
ISBN 978-82-471-0119-3 (printed ver.)
ISBN 978-82-471-0122-3 (electronic

ver.)
ISSN 1503-8181

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f

Sc
ie

nc
e 

an
d 

Te
ch

no
lo

gy
Th

es
is

 fo
r 

th
e 

de
gr

ee
 o

f
do

kt
or

 in
ge

ni
ør

Fa
cu

lt
y 

of
 E

ng
in

ee
ri

ng
 S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
D

ep
ar

tm
en

t o
f E

ne
rg

y 
an

d 
P

ro
ce

ss
 E

ng
in

ee
ri

ng

D
octoral Theses at N

TN
U

, 2007:6
Jon Eirik B

rennvall

Doctoral Theses at NTNU, 2007:6

Jon Eirik Brennvall
New techniques for measuring
thermal properties and surface

 heat transfer applied to
food freezing



*



Thesis for the degree of doktor ingeniør

Norway, Trondheim, February 2007

Norwegian University of Science and Technology
Faculty of Engineering Science and Technology
Department of Energy and Process Engineering

Jon Eirik Brennvall

New techniques for measuring
thermal properties and surface
 heat transfer applied to
 food freezing



NTNU
Norwegian University of Science and Technology

Thesis for the degree of doktor ingeniør

Faculty of Engineering Science and Technology
Department of Energy and Process Engineering

©Jon Eirik Brennvall

ISBN 978-82-471-0119-3 (printed ver.)
ISBN 978-82-471-0122-3 (electronic ver.)
ISSN 1503-8181

Doctoral Theses at NTNU, 2007:6

Printed by Tapir Uttrykk



Preface

The intention of this work is to improve knowledge about the thermal
properties of food and the boundary conditions of food during freezing.
This knowledge will be basic input to food freezing models.
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”Technology for competitive processing of food”.
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co-workers and the personnel at the laboratory and the engineering work-
shop at the same department for their help. I particularly acknowledge
Robert Olsen for his help with Fortran programming and Latex. I will also
thank my friends and family for their assistance and support.

In connection with the process of designing and building the thermal
multimeter I will take this opportunity to thank SINTEF and NTNU for
making the project possible.

Trondheim, February 2. 2007
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Summary

This thesis presents two different works. The first part introduces a
thermal multimeter which measures heat capacity, thermal conductivity
and density. The instrument gives continuous measurement data within a
temperature range. With some exceptions this also holds for the prototype
of a thermal multimeter which is built and tested. The measuring method
is constant heating of one side of a slab. The slab is insulated on all other
sides. After some time there will be equilibrium where there is a constant
temperature difference over the slab. The thermal conductivity can be
calculated from this temperature difference. The heat capacity can be
calculated from how fast the temperature rises. Measurements of the slab
thickness give density as function of temperature.

The second part discusses a practical method for measuring the heat
transfer coefficient (α). The method is based on shell freezing of clear jelly
which has the same shape as the product of interest. Transparent jelly is
transparent before it freezes and white when frozen. If the sample is re-
moved from the freezer and cut through before it is completely frozen the
freezing front is distinct and the thickness of the frozen layer can be mea-
sured. By measuring time the jelly sample was in the freezer and thickness
of the frozen layer the heat transfer coefficient can be calculated by using
Plank’s equation. The method is suitable for measuring local α because it
can be shown that tangential heat flow can be neglected when the frozen
layer is thin.

Computer simulations, automated data acquisition and data processing
are a considerable part of this thesis, even though it is not obvious from the
results presented. There are more lines in the data code written to obtain
the results presented here then the number of lines in this thesis. The size
of selected simulation results and processed data from the measurements
are 6.3 GB.
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Chapter 1

Introduction

1.1 Summary of state of art for measuring the
thermal properties and the heat transfer co-
efficient in food freezing

In the food industry new products with new composition, size, shape and packaging
are regularly introduced to the market. Many of the products are frozen. The re-
frigeration systems used today are computer regulated which gives new possibilities
to customize the freezing process of the product. This makes it possible to reduce
cost, product loss and increase the quality. An important tool for customization
of the freezing process is numerical simulations. With today’s computers and nu-
merical methods non-linear heat conduction problems can be accurately solved,
(Wang & Kolbe [1]) but the trustworthiness of the results is directly dependent
on the accuracy of the thermal properties and heat transfer coefficient (α) used
as input (Hayakawa [2]). The dominating heat transport mechanism for heat in
food freezing is conduction. The properties needed to do computer simulations of
heat conduction in food include enthalpy, apparent heat capacity, density, thermal
conductivity (Simpson [3]).

In the food industry density is usually measured with a box of known volume
and a weight. The density change during freezing, of up to 8% for pure water, is
usually ignored in the simulations, but it can be included by using volume-based
heat capacity instead of mass-based heat capacity (Cleland [4]). Data for the vol-
ume change of food during freezing are seldom included in reported measurements
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of thermal properties. See also Section 2.1.1.
Heat capacity of food is mainly dependent on the composition. Food can

therefore be grinded, heat treated, undergo internal enzymatic or bacteriological
processes etc. without any significant change in heat capacity. This makes heat ca-
pacity relatively easy to measure. Adiabatic methods give the most accurate result
when measuring heat capacity (Magee et al. [5], Nesvadba [6]). These methods
are however time consuming if the sample has the size of approximately one cm3

or larger, but they are the most common methods used for food (Pham [7]). This
because food is not homogeneous. If the sample is too small there is a risk of
measuring on only one of the materials in the mixture. This will of course not give
the average heat capacity which usually is the one of interest since small-scale ma-
terial variation in food is ignored in most models. The other common methods for
measuring heat capacity are differential scanning calorimeters (DSC) and mixing
apparatus. See also Section 2.1.2.

Thermal conductivity is not only dependent of composition. Fibre orientation,
porosity texture etc. also have great influence and will often cause the thermal
conductivity to be directional dependent. Unlike heat capacity the thermal con-
ductivity can therefore change when food is handled, and is consequently much
more difficult to measure. Water, which is a major component in most food, also
complicates the measurements of thermal conductivity. This is because of the dif-
ference between the thermal conductivity of ice and water, and because only under
special conditions will water freeze to transparent ice free of cracks and bubbles
which can decrease thermal conductivity considerably. For frozen samples steady-
state methods are recommended because of the strong temperature dependency
of heat capacity in the freezing temperature range of most food (Pongsawatmanit
et al. [8], Nesvadba [6]). This because theoretically it is mathematically diffi-
cult to find thermal conductivity when the heat capacity changes rapidly. Also
practically the heat capacity will have large uncertainty since ∂cp/∂T is large. Ac-
cording to the Cost90 [9] project which had the goal of supplying the food engineer
with reliable thermophysical properties data, the difference between results from
different laboratories can vary as much as ±40% where ±4-24% is caused by devi-
ation between sample which was assumed to be equal. It is therefore necessary to
standardize methods for measuring thermal conductivity of food. See also Section
2.1.3

The heat transfer coefficient which usually defines the boundary conditions
is also necessary. According to Pham [10] it is “the quantities least amenable to
prediction and most subject to variation in practice, and should therefore be a pri-
ority area in freezing science”. The average heat transfer coefficient (α) for whole
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object are usually determined by calculations from the heat balance equation, par-
titional calorimetry or direct calorimetry (Danielsson [11]). Correlations for α for
different objects given as a function of Reynolds, Prandtl and Nusselt numbers are
presented by Whitaker [12]. The correlations generally demand simple geometry
and well defined fluid flow to give accurate results. See also Section 3.1.1.

The classical method of measuring the local heat transfer coefficient from a
solid object’s surface to a fluid is to wrap the object in an electrical ribbon which
provides constant heat flux. The temperature is then measured over the surface.
Packing the object in a ribbon is time consuming and can change the geometry,
surface roughness etc. The method is therefore constraining and limited, and the
heat transfer coefficient measured differs from what is estimated form temperatures
measured in food objects (Kondjoyan & Daudin [13]).

An indirect method for measuring local heat transfer coefficient is presented by
Kondjoyan & Daudin [13],[14],[15]. They have wetted objects of plaster and placed
them in an air stream where temperature, air speed and air humidity are constant.
After a while the plaster will obtain the wet bulb temperature. This temperature
will be stable for a long time, until the surface of the objects dries, and water has
to diffuse to the surface before it can evaporate. When the temperature is stable,
the weight loss per time unit can be measured. All the energy needed to evaporate
water is taken from the air, and an energy balance will give the heat flux and
the heat transfer coefficient. The method becomes local if the evaporation from
different parts of the objects surface is measured.

1.2 Motivation and objectives of the thesis

The investigations done in the Cost90 [9] project indicate that the available data
for thermal conductivity of food are insufficient and provide uncertainties of up to
40%. An important reason for this is that with the methods available measuring
density, heat capacity and thermal conductivity in a temperature range from -60
to +10 � require at least two different instruments, or alternatively becomes very
time consuming. Measuring only thermal conductivity for a temperature interval
is also time consuming due to the time needed to reach steady-state conditions for
steady-state methods, or suitable initial conditions after previous measurement for
transient methods. Since the thermal properties of food are highly temperature
dependent it would be preferable with a method which relatively quickly produces
data for heat capacity and thermal conductivity for several temperatures in a
temperature range with a minimum of sample preparation.
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According to Pham [10] methods for finding the heat transfer coefficient are
even more insufficient than methods for measuring thermal conductivity, but it
seems clear that an effort in both areas is required in order to bring the science
of food freezing forward. The objective for this thesis is to develop methods
and measuring apparatus for studying heat transfer in food refrigeration. It is
emphasized that the methods and apparatuses are to be practical, and suitable for
food in the refrigerated environment.

The first part of the thesis presents an instrument called a thermal multimeter
that is specially designed for measuring the thermal properties of food. The in-
strument is easy to use, it measures the thermal properties in a wide temperature
range, and can measure corrosive materials. It is also easy to clean and robust
and therefore well suited for measuring food. All the thermal properties are found
by measuring the temperature development in an otherwise insulated rod which is
exposed to a constant heat flux at one end.

The second part of the thesis shows how the local heat transfer coefficient (α)
can be measured by using transparent jelly. Jelly changes from transparent to
white when frozen. The position of the freezing front can then be found visually
by cutting through the jelly. The heat transfer coefficient can then be calculated.
This method is cheap and practical and has a wide variety of uses from determining
heat transfer coefficient in different parts on the surface of a product placed in an
air stream to measuring heat transfer through packaging. It can also be extended if
the position of the freezing front can be found by other methods such as magnetic
resonance or ultrasound.

1.3 The heat equation

Heat transfer by conduction can usually be described by the heat equation which
in its most general form is

∂ρcpT

∂τ
= ∇ · λ (∇T ) + q̇V (1.1)

The equation is credited to Joseph Fourier (1768-1830), a French mathematician
and physicist who has made very significant contributions to the analytical treat-
ment of heat conduction. The left-hand side of (1.1) is the energy change in a
control volume. ∇·λ (∇T ), which is known as Fourier equation, and gives the net
heat conducted through the borders of the control volume and q̇V is heat genera-
tion by chemical reactions, microwaves, electricity etc. inside the control volume.
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The heat generation can be negative if there is an endothermic chemical reaction
in the material.

Techniques for solving the equation analytically can be found in general books
on mathematics, like Penney [16] or Kreyszig [17]. There are three groups of nu-
merically techniques which is much used for solving (1.1). The finite difference
technique can be found in a book written by Özisik [18]. The finite volume tech-
nique can be found in a book written by Versteeg & Malalasekera [19]. The finite
element technique can be found in a book written by Lewis et al. [20]. The heat
equation with suitable boundary conditions is used to calculate temperature time
development and heat flow in materials where conduction is the dominating heat
transport mechanism.

1.3.1 The physics of cooling

In cooling and freezing calculations common objects have the shape of slabs, cylin-
ders or spheres. The word ”slab” is here used about objects where two surfaces
are parallel and all other surfaces are perpendicular to these two surfaces.

Imagine a slab with infinite width and length (infinite slab), an infinite long
cylinder or sphere cooled by a fluid. The fluid has constant temperature TF . The
complex physics of heat transport between the surface of the solid and the fluid is
hidden in the heat transfer coefficient (α). α is defined as

α ≡ q̇

Ts − Tf
(1.2)

where Ts is the surface temperature and Tf is the temperature in the fluid far from
the surface. A bar over Ts (T̄s) implies that the temperature is an average over
the whole surface. Tf in some literature is denoted T∞. q̇ is the heat flux.

α is measured, estimated from tables or empiric equations based on measure-
ments of α in simple geometry. Assume that α is not a function of time and
position on the surface. Equation (1.1) will then have the boundary condition

λ
∂T

∂r
= α (T − Tf )

∣∣∣∣
r=R

(1.3)

R is here the external radius or half thickness. The initial condition of (1.1) is a
constant temperature

T = T0|τ=0 (1.4)
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Assuming that λ, ρ, cp, α and Tf are constant and there is no internal heat-
ing or cooling this can be written in unit free form by introducing the reduced
temperature difference

ϑ∗ =
T − Tf

T0 − Tf
(1.5)

reduced position
r∗ =

r

R
(1.6)

Fourier’s number

Fo =
aτ

R2(
a =

λ

ρcp

) (1.7)

and Biot’s number
Bi =

αR

λ
(1.8)

The heat equation in unit free form with boundary and initial conditions then
becomes

∂ϑ∗

∂ (Fo)
= ∇2ϑ∗

∂ϑ∗

∂r∗
= −Biϑ∗

∣∣∣∣
r∗=1

ϑ∗ = 1|Fo=0

(1.9)

Equation (1.9) presents analytical solutions for a slab in cosine series in the form

ϑ∗ =
n∑

i=1

Ci e−(Ai
2Fo) cos (Ai r∗) (1.10)

where every Ai satisfies the boundary condition and values for Ci are chosen so
that the sum satisfies the initial condition when Fo = 0. Ai are positive solutions
of

A tan (A) = Bi (1.11)

There are infinite solutions of (1.11). To find an approximate solution of (1.9)
for a given Bi the n first solutions of (1.11) are found. Greater n gives better
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approximation. The solutions of (1.11) are then inserted into (1.10) and the values
for Ci are found. The solutions of (1.11) are not periodic. Normal Fourier analysis
then cannot be used to find values for Ci in (1.10). It is possible to find values
for any finite number of Ci by creative use of the least squares method (Anton &
Rorres [21]). This is done in the Matlab program “FourierCoolingSlab.m” which
can be found among the attached files. Se page 155.
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Figure 1.1: Reduced temperature difference as function of reduced position
Fo vary from 0 to 0.8. Bi is 1. The terms are the first five in the sum in (1.10) for Fo = 0.

Totally 50 terms are used in this approximation. In sum they give the line for Fo = 0 which

represents the initial condition
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In (1.9) only Fo, Bi and r∗ can be varied. The number of times (1.9) must
be solved with regard to ϑ∗ (analytically or numerically) to make charts that are
suitable for finding an approximate solution of (1.9) graphic for any Fo, Bi and r∗,
is feasible. Such charts are presented in the literature (Özisik [18], Incropera & De-
Witt [22], Hewitt et al. [23]).

The physical interpretation of Fo is how long time it takes before a temperature
change on the surface is noticeable in the centre of the object. As long as Fo is
small the temperature change is small too. In numerical simulation Fo can be
calculated for each control volume or node. High Fo then indicates inaccurate or
unstable solution. Bi is the ratio between the surface (α) and the internal (λ/R)
heat resistance. Low Bi means that the resistance is at the surface and that the
temperature variation inside the object at any time is small. By ignoring the
small temperature variation inside the object at low Bi (1.9) can be reduced to
an ordinary differential equation. High Bi means that the resistance is inside the
object, and that the temperature of the surface of the object is approximately the
same as the fluid temperature. If Bi is infinite (1.9) becomes

∂ϑ∗

∂ (Fo)
= ∇2ϑ∗

[ϑ∗ = 0]r∗=1

[ϑ∗ = 1]Fo=0

(1.12)

which has a practical analytical solution.
Writing (1.9) on unit free form is mathematically equivalent to reducing the

number of parameters to a minimum. Above the heat equation was known before
it was written in unit free form. If the heat equation was not known and had to
be found from experiments the temperature would be a function of 6 parameters
(thermal conductivity, heat capacity, density, α, time and radius).

Experimental science is generally to vary the parameters and look for empirical
equations. If n experiments on each parameter were done where one parameter
was varied and the rest were kept constant the total number of experiments would
be n6. However since all the parameters have units, they can be multiplied and
divided by each other to find dimensionless groups. As shown 3 dimensionless
groups would be found reducing the number of experiments needed to have a
chance to guess the heat equation to n3.

This technique has led to many discoveries especially in fluid mechanics and
thermodynamics. It is so important that “the reduced number of parameters” is a
concept in these special fields. The dimensionless groups are given names after the

20



people who formulated them and are almost always used in empirical equations
which are difficult to explain with basic laws of physics. Most known of these
groups is probably the Reynold’s number (Re) which describes forced convection,
and the fact that the transition between laminar and turbulent flow in a circular
pipe occurs at Re ≈ 2300. Dimensionless groups have also made experiments
on scaled models an important tool in science and engineering, since experiments
where the dimensionless groups have the same value will have the same result
independent of scaling. Sometimes dimensionless groups are used with varying
success when the postulation for formulating the group is not valid. Freezing is a
typical example since Fo and Bi are defined only for constant thermal properties
through the whole radius (half thickness).

1.3.2 The physics of freezing versus cooling

Figure 1.2: Geometry and boundary conditions for the example

Freezing is first cooling down to the temperature when freezing starts. Then there
is a period when the object freezes. The temperature in the centre of the object is
then almost constant for a long time, because the heat leaving the object is latent
heat. At last there is a new period of cooling where the object is cooled below
freezing point.

21



While the object is freezing the thermal properties vary through the object.
The premise for introducing Fo and Bi which work so well in cooling are then gone.
Fo and Bi can be defined by using average thermal properties for a temperature
interval. Then the physical interpretation of Fo and Bi is still valid, but they
cannot be used for calculating any temperature inside the object, and it is therefore
better to avoid using Fo and Bi in freezing.

The temperature progress in water which freezes is presented as an example
of freezing. This is shown in Figure 1.2.

The heat transfer coefficient (α) describes the conductance for heat which
leaves the water surface and is taken away by the air. In this simulation α is set to
α = 30 W/m2K which is a typical value in blast freezing. The thermal properties
are those for ice and water. It is assumed that there is no movement in the water.
Expansion because of the temperature change is ignored.

In the simulation the heat capacity is infinite during freezing. (1.1) then cannot
be discretized directly, but must be formulated in an enthalpy form.

ρ
∂h

∂τ
= ∇λ (∇T ) (1.13)

In forward Euler form for one dimension, equation (1.13) becomes

hj,n+1 = hj,n + λ
Tj+1,n − 2 · Tj,n + Tj−1,n

ρ dr2 dτ (1.14)

The temperatures for the next time step must then be calculated from the new
enthalpy. This form must be chosen when the heat capacity varies a lot, and it is
not sure that the commercial simulation program at hand will do so. The code to
solve this problem was written in Matlab. The temperature profile in the water
at different times is shown in Figure 1.3.
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Figure 1.3: Temperatures from simulation of freezing of 10 mm deep water
Temperature profiles at discrete time steps. ∆τ = 20s

To be consistent with the figure of the system (Figure 1.2) the depth of the
water is on the y-axes. There are 20 seconds between each line. Since the tem-
perature is continuously dropping and the temperature axis (x-axis) is reversed
the first temperature profile (a red one) is to the left. A later temperature profile
is always to the right of an earlier one. In the beginning where the temperature
profile lines in Figure 1.3 are red the water is cooling. In this example it takes 4
minutes before freezing starts. Then the temperature changes relatively little for
1 hour and 53 minutes before all the water is frozen. During freezing the lines
in Figure 1.3 are green. The colour of the profiles which occur after 30, 60, and
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90 minutes are changed from green to black to make the figure more readable.
For each of these lines the upper part of the line is below 0 � which indicates
that the water has frozen to ice. The lower part of the line is above 0 � which
indicates that the water is still liquid. As times passes, a larger and larger part
of the temperature profile line is below 0 � indicating that the ice on the top of
the water becomes thicker. It is worth noting that when the water is freezing the
part of the temperature profile which is below 0 � is almost a straight line. This
is because very little heat is transported out of this area compared with the heat
transported through it from the level where water freezes, also called the freezing
front. The line has a marked knuckle-point (continuous but not derivable) at the
freezing front. In the unfrozen water the temperature is close to 0 � everywhere
at any time except when freezing has just started. This indicates almost no heat
transport in this region. All the heat which is transported through the ice is latent
heat released at the freezing front when water freezes to ice. After all the water
has frozen it takes 15 minutes before the ice has cooled down below -15 �. Here
water is freezing 85% of the time from the cooling starts to when the temperature
is below -15 �. This is typical for freezing of water. The reason is that the latent
heat of freezing accounts for more than 80% of the heat which has been removed.
Materials with high water content, like food, behave in a similar way.

Because of this behaviour it is possible to describe freezing by an analytical
equation by ignoring the sensible heat and assuming that freezing occurs at a fixed
temperature. For an infinite slab which freezes from one side the equation can be
formulated as

τ =
ρ∆hice

(Tff − TA)

(
1
α

L +
1
2λ

L2

)
(1.15)

This is known as Plank’s equation and was first formulated by R. Plank [24, 25].
Cleland and Earle [26] has compared methods for predicting the freezing time
of cylindrical and spherical food. In this comparison (1.15) predicts 20 to 40%
too short freezing time (read off from the charts in [26]). Equation (1.15) is
discussed, modified for several geometries and corrected to include sensible heat
by Pham et al. [27, 28, 29], Cleland et al. [26, 30, 31, 32] Hossain [33, 34] and
Coskan et al. [35] among others. The simplicity of (1.15) makes it possible to
estimate α by measuring the freezing time.
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Chapter 2

Thermal multimeter
A description of an instrument for a simultaneous measurement
of heat capacity, thermal conductivity and density for food

2.1 Introduction

The physical properties of a material describe how the material will respond to
physical influences like tension, pressure, electric field, temperature and light.
Physical properties can be strength, flexibility, electric conductivity, thermal con-
ductivity, heat capacity and transparency to light. Physical properties are input to
all kinds of engineering. The only way to find the physical properties of unknown
materials is to measure them. The results from measurements of all kinds of mate-
rials fill engineering handbooks which can be as bulky as extensive encyclopaedia.

Physical properties are arranged according to the kind of physical phenomena
they describe. In heat conduction described by the heat equation, (1.1), the physi-
cal properties are density ρ, heat capacity cp, and thermal conductivity λ. Thermal
diffusivity a is the ratio a = λ/ρcp, and is used a lot because it will become the
only parameter in the heat equation if the thermal conductivity is constant or if
thermal conductivity is not a part of the boundary conditions. Some measurement
techniques only give thermal diffusivity, and demand an additional measurement
of heat capacity to calculate the thermal conductivity. Enthalpy h is the integrated
heat capacity with regard to temperature, from a chosen temperature (often -40 �
for food materials) to the temperature in the material. The enthalpy is often pre-
sented instead of the heat capacity since in an enthalpy - temperature chart fusing
heat can be included. Density and heat capacity/enthalpy are properties which
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respectively describe the amount of mass and heat in a given volume. They are
therefore sometimes denoted as the properties of state. Rahman [36] has written a
food properties handbook where the results from several measurements of thermal
properties of food are presented.

The number of products and the increasing demand for economical efficiency
make quick and accurate methods for finding thermal properties and the heat
transfer coefficient increasingly important. If enough measurements are done on
a given type of material, some properties of a new material of the same type can
often be predicted if the composition of the new materials is known. Today it is
common to use such estimates in calculations to save time and money. A reason
can be that suitable equipment for measuring the actual property is not available.
Comparison of predicted and measured data are also a control that the instru-
ment measures correctly. In chemical analysis of food the amount of protein, fat,
carbohydrate, fibre, ashes (salt etc.) and water is measured. The chaep and fast
way to find the thermal properties is to estimate them from this chemical com-
position. The estimation of enthalpy/heat capacity from the composition data
using Schwartzberg’s model is accurate within 10% (Pham [37]). There are mod-
els for estimating thermal conductivity which give satisfying engineering accuracy
for homogeneous products (Pham [38]), but since thermal conductivity can be
very dependent on the fibre orientation and amount of air in the food, sufficient
information is often not available to use these models. Most models for estimat-
ing thermal properties from composition demand that the initial freezing point is
measured. The models also ignore other phase transitions than the one between
water and ice. If composition of the food is not known or a better accuracy then
10% is needed the thermal properties must be measured with a suitable method.

Thermal conductivity/diffusivity describes how heat is transported in the ma-
terial, and is therefore sometimes denoted as a transport property. A review of
measuring and predicting thermal properties of food is written by Lind [39] and
Mellor [40]. Results from collaborative measurements which is a part of a Eu-
ropean Co-operation in Science and Technology (Cost90) are collected by Jowitt
et al. [9] and Kent [41]. In the Cost90 project it was reported that there is as
much as ±40% difference in the thermophysical properties for some materials,
where 10% was related to the measuring accuracy in one laboratory, ±5-15% was
the difference between laboratories and ±4-24% was difference between materials
which were assumed to be equal (Hardarson [42]).
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2.1.1 Density

The concept of density is known from ancient time. If someone should be credited
it must be Archimedes (287-212 BC) with his discovery of buoyancy. The legend
says that Archimedes considered why some materials float and some sink. The
understanding came to him while he was lying in the bath, probably observing
how his body rose and sank in the water while he breathed. The ordinarily sedate
Archimedes was so agitated of his discovery that he bounced up from the bath and
ran out in the street to tell the passers-by about buoyancy. Density is defined as

ρ =
m

V
(2.1)

where m is the mass and V is the volume. For porous materials there can be
a question of which volume is to be used. Rahman [36] presents some different
definitions of porous density.
True density: is the density of a pure substance or a material calculated from the
densities of its components considering conservation of mass and volume.
Substance density: is the density measured when a substance has been thoroughly
broken into pieces small enough to guarantee that no pores remain.
Particle density: is the density of a sample which has not been structurally mod-
ified, so it will include the volume of all closed pores but not the externally con-
nected porous ones.
Apparent density: is the density of a substance including all pores remaining in
the material.
Bulk density: is the density of a material when packed or stacked in bulk.

Density is dependent of temperature and pressure. Sometimes other influences
like the magnetic field through the material (terfenol) can also cause a change in
density. A change in density because of a change in temperature or pressure is
generally so small for solids and liquids that in many cases the change in density
can be ignored.

Increased pressure always increases the density. Generally density decreases
with increasing temperature and when a substance melts, because of increased
molecule movement. One important exception is frozen water melting. Another
is water between 0 and 4 �. An instrument for measuring density is called a
densitometer.
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2.1.2 Heat capacity

In 1760, Joseph Black [43, 44] discovered the distinction between temperature and
internal energy, and established calorimetry. Calorimetry is a science where the
amount of heat gain or release from chemical reactions, biological activity, phase
transitions or temperature change is measured. Different methods and measure-
ment equipment have been developed for these purposes. Because of the differences
in the nature of the phenomena where calorimetry is used, the property measured
varies.

In heat conduction based on Fourier heat equation the property which de-
scribes the connection between heat and temperature is heat capacity. Heat ca-
pacity is defined as

c =
1
m

dQ

dT
(2.2)

where dQ is the amount of heat added to an object, dT is the change in temperature
in the same object, and m is the mass of the object. The object is assumed to
consist of one uniform material. The temperature is also uniform before and after
the amount of heat is changed.

Adiabatic methods are generally accepted to give the most accurate result for
heat capacity (Magee et al. [5]). These methods are however time consuming
if the sample has the size of approximately one cm3 or larger, but they are the
most common methods used on food (Pham [7]). This is because food is not
homogeneous. If the sample is too small there is a risk of measuring only one
of the materials in the mixture. This will of course not give the average heat
capacity. Average heat capacity is usually the one of interest since small scale
material variation in food is ignored in most models. Other common methods for
measuring heat capacity are differential scanning calorimeters (DSC) and mixing
apparatus.

In an adiabatic calorimeter, a known amount of heat, dQ , is added to the sam-
ple which is at uniform temperature when the heating starts. After this amount of
heat has been supplied, the heating is turned off, and when the temperature is uni-
form in the whole sample again, the temperature increase, dT , is measured. The
total heat capacity is then defined as C = dQ/dT . In an actual instrument it is
necessary to correct for the heat that is accumulated by the instrument. To satisfy
the assumption of adiabatic conditions, no heat must be exchanged with the sur-
roundings. Adiabatic calorimeters are therefore well insulated, and the surround-
ing temperature is controlled to avoid temperature gradients between the sample
container and surroundings. Still according to Pham [7], Riedel [45, 46, 47, 48]
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and Flemming [49] have done the most authoritative investigations of food using
adiabatic calorimeters. Results from measurements of heat capacity done with
different kinds of adiabatic calorimeter are presented by Flemming [49], Pham [7],
Lindsay & Lovat [50], Kobashi et al. [51], Tocci et al. [52] and Riedel [46]).

DSCs have a short measuring time compared to adiabatic calorimeters because
the sample is so small. The small size of the sample makes it necessary to evaluate
in each case if the food is homogeneous enough so that the sample is representative.
The DSC is not as accurate as the adiabatic calorimeter. There are two main types
of DSCs. In the heat flux DSC the sample and a known reference are placed on a
disk. The edge of the disk is in contact with a container of a material with high
thermal conductivity. The sample and the reference are positioned symmetrical
to each other, so if the sample and the reference are identical and the container is
heated or cooled the temperature difference between the sample and the reference
are (ideally) zero. See Figure 2.1.

Figure 2.1: Sketch of the principle drawing of a DSC
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If the container in the DSC is heated at constant rate and there is a difference
in heat capacity (C) between sample and reference there will be a difference in
the amount of heat supplied to the sample and the reference. This difference is
proportional to the temperature difference between the sample and the reference.
The heat flow between the sample and the reference is then given by (2.3)

QSR = (CSample − Creference)
∂T

∂τ
(2.3)

where ∂T/∂τ is the rate which the container is heated. The heat flow between the
sample and the reference can also be given by (2.4)

QSR = −K∆TSR (2.4)

where K is a constant given by the shape and thermal conductivity of the material
in the disk, and ∆TSR is the temperature difference between the sample and the
reference. Combining (2.3) and (2.4) gives

CSample = Creference −K
∆TSR

∂T
∂τ

(2.5)

When calibrating a DSC it is necessary to find K and to correct for any measured
∆TSR when measuring an identical the sample and the reference. If CSample

changes quickly, like in a phase transition, the heat flow between the sample and the
reference will not change fast enough so that (2.5) is valid. The enthalpy difference
can still be found by integration. The small samples make DSCs especially suitable
for finding exact temperature of phase transitions. Other phase transitions than
freezing (melting of fat etc.) are from a thermal point of view usually neglible, but
can give information about the composition of the food.

An alternative design for DSCs is the power compensated DSC where heat is
added electrically to the sample and the reference so the sample and the reference
have the same temperature. Here the supplied heat is monitored, and gives the
difference in heat capacity between the sample and the reference. This is in princi-
ple two small and identical adiabatic calorimeters with equal heat leakage. DSCs
are commercially available from several manufacturers and differential scanning
calorimetry is a growing field in science. Höhne et al. [53] give a wide descriptions
of different types of DSCs. Garti et al. [54], Brill & Gmelin [55], Meuter et al. [56]
and Ozilgen & Reid [57] have done measurements with DSC on food.

In a mixing apparatus the sample at one temperature is mixed with a reference
(often water) with another temperature. The heat capacity of the sample is then
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calculated from the initial and equalizing temperatures, mass of sample, mass of
reference, heat capacity of reference, and the heat loss to the container used for
mixing. There are several sources of errors, like not correcting for the enthalpy of
solutions, or chemical or biological reactions during mixing. The method is simple.
Explaining the concept of heat capacity by this method is instructive. Making the
mixing apparatus is quick and cheap and can be adapted to almost any shape
or size of sample. The experimental time can be long, and the method gives an
average heat capacity over a large temperature interval. Hemminger & Höhne [58]
have written a comprehensive description of most methods and instruments used
to measure heat capacity.

Enthalpy and heat capacity are two of the properties which can be estimated
from composition of food as mentioned in Secton 2.1, see also Pham [37, 59, 38] and
Choi & Okos [60]. Estimating enthalpy and heat capacity by composition generally
gives good accuracy because the structure of the sample has little influence on these
properties. Since measurements often give discrete values for different tempera-
tures combining them with theory for estimation of properties from composition
gives continuous data, also close to the initial freezing point where enthalpy and
heat capacity can be difficult to measure with some measuring methods.

2.1.3 Thermal conductivity

When the difference between heat and temperature was discovered, Fourier de-
fined thermal conductivity in his main work ”Théorie analytique de la chaleur” by
assuming that

1
A

dQ

dτ
= λ

dT

dx
(2.6)

where dQ is the amount of heat, dτ is the time difference, A is the area normal to
the heat flow, dx is the thickness parallel with the heat flow, dT is the temperature
difference over dx and λ is the thermal conductivity. This assumption on how heat
is conducted in solid materials was later verified by experiments, and even later
explained by the vibrations of molecules.

The heat capacity of a material is the same whether the material is one solid
lump or many small pieces. In one solid lump heat can be conducted through the
entire cross-section of the material, but if the material is small pieces heat must
be conducted from contact point to contact point between the pieces. This makes
the thermal conductivity dependent of porosity, orientation of fibres, size and
shape of particles etc. Thermal conductivity can also be a directional dependent
property because of for instance fibre orientation. A sample must therefore be
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defined by more than composition when thermal conductivity is measured. This
makes thermal conductivity the most difficult thermal properties to measure, or
to estimate from composition data. Again, combining theory with measurement
data can be useful.

For food this means that thermal conductivity can alter if the structure of the
food is changed due to stirring, impacts etc., or because of chemical changes over
time. Ice and water also have thermal conductivity of respectively 2.3W/mK and
0.61W/mK close to 0 � [61] meaning that the conductivity of the food at one
point is dependent on the ratio between ice and water during freezing.

Some methods for measuring thermal conductivity or diffusivity are reviewed
by Ohlsson (Chapter 17 in [9]) and Rahman (Chapters 5 and 6 in [36]) The latest
review article ”Methods for measurement of thermal conductivity and diffusivity
of foodstuffs” was written by Nesvadba [6] in 1982! Nesvadba classifies methods for
measuring thermal conductivity in steady-state methods and transient methods.
The steady-state methods with reference to measurements of food are listed in
Table 2.1 from Nesvadba’s [6] article.

The most common and most accurate way to measure thermal conductivity is
by using plate apparatus (Pham et al. [62, 63], Willix et al. [64]). The weaknesses
are that it is a stationary method which only gives thermal conductivity at one
temperature. The measured thermal conductivity is an average over a temperature
interval. The measuring time is long, and repeated measurements are needed for
materials where the thermal conductivity is temperature dependent. The influence
of sub-cooling etc. on thermal conductivity cannot be measured.

Transient methods like hot-strip (Gustavsson [65, 66, 67]) or heated probe
(Tocci et al. [52]) are also common since they are fast. Buhri & Singh [68] have
done measurements on food with a modified DSC. Nesvadba [69] finds thermal
conductivity by using the temperature profile in a slab which is heated or cooled.
Some of these methods give heat capacity in addition to thermal conductivity.
It is possible to measure the influence of sub-cooling etc., but sub cooling can
also complicate the interpretation of the measurement. The methods are not as
accurate as the plate apparatus. The slow methods seem to be more accurate
than the faster ones. Repeated measurements are needed to find temperature
dependence.

As mentioned in Section 2.1 it is also possible to calculate thermal conductivity
from composition data (Pham [38]).
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öh
eg

yi
-M

ar
gi

tt
ai

,
19

74

St
ea

dy
st

at
e

Sl
ab

St
ar

ch
gr

an
ul

es
R

ot
h

et
al

.,
19

70
co

m
pa

ra
ti

ve
st

an
da

rd
=

ca
rd

bo
ar

d

C
o-

ax
ia

l
cy

lin
de

rs
So

yb
ea

n
oi

l
m

ea
l,

H
ou

ge
n,

19
57

st
an

da
rd

=
ca

rb
on

bl
ac

k

T
he

rm
al

co
m

pa
ct

or
B

on
e

M
or

le
y,

19
66

34



According to Nesvadba the advantages of the steady-state methods are the
simplicity of the mathematical processing and the high degree of control of exper-
imental variables which is reflected in a high precision in the result.

The disadvantages are;
(1) the long equilibrium period (up to several hours);
(2) the need to prevent heat losses, making the apparatus rather

complex;
(3) the difficulty in using Laplace’s equation when λ is temperature-

dependent in the interval from T1 to T2 and T has to be
measured at several points;

(4) only λ can be determined (a separate method is required for a or
ρcp determination;

(5) moisture migration can be a problem, due to long measurement
times; and

(6) the measurements of liquids poses difficulties due to the onset
of convection currents.

Transient methods for measuring thermal conductivity and diffusivity are
listed in Table 2.2. The transient methods with reference to measurements on
food are listed in Table 2.3. These tables are also from Nesvadba’s [6] article.

Table 2.2: Classification of transient methods

Duration of Position of heat source with respect to sample
experiment —————————————————————————————————

(min) External Internal

<0.01 Heat pulse method
0.1-10 Heated probe

5-15 Internal heater and a non-integral
sensor

10-20 Fitch method
10-80 External heater and a non-integral

sensor
10-100 Direct use of temperature profiles

to identify thermal properties
10-200 Temperature matching
40-80 Regular phase methods
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rö
m

’s
m

e
th

o
d

(1
8
6
1
))

38



In Table 2.3 the Fitch method needs an explanation. Fitch [70] places a thin
slab of sample between two heat sinks. The temperature of one heat sink is kept
constant. The other sink is heated and then allowed to cool. It is insulated, so the
only way heat can leave the sink is through the sample. Since the sample is thin
the temperature gradient is approximately constant. The thermal conductivity of
the sample can then be calculated from (2.7) where C is the total heat capacity
of the insulated sink, ∆x is the thickness of the sample and T ′ is the temperature
of the insulated sink. Both T − T ′ and δT ′/δτ can be measured by the same
thermo-pile.

C
δT ′

δτ
=

λA (T − T ′)
∆x

(2.7)

2.1.4 Short description of the method used in this work

The method used for measurements here is a constant known heat flow added to
an otherwise insulated sample and sample container. As will be shown in Section
2.2.3, after some time under these conditions a temperature profile will arise where
dT/dr is independent of time. The thermal conductivity of the sample can then be
found from the temperature difference between two simultaneous measurements
at the top and bottom of the sample. The sample makes a large part of the
insulated mass, and therefore the heat capacity can be measured simultaneously
with the thermal conductivity by measuring dT/dτ . It is also possible to measure
the change in the thickness of the sample and thereby the change in density.

2.1.5 Reasons for the choice of method

The material of interest is food. Food can be corrosive, can be solid, liquid or
partially liquid and have a limited shelf life. The sample must therefore be in a
container of a material which is resistant, water proof and easily cleaned. The con-
tainer must protect the rest of the instrument from the sample. The instrument
itself must also be solid so it is not damaged if by accident food is spilled inside
it. Food is seldom homogeneous so the sample size cannot be too small. Since the
thermal properties are highly temperature dependent the method must somehow
scan through a temperature interval before the sample decay. Many quick mea-
surements at different temperatures can be a possibility, but the need of a sample
of some size makes this difficult because the equilibrium time tends to be long.
Both cooling and heating should be available since sub-cooling can be of interest.
The sample container must also be designed to handle the relative large volume
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change compared to other solid or liquid materials. Since the sample can be messy
and difficult to prepare it is desirable that the method measures all the thermal
properties simultaneously, and limits the handling of the sample to a minimum.
Since the reproducibility of the samples can be limited this is more important than
extreme accuracy.

The method for finding thermal properties described here is to expose the
sample to a constant heat flux. The heat flux must be small, and the sample
must be insulated from the surroundings. Heat capacity is found from the rate of
temperature change, and the thermal conductivity is found from a simultaneous
measurement of temperature at two points with different distances to the heat
source. This method is chosen because by this makes it possible to design an
instrument which satisfies all the demands above. No other method does this.

2.2 Materials and methods

This section describes the design of the thermal multimeter first, so the following
parts have a visual foundation. The analytical mathematics which is the basis for
the method is then described in detail, followed by numerical simulations which
show at what heating rates the analytical equations are valid when the thermal
properties of the sample are temperature dependent. The accuracy of the ana-
lytical equations are then tested against a numerical simulations of the thermal
multimeter. It is then described how the instrument is calibrated and how the
thermal properties are calculated from the log data.

2.2.1 Design of the thermal multimeter

A complete 3D AutoCAD drawing of the thermal multimeter is available from this
thesis download page. Se page 155. Technical drawings of some important parts
are in the appendix. Here pictures and computer generated cross-sections with
dimensions of important parts are presented. Figure 2.2 is a picture of the whole
thermal multimeter except the brine cooler.
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Figure 2.2: Picture of the whole thermal multimeter
Left in the picture is the thermal multimeter when it is open. It is shown closed in Figures

2.3 and 2.4. In the centre is the measuring and controlling hardware and to the right is

the PC which is used for controlling, data acquisition and calculations.
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Figures 2.3 and 2.4 show the important parts of the thermal multimeter. Note
that Figure 2.4 is a close up of Figure 2.3.

Figure 2.3: Cross-section of the thermal multimeter
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Figure 2.4: Cross-section of the thermal multimeter (Zoom)

Some of the parts in Figure 2.4 are given abbreviations. The abbreviations are
often used.

Top heat shield = THS Top of sample = TS Sample cooler = SaC
Bottom heat shield = BHS Bottom of sample = BS Shield cooler = ShC

43



Figures 2.5 and 2.6 show the dimensions in Figures 2.3 and 2.4.

Figure 2.5: Cross-section of the thermal multimeter with dimensions
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Figure 2.6: Cross-section with dimensions (Zoom)
1 Steel tubes which hold the instrument together 6 Copper rods between BHS and ShC
2 Device for handling sample expansion 7 Insulation for 5
3 Steel tubes between 2 and TS 8 Steel rods between SaC and ShC
4 Steel tubes between BS and BHS 9 Support for opening device
5 Copper rods between BS and SaC 10 Tube for electric wires
Tubes have the primary function to support parts. Rods have the primary function to conduct heat
between parts.
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Figure 2.7 shows the sample container.

Figure 2.7: Sample container

Except for eight thin tubes of steel and two thin tubes of copper the sample
container is surrounded by air which is the insulation between the sample and
guard in the thermal multimeter. The two thin tubes of copper are connected to
SaC. If SaC is colder than BS the sample is cooled. The heat removed is calculated
from the temperature difference. The top copper part of the sample container is
TS and the bottom copper part is BS. The parts in the sample container are
assembled before each measurement, as shown in Figure 2.8.
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Figure 2.8: A cross-section of the sample container
The fixed parts are included in the sample container since they are a thermal part of it. This

means that the top of the sample container consists of two plates.

The top of the sample container consists of two circular plates of copper. The
upper of the two plates is fixed to the thermal multimeter, and holds TS-H, TS-
Pt100, and the ends of TS-BS-TP and TS-THS-TP. The lower plate follows the
sample in and out of the multimeter. It has a slot for an O-ring which closes against
the inside PEEK cylinder shell. Together with the topmost cylinder of the bottom
of the sample container it will close in a liquid sample. Outside the PEEK cylinder
shell there is a cylinder shell of paper coated with leaf gold which is fitted outside
the PEEK. The function of this paper is to reduce radiation. The two cylinders
are gilded to avoid verdigris and other corrosion. The gilding also ensures good
thermal contact between the two plates at the top of the sample container. The
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bottom of the sample container is a mirror image of the top. The lowest of the
plate hold BS-H, BS-Pt100 and the ends of TS-BS-TP and BS-BHS-TP.

Figure 2.9 shows the brine cooling system which is soldered to SaC. The brine
temperature is regulated by a Julabo FP88-HP brine cooler which can regulate
the temperature within 0.02 K accuracy.

Figure 2.9: Brine heat exchanger

Figure 2.10 is a thermal illustration of the sample, shield and temperature
controlling parts (SaC and ShC) in the thermal multimeter.
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Figure 2.10: Sketch of the principle of the thermal multimeter
The boxes roughly give the heat capacity of each part. The parts are connected by heat

bridges. The ability of the bridges to conduct heat is indicated by the red lines. C and k

values are used to calculate heat flow between THS, BHS, SaC and ShC in the appendix.
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2.2.2 The instrumentation of the thermal multimeter

There are several electric heaters, Pt100 temperature sensors and thermopiles in
the instrument. They are denoted according to which part of the thermal multime-
ter they are connected to. The heater connected to TS is then denoted TS-H, the
Pt100 sensor in BS is denoted BS-Pt100 and the thermopile between BS and BHS
is denoted BS-BHS-TP. The Pt100 sensors are double. If both platinum wires in
the sensor are used for measuring the temperature the wires are denoted Pt100-1
and Pt100-2.

Table 2.4: Sensors and heaters in the thermal multimeter
Sensor Use
THS-Pt100 Used for safety purpose
TS-Pt100 Measuring accurate temperature in the top of the sample
BS-Pt100-1 Measuring accurate temperature in the bottom of the sample
BS-Pt100-2 Controlling the brine cooler
SaC-Pt100 Measuring accurate temperature in the sample cooler
SaC-Pt100 Measuring temperature in the shield cooler
Air-Pt100 Measuring the air temperature outside the shield
TS-THS-TP Controlling THS temperature
TS-BS-TP Accurate measurement of temperature difference between TS and BS
BS-BHS-TP Controlling BHS temperature
BHS-SaC-TP Controlling SaC temperature
Air-TE Thermoelement. Measuring temperature outside the thermal multimeter
THS-H Controlling THS temperature
TS-H Heating of sample
BS-H Used for calibration purpose
BHS-H Controlling BHS temperature
SaC-H Controlling SaC temperature
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Figure 2.11: Logging and control system
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Figure 2.11 shows the signal exchange in the thermal multimeter. The core in the

system is two Agilent 34970A data switch units which communicate with a PC through RS-

232. Signals from thermopiles, thermoelement, Pt100 elements and the LMV-110 AC/DC

converter to the Schaevitz GCA-121-250 position sensor are measured by two 34901A 20

channel multiplexer (2/4-wire) modules in one 34970A unit. These signals are sent to

the PC every 15 seconds where they are received by a Lab view data program. The signals

from Pt100 Sensors are transferred as temperatures (indicated by T on the figure). Other

signals are voltage signals. They are converted to the temperature difference, voltage,

current, power and length by the program in real time if necessary or by a post processing

program if not.

There are two signals which do not go through the 34970A units to the PC. That is

the signal from and to the Julabo brine cooler. The brine cooler measures the temperature

from the BS-Pt100-2 sensor which is sent to the PC, and the PC sets the temperature

in the brine cooler bath. Because of the tubes for brine which transport heat from the

thermal multimeter to the cooler, the temperature in the brine cooler bath is not the same

as the temperature measured by the BS-Pt100-2 sensor. The manipulated variable from

the cooler in the figure is the temperature in the brine pumped into the tubes.

The program stores data and sends signals to the other 34970A with three 34907A

multifunction modules which can deliver up to 12V DC. The 34907A modules are used to

power the heaters. THS, BHS and SaC requires more than 12 W so the signals are am-

plified by three Agilent E3617A power supplies which can deliver up to 60V. The program

also sets the temperature in the brine cooler bath.

Five PID regulators for the heaters and the Julabo brine cooler are emulated in soft-

ware, but they are not all used during a measurement. The regulator which can regulate

the temperature in TS after BS or the other way round is only used for calibration pur-

poses. Through a normal measurement the heat (Q TS-H and Q BS-H in the figure)

to TS and BS is preset. This is indicated by a relay inside the PC. The regulator for

the brine cooler controls the temperature in the bath so the difference (∆T in the figure)

between BS and ShC is a constant preset value. The bath absolute temperature can also

be preset. The regulator for the SaC can also be programmed so there is a constant tem-

perature difference between BS and SaC. (This facility is not used yet, and is therefore

not indicated on the figure.)

The WEST 8010 1/8 DIN Panel Indicator measures the temperature in the THS-

Pt100 sensor. It the temperature goes above the preset value the WEST 8010 unit sends

a signal which cuts the power to the heaters and turns off the cooler. This is a safety

feature which works independently of the PC. The voltage and current measurements are

done with a measuring bridge as shown in Figure 2.12.
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The heat supplied to the heaters is measured with a measuring bridge.

Figure 2.12: Measuring bridge for heaters

2.2.3 Mathematical description of method

The measuring method is based on the analytical solution for a single homogeneous
rod of sample which is heated on one side and insulated elsewhere. To build a
practical instrument the sample must be encapsulated in a sample container.

The analytical solution for such a rod is presented in this section. This solu-
tion is then extended to include a three-sectional rod accounting for the top and
bottom of the sample container. It is also shown how heat capacity and thermal
conductivity can be calculated if only the temperature is known as a function of
time at top and bottom of the sample. In the end the unwanted heat flow around
the sample is discussed. Terms to correct for this heat flow are included in the
analytical equations.

Problem description for a single homogeneous rod

Mathematically, a single rod of homogeneous material with temperature indepen-
dent thermal properties which is heated from one side and insulated elsewhere, is
described by the one-dimensional Fourier heat equation

ρcp
∂T

∂τ
= λ

∂2T

∂r2
(2.8)

53



and the boundary condition

∂T (0, τ)
∂r

= − q̇0

λ
∂T (L, τ)

∂r
= 0

(2.9)

An initial condition is uniform temperature described by

T (r, 0) = T0 r ∈ [0, L] (2.10)

Figure 2.13 shows the problem. A solution of the problem was presented by
Myers [71].

Figure 2.13: Heating from one side of a homogeneous insulated rod

General solution of the heat equation for single homogeneous rod

A general solution of (2.8) can be obtained by separation of variables. Using
the product method T (r, τ) can be separated into two functions, where one is a
function of time and the other of position. Myers uses the general solution to solve
the problem by the variation in parameters. However, the solution is obtainable in
a more direct way by assuming that when heat is added at a constant rate, and at
the same place, to two or more substances with constant thermal properties which
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are insulated from the surroundings, then the temperature profile will be

T (~r, τ + ∆τ) = T (~r, τ) +
Q̇

C
∆τ C =

n∑

i=1
micp i (2.11)

as time goes towards infinity. Equation (2.11) is valid for all ~r inside the boundary
and all ∆τ . C is the total heat capacity of the insulated volume, in this case
between 0 and L in Figure 2.13, where heat is generated or added at a constant
rate. Equation (2.11) claims that when τ approaches infinite the temperature rise
at every point is equal to the average temperature rise.

The assumption is sensible since there is no reason that any kind of oscillation
should be introduced to the system when the temperature rises. It is also in
agreement with first and second laws of thermodynamics, and gives results which
are solutions to the heat equation with given boundary conditions. The assumption
in (2.11) is presented because it is a necessary tool to solve the same kind of
problems when several rods of different materials are connected.

For this problem (2.11) can be rewritten as

∂T (r, τ)
∂τ

=
q̇0

ρcpL
(2.12)

If (2.11) is true, the constant heat profile T (~r) must have a shape so that every part
of the rod gets the amount of heat which causes ∂T/∂τ to be constant everywhere.
In this case

λ
∂T (r, τ)

∂r
= q̇0

r − L

L
(2.13)

Equation (2.13) is no more than a heat balance for every part of the rod. Equations
(2.12) and (2.13) are first order linear equations which can easily be solved. It is
further easy to show that the sum of the solutions of (2.12) and (2.13) satisfy
Fourier heat equation, (2.8), with the actual boundary conditions described in
(2.9).

The complete solution of the problem described in Figure 2.13 is according to
Myer

T (r, τ) = q̇0

[
1
λ

(
r2

2L
− r

)
+

1
ρcpL

τ +
1
3

L

λ

−L

λ

2
π2

∞∑
n=1

1
n2

cos
(nπr

L

)
e
−(nπ

L )2 λ
ρcp

τ

]
+ T0

(2.14)
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Figure 2.14: Temperature as the function of time and position
Equation (2.14) is plotted in this figure. The time for each line is given by the legend in

the top right-hand corner of the figure. The first line is on the r-axis (T = 0). The chart

shows how the temperature will rise in a material with thermal properties independent

of the temperature. As input to (2.14) L = 20 mm, q̇ = 100 W/m2 and the thermal

properties of ice at 0 � are used. The sum of the infinite series in (2.14) is approximated

with the first 1000 terms.
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It can be seen from Figure 2.14 that after some time the temperature profile does
not change shape. It is only displaced parallel to the position-axis. As shown in
Section 2.2.3 this behaviour makes it possible to calculate heat capacity from the
temperature rise as a function of time and thermal conductivity as function of the
temperature difference over the slab.

Finding thermal properties from measurements

It is assumed that it is possible to construct an instrument that can expose a
sample to the boundary condition in (2.9). If the sample has constant but unknown
thermal properties, the properties can be estimated by measuring the temperature
at the boundaries.

As long as the thermal properties are constant the negative exponent causes
the series in (2.14) to approach 0 when τ becomes large. With another initial
condition than (2.10) the series will be different, but any series which describe an
initial condition, will approach 0 when time goes to infinity. After some time

T (r, τ) = q̇0

[
1
λ

(
r2

2L
− r

)
+

1
ρcpL

τ +
1
3

L

λ

]
+ T0 (2.15)

will give a good approximation to the temperature profile. Note that (2.15) is
a specially case of (2.11). If T (0, τ) and T (L, τ) are known and the thermal
properties are unknown, a subtraction of T (0, τ) − T (L, τ) gives a formula for
estimating thermal conductivity. T̄ is defined in (2.19).

λ
(
T̄

)
=

L

2
q̇0

(T (0, τ)− T (L, τ))
(2.16)

If T (0, τ), T (L, τ), T (0, τ + ∆τ) and T (L, τ + ∆τ) are known a subtraction of
T (0, τ + ∆τ) + T (L, τ + ∆τ) − T (0, τ) − T (L, τ) gives a formula for estimating
heat capacity. T̂ is defined in (2.20)

c
(
T̂

)
=

2q̇0

(T (0, τ + ∆τ) + T (L, τ + ∆τ)− T (0, τ)− T (L, τ)) ρL
∆τ (2.17)

(The average of the two temperatures on the edges is used.)
These formulas for estimating heat capacity and thermal conductivity are only

valid if the ”series terms” in (2.14) has time to fade out. A criterion for how long
time is needed can be found by assuming that the absolute value of 1

λ

(
r2

2L − r
)
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must be much smaller than − 1
λ

2
L

(
L
π

)2
cos

(
πr
L

)
e
−( π

L )2 λ
ρcp

τwhich is the term in the

series that disappears last.
∣∣∣ 1
λ

(
r2

2L − r
)∣∣∣ is largest when r = L so the comparison

takes place here.

∣∣∣∣
1
λ

(
L2

2L
− L

)∣∣∣∣ >>

∣∣∣∣∣−
1
λ

2
L

(
L

π

)2

cos
πL

L
e
−( π

L )2 λ
ρcp

τ

∣∣∣∣∣

π2

4
>> e

−( π
L )2 λ

ρcp
τ

τ <= − ln
(

π2

4
· 0.01

)
ρcpL

2

λπ2
(2.18)

τ in (2.18) is time from T (r, 0) = T0 to the difference between (2.14) and (2.15)
which is less than 1%. When (2.18) is true, the error in the estimate of heat
capacity and thermal conductivity by (2.16) and (2.17) is also smaller than 1%.
(2.18) gives an absolute worst estimate of the equilibrium time. The heat flux is
not a part of (2.18). This is the basis for the discussion in Section 2.2.4.

Mean temperature in the sample under adiabatic boundary con-
ditions

If the heating to the rod is suddenly turned off, the whole sample will reach the
same temperature after a while. This temperature is found by the integral

T̄ (τ) = T (L, τ)−

L∫
0

q̇0
λ

(
r2

2L − r
)

dr

L
= T (L, τ) +

q̇0L

3λ
(2.19)

It seems right to use this temperature for which the thermal conductivity is
calculated in (2.16). Another possibility is a simple mean. The choice of method
for calculating this temperature can be important when the method is used on
materials with temperature dependent on thermal properties. Similarly the tem-
perature calculated by

T̂ =
T̄ (τ) + T̄ (τ + ∆τ)

2
(2.20)

is likely to be the correct temperature for which the heat capacity is calculated in
(2.17). Note that (2.20) is defined by the terms of (2.19).
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Analytical solution for a three-layer rod

Food can be liquid or produce liquid. To measure the thermal properties by the
method described, the food sample has to be placed in a container. In the thermal
multimeter the sample container is as shown in Figure 2.7. If the plastic (PEEK,
PTFE) container is thin walled and thermal conductivity and heat capacity is low,
the error in ignoring it is small. It is also possible to adjust for the error as shown
later in this section.

We then have a three-layer rod, where the temperature history has an ana-
lytical solution of the problem described by Figure 2.15 and (2.21), (2.22) and
(2.23).

Figure 2.15: Heating of three-layer insulated rod

The rod is insulated on all sides except for the cross-section at r = 0 where
the heat flux is constant. The set of equation to be solved is the one-dimensional
Fourier heat equation for a three-layer rod

∂Tn

∂τ
=

(
λ

ρcp

)

n

∂2Tn

∂r2
, n ∈ {1, 2, 3} (2.21)
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with boundary conditions

Material 1 : n = 1 r ∈ [0, R1]
∂T1(0,τ)

∂r = − q̇
λ

T1 (R1, τ) = T2 (R1, τ)

Material 2 : n = 2 r ∈ [R1, R2] T1 (R1, τ) = T2 (R1, τ)
T2 (R2, τ) = T3 (R2, τ)

Material 3 : n = 3 r ∈ [R2, R3] T2 (R2, τ) = T3 (R2, τ)
∂T3(R3,τ)

∂r = 0

(2.22)

and initial conditions

T (r, 0) = T0 r ∈ [0, R3] (2.23)

Assuming (2.11) is true it can be rewritten as

∂T (r, τ)
∂τ

=
q̇

ρ1c1R1 + ρ2c2 (R2 −R1) + ρ3c3 (R3 −R2)
(2.24)

Again if (2.11) is true the constant heat profile T (~r) must have a shape so every
part of the rod gets the amount of heat which causes ∂T/∂τ to be constant every-
where. In this case if C1,C2,C3 and CSaC , are defined as in (2.25), (2.26) gives an
expression for ∂T/∂r.

C1 = ρ1c1R1

C2 = ρ2c2 (R2 −R1)
C3 = ρ3c3 (R3 −R2)
CSaC = C1 + C2 + C3 = ρ1c1R1 + ρ2c2 (R2 −R1) + ρ3c3 (R3 −R2)

(2.25)

r ∈ [0, R1] − λ1
∂T1(r,τ)

∂r = q̇ ρ1c1(R1−r)+C2+C3
CSaC

r ∈ [R1, R2] − λ2
∂T2(r,τ)

∂r = q̇ ρ2c2(R2−r)+C3
CSaC

r ∈ [R2, R3] − λ3
∂T3(r,τ)

∂r = q̇ ρ3c3(R3−r)
CSaC

(2.26)

(2.24) and (2.26) are then integrated and grouped, and the integration constants
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are adjusted so the boundary condition is satisfied.

T1 (r, τ) = q̇
CSaC

{
− r

λ1

[
ρ1c1

(
R1 − r

2

)
+ C2 + C3

]
+ τ

}

T2 (r, τ) = q̇
CSaC

{
− r

λ2

[
ρ2c2

(
R2 − r

2

)
+ C3

]
+ τ +

R1
λ2

[
ρ2c2

(
R2 − R1

2

)
+ C3

]− R1
λ1

[
ρ1c1

R1
2 + C2 + C3

]}

T3 (r, τ) = q̇
CSaC

{
− r

λ3
ρ3c3

(
R3 − r

2

)
+ τ +

R2
λ3

ρ3c3

(
R3 − R2

2

)
+ R2

λ2

[
ρ2c2

R2
2 + C3

]
+

R1
λ2

[
ρ2c2

(
R2 − R1

2

)
+ C3

]
+ R1

λ1

[
ρ1c1

R1
2 + C2 + C3

]}

(2.27)

(2.27) satisfies the heat equation and the boundary conditions. It does not satisfy
the initial condition but the discussion in Sections 2.2.3 and 2.2.4 show that this
is not important.

If the thermal conductivity material for 1 and 3 is very high compared with
material 2, the equation set can be simplified to:

T1 (r, τ) = T2 (R1, τ)

T2 (r, τ) = q̇
CSaC

{
− r

λ2

[
ρ2c2

(
R2 − r

2

)
+ C3

]
+

τ + R1
λ2

[
ρ2c2

(
R2 − R1

2

)
+ C3

]}

T3 (r, τ) = T2 (R2, τ)

(2.28)

From (2.28) equations for the heat capacity and thermal conductivity of mate-
rial 2, which would be the sample in a real instrument can be found, when the
temperature is known.

c2

(
T̂

)
=

q̇ 2∆τ
T2(R1,τ+∆τ)+T2(R2,τ+∆τ)−T2(R1,τ)−T2(R2,τ) − (C1 + C3)

ρ2 (R2 −R1)
(2.29)

λ2 =
q̇ (R2 −R1)

T2 (R1, τ)− T2 (R2, τ)
·

1
2C2 + C3

CSaC
(2.30)

(2.29) can also be deduced directly from the assumption in (2.27). Mark that C1

to C3 and CSaC are still defined by (2.25) with unit J/(m2kgK), but since they
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are collected in one fraction they can be replaced by measured heat capacity with
unit J/K of parts 1, 2 and 3 in Figure 2.15. Heat can be supplied anywhere in
material 1 in Figure 2.15 because the thermal conductivity of this material is very
high.

Adaptation of solution to a practical instrument

In a real instrument there must be a casing around the sample as shown in Figure
2.7. Some heat will also flow in the air surrounding the sample casing. It is unlikely
that there will be perfect thermal contact between TS, the sample and BS, but
this contact cannot be too poor if the instrument is to be suitable for measuring
thermal conductivity, since heat is supplied to TS and the temperature is measured
in TS and BS. It is now discussed how (2.29) and (2.30) can be modified to take
this into consideration.

The heat capacity of the instrument can be measured by making a measure-
ment on a known sample. The heat capacity of the whole container without the
sample is then found by subtraction. This value will then be used to correct (2.29)
to

cSa = c2 =
Q̇ 2∆τ

T2(R1,τ+∆τ)+T2(R2,τ+∆τ)−T2(R1,τ)−T2(R2,τ) − CC

ρ2 (R2 −R1)ASa
(2.31)

where ASa = π
4 d2, d = 45 mm and CC is the heat capacity J/(kgK) of the whole

container. (See Fig. 2.7) The heat capacity is not influenced by imperfect thermal
contact.

It is not this simple to modify (2.30) to include imperfect thermal contact and
heat flowing through the sample casing and surrounding air. To make it possible
three assumptions are made:
1 There is no temperature variation in the radial direction.
2 The heat flow around the sample is proportional to the temperature

difference between top and bottom of the sample.
3 There is imperfect thermal contact only in two places.

The thermal contact resistance at these places is equal and constant.
Assumption 1 is an approximation. If the PEEK has a higher conductivity than

the sample, heat will flow along the PEEK before it enters the sample, causing
a temperature gradient in radial direction, but as shown in Section 2.2.5 there is
little radial heat flow.

Assumption 2 is almost correct. There will be convection and radiation in the
air, and the heat flow caused by this is not linearly dependent on the temperature.
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However the temperature difference between TS and BS is small. Then the non-
linear effects can be assumed linear for a temperature interval. By introducing an
artificial bypass thermal conductivity (λP ) with an area (AP ) of the sample casing
and air (2.30) can be corrected by (2.32).

λSa = λ2 − AP λP

ASa
(2.32)

The result is

λSa + λP =

(
Q̇Sa

ASa
+ Q̇P

AP

)
(R2 −R1)

T2 (R1, τ)− T2 (R2, τ)
·

1
2C2 + C3

CSaC
(2.33)

Equation (2.32) is better than (2.30) because it adjusts for the heat flow along the
wall in the plastic container. Again the heat flow represented by a bypass thermal
conductivity (AP λP ) in (2.32) can be found by measuring on a known sample. It
is not a problem that AP λP varies with temperature since it can be measured for
all temperatures.

Assumption 3 is uncertain. The thermal resistance between two plates in
imperfect contact is dependent on many factors, and can differ each time they are
pressed against each other. The thermal contact resistance however should not
differ that much when clean gold coated copper plates are put together.

If assumption 3 is correct there is a difference between T2 (R1, τ) and T1, and
T2 (R2, τ) and T3 given by

T2 (R1, τ) = T1 − q̇
α

C2+C3
CSaC

T2 (R2, τ) = T3 + q̇
α

C3
CSaC

(2.34)

(2.30) can then be modified to (2.35).

λ2 =
q̇ (R2 −R1)

T1 − T3 − q̇
α

C2+2C3
CSaC

·
1
2C2 + C3

CSaC
(2.35)

Similarly as for (2.16) and (2.17) when the thermal properties vary with tem-
perature it is a question for which temperature the thermal properties calculated
by (2.29) and (2.30) are valid. The introduction of a container complicates the
problem a little, but it seems right to integrate (2.28) to find the equalizing tem-
perature for the sample without the container. This equalizing temperature is the
temperature which will occur if the sample suddenly was moved to a container of
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perfectly insulating material. The expression for this temperature is

T̄ (τ) =

R2∫
R1

(T2 (r, τ))dr

R2 −R1

which after some manipulation, becomes

T̄ (τ) = T2 (R1, τ)− q̇ (R2 −R1)
CSaCλ2

(
1
3
C2 +

1
2
C3

)
(2.36)

T2 (r, τ) is defined in (2.28). CSaC is here the heat capacity of the sample and the
sample container. Equation (2.36) depends on perfect contact between the sample,
TS and BS.

2.2.4 Temperature dependent thermal properties

The effect of infinitesimal low heat rate on a sample

So far all equations have assumed constant thermal properties and the equations
have been analytical. Now the question is if the equations can be used as a basis
for an instrument that measures thermal properties as a function of temperature.
If heat is added at infinitesimal low rate to a sample with thermal properties
which vary with temperature, and with the same boundary condition as in (2.9),
the thermal properties will need such a long time to change that they can be
considered constant. This is because the temperature rises infinitely slowly. Then
the temperature profile will be close to (2.15), and (2.16) and (2.17) and can be
used to estimate the thermal properties. An infinitesimal low heat rate gives a
temperature difference that cannot be measured. It will also take an infinitely
long time to measure heat capacity and thermal conductivity for all temperatures
in a range.

The effect of a measurable heat flux on the sample

The question is now, how high can the heat flux become, before the equations be-
come too inaccurate? Since no analytical expressions for the inaccuracy of (2.16)
and (2.17) for different heat fluxes and thermal properties which vary with tem-
perature are available, numerical simulations are used to estimate the uncertainty.

64



To verify (2.16) and (2.17), estimate their accuracy at different heat fluxes, and
find out if they are suitable as a basis for a real instrument, some one-dimensional
numerical simulations were carried out. The thermal properties of pork meat
was used as input to the simulation. A 40-element one-dimensional finite element
model (FEM) of Figure 2.13 was implemented in the simulation program ALGOR
(see www.algor.com). The thermal properties of pork meat was estimated from
composition data by Vikar Harkarson. Theories presented in the COST90 [9]
project originated from Schwartzberg [72] were used. The length of the rod was
L = 20 mm. Simulations were run for values of q̇ of 10 W/m2, 100 W/m2 and
1000 W/m2 It would take 250, 25 and 2.5 hours respectively to raise the temper-
ature from -40 to +45 �. The simulation was carried out with time steps of one
minute and the temperatures T (0, τ) and T (L, τ) were recorded. In numerical
simulations of transient heat transfer with varying thermal properties the result
will be inaccurate if the time step size becomes too large. To ensure that the time
step size was short enough, a simulation with larger time step size was also carried
out. No difference in the resulting data was observed. These data were later used
in (2.16) and (2.17) to calculate the thermal properties. To show the accuracy
of thermal properties estimated by (2.16) and (2.17) at different heat flux, the
error between ”input” and ”output” data is plotted in Figures 2.16 and 2.17. The
maximum error at each temperature gives an estimate of the variance.

The graphs in Figures 2.18 and 2.19 plot the percentage errors for heat capacity
and thermal conductivity respectively against temperature. The variance is largest
for a heat flux of q̇ = 1000 W/m2 and smallest for q̇ = 10 W/m2.

The variance charts clearly show that for pork meat a heat flux larger than
q̇ = 100 W/m2 will give poor results. It is worth noting that there is an increase
in the error where the knuckle points in the implemented data occur. (Compare
Figures 2.17 and 2.19.) Smoothing the implemented data, so that they match the
real products better, will improve the result.
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Figure 2.16: Thermal conductivity calculated by (2.16)
A comparison between λ used as input to simulation and λ calculated from the output by (2.16).

−40 −30 −20 −10 0 10 20 30 40
0

0.5

1

1.5

2

2.5
x 10

4

He
at 

ca
pa

sit
y (

J/(
kg

K)
)

Temperature (°C)

q = 10 W/m2.

Input
Output

Figure 2.17: Heat capacity calculated by (2.17)
A comparison between cp used as input to simulation and cp calculated from the output by (2.17).
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Figure 2.18: Error, thermal conductivity
The difference between λinput and λoutput in % for where q̇ is 10, 100 and 1000 W/m2
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Figure 2.19: Error, heat capacity
The difference between cp input and cp output in % for where q̇ is 10, 100 and 1000 W/m2
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2.2.5 Numerical simulations of the thermal multimeter

Numerical simulations are a valuable tool to increase the understanding of a sys-
tem. In a simulation all properties are absolutely determined as input to the
simulation. The simulation will also produce the same result with high accuracy.
It is also possible to test conditions which cannot be archived in a real experiment
and find values which cannot be measured in a real experiment. This can unmask
effects which otherwise would be impossible to detect. It is of course important to
remember that a simulation is not the real system.

To make a better prediction of expected accuracy, a numerical simulation of the
instrument including the sample was done. Due to the symmetry of the instrument
the simulation can be done in 2D, but a transient simulation of several hours, even
in 2D, demands a lot of CPU time.

Description simulation method

Since the temperature control shown in Figure 2.20 is a boundary condition not
available in commercial simulation programs, a program was written in Fortran.
The code can be downloaded from this theses download page. (Se page 155.)

In the simulation the Forward Euler method (Named after Leonhard Euler
(1707-1783)) described by Iserles [73] among others, was used. This method is
easy to understand and program, and gives good results, but the time steps must
be small to ensure numerically stability. Forward Euler is stone age in computer
simulation and a lot of CPU time could have been saved by using another method.
A mainframe computer was however available and in this numerical simulation the
result was of interest, and not the method.

Figure 2.20 shows temperature controlling, edge conditions and materials for
the different parts of the multimeter. The multimeter is cylindrically symmetric.
The r-axis on the figure shows the radius and the z-axis shows the height. The heat
conduction equation is solved in 2D cylindrical co-ordinates. The part numbers
are the same as in Figure 2.10. The temperature at the top of the shield is set
equal to the temperature in the copper above. The same applies to the bottom
of the sample and the lower shield. Where the temperatures are measured and
controlled in TS, BS, THS etc. does not really matter, because the high thermal
conductivity of copper causes the temperature to be almost the same in the whole
copper part.
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Figure 2.20: Materials in the thermal multimeter
The colour code for material is as follows. Dark blue represents the sample, light blue represents

the copper, orange represents the air, green represents the steel and brown represents the plastic.

The part numbers are the same as in Figure 2.10. The temperature at the top of the shield is set

similar to the temperature in the copper above. The same applies to the bottom of the sample

and the lower shield. ip =100 and jp = 194 refer to the grid.
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The edge condition on the right hand side is perfect insulation because the
whole calorimeter is surrounded by air with almost the same temperature. Smaller
details such as steel and copper pipes, holes, screws and Pt100 elements are ig-
nored, since the effect of them is small. The conduction through the steel and
copper pipes is small because they connects parts which have the same tempera-
ture during a measurement. Steel screws, holes etc. are fitted in copper which has
high thermal conductivity. Therefore the heat will then find another path around
such small details without altering the temperature field significant. Conduction
through air is the main transport path for heat leakage between the shield and
the sample. Since the temperature in the thermal multimeter increases with the
height, heat leakage by convection in the air is assumed to be small and is ig-
nored. Radiation is also ignored. If both the sample and the shield are assumed
to radiate like black bodies almost four times as much heat would be transported
by radiation as by conduction through the air, but according to Siegel [74] and
Palik [75] the emissivity from electrical conductors is very small at low tempera-
tures. Emissivity of polished gold can is as low as 0.02. The parts in the thermal
multimeter are copper coated with gold. The emissivity is not measured, but if it
is this low, conduction account for over 90% of the heat flow through the air. This
is estimated by inspection of the ratio

σε((T+∆T )4−T 4)
kAir∆T∆r−1

=
5.67·10−8(W/m2K)·0.02((273 K+∆T )4−273 K4)

0.0241(W/mK)·∆T ·(0.02 m)−1 = 0.08

The emissivity is probably higher than 0.02. To include radiation would com-
plicate the calculations. The simulations therefore cannot be used to calibrate the
real instrument, but they are useful for estimating the magnitude of heat leakages
and testing the modified equations for finding the thermal properties presented in
Section 2.2.3.

The thermal properties in the simulation are temperature independent. Fur-
thermore, perfect contact is assumed between all materials. With these assump-
tions the temperature in the next time step is based on the current temperature
as described by the explicit algorithm

Ti,j (τ + ∆τ) =




+
(

1
∆r2 + 1

2r∆r

) 2λi+1,jλ
λi+1,j+λ (Ti+1,j − Ti,j)

+
( −1

∆r2 + 1
2r∆r

) 2λi−1,jλ
λi−1,j+λ (Ti,j − Ti−1,j)

+ 1
∆z2

2λi,j+1λ
λi,j+1+λ (Ti,j+1 − Ti,j)

− 1
∆z2

2λi,j−1λ
λi,j−1+λ (Ti,j − Ti,j−1)

+ q̇
∆z




∆τ

ρcp
+Ti,j (τ) (2.37)
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where edge and heating conditions are covered by the following corrections to (2.37).(
1

∆r2 + 1
2r∆r

) 2λi+1,jλ
λi+1,j+λ (Ti+1,j − Ti,j) = 0 for i = ip( −1

∆r2 + 1
2r∆r

) 2λi−1,jλ
λi−1,j+λ (Ti,j − Ti−1,j) = 0 for i = 1

Ti,j = TAt upper red dot for j = jp , Ti,j = TAt lower red dot for j = 1
q̇

∆z = 0 everywhere except where heat is added to the sample.
The indices i and j refer to the r-axis and y-axis respectively. ip and jp are the
highest i and j values. ip and jp will be in top right-hand corner of Figure 2.20.
For 0.5 mm grid with ip = 100 and jp = 194 the control temperatures become
TAt upper red dot = T1,134 and TAt lower red dot = T1,64. See Figure 2.20 for the
positions of the red dots. Heat is added, and q̇

∆z 6=0, for T1−45,142. The method is
stable if the Fourier number , λ

ρcp

τ
(∆r)2

, is smaller than 0.5 which gives a maximum
time step size of 0.00109s (Iserles [73]). The limiting factor for stability is copper.

Simulation results

The result from the simulation is the temperature distribution in the thermal mul-
timeter when the heat flux function is no longer time dependent. The heat flow can
also be calculated from the temperatures. Figure 2.21 illustrates the temperature
in the cross-section of Figure 2.20. The colours represent the temperature differ-
ence in Kelvin related to the initial temperature. As predicted, the temperature
profile goes against the limit presented in (2.27). Figure 2.21 shows the tempera-
tures for a sample with the properties of ice at 0 � when the temperature profiles
have been established. The heat flux is 100 W/m2. The thermal properties is
presented in Table 2.6.

The remaining figures shows the heat flux field. Figure 2.22 show the total
magnitude of the flux whereas Figures 2.23 and 2.24 illustrate the results for the
r and z component respectively. Negative heat flux indicates that the heat flow is
against the direction of the axis. In Figures 2.25, 2.26 and 2.27, the values for the
heat flux in the the shield and the sample are set to 0. Then the relatively small
flux in the air gap becomes visible on the figures. Figure 2.25 shows the total heat,
2.26 the r component and 2.27 the z component. The heat flow in the air gap is
of interest to estimate the heat leakage between the shield and the sample.
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Figure 2.21: Temperatures in the thermal multimeter
Both axes indicate the position in the thermal multimeter in metres. The colours give the

temperature difference compared to initial temperature (T − T0).
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Figure 2.22: Heat flux magnitude in the thermal multimeter
Both axes indicate the position in the thermal multimeter in metres. The colours give the heat

flux in W/m2.
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Figure 2.23: r component of heat flux in the thermal multimeter
Both axes indicate the position in the thermal multimeter in metres. The colours give the r

component of heat flux in W/m2.

74



z
-p

os
it

io
n

(m
)

H
ea

t
flu

x
(W

/
m

2
)

r-position (m)

Figure 2.24: z component of heat flux in the thermal multimeter
Both axes indicate the position in the thermal multimeter in metres. The colours give the z

component of heat flux in W/m2.
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Figure 2.25: Heat flux in air gap in the thermal multimeter
This figure shows the heat flux in the air gap which is so small that it is invisible in Figure 2.22.

Note that the largest heat flux in the gap is 0.9 W/m2 while the heat flux through the sample

is 100 W/m2. Both axes indicate the position in the thermal multimeter in metres. The colours

give the heat flux in W/m2. 76
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Figure 2.26: r component of heat flux in air in the thermal multimeter
Both axes indicate the position in the thermal multimeter in metres. The colours give the r

component of heat flux in W/m2.
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Figure 2.27: z component of heat flux in air in the thermal multimeter
Both axes indicate the position in the thermal multimeter in metres. The colours give the z

component of heat flux in W/m2.
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Figure 2.25-2.27 indicate that heat is conducted into the air at the hot part of the
sample, then the heat is conducted down through the air to the cold part, where
it goes back into the sample. The simulation program was ran several times with
different samples to see how the thermal properties of the sample influence the
accuracy of the measurement.

2.2.6 Comparison of the numerical and analytical solutions

When a problem can be solved both analytically and numerically the solution can
be compared to validate the calculations. Temperature values for the top and bot-
tom of the sample can also be used in (2.31) and (2.32) to calculate heat capacity
and thermal conductivity. Then the ”measured” values can be compared with the
values used as input to the simulation. The difference will give an indication of
what accuracy can be expected from real measurements in the thermal multimeter.

In Table 2.5 the thermal conductivity and heat capacity are calculated by
(2.31) and (2.32) from simulated measurements. The thermal multimeter is not
made for measuring the thermal conductivity of air, and if an attempt is made to
do this, the uncertainty will be very high. The simulation is included because such
a measurement can be useful for calibration purposes.

Table 2.5: Error in estimate of thermal properties
Values used in numerical simulation Values calculated by (2.31) and (2.32) 99% stable after

Heat flux and sample properties cp λ Time Temp change
Sample material q̇ ρ cp λ (2.31) %Error (2.32) %Error Time(s) ∆T (K)
Air* 57.5 1.293 1004 0.0241 - - 0.0243 +0.67 24600 17.7
Timber 10 400 1600 0.15 1451 -10.3 0.147 -1.88 8500 0.85
Timber 100 400 1600 0.15 1451 -10.3 0.147 -1.88 8500 8.54
TDF* 57.5 790 1874 0.187 1770 -5.83 0.189 +0.83 9600 4.88
GA* 57.5 742.5 1600 0.192 1505 -6.33 0.194 +0.82 9000 4.84
Turbonitt* 57.5 1362 1274 0.304 1229 -3.63 0.306 +0.56 6600 3.19
Water 100 1000 4180 0.61 4119 -1.47 0.608 -0.30 4000 2.26
Water* 57.5 1000 4180 0.61 4117 -1.52 0.612 +0.28 4200 1.40
Ice 100 920 2100 2.3 2094 -0.29 2.291 -0.38 1500 1.16
Steel 100 7900 500 16 500.5 +0.10 15.63 -2.375** 500 0.29

* These simulations have PEEK as casing. The others have PEHD.
** This figure appears because the thermal conductivity of steel is so large that copper

no longer can be assumed to have infinite conductivity.

The four first columns show the heat flux into the sample and the thermal
properties used as input to the simulation. The table is sorted after λ. The four
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next columns show the thermal properties calculated by (2.31) and (2.32), The
%Error columns show the % difference between input in the simulation and the
calculated thermal properties from the simulation result. The second-last column
shows the simulated time before the temperature difference between TS and BS
reaches 99% of its final value. This time is calculated from the simulation and has
nothing to do with (2.18). The two simulations on timber, where the heat flux
through the sample is different, show that this time is independent of the heat
flux through the sample. The last column shows the final temperature difference
between TS and BS.

There are two kinds of simulations. The first which includes timber, water,
ice and steel was done before the instrument was built. Here the material the
plastic sample casing was high density poly-ethylene (PEHD). The second which
includes Air, GA, TDF, turbonitt and water was done after some calibration of the
thermal multimeter. Since PEHD was unsuitable as sample casing it was replaced
with poly-ether-ether-ketone (PEEK). PEEK has different thermal properties than
PEHD. The heat capacity of TS and BS in the second numerical simulation was
also corrected after what was measured in the thermal multimeter. Since the sim-
ulations took up to 10 days to finish, the first simulations were not repeated with
adjusted thermal properties, but they are included since the adjusted properties
are fairly similar to the initial. The simulation results in Table 2.5 are marked
with ’*’ the adjusted properties given in Table 2.7 are used as input. Input for
simulations that are not marked is given in Table 2.6.

Table 2.6: Thermal properties
ρ [kg/m3] cp [J/(kg ·K)] λ[J/(kg ·K)]

Air 1.293 1004 0.0241
copper 8960 380 390
PEHD 965 2100 0.52
Ice 920 2100 2.3
Steel 7900 500 16
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Table 2.7: Thermal properties *
ρ [kg/m3] cp [J/(kg ·K)] λ[J/(kg ·K)]

Air 1.293 1004 0.0241
copper 8960 382.77 390
PEEK 1320 855.12 0.25
Steel 7900 500 16

The bypass thermal conductivity (AP λP ) in (2.32) was set to be equivalent to
the casing with thermal properties of PEHD or PEEK depending on the measure-
ment and the air from the sample, half the way to the shield. This because it is
a reasonable estimate of AP λP . A correction factor of 0.013 was included in the
thermal conductivity.

λSa = λ2 − APEHD or PEEK

ASakPEHD or PEEK
− AAir

ASakAir
+ 0.013;

APEHD or PEEK = π
(
24.5e− 32 − 22.5e− 22

)

AAir = π
(
24.5e− 32 − 33.52e− 2

2
)

(2.38)

The correction factor is the factor which minimize the error in calculating thermal
conductivity in (2.38). It is included because in calibration of the real instrument
the whole term − (AP EHD or P EEK)

(ASa)kP EHD or P EEK
− (AAir)

(ASa)kAir
+ 0.013; in (2.38) will be found

when measuring a known sample. It is amazing how small the difference between
the thermal conductivity used as input to simulations is compared with the thermal
conductivity calculated by (2.32). This shows that the thermal multimeter can be
an excellent instrument for measuring thermal conductivity.

It will be important to measure the bypass thermal conductivity. In Table 2.2.6
the correction factor in (2.38) is skipped. The influence is greatest on materials
with low thermal conductivity. A reasonable degree of accuracy cannot be expected
for materials with lower thermal conductivity than timber.
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Table 2.8: Error in estimate of thermal properties (Continuation of Table 2.5)

Values used in numerical simulation Calculated by (2.32) Calculated by (2.42)
Heat flux and thermal properties λ cp

Sample material q̇ cp λ (2.32) %Error (2.39) (2.42) %Error
Timber 10 1600 0.15 0.134 -11.8 -0.30 1617 1.08
Timber 100 1600 0.15 0.134 -11.8 -0.30 1617 1.08
TDF* 57.5 1874 0.187 0.176 -6.50 -0.36 1869 -0.25
GA* 57.5 1600 0.192 0.181 -6.31 -0.33 1602 0.12
Turbonitt* 57.5 1274 0.304 0.293 -3.81 -0.37 1270 -0.29
Water 100 4180 0.61 0.595 -2.49 -0.49 4162 -0.44
Water* 57.5 4180 0.61 0.599 -1.88 -0.48 4161 -0.45
Ice 100 2100 2.3 2.278 -0.95 -0.20 2104 0.18
Steel 100 500 16 15.62 -2.46** +0.71 500.7 0.15

The values in this table are calculated the same way as the values in Table 2.5 except that

the correction factor of 0.013 is skipped. See comments to Table 2.5 for * and **.

A cylinder shell of steel connects THS and BHS. This shell has a small total
heat capacity compared with THS and BHS, and relative much heat is conducted
through the shell. The temperature profile of the steel shell is therefore almost
linear. The temperature profile in the sample is described by (2.28). Higher heat
capacity of the sample means more curvature than the curvature shown in Figure
2.14 as worst case. This means there can be a temperature difference between the
sample and the shield, which can cause a net heat leakage from the shield to the
sample. This will lead to a too low measured heat capacity as shown in Table 2.5.

There are two exceptions. First, if the thermal conductivity of the sample
is high TS and BS will have almost the same temperature. The curvature of the
temperature profile in the sample will then cause very little temperature difference
between the shield and the sample, and therefore no heat leakage and suitable
accuracy in measured heat capacity. Second, if the total heat capacity of the
sample is small, the profile will be almost a straight line. Since the profiles in
the sample and the steel shell are almost equal the heat leakage will be reduced.
Normally this will not increase accuracy of measured heat capacity because the
heat capacity of good insulators is generally very low and will be neglible compared
with the heat capacity of the sample container.

Because of this profile which depends on the heat capacity of the sample it is
not easy to find a way to correct for the heat leakage to the sample which can be
included in the calibration routines for the thermal multimeter. One attempt is
presented in Table 2.2.6 where the ratio

Cva · q̇
Ctotal · Tdiff

(2.39)
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is presented. Cva in (2.39) is the difference between “measured” (calculated by
(2.31)) and real (input to the simulation) total heat capacity of the sample and the
sample container, q̇ is the heat flux in the simulation, Ctotal is the heat capacity of
the sample and the sample container and Tdiff is the temperature difference over
the sample. Here it is assumed that the heat leakage is only proportional with the
temperature difference over the sample and that the effects of the heat profile can
be ignored. The % variation in the ratio tells how good this assumption is. As
Table 2.2.6 (column marked (2.39)) shows this is not a poor assumption, although
the extreme high heat capacity for water causes considerable span. Steel can be
ignored since the thermal conductivity is so high. Adding Cva given by (2.40) to
the total measured heat capacity of the sample and sample container before the
heat capacity of the sample is calculated will improve (2.31). The constant Ka in
(2.40) can be found by measurements of known materials.

Cva = Ka
Ctotal · Tdiff

q̇
(2.40)

Assuming that Ctotal is almost equal measured Ctotal, (2.40) can be reformulated
to (2.41).

Cva = Ka
∆τ(T2(R1,τ+∆τ)−T2(R2,τ+∆τ)+T2(R1,τ)−T2(R2,τ))

T2(R1,τ+∆τ)+T2(R2,τ+∆τ)−T2(R1,τ)−T2(R2,τ) (2.41)

By using an average from all simulation except steel Ka = 0.00054. Inserting
(2.41) into (2.31) gives (2.42).

cSa =
Q̇ 2∆τ

T2(R1,τ+∆τ)+T2(R2,τ+∆τ)−T2(R1,τ)−T2(R2,τ) + Cva − CC

ρ2 (R2 −R1)ASa
(2.42)

(2.42) is used to calculate the heat capacity in the column marked (2.42) in Table
2.2.6. As seen from the table the agreement between input heat capacity to the
simulation and the heat capacity calculated by (2.42) is considerably better than
the heat capacity calculated by (2.42). By using the same assumptions as for
(2.41) a Ka for the real instrument can be measured.

2.3 Results

This section gives the results from calibration and measurements done with the
thermal multimeter.
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2.3.1 Calibration

Since the instrument can measure thermal conductivity, heat capacity and density
it must be calibrated for all three properties. This calibration is done in several
steps.
Calibration of the instrument includes:
Calibration of temperature- and the length measurement sensor
Measurements of heat capacity of TS, BS and PEEK casing
A measurement of a known material where thermal contact

is optimized to find Ka and to find the heat flow
around the sample

A measurement of a known material under normal conditions to
estimate the effect of imperfect thermal contact

Accuracy of the temperature measurement equipment

All measurements were done with two Agielnt 34970A switch units. The resistance
of the Pt100 elements when placed in a water triple cell was for BS-Pt100-1 =
100.00444Ω, TS-Pt100 = 99.95964Ω and for SaC-Pt100 = 100.00414Ω. For the
other Pt100 sensors no extreme accuracy is needed, and they were not calibrated.
It was assumed that the temperature dependent resistance followed the standard
curve for Pt100 elements. According to the specification for the Agielnt 34970A
the accuracy of the temperature measurements with Pt100 is ±0.06 K.

To study the stability of the Pt100 elements the heat supplied to the bottom
sample container was controlled so the temperature difference between the top and
bottom sample container became as small as possible. The temperature difference
between the top and bottom sample measured by the Pt100 sensor TS-Pt100 and
BS-Pt100-1 for five runs are plotted in Figure 2.28.
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Figure 2.28: Stability of TS-Pt100 and BS-Pt100-1
The lines on the x-axis (x=0) are the temperature difference between TS and BS measured by
the thermopiles, and the other lines are the temperature difference measured by Pt100 elements.
The noise at about -36 � may be caused by a phase transition in the grease used to ensure good
thermal contact between the Pt100 element and copper.

The charts show that the accuracy can be improved above the specification of
±0.06 K by careful calibration. More important, this proves that a measurement
is not random within the accuracy specification. The temperature change between
two measurements done within 900s are accurate down to ±0.01 K during these
measurements. This can be seen from Figure 2.28 since the shortest measurement
took 13 hours and the temperature difference varies less than ±0.01 K on every
1/50 part on the curve.

The temperature difference between the sample and the shields, and over the
sample was measured with 10 point thermopiles of type T. According to the speci-
fication of the Agielnt 34970A the accuracy of the voltage reading is 3.5µV close to
0V . This corresponds to an uncertainty of ±0.01 K in the temperature difference
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measurements done with a ten point thermopile. The temperature difference over
the sample, used in the calculation of thermal conductivity, was calculated after
the IEC standard using all 14 coefficients in the compound quantity.

For a thermopile, zero measured voltage over the pile means zero temperature
difference unless there is a short circuit somewhere, or there is something wrong
with the voltmeter. The alloy in the constantan thread used here, can differ from
the defined standard constantan thread used in thermoelments of type T. If so,
the gradient of the voltage temperature graph will differ from the standard. This
causes an error for larger temperature differences, but as long the temperature
difference is small the accuracy of the measured temperature difference is limited
by the accuracy of the voltage measurement. At larger temperature differences
the temperature difference measured by the thermopile can be compared with the
temperatures measured by the Pt100 elements.

To show the typical performance of the shields, the temperature difference
between different parts in the thermal multimeter when the shields are operating
is presented in Figure 2.29.
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Figure 2.29: The performance the shields during calibration of the bottom sample

From the chart it is clear that the temperature of the shields follows the tem-
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perature of the sample within ±0.01 K. This can be improved slightly by choosing
a better regulation algorithm.

The measurement of the power was done with the measuring bridge shown
in Figure 2.12. The voltage measurement should have been done directly on the
heater to avoid any measuring power loss in the cable. For practical reasons there
is only two wires from the heaters. The bridge is attached to these wires about
40 cm from the heaters. Because of this the measured power is higher than the
actual power in the heaters. An estimate of the resistance in the cable is 2Ω. The
resistance in TS-H is 456Ω and the resistance in BS-H is 465Ω including the cable,
which indicates that the error is less the 0.5%. This uncertainty dominates the
power measurement accuracy.

The length sensor gives a voltage signal where changes in the signal are propor-
tional to displacement. Calibration of the sensor is done by placing two samples
of known and different lengths into the instrument. The connection between the
voltage and the length of the sample can then be calculated. The user of the
instrument must decide before each measurement if the sample expansion will be
limited by the PEEK ring, or if the sample expands in three directions. In general
the change in density can only be measured for non-porous materials which freeze.
In the measurements done on solid materials with small thermal expansion (e.g.
steel) the length measurement is replaced with the length measured with a slide
caliper before the sample is placed in the instrument. Samples of food and other
liquids are prepared so that the length is about 22 mm. The density of the sample
is calculated from the length measured multiplied by the area of the sample.

Internal heat capacities

The heat capacity of TS, BS and the PEEK was measured in order to calculate
the heat capacity and thermal conductivity of the sample. The heat capacity of
the parts of the sample container was found in several steps.

First the heat capacity of the fixed part of the top sample was found during
constant heating. The loose part of the sample container was then removed. The
temperature in the bottom sample container and the shields was maintained at
the same temperature as the top sample to ensure that there was no temperature
gradient in the air surrounding the fixed part of the top sample container. Then
no heat should be leaking from the fixed part of top sample container.

The process was repeated for the fixed part of the bottom sample with and
without the two unfastened copper cylinders on top. Then measurements were
done of a sample of copper with and without the cylinder shell of PEEK. Since
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the thermal conductivity of copper is very high there was no temperature gradient
in the air to cause a heat leakage. The heat capacity and thermal conductivity of
the paper surrounding the sample container is included in the PEEK.

The heat capacity in all the measurement was found by the formula

C =
Q̇∆τ

∆T
(2.43)

Then the heat capacity of the different parts was found by simple arithmetic.
The logging interval was 15s in all measurements, but ∆τ = 900s. This because
∆τ = 15s will cause large noise since ∆T then will be very small. With ∆τ = 900s
no filtering of the data is necessary. For the measured heat capacity a sliding mean
of 60 measurements to smoothen the curve is used. This is done with almost no
loss in accuracy of variable heat capacity since the values used for averaging is
inside the interval of ∆τ = 900s.

The heat capacity of the parts as function of temperature is presented in Fig-
ure 2.30. The small tops at about -34 � in the lines for the top and bottom
sample container are caused by a phase transition in a silicon grease used to en-
sure good thermal contact between the copper and the temperature censors. The
noise at +35 � has something to do with the Agielnt 34970A switch units. Both
phenomena can be seen in almost all measurements.

In Figure 2.31 the heat capacities of each part measured separately are sum-
marized. The sum is compared with a measurement of heat capacity of all parts in
the sample container where heat was supplied to both TS and BS. A heat leakage
during the measurement of each part should have added up and caused a difference
between the summarized total heat capacity and the measured heat capacity of
the parts in the sample container. Since there is almost no difference it can be
concluded that any heat leakage is small when heat is added to both TS and BS in
such a way that the temperature in TS and BS are equal and the shields function
properly.
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Figure 2.30: Heat capacity of different parts of the sample container
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Figure 2.31: Sum of heat capacity of the sample container
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Calibration of thermal conductivity against a known sample

The heat flow around the sample (2.32) was found by doing measurements on
duran, also known as Pyrex. The thermal conductivity of Pyrex is certificated by
BCR [76]. Duran is chosen as a reference material since the thermal conductivity
has the same magnitude as food (water, meat and fish). The sample of duran is
shown in Figure 2.32 was 22.4 mm thick and had a diameter of 45.0 mm.

Figure 2.32: The sample of duran
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To ensure good thermal contact the surfaces of the two copper disks can be
covered with silicon grease. These disks are parts of TS and BS and can be
removed from the instrument (see Figure 2.8). Unfortunately this grease causes a
large adhesion force which can damage the instrument when the sample is removed,
and is therefore used only in three experiments on a sample of Pyrex. The average
thermal conductivity for the three experiments is then calculated by (2.30) and
compared with the thermal conductivity of Pyrex certificated by BCR (CRM039).
The result is shown in Figure 2.33
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Figure 2.33: Average thermal conductivity of duran by (2.30)
The measurements Duran11 and Duran11-2 are done without taking the sample out of the

instrument between the measurements. CRM039 is thermal conductivity of Pyrex certificated

by BCR.
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From this the correction in (2.30) was estimated to

AP λP

ASa
= 0.0575 + 1.107 · 10−5T − 3.054 · 10−7T 2 + 1.006 · 10−7T 3 (2.44)

where T is the temperature of the sample in �.

Thermal contact

Several measurements were done on Pyrex where the copper-copper surfaces in TS
and BS were not covered with silicon grease. This was done to estimate the effect
of imperfect thermal contact, and to say something about the repeatability of the
instrument because of this imperfect thermal contact. This measurement where
thermal conductivity is calculated by (2.32) with the correction given in (2.44) is
shown in Figure 2.34.
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Figure 2.34: Thermal conductivity of duran by (2.32)
CRM039 is thermal conductivity of Pyrex certificated by BCR.
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The thermal contact coefficient in (2.35) was from 2.34 estimated to 2200(W/m2K).
Calculated thermal conductivity from (2.35) for Pyrex is shown in Figure 2.35.
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Figure 2.35: Thermal conductivity of duran by (2.35)
CRM039 is thermal conductivity of Pyrex certificated by BCR.

Figure 2.35 indicates a repeatability of 3.6%. The accuracy is found by mea-
suring the thermal conductivity of other known materials with this calibration.

Calibration of heat capacity to correct for heat leakage.

As shown in the numerical simulation there is likely to be a heat leakage from
the sample caused by the temperature difference between TS and BS. From the
measurements done on duran Ka in (2.42) is 0.075 + 3 · 10−5 · T where T is the
temperature of the sample in �. Ka is slightly dependent of the temperature which
can be explained by radiation.
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Figure 2.36: Heat capacity of duran by (2.31) and (2.42)
Heat capacity of duran calculated by (2.31) is marked with ’*’. The heat capacity calculated by

(2.42) is compared with the values given in the handbook ”Thermophysical properties of high

temperature solid materials” edited by Touloukian [77]

2.3.2 Measurement procedure

The sample is placed inside the PEEK ring with the two loose copper plates an
each side. A tool is developed to do this. The tool ensures that the sample is
22 mm thick if the sample is liquid. The O-rings on the copper plates are greased
with silicon to ensure that no liquid leaks from the sample. A picture of the tool
is shown in Figure 2.37.
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Figure 2.37: Tool for preparing the sample

The top and bottom surfaces of a solid sample are cowered by silicon grease to
ensure good contact against the copper plates. This silicon influences the measured
heat capacity. The other side of the copper plates and the fixed parts of the
sample container are cleaned with ethanol. This ensures that the thermal contact
resistance of these surfaces are almost equal in all experiments.

The weight of the sample is found by measuring the weight of the PEEK
ring and copper plates before and after the sample is placed inside. The sample
and the loose part of the sample container are placed inside the instrument. The
sample is then strapped down between TS and BS by screwing a handle. Several
parameters are then given to the control program in the thermal multimeter. The
parameters are the name of the sample, the name of the instrument operator, the
weight of the sample, the start temperature, the length of the pause before the
measurement starts, the power to the sample heater and the stop temperature for
the measurement. The operator must also decide how the sample expands, and at
which temperature the enthalpy is to be zero. The experiment is then started and
the controlling program does the rest.

The program starts the brine cooler and the sample is cooled to the start
temperature. Then there is a pause before the heating starts. During heating the
values of all sensors are logged and stored every 15 seconds. The program controls
the shields and the temperature in the brine. When the sample is heated to the
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stop temperature the controlling program stops the experiment, starts Matlab and
terminates. A Matlab script calculates the thermal properties after the equations
given in previous sections. This script is extensive since it converts data to Matlab
format, imports data for the heat capacity of TS, PEEK and BS. These data
must be interpolated so they can be used in the equations. Then the thermal
properties are calculated. Charts are then made from the data and a report from
the experiment is generated.

2.3.3 Results from measurements of reference materials

The performance of the thermal multimeter is estimated by doing measurements
on materials where the thermal properties are known from the literature or mea-
surements done in NTNU’s plate apparatus. The reference materials were water,
tylose and turbonitt.

A measurement was also done on an empty sample container. The instrument
is not made for measuring thermal conductivity or heat capacity to air with any
reasonable accuracy, but if the absolute value of measured thermal conductivity
is far from 0.0241 W/mK which is the thermal conductivity of air at 0 � and 1
atm., it is a strong indication that the instrument measures incorrectly.

Tylose (methyl cellulose) is according to Riedel [78] used as a thickener, ag-
glutinant and emulsifier. It has become a reference material in food science since.
Tylose with 77% water and enough salt to reduce the initial freezing point to -1
� is known as ”Karlsruhe test substance” and has very similar thermal properties
as lean beef with 74% water content.

The sample of tylose was frozen and thawed twice and kneaded between each
freezing before the measurement was done, to get rid of air bubbles and to ensure
a homogeneous material. Still the tylose becomes more transparent during the
measurement. Turbonit is also known as bakelite and is a fibrous plastic material
widely used some decades ago as electric insulation in electric outlets.

Thermal conductivity

The thermal conductivity of water, tylose, turbonitt and the empty sample con-
tainer are presented together with literature data or independent measurements.
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Figure 2.38: Thermal conductivity of water
Above freezing point, the measured thermal conductivity of water is 0.03 W/mK or 5% too high

compared with Choi & Okos [60]. Below freezing point, the thermal conductivity of ice varies

widely. This shows that the sample must be frozen in a controlled way, probably outside the

sample container, to get a sample that is free of cracks and which has a flat surface against the

copper plates.
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Figure 2.39: Thermal conductivity of tylose with 77% water
There was no literature data for thermal conductivity of tylose with 77% water. The measurement

is compared with measurements done by Cleland & Earle [32] and Pham & Willix [79] who have

done measurements of tylose with respectively 75% and 78.5% water. It should be expected

that thermal conductivity should increase with increased water content. Here it is opposite,

indicating that one or both of the literature measurements should be done again. Above freezing

point the measured thermal conductivity of water is 0.08 W/mK or 14% too low compared with

Cleland & Earle and 0.02 W/mK or 4% too high compared with Pham & Willix. Below freezing

point the measurements are fairly close to the measurements done by Pham & Willix, but there

is an open question if the freezing has caused cracks in the tylose which causes the measured

thermal conductivity to be too low.
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Figure 2.40: Thermal conductivity of turbonitt
Thermal conductivity is measured for turbonit with the plate apparatus at NTNU by Helge Jan

Johansen. The measurements done in the thermal multimeter was done on the same sample.

Brendeng & Frivik [80] has compared NTNU’s instrument with other instruments in a test

where the same material was measured by two other laboratories. The difference between the

laboratories was 1.8% and 2.4%. Turbonit 1, 2 and 3 are three measurements on the same

sample. In Turbonit silicon the surfaces of the turbonitt are covered with silicon grease to get

better contact between sample and copper. The difference between the measurements done in

the plate apparatus (Turbonitt (NTNU) and the measurement done in the thermal multimeter

is less than 0.01 W/mK or 3%. The peak at about 5 � for Turbonitt1 is caused by a changed in

supplied heat caused by the operator to show that measured thermal conductivity is independent

of the supplied heat.
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Figure 2.41: Measured thermal conductivity of empty sample container
There is good correspondence in the absolute measured value of thermal conductivity of air,

and literature data of thermal conductivity of air. The calculated thermal conductivity for the

other materials is therefore more likely to be correct. The relative error is 20% since the thermal

conductivity is so low.

Heat capacity and enthalpy

Heat capacity and enthalpy are measured and compared with literature values
for water, tylose and copper. The measurement of copper is the most accurate
one since the high thermal conductivity of copper gives almost no temperature
difference between TS and BS. Then there is little temperature difference between
any part of the sample and the shield.
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Figure 2.42: Enthalpy of water
The measurement is plotted together with data on enthalpy presented by Choi & Okos [60]
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Figure 2.43: Heat capacity of water
The measurement is plotted together with data on heat capacity presented by Choi & Okos [60].
The measurement is 7% below the literature value for temperatures above
the freezing point. The measured values below the freezing point are within
4%. It is unclear why there is noise at the end of one measurement, but it
can be caused by a leakage of water from the sample container.
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Figure 2.44: Heat capacity of tylose
The measurement is plotted together with data on enthalpy presented by Riedel [78]. The

difference in measured enthalpy difference from -40 to +40 � here and measured by Riedel is

21J/kg or 5%.
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Figure 2.45: Heat capacity of tylose with 77% water
The measurement plotted together with data on heat capacity presented by Riedel [78]. Riedel

gives enthalpy as function of temperature, which the heat capacity is calculated from.

Time-temperature progress, initial freezing point and density

Often it is interesting to measure the initial freezing point of food. In a mea-
surement done by the thermal multimeter the initial freezing point is found by
inspection of the temperature-time progress of BS Pt100.
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Figure 2.46: Time-temperature progress in the measurement on tylose 77%
Heat is added at constant rate. The temperature will then rise at a constant rate until the tylose

starts to melt. Then the curve flattens off since supplied heat is used to melt the material. Since

heat is added at TS tylose close to BS melts latest. When the last of the tylose melts there is

a sharp knuckle point in the plot. The temperature at this knuckle point is the initial freezing

temperature.
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Figure 2.47: Time-temperature progress in the measurement of tylose 77%
(Zoom)

The figure shows a close up of the Time-temperature progress in Figure 2.46. It is indicated how

the initial friezing point can be found graphically.
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Figure 2.48: Measured density of tylose 77%
The figure shows the change in density as a function of temperature for Tylose with 77% water

content.
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Figure 2.49: Time-temperature progress in the three measurements on wa-
ter

The supplied heat was respectively 0.0461 W, 0.0932 W and 0.1400 W.This is the reason why

the measurements have taken different times. Inspection of the relevant charts for thermal

conductivity and heat capacity shows that the measured values also in real measurements are

independent of the magnitude of supplied heat. TS Pt100 shows that the temperature drops

right before all the ice has melted. The ice at the bottom of the sample container has probably

loosened and floated up
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2.3.4 Raw data from measurements

The raw data file from a measurement is a tab separated array 29 columns wide and
several thousand lines high. Each line gives data for one moment. Columns 1-6 are
month, day, year, hour, minute and second. Columns 7-11 are temperatures mea-
sured with Pt100 elements, respectively ShC-Pt1000, SaC-Pt1000, BS-Pt100-1,
TS-Pt100, and Air-Pt100. Column 12 is the temperature in the room (Room-
Temp) where the thermal multimeter is placed measured with a thermoelement.
For columns 7-12 the temperature is calculated by the Agielnt 34970A switch
units. Columns 13-16 are the voltage over the ten point thermopile, respectively
SaC-BHS-TP, BHS-BS-TP, THS-TS-TP and TS-BS-TP. These voltages are con-
verted to temperatures by the post-processing program. Columns 17-22 are volt-
age to the heaters, respectively THS-H, TS-H, BS-H, BHS-H, SaC-H and ShC-H.
Columns 23-28 are voltage over resistors with known resistance in parallel with
the heaters, respectively THS-H (5), TS-H (20), BS-H (20), BHS-H (5), SaC-H (5)
and ShC-H (5). The number in the brackets is the resistance. This gives enough
data to calculate power to each heater. Column 29 is a voltage signal from the
sensor for measuring length.

2.3.5 The post-processing program

The Matlab code for the post-processing program is available from this theses
download page. (Se page 155.) The program consists of several procedures linked
together by the master program called ”Totalrun.m”. First the procedure ”Post-
Processing.m” read the raw data file and store the data in several Matlab variables.
Length of sample, power to the heaters and time in seconds is calculated. Then the
procedures ”CalibrationCharts.m” and ”CalibrationCharts comparason.m” pre-
pares the data from calibration measurements. ”Measurements TM.m” starts by
integrating the heat flux to find total heat capacity and enthalpy of the sample
and sample container. Data from the calibration measurements are then interpo-
lated to the measured data so they have the same number of points. Then the
temperature difference over the thermopile TS BS TP is calculated. Thermal con-
ductivity, heat capacity and density of the sample are then calculated from the
equations presented in Section (2.2.3). The procedure ”Charts.m” shows charts for
calculated thermal conductivity, heat capacity, density performance of the shields
etc. The procedure ”Rapport.m” generates a report in PDF format where charts
are included. Data are transferred between the procedures by Matlab mat-files, so
when the whole program has run once any procedure can be run as an independent
program. This saves time since if a change is done in the procedure ”Charts.m”
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only ”Charts.m” and ”Rapport.m” must be re-run. Most of the procedures call
sub-procedures made for them, so the total program is comprehensive.

2.3.6 Sources of error and uncertainty

Many of the sources of uncertainties and errors are discussed earlier. Here the
sources are collected, and their influence is estimated. It is also pointed out which
sources of errors the user of the thermal multimeter must be aware of.

Accuracy of the temperature measurements

There are two types of temperature sensors in the thermal multimeter. They
are Pt100 elements which measures absolute temperature and thermopiles which
measures temperature difference.

TS Pt100 and BS Pt100 1 are used for measuring heat capacity. The absolute
accuracy of elements are ±0.06 K but the repeatability is better than ±0.01 K as
shown in Section 2.3.1. The repeatability is relevant for the measurement of heat
capacity.

It is also shown in Section 2.3.1 that measured temperature difference done
with the thermopile TS BS TP can be expected to have an uncertainty of ±0.01 K
when the temperature difference is close to 0 K.

When a property is calculated from the measurement data, one way to eval-
uate how the uncertainty in one measured value influences the uncertainty in the
property is to insert the measured value ± the measured values uncertainty into
the equation used for calculating the property. If a variation of ±0.01 K in mea-
sured temperature is inserted into (2.31) for the measurement of frozen tylose at
-24 � measured heat capacity becomes

cSa =
0.0947 W 2·900 s

(−23.74+−24.18−−24.15−−24.59)K±0.01 K) − 29 J/K

0.0354 kg
= 2270 J/kgK±3.2%

There is still a ±0.06 K uncertainty in the absolute temperature this heat capacity
is measured for.

As with the heat capacity, the uncertainty for thermal conductivity for tylose
is calculated by (2.30). This because the uncertainty in measured temperature
difference becomes

λSa =
58 W/m2 · 0.0227 m

0.4856 K ± 0.01 K
· 99 J/K + 61 J/K

219 J/K
= 1.98 W/mK ± 2.1%
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The magnitude of the uncertainty is dependent on the thermal properties of the
sample.

Accuracy of measured supplied heat

There is an error of 0.5% in the measured supplied heat because the heat which is
released from the wires which supplies the heaters with current is measured too.
See Figure 2.12. This error is small compared with other errors and can therefore
be ignored.

The uncertainty in measured supplied heat is very small.

Performance of the shields

As shown in Figure 2.29 the shields perform well. The performance must however
be checked after each measurement because some examples of shield failure have
been observed. Unstable regulation have been the most common cause of failure.

Heat leakage and varying contact heat resistance

Both numerical simulations and measurements show that there is a heat leakage
between the sample and the shield caused by the temperature difference between
TS and BS. This heat leakage is unavoidable, and influences both measured heat
capacity and thermal conductivity.

The thermal contact between TS, the sample and BS is dependent of how
carefully the copper surfaces are cleaned before they are put together. The thermal
resistance is assumed to be the same from measurement to measurement.

Both heat leakage and thermal conductivity are corrected for, as described
in (2.35), (2.42) and section 2.3.1. The error if the heat leakage is ignored is
5% according to Figure 2.33. The error if the thermal resistance between the
copper plates is ignored is 10%. A doubling of the thermal resistance will cause
an additional error of 10%. This can be seen form Figure 2.34. The magnitude
of the error is dependent on the thermal properties of the sample. The errors
are corrected for, but the magnitude of the correction gives an indication of how
variation in internal heat leakage and thermal contact resistance influence the
accuracy of the measurement.
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Difference between sample containers

There are four copper plates, but only two of them are used in a measurement.
The two others are spare. The difference in weight between the heaviest and the
lightest are 1.3g or 0.5 J/K For the duran sample this constitute 1% but it will
constitute more for lighter samples. There is also some smaller variation in weight
of the PEEK containers, but less than for the copper plates.

Measurement of sample weight and length

Weight can be measured accurately. It should however be measured both before
and after the measurement, since liquids can disappear through leakage and evap-
oration, if the O-rings do not seal it completely. For solid samples the length of
the sample can be measured before the sample is put into the instrument. The
sample is 22 mm long, so an accuracy of 0.1 mm in the length measurements gives
0.5% inaccuracy. Liquid and plastic samples are prepared with a tool which is
shown in Figure 2.37. This tool gives a sample length of 22 mm, but this length
is influenced by freezing. It can also be difficult to ensure that no air is inside the
sample container. Air can also be dissolved in water.

The instrument for measuring length of the sample during a measurement has
an accuracy of 0.01 mm according to the manufacturer. Given the large changes in
temperature, and that expansion of the sample is transferred to the length sensor
through four thin steel tubes, measured length has larger uncertainty. It is still
suited for measuring change in density during freezing. The length sensor should
be calibrated by placing a sample with known length into the sample container
regularly.

Leakage from liquid sample

To avoid leakage the O-rings must be greased every time a new sample is prepared.
Measurements of liquids materials above 30 � increases the chance of leakage.

Preparation of the sample

Here errors can be introduced by air inside the sample container. It is also im-
portant not to change the properties of the sample during preparation. If there is
air in the sample and the sample is compressed thermal conductivity will increase
in most cases. In general thermal conductivity can easily be changed when the
sample is handled.
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Natural variance between samples of same material

For most food materials it is important to be aware of natural variance. The
thermal properties of salmon flesh are dependent on the amount of fat, muscle
etc., which again can change from fish to fish.

2.4 Discussion and conclusions

When a measurement of thermal conductivity and heat capacity is done by con-
stant heating of the sample from one side, the thermal conductivity is measured
with accuracy better than 5% and the heat capacity with accuracy better than
7%. These numbers are based on measured values on materials where the ther-
mal properties are known from the literature, and estimates of how uncertainties
in measured temperatures influence the calculated thermal properties. The re-
peatability of the instrument is 2% for thermal conductivity. For heat capacity
repeatability of up to 4% is observed.

The main sources of uncertainty are heat leakage around the sample and con-
tact resistance between heater and sample. The leakage can be reduced by in-
creasing the diameter of the sample. The area where there is a temperature
difference will then become smaller compared with the cross-section area. This
will reduce the percentage heat leak. A measurement will then of course demand
more samples. It is also possible to increase the accuracy of the measured thermal
conductivity by dividing TS into a heater and a guard, the same way as is done in
hot plate apparatus. The heat capacity can then be found by adding heat supplied
to the heater and the guard. This will not increase the accuracy of measured heat
capacity.

A larger diameter combined with smaller distance between TS and BS will in-
crease the accuracy in measured thermal conductivity for materials with thermal
conductivity below 0.15W/mK. The reduced distance is necessary to decrease
the temperature difference over the sample, and thereby the heat leakage on the
edges. Reduced distance will make measurements on materials with medium ther-
mal conductivity 0.5 to 4 W/mK less accurate since the accuracy of measured
temperature difference becomes the limiting factor.

The problems with correcting for the thermal contact resistance can be elim-
inated if the sensors for measuring temperature difference are placed inside the
sample instead of inside TS and BS, but it will be difficult to find a practical
solution for doing this. The thermal contact resistance will also be less important
when the thermal conductivity of the sample is low.
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It is necessary to take more measurements of known materials to verify the
readings and this may improve the accuracy of the instrument which at the moment
is based on relatively few measurements. It is also necessary to find procedures for
freezing samples so the thermal conductivity of frozen materials becomes repro-
ducible. The accuracy of measured thermal properties is not outstanding, but the
results can be used. The instrument also gives so many measurements at all tem-
peratures that the curve for the thermal properties can be considered continuous.
The sample size is large enough to measure inhomogeneous materials. The prepa-
ration of sample and measurement procedure is also simple. The instrument is
robust, and over all well suited for measurements on difficult and messy materials
like food.
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Chapter 3

Measuring local heat
transfer number (α) by shell
freezing

3.1 Introduction

This Chapter shows how the local heat transfer number (α) can be found by shell
freezing of transparent jelly. The ice shell thickness and the time the jelly is in
the freezer are measured. α can be estimated by Plank’s equation. This is posible
because Plank’s equation is not mathematicaly ill-posed with regard to α, contrary
to the heat equation, (1.1). Transparent jelly is suited because the freezing front
is destinct in this materiale when cut through.

3.1.1 Description of the heat transfer coefficient

The heat transfer coefficient (α) describes the heat flow between the surface of a
solid object and a fluid flowing around the object. α is defined as

α ≡ q̇/ (Tf − Ts) (3.1)

Tf is the temperature in the main fluid stream and Ts is the temperature of the
surface. q̇ is the heat flux normal to the surface. Generally the fluid flow is so fast
and the objects are so small that no temperature difference can be measured in
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the free stream. α and the product surface temperature will however vary over one
product. For simplicity α is therefore often defined as an average over the whole
product. To define α for every point on the surface of the object demands that
α can be measured at every point. When α is used to solve practical problems
it is important to be aware that this is a simplification. α must be measured.
To understand why, the factors which influence α must be identified. They are
therefore outlined in the following paragraphs.

Since the fluid transports heat while moving (convection) the fluid flow field
must be described in order to be able to describe the heat flow. When a fluid flows
along a surface the surface will decelerate the fluid and create a speed profile in
the fluid from zero speed at the surface to free stream velocity at a distance where
the present of the surface no longer influence the fluid. This speed profile is known
as the boundary layer. If the flow is turbulent, the boundary layer will consist of a
laminar part close to the surface and a turbulent part farther out. The thickness
of the laminar layer is dependent on the surface roughness, surface orientation,
surface curvature, other objects close to the surface, free stream velocity and fluid
properties. (See Figure 3.1)

Figure 3.1: Fluid flow around an object

The number of factors, the problem in describing some of them accurately and the
complexity of Navier-Stokes equations make it clear that calculating the fluid flow
field in the boundary layer is a challenge.

Now, if there is a temperature difference between the surface and the free
stream, there will be heat transport. Temperature is a continuous property, mean-
ing that that there are no jumps as suggested by the definition of α. Since the
temperature as function of position changes rapidly in the boundary layer a fine
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grid is necessary to do simulations. Heat is transported by conduction, convection
and radiation. The Navier-Stokes equations which describes the conservation of
momentum must therefore be combined with equations for the conservation of en-
ergy when the heat transport is to be calculated. Carrying out such a calculation
is beginning to become difficult.

In freezing, for unpacked food, latent heat is also transported by evaporation
and sublimation. The α for this heat transport is normally given as a separate,
latent α, since it can be calculated from the weight loss or gain to the object. Both
surface properties and transport coefficients change with temperature, especially
during freezing because of the change in the physical properties, and in some cases,
the shape of the food. The temperature-dependent thermal properties of food must
also be included in the calculations. It can be discussed if it is possible to include
all these factors in a calculation of heat flow from the surface, but it is certainly
too time consuming today for any practical purpose.

Therefore all these factors are hidden in α. Because of all these factors α
must be measured. Regardless of measuring method, it is necessary to plan the
experiment well to avoid changing any of the factors so much that a completely
other α than the real one is measured.

Much work has been done to find correlations for α from the physical properties
and the speed of fluid. Incropera and De Witt [22] list correlations for several
objects with simple geometry in free stream. The correlations differ widely with
geometry. For a sphere Whitaker [81] recommends an expression in the form (3.2)

NuD = 2 +
(
0.4Re

1/2
D + 0.06Re

2/3
D

)
Pr0.4

(
µ

µs

)1/4

(3.2)




0.71 < Pr < 380
3.5 < ReD < 7.6 · 104

1.0 <
(

µ
µs

)
< 3.2




The Nusselt number is here an average for the whole sphere.
Because of the complex shape of frozen food products and the effects of shelves

etc. such correlations for α are usually too inaccurate to be of any use in freezing
technology research. A good method for measuring the α is therefore important.

3.1.2 Methods for measuring the heat transfer coefficient

The heat transfer coefficient α can be found in several ways. See Rahman [36]
for a review of methods used in industrial food processing. Some of the common
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methods are referred here.

α can be estimated by inverse heat conduction. The estimate is based on
measuring the temperature history at two or more positions in the material. By
combining measurements, knowledge of the thermal properties and position of the
temperature sensors, heat flux and the temperature on the surface can be esti-
mated. These are ill-posed problems, because the temperature history is to be
calculated from the present internal heat profile. However, this is mathematically
impossible. The reason is that the heat equation gets an infinite number of solu-
tions if it is used backwards. A proof is presented by A. Iserles [73]. To solve this
kind of problem you have to make a qualified guess about α, and then see if the
simulations give the correct temperature in the measuring points. If the temper-
ature is wrong, you correct your guess. This is very time consuming process. If
α is time dependent, varies over the surface etc. it may not be possible to get a
result at all. Some statistical methods are developed to solve ill-posed problems
more efficiently. Se Beck et al. [82] for further details. To avoid ill-posed problems,
constant heating can be supplied to the object of interest, to obtain a stationary
problem. See Rahman [36] for a short review.

α can be measured with a suitable electric sensor. When using a sensor it
is important to evaluate the disturbances the sensor introduce. The size of the
sensor, and the heat flux from it should be considerably smaller than the size of
the object and heat flux from the object. There are two types of electric sensors
for measuring α, the heat flux sensor and the heat supplied sensor. Both sensors
measure the average α over the area of the sensor. This means that the sensor
must be as small as possible when measuring the local α. The accuracy of both
sensors obviously depends on how accurately temperature and supplied heat can
be measured. As the sensor size decreases, the accuracy is also increasingly limited
by the heat leakage on the edge of the sensor. The leakage can be reduced by a
guard. This means that the sensor is surrounded by a thin layer of insulating
material, and outside the insulation the temperature is controlled to be the same
as on the sensor. Since the guard needs a heat supply, the heat supplied sensor
is usually chosen when small accurate sensors are required. This kind of sensor
tends to become expensive.

The first type, which is also used as a heat flux sensor, consists of a thin
plate of a material with known thermal conductivity and small heat capacity. The
temperature difference over the plate is measured, usually with a thermopile. The
surface temperature of the plate is also measured. The heat flow through the plate
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can then be calculated by the formula

q̇ =
λ

L
∆T (3.3)

where q̇ is the heat flux, λ is the thermal conductivity, L is the thickness of the
plate and ∆T is the temperature difference over the plate. To find α, the ambient
fluid and surface temperature must be measured separately. Figure 3.2 shows how
the sensor is placed on a material.

Figure 3.2: A heat flux sensor used for measuring the local α

Apart from accuracy in temperature measurements it is the uncontrolled heat
flow on the edge which limits the accuracy of the sensor shown in Figure 3.2,
especially for small sensors. This edge effect can be reduced by a guard, but
introducing such a guard is technically difficult. Therefore, for this type of sensor
usually no effort is made to reduce the edge effect. Still even small sensors of this
type can be reasonably accurate because the sensor is thin which reduces the area
heat can flow through in radial direction. The material the sensor is placed on
will also act as a fairly good guard. The sensor can also be improved by placing
an insulating material around the edge. It is suitable for measuring the transient
α during freezing. If the object is not heated from the inside, the measurement
will be dynamic. If the temperature on the surface is controlled, the sensor or the
sample needs additional heating. Sensors of this type are robust.

The second type which is the heat supplied sensor shown in Figure 3.3, a
known amount of heat is added to a plate of a material with relatively high thermal
conductivity. The plate is insulated and guarded so (ideally) all the added heat
leaves through the surface into the fluid. q̇, Ts and Tf are measured directly. α is
then calculated by (3.1).
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Figure 3.3: Guarded heat supplied sensor

The advantage of this sensor is that the temperature on the surface can be
controlled separately from the object. As the size of the sensor decreases a higher
accuracy is required when measuring temperatures and the heat flow. Therefore,
such devices are usually relatively large and cannot be used to measure α on the
surface of small objects. A large sensor will also make a larger disturbance in the
heat flow by its presence, because it emits heat. Harris et al. [83] have made one
only 40 mm in diameter, which is still large compared to many kinds of frozen
products.

Another method for estimating α is to measure the heat flow indirectly. Kond-
joyan & Daudin [13],[14],[15] have wetted objects of plaster and placed them in
an air stream where temperature, air speed and air humidity are constant. After
a while the plaster will obtain the wet bulb temperature. This temperature will
be stable for a long time, until the surface of the objects dries, and water has to
diffuse to the surface before it can evaporate. When the temperature is stable, the
weight loss per time unit can be measured. All the energy needed to evaporate
water is taken from the air, and an energy balance will give the heat flux and α.

Using Plank’s equation to estimate α, is also an indirect method. Instead of the
phase change of evaporation, Plank uses the phase change of freezing to calculate
the heat flux. Since the freezing front is moving, it is a transient method. It is then
also related to the method of estimating α by inverse heat conduction, but since
Plank’s equation is developed from the stationary heat equation, the problem is
no longer ill-posed. This method is the subject for this chapter and is discussed
more comprehensively later.
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3.1.3 Methods for estimating or measuring the local α

With an exception of Kondjoyan’s and Daudin’s method, none of the methods
mentioned in Section 3.1.2 are suitable to find the local α. A sensor with diameter
of 40 mm can only measure local α for surfaces larger than 40 mm, and finding
α by inverse heat conduction becomes very complex if the measured temperature
inside the object is influenced by two or more surfaces with unknown α.

Kondjoyan’s and Daudin’s method is suitable since their whole object of plaster
will have the same temperature. Since there is no tangential temperature gradient
there is no heat flux along the surface. Since the measurement is done when the
surface is fully wetted, there is no mass flux either, and the only problem is to
measure the mass loss from different parts of the object. This can be done by
constructing the object of units which are weighed separately.

The method presented here is to make a sample of jelly, and freeze it. After
a measured time when the jelly is partially frozen the freezing is aborted, and the
jelly is cut through with a sharp knife. The frozen layer (shell) thickness can then
measured with a ruler, and local α can be calculated from the ice thickness. It
can be performed this way since the freezing front is easy to see in the jelly as
shown in Figure 3.6. There is some ice growth from the end of freezing to the
jelly can be cut through and the shell thickness measured, but since latent heat
is very large compared to sensible heat, and the frozen jelly in this time is heated
by the surroundings, this growth can be neglected. Other methods for measuring
the shell thickness are mentioned in the concluding remarks.

3.1.4 Range of application for the method

The method can be a valuable tool in the study of heat transfer in several settings.
Jelly samples can be packed in different food packaging. Heat transfer through
different parts of the packaging can be studied in detail. This is possible since the
method finds the heat resistance independently of what is causing this resistance.
Samples of jelly can be used as a sensor for finding changes in α in different settings
of air freezing. In this way the effect of shelves and other obstructions from the
air stream can be measured.

As seen from Figure 3.11 α is highly dependent on surface orientation and
turbulent. In the industry the method is suitable for locating places in freezing
tunnels, where freezing is not effective. This will be clearly visualised by differences
in shell thickness for jelly samples at different places in the freezing tunnel.
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3.2 Materials and methods

In freezing, when air temperature, geometry and the thermal properties is known,
Plank’s equation can be used to estimate α for a whole food sample. If the ice shell
thickness of the food sample can be measured at two points in time, it should also
be possible to use Plank’s equation to estimate a local α by ignoring the tangential
heat flux. α will be time average over a period. The reason that this is pointed
out is that new methods for tracking the freezing front are now available and it is
necessary to adapt Plank’s equation to this method. The basis for the estimate of
the local α is Plank’s equation for rod, cylindrical shell and spherical shell.

The objective of this chapter is to show that the tangential heat flux in a frozen
sample can be ignored if the frozen layer is thin. The chapter also shows how to
quantify experimentally and by numerical simulations the accuracy of the the
estimate of the local α. This will include estimates of the ratio between tangential
and radial heat flux and some practical measuring problems. It will then be
suggested how jelly can be used as a cheap and flexible sensor for estimating the
local α, both for unpacked and packed products. Finally automatic methods for
measuring the ice shell thickness are mentioned.

3.2.1 Plank’s equation for a spherical shell

Plank’s equation for freezing time is based on the simplification that food freezes
at a fixed temperature, and that the latent heat is so much larger than the sensible
heat that the sensible heat can be ignored.

Plank’s equation is modified for several geometries, and a lot of work is done to
incorporate pre- and after cooling in Plank’s equation. See Cleland & Özilgen [84]
for a review.

In this section Plank’s equation is manipulated for objects of different shapes.
This is done to show the relation between Plank’s equation for different shapes,
and to show for which ice thickens the choice of equation becomes important.
Some of the deductions for Plank’s equations for cylindrical and spherical shells
are therefore presented here.

Ignoring sensible heat as Plank did when he deduced his equations, means that
Fourier heat equation, (3.4), is reduced to Laplace’s equation, (3.5), between the
freezing front and the surface because cp is zero and λ is constant.

ρcp
∂T

∂τ
= ∇ (λ∇T ) (3.4)
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∇2T = 0 (3.5)

In spherical co-ordinates Laplace’s equation becomes (3.6)

∂2T

∂r̂2
+

2
r̂

∂T

∂r̂
= 0 r ≤ r̂ ≤ R (3.6)

The boundary conditions for (3.6) is T (R) = TS on the sphere surface, and,
T (r) = Tff on the freezing front. r̂ because r is the position of the freezing front.
The problem has a solution in (3.7)

T (r̂) =
(Tff − TS) rR · 1

r̂ + TSR− Tffr

(R− r)
(3.7)

The total heat flow through the sphere shell is described by (3.8).

Q̇ = −4πr̂2λ∂T
∂r̂ = −4πr̂2λ

(Tff−TS)rR·−1
r̂2

(R−r)

= 4πR2 rλ
(R−r)R (Tff − TS)

(3.8)

By eliminating TS from (3.8) with (3.1), (3.9) appears.

Q̇ = 4πR2 rλ

(R− r) R + λr
α

(Tff − TA) (3.9)

If the heat flux at the freezing front is known, the differential equation (3.10) for
the speed of the freezing front can be formulated.

Q̇ = −
4
3π (r + dr)3 ρ∆hice − 4

3πr3ρ∆hice

dτ

lim
dr → 0

= −4πρ∆hicer
2 dr

dτ
(3.10)

This gives (3.11) which describes the rate of ice growth.

4πR2 rαλ

(R− r)Rα + λr
(T1 − T3) = −4πρ∆hicer

2 dr

dτ
(3.11)

(3.11) can be reformulated and integrated to (3.12).

τ∫

0

(Tff − TA)
ρ∆hice

dτ =

Rff∫

R

−r · ((R− r)Rα + λr)
R2αλ

dr (3.12)
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τ = ρ∆hice

(Tff−TA)

(
1
3αR+ 1

6λR2 − 1
2λR2

ff

+ 1
3RλR3

ff − 1
3R2αR3

ff

) (3.13)

In (3.13) τ is then an expression for the freezing time of a sphere shell with outer
radius R and inner radius ∆RI . If Rff → 0, (3.13) becomes

τ =
∆hiceρ

(Tff − TA)
1
3

(
1
α

R +
1
2λ

R2

)
(3.14)

(3.14) is Plank’s equation for a sphere.
If Rff → R and the shell thickness is defined as L = R −Rff , L → 0. (3.13)

can then be reformulated to (3.15)

τ =
ρ∆hice

(Tff − TA)

(
+

1
α

L +
1
2λ

L2 − 1
3Rλ

L3 − 1
Rα

L2 +
1

3R2α
L3

)
(3.15)

When L → 0 the terms in (3.15) with R in denominator is zero, and (3.15) becomes
(3.16)

τ =
ρ∆hice

(Tff − TA)

(
1
α

L +
1
2λ

L2

)
(3.16)

(3.16) is Plank’s equation for a rod which freezes from one side. The deduction to
(3.16) proves that the equations give the same result if the frozen layer is thin. It
also implicates that both (3.13) and (3.16) can be used to estimate a local α for a
food sample of any shape if the frozen layer is thin.

Plank’s equation for a cylinder shell can be developed by the same approach
as for a sphere. The equation is:

τ = ρ∆hice

(Tff−TA)

(
1
2αR + 1

4λR2 + 1
2λR2

ff ln
(

Rff

R

)

− 1
2RαR2

ff − 1
4λR2

ff

) (3.17)

(3.17) is also the result of an integration from Rff to R of Equation 3 in Plank’s [85]
original article. Plank operates with an inner α between the frozen and unfrozen
material. This inner α is set to infinite in the integration which leads to (3.17). If
Rff → 0 (3.17) becomes Plank’s equation for a cylinder. If Rff → R the (3.17)
becomes Plank’s equation a for rod.

This proves that if the frozen layer is thin, Plank’s equation for a spherical
shell (3.13), Plank’s equation for a cylindrical (3.17) shell and Plank’s equation
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for a rod (3.16) give the same result for estimated α (α). As long as the frozen
layer is thin it is therefore indifferent which ((3.13), (3.17) or (3.16)) is used. The
equation for a rod can therefore be used independently of the shape of the object.

When using the equation for a rod, (3.16), instead of the correct equation for
spherical or cylindrical geometry, which ever is appropriate, α predicted wil be too
high. The chart in Figure 3.4 shows how large the over prediction is compared to
the relative shell thickness.
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Figure 3.4: Over prediction of α by using Plank’s equation for a rod
An example: A sphere with radius of 10 cm is put into a freezer where α is the same everywhere

on the sphere surface. It is taken out when the outer 1 cm (10% of total radius on the x-axis) of

the sphere has frozen into a spherical shell. If the equation for a slab (3.16)) is used to estimate

α (L = 1 cm) the estimated α is approximately 10% (find 10% on the x-axis and read the value

for the blue line on the y-axis) to0 high compared to the correct α found by using the equation

for a spherical shell (3.13) with R = 10 cm and Rff = 9 cm.
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The choice of equation, ((3.13), (3.17) or (3.16)), becomes increasingly impor-
tant with shell thickness. Figure 3.4 shows how important. Choice of equation
depends on which geometry describes the surface where α shall be estimated. An
example is shown in Figure 3.5

Figure 3.5: Choice of equation for estimating α
The picture shows a cross-section of an infinite long object. At position 2 in the figure, Plank’s

equation for a cylindrical (3.17) shell will give the best estimate of α, while at position 1 Plank’s

equation for a rod (3.16) gives the best result. At position 3 the best result is something in

between.

3.2.2 Use of Plank’s equation to estimate the local α on a
sphere of jelly

This section describs how local α can be found by shell freezing of a half sphere of
jelly.

Description of jelly

Jelly is chosen since it is simple to shape. When made in a mould, it is possible to
make more or less identical samples. Once frozen, jelly changes consistency, and
becomes opaque. It is therefore possible to see which part of the jelly has been
frozen, even after the jelly has melted. When the jelly freezes, it looks like there
are a lot of small needles which grow into the unfrozen jelly.
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Figure 3.6: Picture of partially frozen jelly hemisphere
Mark the short side of a credit card visible in the bottom of the picture

Figure 3.6 shows a cut through a hemisphere of jelly which has been in exper-
imental freezing tunnel for 60 minutes. The half sphere was cut with a sharp knife
while still frozen. The radius of the jelly samples varied from 40 mm to 43 mm.
The scaling card in bottom of Figure 3.4 is 54 mm long.

The jelly was made of water and Gelita Gelatine plates produced by DGF
Stoess AG. (D69402 Eberbach/Baden, Germany) 20 plates in one litre of water
gave a jelly which retained its shape when removed from the mould and placed
on a shelf without support. By using the informative label on Gelita Gelatine the
composition of the jelly was calculated by weight to be 97.28% water, 2.66% animal
protein, and 0.06% mineral salt. Initial freezing point was measured to -0.235 �,
by measuring centre temperature during a freezing experiment. The temperature
will then stabilized on the initial freezing point for a while, before the temperature
suddenly drops when all the jelly is frozen. From this, the thermal properties of
the jelly were estimated based on theories presented in Schwartsberg’s [86] article.
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To use the data in Plank’s equation of frozen shell values for thermal conduc-
tivity, latent heat of melting and density must be assigned to the jelly. This is
done graphically, the way Pham [59] suggests in Figure 3.7. The resulting values
is presented in Table 3.1 together with other pre-set or pre-estimated values for
the freezing experiment.

Table 3.1: Estimate of thermal properties of jelly used in Plank’s equation
Thermal conductivity 1.99 W/(m ·K)
Density 930 kg/m3

Latent heat of melting 311 kJ/kg

Time 3600 s

Temperature difference 29.165 K

Radius of half sphere of jelly 0.042 m

Air temperature −29.4 �
Initial freezing point −0.235 �
Final freezing point −5.2 �

Description of freezing tunnel

Figure 3.9 is a sketch of the principle in our mobile refrigeration tunnel and its air
supply.

Figure 3.9: The complete freezing tunnel with its supply of cold air
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Air is drawn from a refrigeration room, through a duct. The air passes through
the tunnel before it reaches the fan. From the fan the air is blown back into the
refrigeration room. The air velocity can be measured at a defined mark in the pipe
(see Figure 3.9). Here the air has gone through a straight pipe that is long enough
for a fully developed air velocity profile to be established. From the measured
air speed at the centre of the duct, the air volume flow can be calculated. The
pipe diameter at the measuring point is 315 mm. All parts of the system are well
insulated from the surroundings. Temperature in the refrigeration room used in
the experiment, is controlled within ±1 K by a on/off regulation system. Minimum
temperature the room can reach is about -35 �. The fan engine is controlled by a
frequency regulator. At max the average air speed in the tunnel is about 4 m/s.
Temperature difference in the air, air humidity, pressure loss over the fan and
between inlet and outlet of the freezing compartment, are measured. Air speed
was measured with a Schiltknecht MiniAir 2.

Figure 3.10: The chamber (freezing tunnel) where the product was frozen.

Figure 3.10 shows the freezing tunnel. The measurements are in mm. The
chamber is 610 mm wide in the z-direction. Five jelly samples were usually frozen
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at the same time. The one in the centre was placed on a plate in a hole with
radius 73 mm in the shelf. The plate was connected to a scale in order to log
weight loss during the freezing experiments. A fine-meshed cloth 26 cm upstream
to the sample was used to get a even air distribution in front of the hemispheres
in the freezing chamber.

Description of the experiment

Jelly was mixed, and was allowed to stiffen in ladle which had the shape of hemi-
spheres inside. When set, the jelly was turned on a sheeting by holding the moulder
in boiling water. The jelly was then packed in the foil, and stored on ice so that
the initial temperature was close to 0 � when the experiment was started. Cold
air was blown through the freezing tunnel so it should be stable when the exper-
iment was going to be started. Then the jelly was unpacked. All the foil except
the circle under the half sphere was cut away. The foil under the jelly was kept to
prevent the jelly from getting stuck in the foamed rubber and the thermocouple
placed under the half sphere. The jelly was then kept in the freezing chamber for
60 minutes with air temperature -29.4 � and air speed 1.2 m/s from the left side
of the photo in Figure 3.6.

3.3 Results

In a smoke test it was possible to se the lines of smoke, but the lines moved around
in the chamber. The smoke test and air speed measurements also showed that the
air speed was largest at the bottom of the chamber, but the air speed was relatively
constant in the area where the jelly was placed. In the freezer, the jelly sample
was placed on foamed rubber so that the boundary condition at the bottom was
assumed to be close to perfect insulation. According to boundary layer theory for
laminar fluid-flow over a plate, presented by Kays & Craford [87], the displacement
thickness is described by (3.17).

δ1 = 1.73
√

νx/u∞ (3.18)

Using tabulated properties for air at -30 �, the air speed in the chamber and
length of shelves from this experiment the displacement thickness is 2 mm when
the air has moved from the beginning of the shelves to the centre of the jelly
sample, and 3 mm when it reach the end of the shelf. Since the jelly sample is
40 mm high, the effect of the shelf on the air stream can be ignored around the
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jelly sample. This means that the jelly sample can be modelled as a sphere in free
stream. For symmetrical reasons it can be expected that α and the shell thickness
are the same if the angle between the vector from centre to the surface of the jelly
sphere and the x-axis on Figure 3.6 is constant. This means that any cut through
the centre parallel to the x-axis will have the same profile. It also means that the
problem is reduced from 3 to 2 dimensions in spherical co-ordinates. This is valid
if the air steam is parallel to the x-axis. The air stream is not so well defined, but
cuts through several jelly samples show that it is close enough for this introductory
experiment.

3.3.1 Estimate of the local α

Since the object shape is almost spherical it is natural to use the sphere form
of Plank’s equation. The choice of equation (rod, cylinder, sphere or something
between) depends on geometry. The choice is only important when the frozen
layer becomes thick. As shown above in Figure 3.7 all equations give same result
if the frozen layer is thin compared with the total thickness of the sample. From
(3.13) α can be placed on left-hand side, and becomes.

α = 2λ
R3 −R3

ff

6τλR2 (Tff−TA)
ρ∆hice

−R4 + 3R2
ffR2 − 2R3

ffR
(3.19)

Everything on the right-hand side, can then be measured. In Figure 3.11 which is
the same picture as Figure 3.6, the freezing front is marked by visual inspection,
and L is measured. ∆RI = (R− L) is then calculated.
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Figure 3.11: Partially frozen jelly hemisphere
Contour of inner radius (Rff ) is emphasised. Values for Rff and angles are written on the

figure.

The heat flux and the surface temperature can be estimated from (3.20) and (3.21).

q̇ =
∆RIλ

(R−Rff )R + λRff

α

(Tff − TA) (3.20)

TS =
q̇

α
+ TA (3.21)

(3.20) is (3.9) divided on the area of a sphere, (4πR2), and (3.21) is the definition
of α. Table 3.2 shows α, heat flux and surface temperature at different angles
based on (3.19), (3.20) and (3.21).
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Table 3.2: α, heat flux and temperature
estimated from Plank’s equation for sphere

Angle L Rff αsphere q̇ TS αrod ∆rig(%)
0 0.0176 0.0244 36.6 686 -10.7 61.7 8.7
30 0.0176 0.0244 36.6 686 -10.7 61.7 8.7
60 0.0148 0.0272 31.8 678 -8.0 48.0 5.2
90 0.01 0.032 22.8 578 -4.1 29.6 1.9
120 0.0057 0.0363 13.9 389 -1.5 16.1 0.5
150 0.0078 0.0342 18.4 493 -2.6 22.4 1.0
180 0.0133 0.0287 29.0 660 -6.7 41.7 3.9

The second last column in Table 3.2 is α estimated by (3.16) which is Plank’s
equation for a rod. The relative large difference shows that the frozen layer is so
thick that choice of equation has become important. The last is the maximum
possible ice growth after the jelly is removed from the freezer because of cooling
of the ice below the freezing point.

3.3.2 Error sources

Accuracy of shell thickness measurement

Jelly freezes over a temperature interval. Because of this there is an uncertainty
connected to the definition of the position of the freezing front, in addition to the
uncertainty in the measurement of length. Even if the jelly had a fixed freezing
point like water, the front would not be smooth because of the nature of the crystals
growing during freezing. In the results presented here, it was also necessary to cut
through the jelly sample before the ice thickness could be measured with a ruler,
which may disturb the freezing front. The uncertainty to the position measurement
of the freezing front was estimated to ±0.5 mm. Because the accuracy of the
estimated heat transfer number is dependent on the relative accuracy of the ice
shell thickness, a very thin shell will give a large uncertainty.

The ice thickness will increase a little when the jelly is removed from the
freezer. This is because the ice is cooled below -0.235 �. ∆rig in Table 3.2 is the
maximum possible ice growth because of this effect if all the heat is taken from the
freezing front. For thin ice shell the cooling below freezing is small and there is
little ice heat can be removed from. The effect is therefore neglible. For a thicker
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ice shell the ice growth is small compared to the total thickness of the shell.

Tangential internal heat flow

As for a temperature based sensor the heat leaving through the edge of an area on
the jelly sample is a source of uncertainty, when estimating α. The heat flowing
tangentially increases with the ice shell thickness. The ice layer must reach some
thickness before it can be measured since the freezing front is not exactly defined.

Inaccuracy connected to the use of Plank’s equation

As shown in Figure 3.11 it is not obvious which values the thermal properties are
to be given when used in Plank’s equation. According to the literature Plank’s
underpredicts the freezing time by 20-40% ([26]). This 20-40% is mostly caused
by pre-cooling before freezing and cooling after freezing. See Pham [27, 28] and
Cleland et al. [84]. Jelly freezes over a short temperature interval compared to
fish, meat etc. Since this is closer to assumptions for which Plank’s equation is
developed, the prediction may be more precise. Pre-cooling is reduced by storing
the jelly samples on ice. The average temperature in the jelly when removed from
the freezer is according to simulations -4 �. This reduces the after-cooling. It is
therefore likely that the uncertainty in α estimated based on Plank’s equation is
considerably more precise than 20%. More research is necessary to figure out how
accurate α estimate is.

Inaccuracy in the initial conditions

It takes 2-3 minutes to prepare an experiment. This causes rise in the initial
temperature in the jelly samples before the experiment starts. It also takes about
1 minute before the conditions in the freezing tunnel become steady after start.
These errors are assumed to be small since the time is so short.

Uncertainty in boundary conditions

In the simulation there was perfect insulation under the jelly. In reality the jelly
was placed on rubber foam. Rubber foam is a good insulator, but imperfect.
Some heat therefore leaves the jelly through the insulation. Another problem was
that a small air gap between the jelly and the foam was generated during freezing
because of expansion. Cold air can then flow under the jelly and remove some
heat. Both error sources influence the estimated α at 0 and 180 degrees in Figure
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3.11. The influence for other angles is neglible because the temperature difference
in the unfrozen jelly is small.

3.3.3 Estimate of magnitude of uncertainty

The %α in Table 3.3 gives the error in % caused by ±0.5 mm uncertainty in the
measurement of the shell thickness.

Table 3.3: Uncertainty in estimates caused by a measuring error in shell
thickness

Angle L Rff α α+ α− %α q̇ TS

0 0.0176 0.0249 35.8 34.9 36.6 2.4 687 -10.2
30 0.0176 0.0249 35.8 34.9 36.6 2.4 687 -10.2
60 0.0148 0.0277 30.9 30.0 31.8 2.9 673 -7.6
90 0.01 0.0325 21.8 20.8 22.8 4.5 561 -3.7
120 0.0057 0.0368 12.8 11.7 13.9 8.7 361 -1.3
150 0.0078 0.0347 17.4 16.3 18.4 6.0 470 -2.3
180 0.0133 0.0292 28.1 27.2 29.0 3.3 651 -6.3

To be able to estimate other sources of errors the following estimates is pre-
sented. 1% uncertainty in ρ ·∆hice gives 1.2% uncertainty in α. 1% uncertainty in
the thermal conductivity gives 0.2% uncertainty in α. These uncertainties are de-
pendent on how the properties are estimated from Figure 3.11. 1 K uncertainty in
the air temperature in this experiment gives 4% uncertainty in α. In sum there is
about 5% uncertainty from other sources than the ice shell thickness measurement.

3.3.4 Comparison with numerical simulations

To be able to give a better prediction of the accuracy of the method of estimating
the heat transfer method by measuring the shell thickness during freezing of jelly,
αs found in Table 3.2 were used as input in a numerical simulation. The code
was based on Forward Euler in 2-d spherical coordinates. The time steps were
0.5 milliseconds, and the grid was (π/128)radians x 0.25 mm wide. The thermal
properties were updated at every time step. In the simulation the jelly sample was
assumed to be a perfect sphere. α was interpolated between the angles where it
was estimated in Table 3.2. The thermal properties were given in Figures 3.7 and
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3.8. The density was held constant at 930kg/m3 and shape change during freezing
was ignored.

In agreement with assumptions for Plank’s equation a rapid change in the heat
flux from almost 0 to a high value marks the freezing front. Figure 3.12 is therefore
an illustration of the absolute value of the heat flux in the jelly after 60 minutes
in the freezing tunnel.
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Figure 3.12: Simulated heat flux based on estimated α in Figure 3.3

As seen from Figure 3.12 the variation in heat flux is from 0 to 600 W/m2 or more
within 1.5mm. Figure 3.12 shows the heat flux as a function of radius. In the
non-frozen jelly the heat flux is close to zero. Then it increases fast in the freezing
front before it decreases again through the frozen layer. The reason why the heat
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flux decreases is the sphere geometry. In a rod the heat flux would be slightly
increasing towards the surface.

Since a defined position of the freezing front is demanded in Plank’s equation,
the freezing front is defined as the intersection of the largest derivative of the heat
flux, and the smallest derivative further out. See the lines between the circles in
Figure 3.13. The smallest derivative had to be calculated with 5 points due to
noise, which probably was caused by the differences in α around the sphere.
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Figure 3.13: Heat flux as a function of shell thickness at different angles
after 60 minutes

The figure shows cross-sections at different angles through Figure 3.12. The knuckle point shows

the estimated position of the freezing front.

If Plank’s assumptions were exact, the heat flux would have the shape of the
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unit step function at the freezing front. This way to estimate the freezing front
position is chosen because it gives a result which is close to a unit step function.
The simulated result is compared with the one measured in Table 3.4.

Table 3.4: Comparison between the measured and simulated freezing front
at different angles

Least square, 2 and 5 points
Angle L Simulated L Measured % Error

0 0.0187 0.0176 6.3
30 0.0181 0.0176 2.8
60 0.0161 0.0148 8.8
90 0.0124 0.01 4.0
120 0.0085 0.0057 49.1
150 0.01 0.0078 28.2
180 0.012 0.0133 -9.8

The error in the simulation is up to 50%, but this is not bad for estimating a local
α. It is worth noting that the simulation based on the estimated αs over predicts
the shell thickness, which may indicate that the estimated αs is too high. The
most likely systematic error is the method of estimating the freezing front in the
numerical simulation. To measure the temperature when the jelly changes from
transparent to white, and uses this temperature as the position of the freezing
front, would probably been better, but the necessary experiment has not been
performed. The error is largest where the shell thickness is small. This is because
the relatively shell thickness measurement is at its largest here. It is also because
heat flows away from this point in both directions. Then there is no levelling
because heat is leaving at one side and entering at the other. The method does
not compensate for this tangential heat flow. In Figure 3.14 the temperature, the
radial heat flux, and the tangential heat flux are plotted from the simulation every
10 minutes.
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Temperature (-10 to 0 �) – Radial heat flux (-0 to 1300W/m2) – Tangential heat flux (-150 to 100 W/m2)

Figure 3.14: Temperature and heat flux evolution in 10 minute time steps
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The first row of Figure 3.14 is at 0 minutes and the last is at 60 minutes. The
tangential heat flux has a positive direction counter-clockwise around the origin.
From 3.14 it is clear that heat will flow from the freezing front at an angle of 120˚
and leave the half sphere at other angles, causing a too high estimated α at 120˚
and nearby angles and too low in other places. The ratio between the tangential
and radial heat flux indicates that the error is around 10-15%, but it can be lower
because the tangential heat flux is smaller at the beginning of the experiment.

3.4 Discussion and conclusion

The thickness of the frozen shell in jelly combined with Plank’s equation can give a
usable estimate of the local α. More work on different geometries needs to be done
to find out what accuracy can be expected by the method, and find the application
area of the method. Very high or very low Biot’s numbers can cause problems. So
can large changes in the local α during freezing.

It is also necessary to find ways to correct for the tangential heat flux, and see
if accuracy can be improved by using one of the many modifications of Plank’s
equation. Another method for measuring the shell thickness than visual inspection
may improve the accuracy, and will allow estimation of α as a function of time. It
was tried unsuccessfully to measure the shell thickness during freezing with sonar
designed for finding cracks in steel. This failed because the echo from the freezing
front was blurred.

Other possible methods are for instance, to measure thickness optically, since
the jelly is transparent before it freezes, or to measure it with magnetic resonance
(MR). Since MR can be used to find the freezing front in any food with high water
content, an MR study will be particularly interesting.
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Chapter 4

Concluding remarks

Chapter 2 describes an instrument called thermal multimeter developed for finding
the thermal properties of materials where the thermal properties are highly depen-
dent on temperature. Chapter 3 describes a method for finding α during freezing.
The subjects are related in the way that successful measurement of the thermal
properties makes it possible to find α in new ways and with higher accuracy. It
is also necessary to have good control of the boundary conditions for a sample to
measure its thermal properties with high accuracy.

Some measurements were made with the thermal multimeter. These mea-
surements indicate an accuracy of 5% for measured thermal conductivity and 7%
for heat capacity everywhere except close to the initial freezing point. Measured
enthalpy is correct everywhere. The accuracy of the density measurement is esti-
mated. More measurements are necessary to optimise the instrument and verify
and possibly improve the accuracy. The method has proven to be reliable, and well
suited for measuring change in thermal properties as a function of temperature.
The instrument has performed well in measuring difficult materials between -50
and +40 �. The measuring time is long, up to four days. However, it is consid-
erably shorter than the time needed to get enough measuring points with plate
apparatus and adiabatic calorimeter to show how the thermal properties for a food
material changes with temperature. A method for freezing food with high water
content should be developed so that the thermal conductivity of the samples is
reproducible . Other possibilities for the instrument should also be explored. Heat
can be added so the whole sample and the whole shield have the same tempera-
ture. The instrument will then perform like an adiabatic calorimeter. Heat can
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be supplied and drained from the sample so the temperature and the temperature
difference over the sample is constant. The instrument will then operate similar to
a plate apparatus. It will not perform as well as a plate apparatus, since there is no
guard but the measurement will be more accurate than a transient measurement.
Finaly heat can be removed from the sample. This is in principle the same as con-
stant heating which is tested, but it makes it possible to investigate phenomena
such as sub cooling, hysteresis between cooling and heating and controlled freezing
of the sample inside the instrument.

The methods for using jelly to estimate local α must be regarded as interesting.
Its simplicity and ability to make differences in α visible make it practicable, well
suited for education and use in situations where it is important to prove without
doubt for non scientists that a local low α gives slow freezing. The method is
particular suited for showing:
- how α varies with the shape on object.
- how heat conduction through the support for the object influences freezing.
- how packaging influences α and which parts of the packaging causes most resis-
tance to heat flow.
- a visualization of α.

Research should be done to improve the accuracy of α which is measured by
this method. A weakness is that there is no easy way to make the collection of
measurement data automatic.
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Appendices

A Technical drawings

Figure A1, A2, A3 and A4 shows some of the parts in Figure 2.4. They are Tech-
nical drawings with measurements in mm (red text). The numbers reference to
details on each part.

1 Holes for steel tubes which holds the instrument together. (Figure A2 and A3)
1 Holes for heat bridge between ShC and SaC (Figure A1).
2 Screw holes for fastening the heater to each part.
3 Holes for thin steel pipes. These are the pipes which holds the sample in place.
4 Holes for Pt100 and thermopile sensors.
5 (Holes for) heat bridges between SaC and BS.
6 Slot for steel shield (2 in Figure A1).
7 The part of TS and BS which enclose the sample.
8 (Holes for) heat bridges between ShC and BHS.
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Figure A1: Technical drawings of some important parts of steel
1 Steel rods between SaC and ShC. 3 Steel tubes which holds the sample in place.
2 One of two steel shield between THS and BHS. 4 Device for handling sample expansion.
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Figure A2: Technical drawings of THS
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Figure A3: Technical drawings of BHS
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Figure A4: Technical drawings of some important parts of copper
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B Attached files

This thesis can be downloaded in PDF format from
http://urn.ub.uu.se/resolve?urn=urn:nbn:no:ntnu:diva-979
together with some of the files used for numerical simulation,
data acquisition, construction etc.
Se http://www.ub.ntnu.no/dravh/Brennvall attachment.zip

Explanation to attached files

Avhandling.pdf This thesis

FourierCoolingSlab.m Analytical solution for cooling of slab. (Section 1.3.1)

Simulation of jelly tops
GeletopShow-
Chart.m Presents charts from simulation of jelly tops (geltop12r4.f90)
GeletopVideo.m Make videos from charts shown in GeletopChowChart.m
geltop12r4.f90 * Source code simulation program for jelly tops
Matmatrix3.f95 Prepare result from geltop12r4.f90 to presentation in Matlab
GeltopT.avi Video, Temperature progress
GeltopQ.avi Video, Total heat flux progress
GeltopQR.avi Video, Radial heat flux progress
GeltopQA.avi Video, Tangential heat flux progress
{res} Folder, data from simulations of jelly tops

Simulation of thermal multimeter
MultimeterVis.m Program for visualising in Matlab
fs.m Function to GeletopChowChart.m and MultimeterVis.m
Multimeter.f90 * Program for thermal simulation of the thermal multimeter
Matmatrix3.f95 Prepare result from Multimeter.f90 to presentation in Matlab
{MPV} Folder, data from simulations
{Multimeter} Folder, data from simulations
{Multimeter Para-
meter Variation} Folder, data from simulations

AutoCAD model
k40.dwg AutoCAD model of the thermal multimeter
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Simulation of freezing of 10 mm deep water (Section 1.3.2)
These files are placed in the folder {Freezing of ice}
\Freezing.m Simulation program
\Chart.m Show result from simulation (Figure 1.3).
\ThermalProp Function to Freezing.m

Calculation of thermal properties from measured heat flux and
temperatures in the thermal multimeter
These files are placed in the folder {TM data acquisition program}
\Totalrun.m Program for calculating thermal

properties from measured data
Main functions in Totalrun.m. Can be run as separate programs
\PostProsessing.m Preparation of data from measurement

for Matlab
\CalibrationCharts.m Treating data from calibration runs
\CalibrationCharts -
comparason.m Show results from calibration measurements
\Measurements TM.m Calculating thermal properties
\Charts.m Generates charts from measurement
\Report.m Generates report from measurement
Sub functions are not included
\TargetDirectory.DAT

All the f90 simulation programs marked with a * ran on gridur.ntnu.no .
Se http://www.notur.org .
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