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Abstract

This thesis deals with the construction of a numerical method for solving two-
dimensional elliptic interface problems, such as fully developed stratified flow in
pipes. Interface problems are characterized by its non-smooth and often discon-
tinuous behaviour along a sharp boundary separating the fluids or other materials.
Classical numerical schemes are not suitable for these problems due to the irreg-
ular geometry of the interface. Standard finite difference discretization across the
interface violates the interfacial boundary conditions; therefore special care must be
taken at irregular grid nodes.

In this thesis a decomposed immersed interface method is presented. The im-
mersed interface method is a numerical technique formulated to solve partial differ-
ential equations in the presence of an interface where the solution and its derivatives
may be discontinuous and non-smooth. Componentwise corrections terms are added
to the finite difference stencil in order to make the discretization well-defined across
the interface. A method that approximates the correction terms is also proposed.
Results from numerical experiments show that the rate of convergence is approxi-
mately of second order.

Moreover, the immersed interface method is applied to stratified multiphase flow
in pipes. The flow is assumed to be fully developed and in steady-state. For turbu-
lent flow, both a low Reynolds number turbulence model and a two-layer turbulence
model are adopted in order to imitate turbulence in the flow field and in the vicinity
of the boundaries. The latter turbulence model is modified accordingly to account
for the effects of a wavy interface. In this case, the concept of interfacial roughness
is used to model the wavy nature of the interface.

Numerical results are compared with analytical solutions for laminar flow and
experimental data for turbulent flow. It is also demonstrated that the current numer-
ical method offers more flexibility in simulating stratified pipe flow problems with
complex shaped interfaces, including three-phase flow, than seen in any previous
approach.





Acknowledgements

This work has been carried out for the period September 2000 – July 2004 at the Nor-
wegian University of Science and Technology. The project was financed by the Nor-
wegian Research Council. The funding provided by the Scandinavia-Japan Sasakawa
Foundation for the participation at ICMF’04, Yokohama, Japan, is also gratefully
acknowledged.

I am very thankful to my supervisor, Professor Tor Ytrehus, for his advice, for help-
ful discussions and his encouragement throughout my research at the Norwegian
University of Science and Technology. I am also grateful to Zhi Lin Yang at SIN-
TEF Material and Chemistry, Flow Technology Team, who motivated me to write
my own codes, which gave me the necessary experience to develop the ideas that
finally led to my results.

I wish to thank Ole Martin Hansen for his effort in getting our own local ”super
computer” Goliat. I appreciate his hard work to get Goliat up and running, and of
course for giving me first priority access (as the only user). I realize now that with-
out the computing power offered this work would have been impossible to finalize. I
also wish to thank Reidar Kristoffersen for valuable discussions regarding numerical
code development and for providing such a cheerful atmosphere among the research
students.

I have also enjoyed the discussions, advice, encouragement and constructive criti-
cism from Vidar Alstad, Gisle Otto Eikrem, Tore Fl̊atten, Bin Hu, and my fellow
doctoral students at the ”department of Mechanics”, especially Alireza Ashrafian.

Finally, my family and friends have supported me through my studies. I owe them
my sincere thanks for putting up with me this exciting, but stressful period, which
had its ups and downs. I apologize to those who had to bear the brunt of that.

Petter Andreas Berthelsen
Trondheim, July 2004





Summary
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Berthelsen, P. A. & Ytrehus, T. (2004), Stratified smooth two-phase flow using the
immersed interface method, Submitted to Computers & Fluids.

Paper III

Berthelsen, P. A. & Ytrehus, T. (2004), Numerical modelling of stratified turbu-
lent two- and three-phase pipe flow with arbitrary shaped interfaces, Presented at
The 5th International Conference on Multiphase Flow, ICMF’04, Yokohama, Japan,
May 30–June 4.

Paper IV

Berthelsen, P. A. & Ytrehus, T. (2004), Calculations of stratified wavy two-phase
flow in pipes. Submitted to International Journal of Multiphase Flow.
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Chapter 1

Introduction

The introductory part of the thesis consist of six chapters. In this chapter, a brief
introduction to the topic of the thesis is given. Background for the research project
is provided, and the objective of the study is briefly stated. Then, in Chapter 2,
a short literature review is given on modelling stratified two-phase flow in pipes,
introducing the most common expressions and concepts. Chapter 3 presents the
two-dimensional model describing stratified multiphase flow in pipes. In Chapter 4
the composite, overlapping grid framework used for the numerical discretization of
the governing equations is described. Chapter 5 deals with the construction of a
finite difference method for problems with non-smooth and discontinuous solutions.
Finally, the papers are summarized and commented in Chapter 6, where concluding
remarks are given and some possible directions for further work are suggested.

1.1 Background

In order to maintain a high level of oil production on the Norwegian continental shelf,
it becomes increasingly important to devise new technical solutions for optimising
the oil production of existing fields. For this particular reason, a jointly run doctoral
research programme (PETRONICS), sponsored by the Norwegian Research Council
(NFR), was established in 2000 by ABB, Norsk Hydro ASA and 5 departments at
the Norwegian University of Science and Technology (NTNU). This collaboration is
an interdisciplinary programme which combines the fields of engineering cybernetics,
chemical engineering, fluid mechanics and production technology in order to focus
on optimised production and automatic control of oil wells and fields.

An important aspect of the programme is the understanding of and the ability to
predict the behaviour of multiphase flow in production pipelines. Multiphase flow is
a complex phenomenon. The presence of gas and water will affect the transport of
oil in the sense that the multiphase mixture will behave differently from the single-
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2 Introduction

phase flow. From a mathematical point of view, it can be considered as a field
which is subdivided into single-phase regions with moving boundaries separating
the phases. The difficulties encountered in deriving a physical formulation arise
from the presence of a wavy interface and the interaction between the deformed
interface and the flow structure in all phases.

In practical engineering problems, most multiphase flow systems have extremely
complicated interfacial geometries and motions; consequently, it is still not possible
to numerically resolve all details in the flow. Instead, various averaging techniques
are used to simplify the global aspects of the flow. In particular, several closure re-
lations must be specified in order to include terms like wall and interfacial friction.
These closure relations represent the main difficulties in formulating appropriate
engineering models. However, the steadily development of more sophisticated nu-
merical methods will eventually give better tools for predicting the flow, without
the dependency on empirical closure relations.

1.2 Objective of this study

A great deal of research has been carried out to investigate stratified multiphase
flow behaviour. These studies may be classified in the following three categories:

Experimental studies Controlled experiments are carried out in laboratories. Early
studies focused mostly on global properties such as pressure drop and in situ
phase fractions, leading to simple empirical correlations. Later, more atten-
tion has been given to mechanisms and details of the flow field, improving the
physical understanding of multiphase flows.

Phenomenological models A mechanistic approach based on simplified physical
models is used to determine the frictional pressure drop and in situ phase
fractions. This semi-analytical method treats all phases as one-dimensional
bulk flows, neglecting the detailed velocity profiles over the cross sections.
Empirical correlations based on the average velocities are used to calculate
frictional terms.

Detailed flow field analysis The computations are extended to include details of
the flow field such as velocity profiles, turbulent intensity and shear stress dis-
tribution. Appropriate turbulence models are used to mimic turbulent stresses,
and interfacial waves are accounted for through the boundary conditions at
the interface.

The focus of this thesis is on detailed flow field analysis with particular emphasis on
the numerical aspects.
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Although experimentation continues to be important, the use of computational
fluid dynamics (CFD) in engineering applications have increased extensively in the
past decade. There are basically two reasons for this: a tremendous increase of
available computing resources has reduced the cost of using numerical approaches,
and the numerical models and algorithms have become more advanced and reliable.

Various techniques for multipurpose use have been successfully employed in mod-
elling evolving surfaces. But these methods have their practical limitations since
transient problems are still extremely computationally expensive to solve in multiple
spatial dimensions. Instead, it is necessary to introduce some means of simplification
to the mathematical formulation. For stratified flow in pipes, the flow is commonly
assumed to be fully developed so that it is sufficient to only consider a cross section
of the pipe.

Following a classical approach, the equations governing the flow are then dis-
cretized and solved on a body-fitted bipolar grid, where the interface is aligned
along a grid line. But this numerical procedure is confined to only two-phase flow
with simple interface configurations. For typical gas-liquid flow, the assumption
of a flat interface is realistic in most practical cases, but for low liquid loads, or
liquid-liquid flow, the interface may take a complex curved shape. One of the major
disadvantages of using body-fitted grids is the difficulty in representing a complex
shaped interface, or even multiple interfaces, without putting too much effort into
the grid generation.

The main objective of this study is to investigate the possibilities of using ad-
vanced numerical methods to predict stratified multiphase flow in pipes. Particular
attention is given to the numerically treatment of the interface. One goal is to con-
struct a numerical model which is more flexible than seen in previous attempts, i.e.
capable of solving both two- and three-phase flow with arbitrary shaped interfaces.
Towards this aim, ideas originally developed by Leveque & Li (1994) are refined
and adapted for this problem. To validate the methods, numerical simulations are
compared with analytical and experimental results provided in the literature.





Chapter 2

A Brief Review on Stratified Flow
Models

2.1 Introduction

Multiphase pipe flow in different forms occurs in many major industries such as the
petroleum, nuclear and chemical industries. In this context, the term multiphase
flow refers to both two-phase flow (gas-liquid or liquid-liquid) and three-phase flow
(gas-liquid-liquid). For the petroleum industry, a gas phase is usually gaseous hy-
drocarbons (natural gas), and a liquid phase is either liquid hydrocarbons (oil) or
water or a combination of both. The occurrence of multiphase mixtures may arise
from production and transportation of hydrocarbons where the gas and the liquid
phase initially are separated or a change in pressure and temperature initiate a sep-
aration of unprocessed reservoir fluids. Water may arise naturally in the reservoir
or be injected for enhanced recovery of hydrocarbons.

Through several years researchers have contributed to the understanding of mul-
tiphase flow behaviour. This knowledge is important for many reasons, especially
for design and operational purposes. Several different flow patterns can be encoun-
tered in two- and three-phase pipe flow. For instance, the different flow regimes in
horizontal and near-horizontal gas-liquid flow are usually classified as follows (see
Figure 2.1):

Stratified flow The liquid flows along the bottom of the pipe. The interface is
either smooth (stratified smooth) or wavy (stratified wavy).

Annular flow The liquid flows as an annular film on the wall. The film may be
wavy and droplets are usually dispersed in the gas phase. The film at the
bottom is usually thicker than the film at the top for horizontal and near-
horizontal flow.

5



6 A Brief Review on Stratified Flow Models

Stratified flow

Annular flow

Elongated bubbles

Slug flow

Bubble flow

Fig. 2.1: Flow patterns in gas-liquid flow.

Intermittent flow Liquid plugs, free of entrained gas bubbles, are separated by
elongated gas bubbles (elongated bubbles) or the liquid phase contains small
gas bubbles creating a more chaotic flow pattern (slug flow).

Bubble flow Bubbles are dispersed in the continuous liquid phase.

Stratified flow is the most well-behaved and desirable flow regime in general.
Although the nature of stratified flow is much simpler than other flow regimes and
probably the best understood one, it is still given a lot of attention. One reason
for this is that information about stratified flow can be used as a starting point for
analysing transitions to other flow patterns.

The remaining part of this chapter will focus on the stratified flow regime. Only
a brief review will be made here, which is limited to the modelling of steady-state
two-phase flow, introducing the most common expressions and concepts. A more
detailed review of other flow regimes in two- and three-phase flow can be found in
the thesis of Valle (2000), among others.
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2.2 One-dimensional models

2.2.1 The Lockhart-Martinelli parameter

Early methods describing two-phase flow have been mainly empirical, such as the
parameters proposed by Lockhart & Martinelli (1949). They showed correlations
between the pressure drop, represented by the multipliers ϕG and ϕL, and the pa-
rameter χ defined as the square root of the ratio of the pressure drop if the liquid
flowed alone in the pipe to the pressure drop if the gas flowed alone, e.g.

χ2 =
|dp/dz|Ls

|dp/dz|Gs

,

where the subscript Ls denotes single phase liquid and Gs denotes single phase gas.
The pressure gradient multipliers ϕG and ϕL are defined as

ϕ2
G =

|dp/dz|tp
|dp/dz|Gs

and ϕ2
L =

|dp/dz|tp
|dp/dz|Ls

,

where tp denotes the two-phase system. They also correlated the phase fractions
with the parameter χ.

2.2.2 Mechanistic approach

A more physical approach is based on a mechanistic model for the frictional pressure
gradient and in situ phase fractions (e.g. Govier & Aziz, 1972; Agrawal et al., 1973;
Taitel & Dukler, 1976). For stratified flow, assuming fully developed flow conditions
with no hydraulic gradient, the steady-state momentum conservation equations can
be expressed as

−αGA
dp

dz
− τGSG − τiSi − ρGαGAg sin θ = 0

in the gas phase and

−αLA
dp

dz
− τLSL + τiSi − ρLαLAg sin θ = 0

in the liquid phase, where the subscripts G and L denote the gas and liquid phase,
respectively, α is the phase fraction, dp/dz is the pressure gradient, ρ is the phase
density, A is the pipe cross sectional area, θ is the pipe inclination angle and SG, SL

and Si are the wetted perimeters along the wall and the interface.
The shear stresses are commonly evaluated from

τG = fG
ρGū

2
G

2
, τL = fL

ρLū
2
L

2
and τi = fi

ρG(ūG − ūL)2

2
,
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where ūG and ūL are the area-averaged bulk velocities in the gas phase and the
liquid phase, respectively. Several models exist for the friction factors fG, fL and
fi. The gas wall and liquid wall friction factors are almost always calculated using
correlations developed for smooth or rough wall single-phase pipe flow. These models
are usually Reynolds number dependent where the Reynolds number is based on an
equivalent hydraulic diameter for two-phase flow. For instance, Taitel & Dukler
(1976) used a modified form of the Blasius formula for the friction factors, i.e.

fG = CGRe−nG and fL = CLRe−nL ,

where CG = CL = 0.046, n = 0.2 for turbulent flow and CG = CL = 16, n = 1 for
laminar flow. The phase Reynolds numbers are given as

ReG =
ρGDGūG

µG

and ReL =
ρLDLūL

µL

,

where the hydraulic diameters DG and DL are used as suggested by Agrawal et al.
(1973),

DG =
4αGA

SG + Si

and DL =
4αLA

SL

.

This definition of the hydraulic diameters implies that the wall friction of the liquid
phase is similar to that for open-channel flow and of the gas phase is similar to that
of closed-duct flow.

In evaluating the interfacial shear stress, Taitel & Dukler (1976) used fi = fG

and assumed ūG >> ūL; thus, reducing the interfacial shear stress to be equal to the
gas phase wall shear stress. The assumption that fi equals to fG gives an acceptable
approximation for stratified smooth flow; however, for stratified wavy flow this is
acknowledged to give too low estimates of the interfacial shear stress.

It has also been questioned whether the single-phase approximation gives accept-
able results in estimating the wall shear stress in two-phase flow (Espedal, 1998).
Later studies in mechanistic modelling have mostly been focused on finding better
empirical correlations for the wall and interfacial friction terms. The effect of interfa-
cial waves plays an important role in these investigations. Espedal (1998) performed
an extensive review of different friction models, which will not be repeated here. He
compared the models with his own experimental data and found large deviations
among the results, indicating a possible shortcoming in the empirical approach.

The discussion above has been restricted to gas-liquid flow. However, similar
mechanistic approaches are used for modelling steady-state liquid-liquid (Brauner
& Maron, 1989) and gas-liquid-liquid (Taitel et al., 1995; Khor et al., 1997) flows,
where the main difference lies in the definition of the hydraulic diameters.
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2.3 Two-dimensional models

Most studies on stratified flow in pipes have been carried out using phenomenolog-
ical models where various averaging techniques are used to achieve more practical
models. Many mechanistic models are applied with reasonable assumption, but
these models only predict the integral flow characteristics such as the axial pressure
drop and the in situ phase fractions. The only way to obtain the velocity profiles,
shear stress distribution and other local flow properties is from a more rigorous
treatment of the Navier-Stokes equation. Many researchers have followed this more
exact approach, both analytically and numerically.

2.3.1 Laminar flow

Analytical solutions have been obtained for laminar two-phase flow based on simpler
or approximated forms of the interface geometry. Derived from the Navier-Stokes
equation, the axial velocity profile, u, in both fluids can be described by the Poisson
equation

µ

(
∂2u

∂x2
+
∂2u

∂y2

)
=
dp

dz
+ ρg sin θ,

assuming steady and fully developed flow conditions. In particular, the solution can
be expressed in terms of Fourier series or Fourier integrals using a bipolar coordinate
system (e.g. Bentwich, 1964; Brauner et al., 1996; Biberg & Halvorsen, 2000), where
the interface is commonly aligned along one of the constant curvature lines. Both
Brauner et al. (1996) and Biberg & Halvorsen (2000) gave a thorough analysis of
the flow, improving the understanding of laminar two-phase flow.

For more complex shaped interfaces, accurate solutions for laminar flow can be
obtained numerically. In flow systems with low density difference, the surface-forces
may become important, which may lead to a curved interface (Gorelik & Brauner,
1999; Ng et al., 2001). A curved interface affects the fluids’ contact area with the pipe
wall, and it may have a crucial effect on the pressure drop, particularly for systems
with high viscosity ratios. Recently, Ng et al. (2002) used a boundary element
method to solve for laminar stratified pipe flow with arbitrary shaped interfaces.
They used the Young-Laplace equation, expressing the balance of hydrostatic and
surface tension effects, to determine the interface shape (Ng et al., 2001).

2.3.2 Turbulent flow

Yet no rigorous analytical solution exists for turbulent two-phase flow in pipes;
therefore, it is necessary to resort to numerical techniques. Among the first few
successful attempts to resolve the turbulent flow field numerically in two phase
flow are those presented by Akai et al. (1980, 1981) for rectangular channels. For
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pipe flow, Shoham & Taitel (1984) discretized and solved the steady-state axial
momentum equation in the liquid region using a mixing-length turbulence model.
The computations were done in a bipolar coordinate system for convenient mapping
of the irregular physical domain. The gas region was treated as a bulk flow, and
an empirical correlation was used to couple the two phases through the interfacial
shear stress. The spatial dependency of the turbulent viscosity was ignored in their
axial momentum equation, casting some doubts about their results.

Based on the work of Akai et al. (1981) and Shoham & Taitel (1984), Issa (1988)
included the gas region in the analysis and used a two-equation k − ε turbulence
model with wall functions to calculate stratified smooth two-phase flow in pipes.
His results were compared with Shoham & Taitel (1984), and major differences in
the computed flow fields were observed. Issa (1988) explained these discrepancies by
the importance of resolving the turbulent gas phase in order to provide for correct
estimates of the interfacial shear stress.

Newton & Behnia (2000) extended the approach of Issa (1988) by applying a low
Reynolds number k − ε turbulence model to solve stratified smooth gas-liquid flow
in pipes. Their model did not rely on empirical wall functions and could therefore
predict the wall and interfacial shear stress distributions directly. Later, Newton
& Behnia (2001) extended their two-dimensional model for stratified smooth two-
phase flow to allow for interfacial waves. A simple empirical shear stress distribution
was imposed on the interface in order to modify their model for stratified wavy
flow. Although they observed over-predicted turbulence level in the gas phase, their
calculations were found to compare favourably with experimental measurements
provided that the interfacial conditions remain steady or quasi-steady.

Meknassi et al. (2000) extended the work of Liné et al. (1996) to circular pipes
using a bipolar grid. They used the concept of interfacial roughness to account for
the wavy gas-liquid interface. The interfacial roughness was estimated from exper-
imental data, and a rough wall function was used to calculate the interfacial shear
stress. The effect of secondary flow was considered using an anisotropic turbulence
model. The calculated velocity profiles in both phases were compared with the ex-
perimental data provided by Lopez (1994) and Strand (1993), and the agreement
with the measurements were satisfactory if secondary flows were taken into account.

A slightly different approach than any of the above is given by Mouza et al.
(2001). They used a commercial CFD code to calculate the velocity profiles and
shear stress distributions in gas-liquid flow for pipe and channel geometries. The
objective of their work was to explore the potential of a general purpose CFD code
for computing detailed characteristics of stratified flow. The gas and liquid phases
were treated separately and coupled through the basic condition of continuity of
velocity and shear stress. Calculated values were found to be in good agreement
with experimental data.

The various models described above have proven that there is a potential for using
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advanced CFD-technology in order to compute detailed characteristics of stratified
two-phase flow. But, there is still a need for much more work in this area.





Chapter 3

Mathematical Formulation

A two-dimensional formulation of the stratified flow problem is presented in this
chapter. Mathematically, flow of completely separated fluids can be considered
by dividing the flow field into single-phase regions where appropriate interfacial
boundary conditions couple the phases. A level set function is used to determine
the location of the interface.

For brevity, only gas-liquid flow is considered here, but, as shown in Paper III,
extension to three-phase flow can also be done by introducing a second level set
function.

3.1 Momentum equation

For fully developed, incompressible and stratified two-phase flow in pipes, the time-
averaged steady-state axial momentum equation for each phase can be written as
(see Appendix A)

∂

∂x

(
µe
∂u

∂x

)
+

∂

∂y

(
µe
∂u

∂y

)
− dp

dz
− ρg sin θ = 0, (3.1)

where u is the time-averaged axial velocity, ρ is the density, g is the gravitational
acceleration, θ is the pipe inclination angle and dp/dz is the mean pressure gradient
in the axial direction.

Assuming isotropic turbulence, the effective viscosity, µe, is defined as

µe = µ+ µt,

where µ is the molecular viscosity and µt is the turbulent viscosity. The turbu-
lent viscosity vanishes for the laminar flow, reducing the effective viscosity to the
molecular viscosity.

13
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x

y

y

z

uL

uG

θρL, µL

ρG, µG

c φ <
0

φ >
0

Fig. 3.1: Stratified wavy gas-liquid flow in an inclined pipe.

3.2 Level set formulation

The interface between the two phases, Γφ, is represented by the zero level of a smooth
function φ (Osher & Sethian, 1988),

Γφ =
{
(x, y) ∈ R

2 | φ(x, y) = 0
}
.

This auxiliary function is defined as the signed distance to the interface,

φ(x, y) = ± dφ,

where dφ is the normal distance to the interface and the sign of φ indicates on which
side of the interface the point (x, y) is located. The fluid properties can be defined
directly from the level set function as (see Fig. 3.1)

ρ(φ) =

{
ρL if φ < 0,
ρG if φ ≥ 0,

and µ(φ) =

{
µL if φ < 0,
µG if φ ≥ 0,

assuming the interface to be infinitely thin. The subscripts L and G denote the
liquid phase and the gas phase, respectively.

One advantage using the level set formulation is that for any given point (x, y) the
exact distance to the interface is known. This becomes beneficial when evaluating
the turbulent length scales in the turbulence model described below.
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3.3 Turbulence model

3.3.1 The two-layer model

In this turbulence model, the whole domain is subdivided into a near-surface,
viscous-affected inner region and a outer region away from the boundaries. The
separation of the two regions is determined by a wall-distance based Reynolds num-
ber defined as

Rk =
ρ
√
kdeff

µ
,

where the effective distance, deff, for smooth surfaces is given as the shortest distance,
d, to a surface, either the wall or the interface. The standard two-equation k − ε
model is used only in the outer region, while the inner region is resolved with a
simpler one-equation k − 
 model.

The two models should be matched in a region where viscous effects become
negligible. Chen & Patel (1988) found that their results were insensitive to the
matching criterion as long as Rk was greater than 200, and they suggested Rk = 250
as a suitable matching criterion.

Generally, the eddy viscosity relation can be written as

µt = Cµρ
√
k
µ, (3.2)

where the dimensionless constant Cµ is equal to 0.09, and 
µ is the turbulence length
scale. The turbulent kinetic energy (TKE), k, is determined by the model equation

∂

∂x

(
µk
∂k

∂x

)
+

∂

∂y

(
µk
∂k

∂y

)
+ µt

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]
− ρε = 0, (3.3)

where µk = µ+ µt/σk, for σk = 1.0.
The length scale 
µ is in the outer region given by


µ =
k3/2

ε
, (3.4)

and the dissipation rate, ε, is found from the model equation

∂

∂x

(
µε
∂ε

∂x

)
+

∂

∂y

(
µε
∂ε

∂y

)
+ C1ε

ε

k
µt

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]
− C2ερ

ε2

k
= 0, (3.5)

where µε = µ+ µt/σε, with the constants σε = 1.3, C1ε = 1.44 and C1ε = 1.92.
In the viscous-affected inner region, the turbulence length scale takes the form

as proposed by Wolfshtein (1969),


µ = C�deff

(
1 − e−Rk/Aµ

)
, (3.6)
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where the constant C� is chosen as κ/C
3/4
µ to match the log-layer solution, and

κ = 0.418 is the von Karman constant. The model coefficient Aµ = 70.0 is selected
so that the model recovers the additive constant in the logarithmic law.

The dissipation rate is represented by

ε =
k3/2


ε
(3.7)

in the inner region, where the length scale 
ε is given as


ε = C�deff

(
1 − e−Rk/Aε

)
.

The requirement that ε→ 2kµ/ρd2 as d→ 0 gives Aε = 2C� = 5.08.
To summarize, the two-layer formulation consists simply of using Eqs. (3.6) and

(3.7) near physical boundaries, and switching abruptly to Eqs. (3.4) and (3.5) at the
matching point Rk = 250.

3.3.2 The modified two-layer model

The interactions between the wave field and the flow in both phases are quite com-
plex. For simplifications, the wavy interface can be treated by an equivalent in-
terfacial roughness. The concept of representing the interfacial waves as surface
roughness requires modifications to the turbulence model described above.

Roughness has the effect of increasing the drag force exerted by the rough surface
on the flow. This increased flow resistance can be modelled by displacing the effective
position of the surface by the height ∆d (Rotta, 1962; Jackson, 1981); hence, the
shear stress near the rough surface is artificially increased by this shift of origin.

Patel & Yoon (1995) adopted this modification to their two-layer turbulence
model and defined the effective distance to a rough surface as

deff = d+ ∆d.

The displacement height can be normalised as follows:

∆d+ =
ρ∆duτ
µ

, (3.8)

where ∆d+ is expressed as a function of the normalised roughness height R+
s (Cebeci

& Smith, 1974; Cebeci & Chang, 1978),

∆d+ = 0.9
(√

R+
s −R+

s e
−R+

s /6
)
. (3.9)

This relation is a curve fit to the correlation of Rotta (1962), and it is valid for
4.535 < R+

s < 2000. The lower bound corresponds to hydraulically smooth surfaces,
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where ∆d+ ∼= 0. The local friction velocity, uτ =
√
τ/ρ, is based on the rough

surface shear stress,

τ = (µ+ µt)
∂u

∂n
,

where ∂/∂n denotes the derivative in the normal direction of the surface.
The normalised roughness height, R+

s = ρRsuτ/µ, is given from the equivalent
sand-grain roughness height, Rs, and it is introduced as a means of converting
roughness data obtained from other roughness types and other flow configurations
into a roughness measure equivalent to the sand-grain measurements of Nikuradse
(1933). Based on this measure, the rough-surface turbulent flow is divided into the
following three regimes (Ligrani & Moffat, 1986):

R+
s < 2.25 : Hydraulically smooth.

2.25 ≤ R+
s ≤ 90 : Transitional-roughness.

R+
s > 90 : Fully rough.

In order to take into account the effects of a wavy interface, the effective distance
in the turbulence model described in the previous section can be defined as

deff = min(dw, dφ + ∆dφ),

where dw is the normal distance to the wall and ∆dφ is defined by Eq. (3.9) for a given
equivalent roughness height estimated from the interfacial waves (see Section 3.3.3).
The interfacial friction velocity used in Eq. (3.8), ūτ,i =

√
τ̄i/ρ, is based on the

average interfacial shear stress,

τ̄i =
1

2c

∫ c

−c
(µ+ µt,i)

∂ui

∂n
ds, (3.10)

where c is half the width of the interface, as indicated in Fig 3.1, and the subscript
i denotes the interface. The displacement height, ∆dφ, takes different values in the
gas and the liquid phase due to the difference in density and viscosity. It should be
noted that for a smooth interface, R+

s → 0 and ∆d+
φ → 0, the turbulent viscosity,

µt, is fully damped towards the interface.
Durbin et al. (2001) found it necessary to also delete the damping of the turbulent

viscosity to accommodate the fully rough conditions. They suggested the simple
linear interpolation

Aµ = max
[
Amin
µ , A0

µ(1 −R+
s /90)

]
,

where A0
µ is the value for the smooth case (A0

µ=70) and Amin
µ was set equal to

one. A similar approach for the wavy gas-liquid flow was found to introduce too
much turbulent diffusion in both phases. Instead, the turbulence damping near the
interface was reduced in the liquid phase only. The expression above was used,
where Amin

µ was conveniently chosen as 20.
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3.3.3 Equivalent interfacial roughness

It remains to provide a link between the equivalent interfacial roughness and the
interfacial waves. Several investigators have proposed different models for estimating
the interfacial roughness (e.g. Charnock, 1955; Oliemans, 1987; Hamersma & Hart,
1987; Srichai, 1994). The discussion below is limited to the approach presented in
Paper IV, but more details is given in the thesis of Espedal (1998) and the references
therein.

The influence of the interfacial roughness on the interfacial momentum transfer
has been devoted considerable attention in environmental engineering. Charnock
(1955) linked the surface roughness to the frictional velocity by the following ex-
pression:

Rs = β
u2
τ,i

g
,

where the Charnock parameter, β, is between 0.36 and 1.05 for deep water waves.
Rosant (1983) proposed to modify β for pipe flow as follows:

β = 1238

(
ρG

ρL

)
min(αL, 0.1),

where αL is the liquid phase area fraction.
Meknassi et al. (2000) estimated the Charnock parameter from a large data bank

(Strand, 1993; Lopez, 1994) and found a close relation to the formulation given by
Rosant (1983). The equivalent roughness height of the interface was approximated
for a given experimental estimation of the friction factor using a classical relationship
between friction factor and roughness in turbulent flow. This method of obtaining
the roughness was then compared with the value determined from the experimental
profile of longitudinal velocity above the waves using the experimental data of Strand
(1993). They concluded that the values were very close.

Following Meknassi et al. (2000), the equivalent roughness can be estimated from
Espedal’s (1998) data using Colebrook’s (1933) equation,

1

2
√
fi

= −2 log

(
2.51

2ReG

√
fi

+
Rs

3.7DG

)
,

where fi is the interfacial friction factor, ReG is the gas Reynolds number, and DG

is the hydraulic diameter in the gas phase. The data presented in Paper IV gave
a wide scattered result for the Charnock parameter, ranging from 0.1 to 0.2, and
Rosant’s (1983) correlation gave in most cases lower values for β. According to Liné
et al. (1996) the order of magnitude of β should be consistent, but the Charnock
parameter cannot be constant for various flow conditions. A sensitivity analysis
showed that the choice of Charnock parameter, within the range 0.1–0.2, had an
effect on the calculations, but not to dramatic as large changes in the Charnock
parameter only led to small changes in the calculations.
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3.4 Boundary conditions

At the pipe wall, the boundary conditions for the velocity, u, and the TKE, k, are
given by

uw = 0 and kw = 0,

where the subscript w denotes the boundary value at the wall. The turbulent vis-
cosity and the dissipation rate is given explicitly by Eqs. (3.2) and (3.7), where the
limiting values for deff = d→ 0 are

µt,w = 0 and εw = lim
d→0

2µk

ρd2
.

To model the wavy interface, more complex boundary conditions are required.
The steady nature of the present model rules out the use of an unsteady interface.
Instead, the wavy interface must be accounted for by using approximate methods.
Since the wavy interface is already treated as a rough interface it is reasonable to
continue this approach when determining the interfacial boundary conditions.

It is customary to use empirical wall functions for rough surfaces to calculate
the interfacial velocity and shear stress (e.g. Akai et al., 1981; Issa, 1988; Meknassi
et al., 2000). However, the two-layer model resolves the turbulence in the vicin-
ity of the interface, allowing for a direct calculation of the interfacial shear stress.
Therefore, assuming a nonzero, finite value for the TKE, the turbulent viscosity, µt,
takes a nonzero value at the interface for the non-smooth case. The requirement
of continuity in velocity and shear stress yields the following interfacial boundary
condition for the velocity field

ui,L = ui,G,

and

(µ+ µt,i)L
∂ui,L

∂n
= (µ+ µt,i)G

∂ui,G

∂n
,

where ∂/∂n denotes the derivative normal to the boundary and the subscript i
denotes the interfacial boundary value.

In the early work of Akai et al. (1981) it is suggested that the continuity condition
for the TKE is not always necessary. They explained this by the large scale eddies
containing a large amount of energy produced by the flow separation in the gas phase.
This is considered not to be a concern in the liquid phase. The boundary condition
on k for a fully rough surface is u2

τ/
√
Cµ. Similar expression was proposed by Rodi

(1993) for wind-induced shear stress at a free surface, and adopted by Newton &
Behnia (2001) for both the gas and the liquid sides of the interface. In this case,
since the interfacial shear stress is equal in both phases, the level of the TKE at the
interface will differ by the ratio of the fluid densities. Meknassi et al. (2000) used
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this boundary condition only on the gas side, and assumed that k takes a maximum
value on the liquid side of the interface, i.e. ∂k/∂n = 0.

The present model uses a similar boundary condition on k as proposed by Newton
& Behnia (2001) for a fully rough interface. On a smooth surface, k is equal to
zero, and Durbin et al. (2001) suggested a simple quadratic interpolation for the
transitional regime. Therefore, the boundary condition used on the TKE at the
interface, ki, takes the form

ki =
u2
τ,i√
Cµ

min
[
1, (R+

s /90)2
]
,

on both sides of the interface. The local interfacial friction velocity, uτ,i =
√
τ̂i/ρ, is

approximated by a power law distribution of the interfacial shear stress (Newton &
Behnia, 2001),

τ̂i =

(
1 +

1

m

)
τ̄i

(
1 − s

c

)1/m

,

where m = 6.6, c is half the width of the interface, and s is the distance from
the vertical centerline along the interface. The average interfacial shear stress, τ̄i,
is estimated from the flow field by Eq. (3.10). This empirical distribution gives
maximum value for the interfacial TKE at the vertical center line of the pipe, and
the level of turbulence will be reduced close to the wall.



Chapter 4

The Grid Structure

The governing equations presented in Chapter 3 are discretized and solved using a fi-
nite difference scheme on a composite, overlapping grid (Chesshire & Henshaw, 1990;
Henshaw & Schwendeman, 2003) with local grid refinements (Martin & Cartwright,
1996; Martin, 1998) near the interface and the wall. This chapter describes the grid
structure used for the multiphase pipe flow calculations.

4.1 Composite, overlapping grid

Most practical flow problems involve complex geometries which are not easily fit
with Cartesian grids. The idea behind a composite grid framework is to divide a
complex computational domain into simpler subdomains, so that every subdomain
can be covered with a component grid. Each component grid is logically rectangular,
and it has its own coordinate transformation, or mapping function, defined as

(x, y) = Φ(ξ, η),

from the computational space (ξ, η) to the physical space (x, y). The component
grids may overlap to cover the entire computational domain.

Every point on a component grid are classified as one of the following:

- Discretization point. A point is a discretization point if it can be discretized
in terms of points on the same component grid which are discretization points
or interpolation points.

- Interpolation point. An interpolation point is a point that can be interpolated
from discretization or interpolation points on another component grid.

- Exterior or unused point. If the point is not classified as any of the above,
then it is an exterior or unused point.

21
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In addition, the computational boundaries on each component grid are classified as
a physical boundary, a periodic boundary or an interpolation boundary.

The partial differential equations are discretized and solved in computational
space on each component grid separately. Grid function values at interpolation
points (interior or boundary) of a component grid are obtained by interpolation
from interpolee points on another component grid at every iteration step. The
interpolation is either explicit (the interpolee points are all discretization points) or
implicit (some of the interpolee points are interpolation points). The interpolation
is done in computational space using standard interpolation techniques where the
interpolation point, (x, y), is given in computational space coordinates using the
inverse mapping (ξ, η) = Φ−1(x, y).

The overlapping grid framework used for solving stratified flow in pipes consists
of two base component grids describing half the cross section of a pipe: a rectangular
and a circular grid. The grid nodes are cell centered, and the grid function values
are obtained by an explicit, two-dimensional Lagrange interpolation of degree two
at interpolation points. This quadratic interpolation is used in order to obtain
second order accuracy when solving second order elliptic equations (see Chesshire
& Henshaw, 1990, for further details).

4.1.1 Discretization in computational space

The discretized equations are solved in the computational space (ξ, η). It is therefore
convenient to rewrite the governing equations using a general orthogonal, curvilinear
coordinate system which represents the computational domain.

Let the general orthogonal, curvilinear system (ξ, η) be related to a Cartesian
system (x, y) so that the element of arc length ds is given by

(ds)2 = (dx)2 + (dy)2 = (lξdξ)
2 + (lηdη)

2.

The metric stretching factors lξ and lη defines the arc length along the curvilinear
ξ- and η-coordinate lines, and they are given as

lξ =

√(
∂x

∂ξ

)2

+

(
∂y

∂ξ

)2

and lη =

√(
∂x

∂η

)2

+

(
∂y

∂η

)2

.

The gradient of a scalar grid function v is in the curvilinear system given as

∇v =

(
1

lξ

∂v

∂ξ
,

1

lη

∂v

∂η

)
,

and the divergence of any vector A = (A1, A2) is

∇ · A =
1

lξlη

[
∂

∂ξ
(lηA1) +

∂

∂η
(lξA2)

]
.
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Then any of the elliptic equations in Chapter 3, given in the general Cartesian form

(βvx)x + (βvy)y = f(x, y),

can be rewritten as
(βξvξ)ξ + (βηvη)η = lξlηf(ξ, η) (4.1)

for a component grid in computational space, where v denotes any of the flow
variables, and

βξ =
lη
lξ
β and βη =

lξ
lη
β,

for the diffusion coefficient β.
Further, let the logically rectangular and uniform grid [a, b] × [c, d] describe the

component grid. The grid nodes are cell centered and equally spaced,

h = (b− a)/M = (d− c)/N,

where M and N are the number of gridpoints in the ξ- and η-direction, respectively.
The grid coordinates are defined as

ξi = a+ ih, ηj = c+ jh for 0 ≤ i ≤M, 0 ≤ j ≤ N,

and the numerical approximation of v(ξi, ηj) is written as Vi,j. Then the left-hand-
side of Eq. (4.1) can be approximated with the following discretization in the com-
putational domain:

LβhVi,j =
βξi+1/2,j(Vi+1,j − Vi,j) − βξi−1/2,j(Vi,j − Vi−1,j)

h2

+
βηi,j+1/2(Vi,j+1 − Vi,j) − βηi,j−1/2(Vi,j − Vi,j−1)

h2
, (4.2)

where
βξi+1/2,j = βξ(ξi+1/2, ηj) and βηi,j+1/2 = βη(ξi, ηj+1/2).

It should be noticed that the finite difference stencil in Eq. (4.2) is not well-
defined across physical interfaces where the solution may not be smooth and contin-
uous. For those grid cells adjacent to an interface, a modified discretization is used.
The numerical issues related to this modification are fully discussed in Chapter 5.

4.2 Local grid refinement

A major characteristic of all turbulent flows is the large variety in length scales.
Although large scales of turbulent motions are the most energy containing motions,
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small scale motions play a crucial role in transferring and dissipating the energy.
Therefore these small scale motions need to be sufficiently resolved, i.e. very high
grid resolution is needed at the regions where these motions are likely to occur, such
as near the solid walls and the interface.

The choice of grid resolution is a compromise between the numerical accuracy
wanted and the computational resources available. Since small scale effects occur
only in small parts of the domain the grid is refined locally only where it is needed.
For turbulence models applied to the viscous sublayer, such as two-layer models and
low Reynolds number models, it is very important that the region below approxi-
mately y+ = 30 is sufficiently resolved, where y+ is the local wall unit distance. A
goal for this work has been to obtain adequate resolution of the viscous sublayer.
This has been achieved by using a grid cell spacing of approximately 2–3 y+-units
at the finest level.

4.2.1 Block-structured subgrids

The local grid refinement approach adds new refinement grids where the variations
of the turbulent quantities are estimated to be large. The grid cells that are tagged
for refinement are grouped together using the point clustering algorithm of Berger &
Rigoutsos (1991) to form efficient block structured patches which cover the tagged
regions. In this way, areas that need higher resolution can be covered with a rela-
tively small number of refined subgrids.

The point clustering algorithm is as follows (see Fig. 4.1):

1) The smallest box possible is placed around the tagged cells. Check if this box
satisfy the grid efficiency requirement,

neff =
number of tagged cells

total number of cells refined
≥ nmin (= 0.8 in this work).

If neff < nmin and the box is sufficiently large, then proceed to the next step.

2) Split the box in two. The position of the split, the cut point, is found by using
a histogram formed from the number of tagged cells in each plane normal to
both coordinate directions. Use the following prioritized order to determine
the cut point:

i) Look for gaps in the tagged cells (the histogram, Σ, goes to zero).

ii) Look for inflection points (places where the sign of the second derivative,
�, of the histogram changes). The cut point is located at the biggest
inflection point.

iii) Bisect the box.
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Fig. 4.1: Box splitting of tagged cells (•) where solid lines denote the old box
boundary and the dashed lines denote the new sub-boxes boundaries. (a) The box
is split in two sub-boxes at the biggest inflection point (change of sign of � with
largest difference); (b) The box is split at gaps in tagged cells (Σ = 0).

3) After the box is split in two, step 1 is repeated for each one of the two new
sub-boxes.

Then, after the box splitting, the new subgrids are refined and, until adequate
resolution is obtained, tagged for further point clustering and refinement.

The refinement is done in computational space, and the refined subgrids are
aligned with the underlying base component grids, arranged in a hierarchy with the
base grids belonging to level l = 0, the next finer grids are added to l = 1, and so
on. The subgrids are properly nested, meaning that any refined grid is bordered
by either a physical boundary, another grid at the same refinement level l, or grids
with only one refinement level lower, l − 1.

4.2.2 The coarse/fine grid interface

Special attention must be given to the coarse/fine grid interface in order to get the
expected increase of accuracy. The communication between the grid levels are done
in a similar manner as explained by Martin & Cartwright (1996). The coarse grid
passes information to the fine grid in the form of a Dirichlet boundary condition.
The fine grid solution uses this Dirichlet boundary condition and changes the slope
of the solution along the coarse/fine grid interface. This way, the grid function itself
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is continuous across the coarse/fine interface, but its normal derivative, or flux, is
only continuous if this change of the solution is passed back to the coarse grid in
a proper way. This is what Martin & Cartwright (1996) referred to as the elliptic
matching condition.

Consider a refined grid with only one level of refinement (lmax = 1). Let Ωc and
Ωf represent the coarse and the fine computational domain, respectively, where ∂Ωf

denotes the boundary between the domains. Rewrite the elliptic operator Lβh in
Eq. (4.2) as a flux difference operator, i.e.

LβhVi,j =
F ξ
i+1/2,j − F ξ

i−1/2,j + F η
i,j+1/2 − F η

i,j−1/2

h
,

where the fluxes are given as

F ξ
i+1/2,j = βξi+1/2,j

(Vi+1,j − Vi,j)

h
and F η

i,j+1/2 = βηi,j+1/2

(Vi,j+1 − Vi,j)

h

in both coordinate directions.

For the region away from ∂Ωf, in both Ωc and Ωf, the operator Lβh is simply the
standard five point stencil given by Eq. (4.2). If the cell is bordering the interface,
then special care must be taken. On the coarse side of the interface, the flux passing
through ∂Ωf is replaced by an average flux calculated on the fine grid level. Summing
the fluxes passing in and out of a coarse cell located above the boundary gives

LβhVi,j =
F ξ
i+1/2,j − F ξ

i−1/2,j + F η
i,j+1/2 − F η,ave

i,j−1/2

hc
,

where

F η,ave
i,j−1/2 =

1

2

(
F η,f

left + F η,f
right

)
(4.3)

and

F η,f
left/right =

βη

hf

(
V g − V f

)
.

The superscripts c and f denote the value on the coarse and the fine level, respec-
tively.

The interpolated value V g is obtained by first a quadratic interpolation parallel
to the boundary to get the intermediate points on both sides of the coarse grid node
location, as shown in Fig. 4.2. Then a quadratic interpolation is used normal to the
coarse/fine interface to get the ”ghost cell” value, V g, for the fine grid. For fine cells
adjacent to the boundary, Lβh is the standard stencil using these ”ghost cell” values,
since this will be equivalent to enforcing the elliptic matching condition at ∂Ωf .
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Fig. 4.2: Interpolation stencil on the fine/coarse interface. Coarse cells (�); inter-
mediate values on coarse grid (�); fine cells (•); ”ghost cells” (◦) for computing of
coarse/fine fluxes (arrows) .

The average flux given in Eq. (4.3) was found to produce numerical instabilities
in some occasions. To overcome this problem, a weighted flux at the coarse/fine
interface is introduced: the average refined flux is weighted with a coarse flux,

F η,ave
i,j−1/2 =

ω

2

(
F η,f

left + F η,f
right

)
+ (1 − ω)F η,c

i,j−1/2 .

This approach enhance numerical stability, even for poor initial guesses of the solu-
tion. The accuracy is lowered (but not significantly) using ω = 0.5. The weighting
parameter ω can then be increased upto 1 as the iterative solution converge. The
coarse flux F η,c

i,j−1/2 is calculated using a coarse ”ghost cell” value obtained from a
quadratic interpolation on the fine grid.

4.3 Grid coupling

The grid structure is static, or fixed, since the stratified flow is assumed to be in
steady-state with no moving interfaces. The governing equations are solved sepa-
rately on each component grid, which are coupled in between every iteration step.
To make sure that interpolation points are updated with the correct values due to
overlapping regions, it is crucial that the communication between the component
grids are in correct order.

The information about the grid nodes is stored in integer tables. These integer
tables are used to identify whether the cell is active or not, meaning that an active
cell is a discretization point. A non-active cell is either a grid node in the overlapping
region, a boundary cell or a grid point hidden by a refinement grid, and its value
is determined by quadratic interpolation from another subgrid. The C++ library
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BoxLib developed by the Center of Computational Science and Engineering1 is used
to manage the hierarchy of subgrids.

The algorithm to couple the grids is as follows (see Fig. 4.3):

1) Information is passed down from level l+1 to coarser level l on the same base
grid, starting from the finest level all the way down to l = 0.

2) The overlapping region of the base composite grids on the coarsest level, l = 0,
is coupled.

3) Starting from l = 1, boundary nodes on level l is updated from same base
grid on coarser level l− 1. Then bordering subgrids at level l share boundary
information. Those subgrids at level l bordering with a different base grid
are coupled with the other base grid on the same refinement level l in the
overlapping region. This step is repeated until the finest level is updated.

Refined subgrids bordering to a different base composite grid share information in
the overlapping region at the same refinement level only. Subgrids on level l never
interpolate from finer grids than level l + 1.

1http://seesar.lbl.gov/ccse/
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Fig. 4.3: The three basic steps in coupling the subgrids and overlapping regions: (1)
Pass information from fine level to coarse level; (2) Couple base grids; (3) Boundary
cells on fine grids are updated from coarser levels, then coupled with neighbour-
ing/overlapping subgrids at the same refinement level.





Chapter 5

The Immersed Interface Method

The immersed interface method is a numerical technique formulated to solve par-
tial differential equations in the presence of interfaces where the solution and its
derivatives may be discontinuous and non-smooth. These interface problems are
often encountered in fluid dynamics where two or more fluids with different prop-
erties interact. It is well-known that traditional Cartesian finite difference methods
work poorly for these problems since the numerical discretization is not well-defined
across the interface.

5.1 Introduction

A simple solution to the interface problem is to adopt the immersed boundary
(IB) method (Peskin, 1977) where a δ-function formulation is used to smear out
discontinuous coefficients and singular sources. This idea has been applied to solve
a number of interface-related problems, such as in the level set method (Sussman
et al., 1994; Chang et al., 1996) where material properties are smeared out across
the interface. Another example is the continuum surface force (CSF) model by
Brackbill et al. (1992) where the singular surface tension effect is introduced as a
new, smooth forcing term in the momentum equation. A similar approach as the
CSF model has been adopted in many commonly used multiphase methods (e.g.
Unverdi & Tryggvason, 1992; Sussman et al., 1994; Chang et al., 1996; Scardovelli
& Zaleski, 1999). Although the IB method is very robust and easy to use, it is not
very accurate and unable to reproduce discontinuities.

Instead, several techniques, classified as sharp interface methods, have been de-
veloped in order to solve interface problems properly. In the immersed interface
method (IIM) by Leveque & Li (1994), the interfacial boundary conditions are in-
corporated into the finite difference stencil in a non-trivial way that preserves the
jumps in both the function and its derivatives. This method is fairly complex, and
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Liu et al. (2000) tried to simplify the IIM and still obtain a sharp solution at the
interface. Their concept was based on the ghost fluid method (GFM) by Fedkiw
et al. (1999), and it is among the simpler sharp interface methods. The method
decomposes the jumps in each axis direction treating the problem dimension by di-
mension. However, Liu et al.’s (2000) approach provides only first order accuracy,
and their approximations of the jump conditions is not very rigorous.

The basic idea of sharp interface techniques has been extended and applied to
solve a number of general interface-related problems (Wiegmann & Bube, 2000; Li
& Lai, 2001; Kang et al., 2000; Li, 2003), but in most cases it has been limited to
problems with piecewise constant coefficients.

5.2 One-dimensional formulation

5.2.1 The Poisson equation

Among the simplest interface problems is the one given by the one-dimensional
Poisson equation

vxx = f(x), x ∈ Ω,

on the unit domain Ω = [0, 1] for a non-smooth and discontinuous function v(x)
with fixed Dirichlet boundary conditions,

v(0) = g1 and v(1) = g2,

at the exterior boundary ∂Ω.
The interface is a single point Γ located at x∗ somewhere inside Ω. The set of

all points where x < x∗ and the set of all points where x > x∗ represent the disjoint
subdomains Ω− and Ω+, respectively, for all x ∈ Ω.

The jump conditions, or interfacial boundary conditions, are specified at the
interface as

[v] = w1, x = x∗,

[vx] = w2, x = x∗,

[vxx] = w3, x = x∗,

where the jumps are defined as the limiting values

[v] = lim
x→Γ+

v(x) − lim
x→Γ−

v(x) = v+ − v−,

[vx] = lim
x→Γ+

vx(x) − lim
x→Γ−

vx(x) =v+
x −v−x .

[vxx] = lim
x→Γ+

vxx(x) − lim
x→Γ−

vxx(x) =v+
xx −v−xx.
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Here x → Γ+ means approaching the interface from the Ω+ side and x → Γ− from
the Ω− side.

The computational domain is discretized into equally spaced cells of size h where
the cell centers are referred to as grid nodes, with the ith node located at xi. A grid
node xi is defined as regular if both neighbouring nodes are on the same side of the
interface. On the contrary, a grid node xi is irregular if one adjacent node is on the
other side of the interface.

If xi is a regular node, then Taylor expansion for v(xi+1) at xi gives

v(xi+1) = v(xi) + vx(xi)h+
1

2
vxx(xi)h

2 +
1

6
vxxx(xi)h

3 + O(h4), (5.1)

and for v(xi−1) at xi gives

v(xi−1) = v(xi) − vx(xi)h+
1

2
vxx(xi)h

2 − 1

6
vxxx(xi)h

3 + O(h4). (5.2)

Adding Eqs. (5.1) and (5.2), and with some manipulations, gives the standard second
order approximation to vxx(xi),

vxx(xi) =
v(xi+1) − 2v(xi) + v(xi−1)

h2
+ O(h2). (5.3)

On the other hand, if xi is an irregular node, Eq. (5.3) cannot be used since
the Taylor expansion is not valid across the interface. Instead, a correction to the
expression above is necessary in order to have a well-defined approximation. Assume
that the interface Γ is located between the nodes xi and xi+1 at x∗ = xi + ah for
0 ≤ a ≤ 1. Taylor expansion for v(xi+1) at x∗ yields

v(xi+1) = v(x∗ + (1 − a)h)

= v+ + v+
x (1 − a)h+

1

2
v+
xx(1 − a)2h2 + O(h3). (5.4)

Using the definitions of the jumps, Eq. (5.4) can be rewritten as

v(xi+1) = v− + v−x (1 − a)h+
1

2
v−xx(1 − a)2h2 + C̄(x, a) + O(h3), (5.5)

where

C̄(x, a) = [v] + [vx](1 − a)h+
1

2
[vxx](1 − a)2h2. (5.6)

Now, v−, v−x and v−xx can themselves be obtained by Taylor expansion at xi, which
inserted into Eq. (5.5) gives

v(xi+1) = v(xi) + vx(xi) +
1

2
vxx(xi)a

2h2 + vx(xi)(1 − a)h

+ vxx(xi)(1 − a)ah2 +
1

2
vxx(xi)(1 − a)2h2 + C̄(x, a) + O(h3)

= v(xi) + vx(xi)h+
1

2
vxx(xi)h

2 + C̄(x, a) + O(h3). (5.7)
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The Taylor expansion for v(xi−1) is

v(xi−1) = v(xi) − vx(xi)h+
1

2
vxx(xi)h

2 + O(h3). (5.8)

Adding Eq. (5.7) to (5.8), and rearranging, gives a valid approximation to vxx(xi)
at an irregular node,

vxx(xi) =
v(xi+1) − 2v(xi) + v(xi−1)

h2
− C̄(x, a)

h2
+ O(h),

where the correction term C̄(x, a) is given by Eq. (5.6).

5.2.2 A variable coefficient linear equation

A more general problem is described by the linear differential equation

(βvx)x + αvx = f(x), x ∈ Ω, (5.9)

where α, β and f are continuous and smooth on each subdomain, but may have
jumps across the interface,

α(x) =

{
α−(x), x ∈ Ω−,
α+(x), x ∈ Ω+,

β(x) =

{
β−(x), x ∈ Ω−,
β+(x), x ∈ Ω+,

and

f(x) =

{
f−(x), x ∈ Ω−,
f+(x), x ∈ Ω+.

The jumps, or the interfacial boundary conditions, are now given on the form

[v] = w1, x = x∗,

[βvx] = w2, x = x∗.

Also, it is convenient to introduce the level set function φ(x) defined in Chapter 3
in order to determine the location of the interface. Since φ is a signed distance
function, the problem domain can be defined as

Ω =

{
Ω−, φ < 0,
Ω+, φ ≥ 0,
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assuming the interface to be infinitely thin. The distance property of φ makes it
easy to locate the exact position of Γφ. For instance, if the interface is located at
x∗ = xi + ah (0 ≤ a ≤ 1), then

a =
φi

φi − φi+1

,

where φi denotes φ(xi).

Further, let Vi be the numerical approximation of v(xi) and βi + 1/2 denote β(xi+
1/2h). Then, assuming that the jump conditions [v], [vx], [vxx], [βvx] and [(βvx)x]
are all known, the following numerical approximations of the differential terms in
Eq. (5.9) can be established:

vx(xi) =
Vi+1 − Vi−1

2h
− C1

i + O(h2) (5.10)

and

(βvx)x(xi) =
βi+1/2(Vi+1 − Vi) − βi−1/2(Vi − Vi−1)

h2
+ C2

i + O(h) (5.11)

where h = xi+1 − xi = xi − xi−1 .

The correction terms are given as

C1
i = Sφλ

C(x, a)

2h
and C2

i = Sφβ̄
C1(x, a)

h2
+ Sφ

C2(x, a)

h
, (5.12)

where

Sφ =

{ −1, φi < 0,
1, φi ≥ 0,

and

C(x, a) = [v] − λ[vx](1 − a)h+
1

2
[vxx](1 − a)2h2,

C1(x, a) =

⎧⎪⎪⎨
⎪⎪⎩

[v] − λ[vx]ah+ 1
2
[vxx]a

2h2, if (φi ≥ 0 and 0 ≤ a < 1/2)
or (φi < 0 and 0 < a ≤ 1/2),

[v] + λ[vx](1 − a)h
+1

2
[vxx](1 − a)2h2,

if (φi ≥ 0 and 0 ≤ a < 1/2)
or (φi < 0 and 0 < a ≤ 1, /2),

C2(x, a) =

⎧⎨
⎩

λ[βvx] + 1
2
[(βvx)x](1 − 2a)h, if (φi ≥ 0 and 0 ≤ a < 1/2)

or (φi < 0 and 0 < a ≤ 1/2),
0, otherwise.

The parameters λ, a and β̄ are defined as follows:
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• If the interface is between xi and xi+1

(i.e. φi · φi+1 < 0, or φi = 0 and φi+1 < 0, or φi < 0 and φi+1 = 0)

λ = 1, a =
φi

φi − φi+1

and β̄ = βi+1/2.

• If the interface is between xi−1 and xi
(i.e. φi · φi−1 < 0, or φi = 0 and φi−1 < 0, or φi < 0 and φi−1 = 0)

λ = −1, a =
φi

φi − φi−1

and β̄ = βi−1/2.

The jump of a general function g(x) is defined as

[g] = lim
φ+→0

g(x) − lim
φ−→0

g(x) = g+ − g−.

The derivation of (5.11) is given in Paper I and will not be repeated here. Equa-
tion (5.10) can be obtained by subtracting (5.8) from (5.7).

Remark 1 If the solution is smooth and continuous (regular nodes), the jumps
become zero and the correction terms vanish.

Remark 2 The local truncation error in Eq. (5.11) is of first order only, but as
shown in Paper I it is still expected that the global accuracy approach second order
since the interface is of one dimension lower than the problem.

5.3 Two-dimensional formulation

5.3.1 Decomposing the jump conditions

In two dimensions, the jump conditions are usually given as physical boundary
conditions defined in the normal and tangential directions to the interface. If the
theory established in the previous section is to be used, it would be more convenient
to decompose these jump conditions into jumps in the coordinate directions.

A local coordinate system aligned with the interface at (x∗, y∗) is defined as

xn = (x− x∗) cos θ + (y − y∗) sin θ,
xt = −(x− x∗) sin θ + (y − y∗) cos θ,

where θ is the angle between the x- and xn-axis. The xn-axis is normal to the
interface while the xt-axis is tangential. The local coordinate transformation can
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be determined from the level set function φ(x, y), since the normal vector n =
(cos θ, sin θ) is given as

n =
∇φ
|∇φ| .

Transforming the normal and tangential jump conditions into Cartesian coordi-
nates yields

[βvx] = [βvn] cos θ − [βvt] sin θ,
[βvy] = [βvn] sin θ + [βvt] cos θ,

and differentiation using the chain rule gives

[(βvx)x] = [(βvn)n] cos2 θ−([(βvn)t]+[(βvt)n]) cos θ sin θ+[(βvt)t] sin
2 θ,

[(βvy)y] = [(βvn)n] sin
2 θ+([(βvn)t]+[(βvt)n]) cos θ sin θ+[(βvt)t] cos2 θ.

Similarly, differentiation of the jump [v] gives

[vx] = [vn] cos θ − [vt] sin θ,
[vy] = [vn] sin θ + [vt] cos θ,

and
[vxx] = [vnn] cos2 θ − 2[vnt] cos θ sin θ + [vtt] sin

2 θ,
[vyy] = [vnn] sin

2 θ + 2[vnt] cos θ sin θ + [vtt] cos2 θ.

Finally, assuming that [v], [vn], [vnn], [vt], [vtt], [βvn], [(βvn)n], [βvt], [(βvt)t],
[(βvn)t] and [(βvt)n] are all known, then the jumps can be decomposed into jump
conditions in the coordinate directions. This enables for a dimension by dimension
approach of the numerical method.

5.3.2 Approximate correction terms

In most cases, the known jump conditions are limited to only a few of those needed
for closure of the correction terms. The remaining jumps are usually solution-
dependent and must be obtained as part of the solution. For elliptic problems
in higher dimensions, it is common to use some iterative methods to solve the dis-
cretized equations. The idea is therefore to obtain the correction terms iteratively
as well. Using the given interfacial boundary conditions together with an appropri-
ate interpolation scheme, the interfacial values on both sides of the interface can be
estimated from the solution at the previous iteration step (or initial guess). Then
the decomposed correction terms can be approximated by using one-sided difference
stencils on both sides of the interface to estimate the jumps in the first and second
derivatives. The correction terms are updated and given explicitly at every iteration
step, as they converge to the correct solutions.
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5.3.3 Curvilinear coordinates

The finite difference stencil in Eq. (4.2) can be modified using the decomposed
immersed interface method in order to make the discretization well-defined across
the interface. Although the present formulation is given in Cartesian coordinates, it
is possible to show that this method can be generalized to any orthogonal, curvilinear
coordinate system. This is simply done by treating the differential terms in Eq. (4.1)
dimension by dimension, introducing the componentwise correction terms in the
computational space.

The elliptic equation (4.1) is discretized in the computational space forming the
following set of algebraic equations:

LβhVi,j = lξlηfi,j − Ci,j,

where the difference operator Lβh is defined by Eq. (4.2). The correction term Ci,j
consists of a component in the ξ-direction and one in the η-direction, i.e.

Ci,j = Cξ
i,j + Cη

i,j.

Each one of these terms are given by Eq. (5.12) in their respective coordinate direc-
tions, where the interfacial jumps can be determined by the approximation method
described previously.

At the end, the decomposed immersed interface method can be adopted to cal-
culate stratified multiphase flow in pipes. The governing equations in Chapter 3 can
be discretized and solved in the computational space using a composite, overlap-
ping grid framework where componentwise correction terms are added to the finite
difference scheme at irregular grid nodes.



Chapter 6

Comments on the Papers

6.1 Paper I

A decomposed immersed interface method for variable coef-
ficient elliptic equations with non-smooth and discontinuous
solutions

Paper I, which constitutes the basis of this doctoral thesis, is based on the ideas of
Leveque & Li (1994), Li & Lai (2001), Wiegmann & Bube (2000), and Liu et al.
(2000). A sharp interface formulation capable of solving two-dimensional elliptic
interface problems with piecewise smooth coefficients on Cartesian grids was de-
rived. The method introduced componentwise correction terms for the grid nodes
adjacent to the interface, where ordinary finite difference schemes are not generally
well-defined. The adjustment of the numerical stencil was given in terms of inter-
facial jump conditions. An iterative method that approximated the necessary jump
conditions was also proposed. This approach used a numerical approximation of the
normal jump condition in order to estimate the interfacial boundary values. One-
sided difference stencils were then used on both sides of the interface to approximate
the componentwise jump conditions.

Concluding remarks

Numerical test cases showed acceptable agreements with analytical solutions, and
the order of accuracy was found to be comparable with other immersed interface
methods. The accuracy was not influenced noticeably when the interfacial jump
conditions in the correction terms were approximated numerically. But for a few
cases the finite difference representation of the derivatives normal to the interface
became too inaccurate, which resulted in a poor approximation of the interfacial
boundary values.

39
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The main advantage of the presented method is that it is relatively simple to
implement it in existing codes, since it does not require construction of complex
coefficient matrices, as it is in many other immersed interface methods. However,
the right-hand-side of the system must be adjusted iteratively, where a sufficient
under-relaxation is necessary.

6.2 Paper II

Stratified smooth two-phase flow using the immersed inter-
face method

In Paper II, the immersed interface method was used to derive a two-dimensional
numerical method for solving fully developed, stratified smooth two-phase flow in
pipes.

The purpose of this paper was to investigate the possibilities of using the im-
mersed interface method to predict stratified two-phase flow in pipes. For turbulent
flow, a low Reynolds number k − ε model (Lam & Bremhorst, 1981) was used to
mimic turbulent stresses. This turbulence model resolved the flow in the immediate
vicinity of the wall and the interface. A level set function was used to determine the
location of the interface. The principal difference with the presented approach com-
pared to the body-fitted grid techniques (e.g. Issa, 1988; Newton & Behnia, 2000)
is the way in which the interfacial boundary conditions are incorporated into the
numerical scheme.

Concluding remarks

The present method was found to be accurate for laminar flow with a flat interface.
Moreover, the integral properties for laminar two-phase flow with a curved interface
were determined by the Bond number, the contact angle and the phase area fractions.

Numerical predictions of pressure gradient, liquid phase area fraction and shear
stresses for turbulent gas-liquid flow compared well with the experimental results of
Espedal (1998) in an inclined pipe. The gas-liquid interface was rather smooth in
the experimental data used for comparison.

For turbulent liquid-liquid flow, the calculated pressure gradient and phase area
fractions showed acceptable agreement with the experimental data of Elseth (2001)
for low mixture velocities and intermediate water cuts. At lower and higher water
cuts, the numerical results deviated more from the measured data due to the in-
creased interfacial disturbances occurring for these flow conditions. In these cases,
the assumption of having a smooth interface was questionable. Further, numerical



6.3. Paper III 41

simulations showed that variation of the interface curvature influenced the slip ratio
between the two liquid phases even though the viscosity difference is small.

6.3 Paper III

Numerical modelling of stratified turbulent two- and three-
phase pipe flow with arbitrary shaped interfaces

Paper III is an extension of Paper II to three-phase flow calculations. An additional
interface was included and the same numerical method was used. This was simply
done by introducing a second level set function which described the new interface.
A two-layer k − ε model (Chen & Patel, 1988) was used to account for the effects
of turbulence. A parametric study for horizontal three-phase flow was presented,
and, in particular, the effect of varying the shape of the liquid-liquid interface was
considered.

Concluding remarks

From the simulations, it was very clear that increasing the wall contact area for the
oil phase increased the flow resistance and reduced the total liquid flow rate for a
given pressure gradient and phase fractions. In the meantime, the water-to-liquid
flow rate ratio increased since most of the reduction in the total liquid flow rate
was done by the oil phase. To our knowledge, similar two-dimensional analysis on
three-phase pipe flow has not been previously carried out. The application of this
model is yet confined to smooth interfaces; however, such calculations still give new
and valuable information about stratified smooth three-phase flow.

6.4 Paper IV

Calculations of stratified wavy two-phase flow in pipes

The primary purpose of Paper IV was to include the effect of interfacial waves.
Stratified smooth flow conditions occur rarely in industrial problems; therefore,

a model in which stratified wavy flows can be predicted will have far more practical
value. The wavy interface has been commonly treated as a rough wall in previous
studies. The shear stress on a rough interface has been calculated either by means of
a wall function (Meknassi et al., 2000) or an interfacial friction factor implemented
directly in the numerical scheme (Shoham & Taitel, 1984; Newton & Behnia, 2001).

In the current paper, the wavy interface was represented by an equivalent interfa-
cial roughness height. Turbulent stresses were modelled using a two-layer turbulence
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model, which was modified to account for the roughness introduced at the interface
(Patel & Yoon, 1995; Durbin et al., 2001). This turbulence model allowed for direct
calculation of the wavy interfacial shear stress without using a wall function.

Concluding remarks

Numerical predictions of stratified wavy gas-liquid flow compared satisfactorily with
experimental data given by Espedal (1998). The interfacial roughness, represented
by the Charnock parameter, was estimated from the experiments. The results were
found to be sensitive to the choice of Charnock parameter, but this effect was not
too striking in appearance as doubling the Charnock parameter from β = 0.1 to
β = 0.2 only led to approximately 10% change in the calculated liquid phase area
fractions and axial pressure gradients for the presented test cases.

The momentum transfer from the gas phase to the liquid phase was found to
be slightly under-estimated. It was therefore expected that the predicted gas flow
rate would exceed the measured value; however, it was not observed for the lowest
flow rates. This observation suggested that the calculated level of turbulence in the
gas phase was too high, although the turbulent viscosity at the interface was not
sufficiently large to correctly predict the interfacial shear stress.

6.5 Further work

For the decomposed immersed interface method presented in Paper I, the following
issues can be considered to be of relevance for further work:

• Other techniques, such as the multigrid method, can be employed to achieve
increased computational efficiency, rather than the Successive Overrelaxation
Gauss Seidel method that have been used in this work for elliptic equations.

• Extension to three-dimensional elliptic problems should be considered.

• The possibility of using the approximated jump conditions in conjunction with
the work presented by Li & Lai (2001) should be explored in order to derive a
full Navier-Stokes solver in which the density and viscosity are also discontin-
uous across an interface.

Based on the numerical method presented in this thesis for solving stratified multi-
phase flow in pipes, the following areas need more investigations:

• The boundary conditions for the turbulence quantities need to be refined at
the gas-liquid interface for wavy flow in order to improve the accuracy.
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• The concept of equivalent interfacial roughness can be extended to liquid-liquid
interface in order to improve calculations of stratified liquid-liquid flow.

• The present method can be used for more physically realistic three-phase flow
simulations where the gas-liquid interface is considered to be wavy. The treat-
ment of the liquid-liquid interface also needs modifications, either as a wavy
interface (see the point above) or as a mixed interface, where flow properties
are smeared across the boundary.

• Using more sophisticated turbulence models which are capable of predicting
the secondary flow effects is important.





Appendix A

The Mean Flow Equation

The governing equations of the mean turbulent flow are obtained by performing a
time averaging of the Navier-Stokes equations. Details about the averaging proce-
dure can be found in many textbooks in fluid dynamics and CFD (e.g. White, 1991;
Versteeg & Malalasekera, 1995), so only a brief summary is given in this appendix.
The notation in this appendix may differ from what is actually used in previous
chapters.

A.1 The Reynolds equations

An ordinary Cartesian coordinate system, xi, is defined using the index notation
(i = 1, 2, 3). Let ui(t) and p(t) be the instantaneous velocity and pressure field,
respectively, in an incompressible flow. The instantaneous variables can be decom-
posed into a mean and a fluctuating quantity,

ui(t) =
1

∆t

∫ ∆t

0

ui(t) dt+ u′i(t) = ūi + u′i(t),

p(t) =
1

∆t

∫ ∆t

0

p(t) dt+ p′(t) = p̄+ p′(t),

where the overhead bar denotes the time-averaged value and the prime denotes the
fluctuations. For shortness, the time dependence will from now on be omitted in the
notation. By definition, the time-average of the fluctuating components are zero:

u′i =
1

∆t

∫ ∆t

0

u′i dt = 0 and p′ =
1

∆t

∫ ∆t

0

p′ dt = 0.

Applying the time-averaging to each term in the Navier-Stokes equations yields

∂ūj
∂xj

= 0 (A.1)
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and
∂ρūi
∂t

+
∂ρūiūj
∂xj

= − ∂p̄

∂xi
+ µ

∂2ūi
∂xj∂xj

+ f̄i − ∂

∂xj
(ρu′iu

′
j), (A.2)

using the convention of summation of repeated indices, where f̄i is the time aver-
aged body force, such as gravity. Equation (A.2) is also known as the Reynolds’
averaged equation, where ρu′iu

′
j are called turbulent stresses or Reynolds stresses.

The turbulent stresses are usually very large compared to the viscous stresses in a
turbulent flow.

A.2 Mean turbulent flow in a duct

The time-averaged equation above can, for some particular flows, be reduced to a
simpler form. For instance, consider a stationary (∂/∂t = 0) flow in a straight duct
where the axial centerline is aligned with the x1-axis. The flow is assumed to be
fully developed and uni-directional, except for the fluctuating components in the
cross-stream directions, meaning that ū2 = ū3 = 0; thus, Eq. (A.1) simplifies to

∂ū1

∂x1

= 0.

Substitution into Eq. (A.2) reduces the governing equations describing the mean
flow to one momentum equation for the mean axial velocity component,

0 = − ∂p̄

∂x1

+ µ

(
∂2ū1

∂x2
2

+
∂2ū1

∂x2
3

)
+ f̄1 − ∂

∂x2

(ρu′1u
′
2) −

∂

∂x3

(ρu′1u
′
3). (A.3)

Further, the turbulent stresses, ρu′1u
′
2 and ρu′1u

′
3, can be modelled by means of

turbulence modelling. Assuming there exist an analogy between the action of viscous
stresses and the Reynolds stresses on the mean flow, the Reynolds stresses can be
linked to mean rates of deformation. Following Boussinesq (1877), the turbulent
stresses can be modelled as

−ρu′iu′j = µt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
,

where µt is the turbulent viscosity. The underlying assumption of this approach is
that the turbulent viscosity is isotropic: the ratio between Reynolds stress and mean
rate of deformation is the same in all directions.

Adopting this formulation and rearranging Eq. (A.3) gives the following equation
for the mean turbulent flow in axial direction:

∂

∂x2

(
µe
∂ū1

∂x2

)
+

∂

∂x3

(
µe
∂ū1

∂x3

)
− ∂p̄

∂x1

+ f̄1 = 0,

where µe = µ+ µt. It remains to find a closure for the turbulent viscosity µt.
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Abstract

A second order accurate finite difference method is presented for solving two-dimensional variable coefficient elliptic

equations on Cartesian grids, in which the coefficients, the source term, the solution and its derivatives may be non-

smooth or discontinuous across an interface. A correction term is introduced to the standard central difference stencil so

that the numerical discretization is well-defined across the interface. We also propose a new method to approximate the

correction term as part of the iterative procedure. The method is easy to implement since the correction term only needs

to be added to the right-hand-side of the system. Therefore, the coefficient matrix remains symmetric and diagonally

dominant, allowing for most standard solvers to be used. Numerical examples show good agreements with exact

solutions, and the order of accuracy is comparable with other immersed interface methods.
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1. Introduction

Elliptic problems with discontinuous coefficients and singular sources are often encountered in fluid
dynamics and material science. These interface problems usually lead to non-smooth or discontinuous
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solutions across an interface. Traditional Cartesian finite difference methods work poorly for these prob-

lems since the numerical discretization is not well-defined across the interface.

In Peskin�s [15] immersed boundary method (IB), originally developed to model blood flow in the heart,
singular forces are smeared out by a discrete delta function. The idea has been extended and applied to

solve a number of interface-related problems. For example, in [3,4,16,17] the surface tension effect was

introduced as a new, smooth forcing term in the momentum equation leading to continuity in pressure.

Material properties may also be smeared out (e.g. using a level set function [4,16]) removing discontinuities

across the interface, making the solution continuous, smooth and suitable for standard finite difference

schemes. The IB is widely used because of its robustness, and it can easily be implement into existing CFD

codes, even in multiple spatial dimensions. However, the numerical smearing makes the method not very

accurate and unable to properly produce discontinuities.
With the weakness of IB in mind, several new techniques classified as sharp interface methods have been

developed. The immersed interface method (IIM), as presented in [8,9], handles two- and three-dimensional

interface problems based on the analysis of [2]. The IIM is second order accurate and includes the inter-

facial boundary conditions into the finite difference discretization in such a way that it preserves the jumps

in the solution and its derivatives. In the original IIM this was done by adding additional nodes to the

numerical stencil, leading to a non-symmetric coefficient matrix. This non-symmetric matrix reduces

the numbers of efficient numerical solvers to be used and convergence is not always guaranteed. In fact, the

method has only been shown to be stable for one-dimensional problems and for two-dimensional problems
with piecewise constant coefficients [6].

To avoid this convergence problem, a new version of the IIM was proposed in [12]. A maximum

principle preserving method is enforced to obtain a diagonally dominant linear system. This way, some

iterative methods are guaranteed to converge. The maximum principle approach was successfully imple-

mented with a specially designed multigrid method in [1].

Another sharp interface technique is the ghost fluid method (GFM) introduced in [5] to treat two-phase

contact discontinuities in the Euler equations. The basic principle behind GFM is to extend values across

the interface into an artificial fluid (ghost fluid) inducing the proper conditions at the interface.
The GFM concept was extended in [13] to solve elliptic equations with variable coefficients. One of the

main objectives with their approach was to simplify the IIM and still obtain a sharp solution at the in-

terface. In contrast to IIM, the jump conditions are incorporated into the numerical discretization such that

the symmetry of the finite difference stencil is kept. This allows for most standard solvers to be used. The

method decomposes the flux jumps in each axis direction treating the problem dimension by dimension.

This extended GFM is only first order accurate. The method has been applied to multiphase incompressible

flow in [7].

Decomposing the jump conditions into each axis direction was also done in [11,18] using the IIM where
the coefficients are piecewise constant. The approach in [18] produces a symmetric problem. Instead of

focusing on finding new coefficients for the finite difference scheme they focus on the jumps in the solution

and its derivatives. If the jumps ½u�, ½ux�, ½uxx�, ½uy � and ½uyy � are all known, then the standard finite difference

discretization can be used with some correction terms to adjust for the discontinuities. They also consider

variable coefficients by rewriting the partial differential equation into a more convenient form for their

method. The method shows to be second order accurate.

The intention of this paper is to extend the ideas of [11,13,18] to derive a second order sharp interface

method capable of solving elliptic interface problems with variable coefficients in two dimensions. The
primary objective is to keep the standard finite difference stencil, making only corrections to the right-hand

side of the problem. This way we will keep the linear system symmetric and diagonally dominant. We give a

more formal derivation of the finite difference scheme than found in [13], and the order of accuracy is

improved by including more jump conditions. The main difference from [11,18] is that we also consider the

case with variable coefficients when deriving the correction term. We also propose a simple technique for
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approximating the solution-dependent jump conditions as part of the iterative method. A level set function

[14] is used to represent the interface because of its simplicity and strength in describing fairly complex

shapes.
The rest of the paper is organized as follows: In Section 2 we present the mathematical equations to be

solved, introduce the level set function and decompose the jump conditions. Then, in Section 3 we describe

the numerical discretization for our sharp interface method and suggest an approach to estimate the in-

terfacial jumps. Numerical examples are presented in Section 4 before we conclude with a summary in

Section 5.
2. Mathematical formulation

2.1. The elliptic equation

Consider a domain X divided into two (or more) separate subdomains Xþ and X� by a lower dimen-

sional interface C. The two dimensional variable coefficient elliptic equation is given as

ðbuxÞx þ ðbuyÞy ¼ f ðx; yÞ; ðx; yÞ 2 X; ð1Þ

with Dirichlet boundary conditions

uðx; yÞ ¼ gðx; yÞ; ðx; yÞ 2 dX;

where dX is the exterior boundary and ðx; yÞ are the spatial coordinates. The coefficient bðx; yÞ and source

term f ðx; yÞ are continuous and smooth on each subdomain, but may have jumps across the interface,

i.e.

bðx; yÞ ¼ bþðx; yÞ; ðx; yÞ 2 Xþ;
b�ðx; yÞ; ðx; yÞ 2 X�;

�

and

f ðx; yÞ ¼ f þðx; yÞ; ðx; yÞ 2 Xþ;
f �ðx; yÞ; ðx; yÞ 2 X�:

�

Discontinuities in the coefficient bðx; yÞ and the source term f ðx; yÞ may make the solution and its de-

rivatives discontinuous and non-smooth at the interface. These jumps in solution and its derivatives can be

specified as jump conditions along the interface, i.e.

½u� ¼ wðx; yÞ; ðx; yÞ 2 C; ð2Þ
½bun� ¼ vðx; yÞ; ðx; yÞ 2 C; ð3Þ

where un ¼ ou=on ¼ ru �~n is the normal derivative of u, ~n is the local unit normal vector to the interface

pointing towards the Xþ-region, and the jumps are defined as the limiting values

½u� ¼ lim
ðx;yÞ!Cþ

uðx; yÞ � lim
ðx;yÞ!C�

uðx; yÞ ¼ uþ � u�;
½bun� ¼ lim
ðx;yÞ!Cþ

bðx; yÞunðx; yÞ � lim
ðx;yÞ!C�

bðx; yÞunðx; yÞ ¼ bþuþn � b�u�n :

Here ðx; yÞ ! Cþ means approaching the interface from the Xþ side and ðx; yÞ ! C� from the X� side.
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2.2. Level set representation

The main idea of the level set method is to introduce a smooth auxiliary function /ðx; yÞ defined as

/ðx; yÞ ¼ �d;

where d is the shortest distance to the interface. The sign of / indicates whether ðx; yÞ is in the Xþ-region

(positive) or in the X�-region (negative). It will be evident from the definition above that the interface C is

given by the zero level set of the function /,

C ¼ ðx; yÞ 2 R2 j /ðx; yÞ
�

¼ 0
�
:

The normal vector can easily be deduced from / and at any point is given as ~n ¼ r/=jr/j.
The interface appears as a closed curve in two dimensions. We assume the interface to be infinitely thin

so that our problem domain can be defined as (see Fig. 1)

X ¼ X�; / < 0;
Xþ; /P 0:

�
ð4Þ
2.3. Decomposing the jump conditions

Since the jump conditions usually are defined in normal or tangential direction of the interface we define

a local coordinate system aligned with the interface at ðx�; y�Þ,

n ¼ ðx� x�Þ cos hþ ðy � y�Þ sin h;
g ¼ �ðx� x�Þ sin hþ ðy � y�Þ cos h;

where h is the angle between the x- and n-axis. The n-axis is normal to the interface while the g-axis is

tangential.

Transforming these jump conditions into Cartesian coordinates yields

½bux� ¼ ½bun� cos h� ½bug� sin h;
½buy � ¼ ½bun� sin hþ ½bug� cos h;

and differentiating using the chain rule gives
Fig. 1. An irregular interface C dividing the domain X into two subdomains Xþ and X� with normal vector~n pointing towards the Xþ-

region.
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½ðbuxÞx� ¼ ½ðbunÞn� cos2 h� ð½ðbunÞg� þ ½ðbugÞn�Þ cos h sin hþ ½ðbugÞg� sin
2 h;

½ðbuyÞy � ¼ ½ðbunÞn� sin
2 hþ ð½ðbunÞg� þ ½ðbugÞn�Þ cos h sin hþ ½ðbugÞg� cos2 h:

Similarly, differentiation of the jump ½u� gives

½ux� ¼ ½un� cos h� ½ug� sin h;
½uy � ¼ ½un� sin hþ ½ug� cos h;

and

½uxx� ¼ ½unn� cos2 h� 2½ung� cos h sin hþ ½ugg� sin2 h;

½uyy � ¼ ½unn� sin2 hþ 2½ung� cos h sin hþ ½ugg� cos2 h:

For now we will assume that the jumps ½u�, ½un�, ½unn�, ½ug�, ½ugg�, ½bun�, ½ðbunÞn�, ½bug�, ½ðbugÞg�, ½ðbunÞg� and
½ðbugÞn� are all known. In this way, we can apply a dimension by dimension approach of the numerical

method.
3. Numerical method

3.1. Discretization

For simplicity, we use a uniform, rectangular grid, ½a; b� � ½c; d�, describing the computational domain X.
The grid nodes are equally spaced, h ¼ ðb� aÞ=M ¼ ðd � cÞ=N , where M and N are the number of grid

points in x- and y-direction, respectively. The grid coordinates are defined as

xi ¼ aþ ih; yj ¼ cþ jh for 06 i6M ; 06 j6N ;

and the numerical approximation of u at ðxi; yjÞ is written as Ui;j.

We define a grid node ðxi; yjÞ as regular if all neighbouring nodes are on the same side of the interface. On

the contrary, a grid node ðxi; yjÞ is irregular if at least one adjacent node is on the other side of the interface,
i.e. the interface cuts one of the grid lines between the nodes.

The elliptic equation (1) is approximated with the following discretization

Lb
hUi;j ¼ fi;j � Ci;j; ð5Þ

where Lb
hUi;j is the standard five point variable coefficient central difference scheme

Lb
hUi;j ¼

biþ1=2;jðUiþ1;j � Ui;jÞ � bi�1=2;jðUi;j � Ui�1;jÞ
h2

þ
bi;jþ1=2ðUi;jþ1 � Ui;jÞ � bi;j�1=2ðUi;j � Ui;j�1Þ

h2

and biþ1=2;j denotes bðxiþ1=2;j; yjÞ, and so on. At regular nodes, Lb
hUi;j yields a second order accurate ap-

proximation of the second derivatives, i.e.

ðbuxÞx þ ðbuyÞy ¼ Lb
hUi;j þ Oðh2Þ:

The correction term Ci;j is introduced to make the numerical discretization (5) well-defined at irregular
nodes and should vanish at regular nodes. In the remaining part of this section we will discuss how to find

this correction term.
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3.2. Determining the correction term

As shown in Section 2.3, the jump conditions can be decomposed into jumps in the x- and y-directions
allowing for a dimension by dimension approach. This way, the correction term Ci;j is made up by a

component in x-direction and one in y-direction, i.e.

Ci;j ¼ Cx
i;j þ Cy

i;j ð6Þ

The procedure for obtaining the componentwise correction term is equivalent whether we consider the x-
direction or y-direction. Therefore, we shall only discuss how to find the correction in x-direction. For
simpler notation, we will neglect the subscript j in the notation below, reducing the derivations to a one-

dimensional problem.

We wish to find a correction term so that the standard finite difference approximation of ðbuxÞx is valid
even at the interface. We consider an irregular grid node xi where the interface is located at x� ¼ xi þ ah,
06 a6 1 and a ¼ /i=ð/i � /iþ1Þ: The correction can be derived in two steps. First, we need to correct the
numerical discretization of ux, then, if necessary, the approximation of the second derivative ðbuxÞx also

needs to be corrected.

The first derivative is estimated at the centre between xi and xiþ1. The correction of this approximation

depends on what side of xiþ1=2 the interface is located. In other words, using the definitions of Eq. (4), if

/i < 0 and 0 < a6 1=2 then the interface is to the left of xiþ1=2, i.e. fxiþ1=2; xiþ1g 2 Xþ. Else if 1=2 < a6 1

then fxi; xiþ1=2g 2 X�. Otherwise, if /i P 0, the subregions switches and instead we have if 06 a < 1=2 then

fxiþ1=2; xiþ1g 2 X� or if 1=26 a < 1 then fxi; xiþ1=2g 2 Xþ.

Following the same approach as [11] using Taylor expansion for uðxiþ1Þ at x� ¼ xi þ ah for the case
/i < 0 and 1=2 < a6 1 yields

uðxiþ1Þ ¼ uðx� þ ð1� aÞhÞ ¼ uþ þ uþx ð1� aÞhþ 1
2
uþxxð1� aÞ2h2 þ Oðh3Þ

¼ u� þ u�x ð1� aÞhþ 1
2
u�xxð1� aÞ2h2 þ C1ðx; aÞ þ Oðh3Þ

¼ uðxiþ1=2Þ þ uxðxiþ1=2Þða� 1
2
Þhþ 1

2
uxxðxiþ1=2Þða� 1

2
Þ2h2 þ uxðxiþ1=2Þð1� aÞh

þ 1
2
uxxðxiþ1=2Þð2a� 1Þð1� aÞh2 þ 1

2
uxxðxiþ1=2Þð1� aÞ2h2 þ C1ðx; aÞ þ Oðh3Þ

¼ uðxiþ1=2Þ þ uxðxiþ1=2Þ
h
2
þ 1

2
uxxðxiþ1=2Þ

h
2

� �2

þ C1ðx; aÞ þ Oðh3Þ; ð7Þ

and Taylor expansion for uðxiÞ at xiþ1=2 becomes

uðxiÞ ¼ uðxiþ1=2Þ � uxðxiþ1=2Þ
h
2
þ 1

2
uxxðxiþ1=2Þ

h
2

� �2

þ Oðh3Þ; ð8Þ

where the correction term is given as

C1ðx; aÞ ¼ ½u� þ ½ux�ð1� aÞhþ 1
2
½uxx�ð1� aÞ2h2:

Subtracting Eq. (8) from (7) and rearranging gives

uxðxiþ1=2Þ ¼
uðxiþ1Þ � uðxiÞ

h
� C1ðx; aÞ

h
þ Oðh2Þ:

Or, if 0 < a6 1=2, we Taylor expand uðxiÞ at x� ¼ xi þ ah:
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uðxiÞ ¼ uðx� � ahÞ ¼ u� � u�x ahþ 1
2
u�xxa

2h2 þ Oðh3Þ
¼ uþ � uþx ahþ 1

2
uþxxa

2h2 � C1ðx; aÞ þ Oðh3Þ ¼ uðxiþ1=2Þ � uxðxiþ1=2Þð12 � aÞh
þ 1

2
uxxðxiþ1=2Þð12 � aÞ2h2 � uxðxiþ1=2Þahþ 1

2
uxxðxiþ1=2Þð1� 2aÞah2

þ 1
2
uxxðxiþ1=2Þa2h2 � C1ðx; aÞ þ Oðh3Þ

¼ uðxiþ1=2Þ � uxðxiþ1=2Þ
h
2
þ 1

2
uxxðxiþ1=2Þ

h
2

� �2

� C1ðx; aÞ þ Oðh3Þ ð9Þ

and the Taylor expansion for uðxiþ1Þ at xiþ1=2 will be

uðxiþ1Þ ¼ uðxiþ1=2Þ þ uxðxiþ1=2Þ
h
2
þ 1

2
uxxðxiþ1=2Þ

h
2

� �2

þ Oðh3Þ; ð10Þ

where

C1ðx; aÞ ¼ ½u� � ½ux�ahþ 1
2
½uxx�a2h2:

Again, subtracting Eq. (9) from (10) and rearranging gives

uxðxiþ1=2Þ ¼
uðxiþ1Þ � uðxiÞ

h
� C1ðx; aÞ

h
þ Oðh2Þ:

In the second step, if the flux bux is non-smooth or discontinuous at the interface and 0 < a6 1=2, then
we need a second correction term, C2, for the second derivative. Expanding gives

buxðxiþ1=2Þ ¼ buxðx� þ ð1
2
� aÞhÞ ¼ ðbuxÞþ þ ðbuxÞþx ð12 � aÞhþ Oðh2Þ

¼ ðbuxÞ� þ ðbuxÞ�x ð12 � aÞhþ C2ðx; aÞ þ Oðh2Þ
¼ buxðxiÞ þ ðbuxÞxðxiÞahþ ðbuxÞxðxiÞð12 � aÞh2 þ C2ðx; aÞ þ Oðh2Þ

¼ buxðxiÞ þ ðbuxÞxðxiÞ
h
2
þ C2ðx; aÞ þ Oðh2Þ ð11Þ

and similarly at xi�1=2

buxðxi�1=2Þ ¼ buxðxiÞ � ðbuxÞxðxiÞ
h
2
þ Oðh2Þ; ð12Þ

where

C2ðx; aÞ ¼ ½bux� þ 1
2
½ðbuxÞx�ð1� 2aÞh:

Subtracting Eq. (12) from (11) and rearranging gives

ðbuxÞxðxiÞ ¼
buxðxiþ1=2Þ � buxðxi�1=2Þ

h
� C2ðx; aÞ

h
þ OðhÞ:

To summarize, if we extend this approach to consider the case when the interface is located anywhere

between xi�1 and xiþ1, and we replace u with the numerical approximation U , then we can write

ðbuxÞxðxiÞ ¼
biþ1=2ðUiþ1 � UiÞ � bi�1=2ðUi � Ui�1Þ

h2
þ Ci þ OðhÞ; ð13Þ

with the correction term
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Ci ¼ S/�b
C1ðx; aÞ

h2
þ S/

C2ðx; aÞ
h

; ð14Þ

where

S/ ¼ �1; /i < 0;
1; /i P 0;

�

and

C1ðx; aÞ ¼

½u� � k½ux�ahþ 1
2
½uxx�a2h2; if ð/i P 0 and 06 a < 1=2Þ

or ð/i < 0 and 0 < a6 1=2Þ;
½u� þ k½ux�ð1� aÞhþ 1

2
½uxx�ð1� aÞ2h2; if ð/i P 0 and 06 a < 1=2Þ

or ð/i < 0 and 0 < a6 1; =2Þ;

8>>><
>>>:

C2ðx; aÞ ¼
k½bux� þ 1

2
½ðbuxÞx�ð1� 2aÞh; if ð/i P 0 and 06 a < 1=2Þ

or ð/i < 0 and 0 < a6 1=2Þ;
0; otherwise:

8><
>:

The parameters k, a and �b are defined as follows:

• If the interface is between xi and xiþ1

(i.e. /i � /iþ1 < 0, or /i ¼ 0 and /iþ1 < 0, or /i < 0 and /iþ1 ¼ 0)

k ¼ 1; a ¼ /i=ð/i � /iþ1Þ and �b ¼ biþ1=2:

• If the interface is between xi�1 and xi
(i.e. /i � /i�1 < 0, or /i ¼ 0 and /i�1 < 0, or /i < 0 and /i�1 ¼ 0)

k ¼ �1; a ¼ /i=ð/i � /i�1Þ and �b ¼ bi�1=2:

For both cases, we can define the jump of a function f as

½f � ¼ lim
/þ!0

f ðxÞ � lim
/�!0

f ðxÞ ¼ f þ � f �:
Remark 1. If the solution is smooth and continuous (regular nodes), the jumps become zero and the

correction term vanish.

Remark 2. The local truncation error in Eq. (13) is of first order only, but we can still expect the global

accuracy to approach second order since the interface is of one dimension lower than the problem.

Returning to the two-dimensional case, the x-component in Eq. (6) can be replaced by Eq. (14) and a

similar expression can be found for Cy
i;j making Eq. (5) well-defined at all nodes.

3.3. Approximating the jump conditions

So far we have assumed the interface jump conditions to be known. Unfortunately, that is rarely the case

as they are usually solution-dependent and must be obtained as part of the solution. This is probably the

most difficult task when using sharp interface methods, as it is crucial for both solving the discrete equa-
tions efficiently and maintaining a certain accuracy.
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In higher dimensional problems it is common to use some iterative methods to solve the discretized

equations. The idea is therefore to obtain the correction term iteratively as well. We can approximate the

solution at the interface using Eqs. (2) and (3) by interpolating the result from the previous iteration step (or
initial guess). Then using one-sided difference stencils on both sides of the interface we can approximate the

jump conditions. The correction term is updated and given explicitly at every iteration step, as it converges

to the correct solution.

Using low-order interpolation schemes to approximate the jumps may increase the local truncation

error. To keep the local first order accuracy at irregular nodes we see from Eq. (14) that it is necessary to use

at least a third order accurate interpolation technique when guessing the interfacial values. To provide a

sufficient approximation of the jumps in first and second derivatives, second and first order methods are

needed, respectively. We found the Lagrange polynomial of degree two,

P ðxÞ ¼
X2

i¼0

Y
j¼0
j 6¼i

ðx� xjÞ
ðxi � xjÞ

fi

0
B@

1
CA; ð15Þ

to be sufficient to meet our required accuracy.

The first step in finding the correction term is approximating the solution at the interface. Consider an

irregular grid node ðxi; yjÞ where the interface crosses the horizontal grid line at ðx�; y�Þ, i.e. y� ¼ yj. Using a

set of interpolated values on both sides of the interface, we can reconstruct the boundary conditions (2) and
(3) to solve for the interfacial values at ðx�; y�Þ. The procedure is as follows (see Fig. 2):

(1) Construct a line which is normal to the interface at ðx�; y�Þ using the level set function, e.g find the nor-

mal vector~n ¼ r/=jr/j in the neighbour gridpoints of ðx�; y�Þ, and use linear interpolation to estimate
~n at ðx�; y�Þ.

(2) Chose two points along the normal line on both sides of the interface, e.g. Pþ
1 , P

þ
2 , P

�
1 and P�

2 , with the

distances a1, a2, b1 and b2 from the interface.

(3) Use the nodes surrounding Pþ
1 and the Lagrange polynomial to find a new value Uþ

1 in Pþ
1 . Repeat for

Uþ
2 , U

�
1 and U�

2 in Pþ
2 , P

�
1 and P�

2 . The points, P
þ
1 , P

þ
2 , P

�
1 and P�

2 , must be chosen carefully so that all
surrounding nodes lie on the same side of the interface, e.g. let a1 ¼

ffiffiffi
2

p
h and a2 ¼ 2

ffiffiffi
2

p
h, likewise on the

other side of the interface.

(4) Differentiate Eq. (15) to estimate the normal fluxes at the interface as

bþuþn ¼ bþ
�
� a1 þ a2

a1a2
Uþ

0 þ a2
a1ða2 � a1Þ

Uþ
1 � a1

a2ða2 � a1Þ
Uþ

2

�
;

b�u�n ¼ b� b1 þ b2
b1b2

U�
0

�
� b2
b1ðb2 � b1Þ

U�
1 þ b1

b2ðb2 � b1Þ
U�

2

�
:

Combine this with Eqs. (2) and (3) to obtain the interfacial values as

U�
0 ¼

b� a1a2
b2�b1

b22U
�
1 � b21U

�
2

� �
þ bþ b1b2

a2�a1
a22U

þ
1 � a21U

þ
2

� �
b�a1a2ðb1 þ b2Þ þ bþb1b2ða1 þ a2Þ

� a1a2b1b2vðx�; y�Þ þ bþb1b2ða1 þ a2Þwðx�; y�Þ
b�a1a2ðb1 þ b2Þ þ bþb1b2ða1 þ a2Þ

ð16Þ

and

Uþ
0 ¼ U�

0 þ wðx�; y�Þ: ð17Þ



Fig. 2. (a) The interpolation stencil for finding the values at the interface when y� ¼ yj. (b) The surrounding nodes for the Lagrange

polynomial interpolation. First, interpolate in y-direction, then in x-direction to find Uþ
1 and Uþ

2 .
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Next, we use the interfacial values to approximate the jumps in Eq. (6) along the x-direction where
a ¼ /i;j=ð/i;j � /i�1;jÞ and b ¼ 1� a,
uþx ¼ 1

h

�
� 2aþ 1

aðaþ 1ÞU
þ
0 þ aþ 1

a
Ui;j �

a
aþ 1

Uiþ1;j

�
;

u�x ¼ 1

h
2bþ 1

bðbþ 1ÞU
�
0

�
� bþ 1

b
Ui�1;j þ

b
bþ 1

Ui�2;j

�
;

uþxx ¼
1

h2
2

aðaþ 1ÞU
þ
0

�
� 2

a
Ui;j þ

2

aþ 1
Uiþ1;j

�
;

u�xx ¼
1

h2
2

bðbþ 1ÞU
�
0

�
� 2

b
Ui�1;j þ

2

bþ 1
Ui�2;j

�
;

bþuþx ¼ bþ

h

�
� 2aþ 1

aðaþ 1ÞU
þ
0 þ aþ 1

a
Ui;j �

a
aþ 1

Uiþ1;j

�
;

b�u�x ¼ b�

h
2bþ 1

bðbþ 1ÞU
�
0

�
� bþ 1

b
Ui�1;j þ

b
bþ 1

Ui�2;j

�
;

ðbþuþx Þx ¼
1

a2ðaþ 1Þ2h2
bþð2a

	n
þ 1Þ2 � bi;jðaþ 1Þ2 � biþ1;ja

2


Uþ

0

� bþða
	

þ 1Þ2ð2aþ 1Þ � bi;jð1� a2Þðaþ 1Þ2 � biþ1;ja
2ðaþ 1Þ2



Ui;j

þ bþa2ð2a
	

þ 1Þ þ bi;ja
2ðaþ 1Þ2 � biþ1;ja

3ð2þ aÞ


Uiþ1;j

o
;
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and finally

ðb�u�x Þx ¼
1

b2ðbþ 1Þ2h2
b�ð2b

	n
þ 1Þ2 � bi�1;jðbþ 1Þ2 � bi�2;jb

2


U�

0

� b�ðb
	

þ 1Þ2ð2bþ 1Þ � bi�1;jð1� b2Þðbþ 1Þ2 � bi�2;jb
2ðbþ 1Þ2



Ui�1;j

þ b�b2ð2b
	

þ 1Þ þ bi�1;jb
2ðbþ 1Þ2 � bi�2;jb

3ð2þ bÞ


Ui�2;j

o
:

Similar expressions can be found for the jumps in y-direction. This procedure is repeated for every ir-

regular node at every iteration step until convergence is reached in solving Eq. (5).

3.4. Solving the discrete equations

The system of linear discretized equations (5) is a symmetric and diagonally dominant matrix problem

which can be solved with most standard linear solvers. Implementation into already existing codes is
straightforward, as all correction applies to the right-hand side of the linear system only. We have suc-

cessfully implemented the method using a Successive Overrelaxation Red–Black Gauss Seidel method.

In each iteration we need to modify the right-hand-side to adjust the discretization at irregular nodes. To

ensure numerical stability and convergence, we found it necessary to underrelax the approximation of the

correction term Ci;j, i.e.

Cl
i;j ¼ Cl�1

i;j � aðCl�1
i;j � Cnew

i;j Þ;

where Cnew
i;j is the correction term approximated from the lth iteration step and a is the underrelaxation

parameter.

The initial guess, normally set equal to zero, for the solution and for the first approximated correction

term, C0
i;j, deviates of course largely from the correct values, and consequently the term ðC0

i;j � Cnew
i;j Þ will be

large. Such large adjustments in the right-hand-side of the discretized system will lead to numerical in-

stabilities. To suppress these instabilities the underrelaxation parameter a was introduced. This effect was

enhanced for finer grids, thereby requiring a smaller a. As the numerical solution was iterated towards the

correct solution, the underrelaxation parameter could slowly be increased and the system would still be

stable. We did not seek for any optimal value, but for the examples below it was sufficient to set a
somewhere between 0.05 and 0.01 in most cases.
4. Numerical examples

We have performed a number of numerical experiments to test our method. From these experiments we

are particularly interested in the accuracy of the computed solution and how well it performs when we

estimate the jumps according to Section 3.3 compared to using the exact jumps. We also compare some of

our results with other authors� work.
All examples below are computed on a square domain X, ½�1; 1� � ½�1; 1�, with equally spaced nodes, so

that Dx ¼ Dy ¼ h and N ¼ M ¼ n. The accuracy of the scheme is found from a grid refinement analysis.
The order of the scheme is given as

order ¼ logðkEnk1=kE2nk1Þ
logð2Þ

����
����;

where we use the maximum norm
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kEnk1 ¼ max
i;j

uðxi; yjÞ
�� � Ui;j

��
to estimate the error using an n� n grid.

We are also interested in finding the error when we mimic the correction term. Let �Ci;j represent the

approximate correction, then the relative error in the correction term is defined as

kCEnk1 ¼
maxi;j Ci;j � �Ci;j

��� ���
maxi;j Ci;j

�� �� :
4.1. Example 1

In the first example we consider a case studied in [8,18]. We solve Laplace�s equation, r2u ¼ 0 and the

interface is defined by the circle x2 þ y2 ¼ 1=4 with the jump conditions ½u� ¼ 0 and ½un� ¼ 2. This can be

considered as a problem where there is a singular source term along the interface, and the exact solution is

given as

uðx; yÞ ¼ 1; x2 þ y2 < 1=4;
1þ logð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ; x2 þ y2 P 1=4:

�

The exterior boundary conditions are given from the exact solution.

Table 1 (top) shows the result of the grid refinement analysis. The first column shows the mesh size. The

next two columns give the maximum error and order of convergence when we use the exact correction term
calculated from the true solution. The last four columns give the result when we approximate the correction

term according to Section 3.3. We notice the absolute error increases when we approximate the correction

term, but both cases show that the convergence approaches second order as the grid is refined.

To explain the discrepancy in error between the two approaches, we replaced Eqs. (16) and (17) with the

exact values given by the solution at the interface. These fixed values were then used to approximate the

one-sided differences at the interface according to Section 3.3. The results are summarized in Table 2. We
Table 1

Grid refinement analysis in example 1

n Exact correction term Approximate correction term

kEnk1 Order kEnk1 Order kCEnk1 Order

20 1.048� 10�3 2.049� 10�2 2.519� 10�2

40 2.403� 10�4 2.12 6.366� 10�3 1.69 8.204� 10�3 1.61

80 6.436� 10�5 1.90 1.760� 10�3 1.85 2.890� 10�3 1.51

160 1.565� 10�5 2.04 4.747� 10�4 1.89 7.550� 10�4 1.94

320 3.185� 10�6 2.30 1.206� 10�4 1.98 1.983� 10�4 1.93

n IIM in [8] EJIIM in [18]

kEnk1 Order kEnk1 Order

20 2.391� 10�3 1.4� 10�3

40 8.346� 10�4 1.52 1.8� 10�4 2.94

80 2.445� 10�4 1.77 6.6� 10�5 1.43

160 6.686� 10�5 1.87 1.9� 10�5 1.77

320 1.567� 10�5 2.09 3.4� 10�6 2.51

Top: results obtained in this study. Bottom: results obtained in [8] and [18].



Table 2

Grid refinement analysis with fixed interface in example 1

n Approximate correction term (fixed interface)

kEnk1 Order kCEnk1 Order

20 7.883� 10�4 5.635� 10�3

40 2.011� 10�4 1.97 1.383� 10�3 2.03

80 5.032� 10�5 2.00 4.430� 10�4 1.64

160 1.267� 10�5 1.99 1.181� 10�4 1.91

320 3.187� 10�6 1.99 2.651� 10�5 2.16
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notice the maximum error decreases significantly and becomes nearly identical to the error obtained when

using the exact correction terms. This is illustrated in Fig. 3 where we plot the error for all three cases

together with the numerical solution on a 40� 40 mesh.

The order of convergence compares well with the results reported in [8,18] for all three cases (see Table 1,

bottom), but an equivalent or better accuracy is only achieved for the case with exact correction term or

with a fixed interface. When we approximate the correction term, the maximum error is worse than ob-

tained in [8,18]. We realize a possible weakness in using Eqs. (16) and (17), though we still find the per-

formance satisfactorily. Alternatively, using even higher order differences complicates the implementation
by involving more grid nodes. More nodes may require higher grid resolution to allow for one-sided dif-

ferences at the interface.

If we look at the accuracy of the approximate correction term, we notice that the relative error, kCEnk1,
decreases almost with a rate of second order. This is better than what we expected and clearly satisfies our
Fig. 3. Example 1. (a) The numerical solution on a 40� 40 mesh. (b) The error when using the exact correction term. (c) The error

when using approximate correction term. (d) The error when using approximate correction term with fixed interface.
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requirements of at least local first order accuracy. Using exact values at the interface improves the error for

the correction term.

4.2. Example 2

Now we consider an example with discontinuous coefficients. The problem is also given by [8,12,18] and

is defined by the variable coefficient elliptic equation

ðbuxÞx þ ðbuyÞy ¼ f ðx; yÞ

with

bðx; yÞ ¼ r2 þ 1; r < 1=2;
b; rP 1=2;

�

and

f ðx; yÞ ¼ 8r2 þ 4;

for jumps ½u� ¼ 0 and ½bun� ¼ C=r, where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and C and b are arbitrary constants. The boundary

values are found from the analytical solution,

uðx; yÞ ¼
r2; r < 1=2;

1� 1
8b � 1

b

� �
=4þ r4

2
þ r2

	 

þ C logð2rÞ; rP 1=2:

(

The results are summarized in Table 3 for b ¼ 10 and C ¼ 0:1. The maximum error does not show a

significant difference whether we approximate the correction term or not. The decrease in error is second

order as the grid resolution increases. We obtain better accuracy than [8], but their approach converges
slightly faster as the grid is refined. In [18], the convergence is slower than obtained here, however, their

maximum norm is very close to our results when we approximate the correction term. Again, the relative

error, kCEnk1, in approximating the correction term converges quadratically as the grid is refined.
Table 3

Grid refinement analysis in example 2 with b ¼ 10 and C ¼ 0:1

n Exact correction term Approximate correction term

kEnk1 Order kEnk1 Order kCEnk1 Order

20 9.643� 10�4 1.394� 10�3 1.479� 10�2

40 2.490� 10�4 1.95 3.228� 10�4 2.11 3.479� 10�3 2.09

80 6.315� 10�5 1.98 7.857� 10�5 2.04 9.863� 10�4 1.82

160 1.589� 10�5 1.99 1.925� 10�5 2.03 2.143� 10�4 2.20

320 3.922� 10�6 2.02 4.774� 10�6 2.01 5.782� 10�5 1.89

n IIM in [8] EJIIM in [18]

kEnk1 Order kEnk1 Order

20 3.520� 10�3 7.6� 10�4

40 7.561� 10�4 2.22 2.4� 10�4 1.7

80 1.651� 10�4 2.20 7.9� 10�5 1.6

160 3.600� 10�5 2.20 2.2� 10�5 1.8

320 8.441� 10�6 2.09 5.3� 10�6 2.1

Top: results obtained in this study. Bottom: results obtained in [8] and [18].



Table 4

Grid refinement analysis with fixed interface in example 2 with b ¼ 10 and C ¼ 0:1

n Approximate correction term (fixed interface)

kEnk1 Order kCEnk1 Order

20 5.378� 10�4 4.525� 10�3

40 1.378� 10�4 1.96 1.059� 10�3 2.10

80 3.470� 10�5 1.99 2.732� 10�4 1.95

160 8.704� 10�6 2.00 5.672� 10�5 2.27

320 2.177� 10�6 2.00 1.522� 10�5 1.90
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As in the previous example we want to investigate the effect of replacing Eqs. (16) and (17) with the exact

values given by the true solution. Table 4 summarizes the results. As earlier, we notice improvements in

accuracy. However, for this problem the improvements are not that significant and we believe that Eqs. (16)

and (17) give a fairly good estimate of the values at the interface. Fig. 4 shows the numerical solution and

the error for the three cases.

We also consider the same problem with large jumps in the coefficients at the interface. The results are

given in Table 5 for b ¼ 1000 and b ¼ 0:001 when we approximate the correction term. The method still

converges with second order and the accuracy is slightly better than obtained in [12]. It should be noted that
for small b, the solution in the outer region becomes very large so that the absolute error in Table 5 is

actually small compared to the exact solution. We discuss some numerical problems associated with highly

discontinuous coefficients in more detail in the next example.
Fig. 4. Example 2. (a) The numerical solution on a 40� 40 mesh. (b) The error when using the exact correction term. (c) The error

when using approximate correction term. (d) The error when using approximate correction term with fixed interface.



Table 5

Grid refinement analysis in example 2 with large jumps in the coefficients

n b ¼ 1000, C ¼ 0:1 b ¼ 0:001, C ¼ 0:1

kEnk1 Order kCEnk1 Order kEnk1 Order kCEnk1 Order

32 2.083� 10�4 7.563� 10�4 4.971� 100 1.285� 10�2

64 5.296� 10�5 1.98 1.702� 10�4 2.15 1.176� 100 2.08 3.097� 10�3 2.05

128 1.330� 10�5 1.99 4.731� 10�5 1.85 2.900� 10�1 2.02 7.680� 10�4 2.01

256 3.330� 10�6 2.00 1.234� 10�5 1.93 7.086� 10�2 2.03 1.903� 10�4 2.01

n b ¼ 1000, C ¼ 0:1 b ¼ 0:001, C ¼ 0:1

kEnk1 Order kEnk1 Order

32 5.136� 10�4 9.246� 100

64 8.235� 10�5 2.76 2.006� 100 2.32

128 1.869� 10�5 2.19 5.808� 10�1 1.83

256 4.026� 10�6 2.24 1.374� 10�1 2.10

Top: results obtained in this study with approximated correction term. Bottom: results obtained in [12].
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4.3. Example 3

In this example we consider a composite material problem with piecewise constant coefficients. We are

particularly interested in the case with large differences in material properties. Let

uðx; yÞ ¼

2x
qþ 1þ s2ðq� 1Þ ; r < s;

xðqþ 1Þ � s2ðq� 1Þx=r2
qþ 1þ s2ðq� 1Þ ; rP s;

8>>><
>>>:

where q ¼ b�=bþ, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and s is the radius of the circular interface. This is the solution to r2u ¼ 0

with ½u� ¼ 0 and ½bu� ¼ 0 at the interface and exterior boundary as given by the analytical solution.
In fact, this problem is identical to Example 7.3 in [18] where they reported poor performance for the fast

iterative IIM [10] (FIIM) and their own explicit-jump IIM (EJIIM) in some cases. In EJIIM the correction

term is found from approximating the jumps with one-sided interpolation on one side of the interface only.

Choosing the correct side of the interface may be crucial for the results. They explained this with support

from their observations that the interior solution is pictured by a circular plane and finite differences on this

side represent the normal derivatives exactly, thus the jumps are exact. On the exterior side, the finite

difference representation is not that exact, introducing an error in the jump approximation and reducing the

accuracy of the scheme.
Tables 6 and 7 summarize the results for q ¼ 5000, while Tables 8 and 9 summarize the grid refinement

analysis for q ¼ 1=5000. We have chosen s ¼ 1=2 for both cases. For q ¼ 5000 ðb� � bþÞ we clearly have

uþn � u�n and we may assume that Eq. (16) simplifies into solving u�n ¼ 0 if uþn is finite and not too large (this

is actually not true, but Eq. (16) is mostly influenced by the solution in the interior region as long as uþn is

not too large). On the interior side, the finite differences approximate the normal derivatives exactly.

Therefore, the interface values are correctly approximated. This explains the good performance of our

approach for q ¼ 5000. There are no remarkable differences in accuracy whether we use exact jumps or

approximate them with or without the exact solution at the interface. This is also illustrated in Fig. 5 where
the numerical solution is plotted together with the error for all three cases. The differences in error are small

and all cases show better accuracy than found in [18].



Table 6

Grid refinement analysis in example 3 with q ¼ 5000

n Exact correction term Approximate correction term

kEnk1 Order kEnk1 Order kCEnk1 Order

25 9.811� 10�4 8.185� 10�4 9.441� 10�3

50 2.730� 10�4 1.85 3.278� 10�4 1.32 4.796� 10�3 0.98

100 4.841� 10�5 2.50 5.277� 10�5 2.64 3.046� 10�3 0.65

200 1.260� 10�5 1.94 1.371� 10�5 1.94 1.802� 10�3 0.75

400 3.491� 10�6 1.85 3.653� 10�6 1.91 9.370� 10�4 0.94

n FIIM Interior EJIIM Exterior EJIIM

kEnk1 Order kEnk1 Order kEnk1 Order

25 1.2� 10�2 1.4� 10�3 9.1� 10�2

50 9.2� 10�2 3.5� 10�4 2.0 2.5� 10�2 1.9

100 5.9� 10�2 0.6 9.0� 10�5 2.0 6.8� 10�3 1.9

200 7.7� 10�3 2.9 2.2� 10�5 2.0 2.0� 10�3 1.8

Top: results obtained in this study. Bottom: results obtained in [18].

Table 7

Grid refinement analysis with fixed interface in example 3 with q ¼ 5000

n Approximate correction term (fixed interface)

kEnk1 Order kCEnk1 Order

25 8.136� 10�4 9.410� 10�3

50 2.249� 10�4 1.85 4.611� 10�3 1.03

100 5.137� 10�5 2.13 3.044� 10�3 0.60

200 1.372� 10�5 1.90 1.803� 10�3 0.76

400 3.423� 10�6 2.00 9.368� 10�4 0.94

Table 8

Grid refinement analysis in example 3 with q ¼ 1=5000

n Exact correction term Approximate correction term

kEnk1 Order kEnk1 Order kCEnk1 Order

25 1.635� 10�3 2.267� 10�2 6.126� 10�2

50 4.549� 10�4 1.85 7.038� 10�3 1.68 1.843� 10�2 1.73

100 8.066� 10�5 2.50 1.934� 10�3 1.86 7.108� 10�3 1.37

200 2.102� 10�5 1.94 5.209� 10�4 1.89 3.103� 10�3 1.20

400 5.823� 10�6 1.85 1.346� 10�4 1.95 1.280� 10�3 1.28

n FIIM Interior EJIIM Exterior EJIIM

kEnk1 Order kEnk1 Order kEnk1 Order

25 5.2� 10�3 1.9� 10�3 1.3� 101

50 1.6� 10�3 1.7 5.5� 10�4 1.8 5.6� 100 1.3

100 2.3� 10�4 2.8 1.3� 10�4 2.1 6.4� 10�1 3.1

200 5.0� 10�5 2.2 3.2� 10�5 2.0 8.1� 10�2 3.0

Top: results obtained in this study. Bottom: results obtained in [18].
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For q ¼ 1=5000 ðb� � bþÞ we may assume that Eq. (16) simplifies into solving uþn ¼ 0 if u�n is finite

and not too large. In this case, the finite difference approximation of the normal derivative is less accurate

on the exterior side, resulting in an inaccurate approximation of the values at the interface. This explains



Table 9

Grid refinement analysis with fixed interface in example 3 with q ¼ 1=5000

n Approximate correction term (fixed interface)

kEnk1 Order kCEnk1 Order

25 1.356� 10�3 9.410� 10�3

50 3.748� 10�4 1.85 4.611� 10�3 1.03

100 8.560� 10�5 2.13 3.044� 10�3 0.60

200 2.287� 10�5 1.90 1.803� 10�3 0.76

400 5.703� 10�6 2.00 9.368� 10�4 0.94

Fig. 5. Example 5, q ¼ 5000. (a) The numerical solution on a 50� 50 mesh. (b) The error when using the exact correction term. (c) The

error when using approximate correction term. (d) The error when using approximate correction term with fixed interface.
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why the accuracy is lower when we use Eqs. (16) and (17) to approximate the correction terms. If we
instead replace Eqs. (16) and (17) with the exact values when approximating the jumps, the accuracy

becomes nearly identical with the case where we use exact jumps to find the correction terms. This is also

shown in Fig. 6.

Despite the lower accuracy obtained for q ¼ 1=5000 when we used approximate correction terms, the

performance of our method seems acceptable. The result obtained on the coarsest grid for q ¼ 1=5000 is

still better than the best approximation with the exterior EJIIM in [18], but it is worse than the results

obtained with the FIIM or interior EJIIM. The rate of convergence is second order for all cases. The

relative error, kCEnk1, in approximating the correction term converges only with a first order rate here.
This is actually what we first expected when we derived the scheme for finding the jumps at the interface.



Fig. 6. Example 5, q ¼ 1=5000. (a) The numerical solution on a 50� 50 mesh. (b) The error when using the exact correction term.

(c) The error when using approximate correction term. (d) The error when using approximate correction term with fixed interface.
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4.4. Example 4

In the two remaining examples we will only focus on the performance of approximating the correction

term. We want to compare the performance of the method with constant and variable coefficients by

solving two different problems leading to the same exact solution,

uðx; yÞ ¼ ex cos y; x2 þ y2 < 1=4;
0; x2 þ y2 P 1=4;

�

with a discontinuity at the interface.

Case I is defined by r2u ¼ 0 with jumps ½u� ¼ �ex cos y and ½un� ¼ 2exðy sin y � x cos yÞ (this example is

also found in [8,13]). In Case II, we solve the variable coefficient elliptic equation ðbuxÞx þ ðbuyÞy ¼ f ðx; yÞ,
where

bðx; yÞ ¼ x2 þ y2 þ 1; x2 þ y2 < 1=4;
1; x2 þ y2 P 1=4;

�

f ðx; yÞ ¼ 2exðy sin y � x cos yÞ; x2 þ y2 < 1=4;
0; x2 þ y2 P 1=4;

�

and the jumps are ½u� ¼ �ex cos y and ½bun� ¼ 2exðx2 þ y2 þ 1Þðy sin y � x cos yÞ. The exterior boundary

condition is u ¼ 0 for both cases.

The results from Case I and II are summarized in Table 10 where we have used approximate correction

terms. We can see how the discontinuity is captured sharply in Fig. 7. The accuracy of both numerical



Fig. 7. Example 4. The numerical solution on a 40� 40 mesh.

Table 10

Grid refinement analysis in example 4

n Case I Case II

kEnk1 Order kCEnk1 Order kEnk1 Order kCEnk1 Order

20 6.429� 10�4 1.964� 10�4 7.771� 10�4 2.309� 10�3

40 1.895� 10�4 1.76 3.026� 10�5 2.70 2.302� 10�4 1.76 4.947� 10�4 2.22

80 5.085� 10�5 1.90 6.417� 10�6 2.24 6.193� 10�5 1.89 1.452� 10�4 1.77

160 1.321� 10�5 1.94 8.480� 10�7 2.92 1.601� 10�5 1.95 3.357� 10�5 2.11

320 3.342� 10�6 1.98 1.047� 10�7 3.02 4.051� 10�6 1.98 8.689� 10�6 1.94

n Results obtained in [8]

kEnk1 Order

20 4.379� 10�4

40 1.079� 10�4 2.02

80 2.778� 10�5 1.95

160 7.499� 10�6 1.89

320 1.740� 10�6 2.11

Top: results obtained in this study. Bottom: results obtained in [8] for Case I.
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solutions agrees well with each other and both converge quadratically. In Case I, the relative error,

kCEnk1, in the correction term becomes negligibly small already at coarse grids. The rate of convergence of

kCEnk1 is close to three. The relative error in the correction term in Case II is also remarkably low

compared to previous examples. We have also included the results obtained in [8] for Case I in Table 10.

Their results are slightly better than what we achieved, but the differences are not significant.

4.5. Example 5

For this example we solve one problem with different shapes of the interface. Consider the variable

coefficient Elliptic equation ðbuxÞx þ ðbuyÞy ¼ f ðx; yÞ with the coefficient

bðx; yÞ ¼ x2 þ y2 þ 1; /ðx; yÞ < 0;
xþ 2; /ðx; yÞP 0;

�

and source term



Table 11

Grid refinement analysis in example 5

n Case I Case II

kEnk1 Order kCEnk1 Order kEnk1 Order kCEnk1 Order

20 4.141� 10�4 1.591� 10�3

40 1.205� 10�4 1.78 3.578� 10�4 2.15 1.732� 10�4 3.935� 10�4

80 3.254� 10�5 1.89 1.038� 10�4 1.79 4.916� 10�5 1.82 1.029� 10�4 1.94

160 8.365� 10�6 1.96 2.406� 10�5 2.11 1.109� 10�5 2.15 2.469� 10�5 2.06

320 2.130� 10�6 1.97 6.141� 10�6 1.97 2.933� 10�6 1.91 5.468� 10�6 2.17
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f ðx; yÞ ¼ 2exðy sin y � x cos yÞ; /ðx; yÞ < 0;
�2x� 3; /ðx; yÞP 0:

�

The jumps are given as ½u� ¼ x� y2 � ex cos y and ½bun� ¼ fxþ 2� ðx2 þ y2þ1Þex cos ygnxþ
f�2yðxþ 2Þ þ ðx2 þ y2 þ 1Þex sin ygny , where the normal vector ~n ¼ ðnx; nyÞ is given as r/=jr/j.

For Case I, we define the level set function /ðx; yÞ as follows:

/ðx; yÞ ¼ signðx2 þ y2 � 1=4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 � 1=4

p
:

For Case II, the level set function is obtained by solving the minimum value problem

d ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� X ðhÞÞ2 þ ðy � Y ðhÞÞ2

q
;

where the interface is given by the parametrized curve ðX ðhÞ; Y ðhÞÞ,

X ðhÞ ¼ 3

8
cosðhÞ � 1

4
cosð3hÞ;

Y ðhÞ ¼ 2

3
sinðhÞ � 1

12
sinð3hÞ þ 1

15
sinð7hÞ;

for h 2 ½0; 2pÞ. Then /ðx; yÞ ¼ �d, where the negative sign corresponds to the inner region enclosed by the

curve ðX ðhÞ; Y ðhÞÞ, while the plus sign is for the outer region. The exterior boundary conditions are given
from the exact solution
Fig. 8. Example 5. (a) Numerical solution on a 40� 40 mesh, Case I. (b) Numerical solution on a 40� 40 mesh, Case II.



P.A. Berthelsen / Journal of Computational Physics 197 (2004) 364–386 385
uðx; yÞ ¼ ex cos y; /ðx; yÞ < 0;
x� y2; /ðx; yÞP 0:

�

The grid refinement analysis is summarized in Table 11, and Fig. 8 shows the numerical results for both

interface shapes. We had to omit the coarsest grid for the irregular shaped interface to allow for one-sided

differences. For both cases, the accuracy is high and the rate of convergence is second order. The relative

error, kCEnk1, in correction terms are almost identical, regardless of interface shape. The accuracy does
not seem to be affected by the irregular interface as long as the grid resolution is high enough to allow for

one-sided differences at the interface.
5. Summary

We have derived a finite difference method for two-dimensional elliptic equations with discontinuous,

variable coefficients and source terms. Numerical experiments show good agreement with analytical so-
lutions, and the rate of convergence is found to be of second order. The method decomposes the interface

problem and introduces componentwise correction terms at irregular grid nodes to make the difference

scheme well-defined across interfaces. These correction terms are derived so that the difference stencil re-

mains symmetric and diagonally dominant, allowing for most standard solvers to be used. The main ad-

vantage of the present approach is to preserve the symmetry of the discretized elliptic problem for more

general coefficients than in previous methods, i.e. piecewise smooth coeffecients, with higher order accuracy.

We have also proposed a new method for estimating the solution-dependent correction terms. The main

idea is to obtain the correct correction term iteratively in parallel with the solution. Using sufficient und-
errelaxation on the approximated correction term gives a converging solution. Optimizing the value of the

underrelaxation parameter is crucial for the number of iterations required, and a separate study of this issue

could be of interest.

The approximate correction approach does not seem to influence the accuracy noticeably. However, for

some cases the values estimated at the interface become too inaccurate, increasing the maximum error of the

scheme. Despite this weakness, test cases show second order convergence and the accuracy is found to be

acceptable. The only restriction is a sufficient grid resolution to allow for one-sided differencing at the interface.

The present method is very simple to implement in existing codes. It does not require constructions of
complex coefficient matrices, as required by many other immersed interface methods. We believe an ex-

tension to three dimensions should be straight forward following the same approach as presented here.
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Abstract A numerical method for the prediction of fully developed, turbulent, stratified smooth two- and three-
phase flows in horizontal and inclined pipes is presented. The method solves the two-dimensional steady-state
axial momentum equation together with a two-layerk − ε turbulence model to account for the effect of turbu-
lence. The governing equations are discretized using a finite difference scheme on a composite, overlapping
grid with local grid refinement near interfaces and near solid boundaries. The immersed interface method is
used to enforce proper boundary conditions at the interface. This sharp interface technique makes the represen-
tation of the interfaces independent of the grid structure, and allows for using arbitrary shaped interfaces. The
interfaces are represented by level set functions. Predictions of liquid holdup, pressure gradient and friction
factors in two-phase flow show acceptable agreement with experimental data. A parametric study for hori-
zontal three-phase flow is presented for calculations of liquid holdup, pressure gradient, friction factors and
momentum corrections factors.

1 Introduction

Predictions of correct pressure drop and void fractions in two- and three-phase pipe flows have prac-
tical importance, in particular, in the oil and gas industry. The production and transportation of
hydrocarbons through long pipelines usually implies unstable flow configurations. These instabilities
may cause transitions from stratified flow to other flow regimes, such as slug flow or annular flow.
Slug flow is characterized by its large fluctuations in pressure and flow rate. In order to prevent this
oscillating flow structure, it is necessary to choke the flow, and therefore the production rate will be
dramatically reduced. Consequently, reliable models are of great importance for predicting the cor-
rect pressure drop and holdup to obtain optimal and efficient production and transportation of oil and
gas.

Most common models for multiphase pipe flows are based on greatly simplified representations of
the flow structure. Many mechanistic models are applied with reasonable assumptions. The mechanis-
tic approach treats all phases as one-dimensional bulk flows, neglecting the detailed velocity profiles
over the cross sections. Empirical correlations based on the average velocity are used to calculate the
shear stresses. For stratified two-phase flow, the most notable model is the one proposed by Taitel and
Dukler (1976) which uses a modified Blasius formula to determine the wall and interfacial friction
factors. Several attempts have been made to improve the friction factors, particularly for predicting
the interfacial shear stress. A large number of two-phase pipe flow experiments have been carried out
to incorporate the effect of interfacial waves (e.g. Andritsos and Hanratty 1987, Spedding and Hand
1997, Biberg 1999). These correlations are often restricted to a certain range of flow parameters, and
does not always reflect the correct physics of the flow.

Less attention has been devoted to the stratified three-phase pipe flow modelling. Early studies
combined water and oil into one liquid phase, which inaccurately simplified the problem into a two-
phase flow problem. Following the mechanistic approach, the one-dimensional methodology has been
extended to three-phase flow by means of an extra equation to model the third phase (e.g. Taitel et
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al. 1995). This approach still requires empirical correlations to determine the friction factors. Khor
et al. (1997) studied the performance of several different three-phase models and concluded that
considerable errors are present, even when the best combination of friction factors are used.

A few attempts have been made to extend the flow analysis to two-dimensional numerical mod-
els. In the early work of Shoham and Taitel (1984), the steady-state axial momentum equation was
discretized and solved in the liquid region in a bipolar coordinate system using a mixing-length tur-
bulence model. The gas region was treated as a bulk flow and an empirical correlation was used to
couple the two phases through the interfacial shear stress. Issa (1988) included the gas region in the
analysis and used a two-equation turbulence model with wall functions to calculate stratified smooth
two-phase pipe flow. More recently, Newton and Behnia (2000) extended the approach of Issa (1988)
by applying a low Reynolds numberk − ε turbulence model to the problem. This model resolved the
flow in the vicinity of the wall and the interface, which permitted the direct calculation of the wall
and interfacial shear stress distribution without using empirical wall functions. Later, Newton and
Behnia (2001) introduced a simple empirical interfacial shear stress to modify their two-dimensional
model for wavy stratified flow. These two-dimensional models brought more details into the analysis,
although they confined only to two-phase flow.

Recently, Berthelsen and Ytrehus (2004) developed a new two-dimensional numerical technique
to calculate stratified smooth two-phase pipe flow, using the immersed interface method (Berthelsen
2004). In this approach, the representation of the interface is made independent of the grid structure,
and allows for using arbitrary shaped interfaces. In the present study, the technique is extended to
numerical modelling of stratified smooth three-phase flow. A two-layer turbulence model is used to
calculate the time-averaged velocity profile in all phases. The interfaces are represented by level set
functions.

The main purpose of this work is to investigate the applicability of the immersed interface method
for turbulent, stratified two- and three-phase flow. The model is yet confined to the assumption of
having smooth interfaces between the different fluid layers. However, it is believed that the effect of
interfacial waves is more related to proper modelling rather than the actual numerical method being
used. To this end, similar analysis on three-phase flow has not been previously done.

2 Modelling

2.1 Level set representation
In the level set method, a smooth auxiliary functionφ is introduced as

φ(x, y) = ±dφ,
wheredφ is the shortest distance to the interface between two fluids. The sign ofφ indicates what side
of the interface(x, y) is located. From the definition above, the interfaceΓφ is given by the zero level
set of the functionφ, i.e.

Γφ =
{
(x, y) ∈ R

2 | φ(x, y) = 0
}
.

With the level set formulation it is not necessary to know the exact location of the interfaces. It can
be found by locatingΓφ for which φ vanishes. This approach allows for a more complex topology,
and additional interfaces can be added by merely introducing additional level set functions, e.g. for a
second interface (a third phase), a level set functionψ can be defined as

ψ(x, y) = ±dψ,
wheredψ is the shortest distance to the second interfaceΓψ. Similarly toΓφ, the second interface is
now defined as

Γψ =
{
(x, y) ∈ R

2 | ψ(x, y) = 0
}
.



5th International Conference on Multiphase Flow, ICMF’04
Yokohama, Japan, May 30-June 4, 2004

Paper No.130

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

x

y
ρ1, µ1ρ1, µ1

ρ2, µ2

ρ2, µ2

ρ3, µ3

φ < 0 φ < 0

φ > 0

φ > 0
φ > 0

ψ < 0 ψ < 0

ψ < 0

ψ < 0

ψ > 0

Γφ

Γφ

Γψ

������
���

��

���
���

���
���

���
���

���
���

���
��

���
���

���
���

���
���

���
��

���
���

���
���

���
���

���
���

���

���
���

���
���

���
���

���
���

���
�

���
���

���
���

���
���

���
���

���
�

���
���

���
���

���
���

���
���

���

���
���

���
���

���
���

���
���

���
�

���
���

���
���

���
���

���
���

���
�

���
���

���
���

���
���

���
���

���
�

���
���

���
���

���
���

���
���

���
�

���
���

���
���

���
���

���
���

���
�

���
���

���
���

���
���

���
���

���
�

���
���

���
���

���
���

���
���

���
�

���
���

���
���

���
���

���
���

���
�

���
���

���
���

���
���

���
���

��

���
���

���
���

���
���

��

���
���

���
���

���

���
���

���
��

���
���

������
���

��

���
���

���
���

���
���

���
���

���
��

���
���

���
���

���
���

���
��

���
���

���
���

���
���

���
���

���

���
���

���
���

���
���

���
���

���
�

���
���

���
���

���
���

���
���

���
�

���
���

���
���

���
���

���
���

���

���
���

���
���

���
���

���
���

���
�

���
���

���
���

���
���

���
���

���
�

���
���

���
���

���
���

���
���

���
�

���
���

���
���

���
���

���
���

���
�

���
���

���
���

���
���

���
���

���
�

���
���

���
���

���
���

���
���

���
�

���
���

���
���

���
���

���
���

���
�

���
���

���
���

���
���

���
���

���
�

���
���

���
���

���
���

���
���

��

���
���

���
���

���
���

��

���
���

���
���

���

���
���

���
��

���
���

y

z

Γφ

Γψ
θ

u1

u2

u3

Figure 1: Illustration of stratified smooth two- and three-phase pipe flow with inclination angleθ.

2.2 Governing equations
Consider a fully developed, incompressible and unidirectional pipe flow of stratified fluids. The time
averaged, steady state axial momentum equation for each phase can be written as

∂

∂x

[
(µ+ µt)

∂u

∂x

]
+

∂

∂y

[
(µ+ µt)

∂u

∂y

]
− dp

dz
− ρg sin θ = 0, (1)

whereu is the axial velocity,ρ is the density,g is the gravitational acceleration,θ is the pipe incli-
nation angle anddp/dz is the pressure gradient in the axial direction. The molecular and turbulent
viscosities are denoted byµ andµt, respectively. Adopting the level set formulation above, assum-
ing the interfaces to be infinitely thin, the fluid properties can be defined directly from the level set
functions as

ρ(φ, ψ) =




ρ1 if φ < 0, ψ < 0,
ρ2 if φ ≥ 0, ψ < 0,
ρ3 if φ > 0, ψ ≥ 0,

and µ(φ, ψ) =




µ1 if φ < 0, ψ < 0,
µ2 if φ ≥ 0, ψ < 0,
µ3 if φ > 0, ψ ≥ 0,

for two- and three-phase flow (see Figure 1). For simplicity, the interfaces are assumed to be smooth
and no interfacial disturbances occur.

The two-layer turbulence model of Chen and Patel (1988) is used to mimic turbulent stresses.
In this turbulence model, the standardk − ε model is used only in the fully turbulent region, while
the viscous affected region is resolved with a one-equation turbulence model. For the latter case, a
simpler length scale model is used to replace the equation of dissipation. The equation of dissipation
is also known as the weakest modelled equation of thek − ε model, in particular in the viscous sub
layer. Generally, the eddy viscosity relation can be written as

µt = Cµρ
√
klµ,

whereCµ is a dimensionless constant (see Table 1),k is the turbulent kinetic energy andlµ is the
turbulence length scale.

The turbulence length scale is in the fully turbulent region determined from the dissipation rateε
as

lµ =
k3/2

ε
,

and in the viscous affected regions the length scale is adopted from the model by Wolfshtein (1969),

lµ =
κd

C
3/4
µ

[
1 − exp

(
−Ry

Aµ

)]
,
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whereRy is defined asρ
√
kd/µ, κ is the von Karman constant andAµ is a model coefficient. The

distanced is defined as the shortest distance to a surface, either the pipe wall or an interface. This
definition ofd is based on the assumption that the presence of an interface acts to dampen turbulence.

The turbulent kinetic energy is modelled by the following governing equation:

∂

∂x

[(
µ+

µt
σk

)
∂k

∂x

]
+

∂

∂y

[(
µ+

µt
σk

)
∂k

∂y

]
+ µt

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]
− ρε = 0 (2)

in both the fully turbulent and viscous affected regions. In the fully turbulent region, the rate of
dissipation is determined from the following governing equation:

∂

∂x

[(
µ+

µt
σε

)
∂ε

∂x

]
+

∂

∂y

[(
µ+

µt
σε

)
∂ε

∂y

]
+ C1ε

ε

k
µt

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]
− C2ερ

ε2

k
= 0, (3)

while the dissipation rate is described as

ε =
k3/2

lε
(4)

in the viscous affected region. The length scalelε is used as proposed by Wolfshtein (1969),

lε =
κd

C
3/4
µ

[
1 − exp

(
−Ry

Aε

)]
.

The values used for the turbulent coefficientsAµ, Aε, Cµ, C1ε, C2ε, σk, σε andκ are summarized in
Table 1.

Table 1: Values for the turbulence model coefficients.
Cµ Aµ Aε κ C1ε C2ε σk σε
0.09 70.0 5.08 0.418 1.44 1.92 1.0 1.3

The two models should be matched in a region where viscous effects become negligible. Chen
and Patel (1988) found that the results were insensitive to the matching criterion as long asRy was
greater than200, and they suggestedRy = 250 as a suitable matching criterion. The same criterion
has been adopted here to match the two models.

Another advantage in using the level set approach is that the distance to the nearest interface is
given explicitly as the minimum of the absolute values of the level set functions. This becomes useful
when calculatingd in the expressions above.

Thek − ε model assumes isotropic turbulence and is incapable of producing secondary motion.
Secondary flows are known to appear in non-circular ducts (Demuren and Rodi 1984) and can also be
observed in stratified gas-liquid pipe flow (e.g. Strand 1993). However, modelling this phenomenon
would require calculations of all the Reynolds stresses, involving more sophisticated turbulence mod-
els. Meknassi et al. (2000) used an algebraic stress model to simulate the anisotropy of the turbulence
in gas-liquid pipe flow using a body-fitted bipolar coordinate system. A similar approach can be
adopted with the present model, but is neglected in this study due to the increase in complexity and
computational cost.
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2.3 Boundary conditions
To exploit the symmetry of the flow and increase computational efficiency the following boundary
conditions are used on the vertical axis:

∂u

∂n
= 0,

∂k

∂n
= 0 and

∂ε

∂n
= 0,

where∂/∂n denotes the derivatives normal to the boundary.
At the solid pipe wall, the velocity, turbulent kinetic energy and eddy viscosity vanish due to the

natural no-slip condition, i.e.

uw = 0, kw = 0 and µt,w = 0,

where the subscript w denotes the boundary value at the wall. The dissipation rate is expressed by
Eq. (4) in the near-wall region and does not require any boundary value to make the problem well-
defined.

Since the interface between two phases is assumed to be smooth, it can be treated as a moving
wall. This assumption suggests that the interface reduces the length scale of turbulence, decreasing
the turbulent viscosity in a similar manner as the presence of a solid surface. Therefore, the following
boundary conditions are imposed at the interface:

ki,p = ki,q = 0 and µt,i,p = µt,i,q = 0,

between phase p and q. The subscript i denotes the interfacial boundary value. The dissipation rate is
again given by Eq. (4). Further, continuity in velocity and shear stress at the interface yields

ui,p = ui,q and µp
∂ui,p

∂n
= µq

∂ui,q

∂n
.

2.4 Closing relations
The set of equations are closed by the equations for the phase flow rates. The relations are given as∫

Aq

u(x, y)dA = Qq for q = (1, 2, 3),

whereAq is the phase cross-sectional area,Qq is the phase flow rate and the subscript q denotes the
phase. This way, the phase area, pressure gradientdp/dz, velocity fieldu and the turbulent quantities
k andε can be determined for given phase flow rates. The phase flow rate is commonly represented
by the phase superficial velocity defined asUqs = Qq/A.

2.5 Numerical method
The governing equations (1)–(3) are discretized using a finite difference scheme on a composite, over-
lapping grid (Chesshire and Henshaw 1990) with adaptive grid refinements (Martin and Cartwright
1996) near the interfaces and near solid boundaries. The overlapping grid (see Figure 2) consists of
two structured curvilinear base component grids describing the cross section of a pipe. Each compo-
nent grid has its own mapping function,

(x, y) = Φ(ξ, η),

transforming the computational space(ξ, η) into the physical space(x, y). The component grids are
coupled through higher order interpolations on the interior boundary cells. The interpolations are
done in computational space allowing for simpler interpolation techniques on rectangular grids to be
used (see Figure 3).
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Figure 2: The composite overlapping
grid with local grid refinements near the
pipe wall and near the interfaces in a
three-phase flow.
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Figure 3: The interpolation points in computational space
for coupling between overlapping composite grids.

A local grid refinement technique is adopted to obtain adequate resolution without increasing the
computational expenses tremendously. This is done by adding block-structured subgrids to regions
where the grid is to be refined (Berger and Rigoutsos 1991). These refined subgrids use information
from coarser grid levels by updating the boundary cells using higher order interpolation. Information
from refined levels is passed to the coarser level using therefined flux at the coarse/fine interface (see
Martin and Cartwright 1996). The discrete equations are solved iteratively and separately on each
subgrid. Interior boundary cells are updated as information is passed between the grids after every
iteration step.

The boundary conditions at the interface are treated properly by applying a sharp interface tech-
nique. The decomposed immersed interface method as presented by Berthelsen (2004) is used. This
method adds componentwise correction terms to the finite difference stencil to make the discretization
well-defined across the interface. With this approach, the interface is decoupled from the grid, which
allows for using more complex interface configurations than with body-fitted grid.

3 Numerical Results and Discussion

3.1 Gas-liquid flow
The present model is compared with the experimental results of Espedal (1998) and a one-dimensional
mechanistic model using the friction factors proposed by Taitel and Dukler (1976). Espedal performed
experiments on stratified air-water flow in a 0.06 m diameter pipe at small inclination angles. A large
number of experiments were conducted for different combinations of air and water flow rates where
the liquid holdup,HL, and the pressure gradient were measured.

Wave probes were used to identify the interfacial structure in the experiments and the following
characteristics were defined: smooth flow, small amplitude waves, small amplitude 2D waves, large
amplitude 2D waves and large amplitude 3D waves. To be consistent with the assumptions made in the
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Figure 5: Comparison of predicted and measured
pressure gradient.

present approach, only data from the experiments where no waves occurred or only small amplitude
waves (less than<0.5 mm) were observed are used for comparisons. The presence of small amplitude
waves shows only small effect on the results presented here.

In Figure 4 and 5, the predictions of liquid holdup and the pressure gradient are compared with
the measurements for a downward inclined pipe with inclination angleθ = −0.5o. The gas superficial
velocity,UGs, is held constant at 1.5 m/s and 3 m/s, while the liquid superficial velocity,ULs, varies
from 0.01 m/s to 0.27 m/s. The pressure gradient and the liquid holdup are plotted against the liquid
superficial velocity.

The results show good agreement for predicting both liquid holdup and pressure gradient. The
predicted liquid holdup is almost identical for the present model and the one-dimensional model.
The present approach shows a small tendency of under-prediction as the holdup increases, though
the difference is negligible. In predicting the pressure gradient, the discrepancy between the two
models becomes more significant. The present approach agrees quite well with the measurements,
but deviates slightly at higher liquid flow rates. The simpler one-dimensional model estimates too
low values for the pressure gradient.

Espedal measured the wall shear stress and reported the average wall shear stress in the gas phase,
τG. The average liquid wall shear stress,τL, and interfacial shear stress,τi , are calculated from a
momentum balance using the measured liquid holdup, pressure gradient and gas wall shear stress.
Figure 6 compares a selection of predicted friction factors with values obtained from the experiments.
The friction factorsfG, fL andfi are defined as

fG =
τG

1
2
ρGū2

G

, fL =
τL

1
2
ρLū2

L

and fi =
τi

1
2
ρG(ūG − ūL)2

,

whereūG andūL are the bulk velocities in the gas phase and liquid phase, respectively.
The modified Blasius formula,f = 0.046Re−0.2, under- estimates the friction factors at the wall

and interface, which also explains the lower predicted pressure gradient in Figure 5. The present
model predicts the gas wall and interfacial friction factors quite well compared to the simpler one-
dimensional approach. However, in the liquid phase the model under-predicts the wall friction factor,
and the discrepancy seems to increase as the liquid Reynolds number increases. The assumption
fi

∼= fG for stratified smooth flow as a first approximation is supported by the calculated results and
experimental data given in this example. Though, it is noticed that the interfacial value is actually
slightly higher.
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Figure 6: Calculated average friction factors as function of phase Reynolds number using the present
model compared with experimental results and the Blasius type equation used by Taitel and Dukler
(1976).
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3.2 Gas-liquid-liquid flow
The lack of measured data available on stratified three-phase flow with smooth interfaces makes
comparison with experimental results difficult. Therefore, this subsection will only provide some
typical examples of gas-liquid-liquid flow in a horizontal pipe to demonstrate the capability of using
the present method for calculating stratified smooth three-phase flow in pipes.

In the examples below, the pipe diameter is 0.05 m, and the gas-liquid-liquid system consist of
air, oil and water. The subscript A, O and W are used to denote air, oil and water, respectively. The
density of air is set toρA = 1.2 kg/m3 and of waterρW = 1000 kg/m3. The air viscosity is rounded to
µA = 2.0×10−5 Pa·s and for water it isµW = 0.001 Pa·s. If not else stated the oil density isρO = 800
kg/m3 and the oil-to-water viscosity ratio,̃µ = µO/µW, varies between 2 and 10.

The first example demonstrates the effect of introducing a smooth interface in the liquid phase.
A two-phase air-water system is compared with a three-phase system where the oil layer is given
the same material properties as water. The total liquid holdup,HL = HO + HW, for both cases are
compared in Figure 7 and the pressure gradients are compared in Figure 8. The results are plotted as
functions of total liquid superficial velocity,ULs = UOs+UWs. The gas superficial velocity,UGs = UAs,
is held constant at 1 m/s and the volumetric water fraction,WF = UWs/ULs, is equal to 0.5.



5th International Conference on Multiphase Flow, ICMF’04
Yokohama, Japan, May 30-June 4, 2004

Paper No.130

0.25

0.30

0.20

0.35

0.15

0.0600

0.0480

0.0240

0.0360

0.0120

Velocity Eddy viscosity
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Figure 10: Contour plots of the velocity field
[m/s] and eddy viscosity [Pa·s] in the liquid phase
in a gas-liquid-liquid three-phase system where
both liquid layers have same material properties.
Total liquid holdup is 0.7.

The curves for total liquid holdup and the pressure gradient coincide for low liquid flow rates for
both cases. In this region, the liquid phases are laminar and the smooth liquid-liquid interface should
have no effect on the flow. As the liquid flow rate increases and turbulent stresses becomes noticeable,
the curves starts to deviate from each other. The total liquid holdup is lower for the three-phase flow
case. This is because the turbulent stresses are damped towards the smooth liquid-liquid interface
yielding a higher flow rate for equal pressure gradient. For high liquid rates, where turbulent stresses
dominate, the laminar zone near the interface becomes thinner and the two cases seem to approach
each other. The water holdup curve in the three-phase flow follows the same trend as the total liquid
holdup curve, but for low liquid rates it is relatively high. This was also observed by Taitel et al.
(1995) for µ̃ = 1. They explained this by the faster moving gas dragging the oil layer to higher
velocities than the water layer, requiring lower oil holdup to maintain the same flow rate in the oil
layer as in the water layer.

Figure 9 and 10 show the velocity distribution and the turbulent eddy viscosity distribution in the
liquid layers when total liquid holdup is 0.7. The contour plots clearly demonstrate how the turbulent
viscosity is damped towards the liquid-liquid interface causing a laminar zone near the interface in
the three-phase flow.

In Figure 11 and 12, the gas superficial velocity is held constant atUGs = 1 m/s and the oil
density is 800 kg/m3, while the oil-water viscosity ratio,̃µ, varies between 2 and 10. The volumetric
water fraction,WF , is still equal to 0.5. The total liquid level increases for increasing oil viscosity,
particularly at low liquid flow rates. This is because the more viscous oil moves slower, which leads
to an increase in the oil holdup and the total liquid holdup to maintain the liquid flow rate. This effect
is greater at low liquid rates, since the effect of higher viscosity is larger when turbulent stresses are
small. Also, at lower liquid rates, the water holdup will increase as the oil viscosity increases. This is
expected since the dragging effect from the oil layer decreases when the oil layer moves slower, thus
making the water level to increase in order to maintain the water-to-oil flow rate ratio constant.

For higher liquid flow rates, turbulent stresses are dominating the oil layer, and the effect of
increased viscosity becomes smaller as the curves approach each other. However, the water holdup
is reduced as a result of increased oil viscosity. At these rates, the water layer is mostly driven by
the pressure gradient, and not the interfacial shear stress caused by the faster moving oil layer. Since
increased oil viscosity increases the pressure gradient, the water flow rate will also increase, reducing
the necessary water level to maintain the water-to-oil flow rate ratio at constant liquid rates.
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smooth three-phase flow where the oil-to-water
viscosity ratioµ̃ is 2, 5 and 10.
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Figure 13: A selection of prescribed shapes for the liquid-liquid interface, whereHW = HO = 0.25.
For a convex shaped interface the pipe wall is water wetted, while for a concave shaped interface the
pipe wall is oil wetted.

In the next example, the effect of a curved liquid-liquid interface is studied by applying a set of
prescribed interface shapes (see Figure 13), while the liquid holdups,HW andHO, are held constant
for a given pressure gradient. Curved liquid-liquid interfaces was observed in the experiments of
Roberts (1996). The curvature is here characterized by a contact angleγ, whereγ → 0o denotes
a convex shape andγ → 180o denotes a concave shape, while a plane interface is somewhere in
between.

The calculated liquid superficial velocities,ULs,UWs andUOs, normalised by the total liquid super-
ficial velocity obtained with a plane interface,U0

Ls, are shown in Figure 14 as functions ofγ. Figure 15
shows the calculated volumetric water fraction,WF , normalised by the water fraction obtained with
a plane interface,WF 0, as a function ofγ. The water holdup and oil holdup are both equal to 0.25,
the oil-to-water viscosity ratio,̃µ, is 4 and the pressure gradient is held constant at 15 Pa/m.

For convex shaped interfaces, the wetted wall perimeter in the oil phase is less than for a concave
shaped interface. That results in less wall friction and higher oil liquid rates for given pressure gra-
dient. The total liquid flow rates decreases monotonically as the interface goes from a convex shape
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towards a concave shape. Most of this reduction is done by the oil phase, while the water flow rate
remains nearly constant. Only a small reduction in the water flow rate can be observed when the inter-
face approach the plane interface,γ ∼= 66o, thereafter a small increase in water flow rate as the shape
becomes more concave. The minimum seems to be located slightly to the left for the plane case. The
larger relative decrease in the oil flow rate compared to the water flow rate leads to an increase in the
volumetric water fraction as the interface becomes more concave.

The wall and interfacial shear stresses are averaged and average friction factors are calculated
from

fA =
τA

1
2
ρAū2

A

, fO =
τO

1
2
ρOū2

O

, fW =
τW

1
2
ρWū2

W

, fi =
τi

1
2
ρA(ūA − ūO)2

, and fj =
τj

1
2
ρO(ūO − ūW)2

,

whereτi andτj are the interfacial shear stresses at the air-oil interface and oil-water interface, respec-
tively, τq (q = A,O,W) is the wall shear stress and̄uq is the bulk velocity in phase q. A selection
of calculated friction factors are compared with the modified Blasius formulation used by Taitel et
al. (1995) for wall friction factors,f = CRe−n, in Figure 16. The interface is plane for all friction
factors presented here. The phase Reynolds numbers are defined as suggested by Khor et al. (1997),

ReA =
ρAūAAA

µA(SA + Si)
, ReO =

ρOūOAO

µO(SO + Sj)
and ReW =

ρWūWAW

µWSW
,

whereAq andSq (q = A,O,W) are the phase cross sectional area and the wetted wall perimeters for
phase q, respectively. The interfacial perimeters are denotedSi andSj for the air-oil interface and the
oil-water interface, respectively.

The water layer wall friction factor is nearly identical to the formulation used by Taitel et al.
(1995). The gas wall friction factor obtained with the present method gives higher values than the
Blasius type equation while the calculated wall friction factors in the oil layer is considerable lower
than the modified Blasius equation. For smooth interfaces, as considered here, the air-oil interfacial
friction factor is very close to the gas wall friction factor. A similar relation can be observed for the
oil-water interface and the oil layer wall friction factor.

The momentum correction factors, defined as

MCFq =

∫
Aq
u(x, y)2dA

ū2
qAq

for q = (A,O,W),
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Figure 16: Calculated averaged friction factors as function of phase Reynolds number for stratified
smooth three-phase flow in horizontal pipes using the present model compared with the Blasius type
equation used in Taitel et al. (1995).

are plotted in Figure 17. A selection of data forUGs =1 m/s and 2 m/s is given. Newton and Behnia
(2000, 2001) reported that the momentum correction factors for two-phase flow were higher than
those for turbulent single-phase pipe flow and the data approached a constant value of approximately
1.06 in the gas phase as the Reynolds number increased. In the present calculation, the momentum
correction factors decreases as the Reynolds number increases and it seems like they are approaching
a constant value. However, it should be noticed that in the gas phase the momentum correction factor
makes a jump for increased gas superficial velocity at about ReA = 6000.

In the higher Reynolds number region it is likely that a transition from the stratified flow regime
would occur making these results doubtful. But, for the time being, such calculations as presented
here still give new and valuable information about stratified smooth three-phase flow.

4 Summary

A numerical model of turbulent, stratified smooth two- and three-phase pipe flow has been presented.
Turbulent stresses were modelled using a two-layerk − ε turbulence model. The interface has been
decoupled from the numerical grid utilising the immersed interface method. This technique allows
for using multiple and arbitrary shaped interfaces.

The method has been tested and compared with experimental data for two-phase flow in a down-
ward inclined pipe with a small inclination angle. Predictions of liquid holdup and pressure gradient
showed acceptable agreement with the measured data. Calculations of gas wall and interfacial friction
factors matched the results from the experiments well. In the liquid phase, a small under-estimation
of the wall friction factor was observed. A parametric study of horizontal three-phase pipe flow was
done to demonstrate the capability of the method.
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Figure 17: Calculated momentum correction factors in stratified smooth three-phase flow.

The model offers great flexibility in addressing turbulent stratified multiphase flow in pipes. It
does not rely on empirical data other than those involved in turbulence models. The calculations
presented here are restricted to smooth interfaces only, limiting the immediate applicability of the
results, but the effect of interfacial waves is considered to be a modelling issue more than a part of the
numerical method, and later studies will show how the immersed interface method can be applied to
predict stratified wavy multiphase pipe flow.
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