NTNU - Trondheim
Norwegian University of

Science and Technology

Topology Optimization of a Jacket for an
Offshore Wind Turbine

by Utilization of Genetic Algorithm

Johan Henrik Martens

Civiland Environmental Engineering
Submission date: June 2014
Supervisor: Michael Muskulus, BAT

Norwegian University of Science and Technology
Department of Civil and Transport Engineering

Abstract

The construction of offshore wind farms for electricity production has shown great
promise. Both as a contributing element in mitigating the ongoing climate changes,
and in lessening the global oil dependency. However, construction and operation cost
is a limiting factor in utilization of offshore wind energy on a significant scale. The
potential for cost reduction related to the support structure is high. In this thesis, a
script was written to optimize the topology of a jacket support structure by utilizing
genetic algorithm (GA).

GA is a heuristic optimization method mimicking the natural process known as
”survival of the fittest”. The algorithm was implemented using a MATLAB script while
dynamic structural response was analyzed by a specialized simulation tool, Fedem
Windpower. The topology optimization took a ground structure approach by utilizing
a master jacket model. Several variations of this master model were continuously
customized by the MATLAB script. Models that failed either by yielding, by fatigue or
by the Fedem solver crashing, were discarded from the optimization. Surviving designs
were evaluated for fitness using a cost related function. The jacket designs with the
highest fitness were most likely to pass their traits on to the next generation of designs.
At the end of this iterative optimization loop, the jacket topology with the highest fitness
was the winner.

Several simple cubic jackets, and more complex 32 m high jackets, were optimized.
As a reference, the resulting topologies were compared with a quick manual optimiza-
tion of the same design domain. The quality of the automatically optimized designs
were highly dependent on the complexity of the ground structure utilized. The designs
produced by GA had a higher fitness, i.e. lower cost, than the manually optimized
counterpart for the simple cubic jacket and vice versa for the complex jacket. A decent
topology was not generated for the most complex case considered, in part due to lack of
computational power. The optimization runs carried out in this thesis has shed light on
the potential and the limitation of GA in general, and on the employed implementation
in particular. Superior and more cost-efficient topologies can likely be designed by an
extended implementation of GA in combination with manual optimization. Suggestions

for further work is given.

Sammendrag

Store vindparker til havs for produksjon av elektrisitet har vist et stort potensiale. Bade
som et bidrag til & dempe dagens klimaforandringer og som et ledd i & gjore verden
mindre avhengig av olje. Kostnadene relatert til utnyttelse av vindkraft til havs har
imidlertid veert en begrensende faktor for utbygging i stor skala. Det er et hgyt po-
tensiale for reduksjon av kostnader knyttet til de understgttende konstruksjonene for
vindmgller til havs. I denne oppgaven ble et skript laget for & optimalisere topologien
til et fagverksunderstell, dvs. en jacket, for en vindmglle til havs ved bruk av "genetic
algorithm” (GA).

GA er en erfaringsbasert optimaliseringsalgoritme som er inspirert av evolusjons-
teorien. Algoritmen ble implementert gjennom et MATLAB-skript, mens dynamisk
konstruksjonsrespons ble evaluert av et kraftig analyseverktgy, Fedem Windpower.
Optimaliseringen benyttet en grunnstruktur bestdende av alle potensielle bjelker i jack-
eten. Flere varianter av denne grunnstrukturen ble kontinuerlig endret av MATLAB-
skriptet. Konstruksjoner som gikk til brudd grunnet flytning eller utmatting, eller som
Fedem ikke klarte & lgse, ble forkastet. De gjenstdende konstruksjonene ble evaluert av
en kostnadsbasert funksjon. De billigste konstruksjonene hadde stgrst sannsynlighet for
& viderefgre sine egenskaper. Etter et gitt antall iterative generasjoner var det billigste
alternativet vinner av optimaliseringsprosessen.

Flere enkle kubiske jacketer og mer komplekse jacketer pd 32 m ble optimalisert.
Som et referansepunkt ble en rask manuell optimalisering foretatt av samme grunnstruk-
tur. Kvaliteten pé topologiene som ble funnet ved bruk av GA var i stor grad avhengig
av kompleksiteten til grunnstrukturen. Den enkle kubiske jacketen ble billigere ved
den automatiske enn den manuelle optimaliseringen, og vice versa for den komplekse
jacketen. Den mest komplekse grunnstrukturen som ble optimalisert ga ikke tilfreds-
stillende resultater. Med bakgrunn i de foretatte optimaliseringene i denne oppgaven
har potensialet og begrensningene for GA generelt, og den foretatte implementeringen
spesielt, blitt utforsket. Overlegne og billigere jacketer kan trolig bli laget gjennom en

utvidet implementering av GA kombinert med manuell optimering.

I

Preface

This Master’s thesis concludes my 5-year Master’s Degree Programme in Civil and Envi-
ronmental Engineering with specialization in Structural Engineering at the Norwegian
University of Science and Technology (NTNU). It is written for the Department of Civil
and Transport Engineering under the Faculty of Engineering Science and Technology.

Writing a master thesis has been both challenging and rewarding. Of all the possible
topics to chose from, this project appealed to me because it is of current interest and
because I enjoy making MATLAB scripts work. All scripts in this thesis are written by
me, but I got some inspiration from an evolutionary sizing optimization script received
from my supervisor, Daniel Zwick. With more or less no prior experience in neither
structural optimization nor wind turbines, can I undoubtedly say this process has made
me more knowledgeable. I am positive that what I have learned will be useful for me
in the future, either directly or indirectly.

The path from initial talks with my supervisors to the optimization code found in the
appendices of this thesis has not been straightforward. One turning point was the switch
from Fedem Windpower version R7.0.4 to the beta version of R7.1, which allowed the
script to remove beams completely from the model during optimization, instead of just
setting a small diameter. I have enjoyed working with genetic algorithms because of its
parallels to nature, although the randomness in its progress was frustrating at times.
You never know what you are going to get!

I would like to thank my supervisors, associate professor Michael Muskulus and PhD
candidate Daniel Zwick. Daniel has been especially forthcoming and a great resource
for all questions relating to the technical aspects of my thesis. I would also like to thank
my good friend, Jonas S. Pettersen, and my stepfather, Harald S. Kobbe, who both

helped me proof-read my thesis.

Johan Henrik Martens
Trondheim, 08.06.2014

Contents

1

2

Introduction

Literature Review

2.1 Wind Turbines
2.1.1 Offshore Utilization
2.1.2 Support Structures

2.2 Structural Optimization
2.2.1 Genetic Algorithms

23 Fatigue.,

Methodology

3.1 Wind turbinemodel
3.2 Programming.
3.2.1 Jacket Ground Structure
3.2.2 Fatigue Damage
3.2.3 Main Optimization Script.
3.2.4 MATLAB Implementation

Results and Discussion

4.1 Simple Asymmetrical Jacket
4.2 Simple Symmetric Jacket
4.2.1 ExampleI
422 ExampleIl...............
4.2.3 ExampleIll
4.2.4 Manual Optimization Comparison
4.3 Complex Symmetric Jacket
4.3.1 Three Nodes Along the Width . . .
4.3.2 Two Nodes Along the Width

4.3.3 Manual Optimization Comparison
Conclusion
Further Work

References

13
15
19
24

29
31
35
36
39
41
47

53
54
57
58
60
62
64
66
66
70
74

77

79

83

VII

CONTENTS

A Jacket ground structure function
B Fatigue damage function

C Main optimization script

VIII

87

99

103

List of Figures

1.1 Renewable energy’s share of global energy consumption (2011) 2
1.2 Annually installed and total effect from wind power in Norway 3
1.3 Offshore wind turbine with jacket support structure 5
2.1 Extraction of mechanical energy from an ideal air flow 8
2.2 Major components in the RNA of alarge HAWT 9
2.3 Mean annual wind speed on- and offshore 10
2.5 Offshore wind turbine with helicopter supply platform 12
2.6 Substructure cost at different waterdepths 13
2.7 Substructures for shallowwaters. 14
(@) Gravitybased 14
(b) Monopile. e 14
2.8 Space frame substructures for transitional waters 15
(@) Tripod e 15
(B) Jacket. o o i e 15
(@ Tripile e 15
2.9 Optimization categories: a) Sizing, b) Shape and c) Topology 16
2.10 Ground structures of increasing complexity fromatoc 17
2.11 Antenna design developed by GAfor NASA 21
2.12 Example of a two-point crossover with binary encoding 22
2.13 Simple flowchart for an evolutionary algorithm. 23
2.14 S-N curves for tubular joints with cathodic protection 25
2.15 Example of extraction of one stresscycle 26
(@) Before exXtractiono v it ittt e 26
(b) After eXtraction v v v v v i e e e e e 26
2.16 Cycle extraction of residue by duplication 26
3.1 3D wind turbine simulation model from the OC4 project 30
3.2 Wave heightin 30 stimedomain 32
3.3 Flowchart of optimization processttt 35
3.4 Ground structure of cubic jacket (side view) 36
(@) 3X3N0dES . . v v e 36
(b) 5x5mnodes e 36
3.5 Ground structure of 32 m high jacket with three nodes along its width . 37
(@) Sideview e 37
(b) Top perspective View 37

LIST OF FIGURES

3.6 Master beams for symmetry in cubic 3x3 ground structure
3.7 Superposition of stresses in eight spots at a welded intersection
4.1 Initial random design of a simple asymmetrical jacket.
4.2 Optimization evolution of a simple asymmetrical jacket
4.3 Winning design of a simple asymmetrical jacket
4.4 Initial random design of a simple symmetric jacket
4.5 Optimization evolution of a simple symmetric jacket (Ex. I)
4.6 Topology of an optimized simple symmetric jacket (Ex. I)
(a) Leading design, 10th generation
(b) Winning design, 50th generation
4.7 Optimization evolution of a simple symmetric jacket (Ex. I)
4.8 Topology of an optimized simple symmetric jacket (Ex. II)
(a) Leading design, 5th generation
(b) Winning design, 50th generation
4.9 Optimization evolution of a simple symmetric jacket (Ex. III)
4.10 Topology of an optimized simple symmetric jacket (Ex. III)
(a) Leading design, 15th generation
(b) Winning design, 46th generation
4.11 Topology for manual optimization of a simple symmetric jacket.
4.12 Optimization evolution of a complex symmetric jacket (Three nodes) . .
4.13 Topology evolution of a complex symmetric jacket (Three nodes)
(a) [Initialrandomdesign,
(b) Leading design, 5th generation
(c) Leading design, 30th generation
(d) Winning design, 49th generation
4.14 Optimization evolution of a complex symmetric jacket (Two nodes) . . .
4.15 Topology evolution of a complex symmetric jacket (Two nodes)
(a) [Initial randomdesign,
(b) Leading design, 5th generation
(c) Leading design, 30th generation
(d) Winning design, 91th generation
4.16 Topology for manual optimization of a complex symmetric jacket
(@ Twonodelayout
(b) Threenodelayout0ttt ..
(€ Topology . . v v vt e e e

List of Tables

3.1 Values of parameters in Fedem wind turbine model 34
3.2 Summary of GA terminology in the context of a jacket 41
3.3 Input parameters for main optimization script 43
4.1 Fitness values of the optimized simple symmetric jackets 65
4.2 Fitness values of the optimized complex symmetric jackets. 74
Listings
3.1 Building nodal positions 47
3.2 Calculation of beam unitvectors L 48
3.3 Stress cycle extraction from time series 49
3.4 Running Fedem from MATLAB, 50
A.1 Entire jacket ground structure function, 87
B.1 Entire fatigue damage function 99
C.1 Entire main optimization script. 103

XI

1 Introduction

According to the Fourth Assessment Report (AR4) by the Intergovernmental Panel on
Climate Change (IPCC), the climate is changing at an alarming rate. Through the 20th
century, the global average surface temperature has risen about 1°C, the global mean
sea level has risen about 1.5 cm and the snow cover of the northern hemisphere is
melting. Between 1970 and 2004, greenhouse gas emissions due to human activities
has seen an increase of 70 %. The largest part of this growth is caused by energy supply,
transport and industry. Furthermore, the assessment states that it is very likely (>90%)
that most of the increase in global temperatures can be attributed to the increase in

anthropogenic greenhouse gas emissions [1].

” Anthropogenic warming over the last three decades has likely had a
discernible influence at the global scale on observed changes in many physical
and biological systems ”

- IPCC AR4 Work Group I [1]

As scientific consensus to a larger and larger extent recognizes the negative impact
greenhouse gases are having on a global scale, the importance of mitigation of climate
changes becomes clearer. From 2000 to 2010, annual greenhouse gas emissions has
risen from 39 GtCO,eq to 49 GtCO,eq and 47 % of this increase is directly attributed to
energy supply. Of all sectors contributing to the total greenhouse gas emissions in 2010,
energy supply was responsible for 35 % [2]. Also, due to the rising global population
and industrialization of developing countries, global energy demand could double or
even triple by 2050 [3]. Hence, the energy supply sector plays an essential part in
mitigating climate change.

Renewable energy (RE) produces energy from sources that are continuously replen-
ished on a human timescale, e.g. solar energy, wind power, geothermal energy and
hydro power. Not only is a transition to RE technologies important with respect to
mitigating the ongoing climate change, but also in making the world less oil dependent.
In 2012, just over half the electricity generating capacity added globally came from RE.
Policies supporting RE has been successful in stimulating this growth [2]. Figure 1.1
illustrates the share of total energy consumption that originated from RE in 2011, and
the subdivision of different types of RE. Traditional biomass is in this context biomass
combusted in inefficient and polluting ways, not what is traditionally thought of as

clean modern RE.

1 INTRODUCTION

Biomass/solar/
geothermal heat o
and hotwater ~ 4.1%

Hydropower 3.7%

Modern 0,
Wind/solar/
Renewables 9 7[) b|omaSS/

y hermal
GLOBAL ENERGY Traditional . IQA gﬁwefé?r?eratwn 1.1%
Biomass 9 3A
Biofuels 0.8%

Nuclear power 2.8%

Fossil fuels 78.2%

Figure 1.1: Renewable energy’s share of global energy consumption (2011) [4]

Of all RE sources, wind power is the second cheapest, after hydro-power. Wind farms
for electricity production are cost-competitive with new fossil fuel plants [3]. Global
wind power capacity is per 2012 at almost 283 GW. The capacity is growing each year
and appears to become more important in global energy production. In Denmark, for
instance, 30% of the energy consumption is generated by wind power. Furthermore,
wind power accounted for 45% of all new electric generating capacity in the United
States in 2012. China is the country with the highest total wind power capacity in the
world, 75 GW in 2012 [4].

” Since AR4, many RE technologies have demonstrated substantial per-
formance improvements and cost reductions, and a growing number of RE
technologies have achieved a level of maturity to enable deployment at signifi-

cant scale ”
- IPCC AR5 Work Group III [2]

In Norway, wind energy is breaking new ground year by year, and in 2013 a wind
energy production record of 1.9 TWh was set. The equivalent of 1.4 % of the total
Norwegian energy consumption. There are a total of 356 wind turbines in Norway [5].
In figure 1.2, ranging from year 1997 through 2013, the bars with the corresponding
left axis show the annually installed effect, while the line with the corresponding right
axis show the total effect from wind power in Norway.

Offshore wind turbines has not yet seen the light of day along the Norwegian coast.
Still, offshore wind power utilization holds great promise, both because a tendency for

large wind farms is more prevalent offshore and due to higher wind speeds. However,

250 900

800
200 700
600

150
500

400
100

+ 300

50 200

Annually installed effect [MW]
Total installed effect [MW]

100

2006
2007
2008
 ————
o

2009

2011

2010 +]

1997
1998
1999
2000
2001
2002
2003
2004
2005
2012
2013

Figure 1.2: Annually installed and total effect from wind power in Norway [5]

offshore wind turbines face many challenges that are absent for onshore installations.
One of these challenges is constructing safe, low maintenance and cost competitive
support structures. Different solutions for these substructures are being utilized, each
with their pros and cons. For water depths between 30 and 60 m, tubular steel lattice
towers, i.e. jackets, are a favored solution. Figure 1.3 shows an offshore wind turbine
with a jacket support structure, designed by Norwegian Owec Tower AS. In order to
expand the use of wind power, minimization of cost is vital. The support structure,
tower and foundation comprise of only 17 % of total capital cost. Yet, the potential for
cost reduction is high [6].

Structural optimization is a design scheme for finding optimal solutions. The goal of
the process is structures that are stiff, economical and easily producible while satisfying
mechanical constraints like displacements, stress levels, fatigue damage, buckling and
eigenfrequencies. Structural optimization is a field that combines many other scientific
areas, such as mechanics, calculus and programming. Today, the available computa-
tional power is increasing at a high rate, which enables researchers to carry out more
elaborate automatic optimization processes. Structural optimization can be done by
altering the size of the members, the boundary shape of the structure or, in the most
general case, the topology of the entire design domain. Several methods can be em-
ployed to arrive at an optimized design. One such method is genetic algorithm (GA),

which mimics the evolutionary process known as ”survival of the fittest”.

1 INTRODUCTION

Tools for optimizing the inner and outer diameters of the beams in a predefined
jacket support structure, utilizing (GA), has already been developed at NTNU. In this
thesis, an attempt will be made at writing a script for an automated topology optimiza-
tion process of a jacket support structure. The topology optimization will be done by
reducing the task to an equivalent sizing problem of a ground structure of varying
complexity. Beams that have a diameter which is smaller than a certain limit will be
removed from the jacket. The extensions of the work already done will lay in the ability
to add or remove beams and nodes. A general topology optimization of a jacket for
an offshore wind turbine using GA has, to the best of my knowledge, not been carried
out earlier. Hence, the work will be experimental and it is hard to say how success-
ful the implementation will be beforehand. The objective of the thesis is an immense
undertaking and a series of simplifications will have to be made. A GA optimization
of design parameters will be executed by a MATLAB script, while structural response
will be evaluated by a powerful wind turbine simulation tool: Fedem Windpower. The
objective is to explore the possibilities and limitations of structural optimization by GA
applied to a jacket support structure. The overall long-term goal is to contribute to
the cost reduction of offshore wind turbines through optimization of jacket support
structures.

The literature review in chapter two will serve as a background study in interesting
and relevant topics for the work to be done in this Master’s thesis. The fields of wind
turbines, structural optimization and fatigue analysis will be quickly introduced in a
historical and broad context, before theory of special interest for this thesis is presented
more thoroughly. Chapter three will describe the applied methodology by explaining the
wind turbine analysis model and the code that was written. The code will be presented
in a general manner, except some MATLAB specific implementation methods which will
be presented in a separate subsection. The result of the different optimization runs as
well as discussion will be presented in chapter four. The results are presented in the
same order as they were produced because they represent the path towards the objective
of the thesis, and adjustments were done to the optimization algorithm between runs.
The concluding remarks are given in chapter five, reviewing the pros and cons of the
implementation that was carried out in the thesis and to what extent the objective of
the thesis was met. Finally, some thought on improvements of the implementation are
given in chapter six as a contribution to further work. The last version of the MATLAB

codes that were written will be found in the appendices.

Figure 1.3: Offshore wind turbine with jacket support structure

2 Literature Review

This chapter includes a literature background study in topics found relevant for the
objective of this thesis. Namely, wind turbines with emphasis on offshore utilization and
support structures, structural optimization, especially by means of genetic algorithms,

and fatigue analysis.

2.1 Wind Turbines

Mankind has been learning to harness the power of wind for millennia. The first utiliza-
tion of wind power was not to generate electricity but to mill grain or pump water. The
origins of the windmill are uncertain, but the first reliable information of a windmill
dates back to the year 644 BC. The first wind turbine to produce electricity was made
in 1891 by a Danish professor, Poul La Cour. The first really large wind turbine was
installed in the US in 1941, with a rotor diameter of 53.3 m and a power capacity of
1250 kW [7]. Modern offshore wind turbines that are being installed today, typically
have a power output of around 4 MW [4] and rotor diameters of over 100 m.

A wind turbine converts kinetic energy from the moving air into mechanical energy
which in turn is converted to electricity. For an ideal lossless conversion from kinetic to
mechanical energy by a disc shaped energy converter in a disc shaped frictionless air
stream, one can calculate the optimal power output by Betz’s elementary momentum
theory. As kinetic energy is drained from the airflow, the air behind the energy converter
moves slower and expands, as illustrated in figure 2.1. The theoretical power output
from this energy conversion is given in formula (2.1) where m is the mass flow of the
air and v; and v, is incoming and outgoing air velocity, respectively [7].

1. 2 2
Prech = 5 M (vi—v3) (2.1)
A trivial maximization of P, in formula (2.1) would yield v, = 0, which is physically
impossible. However, it can be established by the law of conservation of momentum and
the principle of action equals reaction” that the optimal ratio of v2/v, is 1/3. With this
optimal ratio of incoming and outgoing air velocities, the ratio of the power extracted
by the converter and the power of the corresponding free air stream is 0.593, the "Betz
factor”. In other words, even under ideal conditions with a perfect energy converter can

a maximum of 59.3 % of the kinetic energy in the airflow be converted to mechanical

2 LITERATURE REVIEW

A

- FAH

Pmeth AZ vy

Figure 2.1: Extraction of mechanical energy from an ideal air flow [7]

energy. The power coefficient, i.e. efficiency, of modern wind turbines vary greatly with
wind speeds and rotor design but can reach as high as 50 % [7].

Wind turbines are classified by how the blades interact aerodynamically with the
wind, by drag or lift, and by the orientation of the rotor axis, vertical or horizontal. Drag
devices (e.g. anemometers) are pushed by the wind like a sail boat, and thus they can
not move faster than the wind pushing them. The efficiency of such devices relatively
low and there is limited commercialization of this design. Most commercial designs
are horizontal-axis wind turbines (HAWTSs) that utilize airfoils that generate lift. Each
blade can be regarded as an airplane wing that generates lift partially in the direction
of rotation of the rotor. There can be one or more blades, but most large HAWTs use
three blades. A typical wind turbine consist of a foundation or substructure (offshore),a
tower and the rotor nacelle assembly (RNA). Figure 2.2 shows the major components
of the RNA of a large HAWT [3].

2.1 Wind Turbines

Pitch

Rotor

(Blades, Hub) Low-speed

Shaft
Gear Box

Stator

Anemometer

Wind

Direction

High Nacelle
Speed
Shaft

Yaw Motor —

Generator

Figure 2.2: Major components in the RNA of a large HAWT [3]

2.1.1 Offshore Utilization

Although land based wind turbines are dominant, and will be for a long time, a shift
towards offshore wind farms is developing. This tendency is despite the fact that total
installed cost of wind power is in the vicinity of 2000 USD/kW for onshore installations
compared to around twice that for offshore wind power [8]. There are a number
of reasons why it could be favorable to site wind turbines offshore. Many countries,
including Denmark, have limited suitable land to devote to wind energy production.
In most of the world, however, this is not a compelling reason alone to switch from
land based to offshore wind turbines. Another important aspect favoring offshore wind
turbines is the higher mean wind speeds than at a corresponding height onshore. As
seen in figure 2.3, a wind turbine with a hub height of 60 m offshore will have a higher
mean annual wind speed, V,,5,,,;, than an onshore wind turbine with a hub height of 80
m [7].

2 LITERATURE REVIEW

e 120 Onshare:

£ / Ve = 1 M/s ab 80 m

g 100

; Offshare:

x= -~ Vot = 85 m/s af 60 m
80 zy = 02 mm

2 [
60 h/ _____

<
40 @Q/
s/
20 /

10

_—___-—_ _
40 50 60 70 80 90
Mean annual wind speed v,, m/s

Figure 2.3: Mean annual wind speed on- and offshore [7]

The surface roughness, z, in figure 2.3, is lower at sea than onshore, which is why
the offshore wind speed increases more rapidly with height. The turbulence intensity
is also lower offshore, positive effects of low turbulence include lower fatigue loads.
On the the other hand, the wake behind the rotor lingers longer in low turbulence
conditions. Consequently, distance between wind turbines in an offshore wind park
needs to be greater to obtain the same aerodynamic array efficiency [7]. In figure 2.4
one can easily observe how leeward turbines end up in the wake of the windward ones.
Because onshore wind farms are quite dominant in the terrain, there are also aesthetic
reasons for placing large wind farms far off the coast. A final reason that offshore wind
energy could have a bright future is the prospect of large scale wind farms with power
output comparable to individual power plants. The vast area available at sea makes
this more feasible off- than onshore.

Building safe and economical wind turbine farms offshore also brings considerable
challenges. Environmental factors that need consideration when building offshore
wind turbines include high wind speeds, cyclic wave loading, ice (both crashing into
the substructure and accumulation on the turbine blades), currents, tides, marine
growth and corrosion. In addition, the strength of the sea bottom soil must be tested to
withstand the loading of the foundation. It also has to be taken into account that parts
of the soil might be scoured away around the foundation, which could affect structural

stability and stiffness. Not only are all these mentioned factors hard to predict and

10

2.1 Wind Turbines

Figure 2.4: Vattenfall’s Horns Rev 1 offshore wind farm

design for individually, but their coupled effects are also important to consider.

Maintenance in remote locations and harsh weather conditions can be difficult and
time consuming, resulting in longer down times and economical losses. The reliability
of components is consequently all the more important for offshore wind turbines. A
number of concepts has been proposed for delivering personnel and service parts, in-
cluding dynamic platforms on the towers, accessibility under water using submarines
and in the air using helicopters. In figure 2.5, personnel are being lowered onto the
back of a nacelle to a specially built platform. An EU project called LEANWIND, with
among others SINTEF as a contributor, aims to reduce operation and maintenance cost
through state-of-the-art technologies [9], e.g. remote controlled surveillance and main-
tenance by robots. Constructing and operating large offshore structures has been done
by the petroleum industry for decades and a lot of the necessary technology can build
on that experience. However, the profit margins in wind energy is tighter than for oil
production, thus making it harder to be a worthwhile endeavor.

Vattenfall’s Horns Rev 1 wind farm (figure 2.4) with 80 wind turbines and a com-
bined effect of 160 MW produces about 2 % of Denmark’s total energy consumption,
or the equivalent of 150 000 households [10]. The largest offshore wind farm in the
world is the London Array, consisting of 175 turbines with a combined effect of 630 MW,
or the equivalent of nearly 500 000 UK households [11]. Plans existed to extend the
project with 166 new turbines, yielding a total effect of 1 GW, but were shelved due to

the uncertainty of the impact the wind farm would have on the habitat of red-throated

11

2 LITERATURE REVIEW

Figure 2.5: Offshore wind turbine with helicopter supply platform [7]

divers, a threatened bird [12].

Only land based wind energy farms has been constructed in Norway yet, despite
the country’s long coast line and high offshore wind speeds. This is partly due to
challenges concerning deep waters, excessive wave heights and non-homogeneous
seabed conditions. Consequently, it has not been economically justifiable to construct
offshore wind farms in Norway. However, it is likely that as the technology matures,
constructing offshore wind farms off the Norwegian coast will be competitive to other
European nations. The Norwegian Water Resources and Energy Directorate (NVE) has
performed a strategic environmental assessment of 15 zones off the Norwegian coast
suitable for wind energy production. The total power effect of these zones, if developed,
could be between 4.6 and 12.6 GW. As a comparison, the total Norwegian energy
generating capacity was about 32 GW in 2012 [13]. If wind farms are constructed
in these zones, the Norwegian industry could become world leading in offshore wind
energy utilization on deeper waters [14]. As a pilot project, Statoil has already designed
and deployed the worlds first full-scale floating wind turbine, Hywind, at water depths
of 200 m and are continuing development to commercialize the concept. The wind
turbine made up of a large floating tubular substructure, held in its place by three

mooring lines [15].

12

2.1 Wind Turbines

2.1.2 Support Structures

One of the major challenges separating offshore from onshore wind turbines are the
support structure. For an onshore installation, the cost of the turbine and tower itself
will typically be 64-84% of total capital costs, while for offshore wind farms it will only
make up 30-50% [8]. To realize cost efficient offshore wind farms, minimization of
the support structure cost is essential. The most cost-effective substructure design will
vary according to water depths. For instance, it would not be economical to install a
several hundred meter high jacket support structure for a wind turbine. In figure 2.6 it
is roughly illustrated which support structure design concepts that are expected to be

best suited for different water depths.

Monopiles /’
Gravity Foundations ~
- ? Floating Structures ‘

Substructure Cost

Tripods, Jackets, Trusses ‘

Shallow Water Deep Water
Technology Technology

0 20 40 60 80 100 120 140 160

Figure 2.6: Substructure cost at different water depths [16]

For shallow waters below 30 m, monopiles and gravity based foundations are fa-
vored designs. A gravity based foundation, illustrated in figure 2.7a, is typically a
concrete caisson that is brought to the site, placed on the seabed and filled with sand
or gravel. Extensive site-specific preparatory work is required to ensure a level seabed
and to avoid uneven settling [16]. Gravity foundations are most cost effective in very
shallow waters of a few meters. Monopiles, illustrated in figure 2.7b, are steel pipes
that are rammed into the ground by pile drivers. The design is preferred because of its
simplicity, and for its similarity to well developed onshore technologies. Furthermore,
monopiles have a small footprint and no preparatory work of the seabed is required as
long as it consist of sand or gravel [7], making them less harmful to the environment.

However, as the height of a monopile increases, issues regarding coinciding natural

13

2 LITERATURE REVIEW

frequencies of the monopile and excitation forces arise. These vibrations will in con-
sequence reduce the fatigue lifetime. In order to make this relatively soft system stiff
enough, the cost rises, and around water depths of 20 - 30 m they are no longer cost
effective [16].

- Rt

7

(a) Gravity based (b) Monopile

Figure 2.7: Substructures for shallow waters [17]

For transitional waters between 30 and 60 m, tripods, jackets and tripiles are being
utilized, collectively termed space frame substructures. A tripod consist of a central
steel tube that is supported by three legs, as illustrated in figure 2.8a. At the end of the
three legs, the tripod is anchored to the seabed by penetrating thinner steel tubes up to
20 m into the soil. Advantages include high stability and stiffness compared to weight,
also on an uneven seabed [7]. The tripod is, however, costly to produce and hard to
transport. In figure 2.8b a steel lattice tower, called a jacket, is illustrated. It is made
of four legs, stabilized throughout its height by X-braces, all made in welded tubular
steel. This design has a high stiffness to weight and cost ratio [7]. Jackets are used
in the offshore petroleum industry and that know-how can be adopted when utilizing
them as wind turbine substructures. For wind turbines, however, lower safety and
environmental risks as well as higher production volume gives room for optimization of
this design [16], which is the topic of this thesis. The tripile foundation, illustrated in
figure 2.8c¢, can be regarded as a fusion of the tripod, jacket and monopile substructure.
It is currently installed in BARD Offshore 1, a german 400 MW wind farm.

At water depths of several hundred meters, floating wind turbines is the only realistic

concept. Although no large scale wind farms utilize this design today, several designs

14

2.2 Structural Optimization

(a) Tripod (b) Jacket (¢) Tripile

Figure 2.8: Space frame substructure for transitional waters [17]

are being researched, such as the Hywind pilot project mentioned in the preceding
section. There are considerable challenges to floating wind turbines, e.g. complicated
dynamics. Establishing floating wind turbine farms will be expensive and demanding,
but there is hope that the high reward of mastering such technology will drive research
forward. In the United States alone, it has been estimated that such technology would
unlock 500 GW of offshore wind energy potential [16]. A substantial number when
comparing with the total electric generating capacity of the United States, which is in
the vicinity of 1 TW [18].

2.2 Structural Optimization

In 1638, Galileo Galilei examined the ultimate static load carrying capacity of a can-
tilever beam. Although he incorrectly assumed a uniform tensile stress distribution at
the base of the beam, some regard this as the origin of structural optimization. The
mathematical framework for minimizing and maximizing functions was laid in the 18th
century, when the calculus of variation was established. The basic idea of topology op-
timization is credited to papers that were published around 1900. Among others, one
by Michell. The Michell truss is a truss with an infinite number of members within a
design domain, which has been studied extensively [19].

Today is structural optimization a mature field of research, and optimized structures

as well as parts for the aerospace and automotive industry are in daily production [20].

15

2 LITERATURE REVIEW

Optimization of very simple problems, e.g. calculation of a the optimal size of a simple
cross section, can readily be solved by hand calculations. However, as the number of
variables and constraints rise, analytical hand calculations are useless. Numerical ap-
proaches utilizing computational power are today used for obtaining results for practical
problems.

Structural optimization can be subdivided into three categories depending on how
the initial structure is modified to find an optimal design. A sizing optimization problem
is restricted to changing the cross sections of predefined structural members. Shape
optimization is defined as optimization of the boundary shape, while topology optimiza-
tion includes the possibility of adding or removing holes to a continuum material within
a design domain. Examples of how each of these three categories can optimize a simply

supported beam is illustrated in figure 2.9a-c.

a)

d

Figure 2.9: Optimization categories: a) Sizing, b) Shape and c) Topology [20]

When performing topology optimization of a truss structure, e.g. a jacket, it is
favorable to apply a ground structure approach rather than considering the design
domain as a continuum that is to be hollowed out. A ground structure is a network of
nodal connections that define all possible members in the truss. The three trusses in
figure 2.10a-c show ground structures, of varying complexity, for transmitting a vertical
load through a rectangular design domain to a fixed connection. In example a, only the
nodes closest to each other are connected, while in example c, all nodes in the ground
structure are connected.

By utilizing this approach, the topology optimization problem is reduced to a sizing

problem. Members that are inefficient can get a size of zero and disappear, while

16

2.2 Structural Optimization

Figure 2.10: Ground structures of increasing complexity from a to ¢ [20]

significant members can get a size in accordance with their applied loading. This implies
that solutions in the design domain that are not covered by the ground structure may
never be found. A solution can only be a subset of the ground structure. Members with
a size of zero can be troublesome for numerical structural analysis and is often replaced
by a small, non-zero, value in order to ensure a positive-definite stiffness matrix.

Typically, a structural optimization process will minimize either compliance, i.e.
the inverse of stiffness, structural weight or cost, while being subjected to constraints
like maximum displacement or stress level. The function that is minimized during
optimization is called an objective function. Alternatively, a mechanical property, e.g.
buckling load, can be maximized under cost or weight constraints. The overall goal of
structural optimization is cheaper and more efficient structural designs.

There are several routes to this goal, both methods based on a solid mathematical
framework and more heuristic concepts. Hence, structural optimization can be classified

into two methods [19]:

* Nonlinear programming (NLP) based on gradients

* Heuristic approaches, e.g. genetic algorithm (GA)

When optimizing by NLB the idea is to calculate sensitivity coefficients which will define
the direction in which the design variables ought to be changed in order to minimize
the objective function. The NLP problem, which is valid if design variables can vary
continuously and constraint functions are continuous and differentiable, can be formu-
lated as follows. Let A = (A, ...,A,,)” be a vector of m independent design variables,
e.g. cross section parameters. The design variables are subject to an upper and lower
bound, AV and A’ respectively. Let U = (Uy,...,U,)T be a vector of state variables,
i.e. nodal displacements. The number of state variables, n, is equal to the number of
degrees of freedom in the design problem. A constraint, e.g. maximum displacement

or stress, can now be formulated as an inequality, H; < 0, where j =1, ..., n! and n!

17

2 LITERATURE REVIEW

is the total number of constraints. An objective function, F(A), represents structural
weight, cost or compliance and is to be minimized. Put together, a NLP problem can be

stated as in formula (2.2).

Minimize F(A)
subject to H;(U(A),A) <0, (j=1,..,n") (2.2)
Al <A, <AY, (i=1,..,m)

The problem is nonlinear because the state variables, U(A), is a nonlinear function of
the design variables, A. A gradient based NLP optimization process uses the differential
coefficients of U(A) with respect to A, i.e. sensitivity coefficients, to solve the optimiza-
tion problem. There are various mathematical approaches of solving this problem, the
most popular one being sequential quadratic programming [19].

A structural optimization by NLP is hard to unify with a complex dynamic structure,
like an offshore wind turbine. Solving the NLP problem analytically might find maximal
stiffness for a static load case subjected to a total structural mass constraint, or optimize
the topology to ensure full utilization of all cross sections. However, for a dynamic
analysis of a wind turbine in the time domain, subjected to wave and wind loading,
with notable changes in geometry during analysis, a NLP optimization approach is hard
to realize [6]. Consequently, the optimization process in this thesis will be carried out

using genetic algorithm (GA), a heuristic optimization scheme.

18

2.2 Structural Optimization

2.2.1 Genetic Algorithms

The idea of evolutionary computation for optimization and machine learning came
about in the 1950’s, at a time when computers where in their infancy. Computer scien-
tists saw the potential in solving specific problems using evolution inspired procedures.
GAs were invented by John Holland in the 1960’s and his motivation was the oppo-
site of other researchers. He wanted to study if the adaptation, as it occurs in nature,
could be recreated through computer algorithms. A groundbreaking 1975 book by Hol-
land, Adaptation in natural and Artificial systems, theorized the idea of chromosomes
as strings of, not DNA, but binary digits, bits. The book proposed a population-based
algorithm in which the genome is carried on from parent to offspring through crossover,
mutation and inversion [21]. Compared to other optimization schemes, GA has several

advantages and downfalls. Some of the appealing aspects of GA is that it:

* Can search for solutions in an enormous number of possibilities
* Exhibits adaptive traits in that it performs well in changing environments
* Is straightforward to implement on a basic level, as there are no gradients

* Can find high-quality and innovative solutions to difficult or poorly understood

problems
* Can be combined with other, more traditional, optimization methods

* Is a highly parallel algorithm that can take advantage of parallel processing

The above traits can be directly compared to a prime product of natural evolution:
humans. The genetic sequence of humans could have been ordered in an extremely large
number of ways, still we are relatively similar and highly adapted to the environment we
live in. Interpreting electromagnetic radiation with the high acuity of human vision is
surely an impressive feat. Still, humans also show some of the downfalls of optimization
by evolution. Even though humans are impressive creatures, we are not perfectly
adapted to our environment. The fact that one can never be sure that the global optimal
solution of the problem has been found is one of GAs unfavorable traits. Furthermore,
GA can preserve traits at an evolutionary stage were they are no longer advantageous.
Many characters of humans are remnants of previous species which have lost all or
most of their original function, e.g. the appendix, the tailbone and the wisdom teeth.
Mutation, which is one of the design drivers in evolution, can also cause disorders or

cancer.

19

2 LITERATURE REVIEW

Other limitations of GA are [22]:

* Premature convergence
* Difficulty in defining a fitness function
* No effective terminator of optimization

* Hard to decide parameters like population size and mutation probability

In light of these pros and cons, GA has been applied to a broad range of practical

problems, such as:

* Design optimization - e.g. aircraft design and circuit layout

* Economy - e.g. bidding strategies and processes of innovation

* Ecology - e.g. host-parasite coevolution and resource flow

* Machine learning - e.g. weather prediction and artificial intelligence

* Medicine - e.g. breast cancer detection

The odd antenna in figure 2.11 was designed in 2006 for a NASA Space Technology
mission, using GA. Motivated by a limited ability to design better antennas manually,
researchers turned to evolutionary algorithms. Development of GA code and production
of an optimal antenna design took about 4 months and utilized a 10 000 processor
supercomputer. The unconventional design result would most likely not have been
found through a manual optimization strategy. The antenna was successfully put in
orbit and displayed previously unachievable performance [23] .

As the goal of this thesis is to apply GA to a jacket, it will serve as an example
problem in describing GA and its nomenclature. Seeing how closely tied the idea and
history of GAs are with natural evolution, the employed nomenclature has biological
metaphors. A chromosome describes a trait of a problem, e.g. the outer or inner diameter
of a tubular cross section in a jacket structure. If a binary encoding is chosen, each
chromosome consist of a string of bits and each bit can be in one of two states, alleles,
0 or 1. Other encoding possibilities include hexadecimal and value encoding. Each
bit is called a gene and each gene has a particular position, locus, on the chromosome.
Hence, a chromosome encoded with 11 bits can represent 2'! = 2048 distinct values.
If the inner and outer tubular beam diameters are given in mm, 2 chromosomes of 11
bit length for each beam will have the ability to describe all outer diameters from 0 to
2047 mm and all thicknesses from 1 mm to a massive cross section, i.e. with an inner

diameter of 0. There will be constraints to a problem that help minimize the number

20

2.2 Structural Optimization

Figure 2.11: Antenna design developed by GA for NASA [23]

of combinations possible, e.g. the inner diameter can not be equal to or larger than
the outer. Nevertheless, with a high number of beams in the jacket there will be an
enormous number of feasible combinations, called the search space [21]. The search
space contains all possible solutions of the problem, as it has been formulated.

An optimization process is initiated by a pool of random designs within the search
space, ideally with a large gene pool in order to explore as much of the search space
as possible [22]. This pool of initial designs is the population of the first generation. A
population consists of individuals, each with their own genome, e.g. a distinct jacket
design. All individuals in the population are evaluated and assigned a fitness score.
Higher fitness equals a better individual. In order to evaluate the fitness of an individual,
an objective function has to be defined. Minimizing this function is the goal of the
optimization. The total weight of the structure is an intuitive choice as it is easy to
calculate and closely related to the structural cost. Care should be taken in defining the
fitness function, especially for multicriterion optimization, as it constitutes the definition
of the optimal solution, i.e. the goal of the optimization [22]. If a GA was implemented
without any form of constraint, there would be nothing to stop the process from cutting
all weight resulting in a useless structure. Hence, constraints are included through a
penalty function. The penalty function will typically put constraints on stress levels or

displacements.

21

2 LITERATURE REVIEW

The children of a generation is a recombination of the genome of individuals who
were deemed fit enough to be in the mating pool. A selection method to choose two
parents from the mating pool for breeding has to be applied. A popular method, which
also will be applied in this thesis, is called "weighted roulette wheel” sampling. All
individuals in the mating pool are assigned a weight, i.e. parenthood probability, pro-
portional to its fitness. Next, all individuals will be assigned a slice of a roulette wheel
based on their weight before the wheel is spun and a parent individual is selected. By
utilizing this method, the individuals with the highest fitness has the highest probability
of passing on its genome.

The recombination of genes during breeding is done by means of crossover and
mutation. Crossover is a recombination of the genes in the chromosomes of two parent
individuals. It can be done at one or more points in the chromosomes, and at fixed or
random positions. Figure 2.12 illustrates a two-point crossover of two chromosomes
with binary encoding. Mutation is a random change in the genome in order to ensure
genetic diversity. The mutation probability constitutes the probability of any given gene

to switch allele from O to 1 and vice versa.

Parent 1 11011010
1 |

Parent2 | 01101100

-

Childl [11001110
1 |

Child2 [01111000
1 |

Figure 2.12: Example of a two-point crossover with binary encoding [22]

The produced children make out the next generation and will carry on most traits
from the parents with the highest fitness as well as some random mutations. The gen-
eration of children is evaluated for fitness and consecutively breed a new generation.
The loop continues in this manner until a termination criterion is met and an optimized
design of sufficient quality is hopefully found. The optimization termination, i.e. con-
vergence criteria, could be based on a maximum number of generations, total elapsed

time or a negligible change in fitness for a specified number of generations [21]. Several

22

2.2 Structural Optimization

termination criteria can also be combined. A simple flowchart of a genetic algorithm is
illustrated in figure 2.13.

Various strategies have been employed in the literature to improve GA. Because the
search space can be enormous, Dede et al. [24] proposed a restricted range approach.
First a preliminary optimization loop is completed and the best design is assigned as a
reference solution. In later optimization loops the reference solution serves as a center
for an upper and lower bound for all design parameters. Bounds of design parameters
can also be applied based on experience or available cross sections in product catalogs.
Another extension of GA is a branch called adaptive genetic algorithms (AGA) in which
the optimization parameters change during the optimization process [22]. The muta-
tion probability can for instance increase if the genetic diversity in the mating pool is
low.

It is expected that as computational power increase, evolutionary optimization meth-
ods will be applied to an even wider range of problems and see further industrial us-
age [23].

Initialize
Population

v

Randomly vary
individuals

!

| Evaluate Fitness

s

Apply Selection

Figure 2.13: Simple flowchart for an evolutionary algorithm [22]

A

23

2 LITERATURE REVIEW

2.3 Fatigue

Fatigue is a process by which a structural member is slowly degraded over time due to
cyclic loading. The damage is localized and permanent, and can culminate in cracks
or complete fracture. The first systematic research in the field was done by Wolher in
the 1860’s. His interest was sparked due to inexplicable fractures in train axle shafts at
stress levels that would be unproblematic if the loading was static. He correctly showed
that steel under cyclic loading can experience crack growth until fatigue fracture occurs.
High-cycle fatigue, i.e. fatigue at stress levels below yielding and over 1E+4 cycles, can
be summarized in three steps: initiation of microscopic cracks, growth of micro- and
macroscopic cracks and sudden fracture [25]. Fatigue failure has caused numerous
aviation accidents and the capsizing of the Alexander L. Kielland oil platform in 1980
that killed 123 people. A more recent example is from the the summer of 2002, when
a NSB Signature train derailed due to an axle fracture caused in part by fatigue. For
offshore structures in the North Sea, 1/4 of all structural damage requiring repair is due
to fatigue [26].

Given the environment an offshore wind turbine is subjected to, fatigue is a limiting
factor and must be taken into account in the design process. Both wind, waves, spinning
blades and the interaction of these forces contribute to oscillations. Care should be
taken to avoid coinciding load excitation frequencies and eigenfrequencies of the wind
turbine. A jacket structure of tubular steel members is welded, and as welds contain a
large number of microscopic cracks they can be an origin of crack growth.

The relation between the magnitude of a stress cycle, Ao, and the number of cycles
of that magnitude a member can withstand, N, are given in S-N curves, also known
as Wolher curves. In DNV’s recommended practice for fatigue design of offshore steel

structures [27] the mathematical relation is given as follows.

log(N) =log(a) —mlog(Ao) 2.3)

The variables m and log(a) are constants that characterize the curve and have differ-
ent values below and above 1E+6 or 1E+7 cycles, depending on whether or not the
member is in seawater. The S-N curve is steeper for lower cycle numbers as illustrated
in figure 2.14 .

In order to carry out a fatigue analysis, the number of stress cycles, n;, at different
magnitudes, Ao, has to be predicted. There will be an extremely large number of

different stress ranges throughout the lifetime of a structure. Hence, they have to be

24

2.3 Fatigue

1000

100
Seawater with

cathodic protection

Stress range (MPa)

1
1,00E+04 1,00E+05 1,00E+06 1.00E+07 1,00E+08 1,00E+09

Number of cycles

Figure 2.14: S-N curves for tubular joints with cathodic protection [27]

discretized into a manageable number of stress bins, Ag;’s . E.g. if there are n cycles in
a 20-30 MPa interval, one could predict that it is the equivalent of n cycles at 25 MPa.
The stress ranges are extracted from the loading sequence of the spot that is evaluated.
The loading sequence show the progression of stress over time, and in order to extract
stress cycles only the local extrema of the curve (i.e. the peaks and valleys) are required.
To extract the stress ranges from the loading sequence a rainflow counting algorithm
is employed. The method gets its name from the way a raindrop would run down a
pagoda roof. The basic concept of the rainflow counting method is well known, but
how it is employed can vary. In this thesis, a standardization guide by Amzallag et.
al. [28] will be used as the methodology for rainflow counting.

The basic concept of this rainflow counting algorithm is to extract stress ranges
from the load sequence of local extrema by evaluating three consecutive stress ranges
simultaneously. In figure 2.15 the extraction of a stress cycle from a load sequence is
visualized. The method deals with four consecutive stress extrema points at a time,
S; i1, i+2, i+3> which make up three stress ranges, AS; , ;. If the absolute value of
stress range AS, is smaller than the absolute values of both AS; and ASs, it is to be
extracted. The value of AS, is stored and the points that make out AS,, S;11 42, are

discarded from the load sequence.

25

2 LITERATURE REVIEW

12t 12
nr 11
0 10
9 | 9
s } 8
7} 7
6 6
5 5
4 4
3t 3
2 | 2
1 1
(a) Before extraction (b) After extraction

Figure 2.15: Example of extraction of one stress cycle [28]

The difference between figure 2.15a and figure 2.15b is that a shaded stress cycle
from 5-9 is extracted and its data points discarded. In figure 2.15b, the next cycle to be
extracted is shaded and the dotted line show how the curve will look after extraction.
This iterative process is carried out until the load sequence is made out of stress ranges
that first increase and then decrease, which is called the residue. The residue contains
the largest stress range in the data. In order to extract cycles from the residue, it
is duplicated and joined together as shown in figure 2.16. This duplicate residue is
subsequently treated in the same manner as the initial load sequence and its cycles are
extracted. At the end of this procedure you are left with the same residue that was

duplicated in the first place and all cycles has been extracted from the load sequence.

——
oo o= N
T L

—_ W A ;o 9 ®
T

F Y Joining transition

Figure 2.16: Cycle extraction of residue by duplication [28]

26

2.3 Fatigue

When all cycles have been extracted, a damage evaluation can be performed by use
of the Palmgren-Miner rule [27]. The cumulative damage is considered as a sum of the
partial damage contributions from each stress bin, i, as shown in formula (2.4). If this

sum exceeds 1) (1/safety factor) the fatigue limit state has been reached.

k
D= "<y 2.4)

i=1 "1
In formula (2.4), D is the accumulated damage and k is the number of stress bins. In

stress bin Ao, n; is the number of cycles due to loading throughout the design lifetime,

while N; is the number of cycles until failure obtained from the S-N curve.

27

3 Methodology

The optimization process in this thesis is based on an interaction between Fedem Wind-
power beta version R7.1-a2 and a MATLAB script. MATLAB (Matrix Laboratory) is a
popular high-level programming language for numeric computation and graphic visu-
alization. Fedem Windpower is a FEM-software specialized in dynamic simulation of
wind turbine systems. It offers tools for designing realistic RNA and support structures,
and for modeling wind and sea conditions. It is developed by Fedem Technology AS
based in Trondheim, Norway. As the goal of this project is to optimize a jacket structure,
an existing model of the transition piece, tower and RNA will be utilized. Namely, a
model from the OC4 project carried out by, among many others, National Renewable
Energy Laboratory (NREL) in the U.S., Fraunhofer Institute for Wind Energy and Energy
System Technology (IWES) in Germany, Fedem Technology AS and NTNU [29]. The
project compares computer codes for coupled simulations of offshore wind turbines.
The standard model used as a basis for simulations in this thesis is shown in figure 3.1.
The jacket seen in the model will be replaced with different ground structures in order
to carry out optimization runs. The wind turbine has a hub height over mean sea level

of 90.55m [30] and the structural components are made up of:

* The "NREL 5-MW Offshore Baseline Turbine” described by Jonkman et al. [31]

* A 68 m. high conical tower

* A concrete transition piece with dimensions 4 x 9.6 x 9.6 m and a mass of 666 t
(orange in figure 3.1)

* The "UpWind reference jacket” described by Vorpahl et al. [30], which is about 66
m high.

The methodology of the optimization process will be presented in this chapter. The
FEDEM wind turbine analysis model and its loading be explained first, in section 3.1.
The goal and function of the written MATLAB code will subsequently be laid out in

section 3.2.

29

METHODOLOGY

30

Figure 3.1: 3D wind turbine simulation model from the OC4 project

3.1 Wind turbine model

3.1 Wind turbine model

A simulation of an offshore wind turbine in the time domain is complex and non-
linear. The analysis tool utilized in this thesis, Fedem Windpower R7.1, is capable of
simulating soil conditions, structural behavior, turbine power output as well as wind
and wave loading. A major downfall of this extensive and precise analysis is that it is
time consuming. No available simulation tools are currently able to simulate at this
level of accuracy considerably faster than real-time. Assessing fatigue damage cannot
be omitted, and a standard design life of a wind turbine is 20 years. Furthermore,
the variable environment an offshore wind turbine is situated in makes it necessary to
evaluate many load cases, typically a few thousand [6]. Hence, conducting a complete
simulation of the entire lifespan of a wind turbine for all load cases is utterly unrealistic
and simplifications has to be made.

The model that is used for optimizing the supporting jacket in this thesis will be ac-
curate in some aspects and greatly simplified in others. The supporting jacket structure,
the tower and the RNA will all be included in the analysis model. It could be possible
to extract a loading time series at the bottom of the tower in one simulation and later
apply it on top of the supporting structure for future simulations. This would reduce
simulation time, but the interaction between the jacket and the rest of the wind turbine
would be less precise as there are coupled effects. In the applied simulation model,
soil-jacket interaction and soil stiffness is neglected as the jacket is cantilevered at the
bottom of the four legs.

Data about the wind and sea conditions the wind turbine will be subjected to during
analysis are gathered from a 50 m deep reference site in the Dutch North Sea. The data
about this site is reported in the document "Upwind Design Basis” and are registered
as 3-hour averages over a period of 22 years [32]. The wind turbulence and wave
parameters are taken out of table 59 in "Upwind Design Basis” [32] at a reference wind
speed of 10 m/s.

The wind definitions is imported to the model through an external wind file (.bts file
extension). The wind file is generated by TurbSim, a tool developed by NREL (National
Renewable Energy Laboratory). TurbSim was set to generate a wind field of 126 x
126 m, which is equal to the rotor diameter. A reference wind speed of 10 m/s and an
turbulence intensity of 15.2 % was utilized. A 16x16 matrix of squares across the wind
field was chosen to define a turbulent wind speed for each time step in the analysis.

This ensures a more realistic wind modeling than setting a constant wind speed. A

31

3 METHODOLOGY

reference speed of 10 m/s was chosen because it will accelerate the turbine to energy
production rotation speed without reaching speeds that would call for breaking.
Wave loading is applied using a JONSWAP (Joint North Sea Wave Project) sea wave
spectrum. A JONSWAP spectrum is used to model irregular waves and is in essence a
sum of sine functions [33]. In Fedem Windpower, this spectrum can be defined by a
couple of user defined parameters. For the single fatigue limit state load case considered
in this thesis, the significant wave height, H,, is 1.48 m, the spectral peak period, T,,
is 5.74 s, the number of wave components, n, is 400 and the spectral peakedness, 7,
is 1.0. In figure 3.2, the altering wave height in a 30 s time domain generated with
the preceding parameters is plotted. Marine growth on offshore structures through
its lifespan can be considerable, and influence structural behavior. Marine growth is
accounted for by adding a 10 cm thick layer with density 1100 kg/m? to all beams with
center of gravity below 2 meters under mean sea level. The mean sea level was altered

to match the height of the different jackets that were analyzed.

0.6 *

0.4

I
N

Wave Height [m)]
o

| | | | |
0 5 10 15 20 25 30
Time [s]

Figure 3.2: Wave height in 30 s time domain

The model has to be configured to export analysis results in order to have data to
import and process in MATLAB. Exported data is axial force and moment about the Y
and Z axis for both ends of all active beams in the model. Total analysis time is set at
90 seconds and data is recorded in every time step, i.e. 0.05 s, of the last 30 seconds of

the analysis. The first 60 seconds are devoted to accelerating the turbine. In order to

32

3.1 Wind turbine model

omit saving data for the initial 60 seconds of the analysis, the solver option ”- savestart
60” is added to model.
The dynamics solver in FEDEM it set up to solve the linearized dynamic equation

of motion (equation (3.1)) using a Newmark HHT-a time integration method.

MkA.r:k + CkAf'k +KkArk = AQk (31)

The dynamic equation of motion at time increment k is made up of four force contri-
butions. Inertia forces from the mass matrix, M, times the change in accelerations,
A¥#y.. Damping forces from the damping matrix, Cy, times the change in velocities, A7y.
Elastic forces from the stiffness matrix, K;, times change in displacements, Ar;. Finally,
the internal forces equal the change in input forces, e.g. external loading and gravi-
tational forces, AQ,. The Newmark time integration method solves the equation to
find accelerations, velocities and displacements for all degrees of freedom in increment
k + 1. The HHT-a value introduce efficient high-frequency numerical damping without
loss of accuracy [34]. Structural damping is introduced through a mass and a stiffness
proportional contribution, termed Rayleigh-damping. Stiffness proportional damping
is set to 0.01 and mass proportional damping is turned off by a value of 0 to avoid
damping out the critical low frequency vibrations.

Table 3.1 gives an overview of the numeric value of relevant parameters imple-

mented in the Fedem analysis model.

33

3 METHODOLOGY

Table 3.1: Values of parameters in Fedem wind turbine model

Property of | Parameter Symbol Value
Wave Loading | Significant wave height H, 1.48 m
Spectral peak period T, 5.74 s
Wave components n 400
Spectral peakedness Y 1.0
Water density Y water 1025 kg/m?
Marine growth density Ygrowesh 1100 kg/m?
Wind Loading | Reference wind speed Vief 10 m/s
Turbulence intensity TI 15.2 %
Air density Y air 1.225 kg/m3
Kinematic air viscosity Vair 1.46E-05 m*/s
Jacket Steel | Steel density Ysteel 7850 kg/m?
Poisson’s ratio % 0.3
Youngs modulus E 210 GPa
Shear modulus G 80 GPa
Wind Turbine | Mass of rotor Myotor 110t
Mass of nacelle Mugcette 240 t
Mass of tower Mower 217t
Mass of transition piece My, 666 t
Analysis | Time step At 0.05 s
Total time trot 90 s
Savestart toave 60 s
Mass proportional damping a 0
Stiffness proportional damping S 0.01
Numerical damping HHT-a 0.1

34

3.2 Programming

3.2 Programming

In order to create an automated optimization process, a comprehensive MATLAB-script
was written. The goal of the script is that it, after a couple of initial steps, can run
independently until an optimized design is produced. An overview of the entire design

optimization process utilized in this thesis is illustrated in the flowchart in figure 3.3.

Initiation
* Create master model file for desired jacket ground structure
* Generate random topology within specified bounds for all
individuals in the initial generation

a \
Correct invalid |
design parameters
and wirte model
files \
p v

£ —R\.‘ £ —R\.l

\ |
Fedem Windpower
dynamic analysis

Parent selection,
crossover and

mutation ..
\ Optimization |
A o A v
loop
e N g D
L | Check for yieldin |
individuals ranked and fati uZ failurge
based on fithess I g ‘
A ,/’ A 7

Termination
Optimized topology after specified number of generations

Figure 3.3: Flowchart of optimization process

35

3 METHODOLOGY

In the following sections (3.2.1-3.2.3) a walkthrough of the different parts of the
optimization algorithm will be given. It will be presented generically, in that it will
be explained what the purpose of the code is and how it was solved on a general
level. An explanation of the specific MATLAB-implementation will, where deemed
necessary, be presented in section 3.2.4. The complete MATLAB-scripts can be found
in the appendices A through C.

3.2.1 Jacket Ground Structure

The following relates to the MATLAB-function found in appendix A. The topology
optimization takes a ground structure approach, as described in section 2.2. The higher
the number of nodes in the ground structure, the bigger the search space for an optimal
solution. In figure 3.4, one face of the ground structure of two cubes with 3x3 and 5x5
nodes on each face is illustrated. The number of possible beams in the jacket increases
drastically with the number of nodes. The ground structure in figure 3.4a has a total

of 112 possible beams, while for the structure in figure 3.4b, this number is 792.

(a) 3x3 nodes (b) 5x5 nodes

Figure 3.4: Ground structure of cubic jacket (side view)

The goal of the MATLAB-function is to generate a file that specifies the spatial
nodal positions and beam connections, which can be imported to FEDEM Windpower
in order to generate a master model file. The generated file is a "Fedem Technology

Link Data” (.ftl) file. It also has to return variables containing information about the

36

3.2 Programming

ground structure topology and symmetry definitions to the main optimization script.
The input to the function is the number of nodes along the width of the jacket and the
ratio of height divided by width, e.g. a ratio of one generates a cube as in figure 3.6. In
figure 3.5 a ratio of four is utilized, as well as three nodes along the width. Resulting in
a 32 m high jacket ground structure with 928 potential beams. The width of the jacket
is fixed to match the transition piece utilized in the OC4-project. In contrast to the
jacket in the OC4-project, the generated jacket will have a constant width throughout
its height. Furthermore, to restrict the size of the search space, no nodes are defined
in the middle of the jacket. Consequently, no members will be able to cross the hollow

middle of the jacket during optimization.

(a) Side view (b) Top perspective view

Figure 3.5: Ground structure of 32 m high jacket with three nodes along its width

The nodal coordinates are produced by looping through all nodes on each face, while
updating and storing a global position vector for each node. Two opposite faces were
chosen to produce the corner nodes to assure that they were not defined twice. While
in the loop, a variable containing the node number along the width and height is also
stored, e.g. node number 2 along the width and 4 along height on face 2. This variable

will later on be mandatory in defining symmetric beams. To define all possible beams

37

3 METHODOLOGY

in the ground structure, all combinations of nodes on each face has to be identified.
When each node on a face of the jacket is connected to all other nodes on that face,
there will be unwanted beam definitions of two reasons. The corner legs will be defined
twice, one time for each connected face, and many collinear beams will lay on top of
each other. These combinations must be deleted. In order to identify collinear beams,
unit vectors of all beams are calculated. Next, a loop will identify beams with matching
unit vectors and at least one common node. When such a match is found, the longer
of the two will be deleted.

S 25
L ., 7 Y

Figure 3.6: Master beams for symmetry in cubic 3x3 ground structure

To achieve symmetry of all four faces of the jacket a set of master beams is extracted.
These master beams will have three or seven slave beams that will get the same cross
sectional parameters during optimization. The master beams are identified by having
at least one node on the left half of one specified jacket face. Except if the beam is on

the vertical middle line, then it is required to have both nodes on that line. In figure 3.6

38

3.2 Programming

the master beams of a 3x3 node ground structure are marked in blue. The green beams
are slave beams. When all master beams are identified, their respective slaves need to
be found. This is done by comparing the width and height number, from the variable
stored earlier, of the nodes of all beams. First, all beams that have the same position
on all faces are identified and listed. However, this process does not put symmetrical
beams that cross the middle of the the face in the same list, i.e. the two longest inclined
blue beams in figure 3.6. They have to be identified and concatenated in a separate
loop (cf. appendix A).

As the jacket is to be attached to the OC4 wind turbine model, some adaptions has to
be applied. The beams that go through the transition piece are added and connected to
the jacket below, i.e. the yellow beams in figure 3.6. The entire structure is also moved
to the correct spatial position to line up with the transition piece in the OC4-model. At

last, a .ftl file with nodal, beam, cross sectional and material definitions is written.

3.2.2 Fatigue Damage

The following relates to the MATLAB-function found in appendix B. Working by the
guidelines of DNV’s recommended practice for fatigue design of offshore steel struc-
tures [27], every beam in every jacket design has to be evaluated for fatigue damage
in eight material spots in both ends. Hence, it was most convenient to write the fatigue
assessment in an external function which could be called by the main optimization
script. The objective of the fatigue function is to determine if a cross section in the
jacket can withstand the cyclic loading of its design lifetime.

Input for the function is a time series of stresses for eight spots in the cross section
that is being evaluated, the design lifetime of the jacket and how many real-time sec-
onds of loading the stress time series corresponds to. These variables are calculated and
fed to the function by the main optimization script. Figure 3.7 illustrates how stresses
in the eight spots around the circumference of the tubular cross section are a linear
superposition of contributions from axial loading and moment around two axes. For-
mulas to calculate the stresses by this superposition are given in DNV’s recommended
practice [27], and are recited in equation (3.2). Ideally, a stress concentration factor
(SCF) ought to be employed in these formulas, whose purpose is to take into consider-
ation the effect of different joint geometries on stress levels. Given the unconventional
and complex joints that are created during a GA optimization, finding the correct SCF’s

would be a very demanding task. Consequently, all SCF’s are set equal to one.

39

3 METHODOLOGY

, > > >
i xL’Y _
= N ¥
O O O
Axial load In-plane Out-of-plane

bending moment bending moment

Figure 3.7: Superposition of stresses in eight spots at a welded intersection [27]

1 1 1
01 =0y +0py, Oy = EUX+£x/§Umy—§x/§Umz
1 1 V3 1 J3
03 =0, — O s> 4= EO'X—E 2omy—§ 20
1 1 1 3.2)
O5 =0y =0y, O¢ = Eax—aﬁamy+§\/50mz
1 1 V3 1 J3
07 =0y + Oy, Og = EO'X + 2 2omy + 2 20

For a 30 second simulation with a time step of 0.05 seconds, 601 stress values for
each of the eight spots considered in both ends of every beam are obtained. That is
almost 10 000 stress values for each beam in the model. This vast amount of data
makes the fatigue analysis one of the most time-consuming parts of the optimization
process. To remedy some of this computational cost, only stress time series with a range
in their data exceeding some constant value will be submitted to fatigue analysis. From
observations, a 30 second simulation will mostly have less than 10 stress cycles above
1 MPa. Even if these 10 stress cycles all were exactly 20 MPa, it would only correspond
to a fatigue damage of 17% with a design life of 20 years. Bearing this in mind, a
minimum range in the stress time series of 20 MPa, for at least one of the eight spots,
was chosen as a lower limit in order to qualify for fatigue assessment.

In order to extract stress cycles, peaks and valleys in the stress time series has to
be identified for all eight spots. Intermediate data points between local maxima and
minima are irrelevant in fatigue analysis and are discarded. Next, the series of peaks
and valleys is modified until all AS,’s are extracted and a residue is left. The residue
is duplicated and the process is repeated (cf. section 2.3). When cycle extraction of
the stress time series is completed, all stress cycles experienced by the cross section

during the simulation is listed for all eight spots around the circumference. In order to

40

3.2 Programming

carry out the fatigue analysis using the Palmgren-Miner rule it is assumed that every
cycle is repeated design life/simulation time times, e.g. for a 30 second simulation time and
a design life of 20 years, each cycle is assumed to act 21E+6 times. This number is
the denominator in the Palmgren-Miner sum, n;, the numerator, N;, which correspond
to the number of cycles the material can withstand a specific stress level is given by
the S-N curve in figure 2.14. All N;’s are calculated using parameters from the row for
tubular cross sections in table 2-2 in DNV’s recommended practice [27], ”S-N curves in
seawater with cathodic protection ”. Although some beams will be above sea level, the
S-N curve for seawater lies below the S-N curve for ”in air” (cf. figure 2.14), thus itis a
conservative simplification. The Palmgren-Miner sum is calculated for all eight spots
in the considered cross section and if any sum exceeds 1 the entire jacket design failed.
The fatigue function returns 1 to the main optimization script if the evaluated cross

section failed by fatigue and 0 otherwise.

3.2.3 Main Optimization Script

The following relates to the MATLAB-script found in appendix C. The main optimization
script initiates the optimization process, calls the functions described in section 3.2.1
and 3.2.2, creates model files, runs FEDEM analyses and imports the results back to
MATLAB, writes progress status while running and preforms all steps involving GA. To
avoid misunderstanding and to clarify the following text, a description of the employed

terminology when applying GA to a jacket is presented in table 3.2.

Table 3.2: Summary of GA terminology in the context of a jacket

Term Definition

Generation A collection of jackets created at the same stage
Individual One jacket topology within a generation
Population All individuals in one generation

Chromosome | Inner or outer diameter of a member

Gene A bit within a chromosome
Genome All genes in an individual
Survivor Jacket that did not fail
Casualty Jacket that failed

Mating pool | The collection of jackets that can be selected as parents

41

3 METHODOLOGY

Before entering the optimization loop (cf. figure 3.3), a number of preliminary steps
have to be carried out. The master model file has to be created manually in the Fedem
GUI by attaching the jacket ground structure to the transition piece and adding boundary
conditions. The master model file will serve as the basis for writing model files for all
individuals in the optimization process. Several constants that control the script has to
be determined by the user. Table 3.3 presents all initial user input parameters and at
least one typical value for each input.

The design variables that are modified throughout the optimization process are the
inner and outer diameter of all beams. In order to initiate the optimization process,
a first generation of random jacket topologies has to be made. A variable defining
the probability of a beam being activated in the first generation is user specified. This
probability will be low for complex ground structures with many potential beams. If
a beam is activated, its outer diameter is generated by multiplying a random number
between 0 and 1 with the maximum outer diameter. If the random outer diameter
is smaller than the user specified minimum, it is redefined until a valid diameter is
generated. The inner diameter is created randomly within the user defined limits of
inner/outer diameter. Beams that are not activated get an inner and outer diameter of 0
and are removed from the model. Even if a specific beam is removed from all individuals
in the first generation, it should be noted that it’s not lost forever as it can be revived
at a later stage through mutation in the breeding process.

If symmetry is applied it requires further preparation of the initial design parameters.
The optimization script is given a variable describing which beams that need to be equal
in order to obtain symmetry from the jacket ground structure function (cf. section 3.2.1).
A list of master beams is created from this variable. For a symmetric optimization
process, only the parameters of the master beams will be modified, while the remaining
beams will be slaves to the design parameters of the master beams. Design variables
of all slave beams are overwritten. If a master beam is removed from the model, all its
slaves are removed as well. This ensures that all four faces of the jacket are identical
and symmetrical about the vertical middle line.

The diameters of the beams that go through the transition piece are set to be equal
to the values used in the OC4-project [29] throughout the optimization. A variable
containing information about which beams are connected to which nodes is generated.
It will be used later to identify nodes without any connecting beams so they can be
removed from the model. A Fedem model with an unconnected node or beam floating

freely will cause a solver error. Finally, the master model file is read into a variable,

42

3.2 Programming

Table 3.3: Input parameters for main optimization script

Parameter

Variable in MATLAB Typical value

Filename of masterfile

Height/width ratio

Nodes along the width

Beam ID offset

Jacket parent assembly number
Population size

Concurrent simulation processes
Number of generations before termination
Fatigue design lifetime

Analysis time step size

Effective analysis time

Yield limit of steel

Threshold for fatigue assessment
Steel density

Price of steel

Price of installing a beam

Probability of activating a beam
Initial mutation probability
Minimum mutation probability
Maximum mutation probability
Diversity threshold for adaptive mutation
Maximum fitness (optimization goal)
Length of chromosomes

Maximum outer diameter

Minimum outer diameter

Minimum inner/outer diameter ratio
Maximum inner/outer diameter ratio
Stiffness proportional damping

Mass proportional damping

Number of cuts during crossover

Symmetry toggle

masterfile 0C4-3n.fmm
lvls 1lor4

n 20r3
baseID 10 000
jpa Sor7

pop 16

conc 4

endgen 50 or 100
yr 20 years

ts 0.05s

eff t 30s

fy 355 MPa
fatlim 20 MPa
rho 7850 kg/m?
ps 15 NOK/g
pins 15000 NOK/peam
Pb 0.5 to 0.05
Pm Pb - 0.02
minPm Pb - 0.02
maxPm Pb - 0.20
tresPm Pb - 0.20
maxFit 50 or 100
Lc 11 bit
maxDo 1.5m
minDo 0.5m
minDratio 0.80
maxDratio 0.99

SPD 0.01

MPD 0

cuts lor2

sym true or false

43

3 METHODOLOGY

the contents of this variable will be customized when creating new models during
optimization. The script is at this point ready to enter the optimization loop going
through the user prescribed number of generations.

The first step of the loop is to write Fedem model files with correct design parameters
for all individuals in the generation. This is done by tweaking the master model file,
which is read line by line. Searching for keywords in the master model file makes
is possible to recognize what part of the model file that is being read, e.g. sections

M)k

that define design parameters are preceded by Beam cross sections ***”. By
exploiting this trait, as well as the parent assembly number, beam identification number
and material number, it is possible to identify each individual beam and replace its
parameters with updated ones. Parameters that are updated include the area, second
and polar moment of area, inner and outer diameter as well as the hydrodynamic
buoyancy and drag diameter. If a beam, node or curve export definition is to be removed
from the model, the numbers of the lines that define it will be stored in a variable. When
all the parameters are updated in the master model file, it can be copied to a new model
file line by line. If a line is marked as deleted, it is simply omitted in this copying process.
Although a Fedem model file (.fmm file extension) contains most of the information
about the model there are mandatory parts that need to be loaded from external files
including rotor blade, transition piece and wind field definitions. At this point, all new
individuals are ready to be submitted to Fedem for dynamic analysis.

Upon completion of the Fedem analysis, an output file containing time series of
the forces is available for all individuals within the current generation. By examining
the structure of the result file, the correct force time series is matched with the correct
beam in the MATLAB script and it can be extracted for further processing. The forces
are converted to stresses by assuming a classic elastic material behavior as shown in

formula (3.3), where D, is the outer diameter of the beam. The stresses o, 0,,, and

my
O, form the basis for calculating the eight stress spots at the beam intersections as

shown in formula (3.2).

N, M, D, M, D,
o, =—, Opw=—7—, Opn=—— (3.3)
A "I, 2 "L 2

After control of the yield criterion and the fatigue limit state, all surviving individuals
are ready to be evaluated for fitness. A surviving individual is an individual that did

not fail, neither by fatigue, yielding nor by the Fedem solver crashing. The objective

44

3.2 Programming

function that is to be minimized is based on a rough estimate of the total cost of the
jacket. The function is put together by two parts: material cost based on the total weight
of the jacket and a fixed cost per installed beam. Material cost was estimated at 15 NOK/kg
and installation cost, comprised of cutting, welding, painting, etc., was estimated at
15 000 NOK/peam. Hence, the removal of as many beams as possible is favored by the
objective function. The total mass of the structure is calculated by summarizing the
mass of each beam as shown in formula (3.4) where m ;s the mass of individual j and
n is the number of beams in individual j. The cross sectional area of beam i is A; and

Ax;, Ay; and Ag; are the lengths of beam i along the global x, y and z axes.

n
m; = Z \/Axlz + Aylz + A‘le Ai Psteel (3.4)
i=1

By multiplying the mass of each individual with the cost of steel and adding a fixed
sum per active beam, the total cost of the jacket is estimated. This sum, in million NOK,
is the value of the objective function for an individual. In order to calculate the corre-
sponding fitness of the individual, the value of the objective function is subsequently
subtracted from a constant value, as shown in formula (3.5). The value of the constant
is arbitrary, as long as the calculated fitness stays positive [35], and it represents an
upper bound for the fitness. Fitness is to maximized during the optimization process.
A list containing fitness and the respective ID number of the individuals that did not

fail is the result of a generation.

fitness = constant — (material cost + installation cost) (3.5)
N—— ——
to be maximized arbitrary objective function to be minimized

In order to track the optimization evolution and determine which individuals that
will pass on their genome to the next generation, a leader table/mating pool, is updated
and stored for each generation. The number of individuals in the mating pool equals the
population size. The result of the current generation is added to the mating pool from
the preceding generations and sorted from best to worst fitness, mixing the new results
with the old leaders. The bottom half of the mating pool is cut and a new updated
leader table is stored. Hence, an individual in the mating pool will not leave the mating
pool unless replaced by an individual with better fitness. A plot is generated in each

generation, illustrating the evolution of the leading design, the mean of the mating

45

3 METHODOLOGY

pool, the winner of the current generation and the number of casualties, i.e. failed
designs.

As the mating pool of the current generation is available, the script can enter the GA
breeding section in order to produce a new generation of candidate solutions. Design
parameters of the population are converted from decimal to binary numbers to produce
the binary encoded chromosomes. The breeding process is set up such that two parents
will produce two offspring. Both parents are chosen by means of a weighted roulette
wheel (cf. section 2.2.1). Each individual in the mating pool is given a probability
of being chosen as a parent based on its fitness rating. This probability is calculated
relative to the worst individual in order to nullify the effect of the arbitrary constant
chosen when calculating fitness. Consequently, the individual with the lowest fitness
in the mating pool will have zero probability of passing on its genome.

After two parents have been selected, their two offspring are created by performing
a crossover of the parent chromosomes. The number of cuts during crossover is user
specified and cut positions within the chromosome is randomly generated for each set of
parents. When crossover is completed, mutation of the children genome is performed.
A mutation probability of 1 % will, on average, make 1 % of all children genes switch
allele. In later versions of the script, to remedy a mating pool of similar designs late
in the optimization process, an adaptive mutation probability was implemented. The
mutation probability will increase or decrease within user specified limits, depending
on whether the diversity in the mating pool is below or above a user defined threshold.
Diversity is calculated by comparing the number of unequal genes in the worst and
best design in the mating pool divided by the total number of genes in one individual.
All controlling parameters involved in the adaptive mutation are scaled to the user
specified parameter that controls the probability of a beam being activated in the first
generation. This is done because a ground structure with a high number of potential
beams requires a lower mutation probability. E.g. in a ground structure with 1000
possible beams, most of the beams are removed from the individuals in the mating pool
and a mutation probability of 1 % would reactivate far too many.

When crossover and mutation is complete, the children chromosomes are trans-
formed back to decimal numbers and converted from millimeters to meters. The vari-
able containing cross sectional data can be updated with the parameters of the coming
generation. Beams with an outer diameter below the user specified minimum are identi-
fied and removed. Fedem analysis results that are 2 generations old are deleted in order

to free up disc space. At this point, the generation loop starts over again to write model

46

3.2 Programming

files for the next generation. The loop is terminated when it reaches a user specified
number of generations. When completed, the script will print the total time elapsed
as well as the time elapsed while writing model files, running Fedem and preforming

stress analysis.

3.2.4 MATLAB Implementation

While the preceding sections (3.2.1-3.2.3) explained the code in a general manner, this
section will examine some parts of the MATLAB implementation on a more specific
level.

In order to increase the efficiency of the script, variables that have a known size
throughout the optimization had memory preallocated by using the zeros(n,m) func-
tion, producing a n times m matrix of zeros. MATLAB is faster at filling numbers in a
matrix than at resizing them to make room for more values.

The code snippet in computer listing 3.1 shows how node definitions are made for
the first of the four faces.

Listing 3.1: Building nodal positions

for s=[1 4 2 3] % counter over faces of cube
switch s
case 1
TwoD1=1;
pos = [0 0 0]; % initial position
for h=1:hn % height counter
for b=1:n

N(i,1:4)=[il pos]; % storing node

e

s width counter

pos = pos + [a 0 O]; % updating position
% storing height and width number of node
TwoDpos{s,1}(TwoD1l,1:3)=[il b h];
TwoD1=TwoD1+1;
il=i1 + 1;
i=i + 1;

end

pos = [0 0 pos(3)]+[0 0 al]; % updating position

end

case 4

47

3 METHODOLOGY

The variable a is the vertical and horizontal distance between nodes, il is a nodal
ID counter and pos is a position vector which is continuously updated. Initially, the
position vector is set to the origin (line 5), a double loop is set to loop through the
number of nodes along the height and the width of the jacket, hn and n respectively.
On line 8 the nodal ID and position is stored. The position vector is updated on line 9
and 16. A variable, TwoDpos, stores the height and the width number of all nodes and
will later be used for defining symmetric beams. When all nodal positions are defined,
a combination of all node pairs on each face is done in order to define the beams of
the ground structure. For the first of the four faces, this is done by utilizing nchoosek (
N1(:,1),2) where N1(:,1) is a list of all nodes on face one. The input variable 2 in
nchoosek tells this built in MATLAB function to return all possible node combinations
in pairs.

Unit vectors of the beams are utilized both in the removal of collinear beams, in
defining symmetric beams and in calculating the total mass of the structure. The unit
vectors are found by the code in listing 3.2. Line 3 extracts the nodal positions of
beam i in order to calculate unit vectors. Line 10 stores the unit vector and length data
for beam i. Absolute values are used to ensure that the direction of the unit vector is

irrelevant.

Listing 3.2: Calculation of beam unit vectors

b=length(B);
for i=1:b
% extracting triad coordinates [x1 yl z1l; x2 y2 z2]
pos=[N(N==B(i,1),2:4); N(N==B(i,2),2:4)];
dx=abs(pos(2,1)—pos(1,1)); % positive length along axes
dy=abs(pos(2,2)—pos(1,2));
dz=abs(pos(2,3)—pos(1,3));
len=sqrt (dx~2+dy~2+dz"2); % length of beam i
% matrix containing unit vector information
uvec(i,1:5)=[1 len dx/len dy/len dz/len];

end

The section of the ground structure function that handles symmetry is to extensive
to be recited and explained here, but the entire operation can be found in appendix A
(listing A.1). It utilizes a mixture of nodal positions and unit vector information to

identify beams that ought to have identical cross sections on all four faces.

48

3.2 Programming

The fatigue function has to extract stress cycles from a stress time series in order
to carry out a fatigue damage assessment (cf. section 2.3). Before stress cycles can
be extracted, the time series of stresses needs to be made up of only local maxima
and minima values. By utilizing the built in MATLAB function findpeaks on both
the original time series and after multiplying it with -1, the peaks and valleys can be
identified. The function also returns the position of the extrema in the time series, which
makes it possible to concatenate the local extrema at correct positions in a variable
named extrema. The cycle extraction is done both from the extrema variable and from
the duplicated residue, the utilized method is the same and the code for cycle extraction
is in listing 3.3. The loop will run as long as a cycle can be be extracted, i.e. when

res==0, and there are at least three datapoints remaining in extrema.

Listing 3.3: Stress cycle extraction from time series

while res==0 && length(extrema)>3

Nr=length(extrema)—3;
while (i <= Nr)
% calculate delta amplitudes
clear dS
dS(1) = abs(extrema(i+l) — extrema(i));
dS(2) = abs(extrema(i+2) — extrema(i+l));
dS(3) = abs(extrema(i

if ((dS(2) <= dS(

i+3) — extrema(i+2));
1)) && (dS(2) <= dS(3))) % check delta amplitudes
ds

cycle(k,s) = (2); % storage of the extracted cycle
k=k+ 1;

extrema(i+l:i+2) = []; % discard points that make out cycle
res = 0; % check from beginning for dataset
i=1;

break

% if no cycle was extracted, continue to next set of dS's

else

end

end

In line 6 through 8, three stress cycles are extracted, dS(1:3), and if dS(2) is smaller
than the two adjacent cycles, dS(2) will be extracted (line 10) and its datapoints deleted
from extrema (line 12). If a cycle is extracted, the search will restart from the beginning

of the dataset. If not, it will move on to the next data point. If the loop can move through

49

3 METHODOLOGY

the remaining data set without extracting a cycle, the extraction is complete.

In order to validate that the cycle extraction was working properly the extracted
cycles were examined. It was confirmed that the largest extracted cycle correctly corre-
sponded with the stress range of the input stress time series. Furthermore, the example
sequence from the article this method is based on, ”Standardization of the rainflow
counting method for fatigue analysis” [28], was loaded into the fatigue function and the
correct cycles were extracted.

Running fedem analyses through MATLAB was done using Windows PowerShell
and the MATLAB function system('command') which calls upon the operating system

to execute a given command as shown in line 10-11 of listing 3.4.

Listing 3.4: Running Fedem from MATLAB

%% Run FEDEM with updated parameters
fedemt=tic;
for runs=1:conc:pop
indstr=sprintf('sd ', [runs:runs+conc—1]);
fprintf('Running FEDEM. Generation: %d, Individuals: %s\n',gen,indstr);
% Parallel for loop for of "conc" models for faster computation
parfor p=runs:runs+conc—1
inddir=sprintf('Ind _%03.0f _%03.0f',gen,p);
modelpath=sprintf('%s\\%s',inddir,currentmodel{p})
PSrun = sprintf('powershell —inputformat none fedem —f %s —solve dynamics',
modelpath);
system(PSrun);
end
fprintf('Done!\n\n")
end

fedemtime(gen)=toc(fedemt);

The command consist of a path to the correct model file as well as some command
options. To call the Fedem executable by simply writing ' fedem' in the command line,
the Fedem executable must be a Windows path variable. The tic command on line 2
starts a stopwatch which will time the Fedem analysis of all individuals in the generation,
on line 15 it is stopped and the elapsed time is stored. The fprintf command on line
5 and 13 writes progress updates to the MATLAB command window. A parfor loop
is utilized to run several Fedem analyses concurrently, maximizing the computation
speed. The MATLAB Parallel Computing Toolbox is required to run a parfor loop.

When all Fedem analyses are completed, the resulting load time series is stored in

50

3.2 Programming

ASCII files. The data in the files can be imported to MATLAB by use of the importdata
function and matched with the correct beam for stress analysis. To validate that the
correct beams were matched with the correct time series from the Fedem analysis, the
imported data in MATLAB was compared with the curves inside the Fedem GUI and
correlation was ensured.

In the breeding section of the main optimization script, chromosomes are defined
by binary numbers. The conversion to and from binary numbers was done by the
functions dec2bin and bin2dec respectively. The function dec2bin will return a string
of bits with a specified length. This string was used for crossover and mutation during
breeding.

An important concept of a GA based optimization is randomness. If an offspring
happens to have favorable traits, they are conserved for later generations. To achieve
randomness in MATLAB, the rand function has been utilized. It provides a uniformly
distributed pseudorandom number on the open interval (0,1). The generated numbers
are not truly random and an identical stream of numbers will be given each time
MATLARB is restarted. However, the addition of rng('shuffle') in the beginning of
the script reseeds the number stream based on current time, ensuring a unique random

stream each time the script is run.

51

4 Results and Discussion

This chapter includes results and discussion for three optimization scenarios. In sec-
tion 4.1 and 4.2 a simple cubic ground structure was used to implement and test the
script. First without, and later with, symmetry conditions. In section 4.3 the process was
tested on a more realistic structure. The optimization script has been under continuous
revision while this thesis has been written. Findings presented here should be regarded
as a description of the path that was taken in order to close in on the final goal of this
thesis. Namely, to make a fully automated script for the topology optimization of a full
size jacket. All analyses were run on a desktop computer with an Intel i7 quad-core
processor running at 3.50 GHz and 16 GB of RAM. The script that was utilized in the
simple cubic optimization runs had two major flaws, which were corrected at a later
stage.

First, due to a misunderstanding with my supervisor, the wave loading had a far
too low period. The model was set up with a period of 1 s instead of the intentional
5.74 s. Hence, the cube was subjected to a more intense fatigue loading cycle and the
topology is in consequence more rigid than necessary for the intended loading. This
error was not singled out before a tall jacket structure was subjected to the loading,
and excessive oscillations were induced.

Second, the script did initially not have the ability to extract loading time series for
cross sections that were connected to only one other member. A result of the use of
loading data from triads (i.e. joints with at least three connected beams), instead of
requesting a curve export of both ends of every member in the model. However, this

was only an issue for the asymmetrical case (section 4.1).

53

4 RESULTS AND DISCUSSION

4.1 Simple Asymmetrical Jacket

The first results of a complete optimization process was produced by an asymmetrical
cube with 3x3 nodes on each face. An example of a random design produced for the
first generation is illustrated in figure 4.1. The different colors of the members in the 3D
model are generated by Fedem and represent unique cross section definitions. With no
symmetry conditions, each beam is generated individually and there is no topological
relation between the faces of the jacket. Also, in this early implementation, the corner

legs of the jacket could be removed.

Figure 4.1: Initial random design of a simple asymmetrical jacket

The optimization ran for 100 generations with a population of 12 individuals and
took 17 hours to complete. Figure 4.2 shows a plot of the evolution throughout the
optimization process. The plot shows the fitness on the left abscissa, and the generation
number on the ordinate. The maximum fitness is 50, which would correspond to a
structural cost of 0. The thick blue line indicates the fitness of the best design so far
in the optimization process, while the thin green line shows the fitness of the best
individual in each generation. Whenever the generation winner is better than the
leading design from previous generations, the leading design is updated, as can be seen

from the plot. The dotted line illustrates the mean fitness in the mating pool and it is

54

4.1 Simple Asymmetrical Jacket

of interest because it can tell something about the diversity in the mating pool. If the
distance between the mating pool mean and the leading design is small, the diversity
is low. As one would expect, the diversity is high in the initial generations and lower
as the design converges towards a solution. The red bars with the corresponding right
abscissa illustrates the number of casualties, i.e. failures, within each generation. Be it

by the Fedem model crashing, material yielding or fatigue failure.

50

; ;
— Leading Design
— Generation Winner

- --Mating Pool Mean

Fitness

Casualties

10 20 30 40 50 60 70 80 90 100

Generation

Figure 4.2: Optimization evolution of a simple asymmetrical jacket

The fitness increases rapidly for the first 20 generations before the curve flattens.
One surprising observation is that the number of casualties seems independent of how
far the optimization process has gone. It would be reasonable to expect a lower fatality
rate in early generations and higher in later, as the design is pushing its limits. In
generation 8, all individuals failed which can be observed both by the red bar and
by the discontinuity in the green line. The optimal solution was found already in
generation 70, and this winning design is illustrated in figure 4.3.

Although the winning design may look useless at first glance, there are some in-
teresting aspects to the topology. First off, it is obvious that the process has made the
structure lighter and cheaper than the random design illustrated in figure 4.1. Even
without any form of enforced symmetry, a classic X-brace has formed on one face. The
wind direction in the model causes one face of the jacket to get more compressive

loading than the others. This face is the one opposite to the X-brace and this is also the

55

4 RESULTS AND DISCUSSION

Figure 4.3: Winning design of a simple asymmetrical jacket

most rigid face of the winning design.

There are obvious flaws to the winning design, even disregarding the messy topology.
For instance, the light pink vertical cantilever. It is clear that it has no function and
that a design without it would become a new leading design. Furthermore, it is not
likely that the optimal design of this jacket structure would lack corner legs, like in the
winning design in figure 4.3.

This optimization run proved that the script had the ability to reduce the weight
and cost of a jacket through an automated process in a way that correlated well with
the load case. Still, the asymmetrical faces and chaotic topology of the winning design

meant that the end result was of little value.

56

4.2 Simple Symmetric Jacket

4.2 Simple Symmetric Jacket

The next expansion of the script was to impose symmetry constraints to the optimization.
The ground structure that was utilized was identical to the one used in the asymmetrical
case. Several optimization runs were executed in order to examine the reliability of the
results from the optimization process. However, it should be noted that the optimization
script was improved between example I and III. Consequently, the difference in winning
designs will be partly due to the random nature of GA and partly due to different versions
of the script being utilized. As illustrated in the initial random topology of figure 4.4,
each face is symmetrical about the vertical middle line, and all faces are identical. The
beams in the corner legs have the same cross section for all four corners and can not
be removed during optimization. This random initial design could have been from
the first generation of any of the optimizations in the following sections, 4.2.1-4.2.3.
All the optimizations presented for a simple symmetric jacket were performed with a

population size of 16 over 50 generations, and the upper bound of the fitness was 50.

Figure 4.4: Initial random design of a simple symmetric jacket

57

4 RESULTS AND DISCUSSION

4.2.1 Examplel

Figure 4.5 shows the optimization evolution of example 1 of a simple symmetric jacket.
When compared to the asymmetrical evolution in figure 4.2, two features stand out.
First, the line for the generation winner and the mating pool mean traces the leading
design line more closely. Second, the overall number of casualties is considerably lower.
Both of these features can be attributed to one major change in the breeding process
between the two scripts. During crossover in the asymmetrical case, a new parent
and gene was selected for every locus on the child chromosome. This inferior way of
breeding makes the genome combination far too random, hence all the casualties and
the bad generation winners. The correct way to implement a crossover, which was in
place for the symmetric case, is first to choose two parent individuals and then transfer
a series of genome to the child chromosome by utilizing one or more cut points. A
series of genome contains more information about the trait of a parent individual than
a single gene. In other words, the relative positions of the genes are of importance. In
fact, this positional dependence of genes within a chromosome is a proposed reason
for why GA work, and is called "the schema theorem” [22].

The optimization was completed in around 17 hours. By the end of the process,
all three fitness curves in figure 4.5 are relatively flat and of similar value, indicating
convergence. However, the winning design of the entire optimization was found in the
last generation. Which means that there were most likely room for improvements in
the design. Actually, the oldest design in the mating pool at the end of the optimization
was from generation 47.

As shown in figure 4.6a, by the tenth generation the topology is starting look like the
final winning design which is illustrated in figure 4.6b. From generation 10 onwards,
the optimization is a only a matter of removing superfluous members and minimizing
the necessary ones. The winning design looks quite reasonable, with relatively large

legs and smaller braces. Nor are there any members that are obviously functionless.

58

4.2 Simple Symmetric Jacket

Fitness

50 T T
— Leading Design
— Generation Winner
---Mating Pool Mean D STPT o
_ — ~
/_’_5—6:'_‘
® /<//
B
K
h
40 16
14 g
128
-10 ®
8 7
; : ; ; s 8
4
e Llin pand
35 5 10 15 20 25 . 30 35 40 45 50 0
Generation

Figure 4.5: Optimization evolution of a simple symmetric jacket (Ex. I)

(a) Leading design, 10th generation (b) Winning design, 50th generation

Figure 4.6: Topology of an optimized simple symmetric jacket (Ex. I)

59

4 RESULTS AND DISCUSSION

4.2.2 Example II

The script that was run in this example is identical to the one used in example 1. Thus,
direct comparison is possible. The apparent differences of the winning design in ex-
ample [, figure 4.6b, and example II, figure 4.8b, serves to show that at least one, and
most likely both, of the optimization runs converged to a local maximum. Although the
winning designs are quite different, their numeric fitness value was very close, 48.3896
and 48.3872 for example I and II, respectively. The winning design of example II might
look a lot lighter than example I, but figure 4.8b hides that the thickness of the legs is
30 mm compared to 15 mm in example I.

The evolution curve for example II, illustrated in figure 4.7, bears a lot of resem-
blance with the evolution of example I, figure 4.5. For the first couple of generations
there is a large gap between the leading design and the mating pool mean. New lead-
ing designs are frequently observed for the first half of the optimization, while for the
second half the three curves flatten and coincide.

It is possible to see traces of the topology that is to become the winning design
already in the leading design of the 5th generation, as illustrated in figure 4.8. The fact
that the optimization process decides which topological ”path” to follow at such an early
stage in both example I and II is worrisome. One would wish that a larger proportion
of the search space was explored before a general topology was determined. It is also
surprising to see the functionless cantilever of the winning design in figure 4.8b, espe-
cially considering that the curve of leading design was relatively flat for 20 generations.
Consequently, an adaptive mutation formulation was implemented for all subsequent

analyses.

60

4.2 Simple Symmetric Jacket

50

T T
— Leading Design
— Generation Winner

---Mating Pool Mean I -
ASJ g
0 ke
0 .
Q i
=] /
-2 h
<)
,
I"
40 16
14 g
12 E
-10
18 3
; : e 8
4
I lmils]l & P
35 5 10 15 20 25 . 30 35 40 45 50 0
Generation

Figure 4.7: Optimization evolution of a simple symmetric jacket (Ex. II)

(a) Leading design, 5th generation (b) Winning design, 50th generation

Figure 4.8: Topology of an optimized simple symmetric jacket (Ex. II)

61

4 RESULTS AND DISCUSSION

4.2.3 Example III

Figure 4.10b shows the winning topology of the third optimization run with a simple
symmetric jacket. This topology had the highest fitness of the three runs with a simple
symmetric jacket, 48.4658. In this instance, a classic X-brace has been formed in parallel
with a horizontal support. The small dimensions of the X-brace has probably made the
horizontal support mandatory in controlling wave induced oscillations of the X-brace.
Maybe a topology with a stronger X-brace and no horizontal support would have become
a new leading design. This option will be explored manually in the following section.

The optimization run in this section was the first to utilize an adaptive mutation
probability. The probability adapts to the diversity of the mating pool by increasing
if the diversity is low and decreasing if the diversity is high. The effect it has on the
optimization evolution is apparent in figure 4.9. The structure is optimized at a slower,
albeit more constant, rate than in example I and II. The mating pool mean also has an
overall greater distance from the leading design than earlier.

In figure 4.10a, the leading design of the 15th generation is illustrated. Although
the topology of the winner in figure 4.10b can be found within the leading design
of generation 15, there are many other possibilities that have been discarded in the
optimization process. Also, note when comparing against example I and II, that the
topology in figure 4.6a and 4.8a are taken at generation 10 and 5 respectively.

An interesting observation can be made in the last generations of this optimization.
From generation 44 to 47, the mating pool mean has more or less the same fitness as
the leading design. The low diversity throughout these generations make the mutation
probability increase. Consequently, a lot of bad designs are created, which can be seen
both from the falling curve of generation winners and the high number of casualties in
the last generations. The implementation of an adaptive mutation worked as intended
except at the very end. The upper boundary of the mutation probability should probably
have been reduced in this case. Fine-tuning the parameters for the adaptive mutation

probability is hard and requires a lot of trial and error.

62

4.2 Simple Symmetric Jacket

50

T T
— Leading Design
— Generation Winner
---Mating Pool Mean S

Fitness

40| a 16

3 5 10 15 20 25 .30 35 40 45 50
Generation

10

Casualties

I Ay I
)

Figure 4.9: Optimization evolution of a simple symmetric jacket (Ex. III)

(a) Leading design, 15th generation (b) Winning design, 46th generation

Figure 4.10: Topology of an optimized simple symmetric jacket (Ex. III)

63

4 RESULTS AND DISCUSSION

4.2.4 Manual Optimization Comparison

In order to have a basis of comparison for the automatically optimized designs, a simple
manual optimization was carried out. A classic topology with one X-brace on each face
as well as four legs was assumed as the optimal design, illustrated in figure 4.11. The
initial cross sections of the legs and braces were set equal to the inner and outer diam-

eters of the legs and braces in the "UpWind reference jacket” from the OC4 project [30].

Figure 4.11: Topology for manual optimization of a simple symmetric jacket

To minimize the cost of the structure manually, the outer diameter was kept constant
while a sizing optimization was carried out for the inner diameters. In other words, the
manual optimization process had two design variables, the inner diameter of the braces
and the inner diameter of the legs. The jacket was subjected to the same loading and
stress assessment as in example I through III. If a brace or leg failed, either by yielding
or fatigue, the inner diameter was decreased and vice versa if no failures occurred. This
iterative process was carried out until an increase of 1 cm of the inner diameter of either
the legs or the braces would cause a failure. A total of six analyses was necessary to
meet this requirement. To compare this result with the jackets that were optimized by

GA, the fitness score of the manually optimized jacket was calculated by the same rules

64

4.2 Simple Symmetric Jacket

as in the automatic optimizations. The fitness results of all simple symmetric jackets

are reported in table 4.1.

Table 4.1: Fitness values of the optimized simple symmetric jackets

Topology Figure Fitness
Example I 4.6b 48.3896
Example II 4.8b 48.3872
Example III 4.10b 48.4658
Manual Optimization | 4.11 47.9314

All of the designs generated by genetic algorithm beat the jacket created through a
simple manual optimization. Furthermore, the design with the highest fitness was from
example III which was the first process to have an adaptive mutation formulation. It is
surprising that all the fitness values in table 4.1 are so close to each other given the clear
differences in the topologies. Perhaps there is no one global solution that is remarkably
better than the second best.

Optimization of the simple cubic jacket structure has proved the ability of the opti-
mization script to create reasonable designs. The results were compelling and proved
the potential of evolutionary optimization. It also demonstrated the scripts ability to
beat a simple manual optimization. However, the simple jacket that has been studied
in this section is about 8 m high and would never be built as a jacket for a wind turbine.
It was decided that time was better spent pursuing a realistic height for the jacket than
to add more nodes to the cubic ground structure, e.g. 5x5 nodes on each face as in
figure 3.4b.

65

4 RESULTS AND DISCUSSION

4.3 Complex Symmetric Jacket

A jacket with a height/widrh ratio of four and a height of about 32 m was utilized for the
optimization runs in this section. A realistic, albeit low, height of a jacket for an offshore
wind turbine. The ground structure for this jacket with three nodes along the width
can be seen in figure 3.5. An optimization with two nodes along the width was also
performed. For the following results a maximum fitness of 100 is utilized.

There were several issues that arose when trying to optimize a full size jacket.
First, it became clear that a far too low wave period had been utilized so far in the
previous analyses and the intense loading induced a lot of oscillations. The loading was
manageable for the stiff cube but caused fatigue failure in almost all of the complex
jacket designs. Second, there where problems with Fedem not exporting load results
for some, seemingly random, members in the jacket. Neither me nor my supervisor,
Daniel Zwick, got to the bottom of this issue but it might be related to the fact that
a beta version of Fedem 7.1 was employed. The latter problem was circumvented by

treating individuals that exhibited this behavior as casualties.

4.3.1 Three Nodes Along the Width

The jacket that was subjected to an optimization process in this section was simply put
four of the cubes in section 4.2 stacked on top of each other. The ground structure has
928 beams and thus there is a huge search space to explore. The entire process took
about 45 hours and most time was devoted to building model files. The master model
file for this optimization is over 300 000 lines long and most of the lines are curve
export definitions. The optimization evolution can be seen in figure 4.12. The fitness
increases quickly for the first couple of generations before the evolvement halts and the
curves flatten. However, in the last couple of generations there is a notable increase in
fitness. It would be very interesting to see how it would have evolved from generation
50 and on. The termination criteria of 50 generations was not ideal in this instance.
In figure 4.13a an example of an initial random design from the first generation is
illustrated. The probability for activating beams in the initial individuals was set rela-
tively high in order to ensure that some individuals would survive the first generation.
Hence, there are a lot of beams in the initial topology. In figure 4.13b, the optimiza-
tion has been running for five generations and many of the beams have already been
minimized or removed completely, especially in the top and bottom of the jacket. After

30 generations, figure 4.13c, there has been an overall unimpressive evolution of the

66

4.3 Complex Symmetric Jacket

topology. There are still large V-shaped beam pairs that must have a rather bad stiffness
to weight ratio. Even the winning design found in generation 49, figure 4.13d, has a
lot of the same negative traits and a rather unappealing topology. It is apparent that
the winning topology is nowhere near the global optimal solution.

The 32 m high jacket with three nodes along the width proved too complicated for
the optimization run performed here. However, given a different termination criteria

and more computational power the result might have been satisfactory.

90

T T
— Leading Design
— Generation Winner : L
- --Mating Pool Mean L,

" /\/\/ _____

80

Fitness
~
(4]

70

65

Casualties

5 10 15 20 25 . 30 35 40 45 50
Generation

Figure 4.12: Optimization evolution of a complex symmetric jacket (Three nodes)

67

4 RESULTS AND DISCUSSION

(a) Initial random design (b) Leading design, 5th generation

Figure 4.13: Topology evolution of a complex symmetric jacket (Three nodes)

68

4 RESULTS AND DISCUSSION

4.3.2 Two Nodes Along the Width

As the script was not able to produce a high-quality result with three nodes along the
width and a termination criteria of 50 generations, both of these factors were altered. A
ground structure with 2 nodes along the width and half as many nodes along the height
was employed, which decreases the complexity of the ground structure drastically. It
has 124 potential beam positions, in contrast to 928 with three nodes along the width.
Also, the termination criteria was changed from 50 generations to 100, still with a
population of 16.

When nodes are only located in the legs of the jacket and symmetry is imposed, all
members between legs are either horizontal or X-braces. No ”V” shaped braces, as there
are several examples of in figure 4.13, can be generated. All though that sounds solely
positive, it should be noted that the two members of the X-braces are not connected at
the intersection and will behave independently. Hence, the model will give a poorer
representation of the actual stiffness of the structure as it would be built in reality, with
welded intersections at the X-braces.

The entire optimization took roughly 24 hours, subdivided into 12 hours of Fedem
analyses, 10 hours of stress and fatigue analyses and 2 hours of writing model files. For a
master model with two nodes along the width, writing model files is no longer the most
time consuming part of the optimization process. The evolution of the optimization
process is illustrated by figure 4.14. Most of the increase in fitness from generation
one is done before the 25th generation. The second half of the optimization, from
generation 50 to 100, shows signs of many bad designs through the fluctuating fitness
of the generation winners and a high number of casualties.

The evolution of the topology is illustrated in figures 4.15a - 4.15d and exhibit
how structural cost is being minimized by the optimization script. A lot of the initial
weight has been cut already in the 5th generation, figure 4.15b. From generation 30,
figure 4.13c, and onwards the only non-sizing optimization changes is the removal of
two horizontal beams on each face. The winning design in figure 4.15d seems logical
for the given loading, with a thin stabilizing X-brace in the the middle of each face
and rather massive legs. It is impressive that the single brace formed exactly halfway
up the jacket, where there is a high need for stiffening, considering that there is no
enforced symmetry about the horizontal middle line. However, the design seems prone

to buckling failure, which is not evaluated by the script.

70

4.3 Complex Symmetric Jacket

Fitness

100

T T
— Leading Design
— Generation Winner
- --Mating Pool Mean

50
Generation

40

Figure 4.14: Optimization evolution of a complex symmetric jacket (Two nodes)

60 100

=
oN MO

ONNO ©FE P B

Casualties

71

4 RESULTS AND DISCUSSION

4.3.3 Manual Optimization Comparison

To better assess the quality of the optimized topologies of the complex symmetric jacket,
a simple manual optimization was carried out. For both the ground structures with
two and three nodes along the width, as illustrated by the node layout in figure 4.16a
and 4.16b, respectively. Four X-braces of equal width and height on each face were
assumed to be the optimal topology, as illustrated in figure 4.16c. The optimization
was carried out in the same manner as for the simple symmetric case in section 4.2.4.
Inner diameters were customized iteratively until an increase of 1 cm in either the
braces or legs would cause failure. Fitness was evaluated by the same lines of code
as the designs produced by GA. In addition, a manual enhancement of the already
automatically optimized design was carried out for the jacket with two nodes along the
width. It was possible to increase the inner diameter of the braces of the topology in

figure 4.15d by 1 cm without causing failure. The results are summarized in table 4.2.

Table 4.2: Fitness values of the optimized complex symmetric jackets

Ground Structure | Optimization Figure Fitness
Three nodes along width | Automated 4.13d 87.9016
Manual 4.16b 96.7836

Two nodes along width | Automated 4.15d 97.2175
Manual enhancement 4.15d 97.3586

Manual 4.16a 97.7768

For the ground structure with three nodes along the width, the manual optimization
had almost 10 "fitness points” more than the automated. One such point corresponds
to 1 million NOK in construction cost. The huge gap was not surprising considering the
irrational topology of the winning design in figure 4.13d.

The manual optimization marginally beat both the automatically generated and
the manually enhanced topology for the jacket with two nodes along the width. When
comparing the topology of the manual optimization, figure 4.16c, with the winner of the
evolutionary optimization in figure 4.15d, it might look like the latter is fitter. However,
the legs of the automatically generated design have an outer diameter of 1.537 m and
a thickness of 25 mm, while the corresponding numbers for the manual topology are
1.2 m and 20 mm. Hence, although there is a higher number of beams in the manual

topology, the material cost of the evolutionary topology is higher.

74

4.3 Complex Symmetric Jacket

-

(a) Two node layout

5!

(b) Three node layout

4

7l
\

\)¢
\ L=

N

/\v
NS

_w

AN
\ L=

YA
| % L

N v(

>

> v
N\

(c) Topology

Figure 4.16: Topology for manual optimization of a complex symmetric jacket

An interesting observation was made during the manual optimization. Namely, that

the inner diameters of the legs and braces in the two and three node layout case ended

up being identical for both manual optimizations. This implies that the node connecting

two members forming a X-brace might not be as crucial as previously expected. As long

as there are mostly tensile or compressive forces in the braces, and buckling is not

accounted for, this observation makes sense.

The manual optimization carried out in this section verified the poor quality of

the optimization in section 4.3.1 and the competitive quality of the optimization in

section 4.3.2. Still, a quick manual optimization proved to be the overall winner in

optimizing a complex symmetric jacket.

75

5 Conclusion

The preceding results has shed light on the pros and cons of genetic algorithms as an
optimization technique in general, and on the specific implementation utilized in this
thesis in particular. Regarding GA in general, many of the favorable and unfavorable
traits listed in section 2.2.1 has proved to be correct. The optimization process found
innovative solutions in an enormous search space and the script took advantage of
parallel computing during Fedem analyses. Writing the code during implementation
of the algorithm was time-consuming, but at the same time straightforward. The most
challenging part of the script was actually implementing symmetry constraints, which
has nothing to do with GA. Writing a NLP based optimization algorithm would have
been a greater challenge to overcome. Although GA indeed proved powerful, it has been
quite obvious that the winning topologies found were not the global optimal solutions
of the given problems.

The winning jacket topologies were, with the exception of the complex jacket with
three nodes along the width, reasonable for the given loading. The fitness values were
also almost equal to the results found by means of manual optimization. The four
greatest downfalls of the applied implementation, from a structural engineering point

of view, are probably the exclusion of:

* Buckling assessment of members
* Stress concentration factors (SCF) in the fatigue analysis
¢ Soil-structure interaction with the sea floor

¢ Evaluation of an ultimate limit state load case

Implementing one or more of these factors into the algorithm would have made the
end result more credible. The ground structure utilized could also have been more
general in that an optimal structure most likely has inclined legs. An optimal solution
might also have members crossing the middle of the jacket or some other shape than
a rectangular base. The ground structures in the implementation were in other words
far from exploring the entire reasonable design domain. The objective function that
was implemented was based on estimates and common sense, and surely has room for
improvement. The termination criteria, a specified number of generations, was also
heuristic. A convergence based criteria would have been more sensible, all though it
would be hard to estimate the run time of an optimization process in advance. Also,

input parameter values to the optimization script has been found, to a large extent, by

77

5 CONCLUSION

trial and error. An issue that seemed to affect all optimization runs was the dependence
on the very first generations. The general topology of the winning design was often
found quickly while the rest of the optimization was only tweaking this initial winner.
However, the implementation of an adaptive mutation probability seemed to reduce
the extent of the issue. The problem might have been circumvented by running several
optimizations of the same structure simultaneously and merging them as they converge
towards their respective maxima.

Interesting observations include the verification of the schema theorem. There was
a significant drop in the number of casualties when the crossover was implemented
correctly, which can be seen when comparing figure 4.2 to the other optimization
evolution graphs. A bit-wise crossover does not carry enough information to pass on
traits to the next generation in an effective manner.

The jacket topologies generated by means of evolutionary optimization showed
a complexity-dependent quality. The simple symmetric examples all beat the quick
manual optimization of the same ground structure. The complex symmetric jacket
topology with two nodes along the width was almost on par with its manual optimization
counterpart. The most complex optimization run, with three nodes along the width,
did not yield a decent result. However, this computationally expensive optimization
run was limited by the amount of processing power.

All though the topologies that were generated through the course of this thesis
are not suitable for production because of the above mentioned downfalls, important
aspects regarding the use of evolutionary optimization on a jacket has been explored.
The results have shown that structural cost can be minimized in a reasonable manner
using genetic algorithms. The method is valuable and shows great promise because it is
powerful and at the same time easy to implement. If a more general ground structure
were to be optimized on a supercomputer by use of a combination of GA and manual

optimization, it is likely that cost-efficient and superior designs can be constructed.

78

6 Further Work

The following list of thoughts and possible improvements is put together to aid coming

research or theses within the topic of this project:

* A disproportionally small amount of time was devoted to finding a good objec-
tive function, considering its importance in the optimization. A better defined

objective function can yield improved results.

* Long members, e.g. jacket legs between joints, were in this implementation
defined as several collinear segments between nodes of equal distance. If these
split members were redefined as single members, it would make the cost function

more correct and it would simplify the implementation of a buckling assessment.

* The sudden death approach to failed designs utilized in this implementation
means that no penalty is given to high stresses below yielding or near fatigue
limit state designs. A more gradual penalty formulation would probably have

been advantageous.

* The addition of the jacket base width as a design variable or the addition of nodes
in the middle of the jacket would have made the topology optimization even more

general, at the cost of a larger search space.

* While NASA optimized a small antenna on a 10 000 processor supercomputer, a
jacket was in this thesis optimized on a PC with one "quad-core” processor. Better

results could probably have been found with more processing power.

* Implementation of stress concentration factors at the joints by the rules of DNV [27]

would have made the fatigue assessment more correct.

79

References

[1] Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007:
Synthesis Report, 2007.

[2] Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014:
Mitigation of Climate Change (Summary for Policymakers), 2014.

[3] Vaughn Nelson. Wind Energy - Renewable Energy and the Environment. CRC
Press, 2nd edition, 2014.

[4] Sawin et al. Renewables 2013: Global status report. Technical report, REN21,
2013.

[5] David E. Weir. Vindkraft - produksjon i 2013. Technical report, Norges
Vassdrags- og Energidirektorat, 2014.

[6] Michael Muskulus and Sebastian Schafhirt. Design optimization of wind turbine

support structures. Journal of Ocean and Wind Energy, 1:12-22, 2014.

[7] Eric Hau. Wind Turbines: Fundamentals, Technologies, Application, Economics.

Springer, third edition, 2013.

[8] Renewable Power Generation Costs in 2012: An Overview. Technical report,

International Renewable Energy Agency (IRENA), 2013.

[9] LEANWIND - Logistic efficiencies and naval architecture for wind installa-
tions with novel developments. Accessed May 2014 at: www.sintef .no/
Projectweb/LEANWIND/.

[10] Horns rev 1 - en af verdens stgrste offshore vindmglleparker. Accessed May
2014 at: www.vattenfall.dk/da/horns-rev.htm, Dec 2013.

[11] London array - The project. Accessed May 2014 at: www.londonarray.com/
the-project/.

[12] Sea bird halts London Array wind farm expansion. Accessed May 2014 at:
www.bbc . com/news/uk-england-26258271, Feb 2014.

[13] Olje- og energidepartementet - Produksjon av elektrisitet. ~Accessed May
2014 at: http://www.regjeringen.no/nb/dep/oed/tema/energi_og_

81

REFERENCES

vannsressurser/produksjon-av-elektrisitet.html?7id=440487,
Oct 2013.

[14] Offshore wind power in norway, Strategic environmental assessment, English

summary. Norwegian Water Resources and Energy Directorate, 2012.

[15] Hywind by Statoil - The floating wind turbine. ~ Accessed May 2014
at: www.statoil.com/en/TechnologyInnovation/NewEnergy/
RenewablePowerProduction/0ffshore/Hywind/Downloads/Hywind_
nov_2012.pdf.

[16] Walt Musial, Sandy Butterfield, and Bonnie Sam. Energy from offshore wind.
In NREL /CP-500-39450, 2006.

[17] Anton Right. Renewable green energy power - offshore wind turbines substruc-
tures. Accessed May 2014 at: www.renewablegreenenergypower.com/

offshore-wind-turbines-substructures/, May 2012.

[18] U.S. Energy Information Administration - Electricity Generating Capacity. Ac-
cessed May 2014 at: www.eia.gov/electricity/capacity/.

[19] Makoto Ohsaki. Optimization of finite dimensional structures. CRC Press, 2010.

[20] Martin Philip Bendsoe and Ole Sigmund. Topology optimization: theory, meth-
ods and applications. Springer, 2003.

[21] Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

[22] S.N. Sivanandam and S. N. Deepa. Introduction to Genetic Alghoritms.
Springer, 2008.

[23] Gregory S Hornby, Al Globus, Derek S Linden, and Jason D Lohn. Automated
antenna design with evolutionary algorithms. In AIAA Space, pages 19-21,
2006.

[24] Yusuf Ayvaz Tayfun Dede, Serkan Bekiroglu. Weight minimization of trusses
with genetic algorithm. Applied Soft Computing, 11(Turkey), 2010.

[25] Per Kr. Larsen. Dimensjonering av Stalkonstruksjoner. Tapir Akademisk Forlag,
2010.

82

REFERENCES

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

Per J. Haagensen. Fatigue, basic aspects. Lecture in Steel Structures 2 at NTNU,
Fall 2013.

Fatigue Design of Offshore Steel Structures, Recomended Practice. DNV-RP-
C203, Oct 2012.

C. Amzallag, J.P Gerey, J.L. Robert, and J. Bahuaudl. Standardization of the
rainflow counting method for fatigue analysis. International Journal of Fatigue,
16:287-293, 1994.

Wojciech Popko and Fabian et al. Vorpahl. Offshore Code Comparison Col-

laboration Continuation (OC4), Phase I-Results of Coupled Simulations of an
Offshore Wind Turbine with Jacket Support Structure. In 22nd International
Society of Offshore and Polar Engineers Conference. Rhodes, Greece., 2012.

Fabian Vorpahl, Wojciech Popko, and Daniel Kaufer. Description of a basic
model of the UpWind reference jacket for code comparison in the OC4 project
under IEA Wind Annex 30. Technical report, Fraunhofer IWES, 2013.

Jason Mark Jonkman, Sandy Butterfield, Walter Musial, and G Scott. Definition
of a 5-MW reference wind turbine for offshore system development. National

Renewable Energy Laboratory Golden, CO, 2009.

T. Fischer, W. de Vries, and B. Schmidt. Upwind Design Basis (WP4: Offshore
Foundations and Support Structures), 2010.

Fedem User’s Guide, Release 7.0.3. Fedem Technology AS, Aug 2013.
Fedem Theory Guide, Release 7.0. Fedem Technology AS, Sept 2012.

W.M. Jenkins. On the application of natural algorithms to structural design

optimization. Engineering Structures, 19:302-308, 1997.

83

Appendices

85

A Jacket ground structure function

Listing A.1: Entire jacket ground structure function

%% Function for writing .ftl file of jacket and defining symmetrical members

% Input: (nodes along width of jacket, height/width ratio)

% Output: [Beam definitions, Node definitions, Symmetry definitions]

% Written by Johan H. Martens, spring 2014

function [B,N,S] = jacket_

°

a = 2%4.016/(n—1);
S = cell(5,1);
TwoDpos=cell(4,1);
N=zeros (4*n"2—4xn,4); %
k=(n—1)*a;
i=1;
i1=100;
i2=200;
i3=300;
14=400;

% Finding number of nodes
if lvls==

hn=n;

J

o

S

o® o°

o°

else
hn=n+(1lvls—1)*(n—1);

end

ftl_creator(n,lvls)
reference distance between nodes

preallocating symmetry matrix

Preparing nodal position vector
jacket width
counter for total number of nodes

counters for node id (4 faces)

through the height of the jacket (hn)

%% Defining nodal positions (face 1 and 4 "owns" edgenodes)

for s=[1 4 2 3] % counter

switch s

case 1
TwoD1=1;
pos = [0 0 0]; %
for h=1:hn %

for b=1:n %

over faces of cube

initial position
height counter

width counter

N(i,1:4)=[1il pos];

pos = pos

TwoDpos{s,

+ [a 0 0];
1} (TwoDl,1:3)=[il b h];

TwoD1=TwoD1+1;

il=il + 1;

i=i + 1;

end

pos = [0 0 pos(3)]+[0 0 a];

end

87

A JACKET GROUND STRUCTURE FUNCTION

case 4
TwoD1=1;
pos = [k k 0];
for h=1:hn
for b=1:n
N(i,1:4)=[1i4 pos];
pos = pos + [—a 0 0];
TwoDpos{s,1}(TwoDl,1:3)=[i4 b h];
TwoD1=TwoD1+1;
i4=i4 + 1;
i=1 + 1;
end
pos = [k k pos(3)] + [0 0 a];
end
case 2
TwoD1=1;
pos = [0 k—a 0];
for h=1:hn
for b=2:n-1
N(i,1:4)=[1i2 pos];
pos = pos + [0 —a 0];
TwoDpos{s,1}(TwoD1,1:3)=[i2 b h];
TwoD1=TwoD1+1;
i2=i2 + 1;
i=i + 1;
end
pos = [0 k—a pos(3)] + [0 0 al;
end
h=1;
for edge=1:hn
TwoDpos{s,1}(TwoDl ,1:3)=[TwoDpos{1l,1}(1l+n*(edge—1),1) n hl;
TwoDpos{s, 1} (TwoDl+hn,1:3)=[TwoDpos{4,1}(nxedge,1) 1 h];
TwoD1=TwoD1+1;
h=h+1;
end
case 3
TwoD1=1;
pos = [k a 0];
for h=1:hn
for b=2:n—1
N(i,1:4)=[1i3 pos];
pos = pos + [0 a 0];
TwoDpos{s, 1} (TwoD1,1:3)=[i3 b h];

88

end

%% Extracting faces of cube

m =
=1
for

end

Cl =

i=1;
for

end

TwoD1=TwoD1+1;

i3=i3 + 1;
i=i + 1;

end

pos = [k a pos(3)]+[0 0 a];

end
h=1;
for edge=1:hn

TwoDpos{s, 1} (TwoDl

,1:3)=[TwoDpos{4,1}(1+nx(edge—1),1) n h];

TwoDpos{s, 1} (TwoDl+hn,1:3)=[TwoDpos{1,1}(nxedge,1) 1 h];

TwoD1=TwoD1+1;
h=h+1;
end

end

length(N); %
i=1:m %
if N(i,1) < 200 %
N1(j,1)=N(1)
j=j+1;

end

nchoosek(N1(:,1),2); %

i=1l:m

in different subsets and combining them

number of nodes
counter

for all nodes
if id of face 1

all possible combinations between two nodes on face 1

counter

if N(i,1) < 300 && N(i) >= 200 % checking for correct id

N2(j,1)=N(1i);
j=j+1;

end

if N(i,2)==0 && N(i,3)==0
N2(j,1)=N(i);
j=j+1;

end

if N(i,2)==0 && N(i,3)==
N2(j,1)=N(i);
j=j+1;

end

C2 = nchoosek(N2(:,1),2);

i=1;

% finding relevant corner nodes

% finding relevant corner nodes

89

A JACKET GROUND STRUCTURE FUNCTION

for i=1:m

if N(i,1) < 400 && N(i) >= 300
N3(j,1)=N(i);
J=i+1;

end

if N(i,2)==k & N(i,3)==0
N3(j,1)=N(i);
j=j+1;

end

if N(i,2)==k & N(i,3)==k
N3(j,1)=N(i);

3=3+1;
end
end
C3 = nchoosek(N3(:,1),2);
i=1;
for i=1:m
if N(i,1) >= 400
N4(j,1)=N(1);
j=j+1;
end
end

C4 = nchoosek(N4(:,1),2);

C = [C1;C2;C3;C4]; % adding combinations of each face to a single vector

%% Removing duplicate node combinations at corners

c = length(C); % number of combinations

dup=0; % number of duplicates
for i=l:c
for j=l:c
if i~=j && (all(C(i,:) == C(j,:)) || all(C(i,:)==[C(j,2) C(j,1)])) && (all(C(j
;1) ~= [0 01))

C(i,:)=[1;
C(end+1,:)=[0 0];
dup=dup+1;
end
end
end
C=C(1l:end—dup,:);

%% Removal of beams that are collinear (on top of each other)

c=length(C); % number of beam combinations

for i=1l:c % for all beams

90

% extracting triad coordinates [x1 yl zl; x2 y2 z2]
pos=[N(N==C(i,1),2:4); N(N==C(i,2),2:4)];

dx=abs(pos(2,1)—pos(1,1)); % positive length along axes
dy=abs(pos(2,2)—pos(1,2));

dz=abs(pos(2,3)—pos(1,3));

len=sqrt (dx~2+dy~2+dz"2); % length of beam i

% matrix containing unit vector information [beam# length unitvector]:
uvec(i,1:5)=[1 len dx/len dy/len dz/len];

end
q=1;
remID=0;
for i=l:c % double loop to check all members against each other
for j=l:c
% if two different members have the same unit vector
if i~=j && all(uvec(i,3:5)==uvec(j,3:5))
% if one of them is longer than the other & they have at least one node in
common, then erase the longer one:
if uvec(i,2) > uvec(j,2) & (C(i,1)==C(j,1) || C(i,1)==C(j,2) || C(i,2)==C(j
1) || C(1,2)==C(j,2))
if ~any(remID==1i) && abs(uvec(i,2)—uvec(j,2)) > 0.01
remID(q,1)=1i;
a=q+1;
end
elseif uvec(i,2) < uvec(j,2) && (C(i,1)==C(j,1) || C(i,1)==C(j,2) || C(i,2)
==C(j,1) || C(1,2)==C(j,2))
if ~any(remID==j) && abs(uvec(i,2)—uvec(j,2)) > 0.01
remID(qg,1)=j;
g=q+1;
end
end
end
end
end

%% Defining symmetrical members and output variable S
q=1;

cl=1;

c2=1;

c3=1;

c4=1;

c5=1;

S{5,1}=0;

% subdividing beams into four faces and one corner (S{1:5,1})

91

A JACKET GROUND STRUCTURE FUNCTION

for i=1l:c
if ~any(remID==i) % If beam was not removed above — add to final beam defenitions,
B
B(q,1:2)=[C(i,1:2)];
% Extracting symmetry data into S
% S will contain beams on each face in S{1:4,1} and corner beams in S{5,1}
for sl=1:1length(C1)
% if the node combination of beam q are on side one
if all(B(q,:)==C1(s1,:)) || all([B(q,2) B(q,1)]==Cl(sl,:))
% if both nodes are not corner nodes — add to beams of side 1 S{1,1}
if ~(all(N(N==B(q,1),2:3)==[0 0]) && all(N(N==B(q,2),2:3)==[0 0])) && ~(
all(N(N==B(q,1),2:3)==[k 0]) && all(N(N==B(q,2),2:3)==[k 0]))
S{1,1}(c1,1:3)=[q C(i,1:2)];
cl=cl+l;
% else if both nodes are on a corner and has not been added
% to corner beam matrix — add to S{5,1}
elseif ~any(S{5,1}(:,1)==q)
S{5,1}(c5,1:3)=[q C(i,1:2)];
c5=c5+1;
end
end
end % Repeat for face 2:4
for s2=1:1length(C2)
if all(B(q,:)==C2(s2,:)) || all([B(q,2) B(q,1)]==C2(s2,:))
if ~(all(N(N==B(q,1),2:3)==[0 0]) && all(N(N==B(q,2),2:3)==[0 0]1)) && ~(
all(N(N==B(q,1),2:3)==[0 k]) && all(N(N==B(q,2),2:3)==[0 k]))
S{2,1}(c2,1:3)=[q C(i,1:2)];
c2=c2+1;
elseif ~any(S{5,1}(:,1)==q)
S${5,1}(c5,1:3)=[q C(i,1:2)];
c5=c5+1;
end
end
end
for s3=1:1length(C3)
if all(B(q,:)==C3(s3,:)) || all([B(q,2) B(q,1)]==C3(s3,:))
if ~(all(N(N==B(q,1),2:3)==[k k]) && all(N(N==B(q,2),2:3)==[k k]))&& ~(
all(N(N==B(q,1),2:3)==[k 0]) && all(N(N==B(q,2),2:3)==[k 0]))
S{3,1}(c3,1:3)=[q C(i,1:2)];
c3=c3+1;
elseif ~any(S{5,1}(:,1)==q)
S{5,1}(c5,1:3)=[q C(i,1:2)];
c5=c5+1;

92

end
end
end
for s4=1:1length(C4)
if all(B(q,:)==C4(s4,:)) || all([B(q,2) B(q,1)]==C3(s4,:))
if ~(all(N(N==B(q,1),2:3)==[k k]) && all(N(N==B(q,2),2:3)==[k k])) && ~(
all(N(N==B(q,1),2:3)==[0 k]) && all(N(N==B(q,2),2:3)==[0 k1))
S{4,1}(c4,1:3)=[q C(i,1:2)];
c4=c4+1;
elseif ~any(S{5,1}(:,1)==q)
S{5,1}(c5,1:3)=[q C(i,1:2)];
c5=c5+1;
end
end
end
9=q+1;
end
end
% Updated unitvectors
clear uvec
b=1length(B);
for i=1:b
% extracting triad coordinates [x1 yl zl; x2 y2 z2]
pos=[N(N==B(i,1),2:4); N(N==B(i,2),2:4)];
dx=abs(pos(2,1)—pos(1,1)); % positive length along axes
dy=abs(pos(2,2)—pos(1,2));
dz=abs(pos(2,3)—pos(1,3));
len=sqrt (dx~2+dy”2+dz"2); % length of beam i
% matrix containing unit vector information [beam# length unitvector]
uvec(i,1:5)=[1 len dx/len dy/len dz/len];
end
% Defining masterbeams for symmetry from an eigth of the jacket
nl=1;
for i=1:b
% if one of the beam nodes are on the left half of the master surface
if (N(N==B(i,1),2)<=(k/2) && N(N==B(i,1),3)==0 && N(N==B(i,2),3)==0) || (N(N==B(i,2)
,2)<=(k/2) & N(N==B(i,1),3)==0 && N(N==B(i,2),3)==0)
% if NOT one node is on the edge of the master surface and one
% outside
if ~((N(N==B(i,1),2)==(k/2) && N(N==B(i,2),2)>(k/2)) || ((N(N==B(i,2),2)==(k/2)
& N(N==B(i,1),2)>(k/2))))
if ~any(S{5,1}(:,1)==1)
S{6,1}(nl,1:3)=[i B(i,1:2)]; % Masterbeams

93

A JACKET GROUND STRUCTURE FUNCTION

nl=nl+1;
end
end
end
end

% Identifying symmetrical beams by checking 2D position

for s=1:4 % for all surfaces
for i=1:1length(S{s,1}) % for beams on suface s
if ~any(S{6,1}(:,1)==S{s,1}(i,1)) % if the beam i is not a masterbeam
Snode(1)=S{s,1}(i,2); % extracting nodes of slavebeam i

Snode(2)=S{s,1}(i,3);
% Extracting 2D position of nodes for slavebeam i
STwoDpos(1,1:2)=TwoDpos{s, 1} (TwoDpos{s,1}==Snode(1),2:3);
STwoDpos(2,1:2)=TwoDpos{s, 1} (TwoDpos{s,1}==Snode(2),2:3);
% for nodes on other half than mastersurface — convert 2D
% position to respective node on left half
if n>2
if (STwoDpos(1,1)>=ceil(n/2) && STwoDpos(2,1)>ceil(n/2)) || (STwoDpos
(1,1)>ceil(n/2) && STwoDpos(2,1)>=ceil(n/2))
for node=1:2
if STwoDpos(node,1l)==n
STwoDpos (node, 1)=1;
elseif STwoDpos(node,1)==ceil(n/2)
% do nothing
else
STwoDpos (node, 1) =2 (n—STwoDpos (node, 1)) ;
end
end
end
end
for j=1:1length(S{6,1}) % for all master beams
S{j,2}(1,1)=5{6,1}(j,1);
% Extracting 2Dpos of masterbeam j
Mnode (1)=5S{6,1}(j,2);
Mnode(2)=S{6,1}(j,3);
MTwoDpos(1,1:2)=TwoDpos{1, 1} (TwoDpos{1l,1}==Mnode(1),2:3);
MTwoDpos(2,1:2)=TwoDpos{1, 1} (TwoDpos{1, 1}==Mnode(2),2:3);
% If master and slavebeam have the same 2D position
if (all(STwoDpos(1,1:2)==MTwoDpos(1,1:2)) && all(STwoDpos(2,1:2)==
MTwoDpos(2,1:2))) || (all(STwoDpos(2,1:2)==MTwoDpos(1,1:2)) && all(
STwoDpos(1,1:2)==MTwoDpos(2,1:2)))
% if beam i is not already added
if ~any(S{j,2}==S{s,1}(i,1))

94

°

% check that they are of equal length
if uvec(S{6,1}(j,1),2)==uvec(S{s,1}(i,1),2)
% Add slavebeam to S{j,2}
S{j,2}(1,end+1)=S{s,1}(i,1);
end
end
end
end
end
end
end
% Beams crossing the vertical middle need special treatment:
del _cell=0; % for removing cells of concatenated salvebeams
% for all sets of symmetrical beams defined so far
for j=1:length(S{6,1})
% if the set of slavebeams has not been concatenated earlier
if ~isempty(S{j,2})
% extracting a beam (cb(l)=current beam 1)
cb(1)=5{j,2}(1,1);
cn(1,1:2)=B(cb(1),1:2);
% extracting 2Dpos of current beam
cbTwoDpos{1}(1,1:2)=TwoDpos{1,1} (TwoDpos{1l,1}==cn(1,1),2:3);
cbTwoDpos{1}(2,1:2)=TwoDpos{1,1}(TwoDpos{1,1}==cn(1,2),2:3);
if mod(n,2)==0 % for even nodal width
limit=n/2+0.5;
else % for odd nodal width
limit=ceil(n/2);
end
% if beam is crossing the vertical middle line of the face
if (cbTwoDpos{1}(1,1)>limit && cbTwoDpos{1}(2,1)<limit || (cbTwoDpos{1}(2,1)>
limit && cbTwoDpos{1}(1,1)<limit))
maxh(1)=max(N(N==cn(1,1),4),N(N==cn(1,2),4)); % max height of beam
minh(1)=min(N(N==cn(1,1),4),N(N==cn(1,2),4)); % min height of beam
% for all sets of symmetrical beams
for i=1:1length(S{6,1})

% if i is not same beam as j && set has not been extracted

if i~=j && ~isempty(S{i,2})

cb(2)=S{i,2}(1,1); % extracting current beam 2

cn(2,1:2)=B(cb(2),1:2);

% extracting 2Dpos of current beam 2
cbTwoDpos{2}(1,1:2)=TwoDpos{1,1}(TwoDpos{1l,1}==cn(2,1),2:3);
cbTwoDpos{2}(2,1:2)=TwoDpos{1,1}(TwoDpos{1,1}==cn(2,2),2:3);
maxh(2)=max(N(N==cn(2,1),4),N(N==cn(2,2),4));

95

A JACKET GROUND STRUCTURE FUNCTION

minh(2)=min(N(N==cn(2,1),4),N(N==cn(2,2),4));
% if current beam 1 and 2 has the same unit vector and
% heigth specifications — reflect node number of
% current beam 2 over the vertical middle line
if (uvec(cb(1),2)==uvec(cb(2),2)) && (maxh(1l)==maxh(2)) && (minh(1)
==minh(2))
for node=1:2
if cbTwoDpos{2}(node,1)== % if node 1 horizontally
cbTwoDpos{2}(node,1)=n; % reflect to node n horizontally
elseif cbTwoDpos{2}(node,1l)==n % etc...
cbTwoDpos{2}(node, 1)=1;
elseif cbTwoDpos{2}(node,1)>ceil(n/2)
cbTwoDpos{2} (node, 1) =2 (n—cbTwoDpos{2}(1,1));
elseif cbTwoDpos{2}(node,1)<ceil(n/2)
cbTwoDpos{2} (node, 1)=n+1—cbTwoDpos{2} (node,1);
end
end
% if 2Dpos of the two currentbeams coincide one way or the other
if (all(cbTwoDpos{2}(1,1:2)==cbTwoDpos{1}(1,1:2)) && all(
cbTwoDpos{2}(2,1:2)==cbTwoDpos{1}(2,1:2))) || (all(
cbTwoDpos{2}(2,1:2)==cbTwoDpos{1}(1,1:2)) && all(cbTwoDpos
{2}(1,1:2)==cbTwoDpos{1}(2,1:2)))
% concatenate symmetrical beam set
S{j,2}=[54{j,2} S{i,2}];
% erase the copied set from its initial cell
S{i,2}=[1;
del_cell(1l,end+1)=1i;
end
end
end
end
end
end
end
% Tiding up S which is a function output
S{end+1,2}(1,1:length(S{5,1}))=S{5,1}(:,1);
S(del_cell(1,2:end),:)=[1;
S(:,1)=[1;

o

% each cell of S now contatins beams that will get equal design parameters
%% Adaptions for 0C4 transition piece

tcn=zeros(4,2);

for i=1l:length(N) % identifying top corner nodes

96

% z coordinate has to be found using tolerance of 0.01 (numerical error)
if all(N(i,2:3)==[0 0]) && abs(N(i,4)—k+lvls) < 0.01
ten(l,1)=N(i,1);
elseif all(N(i,2:3)==[0 k]) && abs(N(i,4)—kxlvls) < 0.01
ten(2,1)=N(i,1);
elseif all(N(i,2:3)==[k k]) && abs(N(i,4)—k*lvls) < 0.01
ten(3,1)=N(i,1);
elseif all(N(i,2:3)==[k 0]) && abs(N(i,4)—kxlvls) < 0.01
ten(4,1)=N(1,1);
end
end
% moving entire cube to correct position
N(:,2:4)=N(:,2:4)+repmat([—4.016 —4.016 7.619—(lvls—1)*(n—1)*al,m,1);
% defining trasition piece nodes and pariing up with respective jacket nodes
N(end+1,:)=[701 —4 —4 16.15]; % node, plate level 1
ten(1,2)=N(end,1); % pairing top corner node with respective plate node
N(end+1,:)=[705 —4 —4 20.15]; % node, plate level 2
N(end+1,:)=[702 —4 4 16.15];
tcn(2,2)=N(end,1);
N(end+1,:)=[706 —4 4 20.15];
N(end+1,:)=[703 4 4 16.15];
ten(3,2)=N(end,1);
N(end+1,:)=[707 4 4 20.15];
N(end+1,:)=[704 4 —4 16.15];
tcn(4,2)=N(end,1);
N(end+1,:)=[708 4 —4 20.15];
% Updating beam defenitions
m = length(N); % number of nodes
for i=m—7:2:m—1 % adding vertical members through transition plate
B(end+1,:)=[N(i,1) N(i+1,1)];
end

B = [B; tcn]; % connecting cube to vertical t.p. beams

%% Writing fedem .FTL file
b = length(B); % number of combinations/beams
B(:,1:3) = [zeros(b,1) B(:,1:2)];
ftlname=sprintf('Jacket %dlvls.ftl',6lvls);
fID = fopen(ftlname, 'w');
fprintf (fID, 'FTLVERSION{4 ASCII}\n');
fprintf(fID, '# Node coordinates\n');
fprintf(fID, '# NODE{id state x y z}\n\n');
for i = 1:m % writing node defenitions
fprintf (fID, 'NODE{%d 0 %d %d %d}\n',6N(i,1),N(i,2),N(i,3),N(i,4));

97

A JACKET GROUND STRUCTURE FUNCTION

end
fprintf (fID, '\n# Member definitions\n');
fprintf(fID, '# BEAM2{id nl n2 {PMAT pid}{PBEAMSECTION gid}{PORIENT oid}\n\n');
h=1;
for i = 10001:b+10000 % beam id offset: 10 000
fprintf (fID, 'BEAM2{%d %d %d {PMAT 1} {PBEAMSECTION %d}}\n',i,B(i—10000,2),B(i
—10000,3),1);
B(h,1)=i; % Adding beam number to first column of B
h=h+1;
end
fprintf(fID, '\n# Member properties\n');
fprintf (fID, '# PBEAMSECTION{gid a iyy izz ixx ky kz cx cz}\n\n') ;
for i = 10001:b+10000 % writing cross section parameters (dummy), offset 10000
fprintf (fID, 'PBEAMSECTION{%d %d %d %d %d %d %d %d %d}\n',i
,0.4398,0.1083,0.1083,0.2166,2,2,0,0) ;
end
fprintf(fID, '\n# Material properties\n');
fprintf(fID, '# PMAT{pid e g ny rho }\n\n');
fprintf (fID, 'PMAT{1 2.10e+11 8.08e+10 0.3 7850 {NAME "Steel"}}\n\n');
fclose(fID);

end % end of function

98

B Fatigue damage function

Listing B.1: Entire fatigue damage function

%% Function for assessing fatigue damage of one cross section

o°

Input: (loading segence of eight spots [MPa], design life [years],

o°

. analysis time [s])

o°

Output: fail = true or false

o°

Written by Johan H. Martens, spring 2014

function [fail] = fatiguefail(lseq,yr,eff_t)
cycle=0; % variable to store stress cycles

%% Extracting stress cycles from load sequence
% for all eigth stress spots around the circumference of the cross section
for s=1:8

clear extrema

% Extracting local extrema (peaks and valleys) of timeseries

[pks,pkspos]=findpeaks(lseq(:,s)); % finding position and value of peaks
[vlys,vlyspos]=findpeaks(—lseq(:,s)); % finding position and value of valleys
vlys=—vlys;

extrema = [pkspos pks; vlyspos vlys]; % combining peaks and valleys

extrema = sortrows(extrema,l); % putting in correct order

extrema = extrema(:,2); % storing values

extrema(2:length(extrema)+1l) = extrema;

o°

extrema(l) = lseq(l,s); adding first datapoint

o°

extrema(end+1) = lseq(end,s); adding last datapoint

o°

i=1; counters
k=1;
res=0;
while res==0 && length(extrema)>3
Nr=length(extrema)—3;
while (i <= Nr)
% calculate delta amplitudes
clear dS
dS(1) = abs(extrema(i+l) — extrema(i));
dS(2) = abs(extrema(i+2) — extrema(i+l));
dS(3) = abs(extrema(i+3) — extrema(i+2));
if ((dS(2) <= dS(1)) && (dS(2) <= dS(3))) % check delta amplitudes

cycle(k,s) = dS(2); % storage of the extracted cycle

k =k + 1;

extrema(i+1:i+2) = []; % discard points that make out cycle
res = 0; % check from beginning for dataset
i=1;

99

B FATIGUE DAMAGE FUNCTION

break
% if no cycle was extracted, continue to next set of dS's
else

end
end
end
% adding residue to itself to extract cycles from residue
residue=[extrema; extremal;
i=1;
res=0;
while res==0 && length(residue)>3
Nr=length(residue)—3;
while (i <= Nr)
% calculate delta amplitudes
clear dS
dS(1) = abs(residue(i+l) — residue(i));
dS(2) = abs(residue(i+2) — residue(i+l));
dS(3) = abs(residue(i+3) — residue(i+2));
if ((dS(2) <= dS(1)) && (dS(2) <= dS(3))) % check delta amplitudes

cycle(k,s) = dS(2); % storage of the extracted cycle
k=k+ 1;

residue(i+1:i+2) = []; % discard points that make out cycle
res = 0; % check from beginning for dataset
i=1;

break

o

% if no cycle was extracted, continue to next set of dS's
else

end

end

%% Finding S—N parameters
% number of times eff_t (effective analysis time) occur during design lifetime
n=yrx365%24x60x60/eff_t;
% SN curve data for tubular joints in seawater with cathodic protection (DNV RP)
if n <= 1E6

m=3;

loga=11.764;

100

elseif n > 1E6
m=5;
loga=15.606;
end

%% Accumulating damage in each stress spot
spotD=zeros(1,8); % vector to store accumulated spot damage
for s=1:8
for i=1l:length(cycle(:,s)) % for all cycles
if cycle(i,s) > 1 % omit contribution from stress ranges below 1 MPa
N1=10"(loga—m+*loglO(cycle(i,s)));
spotD(1,s)=spotD(1,s) + n/N1;
end
end

end

%% Checking for failure and creating output variable

if any(spotD(1,:)>=1) % if any spot had accumulated damage >= 1
fail=1; % fatigue failure of cross section

else
fail=0; % no fatigue failure of cross section

end

end % end of function

101

C Main optimization script

Listing C.1: Entire main optimization script

%% Main optimization script (compatible with FEDEM R7.1)

% Written by Johan H. Martens

o°

clc

o°

clear all

o°

close all
rng('shuffle')

o

©

%% User input
masterfile ='0C4—4lvis—2n.fmm

lvls = 4; %
n = 2; %
baseID = 10000; %
jpa = 7; %
pop = 16; %
conc = 4; %
endgen = 100; %
yr = 20; %
ts = 0.05; %
eff_t = 30; %
fy = 355; %
fatlim = 20; %
rho = 7850; %
ps = 15; %
pins = 15000; %
Pb = 0.50; %
Pm = Pbx0.02; %
minPm = Pbx0.02; %
maxPm = Pbx0.20; %
tresPm = Pbx0.20; %
maxFit = 100; %
Lc = 11; %
maxDo = 2.0; %
minDo = 0.5; %

o°

minDratio = 0.8;

maxDratio = 0.99; %
SPD = 0.01; %
MPD = 0; %
cuts = 1; %
sym = true; %

, spring 2014

clear command window
clear variables
close figures

reseed MATLAB random number generator

';% Master model file

Height/width ratio of jacket

Nodes along width of jacket

Beam ID offset in model

Jacket parent assembly number in master modelfile
Population size

Number of concurrent processes during fedem analysis
Total number of generations (termination criteria)
Design life [years]

Timestep for data output

Effective analysis time [s]

Yield limit of steel [MPal

Omit fatigue check for stress ranges below fatlim
Steel density [kg/m”3]

NOK/kg steel in structure

Price of installing one beam [NOK]

Probability of activating initial beam

Initial mutation probability

Minimum mutation probability

Maximum mutation probability

Diversity treshold for adapting Pm

Maximum fitness (optimization goal)

Length of chromosomes [bit]

Maximum allowed diameter in model [m]

Minimum allowed diameter in model [m]

Lower inner/outer diameter ratio boundary

Upper inner/outer diameter ratio boundary
Stiffness proportional damping

Mass proportional damping

Number of cuts in chromosome during crossover

Toggle symmetry of all four sides of jacket

103

C MAIN OPTIMIZATION SCRIPT

%% Defining and preallocating variables

% Model info: [beams (#,nodel,node2),Nodes (#, position), Symmetry datal
[B,N,S] = jacket_ftl_creator(n,lvls);
T=N(1l:end—8,:);
t=1length(T);
b=length(B);

totmass=zeros(pop,endgen);

% from jacket funtion

o°

Nodes (— 8 nodes in transition piece)

o°

Number of nodes

o°

Number of beams

for total mass of structure

o°

obj=zeros(pop,endgen); % for value of objective function for all generations
fit=zeros(pop,endgen); % for value of fitness for all generations
poppos=zeros (pop,endgen) ; % for position relative to fitnesses
yield=zeros(1,5,endgen); % for yield failures

crash=zeros(pop,1,endgen); % for storing crashed individuals
P=zeros(endgen,3); % for plot data
fatigue=zeros(pop,endgen); % for storing individuals failed by fatigue

gentime=zeros(1,endgen); % for timing computation time of generations

stresstime=zeros(1,endgen); % computation time of stress analysis

fedemtime=zeros(1,endgen);
writetime=zeros(1,endgen);
masterB=zeros(1,size(S,2));
relfit=zeros(pop,endgen);
csp=zeros(b,8,pop,endgen);
nts = eff_t/ts+1;

% cross sectional parameter

sectioninfo = {'AREA = '; 'AREA_MOMENT_IP = '
"HYDRO_DB = '; "HYDRO_-

% computation time of fedem analysis
% time for writing model files

% for master symmetry beams

% for relative fitness

% for cross sectional parameters of all beams

o°

number of timesteps from analysis

ID in .fmm model file

DD = '; 'TUBE_DI = '; 'TUBE_DO = '};

%% Initial cross sectional parametres (creation of first generation)

; "AREA_MOMENT_IY = '; 'AREA_MOMENT_IZ =

v

for j=1:pop % population
nr=1;
for i = 1:b—8 % beams
% beam created by probability Pb || cornerbeams can not be removed
if rand(1) < Pb || any(S{end,1}==1i)
Do=maxDoxrand(1); % random value between 0 and maxDo [m]
while Do < minDo % make sure Do is valid
Do=maxDoxrand (1) ;
end
Di=Dox*rand(1); % random inner diameter
while Di < minDratio*Do || Di > maxDratioxDo % make sure Di is valid
Di=Dox*rand(1);
end
else
Di=0;

104

Do=0;
rb(nr,j)=1; % matrix containing id of removed beams
nr=nr+l;
end
I=pi/64x*(D0."4—Di."4);
% parameters [Area Ip Iy Iz HydroDB HydroDD Di Dol
csp(i,:,j)=[pi/4x(Do.”2—Di.”2) 2*xI I I Do Do Di Dol;
end
end
% if symmetry==true, copy masterbeam parameters to slavebeams
if sym==1
for i=1l:size(S,1)
masterB(i)=S{i,1}(1,1); % creating list of masterbeams
end
clear rb
for ind=1:pop
nr=1;
for i=l:size(S,1)
csp(S{i,1}(1,:),:,ind)=repmat(csp(masterB(i),:,ind), [length(S{i,1}(1,:)) 11])
if csp(masterB(i),8,ind)==0
% matrix containing id of removed beams
rb(nr: (nr+length(S{i,1})—1),ind)=S{i,1};
nr=nr+length(S{i,1});
end
end
end

end

% Writing parameters of beams inside transition piece for all generations:

% values from 0C4 documentation

Do=1.2;

Di=1.160;

I=pi/64%(D0."4—Di."4);

csp(end—7:end, :,:,:)=repmat([pi/4*(Do.”2—Di.”~2) 2xI I I Do Do Di Do],[8 1 pop endgen]);

% Finding all beams connected to each node. Will later be used to
% determine if a node has no connecting beams
Att=cell(3,t);

o

s Preallocating cell array

for tri=1:t % For all triads/nodes
Att{l,tri}=T(tri,1); % store node number in row 1
for beam=1:b % For all beams

% If current triad has a connected beam

105

C MAIN OPTIMIZATION SCRIPT

if B(beam,2)==T(tri,1) || B(beam,3)==T(tri,1)
% Store beamnumber in cell in row 2
Att{2,tri}=[Att{2,tri} B(beam,1)];
end
end
end

%% Reading master modelfile into cell array

clear fmmcell

if (exist(masterfile, 'file') == 2) % checking for masterfile
Fin = fopen(masterfile, 'r'); % Open masterfile for reading
% Saving file as a cell array, one cell per line
fmmcell=textscan(Fin, '%s', 'Delimiter','\n');

else
fprintf('No master model file!'")
return

end

%% Optimization loop through all generations

for gen=1:endgen

fprintf('\nCommencing generation %d \n\n',gen)

iterationtime=tic; % timer of each generation

clear currentmodel

remT=cell(pop,2); % Vector will contain triads to be removed
h=1;

%% Creating new model files with updated parameters

fprintf('Writing .fmm''s for generation %d, Individuals: ',gen)
writet=tic;
for p=1l:pop
fprintf('sd ',p)
readbeams = 0; % logicals and counters for reading of .fmm masterfile

readtriads = 0;

readsections = 0;

readjoints = 0
readcurves = 0;
beam_ID = 0;

% lines to be ignored from masterfile when generating .fmm files
del_lns=[];
% model filename

currentmodel{p} = sprintf('%s %03.0f _%03.0f.fmm',masterfile(1l:end—4),gen,p);

%% Identifying nodes without connecting beams

106

for tri=1:t % For all nodes
% Row 3 of Att will contain a counter of matched beams
Att{3,tri}(1,p)=0;
for remB = 1l:size(rb(:,p,gen),1) % For all removed beams
if rb(remB,p,gen)~=0
% For all beams connected to node
for attB = l:length(Att{2,tri})
% If match (connected==removed)
if Att{2,tri}(1,attB)==rb(remB,p,gen)+baseID
% Count + 1 match
Att{3,tri}(1,p)=Att{3,tri}(1,p)+1;
end
end
end
end
% Number of connected beams that are removed
match=Att{3,tri}(1,p);
% Number of connected beams
connected=length(Att{2,tri});
% If all beams connected == number of matches (removed beams)
if connected==match
% List triad/node in removal vector remT{p,1}
remT{p,1}=[remT{p,1} Att{l,tri}(1,1)];
end

end

%% Reading through entire masterfile line by line and customizing
for ln=1:length(fmmcell{1,1})
Lin=fmmcell{1,1}{1ln,:}; % Get next line of masterfile

%% Beam definitions
if readbeams ==
if (strfind(Lin, '!s*x Beams xx*x') > Q)
readsections = 0;
readtriads = 0;

readbeams = 1; % Activate beamreading

readjoints = 0;
0

readcurves =

end
else
if (strfind(Lin,sprintf('ID ='))>0)
for i=l:size(rb,1)

% If beam is removed from model

107

C MAIN OPTIMIZATION SCRIPT

if (strfind(Lin,sprintf('ID = %.0f;"',rb(i,p,gen)+baseID)) > 0)

% checking for correct assembly number

if (strfind(fmmcell{1l,1}{ln+7,:},sprintf('PARENT_ASSEMBLY = %d',

jpa)) > 0)
% Delete entry from model file
del_lns=[del_1ns 1n—4:1n+16];
end
end
end
% If beam is active —> add correct damping factor
elseif (strfind(Lin,sprintf('STIF_PROP_DAMP'))>0)
if (strfind(fmmcell{l,1}{ln+2,:},sprintf('alD: %d',jpa))>0)
fmmcell{1,1}{ln, : }=sprintf('STIF_PROP_DAMP = %f;',SPD);
end
elseif (strfind(Lin,sprintf('MASS_PROP_DAMP'))>0)
if (strfind(fmmcell{l,1}{ln+10,:},sprintf('aID: %d',jpa))>0)
fmmcell{1,1}{ln, : }=sprintf('MASS_PROP_DAMP = %f;',MPD);
end
end

end

%% Triad (node) definitions
% only enter triadreading if any triad must be removed
if ~isempty(remT{p,1})
% If any triads are to be removed
if readtriads == 0
if (strfind(Lin, '!sxx Triads *x*x') > 0)
readsections = 0;
readtriads = 1; % Activate triadreading
readbeams = 0;
readjoints = 0;
readcurves = 0;
end
else
for i=1:1length(remT{p,1})
% If triad is removed from model
if (strfind(Lin,sprintf('ID = %.0f;"',remT{p,1}(1,i))) > 0)

% checking for correct assembly number

if (strfind(fmmcell{1,1}{ln+4,:},sprintf('PARENT_ASSEMBLY = %d',

jpa)) > 0)
% Delete entry from model file
del_lns=[del_1ns 1n—8:1ln+5];

end

108

end
end
end
% If a removed triad is connected to a joint, the joint also
% has to be removed:
if readjoints ==
if (strfind(Lin, '!s*x Joints *xx') > 0)
readsections = 0;
readtriads = 0;
readbeams = 0;
readjoints = 1; % Activate jointreading
readcurves = 0;
end
else
for i=1:length(remT{p,1})
% If triad is removed from model
if (strfind(Lin,sprintf('SLAVE_TRIAD = aID: %.0f uID: %.0f;"',jpa,
remT{p,1}(1,i))) > 0)
% Delete corresponding joint
del_lns=[del_lns 1n—16:1n+3];
end
end
end

end

%% Beam cross section definitions
if readsections ==
if (strfind(Lin, '!sxxx Beam cross sections *x*x') > 0)
readsections = 1; % Activate reading of beam cross sections
readtriads = 0;

readbeams = 0;

readjoints 0;

readcurves = 0;
end
else
if (strfind(Lin,'ID')>0)% if keyword ID is found
for i=1:b % cycling through all beams in model
if (strfind(Lin,sprintf('ID = %.0f;"',i+baselID))>0)
% checking for correct material and parent assembly
if (strfind(fmmcell{1l,1}{ln+1,:},sprintf('MATERIAL = aID: %.0f
ulD: 1;',jpa)) > 0)
if beam_ID==0

% If beam is removed from model

109

C MAIN OPTIMIZATION SCRIPT

if any(rb(:,p,gen)==1)

% Delete entry from model file
del_lns=[del_lns 1n—23:1n+8];
break

else
% if beam is active in model
beam_ID=i; % store ID
break
end
end
end
end
end
end
if beam_ID > 0
for var_ln=1n—24:1n+7
Lin=fmmcell{1,1}{var_1n,:};
for k=1:8 s Cycle through parameters

If beam is active

o°

o

s For relevant lines

o

s Extract line

©

% Find parameter in current line
if (strfind(Lin,sectioninfo{k}) > 0)
% Replacing parameters with updated ones
fmmcell{1l,1}{var_1ln, :}=sprintf('%s%f;"',sectioninfo{k},csp(
beam_ID,k,p,gen));
break
end
end
end
end
beam_ID=0;

end

%% Curve export definitions
if readcurves ==
if (strfind(Lin, '!s*x Curves *xx') > 0)
readsections = 0;
readtriads = 0;
readbeams = 0;

readjoints = 0;

readcurves = 1; % Activate curvereading
end
else % finding result object
if (strfind(Lin,sprintf('Y_AXIS_RESULT_OBJECT = aID: %d',jpa)) > 0)

for i=1:b % finding corresponding beam

110

if (strfind(Lin,sprintf('uID: %d',i+baseID)) > 0)
if any(rb(:,p,gen)==1)
% Delete entry from model file
del_lns=[del_1ns 1n—42:1n+5];
break
end
end
end
end
end

end

%% Making folders and writing model file of current individual
inddir=sprintf('Ind_%03.0f %03.0f',gen,p);

mkdir(inddir)

modelpath=sprintf('%s\\%s',inddir, currentmodel{p});

% Create model file for current iteration

Fout = fopen(modelpath, 'w');

for ln=1:length(fmmcell{1,1}) % For all lines in masterfile

if ~any(del_lns==1ln) % As long as line is not marked to be deleted

% Copy line to new modelfile
fprintf(Fout, '%s\n', fmmcell{1,1}{1ln,:});
end

end

% Copy result directory and transition piece defintion to new individual

cf_source = [masterfile(l:end—4) ' _RDB'];
cf_destination = [inddir '\' currentmodel{p}(l:end—4) ' RDB'];
copyfile(cf_source,cf_destination);
end
writetime(gen)=toc(writet); % model file writing timer
fprintf('\nDone!\n\n")
fclose('all');

%% Run model files of current generation in FEDEM
fedemt=tic;
for runs=1:conc:pop

indstr=sprintf('sd ', [runs:runs+conc—1]);

fprintf('Running FEDEM. Generation: %d, Individuals: %s\n',gen,indstr);

% Parallel for loop for of "conc" models for faster computation

parfor p=runs:runs+conc—1
inddir=sprintf('Ind %03.0f %03.0f',gen,p);
modelpath=sprintf('%s\\%s',inddir, currentmodel{p})

% if current curve corresponds to a removed beam

111

C MAIN OPTIMIZATION SCRIPT

PSrun = sprintf('powershell —inputformat none fedem —f %s —solve dynamics',
modelpath);
system(PSrun);
end
fprintf('Done!\n\n")
end

fedemtime(gen)=toc(fedemt); % timer of fedem analysis

%% Extracting timeseries results from analysis and evaluating damage
stresst=tic;
cfail=1l;
yfail=1l;
fprintf('Importing forcedata from analysis, converting to MPa\n and checking for
yielding and fatigue damage\n\n')
for ind=1:pop % for all individuals
file = sprintf('Ind %03.0f %03.0f\\timeseries.asc',gen,ind);
if (exist(file,'file') == 2)
% loading forcedata from file into the struct timeforces
timeforces=importdata(file, '\t',7);
timeforces.data(:,1)=[1]; % deleting timestep column
% if correct number of datapoints
if size(timeforces.data,l)==nts
for beam=1:b—8 % for all beams (except 8 in transition piece)
% if beam is not removed and individual has not failed
if ~any(rb(:,ind,gen)==beam) && fatigue(ind,gen)==0 && ~any(yield(:,1,
gen)==1ind) && ~any(crash(:,1,gen)==ind)

Do= csp(beam,8,ind,gen); % Outer diameter
A = csp(beam,1,ind,gen); % Area
I = csp(beam,3,ind,gen); % Moment of inertia

o°

number of skipped beams so far
ns = sum(rb(:,ind,gen)<beam) — sum(rb(:,ind,gen)==0);
% number of active beams
na = b — sum(rb(:,ind,gen)>0);
for End=1:2 % for both ends of beam
% COLLAPSING CODE FOR READABILITY
% Extracting forces of current beam end, calculating stresses and converting to MPa
if End==1
timestresses=timeforces.data(:, [beam beam+na beam+2xnal—ns).xrepmat([1/A (Do/2)/I (
Do/2)/I1,nts,1)./(1000"2);
elseif End==2
timestresses=timeforces.data(:,3*na+[beam beam+na beam+2xnal—ns).*repmat([1/A (Do/2)
/I (Do/2)/I],nts,1)./(100072);
end

112

% Checking for empty datasets (ISSUE WITH EMPTY CURVE EXPORTS FROM FEDEM!)
if all(timestresses==0)
% Delete individuals with totally unloaded members
fprintf('Warning: empty matrix of stresses extracted from individual %d, beam %d\n',
ind, beam)
fprintf('Individual discarded from optimization\n')
crash(cfail,1,gen)=ind; % storing crashed individuals

cfail=cfail+l;

break
end
sigx=timestresses(:,1); % Stress from axial force
sigy=timestresses(:,2); % Stress from moment about Y—axis
sigz=timestresses(:,3); % Stress from moment about Z—axis

% Calculating stresses in 8 spots around every beam end
% according to DNV—RP—C203 s.32 (SCF=1)

clear sig

sig(:,1l)=sigx+sigy;
sig(:,2)=0.5*sigx+sqrt(2)/2*xsigy—sqrt(2)/2*sigz;
sig(:,3)=sigx—sigz;
sig(:,4)=0.5*xsigx—sqrt(2)/2*xsigy—sqrt(2)/2*sigz;
sig(:,5)=sigx—sigy;
sig(:,6)=0.5*xsigx—sqrt(2)/2*xsigy+sqrt(2)/2*sigz;
sig(:,7)=sigx+sigz;

sig(:,8)=0.5*sigx+sqrt(2)/2*xsigy+sqrt(2)/2*sigz;

%% Checking for yielding and fatigue damage
maxstress=max(max(abs(sig))); % maximum stress in current section
if maxstress > fy
% for first yield current in generation
if yfail ==
yield(yfail,1:3,gen)=[ind beam+baseID maxstress];
yfail=yfail+l;
fprintf('Individual %d failed by yielding at %0.f MPa (beam: %d)\n',ind,
maxstress,beam+baselD)
break
% if a new individual yields
elseif ind ~= yield(yfail—1,1,gen)
yield(yfail,1:3,gen)=[ind beam+baseID maxstress];
yfail=yfail+l;
fprintf('Individual %d failed by yielding at %0.f MPa (beam: %d)\n',ind,
maxstress,beam+baselD)
break

end

113

C MAIN OPTIMIZATION SCRIPT

end
% only do fatigue check if highest stress cycle is above fatlim
if max(range(sig,1)) > fatlim
% run fatigue analysis in external function,
% fatiguefail returns fatigue(ind,gen)=1 for failure
fatigue(ind,gen)=fatiquefail(sig,yr,eff_t);
if fatigue(ind,gen)==
fprintf('Individual %d failed by fatigue (beam ID: %d)\n',ind,beam+baseID)
break
end
end
% BRINGING CODE UP TO CORRECT LEVEL AGAIN
end
end
end
else % not enough datapoints (premature termination of analysis)
fprintf('Corrupt timeseries data for individual %d\n',ind)
crash(cfail,1,gen)=ind; % storing crashed individual
cfail=cfail+l;
end
else % no data (totally failed analysis)
fprintf('No timeseries data for individual %d\n',ind)
crash(cfail,1,gen)=ind; % storing crashed individual
cfail=cfail+l;
end
end
stresstime(gen)=toc(stresst);
fprintf('Done!\n\n")

%% Calculating weight of structures
totmass(:,gen)=zeros(pop,1);
% looping through population of current generation
for ind=1:pop
for j=1:b—8 % cycling through beams
if ~any(rb(:,ind,gen)==j) % exclude removed beams
% extracting triad coordinates [x1 yl z1l; x2 y2 z2]
pos=[N(N==B(j,2),2:4); N(N==B(j,3),2:4)];
dx=pos(2,1)—pos(1,1); % length along axes
dy=pos(2,2)—pos(1,2);
dz=pos(2,3)—pos(1,3);
len=sqrt(dx~2+dy~2+dz"2); % length of beam j
vol=lenxcsp(j,1,ind,gen); % volume of beam j [m"3]

% mass of beam j added to totmass(pop x gen) [kgl

114

totmass(ind,gen)=totmass(ind,gen)+volxrho;
end
end

end

%% Calculating objective function/fitness and updating leadertable

for i=1:pop
% price of structure (estimate in NOK), the more removed beams the cheaper
obj(i,gen)=totmass(i,gen)*ps+(b—sum(rb(:,i,gen)>0))x*pins;
% fitness = constant — objective value, (higher = better)
fit(i,gen)=maxFit—obj(i,gen)/1E6;

end

% sorting by fitness and pairing with correct population numnber

[fit(:,gen), poppos(:,gen)l=sort(fit(:,gen), 'descend');

% result of current generation before yield and fatigue

genres=[fit(:,gen), poppos(:,gen)];

nr=0; % counter
clear surv % preparing variable of survivors
for i=1:pop
if ~any(genres(i,2)==crash(:,1,gen)) % if individual did not crash

if ~any(genres(i,2)==yield(:,1,gen)) % if individual did not yield

if fatigue(genres(i,2),gen)== % and not fail by fatigue
nr=nr+1; % add to number of survivors
surv(nr,:)=genres(i,:); % store survivors
end
end
end
end
ncrash=sum(crash(:,1,gen)>0); % number of crashed individuals
nfat=sum(fatigue(:,gen)>0); % number of failures by fatigue

nyield=sum(yield(:,1,gen)>0); % number of failures by yeilding
fprintf('%sd of %d individuals survived generation %d!\n',nr,pop,gen)
if nr~=pop
fprintf('sd failed by fatigue, %d crashed and %d yielded\n',nfat,ncrash,nyield)
end
nosurv=0;
if ~exist('surv','var')
fprintf('\nNo individuals from generation %d survived\n',gen)
nosurv=1l;
if ~exist('leaders', 'var')
fprintf('\nAll initial designs failed! Optimization terminated. \n')
return

115

C MAIN OPTIMIZATION SCRIPT

end
end
% if there are survivors, update leadertable
if nosurv==
if gen==1
% for first generation all survivors are leaders
templead=[surv ones(size(surv,1),1)*gen];
else
% adding result of current generation (>1) to temporary leader table
templead=[leaders(:,:,gen—1);surv ones(size(surv,1),1)*gen];
end
% sorting list containing old leaders and new candidates
templead=sortrows(templead,1);
% inverting list (best fitness on top)
temp=templead;
for i=l:size(templead,1)
templead(i,:)=temp(end+l—i,:)
end
% creating new leadertable
if length(templead) > pop
% saving sorted top designs as new leaders
leaders(1:pop,:,gen)=templead(1l:pop,:);
else

leaders(1l:size(templead,1l),1:3,gen)=templead;

end

P(gen,2)=surv(1l,1); % best design within current generation
else % if there are no survivors

leaders(:,:,gen)=leaders(:,:,gen—1);% copy leadertable from previous generation

P(gen,2)=NaN;

o°

no best design in current generation
end
% If only one survivor of generation 1, then terminate
if size(leaders,1l)==1 && gen==1
fprintf('\nOnly one surviving design of first generation! Optimization terminated.
n')
return
end

%% Plotting optimization evolution graph

P(gen,1l)=leaders(1,1,gen); % overall leader in generation i
P(gen,3)=mean(leaders(:,1,gen)); % mean of leadertable in generation i
P(gen,4)=pop—r; % number of casualties in current generation
close all

figure

116

[ax, hl, h2] = plotyy(l:gen,P(1l:gen,1:3),1:gen,P(1l:gen,4), 'plot', 'bar');

set(h1l(1), 'LineWidth',3)

set(h1l(2), ' 'LinewWidth',1.5)

set(hl(3),'linestyle','—",'color',[.3 .3 .3],'LineWidth',2.5)

set(h2, 'FaceColor', [.6 0 0]);

hleg=legend('Leading Design', 'Generation Winner', 'Mating Pool Mean');

set(hleg, 'FontSize',24, 'Interpreter', 'latex', 'position’',[—0.04 0.75 0.4 0.3]1);

xlabel('\textbf{Generation}', 'FontSize',26,'Interpreter', 'latex"')

set(get(ax(1l), 'Ylabel'), 'String', '\textbf{Fitness}', 'FontSize',26, ' 'Interpreter','latex
)i

set(ax(1), 'Xlim',[1 gen+2])

set(ax(1l),'YLim',[80 100],'YTick',[80:5:100], 'fontsize',20);

set(ax(2), 'Xlim',[1 gen+2], 'XTick',[0:10:gen])

y2lab=get(ax(2), 'Ylabel');

set(y2lab, 'String"', '\textbf{Casualties}', 'color',[.6 0 O], 'FontSize',26, 'Interpreter',"
latex');

set(y2lab, 'Units', 'Normalized', 'Position',[1.03 .2 0])

set(ax(2),'YLim',[0 pop*3],'YTick',[0:2:pop], 'YColor',[.6 O 0], 'fontsize',20);

grid on

grid minor

set(gcf, 'Units', 'normal')

set(gca, 'Position',[.05 .07 .9 .91])

drawnow;

save('plotdata.txt','P', '—ascii')

%% printing leadertable to command window

fprintf('\nLeading designs at end of generation %d \n [Fitness Individual Generation]\n'
,gen)

disp(leaders(:,:,gen))

%% Calculating relative fitnesses and creating mating pool
fprintf('\nPreforming crossover and mutation\n')
% Calculating relative fitness for use in weighted roulette wheel
% scaling fitness such that worst leader has zero fitness (will not pass on genome)
relfit(l:size(leaders,1),gen)=1leaders(:,1,gen)—min(leaders(:,1,gen));
% making sum(relfit) = 1 —> relfit conatins probabilities of becoming parents
relfit(:,gen)=relfit(:,gen)/sum(relfit(:,gen));
% If sum(relfit(:,gen))=0 — NaN will be generated, if so, use relfit and
% leadertable of previous generation
if any(isnan(relfit(:,gen)))
relfit(:,gen)=relfit(:,gen—1);

leaders(:,:,gen)=leaders(:,:,gen—1);

117

C MAIN OPTIMIZATION SCRIPT

fprintf('\n Too low diversity in leadertable, reusing leadertable of generation %d \

n',gen—1)
end
n_pool=size(leaders(:,:,gen),1l); % number of parents
parents=cell(2,3); % clearing parent matrix
matingpool=cell(n_pool,2); % clearing mating pool

% creating mating pool (binary chromosomes)
if sym==
for i=1:n_pool
% generation and population number of leader i
popgen=[leaders(i,2,gen) leaders(i,3,gen)];
% converting Di (in mm) to binary (Lc bits)
matingpool{i, 1}=dec2bin(1000*csp(1l:end—8,7,popgen(1l),popgen(2)),Lc);
% converting Do (in mm) to binary (Lc bits)
matingpool{i,2}=dec2bin(1000*csp(1l:end—8,8,popgen(1l),popgen(2)),Lc);
end
% if symmetry, then only masterbeams are design variables
elseif sym==1
for i=1l:n_pool
popgen=[leaders(i,2,gen) leaders(i,3,gen)];
matingpool{i,1l}=dec2bin(1000+csp(masterB,7,popgen(1l),popgen(2)),Lc);
matingpool{i,2}=dec2bin(1000*csp(masterB,8,popgen(1l),popgen(2)),Lc);
end

end

%% Adaptive mutation probability
% number of equal genes between best and worst individual in mating pool
eqg=sum(sum(matingpool{1l,1}==matingpool{end,1}));
% number of genes in total
numg=size(matingpool{1l,1},1)*Lc;
% gene diversity
div=(numg—eqg)/numg;
% adjust mutation probaility
if div > tresPm
if Pm > minPm
Pm = Pm — Pbx0.01;
end
else
if Pm < maxPm
Pm = Pm + Pbx0.01;
end

end

118

%% Breeding (crossover and mutation)
clear children
children=cell(n_pool,2);

°

c=1; 5 children counter

o

while ¢ < pop s making "pop" new children two at a time

parent=cell(2,3);

°

rndm=rand(1); s selecting first parent by weighted roulette wheel
for k=1:n_pool
if sum(relfit(1l:k,gen))>=rndm
parent{l,1l}=matingpool{k,1}; % Extracting beam Di's of first parent

parent{1l,2}=matingpool{k,2}; % Extracting beam Do's of first parent

parent{1,3}=k; % Storing parent ID to avoid identical parents
break
end
end
rndm=rand(1); % selecting second parent by weighted roulette wheel

for k=1:n_pool
if sum(relfit(1l:k,gen))>=rndm
% Making sure parents are not identical
if k~=parent{l,3}
parent{2,1}=matingpool{k,1};% Extracting beam Di's of second parent
parent{2,2}=matingpool{k,2};% Extracting beam Do's of second parent
parent{2,3}=k;
break
end
end
end
% Preforming crossover for all design parameters (chromosomes)
% Establishing cut positions for current parents
cpos=zeros(1,cuts);
for cut=l:cuts
if cut==1
% finding first cut position (random)
cpos(cut)=ceil(rand(1)x*(Lc—cuts));
else
% finding consecutive cut positions
cpos(cut)=ceil(rand(1l)*(Lc—cuts+cut—1));
% checking that position is valid
while cpos(cut) <= cpos(cut—1)
cpos(cut)=ceil(rand(1)*(Lc—cuts+cut—1));
end
end

end

119

C MAIN OPTIMIZATION SCRIPT

120

% Breeding two children from two parents by crossover:

for j=1:

cross=0;

for

end

size(parent{1,1},1) % beams

cut=1:cuts+1
% First cut
if cut==1

% Di beam j child c
children{c
% Do beam j child c
children{c

% Di beam j child c+1

% 0: parent 1 to child 1, 1:

parent 2 to child 1

,1}(j,1l:cpos(cut))=parent{l+cross,1}(j,l:cpos(cut));

,2}(j,1:cpos(cut))=parent{l+cross,2}(j,l:cpos(cut));

children{c+1,1}(j,1l:cpos(cut))=parent{2—cross,1}(j,1l:cpos(cut));

% Do beam j child c+1

children{c+1,2}(j,1l:cpos(cut))=parent{2—cross,2}(j,1l:cpos(cut));

% Intermediate cut(s)

elseif cut < cuts+l

% Last cut
elseif cut==cuts+l
children{c ,1}(j,cpos(cut—1)+1:
)i
children{c ,2}(j,cpos(cut—1)+1:

end

% Sw

if ¢

else

end

children{c
—1)+1:cpos(cut));
children{c

—1)+1:cpos(cut));

children{c+1,1}(j,cpos(cut—1)+1:

—1)+1:cpos(cut));

children{c+1,2}(j,cpos(cut—1)+1:

(
(
(
(
(
(
(
(

—1)+1:cpos(cut));

);

children{c+1,1}(j,cpos(cut—1)+1:

)

children{c+1,2}(j,cpos(cut—1)+1:

)i
itching crossing factor between
ross==

cross=1;

cross=0;

,1}(j,cpos(cut—1)+1:

,2}(j,cpos(cut—1)+1:

cpos(cut))=parent{l+cross,1}(j,cpos(cut

cpos(cut))=parent{l+cross,2}(j,cpos(cut

cpos(cut))=parent{2—cross,1}(j,cpos(cut

cpos(cut))=parent{2—cross,2}(j,cpos(cut

Lc)=parent{l+cross,1}(j,cpos(cut—1)+1l:Lc

Lc)=parent{l+cross,2}(j,cpos(cut—1)+1:Lc

Lc)=parent{2—cross,1}(j,cpos(cut—1)+1l:Lc

Lc)=parent{2—cross,2}(j,cpos(cut—1)+1:Lc

cuts

% Mutation of Di and Do for beam j of both children

for bit=1:Lc % for all bits in chromosome
% Mutation criteria
if rand(1l) <= Pm
% child c, Di mutation
switch children{c,1}(j,bit)

case '0'
children{c,1}(j,bit)="1";
case 'l'

children{c,1}(j,bit)="'0";
end
% child c, Do mutation
switch children{c,2}(j,bit)

case '0'
children{c,2}(j,bit)="1";
case 'l'

children{c,2}(j,bit)='0";
end
% child c+1, Di mutation
switch children{c+1,1}(j,bit)

case '0'
children{c+1,1}(j,bit)="1";
case 'l'

children{c+1,1}(j,bit)="'0";
end
% child c+1, Do mutation
switch children{c+1,2}(j,bit)

case '0'
children{c+1,2}(j,bit)="1";
case 'l'

children{c+1,2}(j,bit)='0";
end
end
end
end
c=C+2; % Updating children counter, 2 children produced
end
% converting children Di and Do chromosomes back to decimal and meters
if sym==
for i=1:pop
csp(l:end—8,7,1,gen+1l)=bin2dec(children{i,1}(:,1:Lc))/1000;
csp(l:end—8,8,1,gen+1)=bin2dec(children{i,2}(:,1:Lc))/1000;
end

elseif sym==1

121

C MAIN OPTIMIZATION SCRIPT

for i=1l:pop
csp(masterB,7,i,gen+1)=bin2dec(children{i,1}(:,1:Lc))/1000;
csp(masterB,8,1,gen+1)=bin2dec(children{i,2}(:,1:Lc))/1000;
end

end

%% Producing new set of valid design parameters from breeding result
for j=1l:pop
nr=1; % counter for removed beams
if sym== % for unsymmetric case
for i=1:b—8
Do=csp(i,8,j,gen+l)
if Do < minDo % remove beams with Do < minDo
Do=0;
rb(nr,j,gen+l)=1i; % matrix containing id of removed beams
nr=nr+l;
elseif Do > maxDo % limit diameter to maxDo
Do=maxDo;
end
Di=csp(i,7,j,gen+l)
if Do~=0 % if beam is not removed
% make sure Di is valid
if Di < minDratio*Do || Di > maxDratiox*Do
while Di < minDratioxDo || Di > maxDratio*Do
Di=Doxrand(1);
end
end
else % if beam is removed
Di=0;
end
I=pi/64%(D0.”4—Di."4);
% adding [Area Ip Iy Iz HydroDB HydroDD Di Do] to csp for next gen
csp(i,1:8,j,9en+l)=[pi/4*(Do0.”2—Di.”2) 2+«I I I Do Do Di Do];
end
% 1if symmerty, then masterbeams decide parameters of slavebeams
elseif sym==
for i=1:length(masterB)
Do=csp(masterB(i),8,j,gen+l);
if Do < minDo % remove beams with Do < minDo
Do=0;
% matrix containing id of removed beams
rb(nr:(nr+length(S{i,1})—1),j,gen+1)=5{i,1};
nr=nr+length(S{i,1});

122

% corner beams cannot be removed —> generate random cross section!
if any(S{end,1l}==masterB(i))
% make sure Do is valid
while Do < minDo
Do=maxDo*rand(1);
end
end
% limit diameter to maxDo
elseif Do > maxDo
Do=maxDo;
end
Di=csp(masterB(i),7,j,gen+l);
if Do~=0 % if beam is not removed
% make sure Di is valid
if Di < minDratio*Do || Di > maxDratiox*Do
while Di < minDratioxDo || Di > maxDratiox*Do
Di=Doxrand(1);
end
end
else
Di=0;
end
I=pi/64%(Do.”4—Di."4);
% filling csp matrix with symmetrical beam properties
csp(S{i,1},1:8,7,9en+1l)=repmat([pi/4*(Do.”2—Di.”2) 2*I I I Do Do Di Dol,[
length(S{i,1}(1,:)) 1 1 11);
end
end
end
fprintf('Done!\n")

%% Removing 2 generations old RDB folders to free disc space
% does not remove .fmm (can be rerun to bring back RDB)
if gen > 2
fprintf('\nDeleting RDB folders for generation %d\n',bgen—2)
for ind=1:pop
try
inddir=sprintf('Ind %03.0f %03.0f',gen—2,ind);
model = sprintf('%s %03.0f %03.0f.fmm',masterfile(1l:end—4),gen—2,ind);
RDBpath=sprintf('%s\\%s',inddir,model);
rmdir(sprintf('%s_RDB',RDBpath(l:end—4)),'s")
catch
fprintf('Could not delete RDB folder for individual %d\n',bind)

123

C MAIN OPTIMIZATION SCRIPT

end
end
fprintf('Done!\n")
end
% storing elapsed generation time

gentime(gen)=toc(iterationtime);

% Generation completed, go to top to commence next generaion
end

%% Optimization successfully completed, present total time used!

fclose('all');

tottime=sum(gentime)/60;

totstress=sum(stresstime)/60;

totfedem=sum(fedemtime)/60;

totwrite=sum(writetime)/60;

fprintf('\nTotal fedem analysis time: %d h %d min!\n',floor(totfedem/60), round(rem(
totfedem,60)))

fprintf('\nTotal stress analysis time: %d h %d min!\n',floor(totstress/60), round(rem(
totstress,60)))

fprintf('\nTotal model writing time: %d h %d min!\n',floor(totwrite/60), round(rem(
totwrite,60)))

fprintf('\nScript successfully completed in: %d h %d min!\n',floor(tottime/60), round(rem
(tottime, 60)))

124

