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Abstract

In this thesis a new Lagrangian numerical scheme for the simulation of gas-liquid flows

in pipelines is presented. Based on an approximate two-fluid model, this new scheme,

called LASSI (Lagrangian Approximate Scheme for Slug Initiation) is dedicated to

the modelling of the transition between stratified and slug flow. It is able to capture

directly the slug initiation process and to track the motion of every single slug in the

pipe without numerical diffusion. It can thus be qualified as a slug capturing and slug

tracking scheme.

The scheme is based on the decoupling between the fast pressure dynamics gov-

erning the motion of the slugs and the much slower liquid transport in the bubbles.

The liquid motion in the bubbles is then approximately modelled by a modified ver-

sion of the shallow water equations, in which the influence of the Bernoulli suction

force is subtracted from the traditional hydrodynamical term. The fully Lagrangian

structure of the scheme makes it possible to accurately capture the transport of the

fast interfacial waves whose growth can eventually result in a slug initiation.

The model predictions are compared with some experimental results obtained in the

NTNU multiphase flow laboratory or taken from the literature. Several flow conditions

are considered, in particular the case of hydrodynamic slugging in near-horizontal

flows, slugging in an upwards pipe, severe slugging, and slugging triggered by fast

transients. Numerical predictions are also compared with theoretical considerations

regarding the stability of stratified flow.
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Summary

This thesis consists of an introductory part and four papers.
The introductory part mainly describes the details of the implementation of the

presented scheme. In addition, more general issues regarding slug capturing with two-
fluid models are dealt with in appendix B and C where are respectively investigated
the consequences of upstream differentiation on the area of stability of the two-fluid
model schemes and the influence of the inclusion of the high order differential terms
derived in the fourth paper of this thesis on the slug capturing abilities of an Eulerian
two-fluid model scheme.

The main part of the thesis consists of the following papers:

• A simple slug capturing and slug tracking scheme for gas-liquid pipe flow. Paper
1: Presentation of the scheme. Fabien Renault and Ole Jørgen Nydal. Preprint.

• A simple slug capturing and slug tracking scheme for gas-liquid pipe flow. Paper
2: Application to slug length determination in a small scale flow loop. Fabien
Renault, Ole Jørgen Nydal, Vincent Gruez and Pierre Luquet. Preprint.

• An experimental and numerical study of flow regime transitions associated with
fast flow rate changes in gas-liquid pipe flow. Fabien Renault, Monika Johansen
and Ole Jørgen Nydal. Preprint.

• Influence of dynamic pressure terms on stratified two-phase flow stability. Fabien
Renault and Ole Jørgen Nydal. Presented at the 5th International Conference
on Multiphase Flow, ICMF’04, Yokohama, Japan, May 30-June 4, 2004.

The three first papers are aimed at validating the presented scheme for various flow
conditions. The first paper demonstrates the ability of the LASSI scheme to correctly
predict the experimentally observed transition between stratified and hydrodynamic
slug flow in near-horizontal pipes, as well as its fast-front tracking abilities. In the
second paper, some experiments performed on a V-shaped small-scale air-water loop
at the NTNU flow lab are used to validate the ability of the scheme to satisfactorily
reproduce the obtained slug length distributions in normal bend slugging and severe
slugging. In the third paper, the LASSI scheme is used to investigate the transitions
between slug and stratified flow triggered by fast variations in the inlet flow rates. The
predictions are then compared with the experiments conducted at the NTNU lab in a
6 cm diameter pipe.

xii
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Chapter 1

Introduction

1.1 Gas-liquid flow in pipelines

Gas-liquid flow refers to the simultaneous transport of a gas phase and a liquid phase

in a single pipeline. Oil and natural gas in pipelines and water and vapour mixtures

in power plants are good examples of industrial gas-liquid flows. Compared to single

(gas or liquid) phase flow, the most outstanding characteristic of gas-liquid flow lies

in the great variety of flow regimes that can occur.

In a horizontal pipe at atmospheric pressure, at low flow rates, the gas phase

naturally flows on top of the liquid layer. This flow regime is called stratified flow.

As the liquid flow rate increases, the interface between the gas and the liquid phase

becomes unstable, waves appear and grow until a wave crest finally bridges the pipe,

forming a liquid pocket occupying all the pipe section and called a slug. In the slug flow

regime, gas bubbles and liquid slugs, which can contain small gas bubbles, alternately

surge along the pipe.

In the slug flow region, if we increase the liquid flow rate while maintaining the gas

flow rate constant, the share of the pipe volume occupied by the gas phase within the

pipe, or void fraction will progressively decrease until the different slugs finally merge

and occupy all the pipe. We then encounter the dispersed bubble regime characterized

by small gas bubbles flowing within the liquid phase.

Starting back from slug flow, if we decide to increase the gas flow rate while main-

taining the liquid flow rate constant this time, the liquid velocity and the void fraction

will increase. The slugs eventually vanish, and we then reach annular flow in which

the lighter phase flows in the center of the pipe while the heavier phase is contained

as a thin moving film on the pipe wall.

Figure 1.1 taken from Taitel (2000) represents the different flow regimes that can be

1



1. Introduction 2

Figure 1.1: Flow patterns in horizontal gas-liquid flows (Taitel, 2000)

encountered in gas-liquid pipe flow. Figure 1.2, a schematic flowmap taken from Kris-

tiansen (2004) indicates the prevailing flow regime for a given gas superficial velocity

US
g (defined as the ratio between the gas volume flow rate and the pipe cross-sectional

area) and liquid superficial velocity US
l . The influence of the pipe inclination (β is the

angle between the pipe and the horizontal, a negative value indicating a downward

inclination) and of the pressure on the transition between stratified and slug flow is

also shown.

1.2 The transition between stratified and slug flow

One of the greatest challenges of two-phase flow computations lies in the modelling of

flow regime transitions, because a flow regime transition can both be difficult to predict

and have a tremendous impact on the characteristics of the flow. At comparable flow

rates, different flow regimes can be characterized by a quite different holdup, pressure

drop, gas-liquid friction or sound velocity. For low gas densities for example, the

transition from stratified to slug flow can result in a discontinuity in the liquid holdup.

The modelling of the transition between stratified and slug flow represents indeed

a certain challenge, because of its chaotic nature, and because of the great variety of



1. Introduction 3

Figure 1.2: Simplified flowmap (Kristiansen, 2004)

slug initiation mechanisms. Slugs can be initiated due to liquid accumulation at the

low points of the pipe until the liquid forms a blockade which will travel down the pipe

as a slug. If the upstream gas compressibility is high enough however, the slug formed

at a low point of the pipe will not be expelled directly and the inlet pressure will

increase as the gas accumulates upstream of the slug. When the upstream pressure is

high enough to remove the slug, all the accumulated liquid and gas finally exits the

pipe in a blow-out phase characterized by very high velocities. Then the liquid starts

to accumulate again at the low point and a new cycle is started. Such phenomenon is

called severe slugging and can be seen as the most extreme expression of slug flow. An

example of a severe slugging cycle taken from the third article of this thesis is shown

in figure 1.3.

Another mechanism for the transition from stratified to slug flow is the sometimes

quite slow growth of small perturbations at the gas-liquid interface due to the hydro-

dynamic instability of stratified flow at those conditions. The combined destabilizing

effect of the friction forces and of the Bernoulli suction force will indeed lead to the

formation and growth of interfacial waves until a slug is initiated. This mechanism is

well-shown on the pictures presented in figure 1.4 which was taken from Woods et al.

(2000).



1. Introduction 4

Figure 1.3: A severe slugging cycle as simulated by the LASSI scheme

Figure 1.4: Pictures of a slug initiation. Taken fromWoods, Hulburt, Hanratty (2000).
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Slugs can also be initiated due to some operational transients, for example when

the inlet gas flow rate is quickly increased. Those phenomena are investigated in the

third paper of this thesis. System-dependent effects can also play an important role:

when a previously initiated slug leaves the pipe, the pressure within the pipe decreases

and the gas in excess is evacuated. As a consequence, the gas velocity within the

pipe increases, which can under certain circumstances, trigger a slug initiation. This

phenomenon was observed in particular in Kristiansen (2004, p239) who noticed in

some cases a good correlation between the departure of a slug and the initiation of a

new slug.

1.3 The modelling of slug flowwith gas-liquid flow schemes

Slug flow is of special interest because of its inherent unsteady nature, and the potential

adverse effects it can have in terms of production stability or pipe fatigue. However,

its intrinsically transient nature makes it harder to simulate with standard transport

schemes.

Computer codes designed to model transient two-phase flows such as RELAP (Ran-

som et al., 1982) and CATHARE (Barre et al., 1990) were first developed in the early

1980s in order to suit the needs of the nuclear industry. They were quickly followed

by codes aimed at the oil industry as OLGA (Bendiksen et al., 1991), or TACITE

(Pauchon et al., 1993).

As most of the general purpose transient multiphase codes use an Eulerian formu-

lation based on a fixed grid, the special case of slug flow raised some special issues.

Indeed, hydrodynamic slugs can be rather small, typically in the order of ten diame-

ters long only and stationary grids have a strong tendency to diffuse the slug fronts.

Extremely refined grids are thus needed if slugs are to be tracked individually in an

Eulerian formulation without any special process.

To overcome this problem, two different approaches have arisen: the "unit cell"

approach and the "slug tracking" approach. In the "unit cell" approach, the ambition

to follow each individual slug in the pipe is given up and slug flow is rather treated in

a statistical manner. The pipe flow is then considered to be a succession of identical

"unit cells", composed of a slug and a gas bubble, as shown in figure 1.5. This method

(Bendiksen et al., 1996), was used for example in OLGA or TACITE and is adequate

for averaged liquid holdup and pressure drop prediction in pipelines. However, this

method has its shortcomings, for example for the modelling of large slugs travelling

long distances as these are prone to numerical diffusion. In addition, the use of a unit
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Direction of the flowDirection of the flow

Figure 1.5: The unit cell model. Based on Bendiksen et al. (1996)

cell model makes sometimes difficult the implementation of physical closures for the

bubble nose velocity or the gas entrainment within the slugs.

As a consequence, "slug tracking" schemes were developed, in which each individual

slug is tracked as it propagates along the pipe. The position of each slug front and

bubble nose is calculated from conservation laws or experimental closures. Examples of

such slug tracking schemes include Nydal and Banerjee (1996) and Zheng et al. (1994).

Those schemes proved able to capture a lot of the physics involved in slug propagation,

but suffer however from limitations regarding the modelling of the bubbles. Figure 1.6

represents a sketch of the grid used in the SLUGGIT scheme presented in Nydal and

Banerjee (1996).

The Eulerian OLGA code was incorporated a slug tracking option that superim-

poses a Lagrangian front tracking model on the Eulerian grid. This improves the

prediction of terrain slugging and gives information about slug lengths and frequen-

cies. The model has given results that compare well with both experimental data and

some field data, although a weakness of the slug tracking module of OLGA is the fixed

user specified grid that may lead to grid dependent solutions (Larsen et al., 1997).

The new scheme PETRA (Larsen et al., 1997) includes an adaptive and moving

grid together with a fully integrated slug tracking model.
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Figure 1.6: Grid used in the slug tracking scheme SLUGGIT

1.4 Modelling the slug initiation with a transient scheme
for gas-liquid flow

The previous section showed how two-phase flow schemes, either by using a unit cell

model or by relying on a slug tracking mechanism, could model the transport of slugs

along the pipe. One of the biggest remaining issues lies however in the slug initiation

mechanism itself. Where, when, how often and how big are the slugs initiated are

questions that need to be answered for a slug tracking scheme to yield realistic results.

Multiphase codes such as RELAP, OLGA or PETRA make use of the so-called

two-fluid model which consists of a set of four differential equations representing mass

and momentum conservation for each of the phases. As the use of the two-fluid model

spread in industrial codes some concerns appeared regarding the well-posedness area

of the model. Indeed, it was early shown (Ramshaw and Trapp, 1978) that the two-

fluid model becomes ill-posed as a hyperbolic problem when the Bernoulli suction

force exceeds the hydrostatic force. As the Bernoulli suction typically overcomes the

hydrostatic force in the last final stages of slug initiation, this problem was both

considered a threat to the stability the two-fluid model and a strong indication that

slug capturing, i.e. the direct computation of the slug initiation process, would be

impossible with the two-fluid model. Physically, one can explain the ill-posedness of

the two-fluid model in certain conditions by the fact that some physical aspects, such

as surface tension or more complex viscous effects, are not included in the two-fluid

model.

An example of an ill-posed problem would be the time-reversed heat equation. If

we open a door between two rooms of equal sizes, one at 20 degrees and one at 10

degrees, it is relatively easy to calculate how heat will be transferred from the warm

room to the cold room, leading eventually to a stable situation where both rooms have
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reached their final equilibrium temperature of 15 degrees. On the other hand, if we

simply know that the final temperature of the two rooms is 15 degrees, it is impossible

to calculate what were the initial temperatures of the two rooms. Some information

has been lost in the diffusion process and it is therefore impossible to go back in time

by solving the time-reversed heat equation.

As the two-fluid model was thought to be unable to capture the initiation of slugs,

the slug tracking schemes relied on some semi-empirical criteria such as the Taitel and

Dukler (1976) criterion or the Minimum Holdup criterion. However, one can doubt

that a criterion-based approach could be able to cope with the most complicated pipe

geometries or gas transient effects. More practically, the implementation of those

criteria into standard transport models like the two-fluid model is tedious and subject

to some numerical difficulties. Moreover, this approach requires further closures in

addition to the transition criterion itself, like the initiation position and the initial

slug length. No matter how difficult, this criterion-based approach was necessary as

long as no direct slug initiation was thought possible with the two-fluid model.

A first hint that slug capturing (i.e. the automatic initiation of slugs from a strat-

ified flow) was possible with the two-fluid model was provided by Lin and Hanratty

(1986) and Barnea and Taitel (1993) who showed that the linear stability analysis of

the two-fluid model yielded a criterion, denoted as Viscous Kelvin Helmholtz or VKH

that successfully predicted the transition from stable stratified flow to non-stratified

flow (which can be roll waves regime or slug flow according to the conditions). Hence,

we could infer that a faithful implementation of the two-fluid model (numerically stable

whenever the two-fluid model is stable, and numerically unstable whenever the two-

fluid model is unstable) should be expected to predict accurately this transition. This

hypothesis was confirmed numerically by Issa and Kempf (2003) who first demon-

strated the ability of the two-fluid model to automatically capture the initiation of

slugs and follow their development as they travel along the pipe. Slugs are not tracked

by a special moving grid like in slug tracking schemes, but simply transported over

a regular still grid. However, the TRIOMPH code presented by ISSA and Kempf

requires the iterative solving of the transport equations on a very fine grid and is

therefore computationally demanding, which might make any field-scale application

difficult.
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1.5 Objective and scope of this thesis

The objective of this thesis was to provide original solutions regarding the question

of slug initiation in slug tracking schemes such as SLUGGIT (Banerjee and Nydal,

1996). This was done by relying on the slug capturing ability of the two-fluid model,

as shown by Issa and Kempf (2003). The proposed scheme, called LASSI (Lagrangian

Approximate Scheme for Slug Initiation) can be seen as an intermediary between a full

two-fluid model such as TRIOMPH (Issa and Kempf) and a very simplified scheme

such as SLUGGIT.

The LASSI scheme is both slug capturing (the slugs appear automatically without

the use of any criterion), and slug tracking (each slug is followed individually as it

propagates along the pipe). Some approximations were made regarding the dynamics

in order to increase considerably the computational speed, as compared to an iterative

scheme such as TRIOMPH.

Given the great variety of two-phase pipe flow, the scope of this thesis has been

limited to stratified and slug flow, and especially the transition between those two flow

regimes. Roll waves and wavy flow regimes have also been investigated because the

transition between stratified and slug flow sometimes happens in a way that involves

waves and roll waves. The other flow regimes such as annular flow are out of the scope

of this thesis. No effort was dedicated to improve on the modelling of steady-state

flows either, as considerable theoretical and experimental efforts have already been

dedicated to this goal.

As explained in this short introduction, the transition from stratified to slug flow

can occur in many ways. At low pressure and low velocities, transition occurs from

a slowly growing wave that eventually bridges the pipe and forms a slug. At higher

velocities and pressures, the transition can occur when roll waves overtake each other.

Slug initiation also occurs in bends, and the pipe geometry plays a tremendous role

for gravity dominated flows. When the flow rates are low enough, severe slugging is

the most dramatic and spectacular form of slugging. Another very important way

of slug formation is due to transient effects, such as a sharp variation in the inlet

flow rates, or more subtle effects such as a slug exiting a pipe. All those effects lead

to slug formation and a good slug capturing code should be able to make consistent

predictions in all those cases. The three first papers of this thesis are thus dedicated

to the validation of the ability of the LASSI code to respectively initiate adequately

hydrodynamic slugs in near-horizontal pipes, capture the characteristics of slug flow

in an upwards pipe after a bend and initiate slugs triggered by rapid variations of the

inlet flow rates. The case of severe slugging is treated both in the second and third
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papers of this thesis.

1.6 Applications

The work conducted for this thesis has two possible applications. First, the proposed

scheme and code can be used as a tool to reproduce experimental work conducted at

moderate pressures and flow rates. Compared with the industry codes, the LASSI

scheme is very well suited to simulate typical lab cases, i.e. relatively short pipes with

complex geometries that require a fine discretization. The scheme could in particular

be of assistance to any experimentator and researcher wishing to investigate cases

involving slug initiation or study the influence on the transition between stratified and

slug flow of various parameters such as the friction factors, wake effect, pipe geometry,

transient effects...

The other possible application of the work done is of course industrial two-phase

codes which need models and numerical recipes to be able to model efficiently the

transition from stratified to slug flow. Those industrial two-phase codes are of great

importance for the development of increasingly long transportation pipes in the oil

industry.

1.7 Presentation of the papers

A simple slug capturing and slug tracking scheme for gas-liquid pipe flow.
Part 1: Presentation of the scheme. Fabien Renault, Ole-Jørgen Nydal.

This paper presents an original slug capturing and slug tracking scheme, named

LASSI (Lagrangian Approximate Scheme for Slug Initiation) for transient simulations

of gas-liquid flow in pipes. The scheme is based on the two criteria that govern

the transition from stratified to slug flow: the stratified stability criterion or Viscous

Kelvin Helmholtz and the slug stability criterion or Minimum Holdup. The presented

scheme is able to generate slugs automatically without the use of any initiation models,

and to track them along the pipe, as they propagate according to a bubble nose

velocity relation. The details of the scheme are presented and the scheme is successfully

validated against experiments in its ability to predict the correct flowmap. In addition,

a new derivation of the VKH criterion is presented, and some concerns regarding the

modelling of the Bernoulli suction force with an upwind-differentiated two-fluid model

are raised.
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A simple slug capturing and slug tracking scheme for gas-liquid pipe
flow. Part 2: Application to slug length determination in a small scale
loop. Fabien Renault, Ole-Jørgen Nydal.

The hydrodynamical characteristics of slug flow in a small scale loop were investi-

gated experimentally and numerically. Using optical sensors, the length, front velocity

and tail velocity of every individual slug were measured at various locations along the

pipe. The experiments clearly show that for the shorter slugs the slug tail velocity

exceeds the slug front velocity hence leading to the disappearing of small slugs and

to an increase of the average slug length. The influence of the upstream flow regime

(stratified or slug flow) is also investigated and shown to be negligible at sufficient

distance. In addition, the transition between normal slug flow and severe slugging is

studied by gradually increasing the upstream gas volume. The experimental observa-

tions were compared to the predictions of the Lagrangian slug capturing code LASSI

and there is a on the whole a fair agreement between the numerical predictions and

the experimental results.

An experimental and numerical study of flow regime transitions asso-
ciated with fast flow rate changes in gas-liquid pipe flow. Fabien Renault,
Monika Johansen, Ole-Jørgen Nydal.

Flow regime transitions associated with fast changes in the inlet gas flow rate were

investigated both experimentally in a 6 cm air-water pipe, and numerically with a

Lagrangian slug capturing and slug tracking scheme. As liquid transport occurs at a

much slower speed than the fast pressure wave associated with a change in the inlet gas

velocity, a fast increase or decrease in the inlet gas flow rate creates an intermediate

state characterized by the liquid holdup of the previous equilibrium state and the new

gas flow rate. Experimentally, while a steady stratified flow regime was established in

the pipe, a sudden increase in the inlet gas flow rate resulted in a short period of slug

flow. Similarly, when the gas flow rate at the inlet was suddenly decreased, a short

period of stratified flow was observed between two periods of established slug flow.

Numerical predictions from the LASSI code were shown to be in good agreement with

the experimental observations. The LASSI code was also used to reproduce the severe

slugging regime observed experimentally in a S-shaped riser.

Influence of dynamic pressure terms on two-phase flow stability. Fabien
Renault, Ole Jørgen Nydal.

This paper presents a modified version of the "Viscous Kelvin Helmholtz" criterion

(based on the linear stability analysis of the two-fluid model) predicting transition

between stratified and slug flow. In previous works a hydrostatic approximation was

used to close the two-fluid model. Here an approach with a transverse momentum



1. Introduction 12

balance to evaluate pressure terms is investigated. The obtained model is compared

with the established criteria (Viscous Kelvin Helmholtz, Inviscous Kelvin Helmholtz,

Milne-Thompson) and with experimental results. The proposed model compares better

to experiments and is able to predict the wavelength of the perturbation responsible

for the transition. This analysis might also provide numerical benefits for transient

two-phase simulations.

1.8 Structure of the introductory part

Chapter 2 recalls all the closure laws (friction, bubble nose velocity, bubble turning
point, wake effect, gas law...) used in the LASSI code. Their importance regarding

slug initiation is briefly discussed.

The details of the LASSI scheme and of its implementation are described in chap-
ter 3 which goes deeper in the description than the overview provided in the beginning
of the first paper. Annex A gives the exact description of the border velocities and

fluxes used for the liquid transport.

In chapter 4 is discussed the influence of the integration parameters (the time
step and the section length) on the slug capturing abilities of the LASSI scheme. In

particular, the influence of the section length on the computed slug length distribution

in an upward pipe downstream of a bend is investigated. The impact of the section

length and of the time step on the predicted transition point between stratified and

slug flow is also studied.

A lot of attention has been given in the literature (and in this thesis) to the

question of the stability area of the two-fluid model. The criterion produced by this

stability analysis can be used in certain conditions to predict the transition between

stratified and slug flow and the validity of this approach is the cornerstone to the

whole ambition of building a slug capturing model based on the two-fluid model set

of equations. However it is well-known that the discretisation process can have some

consequences on the domain of stability of a system and there is no a priori reason

for the discretized set of equations to have exactly the same area of stability than

the original continuous two fluid model set of differential equations. This issue is

investigated in annex B by analytically deriving the area of stability of an upwind

Eulerian two-fluid model and comparing it with the usual Viscous Kelvin Helmholtz

criterion.
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In the fourth paper of this thesis, some high order differential terms accounting for

the influence of transverse dynamic effects were derived for inclusion in the two-fluid

model set of equations. Theoretically, one of the predicted effects of these high order

terms was to modify the wavelength of the perturbation responsible for slug initiation,

shifting it from infinity (as predicted by the VKH theory), towards the order of a

few diameters, as reported by some experimentators for some flow conditions. The

practical effect of the derived terms on the slug initiation process in an Eulerian slug

capturing two-fluid model was investigated in annex C by comparing the results

obtained with the original Eulerian scheme and the results obtained when the derived

high order differential terms are added.
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Chapter 2

Closure laws

2.1 Friction factors

2.1.1 A short review

Conservation of momentum for the liquid and gas phase in steady state can be ex-

pressed as (Taitel and Dukler, 1976):

Al
∂

∂x
p = −τ lSl + τ iSi − ρlgAl sinφ (2.1)

Ag
∂

∂x
p = −τgSg − τ iSi − ρggAg sinφ (2.2)

The three shear stresses τ l (liquid-wall friction), τg (gas-wall friction) and τ i (gas-

liquid friction) account for the effect of 3D friction forces in the 1D two-fluid model.

Annex D provides more details on how the geometrical parameters Sl (liquid-wetted

perimeter), Sg (gas-wetted perimeter) and Si (interfacial width) are calculated.

The two-phase flows shear stresses are simply derived from their single-phase ex-

pressions:

τ l =
1
8λlρlUl |Ul|

τg =
1
8λgρgUg |Ug|

τ i =
1
8λiρg (Ug − Ul) |Ug − Ul|

where λl, λg and λi are respectively the liquid-wall, gas-wall and interfacial friction

factors.

15
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The gas-wall and liquid-wall friction factors are calculated using single-phase rela-

tions, with Reynolds numbers Rel and Reg based on the following expressions for the

hydraulic diameters Dhl and Dhg:

Rel =
UlρlDhl

µl
and Reg =

UgρgDhg

µg

where Dhl = 4
Al
Sl

and Dhg = 4
Ag

Sg+Si

For laminar flow, the exact single-phase expression are:

λl,laminar =
64

Rel
λg,laminar =

64

Reg
(2.3)

For turbulent flows, most friction factors used are semi-empirical models based on

the single-phase turbulent boundary layer theory. Prandtl and Von Karman initially

presented friction factors respectively for smooth and rough pipes. Nikuradse (1932)

fitted the coefficients proposed by those two authors in order to match his experi-

mental observations. It appeared that for low Reynolds numbers, the friction factor

was a function of the Reynolds number only, while for very large Reynolds numbers,

the friction factor depended only on the pipe wall roughness. Colebrook (1933) first

proposed a correlation valid for all the range of pipe roughness �:

1p
λl,turbulent

= −2 log( 2.51

Rel
p
λl,turbulent

+
�

3.7Dhl
) (2.4)

The main drawback of this correlation lies in its implicit nature. The Colebrook

equation has to be solved iteratively, and as friction factors need to be computed a

huge number of times per simulation, this can prove computationally expensive. For

this reason, the Håland (1983) correlation that provides an explicit value for λl is

commonly used:

1p
λl,turbulent

= −1.8 log
Ã
6.9

Rel
+

µ
�

3.7Dhl

¶1.11!
(2.5)

The same single-phase correlation is used in order to evaluate the gas-wall friction

factor:

1p
λg,turbulent

= −1.8 log
Ã
6.9

Reg
+

µ
�

3.7Dhg

¶1.11!
(2.6)
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Some other authors use Blasius friction factors for smooth pipes. They have:

λl,turbulent
4

= 0.0791 (Rel)
−0.25 λg,turbulent

4
= 0.0791 (Reg)

−0.25 (2.7)

Those expressions are easier to handle manually for calculations and stability analy-

sis (see for example Hurlburt and Hanratty, 2002). On the other hand they are only

valid for hydraulic smooth pipes.

There is still a high uncertainty regarding the value of the friction relations and

in particular the interfacial friction factor. The ratio λi
λg
is often simply given a value

ranging between 1 (the liquid-gas interface is very smooth thus the liquid phase can

be considered as a pipe wall for the gas phase) and 10 or more (the interface is very

wavy therefore leading to a much greater exchange of momentum at the interface).

2.1.2 Importance of the interfacial friction factor on the transition
from stratified to slug flow

The value of the interfacial friction factor plays an important role in the transition

from stratified to slug flow, especially in horizontal or near-horizontal flows where the

influence of the gravity is null or low. For given inlet flow rates US
l and U

S
g , an increase

in the interfacial friction ratio λi
λg
will result in a decreased equilibrium holdup, as the

liquid is provided more momentum by the gas. As a consequence, an increase in the

interfacial friction ratio λi
λg
will lead to a larger stratified flow area on a (US

l −US
g ) flow

map at the expense of the slug flow region since the transition from smooth stratified

flow to slug flow essentially occurs at a given holdup. On the other hand, on a (hlD−US
g )

flowmap an increase in the interfacial friction ratio λi
λg
will on the contrary cause a

reduction in the size of the stratified flow region. The reason is that for a given holdup

and a given gas flow rate US
g , the action of the interfacial friction is destabilizing since

it feeds energy to the small interfacial perturbations that get bigger and eventually

bridge the pipe to form a slug.

This effect is shown on figure 2.1 and figure 2.2 which respectively show the neu-

tral stability line between stratified and slug flow (according to the Viscous Kelvin

Helmholtz analysis) on a (US
l − US

g ) flowmap and on a (
hl
D − US

g ) flowmap. Those

graphs were computed for an air-water flow in a horizontal 1 inch diameter pipe at

atmospheric pressure.
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2.1.3 Implementation in LASSI

In order to ensure a continuous transition of the friction factors across the transition

to turbulent flow, the bigger friction factor of the two flow regimes was used:

λl,LASSI = max(λl,laminar, λl,turbulent) (2.8)

λg,LASSI = max(λg,laminar, λg,turbulent) (2.9)

For turbulent flows, the Håland correlation for friction factors were mostly used

in the simulations presented in this thesis. A smooth pipe (� = 0) was used for

all "theoretical" simulations, while a small value of 50 µm was used to simulate the

"real-life" loops such as the S-riser loop (see paper III of this thesis) or the small

scale loop (see paper II of this thesis). The Blasius friction factors were also used for

some "theoretical" simulations, mainly to be able to more easily compare the obtained

predictions with the results published by other researchers.

Regarding the ratio λi
λg
, a value of 1 was used on a standard basis, though when

this choice resulted in a predicted holdup too high compared to the experiments, a

higher value (typically 2 or 5) was then used.

2.2 Slug border closures

In LASSI, the pipe is represented as a doubly-linked list of objects which can be

either slugs (characterized by a holdup equal to one) or sections (see 3.7.1 for futher

details). In LASSI, a section-slug or a slug-section border can be either a bubble nose

or a slug front. There is no intermediate position and those two "extreme" cases are

dealt with by using the appropriate closures. For bubble noses, Bendiksen’s closure

is used while the "steep-front" (hydraulic shock) approximation is made for the slug

fronts.

2.2.1 Slug front

In the LASSI scheme, the slug front is considered infinitely steep. This approximation

is very strong as in reality the slug front is often several diameters long. However, the

"steep-front" approximation allows the transportation of the front without any numer-

ical dissipation and thus greatly facilitates the modelling. Due to the turning point

criterion implemented in the code, the liquid velocity inside the slug is always greater
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Figure 2.3: Sketch of a slug propagating in an upwards pipe

than the velocity of the liquid film ahead of the liquid front. As a consequence, the slug

front velocity can be simply calculated in order to ensure liquid mass-conservation.

In the LASSI scheme, the CFL criterion is checked within each section for each

time step. However, in the case of a slug front, an iteration process is implemented

so that the slug is able to propagate across several sections in a single time step. By

neglecting the influence of the slug on the bubble film ahead of it, the steep-front

approximation indeed makes this treatment possible. This has a great impact on the

minimal time step since the slug front velocity is much higher than the velocity of the

liquid film.

Should the mixture velocity within the slug exceed the critical "turning point"

velocity, than the slug-bubble border will be considered as a perfectly steep front,

whose velocity can be determined by simple liquid conservation Ufront =
Uls − βbUlb

1− βb
in the "no void in slug" case. Uls is the liquid velocity within the slug and βb and

Ulb are respectively the liquid holdup and the liquid velocity within the liquid layer in

front of the slug. Figure 2.3 shows the case of a slug in an upwards pipe.

2.2.2 Bubble nose

A lot of experimental and theoretical work has been done to propose models yielding

the propagation velocity of Taylor bubbles in pipelines. Davies and Taylor (1949) stud-

ied experimentally and theoretically the rise of bubbles in stagnant liquid in vertical

pipes and showed that in those conditions ν0, the bubble drift velocity in a stagnant

liquid was given by 0.35
√
gD. Nicklin et al. (1962) then first presented the relation
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Unose = C0Um+ν0 for vertical pipes, using Davies and Taylor’s expression of ν0 and a

coefficient C0 ranging between 1.2 for fully developed turbulent flow to 2.0 for laminar

flows. Zukoski (1966) measured the velocity of large bubbles in horizontal pipes of

stagnant liquid and found a value of 0.54
√
gD for ν0.

In the LASSI scheme, the bubble noses are considered to propagate according to

Bendiksen’s law (Bendiksen et al., 1984). For low Froude numbers (Fr = Um√
gD

< 3.5),

the bubble nose is located close to the top of the tube where the local liquid velocity is

moderate, while for higher Froude numbers, the tip of the bubble moves down towards

the centre of the pipe, where the liquid velocity is highest. The bubble nose velocity

Ub is then given by Ub = C0Um + ν0 where C0 and ν0 are calculated as:

C01 = 1.05 + 0.15 sin
2 ϕ ν01 = (0.35 sinϕ+ 0.54 cosϕ)

√
gD for Fr < 3.5

C02 = 1.2 + 0.15 sin
2 ϕ ν02 = 0.35 sinϕ

√
gD for Fr > 3.5

(2.10)

In practice C0 and ν0 are chosen in order to maximize Ub rather than using the

Froude number, to ensure a continuous transition of the bubble nose velocity when

the Froude number increases.

Ub = max(C01Um + ν01, C02Um + ν02) (2.11)

By implementing those experimental-based correlations directly into the code, the

scheme is able to adequately reproduce the slug propagation velocity, which is ar-

guably one of the most important parameter in gas-liquid slug flow. It is important to

note that this key element is only a closure law for the LASSI scheme. Compared to

the somehow purer full two-fluid model approach consisting in not using any ad-hoc

correlation for the bubble nose velocity (see Issa and Kempf, 2003), the user has in the

tracking scheme a freedom to change the bubble nose velocity correlation according

to the desired field conditions. In a full two-fluid model approach, fitting the de-

sired bubble propagation speed will require cautious and tedious tuning of the friction

factors.

2.2.3 Nature of the slug-bubble and bubble-slug borders

Slug turning point

A criterion is needed to determine which of the two pure correlations, the steep front

model and Taylor’s bubble model is to be used at the given flow conditions. In other

words, when is a slug-bubble border a front or a bubble nose? In the literature (see

for example Nydal, 98) the critical velocity Ucrit for the turning of the bubble is often
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taken as the velocity that balances friction and gravity forces within the slug:

1

2
λlρlU

2
critS = ρlg sinϕA (2.12)

In downwards pipes the critical velocity Ucrit is positive. A bubble-slug border is

a nose if the mixture velocity within the slug is higher than Ucrit, else it is a front.

Conversely a slug-bubble border is a front if the mixture velocity within the slug exceeds

Ucrit and a nose otherwise. Figure 2.4 presents how the nature of the borders is

determined.

For upwards inclined pipes, gravity and the friction forces both work towards the

same direction in normal flow. As a consequence, the critical velocity Ucrit is negative,

meaning that a slug-bubble border will only be a nose if the slug is propagating fast

enough towards the inlet of the pipe. This phenomenon seldom happens, but can

occur for example at the end of the blow-out phase of a severe slugging event.

Slug Bubble border
If Um > Ucrit Front
If Um < Ucrit Nose

Bubble Slug border
If Um > Ucrit Nose
If Um < Ucrit Front

Downwards pipe
Ucrit > 0

Direction of the flow

mU
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If Um < Ucrit Nose

Bubble Slug border
If Um > Ucrit Nose
If Um < Ucrit Front

Downwards pipe
Ucrit > 0

Direction of the flow

mU

Slug borders in a downwards pipe
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If Um > Ucrit Nose
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e flo

w

mU Slug Bubble border
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Bubble Slug border
If Um > Ucrit Nose
If Um < Ucrit Front

Upwards pipe
Ucrit < 0

Direction of th
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w

mU

Slug borders in an upwards pipe

Figure 2.4: Nature of the slug-bubble and bubble-slug borders

In the SLUGGIT code (Nydal and Banerjee, 1996, Nydal, Audibert and Johansen,

2001), the nature of the slug borders is determined according to the turning point

criterion for downwards pipe while slug-bubble borders are always considered as fronts

in upwards pipe (similarly bubble-slug borders are always taken as nose in upwards

pipe).

Implementation in LASSI

In LASSI as well as in all other slug-tracking codes, the slug front is modelled by using

the steep-front approximation. The front velocity is calculated by considering liquid
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mass conservation across the front (Ufront =
Uls − βbUlb

1− βb
if there is no void in slug).

In order for this approximation to be physically realistic, the inequality Uls > Ulb has

to be fulfilled, otherwise the shock would be entropy violating. As a consequence, in

LASSI, the nature of the border depends not only on the respective value of Uls and

Ucrit but also on the value of Ulb. Table 2.1 sums-up the criteria actually implemented

within the LASSI code.

slug-bubble border
nature Uls > Ulb Uls < Ulb

Uls > Ucrit front nose
Uls < Ucrit nose nose

bubble-slug border
nature Uls > Ulb Uls < Ulb

Uls > Ucrit nose nose
Uls < Ucrit nose front

Table 2.1: Bubble turning point criteria in LASSI

Apart from some extreme transients that occur in severe slugging blow-outs for

example, the additional test between Uls and Ulb does not have any influence on the

prediction of the border nature as the liquid velocity within the slugs tend to be

much higher than the velocity of the liquid within the film. Moreover, in the case of

downward pipes the critical velocity Ucrit is usually greater than the equilibrium film

velocity, making the additional test unnecessary.

2.3 Wake effect

The bubble nose propagation correlations available in the literature, including Bendik-

sen’s are actually mostly relevant for very long slugs. In very long slugs, the liquid

velocity distribution at the slug tail has had enough time and distance to reach an

equilibrium. On the other hand, for very short slugs, the disturbances induced at

the slug front are still present at the level of the slug tail. Those disturbances tend

to modify the liquid velocity profile at the tail in a way that increases the bubble

nose velocity. As a result, the slug tail velocity will be higher for shorter slugs. This

phenomenon has strong consequences on the evolution of the slug length distribution

along the pipe. Whether they appear at a bend or are created from the growth of a

hydrodynamic disturbance, the slugs tend to be created relatively small and grow as

they travel down the pipe. This "wake effect" has a tendency to "kill" the smaller

slugs, as their tail velocity is higher than the one of longer slugs. In order to capture
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the evolution of the slug length distribution along the pipe, it is crucial to model cor-

rectly the wake effect, i.e. the increase in the bubble nose velocity for the small slugs.

We then express the bubble nose velocity as:

Unose =Weff .Ubendiksen (2.13)

where Ubendiksen = C0Um + ν0 is the expression of the bubble nose velocity for an

infinitely long slug, and Weff is a parameter greater than one introduced to represent

the contribution of the wake effect to the actual bubble nose velocity. For long slugs

Weff is close to one, while for shorter slugs it can reach more than twice this value

(see for example Van Hout, Shemer and Barnea, 2003).

Several authors have investigated the phenomenon since Moissis and Griffith (1962)

and proposed several correlations. The original Moissis and Griffith correlation was

used, as in Nydal and Banerjee (1996). The expression used for Weff was then, for a

slug of length LS :

Weff = 1 + 8e
−1.06LS

D (2.14)

More advanced models were proposed in Van Hout et al. (2003, 2001). The

original Moissis and Griffith (1962) model is used in LASSI most of the time, though a

maximum value of 2.0 is often used for Weff . The wake effect and its influence on the

evolution of the slug length distribution along the pipe is discussed further in the second

paper of this thesis. It is important to note that the slug-tracking nature of LASSI

makes it possible to implement any correlation or experimental closure to account

for the wake effect. In this respect, the slug-tracking approach followed in LASSI is

much more flexible than the pure resolution of the two-fluid model set of differential

equations, as any desirable closure can be implemented easily. Furthermore, the wake

effect being intrinsically a 3D effect, it is not expected to be captured by a general 2

fluid model using steady state closure laws.

2.4 Gas law

In paragraph 3.5 introducing the pressure-momentum step of the LASSI scheme, the

discretized gas mass conservation equations are presented in the case where the gas

compressibility
∂ρg
∂p

is not a constant. The scheme should then be able to deal with

any reasonable gas law provided the function
∂ρg
∂p
(p) is given (the term reasonable

designating here a gas law yielding a slowly varying
∂ρg
∂p
(p) function).
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In practice the gas law (the relation providing the gas density ρg as a function of

the absolute pressure p) actually implemented in LASSI is of the form:

ρg (p) = ρg,out +
∂ρg
∂p

(p− pout) (2.15)

where the gas density at the outlet ρg,out, the absolute pressure at the oulet pout

and the gas compressibility
∂ρg
∂p

are three constant parameters provided by the user

before the simulation.

For a perfect gas, we have the relation p = ρ R
M T where R is the perfect gas

constant, M the molar mass of the gass, and T the absolute temperature. The gas

compressibility of a perfect gas can then be instantly expressed as:
∂ρg
∂p

=
M

RT
. For

air at room temperature, we then find
∂ρg
∂p

= 1.1 10−5 kg.m−3.Pa−1.While relatively

neutral in the case of hydrodynamic slug flow, the gas compressibility has of course a

tremendous importance in the case of severe slugging.
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Chapter 3

Details of the LASSI scheme

3.1 Introduction

This chapter presents the details of the LASSI (Lagrangian Approximate Scheme for

Slug Initiation) scheme. The scheme is based on the three following main principles.

• The fast pressure dynamics governing the motion of the liquid slugs, the gas
velocity and the pressure profile along the pipe are decoupled from the much

slower dynamics of liquid transport in the stratified flow regions.

• Stratified flow is modelled using a Lagrangian implementation of a simplified

two-fluid model in which the liquid dynamics have been uncoupled from the

pressure and the gas dynamics. The liquid motion in the bubbles is then ap-

proximately modelled by a modified version of the shallow water equations in

which the influence of the Bernoulli suction force is subtracted from the tradi-

tional hydrodynamical term.

• Border velocities are chosen in order to best represent the structure of the flow.
In particular the slugs are treated as distinct objects whose position is tracked as

they move along the pipe. Similarly, the borders between the different sections

move in order to follow as much as possible the ripples as they progressively grow

into slugs.

This chapter is organised as follows. The derivation of the model and its underlying

assumptions are first presented, using the two-fluid model as a starting point. Then

the implementation of the model in a Lagrangian framework is described.

27
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3.2 The model

3.2.1 The general two-fluid model

The two-fluid model is composed of the four following partial differential equations.

Those equations express mass and momentum conservation independently for each

phase.

∂

∂t
(ρlβ) +

∂

∂x
(ρlβUl) = 0 (3.1)

∂

∂t

¡
ρgα

¢
+

∂

∂x

¡
ρgαUg

¢
= 0 (3.2)

∂

∂t
(ρlβUl)+

∂

∂x

¡
ρlβU

2
l

¢
= −τ lSl

A
+
τ iSi
A
− ρlgβ sinφ−β

∂

∂x
p− ρlgβ cosφ

∂

∂x
hl (3.3)

∂

∂t

¡
ρgαUg

¢
+

∂

∂x

¡
ρgαU

2
g

¢
= −τgSg

A
− τ iSi

A
−ρggα sinφ−α

∂

∂x
p−ρggα cosφ

∂

∂x
hl (3.4)

The subscript l and g refer respectively to the liquid and gas phase. ρ and U

are respectively the density and velocity of the considered phase. τ l is the liquid-wall

friction, τg the gas-wall friction and τ i the gas-liquid friction. Sl and Sg are the liquid-

wetted and gas-wetted perimeter and Si is the interfacial width. p is the pressure, hl
the liquid height and φ the angle between the pipe and the horizontal. Finally α is

the void fraction (i.e. the ratio between the gas-occupied area and the total pipe area)

and β is the holdup (i.e. the ratio between the liquid-occupied area and the total pipe

area).

3.2.2 Simplifying the two-fluid model

Condition 1 The liquid phase is incompressible

The liquid density ρl can then be extracted from the partial derivatives in the

liquid mass and momentum conservation equations.

∂
∂t (β) +

∂
∂x (βUl) = 0
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∂
∂t

¡
ρgα

¢
+ ∂

∂x

¡
ρgαUg

¢
= 0

∂
∂t (βUl) +

∂
∂x

¡
βU2l

¢
= −τ lSl

Aρl
+ τ iSi

Aρl
− gβ sinφ− β

ρl

∂
∂xp− gβ cosφ ∂

∂xhl
∂
∂t

¡
ρgαUg

¢
+ ∂

∂x

¡
ρgαU

2
g

¢
= −τgSg

A − τ iSi
A − ρggα sinφ− α ∂

∂xp− ρggα cosφ
∂
∂xhl

Using the gas momentum conservation equation, the pressure drop can be expressed

as:

∂
∂xp = − 1α ∂

∂t

¡
ρgαUg

¢− 1
α

∂
∂x

¡
ρgαU

2
g

¢− ρgg cosφ
∂
∂xhl − ρgg sinφ− τgSg

Aα − τ iSi
Aα

Replacing this expression in the liquid momentum conservation equation gives:

1

β

·
∂

∂t
(βUl) +

∂

∂x

¡
βU2l

¢¸
=

Ã
1
αρl

¡
∂
∂t

¡
αρgUg

¢
+ ∂

∂x

¡
αρgU

2
g

¢¢
+ 1

ρl
F − ρl−ρg

ρl
g cosφ ∂

∂xhl

!
(3.5)

where F = −τ lSl
Al
+

τgSg
Ag

+τ iSi

³
1
Al
+ 1

Ag

´
−¡ρl − ρg

¢
g sinφ is the resulting volumic

force acting on the liquid phase (using the same notations as in Barnea and Taitel,

1995).

The system to be solved is then:
∂
∂t (β) +

∂
∂x (βUl) = 0

∂
∂t

¡
ρgα

¢
+ ∂

∂x

¡
ρgαUg

¢
= 0

1
β

£
∂
∂t (βUl) +

∂
∂x

¡
βU2l

¢¤
= 1

αρl

¡
∂
∂t

¡
αρgUg

¢
+ ∂

∂x

¡
αρgU

2
g

¢¢
+ 1

ρl
F− ρl−ρg

ρl
g cosφ ∂

∂xhl
∂
∂t

¡
ρgαUg

¢
+ ∂

∂x

¡
ρgαU

2
g

¢
= −τgSg

A − τ iSi
A − ρggα sinφ− α ∂

∂xp− ρggα cosφ
∂
∂xhl

Condition 2 As regards local liquid dynamics, the gas phase can be considered as
incompressible.

A quick justification for this very strong assumption would be to note that for

perfect gases, the density is proportional to the pressure, i.e. 1
ρg

∂
∂t

¡
ρg
¢
= 1

p
∂
∂t (p). The

pressure variations in space and in time are usually very small compared to the outlet

pressure. On the other hand the gas volumic flow rate can be varying significantly in

wavy flows.

We can then simplify the expression of the contribution of the gas dynamics in the

liquid momentum conservation equation:
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1

αρl

µ
∂

∂t

¡
αρgUg

¢
+

∂

∂x

¡
αρgU

2
g

¢¶ ≈ 1

α

ρg
ρl

·
∂

∂t

¡
US
g

¢
+

∂

∂x

µ
1

α

¡
US
g

¢2¶¸
(3.6)

Condition 3 The derivatives of the mixture velocity can be neglected in the liquid
dynamics.

If we neglect the term in ∂
∂t (Um) and use the liquid mass conservation equation

∂
∂tβ +

∂
∂x (βUl) = 0, developing ∂

∂t

¡
US
g

¢
gives:

∂
∂t

¡
US
g

¢ ≈ − ∂
∂t (βUl) ≈ −β ∂

∂tUl + Ul
∂
∂x (βUl)

Neglecting the term in 2Ug
∂
∂x (Um) we obtain:

∂
∂x

µ
1

α

¡
US
g

¢2¶ ≈ (Ug)
2 ∂
∂x (β)− 2Ug

∂
∂x (βUl)

Then replacing the expression for:·
∂
∂t

¡
US
g

¢
+ ∂

∂x

µ
1

α

¡
US
g

¢2¶¸ ≈ (Ug − Ul)
2 ∂
∂x (β)− β ∂

∂tUl + β (Ul − 2Ug)
∂
∂x (Ul)

into the combined gas and liquid momentum equation provides the relation:

∂

∂t
(βUl) +

∂

∂x

¡
βU2l

¢
=

"
β
α

ρg
ρl
(Ug − Ul)

2 − ρl−ρg
ρl

g cosφ Al
dAl
dhl

#
∂
∂x (β)

+β
α

ρg
ρl

£−β ∂
∂tUl + β (Ul − 2Ug)

∂
∂x (Ul)

¤ +
β

ρl
F (3.7)

Condition 4 The gas momentum is negligible compared to the liquid momentum (i.e.

ρlUl >> ρgUg)

The terms in ∂
∂tUl and ∂

∂x (Ul) in the right-hand side can then be neglected com-

pared to the left hand-side, hence yielding:

∂

∂t
(βUl) +

∂

∂x

¡
βU2l

¢ ≈ −κβ ∂

∂x
(β) +

β

ρl
F (3.8)

with

κ =
ρl − ρg

ρl
g cosφ

A
dAl
dhl

− 1
α

ρg
ρl
(Ug − Ul)

2 (3.9)
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3.2.3 The LASSI model

The LASSI model is therefore composed of the four following partial differential equa-

tions:
∂
∂t (β) +

∂
∂x (βUl) = 0

∂
∂t

¡
ρgα

¢
+ ∂

∂x

¡
ρgαUg

¢
= 0

∂
∂t (βUl) +

∂
∂x

¡
βU2l +

1
2κβ

2
¢
= β

ρl
F
¡
Ul, β, U

S
g

¢
∂
∂t

¡
ρgαUg

¢
+ ∂

∂x

¡
ρgαU

2
g

¢
= −τgSg

A − τ iSi
A − ρggα sinφ− α ∂

∂xp− ρggα cosφ
∂
∂xhl

Thanks to several reasonable approximations, and under the condition that ρlUl >>

ρgUg, which holds at low pressures, the liquid momentum equation can be uncoupled

from the gas momentum equation to yield a modified shallow-water equation in which

a Bernoulli suction term 1
α

ρg
ρl
(Ug − Ul)

2 is subtracted from the traditional hydrostatic

term
ρl−ρg
ρl

g cosφ A
dAl
dhl

. It is important to note that the simplified system:

∂

∂t
(β) +

∂

∂x
(βUl) = 0 (3.10)

∂

∂t
(βUl) +

∂

∂x

µ
βU2l +

1

2
κβ2

¶
=

β

ρl
F
¡
Ul, β, U

S
g

¢
(3.11)

has the same area of well-posedness as the full two-fluid model and becomes ill-

posed when and only when the coefficient κ becomes negative. The well-posedness

condition yields the well-known Inviscous Kelvin-Helmholtz (IKH) criterion which can

be written in its traditional form:

well-posed⇔ κ > 0⇔ (Ug − Ul)
2 <

ρl − ρg
ρg

g cosφ
Ag

dAl
dhl

(3.12)

3.3 Grid

The grid used is shown in figure 3.1. LASSI is a slug tracking code, therefore the

slugs are treated differently than regular grid cells. Besides the slugs, the general idea

is to as much as possible track the perturbations and waves in order to follow their

possible development into slugs. The pipe is divided in grid cells, which are called

either sections or slugs according to whether or not the liquid bridges the pipe within

them. In figure 3.1, the cell J+2 is a slug, all the other cells are sections. The grid is

completely adaptive, the cell borders are moving at independent speeds and the cell

lengths are variable. The border velocities (section-section border, section-slug border

or slug-section border) are chosen in order to best reproduce the physics of the system.
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Figure 3.1: The grid used in the Lassi scheme

Although the void in slug case could be implemented without special difficulties,

for the sake of simplicity, only the unaerated slug case is presented here. The slugs

are then only characterized by their mixture velocity Um (equal to the liquid velocity

inside the slug Uls).

The sections are characterized by their holdup β, their liquid velocity Ul, their

gas mass flow rate ρgU
S
g , and their right pressure p. The pressure grid is staggered

and centred on the cell borders. This original disposition allows to solve the void

wave propagation on a non-staggered grid while the pressure-momentum equations

are solved on a staggered grid. In addition the slug momentum equation is solved

more accurately when the pressure values are stored on the borders.

3.4 Solution procedure

Sketch 3.2 introduces the LASSI solution procedure.

The first step is the Pressure-Momentum implicit computation where the pressure

p and the gas fluxes ρgU
S
g within the sections and the mixture velocity Um within the

slugs are calculated implicitly, using a simple and fast tridiagonal algorithm detailed

later. Using the bubble turning criterion detailed in the closure law chapter, the nature

of each of the section-slug and slug-section borders is set to either Front or Nose (refer

to section 2.2 for a description of the closure used). Finally the liquid velocity is

updated to take into account the work of the friction forces and gravity, yielding the

intermediate liquid velocities Un+1/2
l .

In the void wave step, liquid mass and momentum fluxes are evaluated using a La-
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Figure 3.2: The LASSI solution procedure



3. Details of the LASSI scheme 34

grangian modified shallow water scheme, hence for each section J , the holdup βn+1J ,

the liquid velocity Un+1
l,J as well as the section-section border velocities are calculated

from
³
βnJ , U

n+1/2
l,J

´
,
³
βnJ−1, U

n+1/2
l,J−1

´
and

³
βnJ+1, U

n+1/2
l,J+1

´
. For section-slug and slug-

section borders, Bendiksen’s correlation is used when the border has been detected a

bubble nose, while an iterative steep front model (which allows the slug to "eat" com-

pletely several sections in a single time-step, while ensuring liquid mass conservation)

is used if a front has been detected.

Since the length of the sections is varying, some list management is needed, in order

to prevent the appearance of very large or very short sections. List management is

invoked a first time in the void wave step when the CFL criterion is checked: if the

fast wave from the left border of a section is able to take over the slow wave from the

right border of this section in a time inferior to the chosen time step, than this section

is merged with one of its neighbours. If this happens, the border velocities and liquid

fluxes are recalculated between the newly merged section and its neighbours. Finally,

list management also occurs when a section that has exceeded a critical length, has to

be split in two.

3.5 Pressure momentum step

This paragraph presents the details of the pressure-momentum step used in LASSI.

3.5.1 Discretization of the equations

Gas Mass conservation

As explained previously, a staggered grid is used to store the pressure values. Consid-

ering gas mass conservation within the pressure control volume j provides the relation:

Vg,j
dρg,j
dt

=
dmg,j

dt
− ρg,j

dVg,j
dt

(3.13)

where Vg,j and mg,j are respectively the gas volume and the gas mass within the

control volume j, and ρg,j is the gas density at this control volume.

We then have : dmg,j

dt =
¡
ρgU

S
g

¢
J−1 −

¡
ρgU

S
g

¢
J
− αJ−1ρg,J−1Ub,J−1 + αJρg,JUb,J

and dVg,j
dt = αJUb,J − αJ−1Ub,J−1 + βJUl,J − βJ−1Ul,J−1 where Ub,J is the velocity of

the J border. We can then write, with V n
g,j =

1
2 (αJ−1LJ−1 + αJLJ):
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pn+1j = κnj
h¡
ρgU

S
g

¢n+1
J−1 −

¡
ρgU

S
g

¢n+1
J

i
+ (nj (3.14)

introducing:

κnj = δt

V n
g,j

h
∂ρg
∂p

in
j

(nj = pnj +
δt

V n
g,j

h
∂ρg
∂p

in
j


ρng,j

£
(βUl)

n
J−1 − (βUl)

n
J
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The section-slug pressure control volume j + 2 is discretized as:

pn+1j+2 = κ
n
j+2

h¡
ρgU

S
g

¢n+1
J+1
− ρng,j+2U

n+1
m,J+2

i
+ (nj+2 (3.15)

with:
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Gas momentum conservation

The gas momentum conservation equation:

∂

∂t

¡
ρgU

S
g

¢
+

∂

∂x

¡
ρgU

S
g Ug

¢
+ α

∂

∂x
p = −τgSg

A
− τ iSi

A
− ρggα sinφ (3.16)

discretized around the J control volume gives, after replacing pn+1j+1 and p
n+1
j in the

pressure gradient term αnJ
LnJ

³
pn+1j+1 − pn+1j

´
by their expression above:

anJ
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S
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S
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¡
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where:

• anJ =
1
δt + bnJ + cnJ +

1
8

³
Sg
Ag

λg |Ug|
´n
J
+ 1
8

³
Si
Ag

λi |Ug − Ul|
´n
J

• bnJ = − 1
LnJ
min(Un

g,j+1 − Un
b,j+1, 0) +

αnJ
LnJ
κnj+1

• cnJ =
1
LnJ
max(Un

g,j − Un
b,j , 0) +

αnJ
LnJ
κnj
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• dnJ =
1
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¡
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S
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J
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αnJ
LnJ

³
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´
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8

³
Si
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J
− ρng,Jgα

n
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Slug momentum conservation

The J + 2 slug, considered incompressible, is subject to the pressure difference across

it, the gravity and the friction at the wall. It also loses some momentum by picking

up low velocity liquid at its front and shedding high velocity liquid at its tail. The

equation is here discretized for a slug with a front on its right and a bubble nose on

its left, as an example:

ρl
Ln+1J+2U

n+1
m,J+2−LnJ+2Un

m,J+2

δt =

 −pn+1j+3 + pn+1j+2 − gρl (h
n
R − hnL)− λρl

2DLn
sU

n+1
m,J+2

¯̄̄
Un
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¯̄̄
+ρl

³
Un
f − Un

m,J+2

´
Un
l,J+3 − ρl

³
Un
b − Un

m,J+2

´
Un+1
m,J+2


where hnR and hnL are the liquid heights respectively at the right and at the left of the

slug, Un
f is the front velocity at the right and Un

b is the bubble nose velocity at the

left. This equation can be re-written as:

anJ+2U
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¡
ρgU

S
g
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¡
ρgU

S
g
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with:
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ρlL

n
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δt Un
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³
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´
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l,J+3

3.5.2 Solving procedure

Sketch 3.3 introduces the solving procedure of the pressure momentum step in the

LASSI scheme.

Gas mass correction

In order to ensure full gas mass conservation, a correction is needed. It is done at the

unit level (a unit consists of all the sections between two slugs), since the exact gas

mass within one unit can be tracked easily. The error between the tracked gas mass

present in the bubble unit at the beginning of the time stepMn
g,unit and the "observed
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Calculate the gas mass correction
Each Section belongs to a Unit, in which the total gas mass is constant

• a correction coefficient is calculated in order to ensure no gas mass is lost

Solve the pressure-momentum system
Simultaneous computation (Tridiagonal Algorithm) of 

Update the slug border status
The nature of each Slug-Section and Section-Slug border is determined 
(Front or Nose)

Update the liquid velocity
The liquid velocity within the Sections is updated to take into account the 
work of the friction forces and the gravity.
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Solve the pressure-momentum system
Simultaneous computation (Tridiagonal Algorithm) of 

Update the slug border status
The nature of each Slug-Section and Section-Slug border is determined 
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The liquid velocity within the Sections is updated to take into account the 
work of the friction forces and the gravity.
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Figure 3.3: The LASSI Pressure Momentum step

gas mass" M 0n
g,unit resulting from the calculated pressure field is added as a correction

coefficient to the (nj coefficient in the equation p
n+1
j = κnj

h¡
ρgU

S
g

¢n+1
J−1 −

¡
ρgU

S
g

¢n+1
J

i
+

(nj .

correction =
Mn

g,unit −M 0n
g,unit

V n
g,unit

1h
∂ρg
∂p
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This method lacks precision because the correction is spread out evenly on every

section of the unit instead of being taylored to each section. However, it provides

a great stability to the pressure momentum equation and the amount of correction

needed being extremely small, the error spreading is not believed to be overly preju-

dicial to the scheme accuracy.

Pressure-Momentum system

There is therefore only a tridiagonal system anJX
n+1
J = bnJX

n+1
J +cnJX

n+1
J +dnJ to solve

using the Thomas algorithm in order to evaluate the mixture velocity within the slugs,

the pressure along the pipe, and the gas mass flow rate. The resolution is therefore

extremely fast.
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Slug border status update

Once the pressure-momentum system is solved, the mixture velocity within the slugs

is known. By applying the bubble turning criterion exposed in section 2.2.3, it is then

possible to determine the nature (Nose or Front) of each slug-section and section-slug

border.

Liquid velocity update

Using the newly determined local mixture velocity, the liquid velocity within the sec-

tions is updated from the effect of the friction forces and the gravity:

U
n+1/2
l,J =

1

1− δt
ρl

∂F
∂Ul
(βnJ , U

n
l,J , U

n+1
m,J )


Un
l,J

+ δt
ρl
F (βnJ , U

n
l,J , U

n+1
m,J )

−Un
l,J

δt
ρl

∂F
∂Ul
(βnJ , U

n
l,J , U

n+1
m,J )

 (3.20)

The resulting volume force F is indeed a function of 3 variables (which can be

either β,Ul and Ug or β,US
l and U

S
g or as here β,Ul and Um). Introducing the partial

derivative of F relative to Ul has a stabilizing effect on the scheme.

When the liquid holdup is extremely low (β < 0.001), this approach leads to a

certain instability due to the great sensitivity of F in this area. As a consequence,

when β < 0.001 the liquid velocity is simply set to its equilibrium value, i.e to U∗l
ensuring F (βnJ , U

∗
l , U

n+1
m,J ) = 0. Finally, for practical reasons, Ul is simply set to zero

when the holdup is differential (β < 10−6).

3.6 Void wave

3.6.1 The shallow water equations

Thanks to the simplifications presented in 3.2.2, the gas and the liquid dynamics

have been uncoupled. The void wave step thus simply aims at resolving the following

modified shallow water system:

∂

∂t
(β) +

∂

∂x
(βUl) = 0 (3.21)

∂

∂t
(βUl) +

∂

∂x

µ
βU2l +

1

2
κβ2

¶
= 0 (3.22)
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Compared to the shallow water equations, the only difference is that the Bernoulli

effect term is subtracted from the hydrostatic term. The resolution is independent of

the gas dynamics and takes place on a non-staggered grid. The grid used is completely

flexible as the section border velocities are calculated as to as best as possible follow

the characteristics of the flow. Given a left section characterized by a holdup βL and

a liquid velocity UL and a right section characterized by a holdup βR and a liquid

velocity UR, the objective is to calculate the section-section border velocity Ub as well

as the mass and momentum fluxes between the two sections.

3.6.2 Solving the Riemann problem

The shallow water equations presented in section 3.6.1 are well-known and the Riemann

problem between the left state (UL, βL) and the right state (UR, βR) can be solved

numerically in an exact manner. Indeed, the solution consists in one intermediate

state (UM , βM) which is connected to both the left state (UL, βL) and the right state

(UR, βR) by either a shock or a rarefaction wave (Holden et al., 2002), depending on

the conditions.

Shocks

A shock is characterized by the Rankine-Hugoniot condition which gives mass and

momentum conservation across a front travelling at a constant velocity s. For a shock

between (UL, βL) and (UM , βM) (slow shock), this condition can be written as the

system:

s(βM − βL) = βMUM − βLUL

s(βMUM − βLUL) =
¡
βMU2M + 1

2κβ
2
M

¢− ¡βLU2L + 1
2κβ

2
L

¢
This system has only one entropy-conserving solution which consists of:

βM > βL and UM = UL − 1√
2

√
κ (βM − βL)

s
1

βM
+
1

βL
(Left Shock: LS) (3.23)

For a shock between (UM , βM) and (UR, βR) (fast shock) the entropy-conserving

solution will be:
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βM > βR and UM = UR +
1√
2

√
κ (βM − βR)

s
1

βM
+
1

βR
(Right Shock: RS) (3.24)

Rarefaction waves

Rarefaction waves are structures travelling with the system’s characteristic speed U −√
κβ (slow wave) and U +

√
κβ (fast wave) within which the flow variables β and U

vary smoothly from one state to another. It can be shown (Holden et al., 2002) that

within a rarefaction wave, the Riemann invariant (U + 2
√
κβ for a slow wave and

U − 2√κβ for a fast wave) is a constant of the flow. It follows that the (UL, βL) state

can be connected to the (UM , βM) state by a slow wave only provided that:

βM < βL and UM = UL − 2
√
κ
³p

βM −
p
βL

´
(Left Wave: LW) (3.25)

Similarly one can connect the intermediate state (UM , βM) to the right state

(UR, βR) by a fast wave provided that:

βM < βR and UM = UR + 2
√
κ
³p

βM −
p
βR

´
(Right Wave: RW) (3.26)

Finding the intermediate state

The two states (UL, βL) and (UR, βR) being known, the intermediate state (UM , βM)

can be determined as the intersection of the four curves (Left Shock LS, Left Wave

LW, Right Shock RS, Right Wave RW) UM = f(βM) detailed above. Due to the

monotonous nature of those four functions, only a few iterations are needed to calculate

UM and βM with great accuracy. The graph presented in figure 3.4 shows the four

curves and the calculated intermediate state in the so-called "moving dam case" (βL =

0.5, βR = 0.25, UL = UR = 10 m.s−1).

The so-called left and right dry-bed cases (respectively βL and βR equals zero) and

the appearing dry-bed case (βM = 0, occurring when UL + 2
p
κβL < UR − 2

p
κβR)

are special cases that do not present any particular difficulties to implement and are

detailed further in Annex A. Another case of interest presented in Annex A is the
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Figure 3.4: Determination of the intermediate state (βM , UM) in the Riemann Problem

Saturated Shock Shock case which occurs when the resolution of the shallow-water

Riemann problem gives a predicted intermediate holdup βM higher than one. This

can clearly not occur in a pipe and this case is dealt with by setting βM to one and

calculating UM in order to ensure momentum conservation.

3.6.3 Calculating the fluxes

Once the Riemann problem is solved and the intermediate state is found, the charac-

teristics of the section-section border have to be determined in order to evaluate the

holdup and momentum fluxes between the two sections. Sketch 3.5 presents the most

general case that can arise between two states (UL, βL) and (UR, βR) . The resolution

of the Riemann problem provides the value of the intermediate state (UM , βM) as

well as the nature (rarefaction wave or front) of the transition between the interme-

diate state and the left and right states. This information allows us to calculate the

left-intermediate border velocity ULL as well as the intermediate-right border velocity

URR. In addition to fluxes calculation, those velocities are of interest because they can

be used to check if the CFL criterion is fulfilled (the fast wave associated with a border

should not be able to catch up with the slow wave associated with the next border in

a time shorter than the time step in use).
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The question is now to decide how to choose the border velocity Ub between the

left and the right section. As the grid is completely flexible, we have a great lib-

erty in the choice of Ub. In order to limit the numerical diffusion it makes sense to

choose a value comprised between ULL and URR. If Ub is taken exactly equal to ULL

(respectively URR), the whole intermediate state is attributed to the right section (re-

spectively the left section) and the scheme follows the left-intermediate (respectively

the intermediate-right) border.

There is only one intermediate state (UM , βM) solution to the Riemann problem.

However in the case of a rarefaction wave between the left state and the intermediate

state for example, the holdup and velocity will change slowly and progressively between

the two states. The average holdup in the rarefaction wave region will therefore be

neither equal to βL nor to βM but rather in between. As a consequence in the most

general case as presented in sketch 3.5, it makes sense to consider that ULL ≤ Ub ≤
URR, βML 6= βMR and UML 6= UMR.

ULL

Ub URR

LL U  β MLML U  β
RR U  β

MRMR U  β

ULL

Ub URR

LL U  β MLML U  β
RR U  β

MRMR U  β

Figure 3.5: Calculating the characteristics of a section-section border

3.6.4 Front tracking

Regarding the choice of Ub, it is natural to take profit of the power of the Lagrangian

approach to make the most of the information provided by the exact solution of the

Riemann problem. It was decided to focus on the propagation of the fast fronts, as they

are of special interest when it comes to modelling the transition. Modelling correctly

the fast fronts allows also to follow ripples and roll-waves with limited diffusion. As a

consequence, the border velocities and liquid fluxes are evaluated in the LASSI scheme

as presented in figure 3.6. If a fast front is detected (case Rarefaction-Shock and Shock-

Shock), the border velocity will be set to the fast front velocity in order to follow it.

If no fast front is present (case Rarefaction-Rarefaction and Shock-Rarefaction), the

border velocity will be set to follow the middle of the intermediate state. Liquid mass

and liquid momentum fluxes follow automatically from conservation laws, once the
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border velocity has been chosen. The reason for this dissymmetric treatment lies on

the ambition to model as correctly as possible a wave composed by a smooth tail and

a sharp fast front.

Annex A provides the details of the calculations performed to compute the different

variables (ULL, Ub, URR, βML, βMR, UML and UMR) in each of the different cases:

• Rarefaction-Rarefaction

• Rarefaction-Shock

• Shock-Rarefaction

• Shock-Shock

• Saturated Shock-Shock

• Rarefaction-Rarefaction with Appearing Dry Bed

• Rarefaction-Void

• Void-Rarefaction

• section-slug Nose

• slug-section Nose

Rarefaction - Rarefaction

Shock - Rarefaction

Rarefaction - Shock

Shock - Shock

Rarefaction - Rarefaction

Shock - Rarefaction

Rarefaction - Shock

Shock - Shock

Figure 3.6: Interface tracking in the LASSI scheme
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3.6.5 Updating holdup and velocities

Once the characteristics of each border have been calculated, the border positions as

well as the holdup and liquid velocity within the sections are updated. The following

relations are used:

zn+1RR,j = znj + URR,jδt zn+1j = znj + Ub,jδt

zn+1LL,j+1 = znj+1 + ULL,jδt zn+1j+1 = znj+1 + Ub,j+1δt
(3.27)

βn+1J =
βnJ(z

n+1
LL,j+1−zn+1RR,j)+β

n
ML,j+1(z

n+1
j+1−zn+1LL,j+1)+β

n
MR,j(z

n+1
RR,j−zn+1j )

zn+1j+1 −zn+1j

(3.28)

Un+1
J =

βnJU
n
J (z

n+1
LL,j+1−zn+1RR,j)+β

n
ML,j+1U

n
ML,j+1(z

n+1
j+1 −zn+1LL,j+1)+β

n
MR,jU

n
MR,j(z

n+1
RR,j−zn+1j )

(zn+1j+1 −zn+1j )βn+1J

(3.29)

Figure 3.7 gives a clearer picture of the variables to compute and of the updating

procedure.

3.6.6 Slug fronts

As explained in the closure laws chapter, the slug fronts are considered steep. The slug

front positions are updated last, at the end of the void wave step, once the sections

holdup and borders positions have already been updated. The top sketch of figure 3.8

shows a slug front at the beginning of the update slug front procedure. The sections at

the right of the slug have already been updated, so there is a (purely virtual) "empty

gap" between the slug front and the first section on the right.

At the beginning of the update front procedure (top sketch), the slug has to move

towards the right and fill a volume equal to Ul,slugδt (no void in slug case). Due to

the fact that the slug turning point criterion implemented (see section 2.2.3) ensures

us that Ul,slug > Ul,J , the slug will at least bridge the gap to the first section on the

right (the opposite would have been clearly unphysical). The middle sketch of figure

3.8 shows the situation after the slug has filled the virtual void ahead of it. A loop

implemented ensures that the slug moves forward until the total volume of Ul,slugδt of

void has been filled. An unlimited number of sections can therefore be eaten by the

slug on a single time step, thanks to the steep front approach (in the bottom sketch

of figure 3.8, the slug has "eaten" the whole J section and part of the J + 1 section).

Finally, sketch 3.9 shows the solving procedure of the void wave step.
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Figure 3.7: Void wave calculation in LASSI

3.7 List management

3.7.1 Implementation

The great power given by the adaptive grid comes with some implementation chal-

lenges: some grid cells become too small and the CFL criterion is no longer verified

within them at the chosen time step (the fast wave from their left border takes over the

slow wave from their right border). Some other grid cells become too large and have to

be split in order to maintain the wanted spatial accuracy. Those difficulties are met by

the use of an object oriented programming method in C++. The pipe is represented

as a doubly-linked list of objects which can be either slugs or bubbles. Those objects

can be taken away and deleted (if a slug dies for example, of if a section becomes too

short), and new objects can be inserted (if the holdup in a bubble reaches one, than a

slug is inserted). Figure 3.10 represents the different classes used in LASSI.
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Figure 3.8: Slug front update procedure

3.7.2 Splitting

In LASSI the grid is completely adjustable and the section length evolves freely ac-

cording to the border velocities calculated when solving the Riemann problem. In

order to preserve the spatial accuracy of the scheme it is therefore necessary to split

the sections which have become excessively long. This is done last in the List Man-

agement step of the scheme (3.2). Any section whose length is exceeding twice the

TargetLength parameter is split in two sections of equal length and characteristics

(such as holdup and liquid velocity). Figure 3.11 presents the splitting process in the

LASSI scheme.

3.7.3 Merging

Sketch 3.9 presents the solving procedure of the void wave step. For each section-

section border j, the three border velocities ULL,j (velocity of the border between the

left state and the left intermediate state), Ub,j (velocity of the border between the left

intermediate state and the right intermediate state, which is used as the section-section

border velocity) and URR,j (velocity of the border between the right intermediate state
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Figure 3.9: The LASSI void wave solving procedure

and the right state) are calculated as shown in figure 3.7. Clearly we need to ensure

each timestep that the CFL criterion is ensured within each section J , that is to say

that the inequality (URR,j − ULL,j+1)δt < LJ is verified, where LJ is the length of

section J.

As shown in the void wave solving procedure (figure 3.9), the Riemann problem

is first solved for all borders of the pipe. After this, the CFL-inequality is checked

for each section, and should the CFL criterion be breached in a section, the CFL-

breaching section is merged with either its left or its right neighbour. A section can

only be merged with another section, not with a slug. If both of the neighbouring

objects are sections, the CFL-breaching section is merged with the section whose

holdup is closest to the holdup of the CFL-breaching section. Figure 3.12 shows how

the process takes place in the LASSI scheme.
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Figure 3.10: Object-Oriented implementation of the LASSI scheme

3.7.4 Slug initiation

Whenever the holdup within a given section exceeds a critical value βinit the section

is removed and replaced with a slug. Typically a value of 0.98 is used for βinit. If a slug

is present, either on the right or on the left of the section whose holdup is exceeding

βinit, the flooded section is merged with the slug. The liquid mass corresponding to

the difference between the holdup in the slug (1) and the holdup within the flooded

section (anything between 0.98 and 1) is taken from the neighbouring sections, in order

to ensure liquid mass conservation.

Figure 3.13 shows what happens when the two neighbouring objects of the flooded

section are sections. Regarding the holdups of the neighbouring sections, the super-

script * refers to the fact that the holdups have been decreased to ensure liquid mass

conservation.

3.8 Boundary treatment

3.8.1 Inlet

The fully Lagrangian nature of the scheme requires that special concern is given to

the inlet boundary treatment. Sections need to be created at the inlet, transported

along the pipe, merged or split in the pipe according to the structure of the flow, and

finally discarded when they exit the pipe at the outlet.
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Figure 3.11: Splitting of the long sections in LASSI

Regarding the inlet treatment, it was first attempted not to use any special treat-

ment. The first section within the pipe would then receive the inlet liquid flux as a

source, and eventually be split into two separate sections when the first section length

had reached the splitting length, just like any other section in the pipe. This method

was initially implemented but resulted in an oscillation in the liquid holdup, as the

constant inlet liquid flow was spread into a section whose length was varying greatly

in time.

It was then decided to use a dedicated class in order to model the inlet. The inlet

object is defined as a bubble characterized by a liquid velocity always equal to the inlet

liquid velocity Ul,in, and a liquid holdup always equal to the ratio
US
l,in

Ul,in
. Regarding the

flux calculation, the right border of the inlet bubble is considered as infinitely smooth

(to be opposed to the shock approach followed on standard section-section borders)

As the liquid velocity on the border is taken equal to the inlet velocity, the liquid

mass flux between the inlet section and the second section is zero. The right border

of the inlet section is thus moving with a velocity equal to URR = Ul,in. The sketch

presented figure 3.14 shows how the void wave step is handled in the special case of

the inlet-section border.
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Figure 3.12: Merging of the short sections in LASSI

TargetLength is a parameter of the scheme. When the length of the inlet has

reached twice this constant, it is split in two: the left part remains the inlet while the

right part becomes a standard section object whose initial length is TargetLength,

initial holdup is βin and initial liquid velocity is Ul,in. The newly created section is

then applied the standard void wave calculation process until it is split or merged.

Figure 3.15 shows how the inlet is split once it has reached a sufficient length.

3.8.2 Outlet

The outlet is considered to be a separator at constant pressure. We assume that the

liquid is only able to flow from the pipe into the separator, but not from the separator

back into the pipe. On the other hand, we consider that the gas is able to flow both

ways, allowing the pressure to remain constant at the outlet of the pipe. The holdup

within the separator is assumed to be zero, as if the liquid was instantly sucked out

when it exits the pipe. In the LASSI scheme, the outlet object is then defined as a

bubble whose holdup is zero. This object is inserted as the last object of the doubly-

linked object list and the section-outlet border is treated in the void wave step as any

normal section-section border. This means that during the void wave step, the sections
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Figure 3.13: Slug initiation in LASSI
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Figure 3.14: Void wave step in the inlet

are actually free to move as if the pipe was infinitely long. As the holdup within the

outlet bubble is zero, the section-outlet border falls into the category of the "right dry-

bed" and thus propagates at the speed Ub = Ul,N + 2
p
κN+1βN where Ul,N and βN

are respectively the liquid velocity and the liquid holdup within the last section. At

the end of the void-wave step, it is therefore likely that the newly computed position

of the right border of the last section of the pipe (i.e. the position of the section-outlet

border) differs from the physical length of the pipe. During the list management step,

this situation is met by either "cutting" the sections that are partly or completely out

of the pipe, (when the liquid is flowing out of the pipe), or by adding an additional

empty section to fill the empty space between the last section and the pipe outlet

(when the liquid in the last section is flowing back towards the inlet).
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Figure 3.15: Section splitting at the inlet

The sketch on top of figure 3.16 shows how is treated the case of normal forward

flow at the outlet. At the end of the void wave step, the last section (designated with

the suffix N) has completely exited the pipe, while the previous section (designated

with the suffix N-1) has partly exited the pipe. The last section is then deleted, while

the previous section is "cut" so that its right border now matches with the physical

position of the pipe outlet.

The sketch at the bottom of figure 3.16 shows what happens when there is backward

flow at the outlet (Ub = Ul,N + 2
p
κN+1βN < 0). Since the right border of the last

section is now located inside the pipe, there is an empty gap between this position

and the physical position of the pipe outlet. This gap is empty since we consider that

liquid can not flow back from the separator to the pipe. We then simply create a new

empty section and insert it within the doubly linked list of objects that represent the

flow.
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Figure 3.16: Outlet treatment in the LASSI scheme
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Chapter 4

Influence of the integration
parameters on the predictions

4.1 Influence of the section size on the slug length

In the second paper of this thesis, the ability of the LASSI scheme to reproduce the

observed slug length distribution in a small-scale loop was investigated. Figure 4.1

recalls the pipe geometry used in the experiments and in the simulations. The inlet

liquid superficial velocity US
l,in was set to 0.22 m.s−1 and the inlet gas superficial US

g,in

velocity to 0.44 m.s−1. Optical captors located 20, 80 and 150 diameters downstream
of the bend in the upwards pipe provided the length, front velocity and tail velocity of

each passing slug. More details regarding the experiments, the measurement technique

and the experimental results can be found in the second paper of this thesis.

Figure 4.2 shows the computed slug length distribution obtained with the LASSI

scheme using a Targetlength parameter of 2 cm and a time step of 2 ms. In LASSI the

length of the sections varies according to border velocities calculations. The sections

are created at the inlet with an initial length equal to the Targetlength parameter

and any section whose length exceeds twice the value of this parameter is split in two

sections of equal length.

The standard Moissis and Griffith (1962) correlation was used in order to model

the wake effect (refer to section 2.3). As in LASSI the slug initiation process is cap-

tured automatically without using any intiation model, one can wonder if the section

size used in the simulations will have a big influence on the computed slug length

distribution.

55



4. Influence of the integration parameters on the predictions 56

-15º
30º20 D

80 D

150 D
2 m

2 m

Case I: Evolution of the slug length 
distribution in an upward pipe

USLin= 0.22 m/s

USGin= 0.44 m/s

Pout= 1 bar

-15º
30º20 D

80 D

150 D
2 m

2 m

Case I: Evolution of the slug length 
distribution in an upward pipe

USLin= 0.22 m/s

USGin= 0.44 m/s

Pout= 1 bar

Figure 4.1: Sketch of the pipe geometry

The same case was simulated again, this time using a a Targetlength parameter

of 1 cm and a time step of 1 ms, hence maintaining the CFL ratio constant. The

results are presented figure 4.3. The results obtained with a Targetlength parameter

of 1 cm are significantly different than those obtained when this parameter was set to

2 cm. The use of a smaller section size results indeed in far many more very short slugs

being observed close to the bend. After 10 diameters, 5018 slugs, in average 4.9 diam-

eters long, were measured during a simulation time of 15 minutes for a Targetlength

parameter of 2 cm. With a Targetlength parameter of 1 cm, 10116 slugs, in average

2.2 diameters long were observed at the same location and during the same period.

However, the difference between the two computations fades away as we move fur-

ther downstream, towards the outlet of the pipe. After 150 diameters, the two obtained

distributions are sensibly equivalent, and the average slug length is surprisingly higher

in the simulations where the smaller value was used for the Targetlength parameter.

A comparison with the obtained experimental results is done in the second paper

of this thesis. Arguably, the computations made with the bigger section length match

a lot better with the experimental observations after 20 diameters. On the other hand,

although the computed slug length distribution 150 diameters after the bend obtained

with a Targetlength value of 2 cm is satisfactory, it is somehow less close to the

experimental results than the slug length distribution computed with a Targetlength

value of 1 cm which matches very well with the experiments.

Of course, the implemented wake effect model has a tremendous influence on these

results, obtained here with an "uncapped" standard Griffith correlation. A sensibility

study regarding the maximum value of the wake effect parameter Weff is done in the
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second paper of this thesis.

As a conclusion, we can say that the section length used for the LASSI simulations

can have an influence on the computed average slug length. However, this influence is

mainly limited to the region close to the initiation point, and the use of an adequate

model for the bubble nose velocity will naturally ensure that the computed distribution

will tend towards the experimentally observed slug length distribution. This is in line

with Barnea and Taitel (1993) who used a wake effect model to predict the spatial

evolution of an arbitrarily chosen slug length distribution at the inlet. They obtained

a good match with the experimenal observations and also showed that at a sufficient

distance, the computed distribution was fairly insensitive to the arbitrarily chosen

distribution at the inlet.

4.2 Influence of the section length and of the time step
on the transition point from stratified to slug flow

In the first paper of this thesis, the LASSI predictions regarding the transition point

from stratified to slug flow in a slightly downwards inclined pipe were compared with

some experimental observations made by Woods et al. (2000). For a given value of the

gas superficial velocity US
g , the lowest value of the superficial velocity US

l for which

slug flow was observed was determined numerically with the LASSI scheme. The case

of a 50 meters long pipe with an internal diameter D equal to 7.63 cm and inclined

downwards with an angle of 0.5◦ was considered. The gas superficial velocity US
g was

set to 3.38 m.s−1 and with a time step of 2 ms and a TargetLength value of 2 cm,

transition to slug flow was observed to occur numerically when US
l reached a value of

0.55 m.s−1. The simulations were done at given inlet superficial velocities, by starting
with a pipe filled with liquid and gas at steady state. The interfacial friction factor

was taken equal to the gas friction factor (
λi
λg
= 1). The transition was considered to

have occurred if a slug had been initiated within the 50 meters of the pipe in less than

a minute of simulation time.

One can wonder how important is the impact of the time step and the section length

(as measured by the parameter TargetLength) on the transition point as predicted by

the LASSI scheme. In order to evaluate this effect, different values were tried for the

time step and the TargetLength parameter in the case presented above (US
g = 3.38

m.s−1). The results are presented in table 4.1. The first conclusion is rea-assuring
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Figure 4.2: Computed slug length distribution at various locations using 2 cm long
sections and a 2 ms time step
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Figure 4.3: Computed slug length distribution at various locations using 1 cm long
sections and a 1 ms time step
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since it seems that the integration parameters do not have a sizeable importance on

the critical liquid superficial velocity and thus on the numerical flowmap.

The details of the results are hard to analyse since it seems that the value of

the CFL ratio does not have any importance. In an explicit scheme, it is clearly

counterintuitive that for a given section length, stability increases with the time step

as what happens when TargetLength is set to 2 cm. This paradox can probably be

explained by the functioning of the LASSI scheme: the TargetLength parameter only

corresponds to the section length at the inlet. As the border velocities are set according

to the characteristics of the flow, the section length varies throughout the pipe and

the simulation duration. The only effects that bound the length of the sections are the

splitting of the sections whose length exceeds twice the TargetLength parameter, and

the merging of the sections in which the CFL criterion would be violated. Increasing

the time step thus naturally increases the minimum section length under which the

sections do not comply with the CFL criterion and are merged. In other words, in

LASSI for a given value of the parameter TargetLength, increasing the time step also

increases the average section length.

Increasing the section length for a given time step tends to marginally destabilize

the scheme, which might also be surprising. However, if we refer to the demonstration

provided section 4.1 of the first paper of this thesis, we realize that if we used infinitely

long sections, we would be exactly in the case where the area of stability of the scheme

corresponds exactly to the Viscous Kelvin Helmholtz criterion. The results shown

table 4.1 seem finally plausible given the characteristics of the scheme.

TargetLength
Value of US

l at the transition 1 cm 2 cm 4 cm

δt = 1 ms 0.57 0.55 0.55

δt = 2 ms 0.57 0.55 0.55

δt = 4 ms 0.57 0.57 0.55

Table 4.1: Influence of the time step and the section length on the critical liquid
superficial velocity

We can conclude by pointing out the very robust predictions of LASSI regarding

the transition from stratified to slug flow. Given its original, non-staggered way of

implementing the Bernoulli suction force, the tests indicate that the LASSI scheme is

able to accurately predict the transition from stratified to slug flow irrespectively of

the time step or section length used.
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Chapter 6

Nomenclature

A Pipe section area m2

Al Pipe area occupied by the liquid phase m2

Ag Pipe area occupied by the gas phase m2

C0 Bubble nose velocity coefficient _

D Pipe diameter m

F Resulting volume force on the liquid phase (friction+gravity) N.m−3

g Gravity acceleration m.s−2

hl Liquid height m

Hl Equivalent liquid height m

Hg Equivalent gas height m

p Absolute pressure bara

Ul Liquid velocity m.s−1

Ug Gas velocity m.s−1

Uls Liquid velocity in the slug m.s−1

Ulb Liquid velocity in the bubble film m.s−1

Ugs Gas velocity in the slug m.s−1

Ugb Gas velocity in the bubble m.s−1

US
l Liquid superficial velocity m.s−1

US
g Gas superficial velocity m.s−1

Um Mixture velocity m.s−1

UL Liquid velocity in the left section (Riemann problem) m.s−1

UR Liquid velocity in the right section (Riemann problem) m.s−1

UM Liquid velocity in the middle section (Riemann problem) m.s−1

S Internal pipe perimeter m

Si Gas-liquid interfacial perimeter m

Sl Liquid-wall interfacial perimeter m

Sg Gas-wall interfacial perimeter m

Weff Wake effect parameter acting on the bubble nose velocity _
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α Void fraction _

αb Void fraction in the bubble _

αS Void fraction in the slug _

β Holdup _

βb Holdup in the bubble _

βs Holdup in the slug _

βL Holdup in the left section (Riemann problem) _

βR Holdup in the right section (Riemann problem) _

βM Holdup in the middle section (Riemann problem) _

κ Modified hydrostatic parameter (hydrostatic - Bernoulli) m2.s−2

λl Liquid friction factor _

λi Interfacial friction factor _

λg Gas friction factor _

ρl Liquid-phase density kg.m−3

ρg Gas-phase density kg.m−3

µl Liquid dynamic viscosity Pa.s

µg Gas dynamic viscosity Pa.s

νl Liquid cinematic viscosity m2.s−1

νg Gas cinematic viscosity m2.s−1

ν0 Drift velocity of a Taylor bubble in stagnant liquid m.s−1

ρg Gas-phase density kg.m−3

τ l Liquid-wall shear stress Pa

τg Gas-wall shear stress Pa

τ i Liquid-gas shear stress Pa

φ
Oriented angle between the horizontal and the pipe

(positive for an upwards pipe)
_



Appendix A

Void wave step: the different
cases

A.1 Void wave variables

This annex presents in more details the calculations that take place when the void
wave step is calculated in the case of a section-section border (see section 3.6.4).

Figure A.1 recalls the principle of the void wave step in LASSI and the different
variables to be computed. We consider the case of section J characterized by its
liquid holdup βnJ and its liquid velocity U

n+1/2
l,J (here the suffix n+1/2 refers to the fact

the liquid velocity has been updated from the action of friction forces and gravity).
Section J is surrounded by its neighbours section J−1 and section J+1, respectively
characterized by their liquid holdup βnJ−1 and βnJ+1 and their liquid velocity U

n+1/2
l,J−1

and U
n+1/2
l,J+1 .

The Riemann problem is solved for both Section−Section borders j and j+1, as
explained in section 3.6.4. The variables to compute are for each of the two section-
section borders j and j + 1 the intermediate states (βML, UML) and (βMR, UMR), as
well as the border velocities ULL, Ub and URR as they are defined figure A.1.

Once the characteristics of each border have been calculated, the updated border
positions, holdup and liquid velocity of the sections can be derived using the simple
relations that follow:

zn+1RR,j = znj + URR,jδt zn+1j = znj + Ub,jδt

zn+1LL,j+1 = znj+1 + ULL,jδt zn+1j+1 = znj+1 + Ub,j+1δt

(A.1)

βn+1J =
βnJ(z

n+1
LL,j+1−zn+1RR,j)+β

n
ML,j+1(z

n+1
j+1 −zn+1LL,j+1)+β

n
MR,j(z

n+1
RR,j−zn+1j )

zn+1j+1−zn+1j

(A.2)
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Un+1
J =

βnJU
n
J (z

n+1
LL,j+1−zn+1RR,j)+β

n
ML,j+1U

n
ML,j+1(z

n+1
j+1−zn+1LL,j+1)+β

n
MR,jU

n
MR,j(z

n+1
RR,j−zn+1j )

(zn+1j+1 −zn+1j )βn+1J

(A.3)
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Figure A.1: Void wave calculation in LASSI

A.2 Case of βM greater than one

When the intermediate state (βM , UM) solution of the Riemann problem is a state
characterized by a holdup βM greater than one, the standard Shock-Shock results (as
presented table A.4) do not apply. Indeed when βM > 1, the modified shallow water
equations can not be used to represent the flow in a pipe. As a consequence, the
following approach is used: βM is set to exactly 1 and UM is calculated from liquid
mass and momentum conservation.

The value for UM is calculated as follows.

• liquid mass conservation provides the relation:
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URR − ULL = βL (UL − ULL) + βR (URR − UR) (A.4)

• liquid momentum conservation yields:

(URR − ULL)UM = βLUL (UL − ULL) + βRUR (URR − UR) (A.5)

Replacing the expression of (URR − ULL) provided by the liquid mass conservation
relation into the liquid momentum conservation equation gives:

[βL (UL − ULL) + βR (URR − UR)]UM = βLUL (UL − ULL) + βRUR (URR − UR)
(A.6)

or

0 = βL (UL − UM) (UL − ULL) + βR (UR − UM) (URR − UR) (A.7)

After replacing the expressions of ULL and URR, the previous equation becomes:

βR
1− βR

(UM − UR)
2 =

βL
1− βL

(UL − UM)
2 (A.8)

Since we have UL > UM > UR we can finally conclude:

UM =
1q

βL
1−βL +

q
βR
1−βR

Ãs
βR

1− βR
UR +

s
βL

1− βL
UL

!
(A.9)

The normal results for a Shock-Shock are then applied to the newly defined inter-
mediate state.

A.3 Average holdup within a rarefaction wave

When a rarefaction wave is present (case Rarefaction-Rarefaction, Rarefaction-Shock
or Shock-Rarefaction), it is necessary to calculate the average hold-up and liquid ve-
locity within the rarefaction wave in order to proceed with the geometrical approach
of calculating fluxes that has been used throughout this thesis. We take the case of
a rarefaction wave between the left state (βL, UL) and the intermediate state (βM ,
UM), as shown in figure A.2. The variable to compute is the average liquid hold-up
within the rarefaction wave βrar.
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The liquid flux Fin entering the rarefaction wave from the left state can be expressed
as:

Fin = βL (UL − ULL) = βL
p
κβL (A.10)

The liquid flux Fout leaving the rarefaction wave to the intermediate state can be
expressed as:

Fout = βM (UM − ULR) = βM
p
κβM (A.11)

The average hold-up within the rarefaction wave βrar can then be calculated from
the relation:

βrar =
Fin − Fout
ULR − ULL

=
βL
p
κβL − βM

p
κβM¡

UM −
p
κβM

¢− ¡UL −
p
κβL

¢ (A.12)

Given that UM = UL − 2
¡p

κβM −
p
κβL

¢
(see section 3.6.4), the expression can

be simplified as:

βrar =
1

3

³
βL +

p
βLβM + βM

´
(A.13)

The average hold-up βrar within a rarefaction wave is therefore the Heronian mean
of the hold-ups of the two states the rarefaction wave is connected to. It is interesting
to point out that the average hold-up in the rarefaction wave does not depend on the
value of the liquid velocity.

The Heroniam mean is named after the Greek engineer and geometer
Heron who lived in Alexandria during the first century before our era.
The Heronian mean also appears in the formula for the volume of a frus-
tum (a frustum is the portion of a cone or pyramid which lies between two
parallel planes cutting the pyramid or cone). The volume of a frustum of
a pyramid (or cone) is found by multiplying the height of the frustum by
the Heronian mean of the areas of the opposing parallel faces.

A.4 Tables

Tables A.1 to A.10 present how the variables (βML, UML), (βMR, UMR) and the border
velocities ULL, Ub and URR are calculated according to the nature of the border.

• Table A.1 presents the Rarefaction-Rarefaction case
• Table A.2 presents the Rarefaction-Shock case
• Table A.3 presents the Shock-Rarefaction case
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LLLL UU κβ−=

MMLR UU κβ−=

LULβ
MUMβrarUrarβ

inF outF

LLLL UU κβ−=

MMLR UU κβ−=

LULβ
MUMβrarUrarβ

inF outF

Figure A.2: Rarefaction wave between the left and intermediate state

• Table A.4 presents the Shock-Shock case
• Table A.5 deals with the Saturated Shock-Shock case which occurs when the
holdup within the intermediate region reaches one

• Table A.6 introduces the Rarefaction-Void case, characterized by a dry right bed
• Table A.7 introduces the Void-Rarefaction case, characterized by a dry left bed
• Table A.8 tackles the Appearing Dry-Bed case (βM = 0 although both the left
and right bed are not dry, occurring when UL + 2

p
κβL < UR − 2

p
κβR)

• Finally table A.9 and table A.10 tackle respectively the bubble nose-slugs and
slugs-bubble nose cases



A. Void wave step: the different cases 74

Rarefaction-Rarefaction (RR)

URLULR

URR

ULL Ub

ULL

Ub
URR

LL U   β RR U   β

LL U   β RR U   β

MM U   β

MLML U   β MRMR U   β

URLULR

URR

ULL Ub

ULL

Ub
URR

LL U   β RR U   β

LL U   β RR U   β

MM U   β

MLML U   β MRMR U   β

UM = UL − 2
√
κ
¡p

βM −
p
βL
¢

UM = UR + 2
√
κ
¡p

βM −
p
βR
¢

βM < βL βM < βR

ULL = UL −
p
κβL URL = UM +

p
κβM

ULR = UM −
p
κβM URR = UR +

p
κβR

Ub =
1
2 (ULR + URL) = UM

βrarL =
1
3

¡
βL +

p
βLβM + βM

¢
βrarR =

1
3

¡
βR +

p
βRβM + βM

¢
βML =

βrarL (ULR − ULL) + βM (Ub − ULR)

Ub − ULL
βMR =

βrarR (URR − URL) + βM (URL − Ub)

URR − Ub

UML = UL − 2
√
κ
¡p

βML −
p
βL
¢

UMR = UR + 2
√
κ
¡p

βMR −
p
βR
¢

Table A.1: Details of the void wave step in the Rarefaction-Rarefaction case
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Rarefaction-Shock (RS)

ULL

ULR
Ub  = URL=  URR

ULL

Ub  = URR

LL U   β

RR U   β

LL U   β

RR U   β

MM U   β

MLML U   β

ULL

ULR
Ub  = URL=  URR

ULL

Ub  = URR

LL U   β

RR U   β

LL U   β

RR U   β

MM U   β

MLML U   β

UM = UL − 2
√
κ
¡p

βM −
p
βL
¢

UM = UR +
1√
2

√
κ (βM − βR)

q
1
βM

+ 1
βR

βM < βL βM > βR

ULL = UL −
p
κβL URL =

βMUM − βRUR

βM − βR

ULR = UM −
p
κβM URR = URL

Ub = URR = URL =
βMUM−βRUR

βM−βR

βrarL =
1
3

¡
βL +

p
βLβM + βM

¢
βML =

βrarL (ULR − ULL) + βM (Ub − ULR)

Ub − ULL
βMR = βR

UML = UL − 2
√
κ
¡p

βML −
p
βL
¢

UMR = UR

Table A.2: Details of the void wave step in the Rarefaction-Shock case
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Shock-Rarefaction (SR)

ULL=ULR
URL

URRUb

ULL=ULR

URRUb

LL U   β
RR U   β

LL U   β
RR U   β

MM U   β

MLβ

MLU

MRβ

MRU

ULL=ULR
URL

URRUb

ULL=ULR

URRUb

LL U   β
RR U   β

LL U   β
RR U   β

MM U   β

MLβ

MLU

MRβ

MRU

UM = UL − 1√
2

√
κ (βM − βL)

q
1
βM

+ 1
βL

UM = UR + 2
√
κ
¡p

βM −
p
βR
¢

βM > βL βM < βR

ULL =
βMUM − βLUL

βM − βL
URL = UM +

p
κβM

ULR = ULL URR = UR +
p
κβR

Ub =
1
2 (ULR + URL)

βrarR =
1
3

¡
βR +

p
βRβM + βM

¢
βML = βM βMR =

βrarR (URR − URL) + βM (URL − Ub)

URR − Ub

UML = UM UMR = UR + 2
√
κ
¡p

βMR −
p
βR
¢

Table A.3: Details of the void wave step in the Shock-Rarefaction case
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Shock-Shock (SS)

ULL=ULR Ub  = URL=  URR

ULL Ub  =  URR

ßM      UM
LL U   β

RR U   β

LL U   β
RR U   β

MM U   β

MLML U   β

ULL=ULR Ub  = URL=  URR

ULL Ub  =  URR

ßM      UMßM      UM
LL U   β

RR U   β

LL U   β
RR U   β

MM U   β

MLML U   β

UM = UL − 1√
2

√
κ (βM − βL)

q
1
βM

+ 1
βL

UM = UR +
1√
2

√
κ (βM − βR)

q
1
βM

+ 1
βR

βM > βL βM > βR

ULL =
βMUM − βLUL

βM − βL
URL =

βMUM − βRUR

βM − βR

ULR = ULL URR = URL

Ub = URR = URL

βML = βM βMR = βR

UML = UM UMR = UR

Table A.4: Details of the void wave step in the Shock-Shock case
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Saturated Shock-Shock (SSS)

ULL=ULR Ub  = URL=  URR

ULL Ub  =  URR

ßM      UM
LL U   β

RR U   β

LL U   β
RR U   β

1=Mβ

MU

1=MLβ

MLU

ULL=ULR Ub  = URL=  URR

ULL Ub  =  URR

ßM      UMßM      UM
LL U   β

RR U   β

LL U   β
RR U   β

1=Mβ

MU

1=MLβ

MLU

βM = 1

UM = 1r
βL

1−βL+
r

βR
1−βR

³q
βR
1−βRUR +

q
βL
1−βLUL

´

βM > βL βM > βR

ULL =
βMUM − βLUL

βM − βL
URL =

βMUM − βRUR

βM − βR

ULR = ULL URR = URL

Ub = URR = URL

βML = βM βMR = βR

UML = UM UMR = UR

Table A.5: Details of the void wave step in the Saturated Shock-Shock case
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Rarefaction-Void (RV)

ULL

ULR = Ub

ULL

Ub

LL U   β

LL U   β

MLML U   β

ULL

ULR = Ub

ULL

Ub

LL U   β

LL U   β

MLML U   β

ULL = UL −
p
κβL ULR = UL + 2

p
κβL

Ub = ULR = UL + 2
p
κβL

βrarL =
1
3βL

βML = βrarL

UML = UL − 2
√
κ
¡p

βML −
p
βL
¢

Table A.6: Details of the void wave step in the Rarefaction-Rarefaction case
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Void-Rarefaction (VR)

MLML U   β

RR U   β

RR U   β

Ub = URR

URL

Ub = URR

URL

MLML U   β

RR U   β

RR U   β

Ub = URR

URL

Ub = URR

URL

URL = UR − 2
p
κβR URR = UR +

p
κβR

Ub = URR

βrarR =
1
3βR

βMR = βrarR

UMR = UR − 2
√
κ
¡p

βMR −
p
βR
¢

Table A.7: Details of the void wave step in the Rarefaction-Rarefaction case
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Rarefaction-Rarefaction with Appearing Dry Bed (RRADB)

URR

URLULR

ULL

Ub

URR

ULL Ub

LL U   β RR U   β

LL U   β RR U   β

MLML U   β MRMR U   β

URR

URLULR

ULL

Ub

URR

ULL Ub

LL U   β RR U   β

LL U   β RR U   β

MLML U   β MRMR U   β

βM = 0 < βL βM = 0 < βR

ULL = UL −
p
κβL URL = UR − 2

p
κβR

ULR = UL + 2
p
κβL URR = UR +

p
κβR

Ub =
1
2 (ULR + URL)

βrarL =
1
3

¡
βL +

p
βLβM + βM

¢
βrarR =

1
3

¡
βR +

p
βRβM + βM

¢
βML =

βrarL (ULR − ULL) + βM (Ub − ULR)

Ub − ULL
βMR =

βrarR (URR − URL) + βM (URL − Ub)

URR − Ub

UML = UL − 2
√
κ
¡p

βML −
p
βL
¢

UMR = UR + 2
√
κ
¡p

βMR −
p
βR
¢

Table A.8: Details of the void wave step in the Rarefaction-Rarefaction case
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Section-Slug Nose

ßM      UM

ULL

Ub = ULR=URL=URR

ßR      UR

ULL

Ub =URR

ßR      UR

LL U   β

LL U   β

1=slugβ

sluglU ,

1=slugβ

sluglU ,MLML U   β
ßM      UMßM      UM

ULL

Ub = ULR=URL=URR

ßR      URßR      UR

ULL

Ub =URR

ßR      URßR      UR

LL U   β

LL U   β

1=slugβ

sluglU ,

1=slugβ

sluglU ,MLML U   β

ULL = UL URL = Unose =WeffUbendiksen

ULR = Unose =WeffUbendiksen URR = Unose =WeffUbendiksen

Ub = ULR = URL = URR

βML =
Unose − Umslug

Ub − ULL
UML = Umslug

Table A.9: Details of the void wave step in the Section-Slug case
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Slug-Section Nose

Ub=ULL=ULR=URL

URR

URR

RR U   β

RR U   β
MRMR U   β

1=slugβ

sluglU ,

1=slugβ

sluglU ,

Ub=ULL

Ub=ULL=ULR=URL

URR

URR

RR U   β

RR U   β
MRMR U   β

1=slugβ

sluglU ,

1=slugβ

sluglU ,

Ub=ULL

URR = UR URL = Unose =WeffUbendiksen

ULR = Unose =WeffUbendiksen ULL = Unose =WeffUbendiksen

Ub = ULR = URL = ULL

βMR =
Umslug − Unose

URR − Ub
UMR = Umslug

Table A.10: Details of the void wave step in the Slug-Section case
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Appendix B

Stability analysis of an
upwind-differentiated two-fluid
model

This chapter aims to investigate the consequences of the discretized nature of the
implemented equations on the stability of the two-fluid model. In other words, how
close is the stability area of a standard Eulerian scheme based on the two-fluid model to
the stability area of the continuous two-fluid model set of equations ? This question is
especially important in the case of slug capturing schemes since the objective of those
schemes is to be able to initiate slugs automatically, according to the VKH criterion,
i.e. to the linear stability analysis of the continuous two-fluid model set of equations.
This question, not yet answered in the literature, is tackled in the following pages.

Quantities of different schemes have been proposed for the two-fluid model, each
potentially possessing a different area of stability. The scheme chosen for this analysis
is a fully implicit upwind scheme. Upwind differentiation is very popular because of
its simplicity and robustness, and is widely used in the industry. Some considerations
regarding the ability to physically model slug initiation with an upstream scheme have
been made in the first paper of this thesis. It can indeed be argued that the Bernoulli
effect, which plays a great role in the slug initiation mechanism is modelled in a non-
satisfactory way in an upstream scheme. It was thus natural to continue investigating
the ability of the two-fluid model to tackle slug initiation, this time using the tool of
stability analysis.

The scheme investigated here is fully implicit and we assume that the set of ob-
tained non-linear discretized equations is solved numerically without any numerical
error. In reality, fully implicit schemes typically require an iterative resolution of the
set of discretized equations, in a way similar to the SIMPLE method used for single
phase gas flow. The solution found thus conveys a small yet non null error which
is dependent on the level of accuracy chosen. This approach is followed in the TRI-
OMPH scheme (Bonizzi, 2002, Issa and Kempf, 2003, Bonizzi and Issa, 2003), which
was the first scheme proved able to fully capture slug initiation. Another possibility is
to use a semi-implicit scheme that allows for a non-iterative resolution such as OLGA
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(Bendiksen et al., 1991) but introduces a discrepancy in the volume conservation equa-
tion which is corrected during the next time step.

By assuming the system of discretized equations is solved perfectly, we are able to
focus our analysis on the consequences of the upstream differentiation method on the
stability of the scheme. This effect is independent on the method chosen to solve the
set of discretized equations and the following analysis can therefore be applied to all
upwind schemes.

B.1 The two-fluid model

We use the usual (no additional terms, no surface tension) 2 fluid model cross section
averaged equations as a starting point. The liquid phase is considered incompressible.
The system is composed of four partial differential equations, traducing the mass and
momentum conservation of each phase independently.

∂
∂t (αl) +

∂
∂x (αlUl) = 0

∂
∂t

¡
ρgαg

¢
+ ∂

∂x

¡
ρgαgUg

¢
= 0

∂
∂t (ρlαlUl) +

∂
∂x

¡
ρlαlU

2
l

¢
+ αl

∂
∂xp = − τ lSl

A + τ iSi
A − ρlgαl sinβ − ρlgαl cosβ

∂
∂xhl

∂
∂t

¡
ρgαgUg

¢
+ ∂

∂x

¡
ρgαgU

2
g

¢
+αg

∂
∂xp = −τgSg

A − τ iSi
A −ρggαg sinβ−ρggαg cosβ ∂

∂xhl

The subscript l and g refer respectively to the liquid and gas phase, ρ, and U are
the density and velocity of the considered phase. τ l is the liquid-wall friction, τg the
gas-wall friction and τ i the gas-liquid friction. Sl and Sg are the liquid-wetted and
gas-wetted perimeter and Si is the interfacial width. p is the pressure, hl the liquid
height and φ the angle between the pipe and the horizontal. Finally α is the void
fraction (i.e. the ratio between the gas-occupied area and the total pipe area) and β
is the holdup (i.e. the ratio between the liquid-occupied area and the total pipe area).

B.2 An Eulerian scheme based on the two-fluid model

B.2.1 Grid

The scheme is based on the grid presented figure B.1. In the dots are stored the
pressure, the gas density and the phase fractions while the liquid and gas velocities are
stored in the arrows. The upper case subscripts will refer to the information related
to the dots, while the lower case subscripts will refer to the information related to the
arrows.
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J-2 j-1 JJ-1 jJ=0 j=1 J+1j+1 J=Nj=N

1−Jβ
1−Jα

1, −Jgρ
Jβ
Jα

Jg ,ρ

1, −jlU

1, −jgU
jlU ,

jgU , 1+Jβ
1+Jα

1, +Jgρ
Nβ
Nα

Ng ,ρ
2−Jβ
2−Jα

2, −Jgρ
0β
0α

0,gρ

1,lU

1,gU
NlU ,

NgU ,

1, +jlU

1, +jgU

J-2 j-1 JJ-1 jJ=0 j=1 J+1j+1 J=Nj=NJ-2 j-1 JJ-1 jJ=0 j=1 J-2 j-1 JJ-1 jJ-2 j-1J-2 j-1 JJ-1 j JJJ-1 jJ-1 jJ=0 j=1J=0 j=1 J+1j+1 J=Nj=NJ+1j+1 J+1j+1 J=Nj=N J=Nj=N

1−Jβ
1−Jα

1, −Jgρ
Jβ
Jα

Jg ,ρ

1, −jlU

1, −jgU
jlU ,

jgU , 1+Jβ
1+Jα

1, +Jgρ
Nβ
Nα

Ng ,ρ
2−Jβ
2−Jα

2, −Jgρ
0β
0α

0,gρ

1,lU

1,gU
NlU ,

NgU ,

1, +jlU

1, +jgU

Figure B.1: Staggered grid for an upstream-differentiated two-fluid scheme

B.2.2 Notations

The following notations are used in the discretized equations:

←→ρ j =
1
2

¡
ρJ + ρJ−1

¢
←→α j =

1
2 (αJ + αJ−1)bρj = ρJ−1 if Uj > 0, ρJ if Uj < 0bαj = αJ−1 if Uj > 0, αJ if Uj < 0←−→

ραUJ =
1
2

¡bρjbαjUj + bρj+1bαj+1Uj+1

¢
bUJ = Uj if

←−→
ραUJ > 0, Uj+1 if

←−→
ραUJ > 0

The ←→ superscript refers to a centrally-averaged variable, while the b superscript
refers to an upwinded variable.

In what follows, the double vertical bars refer to the maximum function, i.e.
ka, bk = max(a, b) = {a, if a ≥ b, b if b < a} .

B.2.3 Discretized equations

The discretized equations used in the considered implicit upwind scheme are presented
in this section. Since the aim of this work is to derive the stability area of the scheme by
performing a linear stability analysis around the equilibrium points of the system, we
are able to simplify the problem by considering that at equilibrium, gas and liquid are
flowing towards the outlet of the pipe. This simplifies the expression of the upstreamed
variables. Since the gas phase is also assumed incompressible in the derivation of the
VKH criterion (Barnea and Taitel, 1993), this approximation is also used here.

Liquid mass conservation

• In the general case, the liquid mass conservation equation is discretized as:
1
δt

³
ρn+1l,J βn+1J − ρnl,Jβ

n
J

´
+ 1

δx

³bρn+1l,j+1
bβn+1j+1U

n+1
l,j+1 − bρn+1l,j

bβn+1j Un+1
l,j

´
= 0

• By considering an incompressible forward flow, we are able to simplify the ex-
pression to:



B. Stability analysis of an upwind-differentiated two-fluid model 88

1

δt

¡
βn+1J − βnJ

¢
+
1

δx

³
βn+1J Un+1

l,j+1 − βn+1J−1U
n+1
l,j

´
= 0 (B.1)

Gas mass conservation

• The discretized gas mass conservation equation can be expressed as:
1
δt

³
ρn+1g,J αn+1J − ρng,Jα

n
J

´
+ 1

δx

³bρn+1g,j+1bαn+1j+1U
n+1
g,j+1 − bρn+1g,j bαn+1j Un+1

g,j

´
= 0

• In the case of an incompressible forward flow, this expression can be simplified
as:

1

δt

¡
αn+1J − αnJ

¢
+
1

δx

³
αn+1J Un+1

g,j+1 − αn+1J−1U
n+1
g,j

´
= 0 (B.2)

Liquid momentum conservation

• The liquid momentum conservation equation is discretized as:


δx
δt
←→ρl,jn+1

←→
β n+1

j

+
°°°←−→ρlβU

n+1
l,J , 0

°°°
+
°°°−←−→ρlβU

n+1
l,J−1, 0

°°°
Un+1

l,j =



+δx
δt
←→ρl,jn
←→
β n

jU
n
l,j

+
°°°−←−→ρlβU

n+1
l,J , 0

°°°Un+1
l,j+1

+
°°°←−→ρlβU

n+1
l,J−1, 0

°°°Un+1
l,j−1

−←→β n+1
j

¡
pn+1J − pn+1J−1

¢
−δx

A τn+1l,j Sn+1
l,j + δx

A τn+1i,j Sn+1
i,j

−←→ρl,jn+1δxg
←→
β n+1

j sinφ

−←→ρl,jn+1g
←→
β n+1

j cosφ (hl,J − hl,J−1)n+1


with τn+1l,j = 1

8λ
n+1
l,j ρn+1l

³
Un+1
l,j

´2
and τn+1i,j = 1

8λ
n+1
i,j ρn+1g,j |Ug,j − Ul,j |n+1

³
Un+1
g,j − Un+1

l,j

´
• Simplification in the case of an incompressible forward flow provides:°°°←−→ρlβU

n+1
l,J , 0

°°° = 1
2ρl

³bβn+1j Un+1
l,j + bβn+1j+1U

n+1
l,j+1

´
= 1

2ρl

³
βn+1J−1U

n+1
l,j + βn+1J Un+1

l,j+1

´°°°←−→ρlβU
n+1
l,J−1, 0

°°° = 1
2ρl

³bβn+1j−1U
n+1
l,j−1 + bβn+1j Un+1

l,j

´
= 1

2ρl

³
βn+1J−2U

n+1
l,j−1 + βn+1J−1U

n+1
l,j

´


δx
δt ρl

1
2

¡
βn+1J + βn+1J−1

¢
1
2ρl

Ã
βn+1J−1U

n+1
l,j

+βn+1J Un+1
l,j+1

! Un+1
l,j =



δx
δt ρl

1
2

¡
βnJ + βnJ−1

¢
Un
l,j

+1
2ρl

³
βn+1J−2U

n+1
l,j−1 + βn+1J−1U

n+1
l,j

´
Un+1
l,j−1

−12
¡
βn+1J + βn+1J−1

¢ ¡
pn+1J − pn+1J−1

¢
−δx

A τn+1l,j Sn+1
l,j + δx

A τn+1i,j Sn+1
i,j

−ρlδxg 12
¡
βn+1J + βn+1J−1

¢
sinφ

−ρlg 12
µ

βn+1J

+βn+1J−1

¶
cosφ (hl,J − hl,J−1)n+1


(B.3)
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Gas momentum conservation

• In the general case, the gas momentum conservation equation is discretized as:


δx
δt
←→ρ n+1

g,j
←→α n+1

j

+
°°°←−−→ρgαU

n+1
g,J , 0

°°°
+
°°°−←−−→ρgαU

n+1
g,J−1, 0

°°°
Un+1

g,j =



δx
δt
←→ρ n

g,j
←→α n

jU
n
g,j

+
°°°−←−−→ρgαU

n+1
g,J , 0

°°°Un+1
g,j+1

+
°°°←−−→ρgαU

n+1
g,J−1, 0

°°°Un+1
g,j−1

−←→α n+1
j

¡
pn+1J − pn+1J−1

¢
−δx

A τn+1g,j Sn+1
g,j − δx

A τn+1i,j Sn+1
i,j

−←→ρ n+1
g,j δxg←→α n+1

j sinβ

−←→ρ n+1
g,j g←→α n+1

j cosβ (hl,J − hl,J−1)n+1


with τn+1g,j = 1

8λ
n+1
g,j ρn+1g,j

³
Un+1
g,j

´2
and τn+1i,j = 1

8λ
n+1
i,j ρn+1g,j |Ug,j − Ul,j |n+1

³
Un+1
g,j − Un+1

l,j

´
• By considering an incompressible forward flow, we are able to simplify the ex-
pression to:°°°←−−→ρgαU

n+1
g,J , 0

°°° = 1
2ρg

³bαn+1j Un+1
g,j + bαn+1j+1U

n+1
g,j+1

´
= 1

2ρg

³
αn+1J−1U

n+1
g,j + αn+1J Un+1

g,j+1

´°°°←−−→ρgαU
n+1
g,J−1, 0

°°° = 1
2ρg

³bαn+1j−1U
n+1
g,j−1 + bαn+1j Un+1

g,j

´
= 1

2ρl

³
αn+1J−2U

n+1
g,j−1 + αn+1J−1U

n+1
g,j

´

 δx
δt ρg

1
2

¡
αn+1J + αn+1J−1

¢
+1
2ρg

µ
αn+1J−1U

n+1
g,j

+αn+1J Un+1
g,j+1

¶ Un+1
g,j =



δx
δt ρg

1
2

¡
αnJ + αnJ−1

¢
Un
g,j

+1
2ρl

µ
αn+1J−2U

n+1
g,j−1

+αn+1J−1U
n+1
g,j

¶
Un+1
g,j−1

−12
¡
αn+1J + αn+1J−1

¢ ¡
pn+1J − pn+1J−1

¢
−δx

A τn+1g,j Sn+1
g,j − δx

A τn+1i,j Sn+1
i,j

−ρgδxg 12
¡
αn+1J + αn+1J−1

¢
sinβ

−ρgg 12
µ

αn+1J

+αn+1J−1

¶
cosβ (hl,J − hl,J−1)n+1


(B.4)

B.3 Stability analysis of an upwind Eulerian two-fluid
model scheme

B.3.1 Combined Momentum Equation

We establish a combined momentum equation by replacing the expression of the pres-
sure gradient in the gas momentum conservation equations into the liquid momentum
conservation equation.
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¡
pn+1J − pn+1J−1

¢
= 2

(αn+1J +αn+1J−1)



δx
δt ρg

1
2

¡
αnJ + αnJ−1

¢
Un
g,j

− δx
δt ρg

1
2

¡
αn+1J + αn+1J−1

¢
Un+1
g,j

+1
2ρg

³
αn+1J−2U

n+1
g,j−1 + αn+1J−1U

n+1
g,j

´
Un+1
g,j−1

−12ρg
³
αn+1J−1U

n+1
g,j + αn+1J Un+1

g,j+1

´
Un+1
g,j

−δx
A τn+1g,j Sn+1

g,j − δx
A τn+1i,j Sn+1

i,j

−ρgδxg 12
¡
αn+1J + αn+1J−1

¢
sinβ

−ρgg 12
¡
αn+1J + αn+1J−1

¢
cosβ (hl,J − hl,J−1)n+1


Reporting into the liquid momentum conservation discretized equation, we get:

−δx
δt ρl

µ
Un+1
l,j − βnJ+β

n
J−1

βn+1J +βn+1J−1
Un
l,j

¶
+ δx

δt ρg

µ
Un+1
g,j −

αnJ+α
n
J−1

αn+1J +αn+1J−1
Un
g,j

¶
+ρl

1
βn+1J +βn+1J−1

³
βn+1J−2U

n+1
l,j−1 + βn+1J−1U

n+1
l,j

´
Un+1
l,j−1

−ρl 1
βn+1J +βn+1J−1

³
βn+1J−1U

n+1
l,j + βn+1J Un+1

l,j+1

´
Un+1
l,j

−ρg 1
αn+1J +αn+1J−1

³
αn+1J−2U

n+1
g,j−1 + αn+1J−1U

n+1
g,j

´
Un+1
g,j−1

+ρg
1

αn+1J +αn+1J−1

³
αn+1J−1U

n+1
g,j + αn+1J Un+1

g,j+1

´
Un+1
g,j

+δxF

µ
Un+1
l,j , Un+1

g,j ,
βn+1J +βn+1J−1

2

¶
− ¡ρl − ρg

¢
g cosφ (hl,J − hl,J−1)n+1



= 0 (B.5)

with F
µ
Un+1
l,j , Un+1

g,j ,
βn+1J +βn+1J−1

2

¶
=


− 2δx

A(βn+1J +βn+1J−1)
τn+1l,j Sn+1

l,j

+2δx
A

µ
1

βn+1J +βn+1J−1
+ 1

αn+1J +αn+1J−1

¶
τn+1i,j Sn+1

i,j

+ 2δx
A(αn+1J +αn+1J−1)

τn+1g,j Sn+1g,j


F is the resulting volume force on the liquid phase.

B.3.2 The system of equations

The stability of the system composed of the 3 following discretized equations is to be
investigated:

• 1
δt

¡
βn+1J − βnJ

¢
+ 1

δx

³
βn+1J Un+1

l,j+1 − βn+1J−1U
n+1
l,j

´
= 0

• 1
δt

¡
αn+1J − αnJ

¢
+ 1

δx

³
αn+1J Un+1

g,j+1 − αn+1J−1U
n+1
g,j

´
= 0

•



−δx
δt ρlTransliq

+δx
δt ρgTransgas
+ρlConvliq
−ρgConvgas
+δxFric

− ¡ρl − ρg
¢
Hydro

 = 0
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• For the sake of clarity, the following notations were introduced in the combined
momentum conservation equation:

Transliq = Un+1
l,j − βnJ+β

n
J−1

βn+1J +βn+1J−1
Un
l,j

Transgas = Un+1
g,j −

αnJ+α
n
J−1

αn+1J +αn+1J−1
Un
g,j

Convliq =

 1
βn+1J +βn+1J−1

³
βn+1J−2U

n+1
l,j−1 + βn+1J−1U

n+1
l,j

´
Un+1
l,j−1

− 1
βn+1J +βn+1J−1

³
βn+1J−1U

n+1
l,j + βn+1J Un+1

l,j+1

´
Un+1
l,j


Convgas =

 1
αn+1J +αn+1J−1

³
αn+1J−1U

n+1
g,j + αn+1J Un+1

g,j+1

´
Un+1
g,j

− 1
αn+1J +αn+1J−1

³
αn+1J−2U

n+1
g,j−1 + αn+1J−1U

n+1
g,j

´
Un+1
g,j−1


Fric = F

µ
Un+1
l,j , Un+1

g,j ,
βn+1J +βn+1J−1

2

¶
Hydro = g cosφ (hl,J − hl,J−1)n+1

B.3.3 Stability analysis of the system

Notations

Starting from an equilibrium point characterized by a holdup β, a liquid velocity Ul

and a gas velocity Ug, we investigate the effects of a small perturbation on the system.
The complex variable ρ is the growth rate of the perturbation and the real variable θ
is its wave number. eβ, eUl and fUg are the respective amplitudes of the perturbation
affecting respectively the liquid holdup, the liquid velocity and the gas velocity. Using
those notations, we can express each flow variable as follows:

βnJ = β + eβρneiJθ
αnJ = α+ eαρneiJθ = α− eβρneiJθ
Un
lj = Ul + eUlρ

neijθ = Ul + eUlρ
nei(J−

1
2)θ

Un
gj = Ug +fUgρ

neijθ = Ug +fUgρ
nei(J−

1
2)θ

Fn
j = F + eFρneijθ = F + eFρnei(J− 1

2)θ = eFρnei(J−1
2)θ

In the last equation we used the fact that at the equilibrium point (β, Ul, Ug) the
total resulting force on the liquid is zero.

Discretized liquid mass conservation equation

Using the discretized liquid mass conservation equation (equation B.1):
1
δt

¡
βn+1J − βnJ

¢
+ 1

δx

³
βn+1J Un+1

l,j+1 − βn+1J−1U
n+1
l,j

´
= 0

we are able to express the amplitude of the perturbation on the liquid velocityeUl as a function of the amplitude of the perturbation on the liquid holdup eβ. After
simplification we obtain:
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eUl =

"
i

1

2 sin
¡
1
2θ
¢ δx
δt

ρ− 1
ρ
− Ule

− 1
2
iθ

# eβ
β

(B.6)

Discretized gas mass conservation equation

Similarly, starting with the discretized gas mass conservation equation (equation B.2):
1
δt

¡
αn+1J − αnJ

¢
+ 1

δx

³
αn+1J Un+1

g,j+1 − αn+1J−1U
n+1
g,j

´
= 0

we can express the amplitude of the perturbation on the liquid velocity fUg as a
function of the amplitude of the perturbation on the liquid holdup eβ. After simplifi-
cation we obtain:

fUg =

"
Uge

− 1
2
iθ − i

1

2 sin
¡
1
2θ
¢ δx
δt

ρ− 1
ρ

# eβ
α

(B.7)

Combined momentum conservation equation

We now have to express each of the terms within the underneath combined momentum
conservation equation as a function of eβ, eUl and fUg.

− δx
δt ρlTransliq

+δx
δt ρgTransgas
+ρlConvliq
−ρgConvgas
+δxFric

− ¡ρl − ρg
¢
Hydro

 = 0 (B.8)

Transient liquid term

We start with the transient liquid term Transliq = Un+1
l,j − βnJ+β

n
J−1

βn+1J +βn+1J−1
Un
l,j

After simplification we obtain:

Transliq = (ρ− 1)
· eUl + cos

µ
1

2
θ

¶
Ul

β
eβ¸ ρnei(J−1

2)θ (B.9)

Transient gas term

Similarly, differentiating the transient gas term Transgas = Un+1
g,j −

αnJ+α
n
J−1

αn+1J +αn+1J−1
Un
g,j

leads after simplification to:

Transgas = (ρ− 1)
·fUg − cos

µ
1

2
θ

¶
Ug

α
eβ¸ ρnei(J− 1

2)θ (B.10)



B. Stability analysis of an upwind-differentiated two-fluid model 93

Liquid convective term

The liquid convective termConvliq =
1

βn+1J +βn+1J−1

 ³
βn+1J−2U

n+1
l,j−1 + βn+1J−1U

n+1
l,j

´
Un+1
l,j−1

−
³
βn+1J−1U

n+1
l,j + βn+1J Un+1

l,j+1

´
Un+1
l,j


becomes:

Convliq =

 −iρUl
2

β
e−i

1
2
θ sin (θ)

³eβρnei(J− 1
2)θ
´

−iρ
h
sin (θ) + 2e−i

1
2
θ sin

¡
1
2θ
¢i

Ul

³ eUlρ
nei(J−

1
2)θ
´
 (B.11)

Gas convective term

Applying the same treatment to the gas convective term

Convgas =
1

αn+1J +αn+1J−1

 ³
αn+1J−2U

n+1
g,j−1 + αn+1J−1U

n+1
g,j

´
Un+1
g,j−1

−
³
αn+1J−1U

n+1
g,j + αn+1J Un+1

g,j+1

´
Un+1
g,j

 yields:

Convgas =

 iρ
Ug

2

α
e−i

1
2
θ sin (θ)

³eβρnei(J−1
2)θ
´

−iρ
h
sin (θ) + 2e−i

1
2
θ sin

¡
1
2θ
¢i

Ug

³fUgρ
nei(J−

1
2)θ
´
 (B.12)

Resulting volumic force on the liquid phase

The resulting force on the liquid phase F is a function of the three variables β, Ul and
Ug. We are therefore able to express the variations of F around its equilibrium value of
0 as a function of the variations of β, Ul and Ug. Although the partial derivatives of Fh
∂F
∂Ul

i
Ug ,β

,
h
∂F
∂Ug

i
Ul,β

and
h
∂F
∂β

i
Ul,Ug

can be expressed analytically if we have an explicit

expression for the friction factors, such derivation is unnecessary and cumbersome.
We therefore choose not to explicitly derive the derivatives of F and evaluate them
numerically when needed.

Fric = F

Ã
Un+1
l,j , Un+1

g,j ,
βn+1J + βn+1J−1

2

!
=


F+h

∂F
∂Ul

i
Ug ,β

eUlρ
n+1ei(J−

1
2)θ

+
h
∂F
∂Ug

i
Ul,β

fUgρ
n+1ei(J−

1
2)θ

+
h
∂F
∂β

i
Ul,Ug

cos
¡
1
2θ
¢ eβρn+1ei(J− 1

2)θ


(B.13)

with F = 0, as at equilibrium, the resulting force on the liquid is null.
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Hydrostatic term

Finally the hydrostatic term Hydro = g cosφ (hl,J − hl,J−1)n+1 gives after simplifica-
tion:

Hydro = 2ig cosφ
Ah
dAl
dhl

i sinµ1
2
θ

¶
ρ
³eβρnei(J− 1

2)θ
´

(B.14)

Expressing the discretized combined momentum equation
Now we have an expression for all the terms of the discretized combined momentum

equation.



− δx
δt ρlTransliq

+δx
δt ρgTransgas
+ρlConvliq
−ρgConvgas
+δxFric

− ¡ρl − ρg
¢
Hydro

 = 0 (B.15)

After some simplification, we can express the discretized combined momentum
equation as a linear equation of the three amplitudes eβ, eUl and fUg.




−δx

δt ρl

³
ρ−1
ρ

´
−2 £i sin (θ) + sin2 ¡12θ¢¤ ρlUl

+δx
h
∂F
∂Ul

i
Ug,β

 eUl

+


+ δx

δt ρg

³
ρ−1
ρ

´
+2
£
i sin (θ) + sin2

¡
1
2θ
¢¤
ρgUg

+δx
h
∂F
∂Ug

i
Ul,β

fUg

+



−δx
δt

³
ρ−1
ρ

´
cos
¡
1
2θ
¢ ³

ρl
Ul
β
+ ρg

Ug
α

´
−i
Ã
ρlUl

2

β
+

ρgUg
2

α

!
e−i

1
2
θ sin (θ)

+δx
h
∂F
∂β

i
Ul,Ug

cos
¡
1
2θ
¢

−2i ¡ρl − ρg
¢
g cosφ

Ah
dAl
dhl

i sin ¡12θ¢


eβ



= 0 (B.16)
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B.3.4 Dispersion Equation

The system of three discretized equations (liquid mass conservation, gas mass conser-
vation and combined momentum conservation equation) can now be translated into a
linear system of equations for the three variables eβ, eUl and fUg.

• eUl =

·
i 1
2 sin( 12θ)

δx
δt

ρ−1
ρ − Ule

− 1
2
iθ

¸ eβ
β

• fUg =

·
Uge

− 1
2
iθ − i 1

2 sin( 12θ)
δx
δt

ρ−1
ρ

¸ eβ
α

•


− δx

δt ρl

³
ρ−1
ρ

´
−2 £i sin (θ) + sin2 ¡12θ¢¤ ρlUl

+δx
h
∂F
∂Ul

i
Ug,β

 eUl+


+δx

δt ρg

³
ρ−1
ρ

´
+2
£
i sin (θ) + sin2

¡
1
2θ
¢¤
ρgUg

+δx
h
∂F
∂Ug

i
Ul,β

fUg+



−δx
δt

³
ρ−1
ρ

´
cos
¡
1
2θ
¢ ³

ρl
Ul
β
+ ρg

Ug
α

´
−i
Ã
ρlUl

2

β
+

ρgUg
2

α

!
e−i

1
2
θ sin (θ)

+δx
h
∂F
∂β

i
Ul,Ug

cos
¡
1
2θ
¢

−2i ¡ρl − ρg
¢
g cosφ

Ah
dAl
dhl

i sin ¡12θ¢


eβ = 0

After replacing the expressions of eUl and fUg in the first two equations into the
last equation, we find:

−i
³
ρl
β
+

ρg
α

´
1

2 sin( 12θ)

¡
δx
δt

¢2 ³ρ−1
ρ

´2

+



µ
ρlUl
β
+

ρgUg
α

¶
e−

1
2
iθ

− 2
2 sin( 12θ)

i
£
i sin (θ) + sin2

¡
1
2θ
¢¤µρlUl

β
+

ρgUg
α

¶
iδx 1

2 sin( 12θ)

µ
1
β

h
∂F
∂Ul

i
Ug,β
− 1

α

h
∂F
∂Ug

i
Ul,β

¶
− cos ¡12θ¢ ³ρl Ulβ + ρg

Ug
α

´


δx
δt

³
ρ−1
ρ

´

+



2
£
i sin (θ) + sin2

¡
1
2θ
¢¤
e−

1
2
iθ

µ
ρlUl

2

β
+

ρgUg
2

α

¶
−δx

h
∂F
∂Ul

i
Ug,β

Ul
β
e−

1
2
iθ + δx

h
∂F
∂Ug

i
Ul,β

Ug
α e−

1
2
iθ + δx

h
∂F
∂β

i
Ul,Ug

cos
¡
1
2θ
¢

−i
Ã
ρlUl

2

β
+

ρgUg
2

α

!
e−i

1
2
θ sin (θ)

−2i ¡ρl − ρg
¢
g cosφ

Ah
dAl
dhl

i sin ¡12θ¢


= 0
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By reorganizing the terms, we are able to highlight the similarity between the linear
stability analysis of the continuous equations and of the discretized equations:h

ρl
β
+

ρg
α

i ³
ρ−1
ρδt

´2
+

+

 −
µh

∂F
∂US

l

i
US
g ,β
−
h
∂F
∂US

g

i
US
l ,β

¶
+

2i

µ
ρlUl
β
+

ρgUg
α

¶µ
2 sin( 12θ)

δx

¶
³ρ−1ρδt

´

+i
h
∂F
∂β

i
US
l ,U

S
g

µ
2 sin( 12θ)
|δx

¶

+


−
µ
ρlUl

2

β
+

ρgUg
2

α

¶
+
¡
ρl − ρg

¢
g cosφ

Ah
dAl
dhl

i

µ
2 sin( 12θ)

δx

¶2

−i
h
∂F
∂β

i
US
l ,U

S
g

¡
1− cos ¡12θ¢¢µ2 sin( 12θ)|δx

¶
+2i

¡
cos
¡
1
2θ
¢− 1¢µρlUl

β
+

ρgUg
α

¶µ
2 sin( 12θ)

δx

¶
+
¡
1− e−iθ

¢µρlUl
2

β
+

ρgUg
2

α

¶µ
2 sin( 12θ)

δx

¶2
+i

 +
h
∂F
∂US

l

i
US
g ,β

Uli sin
¡
1
2θ
¢

−
h
∂F
∂US

g

i
US
l ,β

Ugi sin
¡
1
2θ
¢
µ2 sin( 12θ)|δx

¶

+2 sin
¡
1
2θ
¢µρlUl

β
+

ρgUg
α

¶µ
2 sin( 12θ)

δx

¶³
ρ−1
ρδt

´
= 0

In order to highlight furthermore the correspondence between the linear stability
analysis of the continuous equations and of the discretized equations, we can replace
ρ and θ, traditionally used for discrete stability analysis by the wave number k and
the pulsation w. We have then ρ = eiwδt and θ = −kδx. For small enough δt the term³
ρ−1
ρδt

´
can be replaced by iw. A second order development in kδx gives the following

relations:

µ
2 sin( 12θ)

δx

¶
≈ −k 2 sin

¡
1
2θ
¢ ≈ −kδx

1− cos ¡12θ¢ ≈ 1
8k
2δx2 1− e−iθ ≈ −ikδx+ 1

2k
2δx2

(B.17)

We now introduce the standard parameters ρ, a, b, c and e as presented by Barnea
and Taitel (1993) for the linear stability analysis of the two-fluid model equations. We
also introduce the additional parameters r, h and m in order to account for the extra
terms deriving from the discretized nature of the starting equations.
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We can now write the dispersion equation of the discretized two-fluid model equa-
tions as:

w2 − 2 [ak − bi]w + (c+ hδx) k2 − iek − imk3δx2 − 1
2
rk4δx2 + irδxk3 − iawk2δx = 0

(B.18)

If we let δx tend towards zero, we encounter the usual standard VKH criterion
deriving from the linear stability analysis of the continuous two-fluid model (Barnea
and Taitel, 1993):

w2 − 2 [ak − bi]w + ck2 − iek = 0 (B.19)

B.3.5 Stability criterion

Going back to the dispersion equation of the discretized two-fluid model, we look for
the point of neutral stability by writing that at neutral stability the imaginary part of
w is null. We can now replace the complex equation by two real equations by taking
the real and the imaginary part of the dispersion equations.

w2R − 2akwR + (c+ hδx) k2 − 1
2rk

4δx2 = 0 for the real part
2bwR − ek −mk3δx2 + rδxk3 − awRk

2δx = 0 for the imaginary part

Yielding wR =
e+

¡
mδx2 − rδx

¢
k2

2b− ak2δx
k = Ckk
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Of course, if we let δx tend towards zero, we find the well-known expression for
the wave speed in the continuous two-fluid model system of equations:

e

2b
.

Going back to the real part of the equation, we replace wR by its expression Ckk.
The equation then becomes:

C2kk
2 − 2aCkk

2 + (c+ hδx) k2 − 1
2
rk4δx2 = 0 (B.20)

We are now able to express the stability criterion for the discretized two-fluid model
equations:

stable⇔
 ∀k (Ck − a)2 +

¡
c− a2 + hδx

¢− 1
2rk

2δx2 < 0

where Ck =
e+

¡
mδx2 − rδx

¢
k2

2b− ak2δx

 (B.21)

If surface tension is inserted within the equations, we get:

stable⇔
 ∀k (Ck − a)2 +

¡
c− a2 + hδx

¢− ¡12rδx2 + d
¢
k2 < 0

where Ck =
e+

¡
mδx2 − rδx

¢
k2

2b− ak2δx

 (B.22)

Parameter d is defined by the relation d = σ
ρ

A
dAl
dhl

where σ is the surface tension

between the gas and the liquid phase.

We can compare this result with the stability criterion for the continuous two-fluid
model equations with surface tension, as obtained by Barnea and Taitel (1993):

stable⇔
Ã ∀k (C − a)2 +

¡
c− a2

¢− dk2 < 0

where C =
e

2b

!
(B.23)

which is equivalent to :

stable⇔
Ã
(C − a)2 +

¡
c− a2

¢
< 0

where C =
e

2b

!
(B.24)

The discretized nature of the equations has had three consequences on the stability
criterion:

• A numerical extra stabilizing term hδx proportional to the grid size has appeared.
It is here important to notice that h is negative. This extra-term is independent
of the wave number k.
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• A numerical surface tension term 1
2rδx

2 proportional to the square of the grid
size has appeared. Its effect is similar to the one of the surface tension. It is
important to note that the parameter r takes here only positive values.

• The wave speed C is dependent on the wave number k in the discretized equations
stability analysis. In the VKH analysis, C is constant for all low amplitude
waves. If we consider the effect of surface tension, which tends to dampen short-
wavelength waves, we can conclude that in the VKH analysis, the most unstable
wavelength will always be infinite. On the other hand we have a priori no such
certitude for the discretized equations stability analysis.

Given that b is negative and a positive, the function f : k → Ck =
e+

¡
mδx2 − rδx

¢
k2

2b− ak2δx
is defined for all values of k. The function f is homographic thus monotonic and there-
fore increases (or decreases) from

e

2b
(which is a positive number since both e and b

are negative reals) to
r −mδx

a
(where r, m and a are all positive).

The obtained stability criterion for the discretized two-fluid model was imple-
mented in a MATLAB code able to create numerical flowmaps from any chosen sta-
bility criterion (such as Taitel and Dukler’s, Minimum Holdup or VKH). It appeared

that for reasonable values of δx,
r −mδx

a
≈ r

a
≈

ρlUl
2

β
+

ρgUg
2

α

ρlUl
β
+

ρgUg
α

≈ Ul+
βρgUg

2

αρlUl
.We can

therefore conclude that for short wavelength waves, the wave velocity tends towards
the liquid velocity. Moreover, as numerical trials show that

e

2b
> Ul and bearing in

mind that a = 1
ρ

µ
ρlUl
β
+

ρgUg
α

¶
≈ Ul we can conclude that the destabilizing contri-

bution of the term (Ck − a)2 will simply decrease from its long wavelength limit of³ e

2b
− a

´2
to its small wavelength limit of nearly zero.

Since the other terms depending on k,
¡
1
2rδx

2 + d
¢
k2 have a stabilizing effect on

the flow, we can conclude that the most dangerous wavelength for the discretized two-
fluid model will be infinite, as in the continuous case. This simple analysis now allows
us to re-write the stability condition for the discretized two-fluid model as:

stable⇔
Ã
(C − a)2 +

¡
c− a2 + hδx

¢
< 0

where C =
e

2b

!
(B.25)

Finally, only the extra-term in hδx plays a role in the stability of the discretized
equations.
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Fluids
US
l

[m.s−1]
US
g

[m.s−1]
D
[cm]

hl
D d x 106 1

2r
δx ensuring
1
2rδx

2 = d
[mm]

Air-water 0.09 0.5 2.5 0.67 1.07 0.013 9

Air-water 0.09 3.34 2.5 0.4 0.54 0.041 3.6

Air-water 0.16 0.5 10 0.74 0.51 0.036 3.7

Air-water 0.20 3.34 10 0.51 2.94 0.108 5

Air-ExxsolD80 0.09 0.5 2.5 0.67 0.48 0.014 6

Air-ExxsolD80 0.09 3.34 2.5 0.39 0.24 0.042 2.4

Table B.1: Relative importance of the numerical and physical surface tension in various
conditions

B.3.6 Importance of the numerical surface tension

Although the extra-surface tension term 1
2rδx

2 does not affect the stability of the
flow at long wavelength, it can possibly modify the behaviour of the flow at smaller
scales. Table B.1 attempts to quantify the relative importance of the numerical surface
tension term 1

2rδx
2 compared to the physical surface tension term d. The grid cell

size at which the contribution of the numerical surface tension is as important as the
contribution of the physical surface tension (i.e. the value of δx ensuring 1

2rδx
2 = d)

is evaluated at neutral stability point (i.e. the point of transition between stratified to
slug flow according to the VKH criterion). Several flow conditions (flow rates, fluids
and pipe diameter) were tested. A surface tension of σ = 0.072 N.m−1 was taken
for air and water and a surface tension of σ = 0.026 N.m−1 was taken for air and
ExxsolD80 (as measured in Kristiansen, 2004).

Table B.1 shows that in order to be able to accurately model the effect of surface
tension with an upwind-averaged two-fluid model scheme, it is necessary to use a grid
cell size no bigger than 1 mm. It might however be possible to work with bigger grid
cells by subtracting the calculated numerical surface tension from the physical surface
tension which could mean in some cases using a negative imput value for σ. Although
feasible, this would be cumbersome as the right imput value for σ would depend not
only on δx and on the pipe diameter but also on other variable flow parameters such
as the holdup and the liquid and gas velocities. Finally, although this effect does not
in practice seem to bring excessive problems to the simulation of slug initiation with
an upwind two-fluid model (Issa and Kempf, 2003), it has to be kept in mind as a
limitation of the upstream differentiation of the two-fluid model.

B.3.7 Importance of the numerical extra-stabilizing term

The effect of the extra-term in hδx was numerically quantified for several values of δx
and several types of flows. Figure B.2 represent the stability flowmaps computed for
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both the continuous two-fluid model equations (VKH criterion) and for the discretized
two-fluid model equations, in the case of an air-water flow, and for three different pipe
diameters (δx = 0.1 m, δx = 0.2 m and δx = 0.5 m). The stability area is plotted on
a (US

l −US
g ) flowmap on the left-hand side and on a (U

S
l − hl

D ) on the right-hand side.
It appears that the discretized nature of the equations has a moderate impact in

terms of stability area. Quite predictably, the smaller the pipe diameter, the smaller
should be the grid size in order not to introduce an excessive stabilizing effect. In all
cases however, a 1 cm grid was enough to obtain a neutral stability line undiscernibly
close to the VKH neutral stability line.

As the h parameter is defined from partial derivatives of the friction fictions, it
seemed logical to evaluate the influence of the viscosity by investigating a different set
of fluids. The same computations presented for air-water flow was performed in the
case of an Air-ExxsolD80 (see figure B.2). No significant difference in the influence of
the grid cell size was observed. The same conclusion also applies to higher viscosity
oils.
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Figure B.2: Numerical flowmaps for water and air
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Table B.2: Numerical flowmaps for ExxsolD80 and air
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Appendix C

Influence of high order terms on
the initiation process

C.1 Principle

In the fourth paper of this thesis, Influence of dynamic pressure terms on stratified two-
phase flow stability, some additional high order terms were included in the two-fluid
model set of four partial differential equations. The motivation behind the derivation
of these high order terms was the thought that these terms could be used to improve
the slug capturing ability of the two-fluid model.

Indeed, Issa and Kempf (2003) first showed that the two-fluid model was able to
automatically capture the development of slugs from established stratified flow. How-
ever, as noted by Issa and Kempf and documented by Bonizzi (2002), this approach
is limited to the well-posed region of stratified flow. As high order differential terms
(such as surface tension or the terms derived in the fourth paper of this thesis) ensure
that the problem remains constantly mathematically well-posed as a hyperbolic prob-
lem, it was believed worthwhile to investigate whether these terms could in practice
have a beneficial effect on the slug initiation process.

Another important consideration is the wavelength of the perturbation responsible
for slug initiation. In the absence of surface tension, linear stability analysis of the
stratified two-fluid model predicts that in given flow conditions either all wavelengths
will be unstable, or all wavelengths will be stable. When surface tension is included,
linear stability analysis predicts that the "most dangerous wavelength" at the transi-
tion point, the one leading to slug initiation will be infinity. However, this is seldom
observed experimentally and many experimentators such as Woods (1998), Fan et al.
(1993) and Espedal (1998) report critical wavelengths ranging from 8 to 20 cm in small
diameter pipes (refer to the fourth paper of this thesis for further description of these
works).

As demonstrated in the fourth paper of this thesis, including some additional high
order differential terms can theoretically change the "most dangerous wavelength" and
shift it towards more physical lengths. It was then considered worth investigating if

105
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in practice, in a slug capturing scheme, the addition of high order differential terms
could have an influence on the wavelength leading to the transition.

C.2 The dynamic pressure terms

In the two-fluid model, the liquid momentum conservation equation can be written as:

∂

∂t
(ρlAlUl) +

∂

∂x

¡
ρlAlU

2
l

¢
= −τ lSl + τ iSi − ρlgAl sinβ + pil

∂

∂x
Al − ∂

∂x
(AlPl) (C.1)

where the pressure at the interface pil is a priori distinct from the cross-sectional
averaged pressure within the liquid phase Pl. In the fourth paper of this thesis the
consideration of a transverse momentum balance instead of the usual hydrostatic ap-
proximation in the two-fluid model provided the following closure, after several drastic
approximations:

pil
∂

∂x
Al − ∂

∂x
(AlPl) = −Al

∂

∂x
pil − I1 − I2 − I3 (C.2)

Where the terms I1, I2 and I3 are defined as follows:

I1 = ρlAl
∂hl
∂x

g cosβ (C.3)

I2 = ρlAl
∂hl
∂x

·
∂

∂t
+ U(x)

∂

∂x

¸2
(hl) (C.4)

I3 = −ρlh2lAlη

·
∂

∂t
+ Ul

∂

∂x
− ∂Ul

∂x
− ν∗l

∂2

∂x2

¸µ
∂2

∂x2
Ul

¶
(C.5)

η =
1

2

·
1− 1

π

A

Al
sin(

πhl
4R
)

¸
(C.6)

In the above expression of I3, ν∗l represents a sort of turbulent dynamic viscosity,
whose value is not easy to evaluate. The term I1 is nothing but the hydrostatic term
without which it was found that the two-fluid model was unconditionally ill-posed
under all flow conditions (Ramshaw and Trapp, 1978). I1 is therefore now included
in all two-fluid model schemes. Replacing I1 by its expression, the liquid momentum
conservation equation then becomes:

∂

∂t
(ρlAlUl) +

∂

∂x

¡
ρlAlU

2
l

¢
=

µ −τ lSl + τ iSi − ρlgAl sinβ −Al
∂
∂xpil

−ρlAl
∂hl
∂x g cosβ − I2 − I3

¶
(C.7)
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Compared to a standard two-fluid model, the high order differential terms I2 and
I3 have been added.

C.3 Effect of the derived high order terms on slug initi-
ation: a numerical experimentation

C.3.1 Scheme used

The scheme used for the simulation is based on the TRIOMPH code of Issa et al. (Issa
and Kempf, 2003, Bonizzi and Issa, 2003). For the purpose of this experimentation
a TRIOMPH code was thus re-constructed on the basis of the description made in
Bonizzi (2002)1.

C.3.2 Well-posed case (case 1)

Air-water flow was simulated in a horizontal one inch diameter pipe at atmospheric
pressure. The length of the simulated pipe was taken equal to 2.5 m. The inlet gas
superficial velocity was set to US

g = 0.75 m.s−1 and the inlet liquid superficial velocity
was taken equal to US

l = 0.5 m.s−1. For the simulation, the interfacial friction factor
λi was taken equal to the gas friction factor λg. The parameter ν∗l was set to νl in the
results presented. At these flow rates, steady stratified flow is extremely close to the
ill-posedness limit (Inviscous Kelvin Helmholtz criterion) as shown in figure C.1 where
case 1 is represented by a square, the ill-posedness limit is represented by a solid line
and stratified flow stability is represented by an interrupted line. The simulation is
started from established stratified flow. A cell length of 1 mm, and a time step of 0.1
ms were used for the simulations.

As no slug initiation was obtained initially, a punctual perturbation of very small
amplitude was added. In a single section (x = 0.5 m) and for a single time step
(t = 0.5 s) the gas-liquid friction was increased, giving a "kick" to the liquid velocity
at this position.

This case was simulated twice, without the extra differential terms (case 1A) and
with the extra terms (case 1B).

The results obtained without the additional terms are presented figure C.2 where
the simulated holdup profiles are presented after 0.65 s, 0.7 s, 0.75 s, 0.8 s and 1 s.

1This was done in good faith by following as much as possible the documentation available. How-
ever, as all the subtleties present in the TRIOMPH code might not have been fully described in Bonizzi
(2002) and as the author of those lines might have overlooked some of the potentially missing details,
no guaranty is given to the reader that the implementation of the two-fluid model effectively used
for this numerical experiment is strictly equivalent to the original version of the TRIOMPH code.
Moreover, the only objective of this numerical experimentation was to investigate the potential conse-
quences of the use of the derived high order terms. Only the influence of the terms, i.e. the difference
between the results obtained with and without the added terms is to be looked at.
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A small perturbation can be noticed at the interface after 0.65 s. The perturbation
grows and bridges the pipe after 0.7 s. The newly formed slug scoops the liquid in
from of it and propagates quickly towards the exit of the pipe.

The results obtained with the derived high order terms (case 1B) are presented
figure C.3. There is no significant difference between the results obtained in case 1A
and in case 1B. After 0.7 s however, it appears that the slug is bigger in case 1B than
it is in case 1A which suggests that slug initiation occurs faster with the additional
terms.

In order to investigate the impact of the extra terms on the wavelength of the
perturbation, a spatial Fourier analysis was performed on the holdup profiles after
0.55 s, 0.6 s, 0.65 s, 0.7 s, 0.75 s and 1 s. The results are presented figure C.4, which
shows the obtained power spectrum as a function of the inverse of the wavelength
(the contribution of the infinite wavelength has been taken out). The power spectrum
obtained without the additional terms (case 1A) is shown as a solid line while the
power spectrum obtained with the high order terms is shown as squares. After 0.55 s
the dominant wavelength is λ = 4 cm, it seems to halve and reaches 2 cm after 0.65
s. Once the slug has been initiated (after time 0.75 s and 1 s), the power spectrum is
dominated by very long wavelengths. Only after 0.7 s can we notice some difference
between cases 1A and 1B: the power profile in case 1B is closer to what it is in the
case of a slug. This is consistent with our observation that the additional high order
terms led in this case to a somehow faster slug initiation.

C.3.3 Ill-posed case (case 2)

We still simulate an air-water flow within a horizontal one inch diameter pipe at
atmospheric pressure. This time, the length of the pipe was taken equal to 20 m. The
inlet water superficial velocity was set to US

g = 2 m.s−1 and the inlet gas superficial
velocity was taken equal to US

l = 0.5 m.s−1. The simulation was started from steady
state stratified flow. A cell length of 1 cm, and a time step of 1ms were used. At those
low velocities, the interface can be considered as smooth and the interfacial friction
factor λi was taken equal to the gas friction factor λg. The simulated case is well over
the ill-posedness limit (Inviscous Kelvin Helmholtz criterion) as shown in figure C.1
where case 2 is represented by a circle, the ill-posedness limit is represented by a solid
line and stratified flow stability is represented by an interrupted line. The simulation
is started from established stratified flow. In this case, slugging appeared naturally
and it was not necessary to introduce any artificial perturbation.

The results obtained without the additional terms are presented in figure C.5 where
the simulated holdup profiles are presented after 2.3 s, 2.4 s, 2.5 s, 2.6 s and 4 s. A
small perturbation grows at the interface and bridges the pipe between 2.5 and 2.6
seconds after the start of the simulation. The newly formed slug grows very fast given
the very high level of liquid in front of it and its length exceeds 5 meters, 4 seconds
after the start of the simulation.
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The results obtained with the derived high order terms are presented in figure C.6.
The addition of the derived high order differential terms has not had any visible effect
on the simulated holdup profiles.

In order to investigate further the impact of the extra terms on the wavelength of
the perturbation leading to slug initiation, a spatial Fourier analysis was performed
on the holdup profiles after 0.9 s, 1.3 s, 1.9 s, 2.4 s, 2.5 s and 2.9 s. The results
are presented figure C.7, which shows the obtained power spectrum as a function of
the inverse of the wavelength (the contribution of the infinite wavelength has been
taken out). The power spectrum obtained without the additional terms is shown as
a solid line while the power spectrum obtained with the high order terms is shown
as squares. Very long waves are dominating at the beginning of the simulation, with
20 cm wavelength appearing after 1.9 s. The dominating wave seems to interact with
its harmonics and after 2.5 s we can observe three peaks in the power spectrum,
corresponding to the wavelengths 7, 14 and 40 cm.

Once the slug has been initiated the power spectrum is dominated by very long
wavelengths. No difference whatsoever can be observed between case 2A (without the
extra terms) and case 2B (with the extra terms).

C.4 Conclusions

The simulations performed with the help of a slug capturing scheme based on the
two-fluid model showed that the high order differential terms derived in the fourth
paper of this thesis did not have in practice the property to influence significantly
the wavelength of the perturbation responsible for slug initiation. Several values were
tried for ν∗l , without more success.

Furthermore, it was observed in other simulations that the integration parameters
(time step and grid size) could have a much bigger influence on the wavelength of the
critical wave that the inclusion of the derived high order differential terms.
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Figure C.1: Stratified-slug transition for an air-water flow in a one inch pipe



C. Influence of high order terms on the initiation process 111

0 0.5 1 1.5 2 2.5
0

0.5

1

position in the pipe (m)

ad
im

en
si

on
ed

 li
qu

id
 h

ei
gh

t

Simulated liquid height  profile (without the extra terms) after time: 0.65 s

0 0.5 1 1.5 2 2.5
0

0.5

1

position in the pipe (m)

ad
im

en
si

on
ed

 li
qu

id
 h

ei
gh

t

Simulated liquid height  profile (without the extra terms) after time: 0.7 s

0 0.5 1 1.5 2 2.5
0

0.5

1

position in the pipe (m)

ad
im

en
si

on
ed

 li
qu

id
 h

ei
gh

t

Simulated liquid height  profile (without the extra terms) after time: 0.75 s

0 0.5 1 1.5 2 2.5
0

0.5

1

position in the pipe (m)

ad
im

en
si

on
ed

 li
qu

id
 h

ei
gh

t

Simulated liquid height  profile (without the extra terms) after time: 0.8 s

0 0.5 1 1.5 2 2.5
0

0.5

1

position in the pipe (m)

ad
im

en
si

on
ed

 li
qu

id
 h

ei
gh

t

Simulated liquid height  profile (without the extra terms) after time: 1 s

Figure C.2: Holdup profiles computed in the well-posed case, without the derived high
order terms (Case 1A)
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Figure C.3: Holdup profiles computed in the well-posed case, with the derived high
order terms (Case 1B)
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Figure C.4: Fourier analysis of the holdup profiles obtained in the well-posed case with
(case 1B, shown as squares) and without (case 1A, shown as a solid line) the derived
high-order differential terms



C. Influence of high order terms on the initiation process 114

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

position in the pipe (m)

ad
im

en
si

on
ed

 li
qu

id
 h

ei
gh

t

Simulated liquid height  profile (without the extra terms) after time: 2.3 s

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

position in the pipe (m)

ad
im

en
si

on
ed

 li
qu

id
 h

ei
gh

t

Simulated liquid height  profile (without the extra terms) after time: 2.4 s

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

position in the pipe (m)

ad
im

en
si

on
ed

 li
qu

id
 h

ei
gh

t

Simulated liquid height  profile (without the extra terms) after time: 2.5 s

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

position in the pipe (m)

ad
im

en
si

on
ed

 li
qu

id
 h

ei
gh

t

Simulated liquid height  profile (without the extra terms) after time: 2.6 s

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

position in the pipe (m)

ad
im

en
si

on
ed

 li
qu

id
 h

ei
gh

t

Simulated liquid height  profile (without the extra terms) after time: 4 s

Figure C.5: Holdup profiles computed in the ill-posed case, without the derived high
order terms (Case 2A)
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Figure C.6: Holdup profiles computed in the ill-posed case, with the derived high order
terms (Case 2B)
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Figure C.7: Fourier analysis of the holdup profiles obtained in the ill-posed case with
(case 2B, shown as squares) and without (case 2A, shown as a solid line) the derived
high-order differential terms



Appendix D

Geometrical relations within the
pipe

D.1 The geometrical variables of two-phase flow in a cir-
cular pipe

This very short appendix recalls the geometrical relations of interest in the field of two-
phase flow modelling. The sketch presented figure D.1 shows a section of a circular pipe
of radius R and introduces the liquid-wetted perimeter Sl, the gas-wetted perimeter
Sg and the interfacial width Si. The liquid holdup β is defined as the ratio between the
liquid-occupied area Al and the total pipe section area, while hl is the liquid height
from the bottom of the pipe to the liquid surface. The angle θ shown on the sketch is
called the wetted half-angle. Finally Dhl and Dhg are respectively the liquid and gas
hydraulic diameters.

D.2 Resolution of a pipe

Knowing the pipe radius and any one of the variables of interest is sufficient to calculate
all the other relevant variables. Table D.1 shows how all variables can be explicitly
determined from θ and hl

R .
When only the holdup β is known, there is no available explicit exact expression

providing the liquid height hl or the half-wetted angle θ. The non-linear equation
β = 1

π

¡
θ − 1

2 sin 2θ
¢
can be solved for θ when β is known but as this task has to be

performed a great number of times in a single simulation, an approximate explicit
formula is often used instead. The following expression proposed by Biberg (1999),
provides the half-wetted angle with a great accuracy and is used throughout the LASSI
code:

θ ≈ πβ +

µ
3π

2

¶ 1
3 h
1− 2β + β

1
3 − (1− β)

1
3

i
(D.1)
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Figure D.1: Circular pipe geometry

In practice in the LASSI scheme, β is used as the primary variable, as conserving
β is basically ensuring liquid mass conservation when the liquid is considered incom-
pressible. As other variables are needed for the dynamics, such as for example dAl

dhl
(to evaluate the parameter κ) and Sl, Sg and Si (to evaluate the action of the friction
forces), Biberg’s approximation is used, every section and every time step, to deter-
mine θ from β. The other variables are then derived from the relations presented in
tables D.1 and D.1.

known variable: θ known variable: hl
R

hl = R (1− cos θ) θ = arccos
³
1− hl

R

´
Al = R2

¡
θ − 1

2 sin 2θ
¢

Al = R2

"
arccos

³
1− hl

R

´
−
³
1− hl

R

´r
1−

³
1− hl

R

´2#

β = 1
π

¡
θ − 1

2 sin 2θ
¢

β = 1
π

"
arccos

³
1− hl

R

´
−
³
1− hl

R

´r
1−

³
1− hl

R

´2#
dAl
dhl

= 2R sin θ dAl
dhl

= 2R

r
1−

³
1− hl

R

´2
Table D.1: Relations of interest in a circular pipe
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Abstract

This paper presents an original slug capturing and slug tracking scheme, named
LASSI (Lagrangian Approximate Scheme for Slug Initiation) for transient simula-
tions of gas-liquid flow in pipes. The scheme is based on the two criteria that govern
the transition from stratified to slug flow: the stratified stability criterion or Vis-
cous Kelvin Helmholtz and the slug stability criterion or Minimum Holdup. The
presented scheme is able to automatically capture the slug initiation phenomenon
without the use of any closure, and to track the initiated slugs along the pipe, as
they propagate according to Bendiksen’s bubble nose velocity closure. The details
of the scheme are presented and the scheme is successfully validated against exper-
iments in its ability to predict the correct flowmap. In addition, a new derivation of
the VKH criterion is presented, and some concerns regarding the modelling of the
Bernoulli suction force with an upwind-differentiated two-fluid model are raised.

Key words: two-phase flow, two-fluid model, slug flow, slug initiation

1 Introduction

The study of gas-liquid flow in pipelines is of special importance for the trans-
port of hydrocarbons in the oil industry and liquid-vapour mixture in power
plants. Gas-liquid flow is characterized by the variety of flow patterns that
can occur, depending on the gas and liquid flow rates as well as other physical
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Preprint



parameters such as the pipe inclination or the gas density. The list of possible
flow patterns includes stratified flow where gas flows on top of a liquid layer
and slug flow, an inherently unsteady flow regime where gas bubbles and liq-
uid slugs alternately surge along the pipe. One of the greatest challenges of
two-phase flow computations lies in the modelling of flow regime transitions,
especially the transition between stratified and slug flow, because of its chaotic
nature, and because of the great variety of slug initiation mechanisms. Slugs
can indeed be initiated due to liquid accumulation at the low points of the
pipe until the liquid bridges the pipe and forms a blockade which will either
travel down the pipe as a slug or, if the upstream gas compressibility is high
enough, form a severe slug, which can be seen as the most extreme case of
slug flow. Another mechanism is the sometimes quite slow growth of small
perturbations at the gas-liquid interface due to the hydrodynamic instability
of stratified flow at those conditions. Fast variations of the gas velocity, due
to operational transients or to system-dependent effects such as the departure
of a previous slug, can also trigger slug initiation.

While some semi-empirical criteria such as the Taitel and Dukler (1976) cri-
terion have long been proposed to predict slug initiation, one can doubt that
a criterion-based approach could be able to cope with the most complicated
pipe geometries or gas transient effects. More practically, the implementa-
tion of those criteria into standard transport models like the two-fluid model
(which consists of one mass and one momentum conservation equation for
each phase) is tedious and subject to some numerical difficulties. Moreover
this approach requires further closures in addition to the transition criterion
itself, like the initiation position and the initiation frequency. No matter how
difficult it is, this criterion-based approach is necessary if the underlying code
is not able to capture the physics of slug initiation.

It was indeed early seen that the two-fluid model, used in many industrial
codes such as OLGA (Bendiksen et al., 1991) becomes ill-posed as a hy-
perbolic problem when the Bernoulli suction overcomes the hydrostatic force
(Ramshaw and Trapp, 1978), raising doubts about the ability of such models to
initiate slugs. However, it was also shown (Lin and Hanratty, 1986, Barnea and
Taitel, 1993) that the linear stability analysis of the two-fluid model yielded
a criterion, denoted as Viscous Kelvin Helmholtz or VKH that successfully
predicts the transition from stable stratified flow to non-stratified flow (which
can be roll waves regime or slug flow according to the conditions). Hence a
faithful implementation of the two-fluid model (numerically stable whenever
the two-fluid model is stable, and numerically unstable whenever the two-fluid
model is unstable) can be expected to predict accurately this transition.

The other problem consists in the transport of the slugs after their initiation:
as still grids diffuse the slug fronts dramatically, they seemed ill-suited for the
modelling of hydrodynamic slugs which are typically in the order of ten diame-
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ters long only. To overcome this problem, two different approaches have arisen:
the "unit cell model", in which slugs are treated statistically by considering
an average cell unit consisting of a bubble followed by a liquid slug (Bendiksen
et al., 1996) and slug tracking schemes. In slug tracking schemes (Nydal and
Banerjee, 1996, Taitel and Barnea, 2000), each individual slug is followed by a
special moving grid, allowing its accurate transport along the pipe. However,
those schemes cannot be considered as slug capturing schemes as slugs are
"inserted" at an arbitrary location and with an arbitrary frequency whenever
a transition criterion, such as the Taitel and Dukler criterion is fulfilled. Slug
tracking schemes are often based on Bendiksen’s correlation (Bendiksen, K.H.,
1984) which links the bubble nose velocity to the mixture velocity within the
slug. This correlation also provides a criterion for slug stability: liquid slugs
die whenever their tail goes faster than their front, and survive otherwise. This
criterion, denoted as the Minimum Holdup (MH) or slug stability criterion was
shown to successfully predict transition from unstable stratified flow to slug
flow (Ruder et al., 1989, Bendiksen and Espedal, 1992, Woods and Hanratty,
1996). Hence a gas-liquid transport code using Bendiksen’s correlation as a
closure can be expected to predict accurately this transition.

Issa and Kempf (2003) first demonstrated the ability of the two-fluid model
to automatically capture the initiation of slugs and follow their development
as they travel along the pipe. Slugs are not tracked by a special moving grid
like in slug tracking schemes, but simply transported over a regular still grid.
However, the use of a fine grid with an iterative code is computationally very
demanding, which makes any field-scale application difficult. The aim of this
paper is to present a non-iterative fast and robust slug capturing and slug
tracking scheme. Slug initiations are automatically captured by the code with-
out relying on any initiation criterion or parameter, other than the grid size
or the time step. Once initiated, slugs are tracked as individual objects using
Bendiksen’s correlation in a way similar as in Nydal and Banerjee (1996). A
Lagrangian approach is used throughout the whole scheme, and the imple-
mentation relies on object-oriented programming.

2 Transition criteria

2.1 Stratified flow stability: the Viscous Kelvin-Helmholtz criterion (VKH)

First introduced by Lin and Hanratty (1986) and Barnea and Taitel (1993),
this criterion is based on the linear stability analysis of the two fluid-model
which consists of the four equations (liquid mass conservation, gas mass con-
servation, liquid momentum conservation, gas momentum conservation) that
follow:
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∂
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(ρlAl) +
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The subscripts l and g refer respectively to the liquid and gas phase. ρ, A and
U are the density, occupied area and cross-area averaged velocity of the con-
sidered phase. τ l is the liquid-wall friction, τ g the gas-wall friction and τ i the
gas-liquid friction. Sl and Sg are the liquid-wetted and gas-wetted perimeter
and Si is the interfacial width. p is the pressure, hl the liquid height and φ
the angle between the pipe and the horizontal. Using the same notations as
Barnea and Taitel, the equations are rewritten in a non-conservative form and
the pressure gradient is eliminated from the two momentum balances to form
a transient holdup equation. The system then becomes:

(1) ∂
∂t
hl +Hl

∂Ul
∂x
+ Ul

∂
∂x
hl = 0

(2) ∂
∂t
hl −Hg

∂Ug
∂x
+ Ug

∂
∂x
hl = 0

(3) ρl
∂Ul
∂t
− ρg

∂Ug
∂t
+ ρlUl

∂Ul
∂x
− ρgUg

∂Ug
∂x
+
³
ρl − ρg

´
g cosφ ∂

∂x
hl = F

introducing Hl =
Al
dAl
dhl

the equivalent liquid height, Hg =
Ag
dAg
dhg

the equiv-

alent gas height and F the resultant volume force acting on the liquid
phase, defined as:

F = −τ lSl
Al

+
τ gSg
Ag

+ τ iSi

Ã
1

Al
+
1

Ag

!
−
³
ρl − ρg

´
g sinφ

Starting from equilibrium (all time derivatives and all spatial derivatives but
the one of the pressure are null), we introduce a small sinusoidal perturbation
of pulsation ω, wave number k and amplitudes ( ehl, fUl, fUg) in the flow variables
around the equilibrium values (hl, Ul, Ug):

hl = hl + ehlei(ωt−kx) Ul = Ul + fUle
i(ωt−kx) Ug = Ug + fUge

i(ωt−kx)

Reporting in the first equation (liquid conservation) yields:

fUl =
·
ω

k
− Ul

¸ ehl
Hl

While the second equation (gas conservation) gives:

fUg =
·
Ug − ω

k

¸ ehl
Hg
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The source term F is a function of 3 variables (the holdup β = Al

A
, the liquid

local superficial velocity US
l = βUl and the gas local superficial velocity US

g =
(1− β)Ug). Hence

eF = Ã
∂F

∂β

!
US
l ,U

S
g

eβ + Ã
∂F

∂US
l

!
β,US

g

gUS
l +

Ã
∂F

∂US
g

!
β,US

l

gUS
g

Reporting the values of fUl, fUg and eF inside the third equation (dynamic
holdup equation) provides the dispersion equation

ω2 − 2 [ak − ib]ω + ck2 − iek = 0

Introducing the following Barnea and Taitel’s (1993) notations:
ρ = ρl

β
+

ρg
α

a = 1
ρ

µ
ρlUl
β
+

ρgUg
α

¶
b = 1

2ρ

"µ
∂F
∂US

l

¶
β,US

g

−
µ

∂F
∂US

g

¶
β,US

l

#
c = 1

ρ

·
ρlUl

2

β
+

ρgUg
2

α
−
³
ρl − ρg

´
g cosφHl

α

¸
e = −1

ρ

³
∂F
∂β

´
US
l ,U

S
g

The dispersion equation is a second degree complex equation in ω. The model
will predict that stratified flow is stable if both roots of this equation have a
negative imaginary part. We can find the neutral stability condition (ωi = 0)
by letting ω = ωR + iωi = ωR in the dispersion equation. We can then calcu-
late the wave velocity CF :

CF =
ω

k
=

e

2b
= −

³
∂F
∂β

´
US
l ,U

S
g"µ

∂F
∂US

l

¶
β,US

g

−
µ

∂F
∂US

g

¶
β,US

l

#

The stability criterion is then:

(CF − a)2 +
³
c− a2

´
< 0

Based on the linear stability analysis of a perfectly smooth stratified flow,
this simple criterion gives a hint at whether or not, smooth stratified flow is
a possible solution. As a consequence, an unstable VKH criterion does only
mean that a smooth stratified flow regime can not be established, and does
not necessarily mean that slug flow can be established at those conditions.
Clearly, a roll waves solution or an unsteady pseudo-slug regime are also pos-
sible solutions.
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Fig. 1. Minimum Holdup criterion: sketch of a slug unit

2.2 Slug flow stability: the Minimum Holdup criterion (MH)

First Ruder et al. (1989), then Bendiksen and Espedal (1992) followed by
Woods and Hanratty (1996) developed a criterion based this time on slug
stability. The idea is to consider slug flow as a succession of slug units as the one
shown figure 1, consisting of a slug region followed by a bubble region where
the flow is stratified. αS, Uls and Ugs are respectively the void fraction, liquid
velocity and gas velocity within the slug, and αb, Ulb and Ugb are respectively
the void fraction, liquid velocity and gas velocity within the bubble. Unose and
Ufront are the bubble nose (or slug tail) velocity and the slug front velocity.

Steady state slug flow, defined by its inlet superficial velocities US
l and U

S
g , is

at neutral stability (Unose = Ufront) a system characterized by seven unknowns
(αS, Uls, Ugs, αb, Ulb, Ugb, Unose).

(1) The void in slug αS can be determined by experimental closure laws.
(2) The slip velocity within the slug Ugs − Uls can be determined by experi-

mental closure laws.
(3) Volume conservation ensures that Um = US

l +US
g = (1− αS)Uls + αSUgs

(4) Bendiksen’s closure law can be used for the bubble nose velocity, hence
providing the relation Unose = C0Um + ν0 where C0 and ν0 are known.

(5) Liquid conservation across the front gives Ufront =
(1− αS)Uls − (1− αb)Ulb

αb − αs

(6) Gas conservation across the front gives Ufront =
αSUgs − αbUgb

αs − αb
(7) A momentum balance in the bubble yields F (αb, Ulb, Ugb) = 0

This set of equations can be solved iteratively but provides a physical solution
(with a positive slug fraction) only as long as the predicted average holdup
within the slug unit (slug and bubble region) is below the one in plain stratified
flow. Hence this criterion is usually labelled as the Minimum Holdup criterion,
for it predicts the prevalence of the flow regime with the lower holdup. It is
important to stress out that this criterion only answers the question of whether
or not an already initiated slug will survive (in other terms will Ufront exceeds
Unose ?). Should the answer be yes, it does not necessarily mean that slug
flow will be the established flow regime within the pipe, for this criterion says

6



nothing about slug initiation. Should the answer be no, stratified flow is not
the unique possibility, a roll waves or pseudo-slug regime can also arise.

2.3 Interest of a slug capturing/tracking scheme

The literature clearly stresses the importance of both the Viscous Kelvin-
Helmholtz and the Minimum Holdup criteria. The VKH criterion dominates
the transition from stratified to slug flow for low pressure systems with mod-
erate velocities. For high pressure systems, the Minimum Holdup criterion
defines the transition.

More recently, more complex effects have been shown, clearly demonstrating
the role of each of those criteria. When stratified flow is present at the inlet of
the pipe, the flow regime will remain stratified along the pipe as long as the
flow is stable according to the VKH criterion. However, if slug flow is to be
present at the inlet, then slug flow will remain the established flow regime all
along the pipe if the flow is stable according to the MH criterion (Kristiansen,
2004). This defines a "hysterisis zone" in the traditional

³
US
l − US

g

´
flowmap:

in this area the flow regime is dependent on both the spatial and time history of
the flow. This phenomenon clearly shows the interest of transient slug tracking
schemes in opposition to steady-state or statistical approaches.

For high pressures and high velocities, there is an area where both criteria
predict instability. As observed experimentally, this zone corresponds to roll
waves and unstable flow (neither stratified nor slug flow). Figure 2, shows an
indicative computed numerical flowmap corresponding to an horizontal 1 inch
pipe with an air-water flow at 10 bars.

3 Structure of the scheme

3.1 Principle

The objective is to create a simple and fast transient two-phase code that
would use the presented criteria (VKH and MH) to automatically initiate and
track each individual slug within the pipe. The code is both "slug capturing"
(the slugs are automatically initiated in the sense that they occur naturally
as liquid blockades), and "slug tracking" because each slug is then followed
by the mean of a moving grid, preventing numerical diffusion. The presented
scheme, called LASSI (Lagrangian Approximate Scheme for Slug Initiation)
can be seen as an intermediary between an usual two-fluid model where the
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Fig. 3. Slug initiation principle in the LASSI scheme.

equations are solved in full (OLGA in Bendiksen et al., 1991, TRIOMPH
in Issa et al., 2003) and a more simplified slug tracking scheme (SLUGGIT
in Nydal et al., 1996). As in SLUGGIT and other slug tracking schemes,
Bendiksen’s closure law is used to calculate the bubble nose velocity, and a
simplified "steep front" model is used to depict the behaviour of slug fronts,
using the same relations that are used in the Minimum Holdup criterion.
However a simplified two-fluid model, the very basis of the VKH criterion, is
used to compute the evolution of the flow within the bubble regions, which
allows the scheme to automatically initiate the slugs according to the stratified
stability criterion. Figure 3 explains the idea behind slug capturing based on
the two fluid-model.

Although it is fully possible to use a gas entrainment model into the liquid
slugs, the present paper will only treat the unaerated slugs case, for the sake
of simplicity. The liquid is always considered incompressible, while the gas
compressibility is determined using a simple gas law.
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3.2 A Shortcoming of upwind schemes

Solving the two-fluid model in full is relatively complex and becomes compu-
tationally expensive for the small section sizes required to have slug capturing.
Some simplified models (Taitel et al., 1997, Nydal, 1996) have been proposed
but they can not be used for slug capturing for their area of stability is different
from the one of the original two-fluid model. When it comes to slug captur-
ing methods, the first published code TRIOMPH (Issa et al., 2003) solves
the two-fluid model in an iterative manner and is thus very time-consuming.
Furthermore, all the two-fluid codes relying on the upwind method of differ-
entiation face the problem explained below.

α and β are the gas and liquid volume fraction. A staggered grid as used in
OLGA or TRIOMPH is shown in figure 4.

The gas mass conservation equation ∂
∂t

³
ρgα

´
+ ∂

∂x

³
ρgαUg

´
= 0 is discretised

as:

δx

δt

³
ρn+1g,J αn+1

J − ρng,Jα
n
J

´
+
³bρn+1g,j+1bαn+1

j+1U
n+1
g,j+1 − bρn+1g,j bαn+1

j Un+1
g,j

´
= 0

where the upwinded values bαj and bρg,j are defined by the relation:
bαj = αJ−1 if Ug,j > 0, αJ if Ug,j < 0

Assuming steady-state and positive velocities, the upwind-differentiated gas
mass conservation equation in the J mass control volume gives:

ρg,J+1αg,J+1Ug,j+2 = ρg,Jαg,JUg,j+1 = ρg,J−1αg,J−1Ug,j = ρgU
S
g

Then, at steady state, neglecting the friction forces, the upwind-differentiated
gas momentum conservation equation in the j momentum control volume
gives:

]ρgαUg,J
Ug,j = ]ρgαUg,J−1Ug,j−1 − eαj (pJ − pJ−1)

with gραU g,J =
1
2

³bρg,j bαjUj + bρg,j+1bαj+1Uj+1

´
= ρgU

S
g =

gραUg,J−1
and eαj =

1
2
(αJ + αJ−1) . We can then deduct pJ = pJ−1 as Ug,j = Ug,j−1

Now, under the same assumptions, the gas momentum conservation in the
j + 1 momentum control volume yields:
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pJ NORMAL
pJ-1 NORMAL pJ+1 LOW pJ+2 NORMAL

Numerical Bernoulli force High Ug
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1−j 1−J j 1+j 2+j 3+j1+J 2+JJ

pJ NORMAL
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1−j 1−J j 1+j 2+j 3+j1+J 2+JJ

Fig. 4. Bernoulli effect with an upwind-differentiated scheme

ρ̂gαgU g,J+1
Ug,j+1 = ρ̂gαgUg,J

Ug,j − eαg,j+1 (pJ+1 − pJ)

or ρgU
S
g Ug,j+1 = ρgU

S
g Ug,j − eαg,j+1 (pJ+1 − pJ)

so pJ+1 < pJ because Ug,j+1 > Ug,j

The consequence is that the decrease in pressure that comes with the increase
of the gas velocity due to the bump, appears numerically in the next grid cell,
and not in the grid cell where the bump actually is. The Bernoulli effect, which
normally "sucks" the liquid towards the bump, will then "suck" the liquid
towards the next grid cell, as shown by the arrows in figure 4. Though this
may not be a problem for sufficiently long waves, the fact that the hydrostatic
force, which tends to kill the bump, and the Bernoulli effect which tends to
make it grow, are not in phase might have an influence on the transition
process, especially in its last time steps, when the holdup in the bump has
reached the critical value when the Bernoulli force overtakes the hydrostatic
force.

3.3 Simplification of the two-fluid model

As the competition between the hydrostatic force and the Bernoulli suction
force is, together with the destabilizing effect of the friction forces, the key to
the slug initiation mechanism, one can think of a scheme where the Bernoulli
effect would be treated like the hydrostatic force, as a force acting directly on
the liquid momentum equation, independently of the gas dynamics.
Combining the gas and liquid momentum equations yields:
1
β

h
∂
∂t
(βUl) +

∂
∂x
(βU2

l )
i
= 1

αρl

³
∂
∂t

³
αρgUg

´
+ ∂

∂x

³
αρgU

2
g

´´
+ 1

ρl
F−ρl−ρg

ρl
g cosφ ∂

∂x
hl

Under the assumption that the local gas density ρg is slowly varying in space
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and time:

1

αρl

Ã
∂

∂t

³
αρgUg

´
+

∂

∂x

³
αρgU

2
g

´!
≈ 1

α

ρg
ρl

"
∂

∂t

³
US
g

´
+

∂

∂x

µ
1

α

³
US
g

´2¶#

If we neglect the term in ∂
∂t
(Um) and use the liquid mass conservation equation

∂
∂t
β + ∂

∂x
(βUl) = 0, developing ∂

∂t

³
US
g

´
gives:

∂

∂t

³
US
g

´
≈ − ∂

∂t
(βUl) ≈ −β ∂

∂t
Ul + Ul

∂

∂x
(βUl)

Neglecting the term in 2Ug
∂
∂x
(Um) we obtain:

∂

∂x

µ
1

α

³
US
g

´2¶ ≈ (Ug)
2 ∂

∂x
(β)− 2Ug

∂

∂x
(βUl)

Then replacing the expression for:"
∂

∂t

³
US
g

´
+

∂

∂x

µ
1

α

³
US
g

´2¶# ≈ (Ug − Ul)
2 ∂

∂x
(β)−β ∂

∂t
Ul+β (Ul − 2Ug)

∂

∂x
(Ul)

into the combined gas and liquid momentum equation provides the relation:

∂

∂t
(βUl) +

∂

∂x

³
βU2

l

´
=

"
β
α

ρg
ρl
(Ug − Ul)

2 − ρl−ρg
ρl

g cosφ Al
dAl
dhl

#
∂
∂x
(β)

+β
α

ρg
ρl

h
−β ∂

∂t
Ul + β (Ul − 2Ug)

∂
∂x
(Ul)

i +
β

ρl
F

Under the assumption that ρlUl >> ρgUg the terms in ∂
∂t
Ul and ∂

∂x
(Ul) in

the right-hand side can be neglected compared to the left hand-side, hence
yielding:

∂

∂t
(βUl) +

∂

∂x

³
βU2

l

´
≈ −κβ ∂

∂x
(β) +

β

ρl
F

with:

κ =
ρl − ρg
ρl

g cosφ
A
dAl
dhl

− 1
α

ρg
ρl
(Ug − Ul)

2

Under the reasonable assumptions that Um and ρg (both constants in incom-
pressible flows) are only slowly varying in time and space and that ρlUl >>
ρgUg the liquid momentum equation can be uncoupled from the gas momen-
tum equation to yield a modified shallow-water equation in which a Bernoulli
suction term 1

α

ρg
ρl
(Ug − Ul)

2 is subtracted from the traditional hydrostatic term
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ρl−ρg
ρl

g cosφ A
dAl
dhl

. It is important to note that the simplified system:

∂

∂t
(β) +

∂

∂x
(βUl) = 0

∂

∂t
(βUl) +

∂

∂x

µ
βU2

l +
1

2
κβ2

¶
=

β

ρl
F
³
Ul, β, U

S
g

´

has the same area of well-posedness as the full two-fluid model and becomes ill-
posed when the coefficient κ becomes negative. The well-posedness condition
yields the well-known Inviscous Kelvin-Helmholtz (IKH) criterion:

well-posed⇔ (Ug − Ul)
2 <

ρl − ρg
ρg

g cosφ
Ag

dAl
dhl

⇔ κ > 0

The fact that the two-fluid model becomes ill-posed as a hyperbolic problem
when this criterion is no longer fulfilled has long raised concerns among au-
thors in the literature (Ramshaw and Trapp, 1978). However it is clear that,
as stated by Issa et al. (2003) and Taitel and Barnea (1995), the initiation
process relies also on the destabilizing effect of the friction forces, and that
ill-posedness is not a requirement for slug initiation. As it is theoretically im-
possible to solve an ill-posed problem and as ill-posedness presents numerical
problems in practice (Bonizzi, 2002), the approach proposed in this article is
to simply prevent κ from becoming negative by assigning it a strictly positive
minimum value.

3.4 Solving Procedure

Figure 5 shows LASSI’s solving procedure. The grid used is shown in figure 6.
The pipe is divided in grid cells, which are either sections or slugs according
to whether or not the liquid bridges the pipe within them. The first step is
the Pressure-Momentum implicit computation where the pressure p and the
gas superficial velocity US

g within the sections and the mixture velocity Um

within the slugs are calculated implicitly, using a simple and fast tridiagonal
algorithm detailed later. Using the bubble turning criterion to be explained in
the following pages, the nature of each of the section−slug and slug−section
is set to either Front or Nose.

Using the newly determined local mixture velocity, the liquid velocity within
the section J is then updated with the relation:
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U
n+1/2
l,J = Un

l,J +
δt

ρl
F (βnJ , U

n
l,J , U

n+1
m,J )

In the void wave step, liquid mass and momentum fluxes are evaluated using
a Lagrangian modified shallow water scheme, hence for each section βn+1J ,
Un+1
l,J as well as the section border velocities are calculated from

³
βnJ , U

n+1/2
l,J

´
,³

βnJ−1, U
n+1/2
l,J−1

´
and

³
βnJ+1, U

n+1/2
l,J+1

´
. For section−slug and slug−section bor-

ders, Bendiksen’s correlation is used when the border has been detected a
bubble nose, while an iterative steep front model (which allows the slug to
"eat" completely several sections in a single time step, while ensuring liquid
mass conservation) is used if a front has been detected.

Since the length of the sections is varying, some list management is needed,
in order to prevent the appearance of very large or very short sections. List
management is invoked a first time in the void wave step when the CFL
criterion is checked: if the fast wave from the left border of a section is able to
take over the slow wave from the right border of this section in a time inferior
to the chosen time step, than this section is merged with one of its neighbours.
If this happens, the border velocities and liquid fluxes are recalculated between
the newly merged section and its neighbours. Finally, list management also
occurs when a section that has exceeded a critical length, has to be cut in
two.

3.5 Pressure-Momentum Step

This paragraph presents the details of the pressure-momentum step used in
LASSI.

3.5.1 Gas Mass conservation

Considering gas mass conservation within the pressure control volume j pro-
vides the relation:

Vg,j
dρg,j
dt

=
dmg,j

dt
− ρg,j

dVg,j
dt

where Vg,j and mg,j are respectively the gas volume and the gas mass within
the control volume j, and ρg,j is the gas density at this control volume.

We then have : dmg,j

dt
=
³
ρgU

S
g

´
J−1−

³
ρgU

S
g

´
J
−αJ−1ρg,J−1Ub,J−1+αJρg,JUb,J

and dVg,j
dt
= αJUb,J−αJ−1Ub,J−1+βJUl,J−βJ−1Ul,J−1 where Ub,J is the velocity
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Fig. 5. The LASSI scheme computation procedure
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Fig. 6. Lassi scheme grid

of the J border.

We can then write, with V n
g,j =

1
2
(αJ−1LJ−1 + αJLJ):

pn+1j = κn
j

·³
ρgU

S
g

´n+1
J−1 −

³
ρgU

S
g

´n+1
J

¸
+ (nj
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introducing:
κn
j =

δt

V n
g,j

h
∂ρg
∂p

in
j

(nj = pnj+
δt

V n
g,j

h
∂ρg
∂p

in
j

ρng,j
h
(βUl)

n
J−1 − (βUl)

n
J

i
+ δt

V n
g,j

h
∂ρg
∂p

in
j

αn
J−1U

n
b,J−1

³
ρng,j − ρng,J−1

´
+αn

JU
n
b,J

³
ρng,J − ρng,j

´


The section-slug pressure control volume j + 2 is discretized as:

pn+1j+2 = κn
j+2

·³
ρgU

S
g

´n+1
J+1
− ρng,j+2U

n+1
m,J+2

¸
+ (nj+2

with:
κn
j+2 =

δt

V n
g,j+2

h
∂ρg
∂p

in
j+2

(nj+2 = pnj+2+
δt

V n
g,j+2

h
∂ρg
∂p

in
j+2

ρng,j+2 (βUl)
n
J+1+

δt

V n
g,j+2

h
∂ρg
∂p

in
j+2

³
αn
J+1U

n
b,J+1

³
ρng,j+2 − ρng,J+1

´´

3.5.2 Gas momentum conservation

The gas momentum conservation equation:

∂
∂t

³
ρgU

S
g

´
+ ∂

∂x

³
ρgU

S
g Ug

´
+ α ∂

∂x
p = −τgSg

A
− τ iSi

A
− ρggα sinφ

discretized around the J control volume gives, after replacing pn+1j+1 and pn+1j

in the pressure gradient term αnJ
LnJ

³
pn+1j+1 − pn+1j

´
by their expression above:

anJ
³
ρgU

S
g

´n+1
J

= bnJ
³
ρgU

S
g

´n+1
J+1

+ cnJ
³
ρgU

S
g

´n+1
J−1 + dnJ

where:

• anJ =
1
δt
+ bnJ + cnJ +

1
8

³
Sg
Ag
λg |Ug|

´n
J
+ 1

8

³
Si
Ag
λi |Ug − Ul|

´n
J

• bnJ = − 1
LnJ
min(Un

g,j+1 − Un
b,j+1, 0) +

αnJ
LnJ
κn
j+1

• cnJ =
1
LnJ
max(Un

g,j − Un
b,j, 0) +

αnJ
LnJ
κn
j

• dnJ =
1
δt

³
ρgU

S
g

´n
J
+

αnJ
LnJ

³
(nj − (nj+1

´
+ 1

8

³
Si
A
λiρgUl |Ug − Ul|

´n
J
− ρng,Jgα

n
J sinφ

3.5.3 Slug momentum conservation

The J+2 slug, considered incompressible, is subject to the pressure difference
across it, the gravity and the friction at the wall. It also loses some momentum
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by ingressing low velocity liquid at its front and shedding high velocity liquid
at its tail. The equation is here discretized for a slug with a front on its right
and a bubble nose on its left, as an example:

ρl
Ln+1
J+2U

n+1
m,J+2 − Ln

J+2U
n
m,J+2

δt
=

−pn+1j+3 + pn+1j+2 − gρl (h
n
R − hnL)− λρl

2D
Ln
sU

n+1
m,J+2

¯̄̄
Un
m,J+2

¯̄̄
+ρl

³
Un
f − Un

m,J+2

´
Un
l,J+3 − ρl

³
Un
b − Un

m,J+2

´
Un+1
m,J+2



where hnR and hnL are the liquid heights respectively at the right and at the
left of the slug, Un

f is the front velocity at the right and U
n
b is the bubble nose

velocity at the left. This equation can be re-written as:

anJ+2U
n+1
m,J+2 = bnJ+2

³
ρgU

S
g

´n+1
J+3

+ cnJ+2
³
ρgU

S
g

´n+1
J+1

+ dnJ+2

with:

• anJ+2 =
ρlL

n
J+2

δt
+ρl

βnJ+3
1−βnJ+3

³
Un
m,J+2 − Un

l,J+3

´
+ λρl

2D
Ln
J+2

¯̄̄
Un
m,J+2

¯̄̄
+ρng,j+3κn

j+3+

ρng,j+2κn
j+2

• bnJ+2 = κn
j+3

• cnJ+2 = κn
j+2

• dnJ+2 = (nj+2−(nj+3−gρl (hR − hL)+
ρlL

n
J+2

δt
Un
m,J+2+ρl

βnJ+3
1−βnJ+3

³
Un
m,J+2 − Un

l,J+3

´
Un
l,J+3

There is therefore only a tridiagonal system anJX
n+1
J = bnJX

n+1
J + cnJX

n+1
J +

dnJ to solve using the Thomas algorithm in order to evaluate the mixture
velocity within the slugs, the pressure along the pipe, and the gas velocity.
The resolution is therefore extremely fast. In order to ensure full gas mass
conservation, a correction is needed. It is done at the unit level (a unit consists
of all the sections between two slugs), since the exact gas mass within one unit
can be tracked easily. The amount of correction needed is however extremely
small.

3.6 Void-Wave step

3.6.1 Solving the Riemann problem

Thanks to the simplifications presented earlier, the gas and the liquid dy-
namics have been uncoupled. The void wave step of the scheme is therefore
nothing more than a shallow water equations system, modified in the sense
that the Bernoulli effect is subtracted from the hydrostatic term. However, it
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is important to note that compared to the shallow water equations for chan-
nel flow, the presented system is only pseudo-conservative because of both the
Bernoulli effect and the circular shape of the pipe. The presented scheme being
non-staggered and first-order, the objective is to solve the Riemann problem
between a left state (UL, βL) characterized by its liquid velocity UL and its
holdup βL and a right state (UR, βR) of liquid velocity UR and holdup βR. It is
done explicitly. The equations to be solved consist of the liquid mass conserva-
tion differential equation and the liquid momentum conservation differential
equation:

∂

∂t
(β) +

∂

∂x
(βU) = 0

∂

∂t
(βU) +

∂

∂x

µ
βU2 +

1

2
κβ2

¶
= 0

This system has an exact solution that can be determined numerically. Indeed,
the solution of this two-variables Riemann problem consists in one interme-
diate state (UM , βM) which is connected to both the left state (UL, βL) and
the right state (UR, βR) by either a shock or a rarefaction wave (Holden et al.,
2002), depending on the conditions. A shock is characterized by the Rankine-
Hugoniot condition which gives mass and momentum conservation across a
front travelling at a constant velocity s. For a shock between (UL, βL) and
(UM , βM) (slow shock), this condition can be written as the system:

s(βM − βL)=βMUM − βLUL

s(βMUM − βLUL)=
µ
βMU2

M +
1

2
κβ2M

¶
−
µ
βLU

2
L +

1

2
κβ2L

¶

This system has only one entropy-conserving solution which consists of:

βM > βL and UM = UL − 1√
2

√
κ (βM − βL)

s
1

βM
+
1

βL
(LeftShock: LS)

For a shock between (UM , βM) and (UR, βR) (fast shock) the entropy-conserving
solution will be:

βM > βR and UM = UR +
1√
2

√
κ (βM − βR)

s
1

βM
+
1

βR
(RightShock: RS)

Rarefaction waves are structures travelling with the system’s characteristic
speed U −√κβ (slow wave) and U +

√
κβ (fast wave) within which the flow

variables β and U vary smoothly from one state to another. It can be shown
that within a rarefaction wave, the Riemann invariant (U + 2

√
κβ for a slow

wave and U − 2√κβ for a fast wave) is a constant of the flow. It follows that
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Fig. 7. Determination of the intermediate state (βM , UM) in the Riemann Problem

the (UL, βL) state can be connected to the (UM , βM) state by a slow wave
provided that:

βM < βL and UM = UL − 2
√
κ
µq

βM −
q
βL

¶
(LeftWave: LW)

Similarly one can connect the intermediate state (UM , βM) to the right state
(UR, βR) by a fast wave provided that:

βM < βR and UM = UR + 2
√
κ
µq

βM −
q
βR

¶
(RightWave: RW)

The two states (UL, βL) and (UR, βR) being known, the intermediate state
(UM , βM) can be determined as the intersection of the four curves (Left Shock
LS, Left Wave LW, Right Shock RS, Right Wave RW) UM = f(βM) detailed
above. Due to the monotonous nature of those four functions, only a few
iterations are needed to calculate UM and βM with great accuracy. The graph
presented figure 7 shows the four curves and the calculated intermediate state
in the moving dam case (represented figure 11).

The so-called left and right dry-bed cases (respectively βL and βR equals zero)
and the appearing dry-bed case (βM = 0, occurring when UL + 2

q
κβL <

UR − 2
q
κβR) are special cases that do not present any particular difficulties

to implement and are therefore not detailed here.
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Fig. 8. Interface tracking in the LASSI scheme

3.6.2 Border velocities and front tracking

Once the Riemann problem is solved and the intermediate state is found, the
boundary velocities and the liquid mass and momentum fluxes are evaluated
between the sections. It is natural to take profit of the power of the Lagrangian
approach to make the most of the information provided by the exact solution
of the Riemann problem. It is decided to focus on the propagation of the
fast fronts, as they are of special interest when it comes to modelling the
transition, as will be shown later, in paragraph 4.1. Modelling correctly the
fast fronts allows also to follow ripples and roll-waves with limited diffusion.
As a consequence, the border velocities and liquid fluxes are evaluated in
the LASSI scheme as presented in figure 8. If a fast front is detected (case
Rarefaction-Shock and Shock-Shock), the border velocity will be set to the fast
front velocity in order to follow it. If no fast front is present (case Rarefaction-
Rarefaction and Shock-Rarefaction), the border velocity will be set to follow
the middle of the intermediate state. Liquid mass and liquid momentum fluxes
follow automatically from conservation laws, once the border velocity has been
chosen. The reason for this dissymmetric treatment lies on the ambition to
model as correctly as possible a wave composed by a smooth tail and a sharp
fast front.

3.7 Slug closures

As explained previously, some closures are used to calculate the slug transport.
A section-slug or a slug-section border can be either a nose or a front. The
critical velocity for the turning of the bubble is taken as the velocity that
balances friction and gravity forces within the slug:

1

2
λlρlU

2
critS = ρlg sinϕA
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Should the mixture velocity within the slug exceed this critical velocity, then
the slug-bubble border will be considered as a perfectly steep front, whose
velocity can be determined by simple liquid conservation in the "no void in
slug" case:

Ufront =
Uls − (1− αb)Ulb

αb

Uls and Ulb are respectively the liquid velocity within the slug and within the
liquid film ahead of it and αb is the void fraction within the bubble section in
front of the slug.

In the opposite situation, the slug-bubble border will be considered as a bubble
nose, and calculated using Bendiksen’s closure law (Bendiksen et al., 1984).
For low Froude numbers (Fr = Um√

gD
< 3.5), the slug bubble nose is located

close to the top of the tube where the local liquid velocity is moderate, while for
higher Froude numbers, the tip of the bubble moves down towards the centre
of the pipe, where the liquid velocity is highest. The bubble nose velocity Ub

is then calculated as Ub = C0Um + ν0 where C0 and ν0 are given by:

C0 = 1.05 + 0.15 sin
2 ϕ ν0 = (0.35 sinϕ+ 0.54 cosϕ)

√
gD for Fr < 3.5

C0 = 1.2 + 0.15 sin
2 ϕ ν0 = 0.35 sinϕ

√
gD for Fr > 3.5

In practice C0 and ν0 are chosen in order to maximize Ub rather than using the
Froude number, to ensure a continuous transition of the bubble nose velocity
when the Froude number increases.

3.8 Implementation

The great power given by the adaptive grid comes with some implementation
challenges: some grid cells become too small and the CFL criterion is no
longer verified within them at the chosen timestep (the fast wave from their
left border takes over the slow wave from their right border). Some other grid
cells become too large and have to be split in order to maintain the wanted
spatial accuracy. Those difficulties are met by the use of an object oriented
programming method in C++. The pipe is represented as a doubly-linked list
of objects which can be either slugs or bubbles. Those objects can be taken
away and deleted (if a slug dies for example, of if a section becomes too short),
and new objects can be inserted (if the holdup in a bubble reaches one, than
a slug is inserted). Figure 9 represents the different classes used in LASSI.
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Fig. 9. Object-Oriented implementation of the LASSI scheme
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Fig. 10. LASSI and the VKH criterion

4 Evaluation of the scheme

4.1 The stability of stratified flow

The somehow tedious derivation of the VKH criterion from the linear sta-
bility analysis presented in section 2.1 should not conceal the physics of the
destabilizing effects of the friction forces on the interfacial waves, leading to a
growing perturbation and eventually, if the conditions are fulfilled, to a slug.
As this effect lies in the very core of the presented scheme, and is essential
to the correct modelling of the transition from stratified to slug flow, a new
derivation of the VKH criterion is presented.

We consider that the flow, defined by its liquid and gas superficial velocities
Us
l and Us

g , is at its steady state. The equilibrium holdup and liquid velocity
β and Ul will verify the dynamic equilibrium equation F (β, Ul, Um) = 0 where
the mixture velocity Um verifies Um = Us

l +Us
g . We suppose that an infinitely

small disturbance in the holdup on the left part of the pipe meets a section
where the holdup is at its equilibrium value. Now if the left section is long
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enough (long wave approximation), its holdup and liquid velocity will also be
at dynamic equilibrium, i.e. F (βL, UL, Um) = 0.

From this relation we can derive the liquid velocity in the left section:

F (βL, UL, Um) = F (β, Ul, Um) + dβ

Ã
∂F

∂β

!
Ul,Um

+ dUl

Ã
∂F

∂Ul

!
β,Um

and therefore:

dUl = −
³
∂F
∂β

´
Ul,Um³

∂F
∂Ul

´
β,Um

dβ

Now it is clear from the sketch presented figure 10 that the perturbation will
grow if we are in the "growing shock case" (that is to say if we are in the
shock-shock case) and will eventually vanish if we are in the "dying shock
case" (that is to say if we are in the rarefaction-shock case). The condition for
a "neutral shock" which propagates without growing nor dying, is simply for
the intermediate (βM , UM) to be equal to the left state (βL, UL).

We then have UL = UR+
1√
2

√
κ (βL − βR)

q
1
βL
+ 1

βR
and after differentiating:

dUl =

s
κ

β
dβ

The condition for a growing shock is then clearly: dUl >
q

κ
β
dβ. Replacing the

expression for dUl within this inequation yields the stability criterion:

stable⇔ −
³
∂F
∂β

´
Ul,Um³

∂F
∂Ul

´
β,Um

<

s
κ

β

This expression can of course be rewritten in the traditional form of the VKH,
after noticing that:

− (
∂F
∂β )Ul,Um³
∂F
∂Ul

´
β,Um

= −
(∂F∂β )US

l
,USg

+Ul

µ
∂F

∂US
l

¶
β,USg

−Ul
µ

∂F

∂USg

¶
β,US

l

β

"µ
∂F

∂US
l

¶
β,USg

−
µ

∂F

∂USg

¶
β,US

l

# = 1
β
[CF − Ul]

where CF = −
(∂F∂β )US

l
,USg"µ

∂F

∂US
l

¶
β,USg

−
µ

∂F

∂USg

¶
β,US

l

# is the wave velocity of the perturbation
in the VKH analysis, as introduced in Barnea and Taitel (1993).
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The stability criterion can then be written as:

stable⇔ 1

β
[CF − Ul] <

s
κ

β
⇔ [CF − Ul]

2 +
³
c− a2

´
< 0

Keeping in mind that Ul ≈ a when ρlUl >> ρgUg, we are able to find back
the stability criterion of stratified flow as derived by Lin and Hanratty (1986)
and Barnea and Taitel (1993). Whenever holds the assumption ρlUl >> ρgUg

made in section 3.3 when the derivation of the scheme was presented, the
LASSI scheme has therefore exactly the same area of stability as the two-fluid
model continuous equations. The approximations made in the derivation of
the scheme have therefore had no impact on its area of stability.

Moreover, this alternative derivation of the Viscous Kelvin Helmholtz criterion
clearly shows the importance of friction forces, the hydrostatic force, and the
Bernoulli effect. If the friction forces accelerate the liquid within the bump
fast enough to create a growing shock between the bump and the low speed
liquid bed ahead of it, then the bump will grow and the flow is unstable.
The speed difference between the bump and the liquid bed needed to let the
growing shock appear is directly dependant on the competition between the
hydrostatic force and the Bernoulli effect.

4.2 Front tracking abilities

As explained, the slug fronts are tracked by the scheme under the assumption
that they remain perfectly sharp. Therefore, slugs are tracked along the pipe
without any diffusion.

The previous chapter stressed the importance of front tracking to obtain the
right transition from stratified to slug flow. A small perturbation with a grow-
ing front will become bigger, while a small perturbation with a dying front
will eventually disappear. For this reason, the border velocities between the
sections were chosen as explained in section 3.6.2.

To illustrate the front tracking properties of the scheme, the "moving dam
case" is introduced. At t = 0 s, the liquid height and velocity distribution in
an infinitely long channel is as described by figure 11. Friction is neglected
hence the shallow water model is used, and the problem is reduced to solving
the Riemann problem between the left state (hL = 1 m, UL = 10 m.s−1) and
the right state (hR = 0.5 m, UL = 10 m.s−1).

The LASSI scheme is compared with an usual explicit, non-staggered first-
order upwind scheme for the shallow water equations, and the same scheme
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Fig. 11. Sketch introducing the moving dame case

applied with a moving grid which travels at a velocity of 10 m.s−1. A grid
size of 1 cm and a time step of 0.1 ms were used for all schemes. The results
are shown figure 12. The analytical solution is shown as a solid line, while
the results obtained with the first-order upwind schemes are represented by
a dashed line (when no moving grid is used) and a dotted line (when a grid
moving at 10 m.s−1 is used). As a flexible grid is used in Lassi, the section
length is not constant across the pipe at t = 0.06 s (although it was the case
at the start of the simulation). The holdup profile obtained with the LASSI
scheme is thefore shown as solid grey bars.

The results clearly show the ability of the LASSI scheme to follow perfectly
the fast front on the right. Part of this performance can be explained by the
Lagrangian character of the scheme (illustrated by the difference between the
upwind scheme with a moving grid and the traditional upwind scheme), the
other part is due to the adaptiveness of the grid which focuses on following the
fast shock (illustrated by the difference between the LASSI scheme and the
upwind scheme with a moving grid: the perfect capturing of the right front is
done to the expense of a slight deterioration in the rarefaction wave).

To illustrate the power of the Lagrangian methods, a modified version of the
scheme, here labelled LASSI Slow, has been tried on this case. LASSI Slow
follows the slow rarefaction wave instead of the fast shock like the standard
LASSI scheme. Figure 13 clearly shows that in this case, the left rarefaction
wave is correctly followed at the expense of the right front.

4.3 Numerical flowmap

The prerequisite of the use of a slug capturing model for two-phase flow prob-
lems lies in its ability to predict correctly the transition from stratified to
slug flow, that is to say, its ability to produce a numerical flowmap consistent
with the experimental observations. Following the idea expressed by figure 3,
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Fig. 12. Simulation of the moving dam case, normal LASSI scheme
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Fig. 13. Simulation of the moving dam case, LASSI SLOW scheme
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the numerical scheme is compared both to some experimental results and to
the VKH model predictions. In this paper are presented results for both a
downwards inclined pipe and a horizontal pipe.

4.3.1 Downwards inclined pipe

This case is taken fromWoods (2000), referring to some experiments presented
in Lin et al. (1986). Lin conducted experiments with air and water in a 7.63 cm
downwards inclined pipe (−0.5◦) at atmospheric pressure. As inWoods (2000),
the experimental results are compared to the predictions of the VKH criterion,
used with the usual Blasius friction factors, and an interfacial friction factor
equal to the gas-wall friction factor. In addition, some numerical simulations
have been made with the LASSI scheme: a 50 meters pipe is simulated with an
average 2 cm section length and a 2 ms time step. For a given gas superficial
velocity US

g , the critical liquid superficial velocity US
l defining the numerical

transition from stratified to slug flow is determined with an accuracy equal to
0.01 m.s−1. The results are shown both in terms of the adimensioned liquid
height against the gas superficial velocity (figure 14) and in terms of the liquid
superficial velocity against the gas superficial velocity (figure 15). There is a
very good match between the experimental observations and the predictions
of the VKH criterion in the (hl

D
− US

g ) plot, and although less accurate than
the VKH itself, the LASSI predictions are very sactisfactory. As already men-
tioned in Fan et al. (1993), a small error in the predicted critical liquid height
can produce a much larger error in the predicted critical superficial liquid ve-
locity. This statement indeed applies here. In addition, the results obtained by
Woods suggest a problem in the modelling of the friction factors, especially
for US

g = 1.48, where the experimentally observed interfacial friction factor λi
was actually smaller than the gas-wall friction factor λg.

4.3.2 Horizontal pipe

The same work was conducted again, this time based on some experiments
made by Manolis (1995) with air and water in a horizontal 7.8 cm diameter
pipe at atmospheric pressure and used by Issa et al. for slug capturing valida-
tion (2003). Some numerical simulations were run with LASSI, using a time
step of 5 ms and an average section length of 1 cm. The critical liquid superfi-
cial velocity US

l is determined with an accuracy of 0.01m.s−1. A long pipe (200
m) was used in the simulations, in order to be able to compare more efficiently
the scheme against the VKH criterion, derived for an infinitely long pipe. The
results are shown both in terms of the adimensioned liquid height against the
gas superficial velocity (figure 16) and in terms of the liquid superficial veloc-
ity against the gas superficial velocity (figure 17). There is a particularly good
match between the numerical predictions and both the experiments and the
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tion: liquid superficial velocity against gas superficial velocity (D=7.63 cm, -0.5◦,
air-water, 1 bar)
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Fig. 16. Comparison between experimental, model-based and numerical transition:
liquid height against gas superficial velocity (D=7.8 cm, horizontal, air-water, 1 bar)

model predictions, with an average error of around one twentieth of a diame-
ter in the predicted critical liquid height. However it should be noted that at
the transition point, the slugs were initiated much farther in the pipe in the
simulations than in the experiments.

4.4 Initiation example

A typical profile of the pipe at initiation is shown figure 18. A 20 meters long, 1
inch diameter, air-water pipe is simulated at atmospheric pressure. The time
step is 0.01 s and the average section length is around 1 cm. Simulating 5
minutes takes only a few minutes on a standard PC, thanks to the explicit
nature of the scheme. One can clearly see a travelling wave, breaking and
finally bridging the pipe, giving birth to a slug.

4.5 Roll waves example

Though it is not the main objective of this paper, an example of what happens
in the "unstable flow" region, as defined by figure 2, is shown. A simulation
is run in a horizontal pipe with a gas density of 50 kg.m−3, a gas superficial
velocity of US

g = 3.5 m.s−1 and a liquid superficial velocity of US
l = 0.35

m.s−1. Due to the high gas density, the flow is clearly unstable according to

28



0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Stratified Slug transition : flowmap UsG-UsL

UsG superficial gas velocity (m/s)

U
sL

 s
up

er
fic

ia
l l

iq
ui

d 
ve

lo
ci

ty
 (m

/s
)

Viscous Kelvin Helmholtz VKH
Experiments, Manolis
Simulation, LASSI

Fig. 17. Comparison between experimental, model-based and numerical transition:
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Fig. 18. Slug initiation with LASSI.

the VKH criterion. However the liquid holdup is not sufficient to sustain slug
flow. An interesting regime of ripples, growing into roll-waves that overtake
each other to grow appears, as shown by the profile in figure 19.
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Fig. 19. Roll-wave regime simulated with the LASSI scheme.

5 Conclusion

A new transient scheme for the simulation of two-phase flow, based on the
decoupling of the gas and liquid momentum equations, as well as on a La-
grangian and adaptative approach, has been presented. By incorporating both
the Viscous Kelvin Helmoltz criterion, and theMinimumHoldup criterion, this
scheme aims at reproducing the correct flowmap automatically. The scheme is
demonstrated to possess the same area of stability as the VKH criterion pro-
vided that the gas momentum is negligible compared to the liquid momentum.
Incidently, this demonstration provides a new derivation of the VKH criterion,
less cumbersome and more intuitive, which could be of interest for the other
researchers in the area.

In this paper, the followed approach was tested against experimental and
theoretical results and the scheme was shown to predict the transition from
stratified to slug flow in near-horizontal pipes with a very good accuracy. At
the transition between stratified and slug flow, the slugs can require a notably
longer pipe length to be initiated than in the experiments. This is due to the
fact that at neutral stability, the theoretical growth rate of the perturbations is
zero, and probably, also to an inevitable amount of numerical diffusion. Should
a closer agreement with the experiments, which always involve a fair amount of
destabilizing effects, such as unwanted variations in the pipe inclination and
in the flow rates, be wanted, some counter-measures could be investigated,
such as the arbitrary reduction of the κ coefficient, mechanically shifting the
numerical flowmap in favor of slug flow.

Some concerns raised on the ability of the upwind-differentiated schemes to
correctly model the Bernoulli suction force could also be of interest for the
other researchers in the area.

30



References

Barnea, D., Taitel, Y., 1993. Kelving-Helmholtz stability criteria for stratified
flow: viscous versus non-viscous (inviscid) approaches. Int. J. Multiphase Flow
19 (4), 639-649.

Bendiksen, K.H., 1984. An experimental investigation of the motion of long
bubbles in inclined tubes. Int. J. Multiphase Flow 10, 467-483.

Bendiksen, K.H., Malnes, D., Moe, R., Nuland, S., 1991. The dynamic two-
fluid model OLGA: Theory and application. SPE Production Engineering,
May 1991, 171-180.

Bendiksen, K.H., Espedal, M., 1992. Onset of slugging in horizontal gas—liquid
pipe flow. Int. J. Multiphase Flow 18, 234-247.

Bendiksen, K.H., Malnes, D., Nydal, O.J., 1996. On the modelling of slug flow.
Chem. eng. com. 141: 71-102

Bonizzi, M., 2002. Transient one-dimensional modelling of multi-phase slug
flows. Ph.D. Thesis, Imperial College, University of London.

Fan, Z., Lusseyran, F., Hanratty, T.T, 1993. Initiation of slugs in horizontal
gas-liquid flows. AIChE J. 39, 1741-1753.

Holden, H., Risebro, N. H., 2002 Front tracking for hyperbolic conservation
laws. Springer.

Issa, R.I., Kempf, M.H.W., 2003. Simulation of slug flow in horizontal or nearly
horizontal pipes with the two-fluid model. Int. J. Multiphase Flow 29, 69—95.

Kristiansen, O., 2004. Experiments on the transition from stratified to slug
flow in multiphase pipe flow. Ph.D. Thesis, NTNU, Trondheim, Norway.

Lin, P.Y., Hanratty, T.J, 1986. Prediction of the initiation of slugs with linear
stability theory. Int. J. Multiphase Flow 12, 79—98.

Manolis, I.G., 1995. High pressure gas-liquid slug flow. Ph.D. Thesis, Imperial
College

Nydal, O.J., Banerjee, S., 1996. Dynamic slug tracking simulations for gas—
liquid flow in pipelines. Chem. Eng. Commun. 141—142, 13—39.

Ramshaw, J. D., Trapp, J. A., 1978. Characteristics, stability, and short-
wavelength phenomena in two-phase flow equation systems. Nuclear Science
and Engineering: 66, 93-102.

31



Ruder, Z., Hanratty, P.J., Hanratty, T.J., 1989. Necessary conditions for the
existence of stable slugs. Int. J. Multiphase Flow 15, 209–226.

Taitel, Y., Dukler, A.E., 1976. A model for predicting flow regime transitions
in horizontal and near horizontal gas—liquid flow. AIChE J 22, 47—55.

Taitel, Y., Barnea, D., 1997 Simplified transient simulation of two-phase flow
using quasi-equilibrium momentum balances. Int. J. Multiphase Flow Vol. 23,
No. 3, 493-501.

Taitel, Y., Barnea, D., 2000. Slug-tracking model for hilly terrain pipelines.
SPE Journal 5 (1): 102-109.

Woods, B.D., Hanratty, T.J., 1996. Relation of slug stability to shedding rate.
Int. J. Multiphase Flow 22, No. 5, 809-828.

Woods, B.D., Hurlburt, E.T., Hanratty, T.J., 2000. Mechanism of slug forma-
tion in downwardly inclined pipes. Int. J. Multiphase Flow 26, 977-998

32



 

A simple slug capturing and slug tracking 
scheme for gas-liquid pipe flow. 
Part 2: Application to slug length 

determination in a small scale loop. 

Second Paper 

Fabien Renault and Ole Jørgen Nydal 

Preprint 



 



A simple slug capturing and slug tracking
scheme for gas-liquid pipe flow. Part 2:

Application to slug length determination in a
small scale loop

Fabien Renault a,∗ Ole-Jorgen Nydal b Vincent Gruez c
Pierre Luquet d

aDepartment of Energy and Process Technology, University of NTNU, Trondheim,
Norway

bDepartment of Energy and Process Technology, University of NTNU, Trondheim,
Norway

cENSAM, Paris
dENSAM, Paris

Abstract

The hydrodynamical characteristics of slug flow in a small scale V-shaped loop were
investigated experimentally and numerically. Using optical sensors, the length, front
velocity and tail velocity of each individual slug were measured at various locations
along the pipe. The experiments clearly show that for the shorter slugs the slug tail
velocity exceeds the slug front velocity hence leading to the disappearing of small
slugs and to an increase of the average slug length. The influence of the upstream
flow regime (stratified or slug flow) is also investigated and shown to be negligible at
sufficient distances from the bend. In addition, the transition between normal slug
flow and severe slugging is studied by gradually increasing the upstream gas volume.
The experimental observations were compared to the predictions of a Lagrangian
slug capturing model and there is a fair agreement on the slug length distribution
between the numerical predictions and the experimental results.

Key words: two-phase flow, slug flow, severe slugging, slug initiation

∗ Corresponding author: fabien.a.renault@ntnu.no

Preprint



1 Introduction

Gas liquid slug flow is an intermittent flow regime occurring in many engineer-
ing applications such as oil and gas transport in pipelines. It is characterized
by a sequence of liquid slugs travelling downstream the pipe and separated by
large gas regions called Taylor bubbles. The study of the hydrodynamics of
slug flow, and specially the determination of parameters such as the average
and maximum slug length, is of special interest for the design of separators
and slug catchers after oil and gas pipelines. Considerable theoretical and
experimental work has therefore been conducted in this area.

The average slug length has been observed to be between 10 to 60 diameters
in horizontal pipes (Dukler and Hubbard, 1975, Barnea and Braumer, 1985,
Nydal et al., 1992, Andreussi et al., 1993) and between 10 to 25 diameters
in vertical pipes (Griffith and Wallis, 1961, Barnea and Shemer, 1989, van
Hout et al., 1992). In addition, both Brill et al. (1981) on the basis of some
field observations and Nydal et al. (1992) based on lab experiments, were able
to show that the probability density function of the measured slug lengths is
close to a log-normal distribution.

Moisis and Griffith (1962) first observed that the nose velocity of a Taylor
bubble increased as the length of the liquid slug ahead of it decreased. This
was explained by the fact that the liquid "eaten" by the slug is only fully
assimilated after a given minimum length. In slugs whose length is inferior
to that critical minimum length, the velocity profile at the slug tail has not
yet reached its equilibrium value and induces some disturbances on the prop-
agation of the Taylor bubble behind the slug (Taitel et al. 1980, Barnea and
Braumer 1985, Dukler et al. 1985).

Correct modelling of this "wake effect" is of course critical to the prediction
of the evolution of the slug length distribution throughout the pipe. Since
the tail velocity of the shorter slugs is higher, the shortest slugs eventually
vanish which leads to the growth in length of the remaining slugs. It then
appears that only remain the slugs whose length is over a certain minimum
stable length. This minimum stable length is an important parameter for slug
length predictions and is generally comprised between a few diameters and
10 diameters. However, this parameter is system dependent and the correct
modelling of the wake effect is still an open question.

Using a simple kinematic slug tracking model, Barnea and Taitel (1993) were
able to predict the slug length distribution at various locations of the pipe.
They used an arbitrary slug length distribution consisting of very short slugs
at the entrance of the pipe and let it evolve according to a wake effect model
similar to the one proposed by Griffith. Not only was the predicted slug length
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distribution similar to the experimental observations at a sufficient distance,
but it was also shown that the predicted slug length distribution far from the
inlet was fairly insensitive to the arbitrary slug length distribution used to
generate the slugs at the inlet. Slug length distributions were also computed
by Nydal (1996) with a dynamic slug tracking model.

Van Hout et al. (2001, 2003), and Shemer (2003) conducted extensive slug
length measurements in two 10 meters long pipe with internal diameters of 2.4
and 5.4 cm. Using optical probes to detect slugs passing by and measure their
speed and their length, they were able to observe the slug length distribution
at various locations of the pipe. Finally they ran Barnea and Taitel’s slug
tracking model for slug length determination using a wake effect model fitted
to their observations as an input. The predictions obtained with this model
compared fairly well with the experimental observations.

Issa and Kempf (2003) first presented a two-fluid model named TRIOMPH
capable of slug capturing, meaning that the numerics are able to automati-
cally capture the initiation of slugs without using any arbitrary closure law.
For various flow conditions, Issa and Kempf compared the predicted slug fre-
quencies with the available experimental data from the literature and a good
agreement was obtained between the predictions and the experiments.

Renault et al. (2007) proposed a new combined slug capturing and slug track-
ing scheme called LASSI. It is an extension of a simplified slug tracking scheme
(Nydal and Banerjee, 1996). In the simplified scheme, a slug initiation model
was required in the stratified flow regime. In the LASSI scheme, slugs are gen-
erated automatically from a dynamic two fluid model in the stratified region.
After their initiation, the slugs are tracked along the pipe with the help of a
moving grid. Bendiksen’s (1984) correlation is used as a closure for the slug tail
velocity while the slug front velocity is calculated from a mass conservation
balance. In this respect the LASSI scheme is therefore both slug capturing
and slug tracking. As no experimental closure providing either the slug fre-
quency, initial length or the initiation point is used for slug insertion, there is
no intrinsic guarantee that the slug capturing mechanism of the LASSI scheme
will be able to correctly reproduce the characteristics of slug flow. The aim
of this paper is to validate the slug capturing and slug tracking approach by
comparing the experimental results with the LASSI scheme predictions.

This paper is structured as follows. First the experimental set-up is briefly
introduced, then three different experimental cases are presented, and for each
of the cases, the experimental results are compared with the predictions from
the LASSI scheme. The first case consists in simply monitoring the evolution
of the slug length distribution after a bend in an upwardly inclined pipe. In the
second case, the influence of the flow regime (stratified or slug flow) upstream
of the bend is investigated. This question is of special interest because it tackles
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the issue of the spatial memory of gas-liquid flow. Finally, in the third case
the upstream compressibility is increased until the system reaches the severe
slugging conditions. The effect of this transition on the slug length distribution
in the downstream pipe is studied.

2 Experimental set-up

2.1 Small-scale flow loop

The experiments were carried out in a small-scale plexiglas flow loop with an
internal diameter of 12 mm. The fluids used were air and water. The loop
consisted of two transparent straight pipes fixed in an aluminium structure.
The pipes were joined with a flexible hose of the same internal diameter,
allowing easy reconfiguration of the loop. Water was circulated by a pump
and air was provided by the central supply. Figure 1 shows a sketch of the
system. Figure 2 provides a representation of the loop and the structure that
supports it.

A gas buffer tank could optionally be used at the inlet, in order to increase
the upstream compressibility of the system and thus operate in the severe
slugging region, as if there were a very long upstream pipe. The water and
gas flowmeters allowed accurate measurements of the water and air inlet flow
rates for values of US

l comprised between 0.07 and 0.37 m.s−1 and values of
US
g comprised between 0.15 and 0.65 m.s−1. A slug catcher had to be specially
designed in PVC and installed at the outlet of the pipe to cope with the long
slugs encountered in the severe slugging region.

2.2 Data acquisition

Optical sensors were used to detect the presence of slugs at various locations
in the loop and calculate their propagation velocity. Each sensor consisted
of a commercially available optical sensor (E3X-DA51-N, manufactured by
OMRON) and two optical fibres, one sender and one receiver. A plexiglas
device shown on figure 3 was specially designed to perfectly maintain the two
optical probes on the same axis, perpendicular to the pipe. The sender fibre
was constantly emitting a red light beam crossing the transparent plexiglas
pipe towards the receiver fibre. When the phase present at the center of the
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Fig 1: The experimental set-up

Fig 2: The small-scale loop

pipe was air, the light beamwas able to travel through the pipe from the sender
fiber to the receiver fiber. On the contrary, when a liquid slug was present, the
liquid phase absorbed the light beam and thus no signal was received. Given
the straightforward characteristics of the flow in this small diameter upward
pipe (unaerated slugs followed by low holdup Taylor bubbles), the detection of
the phase present in the center of the pipe was enough to determine if a slug or
a bubble was present at this given location. In order to increase the absorption
of the liquid phase and therefore to improve the performance of our optical

5



probes, a blue colorant (Vulcanosol blue 6840, manufactured by BASF) was
added to the water. In total, 6 optical probes were used, and arranged in 3
optical units (see figure 4) of 2 closely positionned probes. The data provided
by the probes were sampled at a rate of 500 Hz and logged in a laptop PC
with the help of a DAQCard-6036E (National Instruments).

Fig 3: The optical sensors Fig 4: An optical unit

Simple signal processing in MATLAB was used to identify slug fronts and
bubble noses in the time series provided by each of the probes. For each of
the three optical units, the time needed by the bubble nose and the slug front
to travel from one sensor to the other allowed to calculate the bubble nose
and the slug front velocity. Finally, the length of a slug was evaluated as
the product of its residence time in the optical unit by the average between
its front velocity and its tail velocity. This corresponds to the length of the
slug when its center crosses the first sensor. Figure 5 provides insight on the
calculations done. For a small fraction of the slugs, the computed front or
bubble nose velocity reached unphysical values, possibly due to the merging
of two bubbles occurring between the two probes of one unit. These abnormal
results were thus discarded.

3 Bubble nose velocity

The slug capturing scheme presented in this paper uses a closure law to eval-
uate the bubble nose velocity from the mixture velocity within the slug:

Unose = C0Um + ν0
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Fig 5: Data processing in an optical unit

where ν0 stands for the bubble drift velocity in stagnant liquid, i.e. the speed
at which a bubble rises in a pipe full of stagnant liquid.

Many experimentators have investigated the issue and proposed semi-empirical
correlations for C0 and ν0, depending on the pipe inclination, the pipe diame-
ter and various other parameters such as fluid viscosities and surface tension.
Davies and Taylor (1949) studied experimentally and theoretically the rise of
bubbles in stagnant liquid in vertical pipes and showed that in those condi-
tions the value of ν0 was given by 0.35

√
gD. Nicklin et al. (1962) then first

presented the relation Unose = C0Um + ν0 for vertical pipes, using Davies and
Taylor’s expression of ν0 and a coefficient C0 ranging between 1.2 for fully
developped turbulent flow to 2.0 for laminar flows. Zukoski (1966) measured
the velocity of large bubbles in horizontal pipes of stagnant liquid and found
a value of 0.54

√
gD for ν0.

Finally Bendiksen et al. (1984) provided correlations for C0 and ν0 for all pipe
inclinations based on both experimental and theoretical considerations. In the
LASSI scheme, the correlation proposed by Bendiksen et al., which proved
accurate for long pipes is normally used on a standard basis. Bendiksen’s
correlation gives the following expression for the drift velocity in a stagnant
liquid:

ν0 = (0.35 sinϕ+ 0.54 cosϕ)
q
gD

However, this value of ν0 is not valid for very small diameter loops in which
the capillary effects are not negligible and contribute to greatly reducing the
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value of the drift velocity. The correct modelling of the bubble nose velocity
being of primary importance for the accuracy of the model, it was therefore
necessary to use a different closure to reproduce this set of experiments.

Zukoski (1966) studied experimentally the influence of viscosity, surface ten-
sion and pipe inclination angle on ν0 and provided a chart giving the non-
dimensional drift velocity ν0q

∆ρ
ρ
gD
2

as a function of the inclination angle ϕ and

the parameter Σ = 4σ
gD2∆ρ

.With air and water and a pipe diameter equal to 1.2
cm, we find a value of 0.206 for Σ which finally gives for an inclination angle
of 30◦ a predicted drift velocity of 0.116 m.s−1. As a comparison, Bendiksen’s
closure law gives a value of 0.22 m.s−1 for the drift velocity.

In order to validate the experimental set-up and verify the result provided
by Zukoski, the drift velocity was measured experimentally for an inclination
of 30◦ by injecting an air bubble right after the bend, the small-scale loop
being entirely filled with water. The observed value of ν0 was then 0.12 m.s−1.
This result being close to the prediction of Zukoski, a new closure for the
drift velocity in the small scale loop was derived from Zukoski’s predictions
for horizontal and vertical pipes and implemented in the LASSI code:

ν0 = (0.28 sinϕ+ 0.23 cosϕ)
q
gD

For the value of C0, Bendiksen’s standard correlation was used as usual i.e. :

C0 = 1.05 + 0.15 sin
2 ϕ for Fr < 3.5

C0 = 1.2 for Fr > 3.5

4 Evolution of the slug length distribution in an upwards inclined
pipe

4.1 Experimental results

For this experiment the small-scale loop was arranged as follows: the 2 meter
long upstream pipe was inclined downwards with an inclination of 15◦ while
the 2 meter downstream pipe was inclined upwards with an inclination of
30◦. The two pipes were connected with a 5 cm long flexible plastic pipe.
The three optical units were positioned respectively 20, 80 and 150 diameters
downstream of the bend and provided for each recorded slug, its length, its
front velocity and its tail velocity. A sketch of the experimental geometry is
presented figure 6. The inlet liquid superficial velocity was maintained constant
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at US
lin = 0.22m.s−1 and the inlet gas superficial velocity was set to US

gin = 0.44
m.s−1. Due to the small scale of the loop, a recording time of 15 minutes
was sufficient to record more than 2000 slugs and produce valuable statistical
information.

-15º
30º20 D
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Case I: Evolution of the slug length 
distribution in an upwards inclined pipe

USLin= 0.22 m/s

USGin= 0.44 m/s

Pout= 1 bar
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Fig 6: Case 1, sketch of the pipe geometry
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Fig 7: Observed slug length distribution after 20 diameters, case 1.

The observed slug length distribution after 20, 80 and 150 diameters are re-
spectively shown figures 7, 8 and 9. In addition, the average front and tail
velocities observed for a given class of slug length are plotted on the same
graph. The experimental results clearly show an increase in the average slug
length along the pipe, accompanied by a decrease in the number of slugs ob-
served. Indeed, 20 diameters after the bend, nearly 2500 slugs were observed,
with an average length close to 8 diameters. After 150 diameters, there were
only 1250 slugs left, but their average length had increased up to 15 diameters.
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Fig 8: Observed slug length distribution after 80 diameters, case 1.
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Fig 9: Observed slug length distribution after 150 diameters, case 1.

This increase in the average slug length along the pipe can be explained by
the observed velocity profiles: the graph clearly shows that for the shortest
slugs, the tail velocity tends to exceed the front velocity, causing the slug to
eventually disappear. On the opposite, the slug front velocity is higher than
the bubble nose velocity for the longest slugs, especially close to the bend. As
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a consequence these long slugs will grow longer, picking up the liquid shed by
the disappearing shortest slugs.

We can also observe that the slug length distribution has evolved much less
between 80 and 150 diameters than between 20 and 80 diameters. Once the
smallest slugs, whose length is inferior to 7 or 8 diameters have disappeared,
the slug length distribution seems to evolve at a much slower rate.

4.2 Modelling of the wake effect

In order to capture the evolution of the slug length distribution along the
pipe, it is crucial to model correctly the wake effect, i.e. the increase in the
bubble nose velocity for the small slugs. Physically, this phenomenon can be
explained by the fact that for very small slugs, the liquid velocity distribution
at the tail has not yet reached its equilibrium value and is still influenced by
the disturbances induced at the front of the slug. This results in a higher tail
velocity for small slugs. The bubble nose velocity can then be expressed as:

Unose =Weff .Ububble

where Ububble = C0Um+ ν0 is the expression of the bubble nose velocity for an
infinitely long slug.

Several authors have investigated the phenomenon since Moissis and Griffith
(1962) and proposed several correlations. The original Moissis and Griffith
correlation was used for this paper, as in Nydal and Banerjee (1996). The
expression used for Weff was then, for a slug of length LS:

Weff = 1 + 8e
−1.06LS

D

4.3 Simulation results

The case was simulated using the LASSI scheme, using a time step of 0.002 s
and a targeted section length of 2 cm. Standard Blasius’ friction factors were
used to represent the liquid-wall, gas-wall and the liquid-gas friction. The
standard Moissis and Griffith expression for Weff was used for the modelling
of the wake effect. The slug length, front velocity and tail velocity of all the
passing slugs were extracted at six different locations of the downstream pipe
(10, 20, 30, 40, 80 and 150 diameters after the bend).
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The computed slug length distributions obtained in 15 minutes of simulation
time are presented figure 10. Either after 20, 80 or 150 diameters, the computed
slug length distributions look reasonably close to the ones observed in the
experiments. However, it seems that the model underestimates the frequency
of the "extreme slugs", i.e. more very short and very long slugs were observed
in the experiments than in the simulations. The average slug length is thus
slightly underestimated in the simulations (the average slug was 13.5 diameters
long after 80 diameters in the experiments, while it was only 10.7 diameters
long in the simulations).

Moreover, the total number of observed slugs is much higher in the simulations
than in the experiments. This could be explained by a poor modelling of the
holdup and liquid velocity in the bubbles. However, this is not necessarily a
modelling problem: since it was sometimes difficult to capture tiny bubbles
and very short slugs with the optical probes, some of the shortest slugs might
have been simply missed by the sensors. Some of the shortest objects were also
discarded later at the data processing stage, for example when a slug passed
by the first of the two optical probes of one optical unit and had disappeared
before it had reached the second probe located 2 cm away.

The slug tail velocity for the longest slugs seems to be slightly lower in the
experiments than in the simulations, although the drift velocity used in the
computations was calibrated from experimental measurements. For the short-
est slugs where the wake effect is the dominating effect, the difference between
experiments and simulation is however much bigger. It seems that the wake
effect, defined as the ratio between the tail velocity of the shortest slugs and
the tail velocity of the longest slugs, never exceeded 1.5 in the experiments.
On the other hand, the wake effect model used in the simulations yielded some
extremely high bubble nose velocities for the shortest slugs. This constatation
motivated the study presented in the next section.

4.4 On the importance of the wake effect on the simulations

The results presented figure 10 clearly showed that Griffith’s correlation, used
in the scheme to model the wake effect, had a clear tendency to overestimate
the tail velocity of the shortest slugs. Indeed, it was experimentally observed
that even for the shortest slugs, the tail velocity never exceeded the value
predicted by Bendiksen’s correlation by more than 30 to 50%. It was then
thought that the wake effect coefficient Weff should be capped to prevent the
tail velocity of the short slugs from reaching excessive values. Two additional
simulations were then carried out in which the wake effect coefficient Weff
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Fig 10: Simulated slug length distribution at various distances, case 1

was capped respectively by 2 and by 1.5. The obtained slug length distribu-
tions after 20 and 80 diameters are shown figure 11. The experimental results
and the results obtained in the previous section with the uncapped Griffith
correlation are recalled for comparison.

The numerical results are clearly not improved by the implementation of a cap
in the wake effect. Although the use of a cap helps to reproduce the slug tail
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velocities observed for the shortest slugs, it prevents the slug length distribu-
tion to evolve rapidly enough to match the experiments. There is therefore an
apparent paradox in the fact that it is necessary to overestimate the bubble
nose velocity for the shortest slugs in order to correctly predict the evolution
of the slug length distribution. However, the experimental set-up did not al-
low very precise measurements for very short slugs and other experimentators
such as van Hout et al. (2001) observed in similar conditions tail velocities in
the order of twice the value given by Bendiksen’s correlation.

Given those considerations, it was concluded that Griffith’s correlation for the
wake effect coefficient was adequate. In the rest of the paper, the coefficient
Weff will then be set to WGriffith.

5 Influence of the upstream flow regime on the downstream slug
length distribution

5.1 Principle

For case 2, a shorter upstream pipe is used. In case 2A, the upstream pipe is
also inclined upwards, with an inclination angle of 2 degrees (see figure 12). A
slug flow regime, characterized by short slugs, will then be established in the
upstream pipe. The downstream pipe is still inclined 30◦ upwards. The aim
of case 2A is to monitor how the slug length distribution established in the
first pipe will evolve after the bend. Another interesting point is to compare
the slug length distribution observed at the end of the downstream pipe when
slug flow is established in the upstream pipe (case 2A) and when stratified
flow is established in the upstream pipe (case 2B).

The first optical unit was positioned at the end of the first pipe, 10 diameters
upstream of the bend. Two additional optical units were placed in the sec-
ond pipe, respectively 50 and 120 diameters downstream of the bend. Figure
12 presents a sketch of the experimental set-up. The inlet liquid superficial
velocity was maintained constant to 0.27 m.s−1 and the inlet gas superficial
velocity was set to 0.44 m.s−1.
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Fig 11: Importance of the wake effect
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Fig 12: Case 2, sketch of the pipe geometry

5.2 Experimental results

Experimental results for case 2A are shown figures 13 to 15. The flow regime in
the upstream pipe (figure 13) is characterized by very short slugs, averaging
3.5 diameters in length. The slug length distribution changes drastically in
the downstream pipe where the average slug length reaches 11 diameters 50
diameters after the bend and 13 diameters 120 diameters downstream of the
bend.

As a comparison figure 16 shows the experimental slug length distribution
observed when the upstream pipe is inclined downwards with an inclination
angle equal to 5◦ (case 2B). The flow regime established in the upstream pipe
is then stratified flow. The slug length distribution observed 120 diameters
downstream of the bend in those conditions (case 2B) is extremely similar to
the one observed with a slug flow regime established in the upstream pipe
(case 2A). We can then conclude that in this small scale loop, the flow regime
in the upstream pipe does not seem to have any strong influence on the flow
characteristics in the downstream pipe.

5.3 Simulation results

Case 2 was simulated with the LASSI scheme using a time step of 1 ms and
a section size of 1 cm. Griffith’s standard "uncapped" correlation was used
to model the wake effect. Figures 17 to 19 show the slug length distributions
recorded in 15 minutes of simulation time, 10 diameters upstream of the bend
and 50 and 120 diameters downstream of the bend for the different values of
the upstream gas volume. Regarding the slug length distributions, the scheme
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Fig 13: Observed slug length distribution 10 D before the bend (Case 2A)
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Fig 14: Observed slug length distribution 50 D after the bend (Case 2A)

predictions show a very good match with the experimental observations. It
looks on the other hand that the front velocity of the long slugs is underesti-
mated by the model, while the tail velocity of the smallest slugs is as observed
before, highly overestimated.

Figure 20 shows the results obtained 120 diameters downstream of the bend
when simulating case 2B with the LASSI scheme. As what was observed ex-
perimentally, the simulations predict only little difference between cases 2A
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Fig 15: Observed slug length distribution 120 D after the bend (Case 2A)
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Fig 16: Observed slug length distribution 120 D after the bend (Case 2B)

and 2B. Figure 21 shows snapshots of the LASSI scheme for case 2A and 2B,
which clearly show that the upstream flow regime has little influence on the
situation far enough in the downstream pipe.
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Fig 17: Computed slug length distribution 10 D before the bend (Case 2A)
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Fig 18: Computed slug length distribution 50 D after the bend (Case 2A)

6 Transition from slug flow to severe slugging

6.1 Principle

The idea is to observe the transition from normal slug flow to severe slugging
within a V-shaped pipe. The small scale loop is set-up as shown in figure 22.
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Fig 19: Computed slug length distribution 120 D after the bend (Case 2A)
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Fig 20: Computed slug length distribution 120 D after the bend (Case 2B)

Both the upstream and downstream pipe are inclined with an angle of 30◦. A
gas tank with a total volume equivalent to 23.8 meters of empty pipe, is added
at the inlet to add compressibility to the system. The inlet tank can be partly
filled with water, hence reducing the inlet gas volume, so that it is possible to
run experiments with any upstream gas volume equivalent to between 0 and
23.8 meters of empty pipe length.

On the downstream pipe, a sensor is installed 80 diameters downstream of
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case 2A

case 2B

Fig 21: Snapshots of the LASSI code

the pipe. The slug length distribution is recorded at this location for various
values of the upstream gas tank. The objective of this experiment is to observe
how the bell-shaped length distribution characteristic of normal slug flow will
evolve when the upstream compressibility is increased.
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Fig 22: Case 3, sketch of the pipe geometry
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6.2 Experimental results

Figure 23 presents the observed slug length distribution 80 diameters down-
stream of the bend, for upstream gas volumes of 0%, 20%, 40%, 60%, 80%
and 100 %. A value of 100% corresponds to a tank volume equivalent to 23.8
meters of empty pipe.

For no upstream gas tank (0% gas volume), the slug length distribution is
similar to the one observed in case 1. In particular the slug front velocity
exceeds the bubble nose velocity for the longest slugs while the opposite is
true for the smaller slugs.

The slug length distribution does not evolve significantly when the upstream
gas volume is increased from 0% to 60%, and the average slug length stays
constant at 11.3 diameters.

When the upstream gas volume reaches 80%, the system enters severe slugging
and we notice the appearance of very long slugs filling all of the downstream
pipe. The blow out is in the form of slug flow, and it is interesting to see
that the slug length distribution during the blow out is quite similar to the
distribution in steady slug flow. However, the slug front and nose velocities
appear much more irregular in severe slugging, this is probably due to the
somehow extreme instabilities that occur during the blow out phase of the
severe slugging cycle.

6.3 Numerical results

The case has been simulated with LASSI using a time step of 2 ms and a
section size of 2 cm. Griffith’s standard model was used for the wake effect and
Blasius friction factors were used in the simulation. Figure 24 shows the slug
length distributions predicted by the simulations 80 diameters downstream of
the bend for the different values of the upstream gas volume.

When the available inlet gas volume amounts to 0%, 20% and 40% of the total
inlet tank volume, the simulation results are very similar to the experimen-
tally observed distributions, with a predicted average slug length of around 10
diameters. However, when the upstream gas tank volume is increased to 60%,
the predicted distribution changes significantly and appears as a double "bell"
curve. This phenomenon corresponds to a normal slug flow regime with peri-
odic eruptions of larger slugs and an unstable upstream pressure. This state
can be seen as an intermediary between normal slug flow and severe slugging,
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Fig 23: Observed slug length distribution 80 diameters after the

bend for several values of the upstream gas volume (Case 3)

thus transition from normal slug flow to severe slugging seems to occur in a
smoother way in the simulations than experimentally.

For higher tank volumes (80% and 100%), although the computed distrib-
utions are close to the observations, some questions are raised by the large
discrepancy between the computed tail and front velocities of the short slugs
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and the observed tail and front velocities. The simple model used by LASSI
can not be expected to resolve all the details of the flow during the blow-out,
but it seems that the blow-out phase occurs at a much faster mixture velocity
in the computations than in the experiments.

In addition, it appears that the LASSI scheme predicts both fewer and shorter
slugs than what was observed experimentally. This leads us to think that the
holdup and liquid velocity within the bubbles were incorrectly reproduced in
the model. This is probably due to an underestimation of the momentum loss
that occurs at the tail of the slugs. As the slugs shed some liquid at their tail,
it is indeed important to know how much momentum this high velocity liquid
loses when it exits the slug and mixes with the liquid film that follows. If this
momentum loss is underestimated, the liquid velocity within the bubbles will
be overestimated, potentially leading to a decreased slug fraction.

Finally, as an illustration, figure 25 and 26 represent the computed holdup
profile, pressure profile and inlet pressure time series when the inlet gas volume
is set to respectively 0 and 100% of its total maximum value.

7 Conclusion

Using affordable and easily available optical devices, a study on the evolution
of the slug length distribution along a small diameter pipe was conducted.
The experimental set-up was able to clearly show that the tail velocity of
the shorter slugs exceeded the velocity of their front, leading eventually to
their disappearance. For our experimental conditions, all slugs shorter than a
minimum length of around five diameters eventually disappeared and the slug
length distribution evolved towards an average slug length of 12 diameters.
In addition, it was shown that 100 diameters after a bend, the slug length
distribution had reached a nearly stationary form.

For our gravity dominated flows, the upstream flow regime was shown to have
little influence on the flow conditions within the downstream pipe. The flow
characterics 100 diameters downstream of the bend did not appear to depend
on the flow regime (stratified or slug flow) in the upstream pipe.

As the upstream gas volume was increased the transition to severe slugging
was observed. The liquid blow-out was in the form of gas-liquid slug flow and
the statistical slug length distribution during the blow-out was similar to the
steady state distribution.
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Fig 24: Predicted slug length distribution 80 diameters after the

bend for several values of the upstream gas volume (Case 3)

The LASSI code presented in Renault et al. (2007) is both slug capturing
and slug tracking: the slug generation phenomenon is captured automatically
by the numerical scheme without using any slug initiation criterion. Each
generated slug is then tracked individually as it propagates along the pipe: the
slug fronts are modelled as propagating shocks and the slug tails are supposed
to propagate according to a given relation for bubble propagation.
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Snapshot of the LASSI scheme

Typical pressure profile

Inlet pressure time series

Fig 25: Case 3, LASSI predictions with no inlet gas volume (0%)

All the experimental observations on slug length distributions were compared
to simulations run with the LASSI code. On the whole, a fair match was
observed between the numerical predictions and the observations. As expected,
a proper modelling of the wake effect is crucial to a correct prediction of the
slug length distribution. Given this prerequisite, the slug capturing method
used in the LASSI code was shown to be able to generate slugs in an adequate
way allowing the code to correctly reproduce the evolution of the slug length
distribution.

The well-known importance of the wake effect for the modelling of slug flow
was confirmed by this study. In this respect, the slug tracking character of
the LASSI scheme, which allows any closure for the slug tail velocity to be
implemented directly into the scheme, gives the scheme a great flexibility that
does not exist in direct simulation schemes in which the slugs are not tracked
as individual objects but are propagated according to the equations of the
two-fluid model.
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Snapshot of the LASSI scheme

Pressure profile before blow-out

Inlet pressure time series

Fig 26: Case 3, LASSI predictions with full inlet gas volume (100%)
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Abstract

Flow regime transitions associated with fast changes in the inlet gas flow rate were
investigated both experimentally in a 6 cm air-water pipe, and numerically with a
Lagrangian slug capturing and slug tracking scheme. As liquid transport occurs at
a much slower speed than the fast pressure wave associated with a change in the
inlet gas velocity, a fast increase or decrease in the inlet gas flow rate creates an
intermediate state characterized by the liquid holdup of the previous equilibrium
state and the new gas flow rate. Experimentally, while a steady stratified flow regime
was established in the pipe, a sudden increase in the inlet gas flow rate resulted in a
short episode of slug flow. Similarly, when the gas flow rate at the inlet was suddenly
decreased, a short period of stratified flow was observed between two periods of
established slug flow. Numerical predictions from the LASSI scheme were shown
to be in good agreement with the experimental observations. The LASSI scheme
was also used to reproduce the severe slugging regime observed experimentally in a
S-shaped riser.

Key words: two-phase flow, slug flow, flow rate transients, slug initiation

1 Introduction

The study of gas-liquid flow in pipes has many industrial applications, such
as the transport of hydrocarbons in the oil industry or water-vapour mixture
in power plants. One of the most fascinating aspects of gas-liquid pipe flow
is the great diversity that exists in the different flow patterns that can arise
depending on the flow rates and other conditions such as densities and pipe
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inclination. Thus the determination of the correct flow regime is often a prereq-
uisite to the calculation of the other flow parameters. In this aim, experimental
flowmaps were first made, followed by semi-empirical transition criteria. Both
of these approaches were well suited to make steady state predictions.

However two-phase flow is intrinsically unsteady in its very nature, and should
probably be modelled as such. In this aim, transient two-phase codes such as
OLGA (Bendiksen et al., 1991) were developed to capture more of the physics
involved. Transient two-phase flow schemes soon raised the question of the
modelling of the flow regime transitions, one of the biggest challenges of two-
phase flow computations. In particular, the transition from stratified to slug
flow presents a great complexity because of its chaotic nature, and because
of the great diversity of the slug initiation mechanisms. Slugs can indeed be
initiated due to liquid accumulation at the low points of the pipe until the
liquid bridges the pipe and forms a blockade which will either travel down
the pipe as a slug or, if the upstream gas compressibility is high enough,
form a severe slug, which can be seen as the most extreme case of slug flow.
Another mechanism is the sometimes quite slow growth of small perturbations
at the gas-liquid interface due to the hydrodynamic instability of stratified
flow at those conditions. Fast variations of the gas velocity, due to operational
transients or to system-dependent effects such as the departure of a previous
slug, can also trigger slug initiation.

Issa et al. (2003) first introduced a scheme called TRIOMPH capable to au-
tomatically capture the transition from stratified to slug flow. The scheme
proved able to predict the stratified to slug flow transition in good accordance
with the experimental observations.

The LASSI (Lagrangian Approximate Scheme for Slug Initiation) scheme is
a slug capturing and slug tracking scheme specially designed to tackle the
stratified-slug flow transition. In LASSI, the initiation of slugs is automati-
cally captured by the scheme, without using any arbitrary insertion criterion
providing either the slug frequency or the insertion position. After its initi-
ation, each individual slug is tracked by the scheme as it propagates down-
stream according to Bendiksen’s closure for the propagation of Taylor bubbles
(Bendiksen et al., 1984). This is not the case in Issa et al. (2003) where no
closure is used for the Taylor bubble velocity and where the slug propagation
relies only on solving the two-fluid model. The LASSI scheme can then be
seen as an intermediary between a full two-fluid model such as TRIOMPH or
OLGA and an approximate slug tracking scheme such as Nydal et al. (1996)
or Taitel et al. (2000).

In a first paper (Renault et al., 2007, [1]) the ability of the scheme to repro-
duce accurately an experimental flowmap in horizontal and near-horizontal
flow was investigated. Transition from smooth stratified flow at the inlet of
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the pipe to slug flow occurred by the slow growth of tiny waves that evolved
into slugs when they eventually bridged the pipe. The predicted transition
points were found in good agreement with the VKH criterion (Viscous Kelvin
Helmholtz) and the experimental literature. In a second paper (Renault et
al., 2007, [2]), the LASSI scheme was used to predict the slug length distrib-
ution in an upwardly inclined small diameter pipe in various conditions. The
predictions compared well to the experimental observations, provided that an
adequate wake effect model was used to calculate the slug tail velocity. The
slug tracking nature of the LASSI scheme, which makes the use of any experi-
mental closure for the slug tail velocity very convenient, proved in this respect
very useful.

In this present paper, the slug capturing ability of the LASSI scheme is used
to investigate flow regime transitions associated with fast changes in the gas
inlet flow rate. The predictions from the LASSI scheme are then compared
with selected experiments conducted in a 6 cm horizontal pipe. The study of
those phenomena is important in an industrial context, for example in the oil
industry where fast changes in production within the wells can have impor-
tant consequences on the downstream flow conditions. In addition, these flow
regime transitions associated to fast transients make the most of transient slug
capturing schemes and provide interesting test cases to assess their accuracy.

The effects of flow rate transients on the flow regime have been studied exper-
imentally, theoretically and numerically for a long period. Taitel et al. (1978)
used a simplified semi-steady two-fluid model in order to predict the appear-
ance of an episode of stratified flow in-between an initial state of annular flow
and a final state of slug flow. The predictions matched well with the experi-
ments conducted in a 3.8 cm pipe. Minami (1991) used a very long pipe (420
m) to conduct experiments investigating the effects of a sudden increase in
the inlet gas flow rate on the inlet pressure.

King et al. (1998) probably conducted the most comprehensive experimental
study on flow rate transients in a 3 inch diameter 36 meters long pipe. Every
possible type of variation in the inlet flow rates ("up-gas", "down-gas", "up-
liquid", "down-liquid") was experimented. When the inlet gas flow rate was
increased suddenly while stratified flow was established in the pipe, a tempo-
rary period of intense slugging was observed. In addition, the inlet pressure
was found to peak above the new steady state value before recovering. Simi-
larly, a sudden decrease in the inlet gas flow rate in a slug flow regime, caused
a period of stratified flow to appear before slug flow was re-established. On
the contrary, fast changes in the inlet liquid flow rate had limited impact on
the flow.

The main objective of this work is to test the LASSI scheme ability to capture
flow regime transitions associated with those sudden changes in the gas inlet
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flow rates. "Up-gas" and "down-gas" experiments were conducted in a 16 m
long, 6 cm diameter pipe in the NTNU multiphase flow laboratory in Trond-
heim, Norway. Compared to the experiments conducted by King et al.(1998),
the flow rates used were significantly lower.

The first chapter of this paper is devoted to recalling the two criteria governing
the flow regime transition between stratified and slug flow : the Viscous Kelvin
Helmholtz criterion and the Minimum Holdup criterion. They are intrinsically
embedded within the LASSI scheme. Then the LASSI scheme itself is briefly
introduced, more details can be found in (Renault et al., 2007, [1]). The first
case presented is an "up-gas" case: the LASSI scheme is used to investigate the
effect of a fast increase in the inlet gas superficial velocity on a smooth strat-
ified flow in a horizontal pipe. The numerical predictions are then compared
with the experimental results. Similarly, the effects of a sudden decrease in
the inlet gas flow rate on an established slug flow regime are investigated both
numerically and experimentally in the "down-gas" case. Finally, the LASSI
scheme is used to simulate a severe slugging regime in a S-shaped riser built
in the NTNU laboratory in order to reproduce the phenomena observed in
offshore oil risers.

2 Transition criteria

2.1 Stratified flow stability: the Viscous Kelvin-Helmholtz criterion (VKH)

First introduced by Lin and Hanratty (1986) and Barnea and Taitel (1993),
this criterion is based on the linear stability analysis of the two fluid-model
which consists of the four equations (liquid mass conservation, gas mass con-
servation, liquid momentum balance, gas momentum balance) that follow:

∂
∂t
(ρlAl) +

∂
∂x
(ρlAlUl) = 0

∂
∂t

³
ρgAg

´
+ ∂

∂x

³
ρgAgUg

´
= 0

∂
∂t
(ρlAlUl)+

∂
∂x
(ρlAlU

2
l ) = −τ lSl+τ iSi−ρlgAl sinφ−Al

∂
∂x
p−ρlgAl cosφ

∂
∂x
hl

∂
∂t

³
ρgAgUg

´
+ ∂

∂x

³
ρgAgU

2
g

´
= −τ gSg−τ iSi−ρggAg sinφ−Ag

∂
∂x
p−ρggAg cosφ

∂
∂x
hl

The subscript l and g refer respectively to the liquid and gas phase, ρ, A
and U are the density, occupied area and velocity of the considered phase.
τ l is the liquid-wall friction, τ g the gas-wall friction and τ i the gas-liquid
friction. Sl and Sg are the liquid-wetted and gas-wetted perimeter and Si is
the interfacial width. p is the pressure, hl the liquid height and φ the angle
between the pipe and the horizontal. Using the same notations as Barnea and
Taitel, the equations are rewritten in a non-conservative form and the pressure
gradient is eliminated from the two momentum balances to form a transient
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holdup equation.

(1) ∂
∂t
hl +Hl

∂Ul
∂x
+ Ul

∂
∂x
hl = 0

(2) ∂
∂t
hl −Hg

∂Ug
∂x
+ Ug

∂
∂x
hl = 0

(3) ρl
∂Ul
∂t
− ρg

∂Ug
∂t
+ ρlUl

∂Ul
∂x
− ρgUg

∂Ug
∂x
+
³
ρl − ρg

´
g cosφ ∂

∂x
hl = F

introducing Hl =
Al
dAl
dhl

the equivalent liquid height, Hg =
Ag
dAg
dhg

the equivalent

gas height and F the resultant friction force acting on the liquid phase, defined
as:

F = −τ lSl
Al

+
τ gSg
Ag

+ τ iSi

Ã
1

Al
+
1

Ag

!
−
³
ρl − ρg

´
g sinφ

Starting from equilibrium (all time derivatives and all spatial derivatives but
the one of the pressure are null), we introduce a small sinusoidal perturbation
of pulsation ω, wave number k and amplitudes ( ehl, fUl, fUg) in the flow variables
around the equilibrium values (hl, Ul, Ug).

hl = hl + ehlei(ωt−kx) Ul = Ul + fUle
i(ωt−kx) Ug = Ug + fUge

i(ωt−kx)

Reporting in the first equation (liquid conservation) yields:

fUl =
·
ω

k
− Ul

¸ ehl
Hl

While the second equation (gas conservation) gives:

fUg =
·
Ug − ω

k

¸ ehl
Hg

The source term F is a function of 3 variables (the holdup β = Al

A
, the liquid

local superficial velocity US
l = βUl and the gas local superficial velocity US

g =
(1− β)Ug). Hence:

eF = Ã
∂F

∂β

!
US
l ,U

S
g

eβ + Ã
∂F

∂US
l

!
β,US

g

gUS
l +

Ã
∂F

∂US
g

!
β,US

l

gUS
g

Reporting the values of fUl, fUg and eF inside the third equation (dynamic
holdup equation) provides the dispersion equation:

ω2 − 2 [ak − ib]ω + ck2 − iek = 0
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With the following Barnea and Taitel’s (1993) notations:
ρ = ρl

β
+

ρg
α

a = 1
ρ

µ
ρlUl
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+
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α

¶
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2
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³
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´
g cosφHl

α

¸
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´
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l
,US
g

The dispersion equation is a second degree complex equation in ω. The model
will predict that stratified flow is stable if both roots of this equation have a
negative imaginary part. We can find the neutral stability condition (ωi = 0)
by letting ω = ωR + iωi = ωR in the dispersion equation. We can then calcu-
late the wave velocity CF :

CF =
e

2b
= −

³
∂F
∂β

´
US
l
,US
g"µ

∂F
∂US

l

¶
β,US

g

−
µ

∂F
∂US

g

¶
β,US

l

# = ω

k

The stability criterion is then:

(CF − a)2 +
³
c− a2

´
< 0

Based on the linear stability analysis of a perfectly smooth stratified flow,
this simple criterion gives a hint at whether or not, smooth stratified flow is
a possible solution. As a consequence, an unstable VKH criterion does only
mean that a smooth stratified flow regime can not be established, and does
not necessarily mean that slug flow can be established at those conditions.
Clearly, a roll waves solution or an unsteady pseudo-slug regime are also pos-
sible solutions.

2.2 Slug flow stability: the Minimum Holdup criterion (MH)

Ruder et al. (1989), Bendiksen and Espedal (1992) followed by Woods and
Hanratty (1996) developed a criterion based this time on slug stability. The
idea is to consider slug flow as a succession of slug units as the one shown
in figure 1, consisting of a slug region followed by a bubble region where the
flow is stratified. αS, Uls and Ugs are respectively the void fraction, liquid
velocity and gas velocity within the slug, and αb, Ulb and Ugb are respectively
the void fraction, liquid velocity and gas velocity within the bubble. Unose and
Ufront are respectively the bubble nose (or slug tail) velocity and the slug front
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velocity.

noseU frontU

gslsS UU  , ,α gblbb UU  , ,α

noseU frontU

gslsS UU  , ,α gblbb UU  , ,α

Fig 1: Minimum Holdup, sketch of a slug unit

Steady state slug flow, defined by its inlet superficial velocities US
l and U

S
g , is

at neutral stability (Unose = Ufront) a system characterized by seven unknowns
(αS, Uls, Ugs, αb, Ulb, Ugb, Unose).

(1) The void in slug αS can be determined by experimental closure laws.
(2) The slip velocity within the slug Ugs − Uls can be determined by experi-

mental closure laws.
(3) Volume conservation ensures that Um = US

l +US
g = (1− αS)Uls + αSUgs

(4) Bendiksen’s closure law can be used for the bubble nose velocity, hence
providing the relation Unose = C0Um + ν0 where C0 and ν0 are known.

(5) Liquid conservation across the front gives Ufront =
(1− αS)Uls − (1− αb)Ulb

αb − αs

(6) Gas conservation across the front gives Ufront =
αSUgs − αbUgb

αs − αb
(7) A momentum balance in the bubble area: F (αb, Ulb, Ugb) = 0

This set of equations can be solved iteratively but provides a physical solution
(with a positive slug fraction) only as long as the predicted average holdup
within the slug unit (slug and bubble region) is below the one in plain stratified
flow. Hence this criterion is usually labelled as the Minimum Holdup criterion,
for it predicts the prevalence of the flow regime with the lower holdup. It is
important to stress out that this criterion only answers the question of whether
or not an already initiated slug will survive (in other terms will Ufront exceeds
Unose ?). Should the answer be yes, it does not necessarily mean that slug
flow will be the established flow regime within the pipe, for this criterion says
nothing about slug initiation. Should the answer be no, stratified flow is not
the unique possibility, a roll waves or pseudo-slug regime can also arise.

2.3 Interest of a slug capturing/tracking scheme

The literature clearly stresses the importance of both the Viscous Kelvin-
Helmholtz and the Minimum Holdup criteria. The VKH criterion dominates
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the transition from stratified to slug flow for low pressure systems with mod-
erate velocities. For high pressure systems, the Minimum Holdup criterion
defines the transition.

More recently, more complex effects have been shown, clearly demonstrating
the role of each of those criteria. When stratified flow is present at the inlet of
the pipe, the flow regime will remain stratified along the pipe as long as the
flow is stable according to the VKH criterion. However if slug flow is to be
present at the inlet, then slug flow will remain the flow regime along the pipe
if the flow is stable according to the MH criterion (Kristiansen, 2004). This
defines a "hysterisis zone" in the traditional (US

l − US
g ) flowmap: in this area

the flow regime is dependent on both the spatial and time history of the flow.
This phenomenon clearly shows the interest of transient slug tracking schemes
in opposition to steady-state or statistical approaches.

For high pressures and high velocities, there is an area where both criteria
predict instability. As observed experimentally, this zone corresponds to roll
waves and unstable flow (neither stratified nor slug flow). Figure 2 shows an
indicative computed numerical flowmap corresponding to an horizontal 1 inch
pipe with an air-water flow at 10 bars.
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3 The LASSI scheme

The LASSI (Lagrangian Approximate Scheme for Slug Initiation) scheme is a
slug capturing and slug tracking Lagrangian scheme. Its principle is presented
in more details in Renault et al. (2007, [1]).

The LASSI scheme can be seen as an intermediary between a traditional two-
fluid model code such as OLGA (Bendiksen et al., 1991) or TRIOMPH (Issa
and Kempf, 2003) and a simplified slug tracking scheme as in Nydal and Baner-
jee (1996) or Taitel and Barnea (1997, 2000). In LASSI the slugs are generated
automatically by the numerical scheme, without using any arbitrary slug in-
sertion criterion providing either the initial length, the slugging frequency or
the initiation point. After their initiation, the slugs are transported along the
pipe using Bendiksen’s correlation (Bendiksen et al., 1984) as a closure for
the slug tail velocity, meaning that the slug tail velocity Ub is given in the
LASSI scheme by the relation Ub = C0Um + ν0 where Um is the mixture ve-
locity within the slug and C0 and ν0 are parameters whose value depend on
the Froude number.

Because Bendiksen’s correlation is embedded within the code, the LASSI
scheme is able to predict the flow regime transition according to the Mini-
mum Holdup criterion, that is to say that if slug flow is predicted unstable
according to the Minimum Holdup criterion, the slugs tracked in the LASSI
scheme will eventually disappear.

J-1 J J+1 J+2 J+3j-1 j j+1 j+2 j+3 j+4

LJ+1LJLJ-1 LJ+2 LJ+3
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pj+2pj+1pj pj+3 pj+4pj-1

J-1 J J+1 J+2 J+3j-1 j j+1 j+2 j+3 j+4

LJ+1LJ+1LJLJLJ-1LJ-1 LJ+2LJ+2 LJ+3LJ+3

1,1  −− JlJ Uβ JlJ U ,  β 1,1  ++ JlJ Uβ
2, +JmU

3,3  ++ JlJ Uβ

S
JgJg U 1,1,   −−ρ

S
JgJg U ,,   ρ S

JgJg U 1,1,   ++ρ S
JgJg U 3,3,   ++ρ
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Fig 3: LASSI scheme grid

Figure 3 shows a sketch of the grid used in LASSI. The pipe is divided in
sections (where the gas flows on top of the liquid) and slugs. An object oriented
programming in C++ used throughout the code allows much flexibility in
terms of front tracking. Each individual slug generated is followed by the
adaptative grid and a Lagrangian approach is used as well in the sections.

Starting from the usual two-fluid model four differential equations, some ap-
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proximations (ρlUl >> ρgUg, Um and ρg slowly varying in time and space) are
made in order to uncouple the liquid film transport from the pressure wave.
The system can then be solved efficiently in 3 steps. First, the gas massic
flow rate and the pressure within each section and the mixture velocity within
each slug are calculated simultaneously based on gas mass conservation and a
dynamic momentum balance in the slugs. The liquid layer within the sections
is considered to have no influence on the fast pressure and slug momentum
dynamics. Thanks to this approximation, a simple tridiagonal algorithm is
sufficient to solve the system.

Second, a modified shallow water algorithm is used to solve the liquid transport
within the sections independently of the gas dynamics. This actually consists
in solving a modified shallow-water system where friction is used as a source
term and where the Bernoulli suction force is subtracted from the opposed
hydrostatic effect.

The liquid transport equations of the two-fluid model then become in the
LASSI scheme :

∂

∂t
(β) +

∂

∂x
(βUl)= 0

∂

∂t
(βUl) +

∂

∂x

µ
βU2

l +
1

2
κβ
¶
=

β

ρl
F (Ul, β, Um)

where the parameter κ is defined as:

κ =
ρl − ρg
ρl

g cosφ
A
dAl
dhl

− 1
α

ρg
ρl
(Ug − Ul)

2

Where β is the liquid holdup, α is the void fraction, Ul and Ug are respectively
the liquid and gas velocity, Um is the mixture velocity, ρl and ρg are respectively
the liquid and gas densities, A is the pipe cross-sectional area, Al is the area
occupied by the liquid phase, hl is the liquid height and φ is the pipe inclination
from the horizontal. F is the resulting volumic force (sum of the contributions
of the friction and gravitational forces) acting on the liquid phase. Standard
Blasius’ friction factors were used to calculate the expressions of the liquid,
gas and interfacial friction throughout all the simulations presented in this
paper.

The borders between the sections can be moved arbitrarily thanks to the
Lagrangian nature of the scheme. The border velocities are actually chosen in
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order to try and follow ripples and roll waves, based on the consideration of
the exact solution of the associated Riemann problem.

Finally, a list management step deals with section splitting or merging. Indeed,
some sections might become too big and have to be splitted. On the opposite,
some sections might become too small in respect to the CFL criterion and have
to be merged. Those operations can be done simply as the pipe is modelled as
a doubly-linked list of sections and slugs. Figure 4 shows the computational
sequence of the LASSI scheme.

List Management
• Merge the small sections
• Replace flooded sections by slugs
• Split the big sections

Pressure-Momentum
• Implicit and
simultaneous
computation of:

• Detect slug fronts and bubble noses
• Influence of friction forces: 

Void Wave

• Explicit 
computation:

• Slug fronts: Mass Balance

Section-Section:
Modified shallow 
wave with moving grid
Section-Nose:
Bendiksen closure

np ( )nS
ggUρ n

mU
n
lU

nβ

in the sections
in the sections
in the slugs

1+np
( ) 1+nS

ggUρ
1+n

mU

2/1+n
lU

1+nβ1+n
lU

List Management
• Merge the small sections
• Replace flooded sections by slugs
• Split the big sections

Pressure-Momentum
• Implicit and
simultaneous
computation of:

• Detect slug fronts and bubble noses
• Influence of friction forces: 

Void Wave

• Explicit 
computation:

• Slug fronts: Mass Balance

Section-Section:
Modified shallow 
wave with moving grid
Section-Nose:
Bendiksen closure

Section-Section:
Modified shallow 
wave with moving grid
Section-Nose:
Bendiksen closure

np ( )nS
ggUρ n

mU
n
lU

nβ

in the sections
in the sections
in the slugs

1+np
( ) 1+nS

ggUρ
1+n

mU

in the sections
in the sections
in the slugs

1+np
( ) 1+nS

ggUρ
1+n

mU

2/1+n
lU

1+nβ1+n
lU

Fig 4: The LASSI scheme computation procedure

It is important to note that the simplified system has the same area of well-
posedness as the full two-fluid model and becomes ill-posed when the coeffi-
cient κ becomes negative. The well-posedness condition yields the well-known
Inviscous Kelvin-Helmholtz (IKH) criterion which can be written as:

well-posed⇔ (Ug − Ul)
2 <

ρl − ρg
ρg

g cosφ
Ag

dAl
dhl

⇔ κ > 0
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Although some approximations are actually made to uncouple the liquid trans-
port from the pressure dynamics, it has been demonstrated (Renault et al.,
2007, [1]) that the simplified shallow-water equations used for the liquid trans-
port has exactly the same area of stability as the standard initial two-fluid
model, provided that ρlUl >> ρgUg. Due to a careful discretization and to a
front-tracking approach, the growth of small instabilities into slugs is well cap-
tured by the LASSI scheme meaning that whenever stratified flow is predicted
unstable by the VKH criterion, the LASSI code will automatically capture the
apparition of slugs. A typical example of slug initiation in the LASSI scheme
is presented figure 5. A 20 meters long, 1 inch diameter, air-water pipe is sim-
ulated at atmospheric pressure. The time step is 0.01s and the average section
length is around 1 cm. Simulating 5 minutes takes only a few minutes on a
standard PC, thanks to the explicit nature of the scheme. One can clearly
see a travelling wave, breaking and finally bridging the pipe, giving birth to a
slug.

Fig 5: Slug initiation with LASSI.

4 Up gas experiment

4.1 Principle

Air-water flow is run through a horizontal 6-cm diameter pipe. With a gas
superficial velocity set at US

g = 0.5m.s−1 and a liquid superficial velocity set at
US
l = 0.08 m.s−1, the established flow regime within the pipe is stratified flow.
At some time, the gas superficial velocity is suddenly increased to US

g = 2.0
m.s−1. The equilibrium flow regime observed at those new conditions is still
stratified flow.
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The initial and final states of this experiment are plotted both on a
³
US
L − US

G

´
flowmap figure 6 and on a

³
hl
D
− US

G

´
flowmap figure 7. In addition, the transi-

tion line between stratified and slug flow, computed according to the Viscous
Kelvin Helmholtz criterion, is drawn on each of those flowmaps.
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Liquid transport occurs at a much slower speed than the pressure wave asso-
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ciated with the fast increase in gas velocity at the inlet. As a consequence, it
takes time before the liquid level decreases from its initial to its final level.
During the first seconds after the gas flow rate has been increased at the in-
let, the system possesses both the liquid level of the initial state and the gas
superficial velocity of the final state. The path followed by the system in the
flowmap is shown figure 7.

During this fast transient, stratified flow is therefore no longer stable accord-
ing to the Viscous Kelvin Helmholtz criterion. Given the high level of liquid
available, a transitory period of slug flow is therefore to be expected during
this fast transient.

4.2 Experimental set-up

A schematic diagram of the 0.06 m diameter test section used in the “up gas”
and “down gas” experiments is given in figure 8. The horizontal 16.4 m long
test section is made from acrylic to allow visual observation. The fluids applied
were air and filtered tap water, which gave a surface tension equal to 0.075
N.m−1.

The fluids flowed to the test section in separate feed lines. The single phase
air and water flow rates were measured upstream of the test section by means
of a mass and a volume flow meter, respectively. The fluids entered the test
section in layers according to their densities. Air was supplied from a central
line, and vented to the atmosphere at the test section outlet. The liquid phase
was recycled back to the test section via a separator and a centrifugal pump.

The experiments were conducted at ambient conditions, with an outlet pres-
sure set to 1 bara. Four flush mounted conductance probes were calibrated
to return the water holdup. The conductivity meter applied was found to be
linear with respect to voltage output for the measured conductance. By mea-
suring between rings located a few centimeters apart, the relation between the
measured voltage (conductance) and the corresponding water level in the test
section was approximately linear. A one-point calibration for water filled test
section was performed twice a day to keep track of any possible drift in the
electronics. The pressure was monitored at the gas feed line, the gas inlet sec-
tion and immediately upstream of the first conductance ring probe. Imaging
for visualisation purposes, using digital cameras, was performed upstream of
the conductance probes.
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Fig 8: Schematic diagram of the test section used in the Up gas and Down gas experiments.

4.3 Results

The "up-gas" scenario has been both tested and simulated in a 6 cm diameter
air-water pipe. The inlet gas flow rate was increased after 600 seconds. Four
impedance probes were used to measure the holdup at different positions along
the pipe (IP1: 13.25 m, IP2: 13.75 m, IP3: 14.25 m, IP4: 14.75 m). On figure
9 are plotted the time series of the experimentally observed holdup and the
holdup computed by the LASSI scheme at the outlet (IP4).

There is a significant discrepancy between the computed and the observed
initial equilibrium liquid level. This might come either from inappropriate
interfacial friction factors in the two-fluid model or from poor calibration of
the impedance probes. As expected, some slugs are triggered shortly after the
gas inlet flow rate is increased. This effect is captured correctly by the scheme.

Experimentally though, the slugging episode seems to last longer, with a final
slug leaving the 16 meters pipe more than 15 seconds after the gas increase.

Finally, the slow increase of the liquid level towards the new equilibrium is
well captured by the simulation.

5 Down gas experiment

5.1 Principle

Air-water flow is run through the same 6-cm diameter pipe. With a gas su-
perficial velocity set at US

g = 2.0 m.s−1 and a liquid superficial velocity set at
US
l = 0.3 m.s−1, the established flow regime within the pipe is this time slug
flow. Suddenly, the gas superficial velocity is decreased to US

g = 1.0 m.s−1.
The equilibrium flow regime observed at those new conditions is still slug flow.

The initial and final states of this experiment are plotted both on a
³
US
l − US

g

´

15



580 590 600 610 620 630 640 650 660 670 680
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [s]

H
ol

du
p 

[-]

Usl=0.08, Increasing Usg from 0.5 to 2 m/s at t=600s

IP4 : exp

Experiments

580 590 600 610 620 630 640 650 660 670 680
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [s]

H
ol

du
p 

[-]

Usl=0.08, Increasing Usg from 0.5 to 2 m/s at t=600s

IP4 : comp

Simulations

Fig 9: Up gas case : holdup at the outlet (IP4)
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flowmap figure 10 and on a
³
hl
D
− US

g

´
flowmap figure 11. In addition, the

transition line between stratified and slug flow, computed according to both
the Viscous Kelvin Helmholtz criterion, and the Minimum Holdup criterion,
are drawn on each of those flowmaps.
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Two distinct criteria govern the transition from stratified to slug flow: the
Viscous Kelvin Helmholtz criterion assesses the stability of stratified flow while
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the MinimumHoldup criterion predicts the stability of established slug flow. In
this experiment, both approaches are of interest: indeed the pipe is composed
of a short length of stratified flow close to the inlet, and then a slug flow
region. In the initial conditions, the stratified region close to the inlet is not
stable according to the VKH criterion, slugs are therefore initiated before they
propagate downstream of the pipe.

As already mentioned in the "up-gas" case, liquid transport takes place at a
much slower pace than pressure waves. Thus for a short period of time the
system can be considered as characterized by the initial state holdup and the
final state gas superficial velocity.

Figure 11 teaches us that the sudden decrease in the gas inlet flow rate will
have two effects on the flow : the inlet stratified region will become stable thus
no more slugs will be generated, and the already initiated slugs that propagate
through the pipe will die. A short period of stratified flow can then be foreseen,
before the liquid holdup finally increases towards its new equilibrium level, and
slug flow is observed again.

5.2 Results

This scenario has been both tested and simulated in a 6 cm diameter air-water
pipe. The inlet gas flow rate was decreased after 600 seconds. The same four
impedance probes were used to measure the holdup at different positions along
the pipe. On figure 6 are plotted the time series of both the experimentally
observed holdup and the holdup computed by the LASSI scheme at the outlet
(IP4).

The initial holdup and slug frequency seem to be predicted correctly by the
scheme. The duration of the stratified period is also reproduced in a satisfac-
tory manner. However in the experiments, what seems to be a roll wave is
observed shortly after the decrease in the gas flow rate. This roll wave might
result from the death of a previous slug, but is not observed at the end of the
pipe in the simulations.

Finally the slug frequency in the final state seems to be underestimated by
a factor 2. As the holdup in the bubbles seems to be correct, it appears that
this is due to higher slug lengths in the simulation. That could be explained
by an incorrect modelling of the "wake effect" which controls the length of the
slugs.
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6 Severe slugging in a S-shaped riser

6.1 Principle

Some experiments have been made to explore the phenomenon of severe slug-
ging within a S-shaped riser. The experimental results are presented and com-
pared with simulations carried out with the presented code.

6.2 Experimental setup

Figure 13 shows a schematic diagram of the 0.05 m diameter test section
used in the “S-riser” experiments. The test section length was approximately
18 m, with a height from the riser base to the outlet of 7 m. The pipe was
made from acrylic to allow visual observation. The fluids applied were air
and filtered tap water. I and P indicate respectively the impedance probe and
pressure transmitter positions.

The fluids flowed to the test section in separate feed lines. The single phase
air and water flow rates were measured upstream of the test section by means
of a mass and a volume flow meter, respectively. The fluids entered the test
section in layers according to their densities. Air was supplied from a central
line, and vented to the atmosphere at the test section outlet. The liquid phase
was recycled back to the test section via a separator and a centrifugal pump.
The experiments were conducted at ambient conditions: the pressure was set
to 1 bara at the test section outlet and the temperature was kept at around
20◦C.

A gas volume corresponding to approximately 165 m of additional pipe length
was installed upstream of the test section inlet. This added compressibility
to the system so that severe terrain slugging could be achieved. Three flush
mounted conductance probes were used for monitoring the local water content
at pre-selected positions downstream of the test section. The signals were nor-
malised based on air filled and water filled cross sections, yielding approximate
holdup values between 0 and 1. The pressure was measured at the test section
inlet, at the riser base, near the dip between the “first” and the “second” riser
leg, and close to the riser outlet.
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Geometry used in the computations

Geometry of the experimental loop

Fig 13: Geometry of the S-riser pipe

6.3 Experimental results

The left column of figure 14 contains the experimental results obtained for an
inlet liquid superficial velocity US

L = 0.32 m.s−1, and an inlet gas superficial
velocity US

G = 2.23 m.s−1. A gas reservoir with a volume equivalent to a 165
m long pipe with the same 5 cm diameter was used at the inlet to allow the
system to operate within the severe slugging region. The inlet pressure, the
holdup at the end of the first riser, and the holdup at the end of the pipe
are presented. The results are of course typical of severe slugging, with large
oscillations of the upstream pressure and periodic very long slugs at the outlet.
The observed slugging frequency was around 50 seconds.

6.4 Simulations with the LASSI code

A constant timestep of 1 millisecond was used to simulate 200 seconds of the
experiment, starting from an empty pipe. A grid size of 1 cm was used for
the simulations (as the grid size is not constant in LASSI this value is only
an average). The right column of figure 14 shows the computed inlet pressure
time series as well as the computed holdup time series both at the end of
the first riser and at the outlet. The code successfully captures the severe
slugging phenomenon that occurs in the pipe and triggers large oscillations
in the inlet pressure. The frequency of the oscillations is obtained with an
acceptable precision. The small discrepancy between the oscillation period
observed experimentally (around 50 seconds) and the computed one (around
60 seconds) can be explained by the fact that the inlet pressure never falls much
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Figure 14 : S-Riser case, experimental results and simulations
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below 1.2 bar in the experiments whereas the inlet pressure nearly reaches 1
bar in the computations. In the computations, the amount of gas present in
the pipe at the beginning of the severe slugging cycle is thus underestimated,
and as a consequence, the time needed for the inlet pressure to build up to
the blow-out pressure is overestimated. It is therefore likely that the blow out
phase, characterized by a very high gas velocity is not perfectly modelled.

Regarding the holdup time series, the results are less satisfactory, with a much
higher time averaged holdup in the simulations than in the experiments. Part
of the explanation could be that given that the model overestimates the oscil-
lation period, the liquid has more time to accumulate in the simulations than
in the experiments, thus filling more rapidly and more completely the pipe.

Figures 15 to 17 are aimed at providing a more detailed insight of the quality
of the information provided by the simulations. 6 specific time points labelled
A, B, C, D, E and F are plotted on the computed inlet pressure time series
shown figure 15. The corresponding holdup profiles at those 6 distinct time
points are then presented figures 16 and 17. The simulation is started with an
empty pipe.

Point A represents the beginning of the severe slugging cycle: a liquid blockade
has appeared at the low point of the first riser and the pressure is building
up at the inlet. At point B, the liquid has completely filled the first riser and
starts to fill the second riser. A small gas bubble is travelling towards the
outlet through the stagnant liquid slug that fills the second riser.

Point C shows the pipe right before the blow out: the second riser is now
completely filled and some liquid is flowing out of the pipe. A bubble nose is
travelling downwards the fourth pipe towards the outlet.

The blow out process is shown at D: the horizontal pipe has already been
cleared out of the liquid but the pressure is still high at the inlet since the two
risers are still filled with water. The outlet flow rate is increasing very fast as
the long remaining slug is accelerated towards the outlet.

Most of the liquid has already been blown out at point E: the remaining liquid
is being carried at high speed by the gas exiting the pipe. This is probably
the most difficult part to model since neither stratified nor slug flow is sta-
ble at this high gas velocity regime. The code predicts many small unstable
waves travelling towards the outlet at high velocity, sometimes coalescing and
bridging the pipe to form a slug that does not survive.

When the inlet pressure is low enough, the gas slows down within the pipe
and is no longer able to convey the liquid that accumulates in the low points
and forms some blockades.
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Fig 15: Simulated inlet pressure time series

7 Conclusion

Flow regime transitions associated with fast changes in the inlet gas flow rate
were investigated in a 6 cm air-water pipe. Experiments showed that while a
steady stratified flow regime was established in the pipe, a sudden increase in
the inlet gas flow rate could trigger a short period of slug flow. Symmetrically,
starting from an established slug flow regime, a fast decrease in the inlet gas
flow rate resulted in a short episode of stratified flow before slug flow was
established again. Those observations are in line with the experimental and
theoretical works conducted before by Taitel et al. (1978) and King et al.
(1998) and stress once more the importance of transient effects in gas-liquid
flows.

The numerical predictions obtained with the LASSI scheme were in good
agreement with the experimental observations. The slug capturing approach
used in the LASSI scheme was shown to adequately capture the changes in the
flow regime associated with sudden changes in the gas velocity. This approach
presents the advantage to offer a common modelling framework for all the
mechanisms leading to slug flow, from slugs created from the growth of small
perturbations in horizontal pipes as in Renault et al. (2007, [1]) and bend-
initiated slugs as in Renault et al. (2007, [2]) to slugs generated from fast
transients and severe slugs.

The LASSI code was indeed also used to reproduce the severe slugging regime
observed experimentally in a S-shaped riser. The results are qualitatively good,
yet a probably poor modelling of the blow-out phase leads to an underestima-
tion of the amount of gas and liquid remaining in the pipe after the blow-out
phase and therefore to an overestimation of the slugging frequency.
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Fig 16: Simulated holdup profile at various instants
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Fig 17: Simulated holdup profile at various instants, continued

On the whole, given its simplicity, its low computational needs (the code is
non iterative and its complexity is only proportional to the number of sections
within the pipe), and its ability to model accurately the transition from strati-
fied to slug flow, the LASSI scheme can be considered as an interesting simula-
tion tool. It is especially well suited to reproduce most of the lab experiments
taking place in small scale loops with complex geometries at low pressure and
low velocities. Indeed in those conditions, both of the transition criteria em-
bedded in LASSI (Minimum Holdup and Viscous Kelvin Helmholtz) are to be
taken into account for the transition, whereas for high pressure systems the
VKH criterion is not of any use.
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Abstract This paper presents a modified version of the "Viscous Kelvin Helmholtz" criterion (based on the
linear stability analysis of the two-fluid model) predicting transition between stratified and slug flow. In pre-
vious works a hydrostatic approximation was used to close the two-fluid model. Here, an approach with a
transverse momentum balance to evaluate pressure terms is investigated. The obtained model is compared with
the established criteria (Viscous Kelvin Helmholtz, Inviscous Kelvin Helmholtz, Milne-Thompson) and with
experimental results. The proposed model compares better to experiments and is able to predict the wave-
length of the perturbation responsible for the transition. This analysis might also provide numerical benefits for
transient two-phase simulations.

1 Introduction

When gas and liquid flow in a pipe, several flow patterns can be observed, including stratified and slug
flow. Starting with Helmholtz, many different theoretical criteria have been proposed to describe the
transition from stratified to slug flow. Lin and Hanratty (1986) and Barnea and Taitel (1993) derived
a transition criterion based on the linear stability analysis of the two-fluid model, hence taking into
account the influence of the shear stresses. Experimental works concluded that this approach gave
more accurate results than the previous inviscous theories (Milne-Thompson, 1949).
However several experimentators (Fan et al., 1993; Espedal, 1998; Woods, 1998) noticed that

although the critical liquid height was correctly predicted by this “Viscous Kelvin-Helmholtz” theory,
slugs were observed to form by a different mechanism than suggested by the VKH theory. Indeed, for
low values of the superficial gas velocity, transition appeared to be due to short gravity waves instead
of infinitely long waves as predicted by the VKH theory.
The present paper tries to solve this contradiction by taking into account the transverse variations

in dynamic pressure. Indeed while the previous authors based their analysis on a standard two-fluid
model (i.e. assuming hydrostatic approximation for the pressure), the present paper replaces the
hydrostatic approximation by a more complex closure that includes dynamic pressure terms.

2 The 2 fluid model

We use the usual 2 fluid model cross section averaged equations as a starting point

∂
∂t
(ρlAl) +

∂
∂x
(ρlAlUl) = 0

∂
∂t

¡
ρgAg

¢
+ ∂

∂x

¡
ρgAgUg

¢
= 0

∂
∂t
(ρlAlUl) +

∂
∂x
(ρlAlU

2
l ) = −τ lSl + τ iSi − ρlgAl sinβ + pil

∂
∂x
Al − ∂

∂x
(AlPl)

∂
∂t

¡
ρgAgUg

¢
+ ∂

∂x

¡
ρgAgU

2
g

¢
= −τ gSg − τ iSi − ρggAg sinβ + pig

∂
∂x
Ag − ∂

∂x
(AgPg)

Where pil and pig stand respectively for the liquid and gas interfacial pressure. It is now required
to evaluate the pressure terms in order to end up with only one pressure variable. If the hydrostatic
approximation is made then we end up with the following equations:
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pig − pil = σ ∂2

∂x2
hl

pil
∂
∂x
Al − ∂

∂x
(AlPl) = −Al

∂
∂x
pil − ρlgAl cosβ

∂
∂x
hl

pig
∂
∂x
Ag − ∂

∂x
(AgPg) = −Ag

∂
∂x
pig − ρggAg cos β

∂
∂x
hl

3 Developing a new pressure closure relation

Main used symbols

Ul(x) cross-sectional averaged liquid velocity Ug(x) cross-sectional averaged gas velocity
Al(x) liquid area Ag(x) gas area
Pl(x) cross-sectional averaged pressure, liquid Pg(x) cross-sectional averaged pressure, gas
pil(x) interfacial pressure, liquid phase pig(x) interfacial pressure, gas phase
pl(x, y) local pressure, liquid phase β inclination angle of the pipe
ρl liquid density ρg gas density
ul(x, y) local liquid velocity, axial component vl(x, y) local liquid velocity, transverse component
µ∗l liquid turbulent dynamic viscosity ν∗l liquid turbulent kinematic viscosity
Rl(x) liquid volume fraction Rg(x) gas volume fraction
A0l(x)

dAl

dhl
Hl(x)

Al
A0l

hl(x)
y

b(y)
x

yy

)(xpil

),( yxul

),( yxlυ

),( yxpl

Sketch of the pipe

3.1 Expressing the pressure term
However, one can give a try in implementing a more complex relation, giving up the hydrostatic ap-
proximation and following in the footsteps of [Banerjee S., 1980] or [Ransom V. & Hicks D., 1984].
Nevertheless, both of those systems were shown to be unconditionally unstable in [Prosperetti A., 1987],
which is clearly unphysical. In the following, lower case letters will indicate a local value (which de-
pends on x and y) while upper case letters will indicate a cross sectional averaged value (which
depends only on x). We have to evaluate the expression pil ∂∂xAl − ∂

∂x
(AlPl). The liquid will always

be considered incompressible.
Starting with the definition of the cross-averaged pressure: AlPl =

R y=hL
y=0

pl(y)b(y)dy and intro-
ducing p0l(y) as pl(y) = pil + p0l(y), we can express the needed pressure term as a function of p0l(y)
using the Leibniz rule of derivation:

pil
∂
∂x
Al − ∂

∂x
(AlPl) = −Al

∂
∂x
pil −

R y=hl
y=0

∂
∂x
p0l(y)b(y)dy
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3.2 Y-axis momentum balance
And we now have to make a choice in the modelling of ∂

∂x
p0l(y) in order to evaluate the integral in

the right-hand side. We will use for this a local momentum balance in the y-direction. ul and vl are
respectively the axial and transverse component of the local liquid velocity.

ρl

h
∂
∂t
vl + ul

∂
∂x
vl + vl

∂
∂y
vl

i
= − ∂

∂y
pl − ρlg cosβ +

∂
∂x
τxy +

∂
∂y
τ yy

with the stress tensors taken as τxy = µ∗l
³

∂
∂y
ul +

∂
∂x
vl
´
and τ yy = 2µ∗l ∂

∂y
vl with µ∗l being the equiva-

lent turbulent viscosity. The exact value of µ∗l is highly uncertain, but is not required to get qualitative
results. Hence we can express the pressure within the liquid phase by:

p0l(y) = ρlg cos β (hl − y) + ρl
R y0=hl
y0=y ϕ(x, y0)dy0 with

ϕ(x, y) = ∂
∂t
vl + ul

∂
∂x
vl + vl

∂
∂y
vl − ν∗l

³
∂2

∂x∂y
ul +

∂2

∂x2
vl + 2

∂2

∂y2
vl
´

Differentiating against x, using the Leibniz rule and integrating over y yields:R y=hl
y=0

∂
∂x
p0l(y)b(y)dy = ρl

Z y=hl

y=0

g cosβ
∂hl
∂x

b(y)dy| {z }
I1

+ ρl

Z y=hl

y=0

ϕ(x, hl)
∂hl
∂x

b(y)dy| {z }
I2

+ρl

Z y=hl

y=0

ÃZ y0=hl

y0=y

∂

∂x
ϕ(x, y0)dy0

!
b(y)dy| {z }

I3

Which gives, summing up the previous relations,

pil
∂
∂x
Al − ∂

∂x
(AlPl) = −Al

∂
∂x
pil − I1 − I2 − I3

I1 = ρlAl
∂hl
∂x
g cosβ

I2 = ρlAl
∂hl
∂x
ϕ(x, hl)

I3 = ρl
R y=hl
y=0

³R y0=hl
y0=y

∂
∂x
ϕ(x, y0)dy0

´
b(y)dy

ϕ(x, y) = ∂
∂t
vl + ul

∂
∂x
vl + vl

∂
∂y
vl − ν∗l

³
∂2

∂x∂y
ul +

∂2

∂x2
vl + 2

∂2

∂y2
vl
´

The first term I1 corresponds to the hydrostatic term, while I2 and I3 contain the contribution
of the transient y-axis acceleration terms. It is now clear that some drastic approximations will be
needed in order to reach a simple and useful expression for I2 and I3.

3.3 Making assumptions on the velocity profile
3.3.1 Velocities at the crest
We can use the following exact relation which simply expresses continuity at the interface:

vl(x, hl) =
∂hl
∂t
+ ul(x, hl)

∂hl
∂x

The term I2 represents the variation of the transient acceleration terms due to a variation in the
water level. Therefore we can neglect the higher order diffusive terms in the expression of ϕ(x, hl),
as well as the vl ∂∂yvl term, supposed small compared to

¡
∂
∂t
+ ul

∂
∂x

¢
vl.

ϕ(x, hl) ≈
£
∂
∂t
+ ul

∂
∂x

¤
vl(x, hl)

Expressing the result as a similar way as in [Banerjee S., 1980]
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ϕ(x, hl) ≈
£
∂
∂t
+ ul(x, hl)

∂
∂x

¤2
(hl)

Now, the remaining choice is to pick a value for ul(x, hl). For a turbulent flow within a pipe, any
value between U(x) and 1.2 U(x) is acceptable for ul(x, hl). The simplest expression gives:

ϕ(x, hl) ≈
£
∂
∂t
+ Ul(x)

∂
∂x

¤2
(hl)

I2 = ρlAl
∂hl
∂x

£
∂
∂t
+ Ul(x)

∂
∂x

¤2
(hl)

3.3.2 Bulk velocities
In order to evaluate I3 we have to find an easily integrable expression for ϕ(x, y0).

• As already seen, the y component of the liquid velocity is given at the crest by:
vl(x, hl) =

∂hl
∂t
+ ul(x, hl)

∂hl
∂x
≈ ∂hl

∂t
+ Ul(x)

∂hl
∂x

We can now use the global continuity equation for the liquid phase
¡
∂
∂t
Al +

∂
∂x
(AlUl) = 0

¢
in

order to get another expression for vl(x, hl). Hence this equation can be put in the following non-
conservative form: ∂hl

∂t
+ Ul

∂hl
∂x
= −Al

A0l
∂
∂x
Ul with A0l defined as A0l =

dAl
dhl

. We can then deduce an
approximate expression for vl(x, hl):

vl(x, hl) ≈ −Al

A0l
∂Ul
∂x

Going one step further, Al

A0l
can be grossly approximated as hl:

vl(x, hl) ≈ −hl ∂Ul∂x

• While at the bottom of the liquid layer, the velocity profile must fit the conditions:
vl(x, 0) = 0
∂
∂y
vl(x, 0) = 0

• The liquid being assumed incompressible, in the bulk of the liquid layer, the evolution of vl is
governed by:

∂
∂y
vl(x, y) = − ∂

∂x
ul(x, y)

• We now present an approximation for the local velocity profile within the liquid phase according
to the elements mentioned above:

ul(x, y) ≈ Ul(x)

vl(x, y) ≈ −y ∂
∂x
Ul(x)

We had to give up the relation ∂
∂y
vl(x, 0) = 0 and to make the approximation Al

A0l
≈ hl, as well

as consider ul(x, y) ≈ Ul(x) valid for most values of y (acceptable for a turbulent flow). However,
we now have a coherent and easily integrable velocity profile that will hopefully prove to be accurate
enough to get qualitative results.
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3.3.3 Evaluation of I3
We still need to evaluate I3 = ρl

R y=hl
y=0

³R y0=hl
y0=y

∂
∂x
ϕ(x, y0)dy0

´
b(y)dy. Using the proposed bulk

velocity profile: ul(x, y) ≈ Ul(x) and vl(x, y) ≈ −y ∂
∂x
Ul(x), we reach:

∂
∂x
ϕ = −y

h
∂
∂t
+ Ul

∂
∂x
− ∂Ul

∂x
− ν∗l

∂2

∂x2

i ³
∂2

∂x2
Ul

´
And the above expression presents the advantage of being proportional to y, hence easily integrable.

I3 = −ρlγ
h
∂
∂t
+ Ul

∂
∂x
− ∂Ul

∂x
− ν∗l

∂2

∂x2

i ³
∂2

∂x2
Ul

´
with γ =

R y=hl
y=0

³R y0=hl
y0=y y0dy0

´
b(y)dy = 1

2
h2lAl − 1

2

R y=hl
y=0

y2b(y)dy

The integral
R y=hl
y=0

y2b(y)dy can be approximated by the explicit expression h2lR
2 sin(πhl

4R
) as

shown by figure 1.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

h
l
/R

integral
approximation

Figure 1:
R y=hl
y=0

y2b(y)dy and its approximation h2lR
2 sin(πhl

4R
), forR = 1

We then finally reach an explicit form of I3:

I3 = −ρlh2lAlη
h
∂
∂t
+ Ul

∂
∂x
− ∂Ul

∂x
− ν∗l

∂2

∂x2

i ³
∂2

∂x2
Ul

´
η = 1

2

h
1− 1

π
A
Al
sin(πhl

4R
)
i

3.4 Presented pressure closure: conclusion
The consideration of a transverse momentum balance instead of the usual hydrostatic approximation
in the two fluid model gives the following, after several drastic approximations:

pil
∂
∂x
Al − ∂

∂x
(AlPl) = −Al

∂
∂x
pil − I1 − I2 − I3

I1 = ρlAl
∂hl
∂x
g cosβ

I2 = ρlAl
∂hl
∂x

£
∂
∂t
+ U(x) ∂

∂x

¤2
(hl)

I3 = −ρlh2lAlη
h
∂
∂t
+ Ul

∂
∂x
− ∂Ul

∂x
− ν∗l

∂2

∂x2

i ³
∂2

∂x2
Ul

´
η = 1

2

h
1− 1

π
A
Al
sin(πhl

4R
)
i
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3.5 Linear stability analysis of the model
3.5.1 Dispersion equation
The Viscous Kelvin Helmholtz (VKH) criterion for determining the transition from stratified to

slug flow is derived from the linear stability analysis of the usual 2 fluid model. This criterion gives
a much better prediction than the Inviscous Kelvin Helmholtz (IKH) which grossly over-predicts the
stratified stability area. We are going to perform a linear stability analysis of the model in order to find
out when does the model predict transition from stratified to slug flow. We will use the same method
and notations as Barnea and Taitel did for the usual 2 fluid model in [Barnea D. & Taitel Y., 1993].
Starting from the same equations:

1. ∂
∂t
hl +Hl

∂Ul
∂x
+ Ul

∂
∂x
hl = 0

2. ∂
∂t
hl −Hg

∂Ug
∂x
+ Ug

∂
∂x
hl = 0

3.ρl
∂Ul
∂t
− ρg

∂Ug
∂t
+ ρlUl

∂Ul
∂x
− ρgUg

∂Ug
∂x
+
¡
ρl − ρg

¢
g cosβ ∂

∂x
hl − σ ∂3

∂x3
hl

+ρl
∂hl
∂x

£
∂
∂t
+ Ul

∂
∂x

¤2
(hl)− ρlh

2
l η
h
∂
∂t
+ Ul

∂
∂x
− ∂Ul

∂x
− ν∗l

∂2

∂x2

i³
∂2Ul
∂x2

´
= F

with F = −τ lSl
Al
+ τgSg

Ag
+ τ iSi

³
1
Al
+ 1

Ag

´
− ¡ρl − ρg

¢
g sinβ

Starting from equilibrium (all time derivatives and all spatial derivatives but the one of pressure
are null), we introduce a linear sinusoidal perturbation in the liquid level hl = hl + ehlei(ωt−kx) where
hl is the equilibrium liquid level before perturbation, ehl is the perturbation amplitude and ω and k are
the pulsation and wave number of the small wave perturbation. Similarly, all the other variables will
vary in the same way

³
Ul = Ul + eUle

i(ωt−kx) and Ug = Ug +fUge
i(ωt−kx)

´
. The liquid and gas mass

conservation equations will then give after differentiation:eUl =
£
ω
k
− Ul

¤ ehl
HlfUg =

£
Ug − ω

k

¤ ehl
Hg

The source term F is a function of 3 variables (Rl =
Al
A
, US

l , U
S
g ). HenceeF = ³ ∂F

∂Rl

´
US
l ,U

S
g

fRl +
³

∂F
∂US

l

´
RL,US

g

fUS
l +

³
∂F
∂US

g

´
RL,U

S
l

fUS
g

Reporting the expressions of eUl,fUg and eF into the transient holdup equation 3 gives the following
dispersion equation:

(1 + fk2)ω2 − 2 £ak + fUlk
3 − i

¡
b− 1

2
fν∗l k

4
¢¤
ω + ck2 −

³
d− fUl

2
´
k4 − ¡ek − fν∗lUlk

5
¢
i = 0

using the following Barnea and Taitel’s notations:
ρ = ρl

Rl
+

ρg
Rg

a = 1
ρ

³
ρlUl
Rl
+

ρgUg

Rg

´
b = 1

2ρ

·³
∂F
∂US

l

´
RL,US

g

−
³

∂F
∂US

g

´
RL,U

S
l

¸
c = 1

ρ

·
ρlUl

2

Rl
+

ρgUg
2

Rg
− ¡ρl − ρg

¢
g cosβHl

Rl

¸
d = σ

ρ
Hl

Rl

e = −1
ρ

³
∂F
∂Rl

´
US
l ,U

S
g

and introducing f = ρlh
2
l η

ρRl

Setting f = 0 yields Barnea and Taitel’s dispersion equation. Naturally the addition of higher
order derivatives in the system has brought some higher order terms into the dispersion equation.
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3.5.2 Stability
The dispersion equation is a second degree complex equation in ω. The model will predict that

stratified flow is stable if both roots of this equation have a negative imaginary part. We can find the
neutral stability condition (ωi = 0) by letting ω = ωR + iωi = ωR in the dispersion equation. We
then have:
2
¡
b− 1

2
fν∗l k

4
c

¢
ωR −

¡
ekc − fν∗lUlk

5
c

¢
= 0

and (1 + fk2c )ω
2
R − 2

£
akc + fUlk

3
c

¤
ωR + ck2c −

³
d− fUl

2
´
k4c = 0

The first equation directly yields ωR =
e−fν∗l Ulk4
2b−fν∗l k4 kc, hence in this "Full Viscous Kelvin Helmholtz"

analysis, the critical wave velocity at the inception of the instability is given by (bearing in mind that
both e and b are negative reals):

CF =
e− fν∗lUlk

4
c

2b− fν∗l k4c
Reporting this result in the second equation then gives the stability criterion:

stability ⇔ (CF − a)2 +
¡
c− a2

¢
+ k2c

h
f
¡
CF − Ul

¢2 − d
i
< 0

4 Compared analysis of the stability criteria

It is natural to compare the obtained stability criterion to the established criteria. It is well-known
that the stratified-slug transition is governed by the stratified stability for low gas densities, and by
the slug stability for high gas densities. In the present analysis only the liquid vertical momentum
balance has been taken into account and not the gas one. Hence we will suppose low gas densities in
what follows.

4.1 Milne-Thompson Lamb (MTL) and Inviscous Kelvin Helmholtz (IKH)
Based on inviscid hydrodynamics for a rectangular channel, this analysis was developed by Milne-
Thompson ([Milne-Thompson, 1949]) and Lamb([Lamb H., 1945]). It neglects the influence of the
shear stress but it takes into account the vertical momentum of the phases. Here is the obtained dis-
persion equation yielding the wave velocity C as a solution of a second degree equation (as recalled
in [Hurlburt E, Hanratty T., 2002]):

kρl(Ul − C)2 coth(khl) + kρg(Ug − C)2 coth(khg) = g cosβ
¡
ρl − ρg

¢
+ σk2

where hl and hg are respectively the liquid and the gas equilibrium height in the channel. Insta-
bility occurs when this equation admits a complex solution (then we have two conjugated roots, one
of which is unstable). Then comes the following stability criterion:

stability ⇐⇒ ∀k, (Ug − Ul)
2 <

µ
hg
ρg

tanh(khg)

khg
+

hl
ρl

tanh(khl)

khl

¶£
g cosβ

¡
ρl − ρg

¢
+ σk2

¤
And we can evaluate the wave speed at neutral stability as:

C =

ρl
hl

khl
tanh(khl)

Ul +
ρg
hg

khg
tanh(khg)

Ug

ρl
hl

khl
tanh(khl)

+
ρg
hg

khg
tanh(khg)

From this result we can draw the following conclusions:
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• Surface tension is a critical parameter, since if omitted this model will predict unconditional
instability for small wavelengths (k −→ +∞).

• Wave speed at neutral stability: whatever the considered wavelength, the wave speed at neutral
stability will always be close to the liquid velocity C ≈ Ul

• Many authors consider only the stability at long wavelengths (k −→ 0)

– At long wavelengths, the stability criterion then becomes:

stability ⇐⇒ (Ug − Ul)
2 <

³
hg
ρg
+ hl

ρl

´
g cosβ

¡
ρl − ρg

¢
This criterion is often noted Inviscous Kelvin Helmholtz or IKH. It corresponds to
(c− a2) < 0, in the stability analysis of the two-fluid model, as Barnea noted.

– This criterion was found again in [Taitel Y. & Dukler A., 1976] from the balance between
gravity and Bernoulli suction force on a single finite perturbation asUg <

q
ρl−ρg
ρg

g cosβhg

– and then an empirical
³
1− hl

D

´
term on the right-hand side was added by Taitel and Duk-

ler (leading to the Taitel and Dukler criterion) to get a better match with the experimental
data.

– As pointed out by Taitel, the IKH criterion can then be seen as the extreme limit for
transition: above this point, not only stratified flow will not be stable, but the liquid will
nearly instantly bridge the pipe, sucked by the Bernoulli force.

• But as shown in [Hurlburt E, Hanratty T., 2002], the most unstable wavelength is not infinite.
A better approach when ρl >> ρg is:

– assume coth(khg) ≈ coth(khl) ≈ 1
– then the criterion becomes: stability ⇐⇒ ∀k, (Ug − Ul)

2 < 1
ρg

£
g
k
cosβρl + σk

¤
– kcrit =

q
g cosβρl

σ
and (Ug − Ul)

2
crit = 2

ρl
ρg

q
σg cosβ

ρl

– for horizontal air-water kcrit ≈ 370 (λcrit ≈ 1.7cm)
– for a 1 inch pipe with hl

D
= 0.8 (worst case), we still have coth(khg) ≈ 1.05

– therefore the approximation was founded

The conclusion is that this inviscid analysis finally predicts a short wavelength instability, with

kcrit =
q

g cosβρl
σ

and
stability ⇐⇒ (Ug − Ul)

2 < 2 ρl
ρg

q
σg cosβ

ρl

This criterion is denoted asMTL forMilne-Thompson and Lamb.
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4.2 Viscous Kelvin Helmholtz (VKH)
This criterion is based on the linear stability analysis of the usual 2 fluid model (with the hydrostatic
approximation). It takes into account the viscous stresses but not the vertical momentum of the liquid.
This was first carried out in [Lin Y., Hanratty T., 1986] and [Barnea D. & Taitel Y., 1993]. We will
present this analysis using Barnea and Taitel’s notations, which yields a criterion identical to the one
found previously, to the difference that f is set to zero in the dispersion equation that becomes:

ω2 − 2 [ak − ib]ω + ck2 − dk4 − eki = 0

We can find the neutral stability condition (ωi = 0) by letting ω = ωR+iωi = ωR in the dispersion
equation. We then have :
2bωR − ekc = 0
ω2R − 2akc + ωR + ck2c − dk4c = 0
We find ωR =

e
2b
kc, hence in this ”Viscous Kelvin Helmholtz” analysis, the critical wave velocity

at the inception of the instability is given by:

CV =
e
2b

Reporting this result in the second equation then gives the stability criterion:

stability ⇐⇒ ∀k, (CV − a)2 + (c− a2)− dk2 < 0

This analysis concludes that due to the damping presence of surface tension, the first instability to
arise will always be an infinite wave-length (k = 0) instability. The wave-speed is determined by the
stress tensors only.

4.3 This model (Full Viscous Kelvin Helmholtz) (FVKH)
The critical wave velocity at the inception of the instability is a function of kc (bearing in mind that
both e and b are negative numbers):

CF =
e−fν∗l Ulk4c
2b−fν∗l k4c

With the following stability criterion:

stability ⇐⇒ ∀k, (CF − a)2 +
¡
c− a2

¢
+ k2

h
f
¡
CF − Ul

¢2 − d
i
< 0

This model can predict either long or short wavelength instability. Assuming ρl >> ρg gives
a ≈ Ul and the stability criterion can be expressed as:

stability ⇐⇒ ∀k,
µ

e
2b
−Ul

1− fν∗
l

2b
k4

¶2
(1 + fk2) + (c− a2)− dk2 < 0

• If f ¡ e
2b
− Ul

¢2
< d then the left-hand side will reach its maximum for kc = 0, which corre-

sponds to a long wavelength instability and then the model behaves like the VKH model with
the same stability criterion

¡
e
2b
− a

¢2
+ (c− a2) < 0, and the same critical wave velocity e

2b
.

• If f ¡ e
2b
− Ul

¢2
> d then the model will predict that the instability arises from a short wave-

length perturbation. The left-hand side grows until it reaches a maximum and then decreases
to −∞. The critical wave number kc has to be found numerically. For infinitely short wave-
lengths, the wave velocity will be equal to Ul (as in the MTL model), which is physical. The
highly uncertain parameter ν∗l does not influence the transition between long wavelength and
short wavelength instability, and influences only weakly the critical wave number kc.
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4.4 Sum-up of the various criteria
criterion stability condition
IKH (c− a2) < 0

MTL (Ug − Ul)
2 < 2 ρl

ρg

q
σg cosβ

ρl

VKH (BT)
¡
e
2b
− a

¢2
+ (c− a2) < 0

FVKH(this model) ∀k, (CF − a)2 + (c− a2) + k2
h
f
¡
CF − Ul

¢2 − d
i
< 0

Table 1: Stability conditions for the various presented criteria

criterion Critical wavelength Critical wave speed
IKH finite perturbation
MTL small(air/wat : 1.7 cm) ≈ Ul

VKH (BT) +∞ (long wave) e
2b

FVKH (this model) small to long e−fν∗l Ulk4c
2b−fν∗l k4c (Ul for small wave-
lengths, e

2b
for long wavelengths)

Table 2: Critical wave characteristics as predicted by the different criteria

5 Comparisons with experiments : wavelength of the critical perturbation

The wavelength of the "critical wave", the first growing wave appearing during transition to slug flow,
before any non-linear phenomenon has had time to occur, is a way to discriminate the models as
shown by the table above. However this observation is difficult to make and seldom mentioned by the
experimentators.

5.1 Fan et al. horizontal (atmospheric, 9.5 cm, air-water)
In [Fan Z., Lusseyran F., Hanratty T., 1993] experiments were made with air and water in a horizontal
9.5 cm pipe. They write:

"At US
g ≤ 3m/s, slugs appeared at values of hl in agreement with the viscous long-

wavelength linear Kelvin-Helmholtz stability analysis. Surprisingly, however, transition
was observed to occur by a different mechanism than this analysis suggests. The slugs
did not evolve directly from very long-wavelength waves. Rather they evolved indirectly
from short-wavelength gravity waves (approximately 8,5 cm). Theses waves double in
wavelength as they propagate downstream. This results agrees with a theory by Chen
and Saffman (1979,1980) and is the first observation of bifurcation in pipeline flows. The
growth in amplitude of λ1 ∼= 8.5 cm waves, as they propagate downstream, is accompa-
nied by an increase in wave velocity."

Table 3 presents experimental results from Fan et al. and numerical predictions using the proposed
model (with λi = λg and ν∗l = νl).

US
g√
gD

hl
D

C−Ul√
gD

λ1
D

λ2
D

Exp FVKH VKH Exp FVKH Exp FVKH Exp
1.0 0.69 0.62 0.67 0.49 0.35 0.89 1.18 1.78
2.0 0.52 0.53 0.59 0.48 0.32 0.88 1.02 1.76
3.0 0.42 0.47 0.54 0.49 0.30 0.90 0.91 1.81

Table 3: Critical holdup, wavelength and wave velocity, experiments from Fan et al. and predictions
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• The FVKH criterion is able to predict that the transition will be due to some short wavelength
instability and gives an accurate prediction of the wavelength of the original wave λ1 . The
liquid height prediction is also acceptable. VKH criterion predicts as always long wavelength
instability.

• The wave velocity is underestimated, but this is coherent with Fan’s observation that "the growth
in amplitude of λ1 ∼= 8.5 cm waves, as they propagate downstream, is accompanied by an
increase in wave velocity".

• Furthermore the authors show that for higher values of the gas superficial velocities, instabilities
will come from long-wavelength perturbations. This is somehow shown by FVKH to the dif-
ference that FVKH predicts this switch from small wavelength to long wavelength instabilities
much later, at about 12m/s.

5.2 Mikal Espedal’s PhD thesis (atmospheric, 6cm, air-water, inclined, US
g : 3 to 12m/s)

5.2.1 Espedal’s observations
In [Espedal M., 1998] the author has made some extensive wave measurements on a 6 cm di-

ameter pipe inclined upwards or downwards. The following table taken from Espedal sums up his
observations about wave characteristics:

wave region fdom[Hz] λdom[cm] comments
small amplitude 10− 20 3− 6 most small ampl. experiments
small amplitude 5− 7 10− 14 Low US

g and US
l for −0.5◦ and −1◦

large amplitude ≈ 6 10− 13
large amplitude 25− 35 3− 6 US

g = 10m/s also fdom = 1Hz and λdom = 1m
Table 4: Experimental observations from Espedal

5.2.2 The case inclined −0.1◦
Large amplitude waves appear only for high flowrates. The power spectrum shown in Figure 2

(US
g = 3 m/s and US

l = 0.1 m/s) is typical of the first line of the table above. One can clearly see
the presence of one wave of frequency f1 comprised between 10 to 20 Hz and wavelength ranging
between 3 to 6 cm progressively overtaken by another wave of frequency f2 = 1

2
f1 when the liquid

flowrate increases. This is fully coherent with Fan et al.’s observation of two waves with λ2 = 2λ1
and consistent with Hanratty’s theory of bifurcation (the wave doubles in wavelength while its speed
C = λf remains constant).
As shown by Figure 3 FVKH does not predict a sensibly different liquid height for transition

than the Taitel and Dukler’s or the VKH criterion. However for US
g < 13 m/s this criterion predicts

that the instability will come from a short wavelength perturbation, and for US
g > 13 m/s that the

instability will come from a long wavelength perturbation. Table 5 shows predictions by the FVKH
criterion. Wavelength and frequency of the λ1 wave are perfectly predicted. Experimentally the
transition between small wavelength and long wavelength perturbation happens sooner than predicted
by VKH: while at US

g = 8 m/s a 15 Hz wave is still dominating for low liquid flowrates, long
wavelength instabilities seem to be dominating when US

l come close to its transitional value. For US
g

equal to 10 and 12m/s, long wavelengths perturbations dominate for all liquid flowrates.
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Figure 2: Wave power spectra for US
g = 3m/s, US

l = 0.1m/s and β = −0.1◦ . Taken from Espedal.

Usg (m/s) Usl (m/s) hl/D C (m/s) lambda (m) f (Hz)
3 0.16 0.44 0.63 0.06 11.18
4 0.14 0.39 0.63 0.05 12.23
7 0.11 0.29 0.66 0.04 15.46
12 0.07 0.19 0.72 0.04 17.08
13 0.06 0.18 0.73 0.07 10.55
14 0.06 0.16 0.72 Infinite 0.00
18 0.02 0.09 0.68 Infinite 0.00
20 0.01 0.06 0.64 Infinite 0.00

Table 5: Predictions using the proposed model: critical liquid flowrate, liquid height and wave characteristics at transition

5.3 B. Woods’ thesis (air-water, atmospheric, 7.63 cm)
In [Woods B., 1998] the author made experiments to study slug initiation. He could identify 3 differ-
ent mechanisms for slug formation. For zone 1 (low liquid flowrates and U < 4m/s) he writes:

"At low gas velocities, slugs evolve from small wavelength (16 to 20 cm), large amplitude
waves in horizontal flows. The growth of this wave evolves into a slug when it reaches
the top of the pipe. These waves obtain their energy from smaller wavelength waves (8 to
10 cm) through a non-linear growth mechanism. (page iii)
High frequency waves are generated near the inlet. Energy becomes concentrated in
waves with f=10-12 Hz at L/D=21.5. As already shown by Fan et al. (1993), these waves
grow and bifurcate, as seen in the spectrum at L/D=49,1. The behavior of the 5 Hz waves
that result from this bifurcation is very sensitive to the height of the stratified flow." (page
50).

This observation confirms Fan et al.’s and Espedal’s works. Woods then indicates that for US
g =

1.8m/s and US
l = 0.12m/s, the wavelength of the dominating wave is 16− 20 cm with a frequency

of 5 Hz (hence a velocity ranging from 0.8 to 1 m/s). This corresponds of course to λ2, with
λ2 = 2λ1 and f2 = 1

2
f1. For this case FVKH predicts λ1 = 8.4 cm, and C = 0.52 m/s. The

wavelength is accurately predicted but the velocity is underestimated. But this is again coherent with
Fan’s observation that the waves accelerate when they grow.
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Figure 3: Predicted transition by different criterias, for US
g = 3m/s, US

l = 0.1m/s and β = −0.1◦

6 Numerical benefits

The two-fluid model has recently started to be used to automatically track the initiation of slugs.
([Issa R., Kempf M., 2003]). The code captures automatically the waves which will grow to become
slugs. In order to be able to match experiments (moment and location of the slug initiation, wave-
length of the critical wave...), some terms which modify small waves growth, like the one proposed,
might have to be added. The proposed terms are also a more efficient way to face the ill-posedness
that arises when the slugs are initiated numerically than just implementing surface tension. For a nor-
mal two-fluid model use (large grid size to track only global mass transport), the proposed additional
terms have strictly no influence.

7 Conclusions

The FVKH model seems to predict quite accurately the wavelength of the perturbation responsible
for the initiation of slugs. The model predicts also that for high gas superficial velocities, long wave-
lengths will be responsible for the transition, though this long-short wavelengths transition happens
earlier than predicted. In the case of Espedal, who has studied wavy flow (hence at liquid flowrates
lower than necessary for transition to slug flow), the velocity of the wave is accurately predicted.
The velocity of the wave is under-predicted in the case of Woods and Fan who have studied tran-
sition (hence waves growing until transition to slug flow happens), though this is justified by Fan’s
observation that the waves accelerate when growing. The bifurcation phenomenon (wave doubling in
wavelength and halving its frequency, keeping the same speed) is intrinsically a non-linear effect and
is not predicted by linear analysis.
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