

Seismisk dimensjonering av strukturer ved hjelp av ikke-lineære modeller

Preben Vatle Hammersland

Bygg- og miljøteknikk (2-årig) Innlevert: juni 2014 Hovedveileder: Amir Kaynia, KT

Norges teknisk-naturvitenskapelige universitet Institutt for konstruksjonsteknikk

Innhold

1. Introduksjon	
2. Teoretisk bakgrunn	
2.1 Eurocode 8	
2.2 Ikke-lineære dynamiske analysemetoder	9
2.2.3 Ikke-lineære dynamiske analyser	
2.3 Ikke-lineære statiske analysemetoder	
3. Seismisk dimensjonering og analyse av armert betongbygg	
3.1 Introduksjon	
3.2 Dimensjonerende tyngdelaster og vindlaster	
3.3 Dimensjonering av bærestruktur	
3.4 Dimensjonering av seismisk påvirkning etter EC8 [1]	
3.5 Dimensjonering av seismisk påvirkning ved hjelp av SeismoStruct	
3.6 Sammenligning av metoder	
4. Konklusjoner	
Figurliste	
Tabelliste	56
Referanseliste	
Vedlegg	

1. Introduksjon

Det har blitt utviklet flere metoder for beregning av ikke-lineær dynamisk respons av strukturer under jordskjelvlast. De vanligste er basert på den såkalte fibermodellen og modeller med lumpet inelastisitet, som tar høyde for den sanne ikke-lineariteten og duktiliteten til strukturen og egenskapene til reelle jordskjelvsregistreringer. Disse modellene er imidlertid kompliserte og krever god kjennskap til ikke-lineær oppførsel. Ikke-lineære statiske beregninger, som statiske pushoveranalyser, er derfor foreslått som et alternativ.

Del 1 av denne oppgaven består av et litteraturstudium av utvalgte referanser om ikke-lineære analyser. Analyser innenfor de nevnte kategoriene utdypes, og de vil bli gjort enkelte matematiske utledninger av viktige algoritmer og iterasjonsskjema.

Del 2 av denne oppgaven vil bestå av en forenklet, statisk jordskjelvdimensjonering av et fleretasjes bygg. Hensikten med å gjennomføre analysene er å gi et praktisk eksempel på teorien i del 1, og for å kunne sammenligne egenskapene til de forskjellige analysetypene.

2. Teoretisk bakgrunn

2.1 Eurocode 8

«EC8: Prosjektering av konstruksjoner i seismiske områder» [1] består av regler og kriterier for dimensjonering og oppføring av konstruksjoner i seismiske områder, med to hovedkrav med en tilstrekkelig grad av pålitelighet:

- Krav til motstand mot sammenbrudd
- Krav til skadebegrensning

Dimensjonerende seismisk påvirkning angis på bakgrunn av en seismisk påvirkning knyttet til en sannsynlighet (P_{NCR}) for overskridelse i løpet av 50 år, eller en gitt returperiode (T_{NCR}). Differensiering av pålitelighet oppnås ved å dele konstruksjoner i forskjellige seismiske klasser, med tilhørende seismisk faktor (γ_1).

2.1.1 Bruddgrensetilstand

Ved kontroll av bruddgrensetilstand skal man påvise konstruksjonens evne til å absorbere energien som introduseres ved de seismiske kreftene. Forholdet mellom lineær motstandsevne og energiabsorpsjonsevne avhenger av i hvilken grad man skal utnytte konstruksjonens ikkelineære respons. I praktiske, kode-baserte metoder defineres denne balansen ved konstruksjonsfaktoren q og den tilhørende duktilitetsklassen, se punkt (2.1.2.1).

Det understrekes at konstruksjonsdeler og områder der ikke-lineær oppførsel forutses skal dimensjoneres spesielt, for å sikre en realistisk, plastisk og duktil mekanisme. Dimensjoneringsregler for kritiske konstruksjonsdeler, som søyle-bjelke-forbindelser og fundamenter, vies derfor spesiell oppmerksomhet i EC8.

2.1.2 Representasjon av seismisk påvirkning

2.1.2.1 Representasjon ved elastisk responsspektrum

Den seismiske bevegelsen ved en gitt geografisk plassering representeres av et elastisk responsspektrum for grunnens akselerasjon. Referansespissverdien er avhengig av hvilken seismisk sone konstruksjonen befinner seg i. For å beregne den potensielle seismiske påvirkningen må det også identifiseres hvilken grunntype konstruksjonen skal bygges på. I EC8 differensieres det mellom fem forskjellige grunntyper (A-E), pluss to spesielle grunntyper (S₁, S₂), basert på målte geotekniske data, som for eksempel skjærbølgehastighet. De forskjellige grunntypene har sine tilhørende parametere, faktorer og grenseverdier. Generelt benyttes en modifikasjonsfaktor for dempingsforholdet med en referanseverdi på 1 for 5 % viskøs demping.

Basert på de nevnte parameterne og egensvingeperioden til det elastiske systemet med én frihetsgrad, beregnes så det elastiske responsspekteret $S_e(T)$. (Kan ta med flere figurer, tabeller, formler og forklaringer. Nevn eventuelt at η er en modifikasjonsfaktor som korrigerer for dempingsforholdet)

Bæresystemer dimensjonerende kapasitet tillater vanligvis lavere seismiske krefter i det ikkelineære responsområdet enn i det lineære. I en elastisk analyse tas denne reduskjonen i responsspektrum hensyn til ved å innføre konstruksjonsfaktoren q, som nevnt i [2.1.1]. Verdien av q avhenger av dempingsforhold, materialer, bæresytemer og duktilitetsklasser.

Figur 2.1 Eksempel på anbefalte elastiske responsspektre for grunntype A-E [1]

2.1.2.1 Representasjon ved tidhistorie

Den seismiske bevegelsen kan også representeres ved tidhistorien av grunnakselerasjon, enten ved kunstige, registrerte eller simulerte akselerogrammer. Kunstige akselerogrammer genereres slik at de samsvarer med de nevnte elastiske responsspektrene. Registrerte eller simulerte akselerogrammer kan anvendes forutsatt «at dataene som brukes, anses å være representative for de seismogenetiske kjennetegnene ved kilden og grunnforholdene på stedet, og at deres verdier er skalert i forhold til verdien av ag.S for den aktuelle sonen». Det kreves at det benyttes minst 3 tidhistorieakselerogrammer.

2.1.3 Primære og sekundære seismiske konstruksjonsdeler

Et visst antall konstruksjonsdeler kan defineres som «sekundære» seismiske deler, som betyr at de ikke utgjør en del av konstruksjonens motstand mot seismiske laster. Dette kan typisk gjelde for bjelker, eller søyler som vurderes som leddet ved etasjeskillerne. De «sekundære» konstruksjonsdelene skal likevel dimensjoneres for 2. ordens effekten av gravitasjonslastene som oppstår ved forskyvningen fra mest ugunstige seismiske last.

2.1.4 Kriterier for konstruksjonens regularitet

Ved seismisk dimensjonering differensieres det mellom regulære og ikke-regulære konstruksjoner, både i plan og oppriss. Dette får konsekvenser for hvorvidt konstruksjonsmodellen kan være plan eller romlig, og hvilken lineær-elastisk analysemetode som kan anvendes.

Regularitet		Tillat forenkling	
Plan	Oppriss	Modell	Lineær-elastisk analyse
Ja	Ja	Plan	Tverrkraft
Ja	Nei	Plan	Modal
Nei	Ja	Romlig	Tverrkraft
Nei	Nei	Romlig	Modal

Tabell 2.1 Konsekvenser av konstruksjonens regularitet, forenklet*

* For ytterligere betingelser som må vurderes, se [1] EC8, [Tab. 4.1]

Ved ikke-regularitet i oppriss reduseres også konstruksjonsfaktoren q til 0,8 x referanseverdien.

2.1.4.1 Regularitet i plan

For at en konstruksjon skal kategoriseres som regulær i plan, er det flere betingelser som må tilfredsstilles. Blant annet kreves det at konstruksjonen er tilnærmet symmetrisk i plan om to ortogonale akser, i forhold til lateral stivhet og masse. Ytterligere krav omhandler blant annet at dekker skal være kompakt utformet, horisontale komponenter skal være stive nok til å føre seismiske krefter til vertikale konstruksjonsdeler og at vertikale «primære» seismiske konstruksjonsdeler skal være kontinuerlige fra fundament til topp av konstruksjonen.

2.1.4.2 Regularitet i oppriss

Kravet om kontinuitet fra bunn til topp for vertikale avstivingssystemer er også det viktigste kravet å tilfredsstille for å kategoriseres som regulær i oppriss. Det er grenseverdier for hvor

mye tverrsnittet til en vertikal avstivingskomponent kan reduseres oppover i konstruksjonen, altså grenser for tilbaketrukne deler.

(b) (tilbaketrukkede deler finnes over 0,15H)

Figur 2.2 Eksempel på kriterium for tilbaketrukne deler over 0.15 H [1]

2.1.5. Lineær-elastiske analysemetoder

I EC8 presenteres to lineær-elastiske analysemetoder: den «modale responsspektrumsanalysen» som er referansemetoden, og den noe forenklede «tverrkraftmetoden». Alternativ til de lineære metodene er ikke-lineære statiske analyser og ikke-lineære tidhistorieanalyser.

2.1.5.1. Tverrkraftmetoden

Tverrkraftmetoden forutsetter regularitet i oppriss og anvendes på bygninger hvor responsen i hovedsak påvirkes av den første egensvingeformen i hver ortogonale retning.

Dimensjonerende skjærkraft ved fundamentnivå for hver horisontalretning beregnes ut ifra det dimensjonerende elastiske responsspekteret for periode T_1 , bygningens totale masse og en korreksjonsfaktor for lave egenperioder:

$$F_b = S_d * M_{tot} * \lambda \tag{2.1}$$

Den seismiske skjærkraften fordeles i de overliggende etasjene ut i fra etasjemassene og deres forskyvning:

$$F_i = F_b \cdot \frac{s_i \cdot m_i}{\sum s_j \cdot m_j} \tag{2.2}$$

2.1.5.2 Modal responsspektrumanalyse

Benyttes for bygninger som er ikke-regulære i oppriss og hvor responsen følgelig er avhengig av flere svingeformer enn bare den første. For å påse at man har inkludert svingeformene av betydning, kreves det at de effektive modale massene for svingeformene det tas hensyn til, samlet utgjør minst 90 % av konstruksjonens totale masse og man inkluderer alle svingeformer med modal masse over 5 % av den totale massen. Responsen fra de forskjellige modene kombineres ved kombinasjonsregelen SRSS (Square Root of Sum of Squares), som gir gode resultater for strukturer med godt separerte naturlige frekvenser. Den samlede aktuelle seismiske lastvirkningen beregnes som følger:

$$E_E \simeq \left(\sum_{i=1}^k E_{Ei}^2\right)^{1/2}$$
(2.3)

To svingeformer $T_j < T_k$ er uavhengige dersom den høyeste svingeformen har en egenperiode som er på maksimalt 90 % av den forrige. Dersom dette ikke er tilfellet, krever EC8 en mer nøyaktig metode. «Fullstendig kvadratisk kombinasjon»-regelen (CQC - Complete Quadratic Combination) tar hensyn til at svingeformene avhenger av hverandre ved hjelp av korrelasjonskoeffisienten ρ_{ij} :

$$E_E = \left(\sum_{j=1}^k \sum_{i=1}^k \rho_{ij} * E_{Ej} * E_{Ei}\right)^{1/2}$$
(2.4)

2.1.5.2 Ikke-lineære metoder

Den matematiske modellen skal nå inkludere bæresystemets oppførsel utover det elastiske området, og bør minimum inkludere det bilineære kraft-deformasjonsforholdet for hver konstruksjonsdel.

2.1.5.2.1 Ikke-lineære statisk analyse

Analyse med påført forskyvning, hvor konstruksjonen lastes med konstante gravitasjonslaster og monotont økende horisontallaster. Målet med analysen er blant annet å estimere plastiske mekanismer og påvise verdiene av overstyrkeforholdet α_u/α_1 , som defineres som følger:

- α1 er verdien som den horisontale seismiske dimensjonerende påvirkningen multipliseres
 med for å nå bøyekapasiteten for første gang i en konstruksjonsdel i konstruksjonen,
 mens alle andre påvirkninger forblir konstante;
- α_u er verdien som den horisontale seismiske dimensjonerende påvirkningen multipliseres
 med for å danne plastiske ledd i tilstrekkelig mange til at samlet konstruksjonsmessig
 ustabilitet utvikles, mens alle andre dimensjonerende påvirkninger forblir konstante.

Den påførte forskyvningen bestemmes fra det elastiske responsspekteret, og en prosedyre for dette finnes i Tillegg B i EC8.

2.1.5.2.1 Ikke-lineære tidhistorieanalyse

EC8 presenterer tidhistorieanalyse som et alternativ, men sier lite om hvordan en analyse skal gjennomføres. Det nevnes at dentidsavhengige responsen kan finnes gjennom nummerisk integrasjon av differensialligninger for bevegelse ved bruk av akselogrammer for grunnbevegelsen, beskrevet under 2.1.2.1.

2.2 Ikke-lineære dynamiske analysemetoder

Lineært-elastiske beregningsmodeller gir en tilfredsstillende tilnærming til de aller fleste bygninger og andre konstruksjoner som påvirkes av de seismiske laster som det dimensjoneres for i Norge. Som vi så i EC8 kan den postelastiske energiabsorbsjonsevnen forenklet og konservativt beregnes gjennom en enkel konstruksjonsfaktor q, avhengig av bygningstype og dens tilhørende duktilitetsklasse.

Flere store jordskjelv på 90-tallet synliggjorde behovet for mer nøyaktige analysemetoder, som inkluderer materiell og geometrisk ikke-linearitet. Ved store seismiske belastninger vil lokal knekking oppstå og materialer kan oppleve kryp og flyt.

2.2.1 Geometrisk og materiell ikke-linearitet

Geometrisk ikke-linearitet eller $P\Delta$ -effekter oppstår når en struktur deformeres så mye at likevektligningene og de kinematiske ligningene må omskrives som følge av endringen i geometri. Ved seismiske laster på bygninger kommer det av at de laterale forskyvningene er så store at tyngdekraftlastene ikke lenger virker sentrisk på de vertikale komponentene, men eksentrisk. Geometrisk ikke-linearitet kan vises med to enkle eksempler, med henholdsvis minkende og økende stivhet:

Figur 2.3 Forenklet figur for geometrisk ikke-linearitet

Matematisk betyr dette at i de strukturelle ligningene [K]{D} = {R} vil koeffisientmatrisen [K] og kanskje også lastvektoren {R} være funksjoner av responsen {D}. Ved de kinematiske ligningene { ϵ } = [δ]{u} er tøynings-forskyvningsoperatøren [δ] ikke-lineær og tøyningene { ϵ } er ikke lenger infinitesimale.

Det skilles mellom lokal (bjelke-søyle-effekt) og global (store rotasjons-/forskyvningseffekter) type geometrisk ikke-linearitet.

Materiell ikke-linearitet eller plastisitet omhandler den delen av deformasjonen som ikke er reversibel ved avlasting. Med andre ord; energien som brukes til å deformere et materiale i det plastiske området kan ikke gjenopprettes. Den materielle oppførselen er avhengig av nåværende forskyvning, og muligens også deformasjonshistorien. Det finnes flere ikkelineære material-modeller for å modellere f.eks. viskoplastisitet som kan anvendes for å beskrive kryp av betong.

Matematisk betyr dette grovt sett at det konstitutive forholdet mellom spenning { σ } og tøyning { ϵ } er ikke-lineært når materialet ikke lengre kan uttrykkes ved Hooke's lov:

$$\{\sigma\} = [\mathbf{E}](\{\varepsilon\} - \{\varepsilon_0\}) \tag{2.5}$$

2.2.2 Ikke-lineære materialmodeller

Betongstrukturer som dimensjoneres for monotont økende, ikke-statiske punkt-til-punkt-laster kan diskretiseres på mikro-nivå ved hjelp av et stort antall bestemte elementer i 2D og 3D, med forskjellige elementer for betong, armeringsstål og samvirket mellom materialene. Mikromodellering gir en svært nøyaktig beskrivelse av geometriske detaljer og spenningstøyningshistorie ved hvert punkt. Men begrensinger i beregningstid og minne gjør metoden for omfattende for seismisk analyse av de fleste konstruksjonsdeler, som skjærvegger og bjelke-søyleforbindelser, og gjør derfor at mikro-FE-modeller ikke er anvendelige for hele strukturer i 3D.

Makro- eller medlem-for-medlem-modellering er det beste kompromisset mellom beregningsmessige kostnader og nøyaktighet. De to vanligste modellene er fiber-modellen, hvor inelastisiteten er fordelt over hele det strukturelle medlemmet, og flyteledd-modeller, hvor inelastisiteten er lumpet til medlemmets ende.

En viktig egenskap for ikke-lineære materialmodeller er at dersom medlemmer ikke flyter under den seismiske responsen, degenereres den ikke-lineære analysen til en lineær analyse. Lineær oppførsel må derfor kunne beskrives som et spesialtilfelle, uten for store avvik fra en ordinær analyse med elastiske stivheter.

2.2.2.1 Fibermodellen

Fibermodellen er anerkjent for å være den mest generelle og kraftfulle modellen for materiell ikke-lineær respons. Den tar høyde for både materiell og geometrisk ikke-linearitet, uten å måtte avpasse for flyteleddmekanismer. Fordi inelastisiteten fordeles både langs medlemmets lengde og tverrsnitt, kan fibermodellen ta høyde for effekter av bi-aksial bøying, varierende aksial last og aksial-fleksural kobling (kobling mellom bøying og aksial retning). [4]

Medlemmene diskretiseres i lengderetning ved segmenter representert av diskrete tverrsnitt, og langs tverrsnittet ved generiske fibre, som består av stål, omsluttet/lukket betong eller uomsluttet betong, som er lumpet til fiberens senter. Dersom bøyingen er én-aksial, deles tverrsnittet inn i striper eller fiber normalt på det aktuelle planet. Ved bi-aksial bøying deles antallet in i rektangulære regioner, med sidene parallelle med tverrsnittsaksene. [6]

Figur 2.4 Eksempel på diskretisering av et armert betongtverrsnitt [4]

Materialenes spenning-tøyningsforhold tar her høyde for blant annet reversering av spenning, sprekkdannelse i betongen, økt spenning ved strekk og «confinement»/omslutning av betongen. Omslutningseffekter kommer fra armering i tverrsnittsplanet, som klassiske skjærbøyler. Betongen representeres ofte ved trilineære modeller, som er ikke-lineære med enten konstante eller variable lover for «confinement»/omslutningstrykk (se Scott *et al.* 1982, Mander *et al.* 1987), og uten strekkmotstand.

Figur 2.5 Trilineære materialmodeller for betong [12]

De mest anvendelige materialmodellene for stål er en bilineær modell, Menegotto-Pintomodellen (1973) og Monti-Nuti-modellen (1992), med sine respektive materialegenskaper, som herdinsparameter, isotrop/kinematisk vektkoeffesient, osv.

Figur 2.6 Eksempler på materialmodeller for stål [12]

Strukturell og ikke-strukturell treghetsmasse kan introduseres som lumpet eller fordelt. Knutepunktselementer defineres som fjærer som forbinder sammenfallende elementer, og kan benyttes til å modellere diskontinuerlige forbindelser.

Samlet kan disse elementene representere:

- Forskjellige elementklasser (søyler, bjelker, vegger, søyle-bjelke-forbindelser, osv.)
- Ikke-strukturelle komponenter (energidissiperende enheter, treghetsmasser, osv.)
- Forskjellige randbetingelser (fleksible fundamenter, seismisk isolasjon eller strukturell «gapping and pounding»

En matematisk basis er nyttig for å forstå kontinuumsmekanikken ved ikke-lineære analyser. Vi ser først på fordelingen av inelastisiteter langs tverrsnittet [6]:

Normaltøyningen ved punktet p(y,z) langs tverrsnittet s ved avstand x i aksial retning

$$\varepsilon_P(x, y, z) = z\varphi_y(x) - y\varphi_z(x) + \varepsilon_o(x)$$
(2.6)

hvor ϕ_y og ϕ_z er kurvaturen om y- og z-aksen og ϵ_0 er normaltøyningen ved origo. Eventuelt på formen

$$\boldsymbol{\varepsilon}(x, y, z) = \boldsymbol{B}_{s}(x)\boldsymbol{\varepsilon}_{s}(x) \tag{2.7}$$

hvor

$$\mathbf{B}_{s}(y,z) = (z, -y, 1) \tag{2.8}$$

er den kinematiske matrisen, og deformasjonsvektoren til tverrsnittet er gitt som

$$\boldsymbol{\varepsilon}_{s}(x) = [\varphi_{y}(x), \varphi_{z}(x), \varepsilon_{o}(x)]^{T}$$
(2.9)

Figur 2.7 Vilkårlig tverrsnitt

Tverrsnittets kraftvektor utledes gjennom prinsippet om virtuelt arbeid og likevekt, og skrives som

$$\boldsymbol{S}_{s}(x) = \left[\boldsymbol{M}_{y}(x), \boldsymbol{M}_{z}(x), \boldsymbol{N}(x)\right]^{T} = \int_{A} \boldsymbol{B}_{s}^{T} \boldsymbol{\sigma}(x, y, z) \, dA \qquad (2.10)$$

hvor $\sigma(x, y, z)$ er normalspenningen over arealet A. Den inkrementelle sammenhengen mellom kraft- og tøyningsvektoren gir tverrsnittets tangentstivhetsmatrise:

$$\boldsymbol{K}_{t,s}(x) = \frac{\delta \boldsymbol{S}_s(x)}{\delta \boldsymbol{\varepsilon}_s(x)} = \int_A E_t(x, y, z) \boldsymbol{B}_s^T \boldsymbol{B}_s \, dA \tag{2.11}$$

hvor

$$E_t(x, y, z) = \frac{d\sigma}{d\varepsilon}$$
(2.12)

er tangentmodulen, som tar høyde for materielle ikke-lineariteter (se 2.2.1).

Ved for eksempel armerte betongkonstruksjoner, hvor tverrsnittet består av både stål, omsluttet og uomsluttet betong, vil både stivhet og spenningsfordeling være diskontinuerlig over snittarealet A. I slike tilfeller benyttes numerisk integrasjon, hvor snittet deles inn i seksjoner, og kraftvektoren og stivhetsmatrisen omskrives slik:

$$\boldsymbol{S}_{s}(x) = \left[\boldsymbol{M}_{y}(x), \boldsymbol{M}_{z}(x), \boldsymbol{N}(x)\right]^{T} = \sum_{i=1}^{n} \boldsymbol{B}_{s}^{T} \sigma_{i} b_{i} w_{i}$$
(2.13)

og

$$\boldsymbol{K}_{t,s}(\boldsymbol{x}) = \sum_{i=1}^{n} \boldsymbol{B}_{s}^{T} \boldsymbol{B}_{s} E_{i} b_{i} w_{i}$$
(2.14)

hvor n er antall integreringspunkter, b_i er seksjonens bredde og w_i er integrasjonspunktets vektfaktor.

Tilsvarende egenskaper kan nå defineres på medlemsnivå. Elementets nodale kraftvektor inkluderer moment om de ortogonale tverraksene, aksial kraft og torsjon ved medlemmets endepunkter:

$$\boldsymbol{S}_{m} = \left[M_{y}^{A}, M_{z}^{A}, M_{y}^{B}, M_{z}^{B}, N, T\right]^{T}$$
(2.15)

Den korresponderende deformasjonsvektoren inneholder rotasjonene ved endepunktene om yog z-aksen, og den relative forskyvningen u og vridningen θ_T mellom de to endenodene:

$$\boldsymbol{v}_m = [\theta_y{}^A, \theta_z{}^A, \theta_y{}^B, \theta_z{}^B, u, \theta_T]^T$$
(2.16)

Figur 2.8 Interne krefter og elementdeformasjoner ved medlemmsender [6]

Også på elementnivå finner vi tangentiell stivhet ved den inkrementelle sammenhengen mellom kraft- og deformasjonsvektoren:

$$\delta \boldsymbol{S}_m = \boldsymbol{K}_{t,m} \delta \boldsymbol{v}_m \tag{2.17}$$

Definerer så den inveriante interpolasjonfunskjonsmatrisen $B_m(x)$ som det inkrementelle forholdet mellom tverrsnitts- og medlemsdeformasjonen:

$$\delta \boldsymbol{\varepsilon}_{s}(\boldsymbol{x}) = \boldsymbol{B}_{m}(\boldsymbol{x})^{T} \delta \boldsymbol{v}_{m}(\boldsymbol{x})$$
(2.18)

Ved hjelp av prinsippet om virtuelle forskyvninger kan medlemmets tangentielle stivhet bestemmes:

$$\boldsymbol{K}_{t,m} = \int_{L} \boldsymbol{B}_{m}(x)^{T} \boldsymbol{K}_{t,s}(x) \boldsymbol{B}_{m}(x) dx \qquad (2.19)$$

og den inkrementale nodale kraftvektoren:

$$\delta \boldsymbol{F}_m = \int_L \boldsymbol{B}_m(x)^T \,\delta \boldsymbol{S}_s(x) dx \tag{2.20}$$

Også over medlemmets lengde er det vanlig å integrere numerisk, f.eks. ved den generaliserte trapesformete regelen:

$$y_{n+1} = y_n + \left[(1 - \gamma) \left(\frac{dy}{dx} \right)_n + \gamma \left(\frac{dy}{dx} \right)_{n+1} \right] \Delta x$$
 (2.21)

hvor $0 \le \gamma \le 1$ og integrasjonspunktene er plasserte med lik avstand, eller ved Gauss kvadraturregler, med strategisk plasserte integrasjonspunkter og tilhørende vektfaktorer.

Når det benyttes en invariant interpolasjonfunskjonsmatrise $B_m(x)$, sier vi at fibermodellen er stivhetsbasert. Men en slik modell kan oppleve numeriske utfordringer. Når responsen øker oppstår det etter hvert flyteledd ved medlemmets ender. Dette fører til økning i fleksurale deformasjoner ved endene, som deretter sprer seg utover medlemmets lengde og endrer den fordelte inelastisiteten. Deformasjonen vil nå avvike betydelig fra tildligere definerte deformasjonsvektoren $\varepsilon_s(x)$, som den invariante interpoleringsfunskjonsmatrisen $B_m(x)$ utledes fra. Det kan blant annet føre til at aksialkraften varierer falskt langs medlemmets lengde. En måte å delvis løse problemet på er å innføre et tilstrekkelig antall mellomliggende noder langs medlemmets lengde til å beskrive inelastisiteten, selv med en invariant interpoleringsfunskjonsmatrise mellom nodene. Alternativt kan det anvendes en *fleksibilitetsbasert* fibermodell, som bedre takler de numeriske problemene. Her defineres tverrsnittets tangentielle fleksibilitet som den inverse av den tangentielle stivheten:

$$F_{t,s}(x) = K_{t,s}(x)^{-1}$$
(2.21)

Elementlikevektsmatrisen introduseres som forholdet mellom den nodale kraftvektoren og tverrsnittets kraftvektor:

$$\boldsymbol{S}_{s}(\boldsymbol{x}) = \boldsymbol{e}(\boldsymbol{x})\boldsymbol{S}_{m} \tag{2.22}$$

Medlemmets tangentfleksibilitetsmatrise defineres som:

$$\boldsymbol{F}_{t,m} = \int_{L} \boldsymbol{e}(x)^{T} \boldsymbol{F}_{t,s}(x) \boldsymbol{e}(x) dx \qquad (2.23)$$

Omskriving av den inkrementelle tverrsnittdeformasjonen gir:

$$\delta \boldsymbol{\varepsilon}_{s}(x) = \frac{\delta \boldsymbol{S}_{s}(x)}{\boldsymbol{K}_{t,s}(x)} = \boldsymbol{F}_{t,s}(x)\delta \boldsymbol{S}_{s}(x) = \boldsymbol{F}_{t,s}(x)\boldsymbol{e}(x)\delta \boldsymbol{S}_{m} = \boldsymbol{F}_{t,s}(x)\boldsymbol{e}(x)\boldsymbol{K}_{t,m}\delta\boldsymbol{v}_{m} \quad (2.24)$$

som ved ligning (2.21) viser at interpoleringsfunskjonsmatrisen $B_m(x)$ kan skrives om til den ikke-invariante funksjonsmatrisen

$$\boldsymbol{B}_{m}(\boldsymbol{x}) = \boldsymbol{F}_{t,s}(\boldsymbol{x})\boldsymbol{e}(\boldsymbol{x})\boldsymbol{K}_{t,m}$$
(2.25)

Den inkrementale nodale kraftvektoren δF_m fra ligning (2.20) kan nå beregnes ut fra den ikke-invariante $B_m(x)$, som oppdateres kontinuerlig for å ta hensyn til endring i inelastisitet langs medlemmets lengde (Mahasasuverchai og Powell 1982). Men også her kan det oppstå en grad nummeriske problemer, fordi det er en inkonsistens mellom tverrsnittskreftene i ligning (2.13) og (2.22).

På tross av antakelsen om plane tverrsnitt, kan fibermodellen også inkludere medlemmers ikke-lineære skjærdeformasjoner, men uten muligheten for å oppdage skjærbrudd. Modellen kan også ta høyde for rotasjoner ved innspente ender, ved å innføre ikke-lineære rotasjonsfjærer ved endene.

Fibermodellen er som nevnt en fundamental modell, og tilsvarende beregningsmessig krevende. For hvert analysesteg kreves det omfattende kalkuleringer, både på medlem- og tverrsnittnivå. Det er derfor av interesse å benytte noe forenklede metoder der det er mulig. Dersom bøyning i hovedsak foregår i ett plan og kobling mellom bøying og aksial kraft ikke er relevant (f.eks. for bjelker), kan blant annet følgende alternativer benyttes:

- Modeller med spredt inelastisitet
- Modeller med lumpet inelastisitet, også kjent som flyteledd

2.2.2.2 Modeller med spredt inelastisitet

For enaksial bøying blir tangentfleksibilitet- og tangentstivhetsmatrisen redusert til en skalar verdi. Istedenfor å dele tverrsnittet inn i fibre, benyttes et hysterisk forhold mellom moment og noe utflytende kurvatur, som fenomenologisk beskriver den empiriske oppførselen til medlemmet. Eventuelt benyttes et forhold som er tidligere analytisk utledet for tilsvarende medlem, ved for eksempel fibermodellen.

En annen forenkling i forhold til fibermodellen er at tangentfleksibiliteten integreres analytisk ved å benytte kontrollsnitt kun ved endene, istedenfor å integrere numerisk ved flere kontrollsnitt langs medlemmets lengde. Modellen tar likevel høyde for den faktiske fordelingen av inelastisitet langs medlemmets lengde, og omgår inkonsistensen mellom tverrsnittkreftene i ligning (2.13) og (2.22) som oppstår i fibermodellen.

Forenklingene fører naturlig nok til noe redusert nøyaktighet. Valg av hysteriske M- φ -forhold og tilhørende parametre krever dessuten at bruker er svært erfaren.

2.2.2.3 Modeller med lumpet inelastisitet

Ved laterale laster er som regel momentene, og de tilhørende ikke-lineære deformasjonene, størst ved medlemmenes ende. Etter hvert som responsen øker vil det danne seg flyteledd, og ved de tidligste inelastiske modellene var inelastisiteten lumpet til endene.

Et eksempel er *to-komponentmodellen* (Clough et al. 1965), som består av to parallelle komponenter. Den første komponenten er elastisk - perfekt plastisk og representerer flyt. Den er elastisk frem til momentet når modellens ultimate momentkapasitet M_p på ene eller begge endene. Da frigjøres momentet/momentene og den andre komponenten settes i spill. Den er elastisk med stivheten *pEI* og elementet representerer herding etter flyt. Et nøyaktig valg av herdingsparameteren *p* er ikke veldig avgjørende for den seismiske responsen, og man benytter gjerne en standardverdi, som 0,05 eller 0,1, ved primærlasting.

Figur 2.9 to-komponentmodellen, med tilhørende M-θ-kurve

Modellens hysteriske oppførsel er bilineær, med avlastings- og omlastingskurvene parallelle med primærlastingskurven. Denne sykliske oppførselen passer godt til stålmedlemmer med stabile hystereseløkker, men dårlig til betongmedlemmers trange hystereseløkker, hvor med avlastings- og omlastingsstivheten reduseres (se 2.2.1.1)

Én-komponentmodellen (Giberson 1967) er mer kompatibel med betongens egenskaper. Den består av et elastisk element, seriekoblet til to ikke-lineære fjærer ved endene, og all inelastisiteten lumpes til fjærene.

Figur 2.10 Én-komponentmodellen

Hver fjær bidrar bare med stivhet ved det opplegget den befinner seg, og vi får følgende tangentiell fleksibilitetsmatrise for medlemmet

$$\boldsymbol{F}_{t,m} = \begin{bmatrix} f_{AA} + f_A & f_{AB} \\ f_{BA} & f_{BB} + f_B \end{bmatrix}$$
(2.25)

hvor fjærfleksibilitetene f_A og f_B er 0 frem til det endemomentene når flytegrensen M_y , og stegvis konstante i løpet av syklisk last eller respons. I motsetning til fibermodellen og tokomponentmodellen, arbeider én-komponentmodellen direkte med strengrotasjoner, som omfatter skjærdeformasjoner og rotasjoner ved fastholdte ender. Den har dermed en bedre evne til å kalibrere modellparametere ved direkte bruk av empirisk informasjon. En annen motsetning til fibermodellen er at én-komponentmodellen kan beskrive permanent tap i lateral kraftmotstand (ved for eksempel brudd eller knekking av staver), fordi den beskriver responsvariabler på medlemsnivå, ved strengrotasjoner eller skjærkrefter.

2.2.3 Ikke-lineære dynamiske analyser

2.2.3.1 Tidhistorieanalyser

Den ikke-lineære bevegelsesligningen for en struktur med flere frihetsgrader er

$$\boldsymbol{M}\boldsymbol{\ddot{D}} + \boldsymbol{C}\boldsymbol{\dot{D}} + \boldsymbol{K}(\boldsymbol{D})\boldsymbol{D} = -\boldsymbol{M}\boldsymbol{A}_{g}\boldsymbol{\ddot{D}}_{g}(t)$$
(2.26)

hvor $\ddot{D}_g(t)$ er grunnakselerasjonen og A_g er en innflytelsesvektor som beskriver forholdet mellom retningen til strukturens frihetsgrader og grunnbevegelsens retning. Stivheten er, som vist, avhengig av deformasjonen.

Dynamiske analyser involverer direkte integrasjon av bevegelsesligningen, som kan gjøres eksplisitt eller implisitt. Det mest utbredte er gjerne implisitte metoder, som den numeriske dissipative α -integrasjonsalgoritmen (Hilber, Huges og Taylor 1977), eller spesialtilfellet Newmark-metoden [3].

α-integrasjonsalgoritmen modererer bevegelseslikevekten slik:

$$\boldsymbol{M}\boldsymbol{\ddot{D}}_{n+1} + (1+\alpha)\boldsymbol{C}\boldsymbol{\dot{D}}_{n+1} - \alpha\boldsymbol{C}\boldsymbol{\dot{D}}_n + (1+\alpha)\boldsymbol{K}\boldsymbol{D}_{n+1} - \alpha\boldsymbol{K}\boldsymbol{D}_n = \boldsymbol{R}_{\alpha}^{ext} \qquad (2.27)$$

hvor $\mathbf{R}_{\alpha}^{ext}$ er \mathbf{R}^{ext} evaluert ved tiden $(1 + \alpha)t_{n+1} - \alpha t_n = t_{n+1} + \alpha \Delta t$. Dersom lasten varierer lineært over tiden, vil:

$$\boldsymbol{R}_{\alpha}^{ext} = (1+\alpha)\boldsymbol{R}_{n+1}^{ext} - \alpha \boldsymbol{R}_{n}^{ext}$$
(2.28)

Algoritmisk demping kan introduseres ved å anvende $\alpha < 0$, og beregnet forskyvning holder fremdeles andre ordens nøyaktighet, $O(\Delta t^2)$.

Ved Newmark-metoden benyttes de numeriske faktorene γ og β for å ivareta blant annet nummerisk stabilitet, nøyaktighet og algoritmisk demping. Newmarkrelasjonene er:

$$\dot{\boldsymbol{D}}_{n+1} = \dot{\boldsymbol{D}}_n + \Delta t \left[\gamma \ddot{\boldsymbol{D}}_{n+1} + (1-\gamma) \ddot{\boldsymbol{D}}_n \right]$$
(2.29)

$$\boldsymbol{D}_{n+1} = \boldsymbol{D}_n + \Delta t \dot{\boldsymbol{D}}_n + \frac{1}{2} \Delta t^2 \left[2\beta \ddot{\boldsymbol{D}}_{n+1} + (1 - 2\beta) \ddot{\boldsymbol{D}}_n \right]$$
(2.30)

Løses for fart og akselerasjon ved tidssteg n + 1:

$$\ddot{\boldsymbol{D}}_{n+1} = \frac{1}{\beta \Delta t^2} \left[\boldsymbol{D}_{n+1} - \boldsymbol{D}_n - \Delta t \dot{\boldsymbol{D}}_n \right] - \left(\frac{1}{2\beta} - 1\right) \ddot{\boldsymbol{D}}_n$$
(2.31)

$$\dot{\boldsymbol{D}}_{n+1} = -\frac{\gamma}{\beta\Delta t} [\boldsymbol{D}_{n+1} - \boldsymbol{D}_n] - \left(\frac{\gamma}{\beta} - 1\right) \dot{\boldsymbol{D}}_n - \ddot{\boldsymbol{D}}_n$$
(2.32)

Innsatt i bevegelsesligningen og løst for D_{n+1} :

20

$$\boldsymbol{K}^{eff}\boldsymbol{D}_{n+1} = \boldsymbol{R}_{n+1}^{ext} + \boldsymbol{M} \left[\frac{1}{\beta \Delta t^2} \, \boldsymbol{D}_n + \frac{1}{\beta \Delta t} \dot{\boldsymbol{D}}_n + (\frac{1}{2\beta} - 1) \ddot{\boldsymbol{D}}_n \right] + \boldsymbol{C} \left[\frac{\gamma}{\beta \Delta t} \, \boldsymbol{D}_n + \left(\frac{\gamma}{\beta} - 1 \right) \dot{\boldsymbol{D}}_n + \Delta t (\frac{\gamma}{2\beta} - 1) \ddot{\boldsymbol{D}}_n \right]$$

$$(2.33)$$

hvor

$$\boldsymbol{K}^{eff} = \frac{1}{\beta \Delta t^2} \boldsymbol{M} + \frac{\gamma}{\beta \Delta t} \boldsymbol{C} + \boldsymbol{K}$$
(2.34)

De vanligste settene med numeriske faktorer er $\gamma = \frac{1}{2}$ og $\beta = \frac{1}{4}$, som gir gjennomsnittakselerasjonsmetoden, og $\gamma = \frac{1}{2}$ og $\beta = \frac{1}{6}$, som gir lineær-akselerasjonsmetoden. Gjennomsnitt-akselerasjonsmetoden er ubetinget stabil, mens lineær-akselerasjonsmetoden er betinget stabil. Begge metodene gir andre ordens nøyaktighet, $O(\Delta t^2)$. Også for Newmarkmetoden kan algoritmisk demping introduseres, men da reduseres nøyaktigheten til første ordens, $O(\Delta t)$.

Som tidligere nevnt, gjelder ikke superposisjonsprinsippet for ikke-lineær respons. Både stivheten og lasten kan være avhengig av forskyvningen, og må derfor oppdateres underveis i analysen ved hjelp av inkrementell-iterative metoder. Systemet påføres laster i form av predefinerte inkrementer, og interne krefter og forskyvningsinkrementer beregnes ved likevekt gjennom iterative skjema. Den mest utbredte metoden er standard *Newton-Raphson (N-R)*, hvor stivhetsmatrisen oppdateres for hvert inkrementelle steg helt til konvergenskriteriet er innfridd og *Modifisert Newton-Raphson* hvor stivhetsmatrisen bare må oppdateres ved de første iterasjonene. Men ettersom modifisert N-R bare oppnår konvergens med første ordens nøyaktighet, kreves det flere iterasjoner enn ved standard N-R.

Hovedprinsippene i Newton-Raphson-metoden kan demonstreres gjennom et forenklet system, hvor bare geometrisk ikke-linearitet vurderes. Både stivheten K_t og den interne kraften R^{int} er avhengig av forskyvning D. Residualkraften R^{res} ved iterasjonssteg idefineres som differansen mellom den ytre kraften R^{ekst} og den indre motstandskraften R^{int} ved samme iterasjonssteg. Ved å linearisere residualet av den ikke-lineære likevektligningen, uttrykkes den iterative deformasjonen ΔD som det inkrementale forholdet mellom residual kraft og tangentiell stivhet:

$$\boldsymbol{R}^{res}(\boldsymbol{D}_{i+1}) = \boldsymbol{R}^{res}(\boldsymbol{D}_i) + \frac{\partial \boldsymbol{R}^{res}(\boldsymbol{D}_i)}{\partial \boldsymbol{D}} \Delta \boldsymbol{D} + h \boldsymbol{\emptyset} \text{ yere ordens ledd} = 0 \qquad (2.35)$$

Ledd av høyere orden enn den førstederiverte neglisjeres:

$$\boldsymbol{R}^{res}(\boldsymbol{D}_{i+1}) = \boldsymbol{R}^{res}(\boldsymbol{D}_i) + \frac{\partial}{\partial \boldsymbol{D}} \{ \boldsymbol{R}^{ekst} - \boldsymbol{R}^{int}(\boldsymbol{D}_i) \} \Delta \boldsymbol{D} = 0$$
(2.36)

 \mathbf{R}^{ekst} er uavhengig av forskyvning, slik at $\frac{\partial \mathbf{R}^{ekst}}{\partial \mathbf{D}} = 0$. Ved hjelp av definisjonen på tangentiell stivhet, $\mathbf{K}_t = \frac{\partial \mathbf{R}^{int}}{\partial \mathbf{D}}$, får vi endelig:

$$\boldsymbol{R}^{res}(\boldsymbol{D}_i) = \boldsymbol{K}_t(\boldsymbol{D}_i)\Delta\boldsymbol{D}$$
(2.37)

Den iterative deformasjonen ΔD beregnes for hvert iterasjonssteg, legges til den totale deformasjonen D_i , og residualkraften og tangentstivheten oppdateres på nytt. Prosedyren gjentas helt til et gitt konvergenskriterium er innfridd, eller ved et gitt maksimumsantall iterasjoner.

Konvergenskriterier er som regel basert på forskyvning/rotasjon, residual kraft/moment eller energi. *Forskyvning/rotasjonskriterier* sammenligner den iterative deformasjonen med den totale deformasjonen. Det gir en direkte kontroll av løsningens nøyaktighet, men kan være misledende fordi den ofte gir en treg konvergensrate som gir inntrykk av konvergens for tidlig. Konvergenskriterier basert på *residualkraft/moment* sammenligner den totale eksterne eller interne kraften med residualkraften, og er en mer pålitelig metode. Et *energibasert kriterium* vurderer både forskyvning og kraft, i tillegg til at det naturlig skalerer forskyvningsog rotasjonsfrihetsgrader. Arbeidet som gjøres av residualkraften over den iterative forskyvningen sammenlignes med det korresponderende arbeidet som gjøres ved den første iterasjonen.

Automatisk regulering av tidssteg eller lastinkrement påser at konvergens oppnås mest mulig effektivt. Dersom konvergens er lett å oppnå økes last- eller tidssteget til en maksverdi, mens dersom konvergens ikke oppnås innen et bestemt antall iterasjoner minkes last- eller tidssteget til en minimumsverdi og analysen startes om fra siste likevektpunkt.

Modellering av den seismiske lasten kan gjøres ved å benytte lastkurver på oppleggene. Ved å benytte forskjellige kurver på de forskjellige oppleggene, tas det høyde for asynkron grunneksitasjon. Ettersom maks forskyvning og drift (relativ forskyvning mellom etasjer) i stor grad er avhengig av valgt grunneksitasjon, er det uansett nødvendig å benytte seg av forskjellige akselerogrammer og bestemme den dimensjonerende responsen med statistiske metoder.

2.2.3.2 Inkrementell dynamisk analyse – IDA

Inkrementell dynamisk analyse (Hamburger *et al.* 2000, Vamvatsikos og Cornell 2002) [5] er en parametrisk analysemetode som har som mål å produsere responskurver til bruk i dimensjonering, basert på serier av ikke-lineære tidhistorieanalyser med økende intensitet. Strukturen utsettes for en eller flere registrerte grunnbevegelser skalert med en faktor λ . En tidhistorieanalyse gjennomføres, og den maksimale responsen registreres. Denne prosedyren gjentas flere ganger med forskjellige verdier for λ , helt til hele responsspekteret, fra elastisk til brudd, er dekket.

Grunnbevegelsen kan representeres ved maksimal grunnintensitet, -akselerasjon, -fart eller spektral akselerasjon. Responsen måles i form av skjærkraft ved grunn, forskyvning i topp, «drift» mellom etasjer eller lignende. Responsen plottes mot bevegelsen til en IDA-responskurve, som vist med et eksempel fra R. Pinho [5], hvor det er svært tydelig hvor responsen går fra å være elastisk til inelastisk:

Figur 2.11 Total drift - maksimal forskyvning ved fundament

2.3 Ikke-lineære statiske analysemetoder

2.3.1 Introduksjon

Ikke-lineære statiske analyser eller «pushover»-analyser baserer seg på responsspektrumsanalyser. Strukturer belastes med monotont økende laster eller forskyvninger helt til enten en predefinert grensetilstand er nådd, strukturen kollapser eller analysen ikke oppnår konvergens. Den viktigste generelle forskjellen på ikke-lineære statiske og dynamiske analyser er at de statiske analysemetodene ikke inkluderer grunnbevegelsenes sykliske egenskaper eller bevegelse i flere retninger.

Selv om ikke-lineære dynamiske analyser utvilsomt gir den mest nøyaktige representasjonen av konstruksjoners respons ved seismiske laster, er det i de fleste praktiske tilfeller foretrukket å benytte enklere statiske metoder. Den mest opplagte grunnen er at tidhistorieanalyser er beregningsmessig kostbart og krevende. Et annet argument at det er svært vanskelig å angi stedsspesifikke grunnbevegelser med tilfredsstillende nøyaktighet, enten i form av registrerte eller syntetiske akselerogrammer. Ofte finnes det ikke tilstrekkelige data på for å generere sannsynlige seismologiske modeller. Og selv i de tilfellene hvor man har kompetanse og ressurser til å benytte en dynamisk analysemetode kan det hensiktsmessig å gjennomføre innledende statiske analyser, for å for eksempel kontrollere strukturens stivhets- og massefordeling eller identifisere kritiske regioner, hvor store inelastiske deformasjoner kan oppstå. Det skilles mellom adaptive og inadaptive pushoveranalyser, som enten er deformasjons- eller kraftbaserte.

2.3.1 Statiske Pushoveranalyser

Den simpleste formen for ikke-lineære statiske metoder er «single-run pushover», hvor én enkel analyse gjennomføres, med enten uniform, triangulær eller modal (fundamental) lastfordeling. Men for å ta hensyn til en større del av det potensielle deformasjonsspekteret til en struktur har det blitt utviklet «multi-run pushovers», som «Modal Pushover Analysis (MPA)» [2] Her beregnes maksimalresponsen r_n for den n-te moden ved flere «single-run pushovers» med forskjellige modale fordelinger, for så å kombineres ved modale kombinasjonsregler:

Først beregnes konstruksjonens naturlige frekvenser, ω_n , og moder, ϕ_n , ved lineær elastisk vibrasjon. Deretter bestemmes lastfordelingen ut fra modene og den globale massematrisen

$$\boldsymbol{s}_n = \boldsymbol{M}\boldsymbol{\phi}_n \tag{2.38}$$

Ut i fra lastfordelingen utvikles den n-te modens pushover-kurve, hvor skjærkraft ved grunnivå plottes mot forskyvning ved taknivå, $V_{gn} - u_{rn}$. Tyngdekraftlastene påføres før de laterale lastene, og dette kan føre til negativ postelastisk stivhet. $V_{gn} - u_{tn}$ -forholdet idealiseres til for eksempel en bilineær kurve, og konverteres til kraft-forskyvningsforholdet, $\frac{F_{sn}}{L_n} - D_n$, for den n-te moden ved hjelp av følgende formler:

$$\frac{F_{snf}}{L_n} = \frac{V_{gnf}}{M_n^*} \qquad D_{nf} = \frac{u_{tnf}}{\Gamma_n \phi_{tn}}$$
(2.38)

Ved flytepunktet er F_{snf} den ikke-lineær hysteriske funksjonen til den modale koordinaten q_n , V_{gnf} skjærkraften ved grunnen og u_{tnf} maksimal forskyvning av taket. $M_n^* = \frac{L_n^2}{M_n}$ er den effektive modale massen, og de resterende komponentene defineres som:

$$L_n = \sum_{j=1}^N m_j \phi_{jn}$$
 $\Gamma_n = \frac{L_n}{M_n}$ $M_n = \sum_{j=1}^N m_j \phi_{jn}^2$ (2.40)

hvor Γ_n er den modale bidragsfaktoren ved den n-te moden, M_n er den modale massen og m_j er massen ved etasje *j*. Den maksimale relative deformasjonen, D_n , for det inelastiske SDOFsystemet kan nå beregnes ved hjelp av kraft-forskyvningsrelasjonen fra Figur 2.11 og dempingsforholdet ζ_n og systemet har følgende initiale elastiske vibrasjonsperiode:

$$T_n = 2\pi \left(\frac{L_n D_{nf}}{F_{snf}}\right)^{1/2} \tag{2.41}$$

Den maksimale deformasjonen av taket til SDOF-systemet kan nå beregnes:

$$u_{tn} = \Gamma_n \phi_{tn} D_n \tag{2.42}$$

Ønsket representasjon av responsen r_n (skjær ved grunn, etasjedrift, etasjeforskyvninger, osv.) trekkes ut ved hjelp av lastfordelingen, s_n , og $V_{gn} - u_{tn}$ -forholdet.

Figur 2.12 Forskyvning ved taknivå mot skjærkraft ved fundamentnivå

Algoritmen gjennomføres for så mange moder som kreves for tilstrekkelig nøyaktighet. Vanligvis er de første tre tilstrekkelig. Modene til et inelastisk system er koblede, og kombineres ved for eksempel de nevnte Square Root of Sum of Squares, SRSS, og Complete Quadratic Combination, CQC.

MPA er en kraft-basert metode, fordi vi belaster strukturen med en bestemt lastfordeling og måler responsen i form av forskyvning, som deretter kan konverteres til andre responsmål. For inadaptive pushoveranalyser foretrekkes det å belaste med kraft i istedenfor forskyvning, fordi forskyvningsbaserte analyser kan skjule viktige strukturelle egenskaper dersom forskyvningsfordelingen ikke korresponderer med bruddmekanismen som oppstår etter flyt.

MPA, og andre statiske inadaptive pushoveranalyser, beregner responsen ut i fra de fundamentale modene og antagelsen om at modeformene ikke vil endre seg frem til strukturell kollaps, og tar følgelig ikke hensyn til at modeformene vil endres når det oppstår skade på strukturelle medlemmer. Andre grunner til at inadaptive pushoveranalyser ikke evner å generere den inelastiske responsen med tilstrekkelig nøyaktighet, er blant annet at de ikke inkluderer bidrag til responsen fra høyere moder og at de neglisjerer energidissipasjon på grunn av dynamiske effekter, som viskøs demping.

2.3.1 Statisk Adaptive Pushoveranalyser

Adaptive pushoveranalyser tar høyde for svekkelsen av stivhet som oppstår når responsen blir inelastisk ved å utføre egenverdianalyser ved hvert inkrementelle steg, og følgelig oppdatere den laterale lastvektoren og tangentstivheten for de nye modale verdiene.

Figur 2.13 Oppdatering av pålastet forskyvningsvektor [5]

Adaptive kraft-baserte pushoveranalyser gir ikke noe nevneverdig forbedret resultat sammenlignet med en inadaptiv metode. Dette kommer av at kraft-baserte metoder bruker de nevnte modale kombinasjonsreglene SRSS og CQC,

Mange studier (Algan 1982, *et al.*) viser at forskyvningsdifferanseraten mellom tilstøtende etasjer (Interstory Drift Ratio – IDR) er det responsparameteret som best beskriver bruddmekanikken til bygninger. IDR er definert som forskyvningsdifferansen mellom to tilstøtende etasjer, normalisert av høyden mellom etasjenivåene, og kan tilnærmes på følgende måte

$$IDR(j,t) = \frac{1}{h} \sum_{n=1}^{N} \Gamma_n[\phi_n(j+1) - \phi_n(j)] D_n(t)$$
(2.43)

Figur 2.14 Total drift mot skjærkraft ved fundamentnivå, med oppdaterte forskyvningsvektorer

3. Seismisk dimensjonering og analyse av armert betongbygg

3.1 Introduksjon

Et fire-etasjes betongbygg skal dimensjoneres som et kontorbygg plassert i Bergen, med tilhørende laster. Det gjøres først en forenklet dimensjonering for tyngde- og vindlaster, og bygget kontrolleres deretter for seismisk påvirkning. Det gjennomføres først håndberegninger etter Eurokode 8, ved tverrkraftmetoden og modal responsspektrumanalyse. Deretter modelleres bygget i SeismoStruct, som er et analyseprogram for elastisk og inelastisk seismisk respons. Programmet kan gjennomføre statiske og dynamiske analyser.

Hensikten med å gjennomføre analysene er å gi et praktisk eksempel på teorien i del 2, og for å kunne sammenligne egenskapene til de forskjellige analysetypene. Det er derfor gjort noen forenklinger i forhold til hva som kreves av et bygg som faktisk skal bygges.

Konstruksjonen er en rammestruktur, bestående av kontinuerlige søyler, fra fundament til topp. Fire parallelle rammer i avstand på 10 meter, bestående av tre spenn på 6 meter. Etasjehøyden er 3,5 meter. Bygget er dermed total 6x10 meter i plan og 14 meter høyt Søylene har sirkulære tverrsnitt, og er momentstive ved etasjeskillene. Det er to forskjellige søyletverrsnitt, for over og under etasjeskillet mellom andre og tredje etasje. Oppleggsbjelkene er fritt opplagt til søylene på kranskonsoller. Endebjelkene dimensjoneres som rektangulære tverrsnitt, senterbjelkene som dobbel L-bjelker (DLB). Dekket består av hulldekker, som spenner mellom oppleggsbjelkene.

Figur 3.1 Planfigur av bærestrukturen

3.2 Dimensjonerende tyngdelaster og vindlaster

Tyngdelastene består av nyttelast for kontorbygg og egenlast fra hulldekker. Den karakteristiske nyttelasten er 3 kN/m^{2,} og basert nyttelasten og et spenn på 10 meter velges der å benytte HD265 [10]. Dette gjelder også for taket, hvor snølast erstattes med nyttelast for enkelhets skyld. De samlede tyngdelastene fordeles så til oppleggsbjelkene som jevnt fordelte laster, som gir følgende dimensjonerende lastvirkninger [Vedlegg A]:

Endebjelker:	$V_{Ed} = 111 kN$	$M_{Ed} = 166 kN$

Senterbjelker:

 $V_{Ed} = 222 \, kN \qquad M_{Ed} = 333 \, kN$

Lasten fra bjelkene fordeles så til søylene:

	Aksiallast på søyler [kN]		
Etasje	Hjørne	Side	Senter
4.	120.0	246.0	400.0
3.	240.0	492.0	800.0
2.	360.0	738.0	1200.0
1.	480.0	984.0	1600.0
Fund.	600.0	1230.0	2000.0

Tabell 3.1 Aksiallaster på søyler

Referansevinlasten for Bergen er lik 26 m/s. Den dimensjonerende vindlasten beregnes til $q_v = 1.732 \frac{kN}{m^2}$. Vindlasten påføres forenklet som en linjelast ved taknivå. Dette gir følgende lastvirkninger for de individuelle søylene, ved henholdsvis etasjeskillet mellom andre og tredje etasje, og ved fundamentnivå [Vedlegg A]:

Etasjeskillet mellom 2. og 3. etasje:	$V_{Edx} = 23 \ kN$	$M_{Edx} = 318 \ kN$
	$V_{Edy} = 14 \ kN$	$M_{Edy} = 191 kN$
Fundamentnivå:	$V_{Edx} = 45 \ kN$	$M_{Edx} = 637 \ kN$
	$V_{Edy} = 27 \ kN$	$M_{Edy} = 382 \ kN$

3.3 Dimensjonering av bærestruktur

For å ta opp det store veltingsmomentet som følge av vindlast og seismisk last, dimensjoneres fire skjærvegger, parvis i to diagonale hjørner [Vedlegg D]. Men fordi det er mer komplisert å gjenskape bidraget fra veggskivene til stivhetsmatrisen som SeismoStruct beregner enn bidrag fra søylene, så neglisjeres veggskivene i de videre beregningene. Dette fører til at veltingsmomentet vil bli større en momentkapasiteten til søylene.

Det benyttes betongklasse B35 og armeringsstål B500NC, med tilhørende egenskaper.

Medlem	Mål	V _{Rd} [kN]	M _{Rd} [kNm]
Rektangulær bjelke	b x h = 250 x 400 mm	130	378
DLB	b x h = 500 x 700 mm*	247	209
Søyle Ø350	d = 350 mm	165	86
Søyle Ø400	d = 400 mm	164	108

Valgte medlemstverrsnitt og tilhørende kapasiteter blir som følger [Vedlegg B og C]:

Tabell 3.2 Medlemstverrsnitt og tilhørende kapasiteter

Figur 3.2 DLB-tverrsnitt, mål i mm

Figur 3.3 Sirkulært søyletverrsnitt og rektangulært betongtverrsnitt

3.4 Dimensjonering av seismisk påvirkning etter EC8 [1]

Målet med denne delen er i hovedsak å sammenligne analyse ved tverrkraftmetoden og modal responsspektrum, og det kan tillates å gjøre noen forenklinger. For å forenkle stivhetsmatrisen vurderes bæresystemet som et momentstivt rammesystem, bestående av de kontinuerlige søylene og momentstive forbindelser mellom oppleggsbjelker og søyler. Det sees altså bort fra de vertikale veggskivene, som har til hensikt å ta opp veltingsmomentet som oppstår ved fundamentet ved vindlast og seismisk last. Ettersom søylene har lik stivhet i både x- og y-retning og dekkene anses som tilnærmet uendelig stive i planet, vurderes kun påvirkning i x-retning. Fullstendige utregninger er vist i Vedlegg E og

Byggets geografiske plassering er Bergen, og ettersom det er et kontorbygg holder det seismisk klasse II. Samlet gir dette følgende dimensjonerende grunnakselerasjon:

$$a_g = \gamma_1 * a_{gR} = \gamma_1 * 0.8 * a_{g40Hz} = 1.0 * 0.8 * 0.9 \frac{m}{s^2} = 0.72 \frac{m}{s^2}$$
(3.1)

Antar grunntype B, som gir følgende parametere for beskrivelse av det elastiske responsspekteret:

Grunntype	S	$T_B(s)$	$T_C(\mathbf{s})$	$T_D(s)$
В	1,25	0,10	0,30	1,5

Tabell 3.3 Parametere for beskrivelse av responsspekteret for grunntype B [1]

Etter NA.5.2.1(5)P klassifiseres bygningen i duktilitetsklasse DCM, og ettersom det er en fleretasjes bygning med flerspennsrammer settes konstruksjonsfaktoren q lik:

$$q = maks(q_0 * k_w, 1.5) = maks(3.0 * \frac{\alpha_u}{\alpha_1} * k_w, 1.5) = maks(3.0 * 1.3 * 1, 1.5) = 3.9$$
(3.2)

I forhold til kriteriene gitt i punkt (2.1.4) til regularitet, trekkes følgende konklusjoner [1]:

Kriterier for regularitet i planet etter:

- (2) Bæresystemet er fullstendig symmetrisk om x- og y-aksen
- (3) Utformingen i planet (av dekket) er svært kompakt, uten irregulariteter som tilbaketrukne deler og utsparinger.
- (4) Dekket er tilstrekkelig stivt i henhold til Betongelementboken.
- (5) Bygningens slankhet i planet er $\lambda = \frac{b_x}{b_y} = \frac{30m}{18m} = 1,67$ som er lavere enn kravet på 4.
- (6) Stivhetssenteret sammenfaller med massesenteret ved hvert nivå $\Rightarrow e_{ox} = 0$
- (7/8) Søylene fortsetter uavbrutt fra fundament til tak.

Kriterier for regularitet i oppriss etter:

- (2) Søylene fortsetter uavbrutt fra fundament til tak. Tilbaketrekning av søyler kontrolleres under (5).
- (3) Stivheten og massen av de enkelte etasjene forblir konstant fra bunn til topp.
- (4) Forhold mellom etasjens faktiske motstand og belastning ifølge analysen skal ikke variere uforholdsmessig mellom tilstøtende etasjer, vurderes underveis.
- (5) Kontrollerer tilbaketrekningen av søylene ved etasjeskillet mellom 2. og 3. etasje, b)

$$d_2 = 400 \ mm \quad d_3 = 350 \ mm \quad \frac{d_2 - d_3}{d_2} = 0.125$$
 (3.3)

som er lavere enn kravet på 0.20.

Alle kriteriene til regularitet i både oppriss og plan er tilfredsstilt, og Tabell 2.1 tillater dermed at det benyttes en plan modell med referanseverdien til konstruksjonsfaktoren q, og at den seismiske responsen beregnes ved tverrkraftmetoden.

Men ettersom intensjonen er å sammenligne analysetypene gjennomføres det analyse både ved tverrkraftmetoden og modal responsspektrum.

3.4.1 Analyse ved hjelp av tverrkraftmetoden

Tverrkraftmetoden er for bygninger med en respons som i liten grad påvirkes av bidrag fra høyere svingeformer enn den første. Finner den første egensvingeperioden ut i fra (4.6) og (4.4) i EC8:

$$T_1 = \min\left(4 * T_c, 2s, (C_t * h^{\frac{3}{4}})s\right) = \min\left(4 * 0, 30s, 2s, \left(0, 075 * 14^{\frac{3}{4}}\right)s\right) = 0.513$$
(3.4)

Egensvingeperioden gir følgende dimensjonerende spekter:

$$T_C < T_1 < T_D$$
: $S_d(T_1) = \left(a_g * S * \frac{2.5}{q} * \frac{T_C}{T_1}\right) = 0.319 \frac{m}{s^2}$ (3.5)

Den samlede seismiske kraften ved fundamentnivå beregnes ved ligning (2.1), hvor korreksjonsfaktoren λ er lik 1 for bygninger med flere enn to etasjer:

$$F_b = S_d * M_{tot} * \lambda = 0.319 \frac{m}{s^2} * 8.732 * 10^5 kg * 1 = 278.42 \ kN \tag{3.6}$$

Den seismiske skjærkraften fordeles i de overliggende etasjene ut i fra lign (2.2):

Etasje	Høyde s _i [m]	Masse m_i [10 ⁵ kg]	Kraft F _i [kN]
4	14	2.114	108.73
3	10.5	2.186	84.33
2	7	2.206	56.74
1	3.5	2.226	28.63
Sum	-	8.732	278.42

Tabell 3.4 Fordelt seismisk kraft

Det samlede veltingsmomentet / moment ved fundamentnivå blir følgelig:

$$M_{\nu} = \sum F_i \cdot s_i = 2\ 903\ kNm \tag{3.7}$$

hvor s_i er etasjehøyden til etasje *i*.
3.4.2 Analyse ved hjelp modal responsspektrumanalyse

En modal responsspektrumanalyse tar hensyn til at bygget har flere svingeformer, eller egenmoder. De forskjellige egenmodene gir sine respektive bidrag til den globale responsen, og det er den effektive modale massen som bestemmer i hvilken grad de bidrar. Den effektive modale massen kan ses på som den delen av massen som egenmoden klarer å sette i bevegelse og dermed bidrar til den globale skjærkraften ved fundamentnivå. Summen av den effektive massen for alle svingeformer i en retning er lik den totale massen av konstruksjonen.

Lumper søylemassene til etasjene og vurderer den samlede søylestivheten. Stivhetsbidraget fra ikke-tilstøtende etasjer er så lite at det neglisjeres. Den globale masse- og stivhetsmatrisen blir:

$$M = \begin{bmatrix} 2.114 & 0 & 0 & 0\\ 0 & 2.186 & 0 & 0\\ 0 & 0 & 2.206 & 0\\ 0 & 0 & 0 & 2.226 \end{bmatrix} * 10^5 kg$$
(3.8)

$$K = \begin{bmatrix} 0.849 & -0.849 & 0 & 0\\ -0.849 & 1.698 & -0.849 & 0\\ 0 & -0.849 & 2.298 & -1.449\\ 0 & 0 & -1.449 & 2.897 \end{bmatrix} * 10^8 \frac{N}{m}$$
(3.9)

Finner de fire første egenmodene, med tilhørende egenfrekvenser og svingeperiode, ved hjelp av egenverdiproblemet, $det(\mathbf{K} - \omega_j \mathbf{M}) = 0$:

Egenmode <i>j</i>	Egenfrekvens ω_j [rad/s]	Periode T_j [s]
1	7.562	0.8309
2	21.651	0.2902
3	32.913	0.1909
4	43.633	0.1440

Tabell 3.5 Analytisk løsning: Egenfrekvenser og egenperioder

Etasje							
		Normaliserte egenmoder					
	4	1	-0.8879	-0.589	-0.096		
	3	0.8577	0.1486	1	0.3592		
	2	0.5333	1	-0.1987	-0.9269		
	1	0.279	0.7819	-0.5941	1		
		0	0	0	0		

Tabell 3.6 Normaliserte egenmoder

Figur 3.4 Normaliserte egenmoder

Egensvingeperiodene gir følgende dimensjonerende spekter:

$$T_C < T_1 < T_D$$
: $S_d(T_1) = \left(a_g * S * \frac{2.5}{q} * \frac{T_C}{T_1}\right) = 0.208 \frac{m}{s^2}$ (3.10)

$$T_B < T_2 < T_C$$
: $S_d(T_2) = \left(a_g * S * \frac{2.5}{q}\right) = 0.577 \frac{m}{s^2}$ (3.11)

$$T_B < T_3 < T_C$$
: $S_d(T_3) = \left(a_g * S * \frac{2.5}{q}\right) = 0.577 \frac{m}{s^2}$ (3.12)

$$T_B < T_4 < T_C$$
: $S_d(T_4) = \left(a_g * S * \frac{2.5}{q}\right) = 0.577 \frac{m}{s^2}$ (3.13)

Finner så de effektive modale massene, og ratioen mellom de modale massene og den totale massen:

$L_j = \phi_j^T M \iota$ [10 ⁵ kg]	$M_j = \boldsymbol{\phi}_j^T M \boldsymbol{\phi}_j$ $[10^5 \mathrm{kg}]$	$\Gamma_j = rac{L_j}{M_j}$	$M_j^{eff} = \frac{L_j^2}{M_j}$ $[10^5 \text{kg}]$	$m_j = \frac{M_j^{eff}}{M_{tot}}$
5.8037	4.5375	1.2790	7.4231	0.8482
2.3972	5.2821	0.4538	1.0880	0.1243
-0.8000	3.8122	-0.2099	0.1679	0.0192
-0.7707	4.4253	-0.1742	0.1342	0.0153

Tabell 3.7 Effektive modale masser og masseandel

Skjærkraften ved fundamentnivå, F_{bj} , kan uttrykkes ved den effektive modale massen og det dimensjonerende elastiske spekteret:

$$F_{bj} = M_j^{eff} * S_d(T_j) = \begin{bmatrix} 154.4\\62.78\\9.69\\7.74 \end{bmatrix} kN$$
(3.14)

Kreftene fordeles så til de forskjellige etasjene *i* for hver mode *j* ved formelen:

$$F_{etgj} = \Gamma_j * S_d(T_j) * \left(\boldsymbol{\phi_j}^T * \boldsymbol{M}\right)^T = F_{j,i}$$
(3.15)

Verdier i kN	Egenmode					
Etasje	1	2	3	4		
4	56.318	-49.140	15.078	2.040		
3	49.949	8.504	-26.470	-7.891		
2	31.344	57.756	5.308	20.550		
1	16.548	45.573	16.016	-22.374		
Sum	156.40	62.78	9.69	7.74		

Tabell 3.8 Fordelte skjærkrefter til etasjer for hver mode

Kreftene fra de forskjellige egenmodene skal så kombineres for hver etasje. EC8 [1] krever at man tar hensyn til responsen til svingeformene hvor summen av de modale massene er minst 90% av konstruksjonens totale masse, og inkluderer alle moder hvor de modale massene er minst 5% av konstruksjonens totale masse. Må altså bare inkludere de to første egenmodene, og ettersom $\frac{T_2}{T_1} = 0.349 < 0.9$ kan responsen fra de to modene kombineres ved hjelp av SRSS-regelen fra ligning (2.3):

$$F_{SRSSi} = \left(\sum_{j=1}^{k} F_{etgj}^{2}\right)^{1/2}$$
(3.15)

Verdier i kN	Verdier i kN 1.etg		3.etg	4.etg	
SRSS	SRSS 74.743		65.713	48.484	

Tabell 3.9 Kombinerte skjærkrefter til etasjer

Den globale skjærkraften ved fundamentnivå kan bestemmes:

$$F_{SRSS} = \sum F_{SRSSi} = 239,61 \, kN \tag{3.16}$$

Reell forskyvning, eksklusiv konstruksjonsfaktor:

$$u_{tr} = u_t * q = 18.27 \ mm \tag{3.17}$$

Forhold mellom skjærkraft ved fundament og reell forskyvning ved taknivå er lik:

$$k_n = \frac{F_{SRSS}}{u_{tr}} = 14880 \,\frac{kN}{m}$$
 (3.18)

Veltingsmomentet ved fundamentnivå beregnes til slutt:

$$M_{\nu} = \sum F_{SRSSi} \cdot s_i = 2\ 208\ kNm \tag{3.19}$$

3.5 Dimensjonering av seismisk påvirkning ved hjelp av SeismoStruct

SeismoStruct er et Finite Element-program, som er i stand til å forutsi oppførsel ved store deformasjoner av rammer, både ved statisk eller dynamisk belastning. Programmet tar hensyn til både geometrisk materiell ikke-linearitet. Programmet inneholder en rekke materialmodeller, med tilhørende elastiske og inelastiske egenskaper. Programmet inneholder en rekke materialmodeller, med tilhørende elastiske og inelastiske egenskaper.

Det blir gjennomført følgende analyser:

- Egenverdianalyse
- Statisk nonadaptiv kraftbasert pushoveranalyse
- Statisk adaptiv forskyvningsbasertbasert pushoveranalyse

3.5.1 Modellering

Bygget modelleres som under punkt (3.3), med nevnte søyler og oppleggsbjelker. Både søylene og bjelkene modelleres som momentstive i knutepunktene. Egenlasten fra hulldekkene og nyttelasten introduseres som fordelte laster på oppleggsbjelkene. Det settes på fiktive, masseløse bjelker i y-retning for å binde sammen bjelke-søyle-rammene. Disse har høy stivhet, for å sikre riktig fordeling av de horisontale lastene. Hulldekkenes horisontale stivhet representeres ved svært stive, masseløse bjelker mellom rammene. Det blir kun vurdert forskyvning i én retning (x-retning) ettersom intensjonen er å sammenligne analysemetoder.

Figur 3.5 3D-figur av SeismoStruct-modellen

3.5.1 Ytelseskriterier

I SeimsoStruct er det mulig å definere ytelseskriterier, som blir vurdert løpende gjennom en analyse. Det kan være materielle tøyninger, tverrsnittrotasjoner eller skjærkrefter og rotasjoner av rammeelementer. Grenseverdien for de materielle tøyningene kan for eksempel settes lik flytegrensen og bruddgrensen. I denne oppgaven benyttes standardkriteriene for materielle tøyninger og i tillegg en skjærkontroll av søylene med en grenseverdi lik den dimensjonerende skjærkapasiteten funnet i punkt (3.3). Medlemmet som når et bestemt kriterium endrer farge til en predefinert referansefarge.

Beskrivelse av kriteriet	Grenseverdi	Referansefarge
Trykkbruddtøyning til omsluttet betong	-0,008	Blå
Trykkbruddtøyning til uomsluttet betong	-0,0035	Grønn
Flytetøyning til stål	0,0025	Brun
Bruddtøyning til stål	0,060	Svart
Skjærkraft for individuelle søyler	160 kN	Rød

Tabell 3.10 Ytelseskriterier

3.5.1 Egenverdianalyse

For egenverdianalysen velges Lanczos-algoritmen (Huges 1987), men det er også mulig Jacobi-algoritme med Ritz-transformasjon. Finner de fire første egenmodene i x-retning:

Egenmode <i>j</i>	Egenfrekvens ω_j [rad/s]	Periode T_j [s]
1	6.797	0.9244
2	19.080	0.3293
3	31.590	0.1989
4	43.816	0.1433

Tabell 3.11 Egenverdier og egenperioder

Etasje		Normaliserte egenmoder				
	4	1	0.9553	-0.7167	-0.3087	
:	3	0.8397	-0.0909	1	0.7911	
:	2	0.5536	-1	0.2593	-1	
:	1	0.2372	-0.8066	-0.8077	0.5287	
		0	0	0	0	

Tabell 3.12 Normaliserte egenmoder

Figur 3.6 Normaliserte egenmoder

Figur 3.7 Figurer av egenmoder fra SeismoStruct

3.5.2 Statisk Inadaptiv Kraftbasert Pushoveranalyse (IPA)

For nonadaptiv pushoveranalyse foretrekkes det å benytte påført kraft, som nevnt i [2.3.1]. Påført kraft og forskyvningsmål bestemmes ut fra det elastiske responsspekteret i EC8 [3.2.2.2] ved Tillegg B (se Vedlegg kjnkjn). Følgende verdier for kraft, forskyvning og transformasjonsfaktor beregnes for et ekvivalent system med én frihetsgrad:

$$V_q = 1740 \, kN \qquad u_t = 150 \, mm \qquad \Gamma_1 = 1.288$$
 (3.20)

Den påførte forskyvningen V_g fordeles likt mellom de fire topp-nodene på den ene langsiden, og setter forskyvningsmål lik 400 mm, godt over den beregnede elastiske maksimalforskyvningen u_t . Benytter 50 inkrementelle laststeg, som er standard for programmet.

	Phase Type:
the states	Response Control V
	Target Displacement 0,4
	Steps 50

Figur 3.8 Lastpåføring og forskyvningsmål

Forholdet mellom skjær ved fundament og forskyvning ved taknivå, $V_g - u_r$ blir som følger:

Figur 3.9 Forskyvning ved taknivå mot skjærkraft ved fundamentnivå for IPA

I løpet av de første laststegene, når responsen fremdeles er elastisk, kan det lineære, pre-flyt $V_{gn} - u_{tn}$ -forholdet bestemmes. Benytter verdier fra det 3. laststeget

$$k_n = \frac{V_g}{u_t} = \frac{241.6kN}{0.0163m} = 14822 \ \frac{kN}{m}$$
(3.20)

Dette stemmer godt med verdiene fra den modale analysen, hvor $k_n = 14880 \frac{kN}{m}$.

Beskrivelse av kriteriet	Grense-	Laststeg - Påført	Referanse-
	verdi	last ved oppnåelse	farge
Flytetøyning til stål	0,0025	15 - 1312 kN	Brun
Trykkbruddtøyning til uomsluttet betong	-0,0035	21 - 1745 kN	Grønn
Skjærkraft for individuelle søyler	160 kN	22 - 1805 kN	Rød
Trykkbruddtøyning til omsluttet betong	-0,008	30 - 2127 kN	Blå
Bruddtøyning til stål	0,060	47 - 2063 kN	Svart

Tabell 3.13 Lastpåføring og forskyvningsmål for IPA

Figur 3.10 Deformert modell markert for oppnådde ytelseskriterier for IPA, ved laststeg 21 og 47

Som vi ser av de deformerte modellene oppstår største delen av deformasjonen på som følge av trykkbrudd av den omsluttede betongen i søylene i tredje etasje. Det betyr at tredje etasje er den etasjen med størst moment per momentkapasitet, som stemmer godt med kapasitetlastvirkning-ratene fra bruddgrensedimensjoneringen av søylene. Ettersom analysen fordeler den påsatte lasten modalt, nås skjærkriteriet først i første etasje. Den maksimale skjærkraften som oppnås er 2 178 kN, altså like over lasten som fører til trykkbrudd i den omsluttede betongen.

Sammenligne den normaliserte etasjeforskyvningen for en bestemt søyleakse ved forskjellige laststeg, for å følge utviklingen til den globale forskyvningen og for å bestemme forskyvningsdifferanseraten mellom tilstøtende etasjer (IDR):

	No	rmaliserte e	tasieforsky	ninger ved	gitt nåsatt l	craft			
Etasje	158 kN	.58 kN 1093 kN 1879 kN 2152 kN 2149 kN 1917 kN							
4	1	1	1	1	1	1			
3	0.6875	0.695833	0.710526	0.702155	0.74359	0.805			
2	0.375	0.377778	0.394079	0.366379	0.291667	0.2175			
1	0.1375	0.145833	0.157895	0.146552	0.114744	0.085			
0	0	0	0	0	0	0			

Tabell 3.14 Normaliserte etasjeforskyvninger ved gitt påsatt last for IPA

Figur 3.11 Normaliserte etasjeforskyvninger ved gitt påsatt last for IPA

		IDR ved gitt påsatt kraft					
Etasje	158 kN	1093 kN	1879 kN	2152 kN	2149 kN	1917 kN	
4-3	0.07 %	0.63 %	1.26 %	1.97 %	2.29 %	2.23 %	
3-2	0.07 %	0.65 %	1.37 %	2.23 %	4.03 %	6.71 %	
2-1	0.05 %	0.48 %	1.03 %	1.46 %	1.58 %	1.51 %	
1-0	0.03 %	0.30 %	0.69 %	0.97 %	1.02 %	0.97 %	
Total drift	0.23 %	2.06 %	4.34 %	6.63 %	8.91 %	11.43 %	
	Tabell 3.15 IDR ved gitt påsatt last for IPA						

Figur 3.12 IDR ved gitt påsatt last for IPA

3.5.3 Statisk Adaptiv Forskyvningsbasert Pushoveranalyse (APA)

For adaptive pushoveranalyser foretrekkes det å benytte påført forskyvning i istedenfor påført kraft, som nevnt i [2.3.1]. Den påsatte referanseforskyvningen settes til 150 mm, og deformasjonsmålet som benyttes er 400 mm. Forskyvningen settes på de fire øverste rammenodene, på samme måte som ved den inadaptive analysen. CQC velges som kombinasjonsregel.

Forholdet mellom skjær ved fundament og forskyvning ved taknivå, $V_g - u_t$ blir som følger:

Figur 3.13 Forskyvning ved taknivå mot skjærkraft ved fundamentnivå for APA

Beregner det lineære, pre-flyt $V_{gn} - u_{tn}$ -forholdet ved verdier fra det 3. laststeget:

$$k_n = \frac{V_g}{u_t} = \frac{302.8kN}{0.0206m} = 14715 \ \frac{kN}{m}$$
(3.21)

Dette stemmer godt med verdiene fra både den modale analysen og den inadaptive pushoveranalysen.

Ytelseskriteriene nås ved laster vist i Tabell 3.15. For å kunne sammenligne med tilsvarende forhold ved den inadaptive analysen, inkluderes også global skjærkraft ved fundament for de aktuelle laststegene:

Beskrivelse av kriteriet	Grense-	Lastfaktor - Påført	Kraft ved
	verdi	last ved oppnåelse	fundament
Flytetøyning til stål	0,0025	0.641 – 96 mm	1189 kN
Trykkbruddtøyning til uomsluttet betong	-0,0035	0.949 – 145 mm	1618 kN
Skjærkraft for individuelle søyler	160 kN	1.139 – 174 mm	1818 kN
Trykkbruddtøyning til omsluttet betong	-0,008	1.695 – 249 mm	2115 kN
Bruddtøyning til stål	0,060	2.500 – 382 mm	2063 kN

Tabell 3.16 Lastpåføring og forskyvningsmål for APA

Figur 3.14 Deformert modell markert for oppnådde ytelseskriterier for APA, ved fundamentkraft lik 1743 kN og 2069 kN, som korresponderer med de påsatte lastene ved Figur 3.10.

Den største skjærkraften som oppnås ved den adaptive analysen er 2 156 kN.

Ved adaptive pushoveranalyser oppdateres som nevnt egenmodene etter hvert som den inelastiske responsen endrer strukturens stivhet. I SeismoStruct er det ikke mulig å hente ut den enkelte modes utvikling. Men, som ved den inadaptive metoden, sammenlignes den normaliserte etasjeforskyvningen for en bestemt søyleakse ved korresponderende laststeg:

	Norma	liserte eta	sjeforskyvn	inger ved gi	tt påsatt fo	rskyvning
Etasje	8 mm	72 mm	152 mm	232 mm	312 mm	400 mm
4	1	1	1	1	1	1
3	0.713	0.721	0.725	0.704	0.768	0.826
2	0.400	0.400	0.403	0.355	0.275	0.205
1	0.150	0.157	0.162	0.141	0.108	0.080
0	0	0	0	0	0	0

Egenperiode 0.969s 1.189s 1.314s 1.490s -

Tabell 3.17 Normaliserte etasjeforskyvninger ved gitt påsatt last for IPA

Figur 3.15 IDR ved gitt påsatt last for APA

-

Ut ifra forskyvningene til den samme søyleaksen, ved de samme laststegene, bestemmes forskyvningsdifferanseraten mellom tilstøtende etasjer (IDR):

		ID	R ved gitt p	åsatt forsky	vning	
Etasje	8 mm	72 mm	152 mm	232 mm	312 mm	400 mm
4-3	0.07 %	0.57 %	1.19 %	1.96 %	2.07 %	1.99 %
3-2	0.07 %	0.66 %	1.40 %	2.32 %	4.39 %	7.09 %
2-1	0.06 %	0.50 %	1.05 %	1.42 %	1.49 %	1.43 %
1-0	0.03 %	0.32 %	0.70 %	0.93 %	0.96 %	0.91 %
Total drift	0.23 %	2.06 %	4.34 %	6.63 %	8.91 %	11.43 %

Tabell 3.18 Normaliserte etasjeforskyvninger ved gitt påsatt last for APA

Figur 3.16 IDR ved gitt påsatt last for APA

Figur 3.17 Kapasitetskurve

3.6 Sammenligning av metoder

3.6.1 Sammenligning av egenmoder ved håndberegning og SeismoStruct

Differansen i modale verdier presenteres i tabell og ved figurer.

Etasje		Differanse i egenmoder				
	4	0	0.0674	-0.1277	-0.21275	
	3	-0.01799	0.0577	0	0.431932	
	2	0.020263	0.0000	0.458001	-0.0731	
	1	-0.04181	-0.0247	-0.21356	-0.4713	

Tabell 3.19 Differanse i egenmoder mellom håndberegning og beregning i SeismoStruct

Figur 3.18 Egenmoder funnet ved SeismoStruct og ved håndberegning etter EC8

Egenmodene fra SeismoStruct stemmer relativt godt overens med de som ble funnet ved forenklet, to-dimensjonal metode for EC8-dimensjoneringen. SeimsoStruct inkluderer

stivhetsbidrag fra ikke-tilstøtende etasjer og tar tre-dimensjonale hensyn, så et visst avvik er å forvente. Svært lave avvik ved de to første, og viktigste modene.

	Diffe	Differanse i IDR mellom Inadaptiv og adaptiv pushover					
Etasje	8 mm	72 mm	152 mm	232 mm	312 mm	400 mm	
4-3	0.01 %	0.05 %	0.06 %	0.01 %	0.21 %	0.23 %	
3-2	0.00 %	-0.01 %	-0.02 %	-0.09 %	-0.36 %	-0.38 %	
2-1	0.00 %	-0.02 %	-0.02 %	0.04 %	0.09 %	0.09 %	
1-0	0.00 %	-0.02 %	-0.02 %	0.04 %	0.06 %	0.06 %	

3.6.2 Sammenligning av IDR ved inadaptiv og adaptiv pushoveranalyse

Tabell 3.20 Differanse mellom IDR funnet ved inadaptiv og adaptiv beregning i SeismoStruct

Som forventet er det ikke særlig forskjell før responsen når det inelastiske området. Men ettersom konstruksjonen er svært regulær både i plan og oppriss er det små differanser mellom responsen for de to analysetypene.

4. Konklusjoner

Det er ingen tvil om at Fibermetoden er den mest nøyaktige metoden for beregning av ikkelineær seismisk respons. Fibermetodens evne til å fordele inelastisitet over tverrsnitt bestående av komponenter med forskjellige materielle egenskaper, gjør den godt egnet til ikke-lineær seismisk dimensjonering av armerte betongkonstruksjoner. Men Fibermetoden er kunnskaps- og kostnadsmessig krevende. Det finnes forenklede dynamiske metoder, som for eksempel baserer seg på lumpet inelastisitet ved flyteledd. Flyteledsmetoden kan benyttes i tilfeller hvor kobling mellom aksial last og bøying ikke er relevant, som det for eksempel ofte kan antas for bjelker.

I de fleste praktiske tilfeller er det derimot mest hensiktsmessig å benytte forenklede, statiske metoder for beregning av seismisk ikke-lineær respons. Ved statiske pushoveranalyser representeres den seimiske lasten ved en påsatt referanseforskyvning eller -kraft, som økes inkrementelt fra null opp til en predefinert grenseverdi. Etterhvert som responsen entrer det inelastiske området, vil stivhetsrelasjonene til strukturen endres. Adaptive pushoveranalyser oppdaterer lastfordelingen underveis i analysen for å ta høyde for denne stivhetsendringen, og er for de fleste praktiske formål det beste kompromisset mellom beregningsmessige kostnader og nøyaktighet for dimensjonering av seismisk ikke-lineær respons.

Den praktiske delen av oppgaven gir et innblikk i fremgangsmåter og resultater av statiske seismiske analyser, selv om det nok vil kreve et mer omfattende analysearbeid for å virkelig kunne sammenligne de forskjellige metodene.

Figurliste

Figur 2.1 Eksempel på anbefalte elastiske responsspektre for grunntype A-E [1]	4
Figur 2.2 Eksempel på kriterium for tilbaketrukne deler over 0.15 H [1]	6
Figur 2.3 Forenklet figur for geometrisk ikke-linearitet	9
Figur 2.4 Eksempel på diskretisering av et armert betongtverrsnitt [4]	11
Figur 2.5 Trilineære materialmodeller for betong [12]	12
Figur 2.6 Eksempler på materialmodeller for stål [12]	12
Figur 2.7 Vilkårlig tverrsnitt	13
Figur 2.8 Interne krefter og elementdeformasjoner ved medlemmsender [6]	14
Figur 2.9 to-komponentmodellen, med tilhørende M-θ-kurve	18
Figur 2.10 Én-komponentmodellen	
Figur 2.11 Total drift – maksimal forskyvning ved fundament	23
Figur 2.12 Forskyvning ved taknivå mot skjærkraft ved fundamentnivå	
Figur 2.13 Oppdatering av pålastet forskyvningsvektor [5]	27
Figur 2.14 Total drift mot skjærkraft ved fundamentnivå, med oppdaterte forskyvningsvektorer	
Figur 3.1 Planfigur av bærestrukturen	
Figur 3.2 DLB-tverrsnitt, mål i mm	31
Figur 3.3 Sirkulært søyletverrsnitt og rektangulært betongtverrsnitt	
Figur 3.4 Normaliserte egenmoder	36
Figur 3.5 3D-figur av SeismoStruct-modellen	
Figur 3.6 Normaliserte egenmoder	41
Figur 3.7 Figurer av egenmoder fra SeismoStruct	42
Figur 3.8 Lastpåføring og forskyvningsmål	43
Figur 3.9 Forskyvning ved taknivå mot skjærkraft ved fundamentnivå for IPA	43
Figur 3.10 Deformert modell markert for oppnådde ytelseskriterier for IPA, ved laststeg 21 og 47	44
Figur 3.11 Normaliserte etasjeforskyvninger ved gitt påsatt last for IPA	45
Figur 3.12 IDR ved gitt påsatt last for IPA	46
Figur 3.13 Forskyvning ved taknivå mot skjærkraft ved fundamentnivå for APA	47
Figur 3.14 Deformert modell markert for oppnådde ytelseskriterier for APA, ved fundamentkraft lik 17	43 kN
og 2069 kN, som korresponderer med de påsatte lastene ved Figur 3.10	
Figur 3.15 IDR ved gitt påsatt last for APA	49
Tabell 3.16 Normaliserte etasjeforskyvninger ved gitt påsatt last for APA	

Figur 3.16 IDR ved gitt påsatt last for APA	
Figur 3.17 Kapasitetskurve	50
Figur 3.18 Egenmoder funnet ved SeismoStruct og ved håndberegning etter EC8	

Tabelliste

Tabell 2.1 Konsekvenser av konstruksjonens regularitet, forenklet	5
Tabell 3.1 Aksiallaster på søyler	31
Tabell 3.2 Medlemstverrsnitt og tilhørende kapasiteter	
Tabell 3.3 Parametere for beskrivelse av responsspekteret for grunntype B [1]	32
Tabell 3.4 Fordelt seismisk kraft	34
Tabell 3.5 Analytisk løsning: Egenfrekvenser og egenperioder	35
Tabell 3.6 Normaliserte egenmoder.	
Tabell 3.7 Effektive modale masser og masseandel	37
Tabell 3.8 Fordelte skjærkrefter til etasjer for hver mode	37
Tabell 3.9 Kombinerte skjærkrefter til etasjer	
Tabell 3.10 Ytelseskriterier.	40
Tabell 3.11 Egenverdier og egenperioder	41
Tabell 3.12 IDR ved gitt påsatt last for IPA	41
Tabell 3.13 Lastpåføring og forskyvningsmål for IPA	44
Tabell 3.14 Normaliserte etasjeforskyvninger ved gitt påsatt last for IPA	45
Tabell 3.15 IDR ved gitt påsatt last for IPA	45
Tabell 3.16 Lastpåføring og forskyvningsmål for APA	48
Tabell 3.17 Normaliserte etasjeforskyvninger ved gitt påsatt last for IPA	49
Tabell 3.18 Normaliserte etasjeforskyvninger ved gitt påsatt last for APA	50
Tabell 3.19 Differanse i egenmoder mellom håndberegning og beregning i SeismoStruct	51
Tabell 3.20 Differanse mellom IDR funnet ved inadaptiv og adaptiv beregning i SeismoStruct	52

Referanseliste

- [1] European Committee for Standarization. (2004). Eurokode 8: Prosjektering av konstruksjoner for seismisk påvirkning. Del 1: Allmenne regler, seismiske laster og regler for bygninger. CEN, Brussel, Belgia.
- [2] Chopra, A. K. (2007). *Dynamics of Structures: Theory and Applications to Earthquake Engineering*, third edition. University of California, Berkeley. Prentice Hall.
- [3] Cook, Malkus, Plesha, Witt. (2002). *Concepts and Applications of Finite Element Analysis*, fourth edition. University of Wisconsin, Madison. John Wiley & Sons Inc.
- [4] Pinho, R. (2007). Nonlinear Dynamic Analysis of Structures Subjected to Seismic Action. In A. Pecker (Ed.), *Advanced Earthquake Engineering Analysis* (pp. 63-89). CISM. Udine, Italy. Springer.
- [5] Pinho, R. (2007). Using Pushover Analysis for Assessment of Buildings and Bridges.
 In A. Pecker (Ed.), *Advanced Earthquake Engineering Analysis* (pp. 92-119). CISM.
 Udine, Italy. Springer.
- [6] Fardis, M. N. (2009). Modelling of Buildings for Nonlinear Analysis. In *Seismic Design, Assesment and Retrofitting of Concrete Buildings* (pp. 379 426). University of Patras, Greece. Springer.
- [7] Telford, T (1996). Frame members in bending with or without axial force. In *RC Frames under Earthquake Loading* (pp. 1-102). CEB report. London, UK. Thomas Telford Publishing.
- [9] Betongelementforeningen. (2006). Betongelementboken, bind A.
- [10] Betongelementforeningen. (2006). Betongelementboken, bind B.
- [11] Betongelementforeningen. (2006). Betongelementboken, bind C.
- [12] SeismoSoft (2013). SeismoStruct User Manual for version 6.5.

Vedlegg

Vedlegg A - KARAKTERISTISKE LASTER

Nyttelast (NS-EN 1991-1-1: Allmene laster)

Brukskategori: Kontorarealer

Karakteristisk verdi og faktorer:

 $q_k = 3.0 \frac{kN}{m^2}$ $\psi_0 = 0.7$ $A_0 = 15 m^2$

Avstand mellom noder:

 $d_x \coloneqq 10 \ \boldsymbol{m}$ $d_y \coloneqq 6 \ \boldsymbol{m}$

Areal per node: (NA.6.1) Arealreduksjonsfaktorer

Hjørne: $A_1 := d_x \cdot d_y \cdot \frac{1}{4} = 15 \ m^2$ $\alpha_{A1} := min\left(\frac{5}{7} \cdot \psi_0 + \frac{A_0}{A_1}, 1\right) = 1$

Side: $A_2 := d_x \cdot d_y \cdot \frac{1}{2} = 30 \ m^2$ $\alpha_{A2} := min\left(\frac{5}{7} \cdot \psi_0 + \frac{A_0}{A_2}, 1\right) = 1$

Senter:
$$A_3 := d_x \cdot d_y = 60 \ m^2$$
 $\alpha_{A3} := min\left(\frac{5}{7} \cdot \psi_0 + \frac{A_0}{A_3}, 1\right) = 0.75$

[NA.6.2] Etasjereduksjonsfaktor,

som virker på nyttelasten fra overliggende etasjer

 $\alpha_3 \coloneqq \frac{2 + (3 - 2) \cdot \psi_0}{3} = 0.9 \qquad \qquad \alpha_4 \coloneqq \frac{2 + (4 - 2) \cdot \psi_0}{4} = 0.85 \qquad \alpha_5 \coloneqq \frac{2 + (5 - 2) \cdot \psi_0}{5} = 0.82$

Snølast (NS-EN 1991-1-3)

Geografisk plassering: Bergen

Karakteristiske verdi, formfaktor og koeffesienter:

$$s_{k} \coloneqq 2.0 \frac{kN}{m^{2}} \qquad \mu \coloneqq 0.8 \qquad C_{e} \coloneqq 1 \qquad C_{t} \coloneqq 1$$

$$(5.1) \qquad s \coloneqq s_{k} \cdot \mu \cdot C_{e} \cdot C_{t} \equiv 1.6 \frac{kN}{m^{2}}$$

Vindlast (NS-EN 1991-1-4)

 $v_{b0} = 26 \frac{m}{s}$ [Tab.NA.4] Referansehastighet [Tab. 4.1] Terrengruhetskategori 3 [Tab. V.1] Overgangssonefaktor $k_3 = 1.0$ (antar, kan vurderes) $q_{p0} \coloneqq 0.92 \; rac{kN}{m^2} \; q_{kast} \coloneqq q_{p0} \cdot k_3 = 0.92 \; rac{kN}{m^2}$ [Tab. veiledning] Grunnverdi for hastighetstrykk Geometri $h \coloneqq h_e \cdot 5 = 17.5 \ m$ $h_e \coloneqq 3.5 \ \mathbf{m}$ $b \coloneqq 30 m$ $e \coloneqq min(b, 2h) = 30 m$ $d \coloneqq 18 \ m$ $\frac{h}{d} = 0.972$ tilnærmet lik 1,0 d < eh < bHøyde bygg $z := h_e \cdot 5 = 17.5 \ m$ <u>Vegger</u> Alle arealer større enn 10 m^2 --> benytter kun c.pe10 [Tab. 7.1] Formfaktorer vegg $c_A \coloneqq -1.2$ $c_B := -0.8$ $c_D := 0.8$ $c_E := -0.5$ Gir følgende vindtrykk $p_A := q_{kast} \cdot c_A = -1.104 \ \frac{kN}{m^2} \ p_B := q_{kast} \cdot c_B = -0.736 \ \frac{kN}{m^2}$ $p_D := q_{kast} \cdot c_D = 0.736 \frac{kN}{m^2}$ $p_E := q_{kast} \cdot c_E = -0.46 \frac{kN}{m^2}$ ε b $\frac{e}{5} = 6 m \qquad d - \frac{e}{5} = 12 m$ *---- Oppriss For beregninger ved bruk av vindtrykk på lo- og Høyde for e ≥ d lesiden, kan man ta hensyn til reduksjon i korrelasjon: [7.2.9(3)] k = 0.85

Created with Mathcad Express. See www.mathcad.com for more information.

Created with Mathcad Express. See www.mathcad.com for more information.

Egenlast

Referanser: NS-EN 1992-1-1, Norelement - leverandør av hulldekker

Hulldekker fuget:	$a_{1} = 3.1$	kN
Thanacater, Taget.	$g_{hk} = 0.1$	\mathbf{m}^2

Egenvekt bjelker og søyler beregnes under "Dimensjonering"

For SeismoStruct fordeles egenlastene fra hulldekkene til oppleggsbjelkene, og for enkelhetens skyld, settes snølasten lik egenlastdekker.

Fksklusiv	nvttela	st - fo	r Figenv	value-a	nalvsig
LINGKIUSIV	i i y cccia	36 10	LIYUII	value a	iurysis

$d \coloneqq 10 \ \mathbf{m}$		I tonne/m:

Nyttelast endebjelker:	$q_c \coloneqq q_{bb} \cdot \frac{d}{d} = 15.5 \frac{kN}{d}$	$\frac{q_e}{1.581}$ tonne
, , , , , , , , , , , , , , , , , , , ,	2 m	g m

Nyttelast senterbjelker: $q_s := g_{hk} \cdot d = 31 \frac{kN}{m}$ $\frac{q_s}{g} = 3.161 \frac{tonne}{m}$

Inklusiv nyttelast - inklusiv lastfaktorer for bruddgrense

_		
d = 10 m		

Nyttelast endebjelker:	$q_e \coloneqq \langle 1.2 \ g_b \rangle$	$_{hk}$ + 1.5 q_k \rangle ·	$\frac{d}{2} = 41.1$	$\frac{kN}{m}$	$\frac{q_e}{g}$ =4.191	tonne m
Nyttelast senterbjelker:	$q_s \coloneqq \langle 1.2 \ g_b \rangle$	$_{hk}$ + 1.5 q_k \rangle ·	d = 82.2	$\frac{kN}{m}$	$\frac{q_s}{g} = 8.382$	tonne m

I tonne/m:

Vediegg B - DIMENSJONERING AV BJELKERSenterbjelkerLastberegning
$$L_b := 6 m$$
 $L_d := 8 m$ $q_k := 3 \frac{kN}{m^2}$ $g_{dDb} := 3.95 \frac{kN}{m^2}$ $g_d := g_{HOk} \cdot 1.2 \cdot L_d = 37.92 \frac{kN}{m}$ $q_d := q_k \cdot 1.5 \cdot L_d = 36 \frac{kN}{m}$ $p_d := g_d + q_d = 73.92 \frac{kN}{m}$ $p_d := g_d + q_d = 73.92 \frac{kN}{m}$ $P_d := p_d \cdot \frac{L_b}{2} = 221.76 \frac{kN}{m}$ $M_{Ed} := V_{Ed} \cdot \frac{L_b}{2} - p_d \cdot \frac{L_b^2}{8} = 332.64 \frac{kN \cdot m}{m}$ BEREGNING AV REKTANGULÆRT TVERSNITT - REN BØYNINGBetong B35: $f_{ck} := 35 MPa$ $f_{cd} := f_{ck} \cdot \frac{0.85}{1.5} = 19.833 MPa$ $\rho := 2500 \frac{kg}{m^3}$ $f_{cm} := 3.2 MPa$ Stål B500NC: $f_{yk} := 500 MPa$ $f_{yd} := \frac{f_{yk}}{1.15} = 434.783 MPa$ $e_{at} := 35 mm$ $q_{tmin} := max (2 \cdot e_h, 37 mm) = 50 mm$ $a_{tmin} := max (2 \cdot e_h, 37 mm) = 50 mm$ $a_{tris} : b := 350 mm$ $b := c_{tris} : a_h := (b - 2 \cdot c - 2 \cdot e_h - 4 \cdot e_h) \cdot \frac{1}{3} = 53.333 mm$ Beregning viser behov for 6 625. Trenger to lag (4+2)Dimensionerer slik at det blir behov for trykkarmering:

$$d < \sqrt{\frac{M_{Ed}}{0.293 \cdot f_{cd} \cdot b}} = 404.41 \ mm \quad --> \ h < 381 \ mm + c + \phi_b + \phi_h + \frac{a_v}{2} = 467 \ mm \\ --> \ h := 450 \ mm \ d := h - c - \phi_b - \phi_h - \frac{a_v}{2} = 364 \ mm$$

Tillegg i last fra egenvekt av bjelke:

$$g_{bd} := 1.2 \cdot b \cdot h \cdot \rho \cdot g = 4.634 \frac{kN}{m}$$
 $p_{db} := g_{bd} + p_d = 78.554 \frac{kN}{m}$

$$V_{Ed} := p_{db} \cdot \frac{L_b}{2} = 235.661 \ \textbf{kN} \qquad M_{Ed} := V_{Ed} \cdot \frac{L_b}{2} - p_{db} \cdot \frac{L_b^2}{8} = 353.491 \ \textbf{kN} \cdot \textbf{m}$$

 $M_{cd} \coloneqq 0.293 \cdot f_{cd} \cdot b \cdot d^2 = 269.485 \ \textit{kN} \cdot \textit{m}$

Satser på ett lag ø20 i OK $\phi_{hOK} = 20 \ mm$

$$d' := c + \phi_b + \frac{\phi_{hOK}}{2} = 55 \ mm$$
 $\frac{d'}{d} = 0.151 < 0,17 -->$ flyt i trykkarmering

 $h' \coloneqq d - d' = 309 \ mm$

 A_{25}

$$A_{s}' := \frac{M_{Ed} - M_{cd}}{h' \cdot f_{yd}} = 625.292 \ \text{mm}^{2} \qquad 2\emptyset 20 \longrightarrow A_{s}' := \frac{2 \cdot \pi \cdot (20 \ \text{mm})^{2}}{4} = 628.319 \ \text{mm}^{2}$$

$$A_{s} \coloneqq \frac{M_{cd}}{0.82 \cdot d \cdot f_{yd}} + A_{s}' = (2.705 \cdot 10^{3}) \ mm^{2} \qquad A_{25} \coloneqq \frac{\pi \cdot (25 \ mm)^{2}}{4} = 490.874 \ mm^{2}$$
$$n_{25} \coloneqq \frac{A_{s}}{4} = 5.51 \qquad -> \text{ trenger } 6\emptyset25 \text{ i UK} \qquad A_{s} \coloneqq 6 \cdot A_{25} = (2.945 \cdot 10^{3}) \ mm^{2}$$

Kontrollerer minimumsarmering (9.1N):

$$A_{smin} \coloneqq \max\left(0.26 \cdot b \cdot d \cdot \frac{f_{ctm}}{f_{yk}}, 0.0013 \cdot b \cdot d\right) = 211.994 \ mm^{2} \qquad \text{OK!}$$

Tverrsnittskapasitet - M.Rd

Tillegg for trykkarmering:	$\Delta M \coloneqq f_{yd} \cdot A_s' \cdot h' = 84.413 \ \mathbf{kN} \cdot \mathbf{m}$
Trykksonehøyde:	$x \coloneqq \frac{f_{yd} \cdot (A_s - A_s')}{0.8 \cdot b \cdot f_{cd}} = 181.397 \ mm$

BEREGNING AV DLB-TVERRSNITT - REN BØYNING $f_{ck} = 35 \ MPa$ $f_{cd} = f_{ck} \cdot \frac{0.85}{1.5} = 19.833 \ MPa$ Betong B35: $\rho \coloneqq 2500 \frac{kg}{m^3} \qquad f_{ctm} \coloneqq 3.2 MPa$ $f_{yk} = 500 \ MPa$ $f_{yd} = \frac{f_{yk}}{1.15} = 434.783 \ MPa$ $E_{sk} = 200000 \ MPa$ Stål B500NC: Tar utgangspunkt i tverrsnittsdata fra [Fig. A 4.33-34] og armering beregnet med rektangulært tverrsnitt, altså 6-Ø25 i UK, men uten behov for trykkarmering: h = 500 mm > 467 mm. $b_0 := 400 \ mm$ $b_u := 700 \ mm$ $t_f := 235 \ mm$ h:=500 mm $\phi_h \coloneqq 25 \ mm$ $\phi_b \coloneqq 10 \ mm$ $c \coloneqq 35 \ mm$ $a_v \coloneqq 32 \ mm$ $a_{hmin} \coloneqq \max \left(2 \cdot \boldsymbol{ø}_h, 37 \ \boldsymbol{mm} \right) = 50 \ \boldsymbol{mm}$ $a_h \coloneqq \langle b_u - 2 \cdot c - 2 \cdot \phi_b - 6 \phi_h \rangle \cdot \frac{1}{5} = 92 mm$ Horisontal avstand mellom lengdearm .: $a_{hs} \coloneqq (b_u - 2 \cdot c - 2 \cdot \phi_b - \phi_h) \cdot \frac{1}{5} = 117 mm$ Horisontal avstand fra senter til senter arm.: -> Armeringen plasseres i ett lag $A_{25} = 490.874 \ mm^2$ $A_s := 6 \cdot A_{25} = (2.945 \cdot 10^3) \ mm^2$ $d := h - c - \phi_b - \frac{\phi_h}{2} = 442.5 \ mm$ $x \coloneqq \frac{f_{yd} \cdot A_s}{0.8 \cdot b_0 \cdot f_{cd}} = 201.766 \ mm$ OK, ligger i overflens Trykksonehøyde: $0.617 \cdot d = 273.023 \text{ mm} > x \rightarrow \text{ikke overarmert, OK}$

 $M_{Rd} \coloneqq 0.8 \cdot b \cdot x \cdot f_{cd} \cdot (d - 0.4 \cdot x) + \Delta M = 377.999 \ \textit{kN} \cdot \textit{m} > M_{Ed} = 353.491 \ \textit{kN} \cdot \textit{m}$

OK!

Momentkapasitet:

$$M_{Rd} := 0.8 \cdot b_0 \cdot x \cdot f_{cd} \cdot (d - 0.4 \ x) = 463.291 \ kN \cdot m$$

 Kontroll likevekt:
 $M_{Rd} := f_{yd} \cdot A_s \cdot (d - 0.4 \ x) = 463.291 \ kN \cdot m$

OK

Tillegg i last fra egenvekt av bjelke:

$$g_{bd} \coloneqq 1.2 \cdot (b_0 \cdot h + (b_u - b_0) \cdot t_f) \cdot \rho \cdot g = 7.958 \frac{kN}{m} \qquad p_{db} \coloneqq g_{bd} + p_d = 81.878 \frac{kN}{m}$$

$$V_{Ed} \coloneqq p_{db} \cdot \frac{L_b}{2} = 245.634 \ \textbf{kN} \qquad M_{Ed} \coloneqq V_{Ed} \cdot \frac{L_b}{2} - p_{db} \cdot \frac{L_b^2}{8} = 368.451 \ \textbf{kN} \cdot \textbf{m}$$

God kapasitet i forhold til dimensjonerende moment i bruddgrense!

Dimensjonering av skjærkapasitet

$$d_a' := d - c - \varphi_b - \varphi_h - \frac{a_v}{2} = 0.357 \ m$$
 $A_c := b \cdot h = (1.75 \cdot 10^5) \ mm^2$

Ø10 bøyler -> $A_{sw} := 2 \cdot \pi \cdot \frac{\phi_b^2}{4} = 157.08 \ mm^2$

$$z\!\coloneqq\!0.9\boldsymbol{\cdot} d\!=\!398.25 \ \textit{mm} \qquad b_w\!\coloneqq\!d \qquad f_{ywd}\!\coloneqq\!f_{yd} \qquad \qquad \text{Velger} \quad \theta\!\coloneqq\!45 \ \textit{deg}$$

Maks bøyleavstand, (9.5N)(9.6N):

$$\begin{split} f_{ck} \coloneqq & \frac{f_{ck}}{MPa} \qquad f_{yk} \coloneqq \frac{f_{yk}}{MPa} \qquad s_{maks} \coloneqq min \left(\frac{A_{sw}}{b_w \cdot 0.1 \cdot \frac{\sqrt{f_{ck}}}{f_{yk}}}, 0.6 \cdot d_a' \right) = 213.9 \ mm \\ \end{split}$$

Kontrollerer kapasitet av trykkdiagonal:

[6.2.3(3)]
$$v_1 \coloneqq 0.6 \cdot \left(1 - \frac{f_{ck}}{250}\right) = 0.516$$

(6.11.cN) $\alpha_{cw} \coloneqq 2.5$

Skjærkapasitet søyler:

(6.8)
$$V_{Rds} \coloneqq \frac{A_{sw}}{s} \cdot f_{ywd} \cdot z \cdot \cot(\theta) = 247.261 \ kN$$

(6.9)
$$V_{Rdsmax} \coloneqq \alpha_{cw} \cdot b \cdot z \cdot v_1 \cdot \frac{f_{cd}}{\cot(\theta) + \tan(\theta)} = (1.783 \cdot 10^3) \ kN \qquad \text{OK}$$

Endebjelker

Lastberegning

$$L_b := 6 m$$
 $L_d := 4 m$
 $g_d := g_{HDk} \cdot 1.2 \cdot L_d = 18.96 \frac{kN}{m}$
 $q_d := q_k \cdot 1.5 \cdot L_d = 18 \frac{kN}{m}$
 $p_d := g_d + q_d = 36.96 \frac{kN}{m}$

$$V_{Ed} \coloneqq p_d \cdot \frac{L_b}{2} = 110.88 \ \textbf{kN} \qquad M_{Ed} \coloneqq V_{Ed} \cdot \frac{L_b}{2} - p_d \cdot \frac{{L_b}^2}{8} = 166.32 \ \textbf{kN} \cdot \textbf{m}$$

BEREGNING AV REKTANGULÆRT TVERRSNITT - REN BØYNING

Betong B35:
$$f_{ck} := 35 \ MPa$$
 $f_{cd} := f_{ck} \cdot \frac{0.85}{1.5} = 19.833 \ MPa$

$$\rho \coloneqq 2500 \frac{kg}{m^3} \qquad f_{ctm} \coloneqq 3.2 MPa$$

Stål B500NC: $f_{yk} = 500 \ MPa$ $f_{yd} = \frac{f_{yk}}{1.15} = 434.783 \ MPa$ $E_{sk} = 200000 \ MPa$

Antar:	b≔250 mm	ø _h :=20 mm	$\phi_b \coloneqq 10 \ mm$	c≔35 mm
	$a_{hmin} \coloneqq \max\left(2 \cdot \phi_h\right)$,37 mm)=40 mm	$a_v \coloneqq 32 mm$	
Bereaning viser	behov for 5ø20. Tre	nger to lag (3+2)		

Created with Mathcad Express. See www.mathcad.com for more information.

Horisontal avstand mellom lengdearm.: $a_{h} \coloneqq \langle b - 2 \cdot c - 2 \cdot \emptyset_{b} - 3 \cdot \emptyset_{h} \rangle \cdot \frac{1}{2} = 50 \ mm$ Horisontal avstand fra senter til senter lag 1: $a_{h} \coloneqq \langle b - 2 \cdot c - 2 \cdot \emptyset_{b} - \emptyset_{h} \rangle \cdot \frac{1}{2} = 70 \ mm$

Dimensjonerer slik at det blir behov for trykkarmering:

$$d < \sqrt{\frac{M_{Ed}}{0.293 \cdot f_{cd} \cdot b}} = 338.353 \ \textit{mm} \ \textit{-->} \ h < 381 \ \textit{mm} + c + \textit{ø}_b + \textit{ø}_h + \frac{a_v}{2} = 462 \ \textit{mm}$$
$$--> \ h := 400 \ \textit{mm} \ d := h - c - \textit{ø}_b - \textit{ø}_h - \frac{a_v}{2} = 319 \ \textit{mm}$$

Avstand fra senter tv.snitt til senter lag 1: $d_1 = \frac{h}{2} - c - \phi_b - \frac{\phi_h}{2} = 145 \text{ mm}$

Avstand fra senter tv.snitt til senter lag 2:
$$d_2 := \frac{h}{2} - c - \phi_b - \frac{3 \phi_h}{2} - a_v = 93 \text{ mm}$$

Avstand fra senter tv.snitt til arm. OK:
$$d_3 := \frac{h}{2} - c - \emptyset_b - \frac{\emptyset_b}{2} = 150 \text{ mm}$$

Tillegg i last fra egenvekt av bjelke:

$$g_{bd} \coloneqq 1.2 \cdot b \cdot h \cdot \rho \cdot g = 2.942 \frac{kN}{m} \qquad p_{db} \coloneqq g_{bd} + p_d = 39.902 \frac{kN}{m}$$
$$V_{Ed} \coloneqq p_{db} \cdot \frac{L_b}{2} = 119.706 \ kN \qquad M_{Ed} \coloneqq V_{Ed} \cdot \frac{L_b}{2} - p_{db} \cdot \frac{L_b^2}{8} = 179.559 \ kN \cdot m$$

$$M_{cd} \coloneqq 0.293 \cdot f_{cd} \cdot b \cdot d^2 = 147.838 \ kN \cdot m$$

Satser på ett lag ø10 i OK $\phi_{hOK} = 10 \text{ mm}$

$$d' := c + \phi_b + \frac{\phi_{hOK}}{2} = 50 \ mm$$
 $\frac{d'}{d} = 0.157 < 0,17 -->$ flyt i trykkarmering $h' := d - d' = 269 \ mm$

Created with Mathcad Express. See www.mathcad.com for more information.

$$\begin{split} A_{s}' &= \frac{M_{Ed} - M_{cd}}{h^{*} f_{yd}} = 271.224 \ mm^{2} \\ 2010 \rightarrow A_{s}' &= \frac{2 \cdot \pi \cdot \theta_{hOK}}{4} = 157.08 \ mm^{2} \\ A_{s} &= \frac{M_{cd}}{0.82 \cdot d \cdot f_{yd}} + A_{s}' = (1.457 \cdot 10^{3}) \ mm^{2} \\ A_{20} &= \frac{\pi \cdot (20 \ mn)^{2}}{4} = 314.159 \ mm^{2} \\ n_{20} &= \frac{A_{s}}{A_{20}} = 4.638 \ \rightarrow \text{trenger } 5920 \ \text{i} \ \text{UK} \\ A_{s} &= 5 \cdot A_{20} = (1.571 \cdot 10^{3}) \ mm^{2} \\ \text{Kontrollerer minimumsarmering } (9.1\text{N}): \\ A_{smin} &:= \max \left(0.26 \cdot b \cdot d \cdot \frac{f_{ctm}}{f_{yk}}, 0.0013 \cdot b \cdot d \right) = 132.704 \ mm^{2} \\ \text{Kontrollerer minimumsarmering } \\ M_{rersnittskapasitet} - M.Rd \\ \text{Tillegg for trykkarmering:} \ \Delta M &:= f_{yd} \cdot A_{s}' \cdot h' = 18.371 \ kN \cdot m \\ \text{Trykksonehøyde:} \\ M_{Rd} &:= 0.8 \cdot b \cdot x \cdot f_{cd} \cdot (d - 0.4 \cdot x) + \Delta M = 209.087 \ kN \cdot m \\ > M_{Ed} &= 179.559 \ kN \cdot m \\ \text{OK!} \\ \text{Dimensjonering av skjærkapasitet (forenklet)} \\ A_{c} &:= b \cdot h = (1 \cdot 10^{5}) \ mm^{2} \\ \text{Ø10 bøyler } \sim A_{sw} &:= 2 \cdot \pi \cdot \frac{\theta_{b}^{2}}{4} = 157.08 \ mm^{2} \\ z &:= 0.9 \cdot d = 287.1 \ mm \qquad b_{w} &:= d \qquad f_{ymd} := f_{yd} \\ \text{Velger} \qquad \theta := 45 \ deg \\ \text{Mass bøyleavstand, } (9.5N)(9.6N): \\ f_{ck} &:= \frac{f_{ck}}{MPa} \qquad f_{yk} := \frac{f_{yk}}{MPa} \qquad \text{Synaks} := \min \left(\frac{A_{wv}}{b_{w} \cdot 0.1 \cdot \sqrt{f_{ck}}}, 0.6 \cdot h' \right) = 161.4 \ mm \\ \text{Velger} \qquad s := 150 \ mm \\ \end{array}$$

Kontrollerer kapasitet av trykkdiagonal:

Created with Mathcad Express. See www.mathcad.com for more information.
Vedlegg C - DIMENSJONERING SØYLER

Ref.: NS-EN 1992-1-1

Dimensjonerende laster

 $h \coloneqq 14 \ m$ $b_k \coloneqq 18 \ m$ $b_l \coloneqq 30 \ m$ $l_b \coloneqq 6 \ m$ Antall søyler pr ramme: $n \coloneqq 4$

Dimensjonerende vindtrykk: $F_H = 1.155 \frac{kN}{m^2}$

Last på ende- og senterbjelker: $q_{deb} \coloneqq 40 \ \frac{kN}{m}$ $q_{dsb} \coloneqq 82 \ \frac{kN}{m}$

Tiileggslast pr etasje:

Hjørne: $N_{hEd} \coloneqq q_{deb} \cdot \frac{l_b}{2} = 120 \ kN$

Side: $N_{s1Ed} := q_{deb} \cdot l_b = 240 \ kN$ $N_{s2Ed} := q_{dsb} \cdot \frac{l_b}{2} = 246 \ kN$

Senter: $N_{sEd} \coloneqq q_{dsb} \cdot l_b = 492 \ kN$

Avstand mellom noder:

 $d_x = 10 \ m$ $d_y = 6 \ m$ $\psi_0 = 0.7 \ A_0 = 15 \ m^2$

Areal per node: (NA.6.1) Arealreduksjonsfaktorer

Hjørne:
$$A_1 := d_x \cdot d_y \cdot \frac{1}{4} = 15 \ m^2$$
 $\alpha_{A1} := min\left(\frac{5}{7} \cdot \psi_0 + \frac{A_0}{A_1}, 1\right) = 1$

Side:
$$A_2 := d_x \cdot d_y \cdot \frac{1}{2} = 30 \ m^2$$
 $\alpha_{A2} := min\left(\frac{5}{7} \cdot \psi_0 + \frac{A_0}{A_2}, 1\right) = 1$

Senter:
$$A_3 := d_x \cdot d_y = 60 \ m^2$$
 $\alpha_{A3} := min\left(\frac{5}{7} \cdot \psi_0 + \frac{A_0}{A_3}, 1\right) = 0.75$

[NA.6.2] Etasjereduksjonsfaktor, som virker på nyttelasten fra overliggende etasjer

 $\alpha_2 \coloneqq \frac{2 + (3 - 2) \cdot \psi_0}{2} = 0.9 \qquad \alpha_4 \coloneqq \frac{2 + (4 - 2) \cdot \psi_0}{2} = 0.85$

3	4
Globale laster, ser på vindlast som punkt,	/linjelast på taknivå
$H_{kEd} \! \coloneqq \! F_H \! \cdot \! 1.5 \! \cdot \! h \! \cdot \! b_k \! = \! 436.59 \ \mathbf{kN}$	$H_{lEd} \! \coloneqq \! F_H \! \cdot \! 1.5 \! \cdot \! h \! \cdot \! b_l \! = \! 727.65 \ \textbf{kN}$
$V_{kEd} \coloneqq H_{kEd} = 436.59 \ \mathbf{kN}$	$V_{lEd} := H_{lEd} = 727.65 \ kN$
$M_{kEd} \coloneqq H_{kEd} \cdot h = (6.112 \cdot 10^3) \ kN \cdot m$	$M_{lEd} := H_{lEd} \cdot h = (1.019 \cdot 10^4) \ kN \cdot m$
Laster pr søyle ved fundamentnivå	
Kortside, enderammer	
$V_{Ed} := F_H \cdot 1.5 \cdot h \cdot \frac{b_k}{6} \cdot \frac{1}{n} = 18.191 \ kN$	$M_{Ed} \coloneqq V_{Ed} \boldsymbol{\cdot} h \!=\! 254.678 \boldsymbol{kN} \boldsymbol{\cdot} \boldsymbol{m}$
Kortside, senterrammer	
$V_{Ed} := F_H \cdot 1.5 \cdot h \cdot \frac{b_k}{3} \cdot \frac{1}{n} = 36.383 \ kN$	$M_{Ed} \coloneqq V_{Ed} \cdot h = 509.355 \ \mathbf{kN} \cdot \mathbf{m}$
Langside, enderammer	
$V_{Ed} \coloneqq F_H \cdot 1.5 \cdot h \cdot \frac{b_l}{6} \cdot \frac{1}{n} = 30.319 \ kN$	$M_{Ed} \coloneqq V_{Ed} \cdot h = 424.463 \ \textbf{kN} \cdot \textbf{m}$
Langside, senterrammer	
$V_{Ed} := F_H \cdot 1.5 \cdot h \cdot \frac{b_l}{3} \cdot \frac{1}{n} = 60.638 \ kN$	$M_{Ed} \coloneqq V_{Ed} \cdot h = 848.925 \ kN \cdot m$
Laster pr søyle ved etasjeskille mellom 2.	og 3. etg
Kortside, enderammer	
$V_{Ed} \coloneqq F_H \cdot 1.5 \cdot \frac{h}{2} \cdot \frac{b_k}{6} \cdot \frac{1}{n} = 9.096 \ kN$	$M_{Ed} \coloneqq V_{Ed} \boldsymbol{\cdot} h = 127.339 \ \boldsymbol{kN} \boldsymbol{\cdot} \boldsymbol{m}$
Kortside, senterrammer	
$V_{Ed} \coloneqq F_H \cdot 1.5 \cdot \frac{h}{2} \cdot \frac{b_k}{3} \cdot \frac{1}{n} = 18.191 \ kN$	$M_{Ed} \coloneqq V_{Ed} \boldsymbol{\cdot} h \!=\! 254.678 \boldsymbol{kN} \boldsymbol{\cdot} \boldsymbol{m}$
Langside, enderammer	
$V_{Ed} \coloneqq F_H \cdot 1.5 \cdot \frac{h}{2} \cdot \frac{b_l}{6} \cdot \frac{1}{n} = 15.159 \ kN$	$M_{Ed} \coloneqq V_{Ed} \cdot h = 212.231 \ \mathbf{kN} \cdot \mathbf{m}$
Langside, senterrammer	
$V_{Ed} := F_H \cdot 1.5 \cdot \frac{h}{2} \cdot \frac{b_l}{3} \cdot \frac{1}{n} = 30.319 \ kN$	$M_{Ed} \coloneqq V_{Ed} \cdot h = 424.463 \ \textbf{kN} \cdot \textbf{m}$

Materialegenskaper

Betong B35:

$$f_{ck} = 35 \ MPa$$
 $f_{cd} = f_{ck} \cdot \frac{0.85}{1.5} = 19.833 \ MPa$ $\rho = 2500 \ \frac{kg}{m^3}$ $f_{ctm} = 3.2 \ MPa$

XC3, 50 år -> $c_{mindur} = 25 \ mm$ $E_{cm} = 34000 \ MPa$

t.0 = 25 døgn, innendørs forhold - RH = 0,5, sementtype R

Stål B500NC: $f_{yk} = 500 \ MPa$ $f_{yd} = \frac{f_{yk}}{1.15} = 434.783 \ MPa$ $E_{sk} = 200000 \ MPa$

SENTER, FUNDAMENTNIVÅ, Ø400

Dimensjonering av kombinert trykk og moment

$$\begin{split} M_{Ed} &:= 100 \ k\text{N} \cdot m \qquad N_{Ed} := 1600 \ k\text{N} \\ \text{Tabellverdi for armeing - 8Ø25:} \qquad A_s := 8 \cdot \pi \cdot \frac{(25 \ mm)^2}{4} = (3.927 \cdot 10^3) \ mm^2 \\ d := 400 \ mm \qquad A_c := \pi \cdot \frac{d^2}{4} = (1.257 \cdot 10^5) \ mm^2 \qquad u := \pi \cdot d = (1.257 \cdot 10^3) \ mm \\ h_0 := \frac{2 \cdot A_c}{u} = 200 \ mm \qquad [Fig. 3.1] \ \text{grovt avlest ->} \qquad \varphi := 2.5 \\ [6.1(4)] \qquad e_{min} := \max\left(20 \ mm, \frac{d}{(30)}\right) = 20 \ mm \\ \text{Opptredende:} \qquad e_o := \frac{M_{Ed}}{N_{Ed}} = 62.5 \ mm \qquad \text{OK} \\ [\text{NA 9.5.2]} \qquad A_{smin} := \max\left(\min\left(0.2 \cdot A_c \cdot \frac{f_{cd}}{f_{yd}}, 0.5 \cdot \frac{N_{Ed}}{f_{yd}}\right), 0.01 \ A_c\right) = (1.257 \cdot 10^3) \ mm^2 \\ A_s = (3.927 \cdot 10^3) \ mm^2 \qquad > \ A_{smin} \qquad \text{OK} \\ \text{Leddet ved etasjeskiller -> knekklenode} \qquad l_o := 3.5 \ m \end{aligned}$$

$$\begin{bmatrix} [NA 5.3.8.1] & n := \frac{N_{Ed}}{f_{cd} \cdot A_c} = 0.642 & w := \frac{A_* \cdot f_{yd}}{f_{cd} \cdot A_c} = 0.685 \\ \vdots_c := \frac{d}{4} = 100 \ mm & \lambda := \frac{l_0}{i_c} = 35 & \text{Setter} \quad k_a := 1 \\ \end{bmatrix}$$
Normalisert stivhet: $\lambda_n := \lambda \cdot \sqrt{\frac{n}{1+2} k_a \cdot w} = 18.215 \\ \end{bmatrix}$

$$\begin{bmatrix} \text{Effektivt kryptall, beregnes ut i fra anbefalt verdi for A=0,7 ->} & \varphi_{cf} := \frac{0.7}{0.2} = 2.143 \\ A_p := min \left(\frac{1.25}{1+0.2 \cdot \varphi_{cf}}, 1\right) = 0.875 \\ \lambda_{albm} := 13 \cdot A_{\varphi} = 11.375 & < \lambda_n = 18.215 & -> \text{ Slank søyle} \\ \end{bmatrix}$$

$$\begin{bmatrix} \text{Geometrisk avvik:} & e_i := \frac{l_0}{400} = 8.75 \ mm \\ \end{bmatrix}$$

$$\begin{bmatrix} \text{Dimensjonerer 2. ordens moment - M.2 - (5.33) \\ \varepsilon_{yd} := 0.217\% \qquad n = 0.642 \qquad n_u := 1 + w \qquad n_{bd} := 0.4 \\ \beta := 0.35 + \frac{f_{ck}}{200 \ MPa} - \frac{\lambda}{150} = 0.292 \\ \end{bmatrix}$$

$$\begin{bmatrix} \text{De sirkulære søyletverrsnittene består av 80/25 lengdearmering som parvis tar opp strekk fra moment som følge av horisontalkrefter i positiv og negativ x - og -retning. Finner følgelig avstand d.a til senter av strekkarmering: \\ \alpha := \frac{360 \ deg}{8 \cdot 2} = 0.393 \qquad d = 400 \ mm \qquad \theta_h := 25 \ mm \qquad \theta_h := 10 \ mm \qquad c := 35 \ mm \qquad d_n := \frac{4}{2} + \cos(\alpha) \cdot \left(\frac{d}{2} - c - \theta_h - \frac{\theta_h}{2}\right) = 331.653 \ mm \qquad d_n := \frac{d}{2} + \cos(\alpha) \cdot \left(\frac{d}{2} - c - \theta_h - \frac{\theta_h}{2}\right) = 331.653 \ mm \qquad d_n := \frac{d}{2} + \cos(\alpha) \cdot \left(\frac{d}{2} - c - \theta_h - \frac{\theta_h}{2}\right) = 331.653 \ mm \qquad d_n := \frac{d}{2} + \cos(\alpha) \cdot \left(\frac{d}{2} - c - \theta_h - \frac{\theta_h}{2}\right) = 331.653 \ mm \qquad d_n := \frac{d}{2} + \cos(\alpha) \cdot \left(\frac{d}{2} - c - \theta_h - \frac{\theta_h}{2}\right) = 331.653 \ mm \qquad d_n := \frac{d}{2} + \cos(\alpha) \cdot \left(\frac{d}{2} - c - \theta_h - \frac{\theta_h}{2}\right) = 331.653 \ mm \qquad d_n := \frac{d}{2} + \cos(\alpha) \cdot \left(\frac{d}{2} - c - \theta_h - \frac{\theta_h}{2}\right) = 331.653 \ mm \qquad d_n := \frac{d}{2} + \cos(\alpha) \cdot \left(\frac{d}{2} - c - \theta_h - \frac{\theta_h}{2}\right) = 331.653 \ mm \qquad d_n := \frac{d}{2} + \cos(\alpha) \cdot \left(\frac{d}{2} - c - \theta_h - \frac{\theta_h}{2}\right) = 331.653 \ mm \qquad d_n := \frac{d}{2} + \cos(\alpha) \cdot \left(\frac{d}{2} - c - \theta_h - \frac{\theta_h}{2}\right) = 331.653 \ mm \qquad d_n := \frac{d}{2} + \cos(\alpha) \cdot \left(\frac{d}{2} - c - \theta_h - \frac{\theta_h}{2}\right) = 331.653 \ mm \qquad d_n := \frac{d}{2} + \cos(\alpha) \cdot \left(\frac{d}{2} - c - \theta_h - \frac{\theta_h}{2}\right) = 331.653 \ mm \qquad d_n := \frac{d}{2} + \cos(\alpha) \cdot \left(\frac{d}{2} - c - \theta_h - \frac{\theta_h}{2}\right) = 331.653 \ mm \qquad d_n := \frac{d}{2} + \cos(\alpha)$$

$$K_{r} := \min\left(\frac{n_{u} - n}{n_{u} - n_{bd}}, 1\right) = 0.812 \qquad K_{\varphi} := 1 + \beta \cdot \varphi_{ef} = 1.625$$

$$r_{0} := \frac{0.45 \cdot d}{\varepsilon_{yd}} = \left(8.295 \cdot 10^{4}\right) mm \qquad r := r_{0} \cdot \frac{1}{K_{r}} \cdot \frac{1}{K_{\varphi}} = \left(6.289 \cdot 10^{4}\right) mm$$

1 ...

$$e_2 := \frac{l_0^2}{10} \cdot \frac{1}{r} = 19.479 \ mm$$
 $M_2 := N_{Ed} \cdot e_2 = 31.167 \ kN \cdot m$

Beregning av armeringsmengde:

$$d_{a}' = 2 \cdot \cos(\alpha) \cdot \left(\frac{d}{2} - c - \emptyset_{b} - \frac{\emptyset_{h}}{2}\right) = 263.306 \ mm \qquad \qquad \frac{d_{a}'}{d} = 0.658$$

Finner maksimalt moment for å kunne benytte mn-diagram:

$$n = 0.642 \qquad m_m \coloneqq 0.21 \qquad M_{Rd} \coloneqq m_m \cdot f_{cd} \cdot A_c \cdot d = 209.356 \ \textit{kN} \cdot \textit{m} \quad \text{->} \quad w \coloneqq 0.5$$

Nødvendig armering for strekk ved M.Ed = M.Rd

$$A_{s} \coloneqq w \cdot \frac{f_{cd} \cdot A_{c}}{f_{ud}} = (2.866 \cdot 10^{3}) \ mm^{2}$$

2ø25 gir $A_{2025} = 2 \cdot \pi \frac{(25 mm)^2}{4} = 981.748 mm^2$ Ikke OK

-> Finner w og følgelig momentkapasitet ved gitt armeringsmengde og aksialtrykk

$$w\!\coloneqq\!A_{2\emptyset 25}\!\cdot\!\frac{f_{yd}}{f_{cd}\!\cdot\!A_c}\!=\!0.171$$

Grovt avlest: $m_m \coloneqq 0.13$ -> $M_{Rd} \coloneqq m_m \cdot f_{cd} \cdot A_c \cdot d = 129.601 \ kN \cdot m$

Skal inkludere 2. ordens moment: $M_{Rd} := M_{Rd} - M_2 = 98.434 \ kN \cdot m$

Dimensjonering av skjærkapasitet

Ø10 bøyler ->
$$A_{sw} := 2 \cdot \pi \cdot \frac{\phi_b^2}{4} = 157.08 \ mm^2$$

 $z \coloneqq 0.9 \cdot d = 360 \ mm$ $b_w \coloneqq d$ $f_{ywd} \coloneqq f_{yd}$ Velger $\theta \coloneqq 45 \ deg$

Maks bøyleavstand, (9.5N)(9.6N):

$f_{ck} \coloneqq \frac{f_{ck}}{MPa}$	$f_{yk} \coloneqq \frac{f_{yk}}{MPa}$	$s_{maks} = min \left(\frac{A_{sw}}{\sqrt{c}}, 0.6 \cdot d_a' \right) = 157.983 \ mm$
		$b_w \cdot 0.1 \cdot \frac{\nabla J_{ck}}{f_{ck}}$
Velaer	$s := 150 \ mm$	\sqrt{Jyk}

Kontrollerer kapasitet av trykkdiagonal:

$$[6.2.3(3)] v_1 := 0.6 \cdot \left(1 - \frac{f_{ck}}{250}\right) = 0.516$$

Forenklet midlere trykkspenning: $\sigma_{cp} \coloneqq \frac{N_{Ed}}{A_c} = 12.732 \ MPa \qquad \frac{\sigma_{cp}}{f_{cd}} = 0.642$

(6.11.cN)
$$\alpha_{cw} \coloneqq 2.5 \cdot \left(1 - \frac{\sigma_{cp}}{f_{cd}}\right) = 0.895$$

Skjærkapasitet søyler:

(6.8)
$$V_{Rds} \coloneqq \frac{A_{sw}}{s} \cdot f_{ywd} \cdot z \cdot \cot(\theta) = 163.909 \ kN$$

(6.9)
$$V_{Rdsmax} \coloneqq \alpha_{cw} \cdot b_w \cdot z \cdot v_1 \cdot \frac{f_{cd}}{\cot(\theta) + \tan(\theta)} = 659.535 \ kN \qquad \text{OK}$$

Dimensjonerer skjærkraft globalt ved å la all vindlast angripe som linjelast ved taknivå og etasjeskiller mellom 2. og 3. etasje, slik at skjærkraften har to konstante intervaller, h.1{0m,7m} og h.2{7m,14m}.

Global skjærkapasitet

Dimensjonerende globale vindlaster:	$H_{yEd} \coloneqq 437 \ \mathbf{kN}$	H_{xEd} :=728 kN
Kapasitet av vertikale veggskiver:	$V_{yRdv} \coloneqq 179 \ \mathbf{kN}$	V_{xRdv} := 247 kN
Antall aktive søyler og veggskiver:	$n_s \coloneqq 16$ $n_v \coloneqq 2$	

Ettersom jordskjelvslaster kan virke ortogonalt, i både x- og y-retning, fordeles søylenes skjærkapasitet likt mellom retningene.

Global skjærkapasitet i y-retning:	$V_{yRdg} := V_{Rds} \cdot \frac{n_s}{2} + V_{yRdv} \cdot n_v = (1.669 \cdot 10^3) \ kN$
Global skjærkapasitet i x-retning:	$V_{xRdg} \coloneqq V_{Rds} \cdot \frac{n_s}{2} + V_{xRdv} \cdot n_v = (1.805 \cdot 10^3) \ kN$

SENTER, 3.-4. etasje, Ø250

Dimensjonering av kombinert trykk og moment

 $M_{Ed} \coloneqq 100 \ kN \cdot m$ $N_{Ed} \coloneqq 800 \ kN$ $d \coloneqq 300 \ mm$

Tabellverdi for armeing - 6Ø25: $A_s = 6 \cdot \pi \cdot \frac{(25 \ mm)^2}{4} = (2.945 \cdot 10^3) \ mm^2$

Geometrisk fordel med 8 jern: $\phi_h \coloneqq \sqrt{\frac{4 \cdot A_s}{8 \pi}} = 21.651 \ mm$

->
$$\phi_h := 22 \ mm$$
 $A_s := 8 \cdot \pi \cdot \frac{\phi_h}{4} = (3.041 \cdot 10^3) \ mm^2$

Kontrollerer avstand:

 $a_{hmin} \coloneqq \max \left(2 \cdot \mathscr{O}_h, 37 \ mm\right) = 44 \ mm$ $a_v \coloneqq 32 \ mm$ $c \coloneqq 25 \ mm$

$$\alpha \coloneqq \frac{360 \text{ deg}}{8} = 45 \text{ deg}$$

Avstand fra senter tv.snitt til senter lengdearmering: $r' := \frac{d}{2} - c - \phi_b - \frac{\phi_h}{2} = 104 \text{ mm}$ $a_h := \frac{r'}{\sin\left(\frac{180 \text{ deg} - \alpha}{2}\right)} \cdot \sin(\alpha) = 79.598 \text{ mm}$ OK $A_c := \pi \cdot \frac{d^2}{4} = (7.069 \cdot 10^4) \text{ mm}^2$ $u := \pi \cdot d = 942.478 \text{ mm}$

 $h_0 \coloneqq \frac{2 \cdot A_c}{u} = 150 \text{ mm} \qquad [Fig. 3.1] \text{ grovt avlest } \rightarrow \varphi \coloneqq 2.5$

[6.1(4)]
$$e_{min} \coloneqq \max\left(20 \ mm, \frac{d}{(30)}\right) = 20 \ mm$$

 $\label{eq:opt} \text{Opptredende:} \quad e_o\!\coloneqq\!\frac{M_{Ed}}{N_{Ed}}\!=\!125 \,\,\textit{mm} \qquad \qquad \text{OK}$

[NA 9.5.2]	$A_{smin} \coloneqq \max \left(min \left(0.2 \cdot A \right) \right)$	$\Lambda_c \cdot rac{f_{cd}}{f_{yd}}, 0.5 \cdot rac{N_{Ed}}{f_{yd}})$	$(,0.01 A_c) = 706.858 mm^2$
			$0.01 A_c = 706.858 mm^2$
	$A_{2} = (3.041 \cdot 10^{3}) mm^{2}$	> A _{mmin}	ОК

Leddet ved etasjeskiller -> knekklengde
$$l_0 = 3.5 \text{ m}$$

[NA 5.3.8.1] $n = \frac{N_{Ed}}{f_{cd} \cdot A_c} = 0.571$ $w = \frac{A_* \cdot f_{wd}}{f_{cd} \cdot A_c} = 0.943$
 $i_c = \frac{d}{4} = 75 \text{ mm}$ $\lambda = \frac{l_0}{i_c} = 46.667$ Setter $k_a = 1$
Normalisert stivhet: $\lambda_a = \lambda \cdot \sqrt{\frac{n}{1+2 k_a \cdot w}} = 20.75$
Effektivt kryptall, beregnes ut i fra anbefalt verdi for A=0,7 -> $\varphi_{cf} = \frac{\frac{1}{0,7} - 1}{0.2} = 2.143$
 $A_{\varphi} = min \left(\frac{1.25}{1+0.2 \cdot \varphi_{cf}}, 1\right) = 0.875$
 $\lambda_{atim} = 13 \cdot A_{\varphi} = 11.375 < \lambda_a = 20.75 ->$ Slank søyle
Geometrisk avvik: $e_i = \frac{l_0}{400} = 8.75 \text{ mm}$
Dimensjonerer 2. ordens moment - M.2 - (5.33)
 $e_{yd} = 0.217\%$ $n = 0.571$ $n_a = 1 + w$ $n_{bd} = 0.4$
 $\beta = 0.35 + \frac{f_{ch}}{200} - \frac{\lambda}{150} = 0.214$
De sirkulære søyletverrsnittene består av 8/222 lengdearmering som parvis tar opp strekk
fra moment som følge av horisontalkrefter i positiv og negativ x- og -retning. Finner
følgelig avstand d.a til senter av strekkarmering:
 $\alpha = \frac{360 \ deg}{8 \cdot 2} = 0.393$ $d = 300 \ mm$ $\phi_b = 22 \ mm$ $\phi_b = 10 \ mm$ $c = 25 \ mm$
 $d_a = \frac{4}{2} + \cos(\alpha) \cdot \left(\frac{d}{2} - c - \phi_b - \frac{\phi_h}{2}\right) = 246.083 \ mm$

 $K_{-} := \min\left(\frac{n_{u} - n}{1 - 1}, 1\right) = 0.889 \qquad K_{-} := 1 + \beta \cdot \varphi_{-} = 1.458$

$$r_{0} \coloneqq \frac{0.45 \cdot d}{\varepsilon_{yd}} = (6.221 \cdot 10^{4}) \ mm \qquad r \coloneqq r_{0} \cdot \frac{1}{K_{r}} \cdot \frac{1}{K_{\varphi}} = (4.796 \cdot 10^{4}) \ mm \qquad e_{2} \coloneqq \frac{l_{0}^{2}}{10} \cdot \frac{1}{r} = 25.54 \ mm \qquad M_{2} \coloneqq N_{Ed} \cdot e_{2} = 20.432 \ kN \cdot m$$

Beregning av armeringsmengde:

$$d_{a}' = 2 \cdot \cos(\alpha) \cdot \left(\frac{d}{2} - c - \phi_{b} - \frac{\phi_{h}}{2}\right) = 192.167 \ mm \qquad \frac{d_{a}'}{d} = 0.641$$

Finner maksimalt moment for å kunne benytte mn-diagram:

$$n = 0.571 \qquad m \coloneqq 0.2 \qquad M_{Rd} \coloneqq m \cdot f_{cd} \cdot A_c \cdot d = 84.116 \ \textit{kN} \cdot \textit{m} \qquad -> \qquad w \coloneqq 0.5$$

Nødvendig armering for strekk ved M.Ed = M.Rd

$$A_{s} := w \cdot \frac{f_{cd} \cdot A_{c}}{f_{yd}} = (1.612 \cdot 10^{3}) \ mm^{2}$$
2ø25 gir $A_{2022} := 2 \cdot \pi \ \frac{\phi_{h}^{2}}{4} = 760.265 \ mm^{2}$ Ikke OK

-> Finner w og følgelig momentkapasitet ved gitt armeringsmengde og aksialtrykk

$$w \coloneqq A_{2\emptyset22} \cdot \frac{f_{yd}}{f_{cd} \cdot A_c} = 0.236$$

Grovt avlest: $m \coloneqq 0.16$ -> $M_{Rd} \coloneqq m \cdot f_{cd} \cdot A_c \cdot d = 67.293 \ kN \cdot m$

Dimensjonering av skjærkapasitet

Ø10 bøyler ->
$$A_{sw} := 2 \cdot \pi \cdot \frac{\phi_b^2}{4} = 157.08 \ mm^2$$

 $z := 0.9 \cdot d = 270 \ mm$ $b_w := d$ $f_{ywd} := f_{yd}$ Velger $\theta := 45 \ deg$

Maks bøyleavstand, (9.5N)(9.6N):

$s_{maks} \coloneqq min$	$(___A_{sw}__,$	$(0.6 \cdot d_a') = 115.3 \ mm$	
	$b_w \cdot 0.1 \cdot \frac{\sqrt{f_{ck}}}{f}$		

		l l	J_{yk})	
Velger	s:=80 mm				
Kontrollerer k	apasitet av trykkdiagonal:				
[6.2.3(3)]	$v_1 \! \coloneqq \! 0.6 \! \cdot \! \left(1 \! - \! \frac{f_{ck}}{250} \right) \! = \! 0.516$				
Forenklet mic	llere trykkspenning: σ_{cp}	$_{p} := \frac{N_{Ed}}{A_{c}} =$	11.318 MPa	$rac{\sigma_{cp}}{f_{cd}} = 0.571$	
(6.11.cN)	$\alpha_{cw} \coloneqq 2.5 \cdot \left(1 - \frac{\sigma_{cp}}{f_{cd}}\right) = 1.073$				
Skjærkapasite	et søyler:				
(6.8)	$V_{Rds} \coloneqq \frac{A_{sw}}{s} \cdot f_{ywd} \cdot z \cdot \cot(\theta) =$	=230.497	kN		
(6.9)	$V_{Rdsmax} \coloneqq \alpha_{cw} \cdot b_w \cdot z \cdot v_1 \cdot \frac{1}{\cot}$	$\frac{f_{cd}}{(heta) + \tan(heta)}$	$\overline{\theta} = 444.9 \ \mathbf{kN}$		
->	$V_{Bds} \coloneqq V_{Bdsmax} = 444.9 \ \mathbf{kN}$				

Dimensjonerer skjærkraft globalt ved å la all vindlast angripe som linjelast ved taknivå og etasjeskiller mellom 2. og 3. etasje, slik at skjærkraften har to konstante intervaller, h.1{0m,7m} og h.2{7m,14m}.

Global skjærkapasitet

Dimensjonerende globale vindlaster:	H_{yEd} :=437 kN	H_{xEd} :=728 kN
Kapasitet av vertikale veggskiver:	$V_{yRdv} \coloneqq 179 \ \textbf{kN}$	$V_{xRdv} \coloneqq 247 \ \mathbf{kN}$
Antall aktive søyler og veggskiver:	$n_s \coloneqq 16$ $n_v \coloneqq 2$	
Ettersom jordskjelvslaster kan virke ortogo skjærkapasitet likt mellom retningene.	nalt, i både x- og y-retn	ing, fordeles søylenes
Global skjærkapasitet i y-retning:	$V_{yRdg} \coloneqq V_{Rds} \cdot \frac{n_s}{2} + V_{yR}$	$_{cdv} \cdot n_v = (3.917 \cdot 10^3) \ kN$
Global skjærkapasitet i x-retning:	$V_{xRdg}\!\coloneqq\!V_{Rds}\!\cdot\!\frac{n_s}{2}\!+\!V_{xR}$	$n_{vdv} \cdot n_v = (4.053 \cdot 10^3) \ kN$

Vedlegg D - Dimensjonering av vertikale veggskiver

Plasserer skivene symmetrisk og med lik stivhet, slik at systemet er bestemt. Selv om søylene er kontinuerlige og momentstive, dimensjoneres de vertikale veggskivene for å ta opp all horisontal vindlast.

$$\begin{split} F_{H} &\coloneqq 1.155 \; \frac{kN}{m^{2}} & h \coloneqq 14 \; m & b_{k} \coloneqq 18 \; m & b_{l} \coloneqq 30 \; m & N_{Ed} \coloneqq 295 \; kN \\ t_{cd} &\coloneqq 350 \; mm & b_{x} \coloneqq 3000 \; mm & b_{y} \coloneqq 5000 \; mm & l_{cd} \coloneqq 350 \; mm \; \text{(foreløpig)} \end{split}$$

Betong B35: $f_{ck} \coloneqq 35 \; MPa & f_{cd} \coloneqq f_{ck} \cdot \frac{0.85}{1.5} = 19.833 \; MPa & \rho \coloneqq 2500 \; \frac{kg}{m^{3}}$
Stål B500NC: $f_{yk} \coloneqq 500 \; MPa = f_{yd} \coloneqq \frac{f_{yk}}{1.15} = 434.783 \; MPa$

VINDLAST PÅ KORTSIDE

Ved beregning av moment ved grunn regnes vindlasten som en punktlast som angriper i topp. Vertikallasten deles likt mellom de to hjørneskivene (konsoll festes i hjørnet). Horisontalkraften deles likt mellom de to korresponderende skivene i x-retning.

$$H_{kEd} \coloneqq F_H \cdot 1.5 \cdot h \cdot b_k = 436.59 \ kN$$
 $N_{kEd} \coloneqq \frac{N_{Ed}}{2} = 147.5 \ kN$

Tilleggslast fra skivens egenvekt, regner konservativt med konstant tykkelse lik 200 mm:

$$t \coloneqq 200 \ mm$$

$$N_{abk} := \rho \cdot g \cdot h \cdot t \cdot b_x = 205.94 \ kN$$
 $N_{kEd} := N_{kEd} + N_{abk} = 353.44 \ kN$

Beregner strekkarmering som følge av moment - A.sm

$$M_{kEd} := \frac{H_{kEd}}{2} \cdot h = (3.056 \cdot 10^3) \ kN \cdot m \qquad z_k := b_x - 2 \cdot l_{cd} = 2.3 \ m$$

$$S_{yd} \coloneqq \frac{M_{kEd}}{z_k} - \frac{N_{kEd}}{2} = (1.152 \cdot 10^3) \ \textbf{kN} \qquad A_{sm} \coloneqq \frac{S_{yd}}{f_{yd}} = (2.65 \cdot 10^3) \ \textbf{mm}^2$$

Ø25 ->	$n_{{\mathscr O}25}{:=}$	A_{sm} 2	_=5.398	-> 6Ø25	
	<u>π</u> .	(25 mm) 4	-		

Kontrollerer horisontal avstand mellom lengdearmering:

 $b \coloneqq l_{cd} = 0.35 \ m \ \phi_h \coloneqq 25 \ mm \ \phi_b \coloneqq 10 \ mm \ c \coloneqq 35 \ mm$

$$a_{hmin} \coloneqq \max \left(2 \cdot \mathscr{O}_h, 37 \text{ mm} \right) = 50 \text{ mm}$$
 $a_v \coloneqq 32 \text{ mm}$

$$a_h \coloneqq (b - 2 \cdot c - 2 \cdot \phi_b - 4 \cdot \phi_h) \cdot \frac{1}{3} = 53.333 \ mm \longrightarrow OK, \ 3 + 3\emptyset 25$$

Beregner nødvendig lengde av betongtverrsnittets trykkdel som følge av moment - l.cd

$$T_{cd} := \frac{M_{kEd}}{z_k} + \frac{N_{kEd}}{2} = (1.505 \cdot 10^3) \ kN$$

$$l_{cd} \coloneqq \frac{I_{cd}}{f_{cd} \cdot t_{cd}} = 0.217 \ \boldsymbol{m}$$

Beregner nødvendig skjærarmering mellom vegg og fundament:

$$A_{sv} \coloneqq \frac{H_{kEd}}{2} \cdot \frac{\sqrt{3}}{f_{yd}} = 869.625 \text{ mm}^2 \qquad \emptyset 20 \rightarrow \qquad n_{\emptyset 20} \coloneqq \frac{A_{sv}}{\frac{\pi \cdot (20 \text{ mm})^2}{4}} = 2.768$$

$$4\emptyset 20 \rightarrow \qquad A_{sv} \coloneqq 4 \cdot \frac{\pi \cdot (20 \text{ mm})^2}{4} = (1.257 \cdot 10^3) \text{ mm}^2$$

Skjærkapasitet, uten behov for skjærarmering

$$d := b_x - 2 \cdot t_{cd} = 2.3 \ m$$
 $b_w := t = 0.2 \ m$ $\gamma_c := 1.5 \ f_{ck} := \frac{f_{ck}}{MPa} = 35$

$$\sigma_{cp} \coloneqq \min \left(\frac{N_{kEd}}{b_w \cdot d}, 0.2 \cdot f_{cd} \right) = 0.768 \text{ } \textbf{MPa}$$

$$k_1 \coloneqq 0.15$$
 $k_2 \coloneqq 0.15$ $C_{Rdc} \coloneqq \frac{0.15 \ MPa}{\gamma} = (1 \cdot 10^5) \ Pa$

$$k := \min\left(1 + \sqrt{\frac{200 \ mm}{d}}, 2\right) = 1.295$$

$$\rho_1 := \min\left(\frac{A_{sv}}{b_w \cdot d}, 0.02\right) = 0.003 \qquad v_{min} := 0.035 \cdot k^{\frac{3}{2}} \cdot f_{ck}^{\frac{1}{2}} \mathbf{Pa} = 0.305 \mathbf{Pa}$$

Skjærkapasitet pr veggskive:

$$V_{Rdc} \coloneqq \max\left(\left(C_{Rdc} \cdot k \cdot \langle 100 \ \rho_1 \cdot f_{ck} \rangle^{\frac{1}{3}} + k_1 \cdot \sigma_{cp} \right) \cdot b_w \cdot d , \langle v_{min} + k_1 \cdot \sigma_{cp} \rangle \cdot b_w \cdot d \right) = 179.44 \ kN$$

Søylene dimensjoneres som kontinuerlige og momen- og skjærtstive, og vertikalskivene har som hovedintensjon å ta opp momentet ved fundamentnivå som følge av vindlasten. Med søylene og veggene samlet er det rikelig med skjærkapasitet.

VINDLAST PÅ LANGSIDE

Ved beregning av moment ved grunn regnes vindlasten som en punktlast som angriper i topp. Vertikallasten deles likt mellom de to hjørneskivene (konsoll festes i hjørnet). Horisontalkraften deles likt mellom de to korresponderende skivene i x-retning.

$$H_{lEd} \coloneqq F_H \cdot 1.5 \cdot h \cdot b_l = 727.65 \ kN \qquad \qquad N_{lEd} \coloneqq \frac{N_{Ed}}{2} = 147.5 \ kN$$

Tilleggslast fra skivens egenvekt, regner konservativt med konstant tykkelse lik 200 mm:

$$N_{abl} := \rho \cdot g \cdot h \cdot t \cdot b_u = 343.233 \ kN$$
 $N_{led} := N_{led} + N_{abl} = 490.733 \ kN$

Beregner strekkarmering som følge av moment - A.sm

$$M_{lEd} := \frac{H_{lEd}}{2} \cdot h = (5.094 \cdot 10^3) \ kN \cdot m \qquad z_k := b_y - 2 \cdot l_{cd} = 4.566 \ m$$

$$S_{yd} \coloneqq \frac{M_{lEd}}{z_k} - \frac{N_{lEd}}{2} = 870.111 \ \textbf{kN} \qquad A_{sm} \coloneqq \frac{S_{yd}}{f_{yd}} = (2.001 \cdot 10^3) \ \textbf{mm}^2$$

$$\emptyset 25 \rightarrow n_{\emptyset 25} \coloneqq \frac{A_{sm}}{\pi \cdot (25 \text{ mm})^2} = 4.077 \quad \text{OK, } 3+2\emptyset 25$$

Beregner nødvendig lengde av betongtverrsnittets trykkdel som følge av moment - I.cd

$$T_{cd} \coloneqq \frac{M_{lEd}}{z_k} + \frac{N_{lEd}}{2} = (1.361 \cdot 10^3) \ kN$$
$$l_{cd} \coloneqq \frac{T_{cd}}{f_{cd} \cdot t_{cd}} = 0.196 \ m \qquad \text{Ok, velger l.cd} = 350 \text{mm}$$

Beregner nødvendig skjærarmering mellom vegg og fundament:

$$A_{sv} := \frac{H_{lEd}}{2} \cdot \frac{\sqrt{3}}{f_{yd}} = (1.449 \cdot 10^3) \ mm^2 \qquad \emptyset 20 \rightarrow \qquad n_{\emptyset 20} := \frac{A_{sv}}{\frac{\pi \cdot (20 \ mm)^2}{4}} = 4.614$$

5Ø20 -> $A_{sv} := 5 \cdot \frac{\pi \cdot (20 \ mm)}{4} = (1.571 \cdot 10^3) \ mm^2$

Skjærkapasitet, uten behov for skjærarmering

 $d \coloneqq b_y - 2 \cdot t_{cd} = 4.3 \ m$ $b_w \coloneqq t = 0.2 \ m$ $\gamma_c \coloneqq 1.5 \ f_{ck} = 35$

$$\sigma_{cp} \coloneqq \min \left(\frac{N_{kEd}}{b_w \cdot d}, 0.2 \cdot f_{cd} \right) = 0.411 \text{ MPa}$$

$$k_1 \coloneqq 0.15$$
 $k_2 \coloneqq 0.15$ $C_{Rdc} \coloneqq \frac{0.15 \ MPa}{\gamma_c} = (1 \cdot 10^5) \ Pa$

$$k := min\left(1 + \sqrt{\frac{200 \ mm}{d}}, 2\right) = 1.216$$

$$\rho_1 \coloneqq min \left(\frac{A_{sv}}{b_w \cdot d}, 0.02 \right) = 0.002 \qquad v_{min} \coloneqq 0.035 \cdot k^2 \cdot f_{ck}^2 \mathbf{Pa} = 0.278 \mathbf{Pa}$$

1

Skjærkapasitet pr veggskive:

11

$$V_{Rdc} \coloneqq \max\left(\left| \left(C_{Rdc} \cdot k \cdot \left(100 \ \rho_1 \cdot f_{ck} \right)^3 + k_1 \cdot \sigma_{cp} \right) \cdot b_w \cdot d , \left(v_{min} + k_1 \cdot \sigma_{cp} \right) \cdot b_w \cdot d \right) = 247.049 \ \mathbf{kN}$$

3

Søylene dimensjoneres som kontinuerlige og momen- og skjærtstive, og vertikalskivene har som hovedintensjon å ta opp momentet ved fundamentnivå som følge av vindlasten. Med søylene og veggene samlet er det rikelig med skjærkapasitet.

Vedlegg E - SEISMISK DIMENSJONERING ETTER EC8

Ref.: NS-EN 1998-1

Geografisk beliggenhet: Bergen -	$>$ a_{g40Hz} :=0.9	$\frac{m}{s^2}$ $a_{gR} \coloneqq 0.8 \cdot$	$a_{g40Hz} = 0.72 \ rac{m}{s^2}$
Kontorbygg -> seismisk klasse II	-> seismisk faktor	$\gamma_1 \coloneqq 1 \longrightarrow a_s$	$a_{gR} = \gamma_1 \cdot a_{gR} = 0.72 \ rac{m}{s^2}$
Antar grunntype B: $S \coloneqq 1.2$	5 $T_B \coloneqq 0.1 \ s$	$T_C \coloneqq 0.30 \ s$	$T_D \coloneqq 1.5 \ s$
Masser og stivheter			
Antall søyler/vegger pr etg:	$n_s \coloneqq 16$	$n_v \coloneqq 2$	
Antall senterbjelker pr etg:	$n_{sb} \coloneqq 6$		
Antall endebjelker pr etg:	$n_{eb}\!\coloneqq\!6$		
Antall etg:	$n_{etg} \coloneqq 4$		
Søyle- og bjelkelengder:	$l_s \coloneqq 3.5 \ m$	$l_b := 6 m$	
Fra SeismoStruct:			
$m_{400} := 0.32905 \frac{tonne}{m}$	$EI_{400} := 32349 \ kN$	$T \cdot m^2$	
$m_{350} \coloneqq 0.25699 \frac{tonne}{m}$	EI ₃₅₀ :=18963 kN	$7 \cdot m^2$	
$m_{vegg} \coloneqq 4.99 \; rac{tonne}{m}$	$EI_{vegg} \coloneqq 4.6512 \cdot 1$	$10^7 \ kN \cdot m^2$	
Bjelkemasser inkluderer vek	kt av hulldekker:		
$m_{sb} \coloneqq (0.67798 + 3.16) \ \frac{ton}{m}$	ne 1		
$m_{eb} \coloneqq (0.25416 + 1.58) \ \frac{ton}{n}$	ne 1		

$$\begin{split} & \text{Bjelkemasse pr etg:} \qquad m_{b} \coloneqq \left(m_{ab} \cdot n_{ab} + m_{cb} \cdot n_{cb}\right) \cdot l_{b} = \left(2.042 \cdot 10^{5}\right) \, \textit{kg} \\ & \text{Lumper massene til etasjene} \\ & m_{1} \coloneqq \left(m_{400} \cdot n_{s} + m_{wegg} \cdot n_{v}\right) \cdot l_{s} + m_{b} = \left(2.576 \cdot 10^{5}\right) \, \textit{kg} \\ & m_{2} \coloneqq \left(\frac{\left(m_{400} + m_{350}\right)}{2} \cdot n_{s} + m_{wegg} \cdot n_{v}\right) \cdot l_{s} + m_{b} = \left(2.555 \cdot 10^{5}\right) \, \textit{kg} \\ & m_{3} \coloneqq \left(m_{350} \cdot n_{s} + m_{wegg} \cdot n_{v}\right) \cdot l_{s} + m_{b} = \left(2.535 \cdot 10^{5}\right) \, \textit{kg} \\ & m_{4} \coloneqq \left(m_{350} \cdot n_{s} + m_{wegg} \cdot n_{v}\right) \cdot l_{s} + m_{b} = \left(2.289 \cdot 10^{5}\right) \, \textit{kg} \\ & m_{4} \coloneqq \left(m_{350} \cdot n_{s} + m_{wegg} \cdot n_{v}\right) \cdot l_{s} + m_{b} = \left(2.289 \cdot 10^{5}\right) \, \textit{kg} \\ & \text{Soyle/etasje-stivheter:} \\ & k_{400} \coloneqq \frac{12 \cdot \left(n_{s} \cdot EI_{400}\right)}{l_{s}^{-3}} = \left(1.449 \cdot 10^{8}\right) \, \frac{N}{m} \\ & k_{vegg} \coloneqq \frac{12 \cdot \left(n_{s} \cdot EI_{300}\right)}{l_{s}^{-3}} = \left(2.604 \cdot 10^{10}\right) \, \frac{N}{m} \\ & k_{12} \coloneqq k_{400} + k_{vegg} \, k_{34} \coloneqq k_{350} + k_{vegg} \\ & \text{Global stivhets- og massematrise:} \\ & K_{12} \coloneqq \left[k_{400} + k_{vegg} \, k_{34} \coloneqq k_{350} + k_{vegg} \\ & M_{12} \coloneqq \left[k_{400} + k_{vegg} \, k_{34} \coloneqq k_{350} + k_{vegg} \right] \\ & M_{tot} \coloneqq \iota^{\top} \cdot M \cdot \iota = \left(9.955 \cdot 10^{5}\right) \, \textit{kg} \\ & k_{ti} \coloneqq K \\ \\ & k_{ti} \coloneqq K \\ \\ & k_{ti} \coloneqq \begin{bmatrix} 0 & 0 & -\left(6 \, l\right) & -\left(6 \, l\right) & 0 & 0 & 0 \\ 0 & 0 & 0 & -\left(6 \, l\right) - \left(6 \, l\right) & 0 & 0 \\ 0 & 0 & -\left(6 \, l\right) - \left(6 \, l\right) & 0 \\ 0 & 0 & 0 & -\left(6 \, l\right) - \left(6 \, l\right) \end{bmatrix} \end{aligned}$$

$k_{00} \coloneqq \begin{bmatrix} 10 \ l^2 & l^2 & 2 \ l^2 & 0 & 0 & 0 & 0 \\ l^2 & 10 \ l^2 & 0 & 2 \ l^2 & 0 & 0 & 0 \\ 2 \ l^2 & 0 & 10 \ l^2 & l^2 & 2 \ l^2 & 0 & 0 \\ 0 & 2 \ l^2 & l^2 & 10 \ l^2 & 0 & 2 \ l^2 & 0 \\ 0 & 0 & 2 \ l^2 & 0 & 10 \ l^2 & l^2 & 2 \ l^2 \\ 0 & 0 & 0 & 2 \ l^2 & l^2 & 10 \ l^2 & 0 \\ 0 & 0 & 0 & 0 & 2 \ l^2 & 0 & 6 \ l^2 \\ 0 & 0 & 0 & 0 & 0 & 2 \ l^2 & l^2 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 l^{2} \\ l^{2} \\ l^{2} \\ 6 l^{2} \end{bmatrix}$
$K' \coloneqq k_{tt} - \left(k_{t0} \cdot k_{00}^{-1} \cdot k_{t0}^{\mathrm{T}}\right) \frac{N}{m} = \begin{bmatrix} 2.612 \cdot 10^{10} & -2.602 \\ -2.612 \cdot 10^{10} & 5.202 \\ 6.638 & -2.602 \\ -0.962 & 4.902 \end{bmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Neglisjerer bidrag mellom ikke-tilstøtende etasjer	
Til Matlab:	
$K = \begin{bmatrix} 2.612 & -2.612 & 0 & 0 \\ -2.612 & 5.224 & -2.612 & 0 \\ 0 & -2.612 & 5.23 & -2.618 \\ 0 & 0 & -2.618 & 5.236 \end{bmatrix} 10^{10} \frac{N}{m}$	
$M = \begin{bmatrix} 2.289 & 0 & 0 & 0 \\ 0 & 2.535 & 0 & 0 \\ 0 & 0 & 2.555 & 0 \\ 0 & 0 & 0 & 2.576 \end{bmatrix} 10^5 \cdot kg$	
<u>Beregner konstruksjonsfaktor - q</u>	
[NA.5.2.1(5)P] -> DCM	
[5.2.2.2(5)] Fleretasjes, flerspennsrammer $\frac{\alpha}{\alpha}$	^u =1.3
[Tab.5.1] Rammesystem q ₀	≈ 3 • 1.3 = 3.9
Bæresystemet er en kombinasjon av ramme- og ve opp all skjærkraft og bare behøver bidrag fra vegg	ggsystem, men ettersom rammene tar til moment ved grunn, settes
(5.2) $k_w := 1$	

(5.1) Konstruksionsfaktor	$q := \max(q_0 \cdot k_m, 1.5) = 3.9$
(1 (10 (w) = 0) (10 (w) = 0)

[4.2.3.2] Kriterier for regularitet i planet

(2) Bæresystemet er fullstendig symmetrisk om x- og y-aksen, med unntak av de vertikale veggskivene, som er plasserte med hensyn til horisontal stivhet og statisk stabilitet.

(3) Utformingen i planet (av dekket) er svært kompakt, uten uregulariteter som tilbaketrukne deler og utsparringer.

(4) Gulvet er tilstrekkelig stivt i henhold til Betongelementboken.

(5) Bygningens slankhet i planet er $b_x \coloneqq 18 \ m$ $b_y \coloneqq 30 \ m$ $\lambda \coloneqq \frac{b_y}{b_x} = 1.667$

(6) Stivhetssenteret sammenfaller med massesenteret ved hvert nivå -> e.ox = 0

(7/8) Veggskivene og søylene fortsetter uavbrutt fra fundament til tak.

[4.2.3.3] Kriterier for regularitet i oppriss

(2) Veggskivene og søylene fortsetter uavbrutt fra fundament til tak. Tilbaketrekning av søyler kontrolleres under (5)

(3) Stivheten og massen av de enkelte etasjene forblir konstant fra bunn til topp.

(4) Forhold mellom etasjens faktiske motstand og belastning ifølge analysen skal ikke variere uforholdsmessig mellom tilstøtende etasjer, monitoreres underveis!

(5) Kontrollerer tilbaketrekningen av søylene ved etasjeskillet mellom 2. og 3. etasje, b)

$$d_{2.} = 400 \ mm$$
 $d_{3.} = 350 \ mm$ $\frac{d_{2.} - d_{3.}}{d_2} = 0.125 > \text{Kriteriumet 0,20}$

Bygningen kan kategoriseres som regulær i både plan og oppriss. Gjennomfører likevel analyse både etter tverrkraftmetoden og modal responsspektrummetode.

4.3.3.2 Analyse ved hjelp av tverrkraftmetoden

Ikke momentstiv	v ramme, opple	eggsbjelke	ene er fri	tt oppl	agte p	a søy	lene ·	>	$C_t \coloneqq$	0.075
(4.6)(4.4)	h≔14 m	$h \coloneqq \frac{h}{m}$	=14	$T_1 \coloneqq r$	$min \Big(4$	$\cdot T_C$,	2 s ,0	$C_t \cdot h^{\frac{3}{4}}$	$\cdot s =$	0.543 <i>s</i>
								$C_t \cdot h$	⁴ • 8 =	=0.543 <i>s</i>
T ₁ =0.543 s >	$2 \cdot T_C = 0.6$	3 s	->	λ:-	=1					
				β :	=0.2					
Dimensjonerend	le responsspek	trum:								
$T_C < T_1 < T_D$ ->	>			$S_d \coloneqq \Big($	$a_g \cdot S \cdot$	$\frac{2.5}{q}$.	$\left(\frac{T_C}{T_1}\right)$	=0.31	$19 \frac{m}{s^2}$	
Samlet seismisk	kraft:			$F_b \coloneqq S$	$S_d \cdot M_t$	$_{ot} \cdot \lambda =$	=317.	401 k	N	
Etasjehøyde:				h_{etg} :=	=3.5 m	1				
Fordeler de seis	miske kreftene	lineært r	nellom et	asjene	e (4.11):				
$z_1 \coloneqq h_{etg} = 3.5 m$	$z_2 \coloneqq 2 \cdot z_1$	$z_3 \coloneqq 3$	3• <i>z</i> ₁	$z_4 \! := \! 4$	• 21					
$\Sigma z_j m_j := z_1 \cdot m_1 + \dots$	$+z_2 \cdot m_2 + z_3 \cdot m_2$	$n_3 + z_4 \cdot m$	₄ =(8.550	$6 \cdot 10^6$) kg •r	n				
$F_1 \coloneqq F_b \frac{z_1 \cdot m_1}{\Sigma z_j m_j} =$	=33.44 <i>kN</i>		$F_2 \! \coloneqq \! F_b$	$rac{z_2 \cdot m_j}{\Sigma z_j m_j}$	$\frac{2}{j} = 66.$	356	kN			
$F_3 \coloneqq F_b \frac{z_3 \cdot m_3}{\Sigma z_j m_j} =$	=98.748 kN		$F_4 \! \coloneqq \! F_b$	$rac{z_4 \cdot m_z}{\Sigma z_j m_z}$	$\frac{4}{j} = 118$	8.857	kN			
Kontroll:	$F_1 + F_2 + I_1$	$F_3 + F_4 = 3$	317.401	kN		ОК				
Veltingsmoment	: / moment vec	l grunnivå								
$M_v \coloneqq F_1 \cdot z_1 + F_2$	$\cdot z_2 + F_3 \cdot z_3 + I_3$	$F_4 \cdot z_4 = (3)$.282•10 ⁸	³) kN	• m					

4.3.3.2 Analyse ved hjelp av modal responsspektrumanalyse

[4.3.3.3.1(3)] krever at man tar hensyn til responsen til svingeformene hvor summen av de modale massene er minst 90% av konstruksjonens totale masse, og inkluderer alle moder hvorde modale massene er minst 5% av konstruksjonens totale masse -> trenger bare ta hensyn til de to første modene, men inkluderer likevel de høye modene

Fremdeles grunntype B:	$S \coloneqq 1.25$	$T_B \coloneqq 0.1 \ s$	$T_C \coloneqq 0.30 \ s$	$T_D \coloneqq 1.5 \ s$
Fra Matlab:			Effektiv modal	masse / M.tot
$T_1 := 0.8309 \ s$ $\phi_1 :=$	$= [1 \ 0.8577 \ 0.$	$5333 \hspace{0.1 cm} 0.2790 \big]^{^{\mathrm{T}}}$	$m_1 \coloneqq 0$).8482
$T_2 := 0.2902 \ s \qquad \phi_2 :$	$= [-0.8879 \ 0.1]$	$\begin{bmatrix} 486 & 1 & 0.7819 \end{bmatrix}^{\mathrm{T}}$	$m_2 \coloneqq 0$).1243
$T_3 := 0.1909 \ s \qquad \phi_3 :$	$=[-0.5890\ 1$	-0.1987 -0.5941	$m_3 \coloneqq m_3 \coloneqq 0$).0192
$T_4 := 0.1440 \ s \qquad \phi_4 :$	=[-0.0960 0.3	3592 - 0.9269 1]	$m_4 \coloneqq 0$).0153
$\omega_1 := \frac{2 \pi}{T_1} = 7.562 \frac{1}{s}$	$\omega_2 \coloneqq \frac{2}{2}$	$\frac{\pi}{\Gamma_2}$ $\omega_3 \coloneqq$	$=\frac{2\pi}{T_3}$	$\omega_4 \coloneqq \frac{2 \pi}{T_4}$
$\varGamma_1 \coloneqq 1.2790 \qquad \qquad \varGamma_2 \colon$	=0.4538	$\Gamma_3 \coloneqq -0.2099$	$\Gamma_4 \! := \! -0.1$	1742
$T_C < T_1 < T_D ~~$		$S_{d1} \coloneqq \max$	$x \left(a_g \cdot S \cdot \frac{2.5}{q} \cdot \frac{T_C}{T_1} \right)$	$=0.208 \frac{m}{s^2}$
$T_B < T_2 < T_C$ ->		$S_{d2} \coloneqq \max$	$x\left(a_g \cdot S \cdot \frac{2.5}{q}\right) = 0.$	$577 \frac{m}{s^2}$
$T_B < T_3 < T_C$ ->		$S_{d3} \coloneqq \max$	$\left(a_g \cdot S \cdot \frac{2.5}{q}\right) = 0.$	$577 \frac{m}{s^2}$
$T_B < T_4 < T_C$ ->		S_{d4} := max	$\left(a_g \cdot S \cdot \frac{2.5}{q}\right) = 0.$	$577 \frac{m}{s^2}$
$\eta_{1max} \coloneqq \left 7.4231 \cdot 10^5 \ \mathbf{kg} \cdot S \right $	$\left {_{d1}} \right = 154.624 \ k$:N		

Krefter ved fundament fra Matlab:

$$F_{b1} := 154.40 \ kN$$
 $F_{b2} := 62.78 \ kN$ $F_{b3} := 9.69 \ kN$ $F_{b4} := 7.74 \ kN$

Fordeler kreftene til etasjer:

$$\begin{split} F_{1etg} &\coloneqq \Gamma_1 \cdot S_{d1} \cdot M \cdot \phi_1 = \begin{bmatrix} 60.971 \\ 57.93 \\ 36.307 \\ 19.144 \end{bmatrix} \mathbf{kN} \qquad F_{2etg} \coloneqq \Gamma_2 \cdot S_{d2} \cdot M \cdot \phi_2 = \begin{bmatrix} -53.2 \\ 9.863 \\ 66.901 \\ 52.723 \end{bmatrix} \mathbf{kN} \\ F_{3etg} &\coloneqq \Gamma_3 \cdot S_{d3} \cdot M \cdot \phi_3 = \begin{bmatrix} 16.323 \\ -30.7 \\ 6.149 \\ 18.529 \end{bmatrix} \mathbf{kN} \qquad F_{4etg} \coloneqq \Gamma_4 \cdot S_{d4} \cdot M \cdot \phi_4 = \begin{bmatrix} 2.208 \\ -9.152 \\ 23.804 \\ -25.884 \end{bmatrix} \mathbf{kN} \end{split}$$

Kombinerer kreftene fra de to første modene ved hjelp av SRSS:

$$F_{etgSRSS} \coloneqq \sqrt{F_{1etg}^{2} + F_{2etg}^{2}} = \begin{bmatrix} 80.918 \\ 58.764 \\ 76.118 \\ 56.091 \end{bmatrix} \mathbf{kN} \qquad F_{bSRSS} \coloneqq F_{etgSRSS}^{T} \cdot \iota = 271.891 \mathbf{kN}$$

Finner maks forskyvning ved taknivå:

$$\eta_{1max} \coloneqq \left| \Gamma_1 \cdot \frac{1}{\omega_1^2} \cdot S_{d1} \right| = 4.659 \ mm \qquad \eta_{3max} \coloneqq \left| \Gamma_3 \cdot \frac{1}{\omega_3^2} \cdot S_{d3} \right| = 0.112 \ mm \\ \eta_{2max} \coloneqq \left| \Gamma_2 \cdot \frac{1}{\omega_2^2} \cdot S_{d2} \right| = 0.558 \ mm \qquad \eta_{4max} \coloneqq \left| \Gamma_4 \cdot \frac{1}{\omega_4^2} \cdot S_{d4} \right| = 0.053 \ mm$$

$$d \coloneqq \sqrt{\left(\phi_1 \stackrel{\widehat{0}}{\longrightarrow} \eta_{1max}\right)^2 + \left(\phi_1 \stackrel{\widehat{1}}{\longrightarrow} \eta_{2max}\right)^2 + \left(\phi_1 \stackrel{\widehat{2}}{\longrightarrow} \eta_{3max}\right)^2 + \left(\phi_1 \stackrel{\widehat{3}}{\longrightarrow} \eta_{4max}\right)^2 = [4.684] mm$$

Virkelig forskyvning, eksl. konstruksjonsfaktor: $d \coloneqq d \cdot q = [18.268] mm$

$$F' := \frac{F_{bSRSS}}{\Gamma_1} = 212.581 \text{ kN} \qquad d' := \frac{d}{\Gamma_1} = [14.283] \text{ mm}$$

$$k_n := \frac{F'}{d'} = [1.488 \cdot 10^4] \frac{\text{kN}}{\text{m}}$$

Bestemmelse av påført kraft og forskyvning til statisk ikke-lineær analyse, ved EC8 Finner det elastiske responsspekteret ved [3.2.2.2], og T.1 fra tverrkraftanalysen: $T_1 \coloneqq \min\left(4 \cdot T_C, 2 \ \boldsymbol{s}, C_t \cdot h^{\frac{3}{4}} \cdot \boldsymbol{s}\right) = 0.543 \ \boldsymbol{s}$ Antar 5 % viskøs demping -> $\eta = 1$ $S_e \coloneqq \langle a_g \cdot S \cdot \eta \cdot 2.5 \rangle = 2.25 \frac{m}{s^2}$ $T_C < T_1 < T_D \rightarrow$ $F_h \coloneqq S_e \cdot M_{tot} \cdot \lambda = (2.24 \cdot 10^3) \mathbf{kN}$ Samlet seismisk kraft: Finner kraft og forskyvning for det ekvivalente systemet med én frihetsgrad: $m' := \iota^{\mathrm{T}} \cdot M \cdot \phi_1 = (6.544 \cdot 10^5) kg$ $\Gamma_1 \!=\! 1.279$ $\Gamma_1 := \frac{m'}{\mu^{\mathrm{T}} \cdot M \cdot \phi_1^{-2}} = 1.288$ Skjærkraft ved fundamentnivå $F' := \frac{F_b}{\Gamma_1} = (1.739 \cdot 10^3) \, kN$ Forskyvning ved taknivå: $\eta_{1max} \coloneqq \left| \Gamma_1 \cdot \frac{1}{\omega_1^2} \cdot S_e \right| = 50.682 \ mm$ $d \coloneqq \eta_{1max}$ Virkelig forskyvning: $d := d \cdot q = 197.659 \ mm$ $k_n \coloneqq \frac{F'}{d'} = \left(1.133 \cdot 10^4\right) \frac{kN}{m}$ $d' := \frac{d}{\Gamma_1} = 153.456 \ mm$ For nonadaptive pushover, fordeler lasten til de fire nodene ved taknivå: $\frac{F'}{4} = 434.728 \ kN$

K=[8.492 -8.492 0 0;-8.792 16.98 -8.792 0;0 -8.792 22.98 -14.49;0 0 -14.49 28.97]*10^7; M=[2.114 0 0 0;0 2.206 0 0;0 0 2.206 0;0 0 0 2.226]*10^5;

```
% Finner egenfrekvenser og modematrisen %
[phi,omega_2]=(eig(K,M))
Omega=diag(sqrt(omega_2))
T=2*pi./Omega
```

% Finner modale masser, effektive modale masser og prosent av total masse %
lota=[1;1;1;1];
M_tot=lota.'*M*lota
M_mod=diag(phi.'*M*phi)
L=phi.'*M*lota
M_eff=L.^2./M_mod
m=M_eff./M_tot
l=L./M_mod
H=14;

```
H=[0 1/4 2/4 3/4 1].*H;
phi1=[0;phi(:,1)];
plot(phi1,H')
phi2=[0;phi(:,2)];
plot(phi2,H')
phi3=[0;phi(:,3)];
plot(phi3,H')
phi4=[0;phi(:,4)];
plot(phi4,H')
```

% Finner global kraft i fundament vha dimensjonerende spekter fra EC8 %
S_d=[0.271;0.75;0.75;0.75];
F_b=M_eff.*S_d

Mode 1		Mode 2		Mode 3		Mode 4	
1	14	-0.8879	14	-0.589	14	-0.096	14
0.8577	10.5	0.1486	10.5	1	10.5	0.3592	10.5
0.5333	7	1	7	-0.1987	7	-0.9269	7
0.279	3.5	0.7819	3.5	-0.5941	3.5	1	3.5
0	0	0	0	0	0	0	0

Etasje		Normaliserte egenmoder				
	4	1	-0.8879	-0.589	-0.096	
	3	0.8577	0.1486	1	0.3592	
	2	0.5333	1	-0.1987	-0.9269	
	1	0.279	0.7819	-0.5941	1	
		0	0	0	0	

Mode 3	Т	0.1989	Mode 4
	W	31.58967	
-3.2728	-0.7167	14	-1.6204
4.5665	1	10.5	4.1521
1.1841	0.259301	7	-5.2483
-3.6882	-0.80766	3.5	2.7748
0	0	0	0

14

-1

Høyde [m] 6 4

T W	0.9244 6.797042	Mode 2	T W	0.3293 19.08043
1	14 10.5	4.0343 -0.38374	-0.95532	14 10 5
0.553563	7	-4.223	1	7
0.237191	3.5	-3.4061	0.806559	3.5
0	0	0	0	0

Mode 1	Т	0.9244
	w	6.797042
5.4319	1	14
4.5612	0.839706	10.5
3.0069	0.553563	7
1.2884	0.237191	3.5
0	0	0

Etasje		Normaliserte egenmoder				
	4	1	0.9553	-0.7167	-0.3087	
	3	0.8397	-0.0909	1	0.7911	
	2	0.5536	-1	0.2593	-1	
	1	0.2372	-0.8066	-0.8077	0.5287	
		0	0	0	0	

Etasje		Normaliserte egenmoder			
	4	1	0.955316	-0.7167	-0.30875
	3	0.839706	-0.09087	1	0.791132
	2	0.553563	-1	0.259301	-1
	1	0.237191	-0.80656	-0.80766	0.528705

Etasje		Differanse i egenmoder				
	4	0	0.0674	-0.1277	-0.21275	
	3	-0.01799	0.0577	0	0.431932	
	2	0.020263	0.0000	0.458001	-0.0731	
	1	-0.04181	-0.0247	-0.21356	-0.4713	

0	0	0	0

Т	0.1434
w	43.8158
-0.30875	14
0.791132	10.5
-1	7
0.528705	3.5
0	0

Ser på nodesøyle n445-n441. Den påsatte forskyvningen er

Mål i cm

Etasjehøyde 3.5 m

	Output nr.										
			2	5	10	15	20	30	40	50	
	LF:		0.0628	0.2582	0.5798	0.8851	1.2075	1.901	2.4782	3.116	
	D.r:		0.00942	0.03873	0.08697	0.132765	0.181125	0.28515	0.37173	0.4674	
	F.b:	0	157.8	559.7	1093.3	1539.5	1878.6	2152.2	2069.6	1917	
	Etasje										
	4		0.008	0.032	0.072	0.112	0.152	0.232	0.312	0.4	
Forely uning [m]	3		0.0057	0.0225	0.0519	0.0814	0.1102	0.1634	0.2395	0.3302	
FORSKYVNING [m]	2		0.0032	0.0123	0.0288	0.0458	0.0613	0.0823	0.0858	0.0819	
	1		0.0012	0.0047	0.0113	0.0183	0.0246	0.0327	0.0336	0.03188	
										h	
	4		1	1	1	1	1	1	1	1	14
Normaliserte	3		0.713	0.703	0.721	0.727	0.725	0.704	0.768	0.826	10.5
egenmoder	2		0.400	0.384	0.400	0.409	0.403	0.355	0.275	0.205	7
	1		0.150	0.147	0.157	0.163	0.162	0.141	0.108	0.080	3.5
	0		0	0	0	0	0	0	0	0	0
	4.2		0.07.0/	0.27.0/	0 57 0/	0.07.0/	1 10 0/	1.00.0/	2.07.0/	1 00 %	
IDR	4-3		0.07%	0.27%	0.57%	0.87%	1.19 %	1.96 %	2.07%	1.99 %	
	3-2		0.07 %	0.29 %	0.66 %	1.02 %	1.40 %	2.32 %	4.39 %	7.09 %	
	2-1		0.06 %	0.22 %	0.50 %	0.79 %	1.05 %	1.42 %	1.49 %	1.43 %	
	1-0		0.03 %	0.13 %	0.32 %	0.52 %	0.70 %	0.93 %	0.96 %	0.91 %	
			0.00 %	0.00 %	0.00 %	0.00 %	0.00 %	0.00 %	0.00 %	0.00 %	
Total drift		0	0.23 %	0.91 %	2.06 %	3.20 %	4.34 %	6.63 %	8.91 %	11.43 %	

0.15 m

Ser på nodesøyle n445-n441. Den påsatte forskyvningen e 0.15 m

3.5

Mål i cm

Etasjehøyde

		Output nr.						
		2	10	20	30	40	50	
	LF:	0.0628	0.5798	1.2075	1.901	2.4782	3.116	
	D.r:	0.00942	0.08697	0.181125	0.28515	0.37173	0.4674	
	F.b:	157.8	1093.3	1878.6	2152.2	2069.6	1917	
	Etasje							
	4	0.008	0.072	0.152	0.232	0.312	0.4	
Forskywning [m]	3	0.0057	0.0519	0.1102	0.1634	0.2395	0.3302	
	2	0.0032	0.0288	0.0613	0.0823	0.0858	0.0819	
	1	0.0012	0.0113	0.0246	0.0327	0.0336	0.03188	

		Egenmoder ved gitt påsatt forskyvning							
	Etasje	8 mm	72 mm	152 mm	232 mm	312 mm	400 mm	h	
	4	1	1	1	1	1	1	14	
Normaliserte	3	0.713	0.721	0.725	0.704	0.768	0.826	10.5	
egenmoder	2	0.400	0.400	0.403	0.355	0.275	0.205	7	
	1	0.150	0.157	0.162	0.141	0.108	0.080	3.5	
	0	0	0	0	0	0	0	0	

_											
		Egenmoder ved gitt påsatt forskyvning									
	Etasje	8 mm	72 mm	152 mm	232 mm	312 mm	400 mm				
	4-3	0.07 %	0.57 %	1.19 %	1.96 %	2.07 %	1.99 %				
R	3-2	0.07 %	0.66 %	1.40 %	2.32 %	4.39 %	7.09 %				
	2-1	0.06 %	0.50 %	1.05 %	1.42 %	1.49 %	1.43 %				
	1-0	0.03 %	0.32 %	0.70 %	0.93 %	0.96 %	0.91 %				
: [Total drift	0.23 %	2.06 %	4.34 %	6.63 %	8.91 %	11.43 %				

IDF

Total drift

0.75 1

Ser på nodesøyle n445-n441. Den påsatte forskyvningen er

1740 m

Mål i cm

Etasjehøyde 3.5 m

		Output nr.									
			2	5	10	15	20	30	40	50	
	LF:		0.0716	0.26	0.518	0.754	0.967	1.221	1.235	1.158	
	F.r:		124.584	452.4	901.32	1311.96	1682.58	2124.54	2148.9	2014.92	
	F.b:	0	157.8	559.7	1093.3	1539.5	1878.6	2152.2	2069.6	1917	
	Etasje										
	4		0.008	0.032	0.072	0.112	0.152	0.232	0.312	0.4	
	3		0.0055	0.0225	0.0501	0.0814	0.108	0.1629	0.232	0.322	
FORSKYVNING [m]	2		0.003	0.0123	0.0272	0.0458	0.0599	0.085	0.091	0.087	
	1		0.0011	0.0047	0.0105	0.0183	0.024	0.034	0.0358	0.034	
										h	
	4		1	1	1	1	1	1	1	1	14
Normaliserte	3		0.688	0.703	0.696	0.727	0.711	0.702	0.744	0.805	10.5
egenmoder	2		0.375	0.384	0.378	0.409	0.394	0.366	0.292	0.218	7
	1		0.138	0.147	0.146	0.163	0.158	0.147	0.115	0.085	3.5
	0		0	0	0	0	0	0	0	0	0
IDR	4-3		0.07 %	0.27 %	0.63 %	0.87 %	1.26 %	1.97 %	2.29 %	2.23%	
	3-2		0.07 %	0.29 %	0.65 %	1.02 %	1.37 %	2.23 %	4.03 %	6.71 %	
	2-1		0.05 %	0.22 %	0.48 %	0.79 %	1 03 %	1 46 %	1 58 %	1 51 %	
	1-0		0.03 %	0.13 %	0.30%	0.52 %	0.69 %	0.97 %	1 02 %	0.97 %	
	10		0.00 %	0.10 %	0.00 %	0.00 %	0.00 %	0.00%	0.00%	0.00 %	
Total drift		0	0.23 %	0.91 %	2.06 %	3.20 %	4.34 %	6.63 %	8.91 %	11.43 %	
Ser på nodesøyle n445-n441. Den påsatte forskyvningen e 1740 m

3.5

Mål i cm

Etasjehøyde

		Output nr.						
		2	10	20	30	40	50	
	LF:	0.0628	0.5798	1.2075	1.901	2.4782	3.116	
	D.r:	109.272	1008.852	2101.05	3307.74	4312.068	5421.84	
	F.b:	157.8	1093.3	1878.6	2152.2	2069.6	1917	
	Etasje							
Forskyvning [m]	4	0.008	0.072	0.152	0.232	0.312	0.4	
	3	0.0055	0.0501	0.108	0.1629	0.232	0.322	
	2	0.003	0.0272	0.0599	0.085	0.091	0.087	
	1	0.0011	0.0105	0.024	0.034	0.0358	0.034	

		Normaliserte etasjeforskyvninger ved gitt påsatt kraft						L
	Etasje	158 kN	1093 kN	1879 kN	2152 kN	2149 kN	1917 kN	h
	4	1	1	1	1	1	1	14
Normaliserte	3	0.6875	0.695833	0.710526	0.702155	0.74359	0.805	10.5
egenmoder	2	0.375	0.377778	0.394079	0.366379	0.291667	0.2175	7
	1	0.1375	0.145833	0.157895	0.146552	0.114744	0.085	3.5
	0	0	0	0	0	0	0	0

_	IDR ved gitt påsatt forskyvning							
Etasje	8 mm	72 mm	152 mm	232 mm	312 mm	400 mm		
4-3	0.07 %	0.63 %	1.26 %	1.97 %	2.29 %	2.23 %		
3-2	0.07 %	0.65 %	1.37 %	2.23 %	4.03 %	6.71 %		
2-1	0.05 %	0.48 %	1.03 %	1.46 %	1.58 %	1.51 %		
1-0	0.03 %	0.30 %	0.69 %	0.97 %	1.02 %	0.97 %		
Total drift	0.23 %	2.06 %	4.34 %	6.63 %	8.91 %	11.43 %		

IDR

Total drift

