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relation between water going in and water going out of the tested Leca
®
 material. However, a lot of numerical 

problems occurred in the simulations. Unrealistic results were displayed, especially for Leca® 10-20mmR. In order 

to improve the performance of the material, and thereby obtain better water retaining characteristic, a suggestion is 

to increase the porosity and lower the saturated hydraulic conductivity for the expanded clay LWA materials in 
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Abstract 
A lightweight aggregate (LWA) is a material that has a lower density than rock aggregates. There are 

many civil engineering application possibilities for LWA. A potential field of application for expanded 

clay LWA is as a storm water retaining layer in green roofs. In order to design reliable structures of 

green roofs, more knowledge about the characteristics of the material is needed. The purpose of this 

master thesis was to test if the software SEEP/W is an appropriate tool for simulation of water runoff 

from a green roof, designed with expanded clay LWA. The numerical modeling was not performed 

for all types of expanded clay LWA, but on crushed Leca® 4-10mm and round 10-20mm alone. To test 

if SEEP/W is advisable tool for simulating water flow in expanded clay LWA, a back calculation of a 

laboratory experiment was done. The purpose of back calculating the experiment is to calibrate a 

numerical model and then use it for a full scale ideal roof. Thereafter a sensitivity analysis of the 

SEEP/W input parameters was performed. It was possible to back calculate the laboratory 

experiment, meaning obtaining the same relation between water going in and water going out of the 

tested Leca® material. However, a lot of numerical problems occurred in the simulations. Unrealistic 

results were displayed, especially for Leca® 10-20mmR. In order to improve the performance of the 

material, and thereby obtain better water retaining characteristic, a suggestion is to increase the 

porosity and lower the saturated hydraulic conductivity for the expanded clay LWA materials in order 

to obtain a higher attenuation. 
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Summary 
In natural habitats, the precipitation infiltrates naturally, since the vegetation and soil over many 

years have adapted to the climate. This balance of the ecosystem has been disturbed in urban areas 

by human development, such as impervious surfaces of roads, parking lots and house roofs. The 

amount of runoff water from these impervious surfaces fluctuates with the intensity and the 

duration of the rainfall and there is a risk that the capacity of the hydrological system will be 

exceeded.  Overflow of water channels increases the probability of property damage, people getting 

hurt and environmental issues with stormwater. A solution to this problem can be roof top gardens, 

vegetative roofs or green roofs, which are growing in popularity. Experiments have shown that the 

water storage capabilities of green roofs can smoothen out the peak of the runoff. Green roof 

systems retain some of the rainwater and distribute the runoff over a longer period of time, 

compared to traditional roofs where runoff starts more or less immediately. The retention is possible 

thanks to the porous material that green roofs contain and this reduces the risk of overflow of 

drainage systems in cities. 

A suggested material for use in green roofs is expanded clay lightweight aggregate, LWA. The 

characteristics of this material; its light weight and high porosity, make it suitable for green roof 

applications. Due to its low weight, none or limited structural reinforcement is needed and the high 

porosity enables water retention. SINTEF, a research institute in Norway, has studied the runoff-, 

retention- and water storage abilities of expanded clay LWA. Results from this study made it possible 

to perform numerical modeling of LWA material for green roof applications. The aim with the 

numerical modeling, performed by SINTEF, was to test if the water retention behavior of the 

expanded clay LWA could be simulated. However, the numerical modeling encountered problems, 

the software did not perform well and another program has been suggested, GeoStudio© SEEP/W. 

The purpose of this master thesis was to test if the software SEEP/W is an appropriate tool for 

simulation of runoff from a green roof. In order to analyze this, it was necessary to first gain better 

understanding of the properties of expanded clay LWA, why this was a milestone. The results from 

the simulations were analyzed and suggestions for how the expanded clay LWA can be modified in 

order to improve the water retention performance are given. The numerical modeling was not 

performed for all types of expanded clay LWA, but on crushed Leca® 4-10mm and round 10-20mm 

alone.  

In order to test if SEEP/W is advisable tool for simulating water flow in expanded clay LWA, a back 

calculation of a laboratory experiment was done. The purpose of back calculating the experiment is 

to calibrate a numerical model and then use it for a full scale ideal roof. Thereafter a sensitivity 

analysis of the SEEP/W input parameters was performed.  

To perform a simulation of water flow, in SEEP/W, five input parameters are needed. These five 

parameters define the material properties and thereby explain how porous the material is, how the 

grain sizes are distributed, the hydraulic conductivity when the material is saturated and how much 

water that is left in the material after the free water has been drained away.  

  



vi 
 

To back calculate the experiment performed by SINTEF, a simplified geometry of the equipment used 

in the experiment was created in SEEP/W. The necessary input parameters needed to define the 

Leca® materials were tested and the boundary conditions were defined for the model. When 

comparing the results from the back calculation and from the laboratory test, a good correlation for 

both materials could be seen. With the matching result, the calibrated model was scaled up to a 

reasonable ideal case roof and exposed for a rain event with another shape (different intensity and 

duration). 

The ideal case roof simulations resulted in a 40 % reduction of the water runoff for Leca® 4-10mmC 

and 10 % for Leca® 10-20mmR. Compared with the back calculation of the laboratory experiment, 

the runoff reduction were 10 % for Leca® 10-20mmR and 20 % for Leca® 4-10mmC. In the Ideal roof 

simulation a similar ratio, between the two materials, was expected. It is difficult to say if it is the 

Leca® 10-20mmR that does not reduce the runoff enough or if it is the 4-10mmC that reduces too 

much. A reason why the water runoff ratio is not the same in the two simulations, could be that 

shape of the rain events are not that similar for the ideal case roof and the back calculation. In the 

back calculation rain is more intense and constant and in the ideal case it is less intense and 

fluctuates. 

It was possible to back calculate the laboratory experiment, meaning obtaining the same relation 

between water going in and water going out of the tested Leca® material. However, a lot of 

numerical problems occurred in the simulations. Unrealistic results were displayed, especially for 

Leca® 10-20mmR. A reason could be the high saturated hydraulic conductivity value (from the 

laboratory permeability measurement) combined with the coarse grain size distribution is leading to 

a turbulent flow. 

Another reason for the incomplete correlation could be that unsaturated flow dominates through 

Leca® and it is difficult to simulate the non-linear flow, even with the volumetric water content and 

hydraulic conductivity function. 

In order to improve the performance of the material, and thereby obtain better water retaining 

characteristic, a suggestion is to increase the porosity and lower the saturated hydraulic conductivity 

for the expanded clay LWA materials in order to obtain a higher attenuation for the first runoff peak.  

In the software SEEP/W it is possible to change the input parameters one by one and study the how 

the individual change of one input parameter affect the runoff from the ideal case roof. In reality are 

the five input parameters connected to each other, which means that altering one parameter will 

change all parameters, e.g. if the parameters defining the grain size distribution is changed, the 

saturated hydraulic conductivity will not stay the same. It is important to consider this when studying 

the sensitivity analysis for the input parameters.  

Further work within this topic could be to change the geometry of the model and study how the 

inclination, layer thickness, rain intensity and the length of the drainage affect the water runoff. If 

enough time can be spent to run a large amount of simulations, a simple Excel-sheet could be 

created that estimates the runoff depending on the design of the green roof.  
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1. Problem Description 

1.1. Background 
In natural habitats, the precipitation infiltrates naturally, since the vegetation and soil over many 

years have adapted to the climate. This balance of the ecosystem has been disturbed in urban areas 

by human development, such as impervious surfaces of roads, parking lots and house roofs.  In 

forests about 95 % of the rainfall is infiltrated compared to around 25 % in cities, where the 

remaining 75 % needs to be accommodated by the drainage system. The amount of runoff water 

fluctuates with the intensity and duration of the rainfall and there is a risk that the capacity of the 

hydrological system will be exceeded. Overflow of water channels increases the probability of 

property damage and people getting hurt and environmental issues with stormwater.  When the 

maximum capacity of a combined sewer system is reached the system is releasing untreated water 

straight out into lakes and rivers. [1]  

In order to even out the inflow into the drainage system, water retention systems, such as ponds and 

reservoirs, are needed. Areas without impermeable surfaces, where the water can infiltrate into the 

ground and later evaporate are also desired. However, the lack of space in urban areas restrains the 

construction of storage ponds and the important permeable surfaces. It is expensive to assign 

enough land for this purpose in the cities. [2] 

An interesting alternative is a better employment of the, most commonly unused, impermeable roof 

surfaces. Roof top gardens, vegetative roofs or green roofs are solutions which are growing in 

popularity. Experiments have shown that the water storage capabilities of green roofs can smoothen 

out the peak of the runoff. Green roof system retain some of the rainwater and distribute the runoff 

over a longer period of time, compared to traditional roofs where runoff starts more or less 

immediately. The retention is possible thanks to the porous material that green roofs contain and 

this reduces the risk of overflow of drainage systems in cities. [1] [2] 

1.1.1 SINTEF – Green Roof Project  

A suggested material for usage in green roofs is expanded clay lightweight aggregate, LWA. The 

characteristics of this material; its light weight and high porosity, make it suitable for green roof 

applications. Due to its low weight none or limited structural reinforcement is needed and the high 

porosity enables water retention. [3] 

SINTEF, a research institute in Norway, has studied the runoff-, retention- and water storage abilities 

of expanded clay LWA.  Initially experiments were conducted in order to assess the material 

properties and hydraulic characteristics for a variety of expanded clay LWA, produced by different 

factories all over Europe. The most promising LWA samples were further tested in simple laboratory 

roofs to assess the water capabilities of the materials. Results from this study made it possible to 

perform numerical modeling of LWA material for green roof applications. The aim with the numerical 

modeling was to test if the water retention behavior of the expanded clay LWA could be simulated. 

However, the numerical modeling encountered problems. The result indicated an unlikely behavior 

of the tested material and Slide, the software used to perform the calculations, was not written for 

such simulations but rather for large scale slopes and embankments. Due to the inconvenience with 

using Slide another simulation program, GeoStudio© SEEP/W, has be suggested which is designed for 

water flow calculation. [3] 
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1.2 Objective 
The purpose of this master thesis is to test if the software GeoStudio© SEEP/W is an appropriate tool 

for simulation of runoff from a green roof. In order to analyze this, it is necessary to first gain better 

understanding of the properties of expanded clay LWA, why this is a milestone. The results from the 

simulations will be analyzed and suggestions for how the expanded clay LWA can be modified in 

order to improve the water retention performance will be given.  

1.3 Limitations 
The numerical modeling will not be performed for all types of expanded clay LWA, but on crushed 

Leca® 4-10mm and round 10-20mm alone.  

Only water retention and runoff will be studied. Other parameters affecting the amount of water 

flowing through a green roof, such as evaporation and plant uptake will not be studied.  
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2. Literature Review 
The literature review started with reading relevant material about green roofs, provided by Bridget  

Thodesen who has experience with this topic from SINTEF. The NTNU library database was used to 

find reading material. Scientific articles, available on the Internet, have also been used.    

This chapter starts with the history of green roofs and an explanation of the principle set up of a 

green roof, followed by a paragraph presenting the potential benefits of constructing green areas on 

top of houses. After that, the water retaining effect is illustrated and the final part of the literature 

review treats three different green roof field tests.  

2.1 History of Green Roofs 
The concept of building houses with vegetation on top is not a new phenomenon. However, the 

denomination of this green roofs, is less known, but as a matter of fact, one of the ancient wonders 

of the world, the hanging gardens of Babylon built around 500 BC, is more familiar. The purpose with 

green roofs is more or less the same today as back then, to reduce erosion caused by high 

stormwater flows and to create a better artistic appearance of the city, compared to gray concrete 

blocks. Other problems which did not exist in the ancient Mesopotamia, but can be found in the 

modern society can be improved by the use if green roofs. Examples of this are high energy 

consumption due to cooling in order to have a comfortable indoor climate and high levels of air 

pollution. [4] 

In Norway, roofs covered with soil and grass have been used for many centuries. This technique gave 

and still gives, good insulation properties during cold winters. Modern green roofs were first built in 

Germany in the 1880s. During the industrialization, houses were built with tar, which is very 

flammable. A method was developed to reduce the fire hazards, where the tar roof was covered with 

sand and gravel. After some time, seed and plants rooted and spread over the roofs. [4] 

Green roofs can be divided into two general classification systems, extensive or intensive. The 

extensive roof often contains one or two species of plants and it is designed for high hydrological and 

thermal performance. Minimum load is also considered in the design. This kind of roof requires a 

minimum of maintenance, and normally only personnel performing the upholding have access to the 

roof. [4] 

The intensive green roof contains a variety of plants and looks more like a park. It is called intensive 

since it requires “intense” maintenance which is necessary to uphold the habitat of the roof. 

Sometimes structural reinforcement is needed to cope with the load from water ponds and trees.  

Intensive green roof areas are often accessible to the public. [4] 

In a green roof the following different components are used, see Figure 1: 

 Vegetation; nearly any plant can be placed on a roof top. Important factors controlling which 

plants to choose are the climate, the design of the structure and the maintenance budget. 

Sedum is a popular plant thanks to its´ drought-tolerance and capacity to grow in shallow 

soils. 

 Planting medium; can consist of expanded clay LWA, which gives a light weight compared to 

natural soil and can it absorb more water. The expanded clay material will be described more 

detailed in chapter 2.5. 
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 Filter layer; typically consist of one or two layers of non-woven geotextile. The purpose of 

this layer is to allow water to flow and to prevent small particles from being flushed out of 

the planting medium, causing clogging of the drain layer. This layer also acts as a root barrier. 

Growing roots can damage the building if they penetrate joints in the structure. 

 Drain layer; can be found under the filter layer and the function of this layer is to lead the 

water from the roof into the drain system of the building.  

 Protective layer; the purpose of this layer is to inhibit damage of the roof membrane. During 

construction of the green roof there are risks that the membrane gets punctured and as 

mentioned before, roof penetration can cause leakage through the roof membrane.  

 Roof membrane is necessary to use in order to prevent leakage of water into the structure.   

 

 

Figure 1. The various layers in a green roof. 

2.2 Positive Effects 
The shading and the insulation which comes with a green roof can reduce the energy consumption 

and the urban island heating effect in cities. Shades from plants and transpiration from a green roof 

can reduce the heating effect from solar energy with up to 90% compared to a building with a 

traditional roof. The plants chosen plays an important part for the shading, due to the leaf area more 

or less controls the magnitude of the shading effect. Green roof construction has in some cases 

resulted in a reduced indoor temperature between 3 to 4°C. Every 0,5°C decrease in indoor 

temperature may reduce up to 8% of the energy consumption due to less air-conditioning. [1] 

  

Vegetation 

Filter layer Roof membrane 

Protective layer Planting medium 

Drain layer 
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Particles and pollutants can be filtered out by plants which will lead to better air quality. The particles 

will be washed away into the soil by the rain water and the pollutants will be absorbed by the plants. 

After installation of green roofs, reductions in sulfur dioxide and nitrous acids have been seen above 

the roof. Also air pollution from diesel engines can be reduced. [1] 

In urban areas will hard surface reflect sound and studies have shown that the human effects of 

noise exposure can lead to sleep disturbance, heart disease and decreased performance in school 

etc. The vegetation and the properties of the material on a green roof can absorb noise. Some tests 

have shown a decrease with 5 dB and others have resulted in 40 dB reduction. [1] 

Green roofs that are not accessible for the public can provide habitats for insects and birds. Studies 

of the biodiversity on green roofs have identified rare and endangered plant species. On the roof top 

of Ford Motor Company in Dearborn Michigan, numerous of insects and spider species but also two 

bird species have been identified. [1] 

However, the most prominent environmental gain is the reduction of stormwater runoff. Instead of 

running straight to the sewage system, the precipitation is absorbed in the planting media or drain 

layer and will be released back into the atmosphere by evaporation or transpiration from the 

vegetation. How much water that is retained in the green roof system depends on how the system is 

designed e.g. selection of plants, material and layer thickness but also the climate plays an important 

role in terms of intensity and duration of a rain event. The temperature and humidity influence the 

water retention indirectly, since the water content of the water retaining layer at the start of a 

rainfall strongly affects the degree of storm water retention. A material that is initially dry results in a 

higher degree of storm water retention than a wet material. The rainwater retention capacity of 

green roofs can be used to increase a city’s stormwater capacity without constructing expensive 

storage tunnels. 

When the material inside the green roof becomes saturated water runoff will start. The delay of 

runoff is due to the time it takes for the material to become saturated which depends on the water 

conductivity and the porosity of the same material. This delay, compared to a regular roof, mitigates 

the pressure of the city’s sewer system during an intense rainfall. If the runoff from a rainfall is 

spread over a longer period of time, it will results in a lower flow rate. Experiments have shown delay 

up to four hours, compared to the runoff from an “ordinary” roof. 

2.3 How the Green Roof Retains Water 
The retaining effect of water in green roofs can be subdivided into amount of retained water, delay 

of runoff and reduced runoff intensity.  The amount of water that can be retained in a green roof is 

mainly controlled by the grain structure and the thickness of the growing medium. Due to the high 

permeability in the green roof layers, water cannot completely fill up the voids between the 

particles. This means that the retained water can be found on the surface of the grains and particles. 

The delay of runoff is defined as the time between the start of the precipitation and until the 

rainwater reaches the drainage system of the roof. The delay is controlled by the time it takes until 

the green roof medium is saturated, but also drainage path is important. The drainage path is 

governed by the slope of the roof, structure of the drain layer and distance to the outlet. [6] 

  



18 
 

Reduced runoff intensity means that the outflow is lower per unit of time compared to a traditionally 

roof. The difference between the highest value of the runoff from a green roof and the highest value 

from a ordinary roof is called attenuation, see Figure 2. Storage volume is the amount of water which 

can be retained. Lag is the difference in time between the peak value of the inflow and peak value of 

the outflow. [6] 

 

Figure 2. Typical water runoff behavior from a green roof. [6] p. 47 

The precipitation will initially be absorbed in the vegetation, covering the green roof, and then will 

the rain water infiltrate down into the plating medium where the water will be retained until full 

saturation is reached for the plating medium. The excess water, from the plating medium, will drain 

to a water retaining layer before reaching the drain layer which leads the runoff water to the roof 

drainage pipes. The runoff will continue until the free water in the pores in the different layers 

(plating medium, water retaining layer and drainage layer) are fully drained. [6]  

A green roofs primarily capacity to retain water is defined as the difference between the amount of 

water stored in the pores and the water content at the moment in the pores. The primarily capacity 

will vary depented on prevously precipitation, the time since last rain event and evaporation rate. 

Figure 3 shows the a green roofs total primarily capacity to retain water. The difference between 

point b which shows saturated soil and point a which demonstrate a soil where the plants cannot 

take up more water from the soil, known as the wither point. 
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Figure 3. Different water contents for a soil. a-wither point, b-saturated, c-fully soaked. [6] p. 46 

During intensive precipitation the ability to retain water will increase with escalating rain intensity. 

The capacity to retain water will be even higher then expected considering the amount which is 

required until the the point of saturation is reached. The amount of water that can be drained out is 

lower than the amount which is added during intensive raining. This retaining capacity is known as 

the green roof secondary retaining capacity. The secondary retaining capacity is momentarily and 

when the intensity of the precipitation decrease, will the free water in the pores drain out and reach 

a saturated situation. [5]  

The secondary retaining capacity has a temporarily impact on the size of the runoff. The pores 

becomes filled with water which results in less runoff per time unit compared with a traditionally 

roof with the same precipitation intensity during the same time period. When more and more pores 

becomes water filled will the runoff intensity converge towards the intensity of the rain event. This is 

due to the weight from the free water inside the material. [5] 

If the water content is low inside a green roof before a rainfall, the primarily retaining capacity will be 

great and the runoff will be reduced and delayed. While if the water content is close to the point of 

saturated material, will the runoff be of more or less the same magnitude as the precipitation but 

some delay will occur. [6] 

In between two rain events, the amount of water that is absorbed in the plating medium will be 

taked up by the plants and some water will evaporate. This will lead to that the buffering capacity of 

the green roof can be restored. The time needed for this is depening on which plants that are used, 

time of the year and weather conditions. 

  

Air Water Particle 
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2.4 Green Roof Projects 
Three different green roof field tests with focus on the water retaining performance are presented in 

this chapter. The first two field tests were performed in Norway and the last one in Italy. All three 

projects showed stormwater retaining capability.  

2.4.1 SINTEF Field Test [7] 

SINTEF has performed a field test of green roofs in Trondheim, in order to study the runoff from 

sedum and Nittedals Roofing Turf®1 on a flat roof over time. Three test roofs with dimensions 2x2 m 

were constructed. A cornice of 200 mm height was built and a roof membrane was used to prevent 

uncontrolled leakage, see Figure 4. An opening of 20 mm was made at one side between the bottom 

of the roof and the cornice. The structure had a slope of 2 % towards the side with the opening. The 

reason for this is to drain the water off the roof, through the opening in the cornice and down into a 

gutter. The rainwater was then lead to a collecting barrel where the runoff could be measured.  

The three roofs had different design. One roof was covered with Nittedals Roofing Turf®, seeded with 

grass. Another roof, with sedum, consisted of a 70 mm drain layer of expanded clay lightweight 

aggregates and on top a 30 mm sandy soil layer covered with the sedum plants, Figure 5. The third 

and last roof had only the roof membrane in order to represent a traditional roof. 

 

Figure 4. The wooden casket with the protective roof membrane. 

                                                           
1
 This product is communally used on cottages in Norway and is delivered in mesh bags with dimensions of 

700x450mm and a thickness of 170mm. The material mainly consists of peat. 
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Figure 5. To the left Sedum and to the right Nittledals Roofing Turf® with fully grown grass. 

The experiment started with two controlled tests, spreading a fixed amount of water during a 

specific time period. This produced a cumulative curve of the runoff for each of the three test roofs. 

To evaluate how the water content inside the materials affects the runoff, samples were taken 

before and after each initial test. Out of this sampling it was also possible to determine how much 

water that was absorbed during the tests. Before the field test, the maximum water content was 

measured in the laboratory. The samples were placed in small containers with grids at the ends of 

the pots, allowing free water movement. The containers were stored submerged in a water tank for 

four days. Thereafter the containers were taken out and the free water was drained out and the 

maximum water content could be measured, see Table 1. 

Table 1. Shows the maximum water content for the materials. 

Maximum water content [%] 

Nittledals Roofing Turf® Sedum 

978 302 

 

The outdoor controlled experiments were performed during two days with similar weather 

conditions (sun and a little wind). Between these occasions there had been precipitation which 

resulted in higher initial water content of the materials in the green roofs during the second 

measurement. An amount of water corresponding to 52 [mm/m2 h] was distributed over each of the 

three small scale roofs. After the one hour long rain event no more water was added. The 

measurement of the runoff water continued until the curve of the runoff had flattened out, reaching 

close to no runoff water, see Figure 6. 
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Figure 6. Runoff with both materials and water contents. 

Table 2 and Table 3 summarize the findings from the water runoff test. From the tables it is possible 

to conclude that there exist a delay in runoff for the green roofs and a reduction of total runoff. The 

magnitudes of the runoff and the delay seem to correlate to the water content of the material at the 

point when the precipitation starts. From Table 3 conceivable to notice that the water content, at the 

start of a rain event, inside the material affects the total runoff.  

Table 2. A summary of runoff time and quantity. 

 
Total runoff 

[mm] 
Start of runoff 

[min:sec] 

Equal runoff to 
reference roof 

[min] 

Total runoff 
time 

[hours:min] 

Nittedals Roofing 
Turf® (21% of 

wmax) 
4,4 36:30 - 5:20 

Nittedals Roofing 
Turf® (48% of 

wmax) 
41 5:22 58 18:19 

Sedum (11% of 
wmax) 

43,7 2:37 74 (calculated) 4:07 

Sedum (61% of 
wmax) 

50,8 1:50 35 11:32 

Reference roof 51,8 0:23 0 1:18 
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Table 3. The reduction of total runoff. 

 After 1 hour After 5 hours 

Nittedals Roofing Turf® (21% of wmax) 98% 92% 

Nittedals Roofing Turf® (48% of wmax) 53% 27% 

Sedum (11% of wmax) 22% 16% 

Sedum (water 61% of wmax) 10% 2% 

 

2.4.2 Green Roof in Oslo [8] 

In July 2009 a green roof experiment took place in Oslo. A roof, with a few degrees slope, of a garage 

was subdivided into three 8 m2 parts, see Figure 7. The middle part was left without any change 

while the parts left and right were covered with 3 cm of soil and sedum on top. The part in the 

middle was used as a reference roof, simulating a traditional roof, while the two sedum covered 

parts reproduce the behavior from green roofs.  

During the testing phase an intensive precipitation occurred corresponding to a 40-year rainfall. This 

rain event, 29 mm in 30 min, took place after a period of warm dry weather. The green roof 

absorbed the first 9 mm of precipitation and delayed the runoff with about five minutes. For the two 

hour measuring time, shown in Figure 8, an amount of 6 mm (22%) was retained in the green roof. 

Even though the green roof becomes wet after the 9 mm rain absorption, it still reduces the peak 

runoff. 

 

Figure 7. The roof with the three sections. 
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Figure 8. Results from the experiment. 

2.4.3 Green Roof Test in Mediterranean Climate [9] 

In May 2007, an experiment started on the rooftop of the Environmental Engineering laboratory 

building at the University of Genova, Italy. An area of 350 m2 was used in the study. The green roof 

had, from the top and downwards, the following design:  

- A 20 cm layer with growing medium consisting of mixed soil and peat. 

- A filter layer constitute of a geotextile (100 g/m2). 

- A drainage layer with a depth of 15 cm. 

- Finally a protective layer consisting of a denser geotextile then the filter layer (300 g/m2).  

A meteorological station which collects data with a 1 min resolution was placed on the roof and the 

roof was equipped with sensors measuring the runoff water in the outlet of the green roof. The rain 

events which occurred during the test period (May 2007 until August 2008) are shown in Table 4. The 

same table presents the peak values of the outflow, retained rain water volume, the peak reduction 

and the time delay. The retained rain water volume was calculated as the difference between the 

outflow and the rainfall magnitude. An example of this is the rain event on the 8th of august, 13,2 mm 

precipitation fell which lead to no out flow results in 100 % retained volume. In order to determent 

the peak flow reduction, the outlet flow from the green roof was compared to an impervious 

reference roof. The delay is the difference in time between the peak value of the rainfall event and 

when the flow peak occurs.  
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Table 4. The data results from the test period. 

 

 

Palla (2011) observed that four out of nineteen rainfall events did not produce any runoff and three 

rainfall events resulted in a runoff greater than 1 litre/sec. During all the precipitation occations the 

entire volume of rain water was infiltrated and no surface runoff occured. Palla (2011) also high lights 

the lag or delay effect for the stormwater events (5th of June, 22nd and 23rd of November and 17th of 

June 2008). For these occations a delay between 79 min and 148 min could be seen. These delays in 

time and the retained volume of water indicates that the green roof, built for the experiment, 

performed well.   
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2.5 Material Production and Characteristics 
LWA can originate from natural resources or be produced in factories. The main natural resource is 

volcanic material. Boiling lava consists of air and gases, which during rapid cool down solidifies into a 

highly porous material. Due to the quick cool down of the molten mass, no crystallization occurs and 

the material obtains a glassy structure. This natural lightweight material is known as volcanic 

aggregates, scoria aggregates or pumice. 

The raw materials used for the man-made production can be divided into three groups: 

 Natural materials, e.g. clay, shale and slate. 

 Manufactured products, e.g. glass. 

 By-products from the industry, such as fly and bed ash. 

Man-made lightweight aggregates can be produced in two different basic methods, either in a dry or 

wet process. The wet process resembles the method used to prepare clay for brick production, 

where clay is mixed with water and thereafter burned. While in the dry method shale or slate is 

crushed and milled into powder and pressed into lightweight pellets. 

The characteristics of LWA vary depending on the method and the materials used in the production, 

either expansion or agglomeration. Expansion of the material occurs with high temperature, which 

causes generation of gas within the material. These conditions lead to an instant solidification of the 

material.  Agglomeration on the other hand is a result of a process where some of the raw material 

melt and bind together. A result from the two different manufacturing processes can be that the 

shape and the texture will differ considerably from highly angular to completely round and the 

surfaces from rough and porous to smooth and dense. [10] [11] 

A producer of expanded clay LWA is the Weber factory in Rælingen, Norway, where a wet process is 

used for manufacturing. Expanded clay LWA manufactured by Weber is called Leca®. The production 

phases at the factory in Rælingen can be simplified by Figure 9:  
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Figure 9. Flow chart of Leca® production at Weber factory in Rælingen, Norway. 

First, clay and water is mixed into a paste that is fed in the top of a rotary kiln, see Figure 10. The 

rotary kiln is a long cylindrical “oven” which rotates along its longitudinal axle and is horizontally 

inclined. The kiln is divided into two different parts, a drying kiln where the temperature and the 

rotation velocity is lower and a burning zone with a higher temperature (around 1200°C) and a 

higher rotation speed. The clay paste is fed in the upper end of the kiln where it dries. By gravity and 

the rotation the material moves towards the burning zone in the lower end, where it expands. When 

the material reaches the end of the kiln, it drops out and is stored in piles where it cools down. After 

that, sieving is performed to obtain the requested particle size distribution. The expanded clay LWA 

that is produced in a rotary kiln has a round profile, particularly when a pre-shaping system is used 

before the drying and burning process. [10] 

 

Figure 10. Rotary kiln the length is usually between 30 to 60 meters depending on the composition of the raw material 
the different producers are using. [12] 

 

Excavation and transport  of 
the clay resource to the factory 

Mixing and removal of 
impurities e.g stones and gravel 

Cooling down 

Sieving Final product 
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2.5.1 Physical Properties 

The relation between the mass and the total volume that the loose material occupies is called the 

bulk density. Important factors that govern this parameter are the particle distribution and the water 

content, but also the shape and the surface conditions of the aggregates affect the result. Round and 

angular LWA with the same particle density can vary with almost 100 kg/m3 in bulk density, 

depending on the proportions of voids. A general rule is that the bulk density of lightweight 

aggregates is higher for the fine particles and the lowest values can be found for the coarse-grained 

material.  

Particle density, also referred to as unit weight, is the density of the whole grain, including pores. An 

important factor that influences this parameter is the porosity, since the specific density of the solid 

material is almost fixed (about 2700 kg/m3). The density of LWA shows great variation depending on 

the origin. LWA from volcanic activities can have a bulk density between 280 and 1100 kg/m3. 

American plants produce expanded clay LWA with a bulk density from 500 to 700 kg/m3 while 

European produced expanded clay LWA varies between 250-400 kg/m3. [11] 

The product specifications for expanded clay LWA produced at Rælingen are shown in Table 5. 

Table 5. Physical properties of Leca® produced at Rælingen. [13] 

Particle size range 
4-10mm 

(crushed) 
4-10mm 2-4mm 10-20mm 

Bulk density, dry [kg/m3] 250 (± 40) 320 (±75) 360 (± 50) 260 (± 50) 

Particle density, dry 
[kg/m3] 

540 (± 80) 600 (± 100) 650 (± 100) 450 (± 100) 

Particle porosity [%] 80 78 45 83 

Voids [%] 44 46 45 42 

 

The data over loose bulk density from SINTEF’s testing program of expanded clay LWA is shown in 

Table 6.  

Table 6. Variation in dry loose bulk density from different production sites. [14] 

Country and production 
location 

Particle size range [mm] 
Dry loose bulk density 

[kg/m3] 

Portugal, Avelar 10-20 275 

Denmark, Hinge 10-20 215 

Denmark, Ølst 10-20 260 

Spain, Los Hueros 8-16 303 

Sweden, Linköping 12-20 260 

Finland, Kuusankoski 10-20 280 
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3. Theory 
This chapter will start with illustrating the theory behind water flow and then continue with a short 

description of the Finite Element Method, followed by the explanation of the methodology used in 

the software in order to calculate water flow through a porous material. 

3.1 Method 
In order to test if SEEP/W is advisable tool for simulating water flow in expanded clay LWA, a back 

calculation of a laboratory experiment will be done. The approach used in order to collect data and 

evaluate the results will be explained in chapters 4 and 5. 

The purpose of back calculating the experiment is to calibrate the numerical model and then use it 

for a full scale ideal roof and also evaluate the results. Thereafter a sensitivity analysis of the SEEP/W 

input parameters will be performed, see chapter 6.  

3.2 Water Flow 
In order for water to flow from one point to another in a porous material, there must exist a 

difference in energy (a potential) between the two points. Another condition is the existance of 

continous pores in which the water can flow. A porous  material’s ability to allow fluids to flow 

through its pores is called the permeability. [15] 

Figure 11 shows a principle set up of the equipment used to measure the permeability of a sample. 

To the left in the figure, water is added into the system and on the right side the water flows out and 

into a container with a known volume. 

 

 

Figure 11. A principle sketch over apparatus for testing permeability. 

The hydraulic gradient,  , is defined as the difference in potential over the length. It is the gradient 

that is the driving force of the water.  
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dH – hydraulic potential 

dL – Length of the sample 

The flow rate of water per unit area, ν, is defined as the volume of water, Q, over the section area of 

the sample, A, and time.  

  
 

   
                                                                                

According to Darcy’s law the coefficient of permeability can be calculated with the following 

equation: 

  
 

 
                                                                                 

The coefficient of permeability is only valid as long as the flow is laminar, which means that the flow 

occurs parallel with no disruption between the streamlines. Turbulent flow on the other hand is 

more chaotic and develops in higher flow rates, see Figure 12. 

 

Figure 12. Two different flow conditions. 

  

Turbulent Flow 

Laminar Flow 
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When the hydraulic gradient reaches a certain level the 

curve bends off, which means that the flow rate stops 

increasing linearly with the gradient, see Figure 13. The 

reason is that the flow in the pores no longer is laminar, 

but turbulent, which implies that Darcy’s law is no longer 

valid. 

 

  

 

 

Typical values for permeability of different types of 

soil are given in Table 7. [16] 

Table 7. Values of the coefficient of permeability for various particles sizes. 

Type of soil k [cm/s] 

Gravel >1 

Sand 1 – 10-3 

Silt 10-3 – 10-6 

Moraine 10-4 – 10-7 

Clay 10-6 – 10-9 

 

  

Figure 13. The graph indicates where Darcy’s law is 
valid. 
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3.3 Numerical Modeling 
The Finite Element Method, FEM, is the numerical model used in GeoStudio© SEEP/W. The FEM is a 

powerful tool performing heavy calculations to solve a number of engineering problems. It was 

developed in the 1950’s and is commonly used in geotechnical and structural engineering. The 

theoretical method used is called the displacement method. The reason for the name is that in the 

method forces and load are placed on a structure or element and the response in displacement and 

deformation is studied. The displacement method is suitable for static structural mechanics 

calculating deformations for beams, soil and rock. The method can also be used for flow applications; 

in that case the forces and loads are replaced by hydraulic head and fluid flux. Then the temperature 

and flux is analyzed instead of displacements. [17] 

The main principle behind the FEM is to subdivide the structure into smaller elements which is called 

discretization or meshing. The behavior of an element is described approximately. Each and one of 

the elements will be puzzle parts of the main structure and the behavior of each and one for the 

elements will be calculated and then added together, see Figure 14. 

 

Figure 14. Showing meshing of a soil and the nodal point for an element with corresponding degrees of freedom 
(directions for the displacements) and forces at the nodal points. [17] Ch.2 P. 8 

Like every modern FEM program, SEEP/W consist of a pre-processor where the user gives the input 

parameters e.g. geometry, material properties and boundary conditions etc. It is in the pre-processor 

that the meshing occurs. The pre-processor delivers the necessary information to the part of the 

program that performs the calculations and the results are displayed in the post-processor where the 

user can see the outcome of the problem. 

In order to succeed with numerical simulation it is important to choose adequate size of the 

elements. If too coarse elements are used the solution will not be accurate enough and if too small 

elements are used huge compute power will be needed. The same issues are valid for the time 

integration step, long time steps will give inaccurate values and small time steps will generate huge 

amount of data.      
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3.4 SEEP/W 
SEEP/W is a FEM software designed for calculation of water flow in both saturated and unsaturated 

porous material. A mental picture of how the steps are connected in SEEP/W, can be helpful. Figure 

15 shows a simplification of how the solution approach is designed.  

Figure 15. Simplification of the solution approach. 

1) First, a geometry is created by the 

user, where the soil layers, water 

ponds and interfaces are drawn 

and give a graphic definition of the 

model. The meshing is also 

performed in this step, the user 

chooses the shape and the size of 

the elements. 

2) The next step is to define the 

properties of the soil or materials 

which will be used in the 

simulation. This is done by defining 

the input parameters of each of 

the materials, e.g. porosity and 

grain size distribution.  

3) With the input from the previous 

step, the program creates a 

volumetric water content function, 

which defines how much water the 

material contains, depending on 

the pore water pressure.  

4) After the water content function is 

defined, a hydraulic conductivity 

function can be generated. The 

hydraulic conductivity function 

defines the conductivity of an 

element based on the water 

content of the element. The 

function is given by defining the saturated water flow velocity and the shape of the water 

content function. 

5) A last step before the calculations can be performed is to define the boundary conditions; 

the total hydraulic head or a water flow. These give the driving forces of the water flow in 

the model. 

6) A flow matrix can be created and solved in SEEP/W when the points 1 to 5 have been 

determined. Point 1 to 4 gives the necessary input data to specify the [K]-matrix, which is 

related to the geometry and material properties. A defined total hydraulic head boundary 

condition gives the {H}-vector in order to calculate the flow or vice versa, when a flow 

boundary condition is defined, a {Q}-vector is generated to calculate the total hydraulic head. 

Geometry 

Material properties 

Volumetric water 
content function 

Hydraulic 
conductivity function 

Boundary conditions 

Flow matrix 
[K]{H}={Q} 
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3.4.1 Volumetric Water Content Function [18] 

Soil consists of a solid part and pores. The pores can be filled with air, water or both. In a saturated 

soil the pores are completely filled with water and no air exist in the voids. For a saturated soil the 

volumetric water content is equal to the porosity  .  

                                                                                            

  = the volumetric water content 

  = the porosity of the soil 

S = the degree if saturation, (1.0 for a saturated soil) 

For an unsaturated soil the water content with in the pores will vary depending on the difference 

between the air pressure and water pressure (Ua – Uw). This difference is called the matric suction. In 

SEEP/W the volumetric water content function describes how the portion of the pores filled with 

water changes with the matric pressure. There are three characteristics for a soil that is pointed out 

on the graph: the air-entry-value, the slope of the curve both for the positive and negative pore-

water pressures and the residual volumetric water content, see Figure 16.  

 The air-entry value (AEV) corresponds to the value of the negative pore-water pressure when 

the largest voids in the soil start to drain. The AEV-value is given from the maximum pore size 

and the pore-size distribution within the soil. 

 The slope of the curve describes how water is stored or drained out of the soil. On the left 

side where pore pressure is negative, water is drained from the AEV-value to the residual 

water content. The right side, where the pore pressure is positive, the slope of the 

volumetric function defines how more and more water is stored in the soil.  

 Residual volumetric water content defines a point where no more water is drained out of the 

soil. It is possible to remove more water from the soil by evaporation but this is not 

considered in SEEP/W.  

 

Figure 16. To the left the volymetric water content function and to the right examples of volymetric water content 
function for different grain size distributions. [18] pp 63-64 
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The shape of the volumetric water content function is highly influenced by the size of the particles 

and the distribution of the particle sizes, see Figure 16. The sand particles have more or less the same 

size and the particles are relatively large. This results in a steep inclination of the function, which 

means that most of the water can be released with a small negative pore-water pressure.  

For the silt, which in this example consists of both sand and silt particles, the distribution of the pore 

size is broader. This is due to the fact that pores or voids between the sand particles are filled will 

smaller silt particles. With smaller pore sizes, the drain of the soil begins during larger negative pore-

water pressure. 

3.4.2 Hydraulic Conductivity Function [18] 

It is within the pores of a soil that the transport of air and water takes place. For a complete 

saturated soil all the pores are filled with water, while for an unsaturated there is air in the pores. 

Air-filled pores cannot transport water and becomes non-conductive. This means that the water flow 

rate within a soil differs, from a higher flow rate in a fully saturated soil compared with a lower flow 

rate in an unsaturated soil. The reason for the lower flow rate is that the water flow path becomes 

longer in an unsaturated soil, whereas the flow path in a saturated soil is the shortest possible, see 

Figure 17. 

 

Figure 17. To the left saturated soil with a short part for a water particle and to the right an unsaturated soil with longer 
flow paths for the water particles. 

When more and more air enters the pores the conductivity decreases further until the soil is drained 

and has reached the residual water content stage. The capability for water to flow through a soil is 

strongly connected with the amount of water in the soil and the volumetric water content function 

describes exactly this.  

It is important to specify a hydraulic conductivity function for a material that has an unsaturated 

region. If the conductivity is set to be the same in the saturated and unsaturated regions, the results 

from a seepage analysis will indicate flow patterns which deviate from a “real” situation.  

In SEEP/W there are three different estimation methods in order to establish the shape of the 

hydraulic conductivity function. The method used in the calculations for this analysis is the approach 

suggested by van Genuchten. 
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    the calculated conductivity for a specified water content or negative pore-water pressure 

    saturated hydraulic conductivity 

a,n,m   curve fitting parameters 

  
 

     
                                                                              

   required suction range 

In the equation above for calculating the conductivity two curve fitting parameters are needed, a and 

m. van Genuchten stated that the best point for estimating the curve fitting parameters is the point 

halfway between the saturated water content and the residual water content. The slope of the 

function at this point is calculated by the following equation. 
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       the saturated and residual volumetric water content 

    the volumetric water content at the halfway point of the volumetric water content function 

    the matric suction at the halfway point 

a and m are estimated by the following equations: 
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3.4.3 Water Flow Matrix [18] 

How the functions in SEEP/W describes the water content and the hydraulic conductivity for a 

material have been illustrated earlier in this chapter. This section will present the equations which 

are governing the flow matrix, [K]{H}={Q}.  

Partial differential water flow equations, which the flow matrix consist of: 

 

  
(  

  

  
)   

 

  
(  

  

  
)      

  

  
                                                      

H = the total head 

  = the coefficient of permeability in the x-direction 

   = the coefficient of permeability in the y-direction 

  = the applied boundary flux (rate of flow through a section of area) 

θ = the volumetric water content 

t = time 

The equation above describes that the difference between the flow going in and the flow going out is 

equal to the change of the stored amount of water in the soil element over time  
  

  
 .   is the flow 

going in and 
 

  
(  

  

  
) and 

 

  
(  

  

  
) defines how much water that is leaving in the x- and y-

direction. 

During steady-state conditions, there is no water storage in the soil elements, this gives the following 

equation: 

 

  
(  

  

  
)   

 

  
(  

  

  
)                                                          

Changes in the volumetric water content are controlled by the change in stress state and the 

characteristics of the soil. For saturated and unsaturated conditions the stress state are related to 

the difference between the total stress, σ and the pore-air pressure ua (σ - ua) and the difference 

between the pore-air and the pore water pressure uw, (ua – uw), see Figure 18. 
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Figure 18. Pore water pressure, uw, and pore air pressure ua. 

The program code in SEEP/W is written in a way that the total stress (σ) remains constant, i.e. no 

loading or unloading takes place for the soil elements. It is also assumed that the pore-air pressure is 

constant at atmospheric pressure. This means that the difference between the total stress and pore-

air pressure is constant and causes no change of the volumetric water content. The volumetric water 

content is only dependent on the difference between pore air pressure (ua) and pore water pressure 

(uw). As mentioned before, the pore-air pressure is kept constant, which results in the change of 

volumetric water content being dependent on the pore water pressure change, according to: 

                                                                                   

   = the slope of the water storage curve (see Figure 16) 

The total hydraulic head,  , is a user input parameter and defined as: 

  
  

  
                                                                               

    the pore water pressure 

    the unit weight of water 

   the elevation 

It is possible to rewrite the equation to: 

                                                                                 

Inserted into equation 3.13 gives: 

                                                                           

Then substituted into equation 3.11; 
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)   
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ua 

uw 
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For a soil element at an elevation,  , the elevation remains constant and the dependency disappears 

resulting in the following equation which is used in the SEEP/W FEM calculations. 
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4. Water Retaining Experiment [20] 
One of the ideas with green roofs is to ease the pressure on a city’s drain or sewage system during 

heavy rain. Green roofs smoothen out the peak of the storm water runoff and store parts of the 

water in the porous material. Preliminary testing of 24 different expanded clay LWA materials were 

performed at Saint-Gobain Weber2. The materials were produced at seven different factories in 

Europe and the objective was to find LWA materials that showed good potential, considering water 

storage and permeability. Two Danish produced Leca® products, round Leca® 10-20mmR (round) and 

Leca® 2-4mmC (crushed) and the Norwegian produced Leca® 4-10mmC (crushed), were selected and 

sent to SINTEF research institute in Trondheim for further testing. At SINTEF the permeability and 

maximum water capacity were measured. 

The delay in water runoff and water storage ability for the two Leca® materials (4-10mmC and 10-

20mmR) was tested and the procedure will be described in this chapter. It is the results from this 

experiment that will be back calculated in SEEP/W.     

4.1 Laboratory Experiment of a Small Scale Green Roof  
In order to perform the experiment, two wooden crates were constructed in the SINTEF laboratory, 

see Figure 19. The crates were two meter long and equally wide. A 200 mm high frame was built 

around the outer edge. The crates were built with a 2 % inclination towards one of the sides, 

allowing the water to flow out of the crates and into a gutter, which lead to a collecting barrel. To 

prevent water leakage and absorption of the wood, the inside of the small scale roofs were covered 

with an impermeable roofing membrane.   

 

Figure 19. One of the two wooden crates filled with Leca® 10-20mmR. 

                                                           
2
 Competence Centre Exclay in Lillestrøm 
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In order to simulate rain, a system of nozzles spreading a controlled amount of water over the 

material was used, see Figure 20. The rig with the nozzles was installed about half a meter above the 

surface and a plastic membrane prevented drops from drifting away and from being absorbed by the 

material.   

 

Figure 20. The nozzles spreading water, simulating rain, over Leca® 10-20mmR. 

In this experiment, 144 L water was sprinkled over the four square meter surface during 15 minutes, 

corresponding to a 36 mm rain (per square meter). The water draining into the barrel was measured 

from the start of the simulated rain phase and until minimal water runoff could be observed. Two 

different layer thicknesses, 100 mm and 200 mm, were tested for both of the materials. From the 

experiment, it was possible to quantify the total runoff, the time delay in runoff and runoff per unit 

of time. 

The total runoff reduction or coefficient of discharge, C, is defined as: 

  
                                     

                                  
                                             

In order to measure the coefficient of discharge, the test material should be irrigated until it is 

saturated and a constant outlet flow is reached during 10 minutes. Thereafter should a drain phase 

of 24 h follow, before a rain event of 27 L/m2 is spread on the material and the amount of outlet 

water is measured. The 15 minutes rain should be repeated three times and the C-value, can be 

determined by taking an average of the three experiments. 
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The C-values found for the different Leca® materials can be seen in Table 8. 

Table 8. The tested mean value of coefficient of discharge. 

 

 

 

4.1.1 Leca® 10-20mmR 

Figure 21, show the results of the cumulative water amount for Leca® 10-20mmR from three tests 

performed on a 100 mm layer and three test on a 200 mm layer. The red line labeled “Reference 

roof” shows the total amount water spread on the roof (36 mm). The difference between the 

reference roof curve and the curves bellow is the volume water that stays in the material and in a full 

scale green roof, this would be the volume water which never reaches the sewage system in a city. 

 

Figure 21. The cumulative water runoff for Leca® 10-20mmR.  

Figure 22, shows the water runoff from Leca® 10-20mmR with two different layer thicknesses. It is 

possible to see delay and reduction of the runoff compared to the reference roof. The thicker 200 

mm layer have more ability to delay and reduce the runoff thanks to the dobble water storing 

capacity compared to the layer with only the half depth. 

Leca® material Layer of 100 mm Layer of 200 mm 

4-10mm (Crushed) 0,7 0,5 

10-20mm (Round) 0,8 0,7 
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Figure 22. The runoff per time unit for Leca® 10-20mmR.  

The result of the runoff experiment of the Leca® 10-20mmR, after the 36 mm rainfall, is shown in 

Table 9. The time values are compared with the reference roof test, which was performed by 

spreading the same amount of water during the same time in the wooden crates, without any 

material inside. 

Table 9. A summary from Figure 22. 

Property 100 mm layer 200 mm layer 

Delayed start of runoff [min] 1 1,5 

Extended runoff [min] Ca 3,5 Ca 6 

Maximum runoff per time unit [%] 100 92 

Total runoff reduction after 1 hour [%] 3 11 
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4.1.2 Leca® 4-10mmC 

In Figure 23 it is possible to see the cumulative water volume inside Leca® 4-10mmC. In the results 

from 4-10mmC and 10-20mmR, it possible to notice that the curves are shifted down more for 4-

10mmC compared to 10-20mmR, that means that a larger volume of water is stored in Leca® 4-

10mmC.   

 

Figure 23. The cumulative water runoff for Leca® 4-10mmC.  

In the water runoff curve, Figure 24, it is possible to observe the same behavior for this Leca® 

material compared to the 10-20mmR, considering delay in runoff and reduction of the runoff peak. 

The results display a significant reduction in runoff for the 200 mm layer. 

 

Figure 24. The runoff per time unit for Leca® 4-10mmC.  
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The key results for Leca® 4-10mmC can be seen in Table 10. Comparison of the results from the two 

tests indicates that Leca® 4-10mmC delays the runoff and reduces the runoff peak more than the 10-

20mmR material. 

Table 10. The results for Leca® 4-10mmC from the same rain quantity. 

Property 100 mm layer  200 mm layer  

Delayed start of runoff [min] 2 2,5 

Extended runoff [min] 15 17 

Maximum runoff per time unit [%] 96 79 

Total runoff reduction after 1 hour [%] 8 20 
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5. Back Calculation of the Laboratory Experiment 
In this thesis, an attempt to back calculate the runoff experiment executed by SINTEF (mentioned in 

chapter 4) was performed. The purpose of this task was to test if it is possible to receive the same 

result with SEEP/W as for the experiment.  This chapter explains the procedure that was used, how 

the material input parameters were chosen. Thereafter the geometry of the model in SEEP/W and 

the assumptions made are illustrated. The last part of the chapter shows the results from the SINTEF 

laboratory experiment side by side with the result from the numerical calculations performed in 

SEEP/W. 

5.1 Material Properties 
In order for SEEP/W to perform a simulation of water flow, five input parameters are needed. These 

five parameters define the material properties and thereby explain how porous the material is, how 

the grain sizes are distributed, the hydraulic conductivity when the material is saturated and how 

much water that is left in the material after the free water has been drained away. The parameters 

are labeled in SEEP/W as: 

 Saturated water content (the porosity) 

 The Diameter (mm) at 10% passing (grain size distribution) 

 The Diameter (mm) at 60% passing (grain size distribution) 

 Coefficient of permeability - K (saturated conductivity)  

 Residual water content 

5.1.1 Saturated Water Content 

In order to give a value for the saturated water content, it is important to know the porosity of the 

material. When all pores within a material are water filled, the volumes of the pores will be equal to 

the volume of water inside the material. The porosity of Leca® 4-10mmC and 10-20mmR was 

calculated from data of the voids, measured by Weber for 24 different Leca® materials, see Table 11. 

NO 10-20r corresponds to Leca® 10-20mmR and NO 4-10c corresponds to Leca® 4-10mmC. The label 

NO indicates that the material is produced in Norway.  
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Figure 25. The three different parts of which soil consist of. 

 

By the following equation, derived from Figure 25, the porosity can be calculated when the voids are 

known: 

 

  
 

   
 

    

    
                                                          

The converted values, from voids to porosity, are inserted into Table 11 for each and one of the 

materials. 

Table 11. The voids and the porosity for Leca. [20] 

ID/Fraction Voids (e) Porosity - n (%) 

NO 10-20r 0,43 0,3 

NO 4-10c 0,44 0,3 

 

5.1.2 Grain Size Distribution 

In SEEP/W the grain size distribution is defined with two input parameters, the size of 10% of the 

material and the size of 60% of the material. These two values were taken from sieving 

measurements preformed at NTNU for Leca® 4-10mmC and by Weber for the Leca® 10-20mmR, 

Figure 26. Out of the figure it is possible to deduce 6 mm and 9 mm (D10/D60) for Leca® 4-10mmC 

and 9 mm and 12,5 mm for Leca® 10-20mmR. 

Air 

Water 

Solid 

Vwater 

Vsolid 

Vpore 

Vair 
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Figure 26. The sieving of Leca® 4-10mmC (red line) and of Leca® 10-20mmR (orange line) with arrows indicating 10 % and 
60 % passing with corresponding grain size. [20] 

5.1.3 The Saturated Hydraulic Conductivity 

To determine a value for the saturated hydraulic conductivity it is necessary to measure the 

permeability of the material. Testing of the permeability of the two Leca® materials were performed 

according to the following procedure: 

A 2 m long pipe with a diameter of 0,1 m was closed with a net in one end and then filled with a 

sample material. The other end of the pipe was thereafter also closed with a net and two 88° pipe 

bends were mounted, one on each end (see Figure 27). On one side a 1,3 m vertical pipe was 

attached. 

Figure 28 shows an illustration of the experiment set up. Water was added on the left side where the 

vertical pipe was placed. The material in the horizontal pipe causes a resistance for the water flow 

and a potential, dH, is generated in the vertical pipe. When the water had passed through the 

material it flowed out into a bucket on the right side.  
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Figure 27. A test of the permeability being performed. 

 

Figure 28. A sketch over the setup of the apparatus built for the experiment. 

Before the measurements started, air bubbles formed on top of the sample in the horizontal pipe. 

Therefore water with a high potential was added in order to push out the air bubbles from the pipe. 

Not all air bubbles could be removed, some stayed inside the pipe. 

The time to fill a bucket of a volume of 11,3 liter of water with different potentials, dH, was 

measured. The different potentials resulted in different time values. Thereafter the permeability was 

calculated according to the theory described in chapter 3.1. 
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The coefficient of permeability is the ratio between the flow rate,  , and the hydraulic gradient,  .   

The inclination of the dotted line in the figures are the assessed coefficient of permeability and is, as 

mentioned in earlier chapter, only valid for the linear laminar flow and not for the non-linear 

turbulent flow. Equation (3.3) is used to calculate the coefficient of permeability,  : 

  
 

 
                                                                                        

 

In Figure 29 the data bends off at the limit between the laminar flow and the turbulent flow for the 

two tests. The laminar flow section is assessed, for each and one of the tests, by the two dotted lines. 

On the right side, of the lines, the water flow is turbulent. The same methodology was used in Figure 

30. 

 

Figure 29. The plotted results from permeability test of Leca® 4-10mmC. 
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Figure 30. The plotted results from permeability test of Leca® 10-20mmR. 

For the Leca®4-10mmC the coefficient of permeability was assessed to 11,4 cm/s and 9,3 cm/s. The 

results of the Leca®10-20mmR indicated a coefficient of permeability to 35,8 cm/s.  

5.1.4 Residual Water Content 

The residual water content has not been tested for neither of the two materials. In the user manual 

for SEEP/W a suggested value about 10-15 % of the materials porosity can be assumed, which was 

also actualized for both the Leca® materials. 

The best estimate values for each and one of the parameters for the two Leca® materials is 

summarized in Table 12. The values presented in the table will be used as input data in the numerical 

model.  

Table 12. The best estimate values.  

 Leca® 4-10mmC Leca® 10-20mmR 

Saturated Water Content [m3/m3] 0,3 0,3 

Diameter at 10% passing [mm] 3 9 

Diameter at 60% passing [mm] 6 12,5 

Saturated Conductivity [m/sec] 0,1 0,36 

Residual Water Content [m3/m3] 0,05 0,06 
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5.2 Geometry of the Model in SEEP/W 
The model geometry in SEEP/W was built up identical to the one used in the SINTEF laboratory 

experiment. Figure 31 shows how the material and equipment set up was drawn and simulated. The 

nozzles spreading the rain were reproduced as an inflow boundary condition, with a flux of        

[m3/sec] over a length of 2 meters (corresponding to a rain event of 36 [L/m2] rain during 15 min). 

The sides and the bottom have impermeable boundaries and will be similar to the wooden crate, 

were no water is assumed to flow through. At the lower right corner there was an 10 mm opening 

between the black impermeable boundaries. 

 

 

Figure 31. The geometry of SEEP/W model. 
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To simulate a scenario of a long period of precipitation followed by a stormwater event, an initial 

steady state phase of the water flow was created. In the steady state phase, the water runoff 

(          [m3/sec] is equal to the inflow           [m3/sec], see Figure 32, a condition which 

can be expected for a green roof drain layer exposed long lasting rainfall. The water flow behavior 

can be seen in the same figure. The vertical green line is the flow paths through the material. They 

are vertical until few centimeters above the impermeable bottom boundary, were the flow paths 

bend of and becomes more horizontal.  

 

Figure 32. Steady state water runoff. 

In the runoff experiment executed by SINTEF the material was left to drain until no more water 

runoff could be seen and thereafter a 15 minutes stormwater event was initiated. This procedure 

was reproduced by a second phase in the model, namely a transient phase. The difference between 

the transient phase and the steady state phase is that the user can define the duration in time for the 

transient phase. The user can also define when a boundary condition shall be initiated.  

In the transient phase, for this back calculation, the rain (inflow boundary) was set to zero until a 

negligible runoff was reached. At that point the inflow boundary was turned on for 15 minutes and 

then followed by a drain period, where the inflow equal to zero. The flow vectors (black arrows) in 

Figure 33, visualize how the water penetrates down into the material during the first minute in the 

transient flow phase. The outflow is negligible for this time period (               ) [m3/sec].  
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Figure 33. Visual results for the first minute of rain water penetration. 
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The total water flow at all the nodes, see Figure 34, for the inflow boundary could be plotted versus 

time and presented in graphs. The same procedure was done of the nodes at the outflow boundary 

(the 10 mm opening). In SEEP/W it is also possible to plot cumulative water flow for the two 

boundaries. Two simulations were performed on each one and one of the Leca® materials, one with 

the layer thickness of 100 mm and the other with a 200 mm layer thickness.  

 

 

Figure 34. A example of element nodes displayed. 

  

Element nodes 
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5.3 Results 
The results from the numerical calculations by SEEP/W, Figure 35 to Figure 36, are placed on top of 

the results from the SINTEF laboratory experiment (same figures as in chapters 4.1.1 - 4.1.2).  

5.3.1 Leca® 4-10mmC 

 

Figure 35. Presentation of the results from the numerical model at the top and the runoff data from laboratory 
experiment below for Leca® 4-10mmC.   

0

1

2

3

4

5

6

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:11 01:21

R
u

n
o

ff
 in

 m
m

 p
e

r 
2

 m
in

 

Time [hh:mm] 

Leca® 4-10mmC (Numerical Model) 

Water IN Water OUT 100 mm Water OUT 200 mm



58 
 

 

 

Figure 36. The cumulative runoff for Leca® 4-10mmC. 
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Four different characteristics have been compared between the numerical model and the laboratory 

test (Table 13). The four points are: 

 Delayed start of runoff – The delay in time between the water runoff start from a reference 

roof without any material and the start of runoff from a Leca® material. 

 Prolonged “main” runoff time – Extended runoff time compared to the reference roof.  

 Runoff per time unit at 15 minutes – The water runoff per time unit at the end of the rain 

event, relative to the reference roof. 

 Total runoff reduction – The difference in the cumulative runoff between the reference roof 

and the cumulative runoff from a Leca® material. 

The definition of start of runoff has been set to a runoff of about 0.5 mm per 2 min (10-5 m3 per sec) 

and the stop of runoff (prolonged runoff) has been set to about 0.05 mm per 2 min (10-6 m3 per sec), 

the reason behind the definitions will be discussed later in this chapter. 

Table 13. A summary of the results for Leca® 4-10mmC. 

Leca® 4-10mmC 
Numerical 

Model 
Laboratory 

test 
Numerical 

Model 
Laboratory 

test 

Layer thickness 100 mm 100 mm 200 mm 200 mm 

Delayed start of runoff  ~1 min 2 min ~2 min 2.5 min 

Prolonged "main" 
runoff time 

17 min 15 min ~17 min 17 min 

Runoff per time unit at 
15 minutes 

92%   96%  79,5%   79%  

Total runoff reduction  7,7 % 8 % 19,9 % 20 % 
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5.3.2 Leca® 10-20mmR 

The results for the simulations and laboratory test of Leca® 10-20mmR, see Figure 37, Figure 38 and 

Table 14 are presented in the same way as for Leca® 4-10mmC.  

 

 

Figure 37. Presentation of the results from the numerical model at the top and the runoff data from laboratory 
experiment below for Leca® 10-20mmR.   
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Figure 38. The cumulative runoff for Leca® 10-20mmC. 
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Table 14. A summary of the results for Leca® 10-20mmC. 

Leca® 10-20mmR 
Numerical 

model 
Laboratory 

test 
Numerical 

model 
Laboratory 

test 

Layer thickness 100 mm 100 mm 200 mm 200 mm 

Delayed start of runoff ~1 min 1 min ~2min 1.5 min 

Prolonged "main" runoff time ~4 min Ca 3.5  min ~4 min Ca 6 min 

Runoff per time unit at 15 
minutes 

96,5 %  98 % 91,2 %  92%  

Total runoff reduction  2,7 % 3 % 7,3 % 11 % 

 

5.3.3 Discussion 

Comparing the results (Table 13 and Table 14) from the numerical model and from the laboratory 

test, a good correlation can be seen for both materials but how to define start and stop of runoff is 

not very clearly. The reason is due to numerical issues and that zero values of water runoff, which 

would be good definitions of start and stop of runoff, are never given in SEEP/W. At the same 

moment a rain event has been applied over of the Leca® material, a runoff of the size 10-50 m3/sec 

will be given at the outflow section. No water flow is expected at this point due to the fact that the 

water particles require some time before reaching the outlet; nevertheless a water flow is given. The 

reason is that zero values are not wanted in the equations performed in the numerical calculations. 

When division is performed in the equations, if the numerator or the denominator is equal to zero, 

parts of an equation can become equal to zero or a singularity can arise which can cause a 

progressing error in the iterations.   

The same size of the values (10-50) will be found at the final part of the runoff graphs and the runoff 

acts as an asymptote towards zero. That is why a definition of start and stop of runoff is needed. 

In Figure 39 and Figure 41 the results from the laboratory experiment and numerical modeling are 

placed in the same graph. When comparing the runoff results in these figures, the results seem to 

deviate more than in Table 13 and Table 14. In these tables the runoff has been related to the 

reference roof in the laboratory test and Water IN flow for the numerical model.  

A cause for the shift in time and size between Water IN and the reference roof, is the fact that in the 

laboratory experiment it was the runoff from a roof that was measured not the amount of water 

added on the roof, which is the case for the numerical model. The runoff cannot be turned on and off 

like a simulated rain event. This is the reason for having some lag and more distributed runoff for the 

reference roof.  

By studying the cumulative runoff, see Figure 40 and Figure 42, it can be observed that the water 

volumes are the same, 36 mm going in, for the laboratory test and the numerical model. The dotted 

lines (results from the numerical model) and the solid lines (results from the laboratory experiment) 

converge good on a straight line at 36 mm. This means that the area under the reference curve is 

equal to the area under the Water IN curve in Figure 39 and Figure 41. 
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Figure 39. The numerical results (dotted) and laboratory results (solid lines) for Leca® 4-10mmC. 

 

Figure 40. The cumulative runoff results in the same graph (Leca® 4-10mmC). 

It seems as if the different phases (start of runoff ect) occurs earlier in the numerical model in 

comparison with the laboratory model. This could have something to do with the surface area. The 

rather large surface area for the Leca® material is not considered in SEEP/W. Surface area is not an 

input parameter but should affect the results. If water particles need to get around a particle with a 

large area, that will require more time than if the water particles need to pass a perfect round 

particle with a rather small surface area.  
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Figure 41. The numerical results (dotted) and laboratory results (solid lines) for Leca® 10-20mmR. 

 

Figure 42. The cumulative runoff results for Leca® 10-20mmR in the same graph. 

It should also be remembered that it is an unsaturated water flow that is attempted to be back 

calculated and to simulate a highly non-linear water flow, which unsaturated flow is, can be very 

complicated and this is a reason that the results do not match perfectly (Figure 39 and Figure 41).   
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6. Modeling of Ideal Green Roof Drain Layer  
After the back calculation operation in SEEP/W, the model was scaled up to a reasonable ideal case 

roof and exposed for a rain event with another shape (different intensity and duration). This section 

will describe the simulation of an ”ideal roof”, assumptions made, results and finish with a input 

parameter sensitivity analysis. 

6.1 The Model 
The geometry of the ideal drain layer is similar to the geometry of the model created for the back 

calculation of the SINTEF water retaining experiment. The distance was changed from 2 m to 10 m 

and the inclination was altered from 2 % to 2.5 %. The geometry to the right of the model was also 

adjusted. In the back calculation model, the drain outlet was design as a 10 mm gap between the 

bottom of the roof and the cornice around the 2x2 m wooden casket. In the ideal case roof the 

geometry and drain outlet was assumed from Figure 43. The recommended minimal slope is 1:40, 

which corresponds to 2.5 % inclination and the longest drain path was set to be 10 m, see Figure 44.  

 

 

Figure 43. An example of a roof showing the recommended minimal slope of a roof (1:40). [5] p.30 

 

Figure 44. The 200mm thick drain layer in the profile A-A of Figure 43. 

The boundary conditions are similar to the back calculation model with impermeable boundaries 

(black triangles) to the left and at the bottom of the orange Leca® 4-10mmC material. The red dots to 

the right are the drain boundary condition where the total hydraulic head is set to 0 m. The pink 

connected arrows pointing downward on top the Leca® material is the boundary representing the 

chosen rain event. The shape and intensity of the rain event is the same as the precipitation which 

occurred in the experiment performed by B.C.Braskerud (chapter 2.4.2, dotted line Figure 7).    

A 

A 

Red dots 
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The material properties used in the calculations was the best estimate values given from the back 

calculations. Two different Leca® materials were used in the back calculations but in the model of the 

ideal drain layer a third “material” was added in order to represent the response from a reference 

roof, similar to the reference roofs described in projects in the chapters 2.4.1 and 2.4.2, which simply 

consist of a roofing membrane. The two Leca® materials were simulated with 200 mm thickness and 

the “membrane material” with a 1 cm thickness. The input parameters for each and one of the 

materials are shown in Table 15. 

Table 15. A summary of the input parameters for the three materials.  

Parameter Leca
®
 4-10mmC Leca

®
 10-20mmR Membrane (Ref. Roof) 

Saturated water content (porosity) 

[m3/m3] 
0,3 0,3 0,2 

Diameter at 10% passing 

[mm] 
3 9 1 

Diameter at 60% passing 

[mm] 
6 12,5 6 

Saturated conductivity 

[mm] 
0,1 0,36 0,5 

Residual water content 

[m3/m3] 
0,05 0,06 0,03 

 

The calculations were divided into an initial stead state phase followed by a transient phase, 

analogous with the methodology in the back calculation, in order to perform simulations of a storm 

water event on a saturated material. The duration of the rainfall was set to about 40 minutes, with 

two peak values. The reason of choosing a rain event with dual peaks is to study the response for 

each and one of the peaks and especially the second peak when the material has high water content.  

The result of the water runoff for each and one of the three simulations is plotted in Figure 45, 

together with the rain event.  

  



67 
 

6.1.1 Results 

 

Figure 45. The results from the three simulations. 

Three sections in Figure 45 have been compared for the three simulations and can be seen in Table 

16. The section are labeled as: 

 Start of runoff –The first point in time where the runoff increases.  

 First peak – The first maximum point in time.  

 Second peak – The second maximum point in time. 

The start of runoff has been defined as the point in time when the water flow at moment of time, Xn, 

is greater than the water flow in the time step before, Xm, [ Xm < Xn]. 

Table 16. A summary of the results. 

 
Leca® 4-10mmC Leca® 10-20mmR Reference Roof 

Start of runoff 
   

Time Lag [Sec] 71,6 320 50 

    
First Peak 

   
Peak Rain/Peak Runoff 60,06 % 89,82 % 100,15 % 

Reduction 39,94 % 10,18 % -0,15 % 

Time Lag [Sec] 457,8 200 10 

    
Second Peak 

   
Peak Rain/Peak Runoff 86,71 % 91,66 % 98,98 % 

Reduction 13,29 % 8,34 % 1,02 % 

Time Lag [Sec] 149,6 150 10 
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6.2.1 Discussion 

The studied rainfall is not an extreme rain event but has occurred and it is interesting to study the 

water runoff response. In Table 16, the start of runoff has been set to 72 sec for Leca® 4-10mmC and 

320 sec for Leca® 10-20mmR. When studying Figure 45 the start of runoff seems to occur more or 

less at the same point in time. However, the definition of start of runoff seems to be reasonable, and 

the reason could be numerical problems in the model that leads to that the runoff goes up and 

down. The start of runoff appears reasonable for reference roof and for Leca® 4-10mmC but not for 

10-20mR. A visual inspection of Figure 45 for finding the wanted point for the start of runoff maybe 

better for Leca® 10-20mmR but less precise.  

The ideal case roof simulations resulted in a 40 % reduction of the water runoff for Leca® 4-10mmC 

and 10 % for Leca® 10-20mmR. Compared with the back calculation of the laboratory experiment, 

the runoff reduction were 10 % for Leca® 10-20mmR and 20 % for Leca® 4-10mmC. In the Ideal roof 

simulation a similar ratio, between the two materials, was expected. It is difficult to say if it is the 

Leca® 10-20mmR that does not reduce the runoff enough or if it is the 4-10mmC that reduces too 

much. A reason why the water runoff ratio is not the same in the two simulations, could be that 

shape of the rain events are not that similar for the ideal case roof and the back calculation. In the 

back calculation rain is more intense and constant and in the ideal case it is less intense and 

fluctuates. 

Another issue is the water runoff from the reference roof (100,15% runoff), see Table 16, which is 

higher than the maximum input value for the rain.  A reason could be that the rain values (Water IN) 

in the rain function is given as point values and that SEEP/W smoothen out the values, see Figure 46.  

 

 

Figure 46. The figure show a simplification of the rain function, at the first peak, in SEEP/W. 

A1, A2 and B are input values in SEEP/W for the rain intensity. A1 and A2 have the same water flow 

value but at different point in time and point B is in the middle and is the given peak value of the rain 

fall. A function in SEEP/W smoothen out the curve (red dotted line) resulting in slightly higher peak 

value then the given input data point value and the reduction of water runoff is related to the given 

input value of the rain fall. However this is not an issue which needs to be considered, 100,15% is 

about 100%.  

  

A1 

B 

A2 
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SEEP/W is created to simulate water flow in a porous material and not surface water flow on top of a 

material, this causes issues when attempting simulating a reference roof. For simulating the surface 

water flow on a reference roof, a porous material was needed in order to perform the calculations. 

The membrane material input values, see Table 15, is assumed values.  In order to establish the 

assumed values the response were studied for different input data values for the reference roof and 

compared with Baskerud project (chapter 2.4.2). About the same time lag for the start of runoff and 

prolonged runoff was successfully acquired but not the same runoff reduction. Braskerud got a 

considerable water runoff reduction from his reference roof which was not obtained from the 

numerical reference roof. A roof membrane can absorb little water, so the water runoff reduction of 

the reference roof, in Baskerud project, can be questioned.   

In the second runoff peak less difference between the two materials can be observed. At this point 

the water content is high and the saturated hydraulic conductivity influence the water flow, which 

can be seen in sensitivity analysis. 
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6.2 Sensitivity Analysis of the Input Parameters 
The analysis was conducted by changing the best estimate parameters, individually, with +/-10% and 

+/-20% (both increase and decrease the parameters) and run a simulation each time a parameter 

was altered. By changing the input parameters one by one it was possible to study which parameter 

that influence the water runoff the most. The results can be seen in Figure 47 to Figure 51. The same 

parameter study were performed on Leca® 10-20mmR and the results can be seen in the Appendix A. 

The point or sections that will be studied is the first peak, second peak and water runoff about 30 

minutes after the rain has stopped (8000 seconds). After the rain fall has stopped the different runoff 

curves coverage more and more and the point 8000 seconds seem to be suitable point for 

evaluation.   

Figure 47. Decrease and increase of the porosity. 
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Figure 48. The result from variation of the D10 input parameter. 

 

Figure 49. The result from variation of the D60 input parameter. 

 

  

0,0E+00

5,0E-05

1,0E-04

1,5E-04

2,0E-04

2,5E-04

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

W
at

e
r 

Fl
o

w
 [

m
3

/S
e

c]
 

Time [Sec] 

Leca® 4-10mmC - D10 

Water IN Water OUT D10=3.6 Water OUT D10=2.4

Water OUT D10=2.7 Water OUT D10=3 Water OUT D10=3.3

0,0E+00

5,0E-05

1,0E-04

1,5E-04

2,0E-04

2,5E-04

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

W
at

e
r 

Fl
o

w
 [

m
3

/S
e

c]
 

Time [Sec] 

Leca® 4-10mmC - D60 

Water IN Water OUT D60=7.2 Water OUT D60=4.8

Water OUT D60=5.4 Water OUT D60=6 Water OUT D60=6.6



72 
 

Figure 50. The result from variation of the saturated conductivity parameter. 

 

Figure 51. The result from variation of residual water content. 
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6.2.1 Discussion 

Figure 47 to Figure 51, Appendix A and the column figures in Appendix B have mainly been used for 

the following analysis. 

Some trends in the figures have been seen; lowering the porosity, a higher water flow is reached for 

both materials for the first peak and vice versa (higher porosity, lower runoff for both materials for 

the first peak). Also when decreasing the porosity, the first peak shifts to the left in the figures which 

means that the peak value is reached earlier for both materials and higher porosity delays the first 

peak (shifts it to the right).  

The other trend that can be observed is when reducing the saturated conductivity, the runoff is 

reduced for both material at the first peak and when increasing the saturated conductivity, the water 

flow is increased.  

The D60 parameter seems to affect the water runoff more than the D10 parameter. The residual 

water content parameter has no or little effect of the results.  

For the second peak there are generally less difference between all of the five parameters and the 

trends gives counteracting results, e.g. increase in porosity for 4-10mmC increases the runoff and the 

opposite for 10-20mmR. A decrease in porosity results in increased flow for 10-20mmR and 

decreased (small) for 4-10mmC. 

At 8000 seconds the tendency is that reduced porosity gives less runoff and increased porosity 

results in a higher runoff. This depends on the volume of water, for higher porosity more volume of 

water can be held in the material and opposite for a lower porosity. Another tendency is that a 

decrease of the saturated conductivity increases the runoff and an increase of the saturated 

conductivity decreases the runoff. 

In order to improve the performance of the material, and thereby obtain better water retaining 

characteristic, a suggestion is to increase the porosity and lower the saturated hydraulic conductivity 

for the expanded clay LWA materials in order to obtain a higher attenuation for the first runoff peak.  

In the software SEEP/W it is possible to change the input parameters one by one and study the how 

the individual change of one input parameter affect the runoff from the ideal case roof. In reality are 

the five input parameters connected to each other, which means that altering one parameter will 

alter the parameters, e.g. if the parameters defining the grain size distribution is changed, the 

saturated hydraulic conductivity will not stay the same. It is important to consider this when studying 

the sensitivity analysis for the input parameters.  

 

  



74 
 

6.3 SEEP/W 
Is the software SEEP/W an advisable tool for simulating the water runoff in drain layer of a green 

roof? The simulations give matching results with the laboratory experiments but also realistic 

behavior for the ideal case roof. However, many simulations were run until satisfying result was 

obtained and during the work with the software a trial and error methodology was used. The biggest 

issue was all the numerical problems that occurred, especially for calculating water flow in Leca® 10-

20mmR. For Leca® 4-10mmC the simulations have been conducted relatively well with not too much 

numerical problems. 

The solutions for dealing with the numerical problems (highly unstable water flow for the boundary 

conditions) were to change the mesh size and change the length of the time integration steps. For 

the simulations with Leca® 10-20mmR changing and turning of these parameters have taken a lot of 

time. The cause of the problems with one material but not with the other is unknown. The porosity 

and residual water content is more or less the same for the both materials but D10, D60 and the 

saturated hydraulic conductivity differ a bit. It could be that the input parameters for Leca® 10-

20mmR and particularly the high saturated hydraulic conductivity leads to turbulent water flow, 

which the software is not written for. 

The software works but a lot of practices is needed to gain more experience about how to perform 

the simulations in SEEP/W in an efficient manner. It is difficult to learn a program by studying the 

user manual and not be able to consulate with an experienced person about issues with the 

software.  
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7. Conclusion  
It was possible to back calculate the laboratory experiment, meaning obtaining the same relation 

between water going in and water going out of the tested Leca® material. However, a lot of 

numerical problems occurred in the simulations. Unrealistic results were displayed, especially for 

Leca® 10-20mmR. A reason could be the high saturated hydraulic conductivity value (from the 

laboratory permeability measurement) combined with the coarse grain size distribution is leading to 

a turbulent flow. 

Another reason for the incomplete correlation could be that unsaturated flow dominates through 

Leca® and it is difficult to simulate the non-linear flow, even with the volumetric water content and 

hydraulic conductivity function. 

More input parameters are necessary. It is to general to define a material with only five input 

parameters. Add more points for the grain size distribution and a parameter for the particle surface 

area could be useful.  

Residual water content has not been tested but a suggested value has been assumed, this can be a 

source of error but the sensitivity analysis of the parameters indicated small dependency of this 

parameter for the results. 

In order to improve the performance of the material, and thereby obtain better water retaining 

characteristic, a suggestion is to increase the porosity and lower the saturated hydraulic conductivity 

for the expanded clay LWA materials in order to obtain a higher attenuation for the first runoff peak.  

In the software SEEP/W it is possible to change the input parameters one by one and study the how 

the individual change of one input parameter affect the runoff from the ideal case roof. In reality are 

the five input parameters connected to each other, which means that altering one parameter will 

change all parameters, e.g. if the parameters defining the grain size distribution is changed, the 

saturated hydraulic conductivity will not stay the same. It is important to consider this when studying 

the sensitivity analysis for the input parameters.  
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8. Recommendations 
Further work within this topic could be to change the geometry of the model and study how the 

inclination, layer thickness, rain intensity and the length of the drainage affect the water runoff. If 

enough time can be spend to run a large amount of simulations, a simple Excel-sheet could be 

created that estimates the runoff depending on the design of the green roof.  

Another option of using the experience from multiple analyses would be to create figures (similar to 

what exists for slope stability) out of which it is possible to “read out” or give a thumb rule of what of 

runoff and delay to expect for a certain design and rain intensity.    

To move on with the project a full scale test on a roof with 10 m drain length to confirm the results 

and more laboratory testing could be conducted but also test other Leca® products with higher 

porosity and other grain size distribution. 

A further progress might also be to spend more time in understanding SEEP/W as well to evaluate 

usage of another software that have more input parameters, e.g. surface area of the particles. 

Other interesting facts for expanded clay LWA would be how much rain is needed for the phreatic 

level, in the material, to reach the bottom of the planting media. If this could happen, up lift of the 

plant layer could occur and the Leca® particle could flush out of the roof.  

A deeper study of the drain time and evaporation could be a supplementary project. The time which 

is required between two rain events is interesting. Depending on the water content and the time 

which it takes to reach a “good” or desired water content, estimations could be done of when the 

green roof is “ready” for a another intensive precipitation, if more knowledge would be obtained 

about this topic. 
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10. Appendices 
 

Appendix A –Parameter Sensitivity for Leca® 10-20mmR 
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Appendix B – The Variation in Water Runoff, Displayed in Percentage 
 

Five simulations have been performed. The one in the middle is the best estimate values chosen for 

Leca® 4-10mmC and 10-20mmR. To the left the values have been reduced with 10 % and 20 % and to 

the right of the middle values, there is an increase of the best estimate values with 10 % and 20 %. 

So, the column figures shown below is a comparison of the values of the first peak, second peak and 

runoff at 8000 seconds. At the left, in the two following, figures the porosity have been decreased 

with 20 %, which results in a 13 % higher runoff for Leca® 4-10mmC and 9 % for Leca® 10-20mmR 

(green and purple columns). While a 20 % increase of the porosity gives 14 % and 10 % reduction of 

the runoff for the first peak. 
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