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Summary

In the present study, a reliability analysis of the Hardanger Bridge was performed, by
assessing the probability that multimodal flutter will occur. The self-exiting forces which
reduce the effective damping and stiffness of the bridge, are formulated in terms of flutter
derivatives. Measurements of flutter derivatives are available through section testing, and
contrary to previous studies, also measurements for horizontal derivatives were used in
the present work. The derivatives are modelled as stochastic variables. Two different
modelling choices have been suggested. The thesis shows that only one of these provides
reliable estimates.

Using random realisations of the stochastic distribution of flutter derivatives as input,
the multimodal flutter equation was solved for a large number of simulations, providing
distributions of critical speed to use in the reliability analysis. Since horizontal flutter
derivatives were available, it was investigated whether horizontal modes impact the flutter
limit. Thus, probabilistic distributions have been prepared for four different mode com-
binations, two of them including a number of horizontal modes. The study provides no
evidence to suggest that horizontal effects are significant.

Due to the low probabilities involved in the flutter reliability analysis, the computa-
tional effort using traditional methods is very substantive. Therefore, an enhanced Monte
Carlo method developed at NTNU was employed. Here, the original limit state function,
M = VCr − VS , was parameterized. Thereafter, the correct failure probability was es-
timated by means of extrapolation from the parameterized limit states. The use of the
enhanced method to perform a flutter reliability analysis is, to the knowledge of the au-
thor, not described in literature previously. Based on the current simulations, the reliability
index β was found in the range from 5.8-6.3, giving a failure probability per year as low as
1 · 10−10− 5 · 10−9. However, there is an inherent uncertainty in these values, both due to
uncertainty in the applied calculations, as well as the more general uncertainty in the field
of flutter analysis. The calculations suggest that Nsim could be increased to achieve better
accuracy.

In all three phases of the project, namely the modelling of flutter derivatives, solv-
ing of the eigenvalue problem defining multimode flutter, as well as the employment of
the enhanced Monte Carlo method, MATLAB was used as the prime tool. Many of the
MATLAB scripts being used in the study were prepared by Ole Øiseth at NTNU.
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Sammendrag

I denne studien er det blitt utført en pålitelighetsanalyse av Hardangerbroen, ved å vurdere
sannsynligheten for at multimodal instabilitet oppstår. De egeninduserte kreftene som
reduserer broens effektive demping og stivhet, er formulert ved hjelp av aerodynamiske
derivater. Målinger av aerodynamiske derivater er tilgjengelige gjennom testing av en
seksjonsmodell, og i motsetning til i tidligere studier er også målinger av horisontale
derivater blitt brukt i det foreliggende arbeid. Derivatene er modellert som stokastiske
variabler. To forskjellige modelleringsvalg er blitt foreslått. Avhandlingen viser at bare ett
av disse valgene gir pålitelige estimater.

Ved å generere tilfeldige realiseringer fra den stokastiske distribusjonen flutter-
derivatene er modellert ved hjelp av, ble det multimodale egenverdiproblemet som de-
finerer instabilitet løst for et stort antall simuleringer. Siden horisontale aerodynamiske
derivater var tilgjengelig, ble det undersøkt hvorvidt horisontale moder påvirker den kri-
tiske hastigheten. Sannsynlighetsfordelinger har blitt beregnet for fire forskjellige mode-
kombinasjoner, hvorav to inkluderer horisontale moder. Studien inneholder ikke noe som
tyder på signifikante horisontale effekter.

På grunn av de lave sannsynligheter involvert i pålitelighetsanalysen, er beregnings-
omfanget ved bruk av tradisjonelle numeriske metoder svært omfattende. Derfor ble en
forbedret Monte Carlo-metode, utviklet ved NTNU, benyttet. Her ble den opprinnelige
grensetilstandsfunksjonen M = VCr − VS parametrisert, hvorpå den korrekte svikt-
sannsynligheten ble beregnet ved hjelp av ekstrapolering fra de parameteriserte grensetil-
standene. Bruk av den forbedrede fremgangsmåten for å utføre en pålitelighetsanalyse for
kritisk hastighet er, såvidt forfatteren vet, ikke tidligere beskrevet i litteraturen. Basert på
de nevnte simuleringer, ble pålitelighetsindeksen β beregnet til å ligge i området 5,8 til
6,3. Det gir en sviktsannsynlighet per år på 1 ·10−10−5 ·10−9. Det er imidlertid vesentlig
usikkerhet knyttet til disse verdiene, både på grunn av usikkerhet i de anvendte bereg-
ninger, i tillegg til den mer generelle usikkerheten som er knyttet til aeroelastiske betrakt-
ninger. Beregningene antyder at Nsim bør økes ytterligere for å oppnå bedre nøyaktighet.

I alle tre faser av prosjektet, nemlig modellering av aerodynamiske derivater, løsning
av egenverdiproblemet som definerer kritisk hastighet, så vel som anvendelse av den for-
bedrede Monte Carlo-metoden, ble MATLAB benyttet som viktigste verktøy. Mange av
MATLAB-skriptene som brukes i studien, ble utarbeidet av Ole Øiseth ved NTNU.
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Chapter 1
Introduction

1.1 Background

The ability of a suspension bridge to vibrate has been known for a long time in the struc-
tural engineering literature. In 1836, the Brighton Chain Pier collapsed, with distinct
torsional fluctuations in the period before it gave way. As a reference case, however, this
incident fades compared to the collapse of the Tacoma Narrows Bridge. This infamous
incident occurred only a few months after construction was completed, in a wind storm of
very modest strength. The violent torsional fluctuations were a result of a mean wind ve-
locity of only 19 m/s. When constructed, the bridge was counted as an example of modern
bridge design, with a modest use of materials to construct the third longest bridge span at
the time. After the collapse, the field of bridge engineering was forced to reconsider the
development, and the investigations to the reasons of occurrence became a starting point
of today’s knowledge of aerodynamic bridge behaviour.

The fluctuations of the Tacoma Narrows Bridge could be described as a distinct, single-
mode torsional motion, today known as torsional flutter. Today, it is often recognised that
the critical mean wind velocity is limited by multimode flutter, in which several modes
contribute to the fluctuations.

The Tacoma Narrows Bridge had a main span of 853 m. Today, it is common that
suspension bridges employs main spans of 1200 m, while the record holder, the Akashi
Kaikyo Bridge, currently has a main span of 1990 m. In Norway, the Hardanger Bridge,
which was completed in 2013 and has a main span of 1310 m, takes the lead. Due to
the sparse amount of traffic at the construction site, the bridge has a very slender design,
making the aero-elastic stability limit an important concern.

1.2 Objective of work

While the mean flutter limit of the Hardanger Bridge has been assessed in previous studies,
this study takes a step further, and investigates the probabilistic nature of the project, finally
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Chapter 1. Introduction

providing a reliability analysis of the Hardanger Bridge. Here, the stochastic distribution
of the critical flutter speed has been compared with the probabilistic distribution of the
extreme 10 min mean wind value that is observed at the construction site during a year.

The analysis can be separated in three main parts. Firstly, the uncertainty of flutter
derivatives is modelled. Secondly, a probabilistic analysis of the critical flutter speed is
provided. Thirdly, the results are compared with the stochastic distribution of the yearly
extreme 10-min mean wind value at the construction site.

In the analysis, two modelling alternatives for the flutter derivatives are investigated.
Also, the variation in reliability due to different choices of mode combinations is reviewed.
Since experimentally determined horizontal flutter derivatives has been available for the
analysis, it is investigated whether horizontal mode contributions can be said to have an
impact on the reliability of the bridge.

The thesis is organised in 8 chapters, the content of which will be briefly described her.

1.2.1 Organisation of the thesis

In chapter 2, the necessary theoretical background to define the multimode flutter limit is
defined. The approach of Scanlan and Tomko [7] is used, describing self-induced forces,
in which experimentally determined flutter derivatives plays a vital part.

In chapter 3, the most important statistical tools applied in the study are described.
Also, the concept of reliability analysis is described on a basic level. Finally, the enhanced
Monte Carlo method, which is used to estimate failure probabilities in this study, is pre-
sented.

In chapter 4, a review of some important limitations to the theory of flutter limit calcu-
lations, are provided. The chapter relies heavily on important findings in literature.

In chapter 5, all necessary preliminaries to perform the probabilistic analysis of the
study are described. The heart of the chapter is the modelling of flutter derivatives, for
which two modelling choices have been suggested. Also, a description of the flutter calcu-
lation routine is provided, and the stochastic distribution of the extreme mean wind value
expected to occur during a year, is provided.

In chapter 6, the results from the analysis are presented. The critical speed distributions
for the different modelling choices and mode combinations are described, and the results
from the reliability analysis are presented.

In chapter 7, a discussion of the main findings from the analysis is given. The mod-
elling choices are compared, and the validity of the results is discussed. Finally, a compar-
ison of the most reliable findings is given.

Lastly, in chapter 8 an overview of the available conclusions is provided, and a brief
list of suggestions for further investigations are given.

In the last section of this chapter, a description of the Hardanger Bridge is given.

2
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1.3 The Hardanger Bridge

Figure 1.1: The Hardanger Bridge seen from east.

The Hardanger Bridge, which was completed in 2013, is the longest suspension bridge in
Norway, with a main span of 1310 m. It is currently among the 10 longest suspension
bridges in the world. The construction was started in the autumn 2009 with the erection of
the towers, while the spinning of cables was started in 2011. Since the opening, the average
traffic on the bridge has been approx. 1880 cars/day. Compared to other long suspension
bridges, this is modest, and explains why the bridge was built with only two car lanes and
one walking/biking lane. Because of its slender cross section, wind-induced vibrations of
the bridge are a concern which has received much attention. The bridge was designed in
accordance with Handbook 185 of The Norwegian Public Road Administration (SVV),
which, among other requirements, demands that the aerodynamic behaviour of the bridge
should be limited with:

VCr ≥ 1.6VS (1.1)

VS is the 10-min mean wind velocity which is expected to have a return period of 500
years, valid for the construction site. This design wind speed is found in sec. 5.6 to be
VS = 43m/s, which means that the critical speed limit should be at least 69 m/s.

The bridge crosses the Hardanger fjord between Vallavik and Bu, and is a part of Rv.
13 and Rv. 7. It replaced the ferry crossing of the same fjord, which was a well-known
bottleneck on one of the main roads between Oslo and Bergen, the two largest cities in
Norway 1.2.
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Chapter 1. Introduction

Figure 1.2: Overview of the Hardanger Bridge project. [1]

The Hardanger Bridge has a total length of 1380 m, only 70 m longer than its main
span. The sailing height is 55 m, while the bridge pylons reach 200 m above sea level.
None of these specifications are extreme compared to other long suspension bridges; how-
ever, the unusually narrow bridge girder makes the bridge an interesting project. The width
is 18.3 m, and the distance between the two cables is only 14.3 m. When comparing with
some other long bridges, it is found that the Hardanger Bridge is one of the most slender
[8]. A front elevation of the bridge is shown in fig. 1.3. At midpoint, the driving lane is
elevated 63.5 m above sea level, while the elevation is 52 m by the pylons.

Figure 1.3: Front elevation of the Hardanger Bridge. [1]

The girder of the bridge is made of a stream-lined, closed steel box, and the geometry
of the cross section is depicted in fig. 1.4. To optimize the aerodynamic behaviour of the
bridge, guide vanes were included to reduce vortex shedding effects. To increase stiffness,
there are transverse bulkheads every four meters. The sections were produced in 15 m
lengths. Four lengths were welded together to one 60 m section, and these sections were
transported to the construction site by boat.
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1.3 The Hardanger Bridge

Figure 1.4: Cross section of the girder. All dimensions in millimeters. [1]
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Chapter 2
Wind dynamics

2.1 Introduction
The total wind load on a bridge deck may be separated in four parts,

qtot = q + qbuff + qv + qse (2.1)

• q is the time-averaged mean wind load, which give rise to static load effects,

• qbuff is fluctuating wind loads due to air turbulence. This phenomenon is also
known as buffeting.

• qv is the load due to vortex shedding effects into the wake of the body.

• qse stem from interaction between the wind flow and the oscillating bridge deck,
so-called motion-induced wind loads.

For cable-supported bridges, qse becomes the dominant term in (2.1) when the wind
velocity increases, and certain high wind velocities can cause motion-induced instability.
Instability occurs when the energy input from the motion-induced wind load is equal to
the energy dissipated by structural damping, and is associated with a critical wind velocity.
When the net energy is zero, free motion with large deflections is the possible result. It is
usual to distinguish between four different types of motion-induced instabilities.

• Static divergence

• Galloping

• Torsional flutter

• Coupled flutter
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Chapter 2. Wind dynamics

Static divergence occurs when the total stiffness becomes negative. This is a static
instability effect usually seen on torsional motion.

Galloping is related to the damping term of vertical motion, and is not likely to occur
for streamlined bridge sections. More often, it is seen on ice covered power lines. For
bridge structures, flutter motion is more likely to occur.

Torsional flutter involves the motion of one single, torsional mode. Notably, the
collapse of Tacoma Narrow Bridge was a result of torsional flutter at a relatively low wind
speed. When the body of the bridge section is bluff, this is more likely to occur, whereas
for streamlined sections, it is more rarely seen.

Coupled flutter remains the issue of greatest concern to the structural engineer. Still,
at least one torsional mode is needed in order for instability to occur; however, also other
modes contribute to instability. Bimodal flutter occurs if the in-wind eigenfrequency of
one torsional mode and one vertical mode reaches the same value, possibly introducing vi-
olent fluctuations of the bridge girder. This motion often is the basis for multi mode flutter;
however, if more than two modes are contributing to flutter, critical speed can be reached
without two in-wind eigenfrequencies reaching the same value. Because multimode flutter
generally is seen to be the limiting phenomenon for bridges, and because the solving pro-
cedure easily calculates critical speed for the three other types of instabilities, multimode
flutter analysis is the present state of art when assessing problems involving self-exited
forces. To develop a mathematical formulation of the multimode flutter problem, it is
necessary to define the loads that contribute to self-exiting motion.

2.2 Self-exited forces

The general wind field varies with time and space, and is made up of a stationary, hori-
zontal component, as well as turbulence components in all three directions. In general, the
instantaneous wind velocity vector is described by

U(x, y, z, t) = V (x, y, z) + u(x, y, z, t)
v(x, y, z, t)
w(x, y, z, t),

(2.2)

where u and v are the horizontal turbulence components, V the stationary, mean wind
component, and w is the vertical turbulence component. Because a bridge can be consid-
ered as a horizontal, line-like structure, the relevant expressions for the wind field may be
simplified, because neither y nor z vary along the main axis of the bridge. The wind com-
ponents contributing to motion thus consists of U(x, t) = V + u(x, t) and w(x, t), where
x is, as of now, the coordinate along the main axis. It is assumed that the most critical
situation occurs when the mean wind component attacks the bridge in a direction normal
to the main axis. Therefore, v vanishes, as it attacks along the main span of the bridge, in
which direction no significant movement is expected.

Davenport gave a full account of the response of line-like structures subjected to wind
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loads. A fundamental assumption is that these forces are determined by Bernoulli’s equa-
tion, which imposes a relation between instantaneous wind pressure and wind speed.

pU (t) = 1
2ρ[U(t)]2 (2.3)

where pU is the wind pressure, ρ the density of air, and U(t) a wind component that
attacks the bridge deck when it is in its balancing position. The wind pressure is transferred
to drag, lift and moment forces on the bridge section, given byqD(x, t)

qL(x, t)
qM (x, t)

 = 1
2ρVrel(x, t)

2

 DCD(α)
BCL(α)
B2CM (α)

 (2.4)

Vrel is introduced as the speed of the total wind component, relative to the motion
of the bridge section. qD attacks along the direction of Vrel, qL in the normal direction,
while qM is a moment force. CD, CL, CM are static load coefficients that depend on the
angle of incidence, as well as the shape and surface of the body subjected to wind pres-
sure. All forces are assumed to attack the mass center of the bridge. While the formulas in
(2.4) have a very simple form, the expressions are not convenient to determine displace-
ment components in the structural axes, ie. ry(x, t), rz(x, t) and rθ(x, t). Therefore, it
is practical to transform these forces into qy, qz and qθ, which are assumed to attack in
the respective directions. The terms, directions and displacement components which have
been introduced here are explained in fig. 2.1.

Figure 2.1: Bridge deck subjected to wind forces [2].
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Performing the transformation, it can be shown that (2.4) changes intoqy(x, t)
qz(x, t)
qθ(x, t)

 = ρV

(
V

2 + u− ṙy
)

·

 DCDBCL
B2CM

+
(
rθ + w − ṙz

V

) DC ′DBC ′L
B2C ′M

+ w − ṙz
V

−BCLDCD
0

 (2.5)

To get to these expressions some simplifications have been made. Firstly, Cn, n ∈
{D,L,M} are seen to be nonlinear flow incidence dependent load coefficients, however,
here they are linearized with

Cn(α) = Cn(α) + αfC
′
n(α) = Cn + αfC

′
n, (2.6)

α and αf being the mean value and the fluctuating part of the angle of incidence,
respectively. See fig. 2.1.

Secondly, it is assumed that the turbulence components u,w are small compared to V ,
and furthermore that structural displacements are also small. Then, β is small, meaning
that cos(β) ≈ 1 and sin(β) ≈ tan(β) ≈ (w − ṙz)/V , and higher order terms of u, w and
ṙi, i ∈ {x, y} are negligible.

The load formulation in (2.5) includes both static and dynamic parts, which can be
ascribed to velocity fluctuations in the wind flow, as well as dynamic, motion-induced
contributions. Comparing with (2.1), it is seen that both q, qbuff and qse are accounted
for in this formulation. If (2.5) were written out, q would be the part depending solely on
V , qbuff the part depending on V, u, w, while qse consists of the V, ri and ṙi dependent
terms. Flutter is determined by the latter part. It is a basic assumption that these forces
can be considered independent of each other. In (2.7), the terms of self-exited forces are
gathered.

qy,se(t) = 1
2ρV

2B

(
−2 (D/B)CD

ṙy
V
−
(
(D/B)C ′D − CL

) ṙz
V

+ (D/B)C ′Drθ
)

qz,se(t) = 1
2ρV

2B
(
− 2CL

ṙy
V
− (C ′L + (D/B)CD) ṙz

V
+ C ′Lrθ

)
qθ,se(t) = 1

2ρV
2B2

(
− 2CM

ṙy
V
− C ′M

ṙz
V

+ C ′Mrθ

)
(2.7)

While the formulation contributes significantly to the understanding of self-exited
forces, (2.7) has some limitations that make it unsuitable for practical cases. The the-
ory is valid only when the in-wind oscillation period of the structure is high, compared to
the time it takes for the air flow to travel the distance across the section. Because it only
applies when the bridge fluctuates slowly, Davenport’s theory is called quasi-static. Also,
it is seen that (2.7) does not provide any damping terms connected to torsional motion (ṙθ
is not present), as would be expected from experiments. [8]
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2.3 The multimode flutter problem

Scanlan and Tomko [7] introduced another approach, using so-called aerodynamic
derivatives to express the self-exited forces. With this approach, aerodynamic damping
and stiffness terms are provided for each degree of freedom.

qy,se = ρV 2B

2

(
KP ∗1

ṙy
V

+KP ∗2
Bṙθ
V

+K2P ∗3 rθ +K2P ∗4
ry
B

+KP ∗5
ṙz
V

+K2P ∗6
rz
B

)
qz,se = ρV 2B

2

(
KH∗1

ṙz
V

+KH∗2
Bṙθ
V

+K2H∗3 rθ +K2H∗4
rz
B

+KH∗5
ṙy
V

+K2H∗6
ry
B

)
qθ,se = ρV 2B2

2

(
KA∗1

ṙz
V

+KA∗2
Bṙθ
V

+K2A∗3rθ +K2A∗4
rz
B

+KA∗5
ṙy
V

+K2A∗6
ry
B

)
(2.8)

Here, P ∗i , H∗i , A∗i , i ∈ {1, 2, . . . , 6} are the aerodynamic derivatives. These deriva-
tives are functions of the reduced frequency K, which combines two parameters that are
very closely related to the fluctuations of the bridge.

K = Bω

V
, (2.9)

where ω is the frequency of motion. K combines P ∗i , H
∗
i , A

∗
i have to be experimen-

tally determined, and for practical reasons, they are often modelled as a function of the
reduced velocity, Vred = 1/K.

Comparing (2.7) and (2.8), it seems as if terms such as KP ∗1 and K2A∗4 are just a
rewrite of the load coefficient expressions in (2.7). However, while the load coefficients are
derived assuming static (non-vibrating) conditions, the expressions in the latter equation
should be referred to as motional derivatives. Equality can be assumed only when K
approaches zero. Among other things, this affects the way the values are experimentally
determined. The static load coefficients can be found by means of a fixed model of the
bridge, while a dynamic model is needed to find the aerodynamical flutter derivatives.

Reorganising, we find that (2.8) can be expressed as

qse = Cae · ṙ + Kae · r (2.10)

with qse =
[
qy,se qz,se qθ,se

]T
, and

Cae = ρB2

2 ω

 P ∗1 P ∗5 BP ∗2
H∗5 H∗1 BH∗2
BA∗5 BA∗1 B2A∗2

 ,Kae = ρB2

2 ω2

 P ∗4 P ∗6 BP ∗3
H∗6 H∗4 BH∗3
BA∗6 BA∗4 B2A∗3


(2.11)

ω = ω(V ) is the in-wind, mean wind velocity dependent eigen-frequency of motion.

2.3 The multimode flutter problem
A modal approach is used to define the multimode flutter problem. The fluctuating part
of the structural displacement, r(x, t) is defined as the sum of products between natural
eigenmodes φi(x) and generalized degrees of freedom ηi(t). In matrix form,

11



Chapter 2. Wind dynamics

r(x, t) = Φ(x)η(t), (2.12)

where

Φ(x) =
[
φ1(x) · · · φi(x) · · · φNmod(x)

]
η(t) =

[
η1(t) · · · ηi(t) · · · ηNmod(t)

]T
φi(x) =

[
φy(x) φz(x) φθ(x)

]T
i

(2.13)

If all eigenmodes are included, (2.12) is exact, for practical purposes Nmod eigen-
modes are chosen so that adequate accuracy is achieved. Dynamic equilibrium conditions
are defined in modal space by the familiar differential equation,

M̃0η̈(t) + C̃0η̇(t) + K̃0η(t) = Qse (2.14)

M̃0, C̃0 and K̃0 are the modal mass, damping and stiffness matrix respectively, where
subindex 0 indicates that the structural properties are obtained for still-air conditions. Due
to the properties of a modal analysis, the off-diagonal terms of M̃0 are cancelled out, while
the diagonal terms are given by

M̃0,i =
∫
L

φTi (x)M0φi(x) dx (2.15)

with φi from (2.13) and M0 given as

M0 =

my(x) 0 0
0 mz(x) 0
0 0 mθ(x)

 (2.16)

my(x) and mz(x) are the distributed mass along the main span of the bridge (normally,
my(x) = mz(x)), while mθ(x) is the mass moment of inertia of the cross-section. As-
sociated with each eigenvector φi(x) are the eigenfrequency ω0,i and the modal damping
coefficient ζ0,i. Combining (2.15), (2.16) and these parameters provide

M̃0 = diag(M̃0,i)
C̃0 = diag(2ζ0,iω0,iM̃0,i) i ∈ {1, . . . , Nmod}
K̃0 = diag(ω2

0,iM̃0,i)
(2.17)

Also, Qse are the accumulated, self-exited forces on the bridge, given by

Qse = C̃ae(V, ω)η̇ + K̃ae(V, ω)η (2.18)
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2.3 The multimode flutter problem

C̃ae =


. . . . .

.

C̃ae,ij

. .
. . . .

 , K̃ae =


. . . . .

.

K̃ae,ij

. .
. . . .

 (2.19)

where [
C̃ae,ij
K̃ae,ij

]
=
∫
Lexp

[
φTi (x)Caeφj(x)
φTi (x)Kaeφj(x)

]
dx, (2.20)

Lexp being the length of the wind-exposed part of the bridge. Often, Lexp ≈ L, and
equality is assumed. Cae and Kae are defined in (2.11). Combining (2.14) and (2.18), and
introducing the characteristic solution vector

η = η̂eλnt, (2.21)

the quadratic, complex eigenvalue problem which defines the structural displacements
of the bridge, is provided as

(
λ2
nM̃0 + λn

(
C̃0 − C̃ae (V, ω)

)
+
(
K̃0 − K̃ae (V, ω)

))
η̂ = 0, n ∈ {1, 2, . . . , 2Nmod}

(2.22)

(2.22) can be transformed into a standard, complex, nonlinear eigen-value problem, to
which well-known iteration techniques apply. This produces 2Nmod complex eigenvalues
λn, with associated eigenvectors η̂. The solutions come as complex conjugated pairs,
which means that if λ2n−1 = an + ibn solves (2.22), then λ2n = an − ibn is also a
solution. These two solutions leads to the same eigenvector, which means that half of the
solutions are redundant. To see what physical meaning these solutions have, a comparison
with a 1DOF system is explanatory. Then, (2.22) reduces to solving

mλ2 + ctotλn + ktot = 0, (2.23)
⇒ λ2 + 2ζtotωλ+ ω2 = 0 (2.24)

where ctot, ktot, ζtot and ω are in-wind terms taking both structural and aerodynamical
damping and stiffness into account. The transition (2.23)-(2.24) is made using
ctot = 2ζtotωm and ktot = ω2m. (2.24) is a simple quadratic equation, which has the
solutions

λ = −ζtotω ± ω
√

1− ζ2
tot (2.25)

This expression extends to the multimode equation as well. Thus, by comparing terms,

it is seen that an = −ζtot,nωn, bn = ωdn = ωn

√
1− ζ2

tot,n, where ωdn is the in-wind,
damped frequency of motion. Finally, it is found that

ωn =
√
a2
n + b2

n, ζtot,n = − an√
a2
n + b2

n

(2.26)

13



Chapter 2. Wind dynamics

All values are specific for mode nr. n. These results are in accordance with theory
regarding the traditional equation of motion ((2.22) without K̃ae and C̃ae), see e.g. [9].

For low wind velocities, an is negative for all n, resulting in decaying motion. How-
ever, higher wind speed will increase the effects of C̃ae, ultimately (possibly) resulting in
a situation with zero net damping. Mathematically, this is seen when an ≥ 0 for some n.
Thus, to find the flutter wind speed limit, the common solution procedure searches for a
combination of V and ωn where an = 0. [10] gives a thorough review of the most com-
mon iterative technique, which were suggested by Agar [11]. A description is also given
in sec. 5.5.

2.4 Properties of flutter derivatives
As mentioned in sec. 2.1, flutter can occur in various forms. The infamous Tacoma Bridge
collapsed primarily as a result of pure torsional flutter, at a very low wind speed [12]. Even
before that, it was realised that bimodal flutter, where one torsional mode couples with a
vertical mode, could occur for streamlined aerofoils [13].

The determination of aerodynamic derivatives is important to find the critical flutter
speed. As it is the coupling of vertical and torsional motion which has been seen to have
the most influence on critical flutter speed, the aerodynamical derivatives defining this
coupling, H∗i , A

∗
i , i ∈ {1, 2, 3, 4}, were the first to be identified. Theodorsen, working

in the field of aeronautics, provided theoretical expressions for the self-exited forces for a
flat plate, showing that they could be considered linear in the structural displacements and
their two first time derivatives [13]. Later, Scanlan showed that this way of modelling self-
induced forces was valid also for bridge decks [7]. However, as the importance of second
time derivatives turned out to be negligible in wind engineering, they were omitted in his
expressions, resulting in a formulation equivalent to the ones being shown in (2.8). Paren-
thetically, including second derivatives would give an aerodynamic mass matrix, M̃ae, to
be included in (2.18).

It was also demonstrated that the aerodynamic derivatives could be determined using
wind tunnel testing. Until recently, it is only the eight derivatives mentioned in the pre-
vious paragraph which have been determined experimentally, partly because horizontal
motion were not considered to affect the critical flutter speed, and partly because section
models were constructed to allow for motion only in vertical and angular direction. When
performing a 3D flutter analysis, expressions also for the ten remaining derivatives are
needed. It is common to model these using the quasi-static load coefficients from (2.7),
giving the following expressions:

P ∗1 = −2CD
D

B

(
1
K

)
, P ∗5 = (CL −

D

B
C ′D)

(
1
K

)
, P ∗3 = C ′D

D

B

(
1
K

)2
,

H∗5 = −2CL
(

1
K

)
, A∗5 = −2CM

(
1
K

)
, P ∗2 = P ∗4 = P ∗6 = H∗6 = H∗6 = 0

(2.27)

The flutter analysis of the Akashi Kaikyo Bridge, for which significant horizontal cou-
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2.5 Bimodal flutter

pling was observed, was performed using these quasi-static values [14]. Also, the Hardan-
ger Bridge has previously been assessed this way.

Even though quasi-static coefficients have been used in recent studies, all 18 deriva-
tives have been experimentally determined with section model setups for different bridges,
allowing for motion in three directions, see eg. [15],[6].

2.5 Bimodal flutter
In sec. 2.3, the eigenvalue problem for multimode flutter was defined. Even though this
equation can be solved for a high number of modes, in practice it is often seen that the
flutter speed converges after a few selected modes are included. Specifically, the multi
mode flutter solution is often seen to be dominated by the two modes that would give bi-
modal flutter. A vertical and a torsional mode dominate the motion at flutter speed, while
additional modes give limited contributions. However, while bimodal flutter is defined to
occur at the point where in-wind frequencies reaches the same value, giving large fluctua-
tions for both modes, multi mode flutter motion is usually dominated by only one of these
modes. Still, it is instructive to describe the properties of a bimodal solution more closely.

Bimodal coupling occurs when a torsional mode and a vertical mode couple with each
other at the same frequency. In still-air, the eigenfrequencies of the two modes are nor-
mally separated. For coupling to occur, the in-wind frequencies have to converge towards
each other, ultimately reaching the same value. The mean wind velocity where this occurs
is thus the critical speed.

Modal coupling is more likely to occur with modes that have their largest deflections
at the same part of the structure. Above all, this means that a vertical, symmetrical mode
is not likely to couple with an asymmetrical torsional mode, and vice versa. The modes
providing the lowest flutter limit often turns out to be the first symmetrical vertical mode
coupling with the first symmetrical torsional mode. However, both for the Hardanger
Bridge and the Hålogaland Bridge, it was necessary to include three modes to determine
flutter speed with accuracy [8],[16]. Also, it was seen that the 2nd symmetrical vertical
mode was more likely to couple compared with the 1st symm. vertical. Shape-wise sim-
ilarity and difference between frequencies are seen to be very important indications as to
whether or not modes couple.

Shape-wise similarity can be measured with the mode shape similarity coefficient,

ψzθ =

∫ L

0
φz(x)φθ(x) dx∫ L

0
φ2
z(x) dx

∫ L

0
φz(x)φθ(x) dx∫ L

0
φ2
θ(x) dx

(2.28)

If the mode forms are exactly equal to each other, ψzθ = 1, while dissimilar modes re-
sult in ψzθ approaching zero. The bimodal flutter limit is seen to decrease with increasing
shape similarity.

Modal coupling is more likely to occur when the difference between the still-air, nat-
ural frequencies of the two modes are small [17]. This can be measured by the frequency
ratio γω = ωy

ωθ
, which normally is found to be limited by γω ≥ 1. For a flat plate, it is
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Chapter 2. Wind dynamics

found that Vcr reaches a minimum for γω ≈ 1.1 [18]. Increased wind speed reduces the
torsional eigenfrequency, while the vertical frequency increases, thus reducing the in-wind
ratio towards unity. Bridge designers often search a configuration where the frequencies of
these modes are well separated. This can be achieved by using cross sections that increase
torsional stiffness, the closed-box section of the Hardanger Bridge, seen in fig. 1.4, being
an example.

While it is often seen that two of the considered modes in a multi mode analysis give
the most significant contributions, it is important to assess whether including more modes
in the analysis might reduce critical speed.

In [8], using a rectangular cross section as a case study, Øiseth investigated when a
bimodal analysis could be considered to give accurate results, and when further inquiries
should be performed. Among the findings were that

• If two pairs of shape-wise similar modes, the pairs being shape-wise dissimilar,
were included in a multimode flutter analysis, there were no significant multimodal
effects present. The flutter limit was determined by the pair providing the lowest
limit alone.

• If two torsional modes were included in multimode analysis with one vertical mode,
the separation of the two torsional frequencies strongly influenced the reduction of
the flutter limit. With a large frequency ratio between the two torsional eigenfre-
quencies, very little reduction was observed, while significant contributions were
seen with equal frequencies. Also, shape-wise similarity influenced the flutter limit.

• If two vertical modes and one torsional mode were included, the contributions from
the second vertical mode could be significant even with the two vertical frequencies
being well separated.

The results suggest that shape-wise similarity should be the prime focus when includ-
ing modes, and high numbered vertical modes should also be focused upon.

As the comprehension of the modal coupling phenomena increased, the possible in-
clusion of lateral modes was looked into. Although the traditional view maintained that
lateral modes do not couple significantly with vertical/torsional motion, extended research
suggests that this stance must be modified. Dyrbye & Hansen states that lateral mode con-
tribution may have significant effect for long span bridges, more explicitly bridges with
main span in the range of more than 1-2 km [18]. Analysis performed on the Akashi-
Kaikyo Bridge, currently the longest suspension bridge in the world, with a main span of
1990m, also showed that lateral modes affected the flutter limit. Here, it was determined
that three vertical modes and two horizontal modes together with one torsional mode (all
symmetric) were needed to achieve accuracy.
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Chapter 3
Statistics and structural reliability

In this chapter, an introduction to the field of reliability analysis is provided. After a
brief survey of the theory behind, some common solution strategies to problems involving
failure probability are suggested. Most notably, the concept of Monte Carlo simulations
are introduced, and the theory behind an extension to the method, hereby denoted the
enhanced Monte Carlo method, are presented. The field of reliability analysis is in its
nature probabilistic, and thus, some statistical knowledge becomes important. In the first
part of the chapter, an overview of the statistical tools that are used throughout this thesis,
are presented.

3.1 Probability distributions

Statistics is concerned with making inferences about sample spaces of random variables.
Thus, the field is relevant to almost all engineering problems, because uncertainty is a
component in the sizes that are studied. For example, the maximal snow load on a roof
during a year is not known in advance. However, it is possible to provide a probability that
the load are of a certain size. A function that returns the probability for all the possible
outcomes of such questions is called a probability distribution function (PDF); here we
choose to denote it fX(x).

fX and the probability of events are obviously closely related. For sample spaces that
can take on an infinite number of values, as the example of snow load, the probability
distribution provides meaning only when considering intervals of the sample space. When
∆x is infinitesimal, fX(x) should be understood as the probability of X taking on a value
between x and x+ ∆x. In (3.1), the continuous distribution function is defined.
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Chapter 3. Statistics and structural reliability

∫ ∞
−∞

fX(x) dx = 1

fX(x) ≥ 0, x ∈ R

P (a < X < b) =
b∫
a

fX(x) dx

(3.1)

We can now define the cumulative distribution function (CDF), which provides the
probability of X being lower than a certain value.

F (x) = P (X ≤ x) =
∫ x

−∞
fX(t) dt, (3.2)

where t is used as a dummy variable.
It is common to use parameters to describe the distribution functions that are used.

All properties of a random variable are determined by its type of distribution and some
necessary parameters. The mean µX and the variance σ2

X are very commonly used, defined
by

µX = E(X) =
∫ ∞
−∞

x · fX(x) dx (3.3)

σX
2 = E[(X − µX)2] =

∫ ∞
−∞

(x− µX)2 · fX(x) dx (3.4)

The mean is the average value of the sample, while the variance is a measure of scatter,
high variance means large scattering. If a series of observations is drawn from a sample
with unknown properties, µX and σX can be estimated with

µ̂X = 1
n

n∑
i=1

xi (3.5)

σ̂2
X = 1

n− 1

n∑
i=1

(xi −mX)2, (3.6)

respectively. Necessarily, there is uncertainty connected to these values.

3.1.1 Multi variable distributions
It is easy to extend the definition of probability distribution functions to a multi-variable
domain. For a pair of variables X1, X2,

fX1X2(x1, x2) = P (x1 < X1 < x1 + ∆x1 ∩ x2 < X2 < x2 + ∆x2), (3.7)
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3.1 Probability distributions

which is analogous to (3.1), (3.2).
For two random variables, the covariance provides a measure of their mutual linear

dependence.

Cov(X1, X2) = σX1X2 = E[(X1 − µX1)(X2 − µX2)] (3.8)
(3.9)

(3.9) can be evaluated analytically in accordance with the last equality of (3.4). When
no analytical expression is present, (3.10) provides an estimation.

σ̂XY = 1
n− 1

n∑
i=1

((x1i −mX1) (x2i −mX2)) (3.10)

The covariance should be seen as a multivariate counterpart to σ2
X , which is sensible

also because (3.9) gives σXX = σ2
X .

A normalised version of the covariance is defined by the correlation coefficient,

ρX1X2 = σX1X2

σX1σX2

, (3.11)

which is limited by −1 ≤ ρX1X2 ≤ 1. Fig. 3.1 shows typical correlation coefficient
values for three different population samples.

Figure 3.1: Illustration: Correlation values for three different data samples.

When there is no correlation between the variables,

fX1X2(x1, x2) = fX1(x1)fX2(x2) (3.12)

The general n-dimensional distribution function for a vector of correlated variables,
X = [X1, X2, . . . , Xn], is generally denoted fX(x).

X have mean

E(X) = [E(X1),E(X2), . . . ,E(Xn)] (3.13)
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Chapter 3. Statistics and structural reliability

and covariance matrix

CX = Cov(X,XT ) =


σ11 σ12 . . . σ1n
σ21 σ22 . . . σ2n
...

...
. . .

...
σn1 σn2 . . . σnn

 (3.14)

The simplification σij = σXiXj is used here. The definition in (3.9) implies that (3.14)
is symmetric.

3.2 Regression analysis
Fig. 3.1 shows three data samples with varying degree of linear relation. Often, it is
necessary to determine the properties of relationships between variables. The situation
where Cov(X,Y ) ≡ ±1 describes a deterministic relationship between variables, and the
equation y = α + βx holds for all x using some suitable α, β. However, for practical
purposes such relations are not deterministic, and the true value of Y is given as

Y = α+ βx+ ε, (3.15)

where ε is a random disturbance or error inherent in the model, commonly assumed
as a random variable having zero mean and a variance of σ2. Y thus becomes a random
variable depending on the values of x and the distribution of ε, making the model in (3.15)
probabilistic. Regression analysis deals with finding the best relationship between vari-
ables, as well as quantifying the strength of that relation. Also, the use of methods to
predict response values is a part of the analysis.

The line y = α+ βx is called the true regression line of the model. However, because
the actual values of ε cannot be observed, it is not possible to define the true line, and α
and β must be estimated from data samples taken from the populations described by the
model. This estimate may be defined by the relation ŷ = a + bx. The regression would
then involve reducing the error or residual of the model, e = y − ŷ to a minimum. Given
n data points (xi, yi), i ∈ {1, ldots, n}, taken from the model in (3.15), this is commonly
done by minimizing the sum of squares of errors, i.e. finding a, b so that

SSE =
n∑
i=1

e2
i =

n∑
i=1

(yi − ŷi)2 =
n∑
i=1

(yi − a− bxi)2 (3.16)

is minimized. This is done by differentiating in (3.16) with respect to a and b, and
setting these derivatives equal to zero. Doing this and solving for a and b, it is then found
that

b =
∑n
i=1 (xi − x) (yi − y)∑n

i=1 (xi − x)2 , a = y − bx (3.17)
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3.2 Regression analysis

where x and y are the means of xi and yi, given by (3.6).
(3.17) defines estimates for α, β. Drawing two different data sets from the model, and

calculating a and b for each set would most likely provide different results, implying that α
and β also are random variables, depending on the distribution of the error term in (3.15).
Proofs omitted, it can be shown that an unbiased estimate of σ2 is given by

σ̂2 = SSE

n− 2 (3.18)

Likewise, it can be shown that σ̂2
A and σ̂2

B are estimates of the variance a and b are
distributed by, defined in (3.19).

σ̂2
A =

∑n
i=1 x

2
i

n
∑n
i=1 (xi − x)2 σ̂

2, σ̂2
B = 1

n
∑n
i=1 (xi − x)2 σ̂

2 (3.19)

For many practical applications, the variance of the error term takes on a larger value
than the expressions seen in (3.19), which can be explained by their respective meaning.
While σ̂2 is a measure of scatter of specific response measurements, from σ̂2

A and σ̂2
B it is

possible to infer on the variance of the mean response. From the latter values it is possible
to construct confidence intervals which work as bounds on the suggested mean response
for a certain value of x. They can be interpreted in the same way as confidence intervals
on the mean in a nonregression scenario.

Similarly, it is possible to construct bounds on a future predicted response. Obviously,
these bounds are wider than the ones for the mean response. They are commonly called
prediction intervals, and should be understood in the same way as the confidence intervals
in 3.27. Fig. 3.2 illustrates the difference between these two concepts.

As a measure of the quality of fit, the coefficient of determination, R2, is commonly
introduced. It measures how well the variability inherent in the true model is explained by
the fitted model, and is given as

R2 = 1− SSE

SST
= 1−

∑n
i=1 (yi − ŷi)2∑n
i=1 (yi − y)2 , (3.20)

where the total corrected sum of squares SST is introduced. R2 takes a value close to unity
if the quality of the fit is good, and approaches zero if the fitted model does not predict the
response well. The value provides valuable information to whether the suggested model is
adequate.

In (3.15), it was assumed that the error term had a constant, variance equally distributed
about the mean of the response. This is an assumption that does not hold for all applica-
tions. Valuable information can be drawn by assessing the residuals of the model more
closely, for example by plotting the data points (xi, ei) in a residual plot. Also other tools
to assess the quality of the model do exist. Information gathered from such tools may lead
to different conclusions, for instance that

1. the assumed model is adequate,
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Figure 3.2: Expected mean response, confidence intervals and prediction intervals for future re-
sponses.

2. it is more suitable to use a nonlinear model,

3. the residuals display a non-homogenous behaviour,

4. it should be investigated if the response y depend on more than one variable.

In sec. 3.2.1, the latter situation will be given some concern. 3. is given concern in
sec. 5.4.1

3.2.1 Multivariable linear regression
In the following, it is assumed that the response value y is linearly dependent of k indepen-
dent variables x1, . . . , xk, and that n observations y1, . . . , yn have been performed. The
observations of the experiment can then be gathered in a matrix equation as

y = Xβ + ε, where

y =

y1
...
yn

 , X =

1 x11 . . . xk1
...

...
. . .

...
1 x1n . . . xkn

 , β =


β0
β1
...
βk

 , ε =

ε1...
εn


(3.21)
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3.3 Normal distribution

xij is the observation number j of variable i, βi are the model coefficients estimated
by bi, and εj are error terms analogous to that of (3.15). Now, minimizing the squared sum
of errors involves solving the equation

∂

∂b (SSE) = 0, SSE = (y−Xb)T (y−Xb) (3.22)

finally giving

b = (XTX)−1XTy (3.23)

In sec. 3.2 it was mentioned that the regression model should sometimes be defined
as nonlinear in x and y. In many cases, such models would need iterative techniques to
be evaluated. However, as long as the model is linear in their parameter coefficients βi,
nonlinear models can be transformed so that they are suitable for linear regression analysis.

A special case of this applies when y is modelled as a polynomial in x, ie.

y = β0 + β1x+ β2x
2 + . . .+ βkx

k + ε (3.24)

Setting xi = xi, i ∈ {1, 2, . . . , k} then automatically reduces to the multi variable regres-
sion model of (3.21).

3.3 Normal distribution
The normal distribution is the most important probability distribution in statistics. Its
”strength” is explained by the central limit theorem. The theorem states when large sam-
ples of random variables are drawn from the same distribution, the distribution of the mean
of these samples will converge towards the normal. Thus, the normal, or Gaussian, dis-
tribution is suitable for many types of populations. If it is uncertain which distribution
type a random variable belongs to, a fitted normal distribution will often provide a good
approximation.

The normal is a symmetric distribution described by means of the mean µ and variance
σ2, and it’s bellshaped distribution curve is given by

fX(x) = 1√
2πσ

e−
1
2 ( x−σ

σ )2
(3.25)

To define the properties of a random variable with normal distribution, the terminology
X = N(µ, σ) is commonly used. Of special interest is the standard, normal distribution,
with µ = 0, σ = 1. All distributions can

X = N(µ, σ)⇔ Z = X − µ
σ

= N(0, 1) (3.26)

The transformation of (3.26) enables to use certain reference values of the standard
normal distributions, which can be found in tables or by using suitable computational soft-
ware. The variance, or rather, the standard deviation σ =

√
σ2, is a measure of scatter. In
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Chapter 3. Statistics and structural reliability

a normally distributed population, about 68% of the total sample will have values within
±1σ off the mean value. Similarly, the interval {µ−1.96σ, µ+1.96σ} is found to contain
95% of the population. These types of intervals are called confidence intervals. Specifi-
cally, the (1− α) · 100% confidence interval is given by

CI1−α = {µ− zα
2
σ, µ+ zα

2
σ} (3.27)

Here, zα
2

is the value of a standard normal distribution that will be exceeded by α
2 of

the population. Fig. 3.3 illustrates how normal random variables are distributed.

0 20 40 60 80 100 120 140 160 180 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

x

f X
(x

)

Normal distribution: µ=100, σ=20

 

 
f
X
(x)

µ ± σ   − 68.3 %
µ ± 2σ − 95.4 %
µ ± 3σ − 99.7 %
µ ± 4σ − 99.99 %

Figure 3.3: Distribution of a random variable X = N(100, 20).

The cumulative distribution function (CDF) of the normal distribution cannot be ex-
pressed in closed form in terms of elementary functions, therefore, tables or computer
programs are the common way to find these values. For calculations by hand, table values
of the CDF of a standard normal variable x, denoted Φ(x), is a helpful tool.

3.4 Gumbel distribution - GEV I distribution
The Gumbel distribution is used to model the distribution of the maximum value of sam-
ples taken from another distribution. It is a special case of the general extreme value
distribution, which, depending on some key distribution factors, is used to describe dis-
tributions of maximum or minimum values. Unlike the normal distribution, the Gumbel
distribution is skewed, as the tail of the PDF is larger on the right side.
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3.5 Introduction to structural reliability

The Gumbel distribution is defined by the location parameter µ and the scale β. Using
them, the PDF and CDF is defined as

fX(x) = 1
β

e
−
(
x−µ
β +e− x−µ

β

)
, FX(x) = e−e− x−µ

β
, (3.28)

respectively. The mean and standard deviation of a Gumbel distribution is given as
E(X) = µ+ γβ and σ = βπ/

√
6.

The Gumbel distribution is important for engineering purposes, because design loads
on structures are often defined by their expected extreme value during some reference
period. Sometimes, it is an open question if the Gumbel distribution or some of the other
extreme value distributions should be used. A main difference to take into account is the
fact that the Gumbel distribution is defined for all values of x, while the GEV II and III
distributions have cut-off values for where the functions are defined.

3.5 Introduction to structural reliability
For the structural engineer, one of the main concerns when designing a structure is to
ensure adequate safety. This goal can be pursued in various ways, but for some time,
the usage of codes and standards has dominated the field. This approach is deterministic.
Either the calculations tell that the structure is safe, or they show that it is not. However,
when the code calculations tell about a safe structure, it does not imply that the structure
is absolutely safe. On the contrary, it is crucial for the engineer to understand that there
is no such thing as absolute safety. The codes ensure that the probability of failure is low
enough for the purposes of the structure, but they tell nothing of the failure probability.
For many applications, this knowledge is enough, while on other occasions there will be
reasons to perform a probabilistic analysis of the structure in question.

The field of reliability analysis provides insight into the probabilistic nature of prob-
lems normally considered in a deterministic manner. In the following, some useful con-
cepts in the field of structural reliability analysis are defined.

Reliability

Reliability is the ability of an item or facility to perform its intended function
for a specified period of time, under defined conditions. [19, 20].

With some nuances, the quote above is a usual way to define reliability. This is a rather
broad definition; the use of words such as item, facility and function implies that reliability
analysis can be applied on a wide range of problems. For example, the probability that a
train arrive on time could be such a problem. The reliability would be high if the number
of arrivals on or before scheduled time is high compared to the number of late arrivals. The
facility considered would be the train service, while the function is the ability to arrive on
time. Other reliability functions to monitor could be the probability that there are enough
seats for all passengers or the probability that the train needs maintenance during a defined
period.
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With this definition in mind, the term structural reliability applies to analysis on struc-
tures, be it free supported beams, buildings or bridges. Here, reliability is achieved if loads
or load effects do not exceed the associated resistance or other defined restrictions. Moan
gives a more narrow meaning of this term, which is useful also for the purposes of this
study:

[. . . ] it is the probability that a structure will not attain each specified limit
state [. . . ] during a specified reference period. [20]

The meaning of the term limit state will be addressed in sec. 3.7.
While the term safety mainly is understood qualitatively, reliability should be possible

to calculate if the necessary information is available. When calculating the reliability of a
certain facility, it is necessary to do the retour by finding the probability of failure.

Probability of failure

It is natural that the complement of reliability is named probability of failure, as failure is
the only other possible outcome. Mathematically,

r = 1− pf , (3.29)

with reliability r and probability of failure pf . In the example with train schedules, a
failure is the event that a train arrives to late. When applied on structures, a failure occurs
when a defined load effect exceeds its associated resistance.

Risk

If the consequence of failure is high, impacting for instance economy, environment or hu-
mans, the reliability of the structure should also be large. To assess the necessary size of
reliability, the risk R is a useful tool. The risk takes into account the expected resulting
damage E(D) if a failure occurs, and is a measure for the magnitude of a hazard. The
expected damage could be expressed using monetary units, human casualties or other suit-
able units. The risk could be defined in various ways, but the simplest relation is provided
by

R = pf · E(D), (3.30)

which means that R is the expected value of the ”penalty” should a failure occur.
Design codes take the risk into account by adjusting safety factors to the purposes of the
structure.

3.6 Classification of uncertainty
The probabilistic approach acknowledges that there are statistical uncertainties connected
with the variables included in a structural analysis. There are two main sources for uncer-
tainty, [20] namely
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3.7 Calculation of failure probability

• Inherent or fundamental uncertainty

• Imperfect or incomplete knowledge.

– Lack of information

– Modelling assumptions

Truly random processes and phenomena possess a fundamental uncertainty. For ex-
ample, it is impossible to say what the maximal wind and snow load will be during some
reference period, and the resistance of steel members varies due to variability in the man-
facturing process and materials. Thus, uncertainty can be a result of both natural and
man-made processes. This type of uncertainty cannot be reduced by more information or
gathering of larger data samples.

Uncertainty due to insufficient or incomplete knowledge is a direct result of lack of
information.

Firstly, uncertainty is linked to the amount of data available to determine the proba-
bility distribution of variables. Data is collected to build a probabilistic model of some
quantity, i.e. the strength of steel members produced in a factory. After some probability
distribution has been selected, the numerical parameters of the distribution must be deter-
mined. Large samples are needed to produce reliable estimates of the parameters, which
then they themselves must be considered random variables. This statistical uncertainty
arises entirely due to lack of information.

Secondly, uncertainty due to the models used to describe the mechanical behaviour of
a system should be addressed. For example, material properties, loads, and the mecha-
nism of structures are often idealised and simplified in the applied model. For example,
introducing linear approximations to a nonlinear problem makes the calculated result less
accurate.

3.7 Calculation of failure probability
In a probabilistic analysis, some variables are statistically distributed. Hence, it is not
possible to determine (if) the structure fails, but it is possible to find the probability that
this happens. To do this, it is practical to define limit states for the considered structure.
A limit state is described as the point where load effect is in perfect balance with the
resistance. It is necessary to determine one limit state for each type of failure. The limit
state is defined by a limit state functionG, most generally presented on the following form:

G(C0, X1, X2, . . . , Xn) = 0 (3.31)

Here, C0 is some typical constant, while Xi, i ∈ {1, . . . , n} are the variables that
defines the structure in question. In the following, the vector X represent the variables Xi.
Also, X is distributed with the density function fX(x). We then define failure to occur
when the limit state is violated, i.e. when the load effect increases beyond the resistance.
Thus, the probability of failure is given by
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pf = P [G(X) ≤ 0] (3.32)

G spans out a domain in the n-dimensional space, and pf is found by integrating fX(x)
over this domain.

pf =
∫
. . .

∫
G(X)≤0

fX(x) dx (3.33)

In the following, some different methods to evaluate 3.33 will be investigated. Gener-
ally, this integral is not possible to evaluate analytically, however, for some special cases
analytical methods through solving of the integrals are available. As long as the limit states
are linear in the variables X, and fX(x) is a multi-variable normal distribution, exact val-
ues of failure probabilities can be found, even though the integral is not solved explicitly.
When the problems are more complicated, numerical methods dominate. Sometimes it
is possible to simplify nonlinear problems using first or second order transformations,
and solve them iteratively. Such solutions demand that the probability distributions and
limit states are explicitly defined, which is not always seen to be the case. When explicit
distributions are not available, some form of Monte Carlo simulation methods must be
employed, often combined with some other methods.

It should be noted that for many real-life application of reliability analysis, there are
several limit states to take into account. As long as these limit states can be considered
independently of each other, the theory presented in this chapter applies. However, when
the limit states are mutually dependent, the complexity of the problem increases signifi-
cantly. An example is a statically indeterminate structure. In order for such structures to
collapse, the yield limit must be reached in multiple distinct points of the structure. How-
ever, when the yield limit is reached in one place, the load distribution in the rest of the
structure changes, giving new limit states to assess. In terms of structural reliability, such
problems are called parallell systems. It is advantageous when reliability challenges can
be formulated as serial systems, for which the whole structure collapse if one limit state is
reached. Here, the discussion are limited to serial systems.

To shed some light on the different evaluation methods, the basic reliability problem
[19] with one simple limit state, G(R,S) = R − S, will be considered. S is the load
effect, resisted by R alone. For example, S = σ could be the tension in a member with
yield stress limit R = fy .

3.7.1 The basic reliability problem

The variables S and R are considered, statistically distributed by the joint probability
distribution fRS(r, s). Then,

pf =
∫
R−S≤0

∫
fRS(r, s) drds (3.34)
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(a) Ill. of eq. (3.34)

(b) Ill. of eq. (3.36)

(c) Ill. of eq. (3.36)

(d) Ill. of eq. (3.40)

Figure 3.4: Different ways to consider the basic reliability problem.[3]

If R and S have zero correlation, fRS(r, s) = fR(r)fS(s), and

pf =
∫ ∞
−∞

∫ s

−∞
fS(s)fR(r) dr ds (3.35)

=
∫ ∞
−∞

FR(s)fS(s) ds (3.36)

Example 1. R,S with normal distributions and mutual correlation.

When R = N(µR, σR) and S = N(µS , σS), and they are correlated with ρRS , pf is
easily found, as the single variable M = R − S is distributed with M = N(µM , σ2

M ),
where

µM = µR − µS , σ2
M = σ2

R + σ2
S − 2ρRSσRσS (3.37)

pf can now be calculated as
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pf = P (M ≤ 0) (3.38)

= P (M − µM
σM

≤ −µM
σM

) (3.39)

= Φ(−β), β = µM
σM

(3.40)

Φ() is the cumulative distribution function of the standard normal distribution, with
zero mean and variance of 1. The transformation used in (3.38)-(3.39) enabled to use this
function, which values can easily be found in tables or from suitable data programs. β is
commonly called the safety index or the safety level of the underlying problem.

3.7.2 Hasofer-Lind method
For the simple limit state G=R-S, it was possible to reduce the problem to a single variable
problem. This procedure represents a generalisation of a more general method, called the
Hasofer-Lind transformation. The outline of the method for a linear limit state function
depending on the n-sized correlated, normally distributed vector X, is given below. A
linear limit state function can be defined as

G(X) = C0 + BX = 0, (3.41)

where B is a n-sized row-vector of constants. Still, we want to reduce (3.41) into a single
variable problem with M = C0 +BX. To find E(M) and Var(M) we need the following
properties:

E(M) = C0 + BEX (3.42)
Var(M) = Cov(C0 + BX) = BVar(X)BT (3.43)

To see that this is valid, use the definition in (3.14). Again, β = E(M)/
√

Var(M)
can be found, and pf = Φ(−β).

The strength of the procedure is that it is easily extendable to non-linear limit state
functions, and even to non-normally distribution functions. When the limit states are non-
linear, they can often be estimated by means of Taylor expansions, which are iteratively
evaluated to find the safety index. The simplest Taylor expansion include only the first or-
der term; in this case, the procedure is denoted a First Order Reliability Method (FORM).
To increase accuracy, the second order term can be included, consequently applying a
SORM method.

3.8 Monte-Carlo methods
The methods shown above all depended on limit states explicitly defined by the variables
in X. An even more general procedure is provided with a numerical method, Monte-Carlo
simulatons. The method makes use of the fact that

pf = lim
N→∞

Nfailure
N

(3.44)
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(3.44) has a very clear interpretation. If the value of some limit state function were
calculated for all possible combinations of input values, pf would be found as the share
of outcomes that violated the limit state. Obviously, N is a finite number in practical use,
implying that p̂f = Nfailure/Nsim is an unbiased estimator of pf . It can be shown that
the variance for pf is given by

σp̂f =
√
pf (1− pf )

n
(3.45)

An approximate (1− α) · 100% confidence interval for pf can be constructed as

C− ≤ pf ≤ C+, C± = p̂f ± zα/2σp̂f , (3.46)

Nsim random vectors X are generated, each of them drawn with a probability that is
in compliance with their probability distribution fX(x). ThenG(x) are evaluated for each
x. Nfailure is the number of vectors x that results in G(x) ≤ 0. It is intuitive that, for a
large number of simulations, approximately pf of the simulations are failure events.

Monte Carlo analysis is strongly dependent on the computational power of modern
computers. Especially for small probabilities of failure, Nsim must be very large to get
accurate results. Also, the calculation amount needed to get the results of one single
simulation can be tedious. Because the computational effort is high, and maybe because
the application is straightforward, this method is sometimes called crude Monte Carlo.

An important aspect of the method is the ability to simulate vectors that ”listens” to
the defined distribution function.

Generation of random numbers

The method is described for a single variable with CDF FX(x).
To apply the method, computer software that contains a random number generator is

needed. Such generators produces random numbers between 0 and 1. For problems of
limited size, random number tables are still found in some statistical handbooks. The fact
that FX(x) is a one-to-one, invertible function, which takes on the values between 0 and
1, comes in very handy.

For each random number ri that is produced, the equation FX(xi) = ri should be
solved to find xi = F−1

X (ri). Even if FX is not always defined in terms of elementary
functions, this number can be found by computer programs such as MATLAB for a very
wide range of distribution types. The method is illustrated in fig. 3.5.

From the figure it is seen that the values of xi centered about the mean will be generated
more often than the values at the tail of the distribution, and that this fact solely depends
on the slope of the CDF, which in turn is the value of the corresponding PDF.

The main limitation of the presented method rests on the fact that it is computationally
expensive. To reduce the calculation effort, several modifications to the basic Monte-
Carlo method are suggested. Among the most noticeable is importance sampling, where
a suitable importance sampling function is used to attribute more weight to values in the
failure domain. It is beyond the scope of this text to present the method, see [3] for a full
account of the theory.
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Figure 3.5: Generation of random variables. The CDF fits the normally distributed variable M of
the example in sec. 3.7.1

Instead, another suggested method will be given attention. Here, pf is estimated by
extrapolating through a number of ”reduced” failure probabilities, which are obtained as a
result of modified limit states.

3.8.1 Enhanced Monte Carlo method
The method was presented by Arvid Næss at Department of Mathematical Sciences, NTNU.

An outline of the method, which was presented by Arvid Næss at Department of Math-
ematical Sciences, NTNU, is given below. As before, pF = P (M ≤ 0). Now, a parame-
terized class of ”reduced” limit states are introduced as

M(λ) = M − µM (1− λ), 0 ≤ λ ≤ 1 (3.47)

It is seen that M(1) = M . Correspondingly, pf (λ) = P (M(λ) ≤ 0) are defined. Ob-
viously pf (λ 6= 1) > pf , which means that accurate estimates are obtained for fewer
simulations than in the crude version.

Proceeding, Næss made the case that

pf (λ) ≈ q · exp {−a (λ− b)c} , λ0 ≤ λ ≤ 1 (3.48)

The lower limit, λ0, is introduced to justify the expression, and to increase the accuracy
when λ → 1. q, a, b, c are unknown parameters. The crucial point of the method is that it
is possible to estimate these parameters, using a number of data points (λi, pf (λi)), λ0 ≤
λi < 1, i ∈ {1, . . . ,m}. Explicitly, the parameters are found by minimizing the mean
square error with respect to all four arguments on the log level, i.e. minimizing the non-
linear function F
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3.8 Monte-Carlo methods

F (q, a, b, c) =
m∑
i=1

wi (logp̂f (λi)− logq + a(λi − b)c)2 (3.49)

A weighting factor wi is introduced to emphasize more reliable data points. wi =
(logC+(λi)− logC−(λi))

−2 is chosen in this study, but other choices can also be made.
C±(λi) is defined in (3.46) with p̂f replaced by p̂f (λi). If p̂f (λi) = 0, wi is no longer
defined, which forces the minimizing procedure to stop. However, numerical errors often
arise well before this point. Therefore, the upper limit λm must be chosen with some care.
(3.49) is nonlinear, and therefore an iterative procedure must be applied. A Levenberg-
Marquardt optimization method is suggested, see e.g. [21] For a more extensive presenta-
tion of the enhanced Monte Carlo method, see [22].

Example 2. R = N(200, 10), S = N(100, 20), ρRS = {−0.4, 0, 0.2}

In the following, failure probabilities for the limit state M = R − S will be exam-
ined. Results both from the theoretical formulation from sec. 3.7.1, crude Monte Carlo
simulations and the enhanced Monte Carlo method will be presented.

Analytical solution

Exact calculation of failure probability is straight-forward, combining (3.37) and (3.40)
give the results seen in table 3.1.

ρRS -0.4 0 0.2
β 3.893 4.472 4.880
pf 4.961 · 10−5 3.872 · 10−6 5.318 · 10−7

Table 3.1: Safety level and failure probabilities for the basic reliability problem using different
correlation values.

As expected from the formulas in (3.37), positive correlation reduces the probability
of failure. For failure to happen, it is necessary that R is small while S takes on a large
value. With positive correlation, this situation is less probable to happen. With negative
correlation, this is more likely to occur.

Crude Monte Carlo simulations

To estimate the probability of failure, a simple MATLAB program was developed, and
109 simulations were performed. Table 3.2 show the results. For ρRS ∈ {−0.4, 0}, this
gave fairly accurate results, with confidence intervals that would be acceptable for many
real-life applications. The simulation with ρRS = 0.2 gives a value in accordance with the
theoretical result, with a slightly larger confidence interval.

Enhanced Monte Carlo method

The enhanced Monte Carlo method was employed using Nsim = 106 simulations, 1
1000

of the number used for crude Monte Carlo simulations. The accuracy of the results could

33



Chapter 3. Statistics and structural reliability

ρRS -0.4 0 0.2
β 3.89 4.48 4.88

pf · 107 496.7 37.5 5.4
CI95% ±0.9% ±3.2% ±8.5%

Table 3.2: Safety levels, failure probabilities and 95 % confidence intervals calculated usingNsim =
109 simulations.

have been increased for larger Nsim. However, the results provide insight into what to
expect of the enhanced method. The confidence intervals are quite wide, but since proba-
bilities are small, the safety level is still approximated with acceptable accuracy. To assess
qualitatively which accuracy to expect, one could compare the power of 10 values forNsim
and pf , respectively, for example by calculating mlog = logNsim + log pf . If mlog < 0,
crude Monte Carlo simulations are meaningless, because Nf = 0 would be the expected
number of failures. On the other hand, the results of table 3.3 suggest that the enhanced
method provides some accuracy even when mlog < 0.

ρRS -0.4 0 0.2
β 3.89 4.44 4.85

∆β 0.07 0.11 0.173
pf · 107 483 46 6
CI95% 414-555 34-56 4-9

CI95% [%] 29% 50% 86%

Table 3.3: Safety levels, failure probabilities and 95 % confidence intervals calculated using the
enhanced method with Nsim = 106 simulations.

The last row in table 3.3 shows the total width of the confidence interval compared to
the estimated value of pf . To compare with values in table 3.2, they must be divided with 2.
The difference is due to the fact that confidence intervals for the enhanced method are not
centered around p̂f . In fig. 3.6, the extrapolation technique is graphically depicted. When
the extrapolation curve is linear in the log space, the problem becomes ill-defined, because
there is an infinite number of pairs that solve (3.49) for q and b. To find the extrapolation
curve and confidence intervals, several steps must be taken. First the reduced ”failure”
probabilities are found, and the confidence intervals for the chosen values are calculated.
Weigthing factors can be calculated, and the extrapolation curve for pf is calculated. Based
on this curve, new confidence intervals are calculated in the range of λ0 − λM , and lastly,
the nonlinear regression model is applied to these curves as well. During this repetitive
procedure, the limits of the confidence intervals often becomes approximate values, to an
even larger degree than pf is.
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Figure 3.6: The extrapolation curve of the enhanced method. Blue dots are p̂f (λ), black and red
curves estimate failure probability and confidence limits, respectively.
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Chapter 4
Uncertainties in determination of
critical flutter speed

A number of factors leading to uncertainty and error sources are related to the determina-
tion of aeroelastic behaviour. For a structure subjected to wind loads, Jakobsen and Tanaka
suggest a tripartite of the uncertainty sources:

1. Fundamentally, the uncertainties stem from the random nature of wind, its inborn
variability.

2. Secondly, our lack of understanding of this variability, as well as of all the details of
the wind load generation mechanism, including windstructure interaction, increases
the uncertainty.

3. Also, simplifications introduced in the mathematical models for wind forces and
structural response, streamlined for the design purposes, introduce additional uncer-
tainty. [23]

In the following, some brief comments about 1. will be provided, while 2. and 3.
considered in more depth.

4.1 The random nature of wind
At a given time and in a given position in space, it is impossible to predict the size and
direction of the wind vector, and naturally, also the instantaneous wind velocity pressure is
an unknown size. This means that the wind velocity fluctuations are a stochastic process,
and they have to be described by their statistical properties. The random nature of the wind
process can be described on two levels. Firstly, the instantaneous value of for example the
vertical turbulence component is random. However, when sampling a number of events
within a short term period, it is possible assess the statistical parameters which determines
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the process during this short term period. Secondly, randomness stems from the fact that
every one of these successive short term periods differ from each other. To some degree
their statistical properties would be similar, and on some accuracy level the recording of
different short term periods could look the same. However, as they are not exactly equal,
the properties of these periods must also be described statistically. It is usual to record
periods of 10 minutes. For example, the design rule of interest in this thesis is based on the
10 minutes mean-wind velocity that is expected to occur only once over a period of 500
years. The nature of atmospherical wind is assessed in many publications, see e.g. [17],
[2].

4.2 Angle of incidence
During the formulation of self-exited forces in chap. 2, two linearisations were introduced.
It was assumed that the angle of incidence is small, meaning that a linearisation of the
load coefficients could be introduced. Also, nonlinear terms of the turbulence components
and velocity components of the bridge was assumed to be negligible. This way, it was
assumed that self-exited forces can be assessed independently of the buffeting forces from
turbulence components. While practical for calculations, the simplifications lead to some
inaccuracies.

When determining flutter derivatives, the mean angle of incidence are usually fixed,
and the derivatives are determined in that position. This does not take into account that
the balancing position of the bridge changes with the mean wind speed as well as with
the charachteristics of the turbulence components. Therefore, a more accurate way to
define the forces would be to update the value of derivatives so that they depended on the
balancing position changes.

A variant of this problem is the fact that turbulence components change the effective
angle of incidence between the bridge deck and the wind vector. As mentioned, the cal-
culated derivatives for a bridge section are usually extracted from the balancing position.
When the angle changes, the bridge section sees other derivatives than those calculated
from the average position. In a full scale investigation of the Humber Bridge, which is
currently the 7th longest suspension bridge in the world, built with a main span of 1410m,
wind speed fluctuations in the vertical plane peaking at±10◦ were recorded [24], suggest-
ing that significant deviation from the mean flutter values could be observed. The angle
of incidence has contributions from both bridge deck motion and vertical turbulence fluc-
tuations, and under certain circumstances it is seen that the latter contribution outweighs
the first. In an attempt to assess the effect of varying turbulence intensity upon torsional
flutter stability, Diana found significant differences in acceleration response. To take into
account the angle of incidence, a modified version of the quasi static theory was used [4].
Fig. 4.1 shows compliance between results obtained when sections were subjected to lam-
inar flow and flow with low turbulence intensity, respectively. However, the results for
high turbulence intensity differed significantly. Moreover, it is observed that the results
for two different cross sections were ambiguous.

For the box shaped section subjected to low turbulence or laminar flow, a violent in-
crease in amplitudes at the point of instability was observed. Subjected to high turbulence,
amplitudes increased gradually, even beyond the instability limit seen with laminar flow.
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4.3 Lack of spatial coherence

(a) Box shaped deck section
(b) Stream-lined deck section of the Humber
Bridge

Figure 4.1: Numerical simulation of torsional acceleration due to laminar flow and turbulence in-
tensities 0.04 and 0.20, respectively. Response is calculated with root mean square method.[4]

For the Humber bridge section, low turbulence and laminar flow resulted in rapid ampli-
tude increase around the flutter limit. No sudden increase was observed in the case of high
turbulence, making it hard to decide the critical speed for this configuration.

While the response behaviour of the sections in the above two cases in no sense can be
viewed as general, they do suggest that the level of turbulence, especially at high levels, is
able to affect the aeroelastic stability of suspension bridges.

4.3 Lack of spatial coherence

To define the multimode flutter criteria, mode shapes of the whole bridge must be taken
into account. Thus, the experimentally determined aerodynamic stiffness and damping
matrices are integrated along the bridge with the mode shapes taken into account. Nor-
mally, it is taken for granted that the derivative matrices are constant along the whole span
of the bridge. This involves two main simplifications.

The first assumption is that the mean wind speed is constant along the whole bridge.
This is not always accurate. For the Hardanger Bridge, the heigth of the girder changes
from 52 m under the pylons, to 63.5 m at the midpoint of the span. Using the calcula-
tion procedure from [25], this leads to a difference in mean wind velocity of approx. 8
%. Likewise, the mean wind speed depend on the horizontal distance from the coastline,
meaning that the total difference of mean speed between the middle of the fjord and at the
pylons, is possibly even larger than 8 %.

If a construction or a natural obstacle hinder a free path for the wind towards parts of
the bridge, the assumption of Lexp = L could lead to inaccuracies. In the case of the
Hardanger Bridge, however, this is not a problem.

The second assumption is that the turbulence components are perfectly correlated
along the span-wise direction of the bridge. Generally, this is not the case. Several stud-
ies have been performed to examine the consequences of this simplification. It has been
indicated that this lack of coherence justifies an increase of the critical speed limit. More
specifically, bridges subjected to turbulent wind, experiences increased amplitudes at sub-
critical speed, but the flutter limit is shifted towards higher values. This effect has been
observed both by full model wind tunnel testing and analysis (see e.g. [4], [5], [26]). The
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trend is illustrated by means of fig. 4.2.

Figure 4.2: Displacement trends of bridge decks subjected to laminar and turbulent flow, respec-
tively. [5]

Here, the same trend as in fig. 4.1 are observed. However, the approach to reach
this conclusion differ. While Diana calculated a shift in the flutter speed limit due to the
effect of angular differences, Scanlan uses fig. 4.2 to point out the effect of lack of spatial
coherence.

4.4 Experimental determination of flutter derivatives
One of the basic assumptions of Scanlans approach, is that aerodynamical derivatives can
be experimentally determined using wind tunnel testing. The accuracy of which self-exited
forces are modelled thus depend strongly on the accuracy of the wind tunnel testing.

Sec. 4.2 and 4.3 suggest that turbulence effects should be taken into account when
wind tunnel testing is performed. Indeed, it is generally accepted that wind tunnel flows
should replicate the characteristics of atmospherical wind [17]. Today, it is possible to
control turbulence intensity and other characteristics of wind in common test tunnels to
a certain degree. However, this is only one of the challenges arising when downscaled
models are tested. To obtain physical similitude between model and full scale structure,
several similarity criteria have to be satisfied. Generally, it is observed that all of these
criteria cannot be met, and some compromising is necessary. It is beyond the scope of
this text to dive into the extensive theory of similarity requirements. However, two basic
considerations are mentioned here.

The dimensional ratio between the full scale structure and the section model, should
be replicated by the ratio of some typical lengths of turbulence eddies in the longitudinal
wind direction, also measured in reality and in the wind tunnel. Here the typical length
of turbulence components must be understood in an average sense. If the integral scale
of turbulence components are adopted, such typical lengths are found to be between 100-
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500 m at 60 m elevation [17]. Using a scaling of 1:50, it can sometimes be difficult
to replcate suffiently long integral scales in wind tunnels, meaning that the turbulence
similitude demand is violated.

To replicate the full scale structure, the section model should be tuned so that the
ratio between the most important frequencies of the bridge are similar. Basically, the
section model is a stiff beam suspended in a set of springs. If motion in all directions
is allowed, the model have three degrees of freedom. This makes it possible to replicate
three frequencies, one in each direction. In the early stage of analysis, it can be difficult to
assess which frequencies that should be replicated.
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Chapter 5
Modelling of aerodynamical
derivatives

5.1 Risk reliability analysis on bridges

For bridge projects of wind class III, the design codes specify that VCr ≥ 1.6VS,500, where
VS,500 is the 10-min mean velocity wind expected to return every 500 years. By experi-
ence, the safety level this limitation provides is large. However, quantitative information
about the reliability levels associated with this design rule, are as of today very limited.

The chosen safety level is reasonable for a number of reasons. Firstly, the resulting
consequences of a bridge reaching critical speed are fatal. Secondly, the random nature
of wind makes calculations uncertain. Thirdly, all modelling uncertainties are not fully
understood.

In the present study, probability of failure is defined by pf = P (VCr−VS ≤ 0). In this
context, VS is represented by a probability distribution for the extreme 10-min mean wind
velocity expected to occur during one year. VCr is the critical speed obtained by solving
(2.22). VCr is a random variable because the parameters that contribute to the equation
are random. If the exact distribution function of all variables contributing to (2.22) were
known, the distribution of VCr could be estimated very accurately. For practical reasons,
this is neither possible nor necessary. By performing a sensitivity analysis on the deter-
ministic problem, it would be possible to find which variables that contribute the most to
the variance of VCr.

Making a case study of the Messina Straits Bridge, Argentini et. al. found that the
flutter derivatives A∗i , i ∈ {1, 4} and Hi, i ∈ {1, 3}, as well as the natural frequencies of
1st symmetrical torsional and vertical mode, had a large impact on variance[27]. Cheng
found that still air material properties, i.e. mass, material stiffness, and geometry, were
of minor importance[28]. Also, an assessment of the Hålogaland Bridge suggested that
uncertainty of modal damping ratios were of minor importance compared to that of flutter
derivatives [16]. The methods they used differ considerably, and the results cannot be
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viewed as general.
In the present study, it is chosen to focus solely on the flutter derivatives, while fixing

all the other variables. Thus, the reliability problem consists of 19 independent variables,
namely the flutter derivatives P ∗i , H

∗
i , A

∗
i , i ∈ {1, 2, ..., 6}, as well as the extreme value of

wind speed, VS . If the formulation seen in 3.31 is applied, the problem can be defined as

pf = P [G(P ∗i , H∗i , A∗i , VS) ≤ 0] , i ∈ {1, 2, . . . , 6} (5.1)

Here, the flutter derivatives must be viewed as mutually correlated variables, while VS
is treated independently of the critical speed problem. Since G does not have a closed-
form solution, it is chosen to use the enhanced Monte Carlo method presented in 3.8.1.
However, before Monte Carlo methods can be applied, there are several questions that
must be answered. In this chapter, solutions to the following ”problems” are suggested:

Extraction of eigenmodes to include in the eigenvalue problem To solve the equation
that defines flutter, it is necessary to determine which eigenmodes to include. Eigen-
modes are normally found through use of a FEM-model. In sec. 5.2, some charac-
teristics of the provided solutions are presented.

Modeling of flutter variables The flutter derivatives are determined experimentally us-
ing a section test. The test campaign provides information about flutter derivatives
at discrete points. To implement the variables in a routine to find critical speed, it is
necessary to model the derivatives as continuous functions. The inherent uncertainty
of wind dynamics, as well as the applied methods, implies that there is significant
variance to take into account when modelling. Two different solutions on howto
take this into account are suggested in sec 5.4.

Implementation of a routine to solve the eigenvalue problem To solve the eigenvalue
problem defined in (2.22), data implementation employing an iterative technique is
necessary. In sec. 5.5, a description of the routine used to solve the problem is given.

Determination of wind field VCr represents the ”resistance” part of the reliability prob-
lem. Obviously, it is also necessary to define the load effect of the problem. The
calculations providing a probability distribution describing the wind field at the con-
struction site are given in 5.6.

5.2 FEM-analysis of the bridge
To get a starting point for analysis, it is necessary to calculate the eigenmodes and eigen-
frequencies of the bridge. These models give undamped frequencies and modes in a steady
environment, (in-wind effects are not included). Finite element method (FEM) modelling
is the dominating approach to achieve this information. The Hardanger Bridge has been
subject to several calculations. In [8], an ALVSAT model of the bridge girder was used to
extract the eigenmodes and eigenfrequencies. For the purposes of this thesis, an ABAQUS
model provided by The Norwegian Public Road Administration has been used. A FEM
model of the Hardanger Bridge is shown in 5.1. While the ALVSAT model provided very
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Figure 5.1: ABAQUS model of the Hardanger Bridge.

”clean” mode shapes, the eigenmodes from ABAQUS include pure tower/cable modes, as
well as modes with motion where all the different parts of the bridge are excited.

Because the purpose of this text is to perform a reliability analysis including small
values of probability, accurate results regarding the multi mode flutter calculations were
important, and therefore more modes than usual were considered. Among the first 50
natural eigenmodes, 32 were found to partially or fully excite the bridge deck. 14 of them
were horizontal modes, 14 were vertical eigenmodes, 3 were pure torsional modes, and
one mode combined significant deflections in torsional and horizontal direction.

For all modes, the damping ratios are chosen as ζ0,n = 0.005. This is not necessarily
accurate, but since the purposes of the study is to assess the effect stochastic flutter deriva-
tives, it is probably an approximation accurate enough. The numbering seen in table 5.1
will be used in the remaining part of this thesis.

5.3 Results from section test
The test data used in this thesis has been extracted from wind tunnel testing on a section
model at Svend Ole Hansen ApS, a Danish wind engineering company, on behalf of the
Norwegian Public Roads Administration (SVV). The testing was performed on a 1:50
section model, the length being 1.7m.

The section is calibrated to imitate the behaviour of the Hardanger Bridge, based on
information received from SVV regarding geometry, mass, mass of moment inertia and
natural frequencies. The test results include information regarding static load coefficients,
critical flutter speed, flutter derivatives, admittance functions and vortex induced vibra-
tions. The flutter derivatives are of special interest; however, also a brief comparison with
quasi-static load coefficients are provided.

Traditionally, vertical and torsional motions have been included in bridge section test-
ing, which makes it possible to find the 8 derivatives H∗i , A

∗
i , i ∈ {1, 2, 3, 4}. In 2006,

the first tests of the Hardanger Bridge model were performed this way. However, in 2007
the section model of the Hardanger Bridge was designed with the possibility to include
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Mode no. Nat. frequency Direction Mode shape. Equ. mass
1 0.314 H S 12020
2 0.615 H A 9865
3 0.693 V A 13298
4 0.883 V S 12953
5 1.061 H S 10065
6 1.239 V S 12951
7 1.325 V A 13061

10 1.467 H A 64509*
11 1.536 H S 59757*
12 1.711 V S 12961
13 1.840 H A 10451
14 2.068 V A 12918
15 2.260 T S 481161
17 2.463 H S 41194*
18 2.475 V S 12867
19 2.550 H A 113069
21 2.717 H S 13251
22 2.895 V A 12925
23 3.123 H S 93314*
24 3.165 H A 190664*
26 3.289 T A 485880
27 3.327 V S 16144
28 3.479 V S 47802*
29 3.480 H S 68338*
31 3.670 H A 59626*
33 3.853 V A 13174
34 4.004 H A 10973
36 4.246 H S 276563*
43 4.348 V S 15263
46 4.553 V S 52525*
49 4.923 T S 491445
50 4.956 V A 13123
58 6.329 T A 573094

Table 5.1: Eigenmodes that exited the bridge girder. Mode numbering, still-air eigenfrequencies,
motion characteristics and equivalent mass are provided. H - Horizontal, V - Vertical, T - Torsional
*: These modes have significant deflections in more than one part of the bridge, making the equiva-
lent mass calculation unvalid.
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Figure 5.2: Part of the section model with railings and girders [6].

horizontal motion, making it possible to calculate all the 18 flutter derivatives. Altogether,
three test series including horizontal degree of freedom have been performed.

Test series Response components ωφ
ωz

ωφ
ωy

FL10 V+H+T 2.53 1.40
FL13 V+H+T 4.71 2.55
FL15 H+T - 1.53

Table 5.2: Test series including horizontal degree of freedom. The tests are performed with angle
of incidence 0◦ and walking path upstream.

Test Series FL15 was excluded because it does not comprise vertical degree of free-
dom. The remaining two test series differed by the tuning of natural frequencies. In FL10
the relationship between the natural frequencies of the fundamental vertical mode and the
torsion mode were comparable with reality. According to the ABAQUS model in sec. 5.2,
γzφ = 2.26/0.88 = 2.56, while the section model had γzφ = 2.53. The ratio between
the horizontal and torsional natural frequencies of the model was 1.40, which is consistent
with the ratio between the 3rd symmetrical horizontal mode (mode 11) and the 1st torsional
mode (mode 15). Test Series FL13 was calibrated to a situation where the ratios between
the natural frequencies are larger, and is not as relevant for the purposes of this study. For
that reason, FL10 was selected to provide data for the study. Measurement series for flut-
ter derivatives was performed for wind speeds between 1.86 m/s and 6.3 m/s in the wind
tunnel, a total of 28 registrations were made for different speeds. Some of the measuring
points were considered to be less reliable than the remaining values. This was the values
associated with high wind speeds, where the motion measured with a frequency near the
vertical natural frequency was damped heavily. These values were therefore omitted from
the subsequent modelling. The measurements are shown in fig. 5.3 and 5.4.

Extra caution should be given to the flutter derivatives associated with horizontal mo-
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tion. The reason for this is that the reduced wind velocity in the tunnel for the horizon-
tal degree of freedom is related to the eigenfrequency of the third symmetric horizontal
mode. This frequency is about 5 times higher than the natural frequency of the first hor-
izontal mode, which means that the reduced velocity associated with the first horizontal
mode is multiplied with 5, far beyond the experimental data boundaries. In addition, it
is expected that the interaction between the wind and the bridge at such high speeds can
be approximated as static (the reduced frequency becomes very low). For this reason it is
recommended in the test report that the relevant flutter derivatives are replaced with values
from the quasi-static analysis, see (2.27). The quasistatic curves are added in fig. 5.3 and
5.4.

5.4 Modelling mean response of flutter derivatives
To enable use of the iterative procedure shown in fig. 5.8, it is necessary that the flutter
derivatives are modelled as continuous curves depending on the reduced velocity Vred. To
do this, a suitable polynomial trend line can be fitted to the scattered values from the test
campaign. The polynomial should reproduce the general development of the measured
derivatives, and does not need to reproduce all the fluctuations seen in the scatter. This
implies that a polynomial of relatively low order is sufficient. The best fitted polynomials
can be found by means of a least square method, which means that they can be found
trough a linear regression model.

How the polynomial is constructed depends on several considerations. Should the
calculation of the trend line be in good agreement with the flutter measurements within
the tested range of reduced velocities only, or should reasonable behaviour outside the
test area also be ascribed significance? Especially, should the fact that no aerodynamic
effects exists in still-air, be reflected by the trend lines? In that case, a constraint giving
Cae(V = 0) = Kae(V = 0) = 0 should be forced upon the curves.

In 2, the quasi-static formulation of self-exited forces was compared with Scanlan’s
approach. It was seen that the flutter derivatives of the aerodynamic damping matrix were
linear functions of Vred, while the derivatives of Kae had a quadratic variation with Vred.
Should the polynomial try to reproduce this theoretical behaviour, or should only the ob-
served behaviour be given emphasis?

In this study, two different sets of trend lines are suggested.

Case 1

Linear polynomials are fitted through the flutter derivatives of Kae, while second order
polynomials are fitted through the flutter derivatives of Cae. Also, it is demanded that the
polynomials pass through (0, 0), which is in line with the physical reality. The regression
model of (3.24) becomes

X∗i = b1iVred + eXi(Vred), i ∈ {1, 2, 5},
X∗i = b1iVred + b2iV

2
red + eXi(Vred), i ∈ {3, 4, 6}

(5.2)
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with X ∈ {P,H,A}, and where the lack of constant terms b0i implies that X∗i (0) = 0
must be satisfied. The distribution and modelling of error terms ei will be addressed in
sec. 5.4.1. In MATLAB, several tools are available to solve these kinds of regression
problems. For case 1, the construction of polynomials was performed using the built-in
MATLAB function polyfit.m with a slight modification, which enabled to assign each data
point a weight, making it possible to force the polynomials through origo. These trend
lines are displayed with blue colour in fig. 5.3-5.4.

Case 2

Second order polynomials are fitted for all flutter derivatives, without giving any concern
to the behaviour of the derivatives for reduced velocities outside those of the test campaign.
Thus the 18 regression models for the flutter derivatives become

X∗i = b0i + b1iVred + b2iV
2
red + eXi(Vred)

i ∈ {1, 2, . . . , 6}, X ∈ {P,H,A}
(5.3)

The regression for case 2 was performed using mvregress.m, which also made variance
estimates readily available. These trend lines are displayed with black colour in fig. 5.3-
5.4.

In general, the two sets of polynomials are in good compliance, at least in the range of
tested reduced velocities. The most considerable differences are seen for flutter derivatives
A∗5 and H∗5 . The quasi-static, linear approximations for horizontal-related motion also
show some compliance with the fitted lines. In this particular test campaign of quasi-static
load coefficients, C ′D was equal to zero. This gave a zero value of P ∗3 , which deviates
significantly from the fitted polnomial curves. Based on the relatively good coherence
between quasi-static load coefficients and horizontal flutter derivatives, it was concluded
that it is in the order to use the derivatives in the modelling.

5.4.1 Modelling uncertainty of flutter derivatives
As seen from fig. 5.3-5.4, the quality of the fit varies between the different flutter deriva-
tives. For some values, e.g. P ∗3 , H

∗
3 and A∗3, the polynomial curve adapts well to the

measured values, while the uncertainty linked to the regression analysis of e.g. A∗5 andH∗4
is larger. In order to perform a probabilistic analysis of the critical velocity, an accurate
description of the uncertainty of flutter derivatives is essential. In this study two different
models were proposed:

• Case 1: Using the uncertainty of the residual term, ie constructing curves based on
variance of a predicted response.

• Case 2: Using the uncertainty of the coefficients, ie constructing curves based on
variance of the mean response.

The two models had widely different implications, as described in chap. 6, 7. In the
following, the modelling assumptions for each case are described.
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Figure 5.3: Measurements, mean trend lines and quasi-static load coefficients for damping related
flutter derivatives [6].

Modelling of uncertainty: Case 1

In sec. 3.2, some key values describing the variance of linear regression were derived.
A basic assumption was that the error terms, or rather the residuals, of the model were
homogenously distributed with constant variance and zero mean. For the present measure-
ments of flutter derivatives, this was seen to be inaccurate. To investigate further, residual
plots were made for each eXi = X∗i − X̂∗i . For 15 of the 18 derivatives, the hypothesis
that the residuals were distributed by a normal distribution could not be rejected to a 5%
significance level. For some of the derivatives, the assumption of variance homogenously
distributed for all values of Vred, also seemed to be fulfilled. However, it was also observed
that the absolute value of some of the residuals increased with increasing reduced velocity.
It was in no sense possible to decide that this behaviour was inherent in the measurements;
however, this observation suggested that residuals behave in accordance with the assumed
model of mean response. In other words, it was suggested that
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Figure 5.4: Measurements, mean trend lines and quasi-static load coefficients for stiffness related
flutter derivatives [6].

σeXi ∝ Vred, i ∈ {1, 2, 5}
σeXi ∝ V

2
red, i ∈ {3, 4, 6}

(5.4)

If the assumptions of (5.4) were true, scaled residual terms eXi with K = 1/Vred and
K2 = 1/V 2

red, respectively, would be homogenously distributed throughout the range of
Vred. Plots of these scaled residuals, denoted εXi in the following, were made to assess
whether they could be used for modeling instead of the unscaled terms. The assumption
that εXi was normally distributed, was rejected on a 5% significance level for 7 of 18
derivatives, slihgtly worse than the unscaled residuals. However, it was seen that poor
performance mostly was related to the measurements with low value of Vred. These values
are not seen to be relevant at flutter speed (see chap. 6). If the first 4 measurements were
omitted, only 1 of 18 the distributions were rejected. More notably, around the reduced
velocities of flutter, εXi was somewhat more homogenously distributed than eXi , based
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on ”the evidences of a visual test.” Therefore, it was decided to use the values of εXi to
construct a distribution to fit the residuals. Fig. 5.5 illustrates the modelling of a flutter
derivative that behaves in accordance with the assumption of (5.4), while fig. 5.6 shows a
flutter derivative with a lesser fit to the assumption.
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Figure 5.5: Plots of scaled residuals of flutter derivative H∗
2 . The measurements fit well to the

assumptions in eq. (5.4).

The covariance between residuals of different flutter derivatives also should be taken
into account in the uncertainty modelling. A covariance matrix was constructed in accor-
dance to the methods of (3.10) and (3.14), where the covariance between scaled residuals,
σεXiεXj , were found. Also here some considerations should be made. To study the nature
of covariance between derivatives, scatter plots combining the residual vectors with each
other were made. At some occations, single outliers affected the correlation value signif-
icantly, giving an artificial high correlation value between two vectors. In the early stage
of the modelling procedures, some attempts were made to reduce these values to produce
a more correct covariance matrix. However, this yielded the matrix ill-defined, and it was
finally determined to proceed with the covariance matrix based on all the residual values.
The covariance matrix is shown in table B.4, while the means of the residual plots are
provided in table B.3.

Modelling of uncertainty: Case 2

For case 2, where the response curves of all flutter derivatives were modelled by 2nd order
polynomials, it was suggested to use the variance of the mean response of the flutter deriva-
tives to predict uncertainty. While the uncertainty modelling of case 1 was performed by
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Figure 5.6: Plots of scaled residuals of flutter derivative H∗
6 . The measurements fit poorly to the

assumptions in eq. (5.4).

establishing sensible covariance and mean matrices of scaled residuals, the aim of the ap-
proach in case 2 was to establish the covariance matrix of the coefficients. For a single
variable, the variance could be found according to the results of (3.19). For multi variable
models, covariance should also be found, increasing the complexity. Not assessing the
different consequences for calculations of critical speed, the approach of mean response
had some technical advantages.

1. Possibly non-homogenous behaviour of residuals is taken directly into account by
the variance of the coefficients. For example, increasing variance of error with re-
duced speed could suggest that the 2nd order term should be modelled with a rela-
tively larger variance than the constant term.

2. The mean response is less affected by the presence of possible outliers than the
models of residuals are.

In sum, this implies that a standard multi variable regression model would be capable
of predicting the variance of mean response satisfyingly. The function mvregress.m is ad-
vantageous because the covariance between coefficients from different regression models
is easily extracted.

For clarity, the definition of the two cases are repeated below.
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5.4.2 Definition of case 1 and case 2
• Case 1

– The continuous regression curves of the flutter derivatives are forced through
origo to reflect aerodynamic behaviour in still-air.

– Derivatives relevant for damping are modelled as linear, while stiffness deriva-
tives are modelled as 2nd order polynomials.

– The uncertainty modelling is based on the variance of scaled residuals.

• Case 2

– Behaviour of modelling curves outside the velocity range of the test campaign
are not given emphasis.

– All derivatives are modelled as 2nd order polynomials.

– The uncertainty modelling is based on the variance of the mean response.

5.5 Calculation of critical speed
A deterministic analysis of critical speed is performed by using the curves of mean re-
sponse, while neglecting the variance. In the probabilistic assessment it is necessary to
perform a large number of simulations to find critical speed, using the whole spectre of
possible ”flutter curves”. The frequency of which a certain combination of flutter curves
is used should be in accordance with the covariance and mean value matrices defined in
sec. 5.4.1. Since it is assumed that the multi variable variance is normally distributed, a
number of random dependent vectors can easily be generated, in accordance to the outline
from sec. 3.8. For case 2, this method would generate the coefficients of each polynomial
curve, which could then be directly implemented in an iterative technique to solve (2.22).
For case 1, an extra step is needed to achieve the correct distribution of polynomial curves.
The generated vectors provide the values of scaled residuals. These values should then be
multiplied with either Vred or V 2

red, and added to the curves of mean response.
Each of the generated vectors thus provides a set of polynomial curves of flutter deriva-

tives, making it possible to find critical speed by performing deterministic simulations for
each set of curves.

Solving the eigenvalue problem in (2.22) must be done by an iterative procedure. For
convenience, the equation is repeated here.

(
λ2
nM̃0 + λn

(
C̃0 − C̃ae (V, ω)

)
+
(
K̃0 − K̃ae (V, ω)

))
η̂ = 0, n ∈ {1, . . . , 2Nmod}

(2.22)
The matrices C̃ae, K̃ae are nonlinear in V and ω, or rather in Vred, at the same time ω

is contained in the eigenvalues λn. Therefore the solution technique needs iterations both
on ω and V . Fig. 5.8 describes a routine that is in common use today. Initially, which
modes to include are determined, and still-air constructional properties are defined, so as
M̃0, C̃0 and K̃0. Also, tolerance limits and maximal number of iterations for each loop
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5.5 Calculation of critical speed

are defined. The tolerance limits guarantee that the obtained solutions are obtained with
satisfying accuracy with respect to frequency, critical speed and damping. Because certain
combinations of flutter curves can cause the iterations to diverge, the routine should be
stopped after a reasonable number of iterations.

An initial value of V is defined, and for each mode, the belonging complex eigenvalue
solution is established, thus providing the in-wind eigen-frequency for each mode. If the
real term of one of the eigenvalues is within tolerance limit to zero, flutter is reached. If
not, the value of V is increased with dV , and the procedure is repeated. Usually, at some
point it is seen that the damping term of some eigenvalue increases beyond zero, giving a
value of V that is higher than critical speed. When this happens, the procedure rejects the
value of V , and perform another iteration with reduced velocity increment.

In addition to the outline above, which is in accordance with routine descriptions from
literature, a slight improvement was suggested. Because it was seen that only a very lim-
ited number of modes were able to reach zero damping, the routine was changed, limiting
the iteration to these modes only. The alteration reduced the computational effort signifi-
cantly. For case 2, a solution was rejected if the value of Vred was outside the values from
the test campaign. Here, the limit was set at Vred = 4. This did not have any practical con-
sequence, as no simulations exceeded that value. Visually, the development of the routine
is seen in fig. 5.7.
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Figure 5.7: The development of an eigenvalue solution for a situation with 7 modes included. Flutter
is reached when 1st torsional mode has zero damping. dV = 5 initially, but velocity steps are halved
successively close to flutter speed.

In the figure, the upper plot represent frequency values, while the lower plot gives in-
wind damping ratio. For each velocity step, stable damping ratios and frequency values
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were found for each eigenmode. If none of the damping values were zero, the velocity
was increased, and new values were found. The solution was found when one of curves in
the lower plot reached zero. Notably, the frequency of the 1st torsional mode dropped at
increasing wind speeds.

5.6 Determination of the wind field
According to Handbook 185 by the Norwegian Public Road Administration, the wind load
on the Hardanger Bridge should be modelled accordingly to Wind load class III, because
the bridge satisfies the following two conditions:

Tmin ≥ 2 s, L ≥ 300 m, (5.5)

where Tmin is the minimal period of oscillation, and L is the length of the bridge. Wind
load class III applies to bridges where significant dynamical interactions between wind
load and bridge can be expected, and the design rules demand thorough investigations to
ensure that instability is not reached. The design rules demand i.a.:

VCr
γCr

≥ VS(z = zm, T = 600s, R = 500y), (5.6)

where VCr is the calculated critical flutter speed of the bridge, γCr = 1.6 is a safety
factor, while VS is the mean wind component at the construction site that the bridge should
be designed to withstand. It is assumed that VS attacks the bridge normal to the main axis
of the bridge. VS is defined as the highest mean wind speed, averaged over a period T ,
expected to take place during a design period R = 1

p , where p is the probability that VS
is the most extreme wind speed during one year. T = 600s is the standard averaging
time, while R = 500 years is the design period for instability calculations. z = zm is a
reference position for calculation of critical wind speed, for example the shear center of
the bridge girder in its highest position. [29]

VS is calculated according to technical standard NS-EN-1991-1-4 [25], which specify
that

VS(z, T = 600s, R) = cr(z) · co(z) · cprob(R) · cdir · cseason · vb,0 (5.7)

where

cr(z) is the roughness factor
co(z) is the topography factor, taken as 1.0
cprob(R) is the probability factor
cdir is the directional factor, taken as 1.0
cseason(z) is the season factor, taken as 1.0
vb,0 is the fundamental value of the basic wind velocity

56



5.6 Determination of the wind field

Start

V = V0
n = 1

ωn = ωn,0

Calculate
C̃ae(V, ωn), K̃ae(V, ωn)

Solve eq. (2.22)
⇒ λn = an ± ibn

|bn − ωn| < δωtol?ωn = bn

|an| < δζtol?

VCr = V ,
ωCr = ωn

n = Nmod?

n = n + 1

V = V + dV
n = 1

No

Yes

Yes

No

No

Yes

Figure 5.8: Routine for calculation of critical flutter velocity. A maximum number of iterations
should be defined for loops both on ω and V , as the routine does not necessarily converge.

The roughness factor is defined as follows:

cr(z) = kr · ln
(
z

z0

)
, zmin ≤ z ≤ zmax (5.8)

kr = 0.19
(

z0

z0, II

)0
.07 is the terrain factor (5.9)57
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z0 is the roughness length at the construction site, taken as 0.01m for the Hardanger
Bridge, which belong to terrain class I. z0,II = 0.05m is the roughness length of terrain
class II. Terrain class I gives zmin = 1m, while zmax = 200m is a fixed value.

cprob = 1 for a return period of 50 years, otherwise it is defined as

cprob(R) =
(

1− 0.2 ln (− ln (1− p))
1− 0.2 ln (− ln (1− 0.02))

)0.5
(5.10)

(5.10) differ slightly from the expression for cprob found in [29]; however, the same
values are produced.

The value of vb,0 is specified for each Norwegian municipality in [25]. The Hardan-
ger Bridge crosses the Hardangerfjord in Ullensvang municipality, where vb,0 = 26m/s
applies. Combining all the expressions, and using that zm = 63.5m (see sec. 1.3), VS is
finally found as

VS(63.5 m, 600 s, 500 y) = 43.3m
s (5.11)

For the purpose of this text, also a stochastic distribution of the extreme mean wind
value is determined.

5.7 Probabilistic distribution of extreme mean wind value
The extreme wind value of sec. 5.6 have a probability of 1

500 = 0.002 to be exceeded
each year. A probabilistic distribution would specify a probability of exceedance for each
possible wind value. In order to find such a distribution, extreme wind values with a
reference period of 2, 10, 50, 100 and 500 years, respectively, are calculated. Then, a
Gumbel distribution is fitted to these data points (see sec. 3.4).

For each reference period only cprob changes value, thus providing the results seen in
table 5.3.

R[y] p[1/y] VS [m/s]
2 0.5 29.95

10 0.1 34.80
50 0.02 38.57

100 0.01 40.05
500 0.002 43.29

Table 5.3: Extreme wind values, their expected reference period, and yearly probability of oc-
curence.

In sec. 3.4, the CDF of a Gumbel distribution was defined as

FX(x) = e−e− x−µ
β (3.28)
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In this case, FX(x) is the probability that the maximum 10-min mean wind value a
particular year is below the values specified in table 5.3. Therefore, the aim of curve
fitting is to provide the values of µ, β that minimizes the total error of

1− p = e−e−
VS−µ
β (5.12)

for the specified values. It is convenient to invert 5.12, making it linear in µ, β:

VS = µ− β ln (− ln (p)) (5.13)

Using the built-in function regress.m in MATLAB, the parameters are found as

µ = 29.4125, β = 2.2850 (5.14)

The data points used in the regression is depicted together with the fitted CDF in fig.
5.9. The fit is relatively good, especially for high wind speeds.
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Figure 5.9: The cumulative distribution function associated with the extreme 10-min mean wind
value at the Hardanger Bridge.
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Chapter 6
Results

Based on the methods and models elaborated upon in 5, a probabilistic analysis of the
Hardanger Bridge has been performed. The main aim of the simulations is to draw infer-
ences about the reliability of the bridge. Obviously, also information and characteristics
about the stochastic distribution of critical speed can be extracted. In this chapter, results
are presented according to the natural order of which they were extracted. First, results
from a deterministic analysis are presented. Secondly, critical speed simulations from
case 1 and case 2 are presented. Thirdly, results from the reliability analysis for each of
the cases are given.

6.1 Deterministic analysis
To get a starting point for probabilistic simulations, a deterministic analysis was per-
formed. In this way it was possible to see which mode combinations to include in the
probabilistic analysis. Even if it is theoretically possible to include 50 or even more modes
in the analysis, computational effort increases rapidly when including additional modes.
The aim of the deterministic analysis was to find a balance between accuracy and com-
putational time. The deterministic analysis is simply performed by setting the covariance
matrix of variables equal to zero.

Calculations were performed using the mean variables of both case 1 and case 2 (as
defined in chapter 5). First, bimodal flutter speed were calculated using the 1st torsional
mode together with the 1st and 2nd vertical mode, respectively. Then more modes were
added succesively to see if they contributed to flutter. Among the first 50 modes, all
symmetrical modes were tested to see if they reduced flutter velocity. Obviously, also
modes with low shape similarity were checked in the multi mode flutter analysis, because
small differences were assumed to make a difference for the probabilities involved.

In addition to the 1st and 2nd vertical and 1st torsional mode, which were identified as
the modes dominating flutter in [8], the Abaqus model from SVV identified symmetrical
torsional motion in mode 17. Inclusion of this mode gave a significant reduction of flutter
velocity. After including the two first symmetrical horizontal modes (1, 5), as well as the
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3rd symm. vertical mode (12), for a total of 7 modes, it was seen that additional modes
changed the mean velocity very little.

Case 1 Case 2
Mode combinations Vcr[m/s] ωcr[ rads ] Vcr[m/s] ωcr[ rads ]

4+15 103.62 1.47 93.57 1.58
6+15 89.98 1.69 86.36 1.69

4+6+15 81.71 1.79 81.44 1.76
4+6+15+17 79.71 1.78 79.95 1.75

4+6+12+15+17 78.66 1.80 79.42 1.76
1+4+5+6+12+15+17 78.36 1.81 79.36 1.76
3 vert., 2 tors., 6 hor. 78.33 1.81 79.33 1.77

50 modes 78.30 1.81 79.67 1.77

Table 6.1: Critical flutter speed and critical frequency for different mode combinations for each of
the two cases from sec. 5.4.2. Modes not contributing to critical flutter speed are not presented.

Table 6.1 shows the flutter speed and critical frequency for relevant mode combinations
for both case 1 and 2 . The results differ beetween the two configurations, especially large
differences are seen for the first bimodal flutter speed. For most other combinations, the
calculated speeds differed with approx. 1m/s. For the configuration where the 50 first
modes were included, the critical speed velocity is reduced a little for case 1, compared to
the value calculated with 7 modes included. However, the value increased for case 2. For
both cases, including four horizontal modes (23, 24, 29, 36) in addition to the 7 mentioned,
was identified to reduce VCr a little. All these 11 modes are shown in fig. 6.1.

The figure shows that all the modes are symmetrical, and that, generally, mode simi-
larity is high. Especially, the high-numbered, horizontal modes are very similar. It should
be noted that all of the 4 most high-numbered modes includes motion in parts of the bridge
that is not accounted for in the flutter analysis, i.e. the pylons and the cables. Thus, even if
they have similar mode shapes in the girder, there might be opposite deflections in the py-
lons and cable, making it less probable that these modes couple. It is not assessed whether
this in fact is the case.

6.2 Probabilistic analysis of critical speed
Based on the calculations of mean flutter speed, it was chosen to proceed with 4 mode
combinations, namely the ones including 3, 4, 7 and 11 modes from table 6.1. The mode
combinations are given in the list below. Invaraiably, the different combinations are re-
ferred to as the ”3 mode combination”, the ”4-mode combination” as well as ”the combi-
nation using 7 modes”.

• 3-mode combination: Modes 4+6+15

• 4-mode combination: Modes 4+6+15+17

• 7-mode combination: Modes 1+4+5+6+12+15+17
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Figure 6.1: The 11 modes which had the strongest influence on flutter speed. Mode 17 had signifi-
cant motion both in torsional (blue) as well as horizontal (red) direction. The ratio of the deflections
of these two modes is not correct in the figure.

• 11-mode combination: Modes 1+4+5+6+12+15+17+23+24+29+36

Calculation time was the limiting factor for the scope of the simulations. Especially,
the proposed method in case 1 was computationally expensive. For this reason, case 1
was evaluated only for the combinations with 3 and 4 modes, for which a total of 7 · 105

simulations was performed. For case 2, mode combinations with 3 and 11 modes were
simulated 3 · 106 times. For mode combinations with 4 and 7 modes, 7 · 106 simulations
were performed.

For some of the simulations, the routine did not converge towards critical speed within
the specified number of frequency iterations. These simulations were removed from the
data set when accumulating. To ensure that this did not give large differences in Nsim
between the different cases and mode combinations, the number of simulation values was
initially increased by 1-5 %, ensuring that enough valid simulations was recorded.
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6.2.1 Critical speed - case 1

From the simulations of critical speed with flutter derivatives as defined in case 1 of sec.
5.4.2, it is seen that the mean values of table 6.1 are not reproduced exactly, deviating
with about 1 m/s. This is due to the fact that the distributions are significantly skewed,
implying that even though the deterministic calculations use the mean of the input values,
the resulting value does not represent the true mean of the problem. The complexity of
the problem does signalise that such an effect is not unexpected. From table 6.2 and fig.
6.2, 6.3, it is seen that the distributions of critical speed is skewed slightly to the left,
giving a negative skewness value. This makes the mean value calculation somewhat non-
conservative, because the distribution has an obesity of values to the left of the peak. The
skewness is mainly seen in the extreme range of the tails. On the left side it could be
described as thin and long, while on the left side it is thicker but shorter. The standard
deviation is large, giving 99 % confidence interval about [40 - 110 m/s] for both mode
combinations.

While the mode combination of case 3 was stable in the sense that very few outliers
were observed, the raw data from mode combination 4 showed significant deviations from
what would be reasonable to expect. In the velocity distribution at the upper left corner
of fig. 6.3, no outliers are seen. However, in the frequency distribution, a small peak is
seen where ωCr ≈ 2.4, as well as a few outliers for ωCr ≈ 1.1. The effect of these
outliers upon critical speed is seen in the scatter plot at the lower right corner of the figure.
They are distributed over a wide range of velocities. Notably, the 500 year design speed
of 69 m/s was violated in 13.5% and 14.1% of the simulations for the 3-mode and 4-mode
combination, respectively.

In table 6.3, these values are seen to result in a very high skewness value of the distribu-
tion. If the outliers are removed, all results are in accordance with what could be expected
from the combination with 3 modes. Since the high valued frequencies were distributed
over a wide range of critical velocities, no significant effect of these were seen upon the
mean value of critical speed.

Also for a little share of the simulations with the 4-mode combination, the routine
did converge at very high velocity, giving a frequency equal to zero. This occured for
simulations where the random residual input gave a high initial damping value for the
1st torsional mode. Zero frequency corresponds to the physical phenomenon of static
divergence, however, the routine is not constructed to take this into account, so it is not
given that these events actually occurred because of static divergence. The number of
simulations were this occured was very low, so it was decided to remove these data point
from the sample.

For the 4-mode combination with outliers removed, VRed had a mean value of 2.41.
A 99 % confidence interval was given by {1.06-3.76}. The most extreme values of this
interval is outside the velocity range of the test campaign, but not by large numbers.
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VCr

Nmod µ σ γ1 CI99%
3 80.512 12.062 -0.276 39.58-113.61
4 78.957 10.935 -0.157 41.83-110.63
4∗ 78.924 10.888 -0.178 41.80-110.25

Table 6.2: Mean, standard deviation, and skewness values of critical speed based on 7 · 105 simula-
tions.
*: Results with outliers removed.

ωCr

Nmod µ σ γ1
3 1.816 0.126 0.277
4 1.814 0.126 0.649
4∗ 1.812 0.120 0.278

Table 6.3: Mean, standard deviation, and skewness values of critical frequency based on 7 · 105

simulations.
*: Results with outliers removed.

Figure 6.2: Distributions for the 3 mode combination. VCr, ωCr and Vred, and a scatter plot illus-
trating correlation between VCr and ωCr .
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Figure 6.3: Distributions for the 4 mode combination with outliers included. VCr, ωCr and Vred,
and a scatter plot illustrating correlation between VCr and ωCr .

6.2.2 Critical speed - case 2
While all the stochastic input variables for calculation of critical speed were normally dis-
tributed, simulations demonstrated that the output values, most notably the critical speed
and critical frequency, were not normally distributed. However, the skewing was in the
opposite direction of what was seeen in case 1. The tables and fig. 6.4 show that the dis-
tribution is positively skewed. This tendency can also be noted from the extreme values of
the 7 mode simulations, which are 67.50 m/s and 95.74 m/s respectively. The first value is
somewhat closer to the mean value. For the 7 mode combination a 99% confidence inter-
val symmetrically distributed about the median was calculated to be 73.71 − 86.91m/s.
The distributions show significant skewness for all different mode configurations, even
though the means of the stochastic distributions are not very far from the values calculated
in table 6.1. The same is true for the critical frequency. Some key characteristics of the
distributions are summed up in tables 6.4 and 6.5.

VCr

Nmod µ σ γ1 CI99%
3 81.567 2.306 0.328 76.29-88.24
4 80.050 2.212 0.241 74.80-86.24
7 79.597 2.643 0.338 73.71-86.91

11 79.576 2.644 0.334 73.71-86.84

Table 6.4: Mean, standard deviation, and skewness values of critical speed based on 3 · 106 simula-
tions.
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ωCr

Nmod µ σ γ1
3 1.757 0.039 -0.567
4 1.746 0.039 -0.499
7 1.760 0.044 -0.676

11 1.759 0.044 -0.679

Table 6.5: Mean, standard deviation, and skewness values of critical frequency based on 3 · 106

simulations.

The distributions of critical frequency also show little deviation from the calculations
in sec. 6.1. Here, a distinct negative skew is seen. Large values of frequency correspond
very closely to low values of critical speed, as seen in 6.4. For the 7 mode combination, a
correlation coefficient of -0.914 was calculated.

From the simulations of VCr and ωCr, information about Vred is readily available. For
the 7 mode combination, the mean of Vred was found to be 2.48, while a 99% confidence
interval was given by {2.19-2.90}. In the case of 3 modes, the same values were found as
2.54 and {2.27-2.93}, respectively.

Among the calculated probability distributions, the combination with 4 modes points
out not to follow the same tendency as the other curves. Especially, the values of σ and
γ1 for critical velocity do not follow the trend that is outlined by the three other mode
combinations. For critical frequency, all values deviate somewhat from what would be
expected. However, the discrepancies are small. Fig. 6.4 and 6.5 provide distributions of
critical velocity and frequency for the 7-mode and the 4-mode combinations, respectively.
For the velocity, the peak is more significant in the latter figure, which is consistent with
the slightly lower variance seen for the 4-mode combination.
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Figure 6.4: Distributions for the 7 mode combination. VCr, ωCr and Vred, and scatter plot illustrat-
ing correlation between VCr and ωCr .
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Figure 6.5: Distributions for the 4 mode combination. VCr, ωCr and Vred, and scatter plot illustrat-
ing correlation between VCr and ωCr .

6.3 Reliability analysis
In sec. 3.8.1, it was suggested that extrapolation from a series of ”reduced” probabilities of
failure, based on a parametrized class of limit state functions, could yield good estimates
of the true failure probability.

M(λ) = M − µM (1− λ), 0 ≤ λ ≤ 1 (3.47)

Calculations using the enhanced Monte Carlo method was performed based on ACER 1.m,
a MATLAB program developed at NTNU. The program was adjusted to suit the current
application. The implementation of the enhanced method used in the program was seen to
be very sensitive to input values. Næss noted that the problem of estimating an extrapo-
lation curve for failure probability becomes ill-defined when the input parameter c0 ≈ 1.
This issue also arose in some of the cases studied in this thesis. To avoid the problem,
some executions were made with a rewrite of the limit state function, namely

M =
√
VCr −

√
VS = 0 (6.1)

The value of this function is the same as the original function at the limit M = 0,
and it is negative when M = VCr − VS is. It should therefore produce the same value
of failure probability at this point. However, for nonzero values of M, the parametrization
M(λ) takes on different values, making the extrapolation curve follow another path. For
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the cases with 4, 7 and 11 modes, the limit state in 6.1 performed better than the orig-
inal function. In the code, it is attempted to construct extrapolation curves not only for
the failure probability, but also for 95 % confidence intervals enclosing the pf (λ) curve.
Therefore, the problem could become illdefined for one of the three regression problems
in an execution, while not for the remaining. For some of these cases, values could be
found for failure probability even though estimates of confidence intervals could not be
provided.

Because the performance of (6.1) was generally good, this was implemented for all
mode combinations. A comparison of the results using this limit state and the limit state
M = VCr − VS is provided for the combination with three modes in case 2. For all mode
combinations, estimates of failure probabilities, confidence intervals and safety levels are
provided for different combinations of Nsim and λM . While λM , the maximal parameter-
ization value used as basis for regression calculations, were seen to have some effect on
the extrapolation curve, λ0 mainly affected the stability of the regression problem; it did
not have a significant effect upon the resulting failure probability. In case 1, it was set at
0.6 because of the high probabilities involved, while in case 2, it was fixed at 0.2.

The probability distribution of the maximal 10-min mean wind value, the ”second part”
of the reliability analysis, was found in sec. 5.5. For convenience, an illustration of the
probability density function (PDF) is given in fig. 6.6.
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Figure 6.6: 3 · 106 realisations of the 10-min extreme mean wind distribution. The values of the
distribution express the probability that a specific wind speed is exceeded during one year.

The distribution is skewed to the right of the peak, typical for extreme value distribu-
tions. The distribution is bounded, not theoretically, but for practical purposes, by a lower
limit of approx. 24 m/s. Since the probabilities calculated in the following section express
the probability of failure during one year, they could also be understood as expected fre-
quencies of failure, meaning e.g. that a failure probability of 0.1 implies that flutter speed
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is expected to occur once every ten years.

6.3.1 Reliability analysis - case 1

Because of the large variance seen in the distributions of case 1, failure probabilities are
expected to be high. Even crude Monte Carlo simulations yielded an approximate value
of failure probability, since the unparametrized limit state function was violated in some
of the cases.

For the three mode combination, crude Monte Carlo simulations gave pf0 ≈ 1.58 ·
10−3. The 4 mode combination yielded 1.23·10−3 and 1.27·10−3 with and without out-
liers included, respectively. Also from fig. 6.7 and 6.8, it is seen that the limit state is
violated by some of the values.
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Figure 6.7: 3 mode combination: Contour plot for the bivariate density distribution of the reliability
analysis. 200 isosceles contour plots are shown for a total of 7 · 105 simulations.
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Figure 6.8: Graphical realisation of the limit state function shown for combination with three modes
case 1.

Because of the high probailities involved, the accuracy achieved with the method is
very high, not only for safety levels, but also for the probabilities calculated. The results
are summarised in table 6.6. Also, fig. 6.9 illustrates the extrapolation for a case using the
3 mode combination with λM = 0.8. The blue ”bullet points” is the calculated values of
reduced failure probabilities. In the log space, it is seen that the extrapolation curve follow
the points very closely. Also, the confidence bands are very narrow.

The results are not in accordance with the safety level that is needed and expected
for this type of construction. Above all, they indicate that something is wrong with the
suggested modelling of flutter derivatives. In chapter 7, the approaches used for the two
different cases are discussed.

Nsim = 7 · 105 3 modes 4 modes
pf · 103 CI95% · 103 β pf · 103 CI95% · 103 β

λM

0.7 2.2 2.1-2.3 2.85 1.8 1.7-1.9 2.91
0.8 2.0 1.9-2.1 2.88 1.5 1.4-1.6 2.96
0.9 1.8 1.7-1.9 2.91 1.2 1.1-1.3 3.03

Table 6.6: Failure probabilities, 95 % confidence intervals and safety levels for two different mode
combinations of case 1. 4-mode combination is calculated with outliers removed.
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Figure 6.9: Case 1, 3 mode combination: Extrapolation curves for failure probability using different
combinations of Nsim and λ using enhanced Monte Carlo simulation.

6.3.2 Reliability analysis - case 2

The simulations performed with case 2 are distributed more narrowly than the ones ob-
served in case 1, implying that the failure probabilities will be significantly lower. Indeed,
this was seen to be the case. For the failure probabilities seen for case 2, the coefficients
of variance between different estimates were relatively high. However, the estimates of
the safety level β = Φ−1(pf ) were found to be within reasonable bounds for most of the
simulations. Generally, the failure probabilities were in the range of 1−10 − 3−9, giving
safety indexes ranging from approx. 5.8 to 6.4.
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Figure 6.10: 7 mode combination: Contour plot for the bivariate density distribution of the reliability
analysis. 400 isosceles contour plots are shown for a total of 7 · 106 simulations.
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Figure 6.11: Graphical realisation of the limit state function shown for combination with seven
modes case 2.

Fig. 6.10 and 6.11 clarifies why traditional simulation methods cannot provide esti-
mates of failure for the flutter reliability problem. The extreme value of the limit state
distribution for the 7 mode combination with 7 · 106 simulations is approx. 12 m/s. The
shape of the critical speed distribution, as well as the Gumbel distribution of the extreme
10-min mean wind speeds, are visible in 6.10. Seeing from bottom to top, the contours
are slightly closer to each other on the negative side of the peak, in accordance with the
right skew found in sec. 6.2.2. In the following, failure characteristics are defined for four
different mode combinations. The failure probability is assessed using different values of
λM and Nsim. Full tables with the calculated probabilities of failure are found in app. A.
All referenced figures are gathered in the end of the chapter.

Mode combination with 3 modes

For the mode combination with modes 4, 6 and 15 included, a total of 3 · 106 simulations
were performed. To decide which value to choose for λM , an estimate is given by studying
the development of p̂f (λ). When the curve of (λ, p̂f (λ)) no longer follow a smooth path,
no additional information is expected to be retrieved by increasing λM . The development
of these data points are seen as the blue dots in fig. (6.12). For the case of 3 · 106 simula-
tions, the limit was found for λM ≈ 0.6. It was chosen to gather failure probabilities and
confidence intervals by variying the maximal λ value of λ between 0.4 and 0.7, and vary
Nsim in the range of 0.7 − 3 · 106. The most stable results were found for the values of
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Nsim and λM , shown in fig. 6.13. In the plot, the trend-lines connect failure probabilities
for one value of λM , while the x-axis show increasing values of Nsim. Each group of data
points show calculations for the same value of Nsim. However, to show the error bars
properly, they are slightly separated in the figure.

In the plot, some surprising development is seen. When the number of simulations are
increased, it would be expected that uncertainty is reduced, at least for the same values
of λM . In fig. 6.13, the tendency is the opposite, as the width of the confidence intervals
increases. Also, it is seen that different intervals do not cover the same values, which
is not in accordance with what one would expect if they were based purely on statistical
assumptions. Further, the probabilities values do not seem to converge towards a stable
value. It suggests that the number of simulations should be further increased to get a better
estimate.

On the other hand, for the probabilities involved, the calculated values could be said
to deviate relatively little, with probability estimates ranging at 0.7− 6 · 106. If the values
were studied in the log space, in accordance with the nature of the enhanced method, the
variation seen in fig. 6.13 would have been reduced. This is realised when studying the
values of the safety index.

Fig. 6.12 illustrates the nature of the calculations, and how the estimates of pf deviate
in the log space. In table 6.7, some typical values of the safety index are provided.

For the 3 mode combination, a very brief comparison between the square root limit
state and the original limit state function was performed. The results for the extrem values
of Nsim are suggested in fig. 6.14. The green and blue bars show the values using the
square root limit state, while red and orange colours are estimates using the original func-
tion. Notably, the x-axis here show the values of λM . No distinct differences are seen;
however, the two methods obviously do not produce exactly the same result.

βf = Φ−1(pf ) Nsim /1000
700 3000

λM

0.4 6.16 6.15
0.5 6.29 6.11
0.6 6.33 6.24
0.7 6.26

Table 6.7: Level of safety against failure using the square root limit state.

Mode combination with 4 modes

The investigations for the 4 mode combination, where modes 4, 6, 15 and 17 are included,
were performed in the same manner as suggested in sec. 6.3.2. A total of 7·106 simulations
were performed, and Nsim was varied between 0.7 − 7 · 106. The most stable solutions
were found for λM between 0.45−0.6, which are illustrated. in fig. 6.15. For other values,
one of the confidence bands often became ill-defined.

The variation along the curves in 6.15 indicates that the pf values stabilizes forNsim ≥
5.5 · 106. However, the variation of λM has a more significant effect upon the failure
probability. Somewhat surprisingly, it was seen that λM = 0.55 yielded the highest failure
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Figure 6.12: 3 mode combination: Extrapolation curves for failure probability using different com-
binations of Nsim and λ using enhanced Monte Carlo simulation.

probabilities. This stabilizing tendency was in opposition to what was observed with the
3 mode combination. However, both probabilities and confidence intervals took on larger
values, with failure probabilities in the range of 4− 12 · 106.

Table 6.8 illustrates that the variation of the safety index still is small.

βf = Φ−1(pf ) Nsim /1000
700 3000 7000

λM

0.4 5.96 6.19 6.10
0.5 5.95 5.98 6.08
0.6 6.02 6.08
0.7 6.07 6.13

Table 6.8: 4 mode comb.: Typical values of the safety index.

6.3.3 Mode combination with 7 modes
The investigations performed for the 7 mode combination, where modes 1, 4, 5, 6, 12, 15
and 17 are included, were performed in the same manner as suggested in sec. 6.3.2. A
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total of 7 · 106 simulations were performed, and Nsim was varied between 0.7 − 7 · 106.
The most stable solutions was found for λM between 0.45− 0.6, which are illustrated. in
fig. 6.16. Using a large number of simulations together with a low λM sometimes made
the regression problem ill-defined, somewhat surprisingly.

Here, in opposition to what was seen for the 3 mode combination, the results do seem
to be stable at high values of Nsim. However, both probabilities and confidence intervals
take on larger values, with failure probabilities in the range of 8− 25 · 106.

Table 6.9 illustrates that the variation of the safety index still is small.

βf = Φ−1(pf ) Nsim /1000
700 3000 7000

λM

0.4 5.88 5.90 5.95
0.5 5.90 5.88 6.01
0.6 5.95 6.06
0.7 6.02 6.10

Table 6.9: 7 mode comb.: Typical values of the safety index.

6.3.4 Mode combination with 11 modes
For the 11-mode combination, modes 23, 24, 26, 29 were included in addition to the 7
previously mentioned. A total of 3 · 106 simulations were performed, and Nsim was, as
for the 3 mode combination, varied between 0.7 − 3 · 106. The main results are depicted
in fig. 6.17.

As with the 3 mode combination, the figure shows that stable values were not achieved
for the current number of simulations. Especially noticeable is the peak found for some of
the λ values at Nsim = 2.5 · 106. The probabilities ranged in the area 2− 12 · 106.

βf = Φ−1(pf ) Nsim /1000
700 3000

λM

0.4 6.22 6.15
0.5 6.10 6.08
0.6 6.20 6.21
0.7 6.04 6.21

Table 6.10: 11 mode comb.: Typical values of the safety index.
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Figure 6.13: 3-mode combination: Failure probability and confidence intervals for different combi-
nations of Nsim and λ.
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Figure 6.15: 4-mode combination: Failure probability and confidence intervals for different combi-
nations of Nsim and λ.
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Figure 6.16: 7-mode combination: Failure probability and confidence intervals for different combi-
nations of Nsim and λ.
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Figure 6.17: 11-mode combination: Failure probability and confidence intervals for different com-
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In the previous chapter, a number of probability failure calculations based on different
choices of Nsim, λM and mode combinations, has been performed.

The variation of the values seems to depend on all the three parameters. For the 3
and 11 mode combination, 3 · 106 simulations were generated. By varying Nsim between
0.7 − 3 · 106 the failure probability did not stabilize. It was not possible to conclude that
mode combination 11 had a higher probability of failure, as would be expected from the
distribution of the simulations. For this range of values, pf varied between 1− 24 · 10−10,
with corresponding safety indexes from 6.36 to 5.85. Mode combination 7 took on the
highest values. Including the 95 % confidence intervals, probability values from 0 to
50 · 10−10 were recorded, providing a lower safety index of 5.7. Even if the figures in
the last chapter suggest that there is a large uncertainty in the determination of pf , the
difference in the safety index β is limited.

For the 4 and 7 mode combination, 7 · 106 simulations were generated. Higher Nsim
stabilized the values of pf . For Nsim ∈ {5 − 7 · 106} , pf ranged from 3 · 10−10 to
15 · 10−10, with an upper confidence limit of 24 · 10−10. The respective values of β
are 6.19, 5.93 and 5.85. In structural design codes, the necessary value of β are taken
implicitly into account to calibrate safety factors, while the actual value of the safety index
are rarely provided. However, in a more general overview, Schneider suggests that β = 5.0
per year provides sufficiently safety for non-redundant failure of bridges [19]. While it is
the previously mentioned design rule that should be used to assess whether sufficiently
accuracy is provided, Schneiders value works as a comparison to what the β value means.

Normally, confidence intervals would be interpreted as bounds of the true value of
some size. Here, they are estimated by use of extrapolation, resulting in a large scatter
of the distribution of upper and lower limits. Sometimes, two different confidence limits
share no common points, which leave it rather obvious that at least one of them is incorrect.
Thus, the size of the confidence intervals should be taken as a qualitative measure of the
quality of the calculated value, rather than quantitative estimates of the 95 % confidence
limits.

In this chapter, four main items will be discussed.
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1. The results from the deterministic critical speed analysis will be considered. (sec.
7.1)

2. An explanation to why the two derivative modelling cases predict very different
values will be given, and it will be concluded that case 2 is the preferable way of
modelling. (sec. 7.2)

3. A comparison between the results from case 2 is provided. (sec. 7.3)

4. The validity of the results will be discussed. (sec. 7.4)

7.1 Results from deterministic analysis
In the previous chapter, results from a deterministic analysis for each of the two modelling
cases in the study was presented in tab. 6.1. While the results showed the same tendency, a
significant difference of approx. 1 m/s was observed for the extreme mode combinations.
No evidence was found as to why this difference was observed. The different mean trend-
lines for the flutter derivatives predict very similar values at the point of critical speed, at
least for all flutter derivatives thought to produce a significant impact on flutter speed. In
Øiseth’s thesis, critical speed was found at 78 m/s, for a trimodal combination. Since the
Abaqus model used in this study ”splits” fundamental torsional motion into two different
modes, the trimodal flutter limit in [8] should be compared to the limit of the present 4
mode combination. Thus, it seems that the value of case 1 complies best with Øiseth’s
work. Whether the true critical speed is found at 78 m/s, 79 m/s or at some other value
could still not be said with certainty. However, it is interesting to study what effect such
a difference yields upon the probability of failure. Obviously, the distributions from case
1 and case 2 cannot be compared directly. Therefore, to assess this, failure probabilities
were calculated for the 7-mode combination of case 2, successively shifting the mean of
the distribution 1, 2 and 3 m/s in the negative direction. The results are depicted in fig. 7.1.

Since exactly the same random variables are used in each calculation, the resulting shift
of probability values are comparable for each value of Nsim. For high values of Nsim, the
first shift results in pf increasing from 5− 6 · 10−10 to 9− 10 · 10−10. From many of the
figures in the previous chapter, it is seen that different choices of λM can provide the same
shift of failure probabilities. A shift of 3 m/s increases failure probability to 30 · 10−10.

One of the purposes of this study was to see if the inclusion of experimentally deter-
mined horizontal derivatives, would have any significatn impact on the critical speed and
its stochastic distribution. From the deterministic results in tab. 6.1, one might infer that
the contribution from horizontal modes is of minor importance. In the modelling of case
1, the achieved reduction of flutter speed by introducing the two first horizontal modes, are
0.3 m/s, while in case 2, the difference is as low as 0.06 m/s. Similar values were found
by calculating the mean from the probabilistic data samples in tab. 6.2 and 6.4. From the
discussion in chapter 4, as well as the differences obseved by the different predictions of
mean response, it is obvious that the true critical speed cannot be calculated with deci-
mal accuracy. In the deterministic analysis, appropriate accuracy therefore seems to be
achieved by inclusion of the four first modes. In sec. 7.3, it is investigated if the variance
contributions from horizontal modes have any significance.
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Figure 7.1: 7 mode combination: Effect of shifting mean value. λM = 0.5

7.2 Comparison between the two cases

From the results in 6, one remarkable tendency stands out. The difference between the
results accumulated in case 1 and case 2 is very large. Above all, this is due to the mod-
elling assumptions which are suggested in 5. In case 1, the variance modelling was based
on uncertainty of the residual terms, while in case 2, the variance modelling was based on
the uncertainty of the mean response. The first case follow the same guidelines as a pre-
vious thesis, where a probabilistic analysis of critical speed at the Hålogaland Bridge was
performed [16]. Here, reasonable results, with limited variance of flutter speed, were pro-
vided. Comparing with this study, two main differences are seen. Firstly, quasi-static co-
efficients were used for the horizontal derivatives. Secondly, the flutter derivative residuals
from section testing of the Hålogaland Bridge were somewhat more narrowly distributed.
In the present analysis of case 1, two mode combinations were tested. Neither of these
included horizontal modes. Therefore, the significance of horizontal modes should not be
significant. However, the differences in residual scatter could provide some explanation to
the differences observed.

Attempting to explain why the results from the two cases differ, a closer look at the
flutter derivative modeling is required. In a case study on the proposed project of the
Messina Bridge, a sensitivity analysis revealed that flutter derivatives H∗3 and A∗2 were
the most influential derivatives, followed by A∗3, A∗1 and H∗1 [27]. This implies that if all
derivatives had the same coefficient of variance, H∗3 and A∗2 would be most influential on
the variance of critical speed. While the results presented in this study might not be rep-
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resentative for the Hardanger Bridge, they provide a starting point to compare the results
of the two cases. The section tests of the Hardanger Bridge provided measurements of
H∗3 and A∗3 with very little variance, while the scatter for H∗1 , A∗1 and A∗2 were larger. In
7.2-7.4, 100 realisations of the randomly distributed curves are provided for each of the
three derivatives H∗1 , A∗1 and A∗2.

Visually, the realisations differ significantly. Above all, the fact that the flutter curves
of case 1 are forced to pass through zero makes a significant difference. However, the
value of the flutter curves for low values of critical speed is not seen to make a significant
difference. The critical reduced speed is centered around Vred ≈ 2.5, and in the 7 mode
combination a 99 % confidence interval of {2.10, 2.90} is found. For case 1, the spread
is larger, but still, 99 % of the values is between {1.06-3.76}. Consequently, the values
of the flutter curves for these values are the most interesting. For case 2, the realisations
for the different derivatives are within the bounds of the most extreme measurements.
This is expected, because the curves are variations of the mean response. Outside the
measurement range, the extreme realisations of flutter curves take on values which are not
realistic. Especially, this is observed for derivative A∗2, for which the testing campaign
only provided measurements for values of Vred up to 2.1. The fact that the Vred values
from measurements are not equal for all derivatives, are explained from the nature of the
test, which is described in chap. 5.

For case 1, more extreme deviations from the measurements are seen in the range of
critical reduced velocity. As previously stated, residual terms are provided as increasing
functions of Vred, the assumption behind being the size of residuals increasing with wind
velocity. From fig. 7.2-7.4, this assumption can be justified. However, it is also evident that
after the scaling (see 5.4.1), the significance of residuals for low wind speeds increases, and
the uncertainty is overestimated in the range of critical speed. For derivative A∗2, which is
the term relevant for torsional damping, visual evidence of this is given in fig. 7.4. Many
of the curves predicting the measurements for low wind speed well, overestimates the
measurements for large values of Vred with a significant margin. The same tendency holds
for fig. 7.2-7.3 as well, residuals for low wind speed are predicted with good accuracy,
while the curves overshoot the scattered values at high wind speed.

Also, the figures suggest that there are challenges of forcing the curves through (0,0).
Again, the realisations forA∗2 can be used as an example. Without imposing the origo con-
straint, the mean curve would have estimated the first measurements very well, providing
small residuals, and reducing their impact when quantifying the uncertainty. For the two
other derivatives illustrated, this tendency is not equally evident, due to the fact that the
measurement for low velocities are scattered on both sides of the mean polynomial curve.
However, the origo constraint is not seen to increase the accuracy of the prediction in the
range of critical speed. Thus, in this case study the imposing of a constraint on one part of
the curve, is undesirable for estimation of values in other ranges of reduced speed.

Realising this, a natural assumption would be that extreme values of reduced velocity
are a result of extreme realisations of some of the flutter derivatives. To investigate this,
random variables for a sample of low critical speeds in the 4 mode combination of case 1
were saved. Their respective curves were then plotted against the measurements similar
to fig. 7.2-7.3. The results were inconclusive. For all of the derivatives thought to be
significant, the realisations was distributed comparingly to the grey curves in fig. 7.2-7.3.
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It thus seems as it is a combination of unfavourable realisations that provides the extreme
values of critical speed.

These considerations provide good reasons to doubt the results generated from case
1. However, from the basic modelling assumptions, it was immediately evident that the
results from case 1 would be more conservative than the results of case 2. The uncer-
tainty of a predicted response is naturally larger than the uncertainty of the mean response.
Because the current variance modelling in case 1 was seen not to predict uncertainty at
critical speed well, an important question still remains unanswered: Is it correct to model
the uncertainty based upon the mean response, or would an alternative residual uncertainty
modelling have provided more correct results?

In order to answer this, it should be realised that the measurements are discrete data
samplings on a section model, while the aim of uncertainty modelling is to fit curves with
correct variance through the measured data points. In the current modelling of case 1, the
extremal realisations of such curves are associated with the probability that one extremal
measurement is recorded during the test campaign, which is a much higher value, implying
that the variance of the curves in case 1 is too high.

Now, it could be argued that the modelling should only be concerned with the scatter
of measurements at critical speed, and the curves being tools that help to predict the scatter
at critical speed. However, this assumption would imply that the aerodynamical behaviour
of the bridge for different wind speeds is independent, as the measurements imply. This is
physically most unlikely, and the measurements should thus be interpreted as attempts to
construct a mean curve, implying that the modelling of case 2 is correct.

7.3 Comparison of the case 2 results
Considering the critical speed parameters for case 2 modelling, which is seen in tab. 6.4,
two tendencies stand out. Firstly, the mean of the distributions is reduced when more
modes are included. Secondly, the variance is increased when more modes are included,
with an exception for the 4-mode combination. Because of the large simulation numbers
involved, the results are statistically significant. However, the differences are relatively
small. For the mode combinations chosen in this study, the intuitive assumption would
be that the failure probability increases with the number of included modes. To see if the
calculations support this hypothesis, a comparison is appropriate.

For the 3- and 11-mode combinations, fig. 6.13 og fig 6.17 suggest that the solu-
tions are not converging, and that more simulations would have been advantageous, thus,
making the validity of the present results questionable. However, for both of these com-
binations, most of the calculations suggest that the probability of failure is well below
10 · 10−10, and there is no evidence to support that the 11 mode combination has a higher
probability of failure. For the 4- and 7-mode combinations, the calculated values are more
stable for high simulation numbers. In the comparable range of Nsim, however, both of
these combinations have higher failure probabilities than the 3- and 11-mode combina-
tions. However, by varying the values of λM , it was observed that the differences within
the same mode combination occasionally were larger than the deviation between different
mode combinations. This is observed not only for low values ofNsim, but in the full range
of simulation values. Thus, it is reasonable to treat also the results for the 4- and 7-mode
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combinations with caution.
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Figure 7.5: 11 mode combination: Failure probability and confidence intervals for different combi-
nations of Nsim and λ.

In fig. 7.5-7.6, a comparison for the 4- and 7-mode combinations are made. For the
first figure, it should be emphasized that other values of λM could make the picture look
differently, and the same holds true for other Nsim values in the second figure. However,
the tendency of mode combination 4 to take on slightly lower values is consistent with
other configurations, which is in line with what to expect from reality. The difference
of the distribution means is 0.57. However, in tab. 6.1 it was observed that the main
contribution to this reduction is due to the effect of vertical mode 12. When correcting
for the mean effect of mode 12, the difference between the values of failure probability
is effectively halved. Assuming that some of the increased variance seen for the 7 mode
distribution can be traced to mode 12, the contributions from horizontal modes to failure
probability seem to be very small.

To assess this question with more accuracy, it would have been preferable to com-
pare the 7-mode combination with a 5-mode combination including the 12th mode. Also,
increasing the ammount of data would increase the validity of the results.

However, in the present study there is no evidence to suggest that horizontal mode
effects impact the flutter limit of the Hardanger Bridge in terms of failure probability.
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Figure 7.6: 11 mode combination: Failure probability and confidence intervals for different combi-
nations of Nsim and λ.

7.4 Validity of the results

During the discussion in chapter 4, a number of uncertainties arising in the struggle to find
critical speed for a bridge, was pointed out. Even though the discussion did not provide
a full account of all the problems, it clarified that the field is still not fully understood,
and that the results should be assessed with a critical eye. An evidence of uncertainty
is provided in this study as well, as one of the proposed modelling methods for flutter
derivatives turned out to be unsuitable. All of these complications must be taken into
account at an early stage of the analysis. In this section however, only a discussion of the
most important limitations that were seen during the last step of the analysis provided in
this study, namely the enhanced Monte Carlo method, is included.

The enhanced method deals with inferences about the tail behaviour at extreme values
of distributions. Here, traditional fitting procedures become useless, because the well-
known distribution types fail to predict the tail behaviour. For example, using the mean
and variance of the distribution of M = VCr − VS to construct a normal distribution
would render pf = P (M ≤ 0) ≈ 10−30. In this case, it is even visually obvious that the
estimated curve do not fit the tail of the distribution well. The same holds true for other
distribution types. Thus, no basis for comparison is readily available to validate the results.
In [22, 30], the enhanced method is applied to example problems where the log ratio mlog
ranged from -0.85 to 0.4. (mlog = logNsim + log pf was introduced in sec. 3.8.1 to the
convenience of the author). Here, it is applied to a problem where the ratio is predicted to
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be between -1.8 and -3.2. Thus, it is not immediately evident that the method performs as
well as in the examples in the papers published by Næss.

To investigate further, a basic investigation was made on a normal distribution, for
which the probability of failure can easily be obtained. Specifically, M was distributed
with N(6.3, 1), with P (M ≤ 0) = Φ(−6.3) ≈ 1.5 · 10−10. The results, using λM =
0.5− 0.6, are depicted in fig. 7.7
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Figure 7.7: Example: Failure probability and confidence intervals for a normal distribution with
µ = 6.3, σ = 1 and theoretical pf = 1.49 · 10−10.

The figure provides more narrow confidence intervals than noted in the study of the
Hardanger Bridge. Also, the probabilities predicted are in good accordance with the the-
oretical result, especially for high values. On the other hand, some outliers points out,
in good accordance with the results in chapter 6. It should be noted that the method was
developed based on assumptions which hold true for normal distributions, making it more
probable that these distributions are fitted well. Even so, the example suggests that the
method can be applied for low-value probabilities as well.

For the different mode combinations of case 2, the calculated failure probabilities take
on values varying from 0.7·10−10 to 25·10−10, a factor of about 35. The realisations of the
confidence intervals vary from 0 to 45 · 10−10. A zero value implies that the regression of
the lower confidence curve failed, which was the situation for several of the calculations.
In most cases, this did not affect the calculations of failure probability. Consequently, also
such calculations were included in the results. For design purposes, the lower confidence
interval is not of significant importance.

More worthwile to note was the scatter of results when applying different values of
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λM . The experiences from this study suggest that one main concern is to find the correct
value to apply. In fig. 7.8, an example of a wrong choice is illustrated. The estimation is
based on a curve that clearly has diverged, because the number of data samples in the tail
of the distribution is low. For the failure probability this is not crucial, because these data
points are provided with a low weight; however, the result is less reliable than desired. On
the other hand, if a low value of λM is used, the result is uncertain because of the long
extrapolation path. The correct choice should be somewhere in between, for the present
study values between 0.5 and 0.6 were often seen to provide reasonably consistent results.
However, the effect of the choice of value is presently not fully understood.
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Figure 7.8: Typical extrapolation curves for the enhanced Monte Carlo method. Wrong choice of
λM .
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In the present study, a reliability analysis of the Hardanger Bridge has been performed,
using the multi mode flutter criteria as the limit state. The analysis was separated in three
main parts. Firstly, the uncertainty of flutter derivatives was modelled. Secondly, a proba-
bilistic analysis of the critical flutter speed was made. Thirdly, the results were compared
with the stochastic distribution of the extreme 10-min mean wind value at the construction
site.

According to the calculations, the reliability of the bridge was found to be high. Using
the most reliable results, the safety index against flutter during one year was found as
β ∈ {5.84 − 6.36} or β = 6.10 ± 0.26. The values correspond to failure probabilities in
the range of pf ∈ {1 · 10−10 − 25 · 10−10}. However, the study also revealed that not
all uncertainties were accounted for when these numbers was found. In the study, there
was found no evidence to suggest that inclusion of horizontal modes had significant effect
on the flutter limit of the bridge, neither in terms of critical speed nor in terms of failure
probability. The confidence intervals constructed by the applied method were seen not to
be ”true” limits of confidence. Rather, they must be considered as qualitative measures of
uncertainty connected to the calculations.

While previous stability assessments of the Hardanger Bridge used quasi-static load
coefficients to determine horizontal load effects, experimentally determined horizontal
derivatives was available for the present study.

In order to apply the measurements from the test series, and take into account the
inherent uncertainty, it was necessary to model the derivatives as continuous, stochastic
variables. Two different suggestions were made. In Case 1 the uncertainty was modelled
by taking the variance of the residual terms into account. In addition each polynomial
fitting curve was forced to pass through origo, to acknowledge the fact that no in-wind
effects are present in still-air. In Case 2 uncertainty was modelled based on the variance
of the mean responce.

The study revealed that both modelling conditions in Case 1 was based on wrong
assumptions, and therefore, the results from this case have very limited validity. The study
justifies that case 2 modelling is more in accordance with the nature of self-induced forces.
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In addition to the modelled uncertainty of flutter derivatives, there are a large number
of uncertainties connected to critical speed calculations that is not taken into account in
the present mathematical analysis. Among these, but not limited to, are the sensitivity to
changes of eigen-frequencies and damping coefficients, the assumption of independence
between angle of incidence and flutter derivative, the frequency tuning choices connected
to section model testing, as well as the assumption of full spatial coherence of the wind
vector along the bridge.

A deterministic analysis to find critical speed suggested proceeding with 4 mode com-
binations, the two last including 2 and 6 horizontal modes, respectively.

The probabilistic analysis of critical wind speed was performed by applying the de-
terministic flutter criteria on a number of randomly generated input vectors distributed
according to the case 2 modelling of flutter derivatives. For each of the 4 mode combi-
nations, either 3 · 106 or 7 · 106 simulations was performed, the numbers chosen due to
time limitations. For all combinations, the resulting critical speed distributions had similar
characteristics, with the expected variation both on mean response and standard devia-
tion. The mode combination including 7 modes was distributed with µ = 79.60 m/s and
σ = 2.64m/s.

An enhanced Monte Carlo simulation technique was presented. Using the limit state
M =

√
VCr−

√
VS = 0, the method was applied on the calculated distributions of critical

speed, varying the number of simulations and λM , one of the key parameters used in the
method. The calculations with Nsim = 7 · 106 was found to be of most interest, because a
stabilizing tendency was seen when increasing the number of simulations beyond 5− 5.5 ·
106. Notably, a slightly higher failure probability was seen for the 7 mode combination
compared to the 4 mode combination, which was as expected. However, due to the fact
that vertical mode 12 was included in the first combination, while not in the latter, it is
difficult to conclude that horizontal modes have impact on failure probability.

The solutions were seen to rest heavily on the choice of λM . The variation within each
mode combination due to changes of λM , was often seen to be more dominant than the
variation between mode combinations. To increase the accuracy of results, a conscious
choice of λM is in order. Increasing the number of simulations even further would also be
an aid to increase accuracy. However, judging on the calculated safety levels, the method
seems to provide a level of accuracy that is appropriate, compared to the total level of
uncertainty that is associated with flutter speed calculations.

8.1 Limitations and further work
In this study, the changes in the calculated reliability level of the Hardanger Bridge due to
the choice of different mode combinations were studied. The extent to which statistically
significant conclusions could be made was limited because of the numbers of simulations
available, as well as the understanding of the variation due to different choices of λM .

It would be of interest to assess which effect the uncertainty of isolated flutter deriva-
tives, as well as other uncertain variables, has upon the failure probability. Also, the impact
of possible measurement outliers from the testing campaign, is not taken into account here.

To increase the accuracy of the calculations, even higher simulation numbers would
have been advantageous. However, this would soon imply an unreasonable demand on

94



8.1 Limitations and further work

computational efforts. Possibly, the enhanced method could be combined with some form
of importance sampling function. Also, it has been suggested to use response surface
methodology to estimate the critical speed as an explicit function of flutter derivatives,
which would increase calculation speed considerably. The critical point of such a method
would be to ensure that the tail behaviour is estimated well by the response surface. Such
methods are currently being investigated at NTNU.
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Failure probability pf
Nsim\λM 0.4 0.45 0.5 0.55 0.6

700000 3.7e-10 7e-10 1.5e-10 1.3e-10 1.2e-10
1000000 1.9e-10 1.6e-10 9e-11 5.7e-11 4.9e-11
1500000 2.5e-10 1.4e-10 7e-11 4.9e-11 4.5e-11
2000000 2.1e-10 2.9e-10 2.7e-10 2.2e-10 2.3e-10
2500000 2.7e-10 4.2e-10 3.1e-10 2.4e-10 2.1e-10
3000000 3.9e-10 6.8e-10 4.9e-10 3.1e-10 2.2e-10

Lower confidence limit CI−0.95
700000 2.4e-11 4.9e-11 3e-12 1e-12 -2.2e-15

1000000 9.4e-12 7.6e-12 3e-12 1.1e-12 -2.2e-15
1500000 3.7e-11 7.4e-12 3.7e-12 1.7e-12 9.6e-13
2000000 4.6e-11 4.9e-11 1.7e-11 6.8e-12 5e-12
2500000 5.7e-11 8.3e-11 2.4e-11 1.7e-11 1.2e-11
3000000 1.5e-10 2.7e-10 9.3e-11 2.3e-11 1.6e-11

Upper confidence limit CI+0.95
700000 1.3e-09 1.9e-09 1.4e-09 1.4e-09 1.4e-09

1000000 8.2e-10 9.7e-10 8.6e-10 7.8e-10 7.6e-10
1500000 7.3e-10 6.5e-10 5.6e-10 5.4e-10 5.7e-10
2000000 5.6e-10 7.7e-10 8.5e-10 8.6e-10 9.3e-10
2500000 6.9e-10 1e-09 9.9e-10 1e-09 1e-09
3000000 7.7e-10 1.2e-09 1.1e-09 1e-09 9.4e-10

Table A.1: 3 mode combination: Failure probabilities with lower and upper 95 % confidence limits.
High values of Nsim and λM 0.45-0.55 provide the most reliable results.
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Failure probability pf
0 0.4 0.45 0.5 0.55 0.6 0.65 0.7

700000 1.3e-09 1.4e-09 1.4e-09 1.5e-09 1.4e-09 1.4e-09 1.5e-09
1000000 1.4e-09 1e-09 4.4e-10 5.7e-10 4.5e-10 4.8e-10 6.1e-10
1500000 5.5e-10 2.8e-10 1.7e-10 3.5e-10 3.4e-10 3.8e-10 3.5e-10
2000000 2.2e-10 4.1e-10 6.5e-10 7.6e-10 6.8e-10 6.9e-10 5.9e-10
2500000 4e-10 1.1e-09 1.3e-09 1.3e-09 1.2e-09 1.2e-09 1e-09
3000000 3e-10 9.3e-10 1.1e-09 1.1e-09 9e-10 8.6e-10 6.5e-10
3500000 3.8e-10 8.1e-10 1.1e-09 1e-09 8.7e-10 8.2e-10 5.8e-10
4000000 4.4e-10 5.4e-10 8e-10 7.8e-10 5.9e-10 4.6e-10 3.8e-10
4500000 4.1e-10 3.2e-10 5.8e-10 7.5e-10 5.6e-10 4.3e-10 3.7e-10
5000000 4.6e-10 3.4e-10 5.5e-10 7.3e-10 4.9e-10 4.2e-10 3.6e-10
5500000 4.8e-10 4.1e-10 6.6e-10 9.1e-10 5.9e-10 4.9e-10 4.3e-10
6000000 5.2e-10 4.3e-10 6.5e-10 9.3e-10 6.4e-10 5.2e-10 4.6e-10
6500000 4.6e-10 3.8e-10 6.7e-10 9.4e-10 6.4e-10 5e-10 4.4e-10
7000000 5.3e-10 4.3e-10 6.2e-10 8.7e-10 5.9e-10 4.8e-10 4.3e-10

Lower confidence limit CI−0.95
700000 4.2e-10 3e-10 8.5e-11 2e-11 1.1e-11 1.2e-14 1.9e-13

1000000 5.6e-10 2.3e-10 1.4e-11 1.1e-11 6.1e-12 6.3e-15 1.4e-13
1500000 1.6e-10 1.7e-11 9.5e-12 9.5e-12 6.5e-12 5.7e-15 1.3e-13
2000000 3.2e-11 5.9e-11 9.1e-11 4.6e-11 2.6e-11 2.1e-11 1e-13
2500000 1e-10 3.9e-10 4e-10 2.5e-10 8.2e-11 7.4e-11 1.5e-13
3000000 8.2e-11 3.8e-10 3.9e-10 2.1e-10 6.3e-11 5.7e-11 1.2e-13
3500000 1.2e-10 3.1e-10 3.6e-10 2.2e-10 7.5e-11 6.6e-11 1.2e-13
4000000 1.5e-10 1.4e-10 2.1e-10 1.2e-10 6.8e-11 5.9e-11 1.2e-13
4500000 1.4e-10 7.3e-11 1.2e-10 1.3e-10 7e-11 5.9e-11 1.4e-13
5000000 1.6e-10 8.7e-11 1.1e-10 1.2e-10 8e-11 6.8e-11 1.5e-13
5500000 1.8e-10 1.1e-10 1.6e-10 2e-10 1.1e-10 9.2e-11 1.7e-13
6000000 2.1e-10 1.2e-10 1.5e-10 2.3e-10 1.2e-10 1.1e-10 1.8e-13
6500000 1.9e-10 1.1e-10 2e-10 2.7e-10 1.2e-10 1e-10 8.6e-11
7000000 2.4e-10 1.3e-10 1.7e-10 2.4e-10 1.2e-10 1e-10 8.9e-11

Upper confidence limit CI+0.95
700000 2.5e-09 3e-09 3e-09 3.5e-09 3.6e-09 3.2e-09 3.8e-09

1000000 2.4e-09 2.3e-09 1.9e-09 2.2e-09 2.2e-09 2.3e-09 2.5e-09
1500000 1.2e-09 1e-09 9.4e-10 1.4e-09 1.5e-09 1.6e-09 1.6e-09
2000000 6.7e-10 1.1e-09 1.6e-09 1.9e-09 1.9e-09 2e-09 1.9e-09
2500000 9.5e-10 2e-09 2.4e-09 2.6e-09 2.6e-09 2.6e-09 2.5e-09
3000000 7.2e-10 1.7e-09 2.1e-09 2.1e-09 2.1e-09 2.1e-09 1.9e-09
3500000 8.3e-10 1.5e-09 2e-09 2.1e-09 2e-09 2e-09 1.8e-09
4000000 9.2e-10 1.2e-09 1.7e-09 1.8e-09 1.7e-09 1.6e-09 1.5e-09
4500000 8.6e-10 8.5e-10 1.3e-09 1.7e-09 1.6e-09 1.5e-09 1.4e-09
5000000 9.2e-10 8.7e-10 1.3e-09 1.7e-09 1.5e-09 1.4e-09 1.3e-09
5500000 9.4e-10 9.9e-10 1.5e-09 1.9e-09 1.6e-09 1.5e-09 1.5e-09
6000000 9.8e-10 9.8e-10 1.4e-09 1.9e-09 1.6e-09 1.5e-09 1.5e-09
6500000 8.7e-10 8.7e-10 1.4e-09 1.8e-09 1.6e-09 1.4e-09 1.4e-09
7000000 9.6e-10 9.3e-10 1.3e-09 1.7e-09 1.5e-09 1.4e-09 1.3e-09

Table A.2: 4 mode combination: Failure probabilities with lower and upper 95 % confidence limits.
High values of Nsim and λM 0.5-0.6 provide the most reliable results.
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Failure probability pf
0 0.4 0.45 0.5 0.55 0.6 0.65 0.7

700000 2.1e-09 1.5e-09 1.8e-09 1.4e-09 1.4e-09 1.5e-09 1.8e-09
1000000 2.3e-09 2.1e-09 2.1e-09 1.2e-09 7.4e-10 6.7e-10 9.8e-10
1500000 1.8e-09 1.6e-09 1.6e-09 1.1e-09 8.3e-10 7.2e-10 7.5e-10
2000000 1.9e-09 1.6e-09 1.6e-09 1.2e-09 1e-09 8.3e-10 7.8e-10
2500000 2.1e-09 2e-09 2e-09 1.8e-09 1.6e-09 1.3e-09 1.2e-09
3000000 1.8e-09 1.8e-09 2.1e-09 1.8e-09 1.4e-09 1e-09 8.6e-10
3500000 2e-09 2.1e-09 2.3e-09 2e-09 1.6e-09 1.1e-09 9.1e-10
4000000 1.9e-09 1.9e-09 1.9e-09 1.5e-09 9.4e-10 6.5e-10 6e-10
4500000 1.3e-09 1.3e-09 1.3e-09 1.2e-09 8.3e-10 5.8e-10 5.4e-10
5000000 1.1e-09 1.2e-09 1.1e-09 9.9e-10 6.5e-10 5.3e-10 5.1e-10
5500000 1.3e-09 1.3e-09 1.2e-09 1.2e-09 8.1e-10 7.1e-10 6.5e-10
6000000 1.3e-09 1e-09 9.5e-10 9.1e-10 7e-10 6.1e-10 5.8e-10
6500000 1.5e-09 1e-09 1.1e-09 1.1e-09 7.9e-10 6.7e-10 6.1e-10
7000000 1.4e-09 9.7e-10 9.6e-10 9.5e-10 6.8e-10 5.9e-10 5.5e-10

Lower confidence limit CI−0.95
700000 6.3e-10 1.3e-10 6.1e-11 3.3e-11 1.8e-11 3.2e-14 2.3e-13

1000000 1.1e-09 5.9e-10 3.1e-10 5.5e-11 3.1e-11 3.1e-14 2.6e-13
1500000 9.2e-10 6e-10 4e-10 5e-11 3e-11 6e-14 2.1e-13
2000000 1.1e-09 7.2e-10 5e-10 1.2e-10 5.1e-11 3.8e-11 2e-13
2500000 1.3e-09 1e-09 9e-10 5.2e-10 2.1e-10 8.3e-11 2.1e-13
3000000 1.2e-09 9.5e-10 9.7e-10 5.5e-10 1.7e-10 8.7e-11 2.3e-13
3500000 1.3e-09 1.2e-09 1.2e-09 7.7e-10 2.8e-10 1.3e-10 2.6e-13
4000000 1.2e-09 1.1e-09 8.7e-10 4.5e-10 1.4e-10 1.1e-10 2.5e-13
4500000 7.3e-10 6.4e-10 4.9e-10 3e-10 1.2e-10 9.5e-11 3.1e-13
5000000 6.1e-10 5.1e-10 3.9e-10 1.9e-10 1.3e-10 1e-10 8.9e-11
5500000 7.6e-10 6.2e-10 4.5e-10 2.7e-10 1.7e-10 1.4e-10 1.2e-10
6000000 7.7e-10 4.2e-10 2.9e-10 2e-10 1.6e-10 1.3e-10 1.1e-10
6500000 9.8e-10 4.7e-10 4.2e-10 3.4e-10 1.7e-10 1.4e-10 1.3e-10
7000000 8.4e-10 4.5e-10 3.5e-10 2.5e-10 1.6e-10 1.3e-10 1.2e-10

Upper confidence limit CI+0.95
700000 4.1e-09 4e-09 4.7e-09 4.6e-09 4.8e-09 4.9e-09 5e-09

1000000 3.8e-09 3.9e-09 4.3e-09 4e-09 3.7e-09 3.7e-09 4e-09
1500000 2.9e-09 2.9e-09 3.2e-09 2.9e-09 2.8e-09 2.7e-09 2.8e-09
2000000 2.9e-09 2.8e-09 3e-09 2.8e-09 2.8e-09 2.6e-09 2.6e-09
2500000 3e-09 3e-09 3.3e-09 3.3e-09 3.2e-09 3.1e-09 3e-09
3000000 2.7e-09 2.8e-09 3.3e-09 3.2e-09 2.9e-09 2.6e-09 2.6e-09
3500000 2.8e-09 3.1e-09 3.4e-09 3.4e-09 3.1e-09 2.8e-09 2.7e-09
4000000 2.7e-09 2.9e-09 3.1e-09 2.9e-09 2.4e-09 2.1e-09 2.1e-09
4500000 2e-09 2.2e-09 2.4e-09 2.4e-09 2.1e-09 1.9e-09 1.9e-09
5000000 1.9e-09 2e-09 2.2e-09 2.2e-09 1.9e-09 1.8e-09 1.8e-09
5500000 2.1e-09 2.2e-09 2.3e-09 2.4e-09 2.1e-09 2.1e-09 2.1e-09
6000000 2.1e-09 1.8e-09 1.9e-09 2e-09 1.9e-09 1.9e-09 1.9e-09
6500000 2.2e-09 1.8e-09 2e-09 2.2e-09 2e-09 1.9e-09 1.9e-09
7000000 2e-09 1.7e-09 1.8e-09 2e-09 1.7e-09 1.7e-09 1.7e-09

Table A.3: 7 mode combination: Failure probabilities with lower and upper 95 % confidence limits.
High values of Nsim and λM 0.5-0.6 provide the most reliable results.
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Failure probability pf
0 0.4 0.45 0.5 0.55 0.6

700000 2.5e-10 1.6e-10 5.2e-10 3e-10 2.9e-10
1000000 3.6e-10 2e-10 2.1e-10 1.6e-10 1.6e-10
1500000 3.5e-10 8.5e-11 1.1e-10 9.3e-11 9.5e-11
2000000 2.5e-10 1.7e-10 2.6e-10 1.9e-10 1.7e-10
2500000 3e-10 6.5e-10 1.1e-09 7.7e-10 6.1e-10
3000000 3.9e-10 3.8e-10 6e-10 3.3e-10 2.7e-10

Lower confidence limit CI−0.95
700000 1.4e-11 9.4e-12 1.1e-11 5.5e-12 2.3e-12

1000000 2.6e-11 1.6e-11 1.1e-11 5.8e-12 3e-12
1500000 4.2e-11 1.5e-11 1.1e-11 6.3e-12 3.7e-12
2000000 3.8e-11 2.6e-11 2.5e-11 1.7e-11 1.1e-11
2500000 6.7e-11 1.6e-10 3e-10 6.5e-11 3.9e-11
3000000 9.9e-11 7.2e-11 8e-11 4.5e-11 3.2e-11

Upper confidence limit CI+0.95
700000 1.3e-09 1.4e-09 2.6e-09 2.5e-09 2.6e-09

1000000 1.4e-09 1.2e-09 1.5e-09 1.5e-09 1.6e-09
1500000 1.2e-09 6.3e-10 8.2e-10 8.8e-10 1e-09
2000000 7.8e-10 7.7e-10 1.1e-09 1.1e-09 1.2e-09
2500000 7.9e-10 1.5e-09 2.3e-09 2.1e-09 2e-09
3000000 9.4e-10 1.1e-09 1.6e-09 1.3e-09 1.3e-09

Table A.4: 11 mode combination: Failure probabilities with lower and upper 95 % confidence limits.
High values of Nsim and λM 0.45-0.55 provide the most reliable results.
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Aerodynamic derivatives
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β2i β1i β0i
P ∗1 -0.00 -0.53 0.00
P ∗2 0.00 -0.06 0.00
P ∗3 -0.00 -0.05 -0.14
P ∗4 -0.00 -0.46 0.24
P ∗5 0.00 -0.17 0.00
P ∗6 -0.00 0.19 -0.11
H∗1 0.00 -2.58 0.00
H∗2 0.00 0.42 0.00
H∗3 -0.00 0.29 2.08
H∗4 0.01 -0.92 0.16
H∗5 0.01 1.70 0.00
H∗6 0.01 0.31 0.00
A∗1 0.00 -0.57 0.00
A∗2 0.00 -0.17 0.00
A∗3 -0.00 0.18 0.57
A∗4 0.00 -0.04 -0.04
A∗5 -0.01 0.18 0.00
A∗6 -0.00 -0.48 0.05

Table B.1: Case 1: Coeff. of polynomials,
X∗

i = β2i · V 2
red + β1i · Vred + β0i.

β2i β1i β0i
P ∗1 0.10 -0.89 0.15
P ∗2 0.02 -0.06 -0.01
P ∗3 -0.13 0.14 -0.20
P ∗4 -3.21 3.85 -1.06
P ∗5 0.55 -0.58 0.07
P ∗6 -0.18 0.28 -0.12
H∗1 -2.09 -0.85 -0.31
H∗2 0.39 -0.11 0.17
H∗3 -0.53 1.11 1.80
H∗4 2.72 -2.67 0.42
H∗5 -15.81 23.95 -6.78
H∗6 7.11 -8.57 2.53
A∗1 -1.20 0.45 -0.19
A∗2 0.19 -0.40 0.06
A∗3 -0.06 0.12 0.64
A∗4 1.91 -1.36 0.17
A∗5 -3.94 5.24 -1.47
A∗6 -0.45 -0.00 -0.07

Table B.2: Case 2: Coeff. of polynomials,
X∗

i = β2i · V 2
red + β1i · Vred + β0i.

P1 P2 P3 P4 P5 P6 H1 H2 H3 H4 H5 H6 A1 A2 A3 A4 A5 A6
-0.02 0.00 -0.02 -0.10 0.00 -0.00 0.00 0.02 -0.04 0.07 -0.06 0.34 0.00 0.02 -0.03 0.02 -0.07 -0.02

Table B.3: Mean values of scaled residuals, Case 1.
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Table B.4: Covariance matrix of scaled residuals, Case 1.
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Table B.5: Correlation matrix of scaled residuals, Case 1.
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Table B.6: P-value matrix testing the hypothesis that there is some correlation between the residuals
of flutter derivatives.
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Table B.7: Measurement of flutter derivatives H∗
1 −H∗
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Table B.8: Measurement of flutter derivatives A∗
1 −A∗
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