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Sammendrag

Hulrom p̊a innsiden av juletrær brukt i olje- og gassnæringen inneholder som regel

væske, og er dermed utsatt for varmetap i form av naturlige konveksjonsprosesser som

oppst̊ar p̊a grunn av temperaturforskjeller mellom produksjonsfluidet og vannet p̊a

havbunnen. Slike varmeoverføringsprosesser blir i dag ofte forenklet ved å anta at

de naturlige konveksjonsprosessene kan tilnærmes et fast legeme med en modifisert

varmeledningsevne.

Termiske analyser av et sylinderformet hulrom best̊aende av vann ble i denne

oppgaven utført ved hjelp av ANSYS CFX. Analytiske og numeriske løsninger av

varmeoverføringsproblemet ble utarbeidet for en vertikal, lukket konsentrisk sylinder

med dimensjonsforholdene D
o

/D
i

= 3/2 og H = 10D
o

. Den indre vertikale sylin-

derveggen holdt en konstant, høy temperatur, og forsøk ble utført med seks forskjel-

lige temperaturer varierende fra 50-100�C. Den ytre vertikale sylinderveggen holdt

en kostant temperatur lik 4�C. Øvre og nedre sylindervegg var isolert gjennom alle

forsøkene. Fluidet var lokalisert i ringrommet mellom den indre og ytre sylinderveg-

gen.

Den analytiske losningen baserte seg p̊a fire litterære korrelasjoner, som hver es-

timerte et Nusselt tall som ble brukt til å beregne varmefluks og varmeovergangstall

for hvert temperaturtilfelle. To av korrelasjonsligningene var basert p̊a rektangulære,

lukkede beholdere, mens de to andre var basert p̊a vertikale, konsentriske sylindre.

De numeriske verdiene baserte seg p̊a to modeller: 1) en forenklet konduksjons-

modell med modifisert varmeovergangstall og 2) en modell basert p̊a naturlig kon-

veksjon. Den forenklede konduksjonsmodellen tok utgangspunkt i Nusselt tallene

beregnet fra korrelasjonene for å kalkulere det e↵ektive varmeovergangstallet. Den

analytiske løsningen ble s̊a sammenlignet med de numeriske resultatene.

B̊ade en 2D- og 3D-modell ble utviklet, testet og sammenlignet. For den forenklede

modellen basert p̊a konduksjon, estimerte begge modellene tilnærmet samme varme-

fluksverdier som forventet. En forskjell p̊a 20% ble observert mellom modellene for fri

konveksjon for en indre veggtemperatur p̊a 100�C, hvor 2D-modellen beregnet lavere

varmefluksverdier sammenlignet med 3D-modellen. Den forenklede modellen overes-

timerte varmefluksen i hulrommet med 60% i forhold til resultatene oppn̊add med

3D-modellen for fri konveksjon. Korrelasjonen som antok varmefluksverdier nærmest

3D-modellen for fri konveksjons-prosessen, hadde et avvik p̊a 11%. Korrelasjonene for

rektangulære, lukkede beholdere, ble ansett som utilstrekkelig for studiens modell.

i



Abstract

A free convective heat transfer model was developed in ANSYS CFX for trapped

fluid volumes located inside subsea christmas trees. Analytical and numerical solutions

to the heat transfer problem were generated for a vertical concentric cylinder enclosure

containing water in the annulus, with aspect ratios D
o

/D
i

= 3/2 and H = 10D
o

. The

inner, vertical wall of the cylinder was fixed at a high temperature whereas the outer

cylinder wall was fixed at 4�C. Di↵erent cases were investigated, with the temperature

of the inner cylinder wall varying from 50 to 100�C. The upper and lower walls were

insulated.

The analytical solution was based on four literature correlations, each estimating

a Nusselt number that was used to compute the respective heat flux and heat transfer

coe�cient in each case, for comparison with the numerical results. Two of the correla-

tions were based on rectangular enclosures, while the other two were based on vertical

concentric cylinders. Numerical results were obtained with two models: 1) a simplified

model with an e↵ective thermal conductivity and 2) a fully resolved model taking into

account the free convection e↵ects. The simplified model based its e↵ective thermal

conductivity on the Nusselt numbers obtained from the literature correlations.

A 2D and a 3D model were developed, tested and compared. For the simplified

model based on conduction, the 2D and 3D model estimated approximately the same

heat flux values as expected. The fully resolved 2D and 3D model di↵ered with

up to 20% for a inner wall temperature of 100�C. The simplified conduction model

overestimated the heat flux with up to 60%, while the correlation that predicted heat

flux values closest to the fully resolved CFD model, underestimated the heat flux

with 11%. The correlations for rectangular boxes were concluded as inadequate in

predicting the heat flux across the annulus for the free convection model developed in

this study.
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1 Introduction

Subsea christmas trees have to face di↵erent circumstances during operation. The compo-

nents are exposed to changing temperatures and pressures, which influence the behaviour

of the materials and fluids. The climate is one of the biggest challenges in the oil and gas

industry, as it is impossible to control. Therefore, the surroundings have to be investigated

carefully, so that the subsea components can be built and produced thereafter. Properties

of surrounding substances play an important role when investigating components that are

to be placed on the seabed, and an investigation involves performing a thermal analysis

that reveals information about the temperature distribution of the relevant components

under the relevant circumstances.

1.1 Background

Investigation of the cooldown behaviour of the subsea components can be complex and

time consuming, especially if large models are to be simulated using computational fluid

dynamics (CFD). Assumptions and simplifications are normally utilized to reduce the

complexity and hence e↵ort that is related to an exact CFD-analysis of the problem. One

of the major simplifications related to a thermal investigation of subsea christmas trees, is

an approximation of the free convection e↵ects appearing in trapped fluid volumes inside

the tree. This simplification assumes that the free convection e↵ects can be treated as

a solid medium with a modified thermal conductivity, and is based on the trapped fluid

flow, thermal properties and parameters, the size, and the shape of the trapping cavity.

This simplification will of course impact the accuracy of the results, but its factor will vary

from case to case, depending on the process conditions such as temperature gradients and

volume of cavity. Quantification of thermal performance of subsea equipment is essential

for insulation design and process evaluation.

1.2 Aim and Objectives

The aim of the study was to validate the results of the modified thermal conductivity

methodology and a numerical solution which fully resolves the trapped fluid volumes

accounting for actual flow conditions, and compare these to an analytical solution of the

problem. The following tasks were to be considered:

1. Literature study to establish the existence of and validity of analytical correlations

and current state-of-the-art approximation techniques

2. Familiarization with a CFD tool (CFX) and heat transfer approaches involved in

the thermal analysis of subsea christmas trees. Understanding of the physics and

models for free convection

1



3. Validation of the simplified methodology versus the approach with the fully resolved

flow in the trapped fluid cavity and with free convection

4. Validate the fully resolved flow approach versus the analytical solutions for the flow

velocities and develop best practices for the computation mesh generation and the

CFD setup

5. Establish validity criteria for the modified thermal conductivity method
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2 Theory

Wherever there exists a temperature gradient, there will also exist heat transfer. It is

common to distinguish between certain heat transfer phenomena. For instance, conduc-

tion, convection, advection and thermal radiation are all related to heat transfer, but

describes di↵erent heat transfer features or situations. In thermal radiation for instance,

energy is emitted by a matter via electromagnetic waves or photons due to changes in elec-

tron configurations. In conduction, heat is transferred due to an energy gradient, causing

molecular activity in either solids, fluids or gases. Conduction is expressed by Fourier’s

law given by Incropera et al. (2007):

q
00
s = �kf

@T

@y
(1)

Convection is a term that combines conduction and energy transfer in fluid or gas due

to bulk or macroscopic motion, namely advection (Smith, 2009). It is related through

Newton’s Law of Cooling given by:

q
00
s = h(Ts � T1), (2)

where h is the heat transfer coe�cient (see Section 2.2), Ts is the surface temperature and

T1 is the ambient temperature or the temperature of the fluid or gas.

Convection tends to be classified into forced and free convection. In this study, the heat

transfer occuring in the trapped fluid volumes happens naturally without any influence by

external forces, and will therefore be categorized as free convection.

2.1 Natural Convection

Heat transfer where fluid motion is caused by density variations resulting from tempera-

ture distributions, is classified as free or natural convection. This occurs when a surface

at temperature Ts interacts with a fluid at temperature T1. When these temperature

distributions are present, there will be a density gradient present, hence there will be fluid

motion. The movement is due to a combination of local changes in density and a body

force that is proportional to density (Incropera et al., 2007). The local body forces, such as

gravitational and centrifugal forces, make convection currents originate (Sachdeva, 2009).

These currents are dependent upon the system conditions, as well as whether the tem-

perature gradient is stable or unstable. This means that the presence of a fluid gradient

in a gravitational field does not ensure the existence of free convection currents. An un-

stable temperature gradient occurs if the temperature di↵erences exceeds a critical value

and buoyancy forces are dominating over the viscous forces, that is the buoyancy forces

overcome the retarding influence of the viscous forces (Incropera et al., 2007). The density

will then decrease in the direction of the gravitational force. If the density gradient does

3



not decrease in the direction of the gravitational force, conditions are stable and there is

no bulk fluid motion, meaning the heat transfer occurs by conduction.

As convection could be divided into two categories, free convection can be further bro-

ken down into internal and external flows. If the flow is enclosed by solid boundaries, the

flow is said to be internal, while an external flow does not have any boundaries (Burmeister,

1993). If an internal flow interacts with a surface, or boundary, at a higher temperature,

the fluid close to the surface will be less dense due to fluid expansion because of increasing

temperatures, causing it to rise. As soon as this happens, a boundary layer will develop.

Since the fluid is enclosed, the rising fluid will entrain fluid from the quiescent region,

which originally was at rest (v = 0 m/s). In the opposite case, that is the fluid is at a

higher temperature than the surface, the fluid motion will be downwards as a result of

heat transfer from the fluid to the surface, making the fluid contracting, hence becoming

more dense. In both cases, a free convection boundary layer will develop as soon as the

fluid rises or falls.

The general analysis of natural convection is complicated, and sometimes the only way

to determine the heat transfer coe�cient is through experimentation. CFD has however

made it possible to determine heat transfer due to free convection by performing numerical

simulations.

2.1.1 Free Convection in Enclosures

Buoyancy forces are the driving force for circulation of a fluid or gas, triggered by a density

gradient. In an enclosure not influenced by any external forces, the density gradients will

exist only if there are temperature gradients. If these are present, the fluid or gas within the

enclosure will have local velocites. If there is a hot isothermal wall and a cold isothermal

wall present in the enclosure, fluid or gas will generally rise when in contact with the

hot side, and fall when interacting with the cold one, creating circulations transferring

heat from the hot side to the cooler side. If the buoyancy forces are not large enough

to overcome the viscous forces, there will be no circulation, and heat transfer across the

enclosure will essentially be by conduction (Jiji, 2009). Heat flux due to circulation may

be determined from Eq. (2), Newton’s law of cooling.

Simple boundary layer theory is sometimes not su�cient in treating internal convec-

tion. The reason why is because the entire fluid or gas in the enclosure will engage and

impact the convection (Faghri et al., 2010). When looking at an annular enclosure formed

by two concentric cylinders at di↵erent temperatures, the flow will be circulating in the

enclosure and the problem will be axisymmetric. The circulation will transfer heat from

the hot side to the cold side (Jiji, 2009).

It is common today to determine the heat transfer coe�cient based on literature cor-

relations (Jiji, 2009). Literature will typically contain a lot of di↵erent correlations for the

Nusselt number (see Section 2.4), which in turn is used to find the heat transfer coe�cient.

4



These parameters are linked through

Nu =
hL

k
, (3)

where h is the heat transfer coe�cient, L is the characteristic length and k is the thermal

conductivity. Eq. (3) describes a simple 1D model. The correlation equations may di↵er

a lot in form from case to case because the Nusselt number depends on the geometry and

flow conditions and is therfore almost impossible to generalize.

2.2 Boundary layer

Generally the motion and energy equations in heat and mass transfer problems are built

upon the concept of boundary layers, known as a thin region near a surface where the

temperature and velocity gradients are large (Sachdeva, 2009). The region outside the

boundary layer have velocity and temperature gradients nearly equal to the flow field’s

free stream value. The thickness of the boundary layer may be defined as the distance

from the surface at which the local velocity or temperature reaches 99% of the external

velocity or temperature. In general, both the velocity boundary and layer and thermal

boundary layer exist simultaneously (Sachdeva, 2009).

Velocity boundary layer When a fluid interacts with a surface, it is the surface ge-

ometry together with the flow conditions that determines the behaviour of the fluid. If

the surface acts as a no slip wall, the velocity of the fluid relative to the wall is reduced

to zero, due to viscosity µ, and shear stresses ⌧s. Fluid particles will then retard in the

adjoining fluid layers, until the e↵ect becomes negligible. The distance from the surface to

where this retarding process declines is called the boundary layer thickness, which grows

with increasing distance from the leading edge of the surface. The surface shear stress, ⌧s,

is given from Incropera et al. (2007) by:

⌧s = µ
@u

@y

����
y=0

(4)

The velocity boundary layer stems from its relation to the surface shear stress, and hence

surface frictional e↵ects must be present. The local friction coe�cient is a dimensionless

parameter which determines the surface frictional drag and is given as

Cf ⌘ ⌧s
⇢u2

1/2
(5)
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Thermal boundary layer When a fluid interacts with a surface at a di↵erent tem-

perature, temperature distributions will occur and a thermal boundary layer will develop.

Fluid particles in contact with the surface will achieve thermal equilibrium, and exchange

energy with the particles in the adjoining fluid layers. A temperature gradient is in this

way developed in the fluid, creating the thermal boundary layer region. The boundary

layer grows with increasing distance from the leading edge, as the heat transfer penetrate

further into the free stream (Incropera et al., 2007). The thermal boundary layer and the

heat transfer coe�cient are related through the local surface heat flux. If the surface is a

no slip wall, there is no fluid motion relative to the surface and the energy transfer occurs

by conduction (Incropera et al., 2007).

Both thermal and velocity boundary layers are presented in the illustration in Fig. 1.

Thermal boundary layer

Velocity boundary layer

g

T

u

quiescent fluid, u = 0

T_wall

x

y

Figure 1: Natural convection over a vertical flat plate for Pr >1, illustrating the
thermal and velocity boundary layer that will arise along the plate

Although velocites tend to be rather small in free convection problems, the boundary

layers are not necessarily restricted to laminar flow. Hydrodynamic instabilities may arise,

leading to transition from laminar to turbulent flow (Incropera et al., 2007). The di↵erence

between them is that the laminar flow is highly ordered, while the turbulent boundary

layer is more chaotic and irregular (Incropera et al., 2007). Convection transfer rates and

surface friction depend strongly on the flow conditions, so having knowledge about the

flow characteristics is essential. In many cases, both turbulent and laminar flow conditions
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will occur in the boundary layer development, with the latter preceding the turbulent

section. In this case there will be a transition zone dividing the two boundary layers,

across which the conversion will occur. The conversion is due to triggering mechanisms,

such as unsteady flow structures and/or disturbances originating from fluctuations in the

free stream or it may be induced by surface roughness or surface vibrations (Incropera

et al., 2007).

2.3 Governing Equations

2.3.1 Generalized Governing Equations

When considering flow of a viscous fluid, the law about matter not being created nor

destroyed applies. For steady flow, this law requires that the flow entering a control

volume is equal to the flow leaving the control volume. Because of conservation of mass,

the net rate at which mass enters the control volume must equal zero at every point in

the fluid (Incropera et al., 2007). This is known as the continuity equation and can for a

2D problem be written as:
@u

@x
+

@v

@y
= 0 (6)

where u and v are the velocities in the x- and y-directions, respectively. A second funda-

mental law concerning the flow of a viscous fluid is Newton’s Second Law of Motion. This

law states that the sum of all forces acting on the control volume must equal the net rate

at which momentum leaves the control volume (outflow - inflow) (Incropera et al., 2007).

Applying Newton’s second law of motion in the x- and y-directions to a di↵erential control

volume in the fluid (Incropera et al., 2007), yields

⇢(u
@u

@x
+ v

@u

@y
) = �@p

@x
+ µ(

@2u

@x2

+
@2u

@y2
) + X (7)

⇢(u
@v

@x
+ v

@v

@y
) = �@p

@y
+ µ(

@2v

@x2

+
@2v

@y2
) + Y (8)

Just as with mass, energy can neither be created nor destroyed, but only change form

from one to another. As a third law and part of the governing equations family is the

thermal energy equation. When this equation is applied to a di↵erential control volume

in a moving fluid under steady conditions, it expresses that the net rate at which energy

enters the control volume, plus the rate at which heat is added, minus the rate at which

work is done by the fluid in the control volume (Incropera et al., 2007), is equal to zero.

For an incompressible fluid with constant properties, this yields:

⇢cp

✓
u

@T

@x
+ v

@T

@y

◆
= k

✓
@2T

@x2

+
@2T

@y2

◆
+ µ�+ q̇ (9)
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where q̇ is the thermal energy generation which will be zero. µ� is the viscous dissipation

defined as

µ� ⌘ µ

(✓
@u

@y
+

@v

@x

◆
2

+ 2

"✓
@u

@x

◆
2

+

✓
@v

@y

◆
2

#)
(10)

The governing equations constitutes the Navier Stokes equations which are common

to use in CFD-analyses. When these are solved three-dimensionally, an extra equation is

needed for the z-momentum as well as extra terms added to the continuity equation and the

energy equation accounting for fluid movement in this direction also. The Navier Stokes

equations describe fluid motion, and can be used for solving unsteady and compressible

flow problems as well as steady and incompressible flow problems.

2.3.2 Boundary Layer Equations

To be able to solve Eqs. (6), (7), (8) and (9), information relative to the problem is

essential. For free convection problems, the following may be approximated according to

Jiji (2009):

1. Density is assumed constant except in evaluating gravity forces

2. An approximation relating density changes to temperature changes is used in for-

mulating buoyancy force in the momentum equation

3. Dissipation e↵ect is neglected in the energy equation

If looking at a vertical plate with length L = x, where the gravity force acts in the

negative x-direction, and a laminar, steady, two-dimensional and incompressible flow, but

with the exception as assumption number 1 in the above list, Eq. (7), with body force

X = �⇢g, can be written as

u
@u

@x
+ v

@v

@y
= �1

⇢

dp1
dx

� g + ⌫
@2u

@y2
, (11)

where dp1/dx is the free stream pressure gradient, that is the pressure in the the quiescent

region outside the boundary layer where u = 0 m/s (Incropera et al., 2007). The pressure

gradient then reduces to
dp1
dx

= �g⇢1 (12)

Eq. (12) indicates that the change in pressure over a distance dx is equal to the weight

per unit area of the fluid element (Sachdeva, 2009). Substituting Eq. (12) into (11), the

expression becomes

u
@u

@x
+ v

@v

@y
= g

✓
⇢1
⇢

� 1

◆
+ ⌫

@2u

@y2
= g

✓
⇢1 � ⇢

⇢

◆
+ ⌫

@2u

@y2
(13)
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Flow originates because of the variable density ⇢, and if these variations are due only

to temperature variations, the buoyancy force (first term on right-hand side) may be

related to a fluid property known as the volumetric coe�cient of thermal expansion, or

the compressibility factor � (Incropera et al., 2007):

� = �1

⇢

✓
@⇢

@T

◆

p

(14)

The change in density, �⇢ = ⇢1 � ⇢, can be expressed in terms of this coe�cient as:

�⇢ = �⇢��T (15)

)
✓

⇢1 � ⇢

⇢

◆
= �� (T1 � T ) (16)

Eq. (15) can be simplified to what is known as the Boussinesq approximation, that is

assumption 2, relating density changes to temperature changes:

⇢1 � ⇢ ⇡ ⇢� (T � T1) (17)

Substituting Eq. (15) into (13) the x-momentum equation becomes

u
@u

@x
+ v

@v

@y
= g�(T � T1) + ⌫

@2u

@y2
(18)

Assumption 3 in the list is exploited in the energy equation. The viscous dissipation

expresses the net rate of work done by the element on the surroundings (Jiji, 2009), and

may be neglected due to the small velocities that are associated with free convection (In-

cropera et al., 2007). It is assumed that the x-direction velocity and temperature changes

from their surface values to their free stream values very fast, or over small distances,

which in turn will result in an assmuption about small boundary layer thicknesses relative

to the size of the object it develops upon. The gradients normal to the object’s surface

are much larger than those along the surface, meaning these can be neglected. Hence, the

energy equation becomes

u
@T

@x
+ v

@T

@y
= ↵

@2T

@y2
, (19)

where ↵ = k/⇢cp. Thus, the governing equations for two-dimensional laminar boundary

layer free convection are the continuity equation (6), x-momentum (18) and the energy
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equation (19), summarized as:

Continuity :
@u

@x
+

@v

@y
= 0

x � momentum : u
@u

@x
+ v

@v

@y
= g�(T � T1) + ⌫

@2u

@y2

Energy : u
@T

@x
+ v

@T

@y
= ↵

@2T

@y2

2.3.3 Governing Equations Cylindrical Coordinates

The aspect ratio of a cylinder will impact the thermal boundary layer thickness. If the

diameter is much larger than the height, the thermal boundary layer thickness will be

much smaller than the radius of the cylinder (Faghri et al., 2010). When this is the case,

correlations for natural convection over a vertical flat plate can be used to calculate the

natural convection over a vertical cylinder according to Faghri et al. (2010), because the

flow over the cylinder will behave similar to the flow over a plate. The limits for when

this is applicable are referred to as thick cylinder limit and thin cylinder limit. For fluids

with Pr > 1, the condition under which the correlation for heat transfer over a flat plate

is applicable is D/H > Ra
�1/4
H . If D/H < Ra

�1/4
H however, the boundary layer thickness

will be comparable to the radius of the cylinder and the e↵ect of the surface curvature

must be taken into account (Faghri et al., 2010). A cylindrical coordinate system is then

needed, as given below:

Continuity :
@u

@x
+

1

r

@(vr)

@y
= 0 (20)

Momentum : u
@u

@x
+

v

r

@(ur)

@r
= g�(T � T1) + ⌫

1

r

@

@r

✓
r
@u

@r

◆
(21)

Energy : u
@T

@x
+

v

r

@(Tr)

@y
= ↵

1

r

@

@r

✓
r
@T

@r

◆
(22)

The aspect ratio of the heigth of the cavity to the spacing between the hot and cold side,

H/�, is closely related to the heat transfer and will be one of the key parameters governing

the Nusselt number (Jiji, 2009).

2.4 Dimensionless Parameters

Knowing values of di↵erent dimensionless parameters can be very useful when investigating

heat transfer problems, as they can predict the fluid’s behaviour. A parameter essential

in boundary layer theory, is the one representing the ratio of the inertia to viscous forces,
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namely Reynolds number, given by (Incropera et al., 2007):

ReL =
⇢u1L

µ
(23)

For large values of ReL, the inertia forces are expected to dominate, while for small values of

ReL, the viscous forces are the dominating ones. This means that for small ReL, the viscous

forces are large relative to the inertia forces, so that small disturbances are prevented

to amplify in the streamwise direction, maintaining the laminar flow. With increasing

ReL, however, the inertia forces dominate, making the viscous forces less significant in

comparison. The e↵ect of this can be that small disturbances in the flow is amplified,

so that transition is likely to occur (Incropera et al., 2007). The magnitude of Reynolds

number will also a↵ect the velocity boundary layer thickness �. Increasing ReL indicates

intertia forces influencing more than viscous forces, causing the e↵ects of viscosity not

penetrating as far into the free stream, which in turn diminishes the value of �. For flow in

a circular tube, laminar flow is in general defined as ReD . 2300 (Incropera et al., 2007).

Reynolds number is an important parameter in forced convection, where the relative

motion between the fluid and the surface is maintained by external means. When it

comes to natural convection, however, there is another important parameter one will have

to pay attention to, called Grashof number. Grashof number is sort of natural convection’s

Reynolds number, and is defined as Re2. As mentioned in section 2.1, the only driving

force in free convection is the buoyancy force. The Grashof number provides a measure

of the ratio of buoyancy forces to viscous forces in the velocity boundary layer (Sachdeva,

2009) and is given by

GrL ⌘ g�L3(Ts � T1)

⌫2

, (24)

If both forced and free convection e↵ects are present at the same time, the situation

becomes more complex. The combination of these will have to be considered when

GrL
Re2L

⇡ 1 (25)

If Eq. (25) is much less than 1 (⌧ 1), forced convection is of greater influence than the

free convection e↵ects, which then may be neglected. Conversely, if Eq. (25) is much

greater than 1 (� 1), one will only have to consider the free convection e↵ects and can

neglect the forced ones.

Another important parameter in convection problems is the Nusselt number, given as

the product of the heat transfer coe�cient h and characteristic length L, divided by the
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thermal conductivity of the fluid kf :

Nu ⌘ hL

kf
, (26)

and provides a measure of the convection heat transfer occuring at the surface, that

is the ratio of convection to pure conduction heat transfer (Incropera et al., 2007). It

is equal to the dimensionless temperature gradient and is therefore of great significance

when investigating the thermal boundary layer. As Eq. (26) implies, knowledge of Nu can

help find the local convection coe�cient h, which in turn can help find the local heat flux.

An empirical correlation for the Nusselt number for the relevant geometry is therefore

e↵ective in convection problems.

If the free convection e↵ects are of greater influence than the forced convection e↵ects,

that is GrL/Re2L � 1, the Nusselt number is a function of the Grashof number Gr and

the Prandtl number Pr, written as

Nu = f(Pr,Gr) (27)

The Prandtl number is the ratio of the kinematic viscosity to the thermal di↵usivity, and

is given by

Pr =
⌫

↵
=

cpµ

k
(28)

As opposed to the Nusselt number, the Prandtl number is only dependent on the fluid

and its state. One can see from Eq. (28) that Pr ⌧ 1 indicates that the thermal di↵usivity

dominates, while Pr � 1 indicates that the momentum di↵usivity dominates.

Sometimes a parameter called Rayleigh number Ra is used instead of Grashof number

in free convection heat transfer. A critical value of the Grashof number is used to indicate

transition from laminar to turbulent flow in free convection (Sachdeva, 2009), and this

transition is common to correlate in terms of the Rayleigh number, which is the product

of the Grashof and Prandtl number:

RaL = GrL · Pr = g�(Ts � T1)L3

⌫↵
(29)

For vertical plates, the transition from laminar to turbulent flow may be given by a critical

Rax,c

The critical Rayleigh number Rac will depend on the geometry and aspect ratios. For

a rectangular parallelepiped cavity, Rohsenow et al. (1998) suggest that when H/L and

W/L ! 1, Rac ! 1708, and if H/L and W/L ! 0, Rac ! 106. Approximately the

same values are suggested for horizontal circular cavities also. This indicates that a small

aspect ratio yields a large critical Rayleigh number.
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3 Literature review

A Computational Fluid Dynamics (CFD) approach predicts the thermal performance of

subsea equipment by numerically determining the local convective coe�cients between

equipment and sea water.

Flow assurance is critical for subsea production due to the temperature and pressure

di↵erences between the seawater and the production fluid. Deepwater subsea installations

may be placed up to 3000 meters below topside, which corresponds to high operation

pressures ranging from 60 - 207 MPa (Lu et al., 2011). With operating temperatures

ranging from 149-177�C, this can be classified as a High Pressure and High Temperature

(HPHT) environment (Lu et al., 2011). The cold seawater surrounding the subsea instal-

lations cause large heat losses, and thermal insulation is required to minimize the losses

during production. The high pressure conditions are critical for hydrate formation, and

the insulation is also needed to prevent this from happening when temperatures decrease.

However, subsea components are of a complex nature, making it di�cult to insulate it fully

everywhere. This may cause cold spots to be created, which are spots experiencing greater

heat losses due to little or no insulation. The cold spots are a source to hydrate formation

and flow blockages, and hence unpreferable. Thermal insulation and accurate prediction

of temperature evolution during production and cool-down operations are therefore re-

quired, which calls for a reliable thermal analysis to ensure correct design and designated

thermal performance, together with structural reliability and production assurance. Seals

and electronic sensors are especially exposed to critical temperatures (Lu et al., 2011).

The Finite Element Analysis (FEA) approach is normally used in the thermal anal-

ysis for subsea equipment (Lu et al., 2011), where the well stream is regarded as a solid

body. This simplifies the analysis, by using an approximated value for the heat convection

between subsea components and surrounding seawater. This way, the convection contribu-

tion or trapped fluids are either ignored or estimated by empirical correlations. Another

common simplification frequently done in these analyses is treating thermal properties

as temperature-independent constants (Lu et al., 2011). Simplifications like these are all

contributors to introducing uncertainty to the result. With this approach, only the con-

duction equation is solved in the solid domain (Lu et al., 2011). An equivalent thermal

conductivity for the production fluid is introduced as an approximation to the real life

situation. Interactions between subsea equipment and surrounding environs use an ap-

proximation for the heat convection coe�cient through an empirical correlation (Lu et al.,

2011). Fluids trapped inside the subsea equipment are frequently assumed stationary and

treated as if behaving like solid bodies of equivalent heat conductivity. The problem is

that the heat transfer rate vary with the geometry and orientation of the enclosures, and

it is close to impossible to standardize its precise solution.

In contrast to FEA, the CFD approach solves both the conduction equation in the
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solid domain and the flow equations in the fluid domain, and in this way accounts for both

conduction and convection contribution of the trapped fluids (Lu et al., 2011). The CFD

methodology is more detailed relative to thermal properties and a more realistic thermal

behaviour can be obtained by simulating the problem with a CFD-tool. This involves a

numerical solution of the thermal energy problem, where the converged solution has to be

validated against experimental data or theoretical solutions because an approximation to

the exact solution has been made in each step during the simulation process.

In practical applications, well stream flowing inside the production bore involves forced

heat convection, and experiences significant heat losses due to current and buoyant flows

of the seawater and internal heat exchange due to circulation of various trapped fluids will

also be present (Lu et al., 2011). Some of the challenges with solutions to thermal analysis

of complex subsea equipment are related to the high computational demand, although the

computational power in the last decades has been advanced due to larger domains and

more complex underlying physics (Lu et al., 2011).

Thermal properties of the associated materials may be temperature-dependent and

vary significantly as a temperature gradient exists from the production bore to the sea-

water, which normally holds a temperature of approximately 4�C. Complexities arises

because the non-linearity of thermal-fluid interactions increases, and it becomes challeng-

ing to precisely quantify the thermal performance. Steel structures such as subsea trees,

chokes, valves, manifolds and wellheads will quickly lose stored internal heat as well as the

latent fluid thermal energy to the colder environs. Hydrates might form over a certain time

period when temperatures are low (15.5 - 26.6�C range), which could cause blockage of pas-

sageway and leading to impediment of production. Subsea christmas trees are complex in

structure and may be subdivided into sub-assemblies which contain temperature-sensitive

components with specific qualification temperatures and characteristic thermal behaviour,

making them especially vulnerable to temperature changes.

Pantokratoras (2000) investigated laminar natural convection of both pure and saline

water along a vertical isothermal cylinder in the temperature range 0�C and 20�C, taking

into account the temperature dependence of fluid density, kinematic viscosity and ther-

mal di↵usivity. The investigation was carried out with a finite di↵erence solution of the

boundary layer equations using cylindrical coordinates (that is Eq. (20), (21) and (22))

and the Boussinesq approximation discussed in Section 2.3.2.

According to Pantokratoras (2000), the density-temperature relationship for pure wa-

ter is linear for high temperatures, while non-linear at low temperatures. With decreasing

temperatures, the density of water increases until it reaches a maximum at 3.98�C. From

thereon, the density starts decreasing again when temperatures decrease further down to

0�C. If a system is experiencing temperatures between 0�C and 3.98�C, one will not obtain

accurate solutions if the density-temperature relationship is considered constant.

Pantokratoras (2000) found that the wall heat transfer increased as the Pr number
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increased, but as the ambient temperature approached maximum density temperature of

water, the heat transfer also decreased and was at a minimum when 3.98�C was reached.

So at maximum water density temperature, the heat transfer was at a minimum. The wall

heat transfer was then seen to increase from this point on, as the ambient temperature

was further decreased and Pr increased. In his study, he also found that the wall shear

stress decreased with decreasing ambient water temperatures until it reached a minimum

around the temperature of maximum density. From that point on, the wall shear stress

increased, approaching the linear density-temperature curve.

Pantokratoras (2000) concluded that the variation of �, ↵ and ⇢ had a strong influence

on the free convection characteristics and the wall heat transfer and shear stress values.

This influence increased with increasing temperature di↵erences between the cylinder and

the ambient water. If the curvature parameter was increased, the wall heat transfer would

also increase for a given Pr number. The velocity profiles were seen to become narrower for

temperatures exceeding maximum density temperature for increasing Pr numbers, while

wider for temperatures below this value. The variation of viscosity and thermal di↵usivity

also showed to be significant for the wall heat transfer and the shear stresses. When

the temperature di↵erences between the cylinder and the ambient water increased, the

influence of the variations would also increase, and vice versa. As the ambient temperature

decreased, the di↵erences between saline water (s = 40h) and pure water (with saline

water having a higher value of Pr than pure water) were seen to increase. At temperatures

in the linear density-temperature region (high temperatures) and Pr = 7 (pure water) and

Pr = 7.28 (saline water), the di↵erence in heat flux was approximately 1%. For lower

temperatures and Pr = 10.99 (pure water) and Pr = 11.21 (saline water), the di↵erence

reached approximately 20%.

Hadjadj et al. (1999) presented in their study a numerical investigation of laminar

natural convection in two concentric vertical cylinders, using a control volume finite dif-

ference method and a Semi-Implicit Method for Pressure Linked Equations (SIMPLE)

algorithm to solve the Navier-Stokes equations, linking the two-dimensional continuity

and momentum equations. The e↵ect of changing parameters such as Prandtl number,

Rayleigh number and aspect ratios were studied through the variation of temperature and

flow patterns within the annular cavity. A fully developed laminar free convection flow

in an open ended vertical concentric cylinder was studied for 0.01  Pr  10, 1  Ra

 105 and 5  A  10, with air as fluid. It was concluded that changes in the aspect

ratio A = H/ro, where H was the height of the cylinder, and ro the radius of the outer

cylinder, did not have a major influence on the flow structures and isotherm patterns, but

maximum stream function values increased with A. The motion only consisted of a single

vortex in each case tested. Hadjadj et al. (1999) obtained general correlation equations

for the local and average Nusselt number, respectively, based on the ranges of Pr, Ra and
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A tested:

Nu = 0.524 Ra0.248 (30)

Nu = 0.133 Ra
0.33

A�0.32 (31)

These relations show that the average and local Nusselt numbers increases with decreasing

aspect ratios and increasing Rayleigh numbers.

3.1 Empirical Correlations: Enclosures

Today there exists a lot of di↵erent empirical correlations regarding natural convection.

Many of these are results of experimental measurements, which in general will give the

most correct answer ompared to alternative approaches, at least for that specific case and

if executed correctly. A numerical solution, for example one obtained from CFD, may also

yield good results, depending on the model, grid, setup and solver. Mathematical analyses

of natural convection problems tend to be very complex, and even the simplest case of

laminar free convection over an isothermal vertical plate require numerical integration

(Jiji, 2009).

Experiments are therefore important in solving these types of problems, resulting in

empirical correlations to be used in later computations and solutions procedures. The

fluid behaviour depends strongly on the geometry, and the correlations may yield incor-

rect predictions of the thermal performance if unsuitable for the problem where utilized.

Although a lot of correlations exist and have been carefully tested, free convection prob-

lems are di�cult to generalize. As far as correlations are concerned, it is important to

keep in mind that equations established based on experimentally determined data may

predict inaccurate values of the heat transfer coe�cient h, due to uncertainties and errors

di↵erent systems experiencies compared to the system the correlation originates from (Jiji,

2009).

An increase in the wall temperature of a cavity is characterized by a temperature

wave, distributing in the fluid and causing temperature di↵erences within the fluid. The

wave will eventually reach the center of the cavity, and after some time the di↵erences

in temperature between the hot wall and the center will tend to a constant value, called

the process’ quasi-steady regime of flow and heat transfer (Martynenko and Khramtsov,

2005). The core is normally characterized by a horizontally uniform temperature. The

main change in temperature occurs in a boundary layer near the wall, and will often

overlap the core, complicating the free convection problem in closed cavities.

In the top and bottom regions of cavities formed as spheres, there will be stagnant

zones present. At the lower boundary, cold liquid will be collected, while in the upper part

of the enclosure there will be a heated stagnant zone. The presence of these zones reduces

the heat transfer and can lead to overheating (Martynenko and Khramtsov, 2005).

Free-convective heat transfer in cavities is accompanied by thermal stratification in the
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core of the enclosed flow, with the temperature of the upper liquid layers exceeding the

average values (Martynenko and Khramtsov, 2005). The convective flow brings the hot

liquid to the upper layer and noticably distorts the temperature field which becomes two-

dimensional or three-dimensional due to this e↵ect (Martynenko and Khramtsov, 2005)

(helt likt). When a quasi-stationary regime is attained in the upper part of the cavity into

which the hot liquid enters, the wall temperature can be higher compared with the heat

transfer only due to the thermal conductivity.

As the cylinder height increases, the stratification depends less on H/D (Martynenko

and Khramtsov, 2005). In the case of a long process of heat supply, it becomes necessary

to take into account a change in pressure during the heating process, which will tend to

influence the heat transfer (Martynenko and Khramtsov, 2005).

3.1.1 Rectangular Cavities

Rohsenow et al. (1998) suggested that for heat transfer in vertical rectangular paral-

lelepiped cavitites, that is ✓ = 90� based on the schematic diagram from Rohsenow et al.

(1998) presented in Figure 2, and with properties H/L � 5 and W/L � 5, fluids undergoing

a natural convection can be expressed by a Nusselt number given by

Nu =

"
1, 0.36 Pr0.051

✓
L

H

◆
0.36

Ra0.25, 0.084 Pr0051
✓

L

H

◆
0.1

Ra0.3
#

max

, (32)

for fluids with Pr � 4, and Ra (H/L)3 < 4 ⇥ 1012. The above equation (32) is based on

experimental data, and is tested for values of H/L ranging from 5 � 47.5. The middle

term is tested for 3 < Pr < 40, 000, while the last term is tested for 3 . Pr . 200. If

Ra (H/L)3 > 4⇥ 1012, the following relation is suggested to be used instead:

Nu = 0.039 Ra1/3 (33)

Eq. (33) is however only tested for Pr = 5, and may according to Rohsenow et al. (1998)

underpredict measurements by as much as 20 percent. For 5  H/L < 10, Eq. (32) and

(33) are most accurate for adiabatic walls.

If H/L  40, the flow tend to enter a laminar boundary layer regime before becoming

unstable and entering the turbulent transition regime (Rohsenow et al., 1998). Laminar

boundary layers will then occur on each plate with an essentially stationary core between

them, which is nearly isothermal in the horizontal direction while having a positive gradient

in the vertical direction. The flow will encounter the conduction regime followed by laminar

boundary layer and last turbulent boundary layer as Ra increases (Rohsenow et al., 1998).

If H/L � 40, the conduction regime becomes unstable at a critical Rayleigh number

Rac. A further increase in Ra past Rac will lead to a turbulent transition regime and

finally into a fully developed turbulent boundary layer regime, which is characterized by
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Figure 2: Schematic diagram from Rohsenow et al. (1998), used in establishing the
correlation equations (32) and (33)

turbulent boundary layers on each plate and a well-mixed core between them (Rohsenow

et al., 1998).

In rectangular enclosures heated from the side, there are various heat transfer regimes

that may occur depending on the system. The Rayleigh number, Ra, plays an important

role when deciding which one is applicable. For Ra�1/4
H < H/L < Ra1/4H , where H is the

height of the enclosure and L the transversal extent of the enclosure (see Figure 3), the

flow pattern will be characterized by boundary layers on all four walls, while the core of the

fluid remains stagnant and stratified (Faghri et al., 2010). RaH is the Rayleigh number

based on the height of the enclosure. The heat transfer will occur through boundary

layer convection, and is a↵tected by the flow pattern. For H/L > Ra1/4H (tall systems),

there will be distinct boundary layers on top and bottom walls, while for H/L < Ra�1/4
H

(shallow systems) there will be two horizontal wall jets flow in opposite directions (Faghri

et al., 2010). For high Rayleigh numbers, Bejan (2013) found a correlation based on an

insulated cavity at top and bottom, with a vertical side exposed to periodic heating and

the opposite one at a lower temperature valid for fluids with high RaH numbers and with

Pr > 1. Bejan (2013) did a further analysis of already existing relations in boundary layer

theory. He studied equations established by A. E. Gill in 1966, who managed to evade

the nonlinearity of the energy equation by utilizing a technique called Oseen-linearization

(Bejan, 2013). Gill invoked the energy integral

Z 1

0

✓
u⇤

@T⇤
@x⇤

+ v⇤
@T⇤
@y⇤

◆
dx⇤ = �

✓
@T⇤
@x⇤

◆

x⇤=0

,

where the subscript ”* ” indicates non-dimensional quantities. Together with the above

integral, two symmetry conditions were used. The symmetry conditions said that the
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boundary layer solution on the cold side, that is the temperature and velocity, had to

approach the free stream velocity and temperature values when x⇤ ! 1. Bejan (2013)

found that Gill’s equations gave valid velocity solutions in the boundary layer only, and

that the results were improper to use in the corners. Bejan (2013) investigated the heat

transfer result of Gill’s analysis, and found that the overall heat transfer rate across the

enclosure, which never was stated by Gill, could be written as

q0 = k

Z H/2

�H/2

✓
�@T

@x

◆

x=0

dy

= 0.364k �T Ra1/4H

He further said that a relationship for the overall Nu correlations was, from the majority

of experimental and numerical studies, reported to be

Nu =
q0

q
pure conduction

=
q0

(kH�T )/L
,

which led to a correlation for the average Nusselt number:

NuH = 0.364

✓
L

H

◆
Ra1/4H , (34)

valid for a system characterized by Ra�1/4
H < H/L < Ra1/4H .

3.1.2 Concentric Cylinders

Hadjadj et al. (1999) suggested the following correlation for the average Nusselt number

Nu for an annular cavity formed by a vertical concentric cylinder:

Nu = 0.133 RaL A�0.32, (35)

where A = H/ro is the aspect ratio, H is the height, and ro the outer radius of the

concentric cylinder. Eq. (35) was established by numerical studies for laminar fully

developed natural convection in an open-ended vertical concentric cylinder. The governing

equations (Navier-Stokes) were solved by adopting the iterative SIMPLE algorithm. The

average Nusselt number is defined by Hadjadj et al. (1999) as

Nu =
h · H

k
= �

Z A

0

@✓

@R
dX

where X and R are dimensionless variables on the form X = x/ro and R = r/ro, and the

dimensionless temperature ✓ = (T � TA)/(TE � TA), with TA being ambient temperature

and TE being entrance temperature of the fluid, which enters at the bottom of the annulus.
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Figure 3: Schematic diagram from Bejan (2013), used in establishing correlation
equations (34)

For the problem, Hadjadj et al. (1999) used the following boundary conditions:

U = V = 0 on all walls

@U

@R
=

@V

@R
=

@P

@R
=

@✓

@R
= 0 for r = 0

@✓

@R
= 0 (In),

@✓

@R
=

q

k
(Out) for r = ri

kai
@✓

@R
= kal

@✓

@R
for r = ro,

where kai and kal were the fluid thermal conductivity and material thermal conductivity,

respectively.

According to VDI-Wärmeatlas (2006), the dimensionless heat transfer coe�cient Nu

in enclosed vertical annular gaps can be expressed by Eq. (36), if the flow of heat is from

the inside to the outside:

Nus =
C
1

GrsPr
�
h
s

�
2

C
2

⇣
h
ra

⌘
4 �

ri
h

�
+
h
GrsPr

�
h
s

�
3

in1 � ri
h

�n2

, (36)

where the factors C
1

and C
2

, and the exponents n
1

and n
2

are dependent on the size of
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the constant N given by

N =

"
GrsPr

✓
h

s

◆
3

#�0.25✓
h

ri

◆
(37)

As seen in Section 2.4, Ra = Gr · Pr, so Eq. (36) (and Eq. (37)) is dependent on the

Rayleigh number and aspect ratios of the cylinder. Table 1 presents the constants in Eq.

(36) given by the value of N from Eq. (37).

C
1

C
2

n
1

n
2

N < 0.2 0.48 854 0.75 0
0.2 < N < 1.48 0.93 1646 0.84 0.36
1.48 < N 0.49 852 0.95 0.80

Table 1: Coe�cients of equation (36). Values of the factors C
1

, C
2

and the exponents
n
1

and n
2

based on N from Eq. (37)

The correlation in Eq. (36) was established by experiments, and is considered as a

state of the art engineering method to determine heat transfer in vertical annuli. This is

considered to be the correlation in closest relation to the free convection model developed

and investigated in this paper. Figure 4 presents the schematic diagram that the experi-

ment was based upon, as well as the Nusselt number versus the Ra number, both based on

the annular gap spacing, for di↵erent aspect ratios. The graphs imply that for increasing

Rayleigh numbers, the dimensionless heat transfer coe�cient will also increase, that is the

convection e↵ects become more salient.

Figure 4: Schematic diagram from Deutscher (2006), as well as Nusselt number for the
annulus plotted versus the Rayleigh number
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4 Analytical solution

As seen in Section 3.1, there are di↵erent correlations published for di↵erent geometries.

Some of these are generated from experiments and some from numerical simulations. This

may lead to disagreement between correlations for similar geometries due to di↵erent

circumstances under which these correlations were obtained. Correlations often come

with certain restricitions and areas of application. Definitions of di↵erent dimensions in

one model will have to correspond with the model used to obtain the correlation. An

example is the Ra number, which includes a characteristic dimension. The Nu number is

an expression on the form seen in Eq. (27), thus if the characteristic dimension is wrong,

this would lead to errors in the following equations and final result.

A schematic diagram of a two-dimensional closed, vertical concentric cylinder is pre-

sented in Fig. 5.

An analytical solution of the free convection model may be obtained by using various

correlations and set up a simplified 1D-model to predict the heat transfer behaviour. The

correlations are often equations for the Nusselt number of the flow, and the heat transfer

coe�cient h and heat transfer Q can then be obtained by using the following equations,

respectively:

h =
Nu · k

L
(38)

Q = h A (Thot � Tcold) (39)

Table 2 presents properties of the concentric cylinder used as model in this study. The

inner wall tempererature refers to the inner cylinder with diameter Di, and varied from

50-100�C with a 10�C step from case to case, giving 6 di↵erent temperature gradients and

cases.

Model

Outer diameter, Do 40 mm

Inner diameter, Di 2Do/3

Height, H 10Do

Annular gap, Da Do � Di

Aspect ratio, AR H/Da

Outer wall temperature, To 4�C

Inner wall temperature, Ti 50-100�C

Fluid Water

Table 2: Properties of the vertical concentric cylinder.
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r_outer
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40 mm

H = 400 mm

Figure 5: Schematic diagram of the vertical concentric cylinder used in this study

Table 3 presents properties of the water used as fluid in the annular gap between the

two concentric cylinders. The values are taken from ANSYS’ Material Library.

Correlations for both rectangular cavities and concentric cylinders were utilized for

comparison. Rectangular cavities were included because the concentric cylinder was imag-

ined ”unrolled” into a long vertical rectangle (see Figure 6) with the side plates at di↵erent

temperatures. The area of the walls in a concentric cylinder will however not be equal

to each other, as the outer wall will have a larger area than the inner wall depending

on the spacing of the annular gap between them. The correlations for rectangular boxes

were therefore included out of interest to see how well this approximation agreed with the

numerical solution or not at all.
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Properties Water

Density 997 kg/m3

Molar Mass 18.02 kg/kmol

Specific Heat Capacity 4181.7 J/kg K

Dynamic Viscosity 8.899E-04 kg/m s

Thermal conductivity 0.6069 W/m K

Thermal Expansivity 2.57E-04 1/K

Table 3: Properties of water used in this study

MATLAB® R2013b, a high-level language for numerical computations, visualization

and programming (MathWorks®, 2013), was utilized to solve the four empirical correla-

tion equations (32), (34), (35) and (36) discussed in Section 3.1. The results are presented

in Figures 7a and 7b. The subscripts ”1”, ”2”, ”3” and ”4” denotes the correlation equa-

tions (32), (34), (35) and (36), respectively.

Figure 7a shows that the four correlations predict heat transfer coe�cients between

200-350 for a delta temperature of 46�C (Tinner = 50�C), while approximately 260-420 for

a delta temperature of 96�C (Tinner = 100�C). The heat transfer coe�cients h
1

and h
2

derived from the rectangular enclosure correlations, that is (32) and (34), predict lower

values of heat transfer at the di↵erent temperatures tested, compared to h
3

and h
4

which

were derived from cylindrical correlations ((35) and (36)). Based on the problem setup

and correlations discussed in this study, Figure 7a implies that the buoyancy forces are

predicted lower in enclosed rectangles than in vertical cylinders.

All of the correlations estimating Nusselt numbers predict increasing heat transfer

coe�cients with increasing temperature gradients, which is reasonable since h
1

, h
2

, h
3

and h
4

are based on the Nusselt number which is a measure of convection to conduction.

If the wall temperature increases, the fluid close to the wall normally gets less dense and

hence the free convection e↵ects will increase as well, while the thermal conductivity of

the fluid or material remains constant. The correlation from VDI-Wärmeatlas (2006)

predicts highest heat transfer rates, and di↵er with approximately 25% down to h
3

from

Hadjadj et al. (1999). It is worth mentioning that the correlation from Hadjadj et al.

(1999) is based upon an open-ended vertical concentric cylinder, and may not predict

accurate values for the problem in this study. The lowest heat transfer rates are predicted

by Bejan (2013)’s theoretically derived correlations, followed by Rohsenow et al. (1998)’s

correlation for vertical rectangular parallelepipeds. Between the values of h
1

and h
4

there

are di↵erences up to approximately 40%.
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Figure 6: Illustration of the concentric cylinder being ”unrolled”
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Figure 7: Heat transfer coe�cients (7a) and heat flux 7b from the analytical solution

The graphs in Fig. 7b indicate heat fluxes ranging from 5 kW/m2 - 16 kW/m2 for

the lowest temperature case computed, and up to 10 kW/m2 - 35 kW/m2 for the highest

temperature case computed. As may be expected, the VDI-Wärmeatlas (2006) preditcst

the highest heat flux as its correlation yielded the highest heat transfer coe�cient from

Figure 7a.

The heat fluxes increase with increasing temperature di↵erences, which is expected

due to the driving force in free-convective heat transfer, which is based on buoyancy forces

25



and density gradients. When the wall temperature increases, the density of the fluid

decreases and the buoyancy increases, resulting in an increasing driving force increasing

the transportation of heat and thereby the heat flux.
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Figure 8: Nusselt number versus Rayleigh number based on the analytical solution

Nu
1

, Nu
3

and Nu
4

versus the respective Rayleigh numbers, are presented in Figure 8a

while Figure 8b shows the corresponding graph for Nu
2

. Ra
2

was based on the heigth H

of the cavity as opposed to the three other correlations, and yielded therefore a Rayleigh

number with a factor of 104 the other Rayleigh numbers. Eq. (32), (34) and (36) predict

Nusselt numbers between approximately 5 - 7.5 for a temperature di↵erence of 46�C (Ra

⇡ 2⇥ 106) and between 6.5-9.2 for a temperature di↵erence of 96�C (Ra ⇡ 4.5⇥ 106). As

may be expected from previous results (see Figure 7), VDI-Wärmeatlas (2006) predicts

the highest Nusselt number, that is the highest heat transfer occuring due to convection,

while Rohsenow et al. (1998) predicts the lowest Nusselt numbers for the given cases. The

correlation form Bejan (2013) predicts Nusselt numbers ranging from approximately 5.9

(Ra ⇡ 5.8⇥1010) to 7.1 (Ra ⇡ 12⇥1010), ending up in between Nu
1

and Nu
3

, as expected

due to the results seen in Figure 7. This is an example of di↵erent correlations being based

on di↵erent characteristic dimensions.

It can be seen from Figure 8 that the Nusselt number increases with increasing Rayleigh

numbers. The free convection e↵ects increases because the buoyancy forces increase as

a result of increasing temperatures, and by definition the Grashof number (and hence

Rayleigh number, since Ra = Gr · Pr, and Pr is dependent on the fluid only) will also

increase simultaneously with the Nusselt number.
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5 Numerical experiments

ANSYS® Workbench™ 2.0 Framework, version 15.0.0 was used to perform a CFD analysis

of the free convection model. ANSYS® DesignModeler™ was used as CAD-tool for the

modeling of the vertical concentric cylinder shown in Figure 5. The solver used for the

thermal analysis was ANSYS CFX 15.0. Simulations were run with single precision in

serial on a 64-bit Dell laptop, with Intel® Core™ i7 vPro™ 2.90 GHz Processors and 16

GB installed memory.

ANSYS CFX uses a coupled solver, which solves the mass and momentum equations as

a single system by use of a fully implicit discretization of the equations at any given time

step (ANSYS®, 2013). The time step is of importance, as it behaves like an acceleration

parameter to guide the approximate solutions to a steady-state solution, given the problem

type is steady-state, meaning the properties of the flow are not changing with time after

reaching a certain value. This solution approach reduces the number of iterations required

for convergence to steady-state, or to calculate the solution for each time step in a transient

analysis (ANSYS®, 2013).

For comparison, both a 2D model and a 3D model were designed, modelled and tested.

In this way, one could see if the 2D model gave an accurate enough solution with only one

hundreth of the elements making up the 3D model. This would result in lower compu-

tational e↵ort making the numerical experiments more e�cient and less time consuming.

The two models were run as both simplified models with the modified thermal conductiv-

ity k
e↵

based on the Nusselt number obtained from the analytical solution, as well as fully

resolved models accounting for the free convection e↵ects arising in the cavity when a tem-

perature gradient is present. The wall temperatures were set in the boundary conditions

in the setup provided by CFX-Pre.

5.1 Geometry: 2D and 3D

The geometries used in the thermal analysis were modelled in ANSYS® DesignModeler™.
The characteristics of the models were the same as used in the analytical solution (see

Section 4) and are presented in Table 2. The fluid located in the annular gap was water

as for the analytical solution.

2D Model Being axisymmetrical, the concentric cylinder was highly relevant for being

solved in 2D. It was modeled as a long rectangular surface as can be seen in Figure

9. ANSYS CFX operates only with three-dimensional spaces, so the surface had to be

revolved 1� around the y-axis of the cylinder center, creating a small volume solvable in

CFX.

The surface area of the 2D model was As = 5569, 3 mm2 with a volume of 775,45 mm3.

The outer wall area was 139.6 mm2, while the inner wall area was 93.1 mm2.
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Figure 9: Illustration of the axisymmetrical concentric cylinder, with the 2D region
that was modeled in ANSYS CFX

3D Model The 3D model was sketched as two circles with dimensions as shown in Table

2, and then extruded in the y-direction, leaving the core hollow since it was isothermal

and did not require to be solved by CFX. The resulting surface area was As = 85172 mm2,

making up a volume of 2.7925⇥ 105 mm3. The outer wall area was 50253.8 mm2 whereas

the inner area was 33502.5 mm2. The three-dimensional cylinder is pictured in Figure 10.

5.2 Cases

The cases presented in Table 4 were considered and simulated for each inner temperature

Ti = 50, 60, 70, 80, 90 and 100�C, with the constant outer wall temperature To = 4�C. The

table shows that the heat transfer for the simplified model occurs through conduction with

an e↵ective thermal conductivity k
e↵

[W/m K] of the material, while the fully resolved

model is based on convective heat transfer by means of a heat transfer coe�cient h [W/m2

K].
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Figure 10: The 3D model showing the inner and outer cylinder wall with the fluid
located in the annulus

2D 3D

T Simplified Fully resolved Simplified Fully resolved

Ti

k
e↵1

k
e↵2

k
e↵3

k
e↵4

h

k
e↵1

k
e↵2

k
e↵3

k
e↵4

h

Table 4: Cases that were considered numerically for Ti = 50� 100�C. The e↵ective
thermal conductivity values, k

e↵

[W/m K], were calculated in the analytical solution in
Section 4, while k

water

is the thermal conductivity of water.

Table 4 shows that for each delta temperature tested, there were four simplified models

obtained from the four correlations in Eq. (32), (34), (35) and (36), and one fully resolved

model. This related to both the 2D and 3D model, making up a total number of 60

simulations.
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5.2.1 Simplified Model with Modified Thermal Conductivity

For the simplified model, it was assumed that the fluid in the annulus thermally behaved

similar to a solid with a modified thermal conductivity. An e↵ective thermal conductivity

was used for this purpose, based on the properties of water presented in Table 3, and the

Nusselt numbers obtained from the empirical correlations used in the analytical solution

(Section 4) of the free convection problem. The e↵ective thermal conductivity was defined

as

k
e↵

= Nu · k (40)

The domain of interest was set to be solid in CFX-Pre, and the user-defined material was

defined with the same properties as water (see Table 3), but with k
e↵

substituted with

k
water

.

Looking at Eq. (40), it can be seen that it implies k
e↵

> k for Nu > 1, that is

when the convective heat transfer is larger than the conductive heat transfer. This is due

to the fact that when looking at simplifications, certain properties have to be modified

so the real life situation can be better reflected and the results more trustworthy. In

this case, the e↵ective thermal conductivity has to account for the buoyancy e↵ects that

will dominate and govern the actual free convection problem. The computed e↵ective

thermal conductivities for each case and each correlation equation is presented in Table 5.

Simulations were run with k
e↵

[W/m K] for each Ti [�C], both for the 2D and 3D models.

Eq. (32) Eq. (34) Eq. (35) Eq. (36)

Ti Nu
1

k
e↵1 Nu

2

k
e↵2 Nu

3

k
e↵3 Nu

4

k
e↵4

50 5.1805 3.1440 5.9318 3.6000 6.2360 3.7847 7.5287 4.5692

60 5.4954 3.3352 6.2308 3.7815 6.6543 4.0385 7.9491 4.8243

70 5.7731 3.5037 6.4921 3.9400 7.0250 4.2635 8.3138 5.0456

80 6.0226 3.6551 6.7251 4.0815 7.3598 4.4667 8.6373 5.2420

90 6.2502 3.7932 6.9362 4.2096 7.6663 4.6527 8.9289 5.4190

100 6.4599 3.9205 7.1296 4.3269 7.9497 4.8246 9.1952 5.5806

Table 5: The e↵ective thermal conductivity and Nusselt number based on the
correlation equations in the analytical solution

5.2.2 Fully Resolved Model

The fully resolved model was taking into account the actual buoyancy forces that will

develop in the cavity in a real life situation due to di↵erent wall temperatures, and which

will be the driving force for fluid motion and hence heat transfer. Although the trapped

30



fluid in real life situations will not only be compounded of pure water but also other

substances such as saline water and glycols for instance, only pure water as found in

ANSYS’ material library was used to model the free convection e↵ects due to simplicity.

5.3 Grid Description

ANSYS CFX uses finite volumes constructed by the grid to derive a solution to the numer-

ical problem. The spatial domain is discretized by the grid and the solution will depend

on the grid method and refinement. Control volumes around the nodes are used to ensure

conservation of the relevant quantities that are to be solved, such as mass, momentum and

energy components. CFX stores the solution variables and fluid properties at the mesh

vertices.

Structured grids were generated for both the 2D and 3D models in ANSYS® Mesh-

ing™.

Grid description: 2D A sweeping method was used to generate quadrangle elements

for the 2D model, together with both vertical and horizontal edge sizing-methods to adjust

the number of volume elements. The model was swept from the upper wall of the cavity

to the lower wall. The 2D grid is pictured in Figure 11.

Coarse grid Medium grid Fine grid

Number of elements 1,500 2,100 3,150

Number of nodes 3,162 4,402 6,552

Mesh method Sweep Sweep Sweep

Free mesh type All quad All quad All quad

Edge sizing, vertical 50 70 90

Edge sizing, horizontal 20 30 35

Element size [mm] 0.33 0.22 0.19

Table 6: Grid properties for the coarse, medium and fine 2D grids
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(a) 2D-grid seen from the front (b) 2D-grid, ISO-view

(c) Edge sizing across the annulus (d) Edge sizing along the vertical walls

Figure 11: The 2D grid with the element spacing decreasing towards the vertical
cylinder walls

Grid Description: 3D For the 3D model, a MultiZone method was used to create a

mapped mesh of hexahedra elements. The method was then inflated on the inner and outer

walls of the concentric cylinder, that is the vertical walls exposed to di↵erent temperatures.

Maximum inflation layers used were 10, with a growth rate of 1.5. The transition was set

to be smooth with a ratio of 0.1. The 3D mesh is shown in Figure 12.
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Coarse grid Medium grid Fine grid

Number of elements 144,000 538,272 832,000

Number of nodes 129,712 562,800 867,984

Mesh method MultiZone MultiZone MultiZone

Mapped mesh type Hexa Hexa Hexa

Element size [mm] 3.00 1.50 1.25

Inflation option Smooth Transition Smooth Transition Smooth Transition

Transition ratio 0.1 0.1 0.1

Maximum layers 10 10 10

Growth rate 1.5 1.5 1.5

Table 7: Properties of the coarse, medium and fine 3D grids

5.4 Boundary Conditions

The model boundaries were split in four sections with regards to the boundary conditions.

The vertical walls of the cylindrical cavity were set to be isothermal with a no-slip condition

implying the fluid velocity in the layer closest to the wall is zero (due to friction). Upper

and lower boundaries of the enclosure were set to be adiabatic walls with a free-slip

condition (no friction). An adiabatic boundary condition corresponds to the walls being

insulated. For the axisymmetric case, the two additional vertical surfaces connecting the

inner and outer walls were set to be symmetrical. Table 8 lists the boundary conditions

used in this study, and applies to all of the cases.

Boundary Condition

Inner Wall
Isothermal, Thot

No-slip, smooth wall

Outer Wall
Isothermal, Tcold

No-slip, smooth wall

Top Wall
Adiabatic

Free-slip

Bottom wall
Adiabatic

Free-slip

Table 8: Boundary conditions for the concentric cylinder used in the numerical
experiments
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(a) Overview of the 3D grid
(b) The upper part of the cylinder showing the

3D grid

(c) The 3D grid at a section plane going
straight through the cylinder

(d) The cylinder seen from the top

Figure 12: The 3D grid with inflation layers close to the vertical walls

5.5 Numerical Model

Based on the results from the analytical solution in Section 4, the Rayleigh number was

assumed to exceed 1⇥106. According to Rohsenow et al. (1998), these values for Ra

correspond to turbulent flow for the relevant aspect ratios dealt with in this study. Based

on this assumption, a turbulence model was decided on to solve the governing equations

discussed in Section 2.3.

Very often time-averaged properties of fluid motion give su�cient information about
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the turbulent behaviour of the flow (Versteeg and Malalasekera, 1995), because turbulent

flow tend to exhibit average characteristics when looking at large enough time scales. In

addition, a time-varying, fluctuating component will also be present in the turbulent flow

together with the averaged properties (ANSYS®, 2013). When time-averaged properties

are introduced to the governing equations, that is the Navier-Stokes equations, a newborn

set of equations called Reynolds-Averaged Navier-Stokes (RANS) equations come to live.

ANSYS utilizes these RANS equations, in combination with an optional turbulence model.

The turbulence model takes care of the extra turbulent stresses, the so called Reynolds

stresses ⇢ u
0
iu

0
j , which appear from time-averaging the Navier-Stokes equations to account

for turbulent fluctuations in fluid momentum (Versteeg and Malalasekera, 1995).

The RANS-based two-equation turbulence model k�! was chosen as numerical model.

This model is known for its near-wall treatment for low Reynolds number computations

(ANSYS®, 2013), and in free convective heat transfer, the Reynolds number is very low

compared to forced convection. The k � ! model o↵ers two transport equations for the

turbulent fluctuating components in the fluid flow, where k represents the turbulent ki-

netic energy, while ! represents the specific dissipation. The first one determines the

energy in the flow, while the latter determines the scale of the turbulence (ANSYS®,

2013). The k � ! model is categorized under linear eddy viscosity models, meaning that

the Reynolds stresses are modeled by the linear relationship after the Boussinesq approx-

imation discussed in Section 2.3.2. The Boussinesq model in CFX uses a constant density

fluid model, but applies a local gravitational body force throughout the fluid where the

mentioned linear relationship is established between the thermal expansivity coe�cient �

and the local temperature di↵erence (ANSYS®, 2013).

The buoyancy model in CFX-Pre was activated, meaning a constant reference density

⇢
ref

was used for all terms in the RANS equations other than the buoyancy source term

that is added to the momenum equation. The buoyancy reference temperature was set to

25�C and the reference pressure to 1 atm. The gravity force was set equal to -9.81 m/s2

in the y-direction, while 0 m/s2 in both the x- and z-directions.

The k�! model is said to be more accurate and robust than other turbulence models as

for instance the k�✏ model, where complex damping functions can be added in an attempt

to handle low Reynolds number flows and which may lead to instability (ANSYS®, 2013).

Every turbulence model comes with advantages and disadvantages, and in CFD it comes

down to the configuration of the problem under investigation which model is more suitable

than the others to that specific problem. When k � !-based models are applied in CFX,

an Automatic near-wall treatment method comes along, which is a near wall boundary

condition developed by CFX to allow for a smooth shift from a low-Reynolds number form

to a wall function formulation near the wall.

The analysis was run as steady state.
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5.5.1 Heat Flux in the Near-Wall Region

The non-dimensional near-wall temperature, T+, is defined by ANSYS as:

T+ =
⇢cpu

⇤ (Tw � Tf )

qw
(41)

where Tw is the temperature at the wall, u⇤ is the logarithmic velocity, Tf the fluid

temperature, cp the fluid heat capacity and qw the heat flux at the wall. When the wall

temperature Tw is known, as in this case, the energy balance for each control volume can

be obtained by rearrange the equation for T+:

qw =
⇢cpu

⇤

T+

(Tw � Tf ) (42)

The wall heat flux is computed from the equation above, and then multiplied by the surface

area and added to the boundary energy control volume equation (ANSYS®, 2013). When

the wall boundary is fixed at a specified temperature Tw, that is the wall is isothermal,

the heat flux for turbulent flow into the domain is by default considered by CFX as

qW = hc(TW � TnW ), (43)

where TnW is the near-wall temperature and hc is the wall heat transfer coe�cient esti-

mated based on the turbulent wall functions (ANSYS®, 2013).

5.6 Discretization Schemes

Solving partial di↵erential equations on computers requires a finite amount of data. When

dealing with continuous equations, a method to turn the equations into finte equations

solvable for a computer is needed. This process is referred to as discretization, and yields

an approximation to the exact solution one would obtained with an infinitely large number

of computational cells. There are di↵erent discretization schemes available for di↵erent

problems, which may be significant when looking at convection problems. The principal

problem in discretization of convective terms represented in a heat flux balance in a control

volume, is the calculation of the tansported properties at the control volume faces and the

convective flux across these boundaries (Versteeg and Malalasekera, 1995).

A High Resolution advection scheme of first order accuracy was used in the numerical

experiments performed in this study, to achieve high accuracy.
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5.7 Grid Independence

5.7.1 Convergence Control

A convergence level of 1⇥104 is normally su�cient for many CFD simulations, and was

chosen for the root mean square (RMS) normalized residuals as a starting point for the

iterations in CFX-Solver Manager. A tighter convergence critera may be recommended

for thermal analyses of subsea equipment, due to the importance of accurate predictions

related to the huge production volumes and heat transfer involved.

A physical timescale of 0.01 seconds was primarly used for the timescale control, al-

though simulations with a timescale of 0.001 seconds also were run for comparison. The

latter proved to converge steady, but at a very slow rate. This is pictured in the con-

vergence history plots for the 3D medium mesh model in Figure 15, where one can see

that a physical timescale of 0.001 seconds required approximately 8000 iterations to reach

the same convergence level as a physical timescale of 0.01 seconds did after only 1000

iterations.

Figure 13 shows the convergence history for the 2D fine mesh. The temperature at

point (0.036, 0.2, 0) in the center of the model was monitored and reached a steady value

of 304.26 K (⇠ 31.1�C) after 4000 iterations. The overall imbalance for the governing

equations (see Figure 13d) lay between 0-0.547.
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(a) Mass and momentum (b) Heat transfer

(c) Monitor value temperature (d) Domain imbalance, %

Figure 13: Convergence history for the fine 2D grid

Figure 14 shows the convergence history for the 3D medium mesh. The temperature at

point (0.016, 0.2, 0) in the center of the model was monitored and reached a steady value

of 305.23 K (⇠ 32.1�C) after 4500 iterations. The overall imbalance for the governing

equations (see Figure 14d) lay between 0-0.876.
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(a) Mass and momentum (b) Heat transfer

(c) Monitor value temperature (d) Domain imbalance, %

Figure 14: Convergence history for the medium 3D grid
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(a) Convergence history for the medium 3D
grid for a physical timestep of 0.01

(b) Convergence history for the medium 3D
grid for a physical timestep of 0.001

Figure 15: Comparison between the physical timesteps 0.01 seconds (15a) and 0.001
seconds (15b)

5.7.2 Grid Refinement

When working with computional fluid dynamics, it is important that the solution is in-

dependent of the mesh resolution to gain confidence in the results and also to know if

the results are reliable. The solution will be a numerical solution to the problem based

on the mesh and boundary conditions, and its accurateness will depend on the accuracy

of the mesh and boundary conditions. The solution has to be tested, to see if the grid

refinement meets the requirements. If a fine and a coarse mesh approximately yield the

same monitored values, mesh independence is said to be achieved and one should do fur-

ther simulations with the coarse mesh if the study require many simulations, due to less

computational e↵ort.

Monitor points were used to see how the temperature at a point in the center of the

2D and 3D cavities varied with each iteration when the inner wall temperature was 70�C.

The monitored temperature values were then compared to see if grid independence was

reached. The results are presented in Table 9.
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2D 3D

Grid 1 2 3 4 5 6

Elements 1,500 2,100 3,150 144,000 538,272 832,000

Run time

(2000 iterations) 00:03:12 00:03:46 00:05:09 01:57:23 07:11:30 11:52:15

Temperature [K] 304.15 304.23 304.26 303.96 305.23 305.94

Deviation from

Grid 6 [%] 0.59 0.56 0.55 0.60 0.23 0.00

Table 9: Grid independence study

Table 9 shows that simulations with the three di↵erent 2D grids ran 2000 iterations

quite fast compared to the 3D-simulations. Given the insignificant extra seconds it took

to run the fine mesh of the 2D model, Grid 3 was chosen for further simulations due to

faster convergence rate compared to Grid 1 and 2.

The coarse 3D mesh was considered inadequate compared to the finer grids, due to

its convergence history that can be seen in Figure 16 and its temperature value in Table

9. Grid 5, the medium 3D mesh, resulted in a temperature value of 305.23 K, which only

di↵ered from the finer 3D grid with 0.2%. Grid 5 was concluded su�cient relative to the

finer mesh (Grid 6), and was chosen for further simulations.

Figure 16: Convergence history coarse 3D mesh
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6 Results

6.1 Simplified Model

The simplified model was based on the e↵ective thermal conductivity estimated from the

four correlations in Section 4 and computed by Eq. (40). Since the domain was modeled

as solid, the heat transfer was through conduction only and the solution converged after

few iterations with a convergence level of the residuals of 1⇥10�5.

Figure 17 shows the temperature contour for the simplified 2D model simulated with

Ti = 70�C and To = 4�C. As expected, the temperature distribution is similar along the

x-direction for every y throughout the cavity.

Figure 17: Temperature contour for the simplified model with the inner wall being
70�C

6.2 Fully Resolved Model

The heat flux and heat transfer coe�cients obtained from simulations with the fully re-

solved 2D and 3D modelas are presented in Table A3 and A4.

Figure 18 shows the temperature distribution as well as the velocity distribution of

the trapped fluid. Figure 18a shows the temperature distribution for Ti = 70�C and the

constant To = 4�C, acting as expected - the warmer and less dense fluid flow upwards

due to buoyancy forces, while the colder and more dense fluid sinks to the bottom due

to gravity forces. Figure 18b shows that the fluid is less active at the top and bottom of
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the cavity, which is expected since these walls are adiabatic and the fluid is sort of at rest

here, meaning the top and bottom will not influence the fluid dramatically.

(a) Temperature distribution in the concentric
cylinder

(b) Velocity distribution in the concentric
cylinder

Figure 18: Temperature (18a) and velocity (18b) distribution with the inner wall being
70�C

The temperature contours of the 2D and 3D fully resolved models are shown in Figure

19 and 20. One observation was that the fluid temperature appeared more distributed in

the 3D model compared to the 2D model. This may be due to the 3D model being able

to capture the turbulence and circulations better than the thin 2D model.

Both models predict a high-temperature region at the top of the cavity with a low-

temperature region at the bottom, as expected with free convective heat transfer. Figure

20 shows the symmetry condition occuring in cylinders.
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Figure 19: Temperature contour for the fully resolved 2D model

Figure 20: Temperature contour for the fully resolved 3D model

From Figure 21 one see that the 2D model only predicts one big section of circulation,

instead of several circulation sections along the y-direction. This applies also to the 3D

model in Figure 22.
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Figure 21: Streamlines from the 2D model, showing the circulation occurring in the
cavity
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Figure 22: Streamlines from the 3D model, showing the circulation occurring in the
cavity
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(a) Temperature distribution across the
annulus, 2D

(b) Temperature distribution across the
annulus, 3D

(c) Velocity distribution across the annulus, 2D (d) Velocity distribution across the annulus, 3D

Figure 23: Temperature and velocity distribution in the center of the cavity of the 2D
and 3D models

Figure 23 presents the temperature and velocity distribution in the natural convection

2D and 3D models when the inner cylinder wall is at a temperature of 70�C. It can be

seen from Figure 23a and 23b that the temperature distribution prdicted by the 2D model

is close to the predictions of the 3D model. The core of the cylinder holds a temperature

of approximately 30�C (⇠ 305 K).

Figure 23c and 23d shows that the velocity across the annulus of the cavity is not

symmetrical, but reaches a higher value closer to the inner wall compared to the outer

47



walls. It can also be seen that midway across the annulus, the fluid velocity is close to

stagnant. The di↵erent shapes of the 2D and 3D graphs implies that the temperatures

distribution is more even in the concentric cylinder than in the wedge.

Figure 24 shows the direction of the fluid movement in the center of the cavity. It can

be seen that the fluid closest to the hot wall moves with a higher velocity than the rest

of the fluid, whereas the fluid closest to the outer wall has a moderate speed relative to

the highest velocity occuring in the cavity. The behavior of boundary layer type flow and

heat transfer is apparent because both temperature and velocity gradients peak near the

heated and cooled wall. The low gradients of temperature and velocity in the middle of

the enclosure further indicate a stagnant and stratified core.

Figure 24: Behaviour of the fluid velocity in the center of the cavity with the inner
cylinder wall being 70�C

Figure 25 presents the velocity streamlines occurring in the enclosure, where 25a oc-

curred in the wedge, while 25b is based on values from the cylinder.
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(a) Velocity streamlines occurring in the 2D cavity

(b) Velocity streamlines occurring in the 3D cavity

Figure 25: Velocity streamlines occurring in the 2D (25a) and 3D (25b) cavities
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7 Discussion

Heat transfer values from the simulations were extracted from processing the results from

the CFX-Solver Manager in CFD-Post. Mainly the heat flux from the simplified model

and the heat transfer coe�cient from the fully resolved model were of interest, so that the

CFD-results could be compared to the analytical solution. The Function Calculator found

in CFD-Post was used to calculate heat transfer values such as the heat flux at di↵erent

locations. The results for the simplified model and fully resolved model for di↵erent

temperatures, are presented in Table A1, A2, A3 and A4.

Heat flux in CFX is specified across the wall boundary, where a positive value indicates

heat flux into the domain and negative values indicate that heat is transferred out of

the domain. ANSYS CFX operates with a Wall Heat Flux variable and a Heat Flux

variable. Both of the terms are defined as the total heat flux into the domain, including

convective and radiative contributions. The di↵erence between them is that Heat Flux

can be plotted local to a specific boundary condition without contributions from adjacent

boundary conditions as opposed to the Wall Heat Flux variable. Another di↵erence is

the fact that Wall Heat Flux is computed by the CFX-Solver which utilizes an arithmetic

averaging procedure, while Heat Flux is computed by the post processor directly from

the convective energy flows that are written to the results file, and thereby avoids this

averaging of the values (ANSYS®, 2013). Based on these definitions, the Heat Flux

function was preferred and used in extracting information about the trapped fluid volumes

investigated in this study.

To find the heat transfer coe�cient from the results obtained with the fully resolved

model, the heat flux at the inner and outer wall from the simulations were calculated by

the area-weighted average function:

areaAve[Heat Flux]@Location (44)

where the Location was either set to InnerWall orOuterWall as specified in the bound-

ary conditions.

If rearranging Eq (43), one see that the heat transfer coe�cient will be quite large

when computed by CFX, due to the fact that CFX will use a near-wall temperature as

Tcold (see Eq. (39) and (43)) instead of the actual delta temperature across the annulus.

This will make �T quite small and hence h large. To be consistent with the literature,

the average heat transfer coe�cient was therefore calculated from the following relation:

QA =

Z

A
q dA = hA(Thot � Tcold)

) h =
QA

A (Thot � Tcold)
(45)
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Since the heat flux is defined as watts per meter squared [W/m2], the heat transfer co-

e�cient was simply computed by taking the heat flux value calculated by the Function

Calculator in CFD-post, and divide it by the relevant temperature di↵erence.

It was expected that the heat flux at the inner wall would be approximately equal to

the heat flux at the outer wall, due to the laws of conservation. This proved however to

be wrong for both the simplified model and the fully resolved model, and di↵erences up

to approximately 35% were observed for the simplified and fully resolved models. The

di↵erent values can be seen in Table A1, A2, A3 and A4.

An explanation to this may be that the heat distribution in the cavity is asymmetrical

due to the features of natural convection, that is the warmer fluid is located in a region

at the top of the cavity close to the inner wall, while a respective cold region is found at

the bottom of the cavity, closer to the outer wall. With CFX computing the average heat

flux as in Eq. (43), this approach will thus yield di↵erent heat fluxes at the inner and

outer wall. This does however not explain the heat flux di↵erences that one also find in

the simplified model results, where the heat transfer happens through conduction only.

Another explanation that could relate to both the conduction and convecetion models,

is again the way CFX computes the heat flux at the respective walls (Eq. (43)), but in a

combination with the di↵erent surface areas of the inner and outer wall (see Section 5.1).

With the inner wall dealing with higher temperatures as well as having a smaller area to

distribute the heat across, compared to the outer wall which deals with lower temperatures

as well as having a larger area to disperse the heat over, this may be reflected in the area-

weighted heat fluxes occurring at the walls. It is however the delta temperature between

the wall temperature and the near-wall temperature that is involved in the calculations,

which does not depend on the wall temperature itself. An important factor is therefore

how CFX decides on the Tcold = TnW temperature, and how big of a gap this constitutes

up to the wall temperature.

In the following sections it can be seen that the heat flux extracted from the CFD

results for comparison with the values obtained in the analytical solution, are the heat

fluxes at the InnerWall of the model. An average value between the heat fluxes could

possibly have been used, but as the heat flux at the inner wall was higher than the one

at the outer wall, it was decided that safer predictions would be made if conclusions were

based on these values. Another aspect playing part is the fact that the heat at the inner

wall will have to go somewhere due to fluid motion, which would have to be towards colder

environs due to the laws of heat transfer. Since the upper and lower boundaries of the

cavity were insulated, the only escaping route would be through the outer wall. Although

this area was larger, the same amount of heat coming from the inner wall would still hit

the outer wall.
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7.1 2D vs 3D

From Figure 26 one can observe that there is almost no di↵erence between the 2D and

the 3D models when the heat transfer occurs through conduction and the same boundary

conditions apply to both models. The 2D model is presented in black, but is barely

spottable behind the red 3D graphs. This agreement between the 2D and 3D models

might be expected, following from the Fourier’s Law (Eq. (1)), which implies that the

heat transfer through conduction only depends on a material’s thermal conductivity, a

temperature gradient and a distance over which the heat is transported. In this case, the

distance would be the length of the annular gap, which is the same for both models. The

di↵erences that however are present may be due to 2D and 3D grid di↵erences seen in

Section 5.3.

It can be discussed if the models are comparable if the grid densities are unequal to

each other. Table 9 shows that the temperatures predicted by Grid 3 only di↵er with

0.32% up to Grid 5, indicating almost the same temperature predictions by both models

when the higher wall temperature is 70�C. Althought the monitored temperatures were

measured at di↵erent points due to the geometries being modeled at di↵erent places in the

DesignModeler-space, they are equivalent to each other (that is in the middle of the center

of the cavity). Since the temperatures are close to similar, it is reasonable to believe that

the 2D and 3D models are comparable, despite the grid density di↵erences.

An e↵ective thermal conductivity based on the Nusselt number from the Wärmeatlas

(2006) correlation, predicts a heat flux of approximately 40-100 kW/m2 at the inner wall

of the concentric cylinder for temperatures between 50-100�C. The three other correlations

follows shortly after and predict values closer to each other, with minimum values ranging

from approximately 28-31 kW/m2 to maximum values around 70-88 kW/m2.
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Figure 26: Comparison of the heat flux appearing in the simplified 2D and 3D models

The fully resolved 2D and 3D models predict greater di↵erences between each other

compared to the simplified models, and can be seen in Figure 27. The 3D fully resolved

model predicts greater heat flux values than the 2D fully resolved model. An explanation

to this might be that the 3D model is able to capture the flow better. Free-convective

heat transfer depends strongly on the geometry as discussed earlier, and the turbulent

fluctuations may be influenced by being trapped in an annulus compared to a one-element

thick 2D wedge. Additionally, the grid di↵erences will also be of significance here as for

the simplified model. Normally the amount of mesh elements is equivalent to the accuracy

of the heat transfer predictions, and can be of great importance in predicting the tiny

turbulent fluctuations playing a vigorous part in the convective heat transfer.
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Figure 27: Comparison of the 2D and 3D fully resolved models

Figure 27a shows that when accounting for the free convection e↵ects and not assuming

a uniform thermal behaviour throughout the annulus, heat fluxes of approximately 15-45

kW/m2 is presented, with respective heat transfer coe�cients of 300-450 W/m2K (Figure

27b). It can then be seen that the minimum heat flux value the simplified model predicts,

is almost equal to the maximum heat flux value the fully resolved model predicts, implying

major di↵erences.

A di↵erence of up to 22% could be seen between the 2D and 3D fully resolved models,

where the 3D model values exceeded the 2D model values for every delta temperature

tested.

7.2 Simplified Model vs Fully Resolved Model

Because the simplified model predicted considerably similar results for the 2D and 3D

model, the results obtained with the 3D conduction model were used for further comparison

because it predicted fairly larger heat flux than the 2D model. Basing predictions upon the

greater values were thought to give safer computation estimates with respect to protection

of subsea equipment.
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Figure 28: Comparison of the fully resolved 2D and 3D models with the simplified 3D
model

From Figure 28 one can observe that the thermal analysis of the fully resolved model

predicts a considerably lower heat flux than the simplified model based on the e↵ective

thermal conductivities from Section 5.2.1. The fact that the conduction model predicts

values exceeding the fully resolved model with approximately 65% at the most, indicates

that if the simplified model is used in subsea computations, it may overestimate the heat

loss actual occurring. This is not necessarily a drawback, as overestimating heat losses will

be preferred over underestimating them. It is rather a question about to what degree one

would like to overestimate the losses to be on the safe side when it comes to equipment

protection and insulation, as this also has a cost.

Between the values of the fully resolved 3D model, and the lower values of the pre-

dicted heat flux by the correlations, that is q
simplified1

from Eq. (32), di↵erences up to

approximately 40 % can be found.

7.3 Analytical Solution vs Fully Resolved Model

Figure 29 shows that based on the conditions applying to this study, the fully resolved

model predicts that more heat is transferred in the cavity as the temperature di↵erence

increases compared to the predictions of the correlations. Between the fully resolved

3D model and correlation equation (36) from VDI-Wärmeatlas (2006), a di↵erence of
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approximately 12% at the most is seen in the heat transfer coe�cient predictions. This

is the lowest deviation present between the analytical solutions and the fully resolved

CFD-solution. The three correlations from Eq. (32), (34) and (35) all predict lower heat

transfer coe�cients than the fully resolved 2D and 3D models, although the correlation

from Eq. (35) predicts heat transfer coe�cient values fairly close to the 2D fully resolved

model.

As mentioned in Section 4, it is expected that the heat transfer coe�cient increases with

increasing temperatures. Higher temperatures in the cavity will result in more unstable

temperature gradients, and the buoyancy forces will transfer warmer fluid upwards. The

warmer fluid will after a time come in contact will colder fluid and become more dense

as the fluid temperature decreases. The gravity forces on the fluid will then become

larger than the buoyancy forces, and fluid is transferred downwards in the cavity. Higher

temperatures will therefore normally result in more fluid motion and hence higher heat

transfer rates. This will impact the heat transfer coe�cient which is dependent upon the

amount of heat transferred.
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Figure 29: Comparison of the analytical heat transfer coe�cient and the heat transfer
coe�cient obtained with the 2D and 3D fully resolved models
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Figure 30: Comparison of the heat transfer coe�cients found in the analytical solution
versus the heat transfer coe�cient found with the 3D fully resolved model in ANSYS

CFX. The red line represents the case where the values are equal

Figure 30 presents the heat transfer coe�cients from the correlations versus the heat

transfer coe�cient resulting from the fully resolved 3D model, based on inner wall temper-

atures of 50�C-100�C. The 45� red reference line represents the case where the heat transfer

coe�cients are equal to each other. One can observe that h
4

, that is the heat transfer

coe�cient based on the correlation from VDI-Wärmeatlas, lies closer to the reference line

than the three other correlations. This implies that the heat transfer coe�cient estimated

by Eq. (36) is close to the heat transfer coe�cient estimated by the computational analysis

of free convection.

7.4 Analytic Solution vs Simplified Model vs Fully Resolved Model

Figure 31 gather all the results from the analytical solution, the simplified model and the

fully resolved model. As discussed, there is a gap between the simplified model graphs and

the graphs from the two other models. This gap is caused by the e↵ective thermal con-

ductivity computed by the Nusselt number equations from the four correlations Eq. (32),

(34), (35) and (36) and the assumption about heat transfer occurring through conduction.

It can be argued that this di↵erence in heat loss estimations ensures safer predictions

regarding subsea equipment, and is therefore seen as necessary. It may be reasonable to
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Figure 31: Comparison between the heat flux values obtained from the analytical
solution, the simplified 3D model and the fully resolved 2D and 3D models

assume that expenses related to insulation and protection material corresponding to heat

losses of 100 kW/m2 could be halved if the assumed heat loss is reduced to 50 kW/m2.

In this case, with the characteristic dimensions as in Table 2, it would be su�cient to

account for heat losses of 50 kW/m2 through the cavity according to the CFD results. A

predicted value of 50 kW/m2 would in this case give a margin of approximately 6 kW/m2

down to the actual predicted CFD value, and could probably be su�cient as a security

bu↵er.

These results are however only based on one specific cavity. With di↵erent geometries

comes di↵erent heat losses. If every cavity is assumed to lose heat close to 50 kW/m2,

it is reasonable to believe that some of the costs related to insulation may be reduced, if

the correlation from Eq. (36) is used as a basis for the simplified model and large delta

temperatures are dealt with. If many of the cavities are neglected in computations related

to insulation and material protection however, an estimated heat loss of 100 kW/m2 may

be reasonable.

A simplified heat transfer model will in many cases ensure that insulation and protec-

tion materials are adequate in accordance with the conditions the relevant equipment is

located in. Another advantage with the simplified model is that it is e↵ective and cheap.

The industry is also experienced with this method, so one know that the production will
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function if the heat losses are accounted for in this way.

CFD simulations are on the other hand more time-consuming and expensive. Although

numerical predictions may be more accurate, it could be that the extra time spent on CFD

is worth the extra cost relative to overestimating heat losses.

7.5 Verification and Validation

An important part of CFD-analyses is to verify whether the solutions are valid or not.

Numerical experiments are vulnerable to uncertainties and errors such as assumptions,

simplifications and limitations.

Errors in CFD solutions may be classified as either acknowledged errors or unacknowl-

edged errors. Acknowledged errors are typically physical approximation errors, round-o↵

errors, convergence errors or discretization errors that there are procedures for identify-

ing, and possibly removing. Unacknowledged errors on the other hand, are user errors

or computer programming errors within the program, which there are no procedures for

finding. Uncertainties indicate that deficiencies may or may not exists (Slater, 2008).

It is reasonable to believe that one of the largest errors in the CFD simulations will be

due to physical approximation errors arising from the geometries used. The geometries,

a one-element thick wedge (2D), and a simple concentric cylinder (3D) were not complex

in itself, but the actual geometries containing trapped fluid volumes in subsea christmas

trees are believed to be more complicated and compounded. If several steel structures

are located close to each other and each contain trapped fluids at di↵erent temperatures

with di↵erent heat transfer properties, the heat transfer will be a combination of conduc-

tion and convection, which might influence the heat loss out of the christmas tree and

into the sea. This study was based on only one geometry type and one characteristic

length between the inner and outer wall. The results can therefore not be generalized or

interpreted as applicable to all trapped fluids in subsea christmas tree enclosures. It is

however indicative of the fluid behaviour that will occur in a concentric cylinder due to

the increasing temperature di↵erences and free convection e↵ects.

The CFD results will also be a↵ected by the fluid properties the simulations are run

with. Pure water was utilized in this study, although a mix of saline water and glycols

are common to find in subsea christmas trees cavities. Saline water will according to the

findings in (Pantokratoras, 2000) a↵ect the fluid properties, which in turn will impact the

heat transfer abilities. It is also known that glycols, as for instance monoethylene glycol

(MEG), changes the fluid properties and hence the heat transfer behaviour. The amount

of water in the enclosures may also influence the simulations. In this case a full cavity

was investigated, but it is likely that less fluid would impact the rate of heat transferred

across the annulus, depending on what substances and material properties the rest of the

cavity consists of.

Due to very low velocities, it is reasonable to believe there might be a round-o↵ error
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in the computations. It is believed these are quite small, since CFX was able to capture

the free convection e↵ects occurring in the enclosure, as seen in Section 6.2. The number

of iterations can influence the results tremendously, but due to the grid independence

study in Section 5.7 it was believed the numerical results from CFX were trustworthy.

The number of iterations could have been raised, but was due to time constraints kept at

a constant number of 2000 iterations to be consistent with the di↵erent temperature runs.

For the 3D model, it was seen that more than 4000 iterations were needed to get the

total domain imbalances down to a level of 0. The heat flux at the inner wall of the

cylinder was then increased with approximately 0.1 kW/m2. Based on this, it is believed

that if the number of iterations were doubled for every simulation performed, the heat flux

estimations would have experienced an average increase of 0.1 kW/m2. Taking this into

account, the predicted heat losses will be even higher compared to the analytical solutions,

but still below the results obtained with the e↵ective thermal conductivity.

The boundary conditions will influence the results to a great extent, together with the

wall roughness in the cavity. The correlations, except Eq. (36), were not perfect matches

with the geometry and numerical setup used in the development of the free convection

model in this study. Two of them were based on rectangular boxes, while one of them on

an open-ended concentric cylinder. Some of the correlations were even established based

on laminar flow. This may be an explanation to why three of the correlations predict lower

heat transfer values compared to the fully resolved 3D model. Why Eq. (36) predicts lower

heat transfer values than the CFD-results when Thot increases above 50�C, may be due to

di↵erent experiment conditions.

The solution may be exposed to discretization errors due to the grid density and

timestep chosen. This was however tested in Section 5.7, where a fine 2D mesh and a

medium 3D mesh were concluded as su�cient. A physical timestep of 0.01 seconds was

used for faster convergence. By using the finest grid for the 3D model, it is possible that

more accurate results would have been obtained since the solution changes from Grid 5 to

Grid 6 as seen in Table 9. A dramatically improved accuracy is however not expected, as

the temperature change from Grid 5 to 6 is only predicted to be 0.23%.

It was later discovered that solving the problem in double precision instead of single

precision could be beneficial relative to the accuracy of the solutions, due to the compli-

cated behaviour of natural convection.

To get an approximate error band of the numerical solution, a measure of the per-

centage a computed solution deviates from the value of the asymptotic numerical value

called Grid Convergence Index (GCI) can be computed. According to Slater (2008), this
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is given by

GCIfine =
Fs|"|

(rp � 1)
(46)

GCIcoarse =
Fs|"|rp

(rp � 1)
, (47)

depending on whether one uses the fine mesh (GCIfine) or the coarser mesh (GCIcoarse).

Here, Fs is a factor of safety, r = h
2

/h
1

is the grid refinement ratio, with h
1

being a finer

grid spacing than h
2

, and p is the order of grid convergence. The relative error is defined

by Slater (2008) as

" =
f
2

� f
1

f
1

,

where f
1

is a quantity of interest resulting from a simulation executed with the finer grid,

and f
2

with a coarser grid.

A safety factor of 1.25 was suggested by Slater (2008) for comparison of two grids,

and a theoretical order of convergence p = 2 was utilized for the grid computations. The

GCIs for the grids presented in Table 9, can be seen in Table 10.

Since Grid 5 was preferred over Grid 6, it can be expected from Eq. (47) that the 3D

model will have an error band of ⇠ 0.95%. The finest 2D model, that is Grid 3, was used

in this study, and hence Eq. (46) predicts an error band of 0.00824%.

Grid 1-2 2-3 4-5 5-6

p 2 2 2 2
Fs 1.25 1.25 1.25 1.25
|"| 2.63E-04 9.86E-05 4.16E-03 2.32E-03
r 1.5 1.58 2.0 1.20
GCI 2.63E-04 8.24E-05 1.73E-03 6.59E-03

Table 10: Grid convergence index

ANSYS CFX is a huge and complex program, and it takes time to familiarize with

all the functions and features it has to o↵er. There might be functions that could have

improved the results, but which have not been exploited by the user due to unawareness

of them. ANSYS-files require a lot of disk memory, and several problems were related to

this. If data was lost or hurt in processes where ANSYS loaded or saved files, it is possible

that this could have a↵ected the simulations. A work station may be recommended for

better performance and handling of the data.
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8 Conclusions

Simplifications regarding thermal behaviour in subsea christmas trees and other equipment

are common to utilize in heat transfer computations and estimations. Free-convective

heat transfer in cavities is very often assumed to behave as a solid body with an e↵ective

thermal conductivity, or sometimes even neglected. Subsea christmas trees are complex

in nature, containing several cavities which all make contributions to the overall heat loss

if not accounted for and insulated. Insulation is important in maintaining and possibly

improve flow performance, as well as retaining latent heat when production is interrupted,

otherwise temperatures may fall and hydrates form under the high operating pressures

that are present. Hydrates may cause blockage of the well stream and will have to be

removed which is an extensive process in time, cost and risk.

The analytical solution based on literature correlations predicted less heat transfer

occurring in the cavity compared to what the 3D model did, which took into account

the free convection e↵ects. The correlations based on rectangular enclosures proved to

predict the lowest heat flux values, and estimated heat fluxes between approximately 11-

31 kW/m2. The correlation for an open-ended concentric cylinder, Eq. (35), predicted

values close to the rectangular enclosures, but reached a maximum value of 35 kW/m2

when the inner wall temperature was 100�C and the sea water was 4�C. Eq. (36) from

VDI-Wärmeatlas (2006), which was valid for closed concentric cylinders heated from the

inside to the outside, predicted heat flux values of approximately 16-40 kW/m2 in the tem-

perature range 50-100�C. The latter correlation was in closest relation to the fully resolved

3D model, which from the thermal CFD-analysis predicted heat fluxes of approximately

16-45 kW/m2 for the same temperature range, resulting in deviations up to 11% related

to the VDI-Wärmeatlas-correlation.

The 2D fully resolved model predicted heat fluxes between 14-35 kW/m2, which proved

to be very close to the predictions of the open-ended cylinder correlation according to

Eq. (35). It underestimated the heat flux values with a 12-23% error, depending on the

temperature of the inner wall. The error was seen increasing with increasing temperatures,

and it is likely to conclude that a 2D fully resolved model is inadequate for heat transfer

calculations of concentric cylinder enclosures.

The e↵ective thermal conductivities that were estimated based on the Nusselt number

obtained from the literature correlations and the thermal conductivity of water, indicated

that heat fluxes in the vertical circular enclosure would go from a minimum of 30 kW/m2

for 50�C to a maximum of 100 kW/m2 for 100�C. This implies that when assuming the free

convection e↵ects in trapped fuid cavities behave as a solid with temperature-independent

properties, one may be overestimating the heat losses with 47-60% according to this in-

vestigation. If neglecting some of the trapped fluid cavities in subsea christmas tree com-

putations, this overestimate may be reasonable depending on the geometry and number of
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cavities. An overestimate could also possibly ensure reliable production. The e↵ort that

would have to be put down into doing a proper CFD analysis may exceed the cost of over-

estimating heat losses in terms of time and insulation material, given that all christmas

trees need to be individually analysed. If individual analyses are not required, current

technology might be su�cient.

The free convection model and heat transfer results developed in this study can only

be seen as an indication to the heat losses occurring in trapped fluid volumes inside subsea

christmas trees, more than an accurate representation of the real world.

It might however encourage to further investigation with more complicated geome-

tries since contributions of various trapped fluids are neglected in the conventional FEA

approach and a CFD analysis could predict a more realistic thermal behaviour by includ-

ing the cavity volumes, hence there could be a financial upside running more extensive

simulations.
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A Simplified Model Results

@InnerWall

2D 3D

k
e↵

q00 [W/m2] q00 [W/m2] Deviation [%] Ti [�C] �T

3.144

3.600

3.785

4.569

26789.1

30674.4

32248.1

38930.6

26816.6

30705.8

32281.7

38972.1

0.10

0.10

0.10

0.10

50 46

3.335

3.782

4.039

4.824

34593.8

39230.9

41891.7

50039.5

34629.4

39271.0

41934.6

50090.2

0.10

0.10

0.10

0.10

60 56

3.504

3.940

4.264

5.046

42837.6

48167.6

52122.6

61689.0

42869.1

48203.6

52176.5

61734.7

0.07

0.07

0.01

0.07

70 66

3.655

4.082

4.467

5.242

51453.8

57465.3

62880.8

73794.7

51506.5

57523.5

62944.0

73870.7

0.10

0.10

0.10

0.10

80 76

3.793

4.210

4.6523

5.419

60422.2

67065.5

74117.6

86324.2

60483.9

67133.2

74193.2

86412.7

0.10

0.10

0.10

0.10

90 86

3.921

4.327

4.825

5.581

69724.4

76943.8

85792.1

99243.1

69795.6

77022.7

85879.8

99343.7

0.10

0.10

0.10

0.10

100 96

Table A1: Heat flux at the inner cylinder wall of the simplified model
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@OuterWall

2D 3D

k
e↵

q00 [W/m2] q00 [W/m2] Deviation [%] Ti [�C] �T

3.144

3.600

3.785

4.569

-18045.1

-20662.0

-21722.1

-26223.6

-17837.1

-20424.0

-21472.1

-25921.4

1.2

1.2

1.2

1.2

50 46

3.335

3.782

4.039

4.824

-23302.3

-26425.7

-28217.4

-33705.8

-23034.0

-26121.1

-27892.4

-33317.8

1.2

1.2

1.2

1.2

60 56

3.504

3.940

4.264

5.046

-28854.9

-32445.3

-35109.4

-41552.9

-28514.5

-32062.7

-34704.8

-41062.9

1.2

1.2

1.2

1.2

70 66

3.655

4.082

4.467

5.242

-34658.8

-38707.8

-42356.3

-49706.9

-34259.7

-38262.2

-41868.0

-49135.1

1.2

1.0

1.2

1.0

80 76

3.793

4.210

4.653

5.419

-40700.2

-45174.2

-49924.7

-58147.5

-40231.1

-44654.3

-49349.4

-57477.5

1.2

1.2

1.2

1.2

90 86

3.921

4.327

4.825

5.581

-46965.6

-51829.0

-57788.8

-66848.9

-46424.9

-51231.8

-57123.7

-66079.5

1.2

1.2

1.2

1.2

100 96

Table A2: Heat flux at the outer cylinder wall of the simplified model
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B Fully Resolved Model Results

@InnerWall

2D 3D

q00 [W/m2] h [W/m2K] q00 [W/m2] h [W/m2K] Deviation [%] Ti [�C] �T

13745.4 298.8 15690.9 341.1 12.4 50 46

17688.4 315.9 20755.0 370.6 14.8 60 56

21823.0 330.7 26096.0 395.4 16.4 70 66

26106.2 343.5 31850.8 419.1 18.0 80 76

30537.7 355.1 37857.4 440.2 19.3 90 86

35106.0 365.7 44039.5 458.7 20.3 100 96

Table A3: Heat flux at the inner cylinder wall of the fully resolved model

@OuterWall

2D 3D

q00 [W/m2] h [W/m2K] q00 [W/m2] h [W/m2K] Deviation [%] Ti [�C] �T

-8834.2 192.0 -10025.2 217.9 11.9 50 -46

-11409.5 203.7 -13211.5 235.9 13.6 60 -56

-14103.3 213.7 -16752.6 253.8 15.8 70 -66

-16898.9 222.4 -20460.8 269.2 17.4 80 -76

-19805.6 230.3 -24377.3 283.5 18.8 90 -86

-22809.2 237.6 -28426.8 296.1 19.8 100 -96

Table A4: Heat flux at the outer cylinder wall of the fully resolved model
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