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Abstract 

This thesis has two main goals: (1) to develop a linear regression model of the heat 

consumption of space heating and ventilation systems and (2) to evaluate operation and 

maintenance problem detection, by comparing actual heat consumption and predictions 

gained through linear regression modeling. 

This thesis discusses the influences that determine space heating and ventilation system 

heat consumption. Data with different resolutions capture heat consumption variations to 

different degrees. Data with higher resolutions introduce more information into calculations. 

However, the dynamic processes of heat transfer make data with higher resolutions less 

suitable for calculation than data with lower resolutions. This thesis evaluates the extent of 

different influences (outdoor air temperature, wind speed and solar radiation) through 

stepwise regression analysis of the heat consumption of six space heating and five ventilation 

systems. A comparison of the goodness of fit between calculations with data with different 

resolutions shows the extent of variation due to the heat transfer dynamic processes.  

Heat consumption predictions for four ways of grouping data (hourly, hour-of-day 

grouping, mean values grouped by regimes and daily data) are compared. Calculations with 

daily data produced the most accurate predictions of heat consumption in analyses presented 

in representative literature and articles. There is a strong interest in producing hourly heat 

consumption predictions because they are more suitable for operation and maintenance 

problem detection. The heat consumption of HVAC systems operating with control regimes 

has not been evaluated in the relevant literature. Calculations with daily data collected from a 

system with control regimes might produce less accurate predictions than calculations with 

other data. This thesis analyzes excluding outliers to improve the accuracy of the model and 

explores necessary monitoring period length in order to obtain accurate predictions.  

Heat transfer dynamic processes (the thermal storage effect) are generally considered to 

be insignificant in the literature for daily heat consumption. Introducing the time-lagged 

variable that describes changes in the mean daily temperature will show if the thermal storage 

effect significantly influences daily heat consumption.   

A tool developed in Matlab is used for problem detection in the operation of nineteen 

buildings of Norwegian University of Science and Technology (NTNU). Linear regression 

calculations are incorporated in the tool. Operation and maintenance problems are detected 

by comparing actual and modeled heat consumption. The resulting predictions were accurate 

enough to recognize system operation faults. Even if modeled predictions were not precise 

enough due to the thermal storage effect, the tool user can interpret prediction errors by 

following outdoor temperature changes and corresponding heat consumption in parallel. 
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1 Introduction 

1.1 Background and motivation for research 

Heating, ventilation and air conditioning (HVAC) monitoring systems are becoming 

more commonly used in commercial buildings. Although monitoring of these systems has 

become wide-spread in recent decades, there is still a lack of knowledge and tools which 

would fully utilize the plethora of monitoring data. The price of sensors and other 

accompanying equipment has dramatically fallen, and the use of information technology has 

also spread in this field. However, our knowledge of how to use available monitoring data is 

still insufficient. Data are often hard to analyze due to a lack of information about the HVAC 

system and the characteristics of the building itself, non-documented changes in the HVAC 

system, and weaknesses in the HVAC system maintenance. Logical questions are: ‘‘Is it 

possible to determine how the system functions by analyzing past data? Is it possible to 

utilize monitoring data in order to bridge the lack of information about the HVAC system?‘‘ 

Other fields, in which economic interests and safety concerns were present, have successfully 

used monitoring for decades. In an era when energy has become a central question of the 

further development of human society and an independence issue for every country, focusing 

on energy savings is not only reasonable, but necessary.  

This PhD thesis is financed by the ‗Life-Time Commissioning for Energy Efficient 

Operation of Buildings‘ project, which is conducted by the Norwegian University of Science 

and Technology (NTNU) in Trondheim, Norway and SINTEF. The main goal for this project 

is to develop, verify, document and implement suitable tools for functional control of energy 

and climatic conditions in buildings under continuous operation during the entire operational 

life of the building. This should improve energy efficiency and ensure a rational use of 

energy and a sound indoor environment. 

For most developed counties, energy use is equally distributed between industry, 

transportation and buildings. Energy waste due to poorly maintained HVAC systems is 

estimated to be 15% to 30% in commercial buildings. Despite efforts to improve energy 

efficiency, energy use in the commercial buildings sector is constantly increasing (Brambley 

et al. 1988, MacDonald et al. 1988). Since we already have ‗hardware‘ (existing monitoring 

systems) and basic knowledge developed for other industries, it is clear that development of 

those technologies should be the first choice in efforts to reduce energy use and the release of 

greenhouse gasses.   

 Fault detection and diagnostics (FDD) were first developed in industries such as 

nuclear power plants, where high concerns about safety exist. Recently, because of increasing 

energy prices and concerns about greenhouse gas emission, this method has become more 

urgent for HVAC systems. This technique can alarm if a fault appears (detection) and can 

show where a fault has appeared (diagnostics). There are different ways to detect a fault. One 

way is to compare actual and predicted heat consumption. Predicted heat consumption can be 

obtained through calibrated simulations or other modeling methods. Although predictions 

gained through calibrated simulation are more precise, building a simulation model is time 

intensive, so other methods are often preferable. 

http://en.wikipedia.org/wiki/Norwegian_University_of_Science_and_Technology
http://en.wikipedia.org/wiki/Norwegian_University_of_Science_and_Technology
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 Reading and understanding monitoring data is difficult and time consuming. Building 

energy use is a function of weather, building use, building characteristics and HVAC 

characteristics. Their influences overlap over minutes, hours, days, weeks and seasons, so it is 

difficult to determine if changes in heat consumption are a result of change of weather or 

other influences. Graphical tools can help to better understand HVAC system operation and 

to distinguish the influences of each variable.  

This thesis belongs to the whole building diagnostics field. An HVAC system is 

analyzed together with building and weather by modeling building energy use as a function 

of weather. This approach can be considered as a ‗top-down‘ approach. Building energy use 

is examined in the presented method by comparing modeled and actual heat consumption to 

determine if any indications of faults exist. This approach is expected to reveal larger 

problems, such as an energy consumption increase of 5% or more. The main focus in the 

thesis is developing an accurate enough model so that energy use increases can be spotted. 

This method cannot diagnose where problem appears in the HVAC system. The proposed 

method should be one of the first steps in the monitoring process. If we imagine a doctor 

during initial contact with a patient, he will first ask the patient about symptoms that he or she 

can describe. If the doctor cannot explain the patient‘s condition, or if he has doubts 

regarding a more serious illness, he will, for example, take a blood sample from the patient 

for further diagnosis.  

There are different methodologies that can be used to model building heat consumption 

(HC). It is common sense that people lose their interest as technology becomes more 

complicated. Calibrated simulations, building energy models based on artificial neural 

networks or Fourier series are generally difficult to understand because their physical 

meaning is not obvious. Although calibrated simulations are superior to linear regression 

(LR) regarding accuracy and broader opportunities, the physical perspicuity that LR offers 

makes it preferable for building diagnostics. The ‗Great Energy Predictor Shootout II‘ 

(Haberl et al. 1996) was conducted in order to compare the accuracy of different methods that 

predict hourly HC. LR, among five evaluated methods, took second place, so this method is 

competitive with other methods.  

Although calibrated simulations were not included in this competition, because 

predictions had to be made based only on HC and weather data, it can be concluded that LR 

is also advantageous for calibrated simulations. LR requires far less effort to develop the 

model, and information about building or its HVAC system is not needed. 

 

1.2 Objectives  

The main focus in this thesis is how to develop an accurate enough LR model so that 

increases in building energy use can be spotted. This thesis emphasizes heat consumption of 

space heating and ventilation systems. Other energy uses, such as building lighting, are not 

analyzed. HC depends on weather and the dynamic performance of both the HVAC system 

and the building. LR in this thesis uses weather parameters, such as outdoor temperature, 

solar radiation and wind speed, as independent variables of the LR model in order to model 

HC as the dependent variable. Due to the dynamic performance of both the HVAC system 

and building, instantaneous values of HC do not correspond exactly with the mentioned 

independent variables. Mean values of HC over 15 minutes, hourly, daily, weekly and 

monthly intervals describe variations introduced by dynamic performance at different levels. 
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The dynamic performance of HVAC equipment in the literature in generally assumed to be 

covered by hourly mean values, since response times are much shorter than an hour (Reddy et 

al. 1995). Due to concern that dynamic characteristics of HVAC system on the 15 minutes 

level can be important, modeling at this interval was not considered in this thesis. The 

literature suggests that the thermal storage effect of a building is not significant at the daily 

interval. Time constants of typical buildings are around one day, so thermal storage effects 

average over daily variation (ASHRAE 2001, Katipamula et al. 1998).  

To identify operational and maintenance (O&M) problems, hourly HC is considered to 

be the most appropriate (Claridge et al. 1994; Liu et al. 1994) because of their higher time 

resolution. In ASHRAE (2001), it is claimed that steady-state models (that do not consider 

thermal mass effects) are proper for daily models, but not for hourly models. However, LR is 

used by many authors to model HC at an hourly level. Hourly modeling can be achieved by 

regressing all hourly data collected from one control regime. If there is no difference between 

day and night operations, all hourly data are regressed together. The other way to model 

hourly data is to collect data in 24 hour sets: the hour-of-day (HOD) model. Since weekend 

and day operations are different, the HOD model distinguishes between them, so there are 48 

sets of data. The HOD model proved to give more accurate predictions than models with 

hourly data (Katipamula et al. 1998, Katipamula et al. 1995), so it is preferable for modeling 

hourly consumption. The daily model produced the most accurate HC predictions for space 

heating systems operating without control regimes (Katipamula et al. 1998, Katipamula et al. 

1995). Generally, the hourly model introduces more variability, so it is expected that a more 

detailed model will give more accurate predictions. However, this accuracy can be lost due to 

thermal storage effects. Hourly models are more appropriate for O&M problems detection 

than daily models. To choose between hourly and daily intervals for modeling HC represents 

a trade-off between opportunities for O&M problem detection and model accuracy. It can be 

concluded that these two time resolutions are the most attractive for investigation since they 

are appropriate for O&M problem detection, so this thesis will focus on these time intervals. 

HVAC systems are often operated with control schedules that differ for day and night 

operation. This issue was not considered in the literature when daily HCs were modeled. 

Night temperature is less relevant for daily HC because night operation is reduced for most 

buildings. In order to properly cover this variation, a day is divided into two parts 

corresponding to the regimes schedules. Mean values of HCs are modeled for each part of the 

day according to the mean values of independent variables. It is expected that this model 

should give more accurate predictions than the daily model.           

Most scientific efforts in the last two decades in this field have been carried out by a 

group near Texas A&M University in the United States (USA). Air-side HVAC systems are 

traditionally used in the USA for commercial buildings. HVAC systems with radiator heating 

prevail in Norway because of little need for cooling. A ventilation system is used for fresh air 

and additional summer cooling with heat pumps. In Europe, commercial buildings are heated 

with radiators more often than in the USA. So far, LR models of air-side HVAC systems in 

the literature have been proposed mainly by American authors. This thesis will focus on 

HVAC systems with radiator heating and ventilation. Radiator heating has a longer response 

time, so whether or not it is possible to model hourly HC will be determined. All system heat 

consumption analyzed in this thesis involves space heating with radiators. 

This thesis presents the background on how HC of radiator heating and ventilation 

systems vary with different independent variables. The effects of weather, thermal storage, 

building use and HVAC system performance will be evaluated. In ASHRAE (2001), it is 
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claimed that regressing outdoor temperature provides an accurate enough prediction of space 

heating consumption, so there is no need to introduce solar and wind influences in the model. 

This assumption will be verified. Special emphasis will be placed on investigating how time 

delays introduced by thermal storage influence HC. The thermal storage effect is less 

significant for daily resolution than for hourly resolution. By averaging hourly data to mean 

daily values, some information is lost (Katipamula et al. 1995). As a result, hourly predictions 

should be more accurate. However, due to thermal storage effects, this was not the case in the 

analysis conducted so far. The authors did not address this as a reason, but this will be proved 

later in this thesis. 

Literature resources claim that three to six months of monitoring history is necessary to 

model daily heat consumption (Kissock et al. 1993). However, there is no reliable evaluation 

of the necessary monitoring period to model hourly heat consumption. This issue will be 

analyzed for radiator heating and ventilation systems in this thesis.  

Excluding outliers (residuals) improves the accuracy of the model. Excluding outliers 

can be automated through standard statistical methods by recognizing residuals. Data points 

with unexpected values can be excluded manually by the developer of the model. The 

accuracy of the model will be evaluated when the residuals are excluded.      

The second issue covered in this thesis, in addition to modeling HC, is how to use 

proposed method in practice. Different sensors are used to measure the indoor environment, 

the state of equipment and energy meters. Although operators fully understand the HVAC 

system operation and there are a wide variety of measurements, it is still not fully clear how 

the HVAC system interacts with its surrounding, i.e., the building and weather. The energy 

signature line is the primary, and often only, tool in monitoring systems that shows this 

interaction. The aim of this thesis is to develop a tool to be used for interpreting HVAC 

system functioning regarding the interaction between the HVAC system and its mentioned 

surrounding.  

Different players involved in HVAC system monitoring ‗seem not to speak the same 

language‘. Monitoring system operators cannot fully understand signals from the systems that 

they follow. Engineers, who developed the monitoring system and are often involved by 

contract to maintain and further develop monitoring system, do not understand operators. 

What these three parties need is a ‗common language‘. When they start to understand each 

other, all will be engaged and technology will be improved. The tool developed for this thesis 

is intended to improve communication. Furthermore, introducing whole building diagnostics 

would cover the communication gap that exists between different stages of the building life 

cycle (from HVAC system design, through its installation, to its operation).  

Next, questions and objectives are named in order to summarize all the objectives of 

this thesis: 

- How do different influences determine HC for radiator heating and ventilation systems 

at different time resolution levels? 

- Develop a tool which will enable HC modeling through LR and enable O&M problem 

detection.   

- Which time resolution gives the best predictions of HC? 

- Can the LR model be improved by excluding outliers? 
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- What is the necessary monitoring period duration in order to obtain a precise HC 

model?  

- Is it possible to detect O&M problem with radiator heating and ventilation by 

comparing predicted and actual HC? 

- Can the developed tool improve comprehension of HVAC system operation and 

improve communication between operators and other players involved in monitoring 

building energy? 

 

1.3 Specific contributions from this thesis  

These are the most significant contributions from this thesis: 

- LR model is developed for modeling radiator and ventilation heating, which has never 

been done before. 

- LR models are developed for eleven buildings in order to evaluate outdoor temperature, 

solar radiation and wind speed as independent variables. Outdoor temperature was the 

most significant independent variable for both ventilation and radiator heating systems. 

Wind speed was insignificant for model accuracy. The sun was far less important than 

outdoor temperature for most of the buildings with radiator heating. Although it is not 

expected that solar radiation will affect ventilation heating, the sun was a significant 

factor for modeling ventilation heating of two buildings. There are large areas 

organized as glass atriums in those buildings. 

- HOD model is more accurate than the hourly model for both space heating and 

ventilation systems. The LR model with mean values is more accurate than the daily 

model for both space heating and ventilation systems.  

- This thesis proves that the daily level thermal storage effect is significant. Introducing a 

time-lagged variable that describes changes in the outdoor temperature improved the 

accuracy of heat consumption predictions significantly for the daily model.  

- Deviations between actual and modeled hourly HC are higher than deviations for daily 

HC due to thermal storage effects. However, dynamic performance of the system can 

be interpreted by following the ratio between actual and modeled HC and the hourly 

change of outdoor temperature in parallel.    

- Thermal storage effect is more significant for space heating than for the ventilation 

system.  

- Excluding outliers with the recommended statistical method did not prove to be a 

reliable tool for improving LR model accuracy.  

- Three months of monitoring history are enough for LR modeling of space heating and 

ventilation system HC.  

- A tool with a graphical user interface proves that detection of O&M problems is 

possible with the proposed method. Nineteen NTNU campus buildings are analyzed 

with the developed tool. 

- Regarding improvement of communication, both operators and author of this thesis 

understood the performance of the analyzed HVAC systems in the same fashion, so it 

can be concluded that the developed tool helped improve communication. 
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1.4 Thesis organization  

Chapter 2 presents the reasons for building energy monitoring. Further, different 

methodologies of modeling building heat consumption are presented. LR as a statistical 

methodology is described. At the end of the chapter, an overview of results from the relevant 

literature regarding modeling HC through LR is presented.  

The rest of the thesis follows the order of the questions named in subchapter 1.2. 

Chapter 3 addresses the first question - How do different influences determine HC for 

radiator heating and ventilation systems at different time resolution levels? The article written 

by Liu and Claridge, ―Is the Actual Heat Loss Factor Substantially Smaller than You 

Calculated?‖ is summarized in detail in order to better understand the effects of thermal mass, 

which is crucial in modeling hourly HC. Different data groupings are discussed in order to 

predict how different influences will be covered with different resolution models. Finally, 

outliers among the monitoring data are defined.  

Chapter 4 addresses the second of the questions and objectives - Develop a tool which 

will enable HC modeling through LR and enable O&M problem detection. First, the basic 

concepts used in the proposed method are explained. The proposed method is implemented in 

the developed tool. The features of the developed tool are described. Finally, the functions 

incorporated in the tool that enable different LR calculations are described at the end of the 

chapter.  

In Chapter 5, each of the data groupings are analyzed separately both for space and 

ventilation heating. The third, fourth and fifth questions mentioned in subchapter 1.2 are 

addressed. At the end of chapter, new independent variables are introduced into the LR 

model, which describe the space heating dynamic performance.   

Chapter 6 addresses the last two of questions mentioned in subchapter 1.2. Detailed 

analysis is presented for one of the buildings on the NTNU campus. Analysis results are 

presented for eighteen more buildings regarding O&M problems.  

Chapter 7 provides the conclusions and recommendations for further work. 
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2  Different methodologies for using HVAC monitoring 

data in analysis of building energy use 

2.1 Overview of building energy monitoring issues 

There are four reasons for building energy monitoring (ASHRAE, 2003):  

- Determining energy end-use 

- Specific technology assessment 

- Savings measurement and verification (M&V) 

- Building operation and diagnostics 

Energy end-use is gained by monitoring the energy consumption of individual building 

energy systems. Its goal is to determine separate energy consumption in buildings, and it is 

used for load forecasting, confirmation of energy conservation opportunities and simulation 

calculations. 

The goal of specific technology assessment is to evaluate the performance of certain 

technology or retrofit measures; it uses more detailed sub-metering.  

The goal of M&V projects is to verify energy savings gained through retrofits. Energy 

uses from periods before and after the retrofit are compared. Since weather varies through 

these periods, weather normalization is necessary and is typically done with linear regression. 

Actual savings are calculated as the difference between the post-retrofit energy consumption 

gained from pre-retrofit period model and the post-retrofit energy consumption (Kissock et 

al., 1998). The word ‗verification‘ in the title of this thesis does not refer to M&V 

applications; rather, it is used in the sense of determining if the HVAC system operates 

properly. 

This thesis is a part of the building operation and diagnostics field. The goal of 

collecting data for building operation and diagnostics is to identify O&M problems or indoor 

air quality problems. Typical procedures for the residential sector are manual procedures, 

such as (1) flue gas analysis to determine furnace gas efficiency or other procedures to 

determine air conditioners, refrigerators and equipment efficiency, (2) a fan pressurization 

test to locate and measure building air tightness, and (3) infrared thermography to determine 

thermal characteristics of building envelope. In commercial buildings, HVAC equipment is 

more complex than in residential buildings so there are many more procedures for equipment 

diagnosis and building performance analysis. Identification of O&M problems is the first step 

in the process of improving the energy efficiency of an existing building. O&M measures are 

considered to be no-cost or low-cost measures. Most measures include turning-off equipment 

when the building is unoccupied, adjusting temperature settings and using efficient system 

operation strategies. The relevant literature gives the results of implementing O&M 

measures, which gave significant results. For example, Claridge et al. (1994) identified four 

million dollars in savings by implementing O&M measures.   
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2.1.1  Fault detection and diagnostics  

The other way to identify O&M problems, opposed to manual equipment inspection, is 

automated fault detection and diagnostics (FDD). There are two approaches: ‗down-top‘ and 

‗top-down‘. The ‗down-top‘ approach is based on analysis of HVAC component 

performance, while the ‗top-down‘ approach observes the entire HVAC system. The most 

logical parameter for the ‗top-down‘ approach to describe overall HVAC system performance 

is overall heat consumption. Energy use intensity (EUI) is the annual building energy 

consumption divided by the conditioned floor area. It represents a benchmark of building 

energy use. Monthly EUI can detect billing errors, improper operation of equipment during 

unoccupied hours and a seasonal space-conditioning problem (Haberl and Komor 1990a). In 

addition to EUI, there are more parameters that can be used to characterize building energy 

use (Haberl and Komora 1990a) and identify O&M problems.  

Most research effort thus far has focused on ‗down-top‘ analysis. The operation of 

HVAC components is checked by rules of proper and improper performance, which are 

implemented through algorithms. The other way to implement a ‗down-top‘ approach is 

based on physical models of the components. An advantage of this approach is that faults can 

be detected and the cause of a problem can be diagnosed. For most ‗top-down‘ methods, 

diagnostics are not possible. However, the ‗down-top‘ method ‗cannot see the overall 

picture‘, i.e., the interaction between the building and HVAC system. The FDD-based on 

calibrated simulations can ‗see‘ both interactions between the building and HVAC system 

and the performance of HVAC components. However, this method requires significant effort 

to develop a calibrated simulation model, so it is still not widely used in practice. 

The 1973 oil embargo put energy conservation in focus, so during the 1970‘s and 

1980‘s, the first significant efforts to monitor building energy were made. Research in the 

FDD field started later than research for other monitoring issues (late 1980‘s). Other 

industrial fields, like the nuclear, aerospace, defense and automotive industries, began 

research and application of FDD decades ago. This accumulated knowledge can be used for 

HVAC systems. The objective of the FDD process is to detect faults and diagnose their 

causes before additional damage to the system or loss of service occurs. FDD assisted by 

continuous monitoring is called automated FDD. Diagnostics include isolation of a fault and 

fault identification. Isolation of a fault includes determining the type and location of a fault. 

Fault identification includes evaluation of the size and severity of fault. In the most cases, the 

detection system runs continuously, while the diagnostic system is triggered if a fault is 

detected.   

Automated FDD can be used for three purposes: commissioning a new HVAC system, 

operation and maintenance (Katipamula 2005). Initial commissioning should guarantee that 

the system is installed and operates correctly. Most actions include visual inspection and 

functional testing, which are performed manually. It is possible to implement automated FDD 

methods through short-time data collection.  

During building operation many problems are not detected if only the inside air quality 

is controlled, because automatic controllers compensate for faults so that occupants 

experience no discomfort. This leads to an increase in energy consumption and operating 

costs. A building automation system (BAS) provides a set of data that describes the operating 

parameters of the HVAC system, but operators only check space temperatures and adjusting 

set points. Because of this, operational problems are often not detected, or if they are not 
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diagnosed, operators turn off automatic control. FDD procedures should help operators detect 

and identify problems.  

Automated FDD can be used for condition-based maintenance. This FDD feature 

predicts when a fault will appear, and HVAC components can be changed before problem 

appears.      

FDD methods can be classified as prior knowledge methods and completely empirical 

methods. The prior knowledge methods use models based on first principal (quantitative 

methods) or expert knowledge, which is implemented through rule based algorithms 

(qualitative methods). The completely empirical methods are also called ‗black-box‘ models. 

They use measurement data from monitoring history without prior knowledge of the physical 

significance of variables used for modeling.     

Most FDD procedures were developed during the 1980‘s and 1990‘s to investigate 

HVAC&R components (‗down-top‘ approach).  During the 1980‘s, procedures for FDD‘s of 

vapor-compressor-based refrigeration were developed. During the 1990‘s, research focused 

more on building systems, such as air-conditioners, heat pumps and air handling units 

(AHU‘s). Those procedures use measured temperature and pressure at various locations in a 

system to determine the thermodynamic relations between them. In the early 1990‘s, the 

International Energy Agency (IEA) conducted the Annex 25 research project, which 

investigated using simulations for FDD. In the mid-1990‘s, the U.S. Department for Energy 

(DOE) founded a project that developed a tool for detecting faults in whole-buildings and 

major systems (Brembley et al. 1998, Katipamula et al.  1999). Katipamula et al. have 

developed a tool that is based on a set of rules, which are implemented through the algorithm. 

The algorithm checks the operation of AHU through a decision tree structure (if-then-else 

structure) that implements the engineering rules (expert system) and first principal of 

thermodynamics. 

Whole-building diagnostics are a ‗top-down‘ approach. The performance of the entire 

HVAC system is examined. This approach can spot large problems, e.g., those which 

increase energy use by 5% or more. This should be the first step of any building diagnosis. 

The first effort in the whole building diagnostics approach started with calculating building 

heating use through the degree day method. This method was meant to predict heating use, 

not diagnose it. It assumes that heating use has a linear dependence on the outside 

temperature. Later methods continue to follow this assumption.  

NAC (weather-adjusted normalized annual consumption of a building) describes 

heating-related and non-heating-related consumption. This parameter was introduced by the 

Princeton Scorekeeping Method (PRISM) (Fels 1986). The method is based on linear 

regression, and it calculates three parameters that define heating-related and non-heating-

related consumption. This method introduced the concept of change point temperature. Over 

some outside temperature, there is no need for heating, since internal and sun heat gains are 

higher than the heating demand. Over this temperature, energy use is related only to tap-water 

consumption, if heat consumption is regressed. If an HVAC system uses electricity for 

heating or cooling, it is possible to determine base-level electricity consumption by 

regressing electricity use. Energy consumption defined by PRISM is: 

          (1.1) 

where the terms are: 
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α – base level heat consumption, which is related to tap-water consumption 

β – slope of heating-related heat consumption 

τ – change point temperature 

Tout – outdoor temperature 

The ‗+‘ sign indicates that if Tout is higher than τ, heat consumption is equal to the base level. 

A linear regression calculation procedure that calculates α, β and τ is presented in subchapter 

3.4. Linear regression in the PRISM method uses monthly heat consumption, so the 

temperature data are adapted to this calculation. Linear regression calculation is done through 

monthly values from the equation: 

             (1.2) 

where  is the average daily consumption through a month and  is a random error term. 

Heating degree-day per day for the i
th

 month - , is calculated according to equation  

         (1.3) 

where  is the number of days during a month. NAC is calculated according to: 

          (1.4) 

where H0 is the heating degree-days for base τ in a typical year. In addition to heating, the 

PRISM method can be used for cooling. Haberl and Komor (1990a) used PRISM to 

determine heating, cooling and base-level electricity consumption by categorizing 

consumption: base level plus cooling (PRISM cooling only, CO), base level plus heating 

(PRISM heating only, HO), base level plus heating and cooling (PRISM heating and cooling, 

HC) and base level only (a flat consumption profile). With this method, they found which 

portion of energy is used for which purposes. Also, through use of PRISM they recognized 

changes in HVAC performance during the monitoring history.  

Equation 1.2 is solved through linear regression, which is a mathematical tool that is 

widely used in engineering and scientific practice. By solving a system of linear equations, it 

gives a function with linear dependence between the dependant variable and one or more 

independent variables. The dependant variable  is estimated from the equation of the form: 

        (1.5) 

where: 

, ,…  - n independent variables 

, ,…  - n+1 regression coefficients 

 - dependent variable 

The results of linear regression calculation are regression coefficients. Independent variables 

can be single variables or any function of single variables. If a model has linear coefficients, 

it is called a linear regression model. This type of model will be used exclusively for further 

analysis. If a model has only one independent variable, it is called a simple or simple-variate 

linear regression (SLR) model; otherwise, it is a multiple or multivariate linear regression 

(MLR) model. Calculation of linear regression coefficients is rather simple, and it simply 
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requires solving of linear equation system. Many commercial program packages have 

functions that support linear regression.  

‗Top-down‘ analysis can be also done by using different models of building energy use. 

HVAC performance can be described through different models: for example, calibrated 

simulations, artificial neural networks, Fourier series, or linear regression. These methods are 

called inverse modeling methods.  Modeling improves heat consumption prediction accuracy 

by including additional terms that describe building heat consumption. By comparing actual 

building energy use with a prediction gained through a model, system operation faults can be 

detected. Inverse modeling methods can be also used to model HVAC components, which are 

used in ‗down-top‘ approach analysis. Although this approach is more detailed than the ‗top-

down‘ approach it misses interactions between the building and HVAC system. 

 

2.2 Inverse modeling methods (ASHRAE 2001) 

Energy use can be modeled by forward modeling or inverse modeling. Forward 

modeling is used to design and optimize HVAC systems. Inverse modeling is used for 

existing buildings or components. Inverse modeling is preferable for the four mentioned 

purposes associated with building energy monitoring. A model is defined by input variables 

that act on the system, properties and structure of system, as well as output variables that 

describe response of the system to the input variables. The purpose of forward modeling is to 

determine output when the first two components are known. A system does not need to exist 

to be modeled, so this approach is used in the design stage. This approach is based on mass 

and energy balances and requires understanding and implementing various natural 

phenomena. Forward modeling of building energy use begins with defining building 

geometry and the physical characteristics of building materials and a description of the 

building location. This stage describes the building heating and cooling loads. Next, 

secondary equipment and operation schedules are defined. The secondary system distributes 

heating, cooling and ventilation to the conditioned space. Building loads are than translated 

into secondary equipment loads. The last stage is primary equipment, which refers to central 

plant equipment. Energy loads on this stage should meet loads on the secondary level. This 

way is defined forward simulation model. There are many commercial simulation programs, 

such as EnergyPlus, BLAST, and DOE-2.   

Inverse modeling determines system parameters when input and output variables are 

known. Input data can be gained by experiment – intrusive data. Such data lead to more 

accurate models. Nonintrusive data can be obtained from normal system operation. The 

model contains a relatively small number of parameters because of the limited information. 

Although, inverse models are less complex than forward models, inverse models can give 

more accurate predictions of future system performance, since the model is developed from 

data gained from an existing building. Inverse modeling is less labor-intensive than modeling 

through simulations. Developing a simulation model for existing building requires a blueprint 

of the building and its HVAC system. Through the calibration process, it is possible to tune 

the simulation model to match the performance of the HVAC system of an existing building. 

Despite its advantages, the inverse modeling concept has still not been widely adopted in the 

building professional community.  
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2.2.1 Classification of inverse modeling methods 

Inverse modeling methods are classified according to the level of detail they require 

and the approach in handling input and output variables as empirical or ‗black-box‘ methods, 

calibrated simulations and ‗gray-box‘ methods. These approaches require different levels of 

effort and expertise. According to their complexity, they provide different model accuracy 

and opportunities for analysis. The ‗black-box‘ models are based on regression between 

measured energy use (output) and influential parameters (climatic variables and building 

occupancy) (input). Single-variate and multivariate linear regression, change point, Fourier 

series and artificial neural network (ANN) models are in this category. Model formulation 

requires little effort. This approach is most widely used in the inverse modeling method. It 

can be used to model building energy use and equipment. It is appropriate for detecting 

equipment and system faults, but it is of limited value for diagnostics.  

Calibrated simulations represent a developed simulation model that is tuned or 

calibrated to match measured variables. Although there were serious efforts to adopt forward 

simulation programs, truly calibrated models have been achieved in only a few applications. 

Katipamula and Claridge (1993) and Liu and Claridge (1998) have developed a simplified 

simulation model that performs calibration simulations much more quickly.  

‗Gray-box‘ methods employ a physical model that is fitted to the structure of the 

building or HVAC system it represents. Model parameters are then identified through 

statistical analysis. For example, in the short-term energy monitoring method (STEM) 

(Subbarao 1988), steady-state load coefficients are calculated through experiments with an 

electric heater maintaining a steady interior temperature overnight. A cool-down period is 

used to get information about building thermal storage. Parameters gained from these two 

experiments are then used to develop a model, which provides extrapolation to long-term 

performance. The other ‗gray-box‘ methods are multistep parameter identification, thermal 

network, autoregressive moving average model, modal analysis and differential equations.  

Inverse modeling methods can be also classified as time-integrated or steady-state 

methods and dynamic methods.  Time-integrated methods are based on algebraic equations of 

building energy balance. For them is important that the time step is longer than the response 

time of the building and HVAC equipment in order to average variations. The intention of 

dynamic methods is to capture dynamic thermal storage effects.  

2.2.2. Steady-state and dynamic models 

Steady-state models are appropriate for monthly, weekly and daily data. For finer time 

steps, dynamic models are necessary. They capture effects such as building warm-up and 

cool-down. Dynamic models contain time-lagged variables.  For nonlinear effects, such as air 

infiltration, time-integrated methods should not be used. Linear regression, which is used in 

this thesis, is a steady-state method. Steady-state models are used for both building and 

equipment modeling. Single-variate, multivariate, polynomial and physical models are all 

steady-state models. 
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2.2.2.1 Single-variate steady-state models 

Single-variate models use only one independent variable for linear regression; they are 

most widely used. Outdoor temperature is the most significant driving force for building 

energy use (Fels 1986, Kissock et al. 1993 and Katipamula et al. 1994) on monthly and daily 

time scales, so it is used as the only independent variable in the single-variate model. The 

PRISM model is based on the change point concept. This model has three parameters that 

define energy use: α, β and τ (Eq. 1.1). In its simplest form, the change point temperature is 

fixed at 18.3°C. If either heating or cooling is always needed, it is possible to use a two 

parameter model (α and β). Three parameter models are typical for single-family houses that 

use natural gas for space heating and domestic water heating. The four parameter (4-P) model 

(Ruch and Claridge 1991) is based on monthly mean temperatures, and it has a slope below 

and above the change point. This model is suitable for modeling energy use of buildings with 

electric cooling and heating. The five parameter (5-P) model can be used if both cooling and 

heating are measured by the same meter. It has two change points and one base level 

consumption.    

An advantage of single-variate models is that they can be easily automated if monthly 

utility billings and average daily temperatures are available. This model was also applied to 

daily data (Kissock et al. 1998). The model, in this case, should be adapted to weekday and 

weekend use by separating the data. Steady-state single-variate models are less accurate if 

dynamic effects (e.g., thermal mass) or influences other than outdoor temperature (solar 

gains, humidity, wind) have more influence on building energy use. This model generally 

works better with heating than with cooling, because cooling is more influenced by outdoor 

humidity and solar gains. Systems operating in an on-off cycle with part loads are also less 

suitable for these models. These models are most appropriate for buildings with heat 

consumption that has strong linear dependence on outside temperatures, e.g., residential 

buildings. For commercial buildings, there are higher internal gains, and in some cases, 

simultaneous heating and cooling exists, which introduces nonlinearity effects. Thus, the four 

parameter model is more suitable.  

The major advantage of steady-state models is of the ability to evaluate normalized 

annual consumption (NAC). NAC is used to evaluate energy conservation retrofits. Energy 

conservation savings can be gained by comparing NAC gained by multiplying parameters 

gained from the pre-retrofit and post-retrofit periods by the weather conditions for the 

average year. Typically, ten to twenty years of weather data are necessary to obtain average 

yearly weather conditions.  

2.2.2.2 Multivariate steady-state models 

Multivariate steady-state models are a logical extension of single-variate models. There 

are two approaches for this kind of modeling: change-point regression models and Fourier 

series models. Change-point regression models do not capture diurnal and seasonal cycles of 

HVAC operation. Reddy et al. (1995) presented formulation of these models for air-side 

HVAC equipment. The Fourier series is a trigonometric polynomial, so its formulation 

should better match to diurnal and seasonal cycles (Dhar et al. 1998). The variables included 

in these models are outdoor air dry-bulb temperature, solar radiation and outdoor specific 

humidity. If some of these variables vary slightly, their introduction in the model will not 

significantly improve the goodness of fit. These variables change the parameter that 
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represents constant load if they are not presented in the model. In commercial buildings, 

internal gains are significant. They are difficult to measure because of their complexity. 

Reddy et al. (1999) have proved that monitored electricity used by lighting and equipment 

can be a surrogate for internal sensible loads.  

There are several standard methods for selecting significant variables of a multivariate 

model. The model should be as simple as possible, because more complex models require 

more monitoring and more work to handle the data. In addition, if some variables are 

correlated (multicollinearity), it can cause poorer model accuracy. A rule of a thumb is that if 

the correlation between two independent variables is higher than the correlation between 

either of the variables with the dependent variable, multicollinearity is important (Draper and 

Smith 1981). Principal component analysis (PCA) is a method to overcome the 

multicollinearity problem. The PCA method re-expresses independent variables of the linear 

regression formulation with synthetic variables, which represent a linear combination of 

original variables.  

Multivariate steady-state models have proved to be accurate for daily time scales and 

slightly less accurate for hourly time scales. Grouping data into hourly bins corresponding to 

each hour of the day (hour-of-day – HOD) improves the accuracy of the hourly model 

(Katipamula et al. 1995, 1998).        

2.2.2.3 Polynomial and physical models 

  Polynomial models are widely used as pure statistical models to express performance 

of equipment such as pumps, fans and chillers. Model formulation is based on theoretical 

knowledge, but it does not involve physical properties during model formulation (black-box 

model). Pump capacity and efficiency are expressed as a polynomial consisting of measured 

pump pressure, flow rate and pump electrical power input. Fan electricity consumption is 

expressed as a polynomial of the supply air mass flow. For chillers, compressor electrical 

power consumption is correlated with the thermal cooling capacity, and the temperature on 

condenser inlets and evaporator outlets. 

  Physical models, in contrast to polynomial models, are physically based on 

thermodynamic lows. The first principal of thermodynamics is frequently used, so these 

models are often called first principal models. Only a few models have been estimated 

considering building energy use. There are more studies that model equipment performance. 

For example, chiller COP is expressed by measured values of thermal cooling capacity and 

the temperature on the condenser inlets and evaporator outlets. In contrast to the polynomial 

model, physical models express COP according to its physical meaning. 

2.2.2.4 Dynamic models 

There are two classes of dynamic models: macro-dynamic (whole building models) and 

micro-dynamic models (HVAC components). They enable the monitoring duration to be 

reduced, increase model accuracy and reveal interactions within the system. They are usually 

used for modeling with hourly and sub-hourly data and traditionally require the calculation of 

a set of differential equations. Their disadvantage is their complexity and that they require 

detailed measurements to tune the model. Unlike steady-state models, they usually require 

user knowledge about the building and HVAC system being modeled. There are four types of 
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dynamic models: thermal network, time series, differential equation and modal models. An 

artificial neural network is a statistical method. In this approach, the algorithm is intuitive, so 

it does not follow programmed rules. The weights of net elements are adjusted iteratively, or 

‗trained‘, so that the set of input variables produce the desired set of output variables. An 

iteration refers to an input/output pair.     
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3 Modeling building heat consumption through linear 

regression 

3.1 Variables defining building heat consumption 

The factors defining building heat consumption can be grouped into four groups: 

1. Weather parameters:  

- Outdoor air temperature 

- Solar radiation 

- Wind speed  

2. Building characteristics:  

- Wall thermal characteristics  

- Air tightness around windows  

3. Building use:  

- Heat released by occupants, lights and other electrical appliances 

- Opening of windows  

4. Performance of HVAC system components and its control 

Figure 3.1 presents these factors. Heat flux due to a difference between the indoor and 

outdoor temperature partly accumulates in the walls.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Simplified scheme of radiator heating system  

toutdoor tindoor 
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There are many other factors that could influence building energy consumption. The 

presented factors are mentioned because they are the most important. It is obviously 

impossible to obtain a perfect building heat consumption model by comprising all 

independent variables. Some factors are measurable, like climate factors, some are 

unpredictable and un-measureable, like building use or HVAC malfunctions, and some are 

hard to model, like the performance of HVAC system components. However, with some 

simplifications, a rough figure of building thermal performance can come close enough to 

reality.  

Inverse modeling uses measurable input and output variables to determine a 

mathematical description of system. A flow chart of building energy use inverse model is 

presented in Figure 3.2. Weather and internal heat gains (generated by building use) represent 

disturbances to the system, which are covered by the HVAC system in order to maintain the 

indoor environment within the desired limits. Heat loads caused by weather and internal heat 

gains are input variables, while delivered heat is the output variable. An equation that 

represents the dependence of delivered heat on the independent variables indirectly explains 

the performance of a building and HVAC system.      

 

 

 

 

Figure 3.2 Flow chart of inverse model of building energy use 

Weather data are easily available and measurable, so they represent the choice for 

independent variables. Changes in these parameters highly determine building heat 

consumption. Figure 3.3 presents building heat consumption and the corresponding outdoor 

air temperatures for one control regime in a building at the NTNU campus. The line gained 

through simple linear regression, known as an ET line or energy signature line, has two parts: 

a horizontal component corresponding to the time period when heat consumption did not 

depend on outdoor temperature and a slanted component. The horizontal part corresponds to 

heat consumption for tap water preparation. It is obvious that heat consumption depends 

linearly on the outdoor air temperature. However, there are deviations from the ET line that 

are a consequence of other influences. The LR model, which would cover all variations of 

heat consumption, would represent a flat surface in an n-dimensional space corresponding to 

n independent variables. Independent variables can also be other weather parameters, such as 

air humidity or an overcast sky. In the case of cooling, air humidity is an important factor. 

Since cooling will not be considered in the thesis, air humidity is not included in the LR 

model. A building releases radiant energy into space with a clear sky. An overcast sky could 

be introduced in the LR model as an independent variable. However, those data were not 

available.  
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Heat demand 
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Figure 3.3 Energy signature line for one control regime 

As mentioned earlier, the primary interest for O&M problem detection is modeling 

hourly and daily heat consumption. Some hourly and sub-hourly variations of different 

parameters that influence building heat consumption are averaged at the daily level. For 

example, if heat gains released by occupants have similar values from day to day, introducing 

that parameter as an independent variable will not increase the accuracy of the daily model. 

These heat gains will decrease the linear regression coefficient corresponding to constant heat 

consumption, but will not influence the slope of the ET line (Figure 3.3). It can be assumed 

that these gains are covered on the daily level by averaging. At hourly intervals, occupancy of 

the building changes throughout the day, so introducing this individual variable would 

increase the accuracy of the hourly model. Heat released by lighting changes throughout the 

year as the length of a day changes, so daily models do not take this influence into account 

through averaging. The HOD model covers better hourly patterns of building use than the 

hourly model. It will be analyzed whether or not the influence is averaged in the daily model.  

Night outdoor temperature is less relevant for daily HC if night operation is reduced. In 

order to properly cover this variation, a day is divided into two parts corresponding to the 

different control regimes. For each part of a day, the mean HC is modeled according to the 

mean values of the independent variables. It is expected that this model (mean values 

grouped by regimes) should give more accurate predictions than the daily model. Different 

ways of grouping data are presented in the next subchapter. 

The building envelope stands between weather influences and building inside space 

(Figure 3.4). Characteristics of the building envelope determine the time delay between 

weather changes and the corresponding change in building heat demand. The building 

envelope simultaneously conducts and accumulates heat. In the case of steady-state 

conditions, accumulation is equal to zero. Thermal storage has no influence on the steady-

state conditions, so building heat demand is directly proportional to the difference between 

outdoor and indoor temperature. Thermal storage appears with changes in outdoor or indoor 

temperature, and it lasts until steady-state is re-established. However, the outdoor temperature 
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is never constant, so thermal storage effect always exists. Its magnitude depends on the 

thermal capacity of the walls and the magnitude of the outdoor temperature change. For sun 

radiation, if we imagine a case in which the building will be under the influence of the same 

amount of solar radiation, thermal balance will be accomplished after some period of time, so 

instantaneous values of solar radiation correspond to heat gains. However, sun radiation is 

never constant (except for nights), so the thermal storage effect always exists in this case. 

Nonlinearity due to the thermal storage effect appears with changes in weather. The indoor 

air temperature changes under occupied to unoccupied conditions, for example, during the 

morning start of the HVAC system after the night temperature setback. Changes in the 

outdoor temperature also introduce nonlinearity. If the outdoor temperature falls, heat 

demand is lower than the heat demand for steady-state conditions. The level of this effect 

depends on the heat capacity of walls. Instantaneous values cannot be used for modeling due 

to thermal storage effects. Averaging instantaneous values covers variation introduced by 

thermal storage effects.     

 

 

 

 

 

 

 

 

Figure 3.4 Heat transfer through wall 

Building use decreases heat demand because of heat gains from occupants, lights and 

other electrical appliances. These influences are hard to measure. Reddy et al. (1999) 

introduced monitored electricity consumption as a surrogate for total internal gains. Since 

those data were not available, linear regression models developed in this thesis did not 

consider this surrogate. 

The use of a building dictates HVAC system operation. The occupancy of the building 

mainly determines the HVAC system control regimes. Weekends and holidays are periods 

when the system works with reduced operation in commercial buildings. A model of the 

thermal performance of the building should follow different HVAC system operation 

regimes, which are also patterns of building use through grouping the data. This means that 

both use of the building and its control can be covered by one model. The aim is to cover all 

mentioned factors defining building heat consumption through one model. Although some 

factors and their effects on building heat consumption are not presented as independent 

variables in the linear regression model, they can be considered in model by grouping the 

data. For example, if occupants open windows at the same time when they come to work and 

close it when they leave, this effect can be covered if the data are grouped such that they 

follow the control regimes, since control regimes follow the building occupancy. 
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ETotal 

EAccumulated 
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Control of the HVAC system determines how much energy is delivered to the building. 

Some space heating systems control the amount of delivered energy based on climate 

parameters, such as outdoor air temperature and wind speed, while some maintain constant 

indoor parameters. The extent to which disturbances will be covered by HVAC system it is 

up to its control, so some disturbances will influence heat consumption, while some will not. 

For instance, if a building space heating system has control based on measuring outdoor air 

temperature and wind speed, solar radiation is not relevant, i.e., it does not influence building 

heat consumption. Regression parameters regarding solar gains will not be significant in the 

regression model in this case.  

The question is how effective is the HVAC system control. It operates with time delays. 

Because of this, and the mentioned nonlinearities, it is better to average data on hourly and 

daily intervals instead of working with instantaneous values to avoid the effects of time 

delays. HVAC components also introduce time delays due to thermal storage effects. Water 

and air have to pass distances inside a building through pipes and ducts, which demands time. 

All these time delays are considered to be shorter than an hour, so that averaging should 

cover those effects. 

 

3.2  Grouping of data for linear regression 

It is common for HVAC system control regimes to follow division of a day into 

working hours and nonworking hours. During weekends, the system usually works with 

reduced operation. The first regime in Table 3.1 is used during working hours (from 7
h
 to 

16
h
), while the second is used during weekday nights. Regimes 3 and 4 correspond to 

weekend operation. Often, regimes 2, 3 and 4 are all the same. A time period corresponding 

to one regime during a day will be referred to as regime period for the remainder of this 

document. If nonlinearities did not influence HVAC system behavior, the best way to group 

data for linear regression would be to take instantaneous values of dependent and 

independent variables from each regime. Much more variation would be taken into account 

this way than if daily data would be used. The closest case to instantaneous values which will 

be analyzed is to take mean values of data for every hour. Since time delays of HVAC 

components are shorter than an hour, the influence of components is averaged and will not be 

discussed further. Selecting a data resolution that gives the most accurate prediction of heat 

consumption represents a trade-off between taking as much information as possible into 

consideration and excluding effects that cannot be modeled (for example thermal storage 

effects) by averaging.   

In the case of hourly mean values, we have 10 points from every weekday for regime 1, 

and 14 points for regime 2 for the scheme presented in Table 3.1. For every weekend day, we 

have 7 points for regime 4 and 17 points for regime 3. For 70 days in the monitoring history, 

i.e. 10 weeks, there are 500 points for regime 1 and 700 points for regime 2 and 340 points 

for regime 3 and 140 points for regime 4. This grouping method will be referred to as hourly 

data grouped by regimes or just hourly data for the remainder of this document. 

  



Ch. 3.2 Grouping of data for linear regression 

21 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

M 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 

T 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 

W 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 

T 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 

F 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 

S 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 

S 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 

Table 3.1 Example regime schedule for one week 

The second way to group data is to calculate mean values from more hourly data 

corresponding to each control regime. If we take mean values from data shaded with blue in 

Table 3.1, this would give one data point. Mean values for one week are presented in Table 

3.2. For example, the first point corresponding to weekday night regime value of 

corresponding heat consumption is: 

        (3.1) 

The first data point corresponding to weekday day regime value of corresponding heat 

consumption is: 

           (3.2) 

In the case of 70 days, 50 data points correspond to the first regime, 50 points to the second 

regime, 20 points to the third regime and 20 points to the fourth regime. We avoid effects of 

heat accumulation and time delays in the HVAC system by averaging data, but we lose 

information content. Insid e a regime period (e.g., the period shaded with blue in Table 3.1), 

events appear that correspond to building use and have certain patterns; for example, turning 

on lights or opening windows. These patterns mostly follow HVAC control regimes, so 

averaging hourly data by regime periods should cover those events. This way of grouping 

will be referred to as mean values grouped by regimes or just mean values for the remainder 

of this document.  

The third way of grouping data is to divide every weekday into 24 periods and to divide 

every weekend day into 24 periods. This grouping of data is presented in Table 3.3. With this 

method, we will get 48 groups of data corresponding to 48 equations. This way of grouping is 

called the hour-of-day (HOD) grouping. In the case of 70 days, we have 50 data points for 

every weekday hour and 20 data points for every weekend hour. Patterns of both building use 

and climatic influences are covered better through HOD data than with hourly data. Building 

warming-up and cooling-down introduces time delays, so the grouping in Table 3.1 will not 

cover this effect; thus, it is expected that grouping in 48 groups will capture these effects 
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better than the grouping in Table 3.1. The problem with this way of grouping data is that it 

requires a longer monitoring period in order to obtain accurate linear regression coefficients. 

This way of grouping will be referred in the further text as HOD grouping.  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

M 2.1 

2 

2 

2 

2 

2 

1.1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2.1 

2 

2 

2 

2 

2 

2 

2 

T 2.2 

2 

2 

2 

2 

2 

1.2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2.2 

2 

2 

2 

2 

2 

2 

2 

W 2.3 

2 

2 

2 

2 

2 

1.3 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2.3 

2 

2 

2 

2 

2 

2 

2 

T 2.4 

2 

2 

2 

2 

2 

1.4 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2.4 

2 

2 

2 

2 

2 

2 

2 

F 2.5 

2 

2 

2 

2 

2 

1.5 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2.5 

2 

2 

2 

2 

2 

2 

2 

S 3.1 

3 

3 

3 

3 

3 

3 

3 

4.1 

4 

4 

4 

4 

4 

4 

3.1 

3 

3 

3 

3 

3 

3 

3 

3 

S 3.2 

3 

3 

3 

3 

3 

3 

3 

4.2 

4 

4 

4 

4 

4 

4 

3.2 

3 

3 

3 

3 

3 

3 

3 

3 

Table 3.2 Grouping of data with mean values grouped by regimes 

The fourth way of grouping that will be analyzed is modeling with mean daily data. 

The four suggested grouping methods do not represent all possible ways to group the data. 

Mean values over a week or month of building energy consumption could also be used. These 

grouping methods were used a lot in practice previously, but more in the sense of predicting 

building energy consumption than for fault detection. They can be used for fault detection, 

but with the obvious disadvantage that they cannot show when precisely the fault appears. 

However, Katipamula et al. (1995) proved that predicting building energy consumption with 

data grouped on monthly basis gave less accurate predictions than predictions based on using 

daily or hourly data. Daily values of independent parameters hide variations during a day that 

exist in the hourly and HOD model, so it is expected that hourly models should give more 

precise predictions. However, Katipamula et al. (1995) proved that the daily model gives 

more accurate prediction than two hour models for analyzed systems.  

To summarize, all groupings have their advantages and disadvantages. Models with 

different groupings are more accurate in some senses but inaccurate in others. The presented 

four groupings should cover all the analyzed effects and will be used in the further analysis. 

Hourly models are more suitable for O&M problem detection, so they will be preferable if 

they are also the most accurate model. However, daily models have proved to be more 

accurate so far in the published research.  
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 1 2 3 4 5 6 7 8 9 

M 1.1.1 1.2.1 1.3.1 1.4.1 1.5.1 1.6.1 1.7.1 1.8.1 1.9.1 

T 1.1.2 1.2.2 1.3.2 1.4.2 1.5.2 1.6.2 1.7.2 1.8.2 1.9.2 

W 1.1.3 1.2.3 1.3.3 1.4.3 1.5.3 1.6.3 1.7.3 1.8.3 1.9.3 

T 1.1.4 1.2.4 1.3.4 1.4.4 1.5.4 1.6.4 1.7.4 1.8.4 1.9.4 

F 1.1.5 1.2.5 1.3.5 1.4.5 1.5.5 1.6.5 1.7.5 1.8.5 1.9.5 

S 2.1.1 2.2.1 2.3.1 2.4.1 2.5.1 2.6.1 2.7.1 2.8.1 2.9.1 

S 2.1.2 2.2.2 2.3.2 2.4.2 2.5.2 2.6.2 2.7.2 2.8.2 2.9.2 

Table 3.3 HOD grouping  

 

3.3  How are different groupings expected to cover different 

effects that define building heat consumption? 

The goal of a heating system is to maintain constant indoor air temperature. Complex 

interaction between building, indoor air and weather introduces more nonlinearity in the 

space heating demand model than in the ventilation heating model. Changes in the outdoor 

temperature almost immediately influence ventilation system heat consumption, so the 

thermal storage effect is not significant. Because of this, the ventilation system is more 

appropriate to model than the space heating system. The radiator heating system and 

ventilation systems will be discussed separately because of their different natures.  

3.3.1  Radiator space heating system 

A simplified scheme of a radiator heating system is presented in Figure 3.1. The 

presented system gets heat from a district heating system. A furnace can supply the 

demanded heat instead of the heat exchanger. The simplified system is presented because 

response times of its components are shorter than an hour, so no special assumptions are 

needed to analyze their performances.  

All the influences that determine consumption of a space heating system will be 

discussed. Different data groupings cover those influences to varying degrees. The daily 

model averages influences that affect HVAC performance on hourly and sub-hourly levels. 

The sense of HOD grouping is not to average time delays due to thermal storage effects or 

variations of heat consumption that appear because of building use, but to follow patterns that 

appear from day to day.   
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3.3.1.1  Weather and its interaction with the building  

Difference between indoor and outdoor air temperature is the main driving force of heat 

transfer through the building envelope. It is a common sense that building heat consumption 

is a linear function of outdoor temperature for steady-state conditions. If heat accumulation is 

neglected, heat transfer equation through the flat wall becomes Fourier's law, which 

represents the dependence between heat flux and the difference between outdoor temperature 

and indoor temperature multiplied by conductivity .  

          (3.3) 

Due to changes in the indoor or outdoor temperature, nonlinear members involving heat 

accumulation of walls must be introduced in Equation 3.3. Changes in the indoor air 

temperature are a consequence of using the building: for example, different temperature 

settings for day and night. Changes in the outdoor temperature also introduce nonlinearity.  

 

Figure 3.5 Solar radiations and outdoor temperatures during two days used in simulation 

model analysis conducted by Liu and Claridge (1995) 

Other weather parameters besides outdoor temperature also influence building heating 

demand. Sun penetrates a building through the windows and this energy has to be 
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accumulated first in the walls and furniture in order to be released to the indoor air. This 

generates a delay between the sun‘s influence and its effect on indoor air temperature. 

Window orientation makes the problem even more complicated. If windows are oriented, for 

example, to the west, sunny morning weather will not contribute much solar gain. Such a 

building is more sensitive to afternoon sun, i.e., coefficients of linear regression will be 

higher for the afternoon if the HOD model is used.  

Liu and Claridge (1995) discussed the effects of thermal storage on changes of building 

heat demand throughout the day. They developed a simulation model for a building with 

medium weight walls. They discussed (1) positive and negative contributions to heat demand 

from heat accumulated and released by the wall, which corresponds to outdoor temperature 

changes; (2) decrease of building heat demand due to heat released from walls, which 

corresponds to solar radiation that entered the building through windows; and (3) decrease of 

building heat demand due to heat released from walls, which corresponds to solar radiation 

that is accumulated in the opaque building envelope. The building has the same window area 

on each of the walls, so sun orientation plays no role. Building ventilation is low, and 

infiltration is not considered in the simulation model. Internal gains are not considered in the 

model. 

 

Figure 3.6 Heating load profiles (Liu and Claridge 1995) 

Solar radiation and outdoor temperatures during two characteristic days are presented in 

Figure 3.5. One day is a cold winter day and the other one can be considered to be a mild 

winter day. Solar radiation is the same for both days. Figure 3.6 presents heat loads due to (1) 

temperature difference, (2) solar radiation on opaque envelope, and (3) solar radiation 

through windows. Heat loads due to temperature difference are presented with two curves 

corresponding to milder (daily average temperature +5°C) and colder days (daily average 

temperature -7°C). Those heat loads are calculated with the transfer function method. 

Maximum heat loads due to temperature differences appears between 5
h
 and 6

h
, although the 

minimum temperature is at 3
h
, due to the thermal storage effect. Both solar radiation heat 

loads are negative because they decrease heat demand. Although a day lasts from 7
h
 to 17

h
, 

solar radiation heat loads exist through the whole day because solar radiation energy is 

accumulated in the walls and is not completely released, even at 7
h
 when the new day starts. 

Although solar radiation is at its maximum at 12
h
, maximum solar radiation heat loads appear 
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around 15
h
. Ratios between three heat loads and heat load due to temperature difference 

(steady-state conditions) are presented on Figure 3.7 for cold and mild days. Three ratios are: 

ε1=Esolar-window/(Troom-Tout)UA         (3.4) 

ε2=Esolar-opaque/(Troom-Tout)UA          (3.5) 

ε3=[ETemp /(Troom-Tout)UA]-1           (3.6) 

Ratios (bias on Figure 3.7) represent deviations of real heat demand due to three 

influences from heat demand calculated for steady-state assumed conditions.  

 

Figure 3.7 Bias due to neglecting solar gains through windows e-1, solar gains through 

opaque walls e-2, accumulated heat due to change of outside temperature e-3 and total bias e-

t   (Liu and Claridge, 1995) 

Due to the thermal storage effect, which appears due to outdoor temperature changes, 

heat demand does not correspond completely to the difference between indoor and outdoor 

temperature. During the evening and night, heat is released from the walls, so heat demand is 

13% to 0% lower than it would be with the steady-state case in the period between midnight 

and 7
h
 for a relatively cold day. For milder day, this decrease is even more apparent. Over the 

same period of day, the heat demand is from 21% to 0% lower. During morning and 
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afternoon, demand is higher than calculated from the steady-state case because the walls are 

heated after a cold night. A 20% increase in heat demand is the maximum for a cold day, and 

a 50% increase for a mild day. A mild day is more sensitive to changes in outdoor 

temperatures because heat demand is lower for mild days. However, changes of outdoor 

temperatures are assumed to be the same (temperature curves are parallel, Figure 3.5), so heat 

accumulations due to outdoor temperature changes for two days have close values. This 

means that the ratio ε3 will be much higher for the mild day in the afternoon than for the cold 

day; thus, thermal storage effect is much more significant for mild days.   

The e-2 curve is closer to 0% than the e-1 curve, since heat gains through opaque walls 

are lower than solar gains through windows, as shown in Figure 3.6. The ratio ε2 varies from 

-3% to -1% for nights for cold days and from -5% to -2% for nights for mild days. During the 

afternoon, the maximum value of ε2 is -12% for cold days and -25% for mild days. Mild days 

are more sensitive to thermal storage effects than cold days for solar radiation.   

  Solar gains through windows are higher than heat losses due to the difference between 

outdoor and indoor temperature calculated for the steady state case for mild days between 11
h
 

and 18
h
, so e-1 is lower than -100% in this period. For colder days, the solar influence is not 

as significant as for mild days, but it still has high significance.  

The total bias, e-t, is the sum of the three biases. Its value is negative for both days. It 

varies from -17% to -65% for the cold day and from -20% to -180% for the mild day. This 

shows the extent of the error from modeling the heat load with only the difference between 

indoor and outdoor temperature.    

The conclusion presented by Liu and Claridge (1995) is that the thickness of thermal 

insulation can be decreased due to thermal storage effects, since the thickness of thermal 

insulation is chosen according to the lowest temperatures that appear during the night. 

Although this is not an issue, results from this article are presented to show effects of thermal 

storage on the hourly changes in building heat demand. It is assumed that the indoor 

temperature is constant during the day. A night temperature setback introduces inside 

temperature changes, so the thermal storage effect will be even more significant. 

The LR model with different data grouping will consider the effects of thermal storage 

to varying degrees. The simplest case for analysis is to assume that the HVAC system 

operates with only one control regime (there is no temperature setback during nights and 

weekends), which is the case analyzed by Liu and Claridge. In this case, the data grouping 

with mean values is the same as modeling with daily data. Modeling with hourly data would 

be a worse choice regarding thermal storage effects. If there is no solar influence, it is 

expected that hourly predictions of HC will be higher than real HC at night. During late 

morning and afternoon, hourly predictions of HC will be lower than the true HC.  

The HOD model should be better than the hourly model, since changes in outside 

temperature as well as changes in solar radiation follow the same pattern every day. The 

maximum temperature appears around 15
h
. Liu and Claridge (1995) have shown that at 15

h
 

50% of heat delivered by the space heating system accumulates in the walls on mild days. 

The HOD model will account for this, and it will increase the predictions in late morning and 

afternoon and decrease predictions at evening and night. However, temperature differences 

between day and night vary from day to day, so the thermal storage effect is not fully covered 

by this grouping. Also, HC increases during late morning and afternoon (decrease of HC 

during evening and night) are more significant for mild days, so models with a whole year of 
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data cannot fully consider this phenomenon. Solar radiation also follows a pattern during the 

day. However, day length varies through the year (especially in Norway), so the HOD model 

will probably underestimate solar influence if the calculation is conducted with a whole 

year‘s worth of data. It is better to model data from a monitoring period when the length of 

day was constant in order to better estimate the solar influence with the HOD model. The 

building used in simulation was developed by Liu and Claridge and does not have a dominant 

orientation. However, since the sun orientation is changed during the day, the hourly model 

cannot follow this change. The HOD model is also, in this case, superior to the hourly model 

because the LR coefficient for solar influence can be higher for hours, which corresponds to 

the same position of the sun and dominant building orientation.  

The daily model should best cover thermal storage effects. Areas between a-3 bias and 

0% over and under 0% are approximately equal for the cold day case (Figure 3.7). For the 

mild day case, it seems that area over 0% is larger than area under 0%, so it is expected that, 

for cold days, predictions should be more accurate than for mild day. Regarding solar 

radiation, this model should fully cope with change of day length, as opposed to the HOD 

model. However, since it is proved that accumulated solar radiation is released the day after, 

even the daily model could not fully cover the effects of thermal storage. The daily model 

averages effects of changes in the sun‘s orientation. However, even this model does not cover 

fully change if the building is not equally oriented on all sides. During the spring, days are 

much longer than in the winter. It can happen that the sun does not reach a window during 

winter, and it reaches a window in spring, so outdoor solar radiation will not correspond to 

solar energy that entered building.   

 The aim of the model that uses mean values is to average variations, like the model 

with daily data. Variation due to thermal storage effects is presented in Figure 3.7. The 

thermal storage effect due to changes in outdoor temperature increases heating demand 

between 7
h
 and 18

h
, compared to the heating demand that would exist in steady-state case. 

Since these are working hours, and control regimes follow working hours, the thermal storage 

effect due to changes in outdoor temperature is covered by this grouping. For non-working 

hours, thermal storage decreases heating demand, and those hours belongs to the night 

regime. Regarding solar radiation, grouping the data by day and night will follow decreases 

in building heating demand due to solar radiation (Figure 3.7). The day regime will have a 

more significant decrease of heat consumption due to solar radiation. However since the 

length of day varies significantly, especially in Norway, daily variation of released 

accumulated solar radiation will also change significantly during a year. As a result, a courser 

resolution (daily model) will be preferable in this case.     

Regarding wind, air enters a building through opened windows or gaps. The wind 

instantaneously decreases indoor air temperature, i.e., increases heating demand, so there is 

no delay between the moment when air has entered building and the moment of change of 

heating demand. Because of that, hourly and HOD models should be preferable to the daily 

model and the model with mean values grouped by regimes, since they explain more 

variation. The air tightness of the building can be changed over the course of a day. For 

example, occupants often open windows on weekday mornings to air offices. It is obvious 

that there is a certain time pattern of opening windows during the day, which can be covered 

if linear regression is conducted with the HOD model. The daily model averages these events, 

so it covers them. Opening windows also introduces a complicated fluid dynamic 

phenomenon that causes penetration of outdoor air. Later, a method will be presented to 

cover changes in the nature of the natural ventilation phenomena. Wind direction can be also 
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very important. The geometry of the building and its surrounding makes the building more 

‗vulnerable‘ to wind from certain directions. However, wind direction was not considered in 

this thesis. 

It cannot be directly estimated how models with different data groupings will cover 

different effects. The presented theoretical considerations assume how influences will be 

covered with different data groupings. Those assumptions will be checked through the 

analysis of goodness of fit and contributions of different independent variables to the 

accuracy of LR models with different data groupings. 

3.3.1.2 Building use 

Heat released by occupants, lights and equipment decreases building heat demand. Heat 

released by occupants and equipment almost immediately increases indoor air temperature. 

Radiant heat gains from lights are released from the walls for hours after turning-off the 

lights. 

Building use is not presented in the LR model as an independent variable, although it is 

possible to introduce electricity use as its surrogate (Reddy et al. 1999). Heat gains introduce 

change points into the LR model (Figure 3.3) and decrease the constant component of the 

linear regression model for the temperature-sensitive part of the operation. Hourly variation 

of heat gains from occupants, lights and equipment are indirectly covered by grouping of data 

into regimes, since regimes follow working hours. Daily data average hourly heat gains. 

Mean values also properly average internal heat gains since regimes follow working hours. 

Hourly data are also grouped by regimes. However, if occupant behavior follows a certain 

pattern through the working hours, the HOD model will better cover this pattern than the 

hourly model. The problem for the hourly model is thermal storage effect for radiant heat 

from lighting. The HOD model will consider the thermal storage effect, by reducing heat 

demand for hours when accumulated radiant heat is released. Because of this, the hourly 

model can be considered as the worst in covering lighting heat gains. 

Change point temperatures are calculated for hourly data and mean values for each 

regime separately from hourly heat consumption and temperatures, which is a correct 

representation of internal heat gain due to building use, since control regimes follow building 

occupancy. Calculations with HOD data and daily data calculate change point temperatures 

from hourly data separated into weekdays and weekends. Although weekends correspond 

with unoccupied hours, the difference in occupancy between nights and days for weekdays is 

not treated, which makes this way of calculating change point temperatures less accurate than 

calculations for hourly data and mean values.  

Hourly data are separated in the data below and above the change point during 

calculations of mean values grouped by regimes and calculations of mean daily data. LR is 

conducted for temperatures under the change point, so introducing data points with 

temperatures over the change point would deteriorate accuracy. The thermal storage effect is 

more significant for higher temperatures, so the LR model will have difficulty coping with 

higher temperatures.    

As stated previously, all of the mentioned effects are not separately analyzed in the 

discussion of LR models. Goodness of fit of models calculated for same monitoring period 
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with different groupings are compared in order to conclude which model gives the best 

results.  

3.3.1.3 Performance of HVAC system components and HVAC 

system control 

The HVAC system and its control stand last in the flow chart presented in Figure 3.2. 

None of the HVAC system parameters are independent variables in the inverse model. 

However, the performance of the HVAC system follows the performance of the overall 

system presented in Figure 3.2. The HVAC system control maintains indoor climate within 

the desired limits, so it represents a ‗bridge‘ between the building and its HVAC system.  

The radiator heating systems consist of a heat exchanger or furnace supplying hot water 

to the system, pipes connecting components, pumps, radiators and accompanying control 

equipment. Relevant literature claims that the response times of all these components, as well 

as their controls, are shorter than an hour, so all the effects are averaged over the hour or day 

time period. This means that the HVAC components and control should not be concerned 

with hourly and daily level modeling. Radiator space heating is not analyzed with regard to 

inverse modeling in representative literature. There are models of air-side space heating. 

Radiator space heating has a longer response time than air-side space heating, because of the 

slower mixing of indoor air.  

For components that are controlled by an on-off principle, if a parameter difference that 

defines on-off operation is wide, the response time is longer. If heat is produced by a furnace 

with a high accumulation of hot water, its response time can be relatively high. This can be 

especially significant for partial load operation, i.e., for warmer days. The mentioned control 

issues regarding response times are not checked in this thesis, but should be addressed in the 

future.      

Night temperature setback makes the night outdoor temperature less relevant than the 

day outdoor temperature for daily heat consumption. This means that a regression that uses 

daily values is not accurate. The purpose of the mean values grouped by regimes is to cover 

different performances of the HVAC system properly during day and night operation. 

However, nonlinearity effects due to thermal storage can be better covered with more coarse 

time resolutions. All the discussed effects overlap over in time, so goodness of fit of LR 

models with different groupings will show how models cope with them. 

The other issue of night temperature setback is that the thermal storage effect appears, 

just as it appears due to changes in the outdoor temperature (discussed in subchapter 3.3.1.1). 

The daily model and model with mean values grouped by regimes should cover this effect 

through averaging. The HOD model should cover this effect by increasing heat consumption 

for hours at the beginning of the daily regime and decreasing heat consumption for hours at 

the beginning of the night regime. Hourly models will not cover this effect.    

3.3.2  Ventilation system 

With a space heating system in which the indoor temperature is maintained by 

thermostatic radiators, there are the building envelope, radiators, pipes and heat exchanger 
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connected to the district heating (or furnace), which stand between climatic influences 

(disturbances) and the primal energy carrier – district heating hot water (or fuel). Because of 

this, there is a time delay between disturbances and heat consumption. Outdoor air is taken 

directly into the ventilation system and heated to a set temperature, so the air temperature 

influences heat consumption without time-delay. Opposite to space heating, outdoor 

temperature (the most important influence) directly affects heat consumption of the 

ventilation system, i.e., the building envelope does not stand between them.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Simplified scheme of ventilation system with economizer 

A ventilation system with an economizer uses indoor air to preheat outdoor air (Figure 

3.8) so in this case, the amount of used energy depends of occupancy and other parameters 

that define heat gains. In the case of variable air volume systems, the amount of air depends 

on space occupancy. Variable air volume systems will not be analyzed.  

Ventilation systems keep the air temperature constant behind the ventilator. Changes of 

outdoor temperature will directly and linearly influence heat consumption without any time 

delay. The only time delay that exists is inside the heat exchanger. Because of this, the hourly 

model has the same ability to cover temperature variation as the HOD model. The model with 

mean values averages deviations in the temperature, so information about the variation of 

temperature is lost through the averaging process. That is why the hourly model and the HOD 

model should be more precise. Decreases in heat consumption during unoccupied hours are 

much more significant for the ventilation system than for the space heating system. Since the 

daily model uses night temperatures as equally significant as temperatures that correspond to 

occupied hours, predictions of the daily model can be significantly inaccurate.   

Unlike outdoor temperature, sun heat gains will not directly influence heat 

consumption. Solar influence will increase the indoor air temperature, so return air with 

tindoor 

toutdoor 
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higher temperature will decrease heat consumption by operation of the economizer. The solar 

influence has delays and involves nonlinearity due to accumulation of heat inside the 

building. The indoor temperature is maintained with space heating. If heat gains are higher 

than heat losses, the temperature will rise over the set indoor temperature. It can also rise over 

the set value if the space heating control does not react fast enough. In these cases, the 

economizer will utilize heat from heat gains. It is not possible to model this scenario through 

LR. However, part of the heat gains that decrease ventilation heat consumption will be 

covered. The thermal storage effect discussed in subchapter 3.3.1.1 also matters in the case of 

ventilation heating. The same conclusions regarding the ability of different data groupings to 

cover solar radiation as for space heating apply to the ventilation system. Solar radiation 

accumulated in walls releases for hours. The hourly model is expected to be the worst in the 

sense of covering thermal storage effects. The HOD model will follow the daily pattern of 

thermal storage effects. The daily and model with mean values average variation due to 

thermal storage effect. Daily model is expected to better consider the solar influence than the 

model with mean values grouped by regimes.       

Wind is expected not to have influence ventilation system heat consumption, since 

space heating will compensate for infiltration losses before the indoor temperature decreases.  

Heat gains from occupants, lights and other electrical appliances do not directly 

decrease ventilation heating. Just as for sun, this heat can be utilized only if the indoor 

temperature rises over the set value. The LR model will cover part of this variation. As for 

space heating, the HOD model is preferable to the hourly model, because of its ability to 

cover the building use patterns. The daily model and the model with mean values that average 

variation due to heat gains take it into account in this way. Regarding ventilation components 

and their control, response times are shorter than an hour, so they should not influence the 

accuracy of models with hourly and daily resolutions. 

Goodness of fit of the LR model of ventilation system is expected to be better than for 

space heating, since thermal storage effects due to temperature change are not significant for 

ventilation heating. Since outdoor temperature is the most important factor defining space 

heating heat consumption, covering thermal storage effects is expected to be crucial for 

accuracy of LR models.    

The measured heat consumption modeled in this thesis, was a combination of heat 

consumption of the ventilation and space heating systems and heat consumption of the 

ventilation system. There were no measurements that corresponded only to the heating 

system. Since the LR model is the same for both ventilation heating and space heating, 

modeling of the mixed heat consumption is correct. Some of the analyzed buildings have 

electric heating, so their heat consumption corresponds to ventilation heating. Since heat 

consumption for these buildings also have change points, this heat consumption could also be 

used for tap water preparation. The presence of a change point means that the change point 

model should be used.    
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3.4 Simple linear regression model with outdoor temperature 

as independent variable 

It is common sense that the building heat consumption is a linear function of outdoor 

air temperature. Outdoor temperature is the main driving force that influences building 

energy use (ASHRAE 2001). Previous studies (Fels, 1986; Kissock et al., 1993; Katipamula 

et al., 1994; Reddy et al., 1997) have shown that outdoor air temperature is the most 

important factor, especially at the monthly and daily time scales. The hourly time scale 

involves heat accumulation effects. Dynamic models try to capture the effects, such as 

building warming-up or cooling-down through sending time-lagged variables into a model. 

They are designed to be more appropriate for FDD‘s with an hourly time scale. However, 

building such a model demands extensive expertise of the users and detailed measurements to 

tune the model. Steady-state models do not consider the effects of heat accumulation. Those 

models are appropriate for analysis with monthly, weekly and daily data (ASHRAE 2001).  

In this thesis, steady-state models with hourly data will be also used. A comparison of 

goodness of fit for models with different data groupings will show if different influences 

defining building heat consumption are captured.  

Steady-state models are mostly used for predicting building energy use. Their use in 

FDD‘s is considered to be unreliable. Of special concern in this case is the mild weather, 

when the consumption is more sensitive to other influences, such as occupancy and solar 

influences. Despite this, steady-state methods, such as the degree-day method, give quite 

precise results for the prediction of annual heating energy consumption. Typical buildings 

have time constants that are about one day, so averaging consumption on a daily basis gives 

good results. The building heat consumption during mild weather is small, so relatively high 

errors have small effects on annual consumption (ASHRAE 2001). 

Two characteristic periods of building heat energy consumption can be recognized in 

Figure 3.3: a period when it depends on the outdoor air temperature and a period that 

corresponds to base level consumption. In the latter period, there is no need for heating 

because internal heat gains are sufficient to maintain indoor air temperature at or above the 

desired indoor temperature or the outdoor air temperature was higher than the desired indoor 

temperature. Base level consumption includes energy requirements for tap water heating. In 

the case of electric heating, the same meter will register electricity consumption for all 

appliances in the building; thus, base level consumption will also include electricity for 

lighting and other equipment in the building. Fels (1986) expressed expected energy 

consumption for the building as:  

         (3.7) 

where: 

α - base level consumption (BLC), or constant term 

β – heat-loss rate, or slope term 

τ – heating reference temperature or change point temperature 

Tout – outdoor air temperature  
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+ – indicates zero if the term is negative  

The heating reference temperature or change point temperature is influenced by the indoor 

temperature and internal heat gains of a building. The heat-loss rate β depends on the 

conductivity of the walls and air tightness of the windows. Solving the linear regression 

formulation (equation 3.7) assumes that τ is a known value, since only two regression 

coefficients, α and β, can be calculated. It is discussed by Fels (1986) that assuming τ as 

18.3°C, which was usual in practice, can lead to unreliable values of the base level and heat-

loss rate. The change point temperature (CPT) was lower than 18.3°C for all analyzed 

buildings in this study, confirming this claim.   

In order to determine τ, it is possible to make different trial calculations with different τ 

values and to select the one which gives the highest value of the coefficient of determination 

(R
2
). That procedure is expressed in the algorithm presented by Kissock et al. (2003). It uses 

a two-part grid-search method to find the CPT corresponding to the highest R
2
. In the first 

step, ten different values of CPTs are tried by dividing the whole temperature interval by ten. 

For value which gives maximum R
2
, a finer grid (ten new CPTs) is introduced around it in 

the second step. This method is used later in many analyses, and it never demonstrated 

numerical instability.  

This method was used in the thesis to determine the CPT, but was slightly modified. 

For all temperatures between the lowest temperature and 20°C, the coefficients of 

determination were calculated. The calculation giving the highest coefficient of determination 

gives the CPT. When this method was used in this thesis, the defining slope term was 

accurate, even in the cases when only data from the winter were used.  

 

3.5 Evaluation of possible improvements to the LR model by 

introducing wind speed and solar radiation as 

independent variables  

Other influences, such as solar radiation and wind can be introduced in the multiple 

linear regression model. These models are logical extensions of the simple LR model. 

Measured solar radiations and wind speeds are readily available data. They were found on the 

Norwegian metrological institute (www.met.no) web-site for this thesis, along with the 

outdoor temperature. ASHRAE (2001) claims that, except outdoor temperature, other 

influences do not contribute significantly to the building heat consumption. The purpose of 

subchapter 3.5 is to determine the necessity of introducing a multiple linear regression model.  

3.5.1  Evaluation of the solar radiation influence on building 

heat consumption  

Solar gains can be significant in Norway, especially during the spring when the outdoor 

temperatures are still low. In this period, the sun is low in the sky, and days are long, which 

results in high solar gains. This causes lower heating demand in April and especially in May. 

Table 3.4 presents deviations of monthly heat consumption from predictions gained from the 

simple LR model. Heat consumption is the overall heat consumption of monitored buildings 

http://www.met.no/
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at Gloshaugen campus in Trondheim, which comprises approximately 20 buildings. It can be 

concluded from Table 3.4 that the lowest deviation of consumption appeared in May for 

every analyzed year.  

 2003 2004 2005 2006 2007 

March -1.43 -13.54 -0.71 1.70 -2.24 

April -10.36 -0.28 -8.72 -1.05 -8.85 

May -13.10 -21.44 -18.87 -8.33 -16.26 

October -3.54 -2.55 -5.73 -2.83 -4.21 

November 2.54 1.61 -4.02 6.72 3.11 

  Table 3.4 Monthly deviations of actual overall heat consumption from predicted overall heat 

consumption for the NTNU Gloshaugen campus in Trondheim (%) 

 2003 2004 2005 2006 2007 

March 3.27 2.42 0.03 -3.70 3.46 

April 5.16 7.37 5.64 5.29 4.76 

May 8.78 8.73 7.16 8.63 8.16 

October 3.89 6.16 5.32 6.72 6.45 

November 2.77 1.00 2.67 4.14 3.34 

Table 3.5 Mean monthly temperatures for Trondheim in period 2003-2007 (°C) 

Mean temperatures for the months listed in Table 3.4 are presented in Table 3.5. From 

Table 3.5, it can be concluded that April and October have similar mean monthly 

temperatures. However, solar gains in Norway are higher in April than in October. This 

resulted that the monthly mean deviations for April had, in most cases, lower values than for 

October. The mean value of the monthly deviations is -7.24% for April and -3.77% for 

October. As it is expected, monthly deviations for May are even lower than for April due to 

higher solar gains. The mean value of the monthly deviations for May is -14.4%. In the 

spring of 2004, the heating system did not operate correctly, so values for spring 2004 are not 

taken into the calculation of the mean values of monthly deviations for April and May. Heat 

consumption in this period did not correspond to outdoor temperature for many days. If we 

exclude 2004, there is an obvious pattern in Table 3.4 that monthly deviations decrease from 

March to May and increase from October to November as a consequence of solar gains. The 

conclusion is that solar radiation influences building heat consumption, so including it into 

the multiple LR model is reasonable.     

3.5.2  Evaluation of wind influence on building heat 

consumption  

Wind influence is analyzed for January and February during the period 2003-2007 in 

order to avoid overlapping with the influence of solar radiation gains. Sun heat gains in 

January and February can be neglected in Norway. Actual overall heat consumption of the 

Gloshaugen campus and its predictions modeled through simple LR are compared. Heat 

consumption and outdoor temperature data were collected for 5 years. Table 3.6 presents the 

numbers of days when the day-mean wind velocities were within the given limits. Absolute 

deviations in Table 3.6 represent mean daily deviations of the overall heating demand from 

the predicted values of daily heating demand for the days when mean wind speeds were 
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within given limits. For the entire analysis period (January and February 2003-2007), the 

mean deviation from the predicted value of the heating demand was 5.25%, i.e. heat 

consumption was 5.25% higher than predicted. This is reasonable and expected since we can 

see from the Table 3.4 that monthly deviations are positive during the winter and negative 

during the spring and fall, due to solar influences. The last column in Table 3.6 shows the 

relative deviations, which represent absolute deviations reduced by 5.25%. Since relative 

deviations are positive, it can be concluded that wind caused the increase in the heat 

consumption. 

 Number of days Absolute deviations (%) Relative deviations (%) 

4 < v < 5.5 (m/s) 30 6.0 0.75 

5.5 < v < 7 (m/s) 21 8.15 2.9 

v > 7 (m/s) 11 8.08 2.83 

Table 3.6 Mean deviations from predicted values of overall heating demand for Gloshaugen 

campus as a result of higher wind influence 

Days with mean wind velocity between 4.0 and 5.5 m/s appeared in 30 of 295 days, 

which represents 10.2% of days in analyzed period. Wind velocities from this interval did not 

significantly increase the heat consumption, only by 0.75%. Wind velocity between 5.5 and 

7.0 m/s appeared in 21 of 295 days, which presents 7.1% of days in the analyzed period. The 

corresponding relative deviation of 2.76% should not significantly influence the accuracy of 

the analysis conclusions based on the model that did not take wind influence into 

consideration. It was expected that velocity higher than 7 m/s will result in a greater increase 

in heating demand. However, due to statistical error caused by the low number of these 

events, this did not happen. Although wind influence did not appear to be as significant for 

overall heat consumption of Gloshaugen campus as solar influence, it is possible that for 

some buildings this influence is more significant. Thus, both solar radiation and wind will be 

included in the multiple linear regression model which will be presented in the next 

subchapter. 

 

3.6  Building a multiple linear regression model 

Heat consumption of building is influenced by outdoor climatic parameters: 

temperature, solar radiation and wind. Other influences are captured in the LR model by 

grouping the data as discussed in subchapter 3.3.   

Heat consumption for the summer period is defined only by consumption of tap water. 

Those consumption are excluded from the multiple linear regression model by recognizing 

CPT and base level heat consumption, which was presented in subchapter 3.4. This means 

that linear regression is performed only for data points with outdoor temperatures lower than 

the CPT. The linear regression formulation presenting the dependence of the building heat 

consumption on outdoor climatic parameters is: 

     (3.8) 

where variables in the equation are: 

A and B – regression coefficients 

TSET – change point temperature 
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T – outdoor temperature 

W
*
 – wind speed 

TIN – indoor temperature 

S – solar radiation on vertical surface 

If the outdoor temperature is higher than TSET, that point in the monitoring history is excluded 

from the linear regression calculation. As a consequence, (TSET-T) is always positive, which 

causes B1 to also be positive. This suggests that, if outdoor temperature T is lower, heat 

consumption is higher.  is a constant value, so TSET can be excluded from the 

formulation. Other authors did not introduce CPT in the LR model. If TSET were to be 

excluded, the regression coefficient A would be higher. However, it is more physically 

understandable to formulate the LR model as in equation 3.7. Predictions gained through the 

LR calculation would be the same for both models.  B2 is also positive. B3 is negative.  

The same LR formulation is used for both space heating and ventilation systems. 

Regarding ventilation heating, a change point also appears in this case. Internal heat gains 

and solar gains increase indoor air temperature. If the amount of heat delivered to fresh air 

through the economizer is greater than the heat needed to heat the fresh air to the set 

temperature, additional heating is not necessary.       

3.6.1  Presentation of wind influence in the linear regression 

model    

Regarding wind influence, there are two defining parameters: wind speed and the 

difference between indoor temperature (TIN) and outdoor temperature (T). TIN is constant. 

TSET is always lower than TIN, due to heat gains of buildings, such as solar gains and internal 

gains. Since the values of T are lower than TSET used in linear regression, (TIN-T) is always 

positive. Since wind speed
 
is also positive, B2 is also positive. In all conducted calculations, 

TIN is fixed at 20°C, but that value could be changed in the program if there is a need to do 

so. Regarding wind speed, the amount of air entering a building is a function of many factors, 

such as the characteristics of windows and doors, the position of building, and the 

configuration of the building. Air infiltration is nonlinear when estimated from wind speed 

and the indoor/outdoor temperature difference (ASHRAE 2003). Generally, from Bernoulli 

the equation, it is known that flow is linearly dependant on Δp
1/2

. Determining Δp is rather 

complicated. Todorovic (2005) defines heat losses due to natural ventilation as:  

                              (3.9) 

where: 

V – air flow rate 

c – specific heat of air 

ρ – density of air 

TIN – indoor air temperature 

T – outdoor air temperature 

Air flow rate is gained from the equation: 
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 V= Σ(a·l)·(Δp)
2/3

                                        (3.10) 

where: 

a – permeability of air gaps 

l – length of air gaps 

Δp – pressure difference on inner and outer side of air gap 

However, Δp is rather complicated to determine, so equation 3.9 is simplified to: 

Q= εh·H·(TIN- T)                  (3.11) 

where: 

εh – correction for building height 

H – building characteristics  

If the building characteristics are not known, this rather complicated procedure for 

determining natural ventilation heat losses becomes even more complicated. Also, 

characteristics of openings change during the day because, for example, windows can be 

opened by an employee arriving at work in the morning, which makes analysis of hourly heat 

consumption meaningless. That is why heat demand for natural ventilation is expressed as an 

estimated function of wind speed W
*
 in equation 3.7. Figure 3.9 presents a house and wind, 

which makes an eddy behind it.  Due to the eddy, lower pressure appears behind the house. 

Opening the window on the side of the building exposed to the wind will bring high 

penetration of cold air. With low wind speed, the inside air in the upper part of the building 

will go out due to indoor thermal overpressure (Todorovic). It is obvious that natural 

ventilation is a complicated phenomenon, and that heat losses due to natural ventilation 

cannot be expressed simply by wind speed. A couple logical choices for W
*
 were tried, and 

the expression giving the highest value of R
2
 was selected. Three expressions for W

*
 are 

included: W
1/2

, W and W
2
.  

 

 

 

 

 

 

 

 

Figure 3.9 House exposed to wind 
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3.6.2  Presentation of solar radiation influence in the linear 

regression model    

Solar radiation on vertical surface is regarded as representative for calculation of solar 

heat gains, since solar radiation energy mostly enters a building through windows. Other 

authors used global horizontal radiation in multiple linear regression models (Katipamula et 

al. 1995). S in equation 3.7 is solar radiation on vertical surface. In order to calculate 

projection of solar radiation on vertical surface, sun elevation angle has to be found for every 

hour. Solar radiation on vertical surface is calculated from solar radiation on horizontal 

surface and cotangent of sun elevation angle αSUN: 

               (3.12) 

Sun elevation angle is calculated from equation: 

sin αSUN =cos h · cos δ · cos Φ + sin δ · sin Φ               (3.13) 

where: 

h -  hour angle in the local solar time; 0° indicates noon and 180° indicates midnight 

δ - current sun declination; δ = -23.45 · COS(360/365) · (N + 10), where N is the       

number of days since January 1
st 

Φ - local latitude, 63.6° for Trondheim  

Hourly values of sun elevation angle in Trondheim for the three weeks in March, April 

and May are presented on Figures 3.10, 3.11 and 3.12. For the high latitude as Trondheim 

has, it is evident that days last shortly in the winter and long in summer. From Figures 3.11 

and 3.12, it is obvious that, for most days in April and May, the sun has an elevation angle 

between 0° and 30°, which causes a significant amount of sun radiation energy to enter 

buildings through windows. The mean day temperatures in Trondheim can be under 5°C in 

May, so space heating is needed. Mean monthly temperatures in March, April and May for 

Trondheim are presented in Table 3.5. The sun influence is evident in this period, so the 

combination of these two driving forces determines the heat consumption of buildings.  

 

Figure 3.10 Hourly values of sun elevation angle from March 15 to March 21 
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Figure 3.11 Hourly values of sun elevation angle for the period April 15 to April 21 

 

Figure 3.12 Hourly values of sun elevation angle for the period May 15 to May 21 

The hourly values of solar radiation on the horizontal surface for May 21, 2007 

measured in Tronheim are presented in Table 3.7. Negative values appear due to radiation 

from the surface to the space during the night. Solar radiation is evidently the highest at noon. 

However, if those values are corrected by the cotangent of sun elevation, we get a different 

picture. Hourly values of solar radiation on the vertical surface for the same day are presented 

in Table 3.8. Due to low sun elevation angles, higher values appeared, not at noon, but in the 

morning and afternoon. The maximum appeared, surprisingly, at 22
h
. This value does not 

seem to be realistic. The calculated angle of the sun elevation at 22
h
 is 0.707°. For such a low 

angle, the cotangent has high value. For example, the cotangent of 1° is 57.32. This problem 

would introduce instability in the regression model. For such small values of sun elevation 

angle, there is a high probability that the building would be in the shadow of its surrounding. 

Thus, a correction is introduced which replace the cotangent of sun elevation for small sun 

elevation angles. The correction is used instead of cotangent for sun elevation lower than 9° 

(Figure 3.13). For sun elevation lower than 2°, solar radiation is excluded as a parameter 

from linear regression because the building is probably in shadow, so the correction is equal 

to 0. For the other values of sun elevation, corrections are smaller than the cotangent of sun 

elevation, especially for small angles. For 9°, cotangent and correction have same value.  
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Hour 1 2 3 4 5 6 7 8 9 10 11 12 

Solar 

radiation 
-1.4 -0.8 -0.7 0.1 6 35 52 83 144 198 292 447 

Hour 13 14 15 16 17 18 19 20 21 22 23 24 

Solar 

radiation 
386 577 745 533 488 507 200 91 58 54 2.5 -2.9 

Table 3.7 Hourly values of solar radiation on a horizontal surface for May 21, 2007 (W·h/m
2
) 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 

Solar 

radiation 
0 0 0 8 61 175 164 190 254 288 369 519 

Hour 13 14 15 16 17 18 19 20 21 22 23 24 

Solar 

radiation 
436 671 943 775 861 1150 632 451 586 4418 0 0 

Table 3.8 Hourly values of solar radiation on vertical surface for May 21, 2007 (W·h/m
2
) 

 

Figure 3.13 Correction of sun elevation angle cotangent  

 

3.7 Model improvement by excluding outliers 

Outliers (residuals) appear due to a HVAC system malfunction or measurement errors. 

There is interest in identifying outliers and repeating the calculation with the set of data that 

does not contain outliers. There are two ways to recognize and exclude outliers from the data 

used in linear regression modeling and both are used in this thesis: (1) manual - through 

visual inspection of diagrams and (2) automated - inspection of the R-student residual 
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statistic. A graphical user interface tool offers the possibility for both methods to be used to 

exclude data suspected to be outliers.  

Manually excluding outliers is done by inspecting deviations of measured heat 

consumption from their predictions which are gained from the linear regression model. If the 

deviation is high, that suggests that outliers exist. Normalized heat consumption (NHC) is a 

measure of the consumption deviation from the modeled consumption, which is used in this 

thesis to recognize faults in HVAC system operation or to recognize operation changes in the 

monitoring history. NHC represents the ratio of real and modeled heat consumption: 

NHC=QREAL/QMODEL [%]                                       (3.14) 

If we analyze hourly data for one control regime from one of the analyzed buildings at the 

university campus in Trondheim, we recognize that some data points deviate from the 

modeled consumption, which is represented by a line (Figure 3.14). The presented line is the 

energy signature line in the case of simple linear regression. In this case, QMODEL represents 

the point on the energy signature line that corresponds to outdoor air temperature. 

Normalized heat consumption is presented by percent; thus, 100% implies that the modeled 

and real consumption have the same value. If normalized consumption deviates significantly 

from 100%, this indicates a fault in the HVAC system operation.  

 

Figure 3.14 Energy signature line referring to one control regime for one of the buildings in 

the university campus in Trondheim 

A normalized heat consumption diagram (Figure 3.15) is formed when normalized heat 

consumption are put in a 3-D diagram, where normalized heat consumption for every hour of 

a day are presented in one row. It presents normalized consumption for each hour of the 

analyzed monitoring period. If the model were perfect and captured all influences on building 

energy consumption, and if the system were to operate without any faults, normalized heat 

consumption diagram will look like a flat horizontal surface placed at 100%. Three peaks 

with strong red color on Figure 3.15 represent faults in the system operation. After 



Ch. 3.7 Model improvement by excluding outliers 

43 

identification of outliers, they can be excluded manually by the tool enabled in the graphical 

user interface of the developed program. 

 

Figure 3.15 Normalized heat consumption 3-D diagram for one of the buildings at the 

university campus in Trondheim 

Even if the system functions without any faults, it is not possible to build a perfect 

model that captures all events in system operation. Thus, normalized consumption diagrams 

have ‗hills‘ and ‗valleys‘, which represent the imperfection of the model and faults in the 

system operation. The user of the tool should not conclude that deviation from 100% is a 

result of a system operation fault before checking if the model has captured all relevant 

effects. With different models (simple or multiple linear regression models), different data 

groupings and varying the length of modeled monitoring period, some consumption that at 

first appear to be too high or too low could be proven to be normal.  

The second way of recognizing residuals is to inspect R-student residuals for each 

observation. Calculation of R-student residuals enables outlier identification to be 

implemented in a computer program, i.e., excluding outliers can be automated. In Walpole et 

al. (2007), R-student residuals and studentized residuals are imposed as statistics that are used 

as diagnostic tools. These statistics identify observations where the error is higher than 

expected. Observations with R-student residuals higher than 2 are proposed to be outliers in 

the Minitab help (computer tool for statistic analysis). Equitation for R-student residuals, 

which is used in the developed tool, is taken from Walpole et al. (2007): 

                            (3.15) 

where 

i – number of observations 
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ei – difference between the value of the dependent variable and the predicted value 

from the model for the i-th observation  

s-i – estimate of the error standard deviation, calculated without the i-th observation 

hii – diagonal element of the HAT matrix 

After calculating the R-student residuals, data with high residuals are eliminated from the 

dataset, and linear regression calculation is repeated.  

 

3.8 Normality testing 

Deviations of measured heat consumption from their predictions gained through linear 

regression are random events, so they should be normally distributed. Violation of this 

assumption indicates systemic error. Figure 3.16 presents a normal probability plot. This 

graph shows whether or not the data are normally distributed. It assumes normally distributed 

data, so the vertical axis is scaled according to a normal distribution. It is expected that a 

normal distribution has a mean value of 50% of the range of dependent variable. Residuals 

should follow the straight line if the distribution is normal.  
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Figure 3.16 A normal probability plot of heat consumption linear regression for the Gamle 

kjemi building at the university campus in Trondheim 

Figure 3.16 is a normal probability plot of heat consumption linear regression for one of 

the buildings at the university campus in Trondheim. Linear regression calculation is 

conducted on the dataset, which included heat consumption, outdoor temperature, products of 

wind speeds and indoor/outdoor temperature differences, and solar radiation on the vertical 

surface (according to equation 3.7). It is obvious that some points deviate from the straight 

line on Figure 3.16. Those points are outliers. Their R-student residuals are higher than R-

student residuals for the other data points. If we exclude points with R-student residuals 

higher than two from the second calculation data, we will get a normal probability plot 

presented on Figure 3.17. Outlier identification is conducted again after the second 

calculation. If there are still data points that do not fulfill criteria that their R-student residual 



Ch. 3.8 Normality testing 

45 

are lower than two, the calculation should be repeated until all data points fulfill the criteria. 

This procedure was conducted in Minitab. 
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Figure 3.17 Normal probability plot of heat consumption linear regression for the Gamle 

kjemi building at the university campus in Trondheim with data corrected by removing 

residuals 

After excluding outliers and conducting a second linear regression, new residuals 

appeared because the model became more accurate. After a third calculation, the graph in 

Figure 3.18 is obtained. It is obvious that outliers are excluded. Data follow the straight line 

except at the ends of range. This type of deviation is characteristic for data that do not fully 

follow a normal distribution. If points are distributed in the shape of a letter S (this is called a 

fat or short tail) (Figure 3.19), it is suggested in NIST/SEMATECH that there is serious 

doubt about the normal distribution of the analyzed phenomenon. If the data points follow a 

straight line in the center and only the ends have an S shape (long tail), as is the case in 

Figure 3.18, it is suggested that the distribution is satisfyingly close to normal. 

Checking the normal probability plot represents normality testing. A normal 

distribution imposes the assumption that all events that cause deviations of a dependent 

variable from the model are random. From Figure 3.18, it can be concluded that a normal 

distribution exists for heat consumption of the analyzed building.  

Figures 3.20, 3.21 and 3.22 are residual plots for the three independent variables of 

equation 3.7. The residual plot is the most used tool for detecting violations of the assumption 

of homogeneous variance. If higher residuals are concentrated for some values of an 

independent variable, the variance is not homogeneous. Since residuals are randomly 

distributed on Figures 3.20, 3.21 and 3.22, there is no systematic deviation from a normal 

distribution. Figures 3.18, 3.20, 3.21 and 3.22 confirm the assumption that all events that 

cause deviations are random for analyzed heat consumption of the Gamle kjemi building; this 

allows the linear regression to be performed according to equation 3.7. The same analysis is 

conducted for the heat consumption for more university campus buildings in Trondheim. To 

conclude, heat consumption can be modeled by linear regression according to equation 3.7. 

The method proposed in this thesis for building energy performance analysis does not use the 
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residual plot to analyze residuals. For operators that should analyze HVAC performance, 

normalized heat consumption plots (Figure 3.15) are more convenient. 
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Figure 3.18 Normal probability plot of heat consumption linear regression for the Gamle 

kjemi buildings at university campus in Trondheim after third calculation 

 

Figure 3.19 Normal Probability with fat or short tail (NIST/SEMATECH) 
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Figure 3.20 Residual plot for temperature member (T) of equation 3.7 for heat consumption 

linear regression of the Gamle kjemi building 
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Figure 3.21 Residual plot for wind member (vetar4) of equation 3.7 for heat consumption 

with a linear regression of the Gamle kjemi building 
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Figure 3.22 Residual plot for solar radiation member (S) of equation 3.7 for heat consumption 

linear regression of the Gamle kjemi building 

 

3.9 Overview of relevant literature regarding modeling of 

heat consumption of HVAC systems through linear 

regression 

This thesis is based on a linear regression to model HVAC system heat consumption. 

Other authors have also discussed this issue, and their results will be presented. There is no 

linear regression formulation in the literature for radiator space heating and ventilation 

heating. However, a formulation similar to those presented in literature can be used for this 

purpose. 

Reddy et al. (1995) gave a formulation for a linear regression model of a heating and 

cooling load for air-side HVAC systems, terminal reheat and duct-duct systems, under both 

constant and variable air volume operation. Katipamula et al. (1994) gave a linear regression 

formulation for cooling energy consumption of dual-duct constant volume (DDCV) and 

variable volume (VAV) systems. The LR formulation is (Katipamula et al., 1994):   

                         (3.16) 

where: 

To - dry-bulb outdoor temperature 

I - indicator variable that indicated if the outdoor temperature is greater than the 

change point 

 - outdoor air dew-point temperature; it is set to zero if  is lower than the surface 

temperature of the cooling coil 

 - solar radiation 

 -  internal heat gains 
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Multiple linear regression assumes that regression variables are independent of each 

other. This problem is known as multicollinearity. A rule of thumb (Draper and Smith, 1981) 

is that if the simple correlation between two independent variables is larger than the 

correlation between one or either independent variable with the dependent variable, 

multicollinearity effect may be important. Correlation coefficients presented in Table 3.7 for 

one of the buildings in Texas show that the correlation between To and  is higher than the 

correlation between  and . It is expected that a sunny day will be followed by higher 

outdoor temperatures. Other correlations were insignificant.     

 

Table 3.7 Correlation coefficients between  and independent variables of the linear 

regression model (Katipamula et al., 1994) 

Katipamula et al. (1994) conducted calculations with daily and hourly data for the 

DDCV and VAV system of a university building at Texas A&M University. Individual 

contributions of independent variables are evaluated through stepwise regression. Results of 

the stepwise regression are presented in Table 3.8 for calculation with daily and hourly data. 

The partial coefficient of determination (partial R
2
) measures contributions of each 

independent variable. Partial coefficients of determination are obtained from simple linear 

regressions. The partial R
2
 of To explains the greatest variation (87.1% for daily and 76.5% 

for hourly calculation). The contribution of the outdoor dew-point temperature is much lower, 

but it is still significant. Contributions of internal gains and solar radiation are far less 

significant. Since the change point did not exist, and were not significant. Daily 

models have higher R
2
 than the hourly model because some operational parameters and 

weather parameters change from hour to hour, but they are constant at a daily time scale. If 

the hourly model is not able to take the variation into account, it decreases its accuracy. We 

conclude that the daily model is more accurate.   

Katipamula et al. wrote two additional articles (Katipamula et al., 1995 and Katipamula 

et al., 1998). In those two articles, the same method as in the first article (1994) is used to 

further evaluate multiple linear regression (MLR) models of building energy use. Katipamula 

et al. (1995) compared the accuracy of monthly, daily, and hourly predictions and the HOD 

model of cooling energy consumption for five commercial buildings in Texas. R
2
 is not used 

to evaluate the accuracy of the models. Hourly and daily predictions were modified to 

monthly predictions in order to compare the predictions with different time resolutions. The 

MLR model is the same as that in equation 3.16. 
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Table 3.8 Results of stepwise regression for one of the buildings of Texas A&M University 

(Katipamula et al., 1994)  

The operational parameters change from hour to hour, but are constant on a monthly 

and daily basis. Some weather parameters or internal heat gains can be effectively constant 

on a monthly or even daily basis. Figure 3.23 shows cooling energy consumption for different 

time resolutions: monthly, daily, hourly and HOD. More scatter appears with time scale 

changes from month to hour due to changes of cooling energy consumption, which is not 

caused by changes in the outdoor dry-bulb temperature. From Figure 3.23 it is evident that 

the monthly time scale shows the highest goodness of fit. However, by introducing variation 

at the daily and hourly time scales of the outdoor dry-bulb temperature and other independent 

variables, which are effectively constant on a monthly time scale, more accurate predictions 

can be gained.     

Table 3.9 presents the results of stepwise regression for a building at Texas A&M 

University. Weekends (WE) and weekdays (WD) are separated for both the hourly and HOD 

model. For the HOD model, unoccupied and occupied hours are indicated by U and O, 

respectively. The outdoor dry-bulb temperature has the highest contribution for all time 

resolutions. The change point is not significant at monthly time scale because I and IT0 are 

not significant. However, the change point exists at daily and hourly time scales. The dew-

point temperature is much more significant on a daily basis than on a monthly basis. This 

means that variation of air humidity is much more significant on a daily basis than on a 

monthly basis. Internal heat gains are insignificant on a monthly basis, but they are 

significant on a daily and hourly basis. This means that internal heat gains are effectively 

constant from month to month. Internal heat gains are more significant during occupied hours 

in the HOD model. Also, internal heat gains are more significant for weekdays than for 

weekends in the hourly model, since during weekends the building is unoccupied. Solar 

radiation influence is insignificant for all time resolutions.           
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Figure 3.23 Cooling energy consumption for different time resolutions (Katipamula et al., 

1995)   
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Table 3.9 Results of stepwise regression for one of the buildings in Texas (Katipamula et al., 

1995) 

The R
2
 value of the HOD model is higher than the R

2
 of the hourly model, and it is the 

highest for the monthly model; this is expected since daily and hourly models show greater 

scatter than monthly models (Figure 3.23). However, that does not mean that a monthly 

model is more accurate, because its R
2
 is not calculated for the same number of data points. 

Through averaging, some information is lost; thus, the daily, hourly and HOD models could 

give more accurate predictions. In order to compare the predictive ability of each model, 

hourly and daily predictions were summed to monthly predictions, so they can be compared. 

Monthly predictions from every model are subtracted from real monthly cooling consumption 

and those differences are summed into coefficients of variation (CV) and mean bias errors 

(MBE). Table 3.10 presents those statistics of four models for three buildings. Lower CV 

values and lower absolute values of MBE imply better predictive ability.    

 

Table 3.10 Comparison of the predictive ability of models with different time resolutions for 

three buildings (Katipamula et al., 1995) 

The daily model has the lowest value of CV, followed by the HOD, hourly and monthly 

model. There is no clear trend for the MBE statistic. The presented results imply that the 

daily model is most accurate, followed by the HOD model. This means that HOD model is 

preferable to the hourly model for modeling hourly heat consumption. 

Table 3.11 presents the advantages and disadvantages of models with different time 

resolutions. Modeling with monthly and daily data requires minimum effort, while the HOD 

model requires maximum effort. There is no difference in effort for collecting data for the 

HOD and hourly models, so Katipamula et al. (1995) referred to calculation effort. If the 

computational tool already exists, there is no significant difference in calculation time, since 
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the present speed of computers requires a couple seconds for calculation. Monthly data can 

be obtained from monthly utility bills, while other time scales require additional metering. 

The monthly model requires the longest monitoring period. For daily data, Kissock et al. 

(1993) have shown that fewer than three months of data are not enough to get accurate 

predictions of annual energy use. For the hourly and HOD models, there is still no relevant 

analysis that suggests the necessary monitoring period. The HOD model could require more 

data than the hourly model, since hourly data are grouped in 24 data sets. It is assumed that 

three to six months should be enough long monitoring period. Since daily models are more 

accurate for predicting cooling energy consumption than monthly models, they are more 

appropriate for savings measurement and verification. Claridge et al. (1994) and Liu et al. 

(1994) demonstrated that using hourly data is most appropriate for identification of O&M 

problems. Daily models can spot changes of building energy consumption that are higher 

than 5%. Hourly and HOD models can be applied for real-time HVAC system control.      

      

Table 3.11 Advantages and disadvantages of models with different time resolutions 

(Katipamula et al. 1998)  

Although the analyses presented by Katipamula et al. (1994, 1995 and 1998) are 

conducted for cooling energy consumption, their conclusions can be applied for space heating 

and ventilation heating consumption. The analysis concept in those articles is used in this 

thesis to evaluate daily and hourly modeling of space heating and ventilation heating 

consumption.  

The Great Energy Predictor Shootout II (Haberl et al. 1996) was organized to evaluate 

the accuracy of predictions with different inverse modeling methods. The MLR method 

(Katipamula 1996) was close behind winner. The competition assignment was to model 

hourly cooling and heating energy consumption and electricity consumption. Katipamula 

(1996) used the HOD grouping to model cooling and heating energy consumption, since was 

proved to be superior to the hourly grouping in earlier studies. The R
2
 values for weekends 

and unoccupied hours were higher than the R
2
 for occupied hours for heating energy 

consumption. Katipamula marked that the model underpredicted heating energy consumption 

for high outdoor temperatures and overpredicted for low outdoor temperatures. Katipamula 

suggested that the accuracy of model can be improved by separating winter from summer.  
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4  Method of building energy performance analysis based 

on utilizing monitoring data 

4.1 Basic concepts used in the proposed method 

The building energy performance analysis method proposed in this thesis is based on 

the following ideas: 

- Using linear regression to model building heat consumption by regressing 

weather influences as independent variables; 

- Recognizing control regimes and relevant monitoring periods with unchanged 

performance of an HVAC system by reviewing 3-D plots and analyzing linear 

regression coefficients; and  

- Detection of O&M problems through an overview of monitoring history 

The method is implemented through a graphical user interface (GUI) tool developed in 

Matlab. The basic idea is to model heat consumption based on linear regression and to 

compare the modeled heat consumption with actual heat consumption in order to find periods 

with malfunctions or HVAC system changes in functioning during a monitoring history. 

The result of the first and second phases of the proposed method is a LR model of heat 

consumption. Detection of O&M problems is achieved by inspecting normalized heat 

consumption (equation 3.14). Traditionally, residual plots are used to detect outliers. Other 

plots used for analysis of HVAC system performance require a high level of user expertise. 

Haberl and Komor (1990a) used hourly data to recognize operation faults in commercial 

building HVAC systems. In this article, periods with malfunctions were recognized by 

inspecting differences between real and predicted heat consumption. The differences were 

presented in 3-D plots according to days and hours. Those plots are easy to understand 

because they organize data according to time. That enables to determine when fault occurred.     

The third phase of proposed method is based on this technique. Instead the difference 

between real and predicted heat consumption, their ratio (NHC) is used. Since building heat 

consumption changes with changes in outdoor weather parameters, deviations in real heat 

consumption from the expected value (modeled prediction) are better presented through their 

ratio. The tool, which is developed in Matlab, enables implementation of the proposed 

method. The following results can be gained through use of the program: 

- Control regimes of HVAC system, when they were changed during the 

monitoring period and the present settings; 

- Detection of O&M problems by comparing predicted and real heat consumption;  

- Savings measurement and verification by comparing predictions of heat 

consumption gained from models corresponding to pre-retrofit and post-retrofit 

operations; 

- The program user can get an idea of how to implement energy conservation 

measures. 
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The GUI tool developed in Matlab enables fast analysis of building energy 

performance. The whole analysis procedure involves (1) extraction of data, data filtering and 

saving the data on the computer; (2) recognizing control regimes and relevant monitoring 

period for modeling; (3) modeling heat consumption through different data resolutions; and 

(4) analysis of results based on inspection of diagrams.  

 

4.2 Tool for modeling and analysis of building heat 

consumption 

 

 

 

Figure 4.1 Main window of the GUI tool 

The main window of the GUI tool is presented in Figure 4.1. Dots in the plot of the 

main window represent hourly heat consumption for corresponding temperatures in the 

analyzed monitoring period. Dots are presented in different colors depending on their control 

regime. Some basic conclusions can be made by inspecting the different colored groups of 

dots. For example, the system seems to have reduced energy consumption under -5°C, due to 

Linear coefficients list-box        Schedule palette 

Plot palette Calculation palette Period palette 
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reduction of air intake of the ventilation system. If some dots are placed outside of their 

group, the user should check if the regime time schedule is properly determined.   

Coefficients that determine the energy signature lines are in a linear coefficients list-box 

(Figure 4.2). The energy signature lines are determined through simple linear regression 

based on regressing outdoor air temperature. There are two coefficients, a0 and a1, for each 

regime; a0 is the base level consumption and a1 is the slope term, similar to α and β in 

equation 3.7. There are two values for each of these coefficients. The first is the current and 

the second is previous. The current value is determined in the present calculation. The 

previous value is determined in the calculation prior to the current calculation. If the 

monitoring period for which the calculation is conducted changes, it is possible to compare 

the coefficients gained for different periods. Coefficient changes can be a consequence of 

HVAC performance deterioration. This linear coefficients list-box can be used as a tool to 

detect faults in the HVAC system operation. 

 

Figure 4.2 Linear coefficients list-box 

Control regimes are created by using the ‗Schedule Palette‘ (Figure 4.3). A regime is 

determined by the hours and days of the week when it is used. The days are determined by 

numbers; for example, Monday is 1. Every control regime is determined in the popup-menu 

‗Period‘. Every time interval belonging to the control regime is determined by its number in 

the popup-menu ‗Interval‘. The schedule overview is enabled by the popup-menu ‗Period‘ 

and ‗Interval‘. Control regimes can be added and deleted by pressing ‗Added Period‘ and 

‗Deleted Period‘ buttons. Time intervals belonging to the control regime can be added and 

deleted by pressing ‗Added Interval‘ and ‗Deleted Interval‘ buttons.  
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Figure 4.3 Schedule palette 

‗Exception periods‘ palette is also in the ‗Schedule Palette‘ (Figure 4.4). It enables days 

that are suspected to have faulty operation to be excluded from calculation. Start and end 

days of exception periods are entered in the edit-text boxes. More periods can be excluded by 

pressing the ‗Add Exc.‘ button. Constant duties will be assigned to these periods, which are 

entered in the edit-text box ‗Const Duty‘.  

 

Figure 4.4 Exception periods palette 

Selection of monitoring period which is used in calculation is enabled by the 

‗Monitoring Period‘ palette (Figure 4.5). Two dates in the upper part of the palette determine 

the monitoring period for which data exists. Those dates cannot be changed, since they are 

written automatically after opening a file with monitoring data. Two dates in the middle 

determine the monitoring period that will be used for calculation. The two dates on the 

bottom determine the monitoring period that is displayed in different plots. By default the 

calculation period and display periods are the same. If a user has a special interest in a 

specific period, the user can get better resolution of plots by changing display period dates.  
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Figure 4.5 Monitoring period palette 

The plot palette has eleven buttons to make different 3-D diagrams and plots with 

energy signature lines (Figure 4.6). 3-D plots presenting heat consumption (Figure 4.7) are 

obtained by pressing one of two buttons in the left-upper corner of the palette. The difference 

between ‗3-D Consumptions – Complete Results‘ and ‗3-D Consumptions for Exact Period‘ 

is that the first presents heat consumption for the whole period for which calculation is done, 

while the second presents heat consumption for the period the user defines in the monitoring 

period palette. Horizontal axes correspond to dates and hours, while vertical axis corresponds 

to heat consumption (Figure 4.7). Matlab allows 3-D plots to be rotated and zoomed. An hour 

of special interest can be selected and the value of its heat consumption can be obtained this 

way. For example, the excessive heat consumption that appeared on the 44-th day of the 

presented period at 16
h
 is 2210 kWh/h (Figure 4.7). In all 3-D plots, the horizontal axes are 

dates and hours. The 3-D consumption plot is useful for initial recognizing HVAC operation 

faults. From Figure 4.7, it is clear that some values deviate from the typical consumption. 

Moreover, control regimes are also initially recognized by that plot.     

 

Figure 4.6 Plot palette 
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Figure 4.7 Three dimensional plot of heat consumption 

‗Real Normalized Consumption‘ and ‗3-D Normalized Consumption‘ plots (Figure 4.8) 

are similar to the ‗3-D Consumption‘ plot. They present NHCs on the vertical axis. The 

difference between ‗Real Normalized Consumption‘ and ‗3-D Normalized Consumption‘ 

plots is that the ‗3-D Normalized Consumption‘ plot does not show normalized consumption 

that exceeds 50%. It is expected that normalized consumption will be over 50% or even 

larger for some hours. If those values were shown, it would be difficult to recognize 

deviations smaller than 50% with the color scale used in plots. Color scale also helps 

deviations be recognized. By pressing ‗3-D Pos. Res.‘ and ‗3-D Neg. Res.‘, plots with 

positive and negative NHCs are generated. 

By pressing the ‗Mean Norm. Cons.‘ button, a plot presenting the NHC gained from the 

model using mean values or daily data is generated (Figures 4.9 and 4.10). Figure 4.9 

presents normalized consumption for the daily model. Figure 4.10 presents NHCs from the 

model using mean values grouped by regimes. 
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Figure 4.8 Normalized heat consumption plot 

 

Figure 4.9 Normalized heat consumption plot for calculation with daily data 
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Figure 4.10 Normalized heat consumption plot for calculation with mean values grouped by 

regime 

Energy signature lines for different regimes are obtained by pressing one of two buttons 

in the lower left corner of the palette. Energy signature lines are a result of simple linear 

regression. Figure 4.11 presents an energy signature line for one regime of a NTNU campus 

building. The base level consumption is obtained through the procedure explained in 

subchapter 3.4. The CPT is 16°C for the presented regime. It can be recognized from the 

figure that there are two lines that explain the dependence of heat consumption on the 

outdoor temperature. One line is gained through LR calculation with all points that have 

temperatures that exceed the CPT. The other line is obtained through LR calculation using 

the blue points. The first line, defined by all points, is called the uncorrected energy signature 

line. The second line is named the corrected energy signature line. This line is gained 

through linear regression of the heat consumption with deviations from the uncorrected 

energy signature line that are lower than 20% (blue points). Heat consumption that is within 

or exceeds the 20% limit is distinguished by different colors.  Lines are more separated if 

there are more dots that deviate from the uncorrected energy signature line. The limit for the 

deviation of heat consumption from the energy signature lines is 20%. This limit is higher 

than the recommended limit of day heat consumption deviation from energy signature lines, 

since hourly heat consumption has more scatter than day heat consumption. The 20% limit 

can be changed by pressing the ‗Change Limit‘ button which opens dialog presented on 

Figure 4.15. In an ideal case, if all heat consumption is within the 20% limit, the two lines 

will overlap. Uncorrected and corrected energy signature lines are useful in recognizing if 

control regimes are correctly defined. Data points that do not belong to the control regime 

will significantly deviate from others, which will cause the two lines to be more separated. 
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Figure 4.11 Energy signature line 

 

4.12 Energy Signature Lines for five control regimes 
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Corrected and uncorrected energy signature lines for all regimes are obtained by 

pressing the ‗Energy Signature Lines‘ button (Figure 4.12). There are five pairs of lines that 

correspond to five control regimes of analyzed building. If some lines are close, which is not 

the case in the presented figure, the user should consider that the two regimes are not unique 

and should join them into one.   

Hourly monitoring data are mostly presented in tables. Those tables should be filtered 

first and put in the form that the program requires. That is also the case with the 

corresponding hourly outdoor temperatures, wind speeds and solar radiations. Hourly heat 

consumption used in this thesis is taken from the web-site of the Norwegian company Entro 

AS, which records energy consumption of most NTNU university buildings (Figure 4.13). 

Meteorological data are taken from the Norwegian meteorological institute web-site. Hourly 

heat consumption is shown in the table with 24 columns (Figure 4.13). Meteorological data 

are available in the form of columns from the Norwegian meteorological institute web-site. 

The developed program is adapted to these table forms, but it should not require much effort 

to adapt the program to handle other table formats. After filtering, the tables should be copied 

in the workspace of Matlab as matrixes A, T, W and S, referring to hourly heat consumption, 

outdoor temperatures, wind speeds and solar radiations, respectively. A is a two-dimensional 

matrix with dimensions Nx24, where N is the number of days. T, W and S are column 

matrixes of length N·24. The start and end dates of the monitoring period should be entered in 

a separate matrix variable called datum. This 2x3 matrix consists of six variables that refer to 

the day, month and year of the start and end of the monitoring period. Five matrixes are saved 

as a file with a .mat extension. Defining these dates is important, because this is how the 

program distinguishes days of week.  

 

Figure 4.13 Heat consumption of a university building in Trondheim on the Entro web-site 



Ch. 4 Method of building energy performance analysis based on utilizing monitoring data 

64 

Figure 4.14 presents six buttons in lower right corner of the GUI tool presented in 

Figure 4.1. The ‗Open Monitoring File‘ button opens the file with five matrixes (A, T, W, S 

and datum) and displays heat consumption in the point plot presented in Figure 4.1. The 

beginning and end dates of the monitoring period are written in the GUI‘s monitoring period 

palette. After the control regimes are recognized and defined in the schedule palette by the 

user, it is possible to save the control regime schedule by pressing the ‗Save Schedule‘ button 

(Figure 4.14). The user can give a name to the schedule and select the directory where the file 

will be saved. The file containing the schedule can be opened with ‗Open Schedule File‘. The 

control regime schedule will be automatically written in the schedule palette. It is possible to 

save the results gained in the last linear regression calculation by pressing ‗Save Calculation 

As‘. If a calculation is already opened, the user can save it in the existing file with the ‗Save 

Calculation‘ button. Existing calculations can be opened with the ‗Open Calculation File‘ 

button. All buttons in Figure 4.14 open dialogs similar to the dialog presented in Figure 4.15, 

where the file to be opened can be selected or the name of the file to be saved can be written. 

 

Figure 4.14 GUI buttons of for saving and opening files 

  

Figure 4.15 Dialog opened by pressing one of the buttons in Figure 4.14 and the dialog box 

for changing the limits that are used to determine the corrected energy signature line 

 

4.3 Steps of the building energy performance analysis 

method  

The building energy performance analysis method is implemented with the tool for 

modeling and analyzing building heat consumption that is presented in the previous 

subchapter. These steps should be followed in building energy performance analysis: 

- Identification of control regimes 
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- Identification of relevant monitoring period 

- Identification of HVAC operation malfunctions  

- Selecting the correct linear regression model 

- Covering nonlinearity in HVAC system operation by different data groupings 

4.3.1 Identification of control regimes 

After opening the monitoring file, the first step in developing the building heat 

consumption model is identifying the control regimes by inspecting the 3-D plot of heat 

consumption (Figure 4.16). Identification of control regimes is important if the models use 

mean values grouped by regimes or hourly data. For the daily model and HOD model there is 

no need to recognize the regimes.  

 

Figure 4.16 Three dimensional plot of heat consumption of a NTNU campus building  

 

Figure 4.17 Normalized heat consumption plot of a NTNU campus building 
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It can be recognized in Figure 4.16 that the HVAC system has distinguishable day and 

night operation. Weekend operation is different from weekday operation. The weekday-day 

regime lasts from 4
h
 until 19

h
, except for Monday when it starts at 3

h
. During the weekends, 

the day regime starts at 10
h
 and lasts until 18

h
. Peaks appear at the beginning of the day 

regimes. Regimes are made in the schedule palette. Peaks from Figure 4.16 should be treated 

as a separate regime lasting for one hour.  

The next step is to determine whether or not the regimes are defined properly. If 

deviations appear systematically in the normalized consumption plot (Figure 4.17), then that 

is a sign that the regimes are not properly defined. ‗Valleys‘ appear every weekend in Figure 

4.17 because the weekend day regime is actually shorter than it was defined. If the weekend-

day regime is different from the weekday-day regime, and it is not defined separately, 

‗valleys‘ or ‗hills‘ will appear during weekends.  

 

Figure 4.18 Corrected and uncorrected energy signature lines for one control regime of an 

NTNU campus building; control regime that is not correctly defined 

It is also possible to recognize the distinction between regimes by reviewing energy 

signature lines (Figure 4.12). Corrected and uncorrected energy signature lines can be also 

used to verify the control regime schedule. If corrected and uncorrected lines are close to 

each other, such as in Figure 4.19, there are no points that deviate significantly from the 

energy signature line. It is obvious that the dots in the lower left corner of Figure 4.18 do not 

belong to the analyzed control regime. If the lines are not close, it is evidence that a regime is 

not correctly defined. 
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Figure 4.19 Corrected and uncorrected energy signature lines for one control regime of an 

NTNU campus building; control regime is correctly defined 

4.3.2 Identification of relevant monitoring period 

Performance of the HVAC system can be changed during the monitoring period. Data 

points used in the linear regression must originate from a period when control regime settings 

are the same. It is also possible that HVAC operation changes are a consequence of the 

installation of new equipment or other retrofits. Information regarding these changes can be 

obtained from maintenance personal. That is, however, often difficult to accomplish. An easy 

and reliable way of getting that information is by analyzing an NHC plot (Figure 4.20) or 

comparing linear regression coefficients for different monitoring periods. Control regimes 

were changed after February 10, 2008 for heat consumption presented in Figure 4.20. One 

should use a period with an unchanged system operation to develop a building heat 

consumption model (periods before or after 10
th

 of February 2008 for normalized heat 

consumption are presented in Figure 4.20).  

In some cases, control regime schedules are not changed, but other settings defining 

dependency of heat consumption from outdoor parameters may be changed. These changes 

can be recognized in the normalized consumption plot. In order to confirm them, linear 

regression coefficients for different monitoring periods should be compared by reviewing a 

linear coefficients list-box.  
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Figure 4.20 Normalized heat consumption plot of an NTNU campus building 

If, for some period, NHCs deviate significantly from 100%, that period should be 

excluded from linear regression by selecting the period in the palette presented in Figure 4.4. 

The model of heat consumption assumes that the system has operated correctly, so any faulty 

operation will make the model less accurate.  

4.3.3 Identification of malfunctions in HVAC system operation 

Analysis of results is done after defining the control regimes and determining the 

relevant monitoring period. The main result of analysis is identification of malfunctions in 

HVAC operation through overview of 3-D NHC plots. Ideally, the surface of the plot should 

look like a horizontal flat surface placed at 100% if the actual heat consumption and 

predicted heat consumption are equal. This is never case since both performance of HVAC 

system and the heat consumption model are not perfect. The user should determine reasons 

for deviations from the flat surface, i.e., if deviations are the result of malfunctions or model 

inaccuracies. That can be accomplished by controlling 3-D NHC plots gained for different 

models. The model can be varied by employing MLR models and using different data 

resolutions. Finally, the model should consider nonlinear heat transfer processes (thermal 

storage effects) that introduce time delays. Subchapter 3.3 discusses how different data 

groupings cover different effects. Every data grouping has some advantages and 

disadvantages. Checking every model by inspecting the 3-D NHC plots should eliminate 

doubts regarding the correctness of the model. 



Ch. 4.3 Steps of the building energy performance analysis method 

69 

 

Figure 4.21 Normalized heat consumption plot of an NTNU campus building 

If the HVAC system has much higher or lower heat consumption in some period, this 

can be recognized in 3-D NHC plots as ‘hills‘ or ‘valleys‘ that significantly deviate from a 

ratio value of 100%. This is demonstrated in Figure 4.21. The labeled hour certainly 

represents fault in the HVAC operation. However, different models should be tested before 

making a final decision. 

4.3.4 Employing multiple linear regression model  

 

Figure 4.22 Normalized heat consumption plot of an NTNU campus building for a simple 

linear regression model 



Ch. 4 Method of building energy performance analysis based on utilizing monitoring data 

70 

 

Figure 4.23 Normalized heat consumption plot of a NTNU campus building for a multiple 

linear regression model 

The linear regression model can be defined as either simple or multiple. The risk of 

introducing a multiple regression model is that the accuracy of the model can suffer when 

there are too few data points. Some independent variables of MLR model can be 

insignificant, so the model should be kept as simple as possible.  

Higher NHCs can be recognized for one day in the middle of the presented period in 

Figure 4.22. Prediction is gained through simple LR with outdoor temperature as the only 

independent variable. Figure 4.23 presents NHC plot for the same building and same period 

with predictions gained from the MLR model. Most of the deviations that appear in Figure 

4.22 do not appear for the same day in Figure 4.23. That means that the deviations are not a 

consequence of system operation faults, but a result of inaccuracies in the simple linear 

regression model.        

4.3.5 Covering nonlinearity in HVAC system operation by 

different data grouping 

Different data groupings should cover inaccuracies of LR model, which are a 

consequence of different phenomena that introduce time delays (subchapter 3.3). Two 

examples will demonstrate how different data groupings should be used to accurately assess 

HVAC system performance.   

Figure 4.24 presents heat consumption of an NTNU campus building. We recognize 

that after 21
h
, heat consumption gradually decreases until midnight. This could be because 

heat consumption corresponds to more than one aggregate in the HVAC system. It seems that 

aggregates have different time settings that define decreased night operation. During the 

morning (between 8
h
 and 12

h
), at the beginning of day control regime, higher heat 

consumption appears compared to the rest of a day. This may be because temperatures are 
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lower in the mornings than during the afternoon. The other reason could be that the building 

walls must warm up after the night temperature set-back. Figure 4.25 presents NHCs gained 

from the model with hourly data grouped by control regimes. This data grouping could not 

cover the gradual decrease of heat consumption from 21
h
 to 24

h
, so deviations of NHCs 

appear in that period. It can be also recognized that NHCs are higher during the morning 

(between 8
h
 and 12

h
).  

 

Figure 4.24 Heat consumption plot of a NTNU campus building  

 

Figure 4.25 Normalized heat consumption plot of an NTNU campus building generated from 

the model with hourly data grouped by control regimes 
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Figure 4.26 presents NHCs from the same NTNU campus building gained from the 

HOD model. Night NHC deviations and higher NHCs during mornings disappeared in this 

figure. It can be concluded that the HOD grouping covered the effect of the morning warm 

up, while hourly data did not cover those effects.  

 

Figure 4.26 Normalized heat consumption plot of an NTNU campus building gained from 

HOD data 

The second example will demonstrate grouping with mean values grouped by regimes. 

This way of grouping should result in smaller NHC deviations than models using hourly 

grouping. However, deviations (faults in HVAC operation) sometimes appear on an hourly 

basis, and models using mean values or daily data cannot show them.  

 

Figure 4.27 Normalized heat consumption plot of an NTNU campus building gained from the 

model with mean values grouped by regimes 



Ch. 4.3 Steps of the building energy performance analysis method 

73 

 

Figure 4.28 Normalized heat consumption plot of an NTNU campus building gained from the 

model with hourly data grouped by control regimes 

Figure 4.27 shows NHCs of an NTNU campus building obtained from the model with 

mean values grouped by regimes. Heat consumption was lower than predicted by the model 

on May 3, 2007 and May 4, 2007. Heat consumption was also lower during the night regime 

on May 7, 2007. NHC deviations are not so great other days. Figure 4.28 presents NHCs for 

the same building gained from the model with hourly data grouped by control regimes. This 

figure explains what happened on May 3 and 4. The system started to work with reduced 

operation on May 3, 2007 at 14
h
. This problem lasted until 14

h
 next day. Reduced operation 

can also be identified during the night between May 6 and 7. However, we recognize that 

reduced operations also appeared during other days, which we could not identify in Figure 

4.27. 

 

4.4 Savings measurement and verification 

 

Figure 4.29 Buttons of the tool for modeling and analyzing building heat consumption used 

for savings measurement and verification 

Tool for modeling and analysis of building heat consumption enables evaluation of 

savings measurement by comparing predictions of heat consumption that are gained from 

models corresponding to pre-retrofit and post-retrofit operations. LR calculations are 

conducted for monitoring periods before and after the retrofit in order to obtain LR 

coefficients that characterize pre-retrofit and post-retrofit operation. The coefficients are 
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saved after every linear regression calculation. The ‗Save Coeff. 1‘ button saves LR 

coefficients for the pre-retrofit monitoring period. ‗Save Coeff. 2‘ saves LR coefficients for 

the post-retrofit monitoring period. Since control regime schedules can be changed during 

retrofit, independent variables for which LR coefficients will be applied have to be grouped 

according to the control regimes schedules. ‗Save T. Sch. 1‘ and ‗Save T. Sch. 2‘ save 

independent variables grouped according to schedules in the pre-retrofit and post-retrofit 

operations, respectively. After that, the user can press the ‗Comparison‘ button to get the ratio 

of heat consumption calculated with LR coefficients gained from post-retrofit and pre-retrofit 

operation. Energy savings are accomplished if the ratio is lower than 100%.         

 

4.5 Linear regression calculation functions in the tool for 

modeling and analyzing building heat consumption  

Simple or multiple linear regression calculation with different data resolutions are 

conducted by pressing one of the seven buttons in the ‗CALCULATE‘ palette (Figure 4.30). 

Calculations are conducted by pressing the following buttons: 

- ‗Calculate‘ - simple linear regression with hourly data grouped by regimes. This 

function is not used for modeling heat consumption, but to determine uncorrected 

and corrected energy signature lines, which are used to determine the control 

regime schedule.    

- ‗Simple LR Regimes‘ - simple linear regression with hourly data grouped by 

regimes. 

- ‗Multi LR Regimes‘ - multiple linear regression with hourly data grouped by 

regimes. 

- ‗Simple LR 24 Hours‘ - simple linear regression with HOD grouping. 

- ‗Mult LR 24 Hours‘ - multiple linear regression with HOD grouping. 

- ‗Simple LR Reg Mean‘ - simple linear regression with mean values (also used for 

calculation with daily data). 

- ‗Multiple LR Reg Mean‘ - multiple linear regression with mean values (also used 

for calculation with daily data). 

 

Figure 4.30 Buttons in the ‗CALCULATE‘ palette of the tool for modeling and analyzing 

building heat consumption  
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Calculations for every function assigned to one of seven buttons in the ‗CALCULATE‘ 

palette are carried out for the monitoring period defined in the monitoring period palette 

(Figure 4.5). All functions use the special function that determines the base level 

consumption and change point temperature. The function follows the algorithm presented in 

Kissock et al. (2003). Simple linear regression with outdoor air temperature as the 

independent variable is used to determine the BLC and CPT. All functions eliminate data 

points from the linear regression with temperatures greater than the change point. 

Only function the ‗Calculate‘ uses a limit to determine outliers. A discussion regarding 

uncorrected and corrected energy signature lines is in subchapter 4.2. Other functions use R-

student residuals to determine outliers and eliminate them from calculation. A flow diagram 

of a general algorithm used for all seven functions is presented in Figure 4.31. The algorithm 

consists of the three steps presented in Figures 4.32, 4.33 and 4.34. Details and deviations 

from the presented algorithms for each of the seven functions will be explained after 

presenting the algorithms in Figures 4.31 - 4.34.   

The first step in the flow diagram presented on Figure 4.32 is data loading. Data are 

loaded from a file with a .mat extension. Details about saving monitoring data and 

meteorological data are presented in chapter 4.2. The file includes a matrix ‗datum‘ that 

defines the beginning and end of the monitoring period as well as heat consumption and 

meteorological data. 

The calculation period is defined with a separate function. This function takes the dates 

of the beginning and the end of the calculation period and shortens them so that the period 

begins with Monday and ends with Sunday. This is important because regimes are defined by 

week days, so the calculation period must fit the regimes. 

Transformation of monitoring data to four matrixes with 24 columns enables the 

program to handle all kind of matrixes with heat consumption data and meteorological data. 

Each row of the matrixes corresponds to a single day. The first member of each matrix gained 

after transformation corresponds to 1
h
 at Monday, while the last member of each matrix 

corresponds to midnight between Sunday and Monday. 

 

 

 

 

 

 

 

 

Figure 4.31 Flow diagram of general algorithm  

The last step in preparing the monitoring data for calculation is to copy data from four 

matrixes gained in the previous step into a set of column matrixes. The first column matrix of 

Calculation of heat consumption predictions  

Start 

Preparation of monitoring data for calculation 

data 

Linear regression calculation 

End 
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a set corresponds to heat consumption monitoring data, and the other three to outdoor air 

temperature, sun radiation and wind speed. A Matlab function performing linear regression 

demands that dependent and independent variables are in the form of column matrixes. One 

set of column matrixes has two column matrixes for simple LR, or four matrixes for multiple 

LR. In the following text and flow charts, four column matrixes will be mentioned, assuming 

that only two column matrixes exist in the case of simple linear regression, instead of four.  

Each set of column matrixes corresponds to the control regime in the case of calculations 

with the hourly vales grouped by regimes or calculation with mean vales grouped by regimes. 

For HOD calculation, there are 48 sets of column matrixes. To calculate with daily data, there 

are two sets that correspond to weekday and weekend operation.  Before sorting data into sets 

of column matrixes, it is necessary to calculate the mean values of the monitoring data from 

the hourly data for calculations with daily data, or calculate the mean values grouped by 

regimes. Linear regressions are conducted in the next step of the general algorithm. Data are 

now sorted and prepared for linear regression.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.32 Flow diagram of the preparation of monitoring data for calculation  

Figure 4.33 presents a flow diagram for the linear regression calculation step. The 

whole procedure is repeated as many times as the number of sets of column matrixes, so n 

represents the number of column matrix sets.  

 

  

Preparation of monitoring data for calculation 

data 

Loading monitoring data 

 Heat consumption (Q) and meteorological data (outdoor air temperatures – 

T, wind speed – W and solar radiation – S) 

Definition of calculation period  

Transformation of monitoring data to four matrixes with 24 

columns which correspond to calculation period 

Copying data from four matrixes to column matrixes  
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Figure 4.33 Flow diagram for the linear regression calculation step 
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CPT and BLC are changed from regime to regime, or from weekday to weekend 

operation. Accordingly, CPT and BLC calculations are performed; they correspond to 

regimes for calculations with hourly data and calculations with mean values grouped by 

regimes. Calculations with daily data and the HOD grouping use CPTs and BLCs that 

correspond to weekdays and weekends. The CPT is lower than the indoor temperature of the 

building because of heat gains that change from unoccupied to occupied periods. The BLC is 

a consequence of using hot tap water, so it changes from unoccupied to occupied periods. 

Unoccupied and occupied periods correspond to regimes. This means that calculation of CPT 

and BLC according to regimes should be correct. Change of operation from weekdays to 

weekends also corresponds to changes from unoccupied to occupied periods. It would be 

more proper to follow daily changes of CPT and BLC in the HOD model by calculating those 

parameters for every hour of weekday and weekend operation. However, that calculation 

could be inaccurate, since there may be too few data points for calculation. As a result, CPT 

and BLC are calculated for weekends and weekdays for the HOD model. 

CPTs and BLCs are determined with simple LR calculation with outdoor air 

temperature as the only independent variable. Since the CPT is lower than the indoor 

temperature of the building because of solar radiation, among other heat gains, it is logical to 

calculate CPT with multiple linear regression involving solar radiation. This would mean that 

CPT would be dependent on solar radiation. However, such a procedure does not exist in the 

literature.  

If the outdoor temperature is greater than CPT, then that data point is eliminated from 

calculation by deleting it from four column matrixes. Instead of this procedure, an indicator 

variable I (equation 3.16) could be used to separate data below and over CPT. Since LR 

model implementation with an indicator variable is not possible with the ‗regress‘ function in 

Matlab, the data have to be separated over and below change point. The LR calculation is 

performed after eliminating data points that exceed the change point. 

The ‗CALCULATE‘ pallet (Figure 4.30) includes the check box ‗Exc Resid‘. If it is 

checked, the program eliminates outliers. It is checked if the R-student statistics for every 

data point are higher than 2 after the linear regression calculation. If there are such points, 

linear regression is repeated with the data set that does not contain outliers until all outliers 

are eliminated. Results of the LR calculation step are linear regression coefficients that are 

used in the next step to define heat consumption predictions. 

Figure 4.34 presents a flow diagram for the calculation of heat consumption 

predictions. It is checked for every data point if the outdoor air temperature is lower than 

CPT, so a prediction is calculated from coefficients of linear regression multiplied by 

independent variables or it is equal to BLC. Finally, NHCs are calculated as a ratio of real 

heat consumption and predicted heat consumption. The specification of each of the seven 

functions will be discussed now.    
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Figure 4.34 Flow diagram for the calculation of heat consumption predictions step 

Calculate 

This function conducts simple linear regression with hourly data grouped by regimes, 

(Table 3.1). The same data set is used as in the linear regression of the function ‗Simple LR 

Regimes‘. The function ‗Calculate‘ is not used to model heat consumption predictions, but to 

recognize control regimes by reviewing uncorrected and corrected energy signature lines 

(subchapter 4.3.1). It is the only function that uses a limit to determine outliers in the linear 

regression calculation step. The function follows algorithms presented in Figures 4.32 and 

4.34. The linear regression calculation step is different from the algorithm shown in Figure 

4.33. The first linear regression calculation determines the uncorrected energy signature line. 

This calculation is done with the function that determines BLC and CPT. The generated 

energy signature line represents heat consumption prediction, which is then used to decide if 

actual heat consumption are within the set limit (20% is the default value which can be 

changed). The corrected energy signature line is determined through linear regression of data 

points within the limit.  

Simple LR Regimes 

This function conducts simple linear regression calculation with hourly data grouped by 

regimes. The function fully follows the presented algorithm except that, instead of four 

column matrixes, only two column matrixes are used. 

  

Calculation of heat consumption predictions  
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Multi LR Regimes 

Multiple linear regression is performed with this function with hourly data grouped by 

regimes. All functions that involve multiple linear regression perform the procedure for 

determining the wind independent variable. Discussion about the wind independent variable 

is presented in subchapter 3.6.1. Three different formulas are used to define the wind 

independent variable: 

        (4.1) 

      (4.2) 

      (4.3) 

where: 

 - wind speed in m/s 

 – indoor air temperature (20°C is used for all calculations) 

 – outdoor air temperature 

Since data points with temperatures over CPT are not used in linear regression, the 

independent variable defining the wind influence is always positive. It is possible to introduce 

other wind speed power in equations 4.1 – 4.3, except 1, 2 or 0.5. It is assumed that three 

presented cases will cover the various phenomena. 

Three linear regression calculations are conducted with three different wind influence 

independent variables defined by one of three equations 4.1 – 4.3. The coefficient of 

determination (R
2
) is defined for every linear regression calculation. The model with the 

highest R
2
 value is selected. The coefficient of determination is the main criteria for 

evaluating the goodness of fit in linear regression calculations and selecting a proper linear 

regression model (Walpole 2007). It demonstrates the extent of the variation of the dependent 

variable explained by the model. The equation for coefficient of determination is: 

        (4.4) 

where:  

 - total sum of 

squares; 

SSR – regression sum of squares; It represents explained variation; 

SSE – error sum of squares; It represents unexplained variation; 

 – prediction gained from linear regression for the i
th

 data point; 

 - mean value of dependent variable; 
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 - dependent variable for the i
th

 data point. 

The numerator in equation 4.4 represents the variation of the dependent variable that is 

explained by the model, while the denominator is the overall variation. Walpole (2007) also 

defines an adjusted coefficient of determination (R
2

adj), which is more appropriate for 

comparing models with different numbers of independent variables than R
2
. This coefficient 

is R
2
 adjusted for degrees of freedom, i.e., for number of independent variables and number 

of data points. Since models involving different wind power have the same number of 

degrees of freedom, it is not necessary to use R
2

adj. Thus, using R
2
 is adequate.  

After determining the power of the wind influence independent variable, the next step 

is eliminating the residuals. The selected wind influence independent variable is used to 

predict heat consumption. Determining the wind influence is conducted for the column 

matrix set. This is logical because the column matrix sets correspond to unoccupied and 

occupied hours, when the windows are opened by occupants. The procedure for determining 

the power of wind influence independent variable is conducted in every function with 

multiple linear regression that involves wind speed.      

Simple LR 24 Hours 

This function conducts simple linear regression with the HOD data grouping. 

Calculations of BLC and CPT in this function and the function ‗Mult LR 24 Hours‘ is done 

for data grouped in weekend and weekdays, i.e. not for every hour. Calculations could be 

done separately for every hour, but due to the risk that too few data points would be involved 

in the calculations this is not done in this thesis.       

Mult LR 24 Hours 

The only difference between this and the previous function is that ‗Mult LR 24 Hours‘ 

uses multiple linear regressions. The procedure for determining wind independent variable is 

done for every hour. If the occupants open the windows in the morning when they come to 

work, that can be recognized by a change in the power for the wind independent variable or 

by a change in the value of the linear regression coefficient corresponding to wind influence. 

A change in the direction of the sun in combination with the building orientation can be 

covered by this model. If linear regression coefficients corresponding to sun radiation have 

higher values during the morning, then the building has an eastern orientation. A western 

orientation should cause higher regression coefficient values during the afternoon.    

Simple LR Reg Mean 

This function performs simple linear regression with mean values and daily data. Mean 

values of hourly data are calculated in preparation of the monitoring data for the calculation 

step (Figure 4.32). It is necessary to eliminate hourly data points that correspond to 

temperatures over CPT from calculation of mean values, since during a period corresponding 

to one regime, or during a day, the temperature may rise above the CPT. Mean values are 

calculated for data points with temperatures lower than CPT. CPTs and BLCs are calculated 

for each regime for calculation with mean values grouped by regimes. For calculation with 

daily data, CPTs and BLCs are calculated for weekdays and weekends. There is no need to 
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check if temperatures are over the CPT in the linear regression calculation step (Figure 4.33) 

as in other functions, since this is checked already in preparation of monitoring data for 

calculation step. Regarding the calculation of heat consumption predictions step (Figure 

4.34), if all temperatures during the period corresponding to a control regime or day are 

greater than the CPT, a prediction of heat consumption is equal to BLC. For the opposite 

case, heat consumption predictions are calculated from linear regression coefficients.  

Multiple LR Reg Mean  

All features explained for the previous function apply to this function. The only 

difference is that multiple LR is conducted instead of simple LR.  
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5. Evaluation of proposed method 

The building energy performance analysis method proposed in this thesis will be 

estimated qualitatively and quantitatively. Qualitative evaluation will identify O&M 

problems of space heating and ventilation system of NTNU campus buildings using the 

proposed method. This will be presented in chapter 6. Quantitative analysis will evaluate 

different features implemented in the heat consumption model. The following model features 

are implemented in order to refine model: 

- Simple and multiple linear regression modeling 

- Different data resolution implemented in linear regression calculation 

- Excluding outliers  

In addition to these features, quantitative analysis will analyze the monitoring sample 

duration necessary to get a representative model. 

5.1 Evaluation of simple and multiple linear regression 

models  

Introducing multiple linear regression should increase the goodness of fit. This can be 

checked if R
2
 for models gained through single and multiple linear regressions are compared. 

This represents stepwise regression. Results of modeling for a number of analyzed buildings 

will be presented for each data grouping.  

Experiment results are analyzed by the mean value and variance if experiment 

parameters are fixed during the experiment. Linear regression must be used for experiments 

whose parameters that determine the outcome of the experiment are not fixed. In this case, 

the mean value and variance do not give the necessary information, since results vary with 

changes of parameters, i.e. independent variables. R
2
 is introduced in order to evaluate 

variance. Adjusted coefficient of determination R
2

adj has to be used in order to compare LR 

calculation results conducted with data sets with different numbers of independent variables 

and different numbers of data points. Excluding outliers causes the number of data points 

involved to vary. Including more independent variables in multiple regression model is also a 

reason to use R
2

adj. R
2
 is expressed in equation 4.4. R

2
adj is: 

        (5.1) 

where:  

SST – total sum of squares 

SSE – error sum of squares 

n – number of data points 

k – number of independent variables 

There is no significant difference between R
2

adj and R
2
 if k is much smaller than n and n 

is fixed value. Since k is equal to three and n is number of data points gained from 
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monitoring intervals longer than three months, n is significantly higher than k. This means 

that the difference between R
2

adj and R
2
 is insignificant. In the remaining text, R

2
 will be 

discussed, although R
2

adj was calculated.  

Linear regressions are conducted for each column matrix set. R
2
, SST and SSE are 

calculated by summing differences expressed in equation 4.4 for data points belonging to 

column matrix sets. Evaluation of the improvement by introducing multiple linear regression 

models will be done for four data groupings: hourly data, HOD, mean values and daily. 

Linear regression calculations for each data grouping are performed for the same set of data 

points. The model evaluation is based on the analysis of coefficients of determination, 

sequential sum of squares and linear regression coefficients. Subchapter 5.2 compares results 

of LR for different data groupings. Coefficients of variation are used to determine which data 

grouping gives the most precise heat consumption prediction. Results of modeling ventilation 

heat consumption are presented separately. Part of the NTNU University campus (Dragvoll) 

has electric heating, so that district heating is used for ventilation heating and preparation of 

hot tap water. Measurements for other buildings correspond to mixed heat consumption of 

space heating and ventilation system. Since the same LR model is used for both systems, it 

was possible to simultaneously model heat consumption for both systems with one LR 

formulation.  

5.1.1 Hourly data grouped by regimes 

Hourly data grouped by regimes, are presented in Table 3.1. A sequential sum of 

squares evaluates how much variation is attributed to an individual variable (Walpole 2007): 

R(β3| β1, β2)=SSR- R(β1, β2)        (5.2) 

where:  

R(β3| β1, β2) – sequential sum of squares for independent variable x3 

SSR - regression sum of squares gained from calculating involving all three 

independent variables 

R(β1, β2) – regression sum of squares for calculation involving x1 and x2 

If an independent variable, e.g. x3, does not contribute significantly to the overall variation, 

the sequential sum of squares for x3 (R(β3| β1, β2)) will be lower than the sequential sum of 

squares for other variables.  

R
2
 and the sequential sums of squares (SSS) will be calculated separately for each 

regime (column matrix set). Since the mean value of the dependent variable that would be 

calculated for all data has no meaning because system performance changes through control 

regimes, calculations of R
2
 for all data is meaningless. In order to get an overall estimator of 

the calculation, the overall adjusted coefficient of determination R
2

overall is calculated by 

summing deviations from mean values corresponding to separate column matrix sets:  

      (5.3) 

where:  
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  - mean value of the dependent variable for the j
th

 column matrix set 

n_r – number of column matrix sets 

n_j - number of data points in j
th

 column matrix set 

 - number of all data points  

k – number of independent variables 

The same equation is also used for other groupings. This enables goodness of fit to be 

compared for different data groupings. Sequential sums of squares are calculated separately 

for every column matrix set.  

Correction of R
2

overall for number of degrees of freedom is insignificant since  is 

far greater than k. This means that the difference between overall adjusted coefficient of 

determination and overall coefficient of determination is insignificant. Overall coefficient of 

determination is obtained from equation similar to equation 5.3 that does not include 

correction for degrees of freedom. In the remaining text, overall coefficient of determination 

will be discussed, although overall adjusted coefficient of determination was calculated. 

5.1.1.1 Ventilation system 

The results of linear regression for the NTNU campus building Dragvoll 3 are 

presented in Tables 5.1 - 5.7. This building is selected as representative for stepwise 

regression since it has significant solar gains. The results presented in Tables 5.1 - 5.4 were 

obtained from calculations not implementing excluding outliers, while the results presented in 

Tables 5.5 - 5.7 are obtained from calculations implementing excluding outliers. There are 

four regimes in operation for the Dragvoll 3 ventilation system. The linear coefficient β1 for 

the control regime Monday-Friday 8
h
-20

h
 is higher than the other β1 coefficients in Tables 5.1 

and 5.2. The other β1 coefficients have similar value, which means that both weekend control 

regimes and night weekday control regimes are the same. However, a distinction between 

days and nights allows the influence of the sun to be analyzed for the weekend day regime. 

The signs of linear coefficient β3 in Table 5.2 are negative, which means that the sun causes 

decreased heat consumption. Coefficient β3 has a lower value for weekend day regime. This 

may be because of a computational fault due to the small number of data points for this 

control regime.  

 β0 β1 (Temperature) 

Weekday 8
h
 -20

h
 14.62 61.58 

Weekday night 16.18 26.00 

Weekend 8
h
 -20

h
 8.95 25.86 

Weekend night 4.59 23.45 

Table 5.1 LR coefficients of simple linear regression for calculation without excluding 

outliers    

β1 and β0 for the weekday day regime changed significantly when introducing the 

multiple LR model. Other LR coefficients did not change significantly. Table 5.4 presents 

sequential sums of squares. It demonstrates that the contribution of solar gains is significant 
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for the weekday day regime. β1 and β0 for simple linear regressions comprise those 

influences. Multiple LR changed β1 and β0 by separating the influences.  

 β0 β1  (Temperature) β2 (Wind) β3 (Sun) 

Weekday 8
h
-20

h 
120.61 54.91 0.5422 -0.1392 

Weekday night 4.66 24.35 0.7267 -0.1864 

Weekend 8
h
-20

h
 26.77 23.60 0.5059 -0.0433 

Weekend night 2.20 20.59 0.8419 -0.2004 

Table 5.2 LR coefficients of multiple linear regression for calculation without excluding 

outliers    

The coefficients of determination in Table 5.3 are low. R
2
s in other literature sources 

are higher than 70%. This may be because the LR model could not fully capture significant 

solar radiation due to time delays that result from the thermal storage effect. It is expected 

that excluding outliers will increase R
2
. The R

2
 values of multiple LR for all control regimes, 

as well as R
2

overall, are higher than for simple LR. It is concluded that multiple linear 

regression have increased the goodness of fit. Weekends have a higher R
2
 than weekdays, 

which can be explained by variations due to building occupancy.  

    
Weekday  

8
h
 -20

h
 

Weekday  

night 

Weekend  

8
h
 -20

h
 

Weekend  

night 

Simple 

R
2
 64.52 % 59.59 % 77.71 % 74.23 % 

R
2

overall 65.26 % 

Multiple 

R
2
 67.19 % 61.93 % 79.85 % 77.39 % 

R
2

overall 67.92 % 

Table 5.3 Coefficients of determination for four regimes of NTNU‘s building Dragvoll 3, 

obtained through simple and multiple linear regression for calculation without excluding 

outliers    

Sequential sum of squares is a measure of the improvement of introducing single 

influences into the model. SSS in Table 5.4 shows, as expected, that outdoor temperature has 

the greatest influence on building heat consumption for all regimes. SSS for day control 

regimes that correspond to the influence of the sun has higher values than those 

corresponding to wind. This shows that the sun contributes more to changing building heat 

consumption than wind during the day. The sun even contributes during hours before 8
h
 and 

after 20
h
 because the days are long in the spring in Norway. However, SSS for the sun is 

much lower than for other influences for night regimes. 
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Control regime 
Weekday  

8
h
 -20

h
 

Weekday  

night 

Weekend  

8
h
 -20

h
 

Weekend  

night 

SSS Temperature 74 637 000 12 875 000 7 773 500 4 924 000 

SSS Wind 362 500 524 180 133 470 279 870 

SSS Sun 4 716 500 95 838 181 840 72 221 

Table 5.4 Sequential sums of squares for four regimes of NTNU‘s building Dragvoll 3 for 

calculation without excluding outliers   

Tables 5.5 and 5.7 present results for calculation implementing excluding outliers. LR 

coefficients presented in Table 5.5 demonstrate changes from those presented in Table 5.2. 

The most significant change appeared with β3 for the weekday day regime. It seems that 

excluding outliers has removed data points from calculation when sun influence was 

dominant. This may be because the model did not capture sun influence in the first 

calculation when all data points were included. Due to the time delay of the sun influence, 

hourly heat consumption does not correspond fully to hourly solar radiations. That is why β3 

can be underestimated in the initial calculation. When determining the outliers, data points 

with high solar influence were not adequately represented by the model, so they were 

recognized as outliers even though they may not be outliers. The SSS corresponding to the 

sun influence during the weekday day control regime (table 5.7) has a much lower value than 

in Table 5.4. This proves that data points with high sun influence were recognized as outliers 

and excluded. Analysis of excluding outliers will be presented in subchapter 5.3.  

 β0 β1  (Temperature) β2 (Wind) β3 (Sun) 

Weekday 8
h
 -20

h 
-48.673 68.846 0.8990 -0.0494 

Weekday night 6.8346 22.762 0.7374 -0.1202 

Weekend 8
h
 -20

h
 -25.826 29.819 0.1728 -0.0184 

Weekend night -39.043 24.315 0.8001 -0.1810 

Table 5.5 Coefficients of multiple linear regression for calculation with excluding outliers 

R
2
 presented in Table 5.6 is higher than R

2
 in Table 5.3, as expected. However, this 

does not mean that the calculation involving procedure of excluding outliers gave a more 

accurate prediction of the building HC. The difference between the simple and multiple LR is 

not as significant in Table 5.6 because solar influence is neglected.  
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Weekday  

8
h
 -20

h
 

Weekday  

night 

Weekend  

8
h
 -20

h
 

Weekend  

night 

Simple 

R
2
 89.76 % 78.37 % 91.38 % 87.19 % 

R
2

overall 88.77 % 

Multiple 

R
2
 89.58 % 78.85 % 91.38 % 88.79 % 

R
2

overall 88.84 % 

Table 5.6 Coefficients of determination for four regimes of NTNU‘s building Dragvoll 3 

obtained with simple and multiple linear regression for calculation with excluding outliers 

Control regime 
Weekday  

8
h
 -20

h
 

Weekday  

night 

Weekend  

8
h
 -20

h
 

Weekend  

night 

SSS Temperature 89 577 000 9 454 400 8 158 900 4 535 400 

SSS Wind 837 250 469 640 14 059 225 010 

SSS Sun 467 090 38 753 22 204 41 950 

Table 5.7 Sequential sums of squares for four regimes of NTNU‘s building Dragvoll 3 for 

calculation with excluding outliers  

To conclude, the model did not cope properly with solar influence. More reliable results 

seem to be gained with linear regression without excluding outliers. Introducing multiple LR 

increased the goodness of fit. Results of the LR with hourly data for four additional 

ventilation systems are presented in Appendix A.2. Dragvoll Idrettsbygg and Dragvoll 8 

buildings have the highest R
2

overall of all buildings with ventilation systems (Tables 0.27 and 

0.31). Two day regimes for both of these buildings have β1 coefficient values, so regimes are 

not changed from weekdays to weekends (Tables 0.26 and 0.30). Introducing MLR did not 

significantly improve the R
2
 for two day regimes (Tables 0.27 and 0.31). SSS for wind and 

solar influences are not significant (Tables 0.28 and 0.32). β0 and β1 did not change when 

introducing multiple LR model for two day regimes. R
2
 for the weekend has a higher value 

than for weekdays, due to lower occupancy of the Dragvoll Idrettsbygg building (Table 0.27). 

β3 for the weekday day regime is positive for Dragvoll Idrettsbygg building and for Dragvoll 

8 building for the weekend day regime (Tables 0.26 and 0.30). This is not important because 

solar radiation is not significant for these two buildings.     

SSSs corresponding to wind and solar radiation influence for the Dragvoll 2 building 

are significantly lower than the SSS for outdoor temperature (Table 0.38). R
2

overall did not 

improve significantly by introducing the MLR model (Table 0.37). LR coefficients β1 shows 

that there is no difference between weekend and weekday day regimes (Table 0.36). All night 

regimes belong to one control regime. The weekday day regime has much lower R
2
 than 

other regimes, probably due to occupancy (Table 0.37).  
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Figure 5.1 Hourly heat consumption of Dragvoll 9 for the day regime 

Coefficients of determination for Dragvoll 9 building are poor (Table 0.34). Hourly 

heat consumption of the day control regime for this building is presented in Figure 5.1. There 

are obviously many variations that are not explained by changes in outdoor temperature. 

Although R
2
 increased when introducing multiple LR, the improvements are not significant. 

To conclude, the models did not capture variations introduced by other influences (solar 

radiation or occupancy).  

5.1.1.2 Space heating system 

Appendix A.1 presents LR calculation results for six buildings with mixed heat 

consumption of space heating and ventilation system.  

Building Sentral Bygg 1 has the same control regimes during nights and weekends. R
2
 

did not improve much by introducing the multiple linear regression model (Table 0.3). The 

SSS corresponding to sun influence has low values compared with SSSs for other influences 

(Table 0.4). That means that HC is not influenced much by the sun, so a positive value of 

coefficient β3 for the weekday day control regime is an insignificant computational fault 

(Table 0.2). Wind influence is more significant (Table 0.4), so improvement of R
2
 is a result 

of introducing wind influence into the MLR model. All β1 coefficients are lower for MLR 

than for the SLR model as a consequence of introducing wind influence into the LR model 

(Tables 0.1 and 0.2).  

Wind influence is insignificant for the Sydområdet NHL Forskning building (Table 

0.8). The improved R
2
 is a result of introducing solar radiation into the LR model. R

2
 is 

higher for day than for night operation (Table 0.7).   
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R
2
 for the Gamle-fysikk and Berg buildings is not significantly changed by introducing 

the MLR model (Tables 0.11 and 0.15). Both wind and solar radiation influences have 

approximately equal contributions to HC variation of those buildings (Tables 0.12 and 0.16). 

β3 for day control regime is positive for the Gløshaugen Idrettsbygg building (Table 

0.18). Since large SSS is attributed to solar radiation for this control regime (Table 0.20), the 

MLR model did not address sun influence correctly.   

 There is no difference between day and night operations for the Varmetekniske 

laboratoriet building (LR coefficients in Tables 0.21 and 0.22). Influences other than the 

outdoor temperature were not significant (Table 0.24).  

 For most of the buildings, the R
2
 is higher for night than for day, owing to lower HC 

variation due to internal heat gains. R
2
 has increased for all buildings by employing the MLR 

model. However, it cannot be concluded that the MLR model is significantly more accurate 

than the SLR model for this way of grouping data. A similar analysis for other data groupings 

will be presented for the same buildings.  

5.1.2 HOD grouping  

Appendix B presents results for modeling building HC with the HOD grouping.  

5.1.2.1 Ventilation system 

A complete set of tables is presented for the Dragvoll 3 building in Appendix B.2, 

while for the remaining four buildings, tables of special interest will be analyzed. 

Coefficient β1 shows a difference between regimes for the Dragvoll 3 building (Tables 

0.57 and 0.58). It is evident that the weekday day regime lasts from 8
h
 - 20

h
. The control 

regime is unchanged during weekend days. Coefficient β3 is negative or equal to zero for 

every hour. Coefficient β2 is negative for 8
h
 - 12

h
 during weekdays. The SSS for solar 

influence are much higher compared to the SSS for wind during this period of the day (Table 

0.60). We conclude that the negative β2 (calculation fault) did not significantly influence 

accuracy. Introducing multiple linear regression model increased overall R
2
 from 68.60 % to 

74.43 %, i.e. 5.83 % (Table 0.59). In the case with hourly data, this coefficient increased from 

65.26 % to 67.92 %, i.e. 2.66 % (Table 5.3), so the HOD grouping addressed solar influence 

more appropriately. Solar influence is more dominant than wind influence, according to SSS 

(Table 0.60), so improvement can be attributed to introducing solar radiation into the MLR 

model. SSS for solar radiation and outdoor air temperature influences for day regimes (8
h
 - 

20
h
) are values of the same order (Table 0.61), which was not the case with calculation with 

hourly data (Table 5.4). The SSS for this regime is 11 875 829.  For the same regime, the SSS 

obtained through calculation with hourly data was 4 716 500. The HOD grouping coped 

better with solar influence than the calculation with hourly data.  

Coefficients β0 and β1 are changed by introducing the MLR model for weekdays 

between 8
h
 and 20

h
 (Table 0.57). Solar and wind influences were not as important for the 

other hours (Table 0.60), so those coefficients are not significantly changed by introducing 

the MLR model.  
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Coefficient β3 is higher during the morning than during the afternoon (Table 0.57). If 

the LR coefficient is higher, that means that the dependent variable, i.e., building heat 

consumption, is more sensitive to changes in the corresponding independent variable. The 

building is probably oriented to the east, so morning sun has more influence than afternoon 

sun. The SSS have higher values for 9
h
, 10

h
, 16

h
 and 17

h
 than for the rest of day (Table 0.60). 

This is a consequence of a lower sun elevation angle for those hours. 

Unoccupied hours have generally higher R
2
 than occupied hours, which means that 

building occupancy introduced unexplained variations in building HC (Table 0.59). 

Improvement of overall R
2
 gained by introducing MLR model is not as significant for 

calculation with excluding outliers, from 88.46% to 90.66%, i.e., 2.19% (Table 0.62). For 

calculations with hourly data, this coefficient increased from 88.77% to 88.84%, i.e., 0.07% 

which is negligible (Table 5.6). Excluding outliers completely excluded sun influence in 

calculation with hourly data, because data points with significant solar influence were 

recognized as outliers because the model did not initially explain solar influence correctly. 

The SSS for solar radiation are much lower for calculation with excluding outliers (Table 

0.63), but it seems that many fewer data points with high solar radiation were excluded than 

in the calculation with hourly data. That means that, initially, in calculation without excluding 

outliers, solar influence was better modeled. However, the HOD model did not fully consider 

variations due to solar radiation, since the SSS for a weekday day regime (8
h
 - 20

h
)  is 3 

185 496 (Table 0.63), which is much lower than the 11 875 829 gained for calculation 

without excluding outliers (Table 0.61).    

    

Figure 5.2 Hourly heat consumption of Dragvoll Idrettsbygg building 

The overall R
2
 for the Dragvoll Idrettsbygg building for simple linear regression is 

88.79% (Table 0.65), which is much higher than for calculating with hourly data (70.72%). 

This improvement is a consequence of inadequate covering of morning and evening transition 

regimes by the model with hourly data. Transition regimes can be recognized in Figure 5.2. 
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R
2
 values are higher for days than for nights as a consequence of transition regimes, and they 

are higher for weekends than for weekdays due to occupancy (Table 0.65). The β3 coefficient 

is positive for some hours in Dragvoll Idrettsbygg (Table 0.64). However, the SSS 

corresponding to sun influence is insignificant (Table 0.66), so this does not cause serious 

inaccuracy of heat consumption predictions.    

The overall R
2
 improved for Dragvoll 8 from 84.28% for the SLR calculation to 

86.15% for the MLR calculation, i.e., 1.87% (Table 0.67). For calculation with hourly data, 

the improvement was from 82.91% to 84.22%, i.e., 1.31%. That means that the HOD model 

copes better with wind and solar radiation influences. The SSS for wind and solar radiation 

influences are low (Table 0.68).  

The SLR calculations gave close R
2

overall for the HOD calculation and calculation with 

hourly data for the Dragvoll 2 building (Tables 0.75 and 0.37), so the HOD model did not 

consider occupancy better than the model with hourly data. Improvement in the overall R
2
 is 

gained by introducing the MLR model for the HOD calculation (Table 0.75). There were no 

significant improvements for calculation with hourly data (Table 0.37), so LR with the HOD 

grouping coped better with solar and wind influences. Excluding outliers did not decrease 

SSS for solar influence (Tables 0.77 and 0.78) as with the Dragvoll 3 building. The R
2
 values 

are lower from 8
h
 to 16

h
 for weekdays than for the other hours (Table 0.75). This university 

building has many auditoriums, so occupancy could introduce many unexplained variations 

during occupied period.      

LR with HOD grouping better coped with solar influence than calculation with hourly 

data for Dragvoll 9 building. The SSS for solar influence shows that the improvement is 

mainly a result of including solar radiation in the model. Excluding outliers did not 

significantly decrease the SSS for solar influence.  

5.1.2.2 Space heating system 

LR coefficients β0 and β1 show changes with different control regimes. The Sentral 

Bygg 1 building has a weekday day regime lasting from 7
h
 to 19

h
 (Table 0.39). It was earlier 

concluded that the sun influence is not significant and that wind influence has some 

significance for this building, according to the SSSs gained for calculation with hourly data. 

According to the SSS presented in (Tables 0.41 and 0.42), the sun influence is more 

significant than the wind because its SSS is higher for most hours during a weekday day. It 

seems that the sun influence is better captured with the HOD grouping than in calculations 

with hourly data. However, the SSS for sun influence is much lower than the SSS for outdoor 

air temperature influence, so improvement of R
2
 by introducing the MLR model is just 

2.12%, from 77.06% to 79.18% (Table 0.40). R
2
 values are from 80% to 90% for the EC 

building in Katipamula (1996). R
2
 are much worse for the BUS building. Most R

2
 values for 

the Sentral Bygg 1 building are also between 80% and 90%. The SSS for calculation with 

excluding outliers shows smaller values for sun influence (Table 0.43), so it can be concluded 

that excluding outliers diminishes the influence of the sun. 

Sydområdet NHL Forskning building also has insignificant sun influence according to 

the SSS corresponding to sun influence gained for calculation with the hourly data. The SSS 

for solar radiation is much higher for the HOD calculation (Table 0.45). The R
2
 value 

improvement by introducing the MLR model (Table 0.44) is also greater than for calculations 

with hourly data. However, calculation with excluding outliers decreased the SSS for solar 
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radiation (Table 0.47) and decreased R
2
 improvement by introducing the MLR model (Table 

0.46), so calculation without excluding outliers did not fully consider solar radiation.   

The HOD calculation captured better wind and solar influences than calculation with 

hourly data for the Gamle-fysikk building, since the SSS for wind and solar influence are 

significantly larger (Table 0.49). Excluding outliers did not decrease the SSS for wind and 

solar radiation (Table 0.51) or decrease the R
2
 improvement by introducing the MLR model 

(Table 0.50), so calculation without excluding outliers fully covered both influences. The 

SSS is higher for solar radiation than for wind influence.  

Gløshaugen Idrettsbygg has a significant SSS corresponding to sun influence for 

calculation with hourly data grouped by regimes. A positive coefficient has appeared in this 

case for the β3 coefficient for the day regime. For calculation with the HOD grouping, the β3 

coefficient was again positive (Table 0.53). However, the SSS corresponding to sun influence 

is not significantly large in this calculation, so the sun does not influence the building heat 

consumption (Table 0.55). For calculation with hourly data, the overall R
2
 for simple linear 

regression is 72.75%. For the same calculation with HOD grouping overall coefficient of 

determination is 79.93% (Table 0.54). Reason for this difference is that calculation with HOD 

grouping better covers effects of heat accumulation or other influences introducing time-

delay for outdoor air temperature.  

R
2
 improvement by introducing MLR model is not significant for Berg and 

Varmetekniske laboratoriet buildings (Table 0.52 and 0.56), so wind and solar radiation did 

not significantly influence heat consumption.  

It can be concluded that LR with an HOD grouping better covers the wind and sun 

influences on building heat consumption than linear regression with hourly data, according to 

results for five buildings with a ventilation system and six with mixed ventilation and space 

heating systems. The R
2
 values had greater increases with the HOD calculations when the 

MLR model is engaged. Sequential sums of squares corresponding to wind and sun 

influences also had higher values for calculations with the HOD grouping.  

HOD calculations produced higher R
2
 values for almost all buildings than the hourly 

calculations. The R
2
 value was analyzed in this part of thesis to evaluate how different data 

groupings coped with different influences. Higher R
2
 does not mean that a LR model better 

predicts heat consumption. A comparison of predictions gained through calculations with 

four groupings will be presented later through analysis of mean bias errors and coefficients of 

variation.     

5.1.3  Mean values grouped by regimes 

Appendix C presents results for modeling heat consumption with mean values. In order 

to compare the goodness of fit of the calculations with different data grouping, it is necessary 

to adapt the overall coefficient of determination R
2

overall (equation 5.3). Mean heat 

consumption belonging to a regime (Table 3.2) is:  

           (5.4) 

 – hourly value of the dependent variable  
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n_h – number of hours belonging to the j
th

 regime during a day 

Overall adjusted coefficient of determination is calculated in this case according to the 

equation: 

     (5.5) 

 – prediction of dependent variable  

  - mean value of dependent variable for the j
th

 regime 

n_h – number of hours belonging to the j
th

 regime during a day 

n_r – number of regimes 

n_j - number of data points in the j
th

 regime 

 - number of all hourly data points  

k – number of independent variables 

The difference between equation 5.3 and 5.5 is that in equation 5.5 the sum of deviations of 

dependent variables from predicted values of dependent variable and mean values of 

dependent variable are multiplied by the number of hours belonging to the j
th

 regime during a 

day - n_h. This was to adjust the overall adjusted coefficient of determination calculated for 

mean values to hours. Thus, it is possible to compare R
2

overall for mean values and hourly 

values.   

5.1.3.1 Ventilation system 

For Dragvoll 3, the overall R
2
 improved from 73.16% to 83.26%, i.e., 10.10% (Table 

0.87). For calculations with hourly data and the HOD grouping, the improvement was 2.66% 

and 5.83%, respectively. The SLR calculation with the HOD grouping had an R
2
 value of 

68.60%, which is significantly lower than 73.16% with mean values. This is because of 

variation introduced by internal gains, since the thermal storage effect should not influence 

ventilation heat consumption. The SSS corresponding to the sun has the same order as the 

SSS corresponding to outdoor air temperature (Table 0.90). For the weekday day regime (8
h
 - 

20
h
), the SSS for solar influence is 21 620 300.  For the same regime in the calculation with 

the HOD grouping, the SSS was 11 875 829, while for calculation with hourly data it was 4 

716 500. Calculation with mean values has captured the solar influence better than both the 

HOD and hourly calculations. However, the sum of squares for solar influence for calculation 

with excluding outliers decreased to 7 031 310 (Table 0.91). This shows that this way of 

grouping also has a problem capturing solar influence. The β0 and β1 coefficients changed for 

all regimes by introducing the MLR model (Table 0.89). For the night regime, solar radiation 

was also influential because of the long days during the spring and summer (Table 0.90).   

For other buildings with ventilation systems, R
2

overall values are higher for the SLR 

calculations with mean values than for the SLR calculations with two previously presented 

data groupings. Dragvoll Idrettsbygg has R
2

overall equal to 95.69% (Table 0.92) which is much 
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higher than 88.79 % gained for the HOD grouping calculation. Since the thermal storage 

effect should not influence ventilation heat consumption, the R
2
 improvement is a 

consequence of averaging variation introduced by internal heat gains.  

R
2

overall improved for Dragvoll 8 from 89.87% for the SLR calculation to 92.01% for 

the MLR calculation, i.e., for 2.14% (Table 0.93). For calculation with the hourly and HOD 

data, improvements were 1.31% and 1.87%, respectively. That means that the model with 

mean values better considers the influence of wind and solar radiation than the HOD and 

hourly model.  

R
2

overall obtained from the SLR calculation for Dragvoll 2 is 78.84% (Table 0.97). The 

SLR for models with hourly and HOD data produced R
2

overall equal to 66.22% and 66.00%, 

respectively. This proves that the calculation with mean values better considered variation 

due to occupancy. The R
2
 value for the weekday day regime is lower than for other regimes 

due to occupancy. The SSS values for solar radiation influence (Table 0.98) are lower than 

for the HOD calculation.    

Dragvoll 9 had significant solar influence in the HOD calculation. The R
2 

improvement 

when introducing the MLR model for calculation with mean values is 6.76% (Table 0.94), 

which is a greater improvement than for the other data groupings. R
2

overall is 64.37% for 

calculation with the MLR model. For the same type of calculation with hourly data and the 

HOD grouping, R
2

overall is 50.45% and 54.35%, respectively. The SSS for solar influence 

(Table 0.95) is also higher than for other groupings, which proves that this grouping best 

takes solar influence into account. Excluding outliers did not decrease the SSS for solar 

influence (Table 0.96). During the night, the ventilation is turned off, so low values of R
2
 are 

not significant (Table 0.94).  

Calculation with the HOD grouping did not produce significantly lower values of SSS 

for solar influence than calculation with mean values. This shows that the HOD grouping 

considers solar influence well, and that this data grouping is preferable if hourly predictions 

should be produced for buildings with significant solar gains.  

5.1.3.2 Space heating system 

R
2

overall improved for Sentral Bygg 1 from 90.27% for the SLR calculation to 93.28% 

for the MLR calculation, i.e., 3.01% (Table 0.80). R
2

overall improvement for the HOD model is 

2.12 %. The SSS is much higher for solar radiation than for wind influence (Table 0.81). 

Calculation with mean values better considers solar influence because the mean values 

average the thermal storage effect for solar radiation. R
2
 for the SLR calculation with the 

HOD grouping is much lower than the corresponding value for calculation with mean values 

as a consequence of averaging thermal storage effects. The difference between those R
2
 

values is 13.21%. Since improvement by introducing the MLR model is much lower, it can 

be concluded that most unexplained variations in the HOD model are not a result of wind or 

solar radiation, but the thermal storage effect. Excluding outliers reduced the SSS for solar 

radiation (Table 0.82). This shows that this data grouping did not fully captured solar 

radiation for this building.  

R
2

overall improved for Sydområdet NHL Forskning from 91.58% for the SLR calculation 

to 92.73% for the MLR calculation, i.e., 1.15% (Table 0.83). For calculation with the HOD 

grouping improvements was from 86.62% to 87.66%, i.e., 1.04%. The model with mean 

values did not cope significantly better with wind and solar radiation, but coped much better 
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with the thermal storage effect, since R
2
 for SLR calculation is much higher. Solar and wind 

influences are not significant for this building.   

R
2
 improvement by introducing MLR model is not significant for Berg, Gløshaugen 

Idrettsbygg, Varmetekniske laboratoriet and Gamle Fysikk, so wind and solar radiation did 

not significantly influence heat consumption. R
2
 for the SLR calculation with the HOD 

grouping are 87.46%, 79.93%, 89.95% and 86.85%, respectively, for these buildings. R
2
 for 

the SLR calculation with mean values are 94.38%, 86.34%, 93.71% and 94.38%, 

respectively. These improvements are the result of averaging the thermal storage effect.   

Improvements by introducing the multiple linear regression model are greater for 

calculations with this way of grouping than for calculations with hourly and HOD data. 

However, predictions gained by this calculation do not give information about hourly heat 

consumption, so faults happening on an hourly basis are hidden.   

5.1.4 Daily grouping 

Calculation of overall R
2
 for daily data follows equation 5.5. Mean values of dependent 

variable are not calculated for regimes, but for weekdays and weekends, so n_h used in 

equations 3.4 and 3.5 is 24, n_r is 2 and n_j is the number of weekdays and weekend days.  

It is expected that calculations with mean values should give better results than 

calculation with daily data due to variations introduced by regimes that are averaged in the 

daily model. Calculations with mean values use independent variables that exactly match the 

corresponding heat consumption. Calculations with daily data use values of independent 

variables that are mixtures of values corresponding to different control regimes. For example, 

extremely low temperature during night will decrease the daily mean temperature, but low 

night temperatures will less influence daily heat consumption if the HVAC system operates 

with reduced heat consumption during the night. Thus, calculations with mean values should 

produce more accurate predictions than calculations with daily data. The advantage of daily 

calculations over calculations with other groupings is that the effects of thermal storage 

should be better covered with calculations with data that are averaged over a longer time 

interval. 

A function that performs calculation with mean values in the tool developed in Matlab 

is used for calculation based on daily data. Two types of days (weekdays and weekends) are 

defined instead of regimes in the tool. Appendix D presents the results of LR calculations 

with daily data.  

5.1.4.1 Ventilation system 

R
2

overall improved for the Dragvoll 3 building from 76.08% for the SLR calculation to 

86.56% for the MLR calculation, i.e. 10.48% (Table 0.108). For calculation with mean 

values, the overall R
2
 improved from 73.16% to 83.26%, i.e. 10.10%, so daily calculation 

covered more variation due to solar influence.   

Calculations with daily data produced similar results to calculations with mean values 

for Dragvoll Idrettsbygg.    
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The SLR calculation for Dragvoll 8 produced R
2

overall equal to 90.59% (Table 0.112). 

R
2

overall for the SLR calculation with mean data is 89.87%. These results show that the daily 

data averaged more variation due to occupancy than mean values grouped by regimes. 
 

R
2

overall is 56.02% for SLR calculation for Dragvoll 9 and 64.86% for the MLR 

calculation (Table 0.113). For the calculation with mean values, SLR model gave R
2

overall 

equal to 57.61%, while the MLR model gave 64.37%. Both data groupings gave similar R
2
s 

and similar values of solar radiation SSS. Excluding outliers did not decrease the solar 

radiation SSS (Tables 0.114 and 0.115).  

R
2

overall is 83.30% for the SLR calculation for Dragvoll 2 and 84.69% for the MLR 

calculation (Table 0.116). For the calculation with mean values, the SLR model gave R
2

overall 

equal to 78.84%, while the MLR model gave 80.21%. Slight improvements were achieved to 

R
2

overall by introducing the MLR model. The SSS for solar influence are similar for these 

models. The main improvement accomplished with daily model is better coverage of 

occupancy variation, since SLR gave better results.  

Calculations with daily data and mean values produced similar results for five analyzed 

buildings. Both models are equally capable to cover all analyzed variations.    

5.1.4.2 Space heating system 

R
2

overall improved for Sentral Bygg 1 from 91.96% gained for SLR calculation to 

95.24% for MLR calculation, i.e. 3.27% (Table 0.101). The R
2

overall improvement for 

calculation with mean values is 3.01% (from 90.27% to 93.28%). R
2
 for the SLR calculation 

with daily data is higher than the corresponding value for calculation with mean values. This 

means that the daily data better averaged thermal storage effects. Calculation with mean 

values gives a similar SSS for solar influence as calculation with daily data (Table 0.102). 

Since R
2
 improvement by introducing the MLR model is almost same, both models cope 

similarly with solar radiation influence. Excluding outliers reduces weekday solar radiation 

SSS to 50% (Table 0.103). The SSS for outdoor air temperature is not reduced by excluding 

outliers. This means that this grouping did not fully consider solar radiation influence for this 

building.   

R
2

overall improved for Sydområdet NHL Forskning from 93.37% for the SLR calculation 

to 94.64% for the MLR calculation, i.e., 1.27% (Table 0.104). For calculation with mean 

values, improvement was from 91.58% to 92.73%, i.e., 1.15%. The major difference between 

models is that the daily data better averages the thermal storage effect, which can be 

concluded from the higher R
2
 for the SLR calculation. There is no difference in covering 

other influences between those two models.  

The calculations with daily data produced slightly higher R
2
 values than calculations 

with mean values for Gamle Fysikk, Gløshaugen Idrettsbygg and Varmetekniske laboratoriet. 

For these buildings, influences other than outdoor temperature are not significant, so major 

improvement is gained by averaging thermal storage effects. R
2
 has similar values for 

weekends and weekdays.      
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5.1.5 Evaluation of selecting independent variables for wind 

influence 

  Selection of wind independent variable is discussed in subchapter 3.6.1. The wind 

independent variable in equation 3.7 is the product of the wind speed element W
*
 and the 

difference between the indoor air temperature and outdoor air temperature (TIN-T). Indoor air 

temperature is considered to be constant.  Different powers of wind speed W, W
1/2

 and W
2
 

are analyzed. Three linear regression calculations with different wind speed elements were 

conducted and coefficients of determination were compared in order to find which expression 

of wind speed fits the best. This way of selecting linear regression model is recommended in 

Walpole (2007).     

In the W
2
 case, the results of linear regression were not stable in some calculations. 

Since variation of wind speed is high (0 m/s to 10 m/s is normal variation for Trondheim), 

variation of W
2
 is even higher, which suggests that, in some cases, B2·W

2
·(TIN-T) can surpass 

contributions of other independent variables. Two cases of wind independent variables, 

W
1/2

·(TIN-T) and W·(TIN-T), are assumed to cover the heat demand for natural ventilation 

properly and were used in analysis.  

For all analyzed buildings, the wind was not a significant influence, so introducing the 

wind independent variable into equation 3.7 did not significantly improved the goodness of 

fit. If sums of squares for wind influence are significant, this would signify poor quality of 

building windows. It is expected that daily patterns of opening windows can be recognized 

through change of power of wind in calculation with HOD grouping. For most of the 

buildings, both powers of wind speed (1 and ½) appeared after 48 linear regressions as a 

choice which gives the best goodness of fit. It cannot be claimed that one of them is 

significantly better to represent the influence of the wind. A clear pattern that can be 

explained by opening windows appeared for the Gamle kjemi building. This pattern can be 

also recognized for Berg building. Powers appearing in the wind independent variable giving 

best goodness of fit are presented in Appendix B.3 (Table 0.79). Gamle kjemi has a clear 

pattern that can be recognized during hours in which the building is occupied. With Berg, it 

can be recognized that the power changed 5
h
 during weekdays. The procedure of selecting 

power of wind is performed for calculations with all groupings.  

 

5.2 Comparison of monitoring data resolution 

Data with lower resolution (mean values and daily data) average variations that are 

unexplained by hourly and HOD model. As a result, models with lower data resolutions 

produce higher R
2
s. However, part of the information is lost due to averaging. Thus, models 

with higher data resolutions can give more accurate predictions. Katipamula et al. (1995 and 

1998) have demonstrated that, although lower data resolutions (monthly data) produce higher 

R
2
, daily and HOD data produced lower CV and MBE, i.e., more accurate predictions. 

Subchapter 5.2.1 will compare R
2
 values for different data resolutions in order to evaluate the 

capability of different data groupings for covering different influences determining the heat 

consumption of space heating and ventilation systems. The extent of contributions from 

different influences determining heat consumption will be evaluated by comparing R
2
 values 

obtained from calculations with different data grouping and by comparing sequential sums of 

squares.  
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Since R
2
 values are not obtained from calculations with daily and mean values from 

hourly data, as is the case for HOD and hourly data, R
2
s cannot be compared in order to 

evaluate how different data groupings cover variation of heat consumption. Subchapter 5.2.2 

will compare MBEs in order to evaluate predicting ability of calculations with different data 

resolutions. CVs are used to evaluate ability of model to cover variation. 

5.2.1 Comparison of R
2
 values for different monitoring data 

resolutions 

Appendix E presents a comparison of overall R
2

overall values for calculations with 

different data resolutions. The SSS is presented for buildings with significant solar radiation.  

R
2
 values for SLR calculations show how data groupings cover thermal storage effects 

due to change of outdoor temperature and heat gains due to occupancy. Data groupings with 

lower resolutions (mean values and daily data) average those effects. HOD grouping follows 

daily patterns of thermal storage and building occupancy.  

The difference between R
2

overall for MLR and SLR calculations (improvement by 

introducing MLR model) shows how data groupings coped with solar and wind influence. 

Solar radiation thermal storage effect is also covered by averaging by lower resolution data 

and by determining the daily pattern of thermal storage through HOD grouping. Greater 

improvement achieved by introducing the MLR model and higher SSS corresponding to solar 

radiation show that some data grouping better copes with solar radiation thermal storage 

effect.       

5.2.1.1 Space heating system 

Comparisons of R
2

overall for four ways of grouping data are presented in Appendix E.1. 

Calculations with daily data gave the highest values of R
2

overall for both SLR and MLR 

calculations in most cases. Calculation with daily data and calculations with mean values 

gave similar results. Calculations with the HOD grouping gave higher R
2

overall than 

calculations with hourly data for all buildings, except for building Sentral bygg 1 (Table 

0.119). Since R
2

overall values for calculations with hourly and HOD data are calculated with 

hourly data (mean values in calculation of R
2
 for hourly data are calculated for periods 

corresponding to regimes; mean values for HOD data in calculation of R
2
 are calculated for 

each hour of day), it can be concluded that the HOD grouping better covered variation of heat 

consumption of space heating systems. This conclusion will be proved through analysis of 

CVs. Calculations with hourly data and HOD grouping gave lower R
2
s than calculation with 

mean values and daily data.  

The better goodness of fit for SLR calculations is because groupings with lower data 

resolutions cope better with time-delays that are a result of the thermal storage effect due to 

outdoor temperature change. Calculations with hourly data gave the lowest R
2

overall for SLR 

calculations. Appendix E.1 shows differences between R
2

overall for SLR calculations with 

hourly data and other data groupings. The HOD grouping covered part of the variation due to 

the thermal storage effect. Differences are positive for all buildings except for Sentral bygg 1 

building (Table 0.119). SLR calculations with the HOD grouping for Gløshaugen Idrettsbygg 

gave significantly higher R
2

overall than calculation with hourly data (Table 0.128) as a result of 
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covering transition regimes. However, calculations with daily data and mean values have 

much higher differences, so they covered the thermal storage effect due to change of outdoor 

temperature to higher extent than HOD grouping. Daily data covered the best of all grouping 

thermal storage effects since differences between SLR R
2

overall for this grouping and hourly 

grouping are highest. The differences are slightly lower for calculations with mean values, so 

this grouping is close to daily data in covering thermal storage effects due to changes in 

outdoor temperature.  

 Weekdays day Weekend day 

Varmetekniske laboratorier 94.00 % 93.13 % 

Elektro B 94.03 % 95.83 % 

Materialtekniske laboratorier 81.72 % 83.63 % 

Produktdesign 89.78 % 80.66 % 

Metallurgi 94.05 % 91.61 % 

Oppredning gruvedrift 94.33 % 94.80 % 

Verkstedtekniske laboratorier 91.05 % 91.33 % 

Marinteknisk senter Tyholt 98.19 % 98.34 % 

Table 5.8 Coefficients of determination for calculation with mean values grouped by regimes 

for eight NTNU buildings with monitored space heating system   

Improvement of R
2

overall gained by introducing MLR model is a measure how model 

copes with wind and solar influence. Only Sentral Bygg 1 has significant influences other 

than outdoor temperature (Table 0.119). Solar radiation influence is more significant for this 

building than wind influence. Improvements gained by introducing MLR model are presented 

for all data groupings. Calculations with hourly data have the lowest improvement since these 

calculations are least capable of covering the thermal storage effect due to solar radiation. 

HOD grouping is far better than the hourly data in this sense. HOD model can better cover 

change of sun position during day for buildings with dominant orientation than hourly data. 

SSS shows contributions from solar radiation to heat consumption. Daily data and mean 

values gave the highest SSS for solar radiation and the greatest improvements in R
2

overall. SSS 

shows that MLR calculations with mean values have explained even more variations of heat 

consumption due to solar influence than calculations with daily data. It can be concluded that 

those two groupings are equally capable of covering thermal storage effects due to solar 

radiation.  

The hourly model is the worst regarding covering both thermal storage effects. Daily 

data are the best in this sense. Differences between R
2

overall for SLR calculations with daily 

data and R
2

overall for SLR calculations with hourly data are significantly higher for all 

buildings than improvements gained by introducing MLR model for calculations with daily 

data. This demonstrates that unexplained variations of hourly model (difference between 

100% and R
2
) are more consequence of thermal storage effect due to change of outdoor 

temperature than solar radiation or wind influences. Since for all buildings (except 

Gløshaugen Idrettsbygg) the R
2

overall for MLR daily model is close to 95%, there are 5% more 

unexplained variations. Even if all 5% could be attributed to solar radiation or wind 

influence, they would not overcome the differences between R
2

overall for SLR calculations 
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with daily data and hourly data that are a result of covering the thermal storage effect due to 

changes in outdoor temperature.    

The SSS for wind presented in Appendix A.1, B.1, C.1 and D.1 shows that this 

influence was not significant for any of buildings. It is not observed significant difference 

between R
2
s obtained for weekdays and weekends, so it seems that occupancy did not 

significantly influence the heat consumption of space heating system of six analyzed 

buildings. Moreover, R
2
s for SLR calculations with daily data are lower for weekends than 

for weekdays for all six buildings (Tables 0.101, 0.104, 0.105, 0.106 and 0.107). Change of 

control regimes makes it difficult to recognize difference between occupied and unoccupied 

periods through comparing R
2
s, since control regimes follow occupancy. If space heating 

system would operate without night temperature set back, occupancy would be more 

recognizable. Differences between R
2
 for SLR calculations with daily data and hourly data 

could be consequence of averaging occupancy. However, analysis did not show significant 

influence of occupancy, so it could be concluded that thermal storage effect is main reason 

for differences between R
2
s for SLR calculation. It will be demonstrated in chapter 6 how 

thermal storage postpones change of heat consumption. It will be demonstrated that changes 

of outdoor temperature are not followed by corresponding changes of normalized heat 

consumption, which is a consequence of thermal storage effect. Weekdays and weekend day 

regimes are the same for eight buildings presented in Table 5.8. It is possible for them to 

compare R
2
 values in order to evaluate influence of building occupancy. There are no 

significant differences between R
2
 values, so occupancy did not influence significantly heat 

consumption. R
2
 was significantly greater for weekday day regime than for weekend day 

regime for Produktdesign building. Presented results show that there is no significant 

influence of building occupancy on heat consumption of analyzed space heating system.    

5.2.1.2 Ventilation system 

Comparisons of R
2

overall for four ways of grouping data are presented in Appendix E.2. 

SLR calculations with HOD grouping gave higher R
2

overall than SLR calculations with hourly 

data for all buildings except for Dragvoll 2 building (Table 0.145). R
2

overall is much higher for 

SLR HOD calculation for Dragvoll Idrettsbygg building (Table 0.138) due to transition 

regimes (Figure 5.2). MLR HOD calculations gave higher R
2

overall for all buildings. It can be 

concluded that HOD data better covered variations in heat consumption of ventilation heating 

than did hourly data. Calculations with daily data gave higher R
2

overall values than did 

calculations with mean values for most buildings for SLR calculations, and for all buildings 

with MLR calculation.  

Wind did not have a significant influence on any of the five buildings, and this can be 

seen in tables with SSS values in Appendix A.2, B.2, C.2 and D.2. Dragvoll 3 and Dragvoll 9 

buildings have significant influence of solar radiation. Solar influence was not significant for 

the Dragvoll 8, Dragvoll 2 or Dragvoll Idrettsbygg buildings.   

Improvements of R
2

overall gained through employing the MLR model are close for 

calculations made with daily data and calculations with mean values for two buildings with 

significant solar influence (Tables 0.135 and 0.142). Other way to evaluate improvement 

gained through introducing MLR model is to compare SSS. Appendix E.2 presents SSS for 

those two buildings (Tables 0.136 and 0.143). Calculations with hourly data gave five to ten 

times lower SSS for solar radiation influence than calculations with daily data. This shows 

that calculations with hourly data cannot cope successfully with solar influence because 
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hourly heat consumption does not correspond to sun radiation due to time-delays between sun 

radiation and its influence on heat consumption. Calculations with HOD grouping gave much 

higher values of SSS for solar radiation influence than calculations with hourly data. 

Calculation with HOD grouping seems to be able to explain significant amount of variation 

of heat consumption as a consequence of sun influence. Calculations with mean values 

grouped by regimes produced SSS higher than calculations with daily data. However, those 

values are close to each other, suggesting both models address solar radiation equally well.  

 Weekdays day Weekend day 

Dragvoll 2 
01.01.‘07 - 10.06.‘07 76.85 % 86.26 % 

01.01.‘07 - 01.04.‘07 58.03 % 69.85 % 

Dragvoll 

Idrettsbygg 

03.09.‘07 - 15.06.‘08 95.84 % 97.33 % 

07.01.‘08 - 15.06.‘08 95.57 % 98.06 % 

Table 5.9 Coefficients of determination for calculation with mean values grouped by regimes 

for two NTNU buildings with monitored ventilation system   

Appendix E.2 presents differences between R
2

overall for SLR calculations with hourly 

data and other data groupings. The hourly model could not cover transition regimes for the 

Dragvoll Idrettsbygg building, and the HOD model had a much higher R
2

overall than did the 

hourly model (Table 0.138). Calculations with daily data and calculations with mean values 

grouped by regimes gave a higher R
2

overall for SLR calculations than did the HOD 

calculations. This increase in the R
2

overall was attributed for the space heating system to the 

thermal storage effect, due to changes in outdoor temperatures. For the ventilation system, 

thermal storage effect should not be significant. Heat accumulation in walls should influence 

only heat consumption of space heating system. Temperature on inside wall surface can be 

low after night temperature set-back. This could influence indoor air temperature and amount 

of heat delivered by economizer. Daily data and mean values would average this effect. 

However, those buildings do not operate with night temperature set-back. Analysis of 

ventilation system similar to analysis of thermal storage effects on space heating system 

presented in Liu et al. (1995) would explain extent of thermal storage effects on ventilation 

systems. Occupancy could be a reason why R
2
 values for SLR calculations with daily data 

and mean values are higher than for calculations with HOD grouping. R
2
 values are higher 

for weekends than for weekdays for Dragvoll Idrettsbygg, Dragvoll 2, Dragvoll 3 and 

Dragvoll 8 (Tables 0.111, 0.116, 0.108 and 0.112). R
2

overall is poor for Dragvoll 9, so this 

building should not be taken into consideration. Systems operate during unoccupied hours 

with significantly reduced air flow, so it is hard to fully recognize occupancy influence by 

comparing R
2
s for unoccupied and occupied periods. Inspection of ventilation systems 

normalized heat consumption did not show time delay to changes of outdoor temperature, so 

thermal storage effect should not be significant for ventilation systems. This will be presented 

in chapter 6. Weekdays and weekend day regimes are the same for two buildings presented in 

Table 5.9. Dragvoll Idrettsbygg is the sport center which is opened through whole week. It is 

hard to evaluate if building is less occupied during weekends than during weekdays. R
2
 

values are greater for weekend day regimes than for weekday day regimes. Results, presented 

in Tables 5.8 and 5.9, shows that internal heat gains more influence ventilation heat 

consumption than heat consumption of space heating system. Sun heat gains were more 

significant for the buildings with monitored ventilation systems than for the buildings with 
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monitored mixed space heating and ventilation. Presented results show that sun and internal 

heat gains are utilized by ventilation system more than by space heating system.      

5.2.2 Evaluation of predicting ability of calculations with 

different data resolutions  

Appendix E presents coefficients of variation and mean bias errors for eleven analyzed 

buildings. MBE evaluates the predicting ability of calculations with different data resolutions. 

The formulation for MBE is:  

          (5.6) 

where: 

 -  daily prediction of heat consumption (dependent variable) 

 -  mean daily heat consumption 

- daily heat consumption 

n - number of days 

Predictions from the hourly model, HOD model and the mean values model must be 

calculated on daily basis. If the MBE is low, the prediction of overall heat consumption for 

the analyzed period is close to the actual value. Heat consumption predictions producing low 

MBE are suitable for savings measurement and verification. 

CV is more important than MBE for the detection of O&M problems, since CV shows 

how predictions cover variations in heat consumption. CV is a criterion for selecting data 

grouping that will be used in the detection of O&M problems through comparing modeled 

and real heat consumption. CV is calculated from the root mean square error (RMSE): 

         (5.7) 

CV is: 

           (5.8) 

If the CV is low, more variation is covered by the model. R
2
 could be used to analyze 

data variation if all of the data have the same resolutions. Since models with different 

resolutions are compared, R
2
s cannot be used in this sense.  

Calculations with lower resolutions are better at covering time delays due to thermal 

storage effects. Since occupancy is not an independent variable of the MLR model, lower 

resolutions also capture this effect more effectively. Calculations with higher resolutions 

introduce more information into the model. The accuracy of predictions gained through 

calculations with different data resolutions represents a trade-off between those two 

influences.     
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   MBEs and CVs are compared separately by examining their scores. A score of 1 is 

attributed to the data grouping with the lowest CV. A score of 4 is attributed to the data 

grouping with the highest CV. The same procedure is conducted for the evaluation of MBE. 

Scores corresponding to each grouping are summed for all buildings (separately for CV and 

MBE) into overall scores. Results are presented separately for six buildings with space 

heating systems and five buildings with ventilation systems in Appendix E.1 and E.2.        

5.2.2.1 Space heating system 

Calculations with HOD data and calculations with mean values produced the best 

overall scores according to Table 0.118. Calculations with daily data produced higher CV for 

all buildings than calculations with mean values (Tables 0.121, 0.123, 0.125, 0,127, 0.129 

and 0.131). This proves the hypothesis that calculations with mean values grouped by 

regimes produce more accurate predictions than calculations with daily data if the HVAC 

system operation is changed thorough the control regimes. Moreover, HOD and hourly data 

produced lower CVs than calculations with daily data. The main reason for poor prediction 

quality gained through calculations with daily data is that the daily data do not cover 

variation of control regimes. Earlier analysis (Katipamula et al., 1995 and 1998) showed that 

daily data produced the lowest CV for HVAC systems that operate without changes through 

control regimes.  

Outdoor temperature has the most significant influence on heat consumption of a space 

heating system; this is proved earlier through stepwise regression and analysis of sequential 

sums of squares. Hourly and HOD data groupings introduce more variations of outdoor 

temperature than do other models. Thermal storage effect deteriorates predictions of 

calculations with hourly data, so they produced higher CVs than calculations with HOD data 

and mean values.  

Calculations with mean values cover thermal storage effects better than calculations 

with HOD data; HOD data introduce more variation than mean values grouped by regimes. It 

seems that the advantages of these two models produced the similar improvement of 

predictions, and thus gave similar values of CV. 

Calculations with hourly data produced the lowest MBEs (Table 0.118); thus, these are 

the most suitable for savings measurement and verification purposes.     

5.2.2.2 Ventilation system 

Similar results to those obtained for the space heating systems are gained for the 

ventilation systems (Appendix E.2). Calculations with HOD data produced the lowest CVs, 

followed by calculations with mean values (Table 0.132). Daily data produced the highest 

CVs as a result of averaging control regimes by this model. Advantage of models with daily 

data and mean values over models with hourly and HOD data is that models with daily data 

and mean values better cover thermal storage effect due to solar influence and building 

occupancy. However, models with hourly and HOD data covered more variation due to 

changes in outdoor temperature, so outdoor temperature was the most important influence in 

defining the HOD grouping as the best.      
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Other ranking is obtained when CVs for buildings with significant solar radiation 

(Dragvoll 3 and 9) are summed (Table 0.134). In this case, hourly data gave the highest CV 

due to the inability of hourly data to capture thermal storage effect due to solar radiation. 

Calculations with mean values gave the lowest CV, followed by HOD grouping.  

Scores for buildings with insignificant solar influence (Dragvoll 2, Dragvoll 8 and 

Dragvoll Idrettsbygg) gave the lowest CV for calculations with HOD data, followed by 

calculations with hourly data (Table 0.133). Thermal storage effect due to changes in outdoor 

temperature is not significant for the ventilation system (as it is for the space heating system); 

thus, calculations with mean values did not have any advantage over calculations with hourly 

and HOD data in this respect. HOD data better covered variation due to building occupancy 

than did hourly data; thus, calculations with HOD data produced lower CVs than calculations 

with hourly data.  

Calculations with hourly data also produced the lowest MBEs for the ventilation system 

(Table 0.132). 

5.3 Evaluation of model improvement through excluding 

outliers 

Chapter 3.7 explains that R-student residual is statistics that is used in recognition of 

outliers. The tool developed for the modeling and analysis of building heat consumption have 

option for excluding outliers during calculations. Usually, calculations are conducted by 

default without excluding outliers. If the check-box ‗Exc Resid‘ is selected, outliers are 

detected after conducting every LR calculation and are then eliminated from the next 

calculation, in order to avoid their influence. Chapter 4.5 explains the position of the 

recognition of outliers in calculation algorithms. The criterion for a data point to be 

recognized as an outlier is that the R-student residual is higher than two. The condition that 

should be fulfilled is that none of data points has an R-student residual higher than two. It is 

possible that the criterion that all R-student residual values should be lower than two can 

never be reached if the heat consumption is not fully explained by LR model. During a LR 

calculation, which was conducted with Minitab statistical software, the second calculation 

(conducted with a set of data without data points recognized as outliers after the first 

calculation) recognized new outliers. Calculations were repeated with new set of data, but 

new outliers appeared again. The same problem also appeared during the calculations in this 

newly developed tool. It was necessary to limit excluding outliers to 15% of the number of 

data points employed in calculation.       

Excluded outliers increased the coefficient of determination, as demonstrated in 

Appendix A, B, C and D. However, this does not mean that the gained model and predictions 

of heat consumption will be more accurate if data points that are not outliers are recognized 

as outliers, due to an inability of model to cover all variations of heat consumption properly.  

CVs for calculations without and with excluding outliers were compared. CVs are 

presented in Appendix F. Three buildings have significant solar influence (Dragvoll 3, 

Dragvoll 9 and Sentral Bygg 1). Appendix F presents SSS for solar radiation influence for 

those three buildings gained through calculations without and with excluding outliers (Tables 

0.154, 0.158 and 0.147). It seems that excluding outliers can cause model performance to 

decrease even worse for data points with dominant sun influence. Excluding outliers 

decreased the SSS for solar radiation for the Dragvoll 3 and Sentral Bygg 1 buildings (Tables 
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0.154 and 0.147), since the LR model does not fully cover solar radiation and data points 

with higher solar radiations are excluded. Excluding outliers did not decrease the SSS for 

solar radiation influence for Dragvoll 9 building (Table 0.158). CVs for calculations made 

after outliers were excluded are higher than CVs for calculations made without excluding 

outliers for those three buildings, suggesting the model is less accurate for calculations with 

excluded outliers (Tables 0.148, 0.155 and 0.159).    

CVs for the other eight buildings are mostly lower for calculations not performing 

excluding residuals than for calculations performing excluding residuals (Appendix F), so 

excluding residuals cause the model accuracy to deteriorate. For 44 calculations (11 buildings 

multiplied by four models), CVs are for 15 calculations performing excluding residuals lower 

than CVs for calculations not performing excluding residuals.  

 It is possible that 15%, as a limit of the number of data points that can be excluded as 

outliers, is too high. The program could exclude just points that are obvious outliers if a lower 

limit were used. Outliers can also be excluded manually.  

5.4 Evaluation of monitoring sample duration  

Kissock et al. (1993) claimed that, for the precise prediction of building heat 

consumption based on daily data, three to six months of monitoring history is required. No 

analysis determined the required length of monitoring period for hourly data. Other authors 

have assumed that the same time period is sufficient for precise modeling. Changes of the 

control regimes have appeared for almost all analyzed NTNU buildings on a yearly basis. For 

more than two years of monitoring history, most of the buildings had two or more changes of 

control regimes. This proves an interest in determining the shortest monitoring period that 

can generate reliable results.   

CVs computed for six and three month periods are compared with CVs obtained from 

predictions for the same periods calculated from LR coefficients gained from calculations 

with a year period (CV_Appl in Appendix G). CVs and CV_Appl‘s are compared in order to 

compare the accuracy of models gained by linear regression of data for different monitoring 

period durations. If predictions of overall heat consumption were compared, that would 

neglect variation of data from mean heat consumption. Thus, CVs were calculated. CVs and 

CV_Appl‘s were calculated for two six-month periods and three three-month periods for 

three analyzed buildings with space heating system (Appendix G.1). CVs and CV_Appl‘s 

were calculated for three six-month periods and four three-month periods for ventilation heat 

consumption of Dragvoll Idrettsbygg building (Table 0.166). Control regimes were changed 

during periods shorter than a year for the other buildings were ventilation heat consumption 

was monitored. CV_Appl‘s are calculated for two more buildings with LR coefficients 

gained from calculations with six-month periods. Results are presented in Tables 0.167 and 

0.168.      

Change points calculated for winter are lower than the change points calculated for a 

one-year period (Table 5.10). Thus, applying LR coefficients gained for six and three month 

periods over a one-year period can give higher CVs. If the LR coefficients from winter would 

be applied on year data, obtained prediction of yearly heat consumption would be inaccurate. 

Since the focus of this thesis is not predicting overall heat consumption, but is developing a 

LR model that will accurately describe heat consumption variation, CV comparisons were not 

made over the one-year period. The heating season in Norway lasts from September to May, 
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which means that there are plenty of data for modeling building heat consumption. CVs are 

calculated and presented for four ways of grouping data in Appendix G.    

 Weekday  Weekend  

01.01.2007 – 02.12.2007 15 15 

01.01.2007 – 01.04.2007 10 11 

Table 5.10 Change point temperature for weekdays and weekends for the Sentral Bygg 1 

building 

Calculations over a three-month period for three buildings with space heating produced 

the lowest CV values for period 01.01.2007 – 01.04.2007 which corresponds to lower 

outdoor temperatures (Tables 0.162, 0.163 and 0.164). Higher CVs for periods corresponding 

to higher outdoor temperatures is consequence of thermal storage effect which is more 

significant for higher outdoor temperatures (discussed in subchapter 3.3.1.1). CVs are also 

lowest for the same period for buildings where ventilation heating was monitored. Modeling 

with a three month monitoring period with lower outdoor temperatures can be more effective 

than modeling with six months or a one-year monitoring period.  

CVs are in most cases lower than CV_Appl‘s, both for three and six month periods. 

Appendix G includes Tables 0.161 and 0.165 that present percentages of calculations that 

produced a lower CV than the corresponding CV_Appl. Three months proved to be long 

enough to produce sufficient accurate LR coefficients for all four ways of grouping data, 

since the presented percentages are high (higher than 50%). The CVs are lower than the 

CV_Appl‘s, even for the period 02.04.2007 - 01.07.2007 (Tables 0.162, 0.163, 0.164 and 

0.166). For many data points, the outdoor temperatures are higher than the change point 

temperatures for this period, so the LR calculation was effectively performed with less than 

three months of monitoring data, which demonstrates that even time periods shorter than 

three months can produce reliable predictions of heat consumption. Six months of data 

produced CVs that were, in most cases, lower than the CV_Appl‘s, suggesting that modeling 

should be conducted with six month data instead of with year data.     

CVs for daily data are mainly higher than for other data groupings, which prove the 

conclusions from the previous subchapters.    

 

5.5 Improvement of the building daily heat consumption 

model through introducing daily change in outdoor air 

temperature as an independent variable of the linear 

regression model 

One of the most significant reasons for the inaccuracy of the discussed heat 

consumption model is due to the time delay which is a consequence of thermal storage. Walls 

represent barriers between a building and its surrounding. Heat transfer between the indoor 

air and the inner surface of a wall defines the amount of heat delivered by a space heating 

system. A change in outdoor temperature does not immediately change the building heat 

demand due to heat accumulation in the walls. Thus, change in outdoor air temperature will 

be introduced in the model of building heat consumption through a time-lagged variable.  
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Figure 5.3 is a three dimensional presentation of outdoor air temperatures for 

Trondheim. It can be seen that temperature increased greatly on the October 26. 

Temperatures increased again during the evening of the October 27 and the morning of the 

October 28. Also, on the October 31, the temperature increased during the afternoon. 

Presented models of hourly heat consumption do not account for changes in outdoor 

temperature. Although the outside air temperature increases, the space heating system 

continues to deliver an unchanged amount of heat to the building, because walls are still cold. 

Thus, the actual heat consumption is higher than the value predicted by the model that is 

gained through linear regression calculations with hourly outdoor temperatures. Figure 5.4 

presents ratios of actual and modeled heat consumption, i.e., normalized heat consumption, of 

one of the buildings of NTNU campus. Hourly increases of temperatures during October 26, 

27, 28 and 31 are not followed by a decrease in building heat consumption, because the walls 

were still cold, thus demanding a higher amount of heat than predicted by the model. It is 

possible to develop a model that will also account for changes in outdoor temperatures. 

However, it is not possible to know how much energy is necessary in order to heat the 

internal walls. The longer a period of cold weather has lasted prior to the analyzed day, the 

longer it will take for the walls to warm. Also, it is hard to represent the change in 

temperature from hour to hour; the temperature can increase suddenly (in just a few hours) or 

over a longer period of time. For these reasons, changes in outdoor temperature will not be 

involved in the model of hourly heat consumption (hourly and HOD model). A sudden fall in 

temperature causes the same problems when modeling building heat consumption. In this 

case, the actual heat consumption will be lower than that predicted due to the cooling of the 

walls. 

 

Figure 5.3 Hourly outdoor air temperatures for period October 21, 2007 – November 1, 

2007 in Trondheim 
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Figure 5.4 Normalized hourly heat consumption of Gamle Kjemi building for period 

October 21, 2007 - November 1, 2007 

 

Figure 5.5 Mean daily temperatures during February 2007 in Trondheim 
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Figure 5.6 Normalized daily heat consumption for the Gamle Kjemi building during February 

2007 (Simple linear regression model) 

 

Figure 5.7 Normalized daily heat consumption for the Gamle Kjemi building obtained with a 

model involving time-lagged variable 
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Figure 5.8 Normalized daily heat consumption for the Gamle Kjemi building obtained 

through model involving two time-lagged variables 

The daily model of heat consumption is more appropriate than the model with mean 

values for introducing the change in outdoor temperature (time-lagged variable) as an 

independent variable. Changes in outdoor temperatures are represented by the difference 

between the mean daily temperatures for the actual day and the day before it. The problem 

that is not solved in this way is that the amount of heat required to warm up or cool down 

walls after a sudden increase or decrease of outdoor temperature is unknown. However, it is 

expected that introducing change in outdoor temperature into the model will increase the 

model‘s goodness of fit.  

Figures 5.5 and 5.6 present the mean daily temperatures and normalized daily heat 

consumption gained for simple linear regression model for the Gamle Kjemi building during 

February 2007. It is obvious that changes in normalized daily heat consumption follow 

changes in outdoor temperatures. For February 6, the temperature decreased from -6°C to -

12.5°C, i.e., a change of -6.5°C. Normalized heat consumption also showed this decrease. For 

7 February, the temperature fell less than 1°C, but the normalized daily heat consumption 

was even lower than that for February 6. This was unexpected and suggests that, in this case, 

the effects of a change in outdoor temperature last for more than one day, i.e., the walls need 

more than one day to cool down. That is why it can be useful to also introduce into the model 

the change in outdoor temperature for at least the last two (or even more) days. For 18 

February, outdoor temperature decreased but the normalized heat consumption remained over 

100%, because the walls were still warming up. Figure 5.7 presents the normalized daily heat 

consumption for the Gamle Kjemi building obtained with a model using a time-lagged 

variable. Highest deviations in normalized heat consumption appeared on Figure 5.6 for 6, 

16, 20 and 24 of February. Deviations for those days (Figure 5.7) are lower than those on 

Figure 5.6, so introducing time-lagged variable improved model. Normalized heat 

consumption in Figure 5.8 is obtained using the model including two time-lagged variables. 

The first time-lagged variable is the difference between the mean daily temperature and the 

mean temperature of the previous day. The second time-lagged variable is the difference 
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between the mean daily temperature and the mean temperature two days prior. For 16, 20 and 

24 of February, the deviations from 100% in Figure 5.8 are lower than in Figure 5.7. It is 

important that extreme deviations are minimized so they are not interpreted as faults of 

HVAC system operation. Models involving changes in daily temperatures cannot fully cover 

the effects of accumulation. Hourly normalized heat consumption and hourly heat 

consumption should be checked in order to see if extreme deviations of normalized heat 

consumption are a consequence of the cooling down or warming up of walls due to outdoor 

temperature change. The model involving time-lagged variable of outdoor temperature 

change is:    

  (5.9)  

where ΔT and 2ΔT are time-lagged variables for one and two day temperature differences 

respectively. 

Table 5.10 gives the coefficients of determination for calculations with twenty NTNU‘s 

buildings. Calculations are done with daily data through five types of linear regressions: 

- simple linear regression, outdoor air temperature (T) is the only independent variable  

- multiple linear regression involving outdoor air temperature (T), solar radiation (S) and 

wind speed (W) 

- multiple linear regression with outdoor temperature (T) and time-lagged variable for 

one day temperature difference (ΔT)  

- multiple linear regression with outdoor temperature (T), time-lagged variables for one 

day (ΔT)  and two days temperature differences (2ΔT)  

- multiple linear regression with outdoor temperature, solar radiation, wind speed, time-

lagged variables for one and two days temperature differences (T, W, S, ΔT and 2ΔT)  

It is expected that involving more independent variables should increase the coefficient of 

determination. Additionally, introducing time-lagged variables should significantly improve 

the goodness of fit for buildings with a high thermal mass. It can be concluded from Table 

5.11 that the coefficients of determination with five independent variables are the highest.     

Independent variables of 

linear regression 
T 

T, W and 

S 
T and ΔT 

T, ΔT and 

2ΔT 

T, W, S, 

ΔT and 

2ΔT 

Sentral Bygg 1 93.77 % 93.79 % 94.53 % 95.00 % 95.14 % 

Sydområdet NHL 

Forskning bygg 
93.37 % 94.64 % 93.88 % 94.08 % 95.12 % 

Gamle Fysikk 93.05 % 93.57 % 94.44 % 95.01 % 95.28 % 

Berg 95.41 % 96.26 % 95.88 % 96.04 % 96.67 % 

Gamle Kjemi 94.50 % 96.14 % 95.83 % 96.61 % 97.58 % 
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Sentral Bygg 2 93.11 % 93.56 % 93.76 % 94.11 % 94.33 % 

Elektro B 96.49 % 96.93 % 97.06 % 97.32 % 97.58 % 

Materialtekniske 

Laboratorier 
92.02 % 93.95 % 93.25 % 93.62 % 95.02 % 

Produktdesign 92.35 % 93.63 % 92.59 % 93.15 % 94.04 % 

Elektro E and F 92.70 % 93.62 % 94.15 % 94.89 % 95.38 % 

Metallurgi 93.67 % 95.38 % 94.88 % 95.77 % 96.81 % 

Oppredning – gruvedrift 93.31 % 95.69 % 93.96 % 94.58 % 96.39 % 

PFI 88.96 % 90.05 % 89.91 % 90.42 % 91.29 % 

Verkstedtekniske 

Laboratorier 
89.52 % 94.81 % 90.44 % 91.60 % 95.71 % 

Tyholt Marintekniskenter 98.11 % 98.25 % 98.27 % 98.34 % 98.47 % 

Dragvoll 3 70.35 % 86.13 % 70.51 % 70.96 % 86.65 % 

Dragvoll 8 81.77 % 82.90 % 81.93 % 82.14 % 83.25 % 

Dragvoll Idrettssenteret 96.58 % 97.17 % 96.56 % 96.77 % 97.31 % 

Dragvoll 2 83.30 % 84.69 % 83.87 % 86.08 % 86.86 % 

Dragvoll 9 56.02 % 64.86 % 56.81 % 57.04 % 65.36 % 

Table 5.11 Coefficients of determination for five linear regression calculations for twenty 

NTNU‘s buildings 

Heat consumption of the last five buildings in the table represents only to ventilation 

heat consumption. In this case, change of outdoor air temperature immediately influenced 

heat consumption, so the goodness of fit is not expected to improve significantly by 

introducing the time-lagged variable of temperature change into the model. Improvements are 

not significant for these five buildings except for Dragvoll 2 building. In the case of 

ventilation heat consumption, a decrease in outdoor temperature can cause the walls to 

release heat for some time to the inner space, so that the exhaust air transfers this released 

heat through the economizer and to the supply air. Although it is expected that the heat 

released from the walls will influence the consumption of space heating, there could be some 
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decrease of heat consumption for the ventilation system. Appendix H presents two figures of 

normalized daily heat consumption for Dragvoll Idrettssenteret. Figure 0.2 presents 

normalized daily heat consumption calculated with outdoor temperature, solar radiation and 

wind influence as independent variables. Figure 0.3 presents normalized daily heat 

consumption calculated with outdoor temperature, solar radiation, wind influence and two 

time-lagged variables. Although deviations from 100% are lower on Figure 0.3, the 

improvement for this figure is not as significant as the improvement gained for Gamle Kjemi 

building (space heating system, Figures 5.6 - 5.8). There were significant changes in the 

mean daily temperature during February 2007 (Figure 0.1). However, normalized daily heat 

consumption did not track along with those changes as was case with the Gamle Kjemi 

building. Introducing time-lagged variables significantly improved the R
2
 for the Dragvoll 2 

building. Appendix H presents the normalized daily heat consumption for calculations 

without and with time-lagged variables and the corresponding mean daily temperatures 

(Figures 0.8, 0.9 and 0.10). Significant changes in the mean daily temperature during 

February 2007 are followed by similar changes in normalized heat consumption. Deviations 

from 100% are lower for calculations involving time-lagged variables for days with 

significant changes in outdoor temperatures (Figure 0.10). Normalized hourly heat 

consumption between January 19, 2007 and February 1, 2007 and corresponding hourly 

outdoor temperatures are presented in Figures 0.6 and 0.7. Increases in the outdoor 

temperature during January 25 and of January 30 are followed by increases in the normalized 

hourly heat consumption as a consequence of the thermal storage effect.   

Figure 5.9 presents changes in the outdoor air temperature for Trondheim during 

February 2007. Normalized hourly heat consumptions for the Dragvoll Idrettssenteret 

building (only ventilation) and the Gamle Kjemi building (mixed space heating and 

ventilation) are presented on Figure 5.10 and 5.11, in order to show that heat accumulation 

has more influence on space heating than it does on ventilation. The influences of sudden 

temperature changes on normalized heat consumption for the Gamle Kjemi building can be 

recognized in Figure 5.11. During the morning of February 16, the temperature increased 

suddenly. Normalized heat consumption in Figure 5.11 was significantly greater than 100% 

for that same day. Change of temperature is followed by change of normalized heat 

consumption for the other days for the Gamle Kjemi building. There is no recognizable 

change in the normalized heat consumption for February 16 in Figure 5.10. Temperature 

deviations during nights and evenings, which can be recognized on Figure 5.10, are not 

significant since heat consumption during nights and evenings are quite low. Appendix H 

presents the similar figures as Figures 5.9 – 5.11 for January 2007 (Figures 0.4, 0.5 and 0.11). 

During the morning of January 25, the temperature increased suddenly. The normalized heat 

consumption for the Gamle Kjemi Building was significantly more than 100% for that day. 

For the Dragvoll Idrettssenteret building, there is no recognizable change in the normalized 

heat consumption for that day.  
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Figure 5.9 Hourly outdoor air temperatures during February 2007 in Trondheim 

 

Figure 5.10 Hourly NHC for the Dragvoll Idrettssenteret building during February 2007 
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Figure 5.11 Hourly NHC for Gamle Kjemi building during February 2007 

Since linear regressions involving two time-lagged variables (T, ΔT and 2ΔT as 

independent variables, fifth column in table 5.11) gave in all cases better results than 

calculations with one time-lagged variable (T and ΔT, fourth column in table 5.11), there is a 

reason to introduce time-lagged variables 2ΔT into the model. For fifteen buildings (all 

buildings except the five Dragvoll buildings, i.e., the last five buildings in table 5.11), heat 

consumption corresponds to mixed space heating and ventilation use. Calculations with three 

temperature independent variables produced higher coefficients of determination than linear 

regressions with temperature, solar radiation and wind speed for nine of the fifteen buildings. 

It can be concluded from stepwise regression that captured contributions of heat 

accumulation in walls contributed more to variations in heat consumption than did captured 

solar and wind influence. Since it is obvious that all variations due to heat accumulation in 

walls are not explained by the model due to the impossibility of developing an appropriate 

model, it can be concluded that heat accumulation is the main driving force of heat 

consumption of space heating, after the outdoor air temperature.  

Appendix H presents CVs for six buildings with space heating (Table 0.169) and five 

buildings with ventilation heating (Table 0.171). CVs for four ways of data grouping, which 

are already presented in Appendix E, are presented in Appendix H, as well as the CVs 

obtained for calculations with time-lagged variables. The results are sorted in the same 

manner as for those in Appendix E (Tables 0.170 and 0.172). Introducing time-lagged 

variables has significantly improved the CVs in regard to calculations with daily data for 

space heating system (Tables 0.169). CVs for all buildings except for Sentral Bygg 1 building 

are lower for calculations with time-lagged variables than the CVs for calculations made with 

daily data. Calculations with time-lagged variables have the best overall score for space 

heating systems (Table 0.170). Calculations with time-lagged variables will be used in 

following analysis of space heating systems, rather than calculations with daily data or with 

mean values grouped by regimes. Introducing time-lagged variables did not significantly 

improve the CVs for five buildings with ventilation systems, except for the Dragvoll 2 
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building (Table 0.171). However, some improvements were obtained for all buildings, so 

thermal storage effect has some influence on ventilation heat consumption. 

 

Figure 5.12 Daily NHC for the Gamle Kjemi, for calculations without change of daily 

temperature as the independent variable (November 1, 2007 - January 27, 2008) 

 

Figure 5.13 Daily NHC for the Gamle Kjemi building, for calculations with change of daily 

temperature as the independent variable (November 1, 2007 - January 27, 2008) 

The significance of introducing temperature change is demonstrated through Figures 

5.6 – 5.8. Points with the highest deviations from 100 % are much closer to 100 % after 

introducing the temperature change time-lagged variable. Figures 5.12 and 5.13 present 
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normalized daily heat consumption for the Gamle Kjemi building, for the period between 

November 1, 2007 and January 27, 2008, for linear regression calculations without and with 

change of daily temperature as independent variable. There are ten points with NHC values 

over 120 % shown in Figure 5.12. All points on Figure 5.13 are within the 120% limit. Even 

if the CVs in Table 5.11 did not greatly increase with the introduction of time-lagged 

variables, the decrease in the normalized heat consumption deviations for ten points is very 

important. The CV increased by 2.11% by introducing time-lagged independent variables 

into the SLR model for the Gamle Kjemi building. Introducing time-lagged independent 

variables increased the CV by 1.44% for LR calculations including solar and wind influence. 

Even if this improvement does not sound like significant, introducing temperature change as 

an independent variable decreased peak deviations of NHC values. Figures 5.15 and 5.16 

present normalized daily heat consumption for the same building for the period of January 1, 

2007 to June 1, 2007, for calculations without and with change of daily temperature as 

independent variables. NHC values in Figure 5.15 are obviously higher than in Figure 5.16. 

The peak NHC values in Figure 5.15 correspond to days with a sudden change of outdoor 

temperature. 

During the end of May 2007, there appeared a few points with lower normalized 

consumption (Figure 5.16). Outdoor temperatures were relatively high during this period 

(Figure 5.14). The model has a problem in predicting heat consumption for temperatures 

close to or over the change point temperature. Figure 5.17 shows hourly heat consumption for 

one of the NTNU‘s buildings for the weekday day regime. Lines represent the predicted heat 

consumption and are gained through simple linear regression. Even if absolute deviations 

from the predicted heat consumption are not high for the temperatures close to the change 

point temperature, relative deviations (normalized heat consumption) are high. Thus, 

normalized heat consumption cannot be a measure of quality for HVAC system operation 

under higher temperatures. Someone who checks the functioning of HVAC system through 

checking normalized heat consumption should reconsider the outdoor temperatures, and 

determined if these temperatures are close to the change point temperature. Too low or too 

high normalized heat consumption should not be considered to be a fault of the HVAC 

system operation in this case. During the analysis of HVAC operation for the twenty 

buildings, the summer months (June, July and August) were not analyzed, since the model 

does not give reliable normalized heat consumption for those months. Temperatures in 

Trondheim can be low enough, even during those months, that space heating is required. 

However, high changes in outdoor temperatures are characteristic for those days, so thermal 

storage will highly influence heat consumption.   

For the analyzed heat consumption of all twenty buildings, most of the deviations of 

NHC are within the 20% limits after introducing the time-lagged temperature change as an 

independent variable, which can be concerned as reliable proof that HVAC systems are 

operating correctly. Reconsideration of hourly normalized heat consumption can prove that 

higher deviations of normalized heat consumption are result of significant changes in outdoor 

temperatures. It can be concluded that the HVAC system operation may become faulty if 

daily normalized heat consumptions are, for long time periods, at levels that significantly 

deviate from 100%. Fluctuations between 80% and 120% can be considered to be normal and 

a consequence of the inability of the model to fully explain building heat consumption, 

mostly due to the effects of thermal storage. 
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Figure 5.14 Mean daily temperatures between January 1, 2007 and Jun 1, 2007 in Trondheim 

 

Figure 5.15 Daily NHC for the Gamle Kjemi building for calculations without change of 

daily temperature as the independent variable (January 1, 2007 - Jun 1, 2007) 
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Figure 5.16 Daily NHC for the Gamle Kjemi building for calculations with change of daily 

temperature as the independent variable (January 1, 2007 - Jun 1, 2007) 

 

Figure 5.17 Hourly heat consumption for the Sydområdet NHL Forskning building for 

weekday daily control regime during the period January 1, 2007. - September 9, 2007 
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6. Trial use of Matlab application to follow building energy 

consumption in campus buildings in Trondheim 

The method that is proposed in chapter 4 is quantitatively assessed in chapter 5. 

Qualitative assessment will now be presented in this chapter, through analysis of the heat 

consumption of nineteen NTNU‘s buildings.  

It is assumed that operation of space heating and ventilation systems of the nineteen 

NTNU‘s buildings function without fault. If there is a deviation between the real heat 

consumption and that predicted by the model, this would be attributed to the inability of the 

model to describe the actual behavior of system. For all of the nineteen buildings, there were 

no significant events that could not be explained by the linear regression model or by using 

the developed Matlab application and employing simple logic. There were just a few events 

lasting for a few hours that did not show a systematic nature. Those events can be interpreted 

as measurement faults. Their influence on the overall heat consumption and indoor climate is 

insignificant.    

It was not possible to develop a LR model that would fully cover thermal storage 

effects corresponding to changes in outdoor air temperature. Interpretation of deviations of 

normalized heat consumption for days with significant change of outdoor temperature is done 

through reviewing normalized hourly heat consumption and corresponding hourly outdoor 

temperatures. This requires logic which can be easily explained and understood. 

It is obvious that the developed tool cannot be used for fully automated fault detection, 

which was not intention of this PhD thesis. Primarily, the aim of the proposed method is 

verification of HVAC system operation. However, fault detection comes as a consequence of 

reviewing historical monitoring data. The advantage of using the developed tool over a fully 

automated fault detection system is that the developed tool keeps operators engaged in 

following building heat consumption. Users of the developed tool can learn about the 

operation of the system they monitor through use of the tool.  

The first step in the performed analysis was recognizing a relevant monitoring period, 

which must have an unchanged HVAC system operation. Recognizing a relevant monitoring 

period is done through reviewing 3-D heat consumption plots and 3-D plots of normalized 

heat consumption. This is explained in subchapter 4.3.2. 

The next step in the analysis is to exclude periods with fault operation or periods with 

changed operation during holidays. This way, we obtain a more precise model of heat 

consumption. Periods with fault operation or periods with changed operation during holidays 

are recognized in 3-D plots of normalized heat consumption.  By entering dates in the 

exception periods palette, those period are excluded from calculation.  

The daily LR model involving time-lagged independent variables gives the most 

precise predictions of heat consumption for space heating systems (demonstrated in 

subchapter 5.5). Daily data are more suitable for reviewing normalized heat consumption 3-D 

diagrams than mean values grouped by regimes. However, calculations with mean values 

give more precise results than calculations with daily data for ventilation systems. 3-D 

diagrams presenting NHC for calculations with mean values can be reviewed if there is a 

special interest for certain period of monitoring history. Normalized daily heat consumption 

is mostly within the 20% limits for all of the analyzed buildings; indeed, most are actually 
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within even more narrow limits. Normalized daily heat consumption should be reviewed first 

and after analyzed hourly values. Special attention should be paid to days with high 

deviations of normalized daily heat consumption. It is proven above, that calculations with 

HOD data give better results than calculations with hourly data grouped by regimes, so 

calculations with HOD data are used for this purpose. Periods with high changes in outdoor 

temperatures are treated with special attention. The model using HOD data does not use 

temperature change as an independent variable, but the user can easily check if there was 

significant change in outdoor temperature by reviewing the 3-D plot of outdoor temperatures. 

Temperature change is not as significant for ventilation systems as for space heating systems, 

so special attention should be placed on analyses for space heating systems. The model has a 

problem in providing reliable predictions of heat consumption for temperatures close to the 

change point temperature, as is explained in chapter 5.5. The user should, in this case, 

compare the outdoor temperature and the change point temperature. Chapter 5.5 explains also 

why summer heat consumption cannot be analyzed by the proposed method.  

 

6.1 Performance verification of HVAC system operation for 

Sentral Bygg 1 building 

 

Figure 6.1 Daily NHC of the Sentral Bygg 1 building of NTNU campus from January 1, 2007 

to May 25, 2007 

The proposed method will be demonstrated through verification of HVAC system 

operation for the Sentral Bygg 1 building. The system operated from January 1, 2007 to 

December 1 2007, with unchanged control regimes. Figures 6.1 and 6.2 present normalized 

daily heat consumption. The LR model comprehends daily values of outdoor air temperature, 

solar radiation and wind influence, and two time-lagged variables for change of outdoor 

temperature. Normalized daily heat consumption is, for most days, within the 20 % limits. 

Higher deviations appeared for some days during May, which is a consequence of outdoor 

temperatures close to or over change point temperature; this cannot be accurately accounted 

for by the model. Calculated change point temperature is 15 °C. Lower consumption during 
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beginning of April corresponds to Easter holydays. Deviations in Figure 6.2 are within the 

20% limit for all except two days. 

 

Figure 6.2 Daily NHC of the Sentral Bygg 1 building of NTNU campus from September 1, 

2007 to December 1, 2007 

Inspection of normalized hourly heat consumption reveals why daily heat consumption 

deviates significantly from predictions. Figures 6.3 and 6.4 present normalized hourly and 

daily heat consumption for January 2007. Lower heat consumption appeared for January 2, 

2007. Inspection of the hourly values revealed that the system on that day was not turned to 

the daily regime operation. Normalized hourly and daily heat consumption for this building 

for the other months of the monitoring period are presented in Appendix I (Figures 0.12 – 

0.20).    

Higher normalized daily heat consumption appeared during February 2007 for two days 

18
th

 (Sunday) and 24
th

 (Saturday) of February (Figure 0.12). Hourly heat consumption reveals 

that during the afternoons of these days, heat consumption was higher than predicted by the 

model (Figure 0.13). The HOD model did not cover changes in outdoor air temperatures. It is 

obvious that changes in outdoor temperatures are followed by corresponding changes in the 

normalized hourly heat consumption.  

Higher normalized daily heat consumption was found for March 26 and 27 (Figure 

0.15). It was found, through inspections of normalized hourly heat consumption, that during 

the night between March 26 and 27 operation of HVAC system was not reduced. Heat 

consumption was reduced during March 2 for 4
h
 and 5

h
. The last event could be a 

measurement fault. 

A few days with temperatures over the change point temperature appeared during April 

2007 (Figure 0.16). High deviations of normalized hourly heat consumption correspond to 

high outdoor temperatures. The daily regime operation was not turned on during the Easter 

holidays (4
th

 to 9
th

 of April), which can be recognized as a hole in the normalized hourly heat 

consumption plot.   
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  Figure 6.3 Hourly NHC of the Sentral Bygg 1 building for January 2007 

 

Figure 6.4 Daily NHC of the Sentral Bygg 1 building for January 2007 

Low heat consumption appeared on May 8 from 18
h
 to 22

h
 (Figure 0.17). High 

temperatures during the periods 6
th

 – 7
th

 of May and 17
th

 – 22
nd

 of May resulted in the model 

not predicting correctly the heat consumption, so that high deviations appeared in that period. 

Deviations between the predicted and real heat consumption are high for summer months, 

Jun, July and August. Heat consumption corresponding to those months was not analyzed.  
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A high value of normalized heat consumption appeared on the September 25 due to a 

high outdoor temperature (Figure 0.18). The daily model covered variations properly for all 

other days. It can be seen from the Figure 0.18 that changes in outdoor temperatures have 

introduced deviations in the modeled hourly heat consumption. Those changes are properly 

accounted by the daily model. Lower heat consumption appeared for September 3 for 16
h
 and 

17
h
. This could be a measurement fault. 

There were no recognizable deviations between real heat consumption and modeled 

heat consumption during October and November 2007 (Figures 0.19 and 0.20). The daily 

model covered all variations properly. For example, the outdoor temperature changed 

significantly during October 26 and 28. The hourly model did not cover those changes, but 

the daily model did. Higher heat consumption appeared during the afternoons of November 

24 and 25.  

The analysis proved that it is possible to verify HVAC system operation through 

reviewing comparisons of modeled and real heat consumption. It is assumed that the system 

operated without any significant faults. Faults that were discovered were not significant for 

the overall operation of the HVAC system. Appendix I presents normalized daily heat 

consumption for seventeen more buildings on the NTNU campus (Figures 0.21 – 0.44). There 

were no significant faults in the operation of the HVAC systems in all seventeen buildings 

(see table 6.1).  

 

6.2 Performance verification of HVAC system operation for 

seventeen NTNU campus buildings 

There were just five days with deviations higher than 20 % for the Sydområdet NHL 

Forskning building for the ten month monitoring period (Figures 0.21 and 0.22). After the 

May 1, 2007, heat consumption was approximately 10% lower, which leads to the conclusion 

that some change in operation occurred after that day. Operation was reduced after May 1, 

2007 for the most of the analyzed buildings. District heating in Trondheim changes its 

operation during sommer, so that recognized changes of HVAC system operation can be 

explained that way. Heat consumption was also reduced by 10% from October 5 to 

November 14, 2007. This reduction can be explained by a change of HVAC system 

operation. Otherwise, it can be concluded that a fault appeared in that period if there is no 

such an explanation. Notices gained through reviewing hourly data are presented in table 6.1.  
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Notices about fault operation recognized on hourly level 

Sydområdet NHL 

Forskning bygg 

 

10 months 

monitoring period 

5 

- 25.03.2007 - 3
h
 - low heat consumption 

- 05.09.2009 - 11
h
 and 12

h
 - low heat consumption 

- 03.10.2009 - 11
h
 and 12

h
 - low heat consumption 

- Night between October 11 and 12,  2007 - low heat 

consumption 

Gamle Fysikk 

 

10 months 

monitoring period 

9 

- 25.03.2007 - 4
h
 and 5

h
 - low heat consumption 

- 03.04.2007 - 5
h
 - 6

h
 - low heat consumption 

- 19.04.2007 - 18
h
 - 22

h
 - low heat consumption 

- 17.09.2007 - 17
h
 - 18

h
 - low heat consumption 

Berg 

 

10 months 

monitoring period 

10 

- January 3 and 31, 2007 - low daily heat consumption 

- Night between December 27 and 28, 2007 - low heat 

consumption 

Gamle Kjemi 

 

10 months 

monitoring period 

11 

- 04.01.2007 - 17
h
 - low heat consumption 

- 25.03.2007 - 4
h
 - 5

h
 - low heat consumption (Fault 

happened also for Gamle Fysikk building. It seems 

that a fault occurred at the district heating level.) 

- 20.09.2007 - 9
h
 - 11

h
 - low heat consumption 

Sentral Bygg 2 

 

3 months 

monitoring period 

4 No faults 

Elektro B 

5 months 

monitoring period 

5 

- 25.03.2007 - 4
h
 and 5

h
 - low heat consumption (Faults 

also occurred in other buildings, likely on the district 

heating level.) 

Materialtekniske 

Laboratorier 

 

4 months 

monitoring period 

11 

- 08.03.2007 - 13
h
 - low heat consumption 

- 25.03.2007 - 4
h
 and 5

h
 - low heat consumption (Faults 

also occurred in other buildings, likely on the district 

heating level.) 

- 30.03.2007 - 11
h
 and 5

h
 - low heat consumption 

- May 9 and 10, 2007 - 12
h
 and 15

h
 - unstable operation 

Produktdesign 

 

4 months 

monitoring period 

2 

- 25.03.2007 - 4
h
 and 5

h
 - low heat consumption (Faults 

also occurred in other buildings, likely on the district 

heating level.) 

Elektro E and F 

 

4 months 

monitoring period 

2 

- 13.03.2007 - 10
h
 - low heat consumption 

- 25.03.2007 - 4
h
 and 5

h
 - low heat consumption (Faults 

also occurred in other buildings, likely on the district 

heating level.) 
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Metallurgi 

 

4 months 

monitoring period 

1 

- 08.03.2007 - 13
h
 - low heat consumption 

- 25.03.2007 - 4
h
 and 5

h
 - low heat consumption (Faults 

also occurred in other buildings, likely on the district 

heating level.) 

- 17.04.2007 - 18
h
 - 22

h
 - low heat consumption 

Oppredning - 

gruvedrift 

 

4 months 

monitoring period 

3 

- 25.03.2007 - 4
h
 and 5

h
 - low heat consumption (Faults 

also occurred in other buildings, likely on the district 

heating level.) 

- 17.04.2007 - 18
h
 - 22

h
 - low heat consumption (Faults 

also occurred in other buildings, likely on the district 

heating level.) 

PFI 

 

5 months 

monitoring period 

13 

- 25.03.2007 - 4
h
 and 5

h
 - low heat consumption (Faults 

also occurred in other buildings, likely on the district 

heating level.) 

Verkstedtekniske 

Laboratorier 

 

4 months 

monitoring period 

3 

- 25.03.2007 - 4
h
 and 5

h
 - low heat consumption (Faults 

also occurred in other buildings, likely on the district 

heating level.) 

- 28.04.2007 - 18
h
 and 19

h
 - low heat consumption  

Tyholt 

Marintekniskenter 

 

4 months 

monitoring period 

0 

- 06.02.2007 - 24
h
 - high heat consumption 

- 19.02.2007 - 16
h
 and 17

h
 - low heat consumption 

- 20.02.2007 - 6
h
 and 7

h
 - low heat consumption 

- 25.03.2007 - 4
h
 and 5

h
 - low heat consumption (Faults 

also occurred in other buildings, likely on the district 

heating level.) 

- March 30 and 31, 2007 - 14
h
 and 18

h
 - low heat 

consumption 

Dragvoll 3 

 

4 months 

monitoring period 

15 

- 19.03. 2008 - 14
h
 - 25.03.2008 - day regime operation 

was not turned on 

- 06.04. 2008 and 20.04.2008 (Sunday nights) - night 

operation was increased 

Dragvoll 8 

 

4.5 months 

monitoring period 

6 

- 26.09. 2007 - 19
h
  - 20

h
  - low heat consumption 

- 02.10. 2007 - 7
h
  - 8

h
  - low heat consumption 

- 18.10. 2007 - 7
h
  - 8

h
  - low heat consumption 

- 19.10. 2007 - 22
h
  - 23

h
  - low heat consumption 

- 21.10. 2007 - 15
h
  - 16

h
  - low heat consumption 

- 02.11. 2007 - 20
h
  - 24

h
  - low heat consumption 

- 03.11. 2007 - 20
h
  - 24

h
  - day regime operation was 

not turned on 

Dragvoll 

Idrettssenteret 

 

18 months 

monitoring period 

5 

- 08.01. 2007 13
h
  - low heat consumption 

- 25.03.2007 - 3
h
 - low heat consumption 

- 03.10. 2007 22
h
 - 04.10. 2007 7

h
 - low heat 

consumption 
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Dragvoll 2 

 

4 months 

monitoring period 

21 

- 18.01. 2007 - 19
h
  - 20

h
  - low heat consumption 

- 06.02. 2007 - 22
h
  - 23

h
  - low heat consumption 

- 07.02. 2007 - 15
h
  - 13

h
  - low heat consumption 

- 13.02. 2007 - 16
h
  - high heat consumption 

- 21.02. 2007 - 10
h
  - 10

h
  - low heat consumption 

- 08.03. 2007 - 13
h
  - 14

h
  - low heat consumption 

- 15.03. 2007 - 3
h
  - 9

h
  - low heat consumption 

- 16.03. 2007 - 9
h
  - 10

h
  - low heat consumption 

- 25.03. 2007 - 2
h
  - 4

h
  - low heat consumption 

- 13.04. 2007  - day control regime was not turned on 

- 16.04. 2007 - 12
h
  - 13

h
  - low heat consumption 

- 19.04. 2007 - 14
h
  - 15

h
  - low heat consumption 

Table 6.1 Faults in HVAC system operation of seventeen NTNU campus buildings 

There were nine days with deviations higher than 20 % for the Gamle fysikk building 

for the ten month monitoring period (Figures 0.23 and 0.24). Days during the Christmas and 

Easter holidays are not included among them. Holidays are also not included as days with 

faulty operation for the other buildings. High deviations are consequences of high outdoor 

temperatures or their significant changes for all of the remaining nine days. This was 

concluded by reviewing the hourly changes of outdoor air temperature and normalized hourly 

heat consumption.   

There were ten days with deviations higher than 20 % for the Berg building for the ten 

month monitoring period (Figures 0.25 and 0.26). All deviations were a consequence of high 

outdoor temperatures or their significant changes except for deviations on January 30 and 31, 

2007.  

It is found for the PFI building that heat consumption increased between February 9 

and 21, 2007 (Figure 0.36). Higher heat consumption appeared between 7
h
 and 18

h
 on May 8, 

2007. Higher heat consumption appeared at same day period from May 23 to 25, 2007. 

Operation in this period had faults if maintaining personal do not have explanation for those 

events. High deviations of normalized daily heat consumption are consequences of high 

outdoor temperatures or their significant changes for all of the remaining ten buildings with 

space heating system (Figures 0.27 and 0.38). 

Heat consumption for the five Dragvoll buildings represents ventilation heat 

consumption (Figures 0.39 – 0.44). The goodness of fit for Dragvoll 9 building was too poor 

to be able to verify performance of the ventilation system operation. Heat accumulation is not 

significant for the buildings, except for Dragvoll 2 building, as discussed in chapter 5, so 

modeling was done without outdoor temperature change as the independent variable. The 

Dragvoll 3 building has significant solar gains. Normalized daily heat consumption was 

within the 20 % limits for January and February. Predictions show a worse goodness of fit for 

the next two months (Figure 0.39). There were six days with high deviations from the 

normalized heat consumption during March. Three of those days were between March 19 and 

25, when the day regime operation was not turned on, so those deviations do not represent a 

fault of the model. Goodness of fit was much worse for April, so it was not possible to verify 

HVAC system performance for the spring months for this building through reviewing the 

normalized daily heat consumption. The problem is that close to change point temperatures 

predictions of heat consumption are not precise enough. However, the HVAC system 

operation can be verified for this month through reviewing the normalized hourly heat 

javascript:__doPostBack('ctl00$InnholdH$grdBygg$ctl26$LinkButton1','')


Ch. 6.2 Performance verification of HVAC system operation for seventeen NTNU campus 

buildings 

129 

consumption. For May, the deviations were too high so it was impossible to verify HVAC 

system performance.  

Most of the higher deviations appeared for the Dragvoll 8 building for days with higher 

temperatures during September 2007 (Figure 0.40).     

The monitoring period for the Dragvoll Idrettssenteret lasted eighteen months. For the 

period between February 1, 2008 and March 15, 2008, heat consumption was increased by 

10% (Figure 0.43). Higher deviations appeared for May 2007, September 2007 and May 

2008 for days with high temperatures (Figures 0.42 and 0.43). If we analyze the remaining 

months, there are five days with normalized daily heat consumption exceeding the 20 % 

limit, and all of these days had high outdoor temperatures. It is possible to verify operation of 

the HVAC system even for May and September through reviewing the hourly outdoor 

temperatures and normalized hourly heat consumption. Normalized daily heat consumption 

for the other months was within the 20% limit.  

Normalized heat consumption exceeded the 20 % limit for the Dragvoll 2 building in 

the period between February 25, 2007 and April 25, 2007 (Figure 0.44). This can be 

considered to be an operation fault, which significantly influenced overall heat consumption.  

From the presented analysis of the nineteen buildings, it can be concluded that 

significant deviations of heat consumption from the modeled values appeared for four 

buildings (Sydområdet NHL Forskning bygg, PFI, Dragvoll Idrettssenteret and Dragvoll 2). 

Other deviations, which are presented in table 6.1, did not significantly influence the 

performance of the analyzed HVAC systems.  
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7. Conclusions and recommendations for further work 

7.1 Conclusions 

This thesis has two main objectives: (1) developing LR models for radiator space 

heating and ventilation heat consumption and (2) evaluation of the ability of those models to 

detect O&M problems.  

7.1.1 LR models of space heating and ventilation heat 

consumption 

The variables that define heat consumption of space heating and ventilation systems are 

theoretically evaluated. The same LR model involving independent variables for outdoor 

temperature, wind speed and solar radiation is used for both space heating and ventilation. 

The ability of different data resolutions to consider these influences is evaluated, since these 

variables affect heat consumption at different time intervals. Stepwise regression is used to 

evaluate the contributions of different weather influences by comparing R
2
. The thermal 

storage effect and building occupancy are not presented in the LR model as independent 

variables. These influences are covered by averaging data with lower resolution or by daily 

pattern for the HOD data grouping. Improvements in R
2
 by engaging data with lower 

resolution are a consequence of averaging these influences. R
2
 values are compared in two 

directions. The first direction is improvement of R
2
 by engaging more independent variables 

(stepwise regression). This improvement shows the contribution of independent variables to 

heat consumption. The second direction is improvement of R
2
 by averaging data with lower 

resolution. This improvement shows the contribution of the thermal storage effect and 

building occupancy to heat consumption.   

Comparison of R
2
 values through stepwise regression and comparison of sequential 

sums of squares showed that the outdoor temperature is the most significant variable. Wind 

was not significant for the analyzed buildings. However, solar radiation was significant for 

one building with modeled space heating. Although it is expected that solar radiation will 

influence only the heating demand for space heating, solar radiation was significant for two 

buildings with modeled ventilation heating; this is because part of the solar radiation energy 

was utilized in the economizer due to higher temperatures inside the buildings during sunny 

periods. Improvement of R
2
 for simple LR calculations by engaging data with lower 

resolutions shows the extent of the thermal storage effect due to changes in the outdoor 

temperature for space heating systems, and the extent of the influence of occupancy. 

Occupancy influence can be recognized by comparing the R
2
 values for unoccupied and 

occupied day periods. Since control regimes generally follow unoccupied and occupied day 

periods, it was difficult to evaluate the influence of heat gains related to occupancy. R
2
 values 

for simple LR calculations with daily data are lower for weekends than for weekdays for all 

six buildings with space heating, which was not expected, since weekends are unoccupied 

periods. Weekday and weekend day regimes are the same for eight buildings with monitored 

heat consumption of space heating system. There are no significant differences between R
2
 

values, so occupancy did not influence significantly heat consumption. Weekday and 

weekend day regimes are the same for two buildings with monitored heat consumption of 

ventilation system. There are significant differences between R
2
 values, so occupancy 
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influenced significantly heat consumption. Improvement of R
2
 for simple LR calculation by 

engaging data with lower resolutions is attributed to thermal storage effect due to changes in 

the outdoor temperature for the space heating system. This improvement also exists for five 

buildings with ventilation systems, but the reason for this improvement is building 

occupancy. Inspection of ventilation systems normalized heat consumption did not show time 

delay due to changes in the outdoor temperature, except for one building, so the thermal 

storage effect should not be significant for ventilation systems. Improvement of R
2
 for simple 

LR calculation by engaging data with lower resolutions is higher than the improvement 

gained by introducing multiple LR models, which demonstrates that unexplained variations in 

the hourly model are generally due to the thermal storage effect, rather than wind or solar 

radiation. R
2
 values of simple LR calculations with HOD data are higher than R

2
 values for 

the same calculations conducted with hourly data grouped by regimes. However, calculations 

with daily data and mean values grouped by regimes produced much higher R
2
s for simple 

LR calculation, and so considered thermal storage effects due to changes in the outdoor 

temperature and occupancy influences to a greater extent than the HOD grouping.  

The thermal storage effect also exists for solar radiation. A comparison of the 

sequential sum of squares corresponding to solar radiation shows to what extent LR 

calculations with different data groupings cope with the thermal storage effect. Calculations 

with HOD data produced higher SSS values corresponding to solar radiation than calculations 

with hourly data grouped by regimes. Calculations with daily data and mean values produced 

the highest SSS values for this influence, so HOD grouping did not fully cover the solar 

radiation thermal storage effect.  

Although literature sources claim that the thermal storage effect of the building 

envelope is not significant on a daily basis, this thesis has proven that, even with this time 

resolution, the thermal storage effect is significant. The model is improved by introducing the 

change in mean daily temperature as an independent variable in the daily LR model. 

Deviations of the actual daily heat consumption from the modeled daily heat consumption 

were found for days with significant changes in the mean daily temperature of up to 40% for 

calculations that did not involve changes of the mean daily temperature as an independent 

variable of LR model. Deviations were narrowed to 20% in most cases by introducing time-

lagged variables that describe changes in the mean daily temperature in the model. The model 

is then applicable for diagnostics since 5% deviations that last for more than couple days can 

be detected.  

Thermal storage effects did not significantly influence heat consumption of ventilation 

systems except for one building. Measurements were available for the heat consumption of 

ventilation system and for mixed heat consumption of radiator space heating and ventilation. 

Because of the different natures of ventilation and radiator space heating (thermal storage 

effects is significant for radiator space heating), it is recommended that energy use 

measurements of those two systems be distinguished. However, the proposed method can be 

used for diagnostics, even if measurements are not separated.    

Deviations of the actual from the modeled heat consumption are higher for hourly data 

than deviations for daily data. Time-lagged variables were not introduced in the hourly LR 

model. Normalized heat consumption represents ratio of actual and modeled heat 

consumption. The thermal storage effect can be interpreted by the user of the developed tool 

by following normalized hourly heat consumption and hourly changes in the outdoor 

temperature. The user can verify the dynamic performance of the system by predicting that 

accumulated heat will be released by walls and that it will decrease heat demand if the 
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outdoor temperature decreases. Normalized heat consumption should track along with 

changes in outdoor temperature. Accumulated heat will increase heat demand if the outdoor 

temperature increases.  

It is important for O&M detection purposes that heat consumption predictions have the 

lowest possible deviations from actual heat consumption. The coefficient of variation is used 

to evaluate the prediction ability of calculations with different data resolutions. Other 

literature sources claimed that daily data produce the lowest CV values. Those sources 

analyzed space heating systems that operated without change of operation, i.e., without 

different control regimes for day and night. This thesis poses the hypothesis that calculations 

with daily data will give less accurate predictions for space heating and ventilation systems 

that operate with control regimes due to the inability of this model to cover control regime 

variation. This hypothesis is proved, since daily data calculations produced worse predictions 

(higher CV values) than calculations with other data groupings.  

Calculations with higher resolutions introduce more information into the model. 

Calculations with lower resolutions better cover thermal storage effect and building 

occupancy heat gains. In this trade-off situation, calculations with HOD data and calculations 

with mean values grouped by regimes gave the lowest CV values for space heating. However, 

when the daily model, which includes the time-lagged variable of outdoor temperature 

change, was compared with other models, it gave the lowest CV values for space heating. 

The lowest CV values are obtained for calculations with HOD data to model ventilation heat 

consumption followed by calculations with mean values grouped by regimes. Introducing the 

time-lagged variable of outdoor temperature change into the daily model did not significantly 

decrease CV values for modeled ventilation heat consumption, proving that the thermal 

storage effect is not significant for heat consumption with a ventilation system.    

Excluding outliers through the recommended statistical method did not improve model 

accuracy. In some cases, the solar radiation linear regression coefficients were 

underestimated, so that data points with high solar radiation were recognized as outliers and 

eliminated from the linear regression. As a result, model performance degraded, so this 

feature of the developed tool was turned-off in analysis.  

Three months of monitoring history has proven to be sufficient for modeling both daily 

and hourly heat consumption of space heating and ventilation systems and recognize O&M 

problems through inspection of normalized heat consumption. Calculations with the three 

winter months produced the lowest CV values, so it is recommended to separate the winter 

monitoring period from spring and autumn in order to obtain a more accurate model. 

Predictions gained for spring and autumn were less accurate due to the greater influence of 

thermal storage effects for days with high outdoor temperatures.  

7.1.2 Detection of O&M problems through developed tool  

This thesis proposes a method for analyzing building energy performance, which is 

based on the following ideas: (1) using linear regression for modeling heat consumption of 

space heating and ventilation systems, (2) recognizing control regimes and relevant 

monitoring period with unchanged performance of the HVAC system by reviewing 3-D plots 

and (3) analysis of building energy performance through overview of 3-D diagrams. A tool 

with a graphical user interface is developed according to the proposed method. The tool 

enables: 
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- handling monitoring data through selecting monitoring period used for 

calculation 

- defining control schedules 

- excluding poor quality data points 

- calculations with different data resolutions and different independent variables 

- visual interpretation of results     

3-D diagrams are selected for visual interpretation of results. Those diagrams offer a 

descriptive overview of the performance of a HVAC system both from hour to hour and from 

day to day. The operators monitoring the HVAC systems of NTNU‘s buildings found 3-D 

diagrams preferable to the diagrams that they currently use. Operators can recognize the 

control regime schedule of a monitored HVAC system by looking at the 3-D diagrams of heat 

consumption. Normalized heat consumption is used to detect O&M problems. Normalized 

hourly heat consumption is useful for interpreting interaction between the HVAC system and 

building.        

The proposed method was used to analyze the heat consumption of nineteen NTNU‘s 

campus buildings in Trondheim. Normalized hourly and daily heat consumptions were 

inspected. O&M problems that could significantly influence building heat consumption 

appeared for four analyzed buildings. Those problems were spotted by inspecting normalized 

daily heat consumption. Other deviations of actual from modeled heat consumption were 

explained as a consequence of the inability of the LR model to consider the thermal storage 

effect, and as a consequence, the change point model could not give accurate predictions for 

data points with outdoor temperatures close to the change point. Those deviations could be 

explained by following hourly outdoor temperatures and normalized hourly heat consumption 

in parallel. This is proof that LR can be used for efficient modeling of radiator and ventilation 

heating, and the developed tool can be used to detect O&M problems. It should be 

emphasized that the complete analysis for the nineteen buildings took approximately two 

working days, so the developed program is an efficient diagnostic tool.  

Regarding improvement of communication between operators and other players 

involved in building energy monitoring, this issue was not especially investigated in the 

thesis because of time limitations for writing this thesis. The tool was demonstrated to 

NTNU‘s HVAC system operators. The operators accepted the tool with optimism and have 

expressed their wish to start using it. Both the operators and the author of this thesis 

understood the performance of the analyzed HVAC systems in the same fashion, so it can be 

concluded that the developed tool helped to improve our communication. Using the 

developed tool requires engagement of the user to interpret the 3-D plots. Although that 

requires time, using program would force the user to continuously follow the operation of the 

monitored HVAC system.  

 

  



Ch. 7 Conclusions and recommendations for further work 

134 

7.2 Recommendations for further work 

Further work can be classified into the following goals: (1) evaluation of the ability of 

the LR model to cover variations due to different influences, (2) further improvement of the 

LR model, and (3) introduction of the developed tool into practical use. 

The influences that define building heat consumption and the ability of LR models to 

consider variations of heat consumption that are consequences of those influences are 

evaluated theoretically in this thesis. Developing a simulation model would enable verifying 

the theoretical considerations. Similar considerations as those suggested by Liu et al. (1995)  

(thermal storage effects due to changes in outdoor temperature and solar radiation for space 

heating systems) can be made for other influences, such as the thermal storage effect due to 

accumulated radiant lighting heat and thermal storage effect due to building warm up after 

the night temperature set-back.  

Thermal storage effects due to changes in outdoor temperatures were not significant for 

ventilation systems in the analysis presented in this thesis. However, some variations were 

attributed to heat accumulation due to changes in the outdoor temperature. Solar heat gains 

and internal heat gains should only decrease heat consumption for the space heating system. 

However, solar radiation has proved to be significant for two of the analyzed ventilation 

systems, because part of the accumulated solar radiation was utilized through the economizer. 

Building occupancy was significant for analyzed ventilation systems, since the R
2
 values 

were higher for weekends than for weekdays. Solar and internal heat gains influence both 

space heating and ventilation heat consumption. The proportion of heat gains that decrease 

space heating and ventilation consumption should be evaluated. It could be possible that this 

heat is utilized in the economizer only if heat gains are higher than heat losses, i.e., if there is 

no need for space heating. This mechanism can be elaborated through a simulation model.      

A simulation model can be developed to produce a set of data that would be used for 

LR modeling, in order to evaluate how different groupings cover different influences. Such a 

model would enable different parameters to vary in order to find out if different models can 

spot those variations. Such a simulation model would represent a controlled experiment. 

Sequential sums of squares describe the contributions of independent variables to heat 

consumption. Comparing sequential sums of squares with contributions from simulation 

model would evaluate the capability of the LR model to represent variation due to different 

influences.  

Hourly variations of heat consumption due to the thermal storage effect were 

interpreted in this thesis by following normalized hourly heat consumption and hourly 

outdoor temperatures in parallel. The daily model was improved by introducing time-lagged 

variables of outdoor temperature change. Time-lagged variables covered the thermal storage 

effect of daily outdoor temperature changes. This improvement was significant for space 

heating, since introducing time-lagged variables improved from the model that produced the 

worst predictions (the highest CV values) to the model that produced the best predictions. 

Thermal storage affects heat consumption on an hourly basis, so the hourly model can be 

improved the same way. Variations in hourly temperatures during the day are higher than 

variations in the mean daily temperatures, so the improvement should be significant.   

Liu et al. (1995) showed that the thermal storage effect is significant for higher outdoor 

temperatures. This introduces nonlinearity into the model of heat consumption. Heat 
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consumption for temperatures close to the change point temperature has a quadratic shape 

(Figure 3.3). Heat consumption predictions are more inaccurate for higher temperatures. 

Prediction accuracy for higher outdoor temperatures could be improved by introducing the 

square of the outdoor temperature as an independent variable of LR model.    

The developed tool was adjusted to the analysis in this thesis. It is developed in 

modular form, so further improvements can be easily added to the current functions. The tool 

requires Matlab, but it is possible to convert the tool into an independent application that does 

not require installing Matlab. The tool uses data in the form of tables, which were available 

for the analyzed NTNU buildings. It should not be challenging to adapt the program to handle 

other table formats. Furthermore, it operates autonomously, i.e., it does not have to be 

connected to the building monitoring system. This is advantageous since it could be used for 

analysis by anyone who possesses data.  
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Appendix A.1 

I 

Appendix A - Results of calculations with hourly data grouped by 

regimes 

Appendix A.1 - Space heating systems 

Sentral Bygg 1 

Table 0.1 LR coefficients for simple LR 

Control regimes β0 β1 (Temperature) 

Night 14.64 19.24 

Weekdays day 84.18 27.16 

Morning peak 381.56 22.25 

Night peak -0.42 4.77 

Weekends day 60.87 20.71 

 

Table 0.2 LR coefficients for multiple LR 

Control regimes β0 β1  (Temperature) β2 (Wind) β3 (Sun) 

Night -0.77 18.34 0.5060 -0.0466 

Weekdays day 67.55 26.26 0.5058 0.0108 

Morning peak 381.39 22.03 0.1261 -0.0342 

Night peak -2.72 4.72 0.0506 0.0011 

Weekends day 58.30 19.51 0.5599 -0.0190 

 

Table 0.3 Coefficients of determination for simple and multiple LR 

Control regimes Night 
Weekdays 

day 

Morning 

peak 
Night peak 

Weekends 

day 

Simple 
R

2
 78.50 % 79.57 % 68.32 % 53.37 % 85.10 % 

R
2

overall 79.14 % 

Multiple 
R

2
 81.13 % 80.56 % 67.56 % 51.83 % 88.51 % 

R
2

overall 80.61 % 

 

Table 0.4 Sequential sums of squares for different regimes 

Control regimes Night 
Weekdays 

day 

Morning 

peak 
Night peak 

Weekends 

day 

SSS Temperature 4 080 600 12 602 000 983 410 17 477 1 377 500 

SSS Wind 151 820 211 160 1 503 165 49 187 

SSS Sun 7 844 23 590 3 196 8 15 502 



Appendix  

II 

Sydområdet NHL Forskning  

Table 0.5 LR coefficients for simple LR 

Control regimes β0 β1 (Temperature) 

Night 2.05 15.68 

Day 2.87 23.82 

 

Table 0.6 LR coefficients for multiple LR 

Control regimes β0 β1  (Temperature) β2 (Wind) β3 (Sun) 

Night 6.71 15.24 0.0791 -0.0215 

Day 20.39 23.50 -0.1027 -0.0315 

 

Table 0.7 Coefficients of determination for simple and multiple LR 

Control regimes Night Day 

Simple 
R

2
 84.82 % 88.68 % 

R
2

overall 86.60 % 

Multiple 
R

2
 85.11 % 89.18 % 

R
2

overall 86.99 % 

 

Table 0.8 Sequential sums of squares for different regimes 

Control regimes Night Day 

SSS Temperature 45 883 000 45 360 000 

SSS Wind 43 311 34 116 

SSS Sun 173 750 295 080 

Gamle-fysikk 

Table 0.9 LR coefficients for simple LR 

Control regimes β0 β1 (Temperature) 

Day 9,0294 8,7705 

Night 5,5648 5,9039 

Morning peak 20,999 9,1341 

Night peak -0,090557 4,8125 
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III 

Table 0.10 LR coefficients for multiple LR 

Control regimes β0 β1  (Temperature) β2 (Wind) β3 (Sun) 

Day -0.43 8.64 0.1591 0.0093 

Night 3.45 5.59 0.1317 -0.0015 

Morning peak 13.56 8.58 0.3571 0.0107 

Night peak -0.68 4.75 0.0211 -0.0003 

 

Table 0.11 Coefficients of determination for simple and multiple LR 

Control regimes Day Night Morning peak Night peak 

Simple 
R

2
 82.49 % 87.42 % 79.61 % 88.75 % 

R
2

overall 83.24 % 

Multiple 
R

2
 83.86 % 88.57 % 82.89 % 88.58 % 

R
2

overall 84.73 % 

 

Table 0.12 Sequential sums of squares for different regimes 

Control regimes Day Night Morning peak Night peak 

SSS Temperature 2 231 500 614 360 231 910 18 830 

SSS Wind 26 589 11 239 13 247 30 

SSS Sun 25 570 19 451 1 

Berg  

Table 0.13 LR coefficients for simple LR 

Control regimes β0 β1 (Temperature) 

Day weekdays 7.94 14.89 

Night 10.69 13.64 

Day weekends 4.69 12.34 

 

Table 0.14 LR coefficients for multiple LR 

Control regimes β0 β1  (Temperature) β2 (Wind) β3 (Sun) 

Day Weekdays 10.73 14.51 0.1001 -0.0140 

Night 8.47 13.31 0.1277 -0.0187 

Day weekends 5.57 11.80 0.1610 -0.0072 
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Table 0.15 Coefficients of determination for simple and multiple LR 

Control regimes Day Weekdays Night Day weekends 

Simple 
R

2
 89.12 % 83.23 % 84.50 % 

R
2

overall 86.08 % 

Multiple 
R

2
 89.52 % 83.76 % 85.01 % 

R
2

overall 86.56 % 

 

Table 0.16 Sequential sums of squares for different regimes 

Control regimes Day Weekdays Night Day weekends 

SSS Temperature 19 232 000 16 906 000 4 456 100 

SSS Wind 40 810 79 613 34 214 

SSS Sun 63 851 47 328 5 640 

Gløshaugen Idrettsbygg  

Table 0.17 LR coefficients for simple LR 

Control regimes β0 β1 (Temperature) 

Day 18.38 15.17 

Night 3.52 7.83 

Midnight 7.38 11.45 

Weekends night 9.57 7.89 

7 a.m. -10 a.m. 8.51 10.57 

6 a.m. 8.19 8.34 

7 a.m. 17.06 9.41 

 

Table 0.18 LR coefficients for multiple LR 

Control regimes β0 β1  (Temperature) β2 (Wind) β3 (Sun) 

Day 5.86 14.99 0.1463 0.0252 

Night 2.37 7.54 0.0880 -0.0952 

Midnight 7.27 11.42 0.0072 0.0000 

Weekends night 4.96 7.34 0.2160 -0.1963 

7 a.m. -10 a.m. 13.64 9.96 0.1218 -0.0223 

6 a.m. 7.1952 7.7736 0.15749 -0.03924 

7 a.m. 19.077 8.7577 0.109 -0.10644 
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Table 0.19 Coefficients of determination for simple and multiple LR 

Control regimes Day Night Midnight 
Weekends 

night 

7 a.m. -

10 a.m. 
6 a.m. 7 a.m. 

Simple 
R

2
 72.38 % 75.75 % 80.28 % 66.68 % 84.29 % 70.68 % 66.65 % 

R
2

overall 72.75 % 

Multiple 
R

2
 74.04 % 76.45 % 80.45 % 68.49 % 85.48 % 72.30 % 68.16 % 

R
2

overall 74.32 % 

 

Table 0.20 Sequential sums of squares for different regimes 

Control regimes Day Night Midnight 
Weekend 

night 

7 a.m. -

10 a.m. 
6 a.m. 7 a.m. 

SSS Temperature 9 876700 363 700 196 150 244 760 468 450 166 720 206 060 

SSS Wind 31 427 2 228 3 7 358 2 565 2 884 1 243 

SSS Sun 281 760 1 572 0 861 4 083 1 354 4 198 

Varmetekniske laboratoriet  

Table 0.21 LR coefficients for simple LR 

Control regimes β0 β1 (Temperature) 

Night 26.92 18.17 

Day 22.38 17.19 

 

Table 0.22 LR coefficients for multiple LR 

Control regimes β0 β1  (Temperature) β2 (Wind) β3 (Sun) 

Night 21.22 18.12 0.0947 0.0055 

Day 21.48 16.98 0.0887 -0.0110 

 

Table 0.23 Coefficients of determination for simple and multiple LR 

Control regimes Night Day 

Simple 
R

2
 86.80 % 86.31 % 

R
2

overall 86.58 % 

Multiple 
R

2
 86.92 % 86.46 % 

R
2

overall 86.72 % 
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Table 0.24 Sequential sums of squares for different 

regimes 

Control regimes Night Day 

SSS Temperature 19 739 000 16 613 000 

SSS Wind 28 679 23 144 

SSS Sun 8 090 12 440 
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Appendix A.2 - Ventilation systems 

Dragvoll Idrettsbygg  

Table 0.25 LR coefficients for simple LR 

Control regimes β0 β1 (Temperature) 

Night 9.92 3.83 

6 a.m. and 7 a.m. 10.03 12.01 

Weekdays day  51.26 19.14 

9 p.m. – 12 p.m. 26.53 8.51 

8 a.m.  - 9 a.m.  weekend 15.12 10.43 

Weekend day 15.96 18.59 

7 p.m. –12 p.m. Saturday 11.33 5.60 

7 p.m. –12 p.m. Sunday 47.29 11.46 

 

Table 0.26 LR coefficients for multiple LR 

Control regimes β0 β1  (Temperature) β2 (Wind) β3 (Sun) 

Night  8.25 3.62 0.0884 -0.0449 

6 a.m. and 7 a.m. 10.69 11.79 0.0440 -0.0482 

Weekdays day  49.87 19.06 0.0466 0.0003 

9 p.m. – 12 p.m. 25.52 8.39 0.0540 -0.0053 

8 a.m.  - 9 a.m.  weekend 1.04 10.67 0.1477 0.0549 

Weekend day 20.031 18.331 0.0235 -0.0074 

7 p.m. –12 p.m. Saturday 5.9567 5.1285 0.2070 0.0082 

7 p.m. –12 p.m. Sunday 39.966 11.306 0.1736 0.0233 

 

Table 0.27 Coefficients of determination for simple and multiple LR 

Control regimes Night 
6 a.m. - 7 

a.m. 

Weekdays 

day 

9 p.m. -

12 p.m. 

8 a.m.  - 

9 a.m.  

weekend 

Weekend 

day 

7 p.m. -

12 p.m. 

Saturday 

7 p.m.- 

12 

p.m. 

Sunday 

Simple 
R

2
 74.15 % 66.65 % 85.34 % 17.53 % 32.27 % 90.81 % 34.48 % 28.76 % 

R
2

overall 70.72 % 

Multiple 
R

2
 76.23 % 66.72 % 85.35 % 17.35 % 32.25 % 90.87 % 35.46 % 28.55 % 

R
2

overall 70.85 % 
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Table 0.28 Sequential sums of squares for different regimes 

Control 

regimes N
ig

h
t 

6
 a

.m
. 

an
d

 7
 a

.m
. 

W
ee

k
d

ay
s 

d
ay

 

9
 p

.m
. 
–

 1
2

 p
.m

. 

8
 a

.m
. 

 -
 9

 a
.m

. 
 

w
ee

k
en

d
 

W
ee

k
en

d
 d

ay
 

7
 p

.m
. 
–

1
2
 p

.m
. 

S
at

u
rd

ay
 

7
 p

.m
. 
–

1
2
 p

.m
. 

S
u

n
d

ay
 

SSS Temp. 379 700 753 660 14597000 915 510 344 220 4 678 400 124 110 398 190 

SSS Wind 10 770 598 4 632 1 865 4 521 388 8 004 4 345 

SSS Sun 1 895 2 046 23 35 7 941 5 502 474 2 638 

Dragvoll 8  

Table 0.29 LR coefficients for simple LR 

Control regimes β0 β1 (Temperature) 

Night 6.21 2.82 

Weekdays day  13.43 8.80 

7
h
 - 8

h
 Weekend 8.80 4.76 

17
h
 - 18

h
  Weekend 11.35 7.36 

Weekend day  11.89 8.36 

 

Table 0.30 LR coefficients for multiple LR 

Control regimes β0 β1  (Temperature) β2 (Wind) β3 (Sun) 

Night 3.78 2.77 0.0579 0.0030 

Weekday Day 9.29 8.66 0.1180 -0.0035 

7
h
 - 8

h
 Weekend 0.18 5.03 0.0874 0.0222 

17
h
 - 18

h
  Weekend 6.42 7.53 0.0385 0.0041 

Weekend day -0.81 8.21 0.2629 0.0074 

 

Table 0.31 Coefficients of determination for simple and multiple LR 

Control regimes Night 
Day 

weekday 

7
h
 - 8

h
 

weekend 

17
h
 - 18

h
  

weekend 

Day 

weekend 

Simple 
R

2
 78.77 % 83.33 % 71.54 % 88.57 % 80.88 % 

R
2

overall 82.91 % 

Multiple 
R

2
 80.90 % 84.29 % 73.99 % 88.77 % 84.52 % 

R
2

overall 84.22 % 
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Table 0.32 Sequential sums of squares for different regimes 

Control regimes Night 
Day 

weekday 

7
h
 - 8

h
 

weekend 

17
h
 - 18

h
  

Weekend 

Day 

weekend 

SSS Temperature 225 590 4 082 800 20 272 82 672 411 610 

SSS Wind 6 541 48 484 939 120 22 105 

SSS Sun 100 3 250 467 423 1 973 

Dragvoll 9 

Table 0.33 LR coefficients for multiple LR 

Control regimes β0 β1  (Temperature) β2 (Wind) β3 (Sun) 

Night 1.34 -0.04 0.0108 -0.0003 

Day 17.78 9.12 0.0087 -0.0191 

6
h
 weekdays 4.42 -0.17 0.0374 -0.1451 

23
h
 weekdays 24.04 8.83 0.0453 0.0000 

9
h
 weekend -2.82 0.36 0.1158 -0.0052 

18
h
 weekend 37.8 9.11 0.0424 -0.0421 

 

Table 0.34 Coefficients of determination for simple and multiple LR 

Control regimes Night Day 
6

h
 

weekdays 

23
h
 

weekdays 

9
h
 

weekend 

18
h
 

weekend 

Simple 
R

2
 0.11 % 49.19 % 0.07 % 51.74 % 0.60 % 45.40 % 

R
2

overall 49.21 % 

Multiple 
R

2
 1.67 % 50.22 % 6.47 % 50.65 % 14.09 % 56.12 % 

R
2

overall 50.45 % 

 

Table 0.35 Sequential sums of squares for different regimes 

Control regimes Night Day 
6

h
 

weekday

s 

23
h
 

weekday

s 

9
h
 

weekend 

18
h
 

weekend 

SSS Temperature 35 4 268 400 72 224 760 53 53 816 

SSS Wind 205 258 258 401 438 71 

SSS Sun 1 104 350 79 0 17 25 805 
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Dragvoll 2 

Table 0.36 LR coefficients for multiple LR 

Control regimes β0 β1  (Temperature) β2 (Wind) β3 (Sun) 

Weekdays 1
h
-6

h 
7.72 6.63 0.0549 0.0213 

Weekdays 7
h
-21

h
 8.09 8.24 0.1230 -0.0039 

Weekdays 22
h
-24

h
 2.65 6.31 0.0953 0.0000 

Weekends 1
h
-8

h
 5.00 7.21 0.1586 -0.0107 

Weekends 9
h
-18

h
 7.51 9.33 0.0764 0.0003 

Weekends 19
h
-24

h
 5.43 7.02 0.02 -0.0025 

 

Table 0.37 Coefficients of determination for simple and multiple LR 

Control regimes
 Weekdays 

1
h
-6

h 
Weekdays 

7
h
-21

h
 

Weekdays 

22
h
-24

h
 

Weekends 

1
h
-8

h
 

Weekends 

9
h
-18

h
 

Weekends 

19
h
-24

h
 

Simple 
R

2
 77.47 % 60.84 % 72.45 % 70.35 % 78.18 % 82.70 % 

R
2

overall 66.22 % 

Multiple 
R

2
 77.72 % 61.47 % 73.26 % 73.09 % 78.23 % 82.60 % 

R
2

overall 66.85 % 

 

Table 0.38 Sequential sums of squares for different regimes 

Control 

regimes 

Weekdays 

1
h
-6

h 
Weekdays 

7
h
-21

h
 

Weekdays 

22
h
-24

h
 

Weekends 

1
h
-8

h
 

Weekends 

9
h
-18

h
 

Weekends 

19
h
-24

h
 

SSS 

Temp. 
829 885 4 048 315 384 248 221 137 888 320 212 861 

SSS 

Wind 
3 640 47 433 5 367 10 858 2 384 65 

SSS Sun 110 3 913 0 210 7 94 
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Appendix B - Results of calculations with HOD data  

Appendix B.1 - Space heating systems 

Sentral Bygg 1  

Table 0.39 LR coefficients for multiple LR 

 Weekdays Weekends 

 β0 β1 
Temperature 

β 3 Wind β 4 Sun β0 β1 
Temperature 

β 3 Wind β 4 Sun 

1 -49.322 17.491 0.4018 0.0000 -55.628 17.44 0.3607 0.0000 

2 -47.571 17.507 0.4561 0.0000 -40.3 16.723 0.2122 0.0000 

3 13.577 16.106 1.2881 0.0000 -49.485 18.128 0.1016 0.0000 

4 308.94 23.368 -0.0776 0.0000 -55.871 16.217 0.3960 0.0000 

5 119.54 18.993 0.5404 -0.2447 -44.77 16.685 0.3725 -0.1484 

6 140.63 19.725 0.4427 -0.2208 -51.406 16.889 0.4749 -0.2357 

7 130.01 27.67 0.3215 -0.0594 -35.814 16.358 0.4701 -0.0266 

8 142.75 28.477 0.3709 -0.0831 -62.162 16.401 0.5609 0.0023 

9 174.28 28.66 -0.0287 -0.1298 -73.692 17.313 0.6194 -0.0137 

10 182.9 28.327 0.2228 -0.1026 351.23 19.644 0.2615 0.0320 

11 189.33 28.867 -0.0685 -0.0684 102.14 17.954 0.7586 0.0084 

12 185.05 28.317 0.1979 -0.0619 106.25 19.239 0.2935 -0.0108 

13 178.38 29.282 0.1450 -0.0619 94.832 17.725 0.5700 0.0090 

14 145.06 28.401 0.3046 -0.0303 70.571 20.087 0.4957 0.0100 

15 165.74 28.877 0.3582 -0.0615 82.458 18.523 0.7820 -0.0102 

16 152.02 33.326 0.0152 -0.0393 71.774 21.473 0.7052 -0.0180 

17 182.03 28.883 0.3172 -0.0319 99.219 22.679 0.2161 -0.0286 

18 153.04 21.946 0.3230 -0.0311 105.72 17.888 0.7152 -0.0352 

19 89.141 23.903 0.0342 0.0067 12.338 2.3411 -0.1903 0.0000 

20 -6.7848 3.3343 0.1442 0.0073 -83.65 15.63 0.6153 -0.0774 

21 -79.858 17.308 0.5633 0.0000 -65.013 16.586 0.4728 0.0000 

22 -51.565 16.571 0.4937 0.0000 -64.856 15.001 1.0208 0.0000 

23 -51.623 16.155 0.6452 0.0000 -72.755 16.123 0.9930 0.0000 

24 -47.895 17.144 0.4256 0.0000 -67.338 17.39 0.7141 0.0000 
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Table 0.40 Coefficients of determination for simple and multiple LR 

 Simple Multiple 

 
R

2
 

Weekdays 
R

2
 

Weekends 
R

2
overall 

R
2
 

Weekdays 

R
2
 

Weekends 
R

2
overall 

1 85.61 % 88.40 % 

77.06 % 

87.19 % 89.24 % 

79.18 % 

2 80.18 % 89.64 % 82.11 % 89.87 % 

3 16.62 % 86.86 % 20.12 % 86.94 % 

4 44.25 % 88.94 % 44.27 % 90.69 % 

5 81.78 % 87.85 % 84.18 % 89.02 % 

6 84.93 % 88.74 % 86.94 % 92.44 % 

7 87.66 % 85.83 % 88.26 % 87.92 % 

8 89.14 % 87.86 % 90.43 % 92.64 % 

9 89.12 % 84.91 % 90.64 % 90.37 % 

10 81.64 % 59.57 % 84.54 % 60.09 % 

11 88.43 % 80.30 % 89.55 % 88.50 % 

12 88.12 % 88.20 % 89.84 % 89.77 % 

13 88.33 % 91.04 % 90.30 % 94.65 % 

14 86.86 % 87.85 % 87.89 % 89.82 % 

15 86.33 % 80.09 % 89.74 % 84.68 % 

16 83.57 % 78.47 % 85.67 % 82.41 % 

17 86.38 % 85.45 % 90.09 % 91.23 % 

18 85.82 % 86.05 % 87.67 % 93.73 % 

19 86.88 % 19.55 % 86.98 % 30.69 % 

20 45.08 % 66.05 % 48.32 % 69.52 % 

21 66.49 % 83.66 % 68.80 % 85.07 % 

22 72.75 % 77.71 % 74.70 % 82.48 % 

23 75.97 % 87.76 % 79.90 % 93.85 % 

24 82.59 % 83.46 % 84.30 % 85.74 % 

 

Table 0.41 Sequential sums of squares 

 
SSS 

Temper. 

Weekdays 

SSS 

Temper. 

Weekends 

SSS Wind 

Weekdays 

SSS Wind 

Weekends 

SSS Sun 

Weekdays 

SSS Sun 

Weekends 

1 353 000 168 390 8 097 1 827 0 0 

2 361 750 155 670 10 870 499 0 0 

3 326 560 199 980 85 942 202 0 0 

4 687 140 184 420 323 4 153 0 0 

5 476 260 174 090 14 192 2 905 77 18 

6 410 460 199 270 9 118 6 638 1 508 1 388 
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7 817 470 181 290 4 237 4 826 1 006 98 

8 1 006 900 202 360 8 143 10 034 4 828 2 

9 1 150 100 207 000 45 9 827 23 591 125 

10 745 810 240 350 3 113 2 104 19 769 613 

11 746 730 156 080 272 14 984 12 124 54 

12 711 810 172 200 2 284 2 434 14 942 120 

13 752 100 133 770 1 079 5 844 19 771 138 

14 652 700 178 650 4 361 4 145 4 523 248 

15 604 340 117 520 6 340 9 164 27 288 272 

16 648 940 112 720 10 7 647 21 408 1 580 

17 616 290 149 980 4 040 649 30 187 8 565 

18 236 640 84 644 2 678 5 477 15 208 9 632 

19 302 670 1 644 30 712 651 0 

20 9 855 91 572 894 3 208 149 5 117 

21 292 690 95 983 14 132 2 389 0 0 

22 295 280 72 078 10 717 10 119 0 0 

23 269 750 107 880 19 693 11 428 0 0 

24 317 670 148 020 9 222 5 001 0 0 

 

Table 0.42 Sequential sums of squares for two regimes 

Control regimes Weekdays day Weekend day 

SSS Temperature 10 566 360 1 345 914 

SSS Wind 60 266 52 449 

SSS Sun 196 881 21 222 

Sentral Bygg 1 calculation with excluding outliers 

Table 0.43 Sequential sums of squares 

 
SSS 

Temper. 

Weekdays 

SSS 

Temper. 

Weekends 

SSS Wind 

Weekdays 

SSS Wind 

Weekends 

SSS Sun 

Weekdays 

SSS Sun 

Weekends 

1 295 550 170 370 9 928 22 0 0 

2 334 250 153 810 2 246 145 0 0 

3 409 170 197 570 120 020 351 0 0 

4 647 310 194 680 1 710 65 0 0 

5 325 200 179 770 19 033 818 11 110 

6 265 760 151 440 9 484 2 125 3 749 2 009 

7 732 560 182 580 11 943 3 981 50 4 

8 835 010 197 210 18 932 14 992 3 155 847 

9 999 580 159 520 196 17 448 4 656 561 
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10 764 210 125 360 5 885 4 278 69 720 

11 715 350 94 984 185 14 991 68 105 

12 599 790 131 590 3 489 2 315 659 26 

13 696 870 123 280 1 459 6 106 4 091 0 

14 659 110 164 110 491 3 832 3 147 60 

15 580 010 124 200 2 612 70 13 065 3 976 

16 451 460 102 100 4 772 1 383 4 682 732 

17 425 880 97 892 13 301 1 099 8 741 3 886 

18 189 090 82 085 6 152 4 588 11 770 10 799 

19 239 440 690 30 379 7 56 

20 7 363 108 550 66 2 377 13 1 873 

21 255 350 86 758 15 985 2 158 0 0 

22 276 010 72 763 1 266 2 511 0 0 

23 266 860 89 065 11 620 10 675 0 0 

24 295 830 126 570 3 888 6 929 0 0 

Sydområdet NHL Forskning  

Table 0.44 Overall coefficients of determination 

for simple and multiple LR 

Simple LR R
2

overall 86.62 % 

Multiple LR R
2

overall 87.66 % 

 

Table 0.45 Sequential sums of squares 

 
SSS Temper. 

Weekdays 

SSS 

Temper. 

Weekends 

SSS Wind 

Weekdays 

SSS Wind 

Weekends 

SSS Sun 

Weekdays 

SSS Sun 

Weekends 

1 2 201 900 582 550 9 5 257 0 0 

2 2 190 000 532 760 172 5 473 0 0 

3 2 154 100 410 430 190 12 290 2 119 960 

4 1 892 800 491 930 2 806 3 311 1 154 1 850 

5 1 726 900 435 430 73 6 508 31 314 10 556 

6 1 511 300 466 450 2 293 1 271 89 869 33 552 

7 1 583 500 404 970 256 688 208 590 103 480 

8 3 398 700 529 940 13 104 724 142 910 39 455 

9 3 668 400 553 660 13 607 2 494 70 860 14 133 

10 3 944 500 549 330 17 762 408 67 875 25 455 

11 4 105 700 578 040 7 709 548 54 232 8 283 

12 4 304 800 587 010 5 032 1 431 16 530 1 491 

13 4 856 200 649 510 10 734 2 757 26 701 790 

14 4 287 100 736 410 2 279 859 40 884 1 838 



Appendix B.1  

XV 

15 4 278 700 653 230 1 838 649 87 420 2 453 

16 3 101 400 537 730 137 922 53 709 4 610 

17 3 105 300 572 830 511 16 24 109 149 

18 1 646 500 578 270 13 1 920 9 128 4 113 

19 1 630 100 529 160 15 2 092 27 465 3 254 

20 1 501 000 525 570 2 749 1 184 31 335 3 242 

21 2 000 100 670 680 208 3 402 5 712 2 135 

22 2 045 200 853 260 4 843 914 0 0 

23 2 077 700 756 820 454 334 0 0 

24 2 177 700 674 330 1 259 67 0 0 

Sydområdet NHL Forskning calculation with excluding outliers 

Table 0.46 Overall coefficients of determination 

for simple and multiple LR 

Simple LR R
2

overall 93.45 % 

Multiple LR R
2

overall 93.88 % 

 

Table 0.47 Sequential sums of squares 

 
SSS Temper. 

Weekdays 

SSS 

Temper. 

Weekends 

SSS Wind 

Weekdays 

SSS Wind 

Weekends 

SSS Sun 

Weekdays 

SSS Sun 

Weekends 

1 2 010 400 617 620 603 4 752 0 0 

2 2 012 600 530 460 479 3 303 0 0 

3 1 968 100 397 130 537 4 362 1 194 847 

4 1 431 100 483 740 7 217 1 946 2 413 1 434 

5 1 621 400 370 880 2 999 10 581 27 247 4 839 

6 1 123 200 425 110 143 2 034 87 350 28 620 

7 1 408 900 420 330 287 77 156 680 71 794 

8 3 068 100 558 400 5 009 108 61 229 18 536 

9 3 393 300 537 480 15 458 4 462 20 592 6 283 

10 3 441 000 521 800 13 806 668 9 693 16 147 

11 3 565 100 561 670 4 754 2 257 5 828 7 771 

12 4 026 900 606 120 331 31 4 368 728 

13 4 333 200 652 630 11 051 1 818 4 005 339 

14 4 152 800 715 840 3 398 1 695 53 414 6 876 

15 3 992 900 630 590 9 830 29 151 830 1 785 

16 2 627 300 496 800 3 703 3 203 10 584 112 

17 2 674 300 532 890 8 071 526 2 101 383 

18 1 004 300 600 240 8 933 298 25 244 6 385 

19 1 473 000 518 180 429 1 415 26 544 5 366 
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20 1 149 800 494 790 899 1 511 29 535 3 976 

21 1 818 700 723 330 7 4 894 4 738 5 

22 1 840 400 859 640 12 284 2 0 0 

23 2 006 300 651 070 3 276 2 314 0 0 

24 1 705 100 710 440 5 064 322 0 0 

Gamle-fysikk  

Table 0.48 Overall coefficients of determination 

for simple and multiple LR 

Simple LR R
2

overall 86.85 % 

Multiple LR R
2

overall 88.58 % 

 

Table 0.49 Sequential sums of squares 

 
SSS 

Temper. 

Weekdays 

SSS 

Temper. 

Weekends 

SSS Wind 

Weekdays 

SSS Wind 

Weekends 

SSS Sun 

Weekdays 

SSS Sun 

Weekends 

1 47 972 24 681 914 240 0 0 

2 55 527 22 010 1 158 746 0 0 

3 44 783 27 633 16 759 327 0 0 

4 90 600 22 563 625 684 13 578 123 

5 64 733 20 427 3 480 269 3 040 1 

6 53 151 20 421 3 389 282 3 878 139 

7 67 377 21 223 2 685 269 285 289 

8 106 790 29 183 1 831 157 830 153 

9 148 620 26 983 581 120 135 87 

10 140 470 65 664 1 573 3 114 216 81 

11 131 180 38 432 186 1 087 306 69 

12 156 240 40 838 21 508 383 3 

13 139 000 32 488 145 385 1 712 416 

14 135 030 35 472 83 41 824 1 479 

15 135 380 28 561 11 338 1 073 14 

16 134 400 19 034 112 202 875 721 

17 143 480 33 544 0 22 144 36 

18 50 060 29 547 166 1 1 96 

19 38 111 7 510 46 257 450 0 

20 11 730 13 996 80 234 274 229 

21 49 558 13 293 93 142 132 212 

22 48 902 14 729 458 215 0 0 

23 48 553 16 759 1 837 517 0 0 

24 33 177 23 404 1 057 255 0 0 
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Gamle-fysikk calculation with excluding outliers  

Table 0.50 Overall coefficients of determination 

for simple and multiple LR 

Simple LR R
2

overall 92.05 % 

Multiple LR R
2

overall 93.70 % 

 

Table 0.51 Sequential sums of squares 

 
SSS 

Temper. 

Weekdays 

SSS 

Temper. 

Weekends 

SSS Wind 

Weekdays 

SSS Wind 

Weekends 

SSS Sun 

Weekdays 

SSS Sun 

Weekends 

1 47 213 17 415 1 295 398 0 0 

2 48 388 17 945 826 874 0 0 

3 35 438 25 273 1 781 284 0 0 

4 83 562 24 706 1 372 669 18 581 170 

5 65 372 20 493 3 140 518 2 976 15 

6 46 689 12 842 2 171 508 3 293 145 

7 55 720 20 578 899 276 1 163 208 

8 105 020 27 215 1 549 273 66 58 

9 146 900 28 193 919 308 14 15 

10 132 450 37 399 1 367 1 618 357 127 

11 105 230 22 815 138 621 49 39 

12 135 120 32 919 94 60 225 203 

13 116 400 32 488 94 385 1 184 416 

14 110 490 30 164 6 109 777 457 

15 109 370 23 164 10 515 1 215 0 

16 115 460 18 856 26 107 2 113 143 

17 120 940 33 639 102 1 191 354 

18 32 028 25 439 51 13 270 100 

19 29 251 7 352 19 343 1 441 2 

20 8 229 7 589 156 340 106 69 

21 37 430 14 967 229 71 332 50 

22 38 262 12 032 455 386 0 0 

23 42 270 16 828 1 844 142 0 0 

24 40 211 19 425 1 363 126 0 0 
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Berg  

Table 0.52 Overall coefficients of determination 

for simple and multiple LR 

Simple LR R
2

overall 87.46 % 

Multiple LR R
2

overall 88.26 % 

Gløshaugen Idrettsbygg  

Table 0.53 LR coefficients for multiple LR 

 Weekdays Weekends 

 β0 β1 
Temperature 

β 3 Wind β 4 Sun β0 β1 
Temperature 

β 3 Wind β 4 Sun 

1 -11.594 6.226 0.0958 0.0000 -15.939 6.7289 0.0886 0.0000 

2 -13.974 6.4403 0.0472 0.0000 -17.593 6.4499 0.1291 0.0000 

3 -12.137 6.0579 0.0969 -0.3529 -14.624 6.2342 0.0700 -0.0642 

4 -11.127 6.3447 0.0400 -0.0772 -18.543 6.118 0.1665 -0.0034 

5 4.5688 8.1703 0.0839 -0.1297 -20.617 6.4177 0.1620 0.0153 

6 -11.886 7.1177 0.1695 -0.0154 -14.883 6.2996 0.0473 -0.0155 

7 -21.294 13.642 0.1918 0.0249 -9.0765 9.9697 0.0916 0.0026 

8 -3.4586 14.667 0.1531 0.0086 10.299 11 0.1115 -0.0222 

9 14.211 13.644 0.0840 -0.0115 9.3301 8.8614 0.1970 -0.0236 

10 41.518 15.022 0.1214 -0.0061 12.535 9.7981 0.0336 -0.0387 

11 19.245 14.968 0.0815 0.0049 -1.9401 10.995 0.0786 0.0054 

12 31.627 14.729 -0.1162 0.0180 3.1824 14.023 0.0302 0.0268 

13 19.798 15.111 -0.0445 0.0133 13.52 14.248 -0.1730 0.0366 

14 21.752 15.49 -0.0578 0.0172 5.81 13.986 -0.0005 0.0366 

15 10.379 15.695 -0.0088 0.0203 14.329 14.486 -0.0270 0.0123 

16 15.146 15.645 0.0063 0.0182 24.023 14.321 0.1252 0.0025 

17 18.407 17.188 0.0364 0.0141 31.099 13.771 0.0746 0.0076 

18 0.22288 19.88 0.0337 0.0370 16.649 14.567 0.1253 0.0209 

19 6.4764 19.611 0.1452 0.0213 7.7292 14.572 0.2528 0.0114 

20 17.384 18.093 0.0710 -0.0121 4.2445 14.125 0.3234 0.0169 

21 20.036 16.801 0.2643 -0.0879 -8.2248 11.385 0.1049 -0.0059 

22 -1.2961 16.972 0.3381 0.0000 -13.334 10.223 0.3770 0.0000 

23 -18.204 13.513 0.2554 0.0000 -15.388 9.8138 0.2548 0.0000 

24 -13.961 10.099 0.0394 0.0000 -9.7502 6.3307 0.0970 0.0000 
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Table 0.54 Overall coefficients of determination 

for simple and multiple LR 

Simple LR R
2

overall 79.93 % 

Multiple LR R
2

overall 80.87 % 

 

Table 0.55 Sequential sums of squares 

 
SSS 

Temper. 

Weekdays 

SSS 

Temper. 

Weekends 

SSS Wind 

Weekdays 

SSS Wind 

Weekends 

SSS Sun 

Weekdays 

SSS Sun 

Weekends 

1 97 373 45 601 626 184 0 0 

2 106 250 40 302 173 364 0 0 

3 103 720 40 979 697 157 2 125 20 

4 115 940 41 715 130 1 119 1 452 1 

5 196 760 42 229 532 889 8 214 27 

6 140 750 48 050 2 279 93 378 148 

7 475 700 116 430 2 465 298 1 351 9 

8 599 370 156 910 1 936 593 237 912 

9 491 100 96 513 544 1 601 542 1 166 

10 527 870 114 950 1 193 48 180 2 867 

11 449 290 125 850 502 251 140 63 

12 376 470 175 680 974 42 2 190 1 799 

13 355 860 139 870 117 813 1 560 4 448 

14 344 510 127 290 183 0 2 896 5 220 

15 315 140 121 310 4 14 5 355 712 

16 266 190 84 632 2 298 6 859 52 

17 449 930 98 107 70 105 9 315 878 

18 585 660 103 830 45 278 50 788 6 587 

19 576 730 143 400 924 2 102 14 149 1 070 

20 603 630 118 670 311 1 775 1 757 577 

21 535 910 75 464 4 217 245 23 245 46 

22 622 270 67 036 6 289 2 788 0 0 

23 395 480 78 574 3 771 1 572 0 0 

24 220 520 38 624 100 204 0 0 

Varmetekniske laboratoriet  

Table 0.56 Overall coefficients of determination 

for simple and multiple LR 

Simple LR R
2

overall 89.25 % 

Multiple LR R
2

overall 90.58 % 
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Appendix B.2 - Ventilation systems 

Dragvoll 3  

Table 0.57 LR coefficients for simple  multiple LR - Weekdays 

 Simple Multiple 

 β0 
β1 

Temperature 
β0 

β1 
Temperature 

β 3 Wind β 4 Sun 

1 -67.368 24.696 -76.123 23.706 0.5306 0.0000 

2 -72.674 24.798 -80.665 23.8 0.5113 0.0000 

3 -69.599 23.833 -84.072 23.019 0.6094 0.0000 

4 -72.205 24.063 -38.792 21.121 0.3656 -5.7429 

5 -66.165 23.639 -8.8254 19.251 0.4916 -1.3771 

6 -87.918 27.078 7.1782 21.34 0.2571 -0.9911 

7 -82.711 30.766 -5.4301 25.856 0.3346 -0.3222 

8 -34.93 51.828 231 40.669 -0.7226 -0.6958 

9 -8.0513 57.7 297.81 45.804 -0.4145 -0.7528 

10 21.255 58.461 332.57 46.497 -0.0595 -0.6116 

11 -19.66 61.831 248.87 52.8 -0.1600 -0.4790 

12 -23.651 62.965 207.62 58.425 -0.4888 -0.4123 

13 -64.391 65.946 94.048 62.565 0.0741 -0.2656 

14 -60.793 65.496 95.055 60.985 0.2820 -0.2159 

15 -60.817 65.684 118.19 60.665 0.1664 -0.2127 

16 -58.768 65.61 162.96 59.56 0.1159 -0.2573 

17 -63.307 63.75 158.02 54.364 -0.0458 -0.1686 

18 -68.966 64.768 66.956 52.98 1.0951 -0.0919 

19 -91.388 62.858 7.1876 54.544 0.6245 -0.0689 

20 -88.727 59.384 2.2229 50.413 1.0147 -0.1778 

21 -48.963 33.103 -38.226 29.223 0.9650 -0.2522 

22 -52.406 27.84 -69.552 24.985 1.2726 0.0000 

23 -52.288 26.46 -59.91 24.549 0.7915 0.0000 

24 -25.521 22.768 -30.382 21.279 0.5580 0.0000 

 

Table 0.58 LR coefficients for simple  multiple LR - Weekends 

 Simple Multiple 

 β0 
β1 

Temperature 
β0 

β1 
Temperature 

β 3 Wind β 4 Sun 

1 -22.263 22.828 -30.915 19.616 1.0451 0.0000 

2 -21.278 22.147 -30.994 19.134 1.0973 0.0000 
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3 -24.292 21.924 -25.75 17.8 1.2150 0.0000 

4 -20.89 21.397 -5.7293 16.683 1.1649 -2.4114 

5 -26.113 21.864 27.143 16.346 0.7634 -1.2046 

6 -30.359 23.974 58.805 16.67 0.8041 -1.1551 

7 -16.2 25.271 71.79 18.195 0.8620 -0.4876 

8 22.358 22.694 71.73 18.194 0.7373 -0.2258 

9 23.633 23.622 74.065 19.701 0.5999 -0.1857 

10 19.504 24.191 111.85 20.1 0.5075 -0.2624 

11 6.2889 25.668 97.462 22.155 0.3899 -0.2063 

12 -9.3064 27.209 73.1 24.165 0.4411 -0.1656 

13 -8.1285 27.541 49.33 25.322 0.5433 -0.1128 

14 2.026 27.091 59.125 25.998 0.0860 -0.0821 

15 1.6309 27.54 69.299 24.649 0.2903 -0.0858 

16 17.12 26.643 81.047 25.677 -0.2404 -0.0672 

17 6.8209 27.276 58.728 25.176 0.0228 -0.0518 

18 10.863 26.813 9.7379 26.43 0.1160 -0.0011 

19 -8.5752 27.638 -34.067 28.279 0.2292 0.0204 

20 -18.039 27.947 -9.4724 26.364 0.2936 -0.0444 

21 -18.064 26.67 5.2851 25.486 -0.0997 -0.1205 

22 -29.524 26.682 -27.133 27.274 -0.1982 0.0000 

23 -18.599 25.292 -22.944 24.536 0.2862 0.0000 

24 -7.9495 23.182 -12.575 22.701 0.2369 0.0000 

 

Table 0.59 Coefficients of determination for simple and multiple LR 

 Simple Multiple 

 
R

2
 

Weekdays 

R
2
 

Weekends 

R
2

overall 
R

2
 

Weekdays 

R
2
 

Weekends 

R
2

overall 

1 65.08 % 78.38 % 

68.60 % 

66.14 % 83.20 % 

74.43 % 

2 63.41 % 82.59 % 64.40 % 86.33 % 

3 71.04 % 78.82 % 72.74 % 85.31 % 

4 73.04 % 75.50 % 76.15 % 84.69 % 

5 72.05 % 74.22 % 79.04 % 82.23 % 

6 76.36 % 74.91 % 82.20 % 86.59 % 

7 79.35 % 70.74 % 82.61 % 81.68 % 

8 61.76 % 69.99 % 66.84 % 78.50 % 

9 56.28 % 70.99 % 65.45 % 78.95 % 

10 64.20 % 74.43 % 75.71 % 86.83 % 

11 66.74 % 79.77 % 74.92 % 89.16 % 

12 67.76 % 82.82 % 75.23 % 90.26 % 

13 69.94 % 82.09 % 73.82 % 86.32 % 

14 69.55 % 82.66 % 72.75 % 85.83 % 

15 68.71 % 82.25 % 73.83 % 87.31 % 

16 70.31 % 76.46 % 82.98 % 82.86 % 

17 70.31 % 78.04 % 79.38 % 82.26 % 
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18 69.99 % 79.91 % 71.91 % 79.94 % 

19 67.90 % 78.61 % 68.81 % 78.99 % 

20 65.53 % 78.42 % 68.52 % 78.97 % 

21 62.75 % 79.07 % 66.28 % 80.09 % 

22 57.48 % 79.71 % 62.31 % 79.83 % 

23 69.56 % 77.78 % 72.08 % 78.02 % 

24 70.39 % 77.71 % 72.14 % 77.86 % 

 

Table 0.60 Sequential sums of squares 

 
SSS 

Temper. 

Weekdays 

SSS 

Temper. 

Weekends 

SSS Wind 

Weekdays 

SSS 

Wind 

Weekend

s 

SSS Sun 

Weekdays 

SSS Sun 

Weekend

s 

1 1 258 400 393 250 24 150 42 321 0 0 

2 1 234 100 451 870 22 716 37 862 0 0 

3 1 254 800 361 550 33 266 63 260 0 0 

4 842 180 317 500 12 042 55 478 42 819 16 567 

5 721 420 262 680 20 351 24 059 107 430 40 974 

6 769 360 279 400 6 438 31 266 122 860 73 138 

7 1 075 300 346 000 8 579 22 858 65 127 98 763 

8 2 915 500 421 550 49 699 29 066 602 480 41 849 

9 4 289 400 534 330 16 867 22 609 1 419 600 46 501 

10 4 741 600 576 980 415 11 632 1 659 600 112 540 

11 5 688 700 621 690 2 890 6 294 1 232 200 92 931 

12 7 236 500 683 540 22 887 10 214 1 131 900 71 436 

13 8 161 300 685 580 468 8 504 614 080 42 661 

14 7 595 400 748 650 6 931 215 497 900 33 909 

15 7 305 800 546 480 2 339 2 548 821 480 51 421 

16 7 321 600 521 540 1 225 1 936 2 060 300 53 982 

17 5 449 100 576 420 160 17 1 254 900 43 975 

18 3 232 100 497 600 79 245 330 187 300 14 

19 3 195 800 551 150 29 772 1 724 93 769 3 116 

20 4 389 400 527 270 94 567 2 208 300 320 3 530 

21 1 601 600 504 270 76 088 234 74 124 11 086 

22 1 213 200 659 470 140 420 1 242 0 0 

23 1 154 900 566 260 54 940 2 366 0 0 

24 928 530 576 510 30 705 1 416 0 0 
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Table 0.61 Sequential sums of squares for four regimes 

Control regimes 
Weekday 

 8
h
-20

h
 

Weekday 

night 

Weekend  

8
h
-20

h
 

Weekend  

night 

SSS Temperature 71 522 200 12 053 790 7 492 780 4 718 760 

SSS Wind 307 463 429 695 97 296 282 362 

SSS Sun 11 875 829 412 360 597 865 240 528 

Dragvoll 3 calculation with excluding outliers 

Table 0.62 Overall coefficients of determination 

for simple and multiple LR 

Simple LR R
2

overall 88.46 % 

Multiple LR R
2

overall 90.66 % 

 

Table 0.63 Sequential sums of squares for four regimes 

Control regimes 
Weekday 

8
h
-20

h
 

Weekday 

night 

Weekend  

8
h
-20

h
 

Weekend  

night 

SSS Temperature 76 798 300 7 299 730 10 238 310 4 538 510 

SSS Wind 822 846 74 192 337 618 206 817 

SSS Sun 3 185 496 161 326 415 097 80 684 

Dragvoll Idrettsbygg  

Table 0.64 LR coefficients for simple  multiple LR 

 Weekdays Weekends 

 β0 
β1 

Temperature 
β 3 Wind β 4 Sun β0 

β1 
Temperature 

β 3 Wind β 4 Sun 

1 1.6717 3.5965 0.0895 0.0000 -0.1567 3.6098 0.0814 0.0000 

2 2.6457 3.5159 0.0939 0.0000 -1.0748 3.5966 0.0852 0.0000 

3 -0.74788 3.7286 0.0888 0.0000 4.2784 3.1526 0.0542 0.0000 

4 1.3614 3.5859 0.0764 -0.2042 -2.9803 3.6659 0.0808 -0.1869 

5 2.3611 3.3611 0.1231 -0.1388 -2.7139 3.6641 0.0941 -0.0787 

6 -27.27 8.442 0.0518 -0.1601 -0.97313 3.7872 0.0255 -0.0569 

7 -32.475 12.815 -0.0146 -0.0534 -0.67924 3.4329 0.1247 -0.0340 

8 -12.639 19.022 0.0059 -0.0286 4.49 3.3237 0.0971 -0.0318 

9 7.9986 18.767 -0.0262 0.0019 -40.878 16.686 -0.0714 -0.0082 

10 40.681 18.683 -0.0156 0.0071 -21.19 17.634 -0.0305 -0.0012 

11 29.292 18.689 -0.0211 -0.0006 -11.393 17.733 -0.0382 -0.0100 

12 40.437 18.805 -0.0009 -0.0082 -4.857 17.845 0.0203 -0.0087 
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13 31.093 18.985 -0.0096 0.0008 11.196 18.477 0.0582 -0.0190 

14 45.328 18.66 0.0435 0.0086 12.954 18.173 0.0589 -0.0128 

15 25.326 19.734 0.0270 0.0049 18.353 18.204 -0.0451 -0.0166 

16 47.911 18.948 0.0192 -0.0095 21.588 18.767 -0.0949 -0.0155 

17 40.445 19.339 0.0274 -0.0110 16.592 18.733 0.0254 -0.0170 

18 36.586 19.73 0.2235 -0.0047 17.789 19.436 -0.1351 -0.0125 

19 39.686 20.078 -0.0396 -0.0041 5.5518 14.308 -0.1673 -0.0028 

20 48.493 20.221 -0.0192 -0.0322 1.7011 14.681 -0.5283 -0.0394 

21 35.118 17.635 -0.0683 -0.1123 -3.0351 7.8901 -0.1392 0.0069 

22 -2.4698 10.856 0.0301 0.0000 -3.3698 7.0296 -0.1025 0.0000 

23 13.677 4.1479 0.0446 0.0000 6.0562 3.8061 0.0549 0.0000 

24 4.975 3.5894 0.0730 0.0000 2.8764 3.3897 0.0812 0.0000 

 

Table 0.65 Coefficients of determination for simple and multiple LR 

 Simple Multiple 

 
R

2
 

Weekdays 

R
2
 

Weekends 

R
2

overall 
R

2
 

Weekdays 

R
2
 

Weekends 

R
2

overall 

1 73.63 % 84.21 % 

88.79 % 

75.21 % 85.59 % 

89.15 % 

2 68.06 % 84.76 % 70.06 % 86.10 % 

3 72.92 % 70.93 % 74.43 % 71.72 % 

4 72.24 % 83.96 % 73.55 % 85.86 % 

5 68.27 % 82.16 % 73.52 % 84.66 % 

6 75.99 % 84.34 % 77.25 % 85.19 % 

7 87.70 % 80.55 % 88.06 % 85.26 % 

8 93.59 % 77.77 % 93.69 % 83.70 % 

9 92.18 % 94.11 % 92.19 % 94.20 % 

10 86.81 % 95.02 % 86.84 % 95.03 % 

11 90.69 % 96.48 % 90.70 % 96.54 % 

12 90.04 % 96.28 % 90.08 % 96.33 % 

13 90.78 % 94.92 % 90.78 % 95.21 % 

14 86.29 % 94.87 % 86.39 % 95.11 % 

15 91.33 % 93.36 % 91.37 % 93.74 % 

16 89.87 % 90.52 % 90.10 % 91.29 % 

17 90.59 % 92.65 % 91.03 % 93.54 % 

18 89.04 % 94.25 % 89.41 % 94.74 % 

19 91.22 % 67.58 % 91.26 % 67.91 % 

20 87.69 % 63.69 % 88.26 % 67.14 % 

21 86.36 % 52.45 % 87.52 % 53.01 % 

22 78.49 % 50.53 % 78.51 % 50.85 % 

23 65.08 % 75.24 % 65.40 % 75.63 % 

24 72.82 % 79.23 % 74.24 % 80.34 % 
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Table 0.66 Sequential sums of squares 

 
SSS Temper. 

Weekdays 

SSS 

Temper. 

Weekends 

SSS Wind 

Weekdays 

SSS Wind 

Weekends 

SSS Sun 

Weekdays 

SSS Sun 

Weekends 

1 44 826 22 149 1 160 492 0 0 

2 44 215 26 321 1 480 552 0 0 

3 54 567 17 867 1 203 279 0 0 

4 45 493 23 397 907 600 57 112 

5 38 396 20 913 2 339 803 1 246 225 

6 247 160 23 156 426 55 4 421 258 

7 523 290 20 724 33 1 007 2 827 651 

8 1 194 800 20 242 6 820 1 557 1 118 

9 1 149 300 547 270 120 622 12 126 

10 1 182 900 610 690 49 73 325 4 

11 1 155 300 575 000 84 101 3 357 

12 1 157 600 559 720 0 34 730 343 

13 1 261 300 580 120 14 232 8 2 074 

14 1 145 400 568 540 306 319 1 410 1 381 

15 1 192 500 479 210 114 162 705 2 894 

16 1 210 600 452 870 61 782 4 124 4 116 

17 1 139 500 506 590 104 46 7 470 6 698 

18 938 650 520 890 6 028 1 032 852 3 105 

19 1 010 200 282 990 191 1 807 532 84 

20 1 244 600 308 290 56 16 045 11 575 3 354 

21 964 180 94 931 644 1 184 15 115 41 

22 400 180 79 032 131 553 0 0 

23 58 428 22 582 331 155 0 0 

24 42 915 20 927 1 002 375 0 0 

Dragvoll 8 

Table 0.67 Coefficients of determination for simple and multiple LR 

 Simple Multiple 

 
R

2
 

Weekdays 

R
2
 

Weekends 

R
2

overall 
R

2
 

Weekdays 

R
2
 

Weekends 

R
2

overall 

1 87.50 % 83.17 % 
84.28 % 

89.33 % 87.55 % 

86.15 % 2 86.77 % 79.32 % 88.29 % 84.10 % 

3 85.37 % 76.60 % 86.58 % 83.34 % 
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4 85.49 % 75.37 % 87.71 % 81.31 % 

5 85.19 % 76.90 % 88.10 % 82.76 % 

6 80.58 % 77.37 % 83.81 % 84.08 % 

7 84.21 % 81.44 % 86.76 % 83.62 % 

8 81.27 % 84.36 % 83.81 % 86.02 % 

9 78.18 % 77.91 % 78.97 % 84.39 % 

10 82.91 % 75.68 % 83.55 % 83.40 % 

11 86.76 % 78.63 % 87.42 % 82.06 % 

12 84.03 % 81.93 % 85.18 % 85.28 % 

13 87.88 % 83.02 % 88.96 % 87.84 % 

14 87.20 % 84.24 % 88.76 % 86.34 % 

15 86.78 % 85.15 % 88.99 % 86.45 % 

16 87.85 % 81.88 % 87.92 % 83.83 % 

17 89.39 % 91.22 % 89.97 % 91.72 % 

18 89.15 % 90.29 % 92.01 % 91.11 % 

19 81.14 % 69.04 % 84.35 % 70.66 % 

20 78.69 % 72.09 % 81.86 % 73.42 % 

21 84.06 % 73.35 % 85.42 % 73.42 % 

22 82.17 % 65.23 % 83.69 % 65.29 % 

23 83.98 % 70.08 % 85.56 % 70.09 % 

24 84.45 % 86.18 % 85.97 % 89.34 % 

 

Table 0.68 Sequential sums of squares 

 
SSS 

Temper. 

Weekdays 

SSS 

Temper. 

Weekends 

SSS Wind 

Weekdays 

SSS Wind 

Weekends 

SSS Sun 

Weekdays 

SSS Sun 

Weekends 

1 27 604 5 609 577 350 0 0 

2 29 103 4 181 508 388 0 0 

3 29 284 4 188 429 599 3 43 

4 25 963 4 658 744 513 181 45 

5 22 928 3 637 570 371 181 208 

6 21 787 3 682 746 200 6 089 11 

7 204 320 8 521 1 440 302 6 100 72 

8 214 880 13 676 1 993 352 1 873 256 

9 199 270 38 374 399 5 095 923 176 

10 204 820 40 053 897 6 251 239 354 

11 234 660 41 007 1 825 2 232 19 216 

12 242 990 46 665 3 501 2 307 538 375 

13 234 080 56 005 2 055 3 607 1 276 170 

14 191 130 57 760 1 821 1 543 1 870 222 

15 204 210 54 051 2 772 923 92 10 

16 222 160 41 067 174 1 150 71 158 

17 202 040 45 113 1 753 149 6 485 337 

18 227 620 36 001 4 566 21 6 876 33 
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19 191 440 1 961 1 788 36 4 691 1 

20 196 230 3 003 3 774 81 0 0 

21 245 550 3 834 4 041 4 0 0 

22 166 570 3 207 3 176 3 0 0 

23 159 110 3 914 3 043 1 0 0 

24 22 023 5 729 407 255 0 0 

 

Dragvoll 9  

Table 0.69 Overall coefficients of determination 

for simple and multiple LR 

Simple LR R
2

overall 50.28 % 

Multiple LR R
2

overall 54.35 % 

 

Table 0.70 Sequential sums of squares 

 
SSS 

Temper. 

Weekdays 

SSS 

Temper. 

Weekends 

SSS Wind 

Weekdays 

SSS Wind 

Weekends 

SSS Sun 

Weekdays 

SSS Sun 

Weekends 

1 21 8 8 8 0 0 

2 16 0 12 14 0 0 

3 9 1 5 10 0 0 

4 9 3 1 24 0 0 

5 11 7 4 7 7 0 

6 63 6 264 32 94 0 

7 98 421 8 7 42 38 279 10 

8 202 840 31 311 45 38 901 85 

9 181 360 53 1 083 438 31 304 17 

10 192 530 26 862 1 085 9 241 10 659 9 118 

11 197 400 33 231 511 3 935 3 481 12 915 

12 214 870 55 255 1 137 1 646 1 668 5 958 

13 238 940 76 842 884 6 662 3 646 2 066 

14 217 830 112 920 2 983 1 673 6 303 6 785 

15 264 300 102 820 2 337 1 081 22 889 6 872 

16 187 620 61 335 1 314 3 427 4 188 4 952 

17 186 820 41 136 831 1 716 9 326 17 472 

18 173 660 51 802 7 117 3 66 530 23 540 

19 180 200 29 579 81 40 212 16 

20 229 720 1 280 20 0 0 



Appendix  

XXVIII 

21 234 940 1 25 0 0 0 

22 235 200 1 226 11 0 0 

23 224 760 0 401 7 0 0 

24 33 0 0 18 0 0 

 

Table 0.71 Sequential sums of squares for four regimes 

Control regimes Weekdays day Weekdays night Weekend day Weekend night 

SSS Temperature 3 461 411 562 203 161 151 

SSS Wind 21 111 29 384 295 759 

SSS Sun 277 385 89 678 101 129 

Dragvoll 9 calculation with excluding outliers 

Table 0.72 Overall coefficients of determination 

for simple and multiple LR 

Simple LR R
2

overall 56.85 % 

Multiple LR R
2

overall 65.25 % 

 

Table 0.73 Sequential sums of squares 

 
SSS 

Temper. 

Weekdays 

SSS 

Temper. 

Weekends 

SSS Wind 

Weekdays 

SSS Wind 

Weekends 

SSS Sun 

Weekdays 

SSS Sun 

Weekends 

1 0 6 0 2 0 0 

2 0 0 0 0 0 0 

3 0 0 0 0 0 0 

4 0 0 0 0 0 0 

5 0 0 0 0 0 0 

6 51 0 1 0 41 0 

7 24 292 0 6 529 0 33 375 0 

8 153 240 0 197 0 46 340 0 

9 158 750 134 1 807 263 34 382 13 

10 127 570 15 663 1 387 10 708 8 846 17 981 

11 61 518 13 686 7 033 10 615 10 650 24 834 

12 108 700 24 487 6 589 4 249 1 924 22 522 

13 140 640 50 257 5 077 14 090 3 510 5 010 

14 149 630 91 604 9 718 3 228 2 290 8 810 

15 225 870 81 872 3 010 256 15 432 11 417 

16 206 900 45 414 4 846 48 469 14 534 

17 102 870 26 808 555 53 23 493 29 182 
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18 120 020 32 305 1 450 1 928 62 645 18 609 

19 118 560 15 4 926 46 54 495 6 

20 251 260 0 75 0 0 0 

21 153 780 0 3 376 0 0 0 

22 203 250 0 928 0 0 0 

23 217 900 0 1 828 0 0 0 

24 15 0 12 0 0 0 

 

Table 0.74 Sequential sums of squares for four regimes 

Control regimes Weekdays day Weekdays night Weekend day Weekend night 

SSS Temperature 2 524 750 382 096 66 155 

SSS Wind 59 329 45 174 12 310 

SSS Sun 152 899 152 899 41 20 

Dragvoll 2  

Table 0.75 Coefficients of determination for simple and multiple LR 

 Simple Multiple 

 
R

2
 

Weekdays 

R
2
 

Weekends 

R
2

overall 
R

2
 

Weekdays 

R
2
 

Weekends 

R
2

overall 

1 86.10 % 75.48 % 

66.00 % 

85.75 % 77.55 % 

69.21 % 

2 82.25 % 73.95 % 82.59 % 78.02 % 

3 82.47 % 72.84 % 82.70 % 79.14 % 

4 83.27 % 72.29 % 84.03 % 76.64 % 

5 72.10 % 71.74 % 73.12 % 73.94 % 

6 73.67 % 85.51 % 75.86 % 85.95 % 

7 62.45 % 84.45 % 66.87 % 84.87 % 

8 52.70 % 77.27 % 60.82 % 84.30 % 

9 51.70 % 75.91 % 56.93 % 83.41 % 

10 43.99 % 72.27 % 48.23 % 77.03 % 

11 41.62 % 72.29 % 47.33 % 74.29 % 

12 39.89 % 75.62 % 48.23 % 76.02 % 

13 42.80 % 73.84 % 44.93 % 74.76 % 

14 55.41 % 80.58 % 56.80 % 80.88 % 

15 59.18 % 81.03 % 59.56 % 81.60 % 

16 76.20 % 78.93 % 78.55 % 80.24 % 

17 76.56 % 80.06 % 77.86 % 80.08 % 

18 75.28 % 75.50 % 81.89 % 78.65 % 

19 67.02 % 86.56 % 76.24 % 89.15 % 

20 65.23 % 84.27 % 71.09 % 84.55 % 
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21 72.38 % 85.14 % 74.60 % 85.19 % 

22 71.69 % 83.91 % 72.86 % 83.91 % 

23 67.59 % 81.68 % 69.13 % 82.10 % 

24 82.12 % 83.22 % 82.94 % 83.59 % 

 

Table 0.76 Sequential sums of squares 

 
SSS 

Temper. 

Weekdays 

SSS 

Temper. 

Weekends 

SSS Wind 

Weekdays 

SSS Wind 

Weekends 

SSS Sun 

Weekdays 

SSS Sun 

Weekends 

1 178 517 39 568 275 1 307 0 0 

2 187 564 30 220 157 2 778 0 0 

3 180 218 28 751 1 4 597 124 0 

4 155 703 30 189 391 2 902 1 514 277 

5 108 548 24 668 1 980 1 449 5 38 

6 96 496 23 832 1 008 54 245 120 

7 152 824 20 405 5 440 42 13 288 114 

8 168 213 18 668 7 617 401 15 966 3 733 

9 202 479 42 929 8 439 2 885 4 946 6 516 

10 164 763 46 617 3 579 2 279 2 292 2 581 

11 183 290 49 485 5 020 856 878 1 504 

12 203 663 70 119 5 614 273 3 495 206 

13 181 145 91 105 1 579 231 412 1 071 

14 213 729 106 098 338 55 161 296 

15 252 199 95 334 884 89 1 324 767 

16 320 185 88 360 718 177 7 351 1 963 

17 232 460 88 021 1 532 26 167 4 

18 205 856 72 957 6 960 275 20 498 3 897 

19 193 924 31 067 610 188 25 962 1 394 

20 226 428 38 922 2 659 162 7 394 9 

21 312 006 45 664 944 30 248 0 

22 137 948 45 384 1 795 0 0 0 

23 128 865 38 726 1 580 256 0 0 

24 165 665 46 516 519 237 0 0 

 

Table 0.77 Sequential sums of squares for two regimes 

Control regimes Weekdays day Weekend day 

SSS Temperature 3 213 163 905 751 

SSS Wind 51 934 7 970 

SSS Sun 104 384 24 056 
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Dragvoll 2 calculation with excluding outliers 

Table 0.78 Sequential sums of squares for two regimes 

Control regimes Weekdays day Weekend day 

SSS Temperature 3 010 016 799 401 

SSS Wind 21 101 10 167 

SSS Sun 105 466 33 805 

Appendix B.3 - Power of wind in wind independent 

variable giving best goodness of fit 

Table 0.79  

 
Gamle Kjemi Gløshaugenn Berg  

Weekdays Weekends Weekdays Weekends 

1 1 1 1 1 

2 1 1 1 1 

3 1 1 1 1 

4 1 1 1 1 

5 1 1 ½ 1 

6 1 1 ½ 1 

7 ½ 1 ½ 1 

8 ½ 1 ½ ½ 

9 ½ 1 ½ 1 

10 ½ 1 ½ ½ 

11 ½ 1 ½ ½ 

12 ½ 1 ½ 1 

13 ½ 1 ½ ½ 

14 ½ 1 ½ 1 

15 ½ 1 ½ ½ 

16 ½ 1 ½ ½ 

17 ½ 1 ½ 1 

18 1 1 1 ½ 

19 1 1 ½ ½ 

20 1 1 1 ½ 

21 1 1 1 1 

22 1 1 1 ½ 

23 1 1 1 1 

24 1 1 1 ½ 

 



Appendix  

XXXII 

Appendix C - Results of calculations with mean 

values grouped by regimes 

Appendix C.1 - Space heating systems 

Sentral Bygg 1  

Table 0.80 Coefficients of determination for simple and multiple LR 

Control regimes 
Weekdays 

day 

Weekdays 

night 

Weekend 

day 

Weekend 

night 

Simple 
R

2
 93.00 % 67.55 % 90.98 % 90.57 % 

R
2

overall 90.27 % 

Multiple 
R

2
 95.50 % 71.61 % 96.09 % 95.32 % 

R
2

overall 93.28 % 

 

Table 0.81 Sequential sums of squares 

Control regimes Weekdays day Weekdays night Weekend day Weekend night 

SSS Temperature 11 482 400 1 084 960 1 445 850 1 677 900 

SSS Wind 31 798 74 702 79 403 88 605 

SSS Sun 334 304 20 146 6 085 9 367 

Sentral Bygg 1 calculation with excluding outliers 

Table 0.82 Sequential sums of squares 

Control regimes Weekdays day Weekdays night Weekend day Weekend night 

SSS Temperature 10 987 200 1 145 520 1 209 690 1 668 150 

SSS Wind 30 338 110 512 76 244 7 788 

SSS Sun 61 805 859 7 400 871 
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XXXIII 

Sydområdet NHL Forskning  

Table 0.83 Coefficients of determination for simple and multiple LR 

Control regimes 
Weekdays 

night 

Weekdays 

day 

Weekend 

night 

Weekend 

day 

Simple 
R

2
 91.16 % 92.36 % 87.38 % 93.56 % 

R
2

overall 91.58 % 

Multiple 
R

2
 92.22 % 93.74 % 88.26 % 94.04 % 

R
2

overall 92.73 % 

Gamle-fysikk  

Table 0.84 Coefficients of determination for simple and multiple LR 

Control regimes 
Weekdays 

day 

Weekdays 

night 

Weekend 

day 

Weekend 

night 

Simple 
R

2
 95.55 % 91.11 % 90.75 % 92.35 % 

R
2

overall 94.38 % 

Multiple 
R

2
 95.85 % 93.57 % 92.00 % 94.20 % 

R
2

overall 95.14 % 

Gløshaugen Idrettsbygg  

Table 0.85 Coefficients of determination for simple and multiple LR 

Control regimes 
Weekday 

day 

Weekday 

night 

Weekend 

day 

Weekend 

night 

Weekday 

5
h
 - 6

 h
 

Weekend 

7
h
 - 11

 h
 

Simple 
R

2
 86.64 % 79.21 % 87.22 % 78.49 % 74.23 % 90.28 % 

R
2

overall 86.34 % 

Multiple 
R

2
 86.89 % 79.95 % 88.72 % 80.18 % 75.71 % 91.33 % 

R
2

overall 86.86 % 

Varmetekniske laboratoriet  

Table 0.86 Coefficients of determination for simple and multiple LR 

Control regimes 
Weekdays 

day 

Weekdays 

night 

Weekend 

day 

Weekend 

night 

Simple 
R

2
 93.64 % 94.67 % 92.83 % 91.55 % 

R
2

overall 93.71 % 

Multiple 
R

2
 94.00 % 96.46 % 93.13 % 94.66 % 

R
2

overall 94.82 % 
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XXXIV 

Appendix C.2 - Ventilation systems 

Dragvoll 3  

Table 0.87 Coefficients of determination for simple and multiple LR 

Control regimes Weekdays day 
Weekdays 

night 
Weekend day Weekend night 

Simple 
R

2
 70.69 % 78.33 % 83.19 % 82.74 % 

R
2

overall 73.16 % 

Multiple 
R

2
 82.06 % 84.17 % 89.31 % 88.93 % 

R
2

overall 83.26 % 

 

Table 0.88 LR coefficients for simple LR 

Control regimes β0 β1 (Temperature) 

Weekdays day  -8.94 63.65 

Weekdays night -15.37 28.82 

Weekend day  -9.70 27.40 

Weekend night -17.77 25.34 

 

Table 0.89 LR coefficients for multiple LR 

Control regimes β0 β1 (Temperature) β2 (Wind) β3 (Sun) 

Weekdays day  369.53 51.02 -0.7535 -0.5125 

Weekdays night 45.56 22.19 0.6703 -1.5780 

Weekend day  64.60 23.27 0.5962 -0.1484 

Weekend night 26.90 18.04 1.2122 -1.0803 

 

Table 0.90 Sequential sums of squares for different regimes 

Control regimes Weekdays day Weekdays night Weekend day Weekend night 

SSS Temperature 56 438 200 6 946 170 6 701 370 2 316 600 

SSS Wind 419 757 225 115 109 996 301 169 

SSS Sun 21 620 300 964 799 772 785 283 690 
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XXXV 

Dragvoll 3 calculation with excluding outliers  

Table 0.91 Sequential sums of squares for different regimes 

Control regimes Weekdays day Weekdays night Weekend day Weekend night 

SSS Temperature 60 114 600 5 137 000 6 488 560 2 330 020 

SSS Wind 45 822 494 219 4 424 180 719 

SSS Sun 7 031 310 708 147 87 289 75 249 

Dragvoll Idrettsbygg  

Table 0.92 Coefficients of determination for simple and multiple LR 

Control regimes 
Weekdays 

day 

Weekdays 

night 

Weekend 

day 

Weekend 

night 

Simple 
R

2
 95.67 % 80.76 % 97.02 % 87.66 % 

R
2

overall 95.69 % 

Multiple 
R

2
 95.84 % 83.44 % 97.33 % 88.84 % 

R
2

overall 95.94 % 

Dragvoll 8  

Table 0.93 Coefficients of determination for simple and multiple LR 

Control regimes Weekdays night Weekdays day 
Weekend 

night 
Weekend day 

Simple 
R

2
 88.46 % 89.93 % 89.23 % 89.05 % 

R
2

overall 89.87 % 

Multiple 
R

2
 91.35 % 91.98 % 92.59 % 91.65 % 

R
2

overall 92.01 % 

Dragvoll 9 

Table 0.94 Coefficients of determination for simple and multiple LR 

Control regimes Weekdays day Weekdays night Weekend day Weekend night 

Simple 
R

2
 58.36 % 0.99 % 51.75 % 1.69 % 

R
2

overall 57.61 % 

Multiple 
R

2
 64.45 % 5.75 % 61.70 % 9.06 % 

R
2

overall 64.37 % 
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Table 0.95 Sequential sums of squares for different regimes 

Control regimes Weekdays day Weekdays night Weekend day Weekend night 

SSS Temperature 3 768 730 196 444 474 32 

SSS Wind 6 555 141 36 816 565 

SSS Sun 426 989 129 125 667 91 

Dragvoll 9 calculation with excluding outliers 

Table 0.96 Sequential sums of squares for different regimes 

Control regimes Weekdays day Weekdays night Weekend day Weekend night 

SSS Temperature 1 777 860 16 199 467 0 

SSS Wind 42 078 23 64 075 13 

SSS Sun 409 666 17 187 479 4 

Dragvoll 2  

Table 0.97 Coefficients of determination for simple and multiple LR 

Control regimes 
Weekdays 

night
 

Weekdays 

day 

Weekdays 

night 

Weekends 

day 

Simple 
R

2
 84.11 % 75.40 % 80.09 % 85.89 % 

R
2

overall 78.84 % 

Multiple 
R

2
 85.25 % 76.85 % 84.19 % 86.26 % 

R
2

overall 80.21 % 

 

Table 0.98 Sequential sums of squares for two regimes 

Control regimes Weekdays day Weekend day 

SSS Temperature 4 156 481 1 051 957 

SSS Wind 41 447 3 372 

SSS Sun 48 398 3 418 

 

Table 0.99 Sequential sums of squares for weekdays and 

weekends 

Control regimes Weekdays  Weekends 

SSS Temperature 5 138 336 1 348 484 

SSS Wind 49 347 4 801 

SSS Sun 53 246 25 538 
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Dragvoll 2 calculation with excluding outliers 

Table 0.100 Sequential sums of squares for two regimes 

Control regimes Weekdays day Weekend day 

SSS Temperature 3 798 963 940 110 

SSS Wind 18 937 21 238 

SSS Sun 72 116 4 649 
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XXXVIII 

Appendix D - Results of calculations with daily 

data 

Appendix D.1 - Space heating systems 

Sentral Bygg 1 

Table 0.101 Coefficients of determination for simple and multiple LR 

Control regimes Weekdays Weekends 

Simple 
R

2
 91.81 % 91.77 % 

R
2

overall 91.96% 

Multiple 
R

2
 94.62 % 97.46 % 

R
2

overall 95.24% 

 

Table 0.102 Sequential sums of squares for weekdays and 

weekends 

Control regimes Weekdays  Weekend  

SSS Temperature 10 946 880 2 902 080 

SSS Wind 104 064 205 284 

SSS Sun 290 136 14 437 

Sentral Bygg 1 calculation with excluding outliers 

Table 0.103 Sequential sums of squares for weekdays and 

weekends 

Control regimes Weekdays  Weekend  

SSS Temperature 9 657 996 2 795 502 

SSS Wind 65 998 10 698 

SSS Sun 28 421 6 613 
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XXXIX 

Sydområdet NHL Forskning  

Table 0.104 Coefficients of determination for simple and multiple LR 

Control regimes Weekdays Weekends 

Simple 
R

2
 93.64 % 92.13 % 

R
2

overall 93.37 % 

Multiple 
R

2
 95.09 % 92.71 % 

R
2

overall 94.64 % 

Gamle-fysikk  

Table 0.105 Coefficients of determination for simple and multiple LR 

Control regimes Weekdays Weekends 

Simple 
R

2
 95.28 % 94.95 % 

R
2

overall 95.18 % 

Multiple 
R

2
 95.76 % 96.48 % 

R
2

overall 95.98 % 

Gløshaugen Idrettsbygg  

Table 0.106 Coefficients of determination for simple and multiple LR 

Control regimes Weekdays Weekends 

Simple 
R

2
 87.69 % 86.12 % 

R
2

overall 87.47 % 

Multiple 
R

2
 87.88 % 88.11 % 

R
2

overall 88.02 % 
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Varmetekniske laboratoriet  

Table 0.107 Coefficients of determination for simple and multiple LR 

Control regimes Weekdays Weekends 

Simple 
R

2
 94.30 % 92.76 % 

R
2

overall 93.98 % 

Multiple 
R

2
 94.90 % 93.39 % 

R
2

overall 94.58 % 



Appendix D.2 

XLI 

Appendix D.2 - Ventilation systems 

Dragvoll 3  

Table 0.108 Coefficients of determination for simple and multiple LR 

Control regimes Weekdays Weekends 

Simple 
R

2
 74.71 % 83.79 % 

R
2

overall 76.08 % 

Multiple 
R

2
 85.77 % 91.03 % 

R
2

overall 86.56 % 

 

Table 0.109 Sequential sums of squares for weekdays and 

weekends 

Control regime Weekdays  Weekend 

SSS Temperature 78 528 000 10 177 920 

SSS Wind 27 816 339 480 

SSS Sun 20 965 680 1 358 520 

Dragvoll 3 calculation with excluding outliers 

Table 0.110 Sequential sums of squares for weekdays and 

weekends 

Control regime Weekdays  Weekend  

SSS Temperature 76 331 449 9 151 141 

SSS Wind 62 546 11 

SSS Sun 11 073 087 270 987 

Dragvoll Idrettsbygg  

Table 0.111 Coefficients of determination for simple and multiple LR 

Control regimes Weekdays Weekends 

Simple 
R

2
 94.89 % 95.31 % 

R
2

overall 95.02 % 

Multiple 
R

2
 95.66 % 96.75 % 

R
2

overall 95.94 % 
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Dragvoll 8 

Table 0.112 Coefficients of determination for simple and multiple LR 

Control regimes Weekdays Weekends 

Simple 
R

2
 90.35 % 91.37 % 

R
2

overall 90.59 % 

Multiple 
R

2
 93.12 % 94.20 % 

R
2

overall 93.34 % 

Dragvoll 9 

Table 0.113 Coefficients of determination for simple and multiple LR 

Control regimes Weekdays Weekends 

Simple 
R

2
 57.34 % 40.93 % 

R
2

overall 56.02 % 

Multiple 
R

2
 64.55 % 62.98 % 

R
2

overall 64.86 % 

 

Table 0.114 Sequential sums of squares for weekdays and 

weekends 

Control regime Weekdays  Weekend  

SSS Temperature 2 663 040 100 949 

SSS Wind 2 455 38 040 

SSS Sun 355 368 77 345 

Dragvoll 9 calculation with excluding outliers 

Table 0.115 Sequential sums of squares for weekdays and 

weekends 

Control regime Weekdays  Weekend  

SSS Temperature 1 525 744 32 976 

SSS Wind 22 100 15 196 

SSS Sun 310 711 101 891 

 

  



Appendix D.2 

XLIII 

Dragvoll 2  

Table 0.116 Coefficients of determination for simple and multiple LR 

Control regimes Weekdays Weekends 

Simple 

R
2
 81.68 % 87.88 % 

R
2

overall 83.30 % 

Multiple 

R
2
 83.15 % 89.07 % 

R
2

overall 84.69 % 

 

Table 0.117 Sequential sums of squares for weekdays and 

weekends 

Control regime Weekdays  Weekends  

SSS Temperature 5 947 218 1 502 863 

SSS Wind 50 018 6 721 

SSS Sun 61 650 19 584 
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XLIV 

Appendix E - Comparison of monitoring data 

resolutions 

Appendix E.1 - Space heating systems 

Table 0.118 Overall scores for space heating 

 Hourly data  HOD Mean values Daily data 

Overall score CV 14 12 12 22 

Overall score MBE  7 12 18 23 

Sentral Bygg 1 

Table 0.119 Comparison of coefficients of determination for simple and multiple LR 

 Hourly data  HOD Mean values Daily data 

Simple 
R

2
overall 79.14 % 77.06 % 90.27 % 91.96% 

Difference 0 % -2.08 % 11.13 % 12.82 % 

Multiple R
2

overall 80.61 % 79.18 % 93.28 % 95.24% 

Improvement  MLR - SLR 1.47 % 2.12 % 3.01 % 3.28 % 

 

Table 0.120 Comparison of overall sequential sums of squares  

 Hourly data  HOD Mean values Daily data 

SSS - temperature  19 060 987 16 328 476 15 691 110 13 848 960 

SSS - sun  50 140 225 000 369 902 304 573 

 

Table 0.121 Comparison of CVs and MBEs 

 Hourly data  HOD Mean values Daily data 

CV  9.40 % 10.94 % 11.74 % 13.44 % 

Score CV 1 2 3 4 

MBE  0.08 % 5.44 % 6.71 % 8.17 % 

Score MBE 1 2 3 4 
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XLV 

Sydområdet NHL Forskning 

Table 0.122 Comparison of coefficients of determination for simple and multiple LR 

 Hourly data  HOD Mean values Daily data 

Simple 
R

2
overall 86.60 % 86.62 % 91.58 % 93.37 % 

Difference 0 % 0.02 % 4.98 % 6.77 % 

Multiple R
2

overall 86.99 % 87.66 % 92.73 % 94.64 % 

Improvement  MLR - SLR 0.39 % 1.04 % 1.15 % 1.27 % 

 

Table 0.123 Comparison of CVs and MBEs 

 Hourly data  HOD Mean values Daily data 

CV  12.76 % 12.36 % 12.03 % 12.53 % 

Score CV 4 2 1 3 

MBE  0.17 % -0.03 % -1.20 % -1.74 % 

Score MBE 2 1 3 4 

Gamle-fysikk 

Table 0.124 Comparison of coefficients of determination for simple and multiple LR 

 Hourly data  HOD Mean values Daily data 

Simple 
R

2
overall 83.24 % 86.85 % 94.38 % 95.28 % 

Difference 0 % 3.61 % 11.14 % 12.04 % 

Multiple R
2

overall 84.73 % 88.58 % 95.14 % 95.98 % 

Improvement  MLR - SLR 1.49 % 1.73 % 0.76 % 0.70 % 

 

Table 0.125 Comparison of CVs and MBEs 

 Hourly data  HOD Mean values Daily data 

CV  9.86 % 10.75 % 11.82 % 13.25 % 

Score CV 1 2 3 4 

MBE  -0.08 % 4.75 % 5.58 % 7.12 % 

Score MBE 1 2 3 4 
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Berg 

Table 0.126 Comparison of coefficients of determination for simple and multiple LR 

 
Hourly 

data  
HOD Mean values Daily data 

Simple 
R

2
overall 86.08 % 87.46 % 94.13 % 95.05 % 

Difference 0 % 1.38 % 8.05 % 8.97 % 

Multiple R
2

overall 86.56 % 88.26 % 94.89 % 95.88 % 

Improvement  MLR - SLR 0.48 % 0.80 % 0.76 % 0.83 % 

 

Table 0.127 Comparison of CVs and MBEs 

 Hourly data  HOD Mean values Daily data 

CV  12.56 % 13.06 % 12.64 % 13.10 % 

Score CV 1 3 2 4 

MBE  0.17 % 2.79 % 2.94 % 2.95 % 

Score MBE 1 2 3 4 

Gløshaugen Idrettsbygg 

Table 0.128 Comparison of coefficients of determination for simple and multiple LR 

 Hourly data  HOD Mean values Daily data 

Simple 
R

2
overall 72.75 % 79.93 % 86.34 % 87.47 % 

Difference 0 % 7.18 % 13.59 % 14.72 % 

Multiple R
2

overall 74.32 % 80.87 % 86.86 % 88.02 % 

Improvement  MLR - SLR 1.57 % 0.94 % 0.52 % 0.55 % 

 

Table 0.129 Comparison of CVs and MBEs 

 Hourly data  HOD Mean values Daily data 

CV  29.96 % 29.35 % 29.80 % 33.73 % 

Score CV 3 1 2 4 

MBE  -0.20 % 4.10 % 3.66 % 9.89 % 

Score MBE 1 3 2 4 
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XLVII 

Varmetekniske laboratoriet  

Table 0.130 Comparison of coefficients of determination for simple and multiple LR 

 Hourly data  HOD Mean values Daily data 

Simple 
R

2
overall 86.58 % 89.25 % 93.71 % 93.98 % 

Difference 0 % 2.67 % 7.13 % 7.40 % 

Multiple R
2

overall 86.72 % 90.58 % 94.82 % 94.58 % 

Improvement  MLR - SLR 0.14 % 1.33 % 1.11 % 0.60 % 

 

Table 0.131 Comparison of CVs and MBEs 

 Hourly data  HOD Mean values Daily data 

CV  11.08 % 9.89 % 9.83 % 11.00 % 

Score CV 4 2 1 3 

MBE  -0.09 % 0.58 % 0.85 % 0.63 % 

Score MBE 1 2 4 3 
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Appendix E.2 - Ventilation systems 

Table 0.132 Overall scores for ventilation 

 Hourly data  HOD Mean values Daily data 

Overall score CV 13 8 12 17 

Overall score MBE  5 13 16 16 

 

Table 0.133 CV scores for Dragvoll 2, 8 and Dragvoll Idrettsbygg (insignificant solar 

influence) 

 Hourly data  HOD Mean values Daily data 

Overall score CV 5 4 9 12 

 

Table 0.134 CV scores for Dragvoll 3 and Dragvoll 9 (significant solar influence) 

 Hourly data  HOD Mean values Daily data 

Overall score CV 8 4 3 5 

Dragvoll 3 

Table 0.135 Comparison of coefficients of determination for simple and multiple LR 

 
Hourly data  HOD Mean values Daily data 

Simple 
R

2
overall 65.26 % 68.60 % 73.16 % 76.08 % 

Difference 0 % 3.34 % 7.90 % 10.82 % 

Multiple R
2

overall 67.92 % 74.43 % 83.26 % 86.56 % 

Improvement  MLR - SLR 2.66 % 5.83 % 10.10 % 10.48 % 

 

Table 0.136 Comparison of overall sequential sums of squares  

 Hourly data  HOD Mean values Daily data 

SSS - temperature  100 209 500 95 787 530 72 402 340 88 705 920 

SSS - sun  5 066 399 13 126 582 23 641 574 22 324 200 

 

Table 0.137 Comparison of CVs and MBEs 

 Hourly data  HOD Mean values Daily data 

CV  23.70 % 22.17 % 20.47 % 21.29 % 

Score CV 4 3 1 2 

MBE  0.09 % 3.49 % 1.35 % 1.34 % 
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XLIX 

Score MBE 1 4 3 2 

Dragvoll Idrettsbygg 

Table 0.138 Comparison of coefficients of determination for simple and multiple LR 

 Hourly data  HOD Mean values Daily data 

Simple 
R

2
overall 70.72 % 88.79 % 95.69 % 95.02 % 

Difference 0 % 18.07 % 24.97 % 24.30 % 

Multiple R
2

overall 70.85 % 89.15 % 95.94 % 95.94 % 

Improvement  MLR - SLR 0.13 % 0.36 % 0.25 % 0.92 % 

 

Table 0.139 Comparison of CVs and MBEs 

 Hourly data  HOD Mean values Daily data 

CV  8.35 % 8.28 % 8.37 % 9.00 % 

Score CV 2 1 3 4 

MBE  -0.01 % 0.48 % 1.14 % 1.84 % 

Score MBE 1 2 3 4 

Dragvoll 8  

Table 0.140 Comparison of coefficients of determination for simple and multiple LR 

 
Hourly data  HOD Mean values Daily data 

Simple 
R

2
overall 82.91 % 84.28 % 89.87 % 90.59 % 

Difference 0 % 1.37 % 6.96 % 7.68 % 

Multiple R
2

overall 84.22 % 86.15 % 92.01 % 93.34 % 

Improvement  MLR - SLR 1.31 % 1.87 % 2.14 % 2.75 % 

 

Table 0.141 Comparison of CVs and MBEs 

 Hourly data  HOD Mean values Daily data 

CV  15.87 % 17.48 % 18.12 % 19.05 % 

Score CV 1 2 3 4 

MBE  -0.01 % 6.07 % 7.64 % 8.71 % 

Score MBE 1 2 3 4 
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Dragvoll 9  

Table 0.142 Comparison of coefficients of determination for simple and multiple LR 

 Hourly data  HOD Mean values Daily data 

Simple 
R

2
overall 49.21 % 50.28 % 57.61 % 56.02 % 

Difference 0 % 1.07 % 8.40 % 6.81 % 

Multiple R
2

overall 50.45 % 54.35 % 64.37 % 64.86 % 

Improvement  MLR - SLR 1.24 % 4.07 % 6.76 % 8.84 % 

 

Table 0.143 Comparison of overall sequential sums of squares  

 Hourly data  HOD Mean values Daily data 

SSS - temperature  4 547 136 4 023 926 4 213 433 2 763 989 

SSS - sun  130 252 367 293 552 876 432 713 

 

Table 0.144 Comparison of CVs and MBEs 

 Hourly data  HOD Mean values Daily data 

CV  29.36 % 28.21 % 28.27 % 28.70 % 

Score CV 4 1 2 3 

MBE  -0.0025 % 0.72 % 0.73 % 2.38 % 

Score MBE 1 2 3 4 

Dragvoll 2 

Table 0.145 Comparison of coefficients of determination for simple and multiple LR 

 Hourly data  HOD Mean values Daily data 

Simple 
R

2
overall 66.22 % 66.00 % 78.84 % 83.30 % 

Difference 0 % -0.22 % 12.62 % 17.08 % 

Multiple R
2

overall 66.85 % 69.21 % 80.21 % 84.69 % 

Improvement  MLR - SLR 0.63 % 3.21 % 1.37 % 1.39 % 
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Table 0.146 Comparison of CVs and MBEs 

 Hourly data  HOD Mean values Daily data 

CV  20.95 % 20.68 % 21.21 % 21.48 % 

Score CV 2 1 3 4 

MBE  0.08 % 3.43 % 4.12 % 4.90 % 

Score MBE 1 2 3 4 
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Appendix F – Excluding outliers 

Appendix F.1 - Space heating systems 

Sentral Bygg 1 

Table 0.147 Comparison of sequential sums of squares for solar radiation - Weekdays day 

regime 

 Hourly data  HOD Mean values Daily data 

Calculation without 

excluding outliers   
23 590 196 881 334 304 290 136 

Calculation with 

excluding outliers   
40 184 57 921 61 805 28 421 

 

Table 0.148 Comparison of CVs for calculations without and with excluding outliers 

 Hourly data  HOD Mean values Daily data 

CV without excluding 

outliers 
9.40 % 10.94 % 11.74 % 13.44 % 

CV with excluding 

outliers 
9.50 % 12.48 % 12.78 % 13.01 % 

Sydområdet NHL Forskning 

Table 0.149 Comparison of CVs for calculations without and with excluding outliers 

 Hourly data  HOD Mean values Daily data 

CV without excluding 

outliers 
12.76 % 12.36 % 12.03 % 12.53 % 

CV with excluding 

outliers 
12.85 % 12.38 % 12.01 % 12.46 % 
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LIII 

Gamle-fysikk 

Table 0.150 Comparison of CVs for calculations without and with excluding outliers 

 Hourly data  HOD Mean values Daily data 

CV without excluding 

outliers 
9.86 % 10.75 % 11.82 % 13.25 % 

CV with excluding 

outliers 
9.91 % 10.77 % 12.29 % 13.59 % 

Berg 

Table 0.151 Comparison of CVs for calculations without and with excluding outliers 

 Hourly data  HOD Mean values Daily data 

CV without excluding 

outliers 
12.56 % 13.06 % 12.64 % 13.10 % 

CV with excluding 

outliers 
12.54 % 12.98 % 12.51 % 12.83 % 

Gløshaugen Idrettsbygg 

Table 0.152 Comparison of CVs for calculations without and with excluding outliers 

 Hourly data  HOD Mean values Daily data 

CV without excluding 

outliers 
29.96 % 29.35 % 29.80 % 33.73 % 

CV with excluding 

outliers 
30.39 % 29.22 % 30.31 % 34.98 % 

Varmetekniske laboratoriet  

Table 0.153 Comparison of CVs for calculations without and with excluding outliers 

 Hourly data  HOD Mean values Daily data 

CV without excluding 

outliers 
11.08 % 9.89 % 9.83 % 11.00 % 

CV with excluding 

outliers 
10.93 % 9.74 % 10.48 % 11.55 % 
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Appendix F.2 - Ventilation systems 

Dragvoll 3 

Table 0.154 Comparison of sequential sums of squares for solar radiation - Weekdays day 

regime 

 Hourly data  HOD Mean values Daily data 

Calculation without 

excluding outliers   
4 716 500 11 875 829 21 620 300 20 965 680 

Calculation with 

excluding outliers   
467 090 3 185 496 7 031 310 11 073 087 

 

Table 0.155 Comparison of CVs for calculations without and with excluding outliers 

 Hourly data  HOD Mean values Daily data 

CV without excluding 

outliers 
23.70 % 22.17 % 20.47 % 21.29 % 

CV with excluding 

outliers 
25.15 % 23.15 % 21.20 % 21.60 % 

Dragvoll Idrettsbygg 

Table 0.156 Comparison of CVs for calculations without and with excluding outliers 

 Hourly data  HOD Mean values Daily data 

CV without excluding 

outliers 
8.35 % 8.28 % 8.37 % 9.00 % 

CV with excluding 

outliers 
9.92 % 8.55 % 8.53 % 9.10 % 

Dragvoll 8 

Table 0.157 Comparison of CVs for calculations without and with excluding outliers 

 Hourly data  HOD Mean values Daily data 

CV without excluding 

outliers 
15.87 % 17.48 % 18.12 % 19.05 % 

CV with excluding 

outliers 
15.95 % 16.68 % 18.08 % 20.25 % 
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Dragvoll 9 

Table 0.158 Comparison of sequential sums of squares for solar radiation - Weekdays day 

regime 

 Hourly data  HOD Mean values Daily data 

Calculation without 

excluding outliers   
104 350 277 385 426 989 355 368 

Calculation with 

excluding outliers   
144 570 297 851 409 666 310 711 

 

Table 0.159 Comparison of CVs for calculations without and with excluding outliers 

 Hourly data  HOD Mean values Daily data 

CV without excluding 

outliers 
29.36 % 28.21 % 28.27 % 28.70 % 

CV with excluding 

outliers 
30.16 % 29.02 % 30.43 % 31.36 % 

Dragvoll 2 

Table 0.160 Comparison of CVs for calculations without and with excluding outliers 

 Hourly data  HOD Mean values Daily data 

CV without excluding 

outliers 
20.95 % 20.68 % 21.21 % 21.48 % 

CV with excluding 

outliers 
21.64 % 20.59 % 20.59 % 21.24 % 
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Appendix G – Evaluation of monitoring sample 

duration 

Appendix G.1 - Space heating systems 

Table 0.161 Percentage of calculations which accomplished 

lower CV than CV_Appl 

 Hourly data  HOD 
Mean 

values 
Daily data 

6 months 100 % 67 % 67 % 67 % 

3 months 100 % 100 % 89 % 100 % 

Sentral Bygg 1 

Table 0.162 Comparison between CVs computed for six and three months periods 

with CVs obtained from predictions for the same period calculated from LR 

coefficients gained from calculations with year period (CV_Appl) 

  Hourly data  HOD 
Mean 

values 
Daily data 

01.01.2007 - 

02.12.2007 
CV 15.59 % 15.38 % 15.85 % 15.98 % 

01.01.2007 - 

01.07.2007 

CV 14.85 % 14.72 % 15.34 % 15.41 % 

CV_Appl 15.23 % 15.00 % 15.12 % 15.21 % 

04.06.2007- 

02.12.2007 

CV 15.58 % 17.80 % 18.20 % 20.34 % 

CV_Appl 17.20 % 16.77 % 19.19 % 20.83 % 

01.01.2007 - 

01.04.2007 

CV 10.50 % 10.42 % 10.48 % 10.63 % 

CV_Appl 11.45 % 11.39 % 11.01 % 11.04 % 

03.09.2007- 

02.12.2007 

CV 6.70 % 8.16 % 8.21 % 7.99 % 

CV_Appl 8.14 % 8.48 % 9.02 % 9.02 % 

02.04.2007 - 

01.07.2007 

CV 20.19 % 19.78 % 21.89 % 23.33 % 

CV_Appl 23.89 % 23.23 % 25.57 % 25.56 % 
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Sydområdet NHL Forskning  

Table 0.163 Comparison between CVs computed for six and three months periods 

with CVs obtained from predictions for the same period calculated from LR 

coefficients gained from calculations with year period (CV_Appl) 

  Hourly data  HOD 
Mean 

values 
Daily data 

01.01.2007 - 

30.12.2007 
CV 11.89 % 11.53 % 11.45 % 12.31 % 

01.01.2007 - 

01.07.2007 

CV 8.53 % 8.16 % 8.33 % 9.38 % 

CV_Appl 9.87 % 10.31 % 11.01 % 12.18 % 

02.07.2007 - 

30.12.2007 

CV 11.64 % 11.50 % 11.69 % 11.91 % 

CV_Appl 14.01 % 12.89 % 12.37 % 12.90 % 

01.01.2007 - 

01.04.2007 

CV 5.34 % 5.26 % 5.44 % 5.70 % 

CV_Appl 5.70 % 6.14 % 7.12 % 7.69 % 

02.04.2007 - 

01.07.2007 

CV 8.84 % 8.76 % 11.00 % 12.40 % 

CV_Appl 18.90 % 19.40 % 18.69 % 20.14 % 

01.10.2007- 

31.12.2007 

CV 9.30 % 9.03 % 9.16 % 8.73 % 

CV_Appl 11.42 % 10.49 % 9.79 % 9.37 % 

Berg  

Table 0.164 Comparison between CVs computed for six and three months periods 

with CVs obtained from predictions for the same period calculated from LR 

coefficients gained from calculations with year period (CV_Appl) 

  Hourly data  HOD 
Mean 

values 
Daily data 

01.01.2007 - 

30.12.2007 
CV 12.49 % 12.53 % 12.08 % 12.67 % 

01.01.2007 - 

01.07.2007 

CV 11.29 % 11.40 % 11.11 % 11.43 % 

CV_Appl 11.67 % 11.00 % 10.81 % 11.32 % 

02.07.2007 - 

30.12.2007 
CV 12.27 % 12.86 % 13.16 % 13.19 % 
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LVIII 

CV_Appl 13.49 % 14.45 % 14.25 % 14.37 % 

01.01.2007 - 

01.04.2007 

CV 7.23 % 7.88 % 7.90 % 7.80 % 

CV_Appl 7.62 % 7.94 % 7.68 % 7.95 % 

02.04.2007 - 

01.07.2007 

CV 13.47 % 14.22 % 16.43 % 15.26 % 

CV_Appl 22.83 % 19.38 % 17.80 % 17.58 % 

01.10.2007 -

31.12.2007 

CV 8.59 % 8.92 % 8.58 % 8.08 % 

CV_Appl 11.92 % 11.81 % 10.60 % 10.23 % 
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LIX 

Appendix G.2 - Ventilation systems 

Table 0.165 Percentage of calculations which accomplished 

lower CV than CV_Appl 

 Hourly data  HOD 
Mean 

values 
Daily data 

6 months 100 % 67 % 67 % 100 % 

3 months 100 % 100 % 100 % 75 % 

Dragvoll Idrettsbygg 

Table 0.166 Comparison between CVs computed for six and three months periods 

with CVs obtained from predictions for the same period calculated from LR 

coefficients gained from calculations with year period (CV_Appl) 

  Hourly data  HOD 
Mean 

values 
Daily data 

01.01.2007 - 

15.06.2008 
CV 9.75 % 9.57 % 9.52 % 10.48 % 

01.01.2007 – 

01.07.2007 

CV 9.18 % 8.90 % 8.74 % 9.80 % 

CV_Appl 9.78 % 9.50 % 9.27 % 10.06 % 

02.07.2007 - 

30.12.2007 

CV 8.96 % 9.09 % 9.67 % 10.46 % 

CV_Appl 9.80 % 9.65 % 9.94 % 11.30 % 

31.12.2007 - 

15.06.2008 

CV 9.34 % 9.48 % 10.20 % 10.75 % 

CV_Appl 9.49 % 9.41 % 10.13 % 11.54 % 

01.01.2007 - 

01.04.2007 

CV 4.68 % 4.72 % 4.89 % 5.79 % 

CV_Appl 5.03 % 5.13 % 5.06 % 5.75 % 

02.04.2007 - 

01.07.2007 

CV 16.71 % 16.79 % 15.87 % 19.11 % 

CV_Appl 21.28 % 20.27 % 18.37 % 19.51 % 

03.09.2007 -

02.12.2007 

CV 5.09 % 5.93 % 6.88 % 9.67 % 

CV_Appl 6.46 % 6.37 % 7.24 % 8.47 % 
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31.12.2007 – 

30.03.2008 

CV 5.11 % 5.33 % 5.49 % 6.12 % 

CV_Appl 6.83 % 6.68 % 7.14 % 8.06 % 

Dragvoll 3 

Table 0.167 Comparison between CVs computed for three months periods with 

CVs obtained from predictions for the same period calculated from LR 

coefficients gained from calculations with six months period (CV_Appl) 

  Hourly data  HOD 
Mean 

values 
Daily data 

07.01.2008.- 

15.06.2008 
CV 23.70 % 22.17 % 20.47 % 21.29 % 

07.01.2008.- 

07.04.2008 

CV 18.35 % 15.74 % 14.13 % 14.35 % 

CV_Appl 20.77 % 19.25 % 16.53 % 16.43 % 

03.03.2008.- 

01.06.2008 

CV 23.85 % 23.53 % 23.91 % 24.66 % 

CV_Appl 29.38 % 26.09 % 26.85 % 28.92 % 

Dragvoll 8 

Table 0.168 Comparison between CVs computed for three months periods with 

CVs obtained from predictions for the same period calculated from LR 

coefficients gained from calculations with six months period (CV_Appl) 

  Hourly data  HOD 
Mean 

values 
Daily data 

01.01.2007.- 

01.07.2007 
CV 16.51 % 18.29 % 19.10 % 20.08 % 

01.01.2007.- 

01.04.2007 

CV 8.83 % 10.27 % 10.17 % 10.32 % 

CV_Appl 11.27 % 14.26 % 14.75 % 15.52 % 

12.02.2007.- 

13.05.2007 

CV 16.63 % 16.99 % 18.58 % 18.80 % 

CV_Appl 17.28 % 17.68 % 19.61 % 20.91 % 
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Appendix H –Introducing daily change of 

outdoor air temperature into the heat 

consumption model 

Dragvoll Idrettssenteret 

 
Figure 0.1 Mean daily temperatures between 01.01.2007 and 15.04.2007 in Trondheim 
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Figure 0.2 Normalized daily heat consumptions for calculations without change of daily 

temperature as independent variable (01.01.2007 - 15.04.2007) 

 
Figure 0.3 Normalized daily heat consumptions for calculations with change of daily 

temperature as independent variable (01.01.2007 - 15.04.2007) 

 
Figure 0.4 Normalized hourly heat consumptions during January 2007 
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LXIII 

 
Figure 0.5 Hourly outdoor air temperatures during January 2007 in Trondheim 
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Dragvoll 2 

 
Figure 0.6 Hourly outdoor air temperatures between 19.01.2007 and 01.02.2007 in 

Trondheim 

 
Figure 0.7 Normalized hourly heat consumptions between 19.01.2007 and 01.02.2007 
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Figure 0.8 Mean daily temperatures between 01.01.2007 and 20.04.2007 in Trondheim 

| 

Figure 0.9 Normalized daily heat consumptions gained with model not involving time-lagged 

variables (01.01.2007 - 20.04.2007) 
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Figure 0.10 Normalized daily heat consumptions gained with model involving time-lagged 

variables (01.01.2007 - 20.04.2007) 

Gamle Kjemi 

 
Figure 0.11 Normalized hourly heat consumptions during January 2007 
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Space heating 

Table 0.169 Comparison of CVs for different data groupings 

 Hourly data  HOD Mean values Daily data 

Daily data 

with time-

lagged 

variable 

Sentral Bygg 1 9.40 % 10.94 % 11.74 % 13.44 % 13.65 % 

Score  1 2 3 4 5 

Sydområdet NHL 

Forskning 
12.76 % 12.36 % 12.03 % 12.53 % 12.22 % 

Score 5 3 1 4 2 

Gamle-fysikk 9.86 % 10.75 % 11.82 % 13.25 % 10.67 % 

Score 1 3 4 5 2 

Berg 12.56 % 13.06 % 12.64 % 13.10 % 12.17 % 

Score 2 4 3 5 1 

Gløshaugen 

Idrettsbygg 
29.96 % 29.35 % 29.80 % 33.73 % 29.73 % 

Score 4 1 3 5 2 

Varmetekniske 

laboratoriet  
11.08 % 9.89 % 9.83 % 11.00 % 9.32 % 

Score 5 3 2 4 1 

 

Table 0.170 Overall scores for buildings with space heating 

Hourly data  HOD Mean values Daily data 

Daily data 

with time-

lagged 

variable 

18 16 16 27 13 
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Ventilation systems 

Table 0.171 Comparison of CVs for different data groupings 

 Hourly data  HOD Mean values Daily data 

Daily data 

with time-

lagged 

variable 

Dragvoll 3 23.70 % 22.17 % 20.47 % 21.29 % 20.97 % 

Score 5 4 1 3 2 

Dragvoll 

Idrettsbygg 
8.35 % 8.28 % 8.37 % 9.00 % 8.64 % 

Score 2 1 3 5 4 

Dragvoll 8 15.87 % 17.48 % 18.12 % 19.05 % 19.08 % 

Score 1 2 3 4 5 

Dragvoll 9 29.36 % 28.21 % 28.27 % 28.70 % 28.41 % 

Score 5 1 2 4 3 

Dragvoll 2 20.95 % 20.68 % 21.21 % 21.48 % 19.84 % 

Score 3 2 4 5 1 

 

Table 0.172 Overall scores for buildings with ventilation systems 

Hourly data  HOD Mean values Daily data 

Daily data 

with time-

lagged 

variable 

16 10 13 21 15 
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Appendix I - Verification of HVAC system 

operation 

Appendix I.1 - Space heating systems  

Sentral Bygg 1 

February 2007 

 

Figure 0.12 Normalized daily heat consumptions for February 2007 

 

Figure 0.13 Normalized hourly heat consumptions between for February 2007 
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Figure 0.14 Hourly outdoor temperatures for February 2007 
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March 2007 

 
Figure 0.15 Normalized daily and hourly heat consumptions and hourly outdoor temperatures 

for March 2007  
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April 2007 

 
Figure 0.16 Normalized daily and hourly heat consumptions and hourly outdoor temperatures 

for April 2007  



Appendix I.1 

LXXIII 

May 2007 

 

Figure 0.17 Normalized daily and hourly heat consumptions and hourly outdoor temperatures 

for May 2007  
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September 2007 

 
Figure 0.18 Normalized daily and hourly heat consumptions and hourly outdoor temperatures 

for September 2007  
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October 2007 

 
Figure 0.19 Normalized daily and hourly heat consumptions and hourly outdoor temperatures 

for October 2007  
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November 2007 

 
Figure 0.20 Normalized daily and hourly heat consumptions and hourly outdoor temperatures 

for November 2007  
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Sydområdet NHL Forskning  

 

Figure 0.21 Normalized daily heat consumptions between 01.01.2007 and 27.05.2007 

 

Figure 0.22 Normalized daily heat consumptions between 03.09.2007 and 27.01.2008  
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Gamle-fysikk 

 

Figure 0.23 Normalized daily heat consumptions between 01.01.2007 and 27.05.2007 

 

Figure 0.24 Normalized daily heat consumptions between 01.09.2007 and 27.01.2008  
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Berg 

 

Figure 0.25 Normalized daily heat consumptions between 01.01.2007 and 25.05.2007 

 

Figure 0.26 Normalized daily heat consumptions between 03.09.2007 and 03.02.2008  
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Gamle Kjemi 

 

Figure 0.27 Normalized daily heat consumptions between 01.01.2007 and 27.05.2007 

 

Figure 0.28 Normalized daily heat consumptions between 03.09.2007 and 27.01.2008  
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Sentral Bygg 2 

 

Figure 0.29 Normalized daily heat consumptions between 25.02.2008 and 25.05.2008 

Elektro B 

 

Figure 0.30 Normalized daily heat consumptions between 01.01.2007 and 27.05.2007  
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Materialtekniske Laboratorier 

 

Figure 0.31 Normalized daily heat consumptions between 29.01.2007 and 27.05.2007 

Produktdesign 

 

Figure 0.32 Normalized daily heat consumptions between 22.01.2007 and 27.05.2007  
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Elektro E and F 

 

Figure 0.33 Normalized daily heat consumptions between 01.01.2007 and 29.04.2007 

Metallurgi 

 Figure 0.34 Normalized daily heat consumptions between 01.01.2007 and 29.04.2007  
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Oppredning – gruvedrift

 

Figure 0.35 Normalized daily heat consumptions between 01.01.2007 and 29.04.2007 

PFI 

 

Figure 0.36 Normalized daily heat consumptions between 01.01.2007 and 27.05.2007  
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Verkstedtekniske Laboratorier

 
Figure 0.37 Normalized daily heat consumptions between 01.01.2007 and 29.04.2007 

Tyholt Marintekniskenter

 

Figure 0.38 Normalized daily heat consumptions between 01.01.2007 and 29.04.2007 
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Appendix I.2 - Ventilation systems  

Dragvoll 3

 

Figure 0.39 Normalized daily heat consumptions between 07.01.2008 and 27.04.2008 

Dragvoll 8 

 

Figure 0.40 Normalized daily heat consumptions between 10.09.2007 and 25.11.2007 
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Figure 0.41 Normalized daily heat consumptions between 05.01.2008 and 02.03.2008 

Dragvoll Idrettssenteret 

 

Figure 0.42 Normalized daily heat consumptions between 01.01.2007 and 01.06.2007 
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Figure 0.43 Normalized daily heat consumptions between 01.09.2007 and 01.06.2008 

Dragvoll 2 

 

Figure 0.44 Normalized daily heat consumptions between 01.01.2007 and 20.04.2007 
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