simulated by CMA3. The
deviation is enhanced since the remaining insulation, in this part, continues to decompose, which
provides a more powerful heat sink, compared to CMA3.

63

Chapter 5: Comparisons to experimental observations
In this chapter two different geometric models are used to compare the program simulations with
experimental observations. A simple model is applied to assess the simulated results for temperature
and char depth. A more complex model is then used to show that the program can perform two
dimensional simulation of heat transfer in decomposing materials. At the end, the simulated char
depths are compared to those experimentally measured.

5.1 The simple model
The simple model described in chapter 5.1.1 is used in this comparison of simulation results from
G2DHeat to experimental observations. Nammo has performed firing tests of the rocket motor,
where the model geometry is taken from, to obtain these experimental observations. Here the
rocket motor was mounted horizontally to a static vehicle. During the testing they monitored
temperatures on the motors outer surface, before they examined the fired motor and measured the
char depths of the insulation (SiPh).

 The transient heat transfer from the hot combustion gases to the insulation material is simulated by
assuming an isentropic flow through the motor. Local convective heat transfer coefficient and
recovery temperature are then calculated from the properties of the combustion gases together with
stagnation pressure and stagnation temperature. How this is performed is described by Riise(2008).

5.1.1 Model definition
The model is assumed to be insulated on its right and left side for the same reasons as stated in
chapter 4.2. Since ablation temperature in this case is unknown for silica phenolic, it is only
performed simulations with pyrolysis effects and mechanical erosion present. The model is shown in
figure 5.1.

Figure 5.1: Schematic of the simple model

64

Total time for the simulation is 60 seconds. The boundary condition for the outer surface is free
convection to the surrounding air, with a convective heat coefficient value of 26 W.m-2K-1 and
ambient temperature of 288.15 K. Inside the motor the boundary condition is divided into three time
periods. In the two first time periods (0 - 4.4s and 4.4 - 5s), a subsonic flow of combustion gases
through the motor is used to calculate the convective heat transfer coefficient and the recovery
temperature (a temperature adjusted or corrected for the mechanism of decelerated combustion
gases in the surface boundary layer)(Riise 2008). Properties of the combustion gas together with
stagnation pressure for the two time periods are shown in table 5.1. In the cooling phase, the third
time period (5 - 60s), a convective heat transfer coefficient of 50 W.m-2K-1 and ambient temperature
of 473K are used. All values are supplied by Nammo.

Table 5.1: Property values used for calculating recovery temperatures and convective heat transfer coefficients

Property Unit Value

Gas constant (R) J.Kg-1K-1 313.18

Adiabatic constant (γ) - 1.1553

Stagnation pressure (0P) – time[s] 0 - 4.4 Pa 9.5×106

Stagnation pressure (0P) – time[s] 4.4 - 5 Pa 4.5×106

Stagnation temperature (0T) K 3165.9

Prandtl number (Pr) - 0.41

Viscosity (µ) Ns.m-2 0.76×10-4

Radius in the nozzle throat (r) m 0.01855

Material properties of silica phenolic and aluminium are shown in appendix F, while the mechanical
erosion rate used in the simulation is shown in figure 4.2.

65

5.1.2 Results
The temperature histories at the top and bottom of the horizontally mounted motor were provided
by Nammo, and show temperature variations on its outer surface. Figure 5.2 compares the
temperature history on the external surface obtained from experimental observations and results
from the computer simulations.

Figure 5.2: Temperature history on the external surface

From figure 5.2 it can be seen that there was a considerable difference in the measured
temperatures on the top of the motor compared to those measured at the bottom of the motor. This
difference might be reduced during flight, since the rocket no longer is restrained to the static
vehicle, thus causing less accumulation of heat beneath the rocket motor. Considering this effect, it is
probable that the temperature would have ended up somewhere in-between these measured
results. Since such effects are absent in the simulation program, the simulated results also should
have ended up in this region.

 During motor burn (0 – 5s) the simulated temperatures on the outer surface remain unchanged,
which is consistent with the measurements. At burn out (t=5s), the insulation depth for the case with
mechanical erosion is reduced, while in the case where only pyrolysis is considered, the insulation
depth is constant. The reduction of insulation depth should give an increase of the outer surface
temperature at an earlier point than in the case where it remains constant. This is because the same
temperature front now has a shorter distance to travel. The total temperature increase should also
be lower in this case, since the removal of mass will give reductions to the amount of stored energy.
The simulation results displayed in figure 5.2 is in agreement with these predictions.

Comparing the simulated temperatures and the experimentally obtained temperatures shown in
figure 5.2 it is clear that there are deviations. In the simulation including mechanical erosion the
increase in temperature starts early as predicted, but looking at the two measured temperature

66

curves it is evident that the simulation results are not within the desired region. Choosing a different
erosion rate might shift the simulated temperatures closer to the measured values. The total
temperature increase will also be influenced by a change in the erosion rate, this by allowing more or
less heat to enter the parts of the material remaining after the erosion.

Considering the other simulated case, the temperature history for the top side of the rocket motor is
a good match up to approximately 25 seconds. After the 25 seconds, the simulated temperatures
increase even further. This is probably because energy is present in parts of the material which is
eroded in the experimental case.

Other reasons for the differences between the simulated and experimental results could be:

- Unrealistic values of material properties used in the simulations.
- Poor estimates of the heat of pyrolysis and specific heat capacities for the pyrolysis gas.
- Too coarse assumptions made to the physical models implemented in the program.
- Inadequate numerical approximations.
- Insufficient specification of the boundary conditions.
- Physical effects not accounted for in the program, such as chemical reactions on the material

surface.
- Experimental errors.

The values for the material properties are collected from old input files used in CMA3. The origin of
these values is unknown and could therefore be faulty. If the composition of silica phenolic used in
this rocket motor is inconsistent with the properties collected from the input files, the simulation
results could contain errors. Another possible source of error is the conversion of units between
CMA3 and G2DHeat.

The heat of pyrolysis and enthalpies of the pyrolysis gas are determined from analysing the pyrolysis
gas as described in chapter 2.4. For the simulations performed in this chapter, relevant values are
gathered from the old input files used in CMA3. The heat of pyrolysis is assumed to be a function of
temperature only, or more detailed, a function of the pyrolysis gas enthalpy and the enthalpy of the
decomposing material when neglecting the pressure changes in the material. This approximation and
the values gathered from the input files might cause errors in the simulations, but the size of the
errors is unknown.

If the decomposition reactions that occur in silica phenolic are dependent on each other, it can be
inadequate to use the kinetic model currently implemented in the program. The reason for this is the
assumption that the decomposition reactions are independent of each other. Provided that the
reactions are dependent on more variables than temperature alone, a different kinetic model for
decomposition reactions should be considered.

The numerical approximations made in the program could be insufficient for simulating the physical
events occurring when the insulation material is decomposing. Suggested improvements are
described in chapter 6.2.

In the rocket motor, the flow of exhaust gases is assumed to be isentropic. Using this assumption in
the program calculations of the heat transfer coefficient and recovery temperature, would result in a
simulation of an ideal situation. But in real life, such ideal situations seldom occur, due to energy

67

losses such as chemical reactions, energy stored in solid particles etc. Assuming the temperature
after the firing of the motor to be constant at 473K, is a rough estimate since the temperature will
decrease from a very high temperature towards the ambient temperature on the outside of the
rocket. To better approximate the boundary conditions, the boundary layer near the surface could be
investigated. This could lead to better estimates of the actual heat flux entering the material, but the
models are often more complicated and need accurate user specified values for improving the
simulation results.

If other physical effects such as fissuring of the material, chemical reactions at the surface and/or
accumulated pressure in the material occur, are not accounted for by the program. This could lead to
poorer quality of the simulation results.

Experimental errors caused by the measuring equipment or the layout of how the firing tests are
performed, could lead to inaccurate results. However, this is not likely, since there has been
performed several firing tests with qualified personnel monitoring the tests.

The remaining thickness of silica phenolic is 3.2 mm in the physically tested rocket, and 1.1 mm of
this is char. In figure 5.3 and 5.4, the material densities for the simulated cases are shown at the end
of the simulation.

Figure 5.3: Densities in the case with pyrolysis and mechanical erosion (Time= 60 s)

68

Figure 5.4: Densities in the case with pyrolysis (Time= 60 s)

For the situation with mechanical erosion, it is seen in figure 5.3 that the char depth is near the
measured depth of 1.1 mm. The dark green area is more or less char in this figure, and it is easy to
see how the material density in the partially decomposed region is varying. For the observed char
depth in the tested motor, it can be hard to determine the actual density of the material or the
variation of density in the partially decomposed region. To be certain that the simulated char depth
is valid with the measured one, different tests with various char depths remaining after the tests
should be compared with corresponding computer simulations.

For the case with pyrolysis shown in figure 5.4, the thickness of the char layer is observed to be much
grater than the measured one, but not as deep. This is probably because a great deal of the char
layer is removed by erosion in the experimental tests, thus allowing the decomposition front to reach
further into the material.

69

5.2 The complex model
One of the unique features of G2DHeat is the possibility of simulating two-dimensional heat transfer
in the decomposing materials. Therefore, more complex model geometry is selected so this can be
visualised. Similar to the simple model, Nammo has performed analogue firing tests with the rocket
motor where the geometry is taken from.

5.2.1 Model definition
The model includes an axial two dimensional cut of the blast pipe and nozzle of the rocket motor.
The model consists of silica phenolic as insulation with a graphite nozzle throat insert to withstand
erosion when high velocity combustion gases are flowing through the nozzle. The motor case consists
of aluminium. The left side of the model is assumed to be insulated, since the axial heat transfer from
the rest of the structure is neglected. The schematic of the model is shown in figure 5.5.

Figure 5.5: Schematic of blast pipe and nozzle

The total simulation time is 300 seconds. The boundary condition on the outer surface is free
convection with a heat transfer coefficient of 20 W.m-2K-1 and an ambient temperature of 288 K. The
motor is burned for a period of 15 seconds before it is cooled for a period of 285 seconds. For the
boundary conditions on the inside of the motor, an isotropic flow is used to calculate the local
convective heat transfer coefficient and recovery temperature until burn out of the motor (t=15s).
The flow is assumed to be subsonic up to the nozzle throat, and supersonic after. Computer
calculations are described by Riise(2008). Values for this simulation are given in table 5.2. In the first
part of the cooling period (15 – 40s) the convective heat transfer coefficient 50 W.m-2K-1 and the
ambient temperature is 473 K, while for the last part of the cooling period (40 – 300s) the convective
heat transfer coefficient is 20 W.m-2K-1 and the ambient temperature is 288 K. All values are supplied
by Nammo.

Material properties for the silica phenolic, aluminium and graphite are given in appendix F.

70

Table 5.2: Property values used for calculating recovery temperatures and convective heat transfer coefficients

Property Unit Value

Gas constant (R) J.Kg-1K-1 317.57

Adiabatic constant (γ) - 1.1553

Stagnation pressure (0P) Pa 6.5×106

Stagnation temperature (0T) K 2927

Prandtl number (Pr) - 0.41

Viscosity (µ) Ns.m-2 0.76×10-4

Radius in the nozzle throat (r) m 0.0115

5.2.2 Results
To verify that the simulation temperatures are representative for what happens physically, they are
compared to a temperature measurement from the firing test at the surface point shown in figure
5.5. These temperature histories are shown for both situations in figure 5.6.

Figure 5.6: Temperature history for the complex model

During motor burn (0 – 15s), it is seen from the figure 5.6 that the simulated temperature increases
slower than the experimental. It is likely that the experimental temperature also should increase at a
slower rate in the same time period. This is because it takes some time for the heat to reach the

71

point where the measurement is taken. Looking at the curve for the experimentally obtained
temperatures, the marked points represent the eight measurements available. Thus, this only
provides a rough indication of how the temperature changes.

As figure 5.6 shows, the maximum temperature reached by the simulation does not agree with the
one experimentally measured. The insulation depth where the point of measurement is projected to
the symmetry axis is initially 8.3 mm, while after burn out (t = 15s) the depth is 6.5 mm. This erosion
is not accounted for in the simulation. A reduction in the insulation depth will cause heat to reach
the aluminium faster. Due to the long burn time this allows the aluminium to achieve a higher
temperature than when the insulation is intact, and thus increasing the thermal resistance.

Figure 5.7: Gas production rates as time proceeds

To illustrate the rate at which the material is decomposing, gas production rates for the simulation
are presented in figure 5.7. The decomposition rate is at its climax at the start of motor burn, and
then decreases from burn out and throughout the cooling period. After about 30 seconds of

72

simulation time, insignificant amounts of gas generation occur. Corresponding density changes are
shown in figure 5.8.

Figure 5.8: Material densities as time proceeds

From the start of motor burn till approximately 30 seconds have passed, the difference between char
and virgin is eminent, because the decomposition zone is very narrow. During the cooling period the
latent heat causes the decomposition zone to increase, this is especially visible after 300 seconds
nearby the nozzle throat insert in figure 5.8. Studying the kinetic values given in table 2.2, it is natural
for this phenomenon to happen, since the temperature, even at the end of the simulation, is greater
than what is necessary for the decomposition reactions to occur.

After the firing test, measurements of char depths were performed at the positions A, B, C and D
shown in figure 5.9.

73

Figure 5.9: Positions where the char depth is measured

When comparing the measured char depths with the simulated ones in table 5.3, it is assumed that
material density up till approximately 1550 Kg.m3 of the initial 1742 Kg.m3 is defined as char
compared to the experimentally measured. It is also important to have in mind that the
experimentally measured depth is the actual char depth without including the depth of receded
insulation, which for some of the positions is relatively large.

Table 5.3: Char depths measured from the simulated and experimental results

Position
Simulated

[mm]
Experimental

[mm]

A 3.4 3.4

B 9.3 8

C 4.7 4.8

D 3 3.1

There is some deviation between the simulated and experimental char depths in table 5.3. One
possible reason for this is the absence of erosion in the simulated case. Depending on what rate the
insulation recedes during motor burn, the final char depth can become different. Therefore more
physical models should be included in the program to calculate the recession, or studies of how the
material recedes at different positions should be carried out.

74

At position C in figure 5.9 the material has not receded at all in the experimental case, therefore
measurements at this point is representative for comparison with at the identical position in the
simulated case. The predicted char depth in position C is in close range with the experimental results.
Decomposition events in this part of the material are mainly influenced by temperature differences
because the surface remains fixed, and is therefore not chemically or mechanically consumed.

Many other sources of errors due to the assumptions made can also significantly affect the results.
These are mentioned in chapter 5.1.2.

75

Chapter 6: Conclusions and further work
In this chapter the present program development and results are concluded. Then, recommendation
for further work to improve the program is presented.

6.1 Conclusions
From the development and testing of G2DHeat the following conclusions can be drawn:

• The program is modified to solve the energy equation implicit in time for two-dimensional
multi-block grids.

• The implicit solution routine performs well compared to the explicit routine, especially when
considering the possibility of using a larger time step in the simulation. In the explicit routine
it is necessary to check, and possibly adjust, the time step size to ensure a convergent
solution, while the implicit routine avoids this, and therefore saves computational time. The
accuracy of the implicit routine, when only calculating conduction in solids, is in close range
with the commercially available program COMSOL Multiphysics. Allowing the use of different
time step to achieve adequate results, the computation time for the implicit routine is lower
compared to the explicit when grids containing less than approximately 9000 cell volumes
are used.

• A source term that includes internal energy effects from endothermic and exothermic
reactions in the heat transfer calculations is added to the energy balance in the program. In
the present program this is used for endothermic pyrolysis reactions of ablative materials.

• The pyrolysis gas flow is calculated explicitly in time by solving the continuity equation using
direction vectors pointing from the center of the cell volume towards the interface between
the residue zone and the decomposition zone of the ablative material.

• A routine for calculating charring ablation with known recession rate is developed. While
mechanical erosion of ablative materials is included as an additional input option when using
other boundary conditions.

• Comparing the results from the test simulations performed with the commercial programs,
CMA3 and ASTHMA, to G2DHeat, it is evident that a greater heat sink is present in G2DHeat
and ASTHMA, than in CMA3. Although the programs use the same kinetic model, significantly
differences in results are observed. To determine the cause of error, extensively work with
fault localisation is necessary.

• Comparing the experimentally obtained measurements with simulations performed with
G2DHeat in chapter 5, the char depths after simulation agree well with the experimental
results. Even though a great deal of simplifying assumptions is made in the program, the
results give an indication of a program being able to cope with two-dimensional heat transfer
calculations for ablative materials. However, the boundary conditions currently available in
G2DHeat are not sufficient to properly handle the ablative phenomenon, since the
temperature history, as well as recession rate, must be included in the input file. These are
difficult to predict, because, physically, they are functions of the heat transfer occurring
within the material in addition to the events adjacent to the surface.

• The many uncertainties that arises from the comparisons of results, suggests that more
testing is necessary before G2DHeat can be considered trustworthy.

76

6.2 Recommendations for further work
A considerable amount of changes and improvements have been made to G2DHeat during this work.
However, there is still a great deal of improvements and testing necessary before the program can be
considered trustworthy and fully qualified to simulate the physics of ablation.

In chapter 4.3, the possibility of an additional heat sink present in G2DHeat is commented. To locate
or determine its existence, the following suggestion is given. First, a case should be generated for
CMA3, then verified with experimental results, before the same case is employed in ASTHMA. If
these approximations yield satisfying results and can be supported by the experimental results,
verification and troubleshooting of G2DHeat can be initiated. If an additional heat sink exists, the
source of error should be found by comparing the input and output of the programs. The short time
available in this thesis for testing and attempting to find the cause of the deviation in the results,
thus the reason for believing that there exists an additional heat sink, has been hindered by too
many uncertainties concerning CMA3 and ASTHMA.

 Further work recommended for improving G2DHeat is given throughout the rest of the chapter.

6.2.1 Improving the calculation of pyrolysis gas flow
To compute the continuity of pyrolysis gas in G2DHeat, a generation of direction vectors to decide
the directions of the gas flow are required. This determination of gas flow is not entirely correct, but
is assumed to be a fair approximation, considering the lack of information on pressure relations
within the decomposing materials. However, in further work this simplified assumption should be
improved by including a calculation of pressure and velocity field of the pyrolysis gas. If the gas flow
is governed by the pressures inside the material, there is no need for complicated routines for
calculating the interfaces or direction vectors any more. The flow direction is given directly by the
pressure differences within the material.

To prevent the pressure controlled gas flow from entering impenetrable materials when flowing
through the geometry, permeability values for the materials could be used. Where, values between 1
and 0 represent the partially penetrable material and 1 the impenetrable. In some way, these values
perhaps could be determined by the decomposition state of the ablative material.

Another possibility, but less accurate, is to improve the geometrical routine to handle more complex
situations as discussed in chapter 3.4.3.

6.2.2 Improvements to the boundary conditions
A method for calculating the local convective heat coefficient inside the rocket motor, assuming an
isentropic flow adjacent the surface, is present in G2DHeat. This uses the radius at different axial
positions in the motor, the pressure, and properties of the gases flowing at the surface to obtain the
coefficients. However, the calculation is performed only once, which is in the initiation procedure of
the program. To improve the method, this should be executed for every time step to include the
effects of an increasing radius, as the ablative material is receding.

To simulate charring ablation, the present G2DHeat program requires a recession rate and an
ablation temperature to be specified in the input file. To cope with situations where the recession
rate and/or ablation temperature are unknown, other methods should be developed. The method
suggested in chapter 2.5 for instance, is a simple way of calculating the recession rate. Instead of

77

solving the chemical reactions, the heat of ablation is known and the recession rate is calculated
from the energy balance at the surface. There are also methods that include the chemical reactions
at the surface. A short introduction to how these methods can operate is given in the following
suggestion.

The chemical reactions at the surface are often complicated and require greater amount of
information of the ablative material, reaction gases, and the boundary layer close to the surface
(Schoner 1970). Programs, such as CMA3 and ASTHMA, include these chemical reactions in their
surface boundary conditions.

Figure 6.1: Energy balance of the surface

Developing a routine for calculating the energy balance at the surface should be the first step for
introducing chemical reactions to the G2DHeat program. The purpose of the routine is to provide a
new surface temperature and a new recession rate for the internal energy balance. Numerically, this
could be handled explicit or implicit in time. The present internal decomposition events and the
internal mass transfer are using the explicit approach, and therefore it should be considered for the
chemical reactions too. An energy balance of the surface using the film coefficient model is given by
(Schoner 1970):

() () () ()* *
, , ,

, , 0

wT
e e H r e e e M i e i w f i r r w g g w

i

convection
chemical

radiation in radiation out conduction

u C H h u C Z Z h m h h m h h

Q
Q

Q Q Q

ρ ρ ⎛ ⎞− + − + − + −⎜ ⎟
⎝ ⎠

+ − − =

∑
 (6.1)

This is actually a generalized case of the energy equation and includes unequal mass diffusion
coefficients (ASTHMA3 1972 and Schoner 1970). Parameters with subscript “e” are defined at the
boundary layer outer edge shown in figure 6.1, while parameters with subscript “w” are defined at
the boundary surface. The convective term in equation 6.1 represents the diffusive heat flux from
the gas phase to the surface, and excludes chemical energies. The second term represents the net of
chemical energy fluxes at the surface. The rest of the terms are described in chapter 2.5. More
information concerning specific terms is given in ASTHMA88/PC (1988).

78

In common, CMA3 and ASTHMA are using three sorts of pre-calculated tables for obtaining the
parameters in the energy balance, namely:

- Time tables (Parameters as functions of simulation time).

Heat transfer coefficient(e e Hu Cρ)

Pressure (P)

Recovery enthalpy (rH)

Radiation flux (,radiation inQ)

Mass transfer coefficient (e e Mu Cρ)(or the constant ratio /M HC C)

- Thermo-chemistry tables (Parameters as function of pressure, dimensionless ablation rate (

' /c r e e MB m u Cρ=) and dimensionless pyrolysis gas rate (' /g g e e MB m u Cρ=).

Surface temperature (' '(, B and B)w c gT f P=)

Energy caused by diffusion driving force(“e”) (* ' '
, , (, B and B)wT
i e f i c g

i
Z h f P=∑

Enthalpy of gases adjacent to the surface (()' ', B and Bw c gh f P=)

Energy caused by diffusion driving force(“w”) (*
, , (and)wT
i w f i w

i

Z h f P T=∑)

Enthalpy of gases at outer boundary layer edge ((and)e wh f P T=)

- Material property tables (Parameters as functions of surface temperature).

Enthalpy of residue products (char) (rh)

Enthalpy of pyrolysis gas (gh)

Surface emissivity (surfaceε)

These are generated by experiments and/or by separate chemistry programs, such as EST
(Aerotherm Equilibrium Surface Thermochemistry Program, version 1, 2 or 3), ACE (Aerotherm
Chemical Equilibrium Program) and GASKET (Aerotherm Graphite Surface Kinetics Computer
Program). To create the thermo-chemistry tables, mass transfer coefficients (within the time range of
the simulation)(e e Mu Cρ) must be supplied to the chemistry program. Alternatively, heat transfer

coefficients (e e Hu Cρ) and a ratio between the heat and mass transfer coefficients (/M HC C)

instead. In addition, some of the programs must also be supplied with pre-exponential factors, which
are used for kinetically controlling the surface reactions. Input of material and external gas
compositions is obvious, and the remaining input is only used for limiting the output of the program.
For instance, specifications of pressure, pyrolysis gas flow rate and ablation rate range (ASTHMA3
1972).

79

To obtain the physical data necessary for simulating the surface in G2DHeat, this tabular approach
should be considered. In this way, there are enough properties available for solving the surface
energy balance at the current time step. For further development of G2DHeat, the following surface
solution process (for a time step) is suggested:

1. Solve the internal decomposition events to obtain the mass flow of pyrolysis gas (gm).

2. Gather necessary values from the time tables at the current time in the simulation, and if
necessary, perform corrections to the heat transfer coefficient for various effects adjacent to
the surface (Schoner 1970). If the mass transfer coefficient is absent from the time tables,
use its ratio to the heat transfer coefficient instead.

3. Calculate the dimensionless pyrolysis gas rate.

4. From an initial guess of the ablation rate(rm), iteratively solve the energy balance in the

sequence:
 Calculate the dimensionless ablation rate.
 Obtain the surface temperature and other parameters from the thermo-chemistry

tables.
 Obtain parameters from the material property tables using the surface temperature.
 Calculate the radiative and the conductive heat flux using the surface temperature

(See chapter 2.5).
 Insert values into the energy balance and solve. If there is departure from zero,

select a better guess for the ablation rate and start over. Otherwise, the ablation rate
and surface temperature is determined, so move to the next solution step.

5. Calculate the recession rate from the ablation rate (See chapter 2.5) and make adjustments
to the cell volumes time “start of erosion” (See chapter 3.2.2).

6. Solve the internal energy balance using the obtained surface temperature.

6.2.3 Including slow cook-off calculations
In tactical missile applications it is often important to characterise the thermal behaviour of the solid
propellant, and consequently its sensitivity. If the missile is subjected to unplanned stimuli such as an
external fire, it can be useful to predict the detonation or ignition time of the missile. To determine
the response of the propellant, slow cook-off tests can be performed. These tests involve uniformly
heating of the missile structure including its propellant at low heating rates. After some time, the
propellant reaches a certain temperature where exothermic reactions (due to decomposition of the
propellant) give an additional increase of the temperature. When this temperature is reached, the
heating rate becomes self sustained, and eventually causing the propellant to ignite (Victor 1990).

With the new feature of having a source term in G2Dheat, it is possible to simulate these exothermic
reactions in the program. The reaction kinetics of the propellant can be implemented in the same
way as the pyrolysis kinetics in the present program.

80

6.2.4 Improving physical models
The kinetic model and boundary conditions in the program do not include all the relevant physics
involved in charring ablation, but they provide a basis for further development of the program. In
time, more of the physics can be added as experimental data becomes available. Some suggestions
for improvements are:

- Allowing decomposition of multiple materials, each producing a pyrolysis gas that can react with
the other gases and the solid material it percolates through.
- Allowing thermal and chemical non-equilibrium.
- Ablation reactions at the surface of the material, not being fully charred.
- Thermo chemical reactions at the surface of the material.

6.2.5 Miscellaneous improvements
When using a large amount of cell volumes in G2DHeats grid (greater than 9000 cell volumes), a
parallelisation of the computer code would offer significant computational economies, since the
work load is divided on multiple CPUs (Riise 2008). Especially an improvement for the implicit
solution routine as it is seen from the comparison of computational time with the explicit solver in
figure 1.16.

Simplifying the input specification to the program can be performed by creating a graphical user
interface. Potentially, this also reduces the human error when the input files are created. A
visualization tool could also be integrated or connected to the user interface for making it more
convenient for the user to verify the simulated results.

To handle a complex motor structure in a two-dimensional grid representation can be difficult, since
the motor structure can consist of an irregular geometry. Therefore in further development of the
program, a three-dimensional expansion should be considered.

81

References

Austegard, Anders (1997). “An experimental and numerical study of a jetfire stop material and a new
helical flow heat exchanger”. “Doctoral thesis”. Trondheim: NTNU.

ASTHMA3 (1972). “USER'S MANUAL, AEROTHERM AXI-SYMMETRIC TRANSIENT HEATING AND
 MATERIAL ABLATION COMPUTER PROGRAM”. California: Air Force Rocket Propulsion
 Laboratory.

ASTHMA88/PC (1988). “Installation and User’s Guide, Axi-Symmetric Transient Heating and Material
 Ablation Program ”. California: Galary Applied Engineering, Inc.

CFD-online (2008). “Source term linearization, Picard's Method”. Collected 25.06.2008 from
 http://www.cfd-online.com/Wiki/Source_term_linearization

Chapman, Stephen J. (2004). “Fortran 90/95 for Scientists and Engineers, second edition”.
 New York: McGraw-Hill.

Comsol (2008). “PRODUCTS, COMSOL MULTIPHSYSICS”. Collected 12.05.2008 from
 http://www.comsol.com/products/.

COMSOL 3.4 (2007). “Material/coefficients Library in COMSOL Multiphysics”. Collected 20.05.2008
 from version 3.4.0.248.

Grønli, Morten (1996). “A Theoretical And Experimental Study Of The Thermal Degradation Of
Biomass”. “Doctoral thesis”. Trondheim: NTNU.

Incropera, Frank P and David P. DeWitt (2002). ”Fundamentals of Heat and Mass Transfer, Fifth
 Edition”. New York: John Wiley & Sons, INC.

Moran, Michael J. and Howard N. Shapiro (2004). ”Fundamentals of Engineering Thermodynamics”.
New York: John Wiley & Sons, INC.

Myklebust, John (2008). ”Personal Communication”.
 Raufoss: Nammo AS.

Næss, Erling (1998a). “Input file, CMA3” Dated 02.07.1998.
 Raufoss: Nammo AS.

Næss, Erling (1998b). “CMA3calculations, Excel document” Dated 07.07.1998.
 Raufoss: Nammo AS.

Rian, Kjell Erik (2003). ”Numerisk Varme- og Strømningsteknikk, forelesningskompendium”.
 Trondheim: NTNU.
Riise, Jørn (2008). “Termisk analyse av rakettmotorer”.
 Project report. Trondheim: NTNU.

Rønningen, Jan-Erik (2001). ”Rakett-teknikk, innføring i grunnleggende rakettmotor teori, 2 utgave”.
Andøya: Nasjonalt Senter For Romrelatert Opplæring.

82

Schoner, Robert J. (1970). ”User`s Manual, Aerotherm Charring Material Thermal Response and
Abation Program, Version 3”. California: Air Force Rocket Propulsion Laboratory.

Sutton, George P. and Oscar Biblarz (2001). ”Rocket Propulsion Elements, Seventh Edition”.
 New York: John Wiley & Sons, INC.

Versteeg, H. K. and W. Malalasekera (1995). ”An introduction to Computational Fluid Dynamics, the
 finite volume method”. Harlow(England): Pearson Education Limited.

Victor, Andrew C. (1990). “Insensitive Munitions Considerations”.
 Washington: American institute of Aeronautics and Astronautics, Inc.

Ørbekk, Erland (1994). “Algebraic and elliptic grid generation for CFD applications”.
 “Doctoral thesis”. Trondheim: NTH

83

Appendix A: Discretisation of the Heat Balance Equation
The transient heat transfer in two-dimensions can be expressed by (Versteeg and Malalasekera
1995):

T T Tc k k S
t i i j j

ρ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞= + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

First, the heat contribution is integrated over the control volume in time and space:

t t t t t t t t

t t t t
CV CV CV CV

T T Tc dV k dVdt k dVdt SdVdt
t i i j j

ρ
+∆ +∆ +∆ +∆⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞= + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫

Then, the Gauss-theorem (from volume to face integral) is employed:

t t t t t t t t

CV t t t t
e w CVn s

T T T T Tc dt dV kA kA dt kA kA dt SdVdt
t i i j j

ρ
+∆ +∆ +∆ +∆⎡ ⎤⎡ ⎤ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎡ ⎤ ⎛ ⎞ ⎛ ⎞= − + − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∫ ∫ ∫ ∫ ∫ ∫

By using forward Euler in time and central differencing in space, the following terms are obtained:

0()
t t

p pCV t

Tc dt dV c T T V
t

ρ ρ
+∆ ∂⎡ ⎤ = − ∆⎢ ⎥∂⎣ ⎦∫ ∫

t t t t P WE P
e e w wt t

e w PE WP

T TT TT TkA kA dt k A k A dt
i i i iδ δ

+∆ +∆ ⎡ ⎤⎛ ⎞⎛ ⎞⎡ ⎤ −−∂ ∂⎛ ⎞ ⎛ ⎞− = −⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫

t t t t N P P S
n n s st t

PN SPn s

T T T TT TkA kA dt k A k A dt
j j j jδ δ

+∆ +∆⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ − −∂ ∂− = −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦
∫ ∫

t t t t

t t
CV

SdVdt S Vdt
+∆ +∆

= ∆∫ ∫ ∫

Combining these using the fully implicit scheme, yields:

0() P W N P P SE P
p p e e w w n n s s

PE WP PN SP

T T T T T TT Tc T T V k A k A t k A k A t S V t
i i j j

ρ
δ δ δ δ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ − − −−− ∆ = − ∆ + − ∆ + ∆ ∆⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

84

Introducing harmonic mean thermal conductivity defined as:

,

E e e PE P
e e E P

PE Ee eP

E e e P E P

Ee eP I e

E P

T T T TT TQ k k k
i i i

T T T T T T
i i R
k k

δ δ δ

δ δ

⎛ ⎞ ⎛ ⎞⎛ ⎞ − −−= = =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟ ⎛ ⎞− + − −⎜ ⎟⇒ = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠+⎜ ⎟
⎝ ⎠

Performing linearisation of the source term:

()P P uS V t S T S t∆ ∆ = + ∆

Rearranging and inserting terms into the final equation:

0

, , , , , , , ,
0

e w n s e w n s
p p E W N S p u

I e I w J n J s I e I w J n J s

pe w n s
p

A A A A A A A Ac V c VS T T T T T T S
t R R R R R R R R t

aa a a aa

ρ ρ⎛ ⎞∆ ∆+ + + + − = + + + + +⎜ ⎟⎜ ⎟∆ ∆⎝ ⎠

0 ()
()

T Temperature time t
T Temperature time t t
R Thermal resistance
A Lateral surface

Density
c Heat capacity
V Cell volume

ρ

= =
= = + ∆
=
=
=
=

∆ =

85

Appendix B: Linearisation of radiative heat transfer terms
In order to include radiation heat transfer in the implicit solution routine, linearisation of the
radiation terms from the explicit routine is performed (CFD-online 2008):

4
, * *= =radiation in surroundingQ A T constantε σ

4 4
, * * ()Radiation out P PQ A T f Tσε= =

Combining the radiation in and out:

 4 4
, * * * *= = −Radiation tot surrounding PS Q A T A Tε σ σε

A Taylor series expansion of the source is expressed by:

()
0

0 0
P P

SS S T T
T

∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠

Where

()
0

03
* * 4 P

S A T
T

σε∂⎛ ⎞ = −⎜ ⎟∂⎝ ⎠

Here ”0” denote values at the previous iteration. The source term becomes:

() ()()()0 04 4 3 0
* * * * * * 4= − + − −surrounding P P P PS A T A T A T T Tε σ σε σε

Dividing the temperature dependent part from the non-temperature dependent part yields:

()()03
* * 4P PS A Tσε= −

()()04 4
* * * *3= +u surrounding PS A T A Tε σ σε

These are used in the implicit solution routine.

86

87

Appendix C: Discretisation of the Energy Balance Equation

The energy equation on differential form can be expressed as (Rian 2003):

u hu hv T Tk k S
t i j i i j j

ρ ρ ρ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + = + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

Rewriting the transient term:

u uh vh T Tu k k S
t t i j i i j j

ρ ρ ρρ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + + + = + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

Assuming constant volume in the solid and employ specific heat capacity:

,v s
u TC
t t

ρ ρ∂ ∂=
∂ ∂

The equation then becomes:

,v s
T uh vh T TC u k k S
t t i j i i j j

ρ ρ ρρ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + + = + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

Discretise this by using the finite volume method (Rian 2003):

,

t t t t t t t t

v st t t t
CV CV CV CV

t t t t t t

t t t
CV CV CV

T uh vhC dV u dVdt dVdt dVdt
t t i j

T Tk dVdt k dVdt SdVdt
i i j j

ρ ρ ρρ
+∆ +∆ +∆ +∆

+∆ +∆ +∆

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞= + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫

Where

() () () ()

,

t t t t

v sCV t CV t

t t t t

e w n st t

t t t t t t

t t t
e w CVn s

TC dt dV u dt dV
t t

uAh uAh dt vAh vAh dt

T T T TkA kA dt kA kA dt SdVdt
i i j j

ρρ

ρ ρ ρ ρ

+∆ +∆

+∆ +∆

+∆ +∆ +∆

∂ ∂⎡ ⎤ ⎡ ⎤+⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − + −⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − + − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∫ ∫ ∫ ∫

∫ ∫

∫ ∫ ∫ ∫

88

Introduce the continuity equation to improve the numerical approximation (Rian 2003):

0u v
t i j
ρ ρ ρ∂ ∂ ∂+ + =

∂ ∂ ∂

The enthalpy for cell volume “P” is multiplied on both sides of the equal sign, and then the finite
volume method is employed:

() () 0
t t t t t t

Pt t t
CV CV CV

dVdt u dVdt v dVdt h
t
ρ ρ ρ

+∆ +∆ +∆∂ + + = ⋅
∂∫ ∫ ∫ ∫ ∫ ∫

() () () () 0
t t t t t t

P P Pe w n sCV t t t
h dt dV h uA uA dt h vA vA dt

t
ρ ρ ρ ρ ρ

+∆ +∆ +∆∂⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ − + − =⎣ ⎦ ⎣ ⎦⎢ ⎥∂⎣ ⎦∫ ∫ ∫ ∫

Subtracting this from the Energy equation:

()

() () () () () () () ()

,

t t t t

v s PCV t CV t

t t t t

e P w P n P s Pe w n st t

t t t

t t
e w n s

TC dt dV u h dt dV
t t

uA h h uA h h dt vA h h vA h h dt

T T T TkA kA dt kA kA
i i j j

ρρ

ρ ρ ρ ρ

+∆ +∆

+∆ +∆

+∆ +∆

∂ ∂⎡ ⎤ ⎡ ⎤+ −⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − − − + − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∫ ∫ ∫ ∫

∫ ∫

∫
t t t

t
CV

dt SdVdt
+∆

+∫ ∫ ∫

Assuming constant pressure and introduce specific heat capacities:

() (),p g w P w PC T T h h− = −

() (),p g e P e PC T T h h− = −

() (),p g n P n PC T T h h− = −

() (),p g s P s PC T T h h− = −

The heat of pyrolysis is defined by (Austegard 1997):

()pyr Ph h u∆ = −

89

Inserting these into the energy equation:

() () () () () () () ()

,

, ,

t t t t

v s pyrCV t CV t

t t t t

p g e P w P p g n P s Pe w n st t

t t

t
e w n s

TC dt dV h dt dV
t t

C uA T T uA T T dt C vA T T vA T T dt

T T T TkA kA dt kA kA
i i j j

ρρ

ρ ρ ρ ρ

+∆ +∆

+∆ +∆

+∆

∂ ∂⎡ ⎤ ⎡ ⎤+ −∆⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − − − + − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ ∫ ∫ ∫

∫ ∫

∫
t t t t

t t
CV

dt SdVdt
+∆ +∆⎡ ⎤

+⎢ ⎥
⎣ ⎦

∫ ∫ ∫

Using the fully implicit time discretisation approach (Versteeg and Malalasekera 1995):

0
, , ()

t t

v s v s p pCV t

TC dt dV C T T V
t

ρ ρ
+∆ ∂⎡ ⎤ = − ∆⎢ ⎥∂⎣ ⎦∫ ∫

()0t t

pyr pyr P PCV t
h dt dV h V

t
ρ ρ ρ

+∆ ∂⎡ ⎤−∆ = −∆ − ∆⎢ ⎥∂⎣ ⎦∫ ∫

t t P WE P
e e w wt

e w PE WP

T TT TT TkA kA dt k A k A t
i i i iδ δ

+∆ ⎡ ⎤⎛ ⎞⎛ ⎞⎡ ⎤ −−∂ ∂⎛ ⎞ ⎛ ⎞− = − ∆⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∫

t t N P P S
n n s st

PN SPn s

T T T TT TkA kA dt k A k A t
j j j jδ δ

+∆ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ − −∂ ∂− = − ∆⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦
∫

t t

t
CV

SdVdt S V t
+∆

= ∆ ∆∫ ∫

Apply the use of a harmonic mean thermal conductivity, represented by R, and estimated as:

,

E e e PE P
e e E P

PE Ee eP

E e e P E P

Ee eP I e

E P

T T T TT TQ k k k
i i i

T T T T T T
i i R
k k

δ δ δ

δ δ

⎛ ⎞ ⎛ ⎞⎛ ⎞ − −−= = =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟ ⎛ ⎞− + − −⎜ ⎟⇒ = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠+⎜ ⎟
⎝ ⎠

90

Applying the upwind differencing sheme:

 e P w Wu positive T T and T T= ⇒ = =
 e E w Pu negative T T and T T= ⇒ = =
 n P s Sv positive T T and T T= ⇒ = =
 n N s Pv negative T T and T T= ⇒ = =

()e e
m uAρ=

()w w
m uAρ=

()n n
m vAρ=

()s s
m vAρ=

The pyrolysis gas production rate denotes:

()0
P P

pyr

V
m

t
ρ ρ− ∆

=
∆

Linearisation of the source term gives:

()P P uS V t S T S t∆ ∆ = + ∆

Combining these terms the governing equation solved by G2DHeat becomes:

() ()

() ()

,
, ,

, ,

, ,
, ,

max 0, max 0,

max 0, max 0,

v s e w
e w n s p p p g e E p g w W

I e I w

e wp

n s
p g n N p g s

J n J s

n

C V A Aa a a a S T C m T C m T
t R R

a aa

A AC m T C m
R R

a

ρ ⎛ ⎞ ⎛ ⎞∆⎛ ⎞+ + + + − = + − + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∆⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞
+ + − + +⎜ ⎟⎜ ⎟
⎝ ⎠

, 0

0

v s
S p pyr pyr u

ps

C V
T T m h S

t
aa

ρ⎛ ⎞ ∆
+ + ∆ +⎜ ⎟⎜ ⎟ ∆⎝ ⎠

91

Appendix D: Block diagram of subroutines

92

93

Appendix E: Block diagram of subroutines

94

95

Appendix F: Material properties

96

97

Appendix G: Input file used in CMA3
 1.0 1.0
Case kap 4 SiPh.6.35mm, Alu.1.8mm, Indre dia. 44.00mm
Tinit 26 C Cm/Ch=N.A. Forced erosion rates
Jørn Riise 2008-07-14 fri konv. (26 W/m2K) og emis.0.05 18
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
A 20.29 0.00 14000. 3.0 15400.0 600.
B 60.80 32.40 4.47 E9 3.0 36800.0 1000.
C 129.00 129.00 0.0 0.0 0.0 8000.
10 18 0.0 100.0 0.20 1.00 5.0 1.0 0.4
 5.00 20.0 0.01000 -4805. -5293. 0.422 536.0
 1 538.47 0.3937-2 0.8661
 1 538.47 0.7874-2
 1 538.47 0.7874-2
 1 538.47 0.9843-2
 1 538.47 0.9843-2
 1 538.47 1.9685-2
 1 538.47 1.9685-2
 1 538.47 1.9685-2
 1 538.47 1.9685-2
 1 538.47 3.9370-2
 1 538.47 3.9370-2
 1 538.47 1.9685-2
 1 538.47 1.9685-2
 1 538.47 1.3780-2
 3 538.47 .02726
 3 538.47 .02726
 3 538.47 .00817
 3 538.47 .00817
 0.001287 0.05 527.67 0.02 0.98
 410. .142 0.99 E-4 .6
 530. .187 1.01 E-4 .6
 760. .255 1.02 E-4 .6
 1160. .307 1.03 E-4 .6
 1500. .332 1.03 E-4 .6
 2000. .346 1.03 E-4 .6
 3000. .360 1.03 E-4 .6
 4000. .364 1.03 E-4 .6
 5000. .365 1.03 E-4 .6
-1 6000. .366 1.03 E-4 .6
 410. .140 3.08 E-4 .6
 530. .176 3.11 E-4 .6
 760. .220 3.18 E-4 .6
 1160. .264 3.29 E-4 .6
 1500. .290 3.40 E-4 .6
 2000. .307 3.52 E-4 .6
 3000. .360 3.70 E-4 .6
 4000. .364 4.20 E-4 .6
 5000. .365 5.78 E-4 .6
-1 6000. .366 7.41 E-4 .6
 3 175.0
 310. 0.2280 .0176000 .0
 528. 0.2293 .0209000 .0
 672. 0.2300 .0237000 .0
 852. 0.2310 .0269000 .0
+1 1032. 0.2350 .0302000 .0
1 500. 1000. 1500. 2000. 3000. 4000. 6000. 6500.
 -2200. -1900. -1400. -750. 1000. 2700. 5200. 6000.
 0.0 4451.40 35.74
 1.00 4451.40 35.74
 1.00 4451.40 28.09
 2.00 4451.40 28.09
 2.00 4451.40 20.10
 3.00 4451.40 20.10
 3.00 4451.40 18.91
 4.00 4451.40 18.91
 4.00 4451.40 21.15

98

 5.00 4451.40 21.15
 5.00 1.0 0.15
2 100.00 1.0 0.15

99

Appendix H: Input file used in ASTHMA
C ASTHMA88 v1.00 Jørn Riise 2008-06-30
C SIMPL1 firing; simulation of blast pipe mid position
C Materials: SiPh (6.35mm)/ Alu (1.8 mm)
C CASE 299.15 C Cm/Ch=N.A.
C Specified erosion profile (option2) and surface temp.= C
C Fri konveksjon og emissivitet=0.0 bakvegg
C 1-D model; fixed erosion rate; Start time=0.0; End time=100.0 s
 17 3 0.0 100.0 -1.0E-3 -.75
 .001287 0.05 527.67 0.0 00101000
 0.2 1.0
 0.5 5.0
 0.5 10.0
 -5.0 100.0
 1.187E+00 0.00
 1.163E+00 0.00
 1.140E+00 0.00
 1.116E+00 0.00
 1.098E+00 0.00
 1.080E+00 0.00
 1.063E+00 0.00
 1.045E+00 0.00
 1.027E+00 0.00
 1.009E+00 0.00
 9.911E-01 0.00
 9.733E-01 0.00
 9.554E-01 0.00
 9.376E-01 0.00
 9.197E-01 0.00
 9.019E-01 0.00
 8.840E-01 0.00
 8.661E-01 0.00
 1.187E+00 1.00
 1.163E+00 1.00
 1.140E+00 1.00
 1.116E+00 1.00
 1.098E+00 1.00
 1.080E+00 1.00
 1.063E+00 1.00
 1.045E+00 1.00
 1.027E+00 1.00
 1.009E+00 1.00
 9.911E-01 1.00
 9.733E-01 1.00
 9.554E-01 1.00
 9.376E-01 1.00
 9.197E-01 1.00
 9.019E-01 1.00
 8.840E-01 1.00
 8.661E-01 1.00
 1.187E+00 2.00
 1.163E+00 2.00
 1.140E+00 2.00
 1.116E+00 2.00
 1.098E+00 2.00
 1.080E+00 2.00
 1.063E+00 2.00
 1.045E+00 2.00
 1.027E+00 2.00
 1.009E+00 2.00
 9.911E-01 2.00
 9.733E-01 2.00
 9.554E-01 2.00
 9.376E-01 2.00
 9.197E-01 2.00

100

 9.019E-01 2.00
 8.840E-01 2.00
 8.661E-01 2.00
 1.187E+00 3.00
 1.163E+00 3.00
 1.140E+00 3.00
 1.116E+00 3.00
 1.098E+00 3.00
 1.080E+00 3.00
 1.063E+00 3.00
 1.045E+00 3.00
 1.027E+00 3.00
 1.009E+00 3.00
 9.911E-01 3.00
 9.733E-01 3.00
 9.554E-01 3.00
 9.376E-01 3.00
 9.197E-01 3.00
 9.019E-01 3.00
 8.840E-01 3.00
 8.661E-01 3.00
02130 0 538.47 0.0 1.0 1.0
02100 0 538.47 0.0 0.0 1.0
02100 0 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01110 1 538.47 0.0 0.0 1.0
02130 0 538.47 0.0 1.0 1.0
02100 0 538.47 0.0 0.0 1.0
02100 0 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01110 1 538.47 0.0 0.0 1.0
02130 0 538.47 0.0 1.0 1.0
02100 0 538.47 0.0 0.0 1.0
02100 0 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0

101

01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01100 1 538.47 0.0 0.0 1.0
01110 1 538.47 0.0 0.0 1.0
 2 1
 2 0.422 129. 81.09 0.6
 14000. 15400. 3. 0.417
 9.753E+8 36800. 3. 0.583
 8 0.0
 500. 1000. 1500. 2000. 3000. 4000. 6000. 6500.
 -2200. -1900. -1400. -750. 1000. 2700. 5200. 6000.
 -4805.0
 -5293.0 0.0
 410. .142 .000099 .6
 530. .187 .000101 .6
 760. .255 .000102 .6
 1160. .307 .000103 .6
 1500. .332 .000103 .6
 2000. .346 .000103 .6
 3000. .360 .000103 .6
 4000. .364 .000103 .6
 5000. .365 .000103 .6
1 6000. .366 .000103 .6
 410. .140 .000308 .6
 530. .176 .000311 .6
 760. .220 .000318 .6
 1160. .264 .000329 .6
 1500. .290 .000340 .6
 2000. .307 .000352 .6
 3000. .360 .000370 .6
 4000. .364 .000420 .6
 5000. .365 .000578 .6
1 6000. .366 .000741 .6
 175.
 310. 0.2280 .0176000
 528. 0.2293 .0209000
 672. 0.2300 .0237000
 852. 0.2310 .0269000
 1032. 0.2350 .0302000
1 2032. 0.2350 .0302000
 0.00 4451.40 0.00
 1.00 4451.40 35.74
 2.00 4451.40 63.83
 3.00 4451.40 83.93
 4.00 4451.40 102.84
 5.00 4451.40 123.99
 5.00 0.15
+1 100.00 0.15

102

103

Appendix I: Input file used in G2DHeat
Simulation case chapter 4
GRID
simpl1.b

SCALEMESH
.001

THICKNESS
1.

METRICS
AXI

INTERFACES
0

DEFMATERIAL
2
SIPH.b
ALU.b
1
SIPHpyr.b
2
1 1 1 11 1 27
2 1 1 11 27 37

PROBES_T
simpl1_T.d
.1
10
1 5 1
1 5 2
1 5 8
1 5 12
1 5 16
1 5 20
1 5 27
1 5 30
1 5 33
1 5 36

INOUTBC
2
 1 1 1 1 11 7 0
 2473.
 1 11 37 3 11 1 1
 26. 293.15
 0.05 293.15

TINIT
 299.15

M_EROSION
6
1. 0.000907796
2. 0.000713486
3. 0.000510540
4. 0.000480314
5. 0.000537210
100. 0.

IMPLICIT
0.0001 0.0 0.001 5.0

104

SAVESOL
smod_05.b

SAVERHO
rmod_05.b

INOUTBC
2
 1 1 1 1 11 2 1
 0.0
 0.6 473.15
 1 11 37 3 11 1 1
 26. 293.15
 0.05 293.15

IMPLICIT
0.0001 5.0 0.01 10.0

SAVESOL
smod_10.b

SAVERHO
rmod_10.b

IMPLICIT
0.0001 10.0 0.01 15.0

SAVESOL
smod_15.b

SAVERHO
rmod_15.b

IMPLICIT
0.0001 15.0 0.01 30.0

SAVESOL
smod_30.b

SAVERHO
rmod_30.b

IMPLICIT
0.0001 30.0 0.01 60.0

SAVESOL
smod_60.b

SAVERHO
rmod_60.b

IMPLICIT
0.0001 60.0 0.01 100.0

SAVESOL
smod_100.b

SAVERHO
rmod_100.b
END

105

Appendix J: The source code

 !Name:GlobaleVariable
 !Author: Jørn Riise
 !Date: 30-06-2008
 !Description: This module contains the globale variables used throughout the
program
 !Variables of importance: PROP=PROPERTIES TC=TERMAL CONDUCTANCE C=SPESIFIC HEAT
 MODULE GlobaleVariable
 IMPLICIT NONE
 !Variables for the implicit routine:
 INTEGER, DIMENSION(5,1000,50) :: boundNU,boundSU,boundWU,boundEU
 DOUBLE PRECISION, DIMENSION(7,1000,50) :: boundN,boundS,boundW,boundE
 DOUBLE PRECISION :: konvergenskrit,precisionP
 DOUBLE PRECISION, DIMENSION(35000) :: TEMPo
 !Variables for the Pyrolysis and recession:
 INTEGER ::
NIFACE,NBFACE,NMEK,Pyrini,MREG,pyrolyse,M_EROSION
 INTEGER,DIMENSION(50) :: AM_ANTPYR
 INTEGER, DIMENSION(35000) :: ANTPYR,IFACE,IFACEBULK,MEKSTART
 DOUBLE PRECISION, DIMENSION(200) :: MEKTIMES,MEK
 DOUBLE PRECISION, DIMENSION(20,35000) ::
RHO,RHOO,RHOR,APYR,NPYR,TREAC,EPYR,VOLFRAC
 DOUBLE PRECISION :: IFACEVALUE
 DOUBLE PRECISION, DIMENSION(35000) ::
Angles,XCP,YCP,VX,VY,VMX,VMY,MI,MJ,MPYR,CPG,DHPYR,MEKRHOTOT, &

MEKALFA,LENIBFACE,LENIBCELL,IBFACEX,IBFACEY,RHOFRAC,RHOOTOT, &
 RHORTOT,MEKTIME,MEKTIMED,MEKEND
 !Variables for input
 INTEGER, DIMENSION(20,30) :: M_DATA,M_TEMP,M_TCI,M_TCJ,M_CP,M_RO
 DOUBLE PRECISION, DIMENSION(20,30) ::
AM_TEMP,AM_TCI,AM_CP,AM_RO,AM_TCJ,AM_RHOO,AM_RHOR,AM_APYR,AM_EPYR, &

AM_NPYR,AM_TREAC,AM_CPG,AM_DHPYR,AM_VOLFRAC,AM_CPR, &
 AM_TCIR,AM_TCJR
 !Variables for time,grid,material properties ect.
 DOUBLE PRECISION ::
TIME,TSF,CFL,DTIME,TSTART,TSTOP,TIMEP,DTPROBE,TIMEPP,DTPROBEP
 INTEGER, DIMENSION(20) :: IMPT,I0PT,J0PT,IDPT,NPPT
 INTEGER :: NMESH,NPROBE,MODE,NREG,NIF,NBND
 INTEGER, DIMENSION(50) ::
NMP,NI,NJ,IMAIF,I0AIF,J0AIF,IDAIF,NPAIF,IMBIF, &
 I0BIF,J0BIF,IDBIF,NPBIF
 DOUBLE PRECISION, DIMENSION(200) :: AM_DATA,TPROBE
 DOUBLE PRECISION, DIMENSION(35000) ::
XM,YM,SIX,SIY,SJX,SJY,AI,AJ,DI,DJ,VOL,RO,TCI,TCJ,C,RI,RJ,Su, &
 TEMP,DTEMP,DQ
 INTEGER, DIMENSION(200) :: IMP,IP,JP,IMR,IR1,IR2,JR1,JR2,IMAT
 INTEGER, DIMENSION(35000) :: MAT
 INTEGER, DIMENSION(200) ::
IMBND,I0BND,J0BND,IDBND,NPBND,ITBND,IRADBND
 DOUBLE PRECISION, DIMENSION(50,500) ::
ROBND,UBND,VISCBND,CPBND,PRBND,TRBND,HCEBND,ALBND
 DOUBLE PRECISION, DIMENSION(500) ::
HCBND,TUBND,QBND,DTHCBND,DTTUBND,EMSBND,TRADBND
 DOUBLE PRECISION :: GCNT,RGAS,PRND,VISC,SCALEMESH
 INTEGER :: ISUP,NPROBEP
 DOUBLE PRECISION :: PTOT,TTOT,ATHROAT,PI
 CHARACTER :: MATRFIL*32

END MODULE GlobaleVariable

 !Name: G2DHeat
 !Author: Jørn Riise, *
 !Date: 30-06-2008
 !Description: Simulation program for heat transfer in solids.

106

 PROGRAM G2DHeat
 USE GlobaleVariable
 implicit none
 !Local variables
 INTEGER :: ICOUNTP,ILOG,IPROBEP,IFIL,I,J,K,IMESH,NMPL, &
 NIL,NJL,LP,NSTEP,ISTEP,K1,istat,istatt,steps,MatID,IM, &
 Istart,Iend,Jstart,Jend,IREG,t_start,t_stop,PREG
 DOUBLE PRECISION ::
RTHROAT,TINITIAL,T_TEMP,T_TCI,T_CP,T_RO,T_TCJ,kildeSu,T_CPR, &

T_RHOO,T_RHOR,T_APYR,T_EPYR,T_NPYR,T_TREAC,T_CPG,T_DHPYR,T_VOLFRAC, &
 T_TCIR,T_TCJR
 REAL :: TEMPtmp,TCItmp,TCJtmp,RHOtmp,xmm,MPYRtmp,VXtmp,VYtmp
 CHARACTER EVENT*32,TEXT*32

 !Initialize variables
 NIF=0
 NPROBE=0
 NPROBEP=0
 ICOUNTP=0
 ILOG=0
 Su=Su*0
 SCALEMESH=1.
 PI=4.*ATAN(1.)
 !Pyrolysis:Decision variable for the interface
 IFACEVALUE=0
 !Identification parameters for the ablative material
 IFACEBULK=IFACEBULK*0
 !Pyrolysis gas flow in I- and J-direction
 MJ=MJ*0
 MI=MI*0

 !START LOOP FOR INPUT DATA
 call timer (t_start)
 DO WHILE(.TRUE.)

 READ(5,'(A32)')EVENT
 IF(EVENT(1:1) .NE. '#')WRITE(6,'(A32)')EVENT

 IF(EVENT .EQ. 'END')THEN
 call timer (t_stop)
 write(6,*) 'Elapsed CPU time = ', t_stop - t_start
 IF(NPROBEP.GT.0)THEN
 DO IPROBEP=1,NPROBEP
 IFIL=11+IPROBEP
 CLOSE(IFIL)
 ENDDO
 WRITE(6,*)'UPDATE MANUALLY NUMBER OF TIME POINTS ON DATAFILE'
 WRITE(6,*)'Number of time points, ICOUNTP =',ICOUNTP
 ENDIF
 CLOSE(10)
 STOP 'FINISHED'
 ENDIF

 IF(EVENT .EQ. 'SCALEMESH')THEN
 READ(5,*) SCALEMESH
 END IF

 IF(EVENT .EQ. 'GRID')THEN
 CALL GRID
 ENDIF

 IF(EVENT .EQ. 'METRICS')THEN
 READ(5,'(A32)')EVENT
 IF(EVENT .EQ. '2D') MODE=0
 IF(EVENT .EQ. 'AXI') MODE=1
 CALL MTR

107

 ENDIF

! IF(EVENT .EQ. 'THICKNESS')THEN
! READ(5,*)DEPTH
! ENDIF

 IF(EVENT.EQ.'LOGFILE')THEN
 ILOG=1
 READ(5,'(A32)') TEXT
 OPEN(10,FILE=TEXT,STATUS='UNKNOWN',FORM='FORMATTED')
 ENDIF

 IF(EVENT .EQ. 'DEFMAT')THEN
 READ(5,*)NREG
 DO 1 I=1,NREG
 READ(5,'(A32)')TEXT
 IF(TEXT .EQ. 'ALUMINIUM')IMAT(I)=1
 IF(TEXT .EQ. 'STEEL')IMAT(I)=2
 IF(TEXT .EQ. 'SIPH')IMAT(I)=3
 IF(TEXT .EQ. 'SIPH_COOL')IMAT(I)=11
 IF(TEXT .EQ. 'MOLYBDEN')IMAT(I)=4
 IF(TEXT .EQ. 'EPDM')IMAT(I)=5
 IF(TEXT .EQ. 'HOTGAS')IMAT(I)=6
 IF(TEXT .EQ. 'ARAMIDE-EPOXY')IMAT(I)=7
 IF(TEXT .EQ. 'PROPELLANT')IMAT(I)=8
 IF(TEXT .EQ. 'TITAN')IMAT(I)=9
 IF(TEXT .EQ. 'GRAPHITE')IMAT(I)=10
 IF(TEXT .EQ. 'CARBON')IMAT(I)=12
 IF(TEXT .EQ. 'TZM')IMAT(I)=13
 IF(TEXT .EQ. 'WL10')IMAT(I)=14
 IF(TEXT .EQ. 'GRAPHITE-IG11')IMAT(I)=15
 IF(TEXT .EQ. 'DLR_C-C/SiC')IMAT(I)=16

 READ(5,*)IMR(I),IR1(I),IR2(I),JR1(I),JR2(I)
 1 CONTINUE
 CALL DEFMATDATA !BOR KANSKJE VARE EN EGEN FIL
 CALL MATERIALS
 ENDIF
 !***
 !Initializing material properties from file.
 !***
 IF(EVENT .EQ. 'DEFMATERIAL')THEN
 pyrolyse=0
 !Material properties
 READ(5,*)MREG
 DO I=1,MREG
 READ(5,'(A32)')TEXT
 OPEN(19,FILE=TEXT,STATUS='UNKNOWN',FORM='FORMATTED',ACTION='READ')
 istat=0
 steps=0
 READ(19,*)EVENT
 WRITE(6,*) 'Event: ',EVENT
 DO

READ(19,91,IOSTAT=istat)T_TEMP,T_CP,T_TCI,T_TCJ,T_RO,T_CPG,T_CPR,T_TCIR,T_TCJR,T_DH
PYR
 IF(istat.LT.0) EXIT
 steps=steps+1
 AM_TEMP(I,steps)=T_TEMP
 AM_CP(I,steps)=T_CP
 AM_TCI(I,steps)=T_TCI
 AM_TCJ(I,steps)=T_TCJ
 AM_RO(I,steps)=T_RO
 AM_CPG(I,steps)=T_CPG
 AM_TCIR(I,steps)=T_TCIR
 AM_TCJR(I,steps)=T_TCJR
 AM_DHPYR(I,steps)=T_DHPYR
 AM_CPR(I,steps)=T_CPR

108

 END DO
 AM_DATA(I)=steps
 91
FORMAT(G11.3,TR1,G11.3,TR1,G11.3,TR1,G11.3,TR1,G11.3,TR1,G11.3,TR1,G11.3,TR1,G11.3,
TR1,G11.3,TR1,G11.3)
 CLOSE (19)
 END DO

 !Kinetic parameters for use in decomposition reactions
 READ(5,*)PREG
 DO I=1,PREG
 READ(5,'(A32)')TEXT
 OPEN(18,FILE=TEXT,STATUS='UNKNOWN',FORM='FORMATTED',ACTION='READ')
 istatt=0
 steps=0
 READ(18,*)EVENT
 WRITE(6,*)EVENT
 DO

READ(18,491,IOSTAT=istatt)T_RHOO,T_RHOR,T_APYR,T_EPYR,T_NPYR,T_TREAC,T_VOLFRAC
 IF(istatt.LT.0) EXIT
 steps=steps+1
 AM_RHOO(steps,I)=T_RHOO
 AM_RHOR(steps,I)=T_RHOR
 AM_APYR(steps,I)=T_APYR
 AM_EPYR(steps,I)=T_EPYR
 AM_NPYR(steps,I)=T_NPYR
 AM_TREAC(steps,I)=T_TREAC
 AM_VOLFRAC(steps,I)=T_VOLFRAC
 END DO
 AM_ANTPYR(I)=steps
 491 FORMAT(G11.3,TR1,G11.3,TR1,G11.3,TR1,G11.3,TR1,G11.3,TR1,G11.3,TR1,G11.3)
 CLOSE (18)
 pyrolyse=1
 Pyrini=1
 END DO
 !Initializing identification parameters
 READ(5,*)NREG
 DO IREG=1,NREG
 READ(5,*)MatID,IM,Istart,Iend,Jstart,Jend
 NMPL=NMP(IM)
 NIL = NI(IM)
 DO J=Jstart,Jend-1
 DO I=Istart,Iend-1
 K=I+NIL*(J-1)+NMPL
 MAT(K)=MatID
 !(1 ->Ablative, -1 -> backup)
 IF(MatID.GT.PREG) THEN
 IFACEBULK(K)=-1
 ELSE
 IFACEBULK(K)=1
 END IF
 END DO
 END DO
 END DO

 END IF

 IF(EVENT .EQ. 'INTERFACES')THEN
 READ(5,*)NIF
 IF(NIF.NE.0)THEN
 DO 2 I=1,NIF
 READ(5,*)IMAIF(I),I0AIF(I),J0AIF(I),IDAIF(I),NPAIF(I)
 READ(5,*)IMBIF(I),I0BIF(I),J0BIF(I),IDBIF(I),NPBIF(I)
 2 CONTINUE
 END IF
 END IF

109

 IF(EVENT .EQ. 'INOUTBC')THEN
 READ(5,*)NBND
 IF(NBND.NE.0)THEN
 DO 3 I=1,NBND
 READ(5,*)IMBND(I),I0BND(I),J0BND(I),IDBND(I),NPBND(I), &
 ITBND(I),IRADBND(I)
 IF(ITBND(I).EQ.1) READ(5,*)HCBND(I),TUBND(I) !
Varmeovergangstall + Gasstemperatur
 IF(ITBND(I).EQ.2)READ(5,*)QBND(I) ! Varmefluks
 IF(ITBND(I).EQ.3)THEN !
 READ(5,'(A32)')TEXT
 OPEN(1,FILE=TEXT,FORM='FORMATTED',STATUS='UNKNOWN')
 CALL GASDATA(1,I)
 ENDIF
 IF(ITBND(I).EQ.4)THEN
 READ(5,'(A32)')TEXT
 OPEN(1,FILE=TEXT,FORM='FORMATTED',STATUS='UNKNOWN')
 CALL GASDATA(2,I)
 ENDIF
 IF(ITBND(I).EQ.5)READ(5,*)HCBND(I),TUBND(I),DTHCBND(I),DTTUBND(I)
!V.overg. tall+gasstemp+rampe v.ovg.tall+rampe Tgass
 IF(IRADBND(I).EQ.1)READ(5,*)EMSBND(I),TRADBND(I) ! Emissivitet +
strålingstemperatur

! 1D isentropic nozzle flow used as input to heat coeff. computations
 IF(ITBND(I).EQ.6)THEN ! Isentropisk
dysestrøm
! subsonic, isup=0
! supersonic, isup=1

 READ(5,*)PTOT,TTOT,RTHROAT,ISUP
 ATHROAT=PI*RTHROAT**2
 CALL GASDATA(3,I)
 ENDIF
 !Constant surface temperature
 IF(ITBND(I).EQ.7)READ(5,*)TUBND(I)
 3 CONTINUE
 END IF
 END IF

 IF(EVENT .EQ. 'GASDATA')THEN
 READ(5,*)GCNT,RGAS,PRND,VISC
 END IF

 IF(EVENT .EQ. 'TINIT')THEN
 READ(5,*)TINITIAL
 DO 4 IMESH=1,NMESH
 NMPL=NMP(IMESH)
 NIL = NI(IMESH)
 NJL = NJ(IMESH)
 DO 5 J=1,NJL-1
 DO 5 I=1,NIL-1
 K=I+NIL*(J-1)+NMPL
 TEMP(K)=TINITIAL

 5 CONTINUE
 4 CONTINUE
 ENDIF

 IF(EVENT .EQ. 'PROBES_T')THEN
 READ(5,'(A32)')TEXT
 OPEN(11,FILE=TEXT,FORM='FORMATTED',STATUS='UNKNOWN')
 READ(5,*) DTPROBE
 READ(5,*)NPROBE
 DO LP=1,NPROBE
 READ(5,*) IMP(LP),IP(LP),JP(LP)
 ENDDO
 ENDIF

110

 IF(EVENT .EQ. 'PROBES_PT')THEN
 READ(5,*) DTPROBEP
 READ(5,*)NPROBEP
 DO I=1,NPROBEP
 READ(5,'(A32)')TEXT
 IFIL=11+I
 OPEN(IFIL,FILE=TEXT,FORM='FORMATTED',STATUS='UNKNOWN')
 WRITE(IFIL,*) 'TITLE = "HEAT 2D data"'
 WRITE(IFIL,*) 'VARIABLES = "YM", "TIME", "TEMP"'
 READ(5,*)IMPT(I),I0PT(I),J0PT(I),IDPT(I),NPPT(I)
 WRITE(IFIL,*) 'ZONE I=',NPPT(I)-1,', J=',0,', F=POINT'
 END DO
 ENDIF

 IF(EVENT .EQ. 'CFL')THEN
 READ(5,*)CFL,TSTART,DTIME,TSTOP
 TIME=TSTART
 TIMEP=TSTART
 TIMEPP=TSTART
 ENDIF

 IF(EVENT .EQ. 'TRANSIENT')THEN
 READ(5,*)NSTEP
 DO 8 ISTEP=1,NSTEP
 CALL STEP(ISTEP)
 TIME=TIME+TSF*CFL
 !WRITE(6,*)ISTEP,TIME,TSF*CFL
 IF(NPROBE .GT. 0)THEN
 IF(TIME.GE.TIMEP)THEN
 TIMEP=TIMEP+DTPROBE
 DO LP=1,NPROBE
 I=IP(LP)
 J=JP(LP)
 IMESH=IMP(LP)
 K1=I+NI(IMESH)*(J-1)+NMP(IMESH)
 TPROBE(LP+1)=TEMP(K1)
 END DO
 TPROBE(1)=TIME
 WRITE(11,555)(TPROBE(I),I=1,NPROBE+1)
 ENDIF
 ENDIF

 IF(NPROBEP .GT. 0)THEN
 IF(TIME.GE.TIMEPP)THEN
 TIMEPP=TIMEPP+DTPROBEP
 CALL WRITE_PROBESP(TIME)
 ICOUNTP=ICOUNTP+1
 ENDIF
 ENDIF
 555 FORMAT(F10.3,200F9.4)
 IF(TIME.GT.TSTOP) GOTO 99
 8 CONTINUE
 IF(ILOG.EQ.1)WRITE(10,*) &
 'INCREASE NUMBER OF ITERATIONS, TIME,TSTOP=',TIME,TSTOP
 WRITE(6,*)'INCREASE NUMBER OF ITERATIONS, TIME,TSTOP=',TIME,TSTOP
 STOP
 99 CONTINUE
 ENDIF

 !*****************************
 !Initializing recession rates.
 !*****************************
 IF(EVENT .EQ. 'M_EROSION')THEN
 READ(5,*)NMEK
 DO I=1,NMEK
 READ(5,*)MEKTIMES(I),MEK(I)
 END DO

111

 M_EROSION=1
 END IF

 !**************************
 !Implicit solution routine.
 !**************************
 IF (EVENT .EQ. 'IMPLICIT') THEN
 READ(5,*)konvergenskrit,TSTART,DTIME,TSTOP
 !Initializing time parameters
 TIME=TSTART
 TIMEP=TSTART
 TIMEPP=TSTART

 !Initializing interfaces and boundaries
 CALL INIT_IMPLICIT

 !Initializing boundary conditions
 CALL BORDERS_IMPLICIT

 !Initializing Pyrolysis parameters
 IF(pyrolyse.EQ.1) CALL INIT_PYROLYSIS

 !Solution routine
 DO

 CALL IMPLICIT_
 TIME=TIME+DTIME

 !Saving data
 IF(NPROBE .GT. 0)THEN
 IF(TIME.GE.TIMEP)THEN
 TIMEP=TIMEP+DTPROBE
 DO LP=1,NPROBE
 I=IP(LP)
 J=JP(LP)
 IMESH=IMP(LP)
 K1=I+NI(IMESH)*(J-1)+NMP(IMESH)
 TPROBE(LP+1)=TEMP(K1)
 END DO
 TPROBE(1)=TIME
 WRITE(11,551)(TPROBE(I),I=1,NPROBE+1)
 ENDIF
 ENDIF

 IF(NPROBEP .GT. 0)THEN
 IF(TIME.GE.TIMEPP)THEN
 TIMEPP=TIMEPP+DTPROBEP
 CALL WRITE_PROBESP(TIME)
 ICOUNTP=ICOUNTP+1
 ENDIF
 ENDIF
 551 FORMAT(F10.3,200F9.4)

 IF (TIME.GE.TSTOP) EXIT

 END DO
 END IF

 !***
 !Initializing selection parameter for the interface.
 !***
 IF (EVENT .EQ. 'PYROLYSIS') THEN
 READ(5,*)IFACEVALUE
 END IF

 !***********************************
 !Initializing heat source/sink term.

112

 !***********************************
 IF(EVENT .EQ. 'SOURCE')THEN
 READ(5,*)NREG
 DO IREG=1,NREG
 READ(5,*)IM,Istart,Iend,Jstart,Jend,kildeSu
 NMPL=NMP(IM)
 NIL = NI(IM)
 DO J=Jstart,Jend-1
 DO I=Istart,Iend-1
 K=I+NIL*(J-1)+NMPL
 Su(K)=kildeSu
 END DO
 END DO
 END DO

 END IF

 IF(EVENT .EQ. 'READSOL')THEN
 READ(5,'(A32)')TEXT
 OPEN(UNIT=8,FILE=TEXT,FORM='UNFORMATTED',STATUS='UNKNOWN')
 DO 23 IMESH=1,NMESH
 NMPL=NMP(IMESH)
 NIL = NI(IMESH)
 NJL = NJ(IMESH)
 DO 24 J=1,NJL-1
 DO 24 I=1,NIL-1
 K=I+NIL*(J-1)+NMPL
 READ(8) TEMPtmp,TCItmp,TCJtmp,xmm
 TEMP(K)=REAL(TEMPtmp,8)
 TCI(K)=REAL(TCItmp,8)/1000.
 TCJ(K)=REAL(TCJtmp,8)/1000.
 mat(k)=ifix(xmm)
 24 CONTINUE
 23 CONTINUE
 CLOSE(8)
 ENDIF

 IF (EVENT .EQ. 'SAVEMATR') THEN
 read(5,'(A32)')MATRFIL
 CALL MATRSAVE
 END IF

 IF(EVENT .EQ. 'SAVESOL')THEN
 READ(5,'(A32)')TEXT
 OPEN(UNIT=9,FILE=TEXT,FORM='UNFORMATTED',STATUS='UNKNOWN')
 DO 13 IMESH=1,NMESH
 NMPL=NMP(IMESH)
 NIL = NI(IMESH)
 NJL = NJ(IMESH)
 DO 14 J=1,NJL-1
 DO 14 I=1,NIL-1
 K=I+NIL*(J-1)+NMPL
 xmm=REAL(mat(k))
 TEMPtmp=REAL(TEMP(K),4)
 TCItmp=REAL(TCI(K),4)*1000.
 TCJtmp=REAL(TCJ(K),4)*1000.
 WRITE(9)TEMPtmp,TCItmp,TCJtmp,xmm
 14 CONTINUE
 13 CONTINUE
 ENDIF

 !***
 !Saving the solution:DENSITIES, TEMPERATURES and Mpyr.
 !***
 IF(EVENT .EQ. 'SAVERHO')THEN
 READ(5,'(A32)')TEXT

113

 OPEN(UNIT=15,FILE=TEXT,FORM='UNFORMATTED',STATUS='UNKNOWN')
 DO IMESH=1,NMESH
 NMPL=NMP(IMESH)
 NIL = NI(IMESH)
 NJL = NJ(IMESH)
 DO J=1,NJL-1
 DO I=1,NIL-1
 K=I+NIL*(J-1)+NMPL
 xmm=REAL(mat(k))
 RHOtmp=REAL(RO(K),4)
 TEMPtmp=REAL(TEMP(K),4)
 MPYRtmp=REAL(((-1)*(MPYR(K)/VOL(K))),4)
 WRITE(15)RHOtmp,TEMPtmp,MPYRtmp,xmm
 END DO
 END DO
 END DO
 END IF

 !**
 !Saving the solution:VECTOR DIRECTIONS[RO,RU](Techplot) and Mpyr.
 !**
 IF(EVENT .EQ. 'SAVEVECTOR')THEN
 READ(5,'(A32)')TEXT
 OPEN(UNIT=15,FILE=TEXT,FORM='UNFORMATTED',STATUS='UNKNOWN')
 DO IMESH=1,NMESH
 NMPL=NMP(IMESH)
 NIL = NI(IMESH)
 NJL = NJ(IMESH)
 DO J=1,NJL-1
 DO I=1,NIL-1
 K=I+NIL*(J-1)+NMPL
 xmm=REAL(mat(k))
 VXtmp=REAL(VX(K),4)
 VYtmp=REAL(VY(K),4)
 MPYRtmp=REAL(MPYR(K),4)
 WRITE(15)VXtmp,VYtmp,MPYRtmp,xmm
 END DO
 END DO
 END DO
 END IF

 !**
 !Saving the solution:VECTOR DIRECTIONS[RO,RU](Techplot) and Mpyr.
 !**
 IF(EVENT .EQ. 'SAVEM_EROSION')THEN
 READ(5,'(A32)')TEXT
 OPEN(UNIT=15,FILE=TEXT,FORM='UNFORMATTED',STATUS='UNKNOWN')
 DO IMESH=1,NMESH
 NMPL=NMP(IMESH)
 NIL = NI(IMESH)
 NJL = NJ(IMESH)
 DO J=1,NJL-1
 DO I=1,NIL-1
 K=I+NIL*(J-1)+NMPL
 xmm=REAL(mat(k))
 VXtmp=REAL(VMX(K),4)
 VYtmp=REAL(VMY(K),4)
 MPYRtmp=REAL(MPYR(K),4)
 WRITE(15)VXtmp,VYtmp,MPYRtmp,xmm
 END DO
 END DO
 END DO
 END IF

 !**
 !Saving the solution: Gas flow I- and J-direction and Mpyr.
 !**
 IF(EVENT .EQ. 'SAVEGAS')THEN

114

 READ(5,'(A32)')TEXT
 OPEN(UNIT=15,FILE=TEXT,FORM='UNFORMATTED',STATUS='UNKNOWN')
 DO IMESH=1,NMESH
 NMPL=NMP(IMESH)
 NIL = NI(IMESH)
 NJL = NJ(IMESH)
 DO J=1,NJL-1
 DO I=1,NIL-1
 K=I+NIL*(J-1)+NMPL
 xmm=REAL(mat(k))
 VXtmp=REAL(MI(K),4)
 VYtmp=REAL(MJ(K),4)
 MPYRtmp=REAL(MPYR(K),4)
 WRITE(15)VXtmp,VYtmp,MPYRtmp,xmm
 END DO
 END DO
 END DO
 END IF

 ENDDO

 CLOSE(11)
 STOP
 END !End input routine

 SUBROUTINE WRITE_PROBESP(tid)
 USE GlobaleVariable
 implicit none
 !Local variables
 INTEGER :: ID,JD,IPROBEP,IFIL,IMS,I0S,J0S,IDS,NPIS,IPP,I, &
 J,K,K1,K2,K3,K4
 DOUBLE PRECISION :: YC,tid!xc,
 DIMENSION ID(4),JD(4)
 DATA ID / 1, 0,-1, 0/
 DATA JD / 0, 1, 0,-1/
 DO 1 IPROBEP=1,NPROBEP
 IFIL=11+IPROBEP
 IMS=IMPT(IPROBEP)
 I0S=I0PT(IPROBEP)
 J0S=J0PT(IPROBEP)
 IDS=IDPT(IPROBEP)
 NPIS=NPPT(IPROBEP)
 DO 2 IPP=1,NPIS-1
 I=I0S+ID(IDS)*(IPP-1)
 J=J0S+JD(IDS)*(IPP-1)
 K=I+NI(IMS)*(J-1)+NMP(IMS)
 K1=I +NI(IMS)*(J-1)+NMP(IMS)
 K2=I+1+NI(IMS)*(J-1)+NMP(IMS)
 K3=I +NI(IMS)*(J-0)+NMP(IMS)
 K4=I+1+NI(IMS)*(J-0)+NMP(IMS)
 !XC=.25*(XM(K1)+XM(K2)+XM(K3)+XM(K4))
 YC=.25*(YM(K1)+YM(K2)+YM(K3)+YM(K4))
 WRITE(IFIL,*) REAL(YC*1000.,4),REAL(tid,4),REAL(TEMP(K))
 2 CONTINUE
 1 CONTINUE
 RETURN
 END

 SUBROUTINE GRID
 USE GlobaleVariable
 implicit none

 !Local variables
 INTEGER :: I,NTOT,NMESHtmp
 INTEGER, DIMENSION (50) :: NMPtmp,NItmp,NJtmp
 REAL, DIMENSION (35000) :: Xtmp,Ytmp

115

 CHARACTER TEXT*32

 READ(5,'(A32)') TEXT
 OPEN(7,FILE=TEXT,FORM='UNFORMATTED',STATUS='UNKNOWN')
 READ(7) NMESHtmp
 READ(7) (NMPtmp(I),NItmp(I),NJtmp(I),I=1,NMESHtmp)
 NTOT=NMPtmp(NMESHtmp)+NItmp(NMESHtmp)*NJtmp(NMESHtmp)
 READ(7)(Xtmp(I),Ytmp(I),I=1,NTOT)
 DO I=1,NTOT
 XM(I)=REAL(Xtmp(I),8)
 YM(I)=REAL(Ytmp(I),8)
 END DO
 CLOSE(7)
 NMESH=NMESHtmp
 DO I=1,NMESHtmp
 NMP(I)=NMPtmp(I)
 NI(I)=NItmp(I)
 NJ(I)=NJtmp(I)
 END DO
 RETURN
 END

 SUBROUTINE MTR
 USE GlobaleVariable
 implicit none

 !Local variables
 INTEGER :: IMESH,I,J,K1,K2,K3,K4,IMMIN,IMIN,JMIN,IMMAX, &
 IMAX,JMAX
 DOUBLE PRECISION :: VMIN,VMAX
 VMIN=+1.E20
 VMAX=-1.E20
 DO 1 IMESH=1,NMESH
 DO 10 J=1,NJ(IMESH) ! scale grid
 DO 10 I=1,NI(IMESH)
 K1=I+NI(IMESH)*(J-1)+NMP(IMESH)
 XM(K1)=XM(K1)*SCALEMESH
 YM(K1)=YM(K1)*SCALEMESH
 10 CONTINUE

 DO 2 J=1,NJ(IMESH)-1 ! 2D METRICS
 DO 2 I=1,NI(IMESH)
 K1=I+NI(IMESH)*(J-1)+NMP(IMESH)
 K3=K1+NI(IMESH)
 SIX(K1)= YM(K3)-YM(K1)
 SIY(K1)=-XM(K3)+XM(K1)
 AI(K1)=SQRT(SIX(K1)**2+SIY(K1)**2)
 2 CONTINUE
 DO 3 J=1,NJ(IMESH)
 DO 3 I=1,NI(IMESH)-1
 K1=I+NI(IMESH)*(J-1)+NMP(IMESH)
 K2=K1+1
 SJX(K1)=-YM(K2)+YM(K1)
 SJY(K1)= XM(K2)-XM(K1)
 AJ(K1)=SQRT(SJX(K1)**2+SJY(K1)**2)
 3 CONTINUE

 DO 4 J=1,NJ(IMESH)-1 ! DI,DJ BASED
 DO 4 I=1,NI(IMESH)-1 ! ON 2D METRICS
 K1=I+NI(IMESH)*(J-1)+NMP(IMESH) !+ volumes
 K2=K1+1
 K3=K1+NI(IMESH)
 K4=K3+1
 DJ(K1)=0.5*(SQRT(SIX(K1)**2+SIY(K1)**2)+SQRT(SIX(K2)**2+SIY(K2)**2))
 DI(K1)=0.5*(SQRT(SJX(K1)**2+SJY(K1)**2)+SQRT(SJX(K3)**2+SJY(K3)**2))

 IF(MODE.EQ.1)THEN
! VOL(K1)=DEPTH*1./6.*((XM(K4)-XM(K1))*(YM(K3)**2-YM(K2)**2) &

116

 VOL(K1)=1./6.*((XM(K4)-XM(K1))*(YM(K3)**2-YM(K2)**2) &
 -(XM(K3)-XM(K2))*(YM(K4)**2-YM(K1)**2) &
 +(XM(K4)*YM(K4)-XM(K1)*YM(K1))*(YM(K3)-YM(K2)) &
 -(XM(K3)*YM(K3)-XM(K2)*YM(K2))*(YM(K4)-YM(K1)))
 ELSE
! VOL(K1)=DEPTH*.5*((XM(K4)-XM(K1))*(YM(K3)-YM(K2)) &
 VOL(K1)=0.5*((XM(K4)-XM(K1))*(YM(K3)-YM(K2)) &
 -(XM(K3)-XM(K2))*(YM(K4)-YM(K1)))
 ENDIF
 IF(VOL(K1) .LT. VMIN)THEN
 VMIN=VOL(K1)
 IMMIN=IMESH
 IMIN=I
 JMIN=J
 ENDIF
 IF(VOL(K1) .GT. VMAX)THEN
 VMAX=VOL(K1)
 IMMAX=IMESH
 IMAX=I
 JMAX=J
 ENDIF

 4 CONTINUE

 IF(MODE.EQ.1)THEN ! AXI- SYMMETRICAL
 DO 5 J=1,NJ(IMESH)-1 ! OPTION
 DO 5 I=1,NI(IMESH)
 K1=I+NI(IMESH)*(J-1)+NMP(IMESH)
 K3=K1+NI(IMESH)
 SIX(K1)= .5*(YM(K1)+YM(K3))*(YM(K3)-YM(K1))
 SIY(K1)=-.5*(YM(K1)+YM(K3))*(XM(K3)-XM(K1))
 AI(K1)=SQRT(SIX(K1)**2+SIY(K1)**2)
 5 CONTINUE
 DO 6 J=1,NJ(IMESH)
 DO 6 I=1,NI(IMESH)-1
 K1=I+NI(IMESH)*(J-1)+NMP(IMESH)
 K2=K1+1
 SJX(K1)=-.5*(YM(K1)+YM(K2))*(YM(K2)-YM(K1))
 SJY(K1)= .5*(YM(K1)+YM(K2))*(XM(K2)-XM(K1))
 AJ(K1)=SQRT(SJX(K1)**2+SJY(K1)**2)
 6 CONTINUE
 ENDIF

 1 CONTINUE
 WRITE(6,*)' MIN VOLUME: ',IMMIN,IMIN,JMIN,VMIN
 WRITE(6,*)' MAX VOLUME: ',IMMAX,IMAX,JMAX,VMAX
 RETURN
 END

 SUBROUTINE GASDATA(IOPT,IBOUND)
 USE GlobaleVariable
 implicit none
 INTEGER :: IOPT,IBOUND

 !Local variables
 INTEGER :: ID,JD,IBND,IM,I0,IPP,J0,IDR,NP,K0,KD, &
 K1,K2,I
 DOUBLE PRECISION :: ERRMAX,EPS,CPGAS,RFACT,FACT,WGFLOW,XPOS, &
 RADIUS,AREA,ARATIO,AM,AMN,DIFF,TC,PC,ROC,VEL, &
 RE,F,ST

 DIMENSION ID(4),JD(4)
 DATA ID / 1, 0,-1, 0/
 DATA JD / 0, 1, 0,-1/

 PI=4.*ATAN(1.)
 ERRMAX=1.D-06
 EPS=1.D-06

117

 IF(IOPT.EQ.1)THEN
 WRITE(6,*)' IP RO V VISC*1.E06 CP PR ',&
 ' LENGTH'
 DO 1 IBND=1,NBND
 DO 2 IPP=1,NPBND(IBND)-1
 READ(1,*)ROBND(IBND,IPP), UBND(IBND,IPP),VISCBND(IBND,IPP), &
 CPBND(IBND,IPP),PRBND(IBND,IPP), ALBND(IBND,IPP)
 WRITE(6,100)IPP,ROBND(IBND,IPP),UBND(IBND,IPP), &
 VISCBND(IBND,IPP)*1.E06,CPBND(IBND,IPP), &
 PRBND(IBND,IPP),ALBND(IBND,IPP)
 2 CONTINUE
 1 CONTINUE
 ENDIF
 IF(IOPT.EQ.2)THEN
 WRITE(6,*)' IP TR HC'
 IBND=IBOUND
 ENDIF

 !1D isentropic nozzle flow(input)
 IF(IOPT.EQ.3)THEN
 WRITE(6,*)' XPOS AM PC TR HC'
 CPGAS=GCNT*RGAS/(GCNT-1.)
 RFACT=PRND**.33333333
 FACT=.5*(GCNT+1.)/(GCNT-1.)
 WGFLOW=(2./(GCNT+1.))**FACT*SQRT(GCNT/RGAS/TTOT)*PTOT*ATHROAT
 IBND=IBOUND
 IM =IMBND(IBND)
 I0 =I0BND(IBND)
 J0 =J0BND(IBND)
 IDR=IDBND(IBND)
 NP =NPBND(IBND)
 K0 =I0 +NI(IM)*(J0 -1)+NMP(IM)
 !K0C=I0+IC(IDR)+NI(IM)*(J0+JC(IDR)-1)+NMP(IM)
 !K0I=I0 +NI(IM)*(J0+JC(IDR)-1)+NMP(IM)
 !K0J=I0+IC(IDR)+NI(IM)*(J0 -1)+NMP(IM)
 KD= ID(IDR)+NI(IM)* JD(IDR)
 DO 5 IPP=1,NP-1
 K1=K0+KD*(IPP-1)
 K2=K0+KD* IPP
 XPOS=.5*(XM(K1)+XM(K2))
 RADIUS=.5*(YM(K1)+YM(K2))
 AREA=PI*RADIUS**2
 ARATIO=AREA/ATHROAT
 IF(ARATIO.LT.1.0+EPS)THEN
 AM=1.0
 GOTO 10
 ENDIF

 !Subsonic
 IF(ISUP.EQ.0)THEN
 am=.5
 DO 6 I=1,200
 amn=(1.+.5*(gcnt-1.)*am**2)**fact*sqrt(rgas*ttot/gcnt)* &
 wgflow/ptot/area
 diff=abs(amn-am)/am
 am=amn
 IF(DIFF.LT.ERRMAX)GOTO 7
 6 CONTINUE
 WRITE(6,*)'ITERATION FAILED, SUBSONIC'
 7 CONTINUE
 ENDIF

 !Supersonic
 IF(ISUP.EQ.1)THEN
 am=1.5
 DO 8 I=1,200
 amn=sqrt(2./(gcnt-1.)*((am/wgflow*ptot*area* &

118

 sqrt(gcnt/rgas/ttot))**(1./fact)-1.))
 diff=abs(amn-am)/am
 am=amn
 IF(DIFF.LT.ERRMAX)GOTO 9
 8 CONTINUE
 WRITE(6,*)'ITERATION FAILED, SUPERSONIC'
 9 CONTINUE
 ENDIF
 10 CONTINUE

 tc=ttot/(1.+.5*(gcnt-1.)*am**2)
 pc=ptot/(1.+.5*(gcnt-1.)*am**2)**(gcnt/(gcnt-1.))
 roc=pc/rgas/tc
 vel=wgflow/area/roc

 !Viscosity power law from SPP
 VISCBND(IBND,IPP)=VISC*(TC/TTOT)**.6728
 TRBND(IBND,IPP)=RFACT*TTOT+(1.-RFACT)*TC
 TRBND(IBND,IPP)=TRBND(IBND,IPP)-273.
 RE=WGFLOW*2/(PI*RADIUS*VISCBND(IBND,IPP))
 F=0.0791/(RE**0.25)
 ST=F/2/(1+1.99*RE**(-0.125)*(PRND-1))
 HCEBND(IBND,IPP)=ROC*VEL*ST*CPGAS

 WRITE(6,*)XPOS*1000.,AM,PC/1.E6,TRBND(IBND,IPP),HCEBND(IBND,IPP)
 5 CONTINUE
 ENDIF

 CLOSE(1)
 100 FORMAT(I4,6F10.3)
 RETURN
 END

 SUBROUTINE LTSP
 USE GlobaleVariable
 implicit none
 !Local variables
 INTEGER :: IMESH,I,J,K1,K2,K3,printer
 DOUBLE PRECISION :: TMAX,TS
 printer=1
 TS=DTIME
 DO IMESH=1,NMESH
 DO J=1,NJ(IMESH)-1
 DO I=1,NI(IMESH)-1
 K1=I+NI(IMESH)*(J-1)+NMP(IMESH)
 K2=K1+1
 K3=K1+NI(IMESH)

TMAX=RO(K1)*C(K1)*VOL(K1)/((AI(K1)/RI(K1))+(AI(K2)/RI(K2))+(AJ(K1)/RJ(K1))+(AJ(K3)/
RJ(K3)))
 IF (TS>TMAX) THEN
 TS=TMAX
 IF (printer.EQ.1) THEN
 WRITE(6,*) 'Time step has been changed, dt= ',TS
 printer=0
 END IF
 END IF
 END DO
 END DO
 END DO
 TSF=TS
 RETURN
 END

 !Name:IMPLICIT
 !Author: Jørn Riise
 !Date: 30-06-2008
 !Description: Solves the governing equation using TDMA line-by-line 2D.

119

 SUBROUTINE IMPLICIT_
 USE GlobaleVariable
 implicit none

 !Local variables
 INTEGER :: IMESH,K1,K2,K3,I,pos,J,K4,K5,dummy
 DOUBLE PRECISION, DIMENSION(1000) :: ma,mb,mc,md,P,Q
 DOUBLE PRECISION ::
tempP,tempPo,tempE,tempN,tempS,aw,ae,an,as,ap,kildeP,kildeU,apo, &

denomiator,tempOLD,SIGMA,RADIATION,EMMIS
 LOGICAL :: ferdig

 SIGMA=5.67*1.E-08
 !Initializing convergence variable
 ferdig = .FALSE.

 !Pyrolysis decomposition reactions
 IF (pyrolyse.EQ.1) THEN
 CALL PYROLYSIS
 CALL CONTINUITY
 END IF

 !Temporary storage of temperatures
 TEMPo(:)=TEMP(:)

 DO

 dummy=1

 IF(ferdig) EXIT

 ferdig=.TRUE.

 !Updating material properties
 IF (pyrolyse.EQ.0) THEN
 CALL PICKMDATA
 END IF
 CALL RESMAT

 !Updating shadow cells
 CALL UPDATE_IMPLICIT

 !Sweeping(from South to North) in j-direction
 DO IMESH=1,NMESH
 DO J=1,NJ(IMESH)-1
 DO I=1,NI(IMESH)-1
 kildeP=0
 kildeU=0
 pos=I+1
 !Coordinates in 1D-vector
 K1=I+NI(IMESH)*(J-1)+NMP(IMESH)
 K2=K1+1
 K3=K1+NI(IMESH)
 K4=K1-NI(IMESH)
 IF (J.EQ.1) THEN
 !South edge
 an=(AJ(K3)/RJ(K3))+(CPG(K1)*MAX(0.,(-MJ(K3))))
 as=boundS(3,I,IMESH)

kildeU=boundS(5,I,IMESH)+(Su(K1)*VOL(K1))+(MPYR(K1)*DHPYR(K1))
 !kildeP=0
 RADIATION=boundS(6,I,IMESH)
 EMMIS=boundS(7,I,IMESH)
 IF (RADIATION.GT.0) THEN

120

 kildeP=(-
1)*boundS(1,I,IMESH)*SIGMA*EMMIS*(4*(TEMPo(K1)**3))

kildeU=kildeU+(boundS(1,I,IMESH)*SIGMA*EMMIS*(RADIATION+(3*(TEMPo(K1)**4))))
 END IF

 tempN=TEMP(K3)
 tempS=boundS(4,I,IMESH)
 tempPo=TEMPo(K1)
 ELSE IF (J.EQ.(NJ(IMESH)-1)) THEN
 !North edge
 an=boundN(3,I,IMESH)
 as=(AJ(K1)/RJ(K1))+(CPG(K1)*MAX(0.,MJ(K1)))

kildeU=boundN(5,I,IMESH)+(Su(K1)*VOL(K1))+(MPYR(K1)*DHPYR(K1))
 RADIATION=boundN(6,I,IMESH)
 EMMIS=boundN(7,I,IMESH)
 IF (RADIATION.GT.0) THEN
 kildeP=(-
1)*boundN(1,I,IMESH)*SIGMA*EMMIS*(4*(TEMPo(K1)**3))

kildeU=kildeU+(boundN(1,I,IMESH)*SIGMA*EMMIS*(RADIATION+(3*(TEMPo(K1)**4))))
 END IF

 tempN=boundN(4,I,IMESH)
 tempS=TEMP(K4)
 tempPo=TEMPo(K1)

 ELSE
 !Internal cell volumes
 an=(AJ(K3)/RJ(K3))+(CPG(K1)*MAX(0.,(-MJ(K3))))
 as=(AJ(K1)/RJ(K1))+(CPG(K1)*MAX(0.,MJ(K1)))
 kildeU=(Su(K1)*VOL(K1))+(MPYR(K1)*DHPYR(K1))

 tempN=TEMP(K3)
 tempS=TEMP(K4)
 tempPo=TEMPo(K1)
 END IF

 IF (I.EQ.1) THEN
 !West edge
 aw=boundW(3,J,IMESH)
 ae=(AI(K2)/RI(K2))+(CPG(K1)*MAX(0.,(-MI(K2))))
 kildeU=kildeU+boundW(5,J,IMESH)

 RADIATION=boundW(6,J,IMESH)
 EMMIS=boundW(7,J,IMESH)
 IF (RADIATION.GT.0) THEN
 kildeP=(-
1)*boundW(1,J,IMESH)*SIGMA*EMMIS*(4*(TEMPo(K1)**3))

kildeU=kildeU+(boundW(1,J,IMESH)*SIGMA*EMMIS*(RADIATION+(3*(TEMPo(K1)**4))))
 END IF

 ELSE IF (I.EQ.(NI(IMESH)-1)) THEN
 !East edge
 aw=(AI(K1)/RI(K1))+(CPG(K1)*MAX(0.,MI(K1)))
 ae=boundE(3,J,IMESH)
 kildeU=kildeU+boundE(5,J,IMESH)

 RADIATION=boundE(6,J,IMESH)
 EMMIS=boundE(7,J,IMESH)
 IF (RADIATION.GT.0) THEN
 kildeP=(-
1)*boundE(1,J,IMESH)*SIGMA*EMMIS*(4*(TEMPo(K1)**3))

kildeU=kildeU+(boundE(1,J,IMESH)*SIGMA*EMMIS*(RADIATION+(3*(TEMPo(K1)**4))))
 END IF

121

 ELSE
 aw=(AI(K1)/RI(K1))+(CPG(K1)*MAX(0.,MI(K1)))
 ae=(AI(K2)/RI(K2))+(CPG(K1)*MAX(0.,(-MI(K2))))
 END IF

 !Cell + source
 apo=(RO(K1)*C(K1)*VOL(K1))/DTIME
 ap=apo+aw+ae+an+as-kildeP

 !TDMA Part 1 (Forward substitution)

 !Initial temperature West
 IF (I.EQ.1) THEN
 P(1)=0
 Q(1)=boundW(4,J,IMESH)
 END IF

 !Internal coefficients
 ma(pos)=ap
 mb(pos)=ae
 mc(pos)=aw
 md(pos)=(an*tempN)+(as*tempS)+(apo*tempPo)+kildeU

 !Forward substitution
 denomiator=ma(pos)-(mc(pos)*P(pos-1))
 P(pos)=mb(pos)/denomiator
 Q(pos)=((mc(pos)*Q(pos-1))+md(pos))/denomiator

 END DO !End i and TDMA Part 11

 !TDMA Part 2 (Backward substitution)
 DO I=NI(IMESH)-1, 1, -1
 pos=I+1
 !Coordinates in 1D-vector
 K1=I+NI(IMESH)*(J-1)+NMP(IMESH)
 K2=K1+1
 K3=K1+NI(IMESH)
 K4=K1-NI(IMESH)

 !Initial temperature East
 IF(I.EQ.(NI(IMESH)-1)) THEN
 tempE=boundE(4,J,IMESH)
 ELSE
 tempE=temp(K2)
 END IF

 !Backward substitution
 tempP=(P(pos)*tempE)+Q(pos)
 temp(K1)=tempP

 END DO !End TDMA Part 2

 END DO !End j
 END DO !End imesh

 !Updating shadow cells
 CALL UPDATE_IMPLICIT

 !Sweeping(from West to East) in i-direction
 DO IMESH=1,NMESH
 DO I=1,NI(IMESH)-1
 DO J=1,NJ(IMESH)-1
 kildeP=0
 kildeU=0
 pos=J+1
 !Coordinates in 1D-vector

122

 K1=I+NI(IMESH)*(J-1)+NMP(IMESH)
 K2=K1+1
 K3=K1+NI(IMESH)
 K5=K1-1

 IF (I.EQ.1) THEN
 !North edge
 an=boundW(3,J,IMESH)
 as=(AI(K2)/RI(K2))+(CPG(K1)*MAX(0.,(-MI(K2))))

kildeU=boundW(5,J,IMESH)+(Su(K1)*VOL(K1))+(MPYR(K1)*DHPYR(K1))

 RADIATION=boundW(6,J,IMESH)
 EMMIS=boundW(7,J,IMESH)
 IF (RADIATION.GT.0) THEN
 kildeP=(-
1)*boundW(1,J,IMESH)*SIGMA*EMMIS*(4*(TEMPo(K1)**3))

kildeU=kildeU+(boundW(1,J,IMESH)*SIGMA*EMMIS*(RADIATION+(3*(TEMPo(K1)**4))))
 END IF

 tempN=boundW(4,J,IMESH)
 tempS=TEMP(K2)
 tempPo=TEMPo(K1)
 ELSE IF (I.EQ.(NI(IMESH)-1)) THEN
 !South edge
 an=(AI(K1)/RI(K1))+(CPG(K1)*MAX(0.,MI(K1)))
 as=boundE(3,J,IMESH)

kildeU=boundE(5,J,IMESH)+(Su(K1)*VOL(K1))+(MPYR(K1)*DHPYR(K1))

 RADIATION=boundE(6,J,IMESH)
 EMMIS=boundE(7,J,IMESH)
 IF (RADIATION.GT.0) THEN
 kildeP=(-
1)*boundE(1,J,IMESH)*SIGMA*EMMIS*(4*(TEMPo(K1)**3))

kildeU=kildeU+(boundE(1,J,IMESH)*SIGMA*EMMIS*(RADIATION+(3*(TEMPo(K1)**4))))
 END IF

 tempN=TEMP(K5)
 tempS=boundE(4,J,IMESH)
 tempPo=TEMPo(K1)
 ELSE
 !Internal cell volumes
 an=(AI(K1)/RI(K1))+(CPG(K1)*MAX(0.,MI(K1)))
 as=(AI(K2)/RI(K2))+(CPG(K1)*MAX(0.,(-MI(K2))))
 kildeU=(Su(K1)*VOL(K1))+(MPYR(K1)*DHPYR(K1))

 tempN=TEMP(K5)
 tempS=TEMP(K2)
 tempPo=TEMPo(K1)
 END IF

 IF (J.EQ.1) THEN
 !West edge
 ae=(AJ(K3)/RJ(K3))+(CPG(K1)*MAX(0.,(-MJ(K3))))
 aw=boundS(3,I,IMESH)
 kildeU=kildeU+boundS(5,I,IMESH)

 RADIATION=boundS(6,I,IMESH)
 EMMIS=boundS(7,I,IMESH)
 IF (RADIATION.GT.0) THEN
 kildeP=(-
1)*boundS(1,I,IMESH)*SIGMA*EMMIS*(4*(TEMPo(K1)**3))

kildeU=kildeU+(boundS(1,I,IMESH)*SIGMA*EMMIS*(RADIATION+(3*(TEMPo(K1)**4))))
 END IF

123

 ELSE IF (J.EQ.(NJ(IMESH)-1)) THEN
 !East edge
 ae=boundN(3,I,IMESH)
 aw=(AJ(K1)/RJ(K1))+(CPG(K1)*MAX(0.,MJ(K1)))
 kildeU=kildeU+boundN(5,I,IMESH)

 RADIATION=boundN(6,I,IMESH)
 EMMIS=boundN(7,I,IMESH)
 IF (RADIATION.GT.0) THEN
 kildeP=(-
1)*boundN(1,I,IMESH)*SIGMA*EMMIS*(4*(TEMPo(K1)**3))

kildeU=kildeU+(boundN(1,I,IMESH)*SIGMA*EMMIS*(RADIATION+(3*(TEMPo(K1)**4))))
 END IF
 ELSE
 ae=(AJ(K3)/RJ(K3))+(CPG(K1)*MAX(0.,(-MJ(K3))))
 aw=(AJ(K1)/RJ(K1))+(CPG(K1)*MAX(0.,MJ(K1)))
 END IF

 !Cell + source
 apo=(RO(K1)*C(K1)*VOL(K1))/DTIME
 ap=apo+aw+ae+an+as-kildeP

 !TDMA Part 1 (Forward substitution)

 !Initial temperature West
 IF (J.EQ.1) THEN
 P(1)=0
 Q(1)=boundS(4,I,IMESH)
 END IF

 !Internal coefficients
 ma(pos)=ap
 mb(pos)=ae
 mc(pos)=aw
 md(pos)=(an*tempN)+(as*tempS)+(apo*tempPo)+kildeU

 !Forward substitution
 denomiator=(ma(pos)-(mc(pos)*P(pos-1)))
 P(pos)=mb(pos)/denomiator
 Q(pos)=((mc(pos)*Q(pos-1))+md(pos))/denomiator

 END DO !End j and TDMA part 1

 !TDMA Part 2 (Backward substitution)
 DO J=NJ(IMESH)-1, 1, -1
 pos=J+1
 !Coordinates in 1D-vector
 K1=I+NI(IMESH)*(J-1)+NMP(IMESH)
 K2=K1+1
 K3=K1+NI(IMESH)
 K5=K1-1

 !Initial temperature East
 tempOLD=temp(K1)
 IF(J.EQ.(NJ(IMESH)-1)) THEN
 tempE=boundN(4,I,IMESH)
 ELSE
 tempE=temp(K3)
 END IF

 !Backward substitution
 tempP=(P(pos)*tempE)+Q(pos)
 temp(K1)=tempP

 !Check for convergence
 IF(ABS(tempOLD-tempP).GT.konvergenskrit) THEN

124

 ferdig=.FALSE.
 END IF !Check for convergence
 END DO !End TDMA Part 2

 END DO !End i
 END DO !End imesh

 END DO !End convergence

 END SUBROUTINE !End Implicit

 !Name: MECH_EROSION
 !Author: Jørn Riise
 !Date: 30-06-2008
 !Description: Calculates the starting and ending time of the recession

 SUBROUTINE MECH_EROSION
 USE GlobaleVariable
 implicit none

 DOUBLE PRECISION ::
LENIFACE,TLENIFACE,IDX,IDY,deltaSF,deltaCP,xcross,ycross,ykCP,ykSF, &

xcross1,ycross1,xcross2,ycross2,IDXX,IDYY,TLEN1,TLEN2,SUMMEK,MAXLEN, &
 LENIBFACED
 INTEGER ::
K1,K2,K3,K4,I,J,K,IMESH,R,B,IBPKT,donemek,cross,TNMEK,startMEK,FIRST1,FIRST2
 DOUBLE PRECISION, DIMENSION(4) :: dyB,dxB,XB,YB

 DO IMESH=1,NMESH
 DO I=1,NI(IMESH)-1
 DO J=1,NJ(IMESH)-1
 K1=I+NI(IMESH)*(J-1)+NMP(IMESH)
 !For decomposing cell volumes
 IF(IFACEBULK(K1).GT.0) THEN
 !Calculates the recession vectors
 K2=K1+1
 K3=K1+NI(IMESH)
 K4=K3+1
 IDX=IBFACEX(1)-XCP(K1)
 IDY=IBFACEY(1)-YCP(K1)
 LENIFACE=SQRT((IDX**2)+(IDY**2))+1
 DO K=1,NBFACE
 IDX=IBFACEX(K)-XCP(K1)
 IDY=IBFACEY(K)-YCP(K1)
 TLENIFACE=SQRT((IDX**2)+(IDY**2))
 IF(TLENIFACE.LT.LENIFACE) THEN
 VMX(K1)=IDX
 VMY(K1)=IDY
 IBPKT=K
 LENIFACE=TLENIFACE
 END IF
 END DO
 !Center points on cell volume edges 1=south,2=east,3=north and 4=west
 dxB(1)=XM(K2)-XM(K1)
 dyB(1)=YM(K2)-YM(K1)
 dxB(2)=XM(K4)-XM(K2)
 dyB(2)=YM(K4)-YM(K2)
 dxB(3)=XM(K3)-XM(K4)
 dyB(3)=YM(K3)-YM(K4)
 dxB(4)=XM(K1)-XM(K3)
 dyB(4)=YM(K1)-YM(K3)
 XB(1)=XM(K1)
 YB(1)=YM(K1)
 XB(2)=XM(K2)
 YB(2)=YM(K2)

125

 XB(3)=XM(K4)
 YB(3)=YM(K4)
 XB(4)=XM(K3)
 YB(4)=YM(K3)

 FIRST1=0
 FIRST2=0
 DO R=1,4
 !Find the crossing points for recession length in cell volumes
 cross=0
 IF (ABS(VMX(K1)).GT.0) THEN
 deltaCP=(VMY(K1)/VMX(K1))
 ykCP=YCP(K1)-(deltaCP*XCP(K1))
 IF (ABS(dxB(R)).GT.0) THEN
 deltaSF=(dyB(R)/dxB(R))
 ykSF=YB(R)-(deltaSF*XB(R))
 IF (ABS(deltaSF-deltaCP).GT.0) THEN
 xcross=(ykSF-ykCP)/(deltaCP-deltaSF)
 ycross=ykSF+(deltaSF*xcross)
 cross=1
 END IF
 ELSE
 xcross=XB(R)
 ycross=ykCP+(deltaCP*xcross)
 cross=1
 END IF
 ELSE
 IF (ABS(dxB(R)).GT.0) THEN
 deltaSF=(dyB(R)/dxB(R))
 ykSF=YB(R)-(deltaSF*XB(R))
 xcross=XCP(K1)
 ycross=ykSF+(deltaSF*xcross)
 cross=1
 END IF
 END IF

 !If crossing point is found:
 IF (cross.EQ.1) THEN
 IF (ABS(VMX(K1)).GT.0) THEN
 IF (xcross.LT.XCP(K1)) THEN
 IF (FIRST1.EQ.0) THEN
 xcross1=xcross
 ycross1=ycross
 FIRST1=1
 ELSE IF (xcross.GT.xcross1) THEN
 xcross1=xcross
 ycross1=ycross
 END IF
 ELSE
 IF (FIRST2.EQ.0) THEN
 xcross2=xcross
 ycross2=ycross
 FIRST2=1
 ELSE IF (xcross.LT.xcross2) THEN
 xcross2=xcross
 ycross2=ycross
 END IF
 END IF
 ELSE
 IF (ycross.GT.YCP(K1)) THEN
 IF (FIRST1.EQ.0) THEN
 xcross1=xcross
 ycross1=ycross
 FIRST1=1
 ELSE IF (ycross.GT.ycross1) THEN
 xcross1=xcross
 ycross1=ycross

126

 END IF
 ELSE
 IF (FIRST2.EQ.0) THEN
 xcross2=xcross
 ycross2=ycross
 FIRST2=1
 ELSE IF (ycross.LT.ycross2) THEN
 xcross2=xcross
 ycross2=ycross
 END IF
 END IF
 END IF
 END IF

 END DO

 !Crossing points: xcross1 og xcross2
 IDX=IBFACEX(IBPKT)-xcross1
 IDY=IBFACEY(IBPKT)-ycross1
 TLEN1=SQRT((IDX**2)+(IDY**2))
 IDXX=IBFACEX(IBPKT)-xcross2
 IDYY=IBFACEY(IBPKT)-ycross2
 TLEN2=SQRT((IDXX**2)+(IDYY**2))
 !Calculates the length to start of recession and the length inside cell
volume
 IF (TLEN1.LT.TLEN2) THEN
 LENIBFACE(K1)=TLEN1
 LENIBCELL(K1)=TLEN2-TLEN1
 ELSE
 LENIBFACE(K1)=TLEN2
 LENIBCELL(K1)=TLEN1-TLEN2
 END IF
 !Calculates starting and ending time of recession, erosjon VMEK()=m/s,
NMEK=number of recession rates

 !**************
 !Starting time.
 !**************
 donemek=0
 startMEK=1
 TNMEK=NMEK !N ending times
 DO
 IF (donemek.EQ.1) EXIT
 !Mean recession rate
 SUMMEK=MEK(startMEK)*(MEKTIMES(startMEK))
 IF (ABS(TNMEK-startMEK).GE.2) THEN
 DO B=(startMEK+1),(TNMEK-1)
 SUMMEK=SUMMEK+(MEK(B)*(MEKTIMES(B)-MEKTIMES(B-1)))
 END DO
 END IF
 IF(TNMEK.EQ.1) THEN
 MAXLEN=SUMMEK
 ELSE
 MAXLEN=SUMMEK+((MEKTIMES(TNMEK)-MEKTIMES(TNMEK-1))*MEK(TNMEK))
 END IF
 IF (MAXLEN.GT.LENIBFACE(K1)) THEN
 IF(MEK(TNMEK).EQ.0) THEN
 MEKTIME(K1)=0
 ELSE IF(TNMEK.EQ.1) THEN
 MEKTIME(K1)=(LENIBFACE(K1)/MEK(TNMEK))
 ELSE
 MEKTIME(K1)=((LENIBFACE(K1)-SUMMEK)/MEK(TNMEK))+MEKTIMES(TNMEK-
1)
 END IF
 ELSE
 MEKTIME(K1)=1.0E15
 donemek=1
 END IF

127

 !Check for current recession
 IF (MEKTIME(K1).LT.MEKTIMES(TNMEK-1)) THEN
 TNMEK=TNMEK-1
 ELSE
 donemek=1
 END IF

 END DO

 !************
 !Ending time.
 !************
 donemek=0
 TNMEK=NMEK !N ending times
 LENIBFACED=LENIBFACE(K1)+LENIBCELL(K1)
 DO
 IF (donemek.EQ.1) EXIT
 !Mean recession rate
 SUMMEK=MEK(startMEK)*(MEKTIMES(startMEK))
 IF (ABS(startMEK-TNMEK).GE.2) THEN
 DO B=(startMEK+1),(TNMEK-1)
 SUMMEK=SUMMEK+(MEK(B)*(MEKTIMES(B)-MEKTIMES(B-1)))
 END DO
 END IF
 IF (TNMEK.EQ.1) THEN
 MAXLEN=SUMMEK
 ELSE
 MAXLEN=SUMMEK+((MEKTIMES(TNMEK)-MEKTIMES(TNMEK-1))*MEK(TNMEK))
 END IF
 IF (MAXLEN.GT.LENIBFACED) THEN
 IF(MEK(TNMEK).EQ.0) THEN
 MEKTIMED(K1)=0
 ELSE IF(TNMEK.EQ.1) THEN
 MEKTIMED(K1)=(LENIBFACED/MEK(TNMEK))
 MEKEND(K1)=0.
 ELSE
 MEKTIMED(K1)=((LENIBFACED-SUMMEK)/MEK(TNMEK))+MEKTIMES(TNMEK-1)
 MEKEND(K1)=0.
 END IF
 ELSE
 IF(MEK(TNMEK).EQ.0) THEN
 MEKTIMED(K1)=0
 ELSE
 MEKTIMED(K1)=((MAXLEN-SUMMEK)/MEK(TNMEK))+MEKTIMES(TNMEK-1)
 donemek=1
 MEKEND(K1)=(((LENIBFACED-SUMMEK)/MEK(TNMEK))+MEKTIMES(TNMEK-1))-
MEKTIMED(K1)
 END IF
 END IF

 !Check for current recession
 IF (MEKTIMED(K1).LT.MEKTIMES(TNMEK-1)) THEN
 TNMEK=TNMEK-1
 ELSE
 donemek=1
 END IF
 END DO
 END IF !End decomposing cell volumes

 END DO
 END DO
 END DO

 END SUBROUTINE !End MECH_EROSION

128

 !Name: DIRECTIONVECTORS
 !Author: Jørn Riise
 !Date: 30-06-2008
 !Description: Calculates the direction vectors for the decompoosing material.
 SUBROUTINE directionVectors
 USE GlobaleVariable
 implicit none

 DOUBLE PRECISION :: LENIFACE,TLENIFACE,IDX,IDY
 INTEGER :: K1,I,J,K,IMESH

 DO IMESH=1,NMESH
 DO I=1,NI(IMESH)-1
 DO J=1,NJ(IMESH)-1
 K1=I+NI(IMESH)*(J-1)+NMP(IMESH)
 !For decomposing cell volumes
 IF(IFACEBULK(K1).EQ.1) THEN
 IDX=XCP(IFACE(K))-XCP(K1)
 IDY=YCP(IFACE(K))-YCP(K1)
 LENIFACE=SQRT((IDX**2)+(IDY**2))+1
 DO K=1,NIFACE
 IDX=XCP(IFACE(K))-XCP(K1)
 IDY=YCP(IFACE(K))-YCP(K1)
 TLENIFACE=SQRT((IDX**2)+(IDY**2))
 IF(TLENIFACE.LT.LENIFACE) THEN
 VX(K1)=IDX
 VY(K1)=IDY
 LENIFACE=TLENIFACE
 END IF
 END DO
 ELSE IF(IFACEBULK(K1).GE.2 .AND. ABS(IFACEVALUE-0.02).LT.0.001) THEN
 IDX=IBFACEX(1)-XCP(K1)
 IDY=IBFACEY(1)-YCP(K1)
 LENIFACE=SQRT((IDX**2)+(IDY**2))+1
 DO K=1,NBFACE
 IDX=IBFACEX(K)-XCP(K1)
 IDY=IBFACEY(K)-YCP(K1)
 TLENIFACE=SQRT((IDX**2)+(IDY**2))
 IF(TLENIFACE.LT.LENIFACE) THEN
 VX(K1)=IDX
 VY(K1)=IDY
 LENIFACE=TLENIFACE
 END IF
 END DO
 END IF !End decomposing cell volumes

 END DO
 END DO
 END DO

 END SUBROUTINE !End directionVectors

 !Name: Continuity
 !Author: Jørn Riise
 !Date: 30-06-2008
 !Description: Solves the continuity equation using vectors.
 SUBROUTINE CONTINUITY
 USE GlobaleVariable
 implicit none

 INTEGER :: IMESH,K1,K2,K3,I,J,done,W1,E1,S1,N1
 DOUBLE PRECISION :: mOUT,Angle,iy,ix
 INTEGER,DIMENSION(4) :: aDIR
 DOUBLE PRECISION, DIMENSION(35000) :: lamdaX,lamdaY,mOLD
 INTEGER,DIMENSION(35000,4) :: bDIR

129

 done=0
 MI=MI*0
 MJ=MJ*0
 CALL directionVectors

 DO IMESH=1,NMESH
 DO I=1,NI(IMESH)-1
 DO J=1,NJ(IMESH)-1
 !Coordinates in 1D-vector
 K1=I+NI(IMESH)*(J-1)+NMP(IMESH)
 K2=K1+1
 !For decomposing cell volumes
 IF(IFACEBULK(K1)>0) THEN
 !Gas direction
 ix=XM(K2)-XM(K1)
 iy=YM(K2)-YM(K1)
 Angle=ATAN2(VY(K1),VX(K1))-ATAN2(iy,ix)
 IF (Angle.LT.0) THEN
 Angle=Angle+(2*PI)
 END IF

 IF (Angle.LT.PI) THEN
 IF (Angle.LT.(PI/2)) THEN
 IF(Angle.EQ.0) THEN
 aDIR=(/0,1,1,1/)
 ELSE
 aDIR=(/0,1,0,1/)
 END IF
 lamdaY(K1)=2*Angle/PI
 lamdaX(K1)=1-lamdaY(K1)
 ELSE
 IF(ABS(Angle-(PI/2)).LT.0.001) THEN
 aDIR=(/1,1,0,1/)
 ELSE
 aDIR=(/1,0,0,1/)
 END IF
 lamdaX(K1)=2*((PI/2)-Angle)/PI
 lamdaY(K1)=1+lamdaX(K1)
 END IF
 ELSE
 IF (Angle.LT.(3*PI/2)) THEN
 IF (ABS(Angle-PI).LT.0.001) THEN
 aDIR=(/1,0,1,1/)
 ELSE
 aDIR=(/1,0,1,0/)
 END IF
 lamdaY(K1)=2*(PI-Angle)/PI
 lamdaX(K1)=(-1)-lamdaY(K1)
 ELSE
 IF (ABS(Angle-(3*PI/2)).LT.0.001) THEN
 aDIR=(/1,1,1,0/)
 ELSE IF (ABS(Angle-(2*PI)).LT.0.001) THEN
 aDIR=(/0,1,1,1/)
 ELSE
 aDIR=(/0,1,1,0/)
 END IF
 lamdaX(K1)=2*(Angle-(3*PI/2))/PI
 lamdaY(K1)=lamdaX(K1)-1
 END IF
 END IF
 bDIR(K1,:)=aDIR(:)
 END IF !End decomposing cell volumes
 END DO !End J
 END DO !End I
 END DO !End IMESH

 !Iteration routine
 DO

130

 IF(done.EQ.1) EXIT
 done=1

 DO IMESH=1,NMESH
 DO I=1,NI(IMESH)-1
 DO J=1,NJ(IMESH)-1
 !Coordinates in 1D-vector
 K1=I+NI(IMESH)*(J-1)+NMP(IMESH)
 !For decomposing cell volumes
 IF(IFACEBULK(K1)>0) THEN
 K2=K1+1
 K3=K1+NI(IMESH)

 mOUT=((-1)*MPYR(K1))-(bDIR(K1,1)*MI(K2))+(bDIR(K1,2)*MI(K1))- &
 (bDIR(K1,3)*MJ(K3))+(bDIR(K1,4)*MJ(K1))

 IF (I.EQ.1) THEN
 W1=boundWU(1,J,IMESH)
 IF (W1.EQ.1) THEN

MJ(boundWU(2,J,IMESH))=(bDIR(K1,2)*MI(K1))+(bDIR(K1,1)*lamdaX(K1)*mOUT) !WEST
 ELSEIF (W1.EQ.2) THEN

MI(boundWU(2,J,IMESH))=(bDIR(K1,2)*MI(K1))+(bDIR(K1,1)*lamdaX(K1)*mOUT) !WEST
 END IF
 ELSE IF (I.EQ.(NI(IMESH)-1)) THEN
 E1=boundEU(1,J,IMESH)
 IF (E1.EQ.1) THEN

MJ(boundEU(2,J,IMESH))=(bDIR(K1,1)*MI(K2))+(bDIR(K1,2)*lamdaX(K1)*mOUT) !East
 ELSEIF (E1.EQ.2) THEN

MI(boundEU(2,J,IMESH))=(bDIR(K1,1)*MI(K2))+(bDIR(K1,2)*lamdaX(K1)*mOUT) !East
 END IF
 END IF

 IF (J.EQ.1) THEN
 S1=boundSU(1,I,IMESH)
 IF (S1.EQ.1) THEN

MJ(boundSU(2,I,IMESH))=(bDIR(K1,4)*MJ(K1))+(bDIR(K1,3)*lamdaY(K1)*mOUT) !SOUTH
 ELSEIF (S1.EQ.2) THEN

MI(boundSU(2,I,IMESH))=(bDIR(K1,4)*MJ(K1))+(bDIR(K1,3)*lamdaY(K1)*mOUT) !SOUTH
 END IF
 ELSE IF (J.EQ.(NJ(IMESH)-1)) THEN
 N1=boundNU(1,I,IMESH)
 IF (N1.EQ.1) THEN

MJ(boundNU(2,I,IMESH))=(bDIR(K1,3)*MJ(K3))+(bDIR(K1,4)*lamdaY(K1)*mOUT) !NORTH
 ELSEIF (N1.EQ.2) THEN

MI(boundNU(2,I,IMESH))=(bDIR(K1,3)*MJ(K3))+(bDIR(K1,4)*lamdaY(K1)*mOUT) !NORTH
 END IF
 END IF

 MI(K1)=(bDIR(K1,2)*MI(K1))+(bDIR(K1,1)*lamdaX(K1)*mOUT) !WEST
 MI(K2)=(bDIR(K1,1)*MI(K2))+(bDIR(K1,2)*lamdaX(K1)*mOUT) !EAST
 MJ(K1)=(bDIR(K1,4)*MJ(K1))+(bDIR(K1,3)*lamdaY(K1)*mOUT) !SOUTH
 MJ(K3)=(bDIR(K1,3)*MJ(K3))+(bDIR(K1,4)*lamdaY(K1)*mOUT) !NORTH

 !Check for convergence
 IF(ABS(mOLD(K1)-mOUT).GT.1E-12) THEN
 done=0
 END IF
 mOLD(K1)=mOUT
 END IF !End decomposing cell volumes

131

 END DO !End J
 END DO !End I
 END DO !End MESH

 END DO !End iterasjon

 END SUBROUTINE !End Continuity

 !Name: INIT_PYROLYSIS
 !Author: Jørn Riise
 !Date: 30-06-2008
 !Description: Solves the continuity equation using vectors.
 SUBROUTINE INIT_PYROLYSIS
 USE GlobaleVariable
 implicit none

 INTEGER ::
K1,K2,K3,K4,II,JJ,IIMESH,PYRMAT,REAC,switch
 DOUBLE PRECISION ::
xp1,yp1,xp2,yp2,xp3,yp3,xp4,yp4,a1to3,b1to3, &
 a4to2,b4to2,tempx1,tempx2
 !Decision variable for the interface
 IF(IFACEVALUE.EQ.0) THEN
 IFACEVALUE=0.02
 END IF

 !Initializing parameters
 IF (Pyrini.EQ.1) THEN
 Pyrini=0
 RHORTOT=RHORTOT*0
 RHOOTOT=RHOOTOT*0
 VX=VX*0
 VY=VY*0
 VMX=VMX*0
 VMY=VMY*0
 MEKEND=MEKEND*0
 precisionP=1.0E2
 DO IIMESH=1,NMESH
 DO JJ=1,NJ(IIMESH)-1
 DO II=1,NI(IIMESH)-1
 K1=II+NI(IIMESH)*(JJ-1)+NMP(IIMESH)
 !For decomposing cell volumes
 IF(IFACEBULK(K1)>0) THEN
 PYRMAT=MAT(K1)
 ANTPYR(K1)=AM_ANTPYR(PYRMAT)
 DO REAC=1,ANTPYR(K1)
 VOLFRAC(REAC,K1)=AM_VOLFRAC(REAC,PYRMAT)
 RHO(REAC,K1)=AM_RHOO(REAC,PYRMAT)*VOLFRAC(REAC,K1)
 RHOO(REAC,K1)=AM_RHOO(REAC,PYRMAT)*VOLFRAC(REAC,K1)
 RHOR(REAC,K1)=AM_RHOR(REAC,PYRMAT)*VOLFRAC(REAC,K1)
 APYR(REAC,K1)=AM_APYR(REAC,PYRMAT)
 EPYR(REAC,K1)=AM_EPYR(REAC,PYRMAT)
 NPYR(REAC,K1)=AM_NPYR(REAC,PYRMAT)
 TREAC(REAC,K1)=AM_TREAC(REAC,PYRMAT)
 RHOOTOT(K1)=RHOOTOT(K1)+RHOO(REAC,K1)
 RHORTOT(K1)=RHORTOT(K1)+RHOR(REAC,K1)
 END DO
 RHOFRAC(K1)=1.
 RO(K1)=RHOOTOT(K1)
 MEKSTART(K1)=0
 MEKTIME(K1)=1.0E15
 MEKTIMED(K1)=1.0E15

 END IF
 END DO
 END DO
 END DO

132

 END IF

 !Initializing parameters
 NBFACE=0
 IBFACEX=IBFACEX*0
 IBFACEY=IBFACEY*0
 DO IIMESH=1,NMESH
 DO JJ=1,NJ(IIMESH)-1
 DO II=1,NI(IIMESH)-1
 !Defining centerpoints in the cell volume
 K1=II+NI(IIMESH)*(JJ-1)+NMP(IIMESH)
 !For decomposing cell volumes
 IF(IFACEBULK(K1)>0) THEN
 K2=K1+1
 K3=K1+NI(IIMESH)
 K4=K3+1

 !Edge coordinated xp=x-point,yp=y-point, 1=south, 2=east, 3=north and
4=west
 xp1=XM(K1)+((XM(K2)-XM(K1))/2)
 yp1=YM(K1)+((YM(K2)-YM(K1))/2)
 xp2=XM(K2)+((XM(K4)-XM(K2))/2)
 yp2=YM(K2)+((YM(K4)-YM(K2))/2)
 xp3=XM(K4)+((XM(K3)-XM(K4))/2)
 yp3=YM(K4)+((YM(K3)-YM(K4))/2)
 xp4=XM(K3)+((XM(K1)-XM(K3))/2)
 yp4=YM(K3)+((YM(K1)-YM(K3))/2)
 !Line 1->3 and 4->2 makes an intersection (y=ax+b)
 switch=1
 tempx1=(xp3-xp1)
 IF(ABS(tempx1).GT.0.0) THEN
 a1to3=(yp3-yp1)/tempx1
 b1to3=yp3-(a1to3*xp3)
 ELSE
 switch=0
 XCP(K1)=xp3
 END IF
 tempx2=(xp2-xp4)
 IF(ABS(tempx2).GT.0.0) THEN
 a4to2=(yp2-yp4)/tempx2
 b4to2=yp4-(a4to2*xp4)
 ELSE
 switch=0
 XCP(K1)=xp2
 END IF

 !Center point in cell volume k1: XCP(K1),YCP(K1)
 IF (switch.EQ.1) THEN
 IF(ABS(a1to3).GT.0.0) THEN
 XCP(K1)=(b4to2-b1to3)/(a1to3-a4to2)
 YCP(K1)=(a1to3*XCP(K1))+b1to3
 ELSE
 XCP(K1)=(b4to2-b1to3)/(a1to3-a4to2)
 YCP(K1)=(a4to2*XCP(K1))+b4to2
 END IF
 ELSE
 IF(ABS(tempx1).GT.0.0) THEN
 YCP(K1)=b1to3+(a1to3*XCP(K1))
 ELSE
 YCP(K1)=b4to2+(a4to2*XCP(K1))
 END IF
 END IF

 IF(II.EQ.1) THEN
 IF(boundW(2,JJ,IIMESH).GT.0) THEN
 WRITE(6,*) 'west'
 IFACEBULK(K1)=3

133

 VX(K1)=xp4-XCP(K1)
 VY(K1)=yp4-YCP(K1)
 NBFACE=NBFACE+1
 IBFACEX(NBFACE)=xp4
 IBFACEY(NBFACE)=yp4
 END IF
 ELSEIF(II.EQ.(NI(IIMESH)-1)) THEN
 IF (boundE(2,JJ,IIMESH).GT.0) THEN
 WRITE(6,*) 'east'
 IFACEBULK(K1)=3
 VX(K1)=xp2-XCP(K1)
 VY(K1)=yp2-YCP(K1)
 NBFACE=NBFACE+1
 IBFACEX(NBFACE)=xp2
 IBFACEY(NBFACE)=yp2
 END IF
 END IF

 IF (JJ.EQ.1) THEN
 IF (boundS(2,II,IIMESH).GT.0) THEN
 WRITE(6,*) 'south'
 IFACEBULK(K1)=3
 VX(K1)=xp1-XCP(K1)
 VY(K1)=yp1-YCP(K1)
 NBFACE=NBFACE+1
 IBFACEX(NBFACE)=xp1
 IBFACEY(NBFACE)=yp1
 END IF
 IF(ABS(boundS(2,II,IIMESH)-1).LT.0.0001) THEN
 precisionP=1.0E14
 ELSE
 precisionP=1.0E2
 END IF
 ELSEIF (JJ.EQ.(NJ(IIMESH)-1)) THEN
 IF (boundN(2,II,IIMESH).GT.0) THEN
 WRITE(6,*) 'north'
 IFACEBULK(K1)=3
 VX(K1)=xp3-XCP(K1)
 VY(K1)=yp3-YCP(K1)
 NBFACE=NBFACE+1
 IBFACEX(NBFACE)=xp3
 IBFACEY(NBFACE)=yp3
 END IF
 END IF

 END IF !End decomposing cell volumes
 END DO !End J
 END DO !End I
 END DO !End Mesh

 !If recession rates are specified
 IF (M_EROSION.EQ.1) THEN
 CALL MECH_EROSION
 M_EROSION=0
 END IF

 END SUBROUTINE !End INIT_PYROLYSIS

 !Name: PYROLYSIS
 !Author: Jørn Riise
 !Date: 30-06-2008
 !Description: Solves the internal decomposition reactions and adjust material
properties.
 SUBROUTINE PYROLYSIS
 USE GlobaleVariable
 implicit none

134

 DOUBLE PRECISION ::
DALFA,RHOTEMP,RHORTEMP,RHODIFF,ALFADIFF,ALFATEMP,T,TMIN,TMAX,XSI,T1,T2,XFRAC, &
 MEKDTIME,MFRAC
 INTEGER ::
NREAC,REAC,K1,K2,K3,K4,K5,I,J,IMESH,IIMAT,IT,N

 NIFACE=0
 IFACE=IFACE*0

 DO IMESH=1,NMESH
 DO I=1,NI(IMESH)-1
 DO J=1,NJ(IMESH)-1
 K1=I+NI(IMESH)*(J-1)+NMP(IMESH)
 K3=K1+NI(IMESH)
 !For decomposing cell volumes
 IF(IFACEBULK(K1).GT.0) THEN
 !Check for starting time of recession (default=MEKTIME>TIME)
 IF (TIME.GT.MEKTIME(K1)) THEN
 IF (TIME.GE.MEKTIMED(K1)) THEN
 IF (MEKEND(K1).LE.0) THEN
 C(K1)=0.01
 TCI(K1)=1*precisionP
 TCJ(K1)=1*precisionP
 RO(K1)=0.1
 MPYR(K1)=0.
 RHOFRAC(K1)=0.
 CPG(K1)=0.
 DHPYR(K1)=0.
 END IF
 ELSE
 !Calculates the recession rate of the cell volume
 IF(MEKSTART(K1).EQ.0) THEN
 MEKDTIME=(MEKTIMED(K1)+MEKEND(K1))-TIME
 MEKRHOTOT(K1)=RO(K1)
 MEKALFA(K1)=MEKRHOTOT(K1)/MEKDTIME
 MEKSTART(K1)=1
 END IF
 RO(K1)=RO(K1)-(MEKALFA(K1)*DTIME)
 MPYR(K1)=0.
 MFRAC=RO(K1)/MEKRHOTOT(K1)
 IF (MFRAC.LE.0.0) THEN
 RO(K1)=0.1
 MFRAC=0.
 END IF

 XFRAC=RHOFRAC(K1)

 !Update material properties
 T=TEMP(K1)
 IIMAT=MAT(K1)
 N=NINT(AM_DATA(IIMAT))
 TMIN=AM_TEMP(IIMAT,1)
 TMAX=AM_TEMP(IIMAT,N)
 IF (T.LE.TMIN) THEN
 T1=TMIN
 T2=TMIN
 TCI(K1)=((AM_TCI(IIMAT,1)*XFRAC)+(AM_TCIR(IIMAT,1)*(1-
XFRAC))*MFRAC)+((1-MFRAC)*1.0*precisionP)
 TCJ(K1)=((AM_TCJ(IIMAT,1)*XFRAC)+(AM_TCJR(IIMAT,1)*(1-
XFRAC))*MFRAC)+((1-MFRAC)*1.0*precisionP)
 C(K1) =(((AM_CP(IIMAT,1)*XFRAC)+(AM_CPR(IIMAT,1)*(1-
XFRAC)))*MFRAC)+((1-MFRAC)*(0.1E-1))
 CPG(K1)=AM_CPG(IIMAT,1)
 DHPYR(K1)=AM_DHPYR(IIMAT,1)
 ELSE IF (T.GE.TMAX) THEN
 T1=TMAX
 T2=TMAX

135

 TCI(K1)=((AM_TCI(IIMAT,N)*XFRAC)+(AM_TCIR(IIMAT,N)*(1-
XFRAC))*MFRAC)+((1-MFRAC)*1.0*precisionP)
 TCJ(K1)=((AM_TCJ(IIMAT,N)*XFRAC)+(AM_TCJR(IIMAT,N)*(1-
XFRAC))*MFRAC)+((1-MFRAC)*1.0*precisionP)
 C(K1) =(((AM_CP(IIMAT,N)*XFRAC)+(AM_CPR(IIMAT,N)*(1-
XFRAC)))*MFRAC)+((1-MFRAC)*(0.1E-1))
 CPG(K1)=AM_CPG(IIMAT,N)
 DHPYR(K1)=AM_DHPYR(IIMAT,N)
 ELSE
 DO IT=1,N-1
 T1=AM_TEMP(IIMAT,IT)
 T2=AM_TEMP(IIMAT,IT+1)
 XSI=(T-T1)/(T2-T1)
 IF(T2.GT.T)EXIT
 END DO
 TCI(K1)=((((((1.-
XSI)*AM_TCI(IIMAT,IT))+(XSI*AM_TCI(IIMAT,IT+1)))*XFRAC)+ &
 ((((1.-
XSI)*AM_TCIR(IIMAT,IT))+(XSI*AM_TCIR(IIMAT,IT+1)))*(1-XFRAC)))*MFRAC)+ &
 ((1-MFRAC)*1.0*precisionP)
 TCJ(K1)=((((((1.-
XSI)*AM_TCJ(IIMAT,IT))+(XSI*AM_TCJ(IIMAT,IT+1)))*XFRAC)+ &
 ((((1.-
XSI)*AM_TCJR(IIMAT,IT))+(XSI*AM_TCJR(IIMAT,IT+1)))*(1-XFRAC)))*MFRAC)+ &
 ((1-MFRAC)*1.0*precisionP)
 C(K1) =(((((1.-XSI)*AM_CP(IIMAT,IT) +XSI*AM_CP(IIMAT,IT+1))*XFRAC)+
&
 (((1.-XSI)*AM_CPR(IIMAT,IT)+XSI*AM_CPR(IIMAT,IT+1))*(1-
XFRAC)))* &
 MFRAC)+((1-MFRAC)*(0.1E-1))
 CPG(K1)=((1.-XSI)*AM_CPG(IIMAT,IT)) +(XSI*AM_CPG(IIMAT,IT+1))
 DHPYR(K1)=((1.-XSI)*AM_DHPYR(IIMAT,IT))
+(XSI*AM_DHPYR(IIMAT,IT+1))
 END IF
 END IF

 !End M_EROSION
 ELSE
 NREAC=ANTPYR(K1)
 !Calculates the pyrolysis reactions
 ALFATEMP=0.
 DO REAC=1,NREAC
 RHORTEMP=RHOR(REAC,K1)
 RHOTEMP=RHO(REAC,K1)
 RHODIFF=RHOO(REAC,K1)-RHORTEMP
 IF (TEMP(K1).GT.TREAC(REAC,K1)) THEN
 DALFA=DTIME*RHODIFF*((((RHOTEMP-
RHORTEMP))/RHODIFF)**NPYR(REAC,K1))* &
 APYR(REAC,K1)*EXP(-EPYR(REAC,K1)/TEMP(K1))
 IF (RHOTEMP.GT.RHORTEMP) THEN
 ALFADIFF=RHOTEMP-DALFA
 IF (ALFADIFF.GT.RHORTEMP) THEN
 ALFATEMP=ALFATEMP+DALFA
 RHO(REAC,K1)=ALFADIFF
 ELSE
 ALFATEMP=ALFATEMP+(RHOTEMP-RHORTEMP)
 RHO(REAC,K1)=RHORTEMP
 END IF
 END IF
 END IF
 END DO

 !Update the density and pyrolysis gas rate
 MPYR(K1)=((-ALFATEMP)*VOL(K1))/DTIME
 RO(K1)=RO(K1)-ALFATEMP
 IF (RO(K1).LE.0) THEN
 RO(K1)=0.1

136

 END IF

 !Fraction parameter
 XFRAC=(RO(K1)-RHORTOT(K1))/(RHOOTOT(K1)-RHORTOT(K1))
 RHOFRAC(K1)=XFRAC

 !Update material properties
 T=TEMP(K1)
 IIMAT=MAT(K1)
 N=NINT(AM_DATA(IIMAT))
 TMIN=AM_TEMP(IIMAT,1)
 TMAX=AM_TEMP(IIMAT,N)
 IF (T.LE.TMIN) THEN
 T1=TMIN
 T2=TMIN
 TCI(K1)=(AM_TCI(IIMAT,1)*XFRAC)+(AM_TCIR(IIMAT,1)*(1-XFRAC))
 TCJ(K1)=(AM_TCJ(IIMAT,1)*XFRAC)+(AM_TCJR(IIMAT,1)*(1-XFRAC))
 C(K1) =(AM_CP(IIMAT,1)*XFRAC)+(AM_CPR(IIMAT,1)*(1-XFRAC))
 CPG(K1)=AM_CPG(IIMAT,1)
 DHPYR(K1)=AM_DHPYR(IIMAT,1)
 ELSE IF (T.GE.TMAX) THEN
 T1=TMAX
 T2=TMAX
 TCI(K1)=(AM_TCI(IIMAT,N)*XFRAC)+(AM_TCIR(IIMAT,N)*(1-XFRAC))
 TCJ(K1)=(AM_TCJ(IIMAT,N)*XFRAC)+(AM_TCJR(IIMAT,N)*(1-XFRAC))
 C(K1) =(AM_CP(IIMAT,N)*XFRAC)+(AM_CPR(IIMAT,N)*(1-XFRAC))
 CPG(K1)=AM_CPG(IIMAT,N)
 DHPYR(K1)=AM_DHPYR(IIMAT,N)
 ELSE
 DO IT=1,N-1
 T1=AM_TEMP(IIMAT,IT)
 T2=AM_TEMP(IIMAT,IT+1)
 XSI=(T-T1)/(T2-T1)
 IF(T2.GE.T)EXIT
 END DO
 TCI(K1)=((((1.-
XSI)*AM_TCI(IIMAT,IT))+(XSI*AM_TCI(IIMAT,IT+1)))*XFRAC)+ &
 ((((1.-
XSI)*AM_TCIR(IIMAT,IT))+(XSI*AM_TCIR(IIMAT,IT+1)))*(1-XFRAC))
 TCJ(K1)=((((1.-
XSI)*AM_TCJ(IIMAT,IT))+(XSI*AM_TCJ(IIMAT,IT+1)))*XFRAC)+ &
 ((((1.-
XSI)*AM_TCJR(IIMAT,IT))+(XSI*AM_TCJR(IIMAT,IT+1)))*(1-XFRAC))
 C(K1) =(((1.-XSI)*AM_CP(IIMAT,IT) +XSI*AM_CP(IIMAT,IT+1))*XFRAC)+ &
 (((1.-XSI)*AM_CPR(IIMAT,IT)+XSI*AM_CPR(IIMAT,IT+1))*(1-
XFRAC))
 CPG(K1)=AM_CPG(IIMAT,IT) !((1.-XSI)*AM_CPG(IIMAT,IT))
+(XSI*AM_CPG(IIMAT,IT+1))
 DHPYR(K1)=((1.-XSI)*AM_DHPYR(IIMAT,IT))
+(XSI*AM_DHPYR(IIMAT,IT+1))
 END IF
 END IF !End material properties for decomposing cell volumes

 !Updates the identification parameter
 IF (RHOFRAC(K1).LT.IFACEVALUE) THEN
 IF(IFACEBULK(K1).LT.3) THEN
 IFACEBULK(K1)=2
 END IF
 END IF

 !For residue or "empty" cell volumes
 IF(IFACEBULK(K1).GE.2) THEN
 !Find the cell volumes on the interface between virgin/decomposing
material and residue material
 !-> K2=east <-> K4=west <-> K3=north <-> K5=south <- of K1, check
if id=1 is a neighbour
 IF (I.EQ.1) THEN

137

 !West
 K4=boundWU(5,J,IMESH)
 K2=K1+1
 ELSE IF (I.EQ.(NI(IMESH)-1)) THEN
 !East
 K4=K1-1
 K2=boundEU(5,J,IMESH)
 ELSE
 !Internal
 K4=K1-1
 K2=K1+1
 END IF

 IF (J.EQ.1) THEN
 !South
 K5=boundSU(5,I,IMESH)
 K3=K1+NI(IMESH)
 ELSE IF (J.EQ.(NJ(IMESH)-1)) THEN
 !North
 K5=K1-NI(IMESH)
 K3=boundNU(5,I,IMESH)
 ELSE
 K5=K1-NI(IMESH)
 K3=K1+NI(IMESH)
 END IF

 IF(K2.GT.0) THEN
 IF(RHOFRAC(K2).GT.IFACEVALUE) THEN
 NIFACE=NIFACE+1
 IFACE(NIFACE)=K1
 K3=0
 k4=0
 k5=0
 END IF
 END IF
 IF(K3.GT.0) THEN
 IF(RHOFRAC(K3).GT.IFACEVALUE) THEN
 NIFACE=NIFACE+1
 IFACE(NIFACE)=K1
 K4=0
 K5=0
 END IF
 END IF
 IF(K4.GT.0) THEN
 IF(RHOFRAC(K4).GT.IFACEVALUE) THEN
 NIFACE=NIFACE+1
 IFACE(NIFACE)=K1
 K5=0
 END IF
 END IF
 IF(K5.GT.0) THEN
 IF(RHOFRAC(K5).GT.IFACEVALUE) THEN
 NIFACE=NIFACE+1
 IFACE(NIFACE)=K1
 END IF
 END IF

 END IF !End decomposing cell volumes

 ELSE !Update properties of backup material

 T=TEMP(K1)
 IIMAT=MAT(K1)
 N=NINT(AM_DATA(IIMAT))
 TMIN=AM_TEMP(IIMAT,1)
 TMAX=AM_TEMP(IIMAT,N)

138

 IF (T.LE.TMIN) THEN
 T1=TMIN
 T2=TMIN
 RO(K1) =AM_RO(IIMAT,1)
 TCI(K1)=AM_TCI(IIMAT,1)
 TCJ(K1)=AM_TCJ(IIMAT,1)
 C(K1) =AM_CP(IIMAT,1)
 ELSE IF (T.GE.TMAX) THEN
 T1=TMAX
 T2=TMAX
 RO(K1) =AM_RO(IIMAT,N)
 TCI(K1)=AM_TCI(IIMAT,N)
 TCJ(K1)=AM_TCJ(IIMAT,N)
 C(K1) =AM_CP(IIMAT,N)
 ELSE
 DO IT=1,N-1
 T1=AM_TEMP(IIMAT,IT)
 T2=AM_TEMP(IIMAT,IT+1)
 XSI=(T-T1)/(T2-T1)
 IF(T2.GT.T)EXIT
 END DO
 RO(K1) =(1.-XSI)*AM_RO(IIMAT,IT) +XSI*AM_RO(IIMAT,IT+1)
 TCI(K1)=(1.-XSI)*AM_TCI(IIMAT,IT)+XSI*AM_TCI(IIMAT,IT+1)
 TCJ(K1)=(1.-XSI)*AM_TCJ(IIMAT,IT)+XSI*AM_TCJ(IIMAT,IT+1)
 C(K1) =(1.-XSI)*AM_CP(IIMAT,IT) +XSI*AM_CP(IIMAT,IT+1)
 END IF

 END IF

 END DO !End J
 END DO !End I
 END DO !End MESH

 END SUBROUTINE !End pyrolysis

 !Name: UPDATE_IMPLICIT
 !Author: Jørn Riise
 !Date: 30-06-2008
 !Description: Updates the shadow cells, exchange information between grid blocks.
 SUBROUTINE UPDATE_IMPLICIT
 USE GlobaleVariable
 implicit none

 !Local variables
 INTEGER :: IMESH,J,I,E1,E2,W1,W2,N1,N2,S1,S2
 DOUBLE PRECISION :: REA,REB,RWA,RWB,RNA,RNB,RSA,RSB
 DOUBLE PRECISION :: GEA,GWA,GNA,GSA

 DO IMESH=1,NMESH
 DO J=1,NJ(IMESH)-1
 !East edge

 !Choice 1
 E1=boundEU(1,J,IMESH)

 IF (E1.EQ.0) THEN
 REA=0
 GEA=0
 !SourceTot=source * area
 boundE(5,J,IMESH)=boundE(2,J,IMESH)*boundE(1,J,IMESH)
 ELSE IF (E1.EQ.1) THEN
 !Temp and resistance J-direction
 REA=RJ(boundEU(2,J,IMESH))
 GEA=MJ(boundEU(2,J,IMESH))

139

 boundE(4,J,IMESH)=TEMP(boundEU(5,J,IMESH))
 ELSE IF (E1.EQ.2) THEN
 !Temp and resistance I-direction
 REA=RI(boundEU(2,J,IMESH))
 GEA=MI(boundEU(2,J,IMESH))
 boundE(4,J,IMESH)=TEMP(boundEU(5,J,IMESH))
 ELSE IF (E1.EQ.3) THEN
 GEA=0
 !Convective resistance
 REA=(1/boundE(2,J,IMESH))
 ELSE
 REA=0
 GEA=0
 END IF

 !Choice 2
 E2=boundEU(3,J,IMESH)

 IF (E2.EQ.1) THEN
 REB=RJ(boundEU(4,J,IMESH))
 ELSE IF (E2.EQ.2) THEN
 REB=RI(boundEU(4,J,IMESH))
 ELSE
 REB=0
 END IF

 REA=REA+REB
 !Calculates Area/Resistance
 IF (REA.NE.0) THEN

boundE(3,J,IMESH)=(boundE(1,J,IMESH)/REA)+(CPG(boundEU(5,J,IMESH))*MAX(0.,(-GEA)))
 END IF
 !End East edge

 !West edge
 W1=boundWU(1,J,IMESH)
 IF (W1.EQ.0) THEN
 RWA=0
 GWA=0
 boundW(5,J,IMESH)=boundW(2,J,IMESH)*boundW(1,J,IMESH)
 ELSE IF (W1.EQ.1) THEN
 RWA=RJ(boundWU(2,J,IMESH))
 GWA=MJ(boundWU(2,J,IMESH))
 boundW(4,J,IMESH)=TEMP(boundWU(5,J,IMESH))
 ELSE IF (W1.EQ.2) THEN
 RWA=RI(boundWU(2,J,IMESH))
 GWA=MI(boundWU(2,J,IMESH))
 boundW(4,J,IMESH)=TEMP(boundWU(5,J,IMESH))
 ELSE IF (W1.EQ.3) THEN
 GWA=0
 RWA=1/boundW(2,J,IMESH)
 ELSE
 RWA=0
 GWA=0
 END IF

 W2=boundWU(3,J,IMESH)
 IF (W2.EQ.1) THEN
 RWB=RJ(boundWU(4,J,IMESH))
 ELSE IF (W2.EQ.2) THEN
 RWB=RI(boundWU(4,J,IMESH))
 ELSE
 RWB=0
 END IF

 RWA=RWA+RWB
 IF (RWA.NE.0) THEN

140

boundW(3,J,IMESH)=(boundW(1,J,IMESH)/RWA)+(CPG(boundWU(5,J,IMESH))*MAX(0.,GWA))
 END IF
 !End West edge

 END DO !End West and East

 DO I=1,NI(IMESH)-1
 !North edge
 N1=boundNU(1,I,IMESH)
 IF (N1.EQ.0) THEN
 RNA=0
 GNA=0
 boundN(5,I,IMESH)=boundN(2,I,IMESH)*boundN(1,I,IMESH)
 ELSE IF (N1.EQ.1) THEN
 RNA=RJ(boundNU(2,I,IMESH))
 GNA=MJ(boundNU(2,I,IMESH))
 boundN(4,I,IMESH)=TEMP(boundNU(5,I,IMESH))
 ELSE IF (N1.EQ.2) THEN
 RNA=RI(boundNU(2,I,IMESH))
 GNA=MI(boundNU(2,I,IMESH))
 boundN(4,I,IMESH)=TEMP(boundNU(5,I,IMESH))
 ELSE IF (N1.EQ.3) THEN
 GNA=0
 RNA=1/boundN(2,I,IMESH)
 ELSE
 RNA=0
 GNA=0
 END IF

 N2=boundNU(3,I,IMESH)
 IF (N2.EQ.1) THEN
 RNB=RJ(boundNU(4,I,IMESH))
 ELSE IF (N2.EQ.2) THEN
 RNB=RI(boundNU(4,I,IMESH))
 ELSE
 RNB=0
 END IF

 RNA=RNA+RNB
 IF (RNA.NE.0) THEN

boundN(3,I,IMESH)=(boundN(1,I,IMESH)/RNA)+(CPG(boundNU(5,I,IMESH))*MAX(0.,(-GNA)))
 END IF
 !End North edge

 !South edge
 S1=boundSU(1,I,IMESH)
 IF (S1.EQ.0) THEN
 RSA=0
 GSA=0
 boundS(5,I,IMESH)=boundS(2,I,IMESH)*boundS(1,I,IMESH)
 ELSE IF (S1.EQ.1) THEN
 RSA=RJ(boundSU(2,I,IMESH))
 GSA=MJ(boundSU(2,I,IMESH))
 boundS(4,I,IMESH)=TEMP(boundSU(5,I,IMESH))
 ELSE IF (S1.EQ.2) THEN
 RSA=RI(boundSU(2,I,IMESH))
 GSA=MI(boundSU(2,I,IMESH))
 boundS(4,I,IMESH)=TEMP(boundSU(5,I,IMESH))
 ELSE IF (S1.EQ.3) THEN
 GSA=0
 RSA=1/boundS(2,I,IMESH)
 ELSE
 RSA=0
 GSA=0
 END IF

141

 S2=boundSU(3,I,IMESH)
 IF (S2.EQ.1) THEN
 RSB=RJ(boundSU(4,I,IMESH))
 ELSE IF (S2.EQ.2) THEN
 RSB=RI(boundSU(4,I,IMESH))
 ELSE
 RSB=0
 END IF

 RSA=RSA+RSB
 IF (RSA.NE.0) THEN

boundS(3,I,IMESH)=(boundS(1,I,IMESH)/RSA)+(CPG(boundSU(5,I,IMESH))*MAX(0.,GSA))
 END IF
 !End South edge
 END DO !End North and South

 END DO !End imesh

 END SUBROUTINE !End UPDATE_IMPLICIT

 !Name: BORDERS_IMPLICIT
 !Author: Jørn Riise
 !Date: 30-06-2008
 !Description: Initializing boundary conditions.
 SUBROUTINE BORDERS_IMPLICIT

 USE GlobaleVariable
 implicit none

 !Local variables
 INTEGER :: ID,JD,IC,JC,IRS,JRS,IM,I0,J0,IDR,NP,K0, &
 K0I,K0J,KD,K1,KRSI,KRSJ,IBND,IPP
 DOUBLE PRECISION :: T,RADIUS,RE,ST
 DIMENSION ID(4),JD(4),IC(4),JC(4),IRS(4),JRS(4)
 INTEGER :: valg,step,pos

 DATA ID / 1, 0,-1, 0/
 DATA JD / 0, 1, 0,-1/
 DATA IC / 0,-1,-1, 0/
 DATA JC / 0, 0,-1,-1/
 DATA IRS/ 1, 0, 1, 0/
 DATA JRS/ 0, 1, 0, 1/

 DO IBND=1,NBND
 IM =IMBND(IBND) !Block
 I0 =I0BND(IBND) !Start I
 J0 =J0BND(IBND) !Start J
 IDR=IDBND(IBND) !direction
 NP =NPBND(IBND) !Number of nodes in the direction

 !Pointer information for the cell volumes along the edge
 K0 =I0 +NI(IM)*(J0 -1)+NMP(IM)
 K0I=I0 +NI(IM)*(J0+JC(IDR)-1)+NMP(IM)
 K0J=I0+IC(IDR)+NI(IM)*(J0 -1)+NMP(IM)
 KD= ID(IDR)+NI(IM)* JD(IDR)

 !Decides if RI or RJ is used in the thermal resistance
 valg=JRS(IDR)+1

 !I-direction(Startposition=I0, step=ID(IDR))
 IF (IRS(IDR).EQ.1) THEN
 !North
 IF (J0.GT.(NJ(IM)/2)) THEN
 DO IPP=1,NP-1
 K1 =K0 +KD*(IPP-1)

142

 KRSI=K0I+KD*(IPP-1)
 KRSJ=K0J+KD*(IPP-1)

 !Describe the movement in the edge vector
 step=(IPP)*ID(IDR)
 pos=I0+step

 IF(ITBND(IBND).EQ.1 .OR. ITBND(IBND).EQ.5)THEN
 IF(ITBND(IBND).EQ.5)THEN
 T=(TIME-TSTART)/(TSTOP-TSTART)
 !Create pointers and save information(area,HC ect.) in vectors
 boundNU(1,pos,IM)=3
 boundNU(3,pos,IM)=valg
 boundNU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR)
 boundN(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)
 boundN(2,pos,IM)=HCBND(IBND)+T*DTHCBND(IBND)
 boundN(4,pos,IM)=TUBND(IBND)+T*DTTUBND(IBND)
 ELSE
 boundNU(1,pos,IM)=3
 boundNU(3,pos,IM)=valg
 boundNU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR)
 boundN(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)
 boundN(2,pos,IM)=HCBND(IBND)
 boundN(4,pos,IM)=TUBND(IBND)
 ENDIF

 ENDIF

 IF(ITBND(IBND).EQ.2)THEN
 boundN(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)
 boundN(2,pos,IM)=QBND(IBND)
 ENDIF

 IF(ITBND(IBND).EQ.3)THEN !internal heat transfer
 RADIUS=YM(K1)
 RE=UBND(IBND,IPP)*RADIUS/VISCBND(IBND,IPP)
 ST=0.0791/RE**0.25*0.5/ &
 (1.+1.99*RE**(-0.125)*(PRBND(IBND,IPP)-1))

 boundNU(1,pos,IM)=3
 boundNU(3,pos,IM)=valg
 boundNU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR)
 boundN(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)

boundN(2,pos,IM)=ROBND(IBND,IPP)*UBND(IBND,IPP)*CPBND(IBND,IPP)*ST
 boundN(4,pos,IM)=TUBND(IBND)
 ENDIF
 IF(ITBND(IBND).EQ.4.OR.ITBND(IBND).EQ.6)THEN
 boundNU(1,pos,IM)=3
 boundNU(3,pos,IM)=valg
 boundNU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR)
 boundN(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)
 boundN(2,pos,IM)=HCEBND(IBND,IPP)
 boundN(4,pos,IM)=TRBND(IBND,IPP)
 ENDIF

 IF(IRADBND(IBND).EQ.1)THEN !add radiation heat transfer
 boundN(6,pos,IM)=(TRADBND(IBND)**4)
 boundN(7,pos,IM)=EMSBND(IBND)
 ENDIF
 IF(ITBND(IBND).EQ.7)THEN
 boundNU(1,pos,IM)=4
 boundNU(3,pos,IM)=valg
 boundNU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR)
 boundN(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)
 boundN(2,pos,IM)=1 !because of the pyrolysis, it has no
functionality.
 boundN(4,pos,IM)=TUBND(IBND)

143

 ENDIF

 END DO !End North

 ELSE !South
 DO IPP=1,NP-1
 K1 =K0 +KD*(IPP-1)
 KRSI=K0I+KD*(IPP-1)
 KRSJ=K0J+KD*(IPP-1)

 !Describe the movement in the edge vector
 step=(IPP-1)*ID(IDR)
 pos=I0+step

 IF(ITBND(IBND).EQ.1 .OR. ITBND(IBND).EQ.5)THEN
 IF(ITBND(IBND).EQ.5)THEN
 T=(TIME-TSTART)/(TSTOP-TSTART)
 !Create pointers and save information(area,HC ect.) in vectors
 boundSU(1,pos,IM)=3
 boundSU(3,pos,IM)=valg
 boundSU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR)
 boundS(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)
 boundS(2,pos,IM)=HCBND(IBND)+T*DTHCBND(IBND)
 boundS(4,pos,IM)=TUBND(IBND)+T*DTTUBND(IBND)
 ELSE
 boundSU(1,pos,IM)=3
 boundSU(3,pos,IM)=valg
 boundSU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR)
 boundS(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)
 boundS(2,pos,IM)=HCBND(IBND)
 boundS(4,pos,IM)=TUBND(IBND)
 ENDIF

 ENDIF

 IF(ITBND(IBND).EQ.2)THEN
 boundS(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)
 boundS(2,pos,IM)=QBND(IBND)
 ENDIF

 IF(ITBND(IBND).EQ.3)THEN !internal heat transfer
 RADIUS=YM(K1)
 RE=UBND(IBND,IPP)*RADIUS/VISCBND(IBND,IPP)
 ST=0.0791/RE**0.25*0.5/ &
 (1.+1.99*RE**(-0.125)*(PRBND(IBND,IPP)-1))

 boundSU(1,pos,IM)=3
 boundSU(3,pos,IM)=valg
 boundSU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR)
 boundS(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)

boundS(2,pos,IM)=ROBND(IBND,IPP)*UBND(IBND,IPP)*CPBND(IBND,IPP)*ST
 boundS(4,pos,IM)=TUBND(IBND)
 ENDIF
 IF(ITBND(IBND).EQ.4.OR.ITBND(IBND).EQ.6)THEN
 boundSU(1,pos,IM)=3
 boundSU(3,pos,IM)=valg
 boundSU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR)
 boundS(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)
 boundS(2,pos,IM)=HCEBND(IBND,IPP)
 boundS(4,pos,IM)=TRBND(IBND,IPP)
 ENDIF

 IF(IRADBND(IBND).EQ.1)THEN !add radiation heat transfer
 boundS(6,pos,IM)=(TRADBND(IBND)**4)
 boundS(7,pos,IM)=EMSBND(IBND)

144

 ENDIF

 IF(ITBND(IBND).EQ.7)THEN
 boundSU(1,pos,IM)=4
 boundSU(3,pos,IM)=valg
 boundSU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR)
 boundS(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)
 boundS(2,pos,IM)=1 !because of the pyrolysis, it has no
functionality.
 boundS(4,pos,IM)=TUBND(IBND)
 ENDIF

 END DO !End South

 END IF !End North and South

 ELSE !J-Direction (Startposition=J0, step=JD(IDR))

 !East
 IF (I0.GT.(NI(IM)/2)) THEN
 DO IPP=1,NP-1
 K1 =K0 +KD*(IPP-1)
 KRSI=K0I+KD*(IPP-1)
 KRSJ=K0J+KD*(IPP-1)

 !Describe the movement in the edge vector
 step=(IPP-1)*JD(IDR)
 pos=J0+step

 IF(ITBND(IBND).EQ.1 .OR. ITBND(IBND).EQ.5)THEN
 IF(ITBND(IBND).EQ.5)THEN
 T=(TIME-TSTART)/(TSTOP-TSTART)
 !Create pointers and save information(area,HC ect.) in vectors
 boundEU(1,pos,IM)=3
 boundEU(3,pos,IM)=valg
 boundEU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR)
 boundE(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)
 boundE(2,pos,IM)=HCBND(IBND)+T*DTHCBND(IBND)
 boundE(4,pos,IM)=TUBND(IBND)+T*DTTUBND(IBND)
 ELSE
 boundEU(1,pos,IM)=3
 boundEU(3,pos,IM)=valg
 boundEU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR)
 boundE(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)
 boundE(2,pos,IM)=HCBND(IBND)
 boundE(4,pos,IM)=TUBND(IBND)
 ENDIF

 ENDIF

 IF(ITBND(IBND).EQ.2)THEN
 boundE(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)
 boundE(2,pos,IM)=QBND(IBND)
 ENDIF

 IF(ITBND(IBND).EQ.3)THEN !internal heat transfer
 RADIUS=YM(K1)
 RE=UBND(IBND,IPP)*RADIUS/VISCBND(IBND,IPP)
 ST=0.0791/RE**0.25*0.5/ &
 (1.+1.99*RE**(-0.125)*(PRBND(IBND,IPP)-1))

 boundEU(1,pos,IM)=3
 boundEU(3,pos,IM)=valg
 boundEU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR)
 boundE(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)

boundE(2,pos,IM)=ROBND(IBND,IPP)*UBND(IBND,IPP)*CPBND(IBND,IPP)*ST

145

 boundE(4,pos,IM)=TUBND(IBND)
 ENDIF
 IF(ITBND(IBND).EQ.4.OR.ITBND(IBND).EQ.6)THEN
 boundEU(1,pos,IM)=3
 boundEU(3,pos,IM)=valg
 boundEU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR)
 boundE(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)
 boundE(2,pos,IM)=HCEBND(IBND,IPP)
 boundE(4,pos,IM)=TRBND(IBND,IPP)
 ENDIF

 IF(IRADBND(IBND).EQ.1)THEN !add radiation heat transfer
 boundE(6,pos,IM)=(TRADBND(IBND)**4)
 boundE(7,pos,IM)=EMSBND(IBND)
 ENDIF

 IF(ITBND(IBND).EQ.7)THEN
 boundEU(1,pos,IM)=4
 boundEU(3,pos,IM)=valg
 boundEU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR)
 boundE(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)
 boundE(2,pos,IM)=1 !because of the pyrolysis, it has no
functionality.
 boundE(4,pos,IM)=TUBND(IBND)
 ENDIF

 END DO !End East

 ELSE !West
 DO IPP=1,NP-1
 K1 =K0 +KD*(IPP-1)
 KRSI=K0I+KD*(IPP-1)
 KRSJ=K0J+KD*(IPP-1)

 !Describe the movement in the edge vector
 step=IPP*JD(IDR)
 pos=J0+step

 IF(ITBND(IBND).EQ.1 .OR. ITBND(IBND).EQ.5)THEN
 IF(ITBND(IBND).EQ.5)THEN
 T=(TIME-TSTART)/(TSTOP-TSTART)
 !Create pointers and save information(area,HC ect.) in vectors
 boundWU(1,pos,IM)=3
 boundWU(3,pos,IM)=valg
 boundWU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR)
 boundW(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)
 boundW(2,pos,IM)=HCBND(IBND)+T*DTHCBND(IBND)
 boundW(4,pos,IM)=TUBND(IBND)+T*DTTUBND(IBND)
 ELSE
 boundWU(1,pos,IM)=3
 boundWU(3,pos,IM)=valg
 boundWU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR)
 boundW(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)
 boundW(2,pos,IM)=HCBND(IBND)
 boundW(4,pos,IM)=TUBND(IBND)
 ENDIF

 ENDIF

 IF(ITBND(IBND).EQ.2)THEN
 boundW(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)
 boundW(2,pos,IM)=QBND(IBND)
 ENDIF

 IF(ITBND(IBND).EQ.3)THEN !internal heat transfer

146

 RADIUS=YM(K1)
 RE=UBND(IBND,IPP)*RADIUS/VISCBND(IBND,IPP)
 ST=0.0791/RE**0.25*0.5/ &
 (1.+1.99*RE**(-0.125)*(PRBND(IBND,IPP)-1))

 boundWU(1,pos,IM)=3
 boundWU(3,pos,IM)=valg
 boundWU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR)
 boundW(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)

boundW(2,pos,IM)=ROBND(IBND,IPP)*UBND(IBND,IPP)*CPBND(IBND,IPP)*ST
 boundW(4,pos,IM)=TUBND(IBND)
 ENDIF
 IF(ITBND(IBND).EQ.4.OR.ITBND(IBND).EQ.6)THEN
 boundWU(1,pos,IM)=3
 boundWU(3,pos,IM)=valg
 boundWU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR)
 boundW(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)
 boundW(2,pos,IM)=HCEBND(IBND,IPP)
 boundW(4,pos,IM)=TRBND(IBND,IPP)
 ENDIF

 IF(IRADBND(IBND).EQ.1)THEN !add radiation heat transfer
 boundW(6,pos,IM)=(TRADBND(IBND)**4)
 boundW(7,pos,IM)=EMSBND(IBND)
 ENDIF

 IF(ITBND(IBND).EQ.7)THEN
 boundWU(1,pos,IM)=4
 boundWU(3,pos,IM)=valg
 boundWU(4,pos,IM)=KRSJ*IRS(IDR)+KRSI*JRS(IDR)
 boundW(1,pos,IM)=AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)
 boundW(2,pos,IM)=1 !because of the pyrolysis, it has no
functionality.
 boundW(4,pos,IM)=TUBND(IBND)
 ENDIF

 END DO !End West

 END IF !End East and West

 END IF !End directions

 END DO !End Boundary condition

 100 FORMAT(2I4,6F10.3)

 END SUBROUTINE !BORDERS_IMPLICIT

!Name: INIT_IMPLICIT
 !Author: Jørn Riise
 !Date: 30-06-2008
 !Description: Initializing pointer information for the interfaces and boundaries
 SUBROUTINE INIT_IMPLICIT
 USE GlobaleVariable
 implicit none

 !Local variables
 INTEGER :: IIF,IMA,I0A,J0A,&
 IDA,NPA,IMB,I0B,J0B,IDB,K0A,K0B,K0IA,K0JA, &
 K0IB,K0JB,KDA,KDB,KCA,KCB,KRSIA,KRSJA,KRSIB, &
 KRSJB,IPP,valgA,valgB,pos,step,stepS
 INTEGER, DIMENSION(4) :: ID,JD,ICA,JCA,ICB,JCB,IRS,JRS

147

 DATA ID/ 1, 0,-1, 0/
 DATA JD/ 0, 1, 0,-1/
 DATA ICA/ 0,-1,-1, 0/
 DATA JCA/ 0, 0,-1,-1/
 DATA ICB/ 0, 0,-1,-1/
 DATA JCB/-1, 0, 0,-1/
 DATA IRS/ 1, 0, 1, 0/
 DATA JRS/ 0, 1, 0, 1/

 !Initializing shadow cells: Flux=0 -> insulated
 boundN=boundN*0
 boundS=boundS*0
 boundW=boundW*0
 boundE=boundE*0
 boundNU=boundNU*0
 boundSU=boundSU*0
 boundWU=boundWU*0
 boundEU=boundEU*0

 !Bestemme interfasegrenser

 DO 1 IIF=1,NIF
 IMA=IMAIF(IIF) !Block A
 I0A=I0AIF(IIF) !Start I
 J0A=J0AIF(IIF) !Start J
 IDA=IDAIF(IIF) !Direction
 NPA=NPAIF(IIF) !Number of nodes in the direction

 IMB=IMBIF(IIF) !Block B
 I0B=I0BIF(IIF) !Start I
 J0B=J0BIF(IIF) !Start J
 IDB=IDBIF(IIF) !Direction

 !Pointer information for the cell volumes along the edge
 K0A =I0A+ICA(IDA)+NI(IMA)*(J0A+JCA(IDA)-1)+NMP(IMA)
 K0B =I0B+ICB(IDB)+NI(IMB)*(J0B+JCB(IDB)-1)+NMP(IMB)
 K0IA=I0A +NI(IMA)*(J0A+JCA(IDA)-1)+NMP(IMA)
 K0JA=I0A+ICA(IDA)+NI(IMA)*(J0A -1)+NMP(IMA)
 K0IB=I0B +NI(IMB)*(J0B+JCB(IDB)-1)+NMP(IMB)
 K0JB=I0B+ICB(IDB)+NI(IMB)*(J0B -1)+NMP(IMB)

 !Similar coordinates in the 1D-vector along the edge
 KDA =ID(IDA)+NI(IMA)*JD(IDA)
 KDB =ID(IDB)+NI(IMB)*JD(IDB)

 !Declare vector layout
 valgA=JRS(IDA)+1
 valgB=JRS(IDB)+1

 !********
 !Block A.
 !********

 !I-direction (Startposition=I0A, step=ID(IDA))
 IF (IRS(IDA).EQ.1) THEN
 IF (J0A .GT. (NJ(IMA)/2)) THEN
 !Decide startposition in the edge vector
 !Positive if ID(IDA) > 0
 IF (ID(IDA) .GT. 0) THEN
 stepS=1
 ELSE
 stepS=0
 END IF

 DO IPP=1,NPA-1

148

 !Pointer information of cell volumes and the edge face
in 1D-vector
 KCA =K0A +KDA*(IPP-1)
 KCB =K0B +KDB*(IPP-1)
 KRSIA=K0IA+KDA*(IPP-1)
 KRSJA=K0JA+KDA*(IPP-1)
 KRSIB=K0IB+KDB*(IPP-1)
 KRSJB=K0JB+KDB*(IPP-1)

 step=(IPP-stepS)*ID(IDA)
 pos=I0A+step
 !Save pointer information in vectors along the edge
 boundNU(1,pos,IMA)=valgA
 boundNU(2,pos,IMA)=KRSJA
 boundNU(3,pos,IMA)=valgB
 boundNU(4,pos,IMA)=KRSJB*IRS(IDB)+KRSIB*JRS(IDB)
 boundNU(5,pos,IMA)=KCB
 boundN(1,pos,IMA)=AJ(KRSJA)
 END DO

 ELSE
 IF (ID(IDA) .GT. 0) THEN
 stepS=1
 ELSE
 stepS=0
 END IF
 DO IPP=1,NPA-1
 !Pointer information of cell volumes and the edge face
in 1D-vector
 KCA =K0A +KDA*(IPP-1)
 KCB =K0B +KDB*(IPP-1)
 KRSIA=K0IA+KDA*(IPP-1)
 KRSJA=K0JA+KDA*(IPP-1)
 KRSIB=K0IB+KDB*(IPP-1)
 KRSJB=K0JB+KDB*(IPP-1)

 step=(IPP-stepS)*ID(IDA)
 pos=I0A+step
 !Save pointer information in vectors along the edge
 boundSU(1,pos,IMA)=valgA
 boundSU(2,pos,IMA)=KRSJA
 boundSU(3,pos,IMA)=valgB
 boundSU(4,pos,IMA)=KRSJB*IRS(IDB)+KRSIB*JRS(IDB)
 boundSU(5,pos,IMA)=KCB
 boundS(1,pos,IMA)=AJ(KRSJA)
 END DO

 END IF !End I-direction

 !J-direction (Startposition=J0A, step=JD(IDA))
 ELSE
 IF (I0A .GT. (NI(IMA)/2)) THEN
 IF (JD(IDA) .GT. 0) THEN
 stepS=1
 ELSE
 stepS=0
 END IF
 DO IPP=1,NPA-1
 !Pointer information of cell volumes and the edge face
in 1D-vector
 KCA =K0A +KDA*(IPP-1)
 KCB =K0B +KDB*(IPP-1)
 KRSIA=K0IA+KDA*(IPP-1)
 KRSJA=K0JA+KDA*(IPP-1)
 KRSIB=K0IB+KDB*(IPP-1)
 KRSJB=K0JB+KDB*(IPP-1)

 step=(IPP-stepS)*JD(IDA)

149

 pos=J0A+step
 !Save pointer information in vectors along the edge
 boundEU(1,pos,IMA)=valgA
 boundEU(2,pos,IMA)=KRSIA
 boundEU(3,pos,IMA)=valgB
 boundEU(4,pos,IMA)=KRSJB*IRS(IDB)+KRSIB*JRS(IDB)
 boundEU(5,pos,IMA)=KCB
 boundE(1,pos,IMA)=AI(KRSIA)
 END DO
 ELSE
 IF (JD(IDA) .GT. 0) THEN
 stepS=1
 ELSE
 stepS=0
 END IF
 DO IPP=1,NPA-1
 !Pointer information of cell volumes and the edge face
in 1D-vector
 KCA =K0A +KDA*(IPP-1)
 KCB =K0B +KDB*(IPP-1)
 KRSIA=K0IA+KDA*(IPP-1)
 KRSJA=K0JA+KDA*(IPP-1)
 KRSIB=K0IB+KDB*(IPP-1)
 KRSJB=K0JB+KDB*(IPP-1)

 step=(IPP-stepS)*JD(IDA)
 pos=J0A+step
 !Save pointer information in vectors along the edge
 boundWU(1,pos,IMA)=valgA
 boundWU(2,pos,IMA)=KRSIA
 boundWU(3,pos,IMA)=valgB
 boundWU(4,pos,IMA)=KRSJB*IRS(IDB)+KRSIB*JRS(IDB)
 boundWU(5,pos,IMA)=KCB
 boundW(1,pos,IMA)=AI(KRSIA)
 END DO

 END IF !End J-direction

 END IF !End Block A

 !********
 !Block B.
 !********
 !I-direction (Startposition=I0B, step=ID(IDB))
 IF (IRS(IDB).EQ.1) THEN
 IF (J0B .GT. (NJ(IMB)/2)) THEN
 IF (ID(IDB) .GT. 0) THEN
 stepS=1
 ELSE
 stepS=0
 END IF
 DO IPP=1,NPA-1
 !Pointer information of cell volumes and the edge face
in 1D-vector
 KCA =K0A +KDA*(IPP-1)
 KCB =K0B +KDB*(IPP-1)
 KRSIA=K0IA+KDA*(IPP-1)
 KRSJA=K0JA+KDA*(IPP-1)
 KRSIB=K0IB+KDB*(IPP-1)
 KRSJB=K0JB+KDB*(IPP-1)

 step=(IPP-stepS)*ID(IDB)
 pos=I0B+step
 !Save pointer information in vectors along the edge
 boundNU(1,pos,IMB)=valgA
 boundNU(2,pos,IMB)=KRSJA*IRS(IDA)+KRSIA*JRS(IDA)
 boundNU(3,pos,IMB)=valgB
 boundNU(4,pos,IMB)=KRSJB

150

 boundNU(5,pos,IMB)=KCA
 boundN(1,pos,IMB)=AJ(KRSJA)*IRS(IDA)+AI(KRSIA)*JRS(IDA)
 END DO
 ELSE
 IF (ID(IDB) .GT. 0) THEN
 stepS=1
 ELSE
 stepS=0
 END IF
 DO IPP=1,NPA-1
 !Pointer information of cell volumes and the edge face
in 1D-vector
 KCA =K0A +KDA*(IPP-1)
 KCB =K0B +KDB*(IPP-1)
 KRSIA=K0IA+KDA*(IPP-1)
 KRSJA=K0JA+KDA*(IPP-1)
 KRSIB=K0IB+KDB*(IPP-1)
 KRSJB=K0JB+KDB*(IPP-1)

 step=(IPP-stepS)*ID(IDB)
 pos=I0B+step
 !Save pointer information in vectors along the edge
 boundSU(1,pos,IMB)=valgA
 boundSU(2,pos,IMB)=KRSJA*IRS(IDA)+KRSIA*JRS(IDA)
 boundSU(3,pos,IMB)=valgB
 boundSU(4,pos,IMB)=KRSJB
 boundSU(5,pos,IMB)=KCA
 boundS(1,pos,IMB)=AJ(KRSJA)*IRS(IDA)+AI(KRSIA)*JRS(IDA)
 END DO

 END IF !End I-direction

 !J-direction (Startposition=J0B, step=JD(IDB))
 ELSE
 IF (I0B .GT. (NI(IMB)/2)) THEN
 IF (JD(IDB) .GT. 0) THEN
 stepS=1
 ELSE
 stepS=0
 END IF
 DO IPP=1,NPA-1
 !Pointer information of cell volumes and the edge face
in 1D-vector
 KCA =K0A +KDA*(IPP-1)
 KCB =K0B +KDB*(IPP-1)
 KRSIA=K0IA+KDA*(IPP-1)
 KRSJA=K0JA+KDA*(IPP-1)
 KRSIB=K0IB+KDB*(IPP-1)
 KRSJB=K0JB+KDB*(IPP-1)

 step=(IPP-stepS)*JD(IDB)
 pos=J0B+step
 !Save pointer information in vectors along the edge
 boundEU(1,pos,IMB)=valgA
 boundEU(2,pos,IMB)=KRSJA*IRS(IDA)+KRSIA*JRS(IDA)
 boundEU(3,pos,IMB)=valgB
 boundEU(4,pos,IMB)=KRSIB
 boundEU(5,pos,IMB)=KCA
 boundE(1,pos,IMB)=AJ(KRSJA)*IRS(IDA)+AI(KRSIA)*JRS(IDA)
 END DO
 ELSE
 IF (JD(IDB) .GT. 0) THEN
 stepS=1
 ELSE
 stepS=0
 END IF
 DO IPP=1,NPA-1

151

 !Pointer information of cell volumes and the edge face
in 1D-vector
 KCA =K0A +KDA*(IPP-1)
 KCB =K0B +KDB*(IPP-1)
 KRSIA=K0IA+KDA*(IPP-1)
 KRSJA=K0JA+KDA*(IPP-1)
 KRSIB=K0IB+KDB*(IPP-1)
 KRSJB=K0JB+KDB*(IPP-1)

 step=(IPP-stepS)*JD(IDB)
 pos=J0B+step
 !Save pointer information in vectors along the edge
 boundWU(1,pos,IMB)=valgA
 boundWU(2,pos,IMB)=KRSJA*IRS(IDA)+KRSIA*JRS(IDA)
 boundWU(3,pos,IMB)=valgB
 boundWU(4,pos,IMB)=KRSIB
 boundWU(5,pos,IMB)=KCA
 boundW(1,pos,IMB)=AJ(KRSJA)*IRS(IDA)+AI(KRSIA)*JRS(IDA)
 END DO
 END IF !End J-direction

 END IF

 1 CONTINUE
 100 FORMAT(I4,6F10.3)
 101 FORMAT(10I4)

 END SUBROUTINE !End INIT_IMPLICIT

 SUBROUTINE FLUX
 USE GlobaleVariable
 implicit none

 CALL FLUX1
 IF(NIF .NE.0)CALL FLUX2
 IF(NBND.NE.0)CALL FLUX3
 CALL FLUX5
 RETURN
 END

 SUBROUTINE FLUX1 ! INTERNAL
 USE GlobaleVariable
 implicit none

! Lokale variable
 INTEGER :: IMESH,I,J,K1,K2,K3
 DOUBLE PRECISION :: QI,QJ

 DO 1 IMESH=1,NMESH
 DO 2 J=1,NJ(IMESH)-1
 DO 2 I=1,NI(IMESH)-1
 K1=I +NI(IMESH)*(J-1)+NMP(IMESH)
 DQ(K1)=0.
 2 CONTINUE
 1 CONTINUE

 DO 3 IMESH=1,NMESH
 DO 4 J=1,NJ(IMESH)-1
 DO 4 I=1,NI(IMESH)-2
 K1=I +NI(IMESH)*(J-1)+NMP(IMESH)
 K2=K1+1
! I- DIRECTION FLUXES
 QI=AI(K2)/RI(K2)*(TEMP(K1)-TEMP(K2))
! UPDATE FLUX INTO CELL K2
 DQ(K2)=DQ(K2)+QI

152

! UPDATE FLUX OUT OF CELL K1
 DQ(K1)=DQ(K1)-QI

 4 CONTINUE
 DO 5 J=1,NJ(IMESH)-2
 DO 5 I=1,NI(IMESH)-1
 K1=I +NI(IMESH)*(J-1)+NMP(IMESH)
 K3=K1+NI(IMESH)
! J- DIRECTION FLUXES
 QJ=AJ(K3)/RJ(K3)*(TEMP(K1)-TEMP(K3))
! UPDATE FLUX INTO CELL K3
 DQ(K3)=DQ(K3)+QJ
! UPDATE FLUX OUT OF CELL K1
 DQ(K1)=DQ(K1)-QJ
 5 CONTINUE
 3 CONTINUE

 RETURN
 END
!---
 SUBROUTINE FLUX2 ! INTERFACES
 USE GlobaleVariable
 implicit none

! Lokale variable
 INTEGER :: IIF,IMA,I0A,J0A,&
 IDA,NPA,IMB,I0B,J0B,IDB,K0A,K0B,K0IA,K0JA, &
 K0IB,K0JB,KDA,KDB,KCA,KCB,KRSIA,KRSJA,KRSIB, &
 KRSJB,IPP !,k1,npb,K0AP
 DOUBLE PRECISION :: RCONDA,RCONDB,RCOND,ABND,QIF
 INTEGER, DIMENSION(4) :: ID,JD,ICA,JCA,ICB,JCB,IRS,JRS

 DATA ID/ 1, 0,-1, 0/
 DATA JD/ 0, 1, 0,-1/
 DATA ICA/ 0,-1,-1, 0/
 DATA JCA/ 0, 0,-1,-1/
 DATA ICB/ 0, 0,-1,-1/
 DATA JCB/-1, 0, 0,-1/
 DATA IRS/ 1, 0, 1, 0/
 DATA JRS/ 0, 1, 0, 1/

! START OUTERMOST LOOP OVER ALL INTERFACES

 DO 1 IIF=1,NIF
 IMA=IMAIF(IIF)
 I0A=I0AIF(IIF)
 J0A=J0AIF(IIF)
 IDA=IDAIF(IIF)
 NPA=NPAIF(IIF)

 IMB=IMBIF(IIF)
 I0B=I0BIF(IIF)
 J0B=J0BIF(IIF)
 IDB=IDBIF(IIF)
! NPB=NPBIF(IIF)

! COMPUTE NECESSARY POINTER INFORMATION

! K0AP=I0A +NI(IMA)*(J0A -1)+NMP(IMA)
 K0A =I0A+ICA(IDA)+NI(IMA)*(J0A+JCA(IDA)-1)+NMP(IMA)
 K0B =I0B+ICB(IDB)+NI(IMB)*(J0B+JCB(IDB)-1)+NMP(IMB)
 K0IA=I0A +NI(IMA)*(J0A+JCA(IDA)-1)+NMP(IMA)
 K0JA=I0A+ICA(IDA)+NI(IMA)*(J0A -1)+NMP(IMA)
 K0IB=I0B +NI(IMB)*(J0B+JCB(IDB)-1)+NMP(IMB)
 K0JB=I0B+ICB(IDB)+NI(IMB)*(J0B -1)+NMP(IMB)

 KDA =ID(IDA)+NI(IMA)*JD(IDA)

153

 KDB =ID(IDB)+NI(IMB)*JD(IDB)

 DO 2 IPP=1,NPA-1
! K1 =K0AP+KDA*(IPP-1)
 KCA =K0A +KDA*(IPP-1)
 KCB =K0B +KDB*(IPP-1)
 KRSIA=K0IA+KDA*(IPP-1)
 KRSJA=K0JA+KDA*(IPP-1)
 KRSIB=K0IB+KDB*(IPP-1)
 KRSJB=K0JB+KDB*(IPP-1)

 RCONDA=RJ(KRSJA)*IRS(IDA)+RI(KRSIA)*JRS(IDA)
 RCONDB=RJ(KRSJB)*IRS(IDB)+RI(KRSIB)*JRS(IDB)
 RCOND=RCONDA+RCONDB
 ABND =AJ(KRSJA)*IRS(IDA)+AI(KRSIA)*JRS(IDA)

 QIF=ABND/RCOND*(TEMP(KCA)-TEMP(KCB))
! UPDATE FLUX INTO CELL KCB
 DQ(KCB)=DQ(KCB)+QIF
! UPDATE FLUX OUT OF CELL KCA
 DQ(KCA)=DQ(KCA)-QIF
 2 CONTINUE
 1 CONTINUE
 100 FORMAT(I4,6F10.3)
 101 FORMAT(10I4)
 RETURN
 END
!---
 SUBROUTINE FLUX3 ! BOUNDARIES
 USE GlobaleVariable
 implicit none

! Lokale variable
 INTEGER :: ID,JD,IC,JC,IRS,JRS,IM,I0,J0,IDR,NP,K0,K0C, &
 K0I,K0J,KD,K1,KC,KRSI,KRSJ,IBND,IPP,IT
 DOUBLE PRECISION :: SIGMA,RCOND,ABND,T,HC,TU,RCONV,RADIUS,RE,ST, &
 RBND,RA !,TWALL,AA
 DOUBLE PRECISION :: TMIN,TMAX,T1,T2,XSI
 DOUBLE PRECISION :: TEMPJ,KONDJ,RHOJ,CPJ,ALFAJ,KINJ,PRJ
 INTEGER :: IIMAT,N
 DIMENSION ID(4),JD(4),IC(4),JC(4),IRS(4),JRS(4)
 INTEGER :: done

 DATA ID / 1, 0,-1, 0/
 DATA JD / 0, 1, 0,-1/
 DATA IC / 0,-1,-1, 0/
 DATA JC / 0, 0,-1,-1/
 DATA IRS/ 1, 0, 1, 0/
 DATA JRS/ 0, 1, 0, 1/

 SIGMA=5.67*1.E-08

 DO 1 IBND=1,NBND
 IM =IMBND(IBND)
 I0 =I0BND(IBND)
 J0 =J0BND(IBND)
 IDR=IDBND(IBND)
 NP =NPBND(IBND)
 K0 =I0 +NI(IM)*(J0 -1)+NMP(IM)
 K0C=I0+IC(IDR)+NI(IM)*(J0+JC(IDR)-1)+NMP(IM)
 K0I=I0 +NI(IM)*(J0+JC(IDR)-1)+NMP(IM)
 K0J=I0+IC(IDR)+NI(IM)*(J0 -1)+NMP(IM)
 KD= ID(IDR)+NI(IM)* JD(IDR)
 DO 2 IPP=1,NP-1
 K1 =K0 +KD*(IPP-1)
 KC =K0C+KD*(IPP-1)
 KRSI=K0I+KD*(IPP-1)
 KRSJ=K0J+KD*(IPP-1)

154

 RCOND=RJ(KRSJ)*IRS(IDR)+RI(KRSI)*JRS(IDR)
 ABND =AJ(KRSJ)*IRS(IDR)+AI(KRSI)*JRS(IDR)

 IF(ITBND(IBND).EQ.1 .OR. ITBND(IBND).EQ.5)THEN
 IF(ITBND(IBND).EQ.5)THEN
 !Material hente rutine
 TEMPJ=TEMP(KC)
 IIMAT= 6
 N=NINT(AM_DATA(IIMAT))
 TMIN=AM_TEMP(IIMAT,1)
 TMAX=AM_TEMP(IIMAT,N)

 IF(TEMPJ.LE.TMIN)THEN
 T1=TMIN
 T2=TMIN
 RHOJ=AM_RO(IIMAT,1)
 KONDJ=AM_TCJ(IIMAT,1)
 KINJ=AM_TCI(IIMAT,1)
 CPJ=AM_CP(IIMAT,1)
 ENDIF
 IF(TEMPJ.GE.TMAX)THEN
 T1=TMAX
 T2=TMAX
 RHOJ=AM_RO(IIMAT,N)
 KONDJ=AM_TCJ(IIMAT,N)
 KINJ=AM_TCI(IIMAT,N)
 CPJ=AM_CP(IIMAT,N)
 ENDIF
 IF(TMIN.LT.TEMPJ .AND. TEMPJ.LT.TMAX)THEN
 done=0
 DO 3 IT=1,N-1
 T1=AM_TEMP(IIMAT,IT)
 T2=AM_TEMP(IIMAT,IT+1)
 XSI=(TEMPJ-T1)/(T2-T1)
 IF(T2.GT.TEMPJ .AND. done.EQ.0)THEN
 RHOJ=(1.-XSI)*AM_RO(IIMAT,IT) +XSI*AM_RO(IIMAT,IT+1)
 KONDJ=(1.-XSI)*AM_TCJ(IIMAT,IT)+XSI*AM_TCJ(IIMAT,IT+1)
 KINJ=(1.-XSI)*AM_TCI(IIMAT,IT)+XSI*AM_TCI(IIMAT,IT+1)
 CPJ=(1.-XSI)*AM_CP(IIMAT,IT) +XSI*AM_CP(IIMAT,IT+1)
 done=1

 ENDIF
 3 CONTINUE
 ENDIF

 ! Slutt hente gassdata

 ALFAJ=KONDJ/(RHOJ*CPJ)
 PRJ=KINJ/ALFAJ
 T=(TIME-TSTART)/(TSTOP-TSTART)
 TU=TUBND(IBND)+T*DTTUBND(IBND)
 RA=(9.81*(HCBND(IBND)**3)/(TU*KINJ*ALFAJ))*(TU-TEMP(KC))

HC=((06+((0.387*RA**(1/6))/((1+((0.559/PRJ)**(9/16)))**(8/27))))**2)*(KONDJ/HCBND(I
BND))

 !WRITE(6,*)RHOJ, CPJ, KINJ, KONDJ, ALFAJ, PRJ
 ! HC=HCBND(IBND)+T*DTHCBND(IBND)

 ELSE
 HC=HCBND(IBND)

155

 TU=TUBND(IBND)
 ENDIF

 RCONV=1./HC
 RBND=RCONV+RCOND

 DQ(KC)=DQ(KC)+ABND/RBND*(TU-TEMP(KC))
 ENDIF

 IF(ITBND(IBND).EQ.2)THEN
 DQ(KC)=DQ(KC)+QBND(IBND)*ABND
 ENDIF

 IF(ITBND(IBND).EQ.3)THEN !internal heat transfer
 RADIUS=YM(K1)
 RE=UBND(IBND,IPP)*RADIUS/VISCBND(IBND,IPP)
 ST=0.0791/RE**0.25*0.5/ &
 (1.+1.99*RE**(-0.125)*(PRBND(IBND,IPP)-1))
 HC=ROBND(IBND,IPP)*UBND(IBND,IPP)*CPBND(IBND,IPP)*ST
 RCONV=1./HC
 RBND=RCONV+RCOND
 DQ(KC)=DQ(KC)+ABND/RBND*(TUBND(IBND)-TEMP(KC))
 ENDIF
 IF(ITBND(IBND).EQ.4.OR.ITBND(IBND).EQ.6)THEN
 RCONV=1./HCEBND(IBND,IPP)
 RBND=RCONV+RCOND
 DQ(KC)=DQ(KC)+ABND/RBND*(TRBND(IBND,IPP)-TEMP(KC))
 ENDIF

 IF(IRADBND(IBND).EQ.1)THEN !add radiation heat transfer
! TWALL=TEMP(KC) !0 ORDENS TILNARMING BOR FORBEDRES
 DQ(KC)=DQ(KC)+ABND*SIGMA*EMSBND(IBND)* &
 ((TRADBND(IBND))**4-(TEMP(KC))**4)
! aa=ABND*SIGMA*EMSBND(IBND)*(0-(TEMP(KC))**4)
 ENDIF

 !Konstant temperatur på grense
 IF(ITBND(IBND).EQ.7) THEN
 RBND=RCOND
 DQ(KC)=DQ(KC)+ABND/RBND*(TUBND(IBND)-TEMP(KC))

 END IF

 2 CONTINUE
 1 CONTINUE

 100 FORMAT(2I4,6F10.3)
 RETURN
 END
!---
 SUBROUTINE FLUX5
 USE GlobaleVariable
 implicit none

! Lokale variable
 INTEGER :: IMESH,I,J,K

 DO 1 IMESH=1,NMESH
 DO 2 J=1,NJ(IMESH)-1
 DO 2 I=1,NI(IMESH)-1
 K=I +NI(IMESH)*(J-1)+NMP(IMESH)
 DTEMP(K)=DQ(K)/(RO(K)*C(K)*VOL(K))*TSF
 2 CONTINUE
 1 CONTINUE
 RETURN
 END

156

 SUBROUTINE STEP(ISTEP)
 USE GlobaleVariable
 implicit none
 INTEGER :: ISTEP

! Lokale variable
 INTEGER :: IMESH,I,J,K,IPR

 IPR=MOD(ISTEP,25)
 IF(ISTEP.EQ.1)IPR=0
 IF(IPR.EQ.0)THEN
 CALL PICKMDATA
 CALL RESMAT
 CALL LTSP
 ENDIF

 CALL FLUX

 DO 3 IMESH=1,NMESH
 DO 4 J=1,NJ(IMESH)-1
 DO 4 I=1,NI(IMESH)-1
 K=I+NI(IMESH)*(J-1)+NMP(IMESH)
 TEMP(K)=TEMP(K)+CFL*DTEMP(K)
 4 CONTINUE
 3 CONTINUE
 RETURN
 END

!---
 SUBROUTINE MATRSAVE
 USE GlobaleVariable
 IMPLICIT NONE

 ! LOKALE VARIABLE
 INTEGER :: IMesh, I,J,K,L

 L=1
 OPEN(50,FILE=MATRFIL,FORM='FORMATTED',STATUS='REPLACE')
 WRITE (50,*) 'TITLE = "MATERIAL"'
 WRITE (50,*) 'VARIABLES = "X","Y","Matr"'

 DO IMESH=1,NMESH
 WRITE(50,*) 'ZONE F=POINT, I=',NI(IMESH),',J=',NJ(IMESH)
 DO J=1,NJ(IMESH)
 DO I=1,NI(IMESH)
 K=I+NI(IMESH)*(J-1)+NMP(IMESH)
 WRITE(50,*) XM(L),YM(L),Mat(K)
 L=L+1
 ENDDO
 ENDDO
 ENDDO

 RETURN
 END SUBROUTINE

 SUBROUTINE MATERIALS
 USE GlobaleVariable
 IMPLICIT NONE

! Lokale variable
 INTEGER :: IREG,IM,NMPL,NIL,I,J,K!,NJL

157

 DO 3 IREG=1,NREG
 IM=IMR(IREG)
 NMPL=NMP(IM)
 NIL = NI(IM)
! NJL = NJ(IM)
 DO 4 J=JR1(IREG),JR2(IREG)-1
 DO 4 I=IR1(IREG),IR2(IREG)-1
 K=I+NIL*(J-1)+NMPL
 MAT(K)=IMAT(IREG)
 4 CONTINUE
 3 CONTINUE
 RETURN
 END
!---
 SUBROUTINE RESMAT
 USE GlobaleVariable
 IMPLICIT NONE

! Lokale variable
 INTEGER :: IMESH,I,J,K1,K2,K3
 DOUBLE PRECISION :: R1,R2

 DO IMESH=1,NMESH
 DO J=1,NJ(IMESH)-1
 DO I=1,NI(IMESH)-1
 K1=I+NI(IMESH)*(J-1)+NMP(IMESH)
 K2=K1+1
 K3=K1+NI(IMESH)
! I- DIRECTION RESISTANCE
 IF (I.EQ.1) THEN
 RI(K1)=.5*DI(K1)/TCI(K1)
 END IF
 IF (I.EQ.(NI(IMESH)-1)) THEN
 RI(K2)=.5*DI(K1)/TCI(K1)
 ELSE
 R1=.5*DI(K1)/TCI(K1)
 R2=.5*DI(K2)/TCI(K2)
 RI(K2)=R1+R2
 END IF
! J- DIRECTION RESISTANCE
 IF (J.EQ.1) THEN
 RJ(K1)=.5*DJ(K1)/TCJ(K1)
 END IF
 IF (J.EQ.(NJ(IMESH)-1)) THEN
 RJ(K3)=.5*DJ(K1)/TCJ(K1)
 ELSE
 R1=.5*DJ(K1)/TCJ(K1)
 R2=.5*DJ(K3)/TCJ(K3)
 RJ(K3)=R1+R2
 END IF
 END DO
 END DO
 END DO

 RETURN
 END
!---
 SUBROUTINE PICKMDATA
 USE GlobaleVariable
 IMPLICIT NONE
! Lokale variable
 INTEGER :: I,J,IMESH,K1,IIMAT,N,IT
 DOUBLE PRECISION :: T,TMIN,TMAX,T1,T2,XSI

 DO IMESH=1,NMESH

158

 DO J=1,NJ(IMESH)-1
 DO I=1,NI(IMESH)-1
 K1=I+NI(IMESH)*(J-1)+NMP(IMESH)
 T=TEMP(K1)
 IIMAT=MAT(K1)
 N=NINT(AM_DATA(IIMAT))
 TMIN=AM_TEMP(IIMAT,1)
 TMAX=AM_TEMP(IIMAT,N)
 IF (T.LE.TMIN) THEN
 T1=TMIN
 T2=TMIN
 RO(K1) =AM_RO(IIMAT,1)
 TCI(K1)=AM_TCI(IIMAT,1)
 TCJ(K1)=AM_TCJ(IIMAT,1)
 C(K1) =AM_CP(IIMAT,1)
 ELSE IF (T.GE.TMAX) THEN
 T1=TMAX
 T2=TMAX
 RO(K1) =AM_RO(IIMAT,N)
 TCI(K1)=AM_TCI(IIMAT,N)
 TCJ(K1)=AM_TCJ(IIMAT,N)
 C(K1) =AM_CP(IIMAT,N)
 ELSE
 DO IT=1,N-1
 T1=AM_TEMP(IIMAT,IT)
 T2=AM_TEMP(IIMAT,IT+1)
 XSI=(T-T1)/(T2-T1)
 IF(T2.GT.T)EXIT
 END DO
 RO(K1) =(1.-XSI)*AM_RO(IIMAT,IT) +XSI*AM_RO(IIMAT,IT+1)
 TCI(K1)=(1.-XSI)*AM_TCI(IIMAT,IT)+XSI*AM_TCI(IIMAT,IT+1)
 TCJ(K1)=(1.-XSI)*AM_TCJ(IIMAT,IT)+XSI*AM_TCJ(IIMAT,IT+1)
 C(K1) =(1.-XSI)*AM_CP(IIMAT,IT) +XSI*AM_CP(IIMAT,IT+1)
 END IF
 END DO !End I
 END DO !End J
 END DO !End MESH

 RETURN
 END
!---
 SUBROUTINE DEFMATDATA
 USE GlobaleVariable
 IMPLICIT NONE

! aluminium (Typiske data for legert Al)
 AM_DATA(1)=5
 AM_TEMP(1,1)= -100.+273.15
 AM_TEMP(1,2)= 273.15+ 20.
 AM_TEMP(1,3)= 273.15+ 100.
 AM_TEMP(1,4)= 273.15+ 200.
 AM_TEMP(1,5)= 273.15+ 300.

 AM_CP (1,1)= 955.
 AM_CP (1,2)= 960.
 AM_CP (1,3)= 962.
 AM_CP (1,4)= 967.
 AM_CP (1,5)= 983.

 AM_TCI (1,1)= 110.
 AM_TCI (1,2)= 130.
 AM_TCI (1,3)= 148.
 AM_TCI (1,4)= 168.
 AM_TCI (1,5)= 188.

 AM_TCJ (1,1)= 110.
 AM_TCJ (1,2)= 130.
 AM_TCJ (1,3)= 148.

159

 AM_TCJ (1,4)= 168.
 AM_TCJ (1,5)= 188.

 AM_RO (1,1)= 1758.
 AM_RO (1,2)= 1758.
 AM_RO (1,3)= 1758.
 AM_RO (1,4)= 1758.
 AM_RO (1,5)= 1758.
! titan (Typiske data for Ti-legering)
 AM_DATA(9)=6
 AM_TEMP(9,1)= -173.+273.15
 AM_TEMP(9,2)= 273.15+ 25.
 AM_TEMP(9,3)= 273.15+ 100.
 AM_TEMP(9,4)= 273.15+ 204.
 AM_TEMP(9,5)= 273.15+ 426.
 AM_TEMP(9,6)= 273.15+ 648.

 AM_CP (9,1)= 298.2
 AM_CP (9,2)= 523.3
 AM_CP (9,3)= 546.2
 AM_CP (9,4)= 569.
 AM_CP (9,5)= 609.8
 AM_CP (9,6)= 660.4

 AM_TCI (9,1)= 31.2
 AM_TCI (9,2)= 21.9
 AM_TCI (9,3)= 20.7
 AM_TCI (9,4)= 20.1
 AM_TCI (9,5)= 19.5
 AM_TCI (9,6)= 16.3

 AM_TCJ (9,1)= 31.2
 AM_TCJ (9,2)= 21.9
 AM_TCJ (9,3)= 20.7
 AM_TCJ (9,4)= 20.1
 AM_TCJ (9,5)= 19.5
 AM_TCJ (9,6)= 16.3

 AM_RO (9,1)= 4500.
 AM_RO (9,2)= 4500.
 AM_RO (9,3)= 4500.
 AM_RO (9,4)= 4500.
 AM_RO (9,5)= 4500.
 AM_RO (9,6)= 4500.
! steel (Typiske data .. ser ut som karbonstål)
 AM_DATA(2)=5
 AM_TEMP(2,1)= -56.+273.15
 AM_TEMP(2,2)= 204. +273.15
 AM_TEMP(2,3)= 426. +273.15
 AM_TEMP(2,4)= 648. +273.15
 AM_TEMP(2,5)= 1500. +273.15

 AM_CP (2,1)= 419.
 AM_CP (2,2)= 519.
 AM_CP (2,3)= 620.
 AM_CP (2,4)= 754.
 AM_CP (2,5)= 800.

 AM_TCI (2,1)= 43.1
 AM_TCI (2,2)= 42.2
 AM_TCI (2,3)= 38.6
 AM_TCI (2,4)= 32.2
 AM_TCI (2,5)= 25.0

 AM_TCJ (2,1)= 43.1
 AM_TCJ (2,2)= 42.2
 AM_TCJ (2,3)= 38.6
 AM_TCJ (2,4)= 32.2

160

 AM_TCJ (2,5)= 25.0

 AM_RO (2,1)= 7745.
 AM_RO (2,2)= 7745.
 AM_RO (2,3)= 7745.
 AM_RO (2,4)= 7745.
 AM_RO (2,5)= 7745.

! SiPh (Inkludererer effekt av forgassing/forkulling)
 AM_DATA(3)=10
 AM_TEMP(3, 1)= 21. +273.15
 AM_TEMP(3, 2)= 149.+273.15
 AM_TEMP(3, 3)= 371. +273.15
 AM_TEMP(3, 4)= 560. +273.15
 AM_TEMP(3, 5)= 838. +273.15
 AM_TEMP(3, 6)= 1115. +273.15
 AM_TEMP(3, 7)= 1393. +273.15
 AM_TEMP(3, 8)= 1949. +273.15
 AM_TEMP(3, 9)= 2504. +273.15
 AM_TEMP(3,10)= 3060. +273.15

 AM_CP (3, 1)= 754.
 AM_CP (3, 2)= 1005.
 AM_CP (3, 3)= 1193.
 AM_CP (3, 4)= 2190.
 AM_CP (3, 5)= 2400.
 AM_CP (3, 6)= 1298.
 AM_CP (3, 7)= 1486.
 AM_CP (3, 8)= 1486.
 AM_CP (3, 9)= 1486.
 AM_CP (3,10)= 1486.

 AM_TCI (3, 1)= 0.459
 AM_TCI (3, 2)= 0.513
 AM_TCI (3, 3)= 0.600
 AM_TCI (3, 4)= 0.627
 AM_TCI (3, 5)= 0.750
 AM_TCI (3, 6)= 0.850
 AM_TCI (3, 7)= 1.000
 AM_TCI (3, 8)= 1.812
 AM_TCI (3, 9)= 3.744

 AM_TCI (3,10)= 6.678
 AM_TCJ (3, 1)= 0.303
 AM_TCJ (3, 2)= 0.337
 AM_TCJ (3, 3)= 0.396
 AM_TCJ (3, 4)= 0.400
 AM_TCJ (3, 5)= 0.439
 AM_TCJ (3, 6)= 0.461
 AM_TCJ (3, 7)= 0.492
 AM_TCJ (3, 8)= 1.022
 AM_TCJ (3, 9)= 2.819
 AM_TCJ (3,10)= 3.112

 AM_RO (3, 1)= 1758.
 AM_RO (3, 2)= 1758.
 AM_RO (3, 3)= 1758.
 AM_RO (3, 4)= 1672.
 AM_RO (3, 5)= 1548.
 AM_RO (3, 6)= 1548.
 AM_RO (3, 7)= 1548.
 AM_RO (3, 8)= 1548.
 AM_RO (3, 9)= 1548.
 AM_RO (3,10)= 1548.

! SiPh COOLING PHASE
 AM_DATA(11)=10
 AM_TEMP(11, 1)= 21.+273.15

161

 AM_TEMP(11, 2)= 149.+273.15
 AM_TEMP(11, 3)= 371.+273.15
 AM_TEMP(11, 4)= 560.+273.15
 AM_TEMP(11, 5)= 838.+273.15
 AM_TEMP(11, 6)= 1115.+273.15
 AM_TEMP(11, 7)= 1393.+273.15
 AM_TEMP(11, 8)= 1949.+273.15
 AM_TEMP(11, 9)= 2504.+273.15
 AM_TEMP(11,10)= 3060.+273.15

 AM_CP (11, 1)= 754.
 AM_CP (11, 2)= 1005.
 AM_CP (11, 3)= 1193.
 AM_CP (11, 4)= 1200.
 AM_CP (11, 5)= 1250.
 AM_CP (11, 6)= 1298.
 AM_CP (11, 7)= 1486.
 AM_CP (11, 8)= 1486.
 AM_CP (11, 9)= 1486.
 AM_CP (11,10)= 1486.

 AM_TCI (11, 1)= 0.459
 AM_TCI (11, 2)= 0.513
 AM_TCI (11, 3)= 0.600
 AM_TCI (11, 4)= 0.627
 AM_TCI (11, 5)= 0.750
 AM_TCI (11, 6)= 0.850
 AM_TCI (11, 7)= 1.000
 AM_TCI (11, 8)= 1.812
 AM_TCI (11, 9)= 3.744
 AM_TCI (11,10)= 6.678

 AM_TCJ (11, 1)= 0.303
 AM_TCJ (11, 2)= 0.337
 AM_TCJ (11, 3)= 0.396
 AM_TCJ (11, 4)= 0.400
 AM_TCJ (11, 5)= 0.439
 AM_TCJ (11, 6)= 0.461
 AM_TCJ (11, 7)= 0.492
 AM_TCJ (11, 8)= 1.022
 AM_TCJ (11, 9)= 2.819
 AM_TCJ (11,10)= 3.112

 AM_RO (11, 1)= 1758.
 AM_RO (11, 2)= 1758.
 AM_RO (11, 3)= 1758.
 AM_RO (11, 4)= 1672.
 AM_RO (11, 5)= 1548.
 AM_RO (11, 6)= 1548.
 AM_RO (11, 7)= 1548.
 AM_RO (11, 8)= 1548.
 AM_RO (11, 9)= 1548.
 AM_RO (11,10)= 1548.

! Molybden
 AM_DATA(4)=10
 AM_TEMP(4, 1)= -100.+273.15
 AM_TEMP(4, 2)= 0.+273.15
 AM_TEMP(4, 3)= 100.+273.15
 AM_TEMP(4, 4)= 200.+273.15
 AM_TEMP(4, 5)= 300.+273.15
 AM_TEMP(4, 6)= 400.+273.15
 AM_TEMP(4, 7)= 600.+273.15
 AM_TEMP(4, 8)= 800.+273.15
 AM_TEMP(4, 9)= 1000.+273.15
 AM_TEMP(4,10)= 2500.+273.15

 AM_CP (4, 1)= 250.

162

 AM_CP (4, 2)= 255.
 AM_CP (4, 3)= 260.
 AM_CP (4, 4)= 265.
 AM_CP (4, 5)= 270.
 AM_CP (4, 6)= 275.
 AM_CP (4, 7)= 280.
 AM_CP (4, 8)= 285.
 AM_CP (4, 9)= 290.
 AM_CP (4,10)= 350.

 AM_TCI (4, 1)= 138.
 AM_TCI (4, 2)= 125.
 AM_TCI (4, 3)= 118.
 AM_TCI (4, 4)= 114.
 AM_TCI (4, 5)= 111.
 AM_TCI (4, 6)= 109.
 AM_TCI (4, 7)= 106.
 AM_TCI (4, 8)= 102.
 AM_TCI (4, 9)= 99.
 AM_TCI (4,10)= 75.

 AM_TCJ (4, 1)= 138.
 AM_TCJ (4, 2)= 125.
 AM_TCJ (4, 3)= 118.
 AM_TCJ (4, 4)= 114.
 AM_TCJ (4, 5)= 111.
 AM_TCJ (4, 6)= 109.
 AM_TCJ (4, 7)= 106.
 AM_TCJ (4, 8)= 102.
 AM_TCJ (4, 9)= 99.
 AM_TCJ (4,10)= 75.

 AM_RO (4, 1)= 10220.
 AM_RO (4, 2)= 10220.
 AM_RO (4, 3)= 10220.
 AM_RO (4, 4)= 10220.
 AM_RO (4, 5)= 10220.
 AM_RO (4, 6)= 10220.
 AM_RO (4, 7)= 10220.
 AM_RO (4, 8)= 10220.
 AM_RO (4, 9)= 10220.
 AM_RO (4,10)= 10220.

! EPDM (kun "rene" termiske egenskaper; ikke kompensert for forgassing/forkulling)
 AM_DATA(5)=10
 AM_TEMP(5, 1)= -73.+273.15
 AM_TEMP(5, 2)= -18.+273.15
 AM_TEMP(5, 3)= 10.+273.15
 AM_TEMP(5, 4)= 94.+273.15
 AM_TEMP(5, 5)= 200.+273.15
 AM_TEMP(5, 6)= 315.+273.15
 AM_TEMP(5, 7)= 455.+273.15
 AM_TEMP(5, 8)= 594.+273.15
 AM_TEMP(5, 9)= 1093.+273.15
 AM_TEMP(5,10)= 3316.+273.15

 AM_CP (5, 1)= 1000.
 AM_CP (5, 2)= 1330.
 AM_CP (5, 3)= 1280.
 AM_CP (5, 4)= 1520.
 AM_CP (5, 5)= 1890.
 AM_CP (5, 6)= 2020.
 AM_CP (5, 7)= 2902.
 AM_CP (5, 8)= 2300.
 AM_CP (5, 9)= 2050.
 AM_CP (5,10)= 2050.

 AM_TCI (5, 1)= .230

163

 AM_TCI (5, 2)= .213
 AM_TCI (5, 3)= .204
 AM_TCI (5, 4)= .171
 AM_TCI (5, 5)= .147
 AM_TCI (5, 6)= .121
 AM_TCI (5, 7)= .113
 AM_TCI (5, 8)= .104
 AM_TCI (5, 9)= .100
 AM_TCI (5,10)= .100

 AM_TCJ (5, 1)= .230
 AM_TCJ (5, 2)= .213
 AM_TCJ (5, 3)= .204
 AM_TCJ (5, 4)= .171
 AM_TCJ (5, 5)= .147
 AM_TCJ (5, 6)= .121
 AM_TCJ (5, 7)= .113
 AM_TCJ (5, 8)= .104
 AM_TCJ (5, 9)= .100
 AM_TCJ (5,10)= .100

 AM_RO (5, 1)= 1100.
 AM_RO (5, 2)= 1100.
 AM_RO (5, 3)= 1100.
 AM_RO (5, 4)= 1100.
 AM_RO (5, 5)= 1100.
 AM_RO (5, 6)= 1100.
 AM_RO (5, 7)= 715.
 AM_RO (5, 8)= 325.
 AM_RO (5, 9)= 325.
 AM_RO (5,10)= 325.

! Luft
 AM_DATA(6)=11
 AM_TEMP(6,1)= 300
 AM_TEMP(6,2)= 350
 AM_TEMP(6,3)= 400
 AM_TEMP(6,4)= 550
 AM_TEMP(6,5)= 600
 AM_TEMP(6,6)= 650
 AM_TEMP(6,7)= 700
 AM_TEMP(6,8)= 800
 AM_TEMP(6,9)= 1000
 AM_TEMP(6,10)= 1200
 AM_TEMP(6,11)= 1600

 AM_CP (6,1)= 1007.
 AM_CP (6,2)= 1009.
 AM_CP (6,3)= 1014.
 AM_CP (6,4)= 1040.
 AM_CP (6,5)= 1051.
 AM_CP (6,6)= 1063.
 AM_CP (6,7)= 1075.
 AM_CP (6,8)= 1099.
 AM_CP (6,9)= 1142.
 AM_CP (6,10)= 1172.
 AM_CP (6,11)= 1248.

 AM_TCI (6,1)= 0.00001589
 AM_TCI (6,2)= 0.00002092
 AM_TCI (6,3)= 0.00002641
 AM_TCI (6,4)= 0.00004557
 AM_TCI (6,5)= 0.00005269
 AM_TCI (6,6)= 0.00006021
 AM_TCI (6,7)= 0.00006810
 AM_TCI (6,8)= 0.00008493
 AM_TCI (6,9)= 0.00012190
 AM_TCI (6,10)= 0.00016290

164

 AM_TCI (6,11)= 0.00026800

 AM_TCJ (6,1)= 0.0263
 AM_TCJ (6,2)= 0.0300
 AM_TCJ (6,3)= 0.0338
 AM_TCJ (6,4)= 0.0439
 AM_TCJ (6,5)= 0.0469
 AM_TCJ (6,6)= 0.0497
 AM_TCJ (6,7)= 0.0524
 AM_TCJ (6,8)= 0.0573
 AM_TCJ (6,9)= 0.0667
 AM_TCJ (6,10)= 0.0763
 AM_TCJ (6,11)= 0.1060

 AM_RO (6,1)= 1.1614
 AM_RO (6,2)= 0.9950
 AM_RO (6,3)= 0.8711
 AM_RO (6,4)= 0.6329
 AM_RO (6,5)= 0.5804
 AM_RO (6,6)= 0.5356
 AM_RO (6,7)= 0.4975
 AM_RO (6,8)= 0.4354
 AM_RO (6,9)= 0.3482
 AM_RO (6,10)= 0.2902
 AM_RO (6,11)= 0.2177

! ARAMIDE-EPOXY
 AM_DATA(7)=9

 AM_TEMP(7, 1)= -50.+273.15
 AM_TEMP(7, 2)= 0.+273.15
 AM_TEMP(7, 3)= 50.+273.15
 AM_TEMP(7, 4)= 100.+273.15
 AM_TEMP(7, 5)= 150.+273.15
 AM_TEMP(7, 6)= 200.+273.15
 AM_TEMP(7, 7)= 250.+273.15
 AM_TEMP(7, 8)= 300.+273.15
 AM_TEMP(7, 9)= 500.+273.15

 AM_CP (7, 1)= 858.
 AM_CP (7, 2)= 1080.
 AM_CP (7, 3)= 1382.
 AM_CP (7, 4)= 1696.
 AM_CP (7, 5)= 1696.
 AM_CP (7, 6)= 2198.
 AM_CP (7, 7)= 2303.
 AM_CP (7, 8)= 2382.
 AM_CP (7, 9)= 2400.

 AM_TCI (7, 1)= .198
 AM_TCI (7, 2)= .210
 AM_TCI (7, 3)= .214
 AM_TCI (7, 4)= .217
 AM_TCI (7, 5)= .217
 AM_TCI (7, 6)= .206
 AM_TCI (7, 7)= .154
 AM_TCI (7, 8)= .100
 AM_TCI (7, 9)= .070

 AM_TCJ (7, 1)= .198
 AM_TCJ (7, 2)= .210
 AM_TCJ (7, 3)= .214
 AM_TCJ (7, 4)= .217
 AM_TCJ (7, 5)= .217
 AM_TCJ (7, 6)= .206
 AM_TCJ (7, 7)= .154
 AM_TCJ (7, 8)= .100
 AM_TCJ (7, 9)= .070

165

 AM_RO (7, 1)= 1380.
 AM_RO (7, 2)= 1380.
 AM_RO (7, 3)= 1380.
 AM_RO (7, 4)= 1380.
 AM_RO (7, 5)= 1380.
 AM_RO (7, 6)= 1380.
 AM_RO (7, 7)= 1380.
 AM_RO (7, 8)= 1380.
 AM_RO (7, 9)= 1380.

! grain
 AM_DATA(8)=6
 AM_TEMP(8,1)= -100.+273.15
 AM_TEMP(8,2)= 20.+273.15
 AM_TEMP(8,3)= 77.+273.15
 AM_TEMP(8,4)= 149.+273.15
 AM_TEMP(8,5)= 200.+273.15
 AM_TEMP(8,6)= 371.+273.15

 AM_CP (8,1)= 1047.
 AM_CP (8,2)= 1047.
 AM_CP (8,3)= 1336.
 AM_CP (8,4)= 1336.
 AM_CP (8,5)= 1532.
 AM_CP (8,6)= 1570.

 AM_TCI (8,1)= .36
 AM_TCI (8,2)= .36
 AM_TCI (8,3)= .36
 AM_TCI (8,4)= .36
 AM_TCI (8,5)= .36
 AM_TCI (8,6)= .36

 AM_TCJ (8,1)= .36
 AM_TCJ (8,2)= .36
 AM_TCJ (8,3)= .36
 AM_TCJ (8,4)= .36
 AM_TCJ (8,5)= .36
 AM_TCJ (8,6)= .36

 AM_RO (8,1)= 1722.
 AM_RO (8,2)= 1722.
 AM_RO (8,3)= 1722.
 AM_RO (8,4)= 1722.
 AM_RO (8,5)= 1722.
 AM_RO (8,6)= 1722.
! graphite
 AM_DATA(10)=3
 AM_TEMP(10,1)= -100.+273.15
 AM_TEMP(10,2)= 20.+273.15
 AM_TEMP(10,3)= 3000.+273.15

 AM_CP (10,1)= 2500.
 AM_CP (10,2)= 2500.
 AM_CP (10,3)= 2500.

 AM_TCI (10,1)= 1163.
 AM_TCI (10,2)= 1163.
 AM_TCI (10,3)= 1163.

 AM_TCJ (10,1)= 1163.
 AM_TCJ (10,2)= 1163.
 AM_TCJ (10,3)= 1163.

 AM_RO (10,1)= 1750.
 AM_RO (10,2)= 1750.
 AM_RO (10,3)= 1750.

166

! Carbon fiber composite, intermediate modulus (IM-7)

 AM_DATA(12)=3
 AM_TEMP(12,1)= -100.+273.15
 AM_TEMP(12,2)= 20.+273.15
 AM_TEMP(12,3)= 3000.+273.15

 AM_CP (12,1)= 750.
 AM_CP (12,2)= 750.
 AM_CP (12,3)= 750.

 AM_TCI (12,1)= 6.
 AM_TCI (12,2)= 6.
 AM_TCI (12,3)= 6.

 AM_TCJ (12,1)= .6
 AM_TCJ (12,2)= .6
 AM_TCJ (12,3)= .6

 AM_RO (12,1)= 1600.
 AM_RO (12,2)= 1600.
 AM_RO (12,3)= 1600.

! TZM (Molybdenlegering: Mo:0.4-0.55, Ti:0.06-1.2, Zr:0.01-0.04) (Plansee)
 AM_DATA(13)=26
 AM_TEMP(13, 1)= 0.+273.15
 AM_TEMP(13, 2)= 100.+273.15
 AM_TEMP(13, 3)= 200.+273.15
 AM_TEMP(13, 4)= 300.+273.15
 AM_TEMP(13, 5)= 400.+273.15
 AM_TEMP(13, 6)= 500.+273.15
 AM_TEMP(13, 7)= 600.+273.15
 AM_TEMP(13, 8)= 700.+273.15
 AM_TEMP(13, 9)= 800.+273.15
 AM_TEMP(13,10)= 900.+273.15
 AM_TEMP(13,11)= 1000.+273.15
 AM_TEMP(13,12)= 1100.+273.15
 AM_TEMP(13,13)= 1200.+273.15
 AM_TEMP(13,14)= 1300.+273.15
 AM_TEMP(13,15)= 1400.+273.15
 AM_TEMP(13,16)= 1500.+273.15
 AM_TEMP(13,17)= 1600.+273.15
 AM_TEMP(13,18)= 1700.+273.15
 AM_TEMP(13,19)= 1800.+273.15
 AM_TEMP(13,20)= 1900.+273.15
 AM_TEMP(13,21)= 2000.+273.15
 AM_TEMP(13,22)= 2100.+273.15
 AM_TEMP(13,23)= 2200.+273.15
 AM_TEMP(13,24)= 2300.+273.15
 AM_TEMP(13,25)= 2400.+273.15
 AM_TEMP(13,26)= 2500.+273.15

 AM_CP (13, 1)= 229.5
 AM_CP (13, 2)= 231.3
 AM_CP (13, 3)= 236.7
 AM_CP (13, 4)= 242.1
 AM_CP (13, 5)= 247.5
 AM_CP (13, 6)= 256.5
 AM_CP (13, 7)= 263.7
 AM_CP (13, 8)= 272.7
 AM_CP (13, 9)= 279.9
 AM_CP (13,10)= 288.8
 AM_CP (13,11)= 296.
 AM_CP (13,12)= 303.2
 AM_CP (13,13)= 312.2
 AM_CP (13,14)= 319.4
 AM_CP (13,15)= 328.4

167

 AM_CP (13,16)= 337.4
 AM_CP (13,17)= 348.2
 AM_CP (13,18)= 360.8
 AM_CP (13,19)= 373.4
 AM_CP (13,20)= 389.6
 AM_CP (13,21)= 404.
 AM_CP (13,22)= 421.6
 AM_CP (13,23)= 441.7
 AM_CP (13,24)= 461.8
 AM_CP (13,25)= 481.9
 AM_CP (13,26)= 502.

 AM_TCI (13, 1)= 128.49
 AM_TCI (13, 2)= 125.69
 AM_TCI (13, 3)= 122.9
 AM_TCI (13, 4)= 120.11
 AM_TCI (13, 5)= 118.01
 AM_TCI (13, 6)= 115.57
 AM_TCI (13, 7)= 113.12
 AM_TCI (13, 8)= 111.03
 AM_TCI (13, 9)= 108.24
 AM_TCI (13,10)= 106.14
 AM_TCI (13,11)= 103.35
 AM_TCI (13,12)= 100.21
 AM_TCI (13,13)= 97.76
 AM_TCI (13,14)= 94.62
 AM_TCI (13,15)= 92.18
 AM_TCI (13,16)= 89.03
 AM_TCI (13,17)= 86.24
 AM_TCI (13,18)= 83.45
 AM_TCI (13,19)= 81.
 AM_TCI (13,20)= 78.21
 AM_TCI (13,21)= 75.42
 AM_TCI (13,22)= 72.97
 AM_TCI (13,23)= 71.23
 AM_TCI (13,24)= 69.48
 AM_TCI (13,25)= 68.43
 AM_TCI (13,26)= 67.04

 AM_TCJ (13, 1)= 128.49
 AM_TCJ (13, 2)= 125.69
 AM_TCJ (13, 3)= 122.9
 AM_TCJ (13, 4)= 120.11
 AM_TCJ (13, 5)= 118.01
 AM_TCJ (13, 6)= 115.57
 AM_TCJ (13, 7)= 113.12
 AM_TCJ (13, 8)= 111.03
 AM_TCJ (13, 9)= 108.24
 AM_TCJ (13,10)= 106.14
 AM_TCJ (13,11)= 103.35
 AM_TCJ (13,12)= 100.21
 AM_TCJ (13,13)= 97.76
 AM_TCJ (13,14)= 94.62
 AM_TCJ (13,15)= 92.18
 AM_TCJ (13,16)= 89.03
 AM_TCJ (13,17)= 86.24
 AM_TCJ (13,18)= 83.45
 AM_TCJ (13,19)= 81.
 AM_TCJ (13,20)= 78.21
 AM_TCJ (13,21)= 75.42
 AM_TCJ (13,22)= 72.97
 AM_TCJ (13,23)= 71.23
 AM_TCJ (13,24)= 69.48
 AM_TCJ (13,25)= 68.43
 AM_TCJ (13,26)= 67.04

 AM_RO (13, 1)=10220.
 AM_RO (13, 2)=10220.

168

 AM_RO (13, 3)=10220.
 AM_RO (13, 4)=10220.
 AM_RO (13, 5)=10220.
 AM_RO (13, 6)=10220.
 AM_RO (13, 7)=10220.
 AM_RO (13, 8)=10220.
 AM_RO (13, 9)=10220.
 AM_RO (13,10)=10220.
 AM_RO (13,11)=10220.
 AM_RO (13,12)=10220.
 AM_RO (13,13)=10220.
 AM_RO (13,14)=10220.
 AM_RO (13,15)=10220.
 AM_RO (13,16)=10220.
 AM_RO (13,17)=10220.
 AM_RO (13,18)=10220.
 AM_RO (13,19)=10220.
 AM_RO (13,20)=10220.
 AM_RO (13,21)=10220.
 AM_RO (13,22)=10220.
 AM_RO (13,23)=10220.
 AM_RO (13,24)=10220.
 AM_RO (13,25)=10220.
 AM_RO (13,26)=10220.

! WL10 (Tungstenlegering) (Tungsten+1% La2O3) (Plansee)
 AM_DATA(14)=17
 AM_TEMP(14, 1)= 0.+273.15
 AM_TEMP(14, 2)= 50.+273.15
 AM_TEMP(14, 3)= 100.+273.15
 AM_TEMP(14, 4)= 200.+273.15
 AM_TEMP(14, 5)= 300.+273.15
 AM_TEMP(14, 6)= 400.+273.15
 AM_TEMP(14, 7)= 500.+273.15
 AM_TEMP(14, 8)= 600.+273.15
 AM_TEMP(14, 9)= 700.+273.15
 AM_TEMP(14,10)= 800.+273.15
 AM_TEMP(14,11)= 900.+273.15
 AM_TEMP(14,12)= 1000.+273.15
 AM_TEMP(14,13)= 1100.+273.15
 AM_TEMP(14,14)= 1200.+273.15
 AM_TEMP(14,15)= 1300.+273.15
 AM_TEMP(14,16)= 1400.+273.15
 AM_TEMP(14,17)= 2500.+273.15
 AM_CP (14, 1)= 122.3
 AM_CP (14, 2)= 130.8
 AM_CP (14, 3)= 139.3
 AM_CP (14, 4)= 142.6
 AM_CP (14, 5)= 143.7
 AM_CP (14, 6)= 145.3
 AM_CP (14, 7)= 145.9
 AM_CP (14, 8)= 147.5
 AM_CP (14, 9)= 148.6
 AM_CP (14,10)= 150.2
 AM_CP (14,11)= 151.6
 AM_CP (14,12)= 152.5
 AM_CP (14,13)= 153.4
 AM_CP (14,14)= 154.9
 AM_CP (14,15)= 155.5
 AM_CP (14,16)= 154.8
 AM_CP (14,17)= 147.1
 AM_TCI (14, 1)= 123.
 AM_TCI (14, 2)= 121.7
 AM_TCI (14, 3)= 120.4
 AM_TCI (14, 4)= 117.8
 AM_TCI (14, 5)= 113.6
 AM_TCI (14, 6)= 109.
 AM_TCI (14, 7)= 105.8

169

 AM_TCI (14, 8)= 102.9
 AM_TCI (14, 9)= 102.8
 AM_TCI (14,10)= 100.3
 AM_TCI (14,11)= 100.7
 AM_TCI (14,12)= 98.5
 AM_TCI (14,13)= 96.2
 AM_TCI (14,14)= 94.8
 AM_TCI (14,15)= 94.4
 AM_TCI (14,16)= 94.2
 AM_TCI (14,17)= 92.
 AM_TCJ (14, 1)= 123.
 AM_TCJ (14, 2)= 121.7
 AM_TCJ (14, 3)= 120.4
 AM_TCJ (14, 4)= 117.8
 AM_TCJ (14, 5)= 113.6
 AM_TCJ (14, 6)= 109.
 AM_TCJ (14, 7)= 105.8
 AM_TCJ (14, 8)= 102.9
 AM_TCJ (14, 9)= 102.8
 AM_TCJ (14,10)= 100.3
 AM_TCJ (14,11)= 100.7
 AM_TCJ (14,12)= 98.5
 AM_TCJ (14,13)= 96.2
 AM_TCJ (14,14)= 94.8
 AM_TCJ (14,15)= 94.4
 AM_TCJ (14,16)= 94.2
 AM_TCJ (14,17)= 92.
 AM_RO (14, 1)= 19300.
 AM_RO (14, 2)= 19300.
 AM_RO (14, 3)= 19300.
 AM_RO (14, 4)= 19300.
 AM_RO (14, 5)= 19300.
 AM_RO (14, 6)= 19300.
 AM_RO (14, 7)= 19300.
 AM_RO (14, 8)= 19300.
 AM_RO (14, 9)= 19300.
 AM_RO (14,10)= 19300.
 AM_RO (14,11)= 19300.
 AM_RO (14,12)= 19300.
 AM_RO (14,13)= 19300.
 AM_RO (14,14)= 19300.
 AM_RO (14,15)= 19300.
 AM_RO (14,16)= 19300.
 AM_RO (14,17)= 19300.

! graphite Toyo Tanso IG-11
 AM_DATA(15)=13
 AM_TEMP(15,1)= 0.+273.15
 AM_TEMP(15,2)= 100.+273.15
 AM_TEMP(15,3)= 200.+273.15
 AM_TEMP(15,4)= 300.+273.15
 AM_TEMP(15,5)= 400.+273.15
 AM_TEMP(15,6)= 500.+273.15
 AM_TEMP(15,7)= 600.+273.15
 AM_TEMP(15,8)= 700.+273.15
 AM_TEMP(15,9)= 800.+273.15
 AM_TEMP(15,10)= 900.+273.15
 AM_TEMP(15,11)= 1000.+273.15
 AM_TEMP(15,12)= 1100.+273.15
 AM_TEMP(15,13)= 2500.+273.15

 AM_CP (15,1)= 751.6
 AM_CP (15,2)= 977.7
 AM_CP (15,3)= 1203.7
 AM_CP (15,4)= 1387.8
 AM_CP (15,5)= 1508.4
 AM_CP (15,6)= 1628.9
 AM_CP (15,7)= 1688.7

170

 AM_CP (15,8)= 1711.3
 AM_CP (15,9)= 1733.9
 AM_CP (15,10)= 1756.5
 AM_CP (15,11)= 1779.2
 AM_CP (15,12)= 1801.1
 AM_CP (15,13)= 1919.

 AM_TCI (15,1)= 117.9
 AM_TCI (15,2)= 106.4
 AM_TCI (15,3)= 97.
 AM_TCI (15,4)= 87.1
 AM_TCI (15,5)= 79.3
 AM_TCI (15,6)= 72.3
 AM_TCI (15,7)= 66.6
 AM_TCI (15,8)= 61.2
 AM_TCI (15,9)= 57.1
 AM_TCI (15,10)= 53.
 AM_TCI (15,11)= 49.3
 AM_TCI (15,12)= 46.4
 AM_TCI (15,13)= 41.5

 AM_TCJ (15,1)= 117.9
 AM_TCJ (15,2)= 106.4
 AM_TCJ (15,3)= 97.
 AM_TCJ (15,4)= 87.1
 AM_TCJ (15,5)= 79.3
 AM_TCJ (15,6)= 72.3
 AM_TCJ (15,7)= 66.6
 AM_TCJ (15,8)= 61.2
 AM_TCJ (15,9)= 57.1
 AM_TCJ (15,10)= 53.
 AM_TCJ (15,11)= 49.3
 AM_TCJ (15,12)= 46.4
 AM_TCJ (15,13)= 41.5

 AM_RO (15,1)= 1770.
 AM_RO (15,2)= 1770.
 AM_RO (15,3)= 1770.
 AM_RO (15,4)= 1770.
 AM_RO (15,5)= 1770.
 AM_RO (15,6)= 1770.
 AM_RO (15,7)= 1770.
 AM_RO (15,8)= 1770.
 AM_RO (15,9)= 1770.
 AM_RO (15,10)= 1770.
 AM_RO (15,11)= 1770.
 AM_RO (15,12)= 1770.
 AM_RO (15,13)= 1770.
! C-C/SiC DLR materiale
 AM_DATA(16)=5
 AM_TEMP(16,1)= 0. !lagt inn kunstig
 AM_TEMP(16,2)= 473.15
 AM_TEMP(16,3)= 1273.15
 AM_TEMP(16,4)= 1923.15
 AM_TEMP(16,5)= 5000. ! lagt in kunstig

 AM_CP (16,1)= 748.
 AM_CP (16,2)= 748.
 AM_CP (16,3)= 1414.
 AM_CP (16,4)= 1514.
 AM_CP (16,5)= 1514.

 AM_TCI (16,1)= 16.8 !langs fiber
 AM_TCI (16,2)= 16.8
 AM_TCI (16,3)= 18.
 AM_TCI (16,4)= 16.8
 AM_TCI (16,5)= 16.8

171

 AM_TCJ (16,1)= 9.2 !normalt til fiber
 AM_TCJ (16,2)= 9.2
 AM_TCJ (16,3)= 7.6
 AM_TCJ (16,4)= 7.5
 AM_TCJ (16,5)= 7.5

 AM_RO (16,1)= 2000.
 AM_RO (16,2)= 2000.
 AM_RO (16,3)= 2000.
 AM_RO (16,4)= 2000.
 AM_RO (16,5)= 2000.

 RETURN
 END

	Title Page
	Problem Description
	Microsoft Word - Diplom.docx

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

