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Abstract: 
Soil exhibit complex behavior that require advanced models to recreate stiffness and strength during loading. The 
complex behavior may be due to preconsolidation, dilation and contraction, softening, anisotropy, stress dependency 
or other effects. 
 
Today, an effective stress based soil model for soft Scandinavian clays is being developed at NTNU, as part of the 
ongoing research project GeoFuture. The goal of this thesis is to implement and develop an effective stress based 
soil model, applying the concept of modular programming used in the GeoFuture project. 
 
The soil model was implemented using Fortran and MATLAB code for application in PLAXIS. Modular 
programming was used to separate the implemented code into two material independent codes and one material 
dependent code. For development of the model, only the material dependent code needs to be modified. 
 
A simple linear elastic-perfect plastic Drucker--Prager model was implemented at first. Simulations in PLAXIS 
were performed, using the implemented model and the Mohr--Coulomb model in PLAXIS to compare the behavior. 
For simulation of triaxial compression and extension tests, the models gave the same behavior. In plane strain 
conditions, the implemented model gave a softer response close to failure. The same strength is obtained for the two 
models, yet greater deformations arise before failure in the Drucker--Prager model. 
 
Applying the advantage of modular programming, the model was further developed to include strain hardening and 
stress dependent dilatancy. Two formulations of stress dependent dilatancy were used to reproduce behavior of sand 
in undrained conditions. Simulations of undrained triaxial tests using the model were performed, showing that only 
one formulation gave the intended behavior. 
 
The stress dependent dilatancy was finally related to a critical void ratio for a critical state. Using both constant and 
mean stress dependent elastic stiffnesses, undrained triaxial compression tests on Toyoura sand were simulated. 
Simulations gave a good fit between the test results and the simulations. The mean stress dependent stiffness gave 
superior simulations compared to the constant stiffness. 
 
During the development of the model, continuous testing has been executed. The concept of modular programming 
has shown to perform well. After establishing the first framework with material dependent and independent routines, 
including new features, or even changing constitutive model, is a manageable and convenient task. The concept 
yields a good tool for implementing and developing constitutive models of soils. 
 
As the strength of the implemented model must be correlated manually to the relevant stress state, further 
development of the model should include a Lode angle dependency of the strength. Mobilization dependent 
dilatancy is not included and would improve the performance. A more complete evaluation of material properties 
from laboratory tests with subsequent simulations would be of great interest to indicate the predictive capacity of the 
model. 
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Abstract

Soil exhibit complex behavior that require advanced models to recreate sti�ness
and strength during loading. The complex behavior may be due to preconsol-
idation, dilation and contraction, softening, anisotropy, stress dependency or
other e�ects.

Today, an e�ective stress based soil model for soft Scandinavian clays is
being developed at NTNU, as part of the ongoing research project GeoFuture.
The goal of this thesis is to implement and develop an e�ective stress based soil
model, applying the concept of modular programming used in the GeoFuture
project.

The soil model was implemented using Fortran and MATLAB code for ap-
plication in PLAXIS. Modular programming was used to separate the imple-
mented code into two material independent codes and one material dependent
code. For development of the model, only the material dependent code needs
to be modified.

A simple linear elastic-perfect plastic Drucker–Prager model was imple-
mented at first. Simulations in PLAXIS were performed, using the imple-
mented model and the Mohr–Coulomb model in PLAXIS to compare the be-
havior. For simulation of triaxial compression and extension tests, the models
gave the same behavior. In plane strain conditions, the implemented model
gave a softer response close to failure. The same strength is obtained for the
two models, yet greater deformations arise before failure in the Drucker–Prager
model.

Applying the advantage of modular programming, the model was further
developed to include strain hardening and stress dependent dilatancy. Two
formulations of stress dependent dilatancy were used to reproduce behavior of
sand in undrained conditions. Simulations of undrained triaxial tests using the
model were performed, showing that only one formulation gave the intended
behavior.

The stress dependent dilatancy was finally related to a critical void ratio
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for a critical state. Using both constant and mean stress dependent elastic
sti�nesses, undrained triaxial compression tests on Toyoura sand were simu-
lated. Simulations gave a good fit between the test results and the simulations.
The mean stress dependent sti�ness gave superior simulations compared to the
constant sti�ness.

During the development of the model, continuous testing has been executed.
The concept of modular programming has shown to perform well. After estab-
lishing the first framework with material dependent and independent routines,
including new features, or even changing constitutive model, is a manageable
and convenient task. The concept yields a good tool for implementing and
developing constitutive models of soils.

As the strength of the implemented model must be correlated manually to
the relevant stress state, further development of the model should include a
Lode angle dependency of the strength. Mobilization dependent dilatancy is
not included and would improve the performance. A more complete evaluation
of material properties from laboratory tests with subsequent simulations would
be of great interest to indicate the predictive capacity of the model.
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Sammendrag

Jords kompliserte oppførsel krever avanserte materialmodeller for å gjenskape
stivhet og styrke ved belasting. Den kompliserte oppførselen kan skyldes
prekonsolidering, dilatans og kontaktans, styrkereduksjon, anisotropi eller spen-
ningsavhengigheter for å nevne noen e�ekter.

Som en del av et pågående forskningsprosjekt, GeoFuture, utvikles det på
NTNU nå en e�ektivspenningsbasert jordmodell for bløt, skandinavisk leire.
Målet for denne masteroppgaven er å vise hvordan en e�ektivspenningsbasert
jordmodell kan implementeres og utvikles ved hjelp av modulær programmer-
ing, et av prinsippene brukt i GeoFuture-prosjektet.

Jordmodellen har blitt implementert ved hjelp av Fortran- og MATLAB-
kode, for bruk i PLAXIS. Modulær programmering ble brukt til å dele pro-
gramkoden inn i to materialuavhengige koder og en materialavhengig kode.
Kun den materialavhengige koden må endres ved utvikling av modellen.

Først ble en enkel lineær elastisk-perfekt plastisk Drucker–Prager-modell
implementert. Deretter ble modellen brukt til simuleringer i PLAXIS og
Mohr–Coulomb-modellen i PLAXIS ble brukt som referanse for å sammen-
ligne oppførselen. Modellene ga lik oppførsel for simuleringer av treaksiale
trykk- og strekkforsøk. Den implementerte modellen ga en mykere oppførsel
nær brudd i plan tøyningsforhold. Modellene ga samme styrke, men Drucker–
Prager-modellen ga større deformasjoner før brudd.

Modellen ble videre utviklet med bruk modulær programmering for å inklud-
ere tøyningskontrollert fastning og spenningsavhengig dilatans. To dilatansfor-
muleringer ble brukt for å forsøke å gjenskape oppførselen til sand i udrenert
tilstand. Simuleringer av udrenerte, treaksiale trykkforsøk viser at bare én av
formuleringene ga ønsket oppførsel.

Til slutt ble den spenningsavhengige dilatansen koplet til et kritisk pore-
tall for en kritisk tilstand (critical state). Både konstante og middelspen-
ningsavhengige elastiske stivheter ble brukt i simuleringer av udrenerte, treak-
siale trykkforsøk på Toyoura-sand. Simuleringene gjenskapte viktige aspekter
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ved oppførselen godt. Middelspenningsavhengig stivhet gjenskaper oppførselen
klart bedre enn konstant stivhet.

Gjennom utviklingsprosessen har kontinuerlig testing av modellen blitt gjen-
nomført. Konseptet med modulær programmering har vist seg å fungere godt.
Etter at rutinene først er etablert er det en relativt enkel oppgave å legge til nye
e�ekter, eller til og med bytte materialmodell. Konseptet er et godt verktøy
for implementering og utvikling av jordmodeller.

Ettersom styrken til den implementerte jordmodellen må korrigeres et-
ter spenningssituasjonen manuelt, bør videre utvikling av modellen inkludere
avhengighet av Lode-vinkelen. Mobiliseringsavhengig dilatans er ikke inklud-
ert så langt, og vil forbedre modellens evne til å gjenskape jords oppførsel.
En mer fullstendig tolkning av materialegenskaper fra laboratorieundersøkelser
med påfølgende simuleringer, vil være svært interessant for å kunne si noe om
modellens evne til å forutsi jords oppførsel for andre spenningstilstander.
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Chapter 1

Introduction

1.1 Background
The choice of material model when simulating the behavior of soil, is of great
importance in the use of Finite Element Analysis in geotechnical engineering.
It is the very heart of the analysis. In general, soil exhibit complex behavior
that includes e�ects from preconsolidation, dilation and contraction, soften-
ing, anisotropy and stress dependency. This complicates sound and correct
modeling.

Today, an e�ective stress based soil model for soft Scandinavian clays is
being developed at NTNU by PhD candidate Jon A. Rønningen, as part of the
ongoing research project GeoFuture. This thesis is an extension of this project,
applying some of the same principles. The implementation of the model has
been carried out in close collaboration with Jon A. Rønningen.

1.2 Problem Formulation
The goal of this thesis is to implement an e�ective stress based soil model
as a user-defined soil model into PLAXIS, applying the concept of modular
programming in MATLAB and Fortran code. This concept is formulated by
Rønningen (2014) and it is of interest that they are tested independently, by
implementing the Drucker–Prager strength criterion. Further it is considered
whether important aspects of undrained behavior of sand may be simulated by
a few, quite simple elements from constitutive modeling.

Due to its simplicity, the Drucker–Prager model has been chosen for im-
plementation. A smooth yield surface is attractive in programming, and the
Drucker–Prager criterion has only one point where the surface is discontinu-

1



2 Introduction

ous. The strength may be correlated to the Mohr–Coulomb criterion, thus the
strength may be chosen to coincide for the two criteria. The Mohr–Coulomb
model and some triaxial tests on Toyoura sand by Verdugo (1992) has been
used for comparison to the implemented model.

1.3 Objectives
To achieve the goal of this thesis, three objectives are stated:

1. Implement a linear elastic-perfect plastic soil model by the use of modular
programming

2. Implement e�ects of hardening, dilatancy and stress dependent sti�ness
into the model

3. Perform simulations with the model for consecutive comparison to exist-
ing models or real soil behavior

By reaching these objectives it should be possible to consider how modular
programming may be used in constitutive soil modeling.

1.4 Limitations and Approach
The presentation will focus on principles giving an understanding of the ma-
terial models. A large number of books and articles could have been studied,
each with another approach to the field. In agreement with the supervisor,
the literature study was limited to only the sources needed for implementing
the model. Equations and derivations will be given in such a detail that the
practical and numerical consequences are enlightened. Some theory of how to
implement models in numerical schemes will also be presented. Further, Finite
Element Method and continuum mechanics should be known for the reader.
This is however presented in agreement with supervisor in order to gather all
definitions used. In literature several di�erent definitions for the same measure
are found, so the reader may also check what definitions that are used as basis.

The first and second objective are met by implementing the Drucker–Prager
model by modular programming. This involved implementing a linear elastic-
perfect plastic model at first, then adding more features. Comparisons are
made throughout the work by calculations in PLAXIS. Due to limited time,
only one hardening relation and two formulations for dilatancy were imple-
mented, yet several others could have been used. Only a few sets of parameters
could be tested due to time limitation.



1.5. Relevant Literature 3

With the development of the model to include hardening and dilatancy it is
possible to compare the model to real soil behavior. Stress dependent sti�ness
was also considered and is a common e�ect that are prominent when simulating
soil over a wide stress range. A selection have been made and is restricted to
some high-quality undrained triaxial tests on Toyoura sand by Verdugo (1992).
These are used as reference for triaxial test simulations with the model.

1.5 Relevant Literature
For constitutive modeling and the elasto-plastic framework, lecture notes and
background material from courses given at NTNU by Nordal (2012a) and Hop-
perstad and Børvik (2013) constitute the basis. The theory of the Mohr–
Coulomb criterion is based on the presentation by Nordal (2012b), while the
Drucker–Prager criterion was proposed by Drucker and Prager (1952) and pre-
sented in more detail by Nordal (2012a). Been and Je�eries (1985) proposed a
state parameter for sands that are presented, together with an application of
it, as described in an article by Muir Wood et al. (1994). These two articles
are the original articles proposing their respective contents. Some numerical
methods are presented and the theoretical basis are taken from both Cook
et al. (2002), Kreyszig (2006) and Hopperstad and Børvik (2013).

1.6 Structure of the Report
Chapter 2 presents the necessary theoretical foundation for implementation of
the model, including continuum mechanics and the elasto-plastic framework,
Mohr–Coulomb and Drucker–Prager strength criteria, the mentioned state pa-
rameters and an application of it. Necessary assumptions will be clarified.
Sections 2.1-2.5 are partially based on an earlier presentation by the author,
from the course TBA4510 - Geotechnical Engineering, Specialization Project.

In chapter 3, the architecture of the implementation is presented. This is
chronologically presented following the progress throughout the semester.

A description of the calculations for validations and simulations of Toyoura
sand is presented in chapter 4. All necessary data to verify the calculations
are presented. In chapter 5, results from the calculations are presented. The
presentation in both chapters follows the chronological progress of the work.

Chapter 6 summarizes, discuss and concludes based on results of the cal-
culations. Recommendations for further work are made at the end of the
chapter.





Chapter 2

Theoretical Foundation

In this chapter, the theoretical foundation will be summarized. Necessary
theory for implementing an e�ective stress based soil model is presented. This
includes principles of constitutive modeling, the elasto-plastic framework and
Mohr–Coulomb and Drucker–Prager strength criteria. At the end, a state
parameter for sand, an application of it and numerical methods needed for the
implementation will be presented.

2.1 The Finite Element Method
The Finite Element Method (FEM) or Finite Element Analysis (FEA) is a
numerical method for solving a variety of engineering problems. This section
will briefly summarize some of the most important key assumptions in Finite
Element Method and point to the role of constitutive modeling.

2.1.1 Key Assumptions and Principles of Finite Element Method

Important advantages of the finite element method are the ability to calculate
both deformations and mobilization in one calculation rather than in two, like
it’s done in classical geotechnics, and has the possibility for coupled analysis of
deformation and flow. Due to it being a numerical method, FEM introduces
errors, but by proper use, these errors may be limited. The risk of defining
the problem wrongly or choosing an insu�cient material model for the relevant
purpose, is always present, though (Nordal, 2012b; Cook et al., 2002).

The very name of the method reveals an important principle. The given
problem is split into small, yet finite elements with special properties and
then assembled, building up a model of the problem. Elements connect in

5
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points called nodes, forming a mesh. In each node a set of degrees of freedom
(DOF) is defined. If the element is used in structural or geotechnical problems,
the element will simulate a displacement field and the global structure or soil
volume has a certain sti�ness and strength (Cook et al., 2002).

The displacement field is interpolated by the values in the nodes and some
assumed shape polynomial functions. There is one shape function for each
node. Shape functions are restricted to be unity in the specific node and zero
in all other nodes. Thus the interpolated value in each node equals the value
of the DOF in the node. Due to each node imposing another restriction of
the shape function, a higher order element with more nodes results in shape
functions of higher degree. The shape functions are established mathematically
in a matrix N, the nodal displacements are gathered in a vector v, and the
displacement field u is thereby interpolated by:

u = Nv or incrementally —u = N—v (2.1)

Strains are derived from di�erentiating the displacement field and gathered
in a vector Á. The di�erentiation operator ” is dependent on the choice of
element (Cook et al., 2002). Strains are expressed by a deformation matrix B
as:

—Á = ”—u = B—v where B = ”N (2.2)

Stresses ‡ are related to the strains through a constitutive matrix D. These
relations are usually a stress dependent matrix in geotechnical engineering,
raising the demand for non-linear finite element analysis and incremental cal-
culations (Nordal, 2012b). Element sti�ness k is dependent on the constitutive
matrix and the di�erentiated shape function matrix. It is referred to Cook et al.
(2002) or other FEM-literature for the derivation:

k =
⁄

BT DBdV (2.3)

As equation (2.3) is dependent on the constitutive matrix D, the importance
of obtaining a reliable and realistic constitutive matrix is underlined. At last
sti�ness of each element are gathered in to a system sti�ness matrix connecting
the external forces to global DOFs.
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2.1.2 Finite Element Software

General-purpose FEM-software such as Abaqus FEA and COMSOL Multi-
physics are available and relevant for geotechnical applications. PLAXIS is a
specialized finite element program developed for geotechnical engineering, thus
the user does not need to pre-define as much as in general-purpose software.

The elements available in PLAXIS 2D are two triangles, a 6-noded and a
15-noded. Higher order elements give more accurate solutions, but are more
computational demanding. For accurate failure load predictions the 15-noded
element is necessary and due to the power of today’s computers, it is in general
preferred for all calculations (Nordal, 2012b). In PLAXIS compressive stresses
and strains are defined as negative, in accordance with other FEM-software
(PLAXIS, 2012a).

2.2 Continuum Mechanics
Modeling of materials requires a set of mathematical equations that estab-
lish a constitutive model. For solid materials this is described by continuum
mechanics.

2.2.1 Key Assumptions in Soil Modeling

Both stresses and strains in a material point may be represented as tensors
with components in three orthogonal x

1

, x
2

and x
3

-directions, acting on three
orthonormal planes in space. Stresses in three directions on three planes gives
a total of nine independent stress and strain components, which may be repre-
sented by a 3x3-matrix. Due to moment equilibrium the coupled stress terms,
e.g. ‡

12

and ‡
21

, must be equal, hence the stress matrix is symmetric. The
stress tensor may thereby be represented as a 6x1-vector. Also the strain ma-
trix may be written as a 6x1-vector (PLAXIS, 2012a). The stress and strain
vectors are:

‡
ij

= ‡ =
1

‡
11

‡
22

‡
33

‡
12

‡
23

‡
31

2
T

(2.4)

Á
ij

= Á =
1

Á
11

Á
22

Á
33

Á
12

Á
23

Á
31

2
T

(2.5)

=
1

Á
11

Á
22

Á
33

1

2

“
12

1

2

“
23

1

2

“
31

2
T

As seen above, bold font is used to indicate vectors or matrices, but indexes
in subscript also may be used. The number of subscript indexes corresponds
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to the order of the tensor represented. Tensors are quantities described by
multidimensional arrays. The description of a vector or matrix is dependent
on the choice of basis, resulting in di�erent expressions for the vectors and
matrices for di�erent choices of basis. Hence, for a stress analysis it is necessary
to find measures that are independent of the choice of basis. Tensors transform
according to given rules under coordinate transformation, while invariants are
independent of any transformation (Nordal, 2012a; Hopperstad and Børvik,
2013).

In structural engineering, tension stresses and strains are defined as posi-
tive, which has been adopted in FEM-software like PLAXIS. In this thesis the
classical geotechnical convention with positive compressive stresses and strains
will be adopted.

E�ective stress are usually denoted with a prime to distinguish it from total
stresses. As the implementation of this thesis consider an e�ective stress based
model, the prime is omitted in notations except where distinction is strictly
necessary. Pore pressures in soil may be divided into excess pore pressure
caused by undrained loading and the steady state pore pressure, giving:

p
w

= p
excess

+ p
steady

(2.6)
ṗ

w

= ṗ
excess

(2.7)

where the dot indicates the rate, or time derivative.

2.2.2 Stresses and Stress Invariants

The stresses are denoted as ‡
ij

, where i gives the surface of where the stress acts
and j gives the direction of the stress. Due to being invariants, the eigenvalues
of the matrix are of interest to evaluate the stress state due to being invariants.
The eigenvalue problem of the ‡-matrix and its non-trivial solution reads:

(‡ ≠ ‡ · I) · n = 0 (2.8a)
det(‡ ≠ ‡ · I) = 0 (2.8b)

where I is the identity matrix. Solving the non-trivial solution of equation
(2.8b) results in a third order characteristic equation:

‡3 ≠ I
1

‡2 ≠ I
2

‡ ≠ I
3

= 0 (2.9)

Equation (2.9) gives three real roots, the principal stresses ‡
1

, ‡
2

and ‡
3

,
usually ordered such that ‡

1

is the maximum compressive stress and ‡
3

is the
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minimum compressive stress. The coe�cients of the equation may be derived
and expressed as:

I
1

= ‡
11

+ ‡
22

+ ‡
33

I
2

= ≠‡
11

‡
22

≠ ‡
22

‡
33

≠ ‡
33

‡
11

+ ‡2

12

+ ‡2

23

+ ‡2

31

(2.10)
I

3

= det(‡)

The three principal stresses and any functions of them are invariants, they
are independent of the choice of basis (Nordal, 2012a). The plane normal n

i

of the planes where the principal stresses ‡
i

act may be found from equation
(2.8a). As the normal vectors n

i

forms an orthonormal basis, these may be
chosen as the basis for ‡, giving a matrix with the principal stresses on the
diagonal and zero shear stresses. Hence the stress invariants are:

I
1

= ‡
1

+ ‡
2

+ ‡
3

I
2

= ≠‡
1

‡
2

≠ ‡
2

‡
3

≠ ‡
3

‡
1

(2.11)
I

3

= det(‡) = ‡
1

‡
2

‡
3

A widely used stress measure in geotechnical practice, is the isotropic mean
stress p, a scaled version of the first stress invariant:

p = 1
3I

1

= 1
3(‡

11

+ ‡
22

+ ‡
33

) (2.12)

2.2.3 Deviatoric Stresses and Deviatoric Stress Invariants

Deviatoric stresses are defined as:

s = ‡ ≠ pI or (2.13a)
s

ij

= ‡
ij

≠ ”
ij

p (2.13b)

where the Kronecker delta function is used. It is defined as:

”
ij

=

Y
]

[
1 if i = j

0 if i ”= j

The principal stresses and the stress invariants for the deviatoric stress s
may be calculated in the same manner as for the full stress state ‡, such that
the eigenvalue problem is:

(s ≠ s · I) · n = 0 (2.14a)
det(s ≠ s · I) = 0 (2.14b)
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resulting in a characteristic equation of third order:

s3 ≠ J
1

s2 ≠ J
2

s ≠ J
3

= 0 (2.15)

The deviatoric stress invariants may be derived and are written out as:

J
1

= s
11

+ s
22

+ s
33

© 0
J

2

= ≠s
11

s
22

≠ s
22

s
33

≠ s
33

s
11

+ s2

12

+ s2

23

+ s2

31

(2.16)
J

3

= det(s)

Due to the invariant properties, principal deviatoric stresses must simply
be:

s
i

= ‡
i

≠ p for i = 1, 2, 3 (2.17)

In many models the J
2

-invariant plays a significant role. Other convenient
expressions of J

2

may be derived, such as:

J
2

= 1
2sT s (2.18)

= 1
2(s2

11

+ s2

22

+ s2

33

) + s2

12

+ s2

23

+ s2

31

= 1
2(s2

1

+ s2

2

+ s2

3

)

= ≠s
1

s
2

≠ s
2

s
3

≠ s
3

s
1

= 1
6[(‡

11

≠ ‡
22

)2 + (‡
22

≠ ‡
33

)2 + (‡
33

≠ ‡
11

)2] + ‡2

12

+ ‡2

23

+ ‡2

31

= 1
6[(‡

1

≠ ‡
2

)2 + (‡
2

≠ ‡
3

)2 + (‡
3

≠ ‡
1

)2]

In PLAXIS a deviatoric stress q is defined, also known as the equivalent
stress or von Mises stress in structural engineering. This stress is related to J

2

by:

q = ‡
e

=
Ú

1
2[(‡

1

≠ ‡
2

)2 + (‡
2

≠ ‡
3

)2 + (‡
3

≠ ‡
1

)2] =


3J
2

(2.19)

For the special stress states of triaxial compression where ‡
2

= ‡
3

and
triaxial extension where ‡

1

= ‡
2

, q is reduced to a more commonly known
expression in geotechnical practice:

q = |‡
1

≠ ‡
3

| (2.20)

The full formulation of q from equation (2.19) will be used in this thesis
unless anything else is explicitly stated.
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2.2.4 Haigh-Westergaard Coordinates and Stress Space

To visualize stress states, paths and surfaces in stress space, it is useful to
formulate a set of cylindrical coordinates in stress space. By selecting the
hydrostatic axis as the longitudinal axis or cylindrical axis, it is possible to
visualize planes of constant mean stress, so called deviatoric planes or �-planes
(Hopperstad and Børvik, 2013). The stress space and a �-plane are shown in
Figure 2.1. These planes will reduce to a set of polar coordinates.

(a) The stress space with
the hydrostatic axis

(b) A �-plane with the projection of the
principal stress axes.

Figure 2.1: Principal stress space.

A derivation of these coordinates is shown in Appendix B.1. A vector in the
�-plane will be the deviatoric part of the stress state, hence must the radial
distance from the axis be the magnitude of the deviatoric vector. The position
at the longitudinal axis and the Lode angle may be defined in several ways,
yet in this thesis the coordinates are defined as:

› = I
1

/
Ô

3 (2.21a)

fl =
Ô

s · s =
Ò

s2

1

+ s2

2

+ s2

3

=


2J
2

(2.21b)

cos 3◊ = 3
Ô

3 · J
3

2
Ò

J3

2

for ◊ œ [0, fi/3] (2.21c)

The expression for cos 3◊ may be verified to always be within the interval
[≠1, 1] for all values of J

2

and J
3

(Nordal, 2012a). Hence, all solutions of
equation (2.21c) give 3◊ œ [0, fi]. As the cosine function is periodic, 3◊ + 2fin
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are all solutions of equation (2.21c). Thus, ◊ +2fin/3 are all solutions resulting
in di�erent values for cos ◊. Ordered according to ‡

1

> ‡
2

> ‡
3

, the relations
between the Haigh-Westergaard coordinates in stress space, (›, fl, ◊), and the
principal stresses are:

S

WWU

‡
1

‡
2

‡
3

T

XXV = ›Ô
3

S

WWU

1
1
1

T

XXV + fl

Ú
2
3

S

WWU

cos ◊

cos(◊ ≠ 2fi

3

)
cos(◊ + 2fi

3

)

T

XXV , for ◊ œ [0, fi/3] (2.22)

For the presented definition of the Lode angle ◊, ◊ = 0¶ correspond to
triaxial compression conditions (along the projection of the ‡

1

-axis), while ◊ =
60¶ correspond to triaxial extension conditions (along the projection negative
extension of the ‡

3

-axis).
The reader should be aware of that there exists other expressions of the

Lode angle defined for other domains. Attention must be paid when comparing
expressions using the Lode angle.

2.2.5 Strains and Strain Invariants

Applying the sign convention of classical geotechnical engineering, the infinites-
imal strain tensor Á

ij

of a body with a reference position vector x when a
displacement field u is imposed is (Hopperstad and Børvik, 2013):

Á
ij

= ≠1
2

A
ˆu

i

ˆx
j

+ ˆu
j

ˆx
i

B

(2.23)

As for the stress tensor, the eigenvalues of the strain tensor may be solved
from the eigenvalue problem:

(Á ≠ Á · I) · x̄ = 0 (2.24a)
det(Á ≠ Á · I) = 0 (2.24b)

where x̄ is the orthonormal basis for the eigenvectors or principal axes of strain.
This results in a characteristic equation of third order:

Á3 ≠ IÁ

1

Á2 ≠ IÁ

2

Á ≠ IÁ

3

= 0 (2.25)

where invariants are:

IÁ

1

= Á
11

+ Á
22

+ Á
33

IÁ

2

= ≠Á
11

Á
22

≠ Á
22

Á
33

≠ Á
33

Á
11

+ Á2

12

+ Á2

23

+ Á2

31

(2.26)
IÁ

3

= det(Á)
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Now, consider a rectangular body of which the sides are directed along the
principal axes of strain with original lengths x0

1

, x0

2

, x0

3

. By applying com-
mon formulations of engineering strains, the deformed lengths are x0

1

(1 + Á
1

),
x0

2

(1 + Á
2

), x0

3

(1 + Á
3

). The volumetric strain is then:

Á
V

= V ≠ V
0

V
0

= x0

1

(1 + Á
1

)x0

2

(1 + Á
2

)x0

3

(1 + Á
3

) ≠ x0

1

x0

2

x0

3

x0

1

x0

2

x0

3

= (1 + Á
1

)(1 + Á
2

)(1 + Á
3

) ≠ 1 = Á
1

+ Á
2

+ Á
3

= IÁ

1

(2.27)

where products of strain are neglected. The volumetric strain may also be
referred to as Á

p

to emphasize the relation to the mean stress p.
To separate volumetric deformation from deviatoric deformations, devia-

toric strain invariants are developed for strain as well as for stress:

e = Á ≠ ‘
V

3 I or (2.28a)

e
ij

= Á
ij

≠ ‘
V

3 ”
ij

(2.28b)

Thus, the deviatoric strain invariants are:

JÁ

1

= e
11

+ e
22

+ e
33

© 0
JÁ

2

= ≠e
11

e
22

≠ e
22

e
33

≠ e
33

e
11

+ e2

12

+ e2

23

+ e2

31

(2.29)
JÁ

3

= det(e)

In PLAXIS, deviatoric strain “
s

is calculated as (PLAXIS, 2012a):

“
s

=
ı̂ıÙ2

3

C3
Á

11

≠ Á
V

3

4
2

+
3

Á
22

≠ Á
V

3

4
2

+
3

Á
33

≠ Á
V

3

4
2

+ 1
2(“2

12

+ “2

23

+ “2

31

)
D

=
Ú

2
3 · 2JÁ

2

= “
octÔ
2

(2.30)

where “
oct

is the octahedral shear strain as defined by Nordal (2012a).

2.3 Elasto-Plastic Soil Models
For simple elasto-plastic models, one may say that elasticity governs the be-
havior up to failure while plasticity governs the behavior at failure. In more
advanced models plasticity may play an important role also from the start of
loading. Combining the theories constitutes a powerful method of describing
material response.
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2.3.1 Elasto-Plasticity: Strain Decomposition

Material response of elasto-plastic models is partly reversible and partly irre-
versible. Thus, the strain is decomposed into recoverable elastic strains, Áe,
and irrecoverable plastic strains, Áp. Elastic strains are uniquely defined by
the stress situation, e.g. by Hooke’s law, while plastic strains are dependent on
the stress and strain history of the material, hence not unique. This implies a
need for defining the relations between the stress and the plastic strain on rate
form (Hopperstad and Børvik, 2013). Thus, the total strains in elasto-plastic
models are the sum of elastic and plastic strains:

Á = Áe + Áp (2.31)

For the special case of a one-dimensional linear elastic-perfect plastic ma-
terial model, decomposition of strains is shown in Figure 2.2.

Figure 2.2: Decomposition of total strains into elastic and plastic strains. For sim-
plicity perfect plasticity is illustrated. (Nordal, 2012b, Figure 6.1b)

2.3.2 Elasticity: Linear Elasticity

Elastic materials are characterized by reversible deformations, path indepen-
dence, no dissipation of mechanical energy and rate independence. Further,
a subset of elastic materials, hyperelastic materials, are materials where there
exists an elastic potential function U

0

, so that stresses are connected through
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(Hopperstad and Børvik, 2013):

‡
ij

= ˆU
0

ˆÁ
ij

for i, j = 1, 2, 3 (2.32)

The operator relating strain and stress, two second order tensors, must be
of fourth order. The generalized Hooke’s law is stated as (Hopperstad and
Børvik, 2013):

‡
ij

= ˆU
0

ˆÁ
ij

= D
ijkl

Á
kl

for i, j, k, l = 1, 2, 3 (2.33)

Due to di�erentiation order does not matter and symmetries of stress and
strain, symmetries of the tensor D

ijkl

arise:

D
ijkl

= ˆ2U
0

ˆÁ
ij

ˆÁ
kl

= ˆ2U
0

ˆÁ
kl

ˆÁ
ij

= D
klij

‡
ij

= ‡
ji

=∆ D
ijkl

= D
jikl

(2.34)
Á

kl

= Á
lk

=∆ D
ijkl

= D
ijlk

Thus, D
ijkl

, may be written in a symmetric 6x6 matrix D, with 21 independent
constants.

In general, as the stress and strain tensors are dependent of the choice of
basis, the operator relating those must also be dependent of the choice of basis.
However, if the elastic material have no preferred directions, all constants of
the tensor D

ijkl

must be independent of the choice of basis, which is the case
for an isotropic elastic material (Hopperstad and Børvik, 2013).

Hopperstad and Børvik (2013) show that Hooke’s law for an isotropic ma-
terial may be written as:

‡
ij

= KÁ
V

”
ij

+ 2Ge
ij

(2.35)

where the modules K and G are functions of Young’s modulus E and Poisson’s
ratio ‹:

K = E

3(1 ≠ 2‹) (2.36a)

G = E

2(1 + ‹) (2.36b)

Thus, the relations between the hydrostatic and deviatoric parts may be stated
as:

p = 1
3‡

ii

= 1
3 · 3KÁ

V

+ 2
3Ge

ii

= KÁ
V

(2.37a)

s
ij

= KÁ
V

”
ij

+ 2Ge
ij

≠ p”
ij

= 2Ge
ij

(2.37b)
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Equation (2.37) shows an important consequence of isotropic elasticity. The
deviator stress is a pure proportional scaling of the deviator strain. Such a scal-
ing does not influence the principal directions. Any hydrostatic contribution
cancels each other and the orientation of a principal stress plane must be inde-
pendent of this. Thus, the stress and strain have the same principal directions
for isotropic elasticity, they are coaxial (Nordal, 2012a). This implies that also
stress and stress increments are coaxial for isotropic elasticity.

By the decomposition it follows that any change in only hydrostatic stress,
only results in volumetric strain change, and likewise for deviatoric stresses.
For soils this behavior is not correct due to dilatancy e�ects. However, by
coupling elasticity with plasticity, the dilatancy e�ects may be captured unless
the dilatancy is substantial even in elastic regions (Nordal, 2012a).

2.3.3 Elasticity: Nonlinear Elasticity

Nonlinear elasticity may model the elastic strains of soil more correctly than
linear elasticity. Modules for a hyperelastic material may be derived from
equation (2.34). By finding an elastic potential function U

0

or its complemen-
tary strain energy function U

c

, modules depending of the stress level may be
established.

As the strain energy must be unique and independent of loading history,
Nordal (2012a) showed that the only dependencies that may exist are when the
shear modulus are dependent on deviatoric stress and when the bulk modulus
are dependent of the hydrostatic stress. However, laboratory results often
exhibit a mean stress dependency of the shear modulus. Problems may arise if
a mean stress dependent shear modulus is used. In a closed loop, energy may
then end up being be generated, hence violating thermodynamic laws. This
may not be a huge problem for monotonically increasing static loads, but may
cause severe troubles for un-/reloading loops, dynamic and cyclic loading.

2.3.4 Plasticity: Yield Criteria

As opposed to elasticity, plasticity theory is characterized by irreversible de-
formations, path dependence and energy dependence, yet still no rate e�ects
as any viscous e�ects are not included (Hopperstad and Børvik, 2013). Mate-
rials subjected to loading will evolve plastic strains when the loading exceeds
a yield limit. The yield limit may either be a threshold or the plastic strains
may gradually increase, without any sharp limit. The yield criterion is defined
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mathematically by a yield surface in stress space. Further, hardening are often
included by a single or a set of hardening variables Ÿ, thus the surface may or
may not be fixed. An example of a yield surface is shown in Figure 2.3 and
the surface F is given by:

F = F (‡, Ÿ) = 0 (2.38)

Figure 2.3: Sketch of a yield surface. (Hopperstad and Børvik, 2013, Figure 7-1)

For stress situations where F (‡, Ÿ) < 0, the material response is elas-
tic, while F (‡, Ÿ) = 0 yields plastic deformations. A stress situation where
F (‡, Ÿ) > 0 is not allowed in elasto-plastic models. If no hardening is incor-
porated in the model, as for a perfect plastic Mohr–Coulomb model, infinite
plastic strains develop when attempting to load a stress increment at the yield
limit. This implies no sti�ness and that particular yield limit is then a failure
state, giving a failure surface.

The initial part of a loading history may be within an elastic region, or
plastic strains may evolve even from an initial stress state.

2.3.5 Plasticity: Flow Rule

The development of plastic strains is defined by the plastic flow rule. For
the general case, the plastic flow is defined by a plastic potential function
Q = Q(‡) = 0. The infinitesimal change in plastic strains is then (Hopperstad
and Børvik, 2013):

dÁp

ij

= d⁄
ˆQ

ˆ‡
ij

(2.39)
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The magnitude of the plastic strain increment is determined by the scalar d⁄.
The scalar will be further described in section 2.3.6.

Further, the flow rule states direction of plastic flow is normal to the plastic
potential function. If the plastic potential function Q is defined by the yield
function F , the flow rule is associated. Materials that obeys Drucker’s postulate
of material stability may be shown to obey associated flow. The postulate
requires the flow to be normal to the yield surface and the yield surface to be
convex. As soils violate Drucker’s postulate, they are considered not to be a
subset of the stable, work hardening materials obeying the postulate (Nordal,
2012a).

An associated flow rule is often performing well for metals and alloys, yet
not on soils. This is due to the normality overestimates volume change. As a
remedy the dilation angle is introduced, giving a plastic potential surface that
relates plastic flow to other parameters than those defining the yield surface
(Nordal, 2012b).

A consequence of equation (2.39) is that the plastic strain increment is solely
dependent on the stress state, not the stress increment. Further, the change in
plastic parameter, only scales the plastic strain vector. While the elastic strain
increment and the stress increment are coaxial, the plastic strain increment
and the stress are coaxial.

2.3.6 Plasticity: Hardening Rule

The hardening rule gives a relation determining the magnitude of the scalar
d⁄ in equation (2.39). Hardening processes may be either work hardening
or strain hardening. While work hardening is based on dissipation of work
during the process of expanding the yield surface, strain hardening connects
the plastic strains directly to a hardening parameter, Ÿ. Hardening may either
be isotropic, giving an isotropic expansion or collapse of the yield surface, or
it may be kinematic, giving a translation of the yield surface. A combination
of the two also exist (Nordal, 2012a).

The focus here is strain hardening. Work hardening may however be consid-
ered in a similar manner. During plastic flow, the yield function must always
remain F = 0. Thus, the change in the yield function is zero:

dF =
A

ˆF

ˆ‡
ij

B
T

d‡
ij

+ ˆF

ˆŸ
dŸ = 0 (2.40)

This is known as the consistency condition for plastic loading (Nordal,
2012a). Equation (2.40) connects incremental stress change d‡ to incremen-
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tal change in the hardening parameter dŸ. The hardening parameter may be
related to the plastic parameter through:

A
ˆF

ˆ‡
ij

B
T

d‡
ij

+ ˆF

ˆŸ

dŸ

d⁄
d⁄ = 0 or (2.41a)

A
ˆF

ˆ‡
ij

B
T

d‡
ij

+ ˆF

ˆŸ

dŸ

dÁp

dÁp

d⁄
d⁄ = 0 (2.41b)

Now d⁄ is related to d‡. The relations giving dŸ/ dÁp or dŸ/ d⁄ may be taken
from laboratory tests and the plastic strain scalar may be calculated as:

dÁp = | dÁp| =
Ò

(dÁp)T · dÁp = d⁄

ı̂ıÙ
A

ˆQ

ˆ‡

B
T

ˆQ

ˆ‡
(2.42)

By solving equation (2.41b) for d⁄, the magnitude of the plastic strains may
be calculated. For strain hardening the scalar is determined by:

d⁄ = 1

≠
ˆF

ˆŸ

dŸ

dÁp

dÁp

d⁄

A
ˆF

ˆ‡

B
T

d‡ = 1
A

A
ˆF

ˆ‡

B
T

d‡ (2.43)

where A is a plastic resistance number. Equation (2.43) is valid for work
hardening as well, with another expression for the plastic resistance number
(Nordal, 2012a). When approaching failure, A reduces to zero and, theoreti-
cally, infinite plastic strains arise. The fact that d⁄ diverges when approaching
failure causes trouble in the implementation into computer codes. To over-
come these problems, another expression may be derived, not resulting in d⁄

diverging even when A = 0. Here, the expression are only reproduced and it
is referred to Nordal (2012a) for the derivation:

d⁄ =

Q

aˆF

ˆ‡

R

b
T

D dÁ

A +

Q

aˆF

ˆ‡

R

b
T

D

Q

aˆQ

ˆ‡

R

b

(2.44)

It may be shown from equation (2.44) that the plastic parameter always d⁄

are positive for any plastic increment, softening and hardening, and zero for
any elastic increment (Nordal, 2012a).
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2.3.7 Elasto-Plasticity: The Constitutive Matrix

As the elastic strains are uniquely defined by the elastic constitutive matrix
D, the infinitesimal total strain is:

dÁ = dÁe + dÁp = D≠1 d‡ + d⁄
ˆQ

ˆ‡
(2.45)

In some cases, the stress dependent non-linear constitutive matrix, D
ep

, may
be established analytically and used in the calculation of the sti�ness matrix of
an element. The formulation of the plastic parameter d⁄ from equation (2.44)
must be used to avoid divergence of the parameter. For the derivation, it is
referred to Nordal (2012a). The result is the constitutive matrix to be used in
calculation of the element sti�ness matrix in equation (2.3):

D
ep

= D ≠
D

1
ˆQ

ˆ‡

2 1
ˆF

ˆ‡

2
T

D

[A +
1

ˆF

ˆ‡

2
T

D
1

ˆQ

ˆ‡

2
]

(2.46)

where D is the elastic sti�ness matrix from Hooke’s law and D
ep

is the elasto-
plastic constitutive matrix where plastic sti�ness is included.

2.4 Undrained Conditions
The undrained shear strength is controlled by the drained strength parameters,
which gives the opportunity to establish an e�ective stress based constitutive
model that applies to undrained situations. No dissipation of water yields the
condition of no volume change, due to water is incompressible. This may me
stated in several ways:

—Á
V

= 0 (2.47a)
—e = —v = 0 (2.47b)

This implies increased sti�ness when no dissipation of water is allowed.
The inverted Hooke’s law on time rate form may be established and for-

mulated by both drained and undrained sti�ness parameters relating elastic
strain rate to the stress rate. By using Terzaghi’s principle and equation (2.7),
the e�ective and total stress are related by:

‡̇Õ
ij

= ‡̇
ij

≠ ṗ
w

”
ij

(2.48)
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Assuming water to be slightly compressible, PLAXIS (2012a) gives the rate of
excess pore pressure as:

ṗ
w

= K
w

n
(Á̇e

xx

+ Á̇e

yy

+ Á̇e

zz

) (2.49)

where n is porosity and K
w

is bulk modulus of water. This gives a sti�ness con-
tribution from the bulk modulus of water into the constitutive matrix relation
stress and strain. Volumetric sti�ness from the water only contributes to the
isotropic sti�ness of the soil skeleton, not to the shear sti�ness, in accordance
with reality.

The inverted Hooke’s on rate form may now be written in terms of both
drained and undrained sti�ness parameters, relating e�ective and total stress
rates respectively to elastic strain rates. By introducing equations (2.48) and
(2.49), drained and undrained sti�nesses may be related through:

E
u

= 2G(1 + ‹
u

) ‹
u

= ‹ Õ + µ(1 + ‹ Õ)
1 + 2µ(1 + ‹ Õ) (2.50)

µ = 1
3n

K
w

K Õ K Õ = EÕ

3(1 ≠ 2‹ Õ) (2.51)

PLAXIS give the opportunity to use drained sti�ness parameters for calcu-
lation of undrained sti�ness parameters by equations (2.50) and (2.51).

For incompressible materials, the Poisson’s ratio is ‹ = 0.5, as can be seen
from (2.51). However, this creates a singular sti�ness matrix and a ratio giving
a su�ciently high sti�ness matrix while not causing any numerical di�culties
must be chosen. The bulk sti�ness K

w

should thereby rather be understood
as a numerical value related to the undrained sti�ness of the soil, rather than
the actual bulk modulus of water. An undrained sti�ness in the order of 10
times the drained sti�ness is not unusual (Nordal, 2012b).

2.5 The Mohr–Coulomb Criterion
As the Mohr–Coulomb criterion is a widely used strength criterion in geotechni-
cal engineering, it is useful for comparison to other strength criteria. Equations
that are necessary for later comparisons are presented here.

2.5.1 Defining Equations

The Mohr–Coulomb strength criterion is defined by failure shear stress ·
f

as
proportional to e�ective stresses, ‡. Thus, the strength parameters are the
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friction angle „ and either cohesion c or attraction a:

·
f

= c + ‡ · tan „ = (‡ + a) tan „ (2.52)

As earlier stated, prime is omitted as e�ective stress mark, as all stresses con-
sidered are e�ective stresses.

Mohr’s circle defined by the maximum and minimum principal stresses, ‡
1

and ‡
3

respectively, is introduced where the Coulomb-criterion is tangent to
the circle. Using simple geometry, the criterion of equation (2.52) may be
written as:

R = 1
2(‡

1

≠ ‡
3

) =
31

2(‡
1

+ ‡
3

) + a

4
sin „ (2.53)

After some mathematical operations the yield surface for the criterion may
be formulated as:

F = (‡
1

+ a) ≠ N
f

(‡
3

+ a) = 0, where N
f

= 1 + sin „

1 ≠ sin „
(2.54)

Equation (2.54) defines the failure surface of the Mohr–Coulomb criterion.
It is seen that the Mohr–Coulomb strength criterion is independent of the
intermediate stress, ‡

2

.
If the ordering of the principal stresses is removed, six possible stress states

of a maximum and a minimum principal stress is possible, as both ‡
1

> ‡
2

and ‡
1

< ‡
2

are equally possible. The same applies for other combinations
of stresses. As a result, six planes in principal stress space form the failure
surfaces of a Mohr–Coulomb-model. The planes form a hexagonal pyramid
along the hydrostatic axis in principal stress space, with the apex located in
(‡

1

, ‡
2

, ‡
3

) = (≠a, ≠a, ≠a), shown in Figure 2.4.
Due to the nonlinearity of the soil, the linearization of the failure stress into

two parameters may cause errors. The two strength parameters should hence
be considered as curve fitting parameters for the relevant stress interval rather
than valid for the full range of soil behavior. Of the same reason, any attraction
a should not be taken as a real tensile strength of the soil and caution should
be made if tensile stresses are allowed.

2.5.2 Triaxial Test Formulation

In triaxial tests, the cell pressure is equal to ‡
3

for the shearing phase of the
test, while the piston force applied is (‡Õ

1

≠ ‡Õ
3

)A = (‡
1

≠ ‡
3

)A. Thus, a
formulation relating ‡

3

to 1

2

(‡
1

≠ ‡
3

) is useful for triaxial tests. From equation
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(a) Yield surfaces in stress space. (b) Yield surfaces seen from hydrostatic
axis.

Figure 2.4: Mohr–Coulomb yield surfaces.

(2.54) a new formulation may be obtained:

1
2[(‡

1

+ a) ≠ (‡
3

+ a)] = 1
2[N

f

(‡
3

+ a) ≠ (‡
3

+ a)] (2.55)
1
2(‡

1

≠ ‡
3

) = S
f

(‡
3

+ a), where S
f

= 1
2(N

f

≠ 1) = sin „

1 ≠ sin „
(2.56)

2.5.3 Plane Strain Formulation

For plane strain conditions, a set of stress measures that uses the center of
Mohr’s circle, s, and the radius of Mohr’s circle, t, may be useful. Mathemat-
ically, the stress measures s and t are:

s = ‡
1

+ ‡
3

2 = (‡
1

+ a) + (‡
3

+ a)
2 ≠ a = N

f

+ 1
2 (‡

3

+ a) ≠ a (2.57)

t = ‡
1

≠ ‡
3

2 = (‡
1

+ a) ≠ (‡
3

+ a)
2 = N

f

≠ 1
2 (‡

3

+ a) (2.58)

Thus, the inclination of the Coulomb-line in a s-t-plot is:

t

s + a
= N

f

≠ 1
N

f

+ 1 = 2 sin „

2 = sin „ (2.59)

Now it is assumed that both minor and major principal stress lie in the plane
strain-plane. For a cartesian basis of x

1

, x
2

, x
3

, the plane strain-plane is x
1

-
x

3

-plane. Yielding now only occur in this plane and the intermediate principal
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stress ‡
2

is the out of plane stress. Using geometry of Mohr’s circle, principal
stresses may be obtained for a cartesian stress state with shear stresses:

‡
1,3

= ‡
11

+ ‡
33

2 ±

Û3
‡

11

≠ ‡
33

2

4
2

+ ‡2

13

(2.60)

Inserting this into equations (2.57) and (2.58) gives expressions for s and t as
functions of cartesian stresses ‡

11

, ‡
33

and ‡
13

in stead of principal stresses:

s = ‡
11

+ ‡
33

2 (2.61)

t =
Û3

‡
11

≠ ‡
33

2

4
2

+ ‡2

13

(2.62)

2.5.4 Mean and Deviatoric Stress Formulations

To express the yield surface in terms of e�ective hydrostatic stress p and de-
viatoric stress q, a new parameter b is introduced, relating the intermediate
principal stress ‡

2

to the minimum and maximum principal stresses. The pa-
rameter is defined by:

b = ‡
2

≠ ‡
3

‡
1

≠ ‡
3

(2.63)

=∆ ‡
2

= ‡
3

+ b(‡
1

≠ ‡
3

) (2.64)

The p-q-formulation of the Mohr–Coulomb-criterion may be presented with
the definition of q = ‡

1

≠ ‡
3

. Here, the formulation of the criterion will be
shown with the full formulation of q as defined in equation (2.19), to make use
of its relation to the invariant J

2

later:

q =
Ú

1
2[(‡

1

≠ ‡
2

)2 + (‡
2

≠ ‡
3

)2 + (‡
3

≠ ‡
1

)2]

=
Ú

1
2[(‡

1

≠ ‡
3

)2(1 ≠ b)2 + (‡
1

≠ ‡
3

)2b2 + (‡
3

≠ ‡
1

)2]

= (‡
1

≠ ‡
3

)


1 ≠ b + b2 (2.65)

Principal stresses now relate to mean and deviatoric stresses by:

‡
1

= p + 2 ≠ b

3
Ô

1 ≠ b + b2

q (2.66)

‡
3

= p ≠ 1 + b

3
Ô

1 ≠ b + b2

q (2.67)
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Inserted into equation (2.54) and collecting q-terms and (p+a)-terms gives:

q = 3
Ô

1 ≠ b + b2(N
f

≠ 1)
(1 + b)N

f

+ (2 ≠ b) (p + a) = M(p + a) (2.68)

Now the yield surface may be expressed as

F = q ≠ M(p + a) = 0, where M = 3
Ô

1 ≠ b + b2(N
f

≠ 1)
(1 + b)N

f

+ (2 ≠ b) (2.69)

A more common expression for the inclination M , where q = ‡
1

≠ ‡
3

is used
in the derivation is (Nordal, 2012b):

M = 3(N
f

≠ 1)
3 + (1 + b)(N

f

≠ 1) (2.70)

For the special cases of triaxial compression (‡
2

= ‡
3

=∆ b = 0) and
triaxial extension (‡

1

= ‡
2

=∆ b = 1) either of the expressions for the
inclination M yields:

M
c

= M(b = 0) = 6 sin „

3 ≠ sin „
(2.71a)

M
e

= M(b = 1) = 6 sin „

3 + sin „
(2.71b)

2.5.5 Dilatancy Control

As discussed in section 2.3.5, soils are not correctly modeled by an associated
flow rule. This may be seen for a material at failure. At failure, no stress
increment may be applied and any strains are plastic. The ratio between
strains in the first and third principal direction for a Mohr–Coulomb model
in drained conditions, with the yield surface defined in equation (2.54) and
associated flow is:

dÁ
3

dÁ
1

¥ dÁp

3

dÁp

1

=
d⁄ ˆF

ˆ‡3

d⁄ ˆF

ˆ‡1

= ≠N
f

(2.72)

For a friction angle „ = 30¶, N
f

= 3 which implies that lateral strains will be
3 times as large as strains in axial direction.

This may also be seen from Figure 2.5, which sketches the failure criterion
plotted in a ‡

1

-‡
3

-plane, along with a plastic potential function for the Mohr–
Coulomb model for a given stress state ‡. The associated flow rule (plastic
stress increment normal to Q = F ) gives a large plastic strain contribution in
‡

3

-direction. As a remedy the dilation angle Â < „ is introduced, accounting
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for less volume change. The non-associated flow rule (plastic stress increment
normal to Q ”= F ) gives a smaller plastic strain contribution in ‡

3

-direction
than the associated flow rule. The plastic potential function Q for a Mohr–
Coulomb constitutive model is:

Q = (‡
1

+ a) ≠ N
Â

(‡
3

+ a) = 0, where N
Â

= 1 + sin Â

1 ≠ sin Â
(2.73)

Thus, plastic strains in ‡
3

-direction may be modeled more realistically with a
non-associated flow rule.

Figure 2.5: Sketch of a ‡1-‡3-plot showing associated flow rule and non-associated
flow rule connected to a plastic potential function where the dilation
angle controls the flow. (Nordal, 2012b, Figure 6.3), (Nordal, 2012b,
Figure 6.4)

At large strains, i.e. at failure, the relation between volumetric and first
principal strain for a drained triaxial test is:

dÁp

V

dÁp

1

= dÁp

1

+ dÁp

2

+ dÁp

3

dÁp

1

=
d⁄ ˆQ

ˆ‡1
+ d⁄ ˆQ

ˆ‡2
+ d⁄ ˆQ

ˆ‡3

d⁄ ˆQ

ˆ‡1

= 1 + 0 ≠ N
Â

= ≠2 sin Â

1 ≠ sin Â
(2.74)

This gives a useful expression for the inclination of a path in a Á
1

-Á
v

-plot at
large strains, giving the dilation angle from laboratory curves.

Typical dilation angle of quartz sand is given as (Nordal, 2012b), (PLAXIS,
2012a):

Â =

Y
]

[
Â = „ ≠ 30¶ if „ > 30¶

Â = 0¶ if „ Æ 30¶
(2.75)
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2.5.6 Yield Surfaces in Haigh-Westergaard Coordinates

The yield surfaces of the Mohr–Coulomb-criterion may be expressed in Haigh–
Westergaard coordinates. This eases plotting in the full stress space or in a �-
plane. The reader is referred to Appendix B.2 for derivation of the expressions,
but a summary is given here.

The Mohr–Coulomb criterion in equation (2.53) may be written as:

‡
1

≠ ‡
3

2 = ‡
1

+ ‡
3

2 sin „ + a sin „ (2.76)

=∆ ‡
1

(1 ≠ sin „) ≠ ‡
3

(1 + sin „) = 2a sin „ (2.77)

Expression for the principal stresses as functions of the Haigh-Westergaard
coordinates from equation (2.22) may be inserted into the Mohr–Coulomb cri-
terion. After gathering of terms, some trigonometric relations are used to
simplify the expressions and the six yield surfaces may be written as:

fl(›, ◊) =
Ô

6a sin „ +
Ô

2› sin „

±
Ô

3 sin(◊ + fi

3

) ≠ cos(◊ + fi

3

) sin „
(2.78a)

fl(›, ◊) =
Ô

6a sin „ +
Ô

2› sin „

±
Ô

3 sin(◊ + 2fi

3

) ≠ cos(◊ ≠ fi

3

) sin „
(2.78b)

fl(›, ◊) =
Ô

6a sin „ +
Ô

2› sin „

±
Ô

3 sin ◊ + cos ◊ sin „
(2.78c)

2.6 The Drucker–Prager Criterion
The Drucker–Prager strength criterion is a pressure dependent criterion, giv-
ing e�ective stress dependency of the strength like the Mohr–Coulomb crite-
rion. While the Mohr–Coulomb criterion is defined by six yield surfaces, the
Drucker–Prager criterion is defined by one single surface.

2.6.1 Defining Equations

The criterion is a modification of the pressure independent von Mises-criterion.
For a constant hydrostatic stress, as in a �-plane-plot, the strength surface
reduces to a circle. Drucker and Prager (1952) defined the strength surface
defined by invariants and the coe�cients – and k and by classical geotechnical
sign convention the criterion reads:

F =


J
2

≠ –I
1

= k (2.79)
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This may be rewritten in accordance to conventional way of defining a yield
surface F = 0:

F =


J
2

≠ –I
1

≠ k = 0 (2.80)

For the special case of – = 0, the von Mises criterion is obtained. The criterion
is sometimes referred to as the extended von Mises-criterion.

The property of one, single surface is attractive for implementation in com-
puter codes. The yield surface has the form of a right circular cone with the
axis directed along the hydrostatic axis in principal stress space, and the apex
in the point (‡

1

, ‡
2

, ‡
3

) = (≠a, ≠a, ≠a), shown in Figure 2.6.

(a) Yield surface in stress space. (b) Yield surface seen from hydrostatic
axis.

Figure 2.6: Drucker–Prager yield surface.

2.6.2 Coe�cients of the Drucker-Prager Criterion

The coe�cients – and k are parameters that are not in use in common geotech-
nical practice. Proper calibration of the parameters may hence be di�cult in
practice. A possibility is to set the parameters such that the Drucker–Prager
criterion match other criteria for certain conditions, such as the Mohr–Coulomb
criterion in di�erent stress states.

Triaxial conditions By relating mean e�ective stress p and deviatoric stress
q to the invariants I

1

and J
2

using the relations from equations (2.12) and
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(2.19), the Drucker–Prager-criterion may be written as:

F = qÔ
3

≠ 3–p ≠ k = 0

=∆ F = q ≠ 3
Ô

3 · –p ≠
Ô

3 · k = 0 (2.81)

Matching the p-q-formulation of the Mohr–Coulomb criterion in equation (2.69)
with equation (2.81), gives relations for the coe�cients – and k to inclination
M and attraction a by:

3
Ô

3 · – = M (2.82a)
Ô

3 · k = M · a (2.82b)

The expressions for M in triaxial conditions are stated in equation (2.71),
giving:

–
TXC

= M
c

3
Ô

3
= 2 sin „Ô

3(3 ≠ sin „)
(2.83a)

–
TXE

= M
e

3
Ô

3
= 2 sin „Ô

3(3 + sin „)
(2.83b)

k = 3a · – (2.83c)

Plane strain The Drucker–Prager criterion may be matched with the Mohr–
Coulomb criterion in plane strain by manipulation of the invariants I

1

and J
2

,
as first shown by Drucker and Prager (1952). The derivation is reproduced in
the following.

At failure, stress change equals zero per definition in a linear elastic-perfect
plastic model. Due to this, elastic strains cannot change at failure and all strain
change is plastic. Assuming associated flow and imposing the conditions of no
change in strain out of the plane, results in a condition for the Drucker–Prager
criterion in plane strain:

dÁ
22

= dÁp

22

= d⁄
ˆF

ˆJ
2

ˆJ
2

ˆ‡
22

= d⁄( s
22

2
Ô

J
2

≠ –) = 0

=∆ s
22

= 2–


J
2

(2.84)

Now the first full stress invariant may be expressed as:
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= ‡
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+ (s
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33
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= 3

2

(‡
11

+ ‡
33
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

J
2

= 3s + 3–


J
2

(2.85)

where s is the center of Mohr’s circle from equation (2.57).
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Through some mathematical operations, the second deviatoric invariant
may be transformed:
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1 ≠ 3–2

= t2

1 ≠ 3–2

(2.86)

where t is the radius of Mohr’s circle from equation (2.58).
Inserting the expressions of the invariants in equations (2.85) and (2.86)

into the Drucker–Prager strength criterion from equation (2.80), yields:

F =


J
2

≠ –
1
3s + 3–


J

2

2
≠ k = 0

F = t
Ò

(1 ≠ 3–2) ≠ 3–s ≠ k = 0

F = t ≠ 3–


(1 ≠ 3–2)
s ≠ k


(1 ≠ 3–2)

= 0 (2.87)

Finally, it is possible to match the plane strain formulation of Mohr–Coulomb
in equation (2.59) with equation (2.87) giving expressions for the coe�cients
– and k:

3–Ô
1 ≠ 3–2

= sin „ (2.88a)

kÔ
1 ≠ 3–2

= a · sin „ (2.88b)

The expressions for – and k in plane strain reads:

– = sin „Ô
3


3 + sin2 „
(2.89a)

k = 3a · – (2.89b)

Summary The coe�cients of the Drucker–Prager criterion are summarized
in Table 2.1 for matching the Mohr–Coulomb-model in di�erent stress states.
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Table 2.1: Coe�cients of the Drucker–Prager criterion matching the Mohr–Coulomb-
model for di�erent stress states.

Stress state – k

Triaxial compression
2 sin „Ô

3(3 ≠ sin „)
3a · – = 6a · sin „Ô

3(3 ≠ sin „)

Triaxial extension
2 sin „Ô

3(3 + sin „)
3a · – = 6a · sin „Ô

3(3 + sin „)

Plane strain
sin „Ô

3


3 + sin2 „
3a · – = 3a · sin „Ô

3


3 + sin2 „

2.6.3 Yield Surface in Haigh-Westergaard Coordinates

The Drucker–Prager criterion may easily be stated in Haigh-Westergaard co-
ordinates. Inserting the relations fl =

Ô
2J

2

and › = I
1

/
Ô

3 from chapter 2.2.4
gives:

F =


J
2

≠ –I
1

≠ k = 0

=∆ flÔ
2

≠
Ô

3 · –› ≠ k = 0 (2.90)

Thus, the Drucker–Prager yield surface in Haigh–Westergaard coordinates
is:

fl = fl(›, ◊) =
Ô

6–› +
Ô

2k (2.91)

This is used to sketch the Drucker–Prager yield surface in the �-plane in
Figures 2.7 and 2.8 for the di�erent expressions of the –-coe�cient. The Mohr–
Coulomb yield surfaces are also sketched showing how di�erent –-coe�cients
correspond to di�erent calibrations of the Drucker–Prager-model.
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Figure 2.7: Yield surfaces of Drucker–Prager with the di�erent –-coe�cients, along
with the Mohr–Coulomb yield surfaces.

Figure 2.8: Detailed view of the yield surfaces.
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2.6.4 Hardening Parameter

A possible hardening formulation for the Drucker–Prager criterion is to let sin fl

be the hardening parameter, where fl is the mobilized friction angle. As stated
in section 2.3.6, strain hardening relates the hardening parameter directly to
accumulated plastic strains. If it is assumed that there exists a unique relation
between hardening parameter sin fl and accumulated plastic strains ⁄ = �—⁄,
results from laboratory tests may be used to express this relation. NTNU/NTH
research supports this assumption (Nordal, 2012a). The hardening parameter
may easily be related to the criterion through the –-coe�cients in Table 2.1, by
relating the coe�cient to mobilized friction sin fl rather than ultimate friction
sin „. Thus, the – = –(sin fl) increases from a low value, possibly zero, up to
the failure value – = –(sin „).

It should be noted that even though the mobilized friction arises from the
stress state, after calibration from laboratory tests, the mobilized friction is
defined as a hardening parameter independent of the stress state. The devel-
opment of the hardening parameter only relates to accumulated plastic strains,
not to the actual stress state.

In order to establish a relation between sin fl and ⁄ = �—⁄, triaxial tests
may be used. Assuming associated flow rule gives:

—Áp

1

= —⁄
ˆF

ˆ‡
1

= —⁄

A
s

1

2
Ô

J
2

≠ –
F

B

(2.92a)

—Áp

3

= —⁄
ˆF

ˆ‡
3

= —⁄

A
s

3

2
Ô

J
2

≠ –
F

B

(2.92b)

For triaxial conditions, the second deviatoric invariant relates to the princi-
pal stresses through

Ô
J

2

= 1Ô
3

q = 1Ô
3

(‡
1

≠ ‡
3

). The di�erence between the
principal plastic strains is then:

—Áp

1

≠ —Áp

3

= —⁄
s

1

≠ s
3

2
Ô

J
2

= —⁄
Ô

3 ‡
1

≠ ‡
3

2(‡
1

≠ ‡
3

) =
Ô

3
2 —⁄ (2.93)

By subtracting the elastic strains from the total strains, changes in the plas-
tic parameter —⁄ can be found for each increment of the triaxial test. Now,
mobilized friction may be plotted versus accumulated plastic strains as seen
in Figure 2.9, and a unique relation can be obtained. The relation may for
instance be a quarter of an ellipse or a superellipse or a hyperbola asymptot-
ically reaching the ultimate friction sin „. As coe�cients of the yield function
now is dependent on the mobilized friction, which in turn is dependent on the
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accumulated plastic strains, the yield function itself is dependent on more than
only the stress state, giving F = F (‡, ⁄).

Figure 2.9: Sketch of accumulated plastic strains plotted against mobilized friction
for a drained triaxial test. (Nordal, 2012a, Figure 6.21)

It may be seen from equation (2.93) that it also holds for non-associated
flow if a properly chosen potential function Q is used.

2.6.5 Dilatancy and Dilatancy Control

To account for the dilatancy e�ects of soils, non-associated slow may be intro-
duced by the plastic potential function Q. A simple adjustment of the yield
function is:

Q =


J
2

≠ –
Q

· I
1

≠ C = 0 (2.94)

where –
Q

may be taken as the –-coe�cients of Table 2.1 dependent on a
dilation angle Â instead of the friction angle „. The constant C is di�erentiated
for any application of the plastic flow rule, but is used when potential functions
are visualized at given stress states.

If –
Q

is controlled by the single input dilatancy parameter only, the repre-
sentation of reality may be incorrect. This is in particular true if hardening
is included from an initial isotropic state, causing plastic flow for the whole
stress path. Some refinement of the dilatancy control is desirable. A possible
formulation is to make an input dilatancy parameter Â

0

define a normalized
–

Q0

by the previous stated expressions in Table 2.1. Further, the actual di-
latancy may be formulated as a function of the normalized dilatancy and as
many parameters as desired, –

Q

= –
Q

(–
Q0

, c
1

, c
2

...).
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The plastic flow rule for non-associated flow and the chosen plastic potential
function, results in:

dÁp

V

= d⁄

A
ˆQ

ˆ‡
1

+ ˆQ

ˆ‡
2

+ ˆQ

ˆ‡
3

B

= d⁄

A
s

1

2
Ô

J
2

+ s
2

2
Ô

J
2

+ s
3

2
Ô

J
2

≠ 3–
Q

B

= ≠3–
Q

d⁄ (2.95)

Using the expression for the plastic increment in equation (2.93), triaxial
tests o�ers the possibility to plot –

Q

versus accumulated plastic strains for
each increment. The –

Q

-variation for accumulated plastic strains may now be
approximated by calibration of a function.

In addition to a plastic strain dependency, the dilation may be dependent
on the e�ective mean stress level, as sketched in Figure 2.10. A reference mean
stress p

ref

may be defined for which a stress level below, i.e. p < p
ref

, the soil
dilates in an undrained triaxial test, while for stress levels greater, i.e. p > p

ref

,
the soil contracts. The reference stress may be a stand-alone user-defined input
value, or connected to a "critical state" defined by for instance a critical void
ratio.

Figure 2.10: Sketch of a possible mean stress dependent dilation formulation.

When applying the conditions of no volumetric strains in undrained condi-
tions, it may be observed that the mean stress change and –

Q

relates through:

dÁ
V

= dÁe

V

+ dÁp

V

= dp

K
≠ 3–

Q

d⁄ = 0 (2.96)

For this condition to be fulfilled, a positive –
Q

needs to imply a positive mean
stress change, hence dilative behavior. Negative –

Q

results in contractive be-
havior. It is seen that –

Q

and K governs the mean stress change.
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2.7 State Parameter for Sands and Sand Modeling
The void ratio is a parameter that describes the current state of the soil.
However, this is a reference point that depends on the mean stress level. A
higher mean stress should give a more compact soil and lower void ratio. These
are connected by a state parameter that may be used in constitutive modeling
of sands.

2.7.1 A State Parameter for Sands

Been and Je�eries (1985) proposed a state parameter for sands that describes
whether the density of sand at a given stress level gives loose or dense sand.
For a given void ratio e at a high mean stress level, the sand will act as a
loose sand. However, at small mean stress levels, the same sand acts as dense.
The reference condition from which the state of the sand is defined by, rests
on there being a "unique, repeatable particle arrangement at the steady state
condition" (Been and Je�eries, 1985, p. 101).

The concept of the state parameter is defined by whether the sand is close to
or far away from the steady state condition. By steady state, it is here referred
to a critical or ultimate state that is obtained at large strains. A possible
definition is "an ultimate condition in which plastic shearing could continue
indefinitely without changes in volume or e�ective stresses" (Muir Wood, 1990,
p. 139).

In e-log I
1

-plane, two lines are defined. One line corresponds to the critical
state and one parallel line to the current state, both with inclination ⁄ú. The
vertical distance between the lines are the state parameter. This are illustrated
in Figure 2.11. In other words is the state parameter the di�erence in void ratio
between current and critical state for any constant mean stress level (Been and
Je�eries, 1985):

Âú = e
⁄

≠ e
ss

(2.97)

To distinguish the state parameter and the inclination from dilation angle and
plastic parameter, they are here denoted with asterisks in superscript. The
void ratio for the current and the critical state are respectively:

e = e
⁄

≠ ⁄ú log I
1

(2.98a)
e

cr

= e
ss

≠ ⁄ú log I
1

(2.98b)

The state parameter is negative for dense sand, zero at the critical state
and positive for loose sand.
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Figure 2.11: Illustration of the state parameter Âú (Been and Je�eries, 1985, Figure
2).

2.7.2 A Sand Model Applying the State Parameter

An application of the state parameter in a model for sand was presented by
Muir Wood et al. (1994), later revised and extended by Gajo and Muir Wood
(1999b) and Gajo and Muir Wood (1999a). The model is sometimes referred
to as Severn Trent sand model and a short introduction is given here.

Triaxial compression conditions are assumed, hence ‡
1

= ‡
a

and ‡
2

= ‡
3

=
‡

r

and a stress ratio ÷ is defined:

÷ = q

p
= ‡

1

≠ ‡
3

1

3

(‡
1

+ 2‡
3

)
(2.99)

For cohesionless soil like sands, the p-q-formulation of the Mohr–Coulomb
criterion reduces equation (2.99) to the inclination M from equation (2.71):

÷ = q

p
= M = 6 sin „

3 ≠ sin „
(2.100)

An available peak stress ratio M
p

is assumed to be dependent on the state
parameter Âú, the critical state stress ratio M

cr

and a constant k:

M
p

= M
cr

≠ kÂú (2.101)



38 Theoretical Foundation

Now, a hardening relation that connects stress ratio change to distortional
strain Á

q

is used, assuming the soil want to achieve the available stress ratio:
÷

M
p

= Á
q

B + Á
q

(2.102)

The parameter B governs the development of strains. Equation (2.102) fulfills
the following properties:

d÷

dÁ
q

-----
Áq=0

= M
p

B
(2.103a)

lim
ÁqæŒ

÷ = M
p

(2.103b)

The sand will now always search the available stress ratio defined in equation
(2.101) for the current state parameter value.

Finally, a flow rule is necessary to relate volumetric strains to distortional
strains. Muir Wood et al. (1994) assumed a simple relation where:

dÁ
p

dÁ
q

= A(M
cr

≠ ÷) (2.104)

For the special case of A = 1, the flow rule reduces to the flow rule of the
original Cam Clay model (Muir Wood et al., 1994).

The initial value of the state parameter is of special importance. Initially
deviatoric strains are zero, thus for a dense sand, the model will aim for a
high peak stress, with post-peak softening when the state parameter evolves
towards critical state. This may be seen by inserting a negative value for
the state parameter in equation (2.101). The sand will now strive to reach a
higher stress ratio than at critical state. On the contrary, for loose sand, the
model asymptotically approach the critical state, continuously adjusting the
aim towards the critical state. The Severn Trent model is now able to simulate
the behavior of sand, sketched in Figure 2.12.

By simulations of Hokksund sand, Tadesse and Nordal (2002) showed that
the model performs well, but an adjustment of the constants A, B and k were
proposed. In particular A, but also k and B, exhibited a variation over the
relevant testing interval. A state parameter dependency were introduced and
linear regression were performed to obtain a best fit linear line. This introduces
a second degree dependency of the state parameter Âú to the available stress
ratio in equation (2.101). With this modification, the model simulated the
behavior of the sand well. Tadesse and Nordal (2002) pointed out that due to
the state parameter dependency of A, attention should be paid to improve the
flow rule of the model.
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(a) Stress ratio-distortional strain curve. (b) Volumetric strain-distortional strain
curve.

Figure 2.12: Figure showing typical drained triaxial compression tests on sand for
(1) dense sand at low stress level, (2) dense sand at medium stress level
and (3) loose sand at low stress level (Muir Wood et al., 1994, Figure
1).

2.8 Numerical Methods
The plastic strains are controlled by the plastic parameter d⁄, which is a non-
linear scalar that is not possible to integrate analytically in general. Thus,
numerical methods are needed in the implementation of a constitutive model.

2.8.1 Stress Integration

A possible numerical method needed for implementation of constitutive modes,
is the generalized trapezoidal rule. For a single-variable non-linear function
y = f(x), this is written as (Cook et al., 2002):

y
n+1

= y
n

+

S

U(1 ≠ “) dy

dx

-----
n

+ “
dy

dx

-----
n+1

T

V —x (2.105)

where 0 Æ “ Æ 1 and y
n+1

is the wanted output value for the next step after
the known y

n

-value. “ = 0 and “ = 1 correspond to the Euler forward and the
Euler backward integration respectively, but “ may also take other values.

Explicit methods, such as the Euler forward integration, are in general less
computational demanding than implicit methods, such as the Euler backward
integration. Implicit methods use the calculated information at the end of the
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step until a certain given tolerance is reached. An iterative corrector proce-
dure enforces the step within the tolerance before the next step is calculated.
Explicit methods use the information from the previous step to calculate all
information in the next step. This causes the explicit method to drift away
from the real solution. The greater steps the greater error. While each step
in an implicit method is computational costly, it produces small errors even
for large steps. Explicit methods are computationally cheaper, but demands
smaller steps. The choice is hence a choice between few, expensive steps or
many, cheap steps.

For a given strain increment a unique stress increment may be found, even
for a linear elastic-perfect plastic material model at failure. This is not the case
the other way. Thus, the non-linear equation that a computer code needs to
solve in each sampling point is Hooke’s law from equation (2.33), reproduced
in equation (2.106)

—‡ = D—Áe (2.106)

Now, using a system formulation of the trapezoidal rule in equation (2.105)
for a stress independent sti�ness matrix, the stress in the next step may be
written as:

‡
n+1

= ‡
n

+ D
Ë
(1 ≠ “)—Áe

n

+ “—Áe

n+1

È
(2.107)

Inserting strain decomposition and the flow rule from equations (2.31) and
(2.39) gives

‡
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= ‡
n

+ D—Á ≠ D—⁄

S
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ˆ‡

-----
n

+ “
ˆQ

ˆ‡

-----
n+1

T

V (2.108)

where ‡tr

n+1

is an elastic trial stress that corresponds to the new stress if the
step is purely elastic. The trial stress is constant for the whole step.

As the implicit method often performs well on today’s computer for static
problems, only this method will be further discussed.

2.8.2 Newton–Raphson Method

Newton–Raphson method is an iteration method for solving the non-linear
equation, f(x) = 0, for single-variable function f with a continuous derivative
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f Õ. The method may be expressed as (Kreyszig, 2006):

xi+1 = xi ≠ f(xi)
f Õ(xi) (2.109)

(a) Newton–Raphson method,
with updated derivative.

(b) Modified Newton–Raphson method,
without updated derivative.

Figure 2.13: Two variants of the Newton–Raphson method for a non-linear function
f(x) = 0.

Figure 2.13a shows the original Newton–Raphson method with updated
derivatives for all iterations. To reduce computational demanding calculations,
the modified Newton–Raphson method, shown in Figure 2.13b, does not update
the derivatives, but as a consequence, more iterations are needed.

The iteration method requires a termination criterion or a defined tolerance.
When the tolerance is reached, the last solution is accepted as a su�ciently
good representation of the real solution. The method does not guarantee con-
vergence, and another stop criterion of how many iterations that may be al-
lowed should be included in any implementation. It may be shown that if
certain conditions are fulfilled, the convergence is of second order, giving rapid
convergence (Kreyszig, 2006). Thus, if a tolerance tol = 10≠6 may be fulfilled,
only one more iteration should be necessary to fulfill a tolerance tol = 10≠12.
An important condition for convergence is that the starting value x0 is su�-
ciently close to the real solution s giving f(s) = 0.

Now, for a system of linear equations, equation (2.109) may be written as:

xi+1 = xi ≠ (Ji)≠1f(xi), where Ji = ˆf
ˆx

-----
x=x

i

(2.110)
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where J is the Jacobian matrix.
In the elasto-plastic domain of the stress space, a plastic corrector, enforcing

the stress back to the yield surface is necessary. The set of elasto-plastic
equations in equation (2.108) gives the following condition for a finite step
with the implicit method (“ = 1):

‡
n+1

≠ ‡tr

n+1

+ —⁄DˆQ

ˆ‡
= 0 (2.111)

Further, the plastic yield function must remain F = 0 during the entire yielding
process. For the next step, the stress state contains six unknown cartesian
stresses and an unknown plastic multiplier ⁄. Thus, there are seven equations
gathered in a vector r and seven unknowns gathered in a vector v

n+1

:

r =

S

WU ‡
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≠ ‡tr
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T

XXXXXXXXXXXXV

n+1

(2.112)

Using the Newton–Raphson method for systems from equation (2.110) to
solve the system of non-linear equations for the unknown in equation (2.112),
the following iteration must be executed:

vi+1

n+1

= vi

n+1

≠

Q

a ˆr
ˆv

n+1

-----

i

R

b
≠1

ri (2.113)

Due to small steps and small changes in stresses for a strain increment, a proper
starting value for the first iteration for the unknown v

n+1

, may be the known
vector v

n

, such that v0

n+1

= v
n

. A possible termination criterion may be when
the squared length of the vector r is less than a given tolerance:

rT r Æ tol (2.114)

To avoid matrix inversion, equation (2.113) may be transformed to a linear
system of equation on the form Ax = b. Introducing the incremental change
in the vector v

n+1

for two consecutive iterations as —vi+1

n+1

= vi+1

n+1

≠ vi

n+1

, the
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system to solve is:

—vi+1

n+1

= ≠

Q

a ˆr
ˆv

n+1

-----

i

R

b
≠1

ri

Q

a ˆr
ˆv

n+1

-----

i

R

b —vi+1

n+1

= ≠ri (2.115)

Solving the system by Gauss elimination and adding the increment —vi+1

n+1

to
the solution from the previous iteration, results in the next iteration. Thus,
matrix inversion is avoided, reducing the necessary computation time.

The new stress state ‡
n+1

corresponding to a new strain Á
n+1

is now found,
ensuring the condition F (‡

n+1

) = 0.





Chapter 3

Implementation of an
Elasto-Plastic Soil Model

The implementation of an elasto-plastic soil model is done by creating a rou-
tines in Fortran code, based on presented theory and with great help and e�ort
by Rønningen (2014). In this chapter, the calculation process is first explained,
before the implementation is summarized.

3.1 Calculation Process
In PLAXIS there is a possibility to implement user-defined soil models by in
Fortran-code compiled to dll-files. These constitutive models simulate the soil
behavior in a single material point, i.e. the resulting stress increment due to
an applied strain increment. The global behavior is governed by the Finite
Element Method implementation in PLAXIS.

3.1.1 PLAXIS User-Defined Soil Models

For a given material point at a certain stress level, there are four necessary
operations to make the calculation in PLAXIS run (PLAXIS, 2012a):

≠ Initialization of state variables.

≠ Calculation of stresses for the given strain increment

≠ Creation of elastic material sti�ness matrix

≠ Creation of e�ective material sti�ness matrix.

45
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PLAXIS o�ers a set of parameters as input to the user-defined subroutine,
which are previous stresses and state variables, strain and time increments.
The routine is expected to return a set of output parameters, the current
stresses and state variables.

The subroutine is governed by an input parameter to the subroutine, the
IDTask-parameter. There are six IDTasks defined. For each, PLAXIS assigns
di�erent tasks that the global calculation needs at di�erent stages in the cal-
culation process. The two most important is IDTask 1, initializing the model
and the state variables, and IDTask 2, calculating the stress increment for the
given strain increment by a constitutive model (PLAXIS, 2012a).

3.1.2 The Stress Integration Algorithm

For stress integration at the sampling point, an elastic predictor-plastic cor-
rector method is implemented.

According to Rønningen (2014) and Hopperstad and Børvik (2013), the
elastic predictor-plastic corrector method first assumes that the given strain
increment —Á

n+1

for the current step, corresponds to pure elastic loading giving
a trial state. If so, the plastic parameter will not change, such that the trial
state is defined by:

‡tr

n+1

= ‡
n

+ D—Á
n+1

, ⁄tr

n+1

= ⁄
n

(3.1)

Now, if F (‡tr

n+1

, ⁄
n+1

) Æ 0, the strain increment is in fact elastic and the trial
stress is the real stress for the increment:

‡
n+1

= ‡tr

n+1

, ⁄
n+1

= ⁄tr

n+1

(3.2)

However, if F (‡tr

n+1

, ⁄
n+1

) > 0, the trial stress is an inadmissible stress state.
Newton–Raphson method with Gauss-elimination for the linear system from
equation (2.115), reproduced in equation (3.3), should be performed:

Q

a ˆr
ˆv

n+1

-----

i

R

b —vi+1

n+1

= ≠ri (3.3)

vi+1

n+1

= vi

n+1

+ —vi+1

n+1

(3.4)

until a tolerance criterion is fulfilled:

(ri)T ri Æ tol ¥ 10≠12 (3.5)
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When the tolerance criterion is fulfilled, the very last iteration is taken as the
final solution and the output may be extracted from vi+1

n+1

:

‡
n+1

= ‡i+1

n+1

, ⁄
n+1

= ⁄i+1

n+1

(3.6)

For pressure dependent yield criteria, another test must also be checked. The
mean e�ective stress are not allowed to be less than the attraction a if tension
is allowed, or less than zero if tension is not allowed. If violating this, the trial
stress state should then be returned to the apex point. Thus, if ptr

n+1

< ≠a:

‡
n+1

= ‡
ij,n+1

= ≠a · ”
ij

, ⁄
n+1

= ⁄
n

(3.7)

Thus, the algorithm for a given strain increment —Á
n+1

may be summarized
in the following steps (Rønningen, 2014):

1. Calculate trial stress ‡tr

n+1

= ‡
n

+ D—Á
n+1

2. If F Æ 0: Accept trial stress, ‡
n+1

= ‡tr

n+1

3. If F > 0: Perform Newton–Raphson iterations until a tolerance criterion
is fulfilled, ‡

n+1

= ‡i+1

n+1

.

4. If ptr

n+1

< ≠a: Tension cut-o�. Current stress is returned to apex point.

The principle of an algorithm with an elastic predictor-plastic corrector is
illustrated in Figure 3.1 for a yield criterion with hardening.

3.1.3 Modular Programming

The elasto-plastic soil model is implemented by modular programming as de-
veloped by Rønningen (2014) and explained in this section. The structure of
the subroutine is separated into three files, containing a number of subrou-
tines, each with a certain designated task. This separation contains the most
important advantage of modular programming. Two of the three subroutines
are independent of the chosen material model. Thus, it is only one subroutine
that needs to be modified if another material model should be considered. The
same applies for the inclusion of new features into the code. As an example, a
linear elastic-perfect plastic model may be implemented at first. Later, hard-
ening may be introduced causing the need to change only the material model
dependent subroutine.

Implementation of a model requires three files of computer code:
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Figure 3.1: Elastic predictor-plastic corrector algorithm for a yield criterion with
hardening, illustrated in a stress space. (Hopperstad and Børvik, 2013,
Figure 7-18)

≠ Main subroutine, User_Mod.f: For each of the six IDTasks, the routine
calls subroutines that are necessary to calculate the requested output
to PLAXIS. The main subroutine is designed to be independent of the
chosen constitutive model.

≠ Material model dependent helper subroutine, drupra.f: This contains all
material specific operations and subroutines. For the implementation in
this thesis it contains what is relevant and specific for a Drucker–Prager
constitutive model. Examples of material specific modules is establishing
the residual r or calculating the Jacobian matrix J.

≠ Material model independent helper subroutine, helper.f: This contains all
helping routines that are material independent. The most important ma-
terial independent routine is the Newton–Raphson iteration. When ma-
terial specific operations are needed, the modules in the material model
dependent subroutine are called upon.

The architecture is illustrated in Figure 3.2.
The possibility of analytic di�erentiation and creation of Fortran code in

MATLAB also eases the work needed to add new features to or change the
constitutive model. Thus, a large portion of the work in creating the material
model dependent subroutine is basically done by altering a few lines of code
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Figure 3.2: The calculation process of the implemented model (Rønningen, 2014).
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in a MATLAB script. When the whole system is once built, it is a rather
straightforward exercise to include a lot of features in the code (Rønningen,
2014).

Another advantage of this technique is that the main routine file is a more
straightforward routine, making it easier for other to read and understand the
code. The many smaller, yet necessary operations are put into two helper files,
one material dependent and one material independent, and called upon when
needed. Hence, it is easier to grasp the calculation process in the routine,
without getting into all details at once. Each subroutine may be tested for
debugging purposes. This makes it a less overwhelming task to debug the
code.

A module, the vars-module, contains all global variables used in the code.
Thus, all subroutines that activate this module gains access to the global vari-
able. Any variable declared in the module are remembered and the need to
send arrays between subroutines is greatly reduced, giving a cleaner code (Røn-
ningen, 2014).

3.2 Material Independent Subroutines
As discussed above, modular programming opens up the possibility to gather
everything material independent in separate subroutines. The architecture of
the material independent subroutines will be discussed here.

3.2.1 Main Subroutine

The main subroutine of the implementation is given in Appendix C.1. The
IDTask parameter is taken into the code as the first argument in the subroutine.
As explained above, this is the argument governing what PLAXIS want as
output, taking integer values between 1 and 6. In a calculation, each IDTask

may be called several times in for each iteration, and the IDTasks are not
ordered chronologically.

Several more arguments are taken into the main subroutine. The most
important for this implementation are:

≠ IsUndr: Input parameter. For an undrained condition, IsUndr = 1,
while IsUndr = 0 for drained conditions.

≠ Props: Contains model parameters defined by the user is given as input
to the calculation.
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≠ Sig0, Sig: The previous stresses as an input vector and the requested
current stresses as an output vector at current sampling point. Some
additional information is given in the Sig0-vector.

≠ Swp0, Swp: Excess pore pressure given as input at previous step and
requested as output for current step.

≠ dEps: Given strain increment for the current step.

≠ StVar0, StVar: Arrays containing the state variables at previous step
and requested state variables for the current step.

≠ iPl: Plasticity indicator requested as output. iPl = 0 for elastic points,
iPl = 1 for plastic points and iPl = 2 for tension cut-o� points.

After the argument passing the vars-module is activated. Thus, values
stored in parameters in the vars-module may be used by other routines acti-
vating the same module. As the arguments in the main subroutine are not
accessible in other subroutines, this is useful in modular programming if the
relevant arguments are copied to parameters in the vars-module.

In IDTask 1 the state variables are to be initialized, but it is also possible
to initialize the state variables in IDTask 2, as done in this implementation.
The operations done in IDTask 1 is calling zero vectors to avoid any troubles
with undefined vectors in the calculation. Further, all properties is copied to
an array declared in the vars-module.

IDTask 2 contains the constitutive modeling. The stress state is used as
state variables, thus the need to initialize the state variables in IDTask 2, as
Sig0 only contains zeroes in IDTask 1. StVar0 is taken as start values for the
array v0, and strains are copied to accessible arrays and parameters from the
vars-module.

Now, the yield condition is calculated for a trial stress. ipls is a marker to
point out apex point from the trial stress state. If the yield condition for the
trial stress state is greater than zero, the trial stress state is in an inadmissible
region and the Newton–Raphson routine is executed to obtain the new stress
state. If the yield function for the trial stress is less than zero, the step is
elastic and the trial stress is the new stress state. If the hydrostatic stress in
the trial state is less than the attraction, the stress is sent back to the apex. For
undrained conditions, excess pore pressure are calculated from the volumetric
strain at the end of IDTask 2, giving the pore pressure change:

—p
w

= K
w

—Á
V

(3.8)
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where K
w

is the bulk modulus for water.
IDTask 3 and IDTask 6 return the e�ective and the elastic material sti�-

ness matrices respectively, IDTask 4 return the number of state variables and
IDTask 5 return some properties of the material sti�ness matrix. At the end
of the code, all necessary files must be included.

3.2.2 Helper Subroutine

In addition to the main subroutine, a helper subroutine is also material inde-
pendent, given in Appendix C.2. After activation of the vars-module, a set
of parameters necessary for the Newton–Raphson iteration are set. The most
important are the tol parameter, defining the tolerance of the termination
criterion from equation (3.5), and that the starting value for the iteration is
set. For the implementation the tolerance for the length of the vector is set to
10≠6.

The Newton–Raphson iteration implemented first calculates the Jacobian
matrix and the residual for the first iteration. Next, Gauss elimination is
performed for the system in equation (3.3), giving the incremental change in
the unknown vector, which is added to the values of the previous iteration.
At last the length of the residual vector is calculated and compared to the
tolerance. If equation (3.5) is not fulfilled, the iteration continues.

Due to some di�culties, the Newton–Raphson scheme failed for some cal-
culations. Reasons for the failure will be discussed in section 6.5, but an im-
provement that proved to work was to include a recursion loop if the tolerance
was not fulfilled for a given number of iterations. The recursion loop first splits
the strain increment into even smaller increments. Then the Newton–Raphson
iteration runs until the tolerance is fulfilled in each substep. If not fulfilled,
the strain increment is split once again.

In addition to the termination criterion of the residual, some other termi-
nation criteria are necessary. First, if also the recursion loop fail to fulfill the
tolerance, a maximum number of iterations are set. Thus, the splitting of
strain increment are not allowed to continue infinitely. In addition, a stop cri-
terion is included in the recursion loop, ensuring that the loop is never entered
more than one time downstream. In other words, the recursion may only be
performed within the first calling upon itself.

At last the result for the unknown vector is sent back as output to the
calling statement upstream.

The Gauss elimination routine used in the Newton–Raphson iteration, is



3.3. Development of Material Dependent Subroutine 53

developed by Godunov (2009) solely. The routine solves the system of linear
equations in equation (3.3) with scaling and pivoting. Due to lack of time, the
routine was downloaded instead of developing it self as a part of the thesis.

3.2.3 User Interface Subroutine

Even though the user interface subroutine is not independent of the material,
it is briefly described here, as quite little changes between the formulations.
The subroutine contains all necessary information for the user interface in
PLAXIS to work. This includes the number and name of models in the dll-
file, parameter count, names, units and placement. In PLAXIS the user enters
the parameters, and these are given to subroutine in the Props array. The
structure of the interface subroutine is given by PLAXIS (2012a).

3.3 Development of Material Dependent Subroutine
The development process of the material dependent subroutine is briefly sum-
marized. Details of the implementation will be presented in subsequent sec-
tions. Implementation, testing and evaluation of the model was carried out
continuously throughout the semester. In this thesis, these processes is pre-
sented separately. The reader may either follow the structure of the thesis or
jump between the chapters to follow the iterative development of the model.

3.3.1 Linear Elastic-Perfect Plastic Model

At first, the model was implemented as a linear elastic-perfect plastic model,
first with associated flow, then with non-associated flow. Details of its imple-
mentation is presented in section 3.4. Procedures for testing the model are
presented in section 4.1 and the results from the tests are presented in section
5.1. Evaluation and discussion of the results are presented in section 6.2.

3.3.2 Strain Hardening and Stress Dependent Dilatancy

Strain hardening and two simple mean stress dependent dilatancy formula-
tions were included next. This was easily done using the advantage of modular
programming. Necessary adjustments of the MATLAB script was performed.
Details of the implementation is presented in section 3.5. Procedures for test-
ing the model are presented in section 4.2 and the results from the tests are
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presented in section 5.2. Evaluation and discussion of the results are presented
in section 6.3.

3.3.3 Void Ratio Dependent Dilatancy

At last void ratio dependent dilatancy was included. One version with mean
stress dependent elastic sti�nesses was also implemented. This only caused the
need to add a few lines in the Fortran code. Details of the implementation is
presented in section 3.6. Procedures for testing the model are presented in sec-
tion 4.3 and the results from the tests are presented in section 5.3. Evaluation
and discussion of the results are presented in section 6.4

3.4 Linear Elastic-Perfect Plastic Model
A linear elastic-perfect plastic model was implemented first. Such models re-
duce the possibility of errors due to its simplicity. The implementation of the
model to be described in section 3.6.2 is shown in Appendix D.1, yet the struc-
ture of the subroutines has not changed radically. Even the code used for the
linear elastic-perfect plastic model is hence quite similar to the latest version.
Two of the subroutines used were established by analytical di�erentiation in
MATLAB. The MATLAB script used for the latest version is given in Ap-
pendix D.2. Every version of the material dependent code and the MATLAB
script are handed over to the department.

3.4.1 Associated Flow

Isotropic, linear elasticity and associated flow were chosen to be implemented
at first, keeping the model as simple as possible. This causes the need for
only four material parameters, two parameters governing the sti�ness and two
parameters governing the strength. The material dependent code needs to solve
five tasks in the way the main subroutine and the Newton–Raphson iteration
are implemented. These five tasks are:

≠ Establish the 6x6 elastic material sti�ness matrix for an isotropic, linear
elastic material.

≠ Check the yield condition for the trial stress state (elastic predictor).

≠ For the plastic corrector, Newton–Raphson iteration requires the Jaco-
bian matrix.



3.4. Linear Elastic-Perfect Plastic Model 55

≠ For the same reason, the residual vector must be calculated.

≠ For the residual vector, di�erentials of the yield condition with respect
to stresses are needed.

Elastic material sti�ness matrix are calculated in the Dmatrix-subroutine.
All material parameters are first defined, accounting for a possible c-„-reduction
calculation to perform Safety calculations in PLAXIS. The attraction a is not
reduced in the c-„-reduction while the friction angle is reduced in accordance
with the method done for the Mohr–Coulomb model in PLAXIS (2012b):

tan „
reduced

= tan „
input

�Msf
(3.9)

The dilation angle Â need to be checked so that it is not greater than the
friction angle. This is relevant for safety calculations, such that unphysical
behavior is avoided.

The coe�cient – in the Drucker–Prager yield criterion of equation (2.80)
may be chosen as one of the expressions in Table 2.1. Further, the elastic
sti�ness matrix is calculated from Hooke’s law, as written in equation (2.35).
The PLAXIS notation of stress and strain vectors are introduced, such that:
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Thus, the D-matrix is:
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(3.11)

With G and ‹ as input parameters, K is calculated internally in the subroutine
from equation (2.36) as:

K = K

G
G = 3(1 ≠ 2‹)

2(1 + ‹) G (3.12)
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The Dmatrix-subroutine gives a 6x6 array as output.
To check the yield criterion, the stress of the trial state is first calculated

within the calcond-subroutine. Next, stress invariants of the trial state is
calculated and then the yield condition for the Drucker–Prager criterion from
equation (2.80) is checked, where the relation I

1

= 3p is used. The scalar value
of the yield function is given as output. In addition, the starting values for the
Newton–Raphson have been calculated in this subroutine. This is due to some
challenges with convergence in the Newton–Raphson routine. The starting
have been calculated by the use of a proposed solution by Cook et al. (2002),
where a — value were defined as:

— ¥ F
n

F
n

≠ F
trial

(3.13)

where F
n

and F
trial

is the yield functions at the previous step and the trial
state respectively. The starting values ‡

0

for the stress are now set to:

‡
0

= ‡
n

+ —D—Á (3.14)

This should bring the starting values closer to the yield surface and the final
solution. The impact of this adjustment of starting values are greatest when
strain increments that are almost pure elastic is imposed to low stress states.

The Jacobian matrix is calculated in the jacobian-subroutine. By use of
the fortran-function in MATLAB, optimized Fortran codes are created in
Fortran-files. Thus, e�cient codes are easily established by the MATLAB
script. The jacobian-subroutine gives a 7x7 array as output.

Residuals are gathered in the r-vector and calculated in the resi-subroutine.
This subroutine subtracts trial stresses from the stresses for the current itera-
tion, and then adds the product of the material sti�ness and the plastic strain
vector for the current iteration, as stated in (2.112). The 7x1 array giving
the residual vector is the output of the subroutine. The subroutine could eas-
ily have been established from the MATLAB script, but were programmed
manually here.

The differentials-subroutine calculates the vector giving ˆQ

ˆ‡ = ˆF

ˆ‡ for
associated flow. As the jacobian-subroutine this subroutine was created by
the MATLAB script. The output is a 6x1 array giving the di�erentials of the
yield function with respect to the stresses, at the given stress state.

3.4.2 Non-Associated Flow

Non-associated flow implies that there is defined a plastic potential function
that governs the plastic strain increments. The plastic potential function Q
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from equation (2.94) is applied, where the coe�cient –
Q

is taken as a constant
value. Expressions for –

Q

are shown in Table 2.1, but are functions of the
dilation angle Â rather than the friction angle „. By introducing this angle,
the model now requires in total five input parameters, the same parameters as
for the standard Mohr–Coulomb model in PLAXIS.

The introduction of a non-associated flow rule implies the need to change the
resi-subroutine, the jacobian-subroutine and the differentials-subroutine,
as the residual r now is dependent on the plastic potential function. Creation of
the subroutines is easily done in the MATLAB-script, introducing the potential
function as explained.

3.5 Strain Hardening and Stress Dependent Dila-
tancy

To account for a more realistic soil behavior, strain hardening are introduced.
Further, dilatancy are made dependent on the current mean stress.

3.5.1 Strain Hardening and Stress Dependent Dilation Angle

Taking sin fl as the hardening parameter of the Drucker–Prager model, isotropic
friction controlled hardening is related to the yield criterion by making the
–-coe�cient of the yield criterion dependent of the mobilized friction. The re-
lation between the accumulated plastic parameter ⁄ and the mobilized friction
is defined as a hyperbola:

sin fl = H
0

⁄

1 +
H

0

⁄

sin „

(3.15)

Equation (3.15) fulfills the following properties:

lim
⁄æŒ

sin fl = sin „ (3.16a)

dsin fl

d⁄

-----
⁄=0

= H
0

(3.16b)

To make the dilation of the soil dependent on the mean stress, a reference
mean stress p

ref

is defined. As discussed in section 2.6.5, for mean stress
levels greater than the reference stress, the soil should contract for undrained
situations, and vice versa for stress levels smaller. To fulfill this, a linear
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relation between the mean stress and the current dilation angle is defined
directly:

sin Â = sin Â
0

A

1 ≠ p

p
ref

B

(3.17)

where Â
0

and p
ref

are user-defined input values. The current dilation angle Â

gives the coe�cient –
Q

in the plastic potential function. This is expected to
give vertical e�ective stress paths at the mean stress level p = p

ref

.
Implementing this in the subroutine is done by adapting the new equations

in the MATLAB-script and introducing the – = –(⁄)-dependency of the yield
function and the mean stress dependency of the current dilation angle. Two
new parameters need to be defined by the user. The initial "plastic sti�ness"
H

0

, which may be found from triaxial tests as described in section 2.6.5, and
the reference stress p

ref

.
One possible interpretation of the mean stress level may be the critical state

mean stress level. Several possibilities of such a mean stress level exist. The
mean stress that are defined by the critical state line by Been and Je�eries
(1985) state parameter described in section 2.7.1 is one interpretation. An-
other is half the preconsolidation p

c

-stress from the Modified Cam Clay-model.
At this mean stress level the Modified Cam Clay-model will neither contract
nor dilate for an undrained triaxial test. The reference stress is however not
connected to volumetric strains in any way.

3.5.2 Strain Hardening and Stress Dependent Dilation Coe�-
cient

For reasons to be discussed in chapter 6.3.1, the dilation angle from equation
3.17 yields contractive and dilative response for undrained situations, above
and below a mean stress level ¥ 0.5p

ref

, respectively, not above and below the
intended reference stress p

ref

.
Now, the intent of the dilation formulation is to ensure that at the reference

stress level, there is no contractive or dilative response for undrained situations,
i.e. there is no change in the mean e�ective stress level and dp = 0. Some kind
of critical state is reached at p = p

ref

at large strains. For undrained conditions
the volumetric strain is zero, thus:

dÁ
V

= dÁe

V

+ dÁp

V

= dp

K
+ d⁄

ˆQ

ˆp

-----
p=pref

= d⁄
ˆQ

ˆp

-----
p=pref

= 0 (3.18)

As the infinitesimal change of the plastic multiplier is greater than zero for
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plastic loading, the following must be satisfied:

ˆQ

ˆp

-----
p=pref

= 0 (3.19)

The dilation angle Â influence the –
Q

-coe�cient in both the nominator
and the denominator. Thus, it is an easier task to implement the mean stress
dependency of the dilation if the dependency is assumed to be connected to
the value of –

Q

itself, rather than through the dilation angle:

–
Q

= –
Q0

A

1 ≠ p

C
p

· p
ref

B

(3.20)

Here, –
Q0

is the calculated value of the coe�cient where the user-defined input
value Â

0

is used and C
p

is yet to be determined. Due to the dilation angle
influencing the –

Q

-coe�cient in both nominator and denominator, this may
represent more predictive approach. A mean stress change now a�ects the
change in dilative behavior in the same manner for all stress states, independent
of which –

Q

-coe�cient used. Further, –
Q

reduces linearly towards the reference
stress, not in the non-linear fashion as in previous section. The value of the
–

Q0

is calculated in the alfcalc-subroutine.
Demanding the equation (3.19) to be proportional to –

Q

as in equation
(2.95), equation (3.20) may be integrated to find the potential function:

Q =
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≠ C
Q

(3.21)

The factor of 1

3

will govern how fast dilation makes the e�ective stress path
strive to reach the reference mean stress. It may be omitted to make the
dilation evolve faster.

By matching this to the plastic potential function in equation (2.94), the
coe�cient C

p

= 2, and –
Q

needs to be:

–
Q

= –
Q0

A

1 ≠ p

2p
ref

B

(3.22)

Now, equation (3.19) is fulfilled. This relation is included in the MATLAB
script for updated material dependent subroutines.

The parameters that needs to be defined by the user for an application of
the model are still the five parameters of the Mohr–Coulomb model, and in
addition the initial plastic "sti�ness" H

0

and the reference mean stress p
ref

.
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3.6 Void Ratio Dependent Dilatancy
The reference stress p

ref

may be an unfamiliar parameter for the user. Using
Been and Je�eries (1985) state parameter, relations connecting the reference
stress to the void ratio e gives the user more familiar parameters to provide,
and also accounts for a reference stress that may change with the state of the
soil. The elastic sti�ness of the soil may also be implemented as mean stress
dependent.

3.6.1 Void Ratio Dependency with Constant Elastic Sti�ness

The critical state line defined in Figure 2.11 gives state where the structure of
the sand is independent of its initial conditions and any shear loading results
in no mean stress change, dp = 0. Using this, a relation between critical state
mean stress, p

cr

, and a critical void ratio, e
cr

, may be written as:

e
cr

≠ e
ss

= ≠⁄ú log p
cr

(3.23)

Here e
ss

is the critical void ratio at a mean stress level p = 1kPa and ⁄ú is
the inclination of the critical state line in a e-log p-plot. The Modified Cam
Clay model also connects the changes in the void ratio through a logarithmic
relation in a similar way.

In the Modified Cam Clay model, a variant of the logarithmic relation is
used to calculate the volumetric compression of virgin loading. Now, if used
opposite, for undrained situations the critical void ratio need to stay at the
initial void ratio since there is no volume change. The critical stress may then
be calculated as function of the void ratio parameters. If it is assumed that
the reference mean stress is the critical stress of equation (3.23), it is:

p
ref

= 10
≠

e
0

≠ e
ss

⁄ú (3.24)

The user now need to define more parameters than earlier, but they may be
more familiar and connects the reference mean stress to the state of the soil.
e

ss

and ⁄ú may be obtained from a e-log p-plot, and in addition the initial void
ratio e

0

of the soil must be given as input. In total, the model now require
nine material parameters, the five parameters of the Mohr–Coulomb model,
initial plastic sti�ness H

0

and the three new parameters of equation (3.24)
that defines the reference mean stress. Reference mean stress is calculated in
the Dmatrix-subroutine by adding a line in the routine, not causing the need
for any changes in the MATLAB script.
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3.6.2 Mean Stress Dependency of Elastic Sti�ness

Soil exhibits a mean stress dependent sti�ness as discussed in section 2.3.3,
even though this dependency introduces thermodynamic challenges. When
applied to monotonic increasing load, as in triaxial tests, these challenges are
of small concern, as opposed to cyclic loading or unloading/reloading loops.
The dependency may be quite significant if the loading range is wide.

This dependency is implemented by relating a reference sti�ness Gú at a
reference stress pú to the current sti�ness G at current stress p by:

G = Gú
A

p

pú

B
m

(3.25)

As the Poisson’s ratio is constant, the bulk modulus change follow the shear
modulus change, seen from (3.12). It is more correct to regard it opposite, that
the shear sti�ness change follow the bulk sti�ness change. However, the model
were implemented with shear sti�ness as one of the input parameter. This is
the reason for the mean stress dependency is connected to the shear sti�ness.
The exponent m were set to 0.5 as the implementation were intended for sand
simulations.

The stress dependency will actually cause the trial stress ‡
n+1

to change
within the Newton–Raphson iteration. To avoid that this were a part of the
iteration, the previous known mean stress is used as the mean stress level in the
implementation. Thus the trial stress are still constant throughout the strain
increment. It is assumed that this approximation does not introduce any big
errors as the calculation steps are small. The calculation of the sti�ness is
done in the Dmatrix-subroutine. By this assumption the implementation of
this does not cause need for any changes in the MATLAB script.





Chapter 4

Testing the Model

The procedures and settings used for testing the model are described in this
chapter. All settings necessary to verify the results are given.

4.1 Linear Elastic-Perfect Plastic Model

To check the simplest version of the model, a number of simulations were run
in PLAXIS to verify the model’s behavior.

4.1.1 Associated Flow in Single Material Point

The linear elastic-perfect plastic model with associated flow was tested for a
single material point in the SoilTest-application in PLAXIS. Triaxial com-
pression and extension tests were simulated with the Triaxial-module and
driven to a strain level |Á

1

| = 10%. Plane strain test simulations were carried
out in the General-module, applying plane strain conditions —‡

xx

= 0kPa,
—Á

yy

= ≠10%, —Á
zz

= 0%, —“
xy

= 0%. All tests were simulated as drained.
Four di�erent combinations of material parameters and initial stresses were

tested and are summarized in Table 4.1. For comparison, all test simulations
were also executed by the Mohr–Coulomb model in PLAXIS. The Drucker–
Prager model used the –-coe�cient from Table 2.1, coinciding with the Mohr–
Coulomb model for the relevant stress states of the simulated tests, i.e. – =
–

TXC

for triaxial compression and so on.

63



64 Testing the Model

Table 4.1: Parameter sets for validation of linear elastic-perfect plastic model with
associated flow.

G ‹ „ Â a K
0

‡
3

init

[kPa] [≠] [¶] [¶] [kPa] [≠] [kPa]
Set 1 3000 0.3 30 30 1.73 0.6 100
Set 2 3000 0.3 30 30 1.73 0.8 100
Set 3 3000 0.3 30 30 1.73 1.0 100
Set 4 3000 0.3 20 20 1.73 0.6 100

4.1.2 Non-Associated Flow in Single Material Point

The linear elastic-perfect plastic model with non-associated flow was tested
as described in section 4.1.1. One combination of material parameters and
initial stresses were simulated for drained tests of triaxial compression and
triaxial extension. The plane strain conditions with non-associated flow give
too complicated e�ective stress paths for any proper verification. Hence, plane
strain test simulations were not performed. The parameter combination used
in the tested is given in Table 4.2. For comparison, test simulations were also
executed using the Mohr–Coulomb model.

Table 4.2: Parameter set for validation of linear elastic-perfect plastic model with
non-associated flow.

G ‹ „ Â a K
0

‡
3

init

[kPa] [≠] [¶] [¶] [kPa] [≠] [kPa]
Set 5 3000 0.3 30 0 1.73 0.6 100

4.1.3 Loading and Safety Calculations

Safety calculations were executed to detect any di�erence between the imple-
mented Drucker–Prager model and the given Mohr–Coulomb model in PLAXIS,
both linear elastic-perfect plastic models. Drained loading and the drained fac-
tor of safety factor on a foundation were calculated for selected sets of material
parameters. The geometry of the foundation is shown in Figure 4.1. The –-
coe�cient corresponding to plane strain strength of Mohr–Coulomb was cho-
sen.
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Figure 4.1: Geometry of foundation used in the safety calculation.

An evenly distributed load of q = 20kPa is applied to a 2m wide weightless,
rigid foundation resting on homogenous soil. The soil parameters used in the
simulations are summarized in Table 4.3. Di�erent combinations of friction
and dilation angles are tested. To obtain comparable results, tensile stresses
are allowed for the Mohr–Coulomb model whereas no tension cut-o� are im-
plemented in the Drucker–Prager model. As cohesion is given as input in the
Mohr–Coulomb model, the attraction in the Drucker–Prager model is modified
to correspond to a cohesion c = 1kPa.

Table 4.3: Material parameters used in safety calculations.

G ‹ „ Â a
[kPa] [≠] [¶] [¶] [kPa]

Set 6 3000 0.3 30 0 1.732
Set 7 3000 0.3 30 1 1.732
Set 8 3000 0.3 30 2 1.732
Set 9 3000 0.3 30 30 1.732
Set 10 3000 0.3 20 0 2.747
Set 11 3000 0.3 20 20 2.747

The foundation was modeled in PLAXIS. The mesh used in the calculation
is shown in Figure 4.2. Characteristic data for the mesh are summarized in
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Table 4.4 and coordinates for selected points are shown in Table 4.5.

Figure 4.2: The mesh used in the calculation.

Table 4.4: Characteristic mesh data for the model.

Model Plane strain
Element type 15-noded triangles

Number of elements 299
Number of nodes 2503
Avg. element size 0.8179m

Table 4.5: Coordinates of selected points.

Point X Y
A 10.00 0.00
B 9.21 -1.12
K 8.98 -0.03
L 9.11 -1.17

Each parameter set was modeled with four phases, summarized in Table
4.6 with the numerical control parameters for each phase. After the initial
phase, a loading phase was defined with application of the full load. Next,
a safety calculation was performed with the c-„-reduction option in PLAXIS.
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This was done for both the standard Mohr–Colomb model in PLAXIS and the
implemented Drucker–Prager model.

To obtain a smoother curve for the implemented Drucker–Prager model in
the Safety calculations, the iterative procedure control parameters were ad-
justed. The desired minimum and maximum number of iterations were set to
2 and 3, respectively, and the over-relaxation factor was set to 1.0. This gives
slower convergence, which results in the need for more calculation steps. As
a consequence, 1000 additional steps were used. For the Mohr–Colomb model
the desired minimum and maximum number of iterations were set to 3 and
4 for the Safety calculations to obtain better correspondence of the two mod-
els’ results. All other parameters in the Safety calculation and for the loading
phase were set to the default parameters.

Table 4.6: Numerical control parameters for phases used in the calculation. Non-
default values in italic.

Model
Calc.
type

Max
steps

Over-
relaxation
factor

Desired
min
iterations

Desired
max
iterations

Mohr–Coulomb Plastic 250 1.2 6 15
Safety 100 1.2 3 4

Drucker–Prager Plastic 250 1.0 6 15
Safety 1000 1.0 2 3

4.2 Strain Hardening and Stress Dependent Dila-
tancy

The strain hardening and stress dependent dilatancy models are tested in
PLAXIS.

4.2.1 Strain Hardening and Stress Dependent Dilation Angle

To investigate the validity of the stress dependent dilation angle, the model
is tested in the SoilTest-module in PLAXIS. Undrained triaxial compression
tests are performed to see if the model gives dilative and contractive behavior
converging to p = p

ref

, driven to large strains at |Á
1

| = 30%. The material pa-
rameters used are summarized in Table 4.7. The triaxial tests are consolidated
isotropically to ‡Õ

3

= 50kPa, ‡Õ
3

= 100kPa, ‡Õ
3

= 200kPa and ‡Õ
3

= 400kPa.
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For comparison, as far as valid, the Mohr–Coulomb model was also used in
simulations.

Some combinations of p
ref

and Â
0

has been tested to find the mean stress
at large strains.

4.2.2 Strain Hardening and Stress Dependent Dilation Coe�-
cient

The model is tested as in the last section for undrained triaxial tests with
isotropic consolidation to ‡Õ

3

= 100kPa, ‡Õ
3

= 200kPa and ‡Õ
3

= 400kPa. The
parameters used are the same as in last section and are given Table 4.7. For
comparison, the linear elastic-perfect plastic Mohr–Coulomb model is tested.

Table 4.7: Parameter set for validation of the strain hardening and stress dependent
dilation coe�cient model.

G ‹ „ Â
0

a H
0

p
ref

[kPa] [≠] [¶] [¶] [kPa] [≠] [kPa]
Set 12 3000 0.3 30 10 1.73 1000 200

4.3 Void Ratio Dependent Dilatancy
Using the initial and critical void ratios to define the dilatancy, the reference
mean stress, and hence the dilatancy behavior, may be controlled. The model
is used to simulate triaxial tests by Verdugo (1992).

4.3.1 Simulation of Toyoura Sand with Constant Elastic Sti�-
ness

Verdugo (1992) executed a number of undrained triaxial compression tests
on Toyoura sand. All tests were consolidated to isotropically to initial mean
stresses in the range of 1kgf/cm2–30kgf/cm2. The unit kgf/cm2 correspond to
the pressure of 1kg distributed over an area of 1cm2, or 1kgf/cm2 = 98.1kPa.
In the tests the void ratios are held constant during the shearing process.

The initial void ratio e
0

and the friction angle at steady state „ = 31.5¶

is given by Verdugo (1992, p. 191). The sand is cohesionless. As no dilation
angle or Poisson’s ratio is given they had to be assumed. The dilation angle
chosen in accordance with equation (2.75) giving Â

0

= 1.5¶, and a Poisson’s
ratio is set to ‹ = 0.3 as a proper choice for loading conditions.
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Simulations were executed by using SoilTest-module in PLAXIS. Undrained
triaxial compression tests were, driven to large strains at |Á

1

| = 30%.
The steady state line, or critical state line, for the Toyoura sand is repro-

duced in Figure 4.3. By extrapolation to p = 1kPa with the inclination of
the lower stress range, it was found that e

⁄

= 0.974 and ⁄ú = 0.03. However,
the assumption of a linear relation does not fit the whole stress range. As a
remedy, di�erent sets of e

⁄

and ⁄ú are used for the di�erent tests to give the
correct reference mean stress. In other words, the parameters are here fitted
to obtain the reference stress p

ref

at critical state, such that the correct final
mean and deviatoric stress are reached.

Figure 4.3: Void ratio-mean stress critical state line for Toyoura sand (Verdugo,
1992, Figure 4.17a) ).

To better simulate the triaxial tests, the constant elastic sti�ness was ad-
justed with the initial mean stress p

init

. The shear sti�ness was adjusted by a
reference sti�ness Gú at a reference stress pú = 10kgf/cm2 = 981kPa as:

G = Gú
Ú

p
init

pú (4.1)

These parameters and the plastic sti�ness H
0

were optimized by trial-and-error
to give the best simulation of the triaxial tests. It has been emphasized to
keep the values as constant as possible, while still giving a realistic simulation
of the tests. Three di�erent void ratios was tested, e = 0.735, e = 0.833 and
e = 0.906 ≠ 908 by Verdugo (1992). The tests for void ratios e = 0.906 ≠ 908 is
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regarded as the same void ratio, but a slight modification of the ⁄ú-parameter
was done for the simulations. All parameters are summarized in Table 4.8

Table 4.8: Material parameters for the triaxial tests on Toyoura sand with constant
elastic sti�ness.

e
0

Gú pú ‹ „ Â
0

a H
0

e
ss

⁄ú

[≠] [MPa] [kPa] [≠] [¶] [¶] [kPa] [≠] [≠] [≠]
0.735 884 981 0.3 31.5 1.5 0 50 0.9740 0.0691
0.833 1387 981 0.3 31.5 1.5 0 50 0.9740 0.0467
0.906 235 981 0.3 31.5 1.5 0 50 0.9740 0.0309

(0.908) (0.0300)

4.3.2 Simulation of Toyoura Sand with Mean Stress Dependent
Sti�ness

The triaxial tests on Toyoura sand are simulated again when applying the mean
stress dependency of the sti�ness in equation (3.25). Apart from the reference
shear stress Gú and plastic initial sti�ness H

0

, all parameters are the same as
in the last section and are summarized in Table 4.9.

Table 4.9: Material parameters for the triaxial tests on Toyoura sand with stress
dependent elastic sti�ness.

e
0

Gú pú ‹ „ Â
0

a H
0

e
ss

⁄ú

[≠] [MPa] [kPa] [≠] [¶] [¶] [kPa] [≠] [≠] [≠]
0.735 1275 981 0.3 31.5 1.5 0 40 0.9740 0.0691
0.833 700 981 0.3 31.5 1.5 0 30 0.9740 0.0467
0.906 235 981 0.3 31.5 1.5 0 40 0.9740 0.0309

(0.908) (0.0300)



Chapter 5

Results from Calculations

Results from the testing procedures described in the last chapter are presented.
Relevant plots and selected tables are presented to summarize the behavior of
the model.

5.1 Linear Elastic-Perfect Plastic Model

Results from the simulations with the linear elastic-perfect plastic model are
presented in a range of plots.

5.1.1 Associated Flow

Results from triaxial compression tests are plotted in Figures 5.1 and 5.2.
Triaxial extension test results are found in Figures 5.3 and 5.4, while the plane
strain tests are plotted in Figures 5.5-5.8. All test simulations are drained.

The projection of the stresses onto the deviatoric plane (�-plane) are also
plotted for a selection of the tests. The triaxial tests of Set 1 is plotted in
normalized coordinates in Figure 5.9. Plane strain test of Set 3 is plotted in
Figure 5.10 in the �-plane, while all the plane strain tests are also plotted in
normalized coordinates in Figures 5.11 and 5.12. Table 5.1 gives the failure
stress state of the drained plane strain test of Set 3 (point F in Figures 5.7 and
5.10). The –-coe�cient for the material is also given in the table.

71



72 Results from Calculations

Table 5.1: Stress state at failure point F for the drained plane strain test of Set 3.

Stresses at point F
‡

1

= 303.47kPa s
1

= 84.82kPa p = 218.65kPa
‡

2

= 252.48kPa s
2

= 33.83kPa
Ô

J
2

= 105.87kPa
‡

3

= 100.00kPa s
3

= ≠118.65kPa – = 0.1601



5.1. Linear Elastic-Perfect Plastic Model 73

Figure 5.1: Drained triaxial compression tests of Set 1-3.

Figure 5.2: Drained triaxial compression tests of Set 4.
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Figure 5.3: Drained triaxial extension tests of Set 1-3.

Figure 5.4: Drained triaxial compression tests of Set 4.
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Figure 5.5: Drained plane strain test of Set 1.

Figure 5.6: Drained plane strain test of Set 2.
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Figure 5.7: Drained plane strain test of Set 3.

Figure 5.8: Drained plane strain test of Set 4.
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Figure 5.9: Drained triaxial tests of Set 1 in normalized coordinates in deviatoric
plane with the relevant yield surfaces.

Figure 5.10: Drained plane strain test of Set 3 in deviatoric plane.
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Figure 5.11: Drained plane strain test of Set 1-3 in normalized coordinates in devi-
atoric plane.

Figure 5.12: Drained plane strain test of Set 4 in normalized coordinates in devia-
toric plane.
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5.1.2 Non-Associated Flow

Results from the triaxial compression and extension tests are plotted in Figures
5.13 and 5.14, respectively.
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Figure 5.13: Drained triaxial compression tests of Set 5.

Figure 5.14: Drained triaxial extension tests of Set 1-3.
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5.1.3 Loading and Safety Calculations

The vertical deformation of point A, |u
y,A

|, after the loading phases is tabu-
lated together with the final safety factor of the calculations in Table 5.2. In
addition, the relative di�erences between the models are calculated. For mate-
rial parameter Set 8 and 9, selected figures are shown. Figures 5.15–5.16 show
the absolute value of the vertical deformation of point A plotted versus the
�Mstage-multiplier for the loading calculations. This gives comparable results
for the sti�ness of the models.

The total deformation of point A is plotted versus �Msf-multiplier, i.e. the
factor of safety, in Figures 5.17–5.18 for the same material parameter sets. For
full documentation of the results of all material parameter sets, see Appendix E.
It should be noted that the Mohr–Coulomb model gives extensive deformations
that are way larger than the Drucker–Prager model at failure. The plotted
interval does not cover these deformations, in order to see the behavior of the
Drucker–Prager model.

Table 5.2: Summary of results from loading and safety calculations.

Mohr–Coulomb Drucker–Prager Deviations
„ Â |u

y,A

| �Msf |u
y,A

| �Msf |u
y,A

| �Msf
[¶] [¶] [mm] [≠] [mm] [≠] [%] [%]

30

0 7.63 2.33 9.03 2.30 18.3 ≠1.3
1 7.62 2.34 8.95 2.32 17.5 ≠0.9
2 7.61 2.34 8.87 2.33 16.6 ≠0.4
30 7.41 2.34 7.80 2.36 5.3 0.9

20 0 13.84 1.61 17.60 1.59 27.2 ≠1.2
20 10.04 1.61 11.72 1.62 16.7 0.6
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Figure 5.15: Load-deformation curve for material parameter Set 8 („ = 30¶, Â = 2¶).

Figure 5.16: Load-deformation curve for material parameter Set 9 („ = 30¶, Â =
30¶).
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Figure 5.17: Safety factor-deformation curve for parameter Set 8 („ = 30¶, Â = 2¶).

Figure 5.18: Safety factor-deformation curve for parameter Set 9, with friction („ =
30¶, Â = 30¶).
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Figure 5.19: Shadings of incremental shear strains at failure for Mohr–Coulomb
model with material parameter Set 8 („ = 30¶, Â = 2¶).

Figure 5.20: Shadings of incremental shear strains at failure for Drucker–Prager
model with material parameter Set 8 („ = 30¶, Â = 2¶).
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Figure 5.21: Shadings of incremental shear strains at failure for Mohr–Coulomb
model with material parameter Set 9 („ = 30¶, Â = 30¶).

Figure 5.22: Shadings of incremental shear strains at failure for Drucker–Prager
model with material parameter Set 9 („ = 30¶, Â = 30¶).
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5.2 Strain Hardening and Stress Dependent Dila-
tancy

The strain hardening and stress dependent dilatancy models are tested in
PLAXIS to confirm that the model behaves as expected.

5.2.1 Strain Hardening and Stress Dependent Dilation Angle

Plots for the undrained triaxial tests are shown in Figures 5.23-5.26. As the
Mohr–Coulomb dilates infinitely, only the parts relevant for comparison are
included in the figures. A p-q-plot showing e�ective stress paths of all the tests
is shown in Figure 5.27. Some combinations of p

ref

and Â
0

has also been tested
to find the mean stress at large strains, and are shown in Table 5.3.
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Figure 5.23: Undrained triaxial compression test consolidated to ‡3 = 50kPa.

Figure 5.24: Undrained triaxial compression test consolidated to ‡3 = 100kPa.
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Figure 5.25: Undrained triaxial compression test consolidated to ‡3 = 200kPa.

Figure 5.26: Undrained triaxial compression test consolidated to ‡3 = 400kPa.
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Figure 5.27: E�ective stress paths for all undrained triaxial tests with mean stress
and plastic potential function Q at large strains.

Table 5.3: Failure mean stress for some reference stresses and dilation angles.

p
ref

Â
0

p
f

[kPa] [¶] [kPa]

50 5 24.82
10 24.63

100 5 49.71
10 49.25

200 5 99.31
10 98.51
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5.2.2 Strain Hardening and Stress Dependent Dilation Coe�-
cient

Plots for the undrained triaxial tests are shown in Figures 5.28-5.30. As the
Mohr–Coulomb dilates infinitely, only the parts relevant for comparison are
included in the figures. A p-q-plot showing the e�ective stress paths of all the
tests is shown in Figure 5.31 and a stress-strain-plot of all the tests is shown
in 5.32.

Figure 5.28: Undrained triaxial compression test consolidated to ‡3 = 100kPa.
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Figure 5.29: Undrained triaxial compression test consolidated to ‡3 = 200kPa.

Figure 5.30: Undrained triaxial compression test consolidated to ‡3 = 400kPa.
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Figure 5.31: E�ective stress paths for all undrained triaxial tests with mean stress
and plastic potential function Q at large strains.
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Figure 5.32: Stress-strain-plot for all undrained triaxial tests.
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5.3 Void Ratio Dependent Dilatancy
The triaxial tests by Verdugo (1992) were simulated with the model.

5.3.1 Simulation of Toyoura Sand with Constant Elastic Sti�-
ness

Simulations from the SoilTest-application in PLAXIS are shown in Figures
5.33-5.38, plotted over the original tests by Verdugo (1992). The reader should
be aware of that the figures from Verdugo (1992) are somewhat modified. First,
the figures are stretched to obtain kPa as unit rather than kgf/cm2, second,
the p-q-plots are scaled in order to make the axes equal.

Figure 5.33: Stress-strain curves of undrained triaxial tests on sand with void ratio
e = 0.735 (Verdugo, 1992, Figure 4.11a) ).



5.3. Void Ratio Dependent Dilatancy 95

Figure 5.34: E�ective stress paths of undrained triaxial test on sand with void ratio
0.735 (Verdugo, 1992, Figure 4.11b) ).
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Figure 5.35: Stress-strain curves of undrained triaxial tests on sand with void ratio
e = 0.833 (Verdugo, 1992, Figure 4.10a) ).

Figure 5.36: E�ective stress paths of undrained triaxial test on sand with void ratio
0.833 (Verdugo, 1992, Figure 4.10b) ).
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Figure 5.37: Stress-strain curves of undrained triaxial tests on sand with void ratio
e = 0.906–0.908 (Verdugo, 1992, Figure 4.9a) ).

Figure 5.38: E�ective stress paths of undrained triaxial test on sand with void ratio
e = 0.906–0.908 (Verdugo, 1992, Figure 4.9b) ).
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5.3.2 Simulation of Toyoura Sand with Mean Stress Dependent
Sti�ness

Simulations from the SoilTest-application in PLAXIS are shown in Figures
5.39-5.44, plotted over the original tests by Verdugo (1992). The reader should
be aware of that the figures are still modified as described in last section.

Figure 5.39: Stress-strain curves of undrained triaxial tests on sand with void ratio
e = 0.735 (Verdugo, 1992, Figure 4.11a) ).
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Figure 5.40: E�ective stress paths of undrained triaxial test on sand with void ratio
0.735 (Verdugo, 1992, Figure 4.11b) ).
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Figure 5.41: Stress-strain curves of undrained triaxial tests on sand with void ratio
e = 0.833 (Verdugo, 1992, Figure 4.10a) ).

Figure 5.42: E�ective stress paths of undrained triaxial test on sand with void ratio
0.833 (Verdugo, 1992, Figure 4.10b) ).
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Figure 5.43: Stress-strain curves of undrained triaxial tests on sand with void ratio
e = 0.906–0.908 (Verdugo, 1992, Figure 4.9a) ).

Figure 5.44: E�ective stress paths of undrained triaxial test on sand with void ratio
e = 0.906–0.908 (Verdugo, 1992, Figure 4.9b) ).





Chapter 6

Conclusions and
Recommendations for Further
Work

The results from the calculations are discussed and summarized in this chapter.
A summary with the conclusions is given first. Results from testing are further
analyzed. In light of this discussion, it is possible to consider the concept of
modular programming. Recommendations for further work are given at the
end of the chapter.

6.1 Summary and Conclusions
The Drucker–Prager model was implemented by the use of modular program-
ming. First, a linear elastic-perfect plastic model was implemented, thus fulfill-
ing the first objective. Triaxial test simulations gave perfect match between the
implemented model and the standard Mohr–Coulomb model. The Drucker–
Prager model is thus shown to perfectly represent the Mohr–Coulomb criterion
in triaxial conditions. In plane strain tests, the Drucker–Prager model exhibit
an initial yield with a subsequent slide along the yield surface. The e�ective
stress path aims for the point where the strength and plastic flow direction
coincide with the Mohr–Coulomb model. The behavior of the Drucker–Prager
is a little softer close to failure in plane strain, resulting in larger pre-failure
deformations.

To test the model further, load application and safety calculations are per-
formed for a rigid, weightless foundation with even distributed load. Calcu-
lations gives greater deformations from loading for the Drucker–Prager model
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than for the Mohr–Coulomb model. This is due to the softer pre-failure behav-
ior for material points close to the foundation. The safety calculations give the
same factor of safety for the two model, as expected due to the models giving
equal strength.

Two dilatancy formulations were implemented. Both formulations gave
curved potential functions Q, but the first gave turning point in approximately
0.5p

ref

, resulting in unintended behavior. The latter formulation performed as
intended and the reference mean stress was reached in the critical state.

Finally, concepts originating from Been and Je�eries (1985) state parameter
were applied in a reversed way, connecting the reference stress to the void ratio
parameters. Stress dependent sti�ness was included at last. Together with
the inclusion of strain hardening and stress dependent dilatancy, the second
objective is fulfilled.

Undrained tests on Toyoura sand by Verdugo (1992) were simulated for
both constant and stress dependent sti�ness. In both cases, important aspects
of undrained behavior of sand are captured, yet the stress dependent sti�ness
version is superior in correctly simulating the tests. The simulations are a very
good representation of the real tests for strain levels up to 2–3% and above
10%.

During the development of the model, continuous testing has been executed,
meeting the last objective. The concept of modular programming by Rønnin-
gen (2014) has shown to perform well. After establishing the first framework
with material dependent and independent routines, the inclusion of new fea-
tures, or even changing constitutive model, is a manageable and quite straight-
forward task. The concept yields a good tool for implementing and developing
constitutive models of soils. A refinement of the numerical methods should be
considered to ensure converging solutions for all combinations of stress states
and strain increments.

6.2 Linear Elastic-Perfect Plastic Model
The simple concept of a linear elastic-perfect model makes it attractive for first
implementation with subsequent testing of the performance.

6.2.1 Associated Flow in Single Material Point

Associated flow represent the simplest variant of the linear elastic-perfect plas-
tic soil model.
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Triaxial conditions As can be seen from the Figures 5.1-5.4, the imple-
mented Drucker–Prager model simulates the exact same behavior for the tested
sets of material parameters and initial conditions, as the standard Mohr–
Coulomb model in PLAXIS. There is a perfect match between the models
with respect to both sti�ness and strength. This may be seen from the stress
paths and pre-failure stress-strain plots in the figures. Further, a representative
ESP is plotted in normalized �-plane in Figure 5.9. In addition to the ESP, the
Mohr–Coulomb and the Drucker–Prager surfaces for the triaxial compression
and extension states are plotted. This clearly shows that up to failure, the
paths coincide and behaves as expected, following a Lode angle of ◊ = 0¶ for
triaxial compression and ◊ = 60¶ for triaxial extension.

The direction of the plastic flow may also be shown to coincide. This may be
seen from the post-failure volumetric strains, by comparing theoretical solution
from equation (2.74) and inclination of the strain curve in Figures 5.1. The
inclination is equal to the theoretical solution for a drained triaxial compression
test, that for a dilation angle Â = „ = 30¶ is:

dÁp

V

dÁp

1

= 2 sin 30¶

1 ≠ sin 30¶ = 2 (6.1)

This adds up to that the Drucker–Prager model gives a perfect fit with the
Mohr–Coulomb model in triaxial conditions when the proper –-coe�cient are
used. There are no results from the performed calculations that give reasons
to doubt that the implemented model behaves correctly, as it coincides with
the well-tested Mohr–Coulomb model.

Plane strain conditions Figures 5.5-5.8 showing the behavior of plane
strain tests, demonstrate some di�erences between the two models. While
triaxial tests are simulated with a perfect fit, the stress-strain curve and the
ESP of the Drucker–Prager model bends o� at an initial yield point A, seen
in Figures 5.7 and 5.10. The Drucker–Prager model exhibit a softer behavior
from point A up to the failure point F. On the contrary, the Mohr–Coulomb
model exhibit constant sti�ness as expected of a linear elastic-perfect plastic
model.

Reasons for the behavior are as follows. The plastic strain increment is
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given by the yield surface due to associated flow. Thus:
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The –-coe�cient of the Drucker–Prager criterion is earlier correlated in equa-
tion (2.84), such that for plane strain it is:

– = s
22

2
Ô

J
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(6.3)

For the simulated stress situation, see section 4.1.1 for description of details,
the cartesian planes coincides with the principal stress planes due to no shear
stresses. In the equation above, s

22

is hence simply s
2

. As a consequence of
this, the plastic strain vector from equation (6.2) cannot have any component
in ‡

2

-direction at failure. It is seen from the deviatoric plane plots in Figures
5.10-5.12 that for the Drucker–Prager model at failure, the ESP reaches one
of the only two points on the yield surface that is normal to the ‡

2

-axis. The
failure point is where the Mohr–Coulomb surface is tangent to Drucker–Prager
surface. The strength of the models is thus equal. This sliding along the
yield surface out of the hydrostatic plane is the reason for the softer pre-failure
behavior.

The latter part of the volumetric strain curves for the models are parallel.
This shows that the direction of the plastic flow for the two models coincide.
Table 5.1 show the stress state at point F in Figures 5.7 and 5.10, and the
–-coe�cient for the material. The stress state confirms that the plastic strain
vector at point F for the Drucker–Prager model is parallel to the plastic strain
vector at failure for the Mohr–Coulomb model:
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6.2.2 Non-Associated Flow in Single Material Point

Also the test simulations with non-associated flow gives perfect fit between the
models for the triaxial conditions. As expected, no plastic volumetric strains
arise. Plane strain tests are not simulated, due to complicated stress paths as
a result of non-associated flow and plane strain requirements.

6.2.3 Loading and Safety Calculations

When performing loading and safety calculations, a major number of di�er-
ent combinations of strain increments and stress states are calculated. The
robustness of the model is then challenged.

Load application Results from the loading phases show that for the pa-
rameter sets calculated, the Drucker–Prager model gives vertical deformations
of the foundation that are between 5% and 27% greater than for the Mohr–
Coulomb model. Even though the deformations themselves are of small order,
the di�erence between the models is considerable.

The di�erences likely occur due to softer behavior close to failure for plane
strain situations, as discussed above. The region close to the foundation is
subjected to a stress increase that causes yielding and eventually failure in
some points. As the Drucker–Prager model is shown to give softer response
close to failure, greater strains develop at these yielding points before the full
strength is mobilized. This is supported by the load-deformation curves in
Figure 5.15-5.16. The Drucker–Prager curves bend o� moderately for the latter
load increments, which would be the increments driving the material points
above the yield limit into plastic deformations.

For the friction angle „ = 20¶, the di�erence between the models is greater
than for the friction angle „ = 30¶. This supports the argument above, as a
lower friction angle should result in a bigger region being a�ected by the load
application. Thus, the soil volume is driven to larger plastic strains resulting
in larger deformations.

Safety calculations As opposed to the load application, the safety calcu-
lations do not reveal significant di�erences between the models. In fact, dif-
ferences in the factor of safety are in the order of 1% and can be regarded as
negligible. These di�erences are within the continuous adjustment of the factor
of safety at failure. As the strength of the Drucker–Prager model is correlated
to the Mohr–Coulomb model, the ultimate strength at large strains should be
equal for the models. The strength of the material is reduced in accordance to
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equation (3.9). This gives a reduced friction angle „
reduced

with corresponding
reduced strength. As the correlation of the –-coe�cient is set to give equal
strengths, they coincide for all friction angles. The failure surfaces shown by
shadings of incremental shear strain in Figures 5.19-5.22 demonstrate that the
failure mechanisms found should be regarded as the same.

It should be noted that a tremendously higher number of steps with few
iterations is necessary for the Drucker–Prager model to give the factor of safety
resulting in the failure state. PLAXIS models, like the Mohr–Coulomb, should
be expected to perform computationally better and faster compared to a user
defined soil model, as the latter has not been tested and refined for years. The
results give reason to believe that the implemented model behaves reliable and
is stable for calculations for load application and factor of safety.

6.3 Strain Hardening and Stress Dependent Dila-
tancy

Strain hardening and stress dependent dilatancy represent important improve-
ments of the model’s ability to simulate soil behavior.

6.3.1 Strain Hardening and Stress Dependent Dilation Angle

The results for the two di�erent dilatancy formulations presented generally
show the same behavior, with one important exception of the ultimate mean
stress level. General comments of the behavior for both formulations are pre-
sented in section 6.3.2, while only the ultimate mean stress level is considered
here.

Ultimate mean stress level It is evident from Figure 5.27 that the ultimate
mean stress p

f

for undrained tests is not to the reference stress p
ref

, as was
intended. The dilatancy formulation of equation (3.17), giving a dilation angle
Â = 0¶ at the reference stress, was expected to give a vertical e�ective stress
path such that dp = 0. However, the ultimate mean stress is seen from Table
5.3, reproduced as p

f,PLAXIS

in Table 6.1, to be approximately 0.5p
ref

. Reasons
for this behavior are discussed in the following.

When the material reaches the ultimate mean stress, the material has
reached some kind of critical state or steady state. Applying the condition
of no volumetric strains for an undrained state and no mean stress change at



6.3. Strain Hardening and Stress Dependent Dilatancy 109

the critical state, the following requirement is obtained:
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Using the –-expression of triaxial compression from Table 2.1 to introduce
the dilatancy formulation, yields the plastic potential function Q:
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Now, the plastic potential function may be di�erentiated with respect to
the mean stress p. As the requirement of equation (6.5) must be fulfilled by
the numerator, only this is calculated:
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Finally, solving the quadratic equation for the unknown reference mean
stress p = p

f

yields two solution, of which only one has a physical relevance:
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The results from the PLAXIS calculations and the analytic solutions of the
ultimate mean stress level from equation (6.8) are shown in Table 6.1.

Table 6.1: Mean stress at failure for di�erent reference mean stress levels and input
dilation angles.

p
ref

Â
0

p
f,PLAXIS

p
f,ANALYTIC

[kPa] [¶] [kPa] [kPa]

50 5 24.82 24.82
10 24.63 24.63

100 5 49.71 49.63
10 49.25 49.25

200 5 99.31 99.26
10 98.51 98.51
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The dilatancy formulation from equation (3.17) fails to simulate the in-
tended behavior. The small discrepancies between the PLAXIS calculations
and analytical solution in Table 6.1 for dilation angle Â

0

= 5¶, are most likely
a result lower dilation angle causing a slower strive towards the ultimate mean
stress level. For any practical application they represent the same mean stress
level.

This dilatancy formulation demonstrate the importance of keeping track
of dependent and independent variables. The idea of the formulation was
to use the mean stress level to describe the state of the material relative to
the reference mean stress. However, this caused the plastic potential function
to be a curved surface with its turning point at the mean stress level given
by equation (6.8), as may be seen in Figure 5.27. Introducing the mean stress
dependency of the dilation angle causes the current mean stress level to predict
the change in itself. This is not an uncommon practice and is actually the aim
of the idea, yet caution must be paid in order to obtain constitutive models
that perform as intended.

Further, the formulation has one more drawback. Due to the current di-
latancy entering the calculation of the –

Q

-coe�cient in both numerator and
denominator, change in mean stress level causes a non-linear approach of the
dilatancy coe�cient. This may or may not represent a good physical represen-
tation of the material behavior, but the e�ects of a change is hard for the user
to predict and validate. A simpler approach or an approach based on behavior
from laboratory results would both be preferred.

6.3.2 Strain Hardening and Stress Dependent Dilation Coe�-
cient

Except for the ultimate mean stress level, the principal behavior of the two
formulations were the same.

Ultimate mean stress level The stress dependent dilation coe�cient –
Q

was set to fulfill the requirements presented in section 3.5.2. Hence, the prob-
lem of reaching another mean stress level than intended is avoided. Figure
5.31 shows that the material tries to reach the reference mean stress for large
strains, and corresponding deviatoric stress is shown in Figure 5.32. The dila-
tive behavior performs as intended.

General behavior Figures 5.28-5.30 yield no reasons for concern regarding
the performance of the model. Even Figures 5.23-5.26 for the discarded dila-
tancy formulation show satisfying behavior, except for the ultimate mean stress
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level. The initial part of the Mohr–Coulomb and the implemented Drucker–
Prager model generally coincide, which must be regarded as satisfying. The
volumetric strains are small, as expected for undrained simulations. Further,
the development of the volumetric strain change slowly approaches zero. This
is in accordance with the dilatancy formulation.

One issue with the model is that the ESP bends o� too little, in spite of
an input dilation angle of Â

0

= 10¶. The development of plastic strains is
governed by the initial value of the plastic sti�ness, H

0

. Interaction between
Â

0

and H
0

have not been investigated, yet there should be expected that other
choices of initial sti�ness gives another dilative and contractive response. The
choice of a sti�ness H

0

= 1000 may be an unrealistic value, and a comparison
to laboratory tests should be done for further validation of the model.

The model behaves as intended, even though further investigation of its
performance should be carried out. A proper calibration of the plastic sti�ness
according to the procedure described in section 2.6.4, is of special interest to
see how the model behaves for realistic values of H

0

.

6.4 Void Ratio Dependent Dilatancy
By introducing the void ratio relations to the reference mean stress level, the
concept of the model is improved.

6.4.1 Simulation of Toyoura Sand with Constant Elastic Sti�-
ness

Constant elastic sti�ness is simpler and does not violate thermodynamic laws,
yet it lacks an important e�ect of soil behavior.

General behavior Generally, the model is capable of simulating important
aspects of the behavior of the undrained triaxial tests by Verdugo (1992) on
Toyoura sand well. E�ects like softening is captured surprisingly well, with rel-
ative few and simple elements from constitutive soil modeling. By introducing
the void ratio-parameters, variables that may be more familiar to practicing
engineers are used. Even though the overall performance of the model is good,
it is seen from Figures 5.33-5.38 that trade-o�s must be made in matching the
paths. In general, the behavior is captured, but discrepancies remain.

Ultimate strength The ultimate mean strength is determined by the fric-
tion angle, attraction, initial void ratio and the critical state line in the e-log p-
plot. For undrained situations the void ratio is always the initial void ratio
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and defines if dilation or contraction occur. The material will seek towards the
mean stress level that is critical for the initial void ratio, and this mean stress
defines the available strength.

As a consequence of this, which relation chosen to represent the e-log p-
relation is vital for defining the strength. The assumption of a linear relation
is a crude assumption for the Toyoura sand, as may be seen from Figure 4.3.
A bilinear or curved relation would be more suited, yet it require the user to
define more parameters. The stress range of the tests are quite wide, and for a
building project the stresses range are likely far smaller and the linear relation
may be a better fit.

Challenges with constant parameters Even though capturing important
aspects of the behavior well, the model simulates a quite di�erent stress-strain
curve for sand consolidated to lower pressure in Figure 5.33. The choice of
using constant parameters makes it hard to obtain a good fit for all simula-
tions. A constant elastic sti�ness represents another crude assumption causing
great di�erences between the real stress-strain behavior and the tests. Further,
other stress dependencies may exist and the parameters used should hence be
regarded as a curve adaption for best fit, rather than strict physical parameters.

Dilatancy behavior The dilatancy formulation simulates real soil behavior
quite well. However, the e�ect of contracting behavior for low mobilization,
even for mean stress levels below the reference stress, is not caught. This is
seen from the p-q-plots in Figures 5.40, 5.42 and 5.44. An inclusion of this
e�ect would give an even better representation of reality.

6.4.2 Simulation of Toyoura Sand with Mean Stress Dependent
Sti�ness

The introduction of stress dependent sti�ness causes a more realistic behavior.
However, problems with violation of thermodynamic laws arise for cyclic loads
or un-/reloading loops. For triaxial compression tests the loading is monotonic,
thus the problems are avoided and improve the simulations.

General behavior By including the stress dependent sti�ness, the model
performs even better, seen from Figures 5.39-5.44. This appears to give a
major improvement for initial void ratio e = 0.735, yet improvement is seen for
all densities. Up to strain levels of 2–3%, which is most relevant for building
purposes, the representation is very good. Above strain levels of approximately
10% the simulations are also performing well. The main di�erences between
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the real tests and the simulations occur at strain levels between 2–3% up to
10%.

A likely reason for the discrepancy is the lack of a contracting e�ect for low
mobilizations, as discussed above. For these strain levels the di�erence between
real and simulated mean stress levels are greatest. This also implies that the
soil should not gain the increased sti�ness due to increased mean stress as fast
as the model simulates. A softer behavior for medium strain ranges would give
a more appropriate simulation. The di�erences are still of small order and the
model simulates the Toyoura sand well.

6.5 Implemented Routines
This thesis has shown that the concept of modular programming as proposed
by Rønningen (2014) has been implemented and performs well. Discrepancies
discussed in sections above are due to the formulation of constitutive model.
Some challenges with the numerical methods was encountered and should be
considered refined.

6.5.1 Modular programming

The concept of modular programming allows for continuous development of
the model. This makes it easier to consecutively add features and refine the
model. During implementation and development of the Drucker–Prager model
presented, this is proved to be a good approach that allows for testing and
validation of each feature when added.

The discussion above illustrate that drawbacks and lacks in simulations are
explained by the limitations in the formulations of the model. Using modular
programming is an advantage, as improvements regarding the mentioned limi-
tations may be implemented quite easily. This allows the developer to focus on
improving the constitutive model and its behavior, rather than the program-
ming and implementation in itself. The operations done by the MATLAB
script greatly reduces the work necessary to add features. Once the frame-
work is established for a model, further development is a quite straightforward
exercise.

6.5.2 Numerical methods

For some strain increments the Newton–Raphson iteration failed to converge
due to oscillation between two points. For a one-dimensional problem such os-
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cillation occur for the following situation. Starting at the first point (x
1

, f(x
1

),
the root of the tangent function defines the next point of the iteration in
(x

2

, 0). If the tangent of this next point (x
2

, f(x
2

) has its root in (x
1

, 0), this
causes oscillation as these two points, x

1

and x
2

, give each other as solutions.
The same phenomena have been seen during calculations for some unfavorable
combinations of strain increments and stress levels for the seven-dimensional
problem.

The convergence problem was solved by recursion, thus the Newton–Raphson
iteration calls upon itself for a smaller increment when the iteration counter
exceeds a predefined limit. A more sound and stable solution to the con-
vergence problem may be successive overrelaxation (SOR), that may ensure
convergence to cases where the implemented Newton–Raphson iteration fails
(Kreyszig, 2006). SOR introduces an overrelaxation factor Ê by some math-
ematical manipulation. Di�erent choices of Ê may give faster convergence or
ensure convergence for diverging or oscillating iterations.

6.6 Recommendations for Further Work
The Mohr–Coulomb model give di�erent strength limits for triaxial compres-
sion and extension, thus a Lode angle dependency exist. The implemented
Drucker–Prager strength criterion does not depend on the Lode angle, giving
the same strength for all stress situations. To obtain correlation to the Mohr–
Coulomb model, the user needs to define what –-coe�cient to use. A Lode
angle dependency should be included to better simulate the strength of the
soil. A failure surface that includes a Lode angle dependency, but is smooth,
would be an improvement of the model. Such surfaces has been proposed and
may be found in literature.

Mobilization dependency of the dilatancy formulation would improve the
ability to simulate behavior of soil, giving more reliable load-displacement
curves. Further, the numerical scheme should be improved. Even though the
recursion loop has improved the stability of the Newton–Raphson iteration,
a more sound method that is unconditionally stable should be implemented.
FEM-calculations require all iterations to succeed, and even one failed iteration
of thousands breaks the FEM-routine.

Simulations of Toyoura sand has given promising results of the capability
of modeling undrained behavior of sands. However, only a few of the material
parameters were given by Verdugo (1992). Most of them were optimized to
give a best fit. An interpretation of all parameters from laboratory tests with
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subsequent simulations using the model would be of great interest in order to
see how it behaves when parameters are not optimized. If it is possible to use
parameters from laboratory tests to predict the behavior of sand in other stress
situations, the predictive capacity of model is good. If not, any application to
practical problems is harder, if possible at all. More tests over both narrow
and wider stress range would be of interest.

A comparison between the implemented model and other models that are
capable of simulating similar behavior, for instance the Severn Trent model
described in section 2.7.2, should give findings that may improve the model.
The state parameter by Been and Je�eries (1985) give a sound approach to the
critical state and could be included better. This would improve the theoretical
basis for the implemented model.
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Appendix B

Mathematical Derivations

B.1 Lode Angle
A derivation of these coordinates with the sine function is done by Nordal (2012a).
Here the derivation makes use of the cosine function. Inserting J

1

© 0 into
equation (2.15) gives:

s3 ≠ J
2

s ≠ J
3

= 0 (B.1)

The sine and cosine functions has the following properties:

sin(– ± —) = sin – cos — ± cos – sin — (B.2a)
cos(– ± —) = cos – cos — û sin – sin — (B.2b)

Using this, a trigonometric identity may be derived, relating some angle ◊ in a
similar manner as the principal stress s in equation (B.1).

cos(◊ + 2◊) = cos ◊ cos(◊ + ◊) ≠ sin ◊ sin(◊ + ◊)
= cos ◊(cos2 ◊ ≠ sin2 ◊) ≠ sin ◊ · 2 sin ◊ cos ◊

= cos3 ◊ ≠ 3 sin2 ◊ cos ◊ = 4 cos3 ◊ ≠ 3 cos ◊

=∆ cos3 ◊ ≠ 3
4 cos ◊ ≠ 1

4 cos(3◊) = 0 (B.3)

A vector in the �-plane will be the deviatoric part of the stress state, hence
must the magnitude of a deviatoric vector be:

fl =
Ô

s · s =
Ò

s2

1

+ s2

2

+ s2

3

=


2J
2

(B.4)

Expressed in polar coordinates, s must be on the form s = r cos ◊. Inserted
into equation (B.1) results in:

cos3 ◊ ≠ J
2

r2

cos ◊ ≠ J
3

r3

= 0 (B.5)
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Finally, balancing the coe�cients of equations (B.3) and (B.5), expressions for r

and ◊ are obtained:

r = 2
Û

J
2

3 =
Ú

2
3 · fl (B.6)

cos 3◊ = 4J
3

r3

= 3
Ô

3 · J
3

2
Ò

J3

2

(B.7)

The expression for cos 3◊ may be verified to always be within the interval
[≠1, 1] for all values of J

2

and J
3

(Nordal, 2012a). Hence, all solutions of equation
(B.7) give 3◊ œ [0, fi]. As the cosine function is periodic, 3◊ +2fin are all solutions
of equation (B.7). Thus, ◊ + 2fin/3 are all solutions resulting in di�erent values
for cos ◊. Ordered according to ‡

1

> ‡
2

> ‡
3

and substituting s = r cos ◊, the
following relation between principal stresses and Haigh-Westergaard coordinates
are obtained:

S

WWU

‡
1

‡
2

‡
3

T

XXV = 2
Û

J
2

3

S

WWU

cos ◊

cos(◊ ≠ 2fi

3

)
cos(◊ + 2fi

3

)

T

XXV + I
1

3

S

WWU

1
1
1

T

XXV , for ◊ œ [0, fi/3] (B.8)

Another scaled version of the invariant I
1

may also be seen as the longitudinal
coordinate, › = I

1

/
Ô

3, such that the relations between the Haigh-Westergaard
coordinates in stress space, (›, fl, ◊), and the principal stresses are:

S

WWU

‡
1

‡
2

‡
3

T

XXV = ›Ô
3

S

WWU

1
1
1

T

XXV + fl

Ú
2
3

S

WWU

cos ◊

cos(◊ ≠ 2fi

3

)
cos(◊ + 2fi

3

)

T

XXV , for ◊ œ [0, fi/3] (B.9)

For the presented definition of the Lode angle ◊, ◊ = 0¶ correspond to triaxial
compression conditions (along the projection of the ‡

1

-axis), while ◊ = 60¶ corre-
spond to triaxial extension conditions (along the projection negative extension of
the ‡

3

-axis).



B.2. Mohr–Coulomb Yield Surfaces in Haigh-Westergaard Coordinates 135

B.2 Mohr–Coulomb Yield Surfaces in Haigh-Westergaard
Coordinates

If the principal stress are not ordered, the Mohr–Coluomb criterion of equation
(2.53) is defined by six surfaces:

±‡
1

≠ ‡
2

2 = ‡
1

+ ‡
2

2 sin „ + a sin „ (B.10a)

±‡
2

≠ ‡
3

2 = ‡
2

+ ‡
3

2 sin „ + a sin „ (B.10b)

±‡
3

≠ ‡
1

2 = ‡
3

+ ‡
1

2 sin „ + a sin „ (B.10c)

‡
1

(±1 ≠ sin „) ≠ ‡
2

(±1 + sin „) = 2a sin „ (B.11a)
=∆ ‡

2

(±1 ≠ sin „) ≠ ‡
3

(±1 + sin „) = 2a sin „ (B.11b)
‡

3

(±1 ≠ sin „) ≠ ‡
1

(±1 + sin „) = 2a sin „ (B.11c)

In equation (B.9) the principal stresses are given as functions of the Haigh-
Westergaard coordinates. Inserting this into the Mohr–Coulomb criterion gives:

A
1Ô
3

› +
Ú

2
3fl cos ◊

B

(±1 ≠ sin „)

≠
A

1Ô
3

› +
Ú

2
3fl cos

3
◊ ≠ 2

3fi

4B

(±1 + sin „) = 2a sin „ (B.12a)

A
1Ô
3

› +
Ú

2
3fl cos

3
◊ ≠ 2

3fi

4B

(±1 ≠ sin „)

≠
A

1Ô
3

› +
Ú

2
3fl cos

3
◊ + 2

3fi

4B

(±1 + sin „) = 2a sin „ (B.12b)

A
1Ô
3

› +
Ú

2
3fl cos

3
◊ + 2

3fi

4B

(±1 ≠ sin „)

≠
A

1Ô
3

› +
Ú

2
3fl cos ◊

B

(±1 + sin „) = 2a sin „ (B.12c)
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After gathering of terms, this may be expressed as:

± fl

C

cos
3

◊ + 2
3fi

4
≠ cos ◊

D

≠ fl sin „

C

cos
3

◊ + 2
3fi

4
+ cos ◊

D

=
Ô

6a sin „ +
Ô

2› sin „ (B.13a)

± fl

C

cos
3

◊ ≠ 2
3fi

4
≠ cos

3
◊ + 2

3fi

4D

≠ fl sin „

C

cos
3

◊ ≠ 2
3fi

4
+ cos

3
◊ + 2

3fi

4D

=
Ô

6a sin „ +
Ô

2› sin „ (B.13b)

± fl

C

cos ◊ ≠ cos
3

◊ ≠ 2
3fi

4D

≠ fl sin „

C

cos ◊ + cos
3

◊ ≠ 2
3fi

4D

=
Ô

6a sin „ +
Ô

2› sin „ (B.13c)

To simplify the expression some trigonometric relations are used:

cos – + cos — = 2 cos – + —

2 cos – ≠ —

2 (B.14a)

cos – ≠ cos — = ≠2 sin – + —

2 sin – ≠ —

2 (B.14b)

Thus, the following following simplifications can be made:

cos ◊ + cos(◊ + 2
3fi) = cos(◊ + fi

3 ) (B.15a)

cos ◊ ≠ cos(◊ + 2
3fi) =

Ô
3 sin(◊ + fi

3 ) (B.15b)

cos(◊ ≠ 2
3fi) + cos(◊ + 2

3fi) = ≠ cos ◊ (B.15c)

cos(◊ ≠ 2
3fi) ≠ cos(◊ + 2

3fi) = ≠
Ô

3 sin ◊ (B.15d)

cos(◊ ≠ 2
3fi) + cos ◊ = cos(◊ ≠ fi

3 ) (B.15e)

cos(◊ ≠ 2
3fi) ≠ cos ◊ =

Ô
3 sin(◊ ≠ fi

3 ) (B.15f)

Inserting the trigonometric relations and gathering fl = fl(›, ◊) on the left
hand side, the expressions for the Mohr–Coulomb surfaces in Haigh–Westergaard
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coordinates are obtained as:

fl(›, ◊) =
Ô

6a sin „ +
Ô

2› sin „

±
Ô

3 sin(◊ + fi

3

) ≠ cos(◊ + fi

3

) sin „
(B.16a)

fl(›, ◊) =
Ô

6a sin „ +
Ô

2› sin „

±
Ô

3 sin ◊ + cos ◊ sin „
(B.16b)

fl(›, ◊) =
Ô

6a sin „ +
Ô

2› sin „

±
Ô

3 sin(◊ ≠ fi

3

) ≠ cos(◊ ≠ fi

3

) sin „
(B.16c)





Appendix C

Material Independent
Subroutines

C.1 Main Subroutine

1 Subrout ine User_Mod ( IDTask , iMod , IsUndr ,
2 ú iStep , iTer , iEl , Int ,
3 ú X, Y, Z ,
4 ú Time0 , dTime ,
5 ú Props , Sig0 , Swp0 , StVar0 ,
6 ú dEps , D, BulkW,
7 ú Sig , Swp , StVar , i p l ,
8 ú nStat , NonSym, iStrsDep , iTimeDep ,
9 ú iTang , iPr jDi r , iPrjLen , iAbort )

10 use vars
11 I m p l i c i t Double P r e c i s i o n (A≠H,O≠Z)
12

13 I n t eg e r : : IDTask , iMod , IsUndr , iStep , i t e r , i e l , Int
14 Real (8 ) : : X,Y, Z , Time0 , dTime , Props (50 ) , S ig0 (20 ) ,
15 & Swp0 , StVar0 ( nStat ) , dEps (12)
16 Real (8 ) : : D( 6 , 6 ) , BulkW
17 Real (8 ) : : S ig ( 6 ) ,Swp , StVar ( nStat )
18 I n t eg e r : : NonSym, iStrsDep , iTimeDep , iTang , iAbort
19 I n t eg e r : : nStat
20 I n t eg e r : : iP r jD i r ( iPr jLen ) , iPr jLen
21

22 i f ( IDTask . eq . 1 ) then
23 c a l l CopyRVec( Props , c , s ize ( c ) )
24 c a l l MZeroR( StVar0 , 7 )
25 c a l l MZeroR( v0 , 7 )
26 c a l l MZeroR(v , 7 )

139
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27 end i f ! End IDTask 1
28

29 i f ( IDTask . eq . 2 ) then
30 i p l s = 0 ! Rese t t ing t en s i on po int marker
31

32 ! Act ivate i n t e r n a l parameters and s t a r t va lue s
33 i f (ALL( StVar0 ( 1 : 6 ) . eq . 0 d0 ) ) then
34 c a l l CopyRVec(≠Sig0 , StVar0 ( 1 : 6 ) , 6 )
35 c a l l CopyRVec( StVar0 , v0 , 7 )
36 else
37 c a l l CopyRVec( StVar0 , v0 , 7 )
38 end i f
39

40 ! Act ivate s t r a i n s
41 c a l l CopyRVec( dEps ( 1 : 6 ) , de , 6 )
42 epsV=dEps(1)+dEps(2)+dEps(3)+dEps(7)+dEps(8)+dEps (9 )
43

44 ! Ca l cu la te t r i a l s t r e s s e s and y i e l d cond i t i on
45 vs (7 ) = v0 (7 )
46 c a l l ca lcond ( f )
47

48 ! Find c o r r e c t s t r e s s , S ig
49 i f ( i p l s . eq . 2 ) then ! Apex po int
50 v = (/≠a,≠a,≠a , 0 d0 , 0 d0 , 0 d0 , StVar0 (7 )/ ) ! Ca l cu l a t ing v
51 c a l l CopyRVec(v , StVar , 7 ) ! S tor ing v in StVar
52 c a l l MulVec (v,≠1d0 , 7 ) ! Due to sign convent ion
53 c a l l CopyRVec( v ( 1 : 6 ) , Sig , 6 )
54 i p l = 2 ! Tension cut≠o f f po int
55 e l s e i f ( f . ge . 1 d≠6) then ! P l a s t i c increment
56 c a l l NR( v ) ! Ca l cu l a t ing v
57 nrabort = 1
58 c a l l CopyRVec(v , StVar , 7 ) ! S tor ing v in StVar
59 c a l l MulVec (v,≠1d0 , 7 ) ! Due to sign convent ion
60 c a l l CopyRVec( v ( 1 : 6 ) , Sig , 6 ) ! S t r e s s = NR≠s o l u t i o n
61 i p l = 1 ! Fa i l u r e
62 else ! E l a s t i c increment
63 c a l l CopyRVec( S ig t r , v ( 1 : 6 ) , 6 ) ! " Ca l cu la t ing " v
64 v (7 ) = StVar0 (7 ) ! No change
65 c a l l CopyRVec(v , StVar , 7 ) ! S tor ing v in StVar
66 c a l l MulVec ( S ig t r ,≠1d0 , 6 ) ! Due to sign convent ion
67 c a l l CopyRVec( S ig t r , Sig , 6 ) ! S t r e s s = t r i a l s t r e s s
68 i p l = 0 ! E l a s t i c
69 end i f
70
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71 i f ( IsUndr . eq . 1 ) then
72 Swp = Swp0 + BulkWú( dEps(1)+dEps(2)+dEps ( 3 ) )
73 else
74 Swp = Swp0
75 end i f
76

77 end i f ! End IDTask 2
78

79

80 i f ( IDTask . eq . 3 ) then
81 i f ( S ig0 ( 1 5 ) . gt . 1 d≠2)then ! Avoid d i v i d i n g by 0
82 Msf = Sig0 (15)
83 end i f
84 c a l l Dmatrix (D)
85 end i f ! End IDTask 3
86

87 i f ( IDTask . eq . 4 ) then
88 nStat = s ize ( v )
89 end i f ! End IDTask 4
90

91 i f ( IDTask . eq . 5 ) then
92 NonSym = 0 ! 1 for non≠symmetric D≠matrix
93 iStrsDep = 0 ! 1 for s t r e s s dependent D≠matrix
94 iTang = 0 ! 1 for tangent D≠matrix
95 iTimeDep = 0 ! 1 for time dependent D≠matrix
96 end i f ! End IDTask 5
97

98 i f ( IDTask . eq . 6 ) then
99 i f ( S ig0 ( 1 5 ) . gt . 1 d≠2)then ! Avoid d i v i d i n g by 0

100 Msf = Sig0 (15)
101 end i f
102 c a l l Dmatrix (D)
103 end i f ! End IDTask 6
104

105 end subrout ine
106

107

108 i n c lude ’ vars . f ’
109 i n c lude ’ he lpe r . f ’
110 i n c lude ’ drupra . f ’
111 i n c lude ’ usr_add . f ’
112 i n c lude ’ us r_l ib . f ’
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C.2 Helper Subroutine

1 r e c u r s i v e subrout ine NR( vo )
2 use vars
3 I m p l i c i t Double P r e c i s i o n (A≠H,O≠Z)
4 double p r e c i s i o n , i n t e n t ( out ) : : vo (7 )
5 double p r e c i s i o n : : dv (7 ) ! Temporary vec to r
6 double p r e c i s i o n : : Jac (7 , 7 )
7 double p r e c i s i o n : : to l , dotprod , fac , fp , r e s
8 i n t e g e r : : i t r , maxitr , cnt , nc , r e c u r i t r
9

10 ! I n i t i a l i z i n g subrout ine v a r i a b l e
11 i t r = 0
12 t o l = 1d≠6
13 r e s = 1/ t o l
14 r e c u r i t r = 50
15 maxitr = r e c u r i t r +5
16 c a l l CopyRVec( vs0 , vs , 7 )
17 c a l l MZeroR( r , 7 )
18 c a l l MZeroR(dv , 7 )
19 cnt = 1
20

21 ! NR≠r ou t ine
22 do while ( r e s . gt . t o l )
23 i f ( i t r . l e . r e c u r i t r ) then
24 c a l l j a cob ian ( Jac )
25 c a l l r e s i ( r )
26 c a l l gauss ( Jac ,≠r , dv , s ize ( dv ) )
27 c a l l AddVec( vs , dv , 1 d0 , 1 d0 , 7 , vs )
28

29 i t r = i t r +1
30 dotprod = DInProd ( r , r , s ize ( r ) )
31 r e s = sqrt ( dotprod )
32 else i f ( i t r . gt . r e c u r i t r ) then ! Recurs ion loop
33 c a l l pr I ( nrabort )
34 i f ( nrabort . gt . 5 ) then
35 stop
36 end i f
37 cnt = 2ú cnt
38 f a c = 1d0/ real ( cnt , 8 )
39 c a l l MulVec ( de , fac , s ize ( de ) )
40

41 do nc =1, cnt
42 i p l s = 0
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43 c a l l ca lcond ( fp )
44 i f ( fp . gt . 1 d≠6) then
45 c a l l NR( vs )
46 else
47 c a l l CopyRVec( S ig t r , vs ( 1 : 6 ) , 6 )
48 vs (7 ) = vs0 (7 )
49 end i f
50 c a l l CopyRVec( vs , vs0 , s ize ( vs ) )
51 c a l l CopyRVec( vs , v0 , s ize ( vs ) )
52 end do
53

54 nrabort = nrabort+1
55 i t r = i t r +1
56 dotprod = DInProd ( r , r , s ize ( r ) )
57 r e s = sqrt ( dotprod )
58 else i f ( i t r . gt . maxitr ) then
59 stop
60 end i f
61 end do
62

63 ! S to r ing the r e s u l t vs to the output vec to r vo
64 c a l l CopyRVec( vs , vo , s ize ( vs ) )
65

66 end subrout ine
67

68 subrout ine gauss ( a , b , x , n )
69

70 ! Comment , VGS, February 24 , 2014 :
71 ! This subrout ine has been downloaded from
72 ! http ://ww2. odu . edu/~agodunov/computing/programs/ index . html
73 ! Cred i t s : Alexander L Godunov , Department o f Physics ,
74 ! Old Dominion Univers i ty , Norfolk , VA
75

76 !===========================================================
77 ! S o l u t i on s to a system o f l i n e a r equat ions Aúx=b
78 ! Method : Gauss e l i m i n a t i o n ( with s c a l i n g and p ivo t ing )
79 ! Alex G. ( November 2009)
80 !≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
81 ! input . . .
82 ! a (n , n) ≠ array o f c o e f f i c i e n t s for matrix A
83 ! b (n) ≠ array o f the r i g h t hand c o e f f i c i e n t s b
84 ! n ≠ number o f equat ions ( s ize o f matrix A)
85 ! output . . .
86 ! x (n) ≠ s o l u t i o n s
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87 ! comments . . .
88 ! the o r i g i n a l a r rays a (n , n) and b(n) w i l l be destroyed
89 ! dur ing the c a l c u l a t i o n
90 !===========================================================
91 i m p l i c i t none
92 i n t e g e r n
93 double p r e c i s i o n a (n , n ) , b (n ) , x (n)
94 double p r e c i s i o n s (n)
95 double p r e c i s i o n c , pivot , s t o r e
96 i n t e g e r i , j , k , l
97

98 ! s t ep 1 : begin forward e l i m i n a t i o n
99 do k=1, n≠1

100

101 ! s t ep 2 : " s c a l i n g "
102 ! s ( i ) w i l l have the l a r g e s t element from row i
103 do i=k , n ! loop over rows
104 s ( i ) = 0 .0
105 do j=k , n ! loop over e lements o f row i
106 s ( i ) = max( s ( i ) , abs ( a ( i , j ) ) )
107 end do
108 end do
109

110 ! s t ep 3 : " p i vo t ing 1"
111 ! find a row with the l a r g e s t p ivo t ing element
112 pivot = abs ( a (k , k )/ s ( k ) )
113 l = k
114 do j=k+1,n
115 i f ( abs ( a ( j , k )/ s ( j ) ) > pivot ) then
116 pivot = abs ( a ( j , k )/ s ( j ) )
117 l = j
118 end i f
119 end do
120

121 ! Check i f the system has a s i n g u l a r matrix
122 i f ( p ivot == 0 . 0 ) then
123 c a l l prC ( " The matrix i s s i n g u l a r " )
124 return
125 end i f
126

127 ! s t ep 4 : " p i vo t ing 2" in te r change
128 ! rows k and l ( i f needed )
129 i f ( l /= k ) then
130 do j=k , n
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131 s t o r e = a (k , j )
132 a (k , j ) = a ( l , j )
133 a ( l , j ) = s t o r e
134 end do
135 s t o r e = b( k )
136 b( k ) = b( l )
137 b( l ) = s t o r e
138 end i f
139

140 ! s t ep 5 : the e l i m i n a t i o n
141 ! ( a f t e r s c a l i n g and p ivo t ing )
142 do i=k+1,n
143 c=a ( i , k )/ a (k , k )
144 a ( i , k ) = 0 .0
145 b( i )=b( i )≠ cúb( k )
146 do j=k+1,n
147 a ( i , j ) = a ( i , j )≠cúa (k , j )
148 end do
149 end do
150 end do
151

152 ! s t ep 6 : back s u b s t i t u r i o n
153 x (n) = b(n)/ a (n , n)
154 do i=n≠1,1,≠1
155 c =0.0
156 do j=i +1,n
157 c= c + a ( i , j )úx ( j )
158 end do
159 x ( i ) = (b( i )≠ c )/ a ( i , i )
160 end do
161

162 end subrout ine gauss
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Material Dependent Codes

Due to readability, the code below is slightly modified from the actual code. The
code is written in fixed form due to the GNU compiler used does not support free
format. Thus, the first six columns are reserved for special purposes. Below, the
first five columns are removed and some comments are shortened.

D.1 Fortran Subroutine
1 subroutine a l f c a l c ( )
2 use vars
3 Implicit Double Precision (A≠H,O≠Z)
4 double precision : : s i n rho
5

6 s in rho = (H0ú vs ( 7 ) ) / ( 1 d0+H0ú vs (7)/ s i n ( phirad ) )
7 alpha=(2d0ú s in rho ) / ( ( s q r t (3 d0 ) )ú ( 3 d0≠s in rho ) ) !TXC

8 ! a lpha =(2d0ú s inrho )/( ( s q r t (3 d0 ))ú (3 d0+s inrho )) !TXE

9 ! a lpha=s inrho /(( s q r t (3 d0 ) ) ú ( s q r t (3 d0+s inrho úú2))) !PS

10 xky = 3d0ú alpha úa
11

12 end subroutine
13

14 subroutine Dmatrix (D)
15 use vars
16 Implicit Double Precision (A≠H,O≠Z)
17 Real (8 ) : : D( 6 , 6 ) , e , p0
18

19 p0 = ( v0(1)+v0(2)+v0 (3 ) )/3 d0
20 i f ( p0 . l t . 1 d0 ) then
21 p0 = 1d0
22 end i f
23 xG = c (1) ú s q r t ( p0/c (10 ) )

147
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24 BFac = (2 d0 ú(1 d0+c ( 2 ) ) ) / ( 3 d0ú(1≠2d0úc ( 2 ) ) ) ! K/G

25 a = c (3)
26 phirad = c (4)ú pi /180d0 ! F r i c t i on ang le in rad ians

27 phirad = atan ( tan ( phirad )/ Msf )
28 ps i rad = c (5)ú pi /180d0 ! D i l a t i on ang le in rad ians

29 i f ( p s i r ad . gt . phirad ) then ! Necessary f o r Safe ty ≠c a l c u l a t i o n s

30 ps i rad = phirad
31 end i f
32 s i n p s i 0 = s i n ( ps i rad )
33 H0 = c (6)
34 e0 = c (7 )
35 elam = c (8)
36 xlams = c (9)
37 e = ( e0+epsV)/(1≠epsV )
38 pr e f = 1d1 úú ( ( elam≠e )/ xlams )
39

40 do i =1,6
41 do j = 1 ,6
42 Dm( i , j ) =0d0
43 end do
44 end do
45 do i =1,3
46 do j = 1 ,3
47 Dm( i , j ) = (BFac ≠ 2d0/3d0 )úxG
48 end do
49 Dm( i , i ) = (BFac + 4d0/3d0 )úxG
50 Dm ( i +3, i +3) = xG
51

52 end do
53 D = Dm
54

55 end subroutine
56

57 subroutine c a l c s t r i n v ( S i )
58 use vars
59 Implicit Double Precision (A≠H,O≠Z)
60 real (8 ) : : Si1 , Si2 , Si3 , xN1 (3 ) , xN2 ( 3 ) , xN3(3)
61 real ( 8 ) , dimension ( 6 ) , intent ( in ) : : S i
62 integer iOpt
63

64 iOpt = 0
65 ca l l PrnSig ( iOpt , Si , xN1 , xN2 , xN3 , Si1 , Si2 , Si3 , p , q )
66 i f (p . l t .( ≠a ) ) then
67 i p l s = 2
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68 end i f
69 xJ2=(( Si1≠Si2 )úú2 d0+(Si2≠Si3 )úú2 d0+(Si3≠Si1 )úú2 d0 )ú1 d0/6d0
70

71 subroutine ca lcond ( f s )
72 use vars
73 Implicit Double Precision (A≠H,O≠Z)
74 double precision , intent ( out ) : : f s
75 double precision : : dS i g t r ( 6 ) , f0 , beta
76

77 ca l l c a l c s t r i n v ( v0 ( 1 : 6 ) )
78 f 0 = sq r t ( xJ2)≠alpha ú(p)ú3d0≠xky ! y i e l d c r i t e r i o n us ing I1=3p

79

80 ca l l MatVec(Dm, 6 , de , 6 , dS ig t r ) ! E l a s t i c s t r e s s increment

81 ca l l AddVec( v0 ( 1 : 6 ) , dSigtr , 1 d0 ,≠1d0 , 6 , S i g t r ) ! Tr ia l s t r e s s .

82 ca l l c a l c s t r i n v ( S i g t r )
83 f s = sq r t ( xJ2)≠alpha ú(p)ú3d0≠xky ! y i e l d c r i t e r i o n us ing I1=3p

84

85 i f ( f s . gt . 1 d≠6) then
86 i f ( f 0 . l t .≠1d≠6) then
87 beta = f0 /( f0≠f s )
88 ca l l MulVec ( dSigtr , beta , s ize ( dS ig t r ) )
89 ca l l AddVec( v0 ( 1 : 6 ) , dSigtr , 1 d0 ,≠1d0 , 6 , vs0 ( 1 : 6 ) )
90 vs0 (7 ) = v0 (7 )
91 else
92 ca l l CopyRVec( v0 , vs0 , 7 )
93 end i f
94 end i f
95 end subroutine
96

97 subroutine d i f f e r e n t i a l s (A0)
98 use vars
99 Implicit Double Precision (A≠H,O≠Z)

100 double precision , dimension ( 6 ) , intent ( out ) : : A0
101 double precision : : s ig11 , s ig22 , s ig33 , s ig12 , s ig23 , s i g 31
102 double precision : : t2 , t3 , t4 , t5 , t6 , t7 , t8 , t9 , t10 , t11 , t12
103 double precision : : t13 , t14 , t15 , t16 , t17 , t18 , t19 , t20 , t21 , t22
104 double precision : : t23 , t24 , t25 , t26 , t27 , t28 , t29 , t30 , t31
105

106 ca l l MZeroR(A0 , 6 )
107 s i g 11 = vs (1 )
108 s i g 22 = vs (2 )
109 s i g 33 = vs (3 )
110 s i g 12 = vs (4 )
111 s i g 23 = vs (5 )
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112 s i g 31 = vs (6 )
113 xlam = vs (7 )
114

115 t2 = s i g22 ú ( 1 . 0D0/3 .0D0)
116 t4 = s i g11 ú ( 1 . 0D0/3 .0D0)
117 t15 = s i g33 ú ( 2 . 0D0/3 .0D0)
118 t3 = t2+t4≠t15
119 t5 = s i g33 ú ( 1 . 0D0/3 .0D0)
120 t14 = s i g22 ú ( 2 . 0D0/3 .0D0)
121 t6 = t4+t5≠t14
122 t20 = s i g11 ú ( 2 . 0D0/3 .0D0)
123 t7 = t2+t5≠t20
124 t8 = s q r t ( 3 . 0D0)
125 t9 = 1 .0D0/ pr e f
126 t10 = s i n p s i 0 úú2
127 t11 = t10 +3.0D0
128 t12 = 1 .0D0/ s q r t ( t11 )
129 t13 = t2+t4+t5
130 t16 = t3 úú2
131 t17 = t16 ú ( 1 . 0D0/2 .0D0)
132 t18 = t6 úú2
133 t19 = t18 ú ( 1 . 0D0/2 .0D0)
134 t21 = t7 úú2
135 t22 = t21 ú ( 1 . 0D0/2 .0D0)
136 t23 = s i g12 úú2
137 t24 = s i g23 úú2
138 t25 = s i g31 úú2
139 t26 = t17+t19+t22+t23+t24+t25
140 i f ( t26 . l t . 1 d≠6) then
141 t26 = 1d≠6 ! t26 = xJ2 , avoid d i v i d i n g by zero

142 end i f
143 t27 = 1 .0D0/ s q r t ( t26 )
144 t28 = t9 ú t13 ú ( 1 . 0D0/2 .0D0)
145 t29 = t28 ≠1.0D0
146 t30 = s i n p s i 0 ú t8 ú t12 ú t29 ú ( 1 . 0D0/9 .0D0)
147 t31 = s i n p s i 0 ú t8 ú t9 ú t12 ú t13 ú ( 1 . 0D0/1 .8D1)
148 A0(1) = t30+t31≠t7 ú t27 ú ( 1 . 0D0/2 .0D0)
149 A0(2) = t30+t31≠t6 ú t27 ú ( 1 . 0D0/2 .0D0)
150 A0(3) = t30+t31≠t3 ú t27 ú ( 1 . 0D0/2 .0D0)
151 A0(4) = s i g12 ú t27
152 A0(5) = s i g23 ú t27
153 A0(6) = s i g31 ú t27
154

155 end subroutine
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156

157 subroutine r e s i ( r r )
158 use vars
159 Implicit Double Precision (A≠H,O≠Z)
160 double precision , dimension (6 ) : : depspl , d i f f s i g s i g t r
161 double precision , dimension (6 ) : : d e l t a s i g , dqds ig
162 double precision , dimension ( 7 ) , intent ( out ) : : r r
163

164 ca l l MZeroR( rr , 7 )
165 ca l l MZeroR( d i f f s i g s i g t r , 6 )
166 ca l l MZeroR( dqdsig , 6 )
167 ca l l MZeroR( depspl , 6 )
168 ca l l MZeroR( d e l t a s i g , 6 )
169

170 ca l l AddVec( vs ( 1 : 6 ) , S ig t r , 1 d0 ,≠1d0 , 6 , d i f f s i g s i g t r )
171 ca l l d i f f e r e n t i a l s ( dqds ig )
172 ca l l MatVec(Dm, 6 , dqdsig , 6 , depspl )
173 ca l l MulVec ( depspl , ( vs (7)≠v0 ( 7 ) ) , 6 )
174 ca l l AddVec( d i f f s i g s i g t r , depspl , 1 d0 , 1 d0 , 6 , r r ( 1 : 6 ) )
175 ca l l c a l c s t r i n v ( vs ( 1 : 6 ) )
176 ca l l a l f c a l c ( )
177 r r (7 ) = sq r t ( xJ2)≠alpha ú(p)ú3d0≠xky ! I1 = 3p

178

179 end subroutine
180

181 subroutine j a cob ian (A0)
182 use vars
183 Implicit Double Precision (A≠H,O≠Z)
184 double precision , dimension ( 7 , 7 ) , intent ( out ) : : A0
185 double precision : : s ig11 , s ig22 , s ig33 , s ig12 , s ig23 , s ig31 ,xK
186 double precision : : xlam , xlam0
187 double precision : : t2 , t3 , t4 , t5 , t6 , t7 , t8 , t9 , t10 , t11 , t12
188 double precision : : t13 , t14 , t15 , t16 , t17 , t18 , t19 , t20 , t21 , t22
189 double precision : : t23 , t24 , t25 , t26 , t27 , t28 , t29 , t30 , t50 , t31
190 double precision : : t32 , t33 , t34 , t53 , t35 , t36 , t37 , t56 , t38 , t39
191 double precision : : t40 , t41 , t42 t43 , t44 , t45 , t46 , t47 , t48 , t49
192 double precision : : t51 , t52 , t54 , t55 , t57 , t58 , t59 , t60 , t61 , t62
193 double precision : : t63 , t64 , t65 , t66 , t67 , t68 , t69 , t70 , t71 , t72
194 double precision : : t73 , t74 , t75 , t76 , t77 , t78 , t79 , t80 , t81 , t82
195 double precision : : t83 , t84 , t85 , t86 , t87 , t88 , t89 , t90
196

197 s i g 11 = vs (1 )
198 s i g 22 = vs (2 )
199 s i g 33 = vs (3 )
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200 s i g 12 = vs (4 )
201 s i g 23 = vs (5 )
202 s i g 31 = vs (6 )
203 xlam = abs ( vs ( 7 ) )
204 xlam0 = abs ( v0 ( 7 ) )
205 xK = BFacúxG
206 s i np h i = s i n ( phirad )
207

208 t3 = s i g11 ú ( 1 . 0D0/3 .0D0)
209 t5 = s i g22 ú ( 1 . 0D0/3 .0D0)
210 t8 = s i g33 ú ( 2 . 0D0/3 .0D0)
211 t2 = t3+t5≠t8
212 t6 = s i g33 ú ( 1 . 0D0/3 .0D0)
213 t12 = s i g22 ú ( 2 . 0D0/3 .0D0)
214 t4 = t3+t6≠t12
215 t9 = s i g11 ú ( 2 . 0D0/3 .0D0)
216 t7 = t5+t6≠t9
217 t10 = t2 úú2
218 t11 = t10 ú ( 1 . 0D0/2 .0D0)
219 t13 = t4 úú2
220 t14 = t13 ú ( 1 . 0D0/2 .0D0)
221 t15 = t7 úú2
222 t16 = t15 ú ( 1 . 0D0/2 .0D0)
223 t17 = s i g12 úú2
224 t18 = s i g23 úú2
225 t19 = s i g31 úú2
226 t20 = t11+t14+t16+t17+t18+t19 ! t20 = xJ2

227 i f ( t20 . l t . 1 d≠6) then
228 t20 = 1d≠6
229 end i f
230 t21 = xGú ( 2 . 0D0/3 .0D0)
231 t22 = t21≠xK
232 t23 = 1 .0D0/ s q r t ( t20 )
233 t24 = t23 ú ( 1 . 0D0/6 .0D0)
234 t25 = 1 .0D0/ t20 úú (3 . 0D0/2 .0D0)
235 t26 = sq r t ( 3 . 0D0)
236 t27 = 1 .0D0/ p r e f
237 t28 = s i n p s i 0 úú2
238 t29 = t28 +3.0D0
239 t30 = 1 .0D0/ s q r t ( t29 )
240 t31 = xlam≠xlam0
241 t32 = t23 ú ( 1 . 0D0/3 .0D0)
242 t33 = s i n p s i 0 ú t26 ú t27 ú t30 ú ( 1 . 0D0/2 .7D1)
243 t34 = xGú ( 4 . 0D0/3 .0D0)
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244 t35 = t34+xK
245 t36 = t4 ú t7 ú t25 ú ( 1 . 0D0/4 .0D0)
246 t37 = t2 ú t7 ú t25 ú ( 1 . 0D0/4 .0D0)
247 t38 = t2 ú t4 ú t25 ú ( 1 . 0D0/4 .0D0)
248 t39 = t24≠t33+t38
249 t40 = t3+t5+t6
250 t41 = t27 ú t40 ú ( 1 . 0D0/2 .0D0)
251 t42 = t41 ≠1.0D0
252 t43 = s i n p s i 0 ú t26 ú t30 ú t42 ú ( 1 . 0D0/9 .0D0)
253 t44 = s i n p s i 0 ú t26 ú t27 ú t30 ú t40 ú ( 1 . 0D0/1 .8D1)
254 t58 = t15 ú t25 ú ( 1 . 0D0/4 .0D0)
255 t45 = t32+t33≠t58
256 t46 = t24≠t33+t36
257 t47 = t35 ú t46
258 t48 = t24≠t33+t37
259 t62 = t13 ú t25 ú ( 1 . 0D0/4 .0D0)
260 t49 = t32+t33≠t62
261 t66 = t10 ú t25 ú ( 1 . 0D0/4 .0D0)
262 t50 = t32+t33≠t66
263 t51 = t22 ú t50
264 t52 = s i g12 ú t2 ú t22 ú t25 ú ( 1 . 0D0/2 .0D0)
265 t53 = s i g23 ú t2 ú t22 ú t25 ú ( 1 . 0D0/2 .0D0)
266 t54 = s i g31 ú t2 ú t22 ú t25 ú ( 1 . 0D0/2 .0D0)
267 t74 = t4 ú t23 ú ( 1 . 0D0/2 .0D0)
268 t55 = t43+t44≠t74
269 t73 = t2 ú t23 ú ( 1 . 0D0/2 .0D0)
270 t56 = t43+t44≠t73
271 t75 = t7 ú t23 ú ( 1 . 0D0/2 .0D0)
272 t57 = t43+t44≠t75
273 t59 = t22 ú t45
274 t60 = t35 ú t48
275 t61 = t22 ú t46
276 t63 = t22 ú t49
277 t64 = t35 ú t39
278 t65 = t22 ú t39
279 t67 = s i g12 ú t4 ú t22 ú t25 ú ( 1 . 0D0/2 .0D0)
280 t68 = s i g12 ú t7 ú t22 ú t25 ú ( 1 . 0D0/2 .0D0)
281 t69 = s i g23 ú t4 ú t22 ú t25 ú ( 1 . 0D0/2 .0D0)
282 t70 = s i g23 ú t7 ú t22 ú t25 ú ( 1 . 0D0/2 .0D0)
283 t71 = s i g31 ú t4 ú t22 ú t25 ú ( 1 . 0D0/2 .0D0)
284 t72 = s i g31 ú t7 ú t22 ú t25 ú ( 1 . 0D0/2 .0D0)
285 t76 = t23 ú t31 úxG
286 t77 = 1 .0D0/ s i n ( phirad )
287 t78 = H0ú t77 úxlam
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288 t79 = t78 +1.0D0
289 t80 = 1 .0D0/ t79
290 t81 = H0úú2
291 t82 = xlamúú2
292 t83 = 1 .0D0/ t79 úú2
293 t84 = t81 ú t82 ú t83
294 t85 = t84 +3.0D0
295 t86 = 1 .0D0/ s q r t ( t85 )
296 t87 = 1 .0D0/ t85 úú (3 . 0D0/2 .0D0)
297 t88 = t81 ú t83 úxlam ú2 .0D0
298 t89 = 1 .0D0/ t79 úú3
299 t90 = t88≠H0ú t77 ú t81 ú t82 ú t89 ú2 .0D0
300 A0(1 ,1)= t31 ú( t35 ú t45+t22 ú( t24+t36≠s i n p s i 0 ú t26 ú t27 ú t30 ú ( 1 . 0D0/2 .7
301 +D1))+ t22 ú( t24+t37≠s i n p s i 0 ú t26 ú t27 ú t30 ú ( 1 . 0D0/2 .7D1)) )+1.0D0
302 A0(1 , 2 ) = ≠t31 ú( t47+t63≠t22 ú t39 )
303 A0(1 , 3 ) = ≠t31 ú( t51+t60≠t22 ú t39 )
304 A0(1 , 4 ) = ≠t31 ú( t52+t67≠s i g 12 ú t7 ú t25 ú t35 ú ( 1 . 0D0/2 .0D0) )
305 A0(1 , 5 ) = ≠t31 ú( t53+t69≠s i g 23 ú t7 ú t25 ú t35 ú ( 1 . 0D0/2 .0D0) )
306 A0(1 , 6 ) = ≠t31 ú( t54+t71≠s i g 31 ú t7 ú t25 ú t35 ú ( 1 . 0D0/2 .0D0) )
307 A0(1 , 7 ) = ≠t22 ú t55≠t22 ú t56+t35 ú t57
308 A0(2 , 1 ) = ≠t31 ú( t47+t59≠t22 ú t48 )
309 A0(2 , 2 ) = t31 ú( t61+t65+t35 ú t49 )+1.0D0
310 A0(2 , 3 ) = ≠t31 ú( t51+t64≠t22 ú t48 )
311 A0(2 , 4 ) = ≠t31 ú( t52+t68≠s i g 12 ú t4 ú t25 ú t35 ú ( 1 . 0D0/2 .0D0) )
312 A0(2 , 5 ) = ≠t31 ú( t53+t70≠s i g 23 ú t4 ú t25 ú t35 ú ( 1 . 0D0/2 .0D0) )
313 A0(2 , 6 ) = ≠t31 ú( t54+t72≠s i g 31 ú t4 ú t25 ú t35 ú ( 1 . 0D0/2 .0D0) )
314 A0(2 , 7 ) = ≠t22 ú t56≠t22 ú t57+t35 ú t55
315 A0(3 , 1 ) = ≠t31 ú( t59+t60≠t61 )
316 A0(3 , 2 ) = ≠t31ú(≠ t61+t63+t64 )
317 A0(3 , 3 ) = t31 ú( t65+t22 ú t48+t35 ú t50 )+1.0D0
318 A0(3 , 4 ) = ≠t31 ú( t67+t68≠s i g 12 ú t2 ú t25 ú t35 ú ( 1 . 0D0/2 .0D0) )
319 A0(3 , 5 ) = ≠t31 ú( t69+t70≠s i g 23 ú t2 ú t25 ú t35 ú ( 1 . 0D0/2 .0D0) )
320 A0(3 , 6 ) = ≠t31 ú( t71+t72≠s i g 31 ú t2 ú t25 ú t35 ú ( 1 . 0D0/2 .0D0) )
321 A0(3 , 7 ) = ≠t22 ú t55≠t22 ú t57+t35 ú t56
322 A0(4 , 1 ) = s i g12 ú t7 ú t25 ú t31 úxGú ( 1 . 0D0/2 .0D0)
323 A0(4 , 2 ) = s i g12 ú t4 ú t25 ú t31 úxGú ( 1 . 0D0/2 .0D0)
324 A0(4 , 3 ) = s i g12 ú t2 ú t25 ú t31 úxGú ( 1 . 0D0/2 .0D0)
325 A0(4 , 4 ) = t76≠t17 ú t25 ú t31 úxG+1.0D0
326 A0(4 , 5 ) = ≠s i g 12 ú s i g 23 ú t25 ú t31 úxG
327 A0(4 , 6 ) = ≠s i g 12 ú s i g 31 ú t25 ú t31 úxG
328 A0(4 , 7 ) = s i g12 ú t23 úxG
329 A0(5 , 1 ) = s i g23 ú t7 ú t25 ú t31 úxGú ( 1 . 0D0/2 .0D0)
330 A0(5 , 2 ) = s i g23 ú t4 ú t25 ú t31 úxGú ( 1 . 0D0/2 .0D0)
331 A0(5 , 3 ) = s i g23 ú t2 ú t25 ú t31 úxGú ( 1 . 0D0/2 .0D0)
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332 A0(5 , 4 ) = ≠s i g 12 ú s i g 23 ú t25 ú t31 úxG
333 A0(5 , 5 ) = t76≠t18 ú t25 ú t31 úxG+1.0D0
334 A0(5 , 6 ) = ≠s i g 23 ú s i g 31 ú t25 ú t31 úxG
335 A0(5 , 7 ) = s i g23 ú t23 úxG
336 A0(6 , 1 ) = s i g31 ú t7 ú t25 ú t31 úxGú ( 1 . 0D0/2 .0D0)
337 A0(6 , 2 ) = s i g31 ú t4 ú t25 ú t31 úxGú ( 1 . 0D0/2 .0D0)
338 A0(6 , 3 ) = s i g31 ú t2 ú t25 ú t31 úxGú ( 1 . 0D0/2 .0D0)
339 A0(6 , 4 ) = ≠s i g 12 ú s i g 31 ú t25 ú t31 úxG
340 A0(6 , 5 ) = ≠s i g 23 ú s i g 31 ú t25 ú t31 úxG
341 A0(6 , 6 ) = t76≠t19 ú t25 ú t31 úxG+1.0D0
342 A0(6 , 7 ) = s i g31 ú t23 úxG
343 A0(7 , 1 ) = ≠t75≠H0ú t26 ú t80 ú t86 úxlam ú ( 1 . 0D0/3 .0D0)
344 A0(7 , 2 ) = ≠t74≠H0ú t26 ú t80 ú t86 úxlam ú ( 1 . 0D0/3 .0D0)
345 A0(7 , 3 ) = ≠t73≠H0ú t26 ú t80 ú t86 úxlam ú ( 1 . 0D0/3 .0D0)
346 A0(7 , 4 ) = s i g12 ú t23
347 A0(7 , 5 ) = s i g23 ú t23
348 A0(7 , 6 ) = s i g31 ú t23
349 A0(7 ,7)=≠H0úaú t26 ú t80 ú t86≠H0ú t26 ú t40 ú t80 ú t86+H0úaú t26 ú t80 ú t87 ú t9
350 &0úxlam ú ( 1 . 0D0/2 .0D0)+H0ú t26 ú t40 ú t80 ú t87 ú t90 úxlam ú ( 1 . 0D0/2 .0D0)+
351 &aú t26 ú t77 ú t81 ú t83 ú t86 úxlam+t26 ú t40 ú t77 ú t81 ú t83 ú t86 úxlam
352

353 end subroutine

D.2 MATLAB Script

1 clear a l l
2

3 syms s i g t r 1 1 s i g t r 2 2 s i g t r 3 3 s i g t r 1 2 s i g t r 2 3 s i g t r 3 1
4 syms s i g11 s i g22 s i g33 s i g12 s i g23 s i g31
5 syms xK xG dQdsig
6 syms Q F xlam xlam0 alpha alphaQ p pr e f xJ2 xkf s i n p s i
7 syms v r J s in rho H0 s i np h i a s i n p s i 0 alphaQ0
8

9

10 p = ( s i g11 +s i g22 + s i g33 ) / 3 ;
11 S i g t r = [ s i g t r 1 1 ; s i g t r 2 2 ; s i g t r 3 3 ; s i g t r 1 2 ; s i g t r 2 3 ; s i g t r 3 1 ] ;
12 Sig = [ s i g11 ; s i g 22 ; s i g 33 ; s i g 12 ; s i g 23 ; s i g 31 ] ;
13 S = Sig ≠ p ú [ 1 ; 1 ; 1 ; 0 ; 0 ; 0 ] ;
14

15 s in rho = H0úxlam/(1+H0úxlam/ s in ph i ) ;
16 xJ2 = 0 . 5ú ( S(1)^2+S(2)^2+S(3)^2+2úS(4)^2+2úS(5)^2+2úS ( 6 ) ^ 2 ) ;
17

18 alpha = 2ú s in rho /( sqrt (3)ú(3 ≠ s in rho ) ) ; %TXC



156 Material Dependent Codes

19 alphaQ0 = 2ú s i n p s i 0 /( sqrt (3)ú(3 ≠ s i n p s i 0 ) ) ; %TXC

20 %alpha = 2ú s inrho /( s q r t (3)ú(3+ s inrho ) ) ; %TXE

21 %alphaQ0 = 2ú s i n p s i 0 /( s q r t (3)ú(3+ s i n p s i 0 ) ) ; %TXE

22 %alpha = s inrho /( s q r t (3)ú s q r t (3+ s inrho ^2) ) ; %PS

23 %alphaQ0 = s i n p s i 0 /( s q r t (3)ú s q r t (3+ s i n p s i 0 ^2) ) ; %PS

24

25 xkf = 3ú alpha úa ;
26 alphaQ = alphaQ0ú(1≠p/(2ú p r e f ) ) ;
27

28 v = [ Sig ; xlam ] ;
29 F = sqrt ( xJ2 ) ≠ alpha ú3úp ≠ xkf ;
30 Q = sqrt ( xJ2 ) ≠ alphaQú3úp ;
31

32 for i = 1 :3
33 for j = 1 :3
34 D( i , j ) = xK ≠2úxG/3 ;
35 end
36 D( i , i ) = xK + 4úxG/3 ;
37 D( i +3, i +3) = xG;
38 end
39

40 for i = 1 :6
41 dQdsig ( i , 1 ) = d i f f (Q, S ig ( i ) ) ;
42 end
43

44 r = [ S ig ≠ S i g t r + DúdQdsig ú( xlam≠xlam0 ) ; F ] ;
45

46

47 for i = 1 :7
48 for j = 1 :7
49 J ( i , j ) = d i f f ( r ( i ) , v ( j ) ) ; %"J = drdv "

50 end
51 end
52

53 f o r t r a n (J , ’ f i l e ’ , ’ j a c . f ’ )
54 f o r t r a n ( dQdsig , ’ f i l e ’ , ’ dQdsig . f ’ )
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D.3 vars.f-module

1 module vars
2 double p r e c i s i o n , dimension (7 ) : : v , v0 , vs , vs0 , r
3 double p r e c i s i o n , dimension (6 ) : : de , S i g t r
4 double p r e c i s i o n , dimension (10) : : c
5 double p r e c i s i o n , dimension (7 , 7 ) : : dvdr
6 double p r e c i s i o n , dimension (6 , 6 ) : : Dm
7 double p r e c i s i o n : : xG, BFac , a , phirad , alpha , xky
8 double p r e c i s i o n : : P, Q, xJ2 , Msf , alphaQ , ps i rad , H0 , p r e f
9 double p r e c i s i o n : : s i np s i 0 , xn , epsV , elam , e0 , xlams

10 double p r e c i s i o n , parameter : : pi =3.141592654
11 i n t e g e r : : i , j , i p l s , nrabort
12 end module vars





Appendix E

Documentation of Calculations

E.1 Load-Displacement Curves

Figure E.1: Load-deformation curve for material parameter Set 6 („ = 30¶, Â = 0¶).
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Figure E.2: Load-deformation curve for material parameter Set 7 („ = 30¶, Â = 1¶).

Figure E.3: Load-deformation curve for material parameter Set 8 („ = 30¶, Â = 2¶).
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Figure E.4: Load-deformation curve for material parameter Set 9 („ = 30¶, Â = 30¶).

Figure E.5: Load-deformation curve for material parameter Set 10 („ = 20¶, Â = 0¶).
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Figure E.6: Load-deformation curve for material parameter Set 11 („ = 20¶, Â = 20¶).
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E.2 Displacement-Factor of Safety Curves

Figure E.7: Safety factor-deformation curve for material parameter Set 6 („ = 30¶,
Â = 0¶).
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Figure E.8: Safety factor-deformation curve for material parameter Set 7, with friction
(„ = 30¶, Â = 1¶).

Figure E.9: Safety factor-deformation curve for material parameter Set 8 („ = 30¶,
Â = 2¶).
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Figure E.10: Safety factor-deformation curve for material parameter Set 9, with friction
(„ = 30¶, Â = 30¶).

Figure E.11: Safety factor-deformation curve for material parameter Set 6 („ = 20¶,
Â = 0¶).
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Figure E.12: Safety factor-deformation curve for material parameter Set 9, with friction
(„ = 20¶, Â = 20¶).
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E.3 Shadings of Incremental Shear Strains

Figure E.13: Shadings of incremental shear strains at failure for Mohr–Coulomb model
with material parameter Set 6 („ = 30¶, Â = 0¶).

Figure E.14: Shadings of incremental shear strains at failure for Drucker–Prager model
with material parameter Set 6 („ = 30¶, Â =,¶).
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Figure E.15: Shadings of incremental shear strains at failure for Mohr–Coulomb model
with material parameter Set 7 („ = 30¶, Â = 1¶).

Figure E.16: Shadings of incremental shear strains at failure for Drucker–Prager model
with material parameter Set 7 („ = 30¶, Â = 1¶).
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Figure E.17: Shadings of incremental shear strains at failure for Mohr–Coulomb model
with material parameter Set 8 („ = 30¶, Â = 2¶).

Figure E.18: Shadings of incremental shear strains at failure for Drucker–Prager model
with material parameter Set 8 („ = 30¶, Â = 2¶).
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Figure E.19: Shadings of incremental shear strains at failure for Mohr–Coulomb model
with material parameter Set 9 („ = 30¶, Â = 30¶).

Figure E.20: Shadings of incremental shear strains at failure for Drucker–Prager model
with material parameter Set 9 („ = 30¶, Â = 30¶).
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Figure E.21: Shadings of incremental shear strains at failure for Mohr–Coulomb model
with material parameter Set 10 („ = 20¶, Â = 0¶).

Figure E.22: Shadings of incremental shear strains at failure for Drucker–Prager model
with material parameter Set 10 („ = 20¶, Â = 0¶).
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Figure E.23: Shadings of incremental shear strains at failure for Mohr–Coulomb model
with material parameter Set 11 („ = 20¶, Â = 20¶).

Figure E.24: Shadings of incremental shear strains at failure for Drucker–Prager model
with material parameter Set 11 („ = 20¶, Â = 20¶).
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