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Abstract
This paper aims to give an objective comparison of analytical and numer-

ical solutions to thin concrete shells of revolution. The numerical simulations
are performed using the finite element software Diana. The main focus is on
cylindrical and spherical shells, as they are typical geometries for construct-
ing shells in concrete. Some assessment of the necessary theory on circular
plates and ring beams is also presented since these are structural components
frequently related to the shells in question.

In order to attain a fundamental understanding of the load carrying be-
haviour of shells, the classical background material on thin shells of revolution
is thoroughly investigated. Detailed deductions of the governing equations in
membrane- and bending theory constitute the first part of the paper. This
theory is then applied to cases involving typical connected shell structures
which highlights different aspects of the analytical theory. Further assess-
ments of these structures are done using finite element software, which pro-
vides a basis for comparing the analytical and numerical solutions. Finally,
one of the structures are designed in accordance with the Eurocodes, accom-
panied by a nonlinear analysis. For this purpose a comparative study of line
and solid elements is conducted.

In the context of linear static analysis, two- and three-node axisymmetric
shell of revolution elements show superb accuracy when compared to the
analytical solutions. Intrinsic shell properties, such as the damping of forces
and moments from the shell boundaries, are accurately represented.

Element comparison shows a lower degree of accuracy from solid element
solutions compared to the line alternative. This is especially true for shear
stresses, which show oscillating behaviour near the edge zones of the shells.
These oscillations are considered one of the main uncertainties in the solid
model used for the nonlinear analysis.

From the nonlinear analysis, the design of the structure was found to be
adequate. The results show that the forces have been correctly redistributed
to the reinforcement, and that the total load the structure can endure is
approximately 1.08 times of the design load.

Finite element analysis provides a powerful tool for evaluating the load
response from connected concrete shell structures. Analytical solutions, al-
though bringing valuable insight in the leading principals governing the shell
behaviour, are highly exposed to human errors. As a consequence they are
less attractive in practice. Finite element simulations coupled with a gen-
eral understanding of the classical theory is therefore recommended for the
executing engineer.
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Sammendrag
Denne oppgaven har som formål å gi et objektivt sammenlikningsgrunnlag

for numeriske og analytiske løsninger av tynne aksesymmetriske betongskall.
De numeriske simuleringene er gjort i elementmetodeprogrammet Diana. Ho-
vedfokuset i oppgaven er satt til sylindriske og sfæriske skall, siden disse er
typiske geometrier som benyttes for skallkonstruksjoner i betong. Relevant
teori angående sirkulære plater og ringbjelker diskuteres også, siden disse er
komponenter som ofte er relatert til skallene i fokus.

For å oppnå en grunnleggende forståelse av aksesymmetriske skall er den
analytiske bakgrunnsteorien grundig gjennomgått. I oppgaven gis detaljerte
utledninger av de styrende likningene i membran- og bøyningsteori. Teorien
benyttes så for å løse valgte sammensatte skallkonstruksjoner. Videre vurde-
ring av konstruksjonene gjøres deretter numerisk for å danne et sammenlik-
ningsgrunnlag mellom løsningene. Til slutt prosjekteres en av konstruksjonene
i henhold til Eurokodene, med en tilhørende ikke-lineær analyse. For dette
formålet gjennomføres et sammenlikningsstudie av linje- og volumelementer.

Innen lineær elastisk analyse gir to- og tre-node elementer svært gode
resultater sammenliknet med de analytiske løsningene. Særegne skall egen-
skaper, som dempningen av randforstyrrelser, representeres svært nøyaktig.

Sammenlikningen av elementer viser at volum elementer gir en lavere
grad av nøyaktighet sammenliknet med linje alternativet. Dette gir spesielt
utslag på skjærspenningsfordelingene, som viser oscillerende oppførsel nær
skallenes render. Dette er regnet som det største usikkerhetsmomentet i den
ikke-lineære analysen.

Den ikke-lineære analysen bekrefter at konstruksjonen er prosjektert på
korrekt måte. Analysen viser at skallkreftene er blitt korrekt redistribuert til
armeringen, og konstruksjonen kan belastes med en last som tilsvarer rundt
1.08 ganger det prosjekterende lasttilfellet.

Elementanalyse er et kraftig verktøy for vurdering av responsen fra skall-
konstruksjoner. De analytiske løsningene gir verdifull innsikt i de styrende
prinsippene for skall, men er svært utsatt for menneskelige feil. Element si-
muleringer kombinert med en generell forståelse av den klassiske teorien er
derfor anbefalt for den utøvende ingeniør.
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1 Introduction

Shell structures have played an important role in structural design throughout
the centuries. Besides being visually appealing they possess interesting technical
properties. From an engineering perspective, shell structures may be called the
prima donnas of structures. Their behaviour is difficult to analyse and can be
somewhat unpredictable in that apparently small changes of geometry or support
conditions may result in totally different responses.

Thin shell structures are beneficial for concrete components requiring high strength
without the use of additional support. The inherent curvature of shells allows for
decomposition of stress resultants in several directions, enabling a combination of
membrane and bending action to obtain an increase in load carrying ability. The
high compressive strength and castability properties of concrete make for practical
and artistically pleasing structures. In later years the knowledge of the classical
shell theory have diminished somewhat among newly educated engineers as finite
element technology has become more prominent. Considering the complexity of
shell structures this shift in focus can lead to wrong interpretations of finite element
solutions.

The purpose of this paper is to investigate the analytical and numerical solutions
to thin concrete shells of revolution. Spherical and cylindrical shells are chosen as a
basis for theory and calculations, as these they are typical shapes for constructing
shells in concrete. Some considerations are also given to the theory on circular
plates and ring beams, which are structural components often related to the shells
in focus.

In order to achieve a fundamental understanding of the classical theory, the first
part of the paper focuses on the theory of thin shells. The characteristics of shells
are studied and formulated mathematically as differential equations.

The theory is then applied to selected shell problems with high relevance in civil
engineering. This provides a basis for comparing the results to numerical solu-
tions from finite element analysis. Different aspects concerning the finite element
modelling and choice of elements will be highlighted.

The paper rounds off by showing how shells can be designed in accordance with
the Eurocodes. An accompanying nonlinear finite element analysis is provided
for validation of the design. This analysis will also shed light on how the shell
structures behave when the linear elastic range of the materials are exceeded.
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2 Theory of thin shells

Shells are curved surface structures that combine membrane- and bending action to
obtain an increase in stiffness. For this reason they are considered as a combination
of the load-carrying behaviour of plates in bending and membrane action. In
civil engineering, shells are useful to create large open areas without the need of
column support. The first known encounter of shells used for this purpose is the
Pantheon in Rome, build in 126 AD (figure 2.1). Although the Romans lacked
the engineering knowledge of the modern era, they intuitively understood the load-
carrying qualities of shells. To this day the structure is considered a construction
marvel. Over the last centuries the theory of shells has been extensively studied,
and a comprehensive amount of information are available to engineers in a wide
range of engineering fields.

Figure 2.1: The Pantheon in Rome [1]

In the following chapters a detailed study of cylindrical and spherical shells is
conducted. These geometrical shapes are chosen as they are considered the most
relevant when using concrete as the primary building material. Great focus will
be given in developing the governing differential equations and their correspond-
ing solutions. This study can be conducted in several ways, ranging from energy
methods to equilibrium of infinitesimal elements. The latter is chosen since it gives
the most visual and intuitive understanding of the principals at work.

2.1 General

For technical purposes, thin shells are of greatest significance. They are defined
as shells with a radius to thickness ratio R

t between 20 and 1000. By comparison,
the ratio of an egg is approximately 60 [2]. Modern structures can achieve ratios
exceeding 1000, which demonstrates the great load carrying ability of shells. Even

3



2 THEORY OF THIN SHELLS

though shells may take several forms, this paper concentrates on shells of revolution.
Such shells are generated by rotating a planar curve about an axis lying in the
meridian plane. They are mathematically defined by differential geometry, and
are therefore ideal for describing several shell structures with relevance for civil
engineering.

Thin shells are modelled as 2 dimensional structures, where the geometry is fully
defined by the shape of the middle surface and the thickness h [3, ch. 12.4]. The
principal radii of curvature, as shown in figure 2.2, are measures of how the shell
curves in the hoop and meridian directions. This measure plays a significant role
in shell theory since different geometric structures have a distinct configuration
of these radii. Analytical solutions can be derived for general shapes and made
specific for geometries with intrinsic configurations of the principal radii.

Figure 2.2: Geometry and principal radii of curvature of shell element

The study of shells of revolution is divided into two separate theories; membrane
theory and bending theory. The two theories describe the in plane membrane forces
and the effects of edge disturbances, respectively. In certain cases, the stress and
deformation states of the shell can be determined solely by the membrane solution.
However, membrane theory cannot, in all instances, provide solutions compatible
with the actual conditions of deformation. For most practical purposes both theo-
ries are required to capture the total load-carrying behaviour of the shells. Hence
a total analytical solution consists of a combination of the two theories.

2.1.1 Classification of shells by the Gaussian curvature

More generally, shells may be classified by their Gaussian curvature, defined as

K = 1
rxry

,

where rx and ry are the principal radii of curvature [4]. The Gaussian curva-
ture, and especially its sign, provides useful information about the load-carrying

4



2.2 Assumptions

behaviour of shells. Curved structures make use of the membrane action in the
meridian and hoop direction to avoid bending and shear. This is made possible
because the curvatures allow for decomposition of the membrane forces in several
directions, and is highly related to the Gaussian curvature of the surface.

Figure 2.3 shows three types of curved surfaces defined by their Gaussian curvature.
Synclastic surfaces, like domes, have a Gaussian curvature greater than zero. For
such shells the edge disturbances tend to damp rapidly, making membrane theory
valid for most of the shell surface. They typically show the greatest stiffness.
Anticlastic surfaces (saddle surfaces) have a negative Gaussian curvature. The
edge disturbances tend to effect a greater part of the shell, making bending theory
more prominent. They are less stiff than synclastic structures and require more
stiffening. Curves withK ≡ 0 are called developable surfaces; a conspicuous feature
being that they can be flattened onto a plane without experiencing any strains or
stresses. Examples are cylinders and cones. The edge disturbances are damped
to a certain degree, but extend further into the shell than for synclastic surfaces.
Such shells typically need ring beams to prevent ovalising.

Figure 2.3: Surfaces with different Gaussian curvature [5]

2.2 Assumptions

As for plates, the shell stresses are assumed constant over the thickness and are
modelled as two dimensional. The ten resultant forces and moments are found as

Nx =
∫ h

2

−h2
σx(1− z

ry
) dz , Ny =

∫ h
2

−h2
σy(1− z

rx
) dz

Nxy =
∫ h

2

−h2
τxy(1− z

rx
) dz , Nyx =

∫ h
2

−h2
τyx(1− z

ry
) dz
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2 THEORY OF THIN SHELLS

Qx =
∫ h

2

−h2
τzx(1− z

ry
) dz. , Qy =

∫ h
2

−h2
τzy(1− z

rx
) dz

Mx =
∫ h

2

−h2
σxz(1−

z

ry
) dz , My =

∫ h
2

−h2
σxz(1−

z

rx
) dz

Mxy =
∫ h

2

−h2
τxyz(1−

z

rx
) dz , Myx =

∫ h
2

−h2
τyxz(1−

z

ry
) dz ,

where Nx,Ny,Nxy, and Nyx are the membrane forces, Qx and Qy the transverse
shear forces and Mx, My, Mxy and Myx are the bending and twisting moments
per unit length [4, c. 26.1]. The addition of the terms z

rx
and z

ry
distinguish

the stress resultants in shells from its plate counterpart. These terms stem from
the curvature of the surfaces and the fact that the cross sections are trapezoidal.
The two principal radii of curvature differ for most shells meaning that the shear
forces and moments are no longer equal in the xy and yx planes. However, for
thin shells these terms are generally very small and may therefore be neglected.
For symmetrically loaded shells of revolution, the amount of stress resultants are
further simplified by symmetry. Left are three membrane forces, Nx, Ny and
Nxy = Nyx, and two bending moments, Mx, My.

Further assumptions are based on the Kirchhoff-Love assumptions: [3, ch. 12.2]

• Geometrically linear: The strains and displacements are assumed small.
Equilibrium is considered for the undeformed structure.

• Physically linear: Hooks law apply, and the material is elastic isotropic
and homogeneous.

• Thin shell: The shell is thin, which means that the factors R
h > 20 and

z
R → 0. As a result, an initially plane cross section remain plain during
deformation. A direction initially normal to the middle surface will remain
normal after deformation.

Additionally, higher order terms are small and are neglected in the equilibrium
considerations presented in the following chapters. This will not be pointed out
any further in the text.

6



3 Membrane theory

3.1 Prerequisites

As previously mentioned, the theory of shells are divided into two theories. Mem-
brane theory suggests that arbitrary loads can be resisted solely by membrane
forces. This is only true when certain prefixes are made in addition to the general
ones previously mentioned:

• Bending and shear stiffness are negligible

• The surface is C2 continuous

• No abrupt changes in shell thickness

• Only distributed loads (no point loads)

• Edge forces are tangential to the surface. This must also be true for the
support conditions.

Simply stated; features which induce bending moments and shear forces in shells
must be avoided for membrane theory to fully capture the stress- and displacement
state of the shell.

3.2 Membrane forces

A general shell of revolution is considered, as shown in figure 3.1 [3, ch. 12.5]. The
element ABCD is positioned on the shell surface by the angles φ and θ and the
radius r0. It is restricted by two meridian and two parallel sections, with principal
radii r1 and r2. The arc lengths of the sides AC and CD in the figure are expressed
as LAC = r0dθ and LCD = r1dφ.

The forces acting on the element are shown in figure 3.2. They are the external
forces in z and y direction, and the membrane forces Nφ and Nθ. With the absence
of shear forces and bending moments the problem becomes statically determinate,
and we are left with two rather simple equilibrium equations; equilibrium in the
tangent to the meridian and thickness directions. Equilibrium of forces in meridian
direction is redundant in membrane theory since it deals with pure shear forces,
which is neglected.

Equilibrium in the thickness direction yields [3]:

Nφ
r1

+ Nθ
r2

= −pz (3.1)

where pz is the external loading in the z direction. Equilibrium of forces in the
tangent to the meridian, shown in figure 3.2b, yields [3]:

7



3 MEMBRANE THEORY

Figure 3.1: Shell of revolution with highlighted paralell sections and principal radii
[3, p. 402]

d

dφ
(Nφr0)−Nθr1cosφ+ pyr1r0 = 0 (3.2)

where py is the external loading in y direction.

Thus we are left with one differential and one algebraic equation describing the
forces in the shell. The stress resultant in the hoop direction, Nθ, is found by
rewriting 3.1 as

Nθ = −r2

r1
Nφ + pzr2 (3.3)

By inserting 3.3 in 3.2, we get the expression for the meridian stress resultant:

Nφ = − 1
r2sin2φ

∫ φ

φ0

r1r2(pzcosφ+ pysinφ)sinφ dφ.+ c (3.4)

The constant of integration c takes into account different types of loading. For
shells of revolution with symmetric load conditions, c is zero. By changing the
principal radii of curvature in equations 3.3 and 3.4, expressions for the membrane
forces for different types of geometric forms are found.

8



3.3 Deformations

Figure 3.2: Forces acting on infinitesimal element in (a) hoop and (b) meridian
direction [3, p 403]

3.3 Deformations

To determine the membrane strains εφ and εθ, an infinitesimal element AB of length
r1dφ which curves in the meridian direction is considered, as shown in figure 3.3.
AB and A′B′ refers to the undeformed and deformed configurations of the element.
The two displacement parameters v and w represent the deformation in the tangent
to the meridian and thickness directions, respectively.

To express the strains the well known relation ε = A′B′−AB
AB is used. From figure

3.3 it is apparent that the length A′B′ of the deformed element can be written as:

A′B′ = (r1 − w)dφ− v + (v + dv) = (r1 − w)dφ+ dv.

Hence the strain in the tangent to the meridian direction can now be written as

εφ = (r1 − w)dφ+ dv − r1dφ

r1dφ
= 1
r1

dv

dφ
− w

r1
. (3.5)

The strain in the hoop direction is treated in the same manner by looking at the
change in radius r0. From figure 3.3 it is clear that the radius in the deformed
state can be expressed as r′0 = r0 − wsinφ+ vcosφ. The strain is now found as:

εθ = r′0dθ − r0dθ

r0dθ
= v

r2
cotφ− w

r2
, (3.6)

9



3 MEMBRANE THEORY

Figure 3.3: Deformation of infinitesimal element in the meridian plane [3, p. 417]

where the relationship r0 = r2sinθ is used. By combining 3.5 and 3.6, w is elimi-
nated, and a differential equation for v is obtained:

dv

dφ
− vcotφ = r1εφ − r2εθ (3.7)

Hooke’s law in 2 dimensions relate the strains and membrane forces:

εφ = 1
Eh

(Nφ − νNθ) (3.8a)

εθ = 1
Eh

(Nθ − νNφ) (3.8b)

where E is Young’s modulus and ν is the Poisson ratio. By introducing these expres-
sions in 3.7 and solving for v, the final expression for the displacement tangential
to the meridian direction is obtained:

v = sinφ

∫ φ

0

1
sinφ

1
Eh

[Nφ(r1 + νr2)−Nθ(r2 + νr1] dφ. + c (3.9)

Here the constant c is determined from the boundary conditions. When the dis-
placement v is calculated, w is found from equation 3.6 as

w = vcotφ− r2εθ. (3.10)

10



3.4 Relative displacements

Expressions 3.9 and 3.10 gives the membrane deformations for thin shells of general
shape.

3.4 Relative displacements

In addition to the displacements v and w, the relative displacements are useful
in shell analysis. Figure 3.4 shows a shell displaced in the meridian direction
with ring extension δm and meridian rotation Vm. Both parameters are useful
for compatibility requirements when analysing connected shells, which will become
apparent in later sections when example cases are studied.

φ

r0

r2

w

v

δm

Vm

Figure 3.4: Relative displacements in the meridian plane

From equation 3.6, the ring extension δm is expressed as:

δm = r0εθ = r2sinφ

Et
(Nθ − νNφ). (3.11)

It can be shown that the meridian rotation can be expressed as V = 1
r1

(dwdφ −v) [5].
By inserting for the displacements, we end up with the following equation:

Vm = 1
r1

[
∂

∂φ
( ∆r
sinφ

)− cotφ

Eh

(
nφ(r1 + νr2)− nθ(νr1 + r2)

)]
(3.12)

This concludes the membrane theory for thin shells of revolution. By specifying
the principal radii of curvature and the opening angle φ0 of the shell in question,
membrane theory for different geometries are determined.
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3 MEMBRANE THEORY

3.5 Geometric shapes

The preceding expressions are general, meaning that they hold for all mathemat-
ically defined surfaces. What distinguishes different geometries are the principal
radii of curvature and the meridian angle φ. As spherical and cylindrical shells are
in focus, the expressions for them are investigated further.

3.5.1 Cylinder

Cylinders are examples of developable surfaces with a Gaussian curvature of zero.
This stems from the fact that the principal radius of curvature r1 =∞. Referring
to figure 3.1, the surface parameters for cylinders are r1 = ∞, r2 = r0 = a and
φ = const. = π

2 . Since there is no curvature in the meridian direction, we define the
parameter s running along the longitudinal axis of the cylindrical shell, as shown
in figure 3.5. The resulting expressions for the cylinder is summarised in table 3.1.

φ

r = a

s

Figure 3.5: Cylinder configuration
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3.5 Geometric shapes

Membrane forces Ns = −
∫ s
s0
ps ds.

Nθ = apz

Displacements v = 1
Eh

∫ s
0 (Ns − νNθ) ds+ c

w = a
Eh (Nθ − νNs)

Relative displacements δ = w = a
Eh (Nθ − νNs)

V = dw
ds = a

Eh
d
ds (Nθ − νNs)

Table 3.1: Membrane theory for cylindrical shells

3.5.2 Sphere

Spheres have principal radii r1 = r2 = R. The radius of the hoop circles r0 are
found by the relationship r0 = Rsinφ, as shown in figure 3.6. Table 3.2 gives a
summary of the resulting membrane forces and displacements for spherical shells.

φR

r0

Figure 3.6: Sphere configuration
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3 MEMBRANE THEORY

Membrane forces Nφ = − R
sin2φ

∫ φ
φ0
sinφ(pφsinφ− pzcosφ) dφ + C

Nθ = Rpz −Nφ

Displacements v = sinφ
Eh (1 + ν)R

[ ∫
φ
Nφ−Nθ
sinφ dφ+ c

]
w = R

Eh (Nθ − νNφ)− vcotφ

Relative displacements δ = Rsinφ
Eh (Nθ − νNφ)

V = 1
Eh

[
∂
∂φ (Nθ − νNφ)− (1 + ν)cotφ(Nφ −Nθ)

]

Table 3.2: Membrane theory for spherical shells

3.6 Projection of loads

In order for the loads acting on a shell to be of the form implemented in the
previously derived formulas, they must be properly decomposed. Table 3.3 gives
a summary of load decomposition for some typical load conditions. Note that the
thickness of the shell is denoted t in the table.

Table 3.3: Projection of various loading on shell surfaces [5]

Tables 3.1, 3.2 and 3.3 conclude the membrane theory for cylindrical and spherical
shells. When the geometric and material data are known, they provide all the
necessary information for obtaining the membrane solution.
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4 Bending theory

Membrane theory fails to provide solutions compatible with the actual conditions
of deformation for most practical cases. Bending effects are induced in shells as
compatibility of deformation is required at edges and junctions. A theory which
takes these aspects into account is developed in the following chapter. Contrary to
the membrane theory, the bending theory for thin shells is developed directly for
cylindrical and spherical shells. This is done to limit the amount of derivation to
a level desired for the scope of this paper.

4.1 Cylindrical shells

4.1.1 Differential equation

Consider the stress resultants on an element of an axisymmetrical loaded cylindrical
shell, shown in figure 4.1. Because of symmetry, forces and moments acting in the
hoop direction do not vary with θ. The circumferential displacement v thus vanish
in the equilibrium considerations, and only the displacements u and w need to be
considered.

Figure 4.1: Stress resultants on axisymmetrically loaded circular cylindrical shell [3,
p. 450]

Equilibrium of forces in the x and z directions, as well as moment equilibrium
about the y-axis, require that [3]

15



4 BENDING THEORY

dNx
dx

+ px = 0 (4.1a)

dQx
dx

+ 1
a
Nθ + pr = 0 (4.1b)

dMx

dx
−Qx = 0. (4.1c)

Since dv
dy = 0, The strain-displacement relationships become [6, ch. 15]

εx = du

dx
(4.2a)

εθ = −w
a
. (4.2b)

It it assumed that the axial force Nx is decoupled from the rest of the system.
When Nx = 0, the hoop force Nθ can be expressed from the equations 3.8b and
4.2b as

Nθ = −Eh
a
w. (4.3)

Hooke’s law in two dimensions relates the strains and stresses:

Nx = Eh

1− ν2 (εx − νεθ) = Eh

1− ν2

(
w

a
− ν du

dx

)
(4.4a)

Nθ = Eh

1− ν2 (εθ + νεx) = − Eh

1− ν2

(
du

dx
− ν w

a

)
. (4.4b)

From 4.4a the strain in the x-direction is expressed in terms of the displacement w
and the axial force Nx:

du

dx
= 1− ν2

Eh
Nx + ν

w

a
(4.5)

The curvatures in the longitudinal and hoop directions are needed to express the
bending moments. The longitudinal curvature κx is equal to its plate theory coun-
terpart [6, ch. 15], and the hoop curvature is determined from inspection of figure
4.1. The following equations are obtained:

κx = d2w

dx2

κθ = 1
a+ w

− 1
a
≈ − w

a2 ≈ 0.
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4.1 Cylindrical shells

The bending moments are related to the curvatures in the same way as for plates [6,
ch. 15]:

Mx = −D(κx − νκθ) = −Dd
2w

dx2

Mθ = νMx

(4.6)

where D is the flexural rigidity of the shell, expressed as [6, ch. 1]:

D = Eh3

12(1− ν2) .

Finally, by combining expressions 4.1, 4.5 and 4.6, we arrive at the differential
equation for the cylinder:

D
d4w

dx4 + Eh

a2 w −
νNx
aD

= Pr
D
. (4.7)

A more convenient form of the preceding differential equation is

d4w

dx4 + 4β4w − νNx
aD

= pr
D
. (4.8)

where

β4 = Eh

4a2D
= 3(1− ν2)

a2h2 . (4.9)

The geometric parameter β is the reciprocal of length and is useful when analysing
cylindrical shells. Its inverse is termed the elastic length, and is used to deter-
mine the distance from boundaries where the membrane- and bending solutions
are sufficiently decoupled.

4.1.2 Solution to the differential equation

Equation 4.8 is an ordinary differential equation with constant coefficients. For a
polynomial expression for the loading up to the 3. degree, a particular solution is:

wp = a2

Eh
pr. (4.10)

The homogeneous solution to differential equation 4.8 when Nx = 0 is found as

wh = e−βx(c1e
iβx + c2e

−iβx) + eβx(c3e
iβx + c4e

−βx). (4.11)
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4 BENDING THEORY

The constants of integration c1, c2, c3 and c4 are determined based on the boundary
conditions. Boundary effects which induces bending in the cylinder are added to
the membrane solution to arrive at a comprehensive solution for the cylinder. For a
practical problem, the solution consists of edge disturbances from both boundaries,
as well as the membrane solution.

4.1.3 The infinite cylinder

A cylinder with a high length to diameter ratio is now considered, shown in figure
4.2. Such cylinders are named infinite.

Q0

Q0 M0

M0

∞

∞

x

Figure 4.2: Infinite cylinder

The boundary effects in shells diminish when moving away from the edges. Since
e−βx → 0 as x→∞, the integration constants c1 and c2 in equation 4.11 must be
different than zero, while c3 and c4 vanish. The homogeneous solution now takes
the form

wh = e−βx(c1e
iβx + c2e

−iβx) = e−βx(c1cosβx+ c2sinβx). (4.12)

For a more convenient notation, functions describing the distribution of edge forces
are defined:

f1(βx) = e−βxcosβx

f2(βx) = e−βxsinβx

f3(βx) = f1(βx) + f2(βx)
f4(βx) = f1(βx)− f2(βx).

(4.13)

These functions are defined directly from equation 4.12. By deriving expression
4.12, and inserting it in the expressions for the stresses and displacements, we
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4.1 Cylindrical shells

arrive at a convenient set of equations describing stress resultants, moments and
displacements in the cylindrical shell. The results are summarised in the following
matrix [7]:



w · 2Dβ2

Nθ
2aβ2

dw
dx · 2Dβ

Mx

Qx
β


=



f4(βx) f1(βx)

f4(βx) f1(βx)

−2f1(βx) −f3(βx)

f3(βx) f2(βx)

−2f2(βx) f4(βx)


×

 M0

Q0
β

 (4.14)

M0 and Q0 constitute the moment and shear force at the edge x = 0. They are
simply a reformulation of the integration constants c1 and c2 in the solution for
the differential equation, but offer a more intuitive understanding of the different
shell quantities.

4.1.4 Damping length

The functions defined in 4.13 determine how the moment, shear force and displace-
ments vary away from the edge x = 0, shown in figure 4.3. It is apparent from the

Figure 4.3: Variation of functions [5]

figure that the values of the functions becomes very small when βx has a magni-
tude of about 3-4. Thus the damping length is defined to be the value of x which
corresponds to βx = π.
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4 BENDING THEORY

Accordingly, the damping may be defined as

Lc = π

β
. (4.15)

It is applied as a measure for evaluating whether or not edge disturbances from
two edges effect one another. When the latter is the case, the bending effects may
be treated separately for the two edges of the cylinder.
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4.2 Spherical shells

4.2 Spherical shells

Bending theory for spherical shells is treated similarly as for cylinders, the main
difference being how the loads are carried. Spheres have an extra principal radius of
curvature compared to cylinders. Consequently, the resulting differential equations
become a bit more tedious.

4.2.1 Differential equation

Again we consider an infinitesimal element ABCD, as shown in figure 4.4. In
addition to the membrane forces, the bending moments Mφ and Mθ, as well as the
shear force Qφ act on the element. The remaining moments and shear forces are
zero due to symmetry.

Figure 4.4: Stress resultants on axisymmetrically loaded shell of revolution [3,
p. 458]

Equilibrium in the y and z directions, as well as moment equilibrium about the
x-axis, yields the following set of differential equations [3]:

d

dφ
(Nφr0)−Nθr1cosφ− r0Qφ + r0r1py = 0

Nφr0 +Nθr1sinφ+ d(Qφr0)
dφ

+ pzr1r0 = 0

d

dφ
(Mφr0)−Mθr1cosφ−Qφr1r0 = 0

(4.16)
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4 BENDING THEORY

For spherical shells we have r1 = r2 = R and r0 = Rsinφ. Hence equations 4.16
simplify to

d

dφ
(Nφsinφ)−Nθcosφ−Qφsinφ = −pyRsinθ (4.17a)

Nφsinφ+Nθsinφ+ d

dφ
(Qφsinφ) = −pzRsinφ (4.17b)

d

dφ
(Mφsinφ)−Mθcosφ−RQφsinφ = 0. (4.17c)

The strain relations for the spherical shell is the same as for membrane theory,
given in expressions 3.5 and 3.6. Consequently, the stress resultants are written as:

Nφ = Eh

R(1− ν2)

[( dv
dφ
− w

)
+ ν(vcosφ− w)

]
Nθ = Eh

R(1− ν2)

[(
vcotφ− w

)
+ ν( dv

dφ
− w)

]
.

(4.18)

To express the moments in terms of the displacements v and w, we consider the
total meridian rotation of the shell, denoted V, shown in figure 4.5.

Figure 4.5: Rotation in the meridian direction of axissymmetric shell

It can be shown that the curvatures relate to the total meridian rotation by the
following expressions [3, ch. 13.]:

κφ = 1
R

dV

dφ

κθ = V
cosφ

r0
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4.2 Spherical shells

where
V = v

R
+ 1
R

dw

dφ
. (4.19)

From plate theory, we know that the moments and curvatures are related as follows:

Mφ = −D(κφ + νκθ)

Mθ = −D(κθ + νκφ)

Accordingly, the moments are expressed as:

Mφ = −D
R

[
dV

dφ
+ νV cotφ

]
Mθ = −D

R

[
V cotφ+ ν

dV

dφ

] (4.20)

By combining the equations 4.17, 4.18 and 4.20, bending of a spherical shells are
reduced to two differential equations for the shear force Qφ and meridian rotation
V :

d2Qφ
dφ2 + cotφ

dQφ
dφ
−Qφ(cot2φ− ν) = EhV (4.21)

d2V

dφ2 + dV

dφ
cotφ− V (cot2φ+ ν) = −R

2Qφ
D

(4.22)

A total solution of the two foregoing differential equations can be found by applying
hypergeometric series. This results in relatively complex expressions, which are out
of the scope of this paper.

An approximate solution, presented by Geckler, is chosen. He showed that the
higher order derivatives are the dominant terms in the two differential equations as
long as the opening angle φ0 is large enough [6]. This simplifies the mathematics
such an extent that the procedure developed for cylindrical shells can be used for
spheres. As a consequence equations 4.21 and 4.22 are simplified to
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4 BENDING THEORY

d2V

dφ2 + 1
D
QφR

2 = 0 (4.23)

d2Qφ
dφ2 − EhV = 0. (4.24)

By eliminating V, the problem of bending of spherical shells are reduced to a fourth
order differential equation as a function of the shear force Qφ:

d4Qφ
dφ4 + 4λ4Qφ = 0, (4.25)

where

λ4 = EhR2

4D = 3(1− ν2)
(
R

h

)2
. (4.26)

4.2.2 Solution to the differential equation

Differential equation 4.25 resembles the equation for cylindrical shells. The general
solution is

Qφ = eλφ(C1cosλφ+ C2sinλφ) + e−λφ(C3cosλφ+ C4sinλφ), (4.27)

where C1 through C4 are arbitrary constants.

A more convenient way to write the expressions in the following is by replacing the
angle φ by

ψ = φ0 − φ, (4.28)

which starts at the edge of the sphere, as shown in figure 4.6. The variable t is
introduces as

t = λψ. (4.29)

The differential equation can now be rewritten as

Qφ = e−t(C1cost+ C2sint). (4.30)

In order to make the solution to the differential equation as convenient as possible,
a set of functions are defined in the same manner as for the cylinder:
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4.2 Spherical shells

ψ
φφ0

Qφ

NφNφ

Qφ

Mφ Mφ

Figure 4.6: Definition of angles and edge forces for spherical shells

f1(t) = e−tcost

f2(t) = e−tsint

f3(t) = f1(t) + f2(t)
f4(t) = f1(t)− f2(t).

(4.31)

The different shell parameters contain the first, second and third derivative of
Qφ. By deriving 4.30 and applying them in the expressions for the various shell
parameters, the shell forces and displacements are found. The results may be
summarised in the following matrix [7]:



Qφ

Nφ · tanφ

Nθ
1
λ

Mφ
EhR
2λ3D

Mθ
EhR

2νλ3D

V Eh
2λ2

δ Eh
λRsinφ



=



f1(t) f2(t)

−f1(t) −f2(t)

−f3(t) f4(t)

f4(t) f3(t)

f4(t) f3(t)

f2(t) −f1(t)

−f3(t) f4(t)



×

 C1

C2

 (4.32)

δ in the matrix describes the horizontal displacement at the edge of the sphere.
This is a useful measure when analysing the junction between connected shells,
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4 BENDING THEORY

and is expressed by the displacements w and v as δ = vcosφ − wsinφ, shown in
figure 4.7(a). Still a more convenient set of equations are desired. As for the
cylinder, matrix 4.32 is reformulated by replacing the integration constants C1
and C2 with the edge moment and shear force, M0 and Q0. The reformulated
expressions become [7]:



Rφ · sinφ

Mφ · EhR2λ2D

Qφ

Nφ · tanφ

Nθ
λ

Mθ · EhR
2νλ3D

V · Eh2λ2

δ · Eh
λRsinφ



=



f4(t) −f2(t)

2f2(t) f3(t)

−f4(t) f2(t)

f4(t) −f2(t)

2f1(t) f4(t)

2f2(t) f3(t)

−f3(t) −f1(t)

2f1(t) f4(t)



×

 R0 · sinφ

M0 · EhR2λ3D

 (4.33)

In addition to the horizontal displacement previously mentioned, the horizontal
component of the forces at the boundary of the shell is expressed by Rφ. It is a
combination of meridian force Nφ and shear force Qφ, shown in figure 4.7(b).

φ

w

v

δ

(a)

Qφsinφ

Qφ

Nφcosφ

Nφ

φ

(b)

Figure 4.7: (a) Horizontal displacement (b) Horizontal force at edge

The necessary background material for the study of spherical shells of revolution,
summarised in matrix 4.33, is hence concluded. When the geometrical and material
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4.2 Spherical shells

data of the structure is known, equations 4.33 gives the necessary expressions for
solving the bending theory of the spherical shell.
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4 BENDING THEORY

4.3 Ring beams

Connections between cylinders and spheres have difficulties transferring shear forces
because of the small cross sectional area in the connection. Strengthening the
connection is often done with a ring beam. The beam ensures an even transfer
of shear forces as well as preventing ovalisation of the cylinder. When cylindrical
structures are designed using concrete, edge beams can be implemented by either
installing a steel beam or by adding extra reinforcement at the cylinder edge. To
make room for extra reinforcement, additional concrete is added either by a gradual
increase of the cylinder wall thickness or by casting a rectangular concrete cross
section. The latter is considered in the following.

Figure 4.8: Ring beam connecting cylindrical and spherical shell

A typical connection between cylinders and spheres is illustrated in figure 4.8. The
connection is considered rigid. The main objective from the following derivations
is to express the deformations state of the beam. It is assumed that a vertical
deflection of the ring beam is negligible, leaving two degrees of freedom; radial
displacement and rotation.

Figure 4.9 shows a force H from the adjacent shells acting on the ring beam. The
axial force T in the beam is found from equilibrium of forces:

2T =
∫ π

0
Ha · sinθdθ = 2Ha,
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4.3 Ring beams

and rewritten as

T = H · a. (4.34)

H

T

T

a

Figure 4.9: Radial force H acting on ring beam

The hoop strains are determined from Hooke’s law as

εθH = T

EA
,

and the total change of length becomes

∆θ = 2πaεθH = 2πa
EA

T.

Finally, the radial expansion can be expressed as [7]:

wh = aεθH = a

EA
T = a2

EA
H. (4.35)

Now that the displacement wh from the force H is determined, the displacement and
rotation from bending moments are addressed. The moments acting on the beam
are a combination of bending moments transferred directly from the connected
shells, as well as shear forces with an eccentricity relative to the beams neutral
axis.
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4 BENDING THEORY

dθ

a

Mr

Mθ

Mθ

adθ

Figure 4.10: Bending moments in ring beam

Moments occur in two directions, shown in figure 4.10 [7]. Moment equilibrium
about the tangent axis yields:

Mradθ −Mθdθ = 0→Mθ = aMr

The bending moments results in linearly varying stresses which are expressed as:

σ = Mθy

I
,

where I is the second moment of area about the beams horizontal axis. For a
rectangular cross section the second moment of area becomes:

I = bh3

12 .

The strain in the ring beam from the bending stresses are expresses as:

εθM = Mθy

EI
.

Again the total change of length is determined, now from the bending action. The
displacement varies linearly over the beam height:

∆θM = 2πaεθM = 2πay
EI

MθM . (4.36)
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4.3 Ring beams

Finally, the radial displacement as a result of the bending moments acting on the
beam is determined as:

wM (y) = aεθM = ay

EI
Mθ = a2y

EI
Mr. (4.37)

By deriving 4.37, a constant rotation is obtained:

αr = wM (y)
y

= a2

EI
Mr (4.38)

Expressions 4.35, 4.37 and 4.38 constitute the total displacement and rotation of
the ring beam, as shown in figure 4.11. From the deformation of the beam the two
adjacent shells are coupled thorough compatibility conditions.

wh

α
wM(y)

Mr

H

y

b

h

Figure 4.11: Total radial displacement and rotation of ring beam
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4 BENDING THEORY

4.4 Circular plates

A typical way to seal off cylindrical storage tanks is by using circular plates. Plates
carry loads mainly by bending and shear action, which in turn induce bending ef-
fects onto the cylinder. In order to solve problems involving connection of cylinders
and plates, the analytical foundation for circular plates are needed. As this thesis
focuses on shells, the analytical foundation for laterally loaded circular plates are
summarised in table 4.1. A thorough derivation of the expressions is given in the
book Theory of Plates and Shells by Timoshenko and Woinowski-Krieger [6].

Table 4.1: Results for circular-slab analysis [2, p. 82]

In the table, a and r refer to the inner and outer radius of the plate, as shown in
figure 4.12a. The moments acting on the plate are shown in figure 6.15. This pro-
vides the sufficient background material for solving cylindrical shells with circular
plate tops.

a r

(a) Circular plate

Mt Mt

Mr

Mr

(b) Bending moments acting on circular plate

Figure 4.12
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5 Diana

The finite element software Diana (displacement analyzer) is used for the numer-
ical simulations in this paper. As the name implies the software is based on the
displacement method. It is a multi-purpose finite element program developed by
TNO DIANA BV, and includes both nonlinear and three dimensional capabilities.
The software is developed from a civil engineering perspective, and the most ap-
pealing capabilities are therefore in the fields of concrete and soil analysis. Teachers
editions version 9.4.4 is used in this paper.

The modelling process can generally be divided into three main parts; preprocess-
ing, analysis and postprocessing. They concern the different phases of the analysis,
and a small introduction to each part is presented in the following.

5.1 Preprosessing

In preprosessing the general model is constructed. Shells are modelled in Diana’s
axisymmetrical environment. Half of the geometry is created and rotated about the
y-axis at x = 0 to generate a coherent structure. This results in faster processing
times and simpler models.

For the linear analyses of thin shells conducted in this paper, the modelling is
done in one dimension using straight lines and arches. The models are build up in
a layered fashion, from points to lines to attached loads and material properties.
Each line and arch are meshed with a predetermined number element per line. The
teachers edition restricts element density to 99 elements per line and 1000 elements
in total. Staying under this threshold proved sufficient for scope the analyses
performed in this paper. Boundary conditions are specified by restricting either
points or nodes to displace and/or rotate. Figure 5.1 shows a typical construction
of a thin shell model.
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5 DIANA

(a) Points (b) Lines and
boundary condi-
tions

(c) Mesh (d) Load

Figure 5.1: Construction of a typical line model

For the purpose of nonlinear analysis, two-dimensilonal models are necessary. The
principals are equal to the previously discussed modelling, but lines now make up
surfaces in which reinforcement is placed. Greater consideration of material models
must be considered, which is explained in more detail in section 8.2.1.

5.2 Analysis

When the model is completed, a .dat file containing the stiffness matrices and
other vital information is generated. After choosing the the desired analysis type,
the file is run through the analysis tool in Diana. The dat file is the main text
describing the model, and certain parameters, for instance hydrostatic load, can
only be specified here.

5.3 Postprosessing

Postprocessing concerns presentation and evaluation of the results. Diana provides
several ways of presenting them, ranging from graphs to contour plots.
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6 Selected shell structures

In this section a series of shell structures are analysed both analytically and nu-
merically. The examples are chosen such that they highlight all of the previously
studied theory. All structures are of connected thin concrete shells with necessary
material data chose forehand.

6.1 Analytical solutions

The analytical theory on thin shells is complex and best understood through con-
crete examples which highlights different aspect of thin shell behaviour. Because of
this complexity the upcoming analytical solutions are thoroughly reviewed. This
is done to ensure a coherent understanding of the governing principals at work for
thin concrete shell structures.

6.1.1 Cylinder with circular plate top

Figure 6.1 shows a cylindrical concrete shell with a circular plate top, loaded with
an internal gas pressure of 100kNm2 . The data needed for solving the structure is
presented in the figure. A complete integer solution is given in appendix A.

L
=

50
00
m
m

a = 3000mm

hc = 150mm

hp = 200mm

Data:

p = 100kN
m2

C45
ν = 0.2

A

BC

E = 36000MPa

Figure 6.1: Geometry and material data for cylinder with circular plate top
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6 SELECTED SHELL STRUCTURES

Damping length
As a starting point, the damping length Lc is evaluated in order to check whether
or not the cylinder can be simplified as infinite. The elastic length is found from
expression 4.9 as:

β = 4

√
3(1− ν2)
a2h2 = 1.942 · 10−3 1

mm
,

and the damping length becomes

Lc = π

β
= 1618mm.

Since Lc < 2L the two edges of the cylindrical shell can be treated separately.

Edge A
The particular solution wp from a constant pressure load is constant over the cylin-
der. From expression 4.10 it is expressed as

wp = p · a2

Eh
.

Since wp is constant there exists no particular solution for the rotation of the
cylinder.

The edge disturbances are considered from the homogeneous solution. The initial
conditions of the clamped edge are exploited:

w(x = 0) = 0 ,
dw

dx
(x = 0) = 0.

From matrix 4.14, the radial displacement w and angle dw
dx are expressed. The

homogeneous and particular solutions are combined and written in matrix form: 1
2Dcβ2

1
2Dcβ3

− 1
2Dcβ

1
2Dcβ2

×
 M0

Q0

 =

 −wp
0



Solving yields the moment and shear force at edge A: M0

Q0

 =

 13.3kNmm

−51.5kNm

 .
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6.1 Analytical solutions

This constitutes the necessary information to deduce the total response for the
lower face of the cylinder.

Junction B
In order to solve for the moment and shear force acting in the junction of the
structure, compatibility and equilibrium conditions are necessary.

For the laterally loaded plate the weight of the concrete must be considered as a
downwards distributed load. A reasonable load of w = 5kNm2 is therefore subtracted
from the internal pressure, leaving a total upward pressure of 95kNm2 on the plate,
denoted q.

At first the plate is considered free to rotate, as shown in figure 6.2a. From table
4.1 the rotation is expressed as as

(
dw

dx

)
free

= θq = qa3

16Dp

(
3 + ν

1 + ν
− 1
)
,

where Dp is the flexural stiffness of the plate. As clockwise rotation is defined as
positive, this constitutes a positive rotation. The coupling of the shell and plate
creates a joint moment Ma, which causes a counterclockwise rotation in the plate,
shown in figure 6.2b. The rotation is expressed as:

(
dw

dx

)
moment

= θM = a

Dp(1 + ν)Ma.

The total rotation of the plate is the difference between the two foregoing equations:

θp = θq − θM .

In the case of the cylinder, the rotation is once again expressed from equations 4.14.
Since the two edges of the cylinder do not effect one another, x = 0 is continually
used in the equations. The rotation is found to be

θc = dw

dx
(0) = − 1

2Dcβ

(
2M0 + Q0

β

)
.

From this point on the rotations for the two respective components are combined
through compatibility of deformations in the corner.

Compatibility
As the first compatibility condition, an equal rotation of the cylinder and plate in
junction B is required, namely that θc = −θp. Inserting the respective variables
and rearranging yields
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6 SELECTED SHELL STRUCTURES

q

θq

(a) Free rotation of circular plate

Ma Ma

θM

(b) Moments acting on circular plate

Figure 6.2: Forces and moments acting on circular plate and their corresponding
rotations

(
1

Dcβ
+ a

Dp(1 + ν)

)
Ma + 1

2Dcβ2Qa = θq, (6.1)

where M0 and Q0 have been replaced by the joint moment and shear force Ma and
Qa.

As a second condition, the plate is considered infinitely stiff in the plane. Hence
it is reasonable to consider the radial displacement w at the top of the cylinder to
be equal to zero. On this premise, a second condition is obtained from expression
4.14:

wtot = wp + wh = 0→ 1
2Dcβ2Ma + 1

2β3Dc
= −wp (6.2)

By solving equations 6.1 and 6.2, the joint moment and shear force are determined: Ma

Qa

 =

 88.5kNmm

−197.3kNm

 .

The edge forces and bending moments obtained in the preceding calculations com-
prise the necessary information for plotting all the responses in the structure.

6.1.1.1 Distributions

From expressions 4.14 and table 4.1 the distribution of forces and bending moments
for increasing values of x are described. The homogeneous and particular solutions
are added together to arrive at the total response of the structure. In the plots,
x = 0 marks the bottom of the cylinder and centre of the plate, respectively.
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6.1 Analytical solutions

The bending moments are expressed as follows:

MxA = M0f3(βx) + Q0

β
f3(βx)

MxB = Maf3(βx) + Qa
β
f3(βx)

Mr = Ma −
q

16(3 + ν)(a2 − x2)

Mt = Ma −
q

16(a2(3 + ν)− x2(1 + 3ν)).

Figure 6.3 shows how the bending moments vary across the length of the cylinder
and plate. In the case of the cylindrical shell, it is apparent that the moments
damp rapidly from the edges and vanish towards the intermediate part of the shell.
As expected the two edges of the shell experience the highest bending moments.

0 1 2 3 4 5
−20

0

20

40

60

80

100

x [m]

M
x
 [

k
N

m
/m

]

(a) Cylinder

0 0.5 1 1.5 2 2.5 3
−100

−50

0

50

100

x [m]

M
 [

k
N

m
/m

]

 

 

M
r

M
t

(b) Plate

Figure 6.3: Distribution of moments in the structure

The equations describing the distibution of shear forces are:

QxA = −2M0f2(βx) +Q0f4(βx)
QxB = −2Maf2(βx) +Qaf3(βx)

Qr = −q2x

Figure 6.4 shows the shear force distribution in the structure. As for the moments,
the shear force is damped rapidly from the edges of the cylinder.
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Figure 6.4: Distribution of shear forces in the structure

The hoop force has an additional particular solution to consider. The total solution
is expressed as:

NθA = Nh(βx) +Np = 2aβ2(M0f4(βx) + Q0

β
f1(βx) + pa

NθB = Nh(βx) +Np = 2aβ2(Maf4(βx) + Qa
β
f1(βx) + pa

Figure 6.5 shows how the hoop force is distributed. It has zero magnitude at the
edges, while increasing to the particular solution of 300kNm at the clamped edges.
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Figure 6.5: Distribution of hoop forces in the cylindrical shell
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6.1 Analytical solutions

The preceding distributions emphasise the load carrying behaviour of shells. The
moments and shear forces are large at the boundaries and damped out towards
the intermediate part of the shell. The dominant load carrying action is the hoop
force, which is present in most of the cylindrical shell.
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6 SELECTED SHELL STRUCTURES

6.1.2 Cylinder with spherical roof

Focus is now shifted to a cylindrical water tank with spherical roofing. The tank
is clamped at the bottom edge and has a rigid connection between the shells, as
shown in figure 6.6. The system is loaded with a hydrostatic water pressure on
the cylinder wall as well as with snow load and self weight on the spherical roof.
Relevant material and geometrical data are given in the figure. A total integer
solution is given in appendix B.

a = 10m

hc = 0.18m
hs = 0.15m

Data:

ν = 0.2

C45

A

B

C

γw = 10kN
m2

R = 20m

x̂

φ0 = 30◦

q = s+ w = 5.75kN
m2

E = 36000MPa

H
c
=

10
m

Figure 6.6: Geometry and material data for a cylinder with spherical roof

Loads
It is assumed that the snow load acting on the sphere follows the same distribution
as the self-weight. On curved surfaces more material is located where there is
greater curvature, resulting in the load distribution shown in figure 6.6. Reasonable
magnitudes are chosen for the loads; s = 2kNm2 for the snow load and w = 2.75kNm2

for the self weight of the concrete. Hence a total load on the roof becomes:
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6.1 Analytical solutions

q = s+ w = 5.75kN
m2 .

From table 3.3, the load q is decomposed into components in the meridian and
thickness directions:

pφ = qsinφ , pz = −qcosφ.

The decomposed loads are implemented in formulas for the membrane solution
of the spherical shell. The hydrostatic water pressure on the cylinder wall varies
linearly with depth:

p(x) = γwx̂,

where γw is the specific weight of water. x̂ = 0 is defined at the upper edge, shown
in figure 6.6.

Damping length
The damping length for the cylinder is once again checked to determine whether
or not the two edges of the cylinder can be considered decoupled with respect to
the edge disturbances. In the same manner as for the previous example, the elastic
length is found as

β = 4

√
3(1− ν2)
a2h2 = 970.1 · 10−6 1

mm
,

and the damping length becomes:

Lc = π

β
= 3238mm.

Hc < 2Lc, and the two edges of the cylinder are decoupled. As there are no holes
in the sphere it only has one edge, and the damping length does not have to be
evaluated.

Edge A
The lower edge of the cylinder experience the full weight of the overhead water.
From expression 4.10 the particular solution for the radial displacement is deter-
mined as:

wp = a2

Ehc
p(x̂) = a2

Ehc
γwx̂.
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6 SELECTED SHELL STRUCTURES

Deriving wp with respect to x̂ yields a constant particular solution for the angle θ:

θp = a2

Ehc
γw.

By demanding zero displacement and rotation at the edge, two equations with two
unknowns are obtained: 1

2Dcβ2
1

2Dcβ3

1
2Dcβ

1
2Dcβ2

×
 M0

Q0

 =

 −wp(10m)

−θp


Solving the equation system with respect to the edge forces yields: M0

Q0

 =

 47.6kNmm

−97.7kNm



Junction B
The upper edge of the cylinder experience forces and moments from the roof which
propagates downwards the longitudinal axis of the cylindrical shell. In order to
determine the moment and shear force in the junction, a set of compatibility re-
quirements are needed. Both the radial displacement and meridian rotation of the
two shells must be equal in the junction where they meet, assuming that the con-
nection between them are sufficiently rigid. The expressions for the two shells are
therefore addressed separately and united through a set of compatibility conditions
at the end.

Cylinder
Since the hydrostatic pressure is zero at the upper edge of the cylinder, the particu-
lar solution for the displacement wp must also be zero. θp is constant, as previously
shown. From expressions 4.14 the total solution for the upper edge becomes:

w(0) = wh(0) = 1
2Dcβ2

(
M0c + Q0c

β

)
(6.3a)

θ(0) = θh(0) + θp(0) = − 1
2Dcβ

(
2M0c + Q0c

β

)
+ a2

Ehc
γw (6.3b)
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6.1 Analytical solutions

Sphere
Solving for the sphere is more complicated. This is due to the direction of the
membrane forces, which are tangential at every point of the surface. As mentioned
in the theory, the membrane solution assumes boundary conditions compatible with
the prerequisites made in membrane theory. For this reason, a correction of the
membrane state is necessary in order to obtain an accurate solution.

Figure 6.7a shows the spherical shell with boundary conditions compatible with
membrane theory. The membrane force Nφm has the angle 30◦ with the horizontal
plane.

φ
Nφm

Vm

δm

q

(a) Membrane state for spherical shell

V̂

φ

Nφm

HH

(b) Correction of membrane state

Figure 6.7: Membrane state for spherical roof

Table 3.2 provides the equations describing the membrane forces. The meridian
forces at the boundary are expressed as:

Nφm = − R

sin2φ0

∫ φ0

0
sinφ(pφsinφ− pzcosφ)dφ = − Rq

sin2φ0
(1− cosφ0) = −61.6kN

m
,

Nθm = Rpz −Nφm = −38.0kN
m
.

where φ0 = 30◦ is the opening angle of the shell, shown in figure 6.6.

From the membrane forces, the relative displacement and meridian rotation are
determined:

δm = Rsinφ0

Ehs
(Nθm − νNφm) = −47.5 · 10−6m

Vm = 1
Eh

[
∂

∂φ
(Nθ − νNφ)− (1 + ν)cotφ0(Nφ −Nθ)

]
= 23.4 · 10−6rad.

These are the membrane quantities which correspond to an ideal sphere, that is,
a solution where all loads are resisted solely by membrane forces. The membrane
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6 SELECTED SHELL STRUCTURES

solution must, however, be corrected to fit the actual boundary conditions, as shown
in figure 6.7b. The horizontal component of the meridian force is decomposed as

H = −R0s = Nφmcosφ0 = −53.4kN
m
.

The corrected displacement δ̂m and rotation V̂m are found from matrix 4.33, when
no moments act on the sphere:

δ̂m = 2λRsinφ
Ehs

f1(0)R0 = 2λRsinφ0

Ehs
(−H) = 1.49 · 10−3m

V̂m = −2λ2sinφ

Ehs
f3(0)R0 = −2λ2sinφ0

Ehs
(−H) = −2.24 · 10−3 rad

The total particular solution is found by adding together the membrane states:

δp = δm + δ̂m = 1.44 · 10−3m

Vp = Vm + V̂m = −2.26 · 10−3rad

Finally, a total solution for the sphere is a combination of the particular and ho-
mogeneous solution. The homogeneous solution is found from matrix 4.33, and a
complete solution for the sphere is obtained:

δ(0) = δh(0) + δp(0) = λRsinφ

Ehs

(
2R0ssinφ+ EhsR

2λ3Ds
M0s

)
+ δp (6.4a)

V (0) = Vh(0) + Vp(0) = − 2λ2

Ehs

(
R0ssinφ+ EhsR

2λ3Ds
M0s

)
+ Vp (6.4b)

Compatibility
The compatibility conditions ensure a coherent behaviour in the intersection be-
tween the shells. Figure 6.8 provides an overview of forces, moments and deforma-
tions for establishing the conditions. They can be summed up as follows:

1. displacement and rotation

(a) w(0) = δ(0)

(b) θ = −V (0)

2. Moment and shear force

(a) M0c = M0s = Mj

(b) Q0c = −R0s = Qj
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6.1 Analytical solutions

w

θ

δ

V

R0s

Q0c

M0c

M0s

Figure 6.8: Forces and deformations in the connection between the shells

Inserting equations 6.3 and 6.4 in the compatibility conditions described above,
two equations representing the displacement and rotation at the intersection are
established, as summarised in the following matrix: 1

2Dcβ2 − R2sinφ
2λ2Ds

1
2Dcβ3 + 2λRsinφ2

Ehs

1
Dcβ

+ R
λDs

1
3Dcβ2 + 2λ2

Ehs
sinφ

×
 Mj

Qj

 =

 δp

Vp − θp



Solving the equation system with respect to the integration constants yields:
Mj

Qj

R0s

 =


−9.9kNmm

22.7kNm

−22.7kNm



Hence the necessary edge forces and moments for determining the response of the
structure are found.

6.1.2.1 Distributions

The remaining shell responses are found from matrices 4.14 and 4.33. An important
remark is that the horizontal component of the meridian force in the spherical shell,
previously denoted H, comes in addition to the shear force Qj in the junction.
Hence the upcoming expressions for the distribution of the shell parameters are
corrected to include the effects of the membrane state. Since the edge disturbances
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for the cylindrical shell are distributed similarly as in the previous example, only
the hoop force are graphed in the following.

In the following plots, x = 0 equals the bottom of the cylinder, while ψ = 0
represents the edge of the sphere.

The bending moments are expresses as follows:

MxA = M0f3(βx) + Q0

β
f3(βx)

MxB = Mjf3(βx) + Qj
β
f3(βx)

Mφ = 4λ3Ds

EhsR
(Ros −H)sinφ0f2(t) +Mjf3(t)

Mθ = νMφ

Figure 6.9 shows the distribution of moments in the spherical shell for varying
angle φ. As expected the bending moments are damped out quickly when moving
towards the intermediate parts.
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Figure 6.9: Distribution of moments in the sphere

Shear force expressions:

QxA = −2M0f2(βx) +Q0f4(βx)
QxB = −2Mjf2(βx) +Qjf4(βx)

Qφ = (H −R0s)sinφ0f4(t) + EhsR

2λ3Ds
Mjf2(t).
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6.1 Analytical solutions

Figure 6.10 shows the distribution of the shear force in the sphere. It is only
significant at the edge of the shell.
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Figure 6.10: Shear force distribution in spherical shell

The hoop force expressions differ from the previous example in that the particular
solutions vary with x. They are expressed as:

NθA = Nh(βx) +Np(x) = 2aβ2
(
M0f4(βx) + Q0

β
f1(βx)

)
+ γwa(10− x)

NθB = Nh(βx) +Np(x) = 2aβ2
(
Mjf4(βx) + Qj

β
f1(βx)

)
+ γwax

Nθs = Nθh(t) +Nθm(φ) = λ

(
2(Rj −H)sinφ0f1(t) + EhsR

2λ3Ds
Mjf4(t)

)
+Nθm(φ)

where
Nθm(φ) = −Rqcosφ+ Rq

sin2φ
(1− cos(φ))

is determined from table 3.1. The hoop forces in the cylinder, shown in figure 6.11a,
induce large tension forces in the cylinder. This stems from the applied hydrostatic
pressure. The spherical shell on the other hand carries the load in compression for
most of the intermediate parts of the shell, shown in figure 6.11b. This makes
the curvature of the sphere more ideal for concrete, where compressional forces are
desired.
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Figure 6.11: Distribution of hoop forces

Distribution of the meridian force:

Nφ = Nφh(t)+Nφp(φ) = 1
tanφ0

(
(Rj −H)sinφ0)f4(βx)−Mj

EhsR

2λ3Ds
f2(βx)

)
+Nφm(φ)

where
Nφm(φ) = − Rq

sin2φ
(1− cos(φ))

is determined from membrane theory. Figure 6.12 shows how the meridian force is
damped towards the membrane solution. The force is purely in compression which
is advantageous for concrete structures.
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Figure 6.12: Distribution of meridian forces in the sphere
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6.1 Analytical solutions

6.1.3 Implementation of ring beam

The cylindrical shell with spherical roof is now further analysed with the intro-
duction of a ring beam in the connection between the shells. The focus is on the
shear force and bending moment at the junction of the structure, and how they
are altered by the introduction of an edge beam. Material and geometrical data
from the previous example remain mostly unchanged so that most results can be
reused. A total integer solution is given in appendix C.

a = 10m

hc = 0.18m

hs = 0.15m

Data:

E = 30000Mpa

ν = 0.2

C45

A

B

C

γw = 10kN
m2

R = 20m

x̂

φ0 = 30◦

hr = 0.3m

b

q = s+ w = 5.75kN
m2

γw · x

H
c
=

10
m

Figure 6.13: Material and geometrical data

Ring beam
As figure 6.13 demonstrates the ring beam has a quadratic cross section with sides
of length 0.3m. The cross sectional area and second moment of area are readily
found as:
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A = bhr = 90 · 103mm2,

I = bh3
r

12 = 675 · 106mm4.

The coupling of the two shells is achieved through the compatibility of displace-
ments and rotations of the beam. Hence the deformations of the different compo-
nents must be expressed in the junction.

M0s

M0c Q0c

(a) (b)

hr

2

Mr

H

θp

wtop

wbottom

hr

Vp

δp

R0s

αr

Figure 6.14: (a) Forces and deformations in the connection , (b) Equivalent forces
on the ring beam
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6.1 Analytical solutions

Figure 6.14 shows the relevant forces and deformations in the junction of the struc-
ture, as well as the equivalent forces acting on the ring beam. From the figure it is
clear that equivalent moment Mr and hoop force H can be expressed as:

Mr = M0s −M0c + hr
2 (Q0c −R0s)

H = −(Q0c +R0s)

We are interested in the displacements in the top and bottom of the ring beam.
The displacements are superpositioned from the displacement components of H
and Mr. From equations 4.35 and 4.37 the radial displacement at the two edges of
the beam are expressed as:

wtop = wh + wM

(
hr
2

)
= a2

EA
H + a2hr

2EI Mr

wbottom = wh + wM

(
−hr2

)
= a2

EA
H − a2hr

2EI Mr.

The rotation αr of the beam is constant and found from 4.38:

αr = a2

EI
Mr.

This gives the tools for setting up compatibility conditions describing the deforma-
tions of the beam.

Compatibility between cylinder and ring beam
Since the connection between the cylinder and beam is rigid, they have to de-
form in unity. As the first compatibility condition, equal rotation is demanded,
mathematically expressed as:

δ(0) = δh(0) + δp(0) = −αr

By inserting and rewriting, the following equation is obtained:

(
1

2Dcβ2 + a2

EI

)
M0c+

(
1

2Dcβ2 + a2hr
2EI

)
Q0c−

a2

EI
M0s+ a2hr

2EI R0s = γwa
2

Ehc
(6.5)
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For the second compatibility condition, equal displacement is demanded:

w(0) = wh(0) = wbottom.

A second equation is obtained:

(
1

Dcβ2 −
a2hr
2EI

)
M0c+

(
1

2Dcβ3 + a2

EA
+ a2h2

r

4EI

)
Q0c+

a2hr
2EI M0s+

(
a2

EA
− a2h2

r

4EI

)
R0s = 0

(6.6)

Expressions 6.5 and 6.6 constitute two out of four necessary equations. The re-
maining two are determined from compatibility between the sphere and beam.

Compatibility between sphere and ring beam
As for the cylinder, compatibility of displacement and rotation is demanded. Uni-
son rotation demands:

δ(0) = δh(0) + δp(30◦) = wtop

Inserting and rewriting:

a2

EI
M0c −

ahr
2EIQ0c −

(
R

λDs
+ a2

EI

)
M0s +

(
a2hr
2EI −

2sinφλ2

Ehs

)
R0s = −Vp(30◦)

(6.7)

Unison displacement:

a2hr
2EI M0c −

(
a2h2

r

4EI −
a2

EA

)
Q0c +

(
R2sinφ

2λ2Ds
− a2hr

2EI

)
M0s

+
(

2λRsin2φ

Ehs
+ a2h2

r

4EI + a2

EA

)
R0s = −δp

(6.8)

Equations 6.5,6.6, 6.7 and 6.8 are arranged in a matrix with four unknowns.
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6.1 Analytical solutions



1
2Dcβ2 + a2

EI
1

2Dcβ2 + a2hr
2EI − a2

EI
a2hr
2EI

1
Dcβ2 − a2hr

2EI
1

2Dcβ3 + a2

EA + a2h2
r

4EI
a2hr
2EI

a2

EA −
a2h2

r

4EI

a2

EI −
ahr

2EI − ahr
2EI − R

λDs
− a2

EI
a2hr
2EI −

2sinφλ2

Ehs

a2hr
2EI −a

2h2
r

4EI + a2

EA
R2sinφ
2λ2Ds

− a2hr
2EI

2λRsin2φ
Ehs

+ a2h2
r

4EI + a2

EA


×



M0c

Q0c

M0s

R0s


=



γwa
2

Ehc

0

−Vp(30◦)

−δp



Solving the equation system yields:

M0c

Q0c

M0s

R0s


=



−4.0kNmm

14.5kNm

−10.0kNmm

−24.9kNm



In comparison to the shear forces and bending moment obtained in section 6.1.2,
it is clear that the impact from the loads on junction of the structure is drastically
reduced. The bending moment acting on the cylinder are is more than halved,
which is a significant improvement.
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6.1.4 Discussion

Solving thin concrete shells analytically is fairly complicated. Even though the the-
ory on single shells is well defined, the connection of shells and their compatibility
conditions give a large margin for human error. From the test cases it is clear that
the executing engineer needs a broad range of theoretical knowledge in order to
apply it to real life applications.

The test cases increased in complexity from sections 6.1.1 to 6.1.3. The additional
principal radius of curvature for spheres compared to cylinders gives additional
forces and edge conditions to consider. This is emphasised for the first two ex-
amples. The distributions of shear forces and moments are however strictly gov-
erned by the functions expressed in 4.13 and 4.31. This inherent property for shell
structures solely determines the distributions for the edge disturbances, and the
distributions are only distinguished by the size of the edge forces. Thus the shape
of the distributions for these responses are similar for the two structures.

The membrane forces are directly linked to the applied loads. Comparing the
hoop forces in the cylinders for the two first cases one sees directly how linearly
varying hydrostatic pressure differs from a constant pressure load. These membrane
forces, shown in figures 6.5 and 6.11a, exert large tensional forces in the cylinders
which must be treated in design. The spherical shell transfers membrane forces
in a different manner, shown in figures 6.11b and 6.12. Most of the intermediate
parts of the shell are in compression, with the exception of the edges. This is highly
beneficial when using concrete as building material, and makes large concrete domes
possible. The membrane state is generally relatively easy to evaluate. Since the
membrane forces dominate load response for the intermediate parts of the shells,
they provide a useful tool for quick evaluations of the shell behaviour. This might
be used for initial phases of design where swift estimates are needed.

The modification with the ring beam shows a halving of the edge disturbances
acting on the cylindrical shell. For this reason it is safe to say that the high
forces to be transmitted from the sphere are convincingly equalised. In addition to
decreasing the impact on the cylinder, the possibility of ovalisation is reduced. For
these reasons the implementation of ring beams may in many situations be desired
and/or necessary from a technical standpoint, and gives the engineer greater leeway
in design of the structure. The analytical solution concerning ring beams are easily
victim of human errors. During the process of calculation, it became apparent that
the final solution is sensitive with respect to the particular solutions δp and Vm.
Enough significant digits are necessary, and calculation by hand is discouraged. In
general it is advised to use numerical software for validating the results.
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6.2 Numerical solutions

6.2 Numerical solutions

The analytical background material on thin shells of revolution has clear limita-
tions as problems increase in complexity. Needing rigorous, mathematically well
defined geometry, it only serve its purpose for relatively simple structures. The ad-
vancement of the finite element method gives engineers a valuable tool for analysing
complex structures which are out of the scope of the classical theory. The behaviour
of shells do, however, have some general features which are useful even when the
problems increase in complexity. Failure to recognise them may result in a false
interpretation of the results from FEM analyses.

Numerical evaluation of simple examples with associated analytical solutions are
rewarding for several reasons. The results validate each other, ensuring both correct
calculations and software. The engineer also becomes increasingly aware of possible
issues thin shells of revolution pose in numerical analysis. This knowledge can be
implemented when analysing more complex problems, giving increased confidence
and assurance in the numerical results.

In the following, the preceding structures which were analysed analytically are
evaluated numerically in Diana. Focus is on the construction of the FEM models,
and how the corresponding solutions compare to the result from classical theory.
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6.2.1 Numerical analysis of the cylinder with circular plate top

The analytical results from section 6.1.1 showed that the cylinder with circular
plate top experience high forces in the plate and junction areas of the structure.
This information is used to create a proper model in Diana.

6.2.1.1 Model

The axisymmetric environment in Diana facilitate for a simple one-dimensional
model consisting of straight lines. Figure 6.15a shows the model with attached
pressure loads. Half of the problem geometry is modelled and rotated about the y-
axis at x = 0 to create the complete structure. Additional elements are added near
the junction and bottom edge to better approximate the solution in the critical
sections structure, shown in figure 6.15b.

The clamped bottom edge of the cylinder is constrained against displacement in
x and y direction, as well as rotation about the z-axis. In addition the junction
between the cylinder and plate are restricted against displacement in the x and y
directions. This is done to replicate the compatibility assumptions made for the
analytical solution.

(a) Initial model with attached load
(b) Increased element density near critical
sections

Figure 6.15: Finite element model

The geometry was modelled using L6AXI elements, shown in figure 6.20a. This is
a 2 node axisymmetric shell of revolution element with 3 degrees of freedom; two
displacements and one rotation.
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6.2 Numerical solutions

6.2.1.2 Results

Several rounds of analysis are performed with a gradual increase in number of
elements per line. Table 6.1 shows how the edge forces and bending moments
converge towards the analytical solution for an increasing number of elements per
line. Convergence occurs quickly and a low number of elements is sufficient.

#Elements Ma [kNmm ] Qa [kNm ] M0 [kNmm ] Q0 [kNm ]

25 86.7 -193 12 - 47.9

50 87.3 -193 12.2 -48.4

75 87.5 -193 12.3 -48.6

99 87.6 -194 12.3 -48.7

Analytical 88.5 -197.3 13.3 -51.5

Table 6.1: Scalar values for moments and shear forces

The accuracy of the FEM analysis for the moments and shear forces at the edges
suggests that the numerical results are satisfactory.

6.2.1.3 Distributions

The graphical interface in Diana only gives an illustrative insight in the distribution
of forces and moments. To be able to compare the exactness of the distributions, the
raw data for each element was extracted as text files using the tabulate capability
in Diana. Matlab was used for editing and plotting the data.

Graphing of the numerical results was done for the analysis with 99 elements per
line. The plotting was done from each edge of the shells, so that the x-axis repre-
sents the height of the cylinder and half the width of the plate. For all the following
figures, x = 0 represents the bottom of the cylinder and the center of the circular
plate.

Figures 6.16, 6.17 and 6.18 shows various responses in the structure graphed
both analytically and numerically. They clearly show that the numerical solution
matches the analytical in a convincing manner. Both the membrane- and bending
state are represented accurately. The fact they demand different attributes from
the L6AXI element enhance the confidence in the numerical solution. Also notice-
able is the accurate way in which the damping length is represented. All things
considered, the finite element shows excellent accuracy.
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(a) Bending moment Mx in cylinder
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(b) Bending moment Mt in plate

Figure 6.16: Numerical and analytical distributions of bending moments
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(a) Shear force in cylinder
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(b) Shear force in plate

Figure 6.17: Numerical and analytical distributions of shear forces
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Figure 6.18: Numerical and analytical distribution of the hoop force Nθ in cylinder
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6.2 Numerical solutions

6.2.2 Numerical analysis of cylinder with spherical roof

Compared to the previous case, the following requires greater consideration to
choice of elements. The curvature of the spherical shell makes the use of three-
noded elements more prominent.

6.2.2.1 Model

The structure was modelled using straight lines for the cylinder and arches for the
sphere, as shown in figure 6.19. It became clear when running simulations that
the sphere needed extra elements to capture the distribution of forces correctly.
Additional nodal points was therefore added near the critical sections and in the
sphere in order to achieve a better approximations in these areas. The bottom edge
of the cylinder is restricted against displacement in the x and y directions, as well
as against rotation about the z-axis.

Figure 6.19: Finite element model

6.2.2.2 Axisymmetric shell elements

Diana provides two main shell of revolution elements for one dimensional analysis
of axisymmetric shells; the straight two-node L6AXI element and the curved three-
node CL9AX element. Figures 7.3 shows the elements and their local coordinate
systems.
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(a) L6AXI (b) CL9AX

Figure 6.20: Axisymmetric shell of revolution elements [8]

The CL9AX element makes use of quadratic shape functions, while linear shape
functions are used for the L6AXI element. Since the sphere curves in two directions,
it is expected that CL9AX element converges faster towards the analytical solution.

6.2.2.3 Results

A small comparison of the two elements is conducted to see how they converge
towards an analytical solution. As a reference point the junction moment Ma was
used. The CL9AX elements show promising accuracy even for a low number of
elements per line, which is slightly better than the L6AXI element. for this reason,
further discussion of the numerical results are done for the curved CL9AX element.
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Figure 6.21: Convergence of different element types for increasing element division
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6.2.2.4 Distributions

Once again the shell forces and moments are plotted against the analytical solution
in order to evaluate the accuracy of the finite element results. This was done for
the model having 98 elements per line.

Figures 6.22, 6.23, 6.24 and 6.25 show the distribution of forces and moments in
the structure. The overall accuracy of the solutions is convincing. Some minor
inaccuracies are introduced from the increased complexity of the problem. The
shear force distribution in the spherical shell, given in figure 6.23b, is less smooth
compared to the other distributions. This stems from the shape functions for the
three-noded elements, which give a linear shear force distribution over the element.
This results in the small noise in the figure. Also, the meridian force shown in figure
6.25 has a small deviance between the solutions. The difference is small however,
and not considered critical. Again the line elements show great results for linear
static analysis.
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(b) Bending moment Mθ in sphere

Figure 6.22: Comparison of numerical and analytical distributions of bending mo-
ments
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(a) Shear force in cylinder
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(b) Shear force in sphere

Figure 6.23: Numerical and analytical distributions of shear forces
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(a) Hoop force in cylinder
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(b) Hoop force in sphere

Figure 6.24: Numerical and analytical distribution of hoop forces
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Figure 6.25: Numerical and analytical distributions of the meridian force
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6.2 Numerical solutions

6.2.3 Numerical analysis of the implemented ring beam

In the case of the ring beam, it is interesting to see if numerical solutions capture
the reduction of bending moments and shear forces in the junction between the
two shells.

6.2.3.1 Model

The finite element model used is a modified version of the model in the previous
example. Since the focus is on the reduction of forces in the junction of the struc-
ture, additional elements are added in this region. The ring beam was modelled
by specifying a line with increased thickness, equivalent to the width of the ring
beam, at the top face of the cylinder, marked red on figure 6.26. Apart from the
mentioned changes the model is identical to the one used in section 6.2.2.

Figure 6.26: Finite element model

6.2.3.2 Results

The analysis was run with 99 elements per line. Table 6.25 gives results from the
numerical simulation. The accuracy of the solution is good. Some small differences
present which might have been eliminated by modelling the ring beam in a more
sophisticated manner. The results are still considered satisfactory for the scope of
this paper.
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Analytical Numerical

M0c[kNmm ] -4.0 -4.2

Q0c[kNm ] 14.5 13.4

M0s[kNmm ] -10.0 -9.8

R0s[kNm ] -24.9 -23.8

Table 6.2: Results from numerical simulation

66



6.2 Numerical solutions

6.2.4 Discussion

Within the context of linear elastic analysis the preceding numerical simulations
show satisfactory results. The L6AXI and CL9AX line elements give accurate
solutions to both the membrane and bending responses occurring in the structures.

The mesh density of the models have a large influence on the results. This is espe-
cially true in regions of the structures where large changes in response occurs. For
thin shells these changes are most notable towards the edges. In the intermediate
parts the shell the membrane solution dominates. In these regions accurate solu-
tions can be obtained for relatively low mesh densities. At the edges, where the
responses undergo large changes over small distances, a greater number of elements
should be used to ensure satisfying solutions.

The edge beam was modelled in a rather unrefined fashion. The way of simply
increasing the thickness near the top edge of the cylinder did, however, give a
representation where the necessary degrees of freedom are accounted for. This is
reflected in the results. The simple modification to the model captures the decrease
in forces and moments at the upper edge of the cylinder in a satisfactory way.

One appealing aspect of the line models are their simplicity. With rudimentary
knowledge of finite element analysis it is easy to create simple models which gives
accurate solutions to thin shells of revolution. This gives the engineer a tool for
quick and accurate evaluations.

In the preceding chapter the line elements have been established as accurate for
linear elastic analysis of thin shells. This provides a comparative basis for under-
standing how solid elements behave for such structures.
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7 Element comparison

Up until this point the numerical analyses have been conducted using line elements.
The study of the sample cases establish compelling evidence for the accuracy of
these elements for linear analysis of thin shells. In the context of nonlinear anal-
ysis, two-dimensional models utilising solid elements are used in order to include
reinforcement grids and evaluate stresses.

Before a complete non-linear analysis is carried out the differences between line
and solid elements are studied. This provides a basis for understanding how the
solid elements capture the shell behaviour, and makes the nonlinear model more
reliable in the sense that the element behaviour is studied forehand.

7.1 Simple cylinder

For the first comparison a well established benchmark test is used. In an article
written by Chapelle and Bathe various benchmark tests for shells are suggested [9].
One of them, the pinched cylinder, is chosen in the following to investigate solutions
from different solid elements.

A clamped cylinder loaded with internal pressure is considered. Its simplicity
makes it ideal comparing results from different elements. The necessary material
and geometrical data for the cylinder are given in figure 7.1.

A

a = 5000mm

C45
E = 36000MPa
ν = 0.2

H
c
=

50
00
m
m

P = 100kN
m2

Data:

hc = 200mm

Figure 7.1: Benchmark pinched cylinder
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7 ELEMENT COMPARISON

7.1.1 Model

The axisymmetric environment in Diana is recurrently used for making two-dimensional
models. Figure 7.2 shows how the cylinder is modelled with axisymmetric solid ele-
ments. It consists of a rectangular surface with a predetermined mesh division over
the thickness and length. The clamping of the lower edge is done by specifying zero
displacement in x and y direction for the bottom line in figure 7.2a. The pressure
load is applied at the inner face of the cylinder, shown in figure 7.2b.

(a) Initial geometry (b) Mesh and loads

Figure 7.2: Finite element model of cylinder using solid elements

7.1.1.1 Elements

Two promising solid elements are considered; a four-node isoparametric axisymmet-
ric solid ring element and an eight-node isoparametric plane axisymmetric solid ring
element with quadrilateral cross section. The Q8AXI element, shown in figure 7.3a,
is based on linear interpolation and Gauss integration. The higher order CQ16A
element, shown in figure 7.3b, is also based on Gauss integration, but makes use of
quadratic interpolation. Both elements have two degrees of freedom at each node,
and employ reduced integration.
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7.1 Simple cylinder

(a) Q8AXI (b) CQ16A

Figure 7.3: Solid ring elements [8]

7.1.2 Results

The edge disturbances present at the clamped edge of the cylinder are in focus.
The numerical results from the two-dimensional analysis are given as stresses in
the cylinder wall, and are integrated over the thickness to retrieve the shear force
and bending moment. Several analyses were run with increasing mesh division to
investigate how the results converge.

Longitudinal/Thickness Q8AXI CQ16A

# Elements M0 [kNmm ] Q0 [kNm ] M0 [kNmm ] Q0 [kNm ]

25/6 22.7 -65 28 -73.2

50/8 26.5 -70.6 29.8 -73.7

75/10 28.5 -70.6 31 -73.7

Analytical 29.5 -76.8 29.5 -76.8

Table 7.1: Results from numerical simulation with increasing mesh density

The results are summarized in table 7.1. The CQ16A element shows better con-
vergence toward the analytical solution. This especially true for the shear force,
where the Q8AXI element shows a relatively large deviation. Because of the higher
order of the CQ16A element these results are expected. For this reason the CQ16A
element stands out as the primary candidate for use in a nonlinear analysis.
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7 ELEMENT COMPARISON

7.2 Cylinder with circular plate top

To further investigate the accuracy of the CQ16A element, a linear static analysis
of the cylinder with plate top is conducted. The nonlinear analysis conducted in
section 8 is done for this particular structure. The line model solution to this
particular structure was established as accurate in section 6.1.1. This gives an
excellent starting point for investigating the linear behaviour of the solid elements.

7.2.1 Models

The models to be compared are showed in figure 7.4. They are similarly constructed
but differs in spatial dimensions.

No changes are made to the line model, which remains identical to the one used in
section 6.2.1.

Figure 7.5b shows the construction of the solid model. As previously mentioned,
this is the same model as the one which is used for nonlinear analysis in section 8.
The additional nodal points seen in the figure are there to include reinforcement
sections. To make the models comparable„ the Young’s modulus of the reinforce-
ment steel is set to 1 MPa, which makes the effects of the added reinforcement
negligible. Further details of the model are given in section 8.2.

(a) Model with line elements (b) Model with solid elements

Figure 7.4

7.2.1.1 Elements

As the analysis conducted in section 6.2.1 showed pleasing results, the L6AXI line
elements are continually used. The CQ16A element showed the best results in the
preceding element comparison, and is therefore chosen for the solid model.
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7.2 Cylinder with circular plate top

7.2.2 Results

Similar results from the two analyses are expected. A platform for investiga-
tion similarities and differences are established by examining the deformations and
stresses.

7.2.2.1 Deformations

The two models show similar deformation patterns, shown in figure 7.5. The defor-
mations in the figures are scaled with a factor of 40. The two shapes are identical
and as expected given the boundary and load conditions of the structure. The
laterally loaded plate shows high deformations, while the cylinder is displaced only
a small amount.

(a) Deformation of line model (b) Deformation of solid model

Figure 7.5: Deformation shape for the two models

Table 7.2 gives the magnitudes of the vertical displacement at the centre of the
plate and the horizontal displacement of the junction, respectively. The results
are close to identical, and the small differences can be attributed to the different
approaches used in the modelling.

Line elements Solid elements

Vertical displacement 9.75 mm 9.05 mm

Horizontal displacement 0.073 mm 0.283 mm

Table 7.2: Displacements from the two models
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7.2.2.2 Stresses

To achieve an objective basis for comparing the stresses, plots over the inner face
of the cylinder are produced. Since the two models differ in spatial dimensions, the
corner of the structure is an area which is difficult to compare directly. A choice
is made to only plot the nodes which are a part of the cylinder, which makes the
height of the cylinder in the solid model a bit smaller compared to the line model.

Figure 7.6 shows the the distribution of various stresses over the inner face of the
cylinder. They are plotted in the local element coordinate system. The brackets in
the figure refers to the meshing of the plate and cylinder surfaces over the thickness
and longitudinal directions, respectively.

From the figure it is evident that the solid model gives more crude approximations
of stresses compared to the line alternative. This is especially true near the junction
of the structure.

The deviation between the solutions are small for the stresses related to the mem-
brane forces and bending moments, shown in figures 7.6a and 7.6c. The differences
increase somewhat near the junction of the structure, but they are small and not
considered critical.

The shear force distribution gives more reason for concern. The oscillating be-
haviour near the junctions, seen from figure 7.6b, is clearly a parasitic feature
which should not occur in the distributions.
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7.2 Cylinder with circular plate top
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Figure 7.6: Comparison of stresses in cylinder plotted in the local coordinate system
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7 ELEMENT COMPARISON

To investigate the oscillating behaviour further, the shear stresses at the neutral
axis of the cylinder wall are graphed. This is where they are at their greatest.
Figure 7.7 shows the distribution for a mesh density of [6/45]. Compared to the
inner face of the cylinder, this distribution contains significantly less noise and
generally looks more reasonable. The oscillations are not present, which gives
some reassurance in the accuracy of the solid element solutions.
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Figure 7.7: Shear force at centre of cylinder wall
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7.3 Discussion

The preceding study gives uncertainty in the numeric results from solid shell mod-
els. The benchmark test of the pinched cylinder established the CQ16A element as
the preferred choice in the following nonlinear analysis. The deviations from the
analytical solution are small and within acceptable boundaries.

The second comparison of the line and solid elements show conflicting results.
While the stresses from bending and hoop forces are reasonable, the solid model
approximate the shear stresses at the edges in a poor manner. The oscillations
seen in figure 7.6b might stem from parasitic features which are naturally not
desired. The shear stress distribution from the neutral axis of the cylinder gives
some assurance in the results, but a great deal of uncertainty in the accuracy of
the solid CQ16A element still remains. Further assessment of the element could
be done to pinpoint the reasons for this behaviour. This requires a lot of effort
which is out of the context of this paper. Even though the accuracy of the results
are questionable, the CQ16A solid ring element is used for the following nonlinear
analysis. The findings from the preceding section serves as the main possible source
of error from the nonlinear solution.
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8 Nonlinear analysis

Linear analysis of structures gives limited understanding of the underlying pro-
cesses at work when the linear range is exceeded. All structures, including the
ones studied in this paper, inherit nonlinear characteristics which are technically
interesting. Nonlinear response may stem from several sources; geometric, mate-
rial and boundary nonlinearities are some examples. For most structures, the total
response is a combination of such nonlinearities.

In this section the design and nonlinear analysis is done for the example of the
cylinder with a plate top. The design is done in accordance with the Eurocodes.
For this purpose the partial safety factors are evaluated, and the the structure is
reinforced accordingly. The subsequent nonlinear analysis provides the basis for
evaluating whether or not the structure is designed in a satisfactory manner.

8.1 Design in accordance with the Eurocodes

The complete design of the structure is done in accordance with the Eurocodes.
Load and material factors change the response from the structure, which in turn
must be recalculated.

8.1.1 Design loads

The main focus in structural design is to ensure the safety of people and the
environment. From an engineering perspective this is done by the use of load
and material factors, specified in Eurocode 0 [10]. The partial load factors are
determined based on the nature of the loads (self weight, permanente etc.). Table
8.1 shows the factors and how they are combined.

Referring to figure 6.1, there are two loads acting on the plate; the upwards internal
pressure and the self weight of the concrete. The partial factor γGj,inf is used for
the self weight since it has a favourable effect on the structure. The pressure load is
considered a constant load, which has a partial load factor of 1.2. From the table,
two set of expressions giving the design load for the roof are obtained:

Case 1 : q1 = γGj,inf · w + γGj,sup · p = 0.9 · w + 1.2 · p = 115.5kN
m2

Case 2 : q2 = γGj,inf · w + γGj,sup · p = 1 · w + 1.2 · p = 115kN
m2

Case 1 results in the largest design load, and is used in further calculations.

The cylinder only experience a constant pressure load
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8 NONLINEAR ANALYSIS

Table 8.1: Load combination according to Eurocode 0 [10, Tab. NA.A1.2(B)]

p = γGj,sup · p = 1.2 · 100kN
m2 = 120kN

m2 ,

which constitutes the design load acting on the cylinder.

8.1.2 Partial factors for materials

The partial factors for reduction of the material strengths are specified in Eurocode
2 [11, 2.4.2.4]. The calculations are given in appendix D.

8.1.3 Recalculation of moments and forces using design loads

A recalculation of the forces and bending moments based on the design loads are
needed before the structure can be reinforced. Table 8.2 shows the results from a
finite element analysis conducted in the same manner as in section 6.1.1. Only the
edge forces and highest occurring membrane forces are given, since they are used
in the reinforcement design.
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8.1 Design in accordance with the Eurocodes

Cylinder M0 = 15.9kNmm Ma = 107.5kNmm

Q0 = −61.8kNm Qa = −240kNm

Nθbottom = 360kNm Nθtop = −560kNm

Plate Mredge = 107.5kNmm Mtedge = 31.05kNmm

Mrmiddle = −101kNmm Mtmiddle = −101kNmm

Qpedge = −173.25kNm

Table 8.2: Recalculated forces and bending moments

As expected, the forces and moments have increased by a sufficient amount.

8.1.4 Reinforcement

Reinforcement steel B500NC is used. It is a typical steel with a characteristic
strength of fyk = 500MPa.

For shells of revolution with axisymmetric loads the stress states are relatively
simple. The absence of twisting moments means that the shells can be designed
as one way slabs, and the various shell responses are reinforced separately. The
structure was reinforced for the highest occurring forces or moments at each edge
of the shell and plate.

The main load carrying function of shells are the membrane forces. For the current
example, the hoop force induces tension in most of the structure, but changes
sign towards the top of the cylinder where it creates a high compressive force. To
minimise the effects of cracking, the hoop reinforcement is placed in two separate
layers. Since the hoop force induces tension over most of the cylinder length, it is
assumed that the reinforcement carries the complete load.

Flexural and shear reinforcement is only necessary distributed over the damping
length near the edge zones of the shell. For practical implementation this would not
be appropriate, and most cylinders have flexural reinforcement distributed along
their whole length. This is practical because it gives a framework for attaching both
shear and hoop reinforcement. This was therefore also done in the finite element
model.

The calculation of reinforcement was done in accordance with Eurocode 2 [11]. The
details of the calculations are given in appendix D, and summarised in table 8.3.

81
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Moments Bar cross section Total reinforcement

M0 φ12s355 320mm
2

m

Ma (Tension) φ16s78 2580mm
2

m

Ma (Compression) φ12s650 310mm
2

m

Mr center φ16s155 1300mm
2

m

Mt center φ16s155 1300mm
2

m

Mr edge φ16s120 1680mm
2

m

Mt edge φ12s250 455mm
2

m

Shear forces Bar cross section Total reinforcement

Q0 - -

Qa φ12s65 1740mm
2

m

Qp φ12s148 1080mm
2

m

Hoop forces (per layer) Bar cross section Total reinforcement

Nθ Bottom φ12s270 419mm
2

m

Nθ Top - -

Table 8.3: Necessary reinforcement for the structure

The plate and top section of the cylinder are heavily reinforced. Figure 8.1 shows
how the reinforcement is included in the numerical model. As the figure shows, the
reinforcement is place with practical implementation in mind. Hence several parts
of the structure are over-reinforced.
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8.2 Nonlinear model

Mr/tEdge

M0, Nθ

Nθ

Ma, Nθ

Macom.
, Nθ

Qp

Qa

Mr/tCentre

Figure 8.1: Layout of the reinforced structure

8.2 Nonlinear model

The nonlinear model needs greater consideration of aspects concerning the material
behaviours and choice of solution method. This is inspected further in the following.

8.2.1 Material models

The choice of material models are important in order to simulate realistic material
behaviour. Diana provides a material library with several predefined stress-strain
curves, where required input are points on the stress-strain curves. This input
is found from Eurocode 2. Since the nonlinear analysis is done for the designed
structure, all the following material properties are given as design values.

Concrete

The Thorenfeldt curve, shown in figure 8.2a, was chosen for the concrete in com-
pression. As input it requires the compressive cylinder strength, which in this case
is fcd = 25.5MPa.

A linear tension softening curve is used for the concrete in tension, shown in figure
8.2b. It is fully defined by the the tensile strength of the concrete (fctd,0.05) and the
Mode-I ultimate tensile strain (εu). For C45 concrete the design tensile strength
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8 NONLINEAR ANALYSIS

is fctd,0.05 = 1.53MPa. The mode-I ultimate tensile strain is more vaguely de-
fined. Sophisticated methods for defining it exist, but they are out of the scope
of this paper. The tensional concrete strength is instead defined as zero when the
reinforcement yields, which gives a ultimate strain of εu = 2.17 · 10−3.

(a) Thorenfeldt [12] (b) Linear tension softening

Figure 8.2: Material models for concrete [12]

Reinforcement

The steel material is modelled with linear hardening, shown in figure 8.3. The
design yield tensile strength for reinforcement B500NC is fyd = 434MPa. The
ultimate design tensile strength after hardening is determined from eurocode 2 as
451MPa at 3 % strain [11, NA.3.2.7(2)].

Figure 8.3: Idealised stress-strain curve for reinforcement steel [11, ch. 3.3.6]

84



8.2 Nonlinear model

8.2.2 Finite element model

The finite element model is constructed as a 2 dimensional structure in the axisym-
metric environment in Diana. The geometry consists of three surfaces; the plate,
the junction and the cylinder. This is done to ensure satisfactory alignment of the
mesh in the junction. The plate and cylinder are meshed with six elements over
the thickness and thirty elements along their respective longitudinal axes. Figure
8.4a shows the meshed structure with the applied load.

The reinforcement is implemented by attaching grid sections to lines placed within
the surfaces. The layout of the reinforcement is shown in figure 8.4b. For each line
in the figure the amount of reinforcement is specified in two directions with units
mm2

mm . It is placed with the minimum concrete cover given in Eurocode 2, which is
calculated in appendix D.

The bottom edge cylinder is modelled as clamped by restricting displacement in
the x and y directions.

(a) Mesh and pressure load (b) Reinforcement

Figure 8.4: Finite element model used in nonlinear analysis

8.2.3 Elements

Linearly interpolated isoparametric elements, like the Q8AXI elements previously
studied, are not advisable used in non-linear models. These elements have in-
strinct shortcomings, like parasitic shear and volumetric locking, which are not
easily dealt with in nonlinear analysis [13, Ch. 11.2]. The Q8AXI element was out
of interest tested in the initial phases of the analysis. The results showed clear
weaknesses, and inspection of the deformation patterns revealed clear hourglass
modes for elements in areas of high stress. The use of higher order elements pre-
vents such behaviour. The CQ16A element, described in section 7.1.1.1 is used,
which effectively eliminated the parasitic features.
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8 NONLINEAR ANALYSIS

8.3 Solution method

The analysis was run using purely incremental methods. Both arc-length control
and load control was tested with various increments. The model showed some
problems finding convergence in certain load steps. To ensure a reliable solution,
arc-length control is used with the load applied in two rounds. At first, five load
steps with a 5% increase in load was utilised. This is done to ensure that the
stiffness used for calculating the initial predictor is reliable. Then 15 load steps
with an increase of 10% of the load is used to make sure that the total applied
load exceeds the design load. The iterations were done using the modified Newton-
Raphson method. To increase the chance of convergence for each load step, a
maximum of 100 iterations per step was used.

8.4 Results

Diana provides numerous possible parameters to be studied from the nonlinear
analysis. The main focus here will be on the stresses, but some insight into the
deformations and crack behaviour is also provided.

8.4.1 Deformations

The deformation of the structure gives useful clues to the accuracy of the numerical
solution. Figure 8.5 shows the deformed shape of the structure for a load factor of
λ = 1. The deformations are scaled with a factor of 500. The deformed structure
corresponds to the expected shape given the load and boundary conditions. The
elements show no sign of parasitic features like hourglass modes, which were highly
visible the when linearly interpolated elements were used.
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8.4 Results

Figure 8.5: Deformed shape for load step λ = 1

Load-displacement curves are essential tools for understanding the nonlinear be-
haviour. They are useful for detecting critical points in the in the load history
of the structure. Such curves are graphed for increasing load at two of the nodal
points; the centre of the plate and corner of the structure.

Figure 8.6 shows the vertical displacement at the centre of the plate. For the
load factor λ corresponding to the actual applied load the plate is displaced ap-
proximately 53 mm. From a design perspective this displacement is high, and it
would not pass the serviceability limit state for displacement control in Eurocode
2 [11, ch. 7.4]. For the scope of a ultimate limit state analysis the displacement
is reasonable. It is evident that the structure’s load carrying ability is drastically
reduced for approximately 1.08 of the applied load. From that point the displace-
ments increase drastically for only small increases in load. This is a critical point
in the curve.
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Figure 8.6: Load-displacement curve for the centre of the plate

The analytical solution for this specific structure assumes zero horizontal displace-
ment at the junction between the shell and plate. In practice this assumption is
naturally not true. Figure 8.7 shows how the structure is displaced horizontally at
the corner. For the actual applied load the structure has a horizontal displacement
of about 3.7 mm.
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Figure 8.7: Load-displacement curve for the junction of the structure

Overall the structure is able to endure a load approximately 1.08 times the design
load, which is clearly visible in both of the load-displacement curves. This gives
an indication that the structure is properly designed, and that the applied design
load is relatively high.
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8.4 Results

8.4.2 Stresses

If the structure is designed appropriately, the stresses in the structure should not
exceed the strengths of the respective materials. In the following the stresses in
the reinforcement and concrete are inspected separately. All stresses are evaluated
in the Gauss points for the load case corresponding to the design load.

8.4.2.1 Reinforcement

As was discussed in section 8.1.4, most parts of the structure are conservatively
reinforced. This is especially true in the cylinder, where the stresses generally
show low values. Figure 8.8 shows that the largest stresses occur at the upper edge
where the joint moment is at its largest. The flexural reinforcement is still far from
yielding, which stems from the fact that the hoop reinforcement is placed over the
whole length of the cylinder.

Figure 8.8: Stresses in cylinder reinforcement for load step λ = 1 [MPa]

The plate experiences the highest stresses in the structure, which is reflected from
the stresses in the reinforcement. Figure 8.9 shows yielding in the middle and edge
parts of the plate. The stresses in the shear reinforcement are low. Hence the shear
reinforcement may be reduced towards the centre of the plate.
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8 NONLINEAR ANALYSIS

Figure 8.9: Stresses in plate reinforcement for load step λ = 1 [MPa]

The distribution of stresses in the top and bottom flexural reinforcement in the plate
are shown in figure 8.10. Both layers of reinforcement yields where the highest
radial moment occurs, and are reduced as the bending moments decrease. The
compressive stresses are significantly lower as a consequence of the compressional
strength of concrete.
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Figure 8.10: Stresses in flexural reinforcement for λ = 1

8.4.2.2 Concrete

Since the reinforcement yields in certain areas of the structure, it is crucial that
the stresses in the concrete does not exceed its design strength.

Figure 8.11 shows contour plots of the stresses occurring in the cylinder. The
direction of the stresses are taken from the local coordinate system on element
level. As expected, the bending moments give the highest compressional stresses,
shown in figure 8.11b. This happens at the upper edge where junction moment is
transferred from the plate. The maximum occurring compressive stress is of size
-15.4 MPa, which is far from critical. Since the stresses from bending are purely
compressional it is evident that the tensional forces are effectively redistributed to
the reinforcement.

The analytical assessment of the structure showed that the hoop force imparts
tensional forces in most of the cylinder. It is vital that these forces are adequately
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redistributed to the reinforcement to avoid fracture. From figure 8.11d its clear
that the stresses have been efficiently reduced. They lie around 1 MPa, which is
comfortably below the tensional strength of the concrete.

The shear stresses are small overall, but reach the design tension strength of the
concrete at the upper edge, showed in figure 8.11c. This might be attributed to
a localisation of stresses at the junction. On the other hand, the study of the
solid element behaviour showed oscillating behaviour of shear stresses near the
edges zones of the cylinder. The results should therefore be considered as slightly
uncertain.

(a) σx (b) σy (c) τxy (d) σz

Figure 8.11: Concrete stresses in cylinder plotted in element coordinate system for
load step λ = 1 [MPa]

The plate is less heavily reinforced compared to the cylinder, and as a consequence
larger parts of the concrete is utilised. This leads to stresses closer to the concrete
compressive strength, as seen from figure 8.12. A maximum stress of -23 MPa is
present at the bottom face of the plate, which is close to the design compressive
strength of C45 concrete. Stresses in tension are avoided completely by redistribu-
tion of tensional forces to the reinforcement.

The shear stresses in the plate are low, as seen from figure 8.12c. This is because
the cylinder has a large amount of shear reinforcement.
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(a) σx

(b) σz

(c) τxy

Figure 8.12: Concrete stresses in plate plotted in element coordinate system for
load step λ = 1 [MPa]

An interesting aspect from the nonlinear analysis is to see how the stresses have
changed in comparison to the linear analysis which was conducted in section 7.2.
Again the stresses are plotted at the inner face of the cylinder.

Figure 8.13 shows the stress responses from both the linear and nonlinear analyses.
The stresses from the nonlinear analysis tend to be more constant over the length
of the cylinder. This is a result of the redistribution of forces to the reinforcement.
As a consequence the stresses are reduced.

The oscillating behaviour that was found for the shear force distribution in section
7.2 is still present for the nonlinear analysis. This is to be expected as the two
models are identical with the exception of the added reinforcement.
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Figure 8.13: Stresses from nonlinear analysis plotted at inner face of cylinder

The nonlinear analysis shows that the structure has a sufficient capacity. This
indicates that the structure is adequately designed.
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8.4.3 Cracking

Cracks in reinforced concrete have a significant influence on the internal stresses,
stiffness and overall behaviour of the structure. Smeared crack models are the
most used models for describing crack behaviour in nonlinear analysis of reinforced
concrete [14]. It is based on the idea that in concrete, because of its heterogeneity
and presence of reinforcement, many small cracks form in central areas which only
in later stages of the loading link to form one or more dominate cracks [15]. Com-
pared to discrete crack models, each individual crack is not numerically resolved
but rather smeared out over the continuum. A rotating crack analysis was used in
the current analysis. The crack evaluation is based on the current load step alone,
unlike fixed crack models which take previous crack history into consideration.

The upcoming figures show the crack patterns occurring from the first principal
stress σ1. As it exceeds the tension strength of the concrete, cracks occurs. Diana
gives the strains normal to the cracks as output, from which the crack widths can
be calculated. This is not done in the following considerations, and the values of
the strains are only meant as an indication of the crack sizes.

The analysis shows that the first cracks are initiated in the junction of the structure
and spread quickly to the higher stressed parts of the plate. Figure 8.14 shows the
initiation of cracks in the junction of the structure for load of λ = 0.1. Even for
this small load some small cracks are appearing.

Figure 8.14: Crack initiation at the junction

The cracks evolve further for increasing load. Figure 8.15 visualises how the cracks
evolve for increasing load in these regions. The circles seen in the figures indicate
the orientation of the crack perpendicular to the x-y plane (the structure is three
dimensional). Cracks form in the areas of high stress and gradually evolve along the
plate. Load factor λ=1.29 constitutes a high load on the structure. At this point
the bottom face of the plate starts cracking, as seen from figure 8.15c. As most
of the bottom face is in compression the occurring cracks indicates compressive
fracture of the concrete.
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(a) λ = 0.195

(b) λ = 1

(c) λ = 1.29

Figure 8.15: Evolution of cracks in plate for increasing load

The cylinder experience less cracking in comparison with the plate. For this reason
it is not discussed any further. The amount of cracks appearing in the structure is
expected since it has been designed in the ultimate limit state. For a serviceability
limit state design these cracks might not pass the requirements from Eurocode 2.
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8.5 Discussion

The overall results from the nonlinear analysis appear trustworthy. It is evident
that the load for which the structure was designed is high, which is emphasised
from the response for increasing loads. The stresses in the structure does, however,
lie within the acceptable boundaries defined by the respective material strengths.
This indicates that the design of the structure was done appropriately.

Several aspects of the preceding non-linear solution are uncertain. A possible source
of uncertainty in the results comes from modelling using partial safety factors
(PSFs). In a technical paper written by Vladimir Cervenka it is suggested that
nonlinear analysis of reinforced concrete structures where PSFs are applied increase
the uncertainty of the solution [16]. Changing the material strengths for the the
steel and concrete by an uneven amount effectively changes the composite material
interaction. This will not be further addressed, but is included as a possible source
of error in the results.

A second source of uncertainty lies in the choice of material models. Other, more
sophisticated models exist, which might give more accurate results. An optimal
stress-strain curve could be obtained from experiments where the different control
parameters are more well defined. The results presented above do, however, show
pleasing results for the scope of this paper.

A final source of error comes from the oscillating shear stress distribution found in
section 7.2. These oscillations are somewhat reduced in the nonlinear analysis, but
are still present. It is difficult to analyse how much this effects the stresses in the
structure without venturing deeper into the finite element theory on the subject.
Since this is not the main focus of this paper it is not considered any further. The
shear stresses do not exceed the design strength of the concrete, and the results
are therefore considered reasonable.
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9 Conclusion

From the analyses conducted in this paper it is evident that shells have intrinsic
properties which separate them from other construction components.

The classical theory on shells provides a solid basis for understanding the behaviour
of different shells with various load conditions. The analytically resolved sample
cases confirm that membrane action is the primary load-carrying response in thin
shells. Edge effects have a large impact at the boundaries, but they are rapidly
damped out towards the intermediate parts of the shells. It is confirmed that ring
beams efficiently reduce the impact on cylinders when they are in connection with
spherical shells. For the example of the cylindrical shell with spherical roof, the edge
disturbances on the upper edge of the cylinder was nearly halved. It is evident that
the analytical solutions to connected thin shells are complex, and as a consequence
they are at high risk of human errors. For this reason it is recommended to use
finite element software to validate the results.

The results from the linear static analyses using finite element software show exem-
plary results. Implementation of the L6AXI and CL9AX line elements give results
matching the analytical solutions in a convincing manner. Within the scope of
linear elastic analysis, they provide for simple finite element models with a high
degree of accuracy.

The study of line and solid elements established a basis for investigating the accu-
racy of solid elements. The solid model solutions show less accuracy and greater
noise in the stress distributions compared to the line alternative. This is especially
true for the shear forces, which show oscillating behaviour close to edge zones of
the shells. This is considered one of the main uncertainties in the solution from
the nonlinear analysis.

The cylinder with circular plate top was designed in the ultimate limit state in
accordance with the Eurocodes. The accompanying nonlinear analysis verifies that
the design gives sufficient capacity. This confirms that shells of revolution with
symmetrical load conditions can be designed similarly to one way slabs. Inspection
of the results show large deformations of the plate, which is displaced approximately
53 mm vertically at the centre. From a design perspective, this displacement ex-
ceeds the serviceability limit state requirements specified in Eurocode 2. For the
scope of an ultimate limit state design however, the displacement is reasonable.
The stresses in the structure are shown to be effectively reduced by the added re-
inforcement. The structure is heavily reinforced, and a reduction of reinforcement
area in several regions can safely be done. For increasing loads the analysis shows
several small cracks proliferating across the structure. This is expected from the
smeared crack model which was used in the analysis. The ultimate load that the
structure can endure is found to be 1.08 times the applied design load.
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Data:

≔a 3000 ≔hc 150

≔L 5000 ≔hp 200

≔E 36000 ≔ν 0.2

≔p 100 ――
2

≔g 5 ――
2

≔q =−p g ⎛⎝ ⋅95 10
−3⎞⎠

Flexural stiffnesses:

≔Dc =――――
⋅E hc

3

12 ⎛⎝ −1 ν
2 ⎞⎠

⎛⎝ ⋅10.547 10
9 ⎞⎠ ⋅

≔Dp =――――
⋅E hp

3

12 ⎛⎝ −1 ν
2 ⎞⎠

⎛⎝ ⋅25 10
9 ⎞⎠ ⋅

Elastic length:

≔β =
‾‾‾‾‾‾‾4

―――
⋅E hc

4 a
2

Dc

⎛⎝ ⋅1.941967 10
−3⎞⎠ ――

1

Damping length:

≔Lc =―
β

⎛⎝ ⋅1.618 10
3 ⎞⎠

<2 Lc L --> The two edges do not effect one another.

A Cylinder with circular plate top
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Solution for cylinder:

Particular solution: ≔wp =――
⋅p a

2

⋅E hc

⎛⎝ ⋅166.67 10
−3⎞⎠ (( ))

Homogeneous solution:

＝＝w ((0)) +wp ⋅―――
1

⋅2 D β
2

⎛
⎜⎝

+M0 ――
Q0

β

⎞
⎟⎠

0

＝＝――
dw

dx
((0)) −−2 M0 ――

Q0

β
0

We solve for the integration constants by setting up an equation system:

≔A

―――
1

⋅2 Dc β
2

―――
1

⋅2 Dc β
3

−――
1

⋅Dc β
−―――

1

2 Dc β
2

⎡
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥⎦

≔B
−wp

0

⎡
⎢⎣

⎤
⎥⎦

The edge forces become:

≔
M0

Q0

⎡
⎢⎣

⎤
⎥⎦

13.258 ―――
⋅

−51.494 ――

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦
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Coupling of circular plate and cylinder

Plate free to rotate:

≔θq =―――
⋅q a

3

⋅16 Dp

⎛
⎜⎝

−――
+3 ν

+1 ν
1

⎞
⎟⎠

⎛⎝ ⋅10.6875 10
−3⎞⎠

Linking the shell and plate creates an edge moment, which in turn results in an rotation of the 
plate edge:

＝＝θM ――――
⋅Ma a

Dp (( +1 ν))
⋅1.2 10

−4
Ma

Ma is the moment in the junction between the shell and plate.

By requiring equal rotation in the junction, we get the following expression:

＝＝＝―――
dw ((0))

dx
―――

1

⋅⋅2 Dc β

⎛
⎜⎝

−−2 M0 ――
Q0

β

⎞
⎟⎠

−q −−θq θM

The edge moment and shear force must be the same for both the cylinder and plate, thus

＝M0 Ma , ＝Q0 Qa

Compability condition 1: Equal rotation in junction B: ＝θc −θq

I) ＝+
⎛
⎜⎝

+――
1

⋅Dc β
――――

a

⋅Dp (( +1 ν))

⎞
⎟⎠

Ma ―――
1

⋅2 Dc β
2

Qa θq
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Compability condition 2: It is assumed that the plate has infinite stiffness in the 
plane. This means that radial displacement is restricted for the shell:

＝＝wtot +wp wh ((0)) 0

II) ＝+―――
1

2 β
2

Dc

Ma ―――
1

2 β
3

Dc

Qq −wp

≔K

+――
1

⋅Dc β
――――

a

⋅Dp (( +1 ν))
―――

1

⋅2 Dc β
2

―――
1

2 β
2

Dc

―――
1

2 β
3

Dc

⎡
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥⎦

≔X
θq

−wp

⎡
⎢⎣

⎤
⎥⎦

By solving the equation system, we find the moment and shear force at the junction to be:

＝
Ma

Qa

⎡
⎢⎣

⎤
⎥⎦

88.5 ――
kNm

m

−197.6 ――
kN

m

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

Plotting the distributions of forces and moments is done in matlab.
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Material data:

C45 ≔ν 0.2 ≔E ⋅3.6 10
7

――
2

≔γw 10 ――
3

≔φ 30

≔hc 0.18 ≔Hs 10 ≔a 10

≔Dc =――――
⋅E hc

3

12 ⎛⎝ −1 ν
2 ⎞⎠

⎛⎝ ⋅18.225 10
3 ⎞⎠ ⋅

≔hs 0.15 ≔R 20

≔Ds =――――
⋅E hs

3

12 ⎛⎝ −1 ν
2 ⎞⎠

⎛⎝ ⋅10.547 10
3 ⎞⎠ ⋅

Cylinder 

≔β =
‾‾‾‾‾‾‾‾4

――――
3 ⎛⎝ −1 ν

2 ⎞⎠

a
2

hc

2

⎛⎝ ⋅970.984 10
−6⎞⎠ ――

1

water pressure varies with x as follows: ≔p ((x)) γw x

≔wp ((x)) ⋅――
a

2

⋅E hc

p ((x))

I) =wp ((0 )) 0 , =wp ((10 )) 0.002

2) ＝θp ――
dw

dx
--> ≔θp =−――

γw a
2

⋅E hc

⋅−154.321 10
−6

B Cylinder with spherical roof
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Lower edge (A)

＝＝＝w ((0)) +wh ((0)) wp ((0)) +―――
1

⋅⋅2 Dc β
2

⎛
⎜⎝

+M0 ――
Q0

β

⎞
⎟⎠

wp ((10)) 0

＝＝＝θ ((0)) +θh ((0)) θp ((0)) +−―――
1

⋅⋅2 Dc β

⎛
⎜⎝

+⋅2 M0 ――
Q0

β

⎞
⎟⎠

θp ((0)) 0

Solving the equation system with two unknowns:

≔K

―――
1

⋅⋅2 Dc β
2

―――
1

⋅⋅2 Dc β
3

――
1

⋅Dc β
―――

1

⋅⋅2 Dc β
2

⎡
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥⎦

≔X
−wp (( ⋅10 ))

θp

⎡
⎢⎣

⎤
⎥⎦

The edge moment and shear force are:

＝
M0

Q0

⎡
⎢⎣

⎤
⎥⎦

47.57 ―――
⋅kN m

m

−97.69 ――
kN

m

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

Upper edge (B)

1) ＝wh ―――
1

⋅⋅2 Dc β
2

⎛
⎜⎝

+M0 ――
Q0

β

⎞
⎟⎠

2) ＝θh ⋅――
1

2 Dcβ

⎛
⎜⎝

−−2 M0 ――
Q0

β

⎞
⎟⎠
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＝＝θ +θp θh +――
1

2 Dcβ

⎛
⎜⎝

−−2 M0 ――
Q0

β

⎞
⎟⎠

――
γw a

2

⋅E hc

＝＝w +wp wh ―――
1

⋅⋅2 Dc β
2

⎛
⎜⎝

+M0 ――
Q0

β

⎞
⎟⎠

Spherical shell:

Sphere property: ≔λ =
‾‾‾‾‾‾‾‾‾‾‾‾‾4

⋅
⎛
⎜⎝
―
R

hs

⎞
⎟⎠

2

3 ⎛⎝ −1 ν
2 ⎞⎠ 15.042

We start of by solving the membrane theory:

It is assumed that the snow load and self-weight are distributed in the 
same way. The combined load is equal to:

≔g 5.75 ――
2

The decomposition of the load is done as shown in the theory part of 
the paper:

≔pφ ⋅g sin ((φ)) ≔pz ⋅−g cos ((φ))

＝＝Nφ.m ―――
−R

sin
2

φ

⌠
⌡ d

0

φ

sinφ ⎛⎝ −pφsinφ pzcosφ⎞⎠ φ −―――
⋅R g

sin
2

φ

(( −1 cosφ))

≔Nφ.m =−―――
⋅R g

sin ((φ))
2

(( −1 cos ((φ)))) −61.628 ――
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≔Nθ.m =−⋅R pz Nφ.m −37.965 ――

≔δs.m =――――
⋅R sin ((φ))

⋅E hs

⎛⎝ −Nθ.m ⋅ν Nφ.m⎞⎠ ⋅−47.48 10
−6

Dervative part of expression, ――
d

dφ

⎛⎝ −Nθ νNφ⎞⎠ :

≔der =――
d

dφ

⎛
⎜
⎝

−⋅⋅−R g cos ((φ)) ⋅―――
⋅R g

sin ((φ))
2

(( −cos ((φ)) 1)) (( +1 ν))
⎞
⎟
⎠

77.316 ――

≔Vs.m =――
1

⋅E hs

⎛⎝ −der (( +1 ν)) cot ((φ)) ⎛⎝ −Nφ.m Nθ.m⎞⎠⎞⎠ ⎛⎝ ⋅23.426 10
−6⎞⎠

The sphere does not meet the criterions for a pure membrane solution. Thus the membrane 
solution must be corrected to correspond to the displacement of the sphere edge: 

≔H =⋅Nφ.m cos ((φ)) −53.372 ――

The correction of the meridian rotation and displacement are found by applying the 
formulas for the homogeneous solution for shells when H is the only occuring force:

≔δ =⋅―――――
⋅⋅2 λ R sin ((φ))

2

⋅E hs

((−H)) ⎛⎝ ⋅1.48674 10
−3⎞⎠
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The meridian rotation V is found as:

≔V =⋅−――――
⋅2 λ

2
sin ((φ))

⋅E hs

−H ⋅−2.236414 10
−3

The total particular solution for the spherical shell with horisontal displacement:

≔δp =+δs.m δ ⎛⎝ ⋅1.44 10
−3⎞⎠

≔Vp =−V Vs.m ⋅−2.26 10
−3

A total solution for the shell now becomes a combination of the particular and 
homogeneous parts:

＝＝δ ((0)) +δh ((0)) δp +――――
⋅⋅λ R sin ((φ))

⋅E hs

⎛
⎜
⎝

+⋅2 R0 sin ((φ)) ⋅M0s ―――
⋅Ehs R

2 λ
3

Ds

⎞
⎟
⎠

δp

＝＝V ((0)) +Vh ((0)) Vp +―――
−2 λ

2

⋅E hs

⎛
⎜
⎝

+⋅R0 sin ((φ)) ⋅M0s ―――
⋅⋅E hs R

2 λ
3

Ds

⎞
⎟
⎠

Vp

We now demand compatibility and equilibrium of forces in the junction between 
the two shells. This requires that:

I) ＝w ((0)) δ ((0))
Compability 

II) ＝θ ((0)) −V ((0))

III) ＝＝M0.Cylinder M0.Sphere M0

Equilibrium
IV) ＝＝Q0.Cylinder −R0 Q0

Intuitively, it must be true that the deformations and forces are equal in the junction.
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＝+⋅
⎛
⎜
⎝

−―――
1

⋅2 Dc β
2

――――
⋅R

2
sin ((φ))

2 λ
2

Ds

⎞
⎟
⎠

M0

⎛
⎜
⎜⎝

+―――
1

⋅2 Dc β
3

――――――
⋅⋅⋅2 λ R sin ((φ))

2

⋅E hs

⎞
⎟
⎟⎠

Q0 δp

＝+⋅
⎛
⎜⎝

+−――
1

⋅Dc β
――

R

⋅λ Ds

⎞
⎟⎠

M0

⎛
⎜
⎝

−−―――
1

⋅⋅2 Dc β
2

―――
−2 λ

2

⋅E hs

sin ((φ))
⎞
⎟
⎠

Q0 −Vp θp

We solve the two equations setting up a matrix:

≔K

−―――
1

⋅2 Dc β
2

――――
⋅R

2
sin ((φ))

2 λ
2

Ds

+―――
1

⋅2 Dc β
3

――――――
⋅⋅⋅2 λ R sin ((φ))

2

⋅E hs

+――
1

⋅Dc β
――

R

⋅λ Ds

+―――
1

⋅⋅2 Dc β
2

―――
−2 λ

2

⋅E hs

sin ((φ))

⎡
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥⎦

≔Y
δp

−Vp θp

⎡
⎢⎣

⎤
⎥⎦

The results are summed up in the following matrix:

≔

M0

Q0

R0

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

−9.94 ―――
⋅

22.69 ――

−22.69 ――

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

The distributions of forces and bending moments are done in matlab.
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Data:

C45 ≔ν 0.2 ≔E ⋅3.6 10
7

――
2

≔γw 10 ――
3

≔φ 30

≔hc 0.18 ≔Hs 10 ≔a 10

≔Dc =――――
⋅E hc

3

12 ⎛⎝ −1 ν
2 ⎞⎠

⎛⎝ ⋅18.225 10
3 ⎞⎠ ⋅ ≔β =

‾‾‾‾‾‾‾‾4

――――
3 ⎛⎝ −1 ν

2 ⎞⎠

a
2

hc

2
0.971 ―

1

≔hs 0.15 ≔R 20

≔Ds =――――
⋅E hs

3

12 ⎛⎝ −1 ν
2 ⎞⎠

⎛⎝ ⋅10.547 10
3 ⎞⎠ ⋅ ≔λ =

‾‾‾‾‾‾‾‾‾‾‾‾‾4

⋅
⎛
⎜⎝
―
R

hs

⎞
⎟⎠

2

3 ⎛⎝ −1 ν
2 ⎞⎠ 15.042

Ring beam:

≔b 0.3 ≔hr 0.3

≔I =――
⋅b hr

3

12

⎛⎝ ⋅6.75 10
8 ⎞⎠

4
≔A =⋅b hr

⎛⎝ ⋅9 10
4 ⎞⎠

2

Particular solutions:

Cylinder:

Hydrostatic load: ＝pr ⋅γw x

Displacement: ＝＝wp ――
a

2

⋅E hs

pr ⋅―――
⋅γw a

2

⋅E hc

x

Rotation: ＝＝θp ――
dwp

dx
―――

⋅γw a
2

⋅E hc

C Ring beam
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Sphere:

≔g 5.75 ――
2

≔pφ ⋅g sin ((φ)) ≔pz ⋅−g cos ((φ))

＝＝Nφ ―――
−R

sin
2

φ

⌠
⌡ d

0

φ

sinφ ⎛⎝ −pφsinφ pzcosφ⎞⎠ φ −―――
⋅R g

sin
2

φ

(( −1 cosφ))

≔Nφ.m −―――
⋅R g

sin ((φ))
2

(( −1 cos ((φ))))

Hoop force:

≔Nθ.m =−⋅R pz Nφ.m −37.965 ――

Relative displacement:

≔δs.m =―――――
⋅R sin ((30 ))

⋅E hs

⎛⎝ −Nθ.m ⋅ν Nφ.m⎞⎠ −0.047

Relative rotation:

Dervative part of expression, ――
d

dφ

⎛⎝ −Nθ νNφ⎞⎠ :

≔der =――
d

dφ

⎛
⎜
⎝

−⋅⋅−R g cos ((φ)) ⋅―――
⋅R g

sin ((φ))
2

(( −cos ((φ)) 1)) (( +1 ν))
⎞
⎟
⎠

77.316 ――

≔Vs.m =――
1

⋅E hs

⎛⎝ −der (( +1 ν)) cot ((φ)) ⎛⎝ −Nφ.m Nθ.m⎞⎠⎞⎠ ⎛⎝ ⋅23.426 10
−6⎞⎠
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Correction of membrane solution:

≔H =⋅Nφ.m cos ((φ)) −53.372 ――

≔δ =⋅―――――
⋅⋅2 λ R sin ((φ))

2

⋅E hs

((−H)) 1.48674

≔V =⋅−――――
⋅2 λ

2
sin ((φ))

⋅E hs

−H ⋅−2.236414 10
−3

The total particular solution for the spherical shell:

≔δp =+δs.m δ 1.44

≔Vp =−V Vs.m ⋅−2.25984 10
−3

Ring beam:

Rotation:

＝α ⋅――
a

2

⋅E I
Mr

Displacements:

＝＝wtop +wh wM

⎛
⎜⎝
―
hr

2

⎞
⎟⎠

+――
Ha

2

EA
⋅――

⋅a
2

hr

2 EI
Mr

＝＝wbottom +wh wM

⎛
⎜⎝
−―

hr

2

⎞
⎟⎠

−――
Ha

2

EA
⋅――

⋅a
2

hr

2 EI
Mr
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Compatibility cylinder-ring beam

I) ＝＝θ ((0)) +―――
dwp ((0))

dx
―――
dwh ((0))

dx
−α

＝＝−―――
⋅γw a

2

⋅E hc

⋅―――
1

⋅⋅2 Dc β

⎛
⎜⎝

+⋅2 M0s ――
Q0s

β

⎞
⎟⎠

⋅−――
a

2

⋅E I
Mr ⋅−――

a
2

⋅E I

⎛
⎜⎝

−−M0s M0c ⋅⎛⎝ −R0s Q0c⎞⎠ ―
hr

2

⎞
⎟⎠

After sorting:

＝+−+⋅
⎛
⎜
⎝

+――
1

⋅Dc β
――

a
2

⋅E I

⎞
⎟
⎠

M0c ⋅
⎛
⎜
⎜⎝

−―――
1

⋅⋅2 Dc β
2

―――
⋅a

2
hr

⋅2 E I

⎞
⎟
⎟⎠

Q0c ――
a

2

⋅E I
M0s ―――

a
2

hr

⋅2 E I
R0s ―――

⋅γw a
2

⋅E hs

2) ＝＝w ((0)) wh ((0)) wbottom

＝⋅―――
1

⋅2 Dc β
2

⎛
⎜⎝

+Moc ――
Q0c

β

⎞
⎟⎠

−――
Ha

2

EA
⋅――

⋅a
2

hr

2 EI
Mr

＝ −⋅――
a

2

EA
⎛⎝ −−Ros Qoc⎞⎠ ⋅――

⋅a
2

hr

2 EI

⎛
⎜⎝

−−M0s M0c ⋅⎛⎝ −R0s Q0c⎞⎠ ―
hr

2

⎞
⎟⎠

After sorting:

+⋅
⎛
⎜
⎜⎝

−―――
1

⋅2 Dc β
2

――
⋅a

2
hr

2 EI

⎞
⎟
⎟⎠

M0c ⋅
⎛
⎜
⎜⎝

++―――
1

⋅2 Dc β
3

――
a

2

EA
―――

⋅a
2

hr

2

⋅4 E I

⎞
⎟
⎟⎠

Q0c

＝++ ⋅―――
⋅a

2
hr

⋅2 E I
M0s ⋅

⎛
⎜
⎝

−――
a

2

EA
―――

⋅a
2

hr

2

4 EI

⎞
⎟
⎠

R0s 0
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Compatibility sphere-ring beam

3) ＝+Vp ((30 deg)) Vh ((0)) α

＝+−――
⋅2 λ

2

⋅E hs

⎛
⎜
⎝

+sin ((φ)) R0s ―――
⋅⋅E hs R

⋅2 Ds λ
3

M0s

⎞
⎟
⎠

Vp ((30 deg)) ⋅――
a

2

EI

⎛
⎜⎝

−−M0s M0c ⋅⎛⎝ −R0s Q0c⎞⎠ ―
hr

2

⎞
⎟⎠

After sorting:

＝+−−――
a

2

EI
M0c ――

a
2

hr

2 EI
Q0c

⎛
⎜
⎝

+――
R

⋅λ Ds

――
a

2

⋅E I

⎞
⎟
⎠

M0s

⎛
⎜
⎝

−――
a

2
hr

2 EI
――――

⋅2 sinφ λ
2

⋅E hs

⎞
⎟
⎠

R0s −Vp ((30 deg))

4) ＝+δh ((0)) δp ((30 deg)) wtop

＝――――
⋅⋅λ R sinφ

⋅E hs

⎛
⎜
⎝

+⋅⋅2 sinφ R0s ⋅―――
⋅⋅E hs R

⋅2 Ds λ
3

M0s

⎞
⎟
⎠

++――
Ha

2

EA
⋅――

⋅a
2

hr

EI
Mr δp ((30 deg))

＝ +−――
a

2

EA
⎛⎝ +Q0c R0s⎞⎠ ⋅――

⋅a
2

hr

2 EI

⎛
⎜⎝

−−M0s M0c ⋅⎛⎝ −R0s Q0c⎞⎠ ―
hr

2

⎞
⎟⎠

After sorting:

+−
⎛
⎜
⎝
――
a

2
hr

2 EI

⎞
⎟
⎠

M0c

⎛
⎜
⎝

−―――
⋅a

2
hr

2

4 EI
――
a

2

EA

⎞
⎟
⎠

Q0c ⋅
⎛
⎜
⎜⎝

−―――
R

2
sinφ

2 λ
2

Ds

――
⋅a

2
hr

2 EI

⎞
⎟
⎟⎠

Mos

＝+
⎛
⎜
⎝

++―――――
⋅2 λ R sinφ

2

⋅E hs

―――
⋅a

2
hr

2

⋅4 E I
――
a

2

EA

⎞
⎟
⎠

Ros −δp ((30 deg))
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Solving equation system 1-4 yields:

＝

M0c

Q0c

M0s

R0s

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

−4.04 ――
kNm

m

14.49 ――
kN

m

−9.95 ――
kNm

m

−24.93 ――
kN

m

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

Forces and bending moments in the junction are significally reduced
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[2] Svein Ivar Sørensen .Betontongkonstruksjoner, Beregning og 
dimensjoneringetter Eurocode 2. Tapir akademiske forlag, 2012

General data

Material factors: 

≔αcc 0.85 ≔γc 1.5 ≔γs 1.15

Cross section:

≔b 1000 ―― ≔hc 150 ≔hp 200 EC2 NA.2.4.2.4
EC2 NA.3.1.6(1)P

Concrete:

≔fck 45 ≔fcd =⋅αcc ――
fck

γc

25.5 ≔fctm 3.8

Reinforcement:

≔fyk 500 ≔fyd =――
fyk

γs

434.783

Bar sizes used:

＝φ 12 mm ≔Aφ12 =⋅―
4

((12 ))
2

113.097
2

＝φ 16 mm ≔Aφ16 =⋅―
4

((16 ))
2

201.062
2

Concrete cover (EC2 4.4.1.1):

Choose exposure class XC2

＝cnom +cmin Δcdev

≔cmin.b φ

D Design in accordance with Eurocode 2
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≔cmin.dur 25

≔Δcdur.st 0

≔Δcdur.add 0

≔Δcdur.γ 0

≔cmin =max ⎛⎝ ,,cmin.b −−+cmin.dur Δcdur.γ Δcdur.st Δcdur.add 10 ⎞⎠ 25

Bottom Cylinder:

Effective depth:

≔d =−−hc cmin ―
φ

2
119

Flexural reinforcement [2]

≔MEd 15.9 ―――
⋅

≔MRd =⋅⋅⋅0.275 b d
2

fcd 99.304 ⋅⋅―
1

<MEd MRd

≔z =⋅
⎛
⎜
⎝

−1 ⋅0.17 ――
MEd

MRd

⎞
⎟
⎠

d 115.761 condition: <z 0.95 d

≔Asm =――
MEd

⋅z fyd

315.91 ――
2
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≔s =――
Aφ12

Asm

358.005

φ12s355 Is chosen

Check of minimum reinforcement ( ):

≔As.min =⋅⋅⋅0.26 ――
fctm

fyk

b d 235.144 ――
2

>Asm As.min

Hence the final reinforcement is:

≔Asm =⋅Aφ12 ―――
b

355
318.584 ――

2

Shear Reinforcement [2]

≔QEd −61.8 ――

Members not requiring design shear reinforcement (

≔k =+1
‾‾‾‾‾‾‾‾
―――
200

d
2.296 <k 2.0

≔CRd.c 0.12 ≔ρl =――
Asm

⋅b d
0.0027 ≔k 2

≔VRd.c =⋅⋅

⎛
⎜
⎝ ⋅⋅⋅CRd.c k ⎛⎝ ⋅100 ρl fck⎞⎠

―
1

3 ―
2

3

⎞
⎟
⎠ b d 65.472 ――

>VRd.c QEd
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Top edge Cylinder

Fluxural reinforcement [2]

Choose ≔φ 16 in tension

Cover: ≔d =−−hc cmin ―
φ

2
117

≔MEd 107.5 ―――
⋅

≔MRd =⋅⋅⋅0.275 b d
2

fcd 95.994 ―――
⋅

>MEd MRd

Additional compressional reinforcement is 
necessary. 

Choose ＝φ 12 mm in compression

≔As1 =――――
MRd

⋅⋅fyd 0.835 d
⎛⎝ ⋅2.26 10

3 ⎞⎠ ――
2

≔ΔMEd =−MEd MRd 11.506

Distance between reinforcement layers:

≔hb =−−−hc ⋅2 cmin ―――
16

2
―――
12

2
86

≔As2 =―――
ΔMEd

⋅fyd hb

307.716 ――
2

Total tensile reinforcement are:

≔Asm.t =+As1 As2
⎛⎝ ⋅2.568 10

3 ⎞⎠ ――
2
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Total compressional reinforcement are:

≔Asm.c As2

Bars in tension:

≔s =――
Aφ16

Asm.t

78.305

Choose φ16s78

This gives a final reinforcement of:

≔Asm.t =⋅Aφ16 ―――
b

78
⎛⎝ ⋅2.578 10

3 ⎞⎠ ――
2

Bars in compression:

≔s =――
Aφ12

Asm.c

367.539

Choose φ12s365

This gives a final reinforcement of:

≔Asm.c =⋅Aφ12 ―――
b

365
309.856 ――

2

Shear Reinforcement

≔QEd −197.3 ――

Members not requiring design shear reinforcement ( ):

≔k =+1
‾‾‾‾‾‾‾‾
―――
200

d
2.307 <k 2.0
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≔CRd.c 0.12 ≔ρl =――
Asm

⋅b d
0.0027 ≔k 2

≔VRd.c =⋅⋅

⎛
⎜
⎝ ⋅⋅⋅CRd.c k ⎛⎝ ⋅100 ρl fck⎞⎠

―
1

3 ―
2

3

⎞
⎟
⎠ b d 64.736 ――

>QEd VRd.c

Shear reinforcement is necessary.

Members requring shear reinfocement ( ):

≔cotθ 2.5 ≔z =⋅0.9 d 105.3

＝＝――
Asw

s
Asq ――――

⋅QEd 1 m

⋅⋅z fyd cotθ
≔Asq =−――――

⋅QEd 1

⋅⋅z fyd cotθ
⎛⎝ ⋅1.724 10

3 ⎞⎠ ――
2

choose ≔φ 12

≔sq =――
Aφ12

Asq

65.609

choose φ12s65

This leads to an actual reinforcement area of:

≔Asq =⋅Aφ12 ―――
b

65
⎛⎝ ⋅1.74 10

3 ⎞⎠ ――
2
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Hoop force reinforcement lower edge

≔Nθ 360 ――

The hoop force causes tension, and we assume that the concrete has no tensile strength. The 
reinforcement is placed in two layers along the whole length of the cylinder. 

≔Asn =――
Nθ

fyd

828 ――
2

Per layer:

≔Asn2 =――
Asn

2
414 ――

2

Choose: ≔φ 12

≔sn =――
Aφ12

Asn2

273.182

Choose φ12s270 ≔Asn =⋅Aφ12 ―――
b

270
418.879 ――

2

This reinforcement is placed in two layers with the concrete cover previously found 
from each edge. 

Hoop reinforcement at upper edge 

The hoop force at the upper edge is in compression. Hence it is necesarry to check the 
concrete stresses occuring.

≔Nθ −560 ――
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Concrete area per meter:

≔Ac =⋅b hc
⎛⎝ ⋅1.5 10

5 ⎞⎠ ――
2

≔NRd =⋅fcd Ac
⎛⎝ ⋅3.825 10

3 ⎞⎠ ――

>NRd Nθ

No compressional reinforcement needed.

Reinforcement of circular plate

Fluxural reinforcement

The two moments in the plate change sign when moving from the edge towards the center. 
Hence reinforcement must be laid in two layers. In addition, the two moments work in different 
directions.

Radial and hoop moments - center [2]

At the center of the plate, the radial and hoop moment have the same value. They need 
the same amount of reinforcement, only in different directions:

≔Mr −101 ―――
⋅

≔Mt −101 ―――
⋅

Choose ≔φ 16

Effective depth: ≔d =−−hp cmin ―
φ

2
167

≔MRd =⋅⋅⋅0.275 b d
2

fcd 195.572 ⋅⋅―
1

<＝Mr Mt MRd

≔z =⋅
⎛
⎜
⎝

−1 ⋅0.17 ――
Mr

MRd

⎞
⎟
⎠

d 181.662 condition: <z 0.95 d ok
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≔Asm =――
Mr

⋅z fyd

⋅−1.279 10
3

――
2

≔s =−――
Aφ16

Asm

157.233

Choose φ16s155

This gives a final reinforcement for the two moments:

≔Asm =⋅Aφ16 ―――
b

155
⎛⎝ ⋅1.297 10

3 ⎞⎠ ――
2

Radial moments at edge [2]

≔Mr 107.5 ―――
⋅

≔MRd =⋅⋅⋅0.275 b d
2

fcd 195.572 ―――
⋅

<Mr MRd

≔z =⋅
⎛
⎜
⎝

−1 ⋅0.17 ――
Mr

MRd

⎞
⎟
⎠

d 151.395 condition: <z 0.95 d ok

≔Asm =――
Mr

⋅z fyd

⎛⎝ ⋅1.633 10
3 ⎞⎠ ――

2

≔Aφ16 =⋅―
4

φ
2

201.062
2

≔s =――
Aφ16

Asm

123.113

125



Choose φ16s120

This gives a final of:

≔Asm =⋅Aφ16 ―――
b

120
⎛⎝ ⋅1.676 10

3 ⎞⎠ ――
2

Hoop moments at edge [2]

Choose ≔φ 12

Effective depth: ≔d =−−hp cmin ―
φ

2
169

≔Mt 31 ―――
⋅

≔MRd =⋅⋅⋅0.275 b d
2

fcd 200.284 ⋅⋅―
1

<Mt MRd

≔z =⋅
⎛
⎜
⎝

−1 ⋅0.17 ――
Mt

MRd

⎞
⎟
⎠

d 164.553 condition: <z 0.95 d

≔z ⋅0.95 d

≔Asm =――
Mt

⋅z fyd

444.098 ――
2

≔Aφ12 =⋅―
4

φ
2

113.097
2

≔s =――
Aφ12

Asm

254.667

Choose φ12s250
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This gives a final reinforcement reinforcement for the two moments:

≔Asm =⋅Aφ12 ―――
b

250
452.389 ――

2

Shear reinforcement in plate ( ):

≔QEd 173.25 ――

Members not requiring design shear reinforcement:

≔k =+1
‾‾‾‾‾‾‾‾
―――
200

d
2.088 <k 2.0

≔CRd.c 0.12 ≔ρl =――
Asm

⋅b d
0.0027 ≔k 2

≔VRd.c =⋅⋅

⎛
⎜
⎝ ⋅⋅⋅CRd.c k ⎛⎝ ⋅100 ρl fck⎞⎠

―
1

3 ―
2

3

⎞
⎟
⎠ b d 92.977 ――

>QEd VRd.c

Members requring shear reinfocement ( )

≔cotθ 2.5 ≔z =⋅0.9 d 152.1

＝＝――
Asw

s
Asq ――――

⋅QEd 1 m

⋅⋅z fyd cotθ
≔Asq =−――――

⋅QEd 1

⋅⋅z fyd cotθ
⋅−1.048 10

3
――

2

choose ≔φ 12
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≔sq =−――
Aφ12

Asq

107.925

Choose φ12s148

This leads to an actual reinforcement area of:

≔Asq =⋅Aφ12 ―――
b

105
⎛⎝ ⋅1.077 10

3 ⎞⎠ ――
2
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