

Simulering av pumpekraftverk i LVTrans

Ola Haugen Havrevoll

Bygg- og miljøteknikk Innlevert: juni 2013 Hovedveiledar: Leif Lia, IVM Medveiledar: Kaspar Vereide, IVM

Noregs teknisk-naturvitskaplege universitet Institutt for vann- og miljøteknikk

Samandrag

Duge kraftverk er eit pumpekraftverk med effekt på 100 MW. I denne avhandlinga skulle det undersøkjast om kraftverket kan utvidast med større vassføring, og om det kan nyttast med hyppige avslag og pådrag. Duge kraftverk er bygd med ein 12 km lang utløpstunnel med tri svingesjakter. Det kan føra til store svingingar på eit så stort anlegg, og det kan gjeva utfordringar og setja avgrensingar for kva utvidingar som er praktiske å byggja.

For å undersøkja kva som er mogleg å gjera, vart det nytta eit dataprogram som heiter LVTrans til å modellera kraftverket. LVTrans finn vasstrykk og vassføring i alle punkt som funksjon av tid. Det simulerer alle komponentar i kraftverket på ein realistisk måte, og kunne difor nyttast til å testa kapasiteten og til å prøva ut endringar i kraftverket.

For at modellen skulle gjeva brukande resultat, måtte han matast med parametrar. Det vart gjort trykkmålingar for å gjera det mogleg å validera og kalibrera modellen. Det er svært mange parametrar som kan endrast på eit kraftverk, og sjølv med berre fokus på utløpstunnelen var det vanskeleg å få svingingane til å oppføra seg heilt likt.

Modellen vart deretter brukt til forsøk med turbindrift og pumpedrift med avslag og pådrag på minst gunstige tidspunkt. Utan å byggja ut svingekammer, kan ikkje turbinene nyttast med vassføring over $141 \text{ m}^3/\text{s}$ utan raske avslag og pådrag, og over $130 \text{ m}^3/\text{s}$ med raske avslag og pådrag. Pumpedrift kan ikkje nyttast med vassføring over $120 \text{ m}^3/\text{s}$ utan raske avslag og pådrag og over $94 \text{ m}^3/\text{s}$ med raske avslag og pådrag. Det minst gunstige tidsrommet mellom to pådrag er 5–6 minutt.

Summary

Duge power plant is a 100 MW pump storage power plant. This thesis is investigating the possibility of an expansion of the power plant with turbines with higher discharge, and if the tunnels are able to handle larger and more frequent shutdowns and startups. The discharge tunnel of Duge power plant is 12 km long, and it has three surge shafts. Because of the large water masses, large oscillations may occur in the tunnel system and the surge shafts. This may cause some challenges and can lead to some limits in the expansion possibilities.

To investigate the potensial and limitations, a computer program called LVTrans was used to model the power plant. LVTrans computes the water head and discharge in all locations as a function of time. All components of the power plant and tunnels are simulated in a realistic way, and therefore it could be used to test changes and new configurations.

To secure adequate results from the simulations, the program needed correct input parameters. Pressure tests were done on the power plant to be able to validate and calibrate the model. There are many parameters, and even with only focus on the tailrace tunnel and not the headrace tunnel, it was time consuming and difficult to get a realistic model that showed the correct oscillations.

The model was thereafter used for tests with discharge in both directions and shutdowns and startups at the least favorable times. Limits for the discharge without shutdown was found to be $141 \text{ m}^3/\text{s}$ in turbine mode and $120 \text{ m}^3/\text{s}$ in pump mode. With quick shutdowns and startups, the limits are $130 \text{ m}^3/\text{s}$ for turbine mode and $94 \text{ m}^3/\text{s}$ for pump mode. The least favorable time interval between two operations is 5 to 6 minutes.

Innhald

Sa	man	drag			i
Su	ımma	ary			ii
Fø	freor	d			xii
In	nleii	ng			xiii
1	Bak	grunn	L Contraction of the second		1
2	Teo	ri			3
	2.1	Trykk	støyt		3
		2.1.1	Storleik på trykkstøyt		4
	2.2	Masse	esvinging		6
	2.3	Analy	semetodar		9
	2.4	Karak	teristikkmetoden		10
		2.4.1	Rørslelikninga		10
		2.4.2	Kontinuitetslikninga		10
		2.4.3	Karakteristikklikningane	• •	11
3	Dug	ge kraf	ftverk		14

	3.1	Teknisk informasjon						
	3.2	Dokumentasjon på kraftverket						
	3.3	Tunnelane i Duge kraftverk						
		3.3.1 Friksjonsdata						
	3.4	Turbinene						
	3.5	Lukesjakta						
	3.6	Nye køyremønster						
	3.7	Ynske for Duge						
4	LV	Trans 22						
	4.1	Labview						
	4.2	LVTrans						
		4.2.1 Parametrar i LVTrans						
	4.3	Spesiallaga funksjonar i LVTrans						
	4.4	Duge kraftverk i LVTrans						
5	Må	lingar 31						
	5.1	Resultat av målingane 33						
	5.2	Analyse av målingane 33						
6	Kal	ibrering 35						
	6.1	Teoretiske tapsverdiar for kalibrering						
	6.2	Kalibrering av lukesjakta 36						
		6.2.1 Rektangulært bend med skarpt hjørne og nisje 37						
		6.2.2 Konvergerande og divergerande Y-kopling 38						
		6.2.3 Innsnevring og utviding, lukesjakt						
	6.3	Bukserøyret nedstraums lukesjakta						
	6.4	Tverrslaga på Dyngjanvatn og Ånestøl						

	6.5	Rasstad i utløpstunnel	42
	6.6	Utløp	43
	6.7	Koeffisientar i stasjonær tilstand	43
	6.8	Samanlikning mellom simulering og måling	45
	6.9	Svingefrekvens	46
	6.10	Endeleg kalibrering av modellen	48
7	Sim	uleringar av Duge kraftverk	55
	7.1	Forsøksstrategi	56
	7.2	Kriterier	57
	7.3	Forsøksseriar	57
		7.3.1 Pumpedrift	57
		7.3.2 Turbindrift \ldots	58
		7.3.3 Pumpe–turbin og turbin–pumpe	59
		7.3.4 Andre forsøk	59
8	Res	ultat	60
	8.1	Generelle resultat	60
	8.2	Pumping	61
	8.3	Turbin	62
	8.4	Pumpe–turbin	63
	8.5	Andre forsøk	63
9	Disł	rusjon	67
	9.1	Modell av Duge kraftverk	67
	9.2	Simuleringar	69
10	Kon	klusjon	71

vi	INNHALD
11 Vidare forsøk	73
Vedlegg	74
A Endeleg konfigurasjon av modellen i LVTrans	75
B Skript til bruk i trykkmåling	78
C Kalibreringslogg	82
D Simuleringslogg	84
Litteratur	92

Figurar

2.1	Utviklinga av trykkstøyt	12
2.2	Massesvingingar i Duge kraftverk, rekna med stegvis inte- grasjon	13
3.1	Kraftverk og utløpstunnel på Duge kraftverk	15
3.2	Skjermbilete frå Excel-ark for turbinutforming	17
3.3	Sugerøyra frå turbinene til lukesjakta	19
3.4	Skjematisk oppstilling av lukesjakta	21
4.1	Konvensjonelt tunneltverrsnitt	25
4.2	Spesiallaga modul til LVTrans som hentar inn Q-t-kurve	27
4.3	Detalj frå blokkdiagrammet til regulatoren som viser mo- difikasjonane for Q-t-modulen	28
4.4	Oppsettet i LVTrans som vert nytta til simulering av Duge kraftverk	29
4.5	Detalj frå figur 4.4, spesiell kopling for pumper i modellen $% \left({{{\mathbf{x}}_{i}},{{\mathbf{y}}_{i}}} \right)$.	30
5.1	Målingar nedstraums turbina med to trykkceller	34
6.1	Lukesjakta som eit bend	37
6.2	Lukesjakta som ei Y-kopling	39

6.3	Lukesjakta som innsnevring og utviding $\ldots \ldots \ldots \ldots$	40
6.4	Bukserøyr	41
6.5	Prosjektert tverrsnitt for utløpstunnelen på Duge kraftverk	43
6.6	Ulike simulerte svingeperiodar	47
6.7	Fourier-transformasjon av svingingane	48
6.8	Kombinasjonar av tapsverdiar i lukesjakta og tverrslag Dyn- gjanvatn samanlikna med trykkmåling (stipla line)	50
6.9	Kombinasjonar av tapsverdiar i lukesjakta og tver rslag Dyngjanvatn samanlikna med trykkmåling (stipla line) \ldots .	54
8.1	Døme på eit pumpeforsøk med avslag og pådrag	62
8.2	Nedsving i lukesjakta med varierande opphald mellom pumpe- køyring	63
8.3	Naudsynt areal i nedre svingekammer som funksjon av pumpe- vassføring	64
8.4	Oppsving i lukesjakta med varierande opphald mellom tur- binpådrag	64
8.5	Døme på eit turbinforsøk med avslag og pådrag	65
8.6	Naudsynt areal i øvre svingekammer som funksjon av tur- binvassføring	65
8.7	Minste tid mellom pumpedrift og turbindrift for ulike vass- føringar	66
8.8	Repeterte avslag og pådrag	66
A.1	Simulering av køyremønster den 25. april 2013 med endeleg konfigurasjon av LVTrans-modellen, del 1	76
A.2	Simulering av køyremønster den 25. april 2013 med endeleg konfigurasjon av LVTrans-modellen, del 2	77

Tabellar

3.1	Turbinparametrar i Duge kraftverk	18
3.2	Regulatorparametrar i Duge kraftverk	18
3.3	Flatemål i lukesjakta ved nokre høgder	20
5.1	Oversyn, utstyr brukt på trykkmåling	31
5.2	Måleprogram ved Duge kraftverk 25. april 2013	32
6.1	Tapsverdiar og utrekna falltap i utløpstunnelen $\ .$	45
6.2	Eigenskapar ved trykkurva og dei styrande parametrane $% f(x)=f(x)$.	46
8.1	Nykeldata for vassføring i Duge kraftverk $\ \ldots\ \ldots\ \ldots$	60
8.2	Minst gunstige opphaldstid for nokre vassføringar og svinge-	
	kammerareal	61
C.1	Simularingar for kalibrering	83

Teiknforklaring

Forkortingar

- HRV Høgste regulerte vasstand
- LRV Lågaste regulerte vasstand

Greske

α	Konstantleddet i Mannings formel
ω	Svingefrekvensen i eit U-røyr, sjå side 46
ρ	Massetettleiken til vat n $[1000\rm kg/m^3]$
$\bar{\Delta}$	Relativ ruheit [–]
Δ	Absolutt ruheit [m]

Latinske

- Δp Endring i trykk [kPa]
- ΔH Trykkendring [mvs]
- ΔV Endring i snøggleik [m/s]
- A Areal i tunnel eller røyr $[m^2]$

TABELLAR

$A_{\rm hor}$	Horisontalt areal i svingesjakta
c	Lydfarten i vatn [m/s]
C_v	Tapsverdi brukt i LVTrans, sjå side 26
D_h	Hydraulisk diameter [m]
f	Friksjonstapet i Darcy-Weisbach si likning
F_f	Friksjonskraft
g	Gravitasjonskonstanten $[9.81{\rm m/s^2}]$
Η	Trykkhøgd [mVs]
h_f	Falltap på grunn av friksjon [m]
h_s	Singulærtap [m]
j	Falltap som rekna med formel frå Bøkko (2005)
L	Lengd på tunnel [m]
L	Røyr-/tunnellengd [m]
P	Våt omkrins [m]
p_0	Trykk [kPa]
Q_{opp}	Vassføringa som gjev opp- eller nedsving i ei svingesjakt.
Q	Vassføring $[m^3/s]$
Q_r	Nominell vassføring, dvs. vassføringa kraftverket er dimensjonert for
R_h	Hydraulisk radius [m]
t	Tid [s]
V	Vassnøggleik [m/s]

Føreord

I arbeidet med denne oppgåva har eg fått hjelp av mange personar.

Takk til Kaspar «Full throttle» Vereide for fantastisk hjelp, assistanse og rettleiing.

Takk til professor Leif Lia for rettleiing og inspirasjon.

Takk til Bjørnar Svingen i Rainpower for rask og god hjelp med LVTrans.

Takk til Anders Løyning, Svein Petter Ousdal, Asbjørn Ousdal, Tor Inge Tjørhom, Arne Sæterdal, Per Tore Tronstad, Thor Olsen og særleg Rolv Guddal, i lag med alle dei andre tilsette i Sira-Kvina for varm mottaking og svært mykje hjelp.

Elles takk til:

- Kristina Rystad for god støtte gjennom heile semesteret.
- Nils Nikolai Haugen Havrevoll for lån av kraftigare og stillare datamaskin når det såg som svartast ut.
- Jakob Vennerød for hjelp med FFT.
- Nils Inge Gauthun og Gunhild Fundal for husrom på Tonstad.
- Ann Kristin Tuseth for godt samarbeid.

Trondheim, 10. juni 2013 Ola Haugen Havrevoll

Innleiing

Hovudmålet for denne oppgåva er finna ut kva avgrensingar som finst med tanke på hyppige avslag og pådrag og auka vassføring i Duge kraftverk. Kraftverket kan kanskje i framtida køyrast med andre mønster enn det vert brukt til i dag, men då må heile vassvegen vera dimensjonert for det, særleg med tanke på massesvingingar og friksjon.

Det ligg utanfor råmene til denne avhandlinga å gjera forsøk med andre typar turbiner eller testa ut konkrete køyremønster, men ein viktig føresetnad for alle typar utvidingar er å vita kva grenser anlegget har. Fordelen med eit tunnelsystem i fjell er at det er enkelt å utvida volumet, det er berre å fjerna masse.

På grunn av kompleksiteten i kraftverket – tri svingesjakter og 12 km tunnel let det seg vanskeleg gjera å rekna seg fram til dei nemnde grensene for hand. For å få pålitelege data, skal kraftverket simulerast i eit dataprogram som heiter LVTrans.

For å kunna laga ein god modell i LVTrans må det gjerast målingar av kraftverket, parametrar for ei mengd element i kraftverket må reknast ut og prøvast opp mot målinga for kalibrering.

Deretter kan modellen prøvast med ulike køyremønster, og det vil vera mogleg å testa ut eventuelle ombyggingar for å kontrollera at dei verkar som ynskt.

INNLEIING

xiv

Kapittel 1

Bakgrunn

Sira-Kvina kraftselskap er eitt av Noregs største kraftselskap. Dei er eigde av Statkraft, Lyse, Agder energi og Skagerrak energi. Dei har 7 kraftverk, frå Duge og Roskrepp i nord, til Åna-Sira ved havet i sør. Totalt installert effekt er 1760 MW, og gjennomsnittleg produksjon er 5970 GWh. Anlegga vart bygde i 4 byggjetrinn frå 1963 til 1989. Driftssentral og hovudkontor ligg på Tonstad i Sirdal, og her er og utløpet for det største kraftverket, og det kraftverket med høgast årsproduksjon i Noreg: Tonstad kraftverk.

Sira-Kvina er ein viktig energiprodusent i landsdelen, og er strategisk plasserte for eksport av kraft til utlandet. Frå Feda går sjøkabelen NorNed til Eemshaven i Nederland. Kabelen har ein kapasitet på 700 MW og knyter saman straumnetta i Noreg og Nederland. Det er planar for ein sjøkabel på 1400 MW frå Tonstad til Tyskland, og denne ser ut til å verta sett i drift ein gong i tidsrommet 2018-21.

I framtida vil det vera langt fleire vindkraftverk, solkraftverk og småkraftverk som har mindre reguleringskapasitet. Med fleire kablar til utlandet, vil marknadane i dei ulike landa vera felles, og det fører til at straumprisen vil variera mykje meir enn han gjer i Noreg i dag. I resten av Europa kjem mykje av kraftproduksjonen frå varmekraftverk som brukar kol og andre fossile brensel. Desse kan ikkje regulerast så godt som vasskraftverk, og det fører til at forbruk og produksjon ikkje er like samkøyrt som i Noreg. Konsekvensen er sterkt varierande straumprisar, med høge prisar om dagen, og svært låge prisar om natta.

I fleire land i Sentral-Europa finst det pumpekraftverk som aktivt nyttar prisskilnadane over døgeret til å senda vatn opp og ned mellom to små magasin, og som verkar heilt uavhengig av tilsig og andre sesongvariasjonar. Sidan Sira-Kvina er så nært til ein framtidig sjøkabel til utlandet, er dei i ei særstilling når det gjeld høve til å nytta dei store prisvariasjonane til sin fordel. Duge kraftverk har inntak i svartevassmagasinet som har HRV på 899 m over havet. Det er eit stort nedbørsområde nedstraums Svartevatnet, og for å kunna nytta magasineringskapasiteten betre, vart Duge bygd som eit pumpekraftverk. Føremålet då det vart bygd, var å nytta det til sesongpumping, det vil seia å køyra det som pumpe i lange periodar med stort tilsig, typisk på hausten, og produsera energi på våren. Med det moderne regimet med kraftmarknad og varierande prisar, har kraftverket alt i dag eit meir variert bruksmønster, med pumping og produksjon heile året. For å kunna nytta effekt- og prisvariasjonar endå meir, vurderer no Sira-Kvina å utvida Duge kraftverk. Det vert sett på ulike alternativ som involverer mellom anna større/fleire turbiner og asynkrone generatorar. Med slikt utstyr vil kraftverket kunna produsera med høgare effekt, noko som fører til større vassføring, og med meir variabel vassføring, både med pumpe- og turbindrift.

Kapittel 2

Teori

I eit magasinkraftverk vert det ført vatn inn i tunnelar eller røyr frå eit magasin. Vatnet går fram til turbina der høgdeenergien til vatnet vert gjort om til rotasjonsenergi i turbina og deretter til elektrisk energi som vert ført ut på det elektriske nettet. Etter å ha gått gjennom turbina, har vatnet mist det meste av energien sin, og har dimed eit mykje lågare trykk. Vatnet vert ført i nye tunnelar ut til eit nedanforliggjande magasin eller til havet.

Eit avslag eller pådrag i eit kraftverk gjer at store vassmengder må retarderast eller akselererast. Då oppstår trykkstøyt og eventuelt massesvingingar i vatnet i tunnelsystemet. Trykkstøyt og massesvingingar skaper auka trykk på luker, ventilar og andre stengjeorgan. Alle komponentane i eit kraftverk må difor vera dimensjonerte for svingingane som kan oppstå. Tunnelsystemet må vera dimensjonert for å tola massesvingingane.

2.1 Trykkstøyt

Trykkstøyt oppstår på grunn av dei elastiske eigenskapane som vatn har. Det føregår slik: Vatn i eit røyr eller ein tunnel har ein fart V og eit trykk p_0 . Vassføringa i tunnelen vert endra med eit stengsel, t.d. ein ventil, ved tida t = 0. Vatnet vert «trykt saman» der ventilen er. Det får dimed høgare tettleik og høgare trykk Δp , og det får V = 0. Det er skapt ei trykk
bylgje, dvs. ei trykkendring som breier seg i vatnet med lydfarten
 c. Vatnet mellom trykkbylgja og oppstraums innløp til røyret har far
tV, medan vatnet nedstraums trykkbylgja (mellom ventil
en og trykkbylgja) står stille.

Med ein gong trykkbylgja kjem til øvste enden av røyret (etter t = L/c, der L er avstanden til vassyta), kan det visast at alt vatnet i røyret vil ha trykk $p = p_0 + \Delta p$, medan magasinet oppstraums røyret har trykk p_0 . Denne ubalansen får trykket til å søkkja i resten av røyret, og det går ei «negativ» trykkbylgje tilbake til ventilen. Vatnet som får eit lågare trykk får då ein fart V < 0,dvs. ut av røyret og inn i magasinet heilt til trykkbylgja kjem til ventilen og alt vatnet har trykket p_0 att.

No har vatnet ein fart på V ut av røyret. Fartsendringa breier seg og skapar ei ny trykkbylgje som går frå ventilen til magasinet, og trykket bak trykkbylgja er på $p = p_0 - \Delta p$. Slik held bylgja fram med å gå fram og attende mellom stengslet og vassyta, men med stadig mindre amplitude på grunn av demping i systemet.

2.1.1 Storleik på trykkstøyt

Ein trykkstøyt vert rekna med utgangspunkt i impulssetninga. Impulssetninga vert brukt på eit kontrollvolum rett ved ein ventil der vatnet med ein fart V_0 vert retardert med ΔV , og trykkauken ΔH (rekna i meter vassøyle, mvs.) oppstår.

Impulssatsen vert nytta på eit kontrollvolum i eit røyr der ei trykkbylgje går frå høgre til venstre med ein fart $c - V_0$ på grunn av ei endring i ventilopninga. Trykkauken er ΔH og fartsendringa er ΔV . Impulssatsen seier at resultantkrafta på kontrollvolumet er lik endringsfarten av rørslemengd i kontrollvolumet pluss netto utgåande rørslemengd frå kontrollvolumet:

$$-\gamma\Delta HA = \rho A(c - V_0)\Delta V + \rho A(V_0 + \Delta V)^2 - \rho A V_0^2 \qquad (2.1)$$

Væska med massen $\rho A(c - V_0)$ har ei fartsendring ΔV på eitt sekund. Leddet ΔV^2 kan strykast sidan det er så lite, og då blir likninga:

$$\Delta H = -\frac{c\Delta V}{g} \left(1 + \frac{V_0}{c}\right) \approx -\frac{c\Delta V}{g}$$
(2.2)

2.1. TRYKKSTØYT

 V_0/a er svært liten samanlikna med 1 og kan strykast. Om vassføringa går til 0, er $\Delta V = -V_0$ og $\Delta H = \frac{cV_0}{g}$. Aukar vassføringa, fører det til trykkreduksjon. Ved ei gradvis lukking eller opning av ventilen, vert likninga

$$\sum \Delta H = \pm \frac{c}{g} \sum \Delta V \tag{2.3}$$

Likning 2.3 er den grunnleggjande likninga for trykkstøyt.

Som tommelfingerregel vert det sagt at trykket på ein ventil ikkje må overstiga 40% av nominelt trykk.(Lia n.d.)

Stengjetid på ventilen

Trykkauken som er vist i likning 2.3 gjeld for den fyrste svingeperioden for trykkbylgja, altså innan tida

$$t = \frac{2L}{c} \tag{2.4}$$

Dersom ventilen brukar lenger tid enn t på å stengja eller L er kortare, vil trykkauken verta redusert. Vassføringa for eit stengjeorgan er gjeve av likninga:

$$Q = VA = C_d A_v \sqrt{2gH} \tag{2.5}$$

 C_d – Vassføringskoeffisient for ventilen

- A_v Areal i ventilopninga
- $A R \phi yrareal [m/s]$
- H Trykkhøgda [mVs]

A og g er konstante, medan C_d er ein funksjon av A_v . Såleis kan likning 2.5 uttrykkjast som:

$$v = B\sqrt{H} \tag{2.6}$$

B – Koeffisient, $f(A_v)$

Med likningane 2.6 og 2.3 kan trykkauken i løpet av ei lenger tid enn refleksjonstida til trykkstøyten finnast, dersom det finst data for B som funksjon av tida t.

Praktisk døme på raskt trykkstøyt

Det går vatn med ein fart på V = 2.7 m/s i ein vasstunnel, og med eit trykk på 50 m V s. Om vatnet vert stoppa heilt opp, d.e. $\Delta V = 2.7 \text{ m/s}$, og lydfarten er a = 1200 m/s, vil trykkauken ved ein momentan stopp i tunnelen vera:

$$\Delta H = \frac{1200 \,\mathrm{m/s}}{9.81 \,\mathrm{m/s}^2} \cdot 2.7 \,\mathrm{m/s} = 330 \,\mathrm{m} \tag{2.7}$$

I Guttormsen (2006), s. 184f står eit døme på lukking av ventil i ein tunnel på 1500 m og med dei dataa som er brukte i likning 2.7. Det vert vist at med lukketida på 12.5 s gjev maksimalt trykk på 97 m. Ein forenkla formel for berekning av trykket ved stengjing er gjeve i Guttormsen (2006):

$$\Delta h = \frac{cV}{g} \frac{t_r}{t_v} \tag{2.8}$$

Her er t_r refleksjonstida for ei trykkbylgje, som vist i likning 2.4, og t_v er stengjetida for ein ventil. Med likning 2.8 vert trykkhøgda 66 m, ein trykkauke på 32 % av 50 m.(Guttormsen 2006)

2.2 Massesvinging

Sidan ei trykkbylgje vil få lågare amplitude ved kortare avstand til vassyta, er det i kraftverk med lange røyr/tunnelar ofte bygd svingesjakt, og kalla fordelingsbasseng, nært turbina. Svingesjakta kan byggjast både oppstraums og nedstraums turbina, avhengig av lengda på tilløps- og utløpstunnelen. I svingesjakta er det ei fri overflate som trykkbylgja vert reflektert i. Vassyta fylgjer trykklina til vatnet i tunnelen, minus friksjons- og singulærtap i sjakta. Det vil seia at når vatnet står stille, er kotehøgda til vatnet i svingesjakta lik nivået i magasinet i den andre enden av tunnelen. Når vatnet har fart V > 0 med retning frå magasin til svingesjakt, er nivået i svingesjakta likt magasinet minus friksjons- og singulærtap. Når det er fleire frie vassyter i eit røyrsystem, kan det oppstå massesvingingar, eller u-røyrssvingingar. Ved avslag eller pådrag i eit kraftverk, vert alle trykktap i tunnelen reduserte etter som farten går ned, og trykkhøgda ved ventilen vil ikkje lenger vera i jamvekt med vasstanden i magasinet.

Dersom det finst ei svingesjakt i nærleiken av ventilen, vil vatnet stoppa opp ved ventilen, og ta minste motstands veg opp svingesjakta, slik at det vert nivåskilnader i ulike delar av systemet, til dømes mellom magasinet og svingesjakta. Nivåskilnaden fører til væskestraum gjennom systemet, og væska svingar mellom ulike nivå heilt til friksjonen dempar svingingane så dei er neglisjerbare.

Massesvingingane vert rekna ut med desse føresetnadene:

- Lukketida på ventilar er infinitesimal $(t_v \to 0)$.
- Trykkbylgja forplantar seg uendeleg raskt, dvs $(c \to \infty)$.
- Falltap ved ikkje-stasjonær strøyming er like som ved stasjonær strøyming med same vassføring.
- Snøggleikshøgda $\frac{v^2}{2g}$ kan neglisjerast i høve til friksjonstapet i tunnelen. Dette gjeld særleg i lange tunnelar.
- Tråleiken av vassmassane i svingekammeret vert neglisjert, sidan snøggleikshøgda er lita i høve til hydrostatisk trykkhøgd. Berre vassmassane i hovudtunnelen vert rekna på.
- Magasinet har konstant nivå.

Utgangspunktet for å rekna på svingingane er Newtons 2. lov, $F = m \frac{dV}{dt}$. Den drivande krafta F for vatnet er:

$$F = \rho g A z \tag{2.9}$$

- ρ Massetettleiken til vatn (1000 kg/m³)
- g Gravitasjonskonstanten
- A Areal i tilløpstunnelen
- z Høgdeskilnad mellom vasstand i svingesjakta og magasinet

Friksjonskrafta F_f er gjeven av:

$$F_f = \rho g A h_f = \rho g A \alpha V |V| \tag{2.10}$$

V	_	Vassnøggleiken
α	_	Konstantleddet i Mannings formel, $\left(\frac{L}{M^2 B^{4/3}}\right)$
h_f	_	Falltap på grunn av friksjon [m]

 ${\cal F}_f$ verkar alltid mot strøymingsretninga. Massen til vat
net er:

$$m = \rho A L \tag{2.11}$$

Summen av kreftene kan uttrykkast ved å kombinera likningane 2.9, 2.10 og 2.11:

$$\rho g A(z - \alpha V |V|) = \rho A L \frac{dV}{dt}$$
(2.12)

$$\Rightarrow \frac{dV}{dt} = \frac{g}{L} \left(z - \alpha V |V| \right) \tag{2.13}$$

Sidan massesvingingane er så seine at det er rimeleg å rekna vatnet som uelastisk, kan kontinuitetslikninga skrivast som:

$$Q = VA + \frac{dz}{dt}A_{\rm hor} \tag{2.14}$$

 A_{hor} – Horisontalt areal i svingesjakta $\frac{dz}{dt}$ – Stigningsfarten på vassyta i svin

Stigningsfarten på vassyta i svingesjakta

Likning 2.14 tyder at vassføringa Q gjennom turbina/ventilen er lik vassføringa i tilløpstunnelen (= Va) pluss auka volum i svingesjakta (= $\frac{dz}{dt}$). Likning 2.14 kan gjerast om til:

$$V = \frac{Q}{a} - \frac{A}{a}\frac{dz}{dt}$$
(2.15)

2.3. ANALYSEMETODAR

Likning 2.15 vert derivert:

$$\frac{dV}{dt} = -\frac{A}{a}\frac{d^2z}{dt^2} \tag{2.16}$$

Likning 2.16 kan setjast inn i likning 2.11:

$$\frac{d^2z}{dt^2} + \frac{g}{L}\frac{a}{A}z - \frac{g}{L}\frac{a}{A}\alpha V|V| = 0$$
(2.17)

Den andre-ordens lineære ordinære differensiallikninga 2.17 kan enklast løysast ved delvis integrasjon og iterasjon, noko som er lett å gjera med datamaskin. Figur 2.2 viser svingingane i lukesjakta på Duge kraftverk (sjå kapittel 3) rekna med likning 2.17 og stegvis integrasjon, med $Q_0 =$ 100 m^3 /s og ingen innsnevring eller demping i svingesjakta. Lukesjakta på Duge kraftverk har to store svingekammer på 635–647 m og 680–686 m høgd. Svingefarten er mykje lågare når vassyta kjem inn i desse to kammera, sidan vassføringa inn i svingesjakta skal fordelast over eit større areal.

2.3 Analysemetodar

Ustasjonær strøyming kan reknast på med ulike metodar:

- Aritmetisk
- Grafisk
- Karakteristisk
- Algebraisk
- Implisitt
- Lineær analyse
- Andre metodar

2.4 Karakteristikkmetoden

Karakteristikkmetoden vert nytta i LVTrans (kapittel 4). Karakteristikkmetoden gjer om rørslelikninga og kontinuitetslikninga til fire differensiallikningar som deretter vert rekna ut for kvart tidssteg.(Wylie & Streeter 1983)

Karakteristikkmetoden nyttar to likningar som basis for fire differensiallikningar: rørslelikninga og kontinuitetslikninga.

2.4.1 Rørslelikninga

Likninga tek utgangspunkt i kreftene som verkar på ein fri lekam av vatn som strøymer i éi retning i eit røyr. Her verkar røyrfriksjon $(\tau_0 \pi D \, \delta x)$ og trykk i båe endane $(pA - A[p + p_x \, \delta x])$. Alle kreftene vert sett lik massen gonger akselerasjonen, jf. Newtons andre lov.

$$pA - A\left[p + (p)_x \,\delta x\right] - \tau_0 \pi D \,\delta x = \rho A \delta x \dot{V} \tag{2.18}$$

Likninga vert forenkla, skjerspenninga τ_0 vert erstatta av Darcy-Weisbachs formel for friksjon, kjederegelen for partiellderiverte vert nytta på akselerasjonsleddet og trykket p vert erstatta av trykkhøgda H, slik at likninga vert:

$$gH_x + VV_x + V_t + \frac{fV|V|}{2D} = 0$$
(2.19)

Likning 2.19 kan vidare gjerast om til Darcy-Wesbach-likninga som er gyldig for stasjonær strøyming ved å setja $V_x = 0$ og $V_t = 0$.

2.4.2 Kontinuitetslikninga

Kontinuitetslikninga seier at volumstraum inn i eit kontrollvolum er lik akkumulert volum pluss volumstraum ut. For eit kontrollvolum med lengd

10

2.4. KARAKTERISTIKKMETODEN

 δx , gjeld likninga

$$Q - \left[Q + \frac{\partial Q}{\partial x}\delta x\right] = \frac{dV}{dt}$$
(2.20)

der Q er volumstraum og V er kontrollvolum. Ved hjelp av kjerneregelen, forenklingar og andre grep vert kontinuitetslikninga

$$\frac{\partial H}{\partial t} + \frac{a^2}{g} \frac{\partial v}{\partial x} = 0, \qquad (2.21)$$

2.4.3 Karakteristikklikningane

Karakteristikkmetoden er ei numerisk løysing av ikkje-stasjonær strøyming. Kontinuitetslikninga og rørslelikninga utgjer eit par kvasi-lineære, hyperbolske partielle differensiallikningar med to avhengige variablar, fart og trykk, og to uavhengige variablar, tid og avstand i røyret. Ved hjelp av karakteristikkmetoden vert dei gjorde om til fire ordinære differensiallikningar som kan løysast numerisk for kvart tidssteg, for kvart element i systemet. Røyr vert delte opp i einingar på $\Delta x = a\Delta t$, dvs. at lengda på kvart element er avhengig av tidssteget og lydfarten i vatnet.

Likningane 2.22 og 2.23 kan utlei
ast frå kontinuitetslikninga og rørslelikninga.

$$\frac{g}{a}\frac{dH}{dt} + \frac{dV}{dt} + \frac{fV|V|}{2D} = 0$$
$$\frac{dx}{dt} = +a$$
 (2.22)

$$-\frac{g}{a}\frac{dH}{dt} + \frac{dV}{dt} + \frac{f|V|}{2D} = 0$$

$$\frac{dx}{dt} = -a$$

$$(2.23)$$

Figur 2.1: Utviklinga av trykkstøyt

 $Figur \ 2.2: \ Massesvinging ar \ i \ Duge \ kraftverk, \ rekna \ med \ stegvis \ integrasjon$

Kapittel 3

Duge kraftverk

3.1 Teknisk informasjon

Duge kraftverk vart sett i drift i 1979. Det har to pumpeturbiner med effekt på 100 MW kvar. Det har ei nominell fallhøgd på 215 m. Kraftverket har to inntak i Svartevatnet, det eine på 855 m og det andre på 785 m. Båe inntaka vert nytta ved kraftproduksjon, berre det øvste vert nytta ved pumping. Turbinene ligg på 604 m høgde, medan utløpsmagasinet har HRV på 660 m.

Rett etter fyrste oppstart av kraftverket gjekk det eit ras i utløpstunnelen, 1450 m oppstraums tverrslag Dyngjanvatn. Det vart bygd ein omløpstunnel forbi raset.

3.2 Dokumentasjon på kraftverket

Fylgjande dokumentasjon av Duge kraftverk er tilgjengeleg for å optimalisera ein datamodell:

- Byggjeteikningar
- Svingeberekningar for lukesjakta
- Kommunikasjon med tilsette i Sira-Kvina

3.3. TUNNELANE I DUGE KRAFTVERK

• Rapport om verknadsgrads- og falltapsmålingar

Byggjeteikningane er det viktigaste grunnlaget for å få rette mål på tunnelane og svingesjaktene. Det er ikkje dokumentasjon på «som bygt», og teikningane avvik mest truleg frå røynda, men det finst ikkje mål på kor mykje. Tilsette på Sira-Kvina trur at tunnelsystemet aldri har vore inspisert etter igangsetjing.

Svingeberekningane er gjorde for hand med tanke på dimensjonering av svingekammera i lukesjakta.

Dei tilsette i Sira-Kvina har vore svært hjelpsame med å gjeva opplysningar som var vanskelege å oppdriva. Særleg gjeld dette data om turbina og regulatoren, og informasjon om korleis kraftverket vert køyrt til dagleg.

3.3 Tunnelane i Duge kraftverk

Det øvste inntaket ligg på kote 855 m. Det nedste inntaket ligg på kote 784 m. Derifrå går tunnelen tilnærma vassrett med areal 35 m^2 fram til han møter sjakta frå det øvste inntaket. Den samla tunnelen går 85 m horisontalt før hangår frå ufôra til betongfôra og så stålfôra trykksjakt med 45° helning og diameter 4.8 m.På kote 607.5 m er det eit bukserøyr som delar vatnet i to røyr som går til turbinene på kote 604.0 m.

Figur 3.1: Kraftverk og utløpstunnel på Duge kraftverk

Nedstraums turbinene går det to ufôra parallelle tunnelar på 22.3 m^2 kvar på skrå opp til kote 622 m. 215 m frå turbina er det lukeføringar for glideluker som vert nytta ved tøming av kraftverket. Sjakta ved lukene er omtala i avsnitt 3.5. 45 m nedstraums lukesjakta kjem dei to tunnelane saman til éin ufôra tunnel på 50 m^2 . Tunnelen går tilnærma horisontalt på kote 622 m heilt til utløpet ved Valevatn/Gravatn. Omlag 6000 m frå lukesjakta er tverrslag Dyngjanvatn. Deretter er det omlag 5700 m til tverrslag Ånestøl. Båe tverrslaga fungerer som svingesjakter på utløpstunnelen, båe har horisontale areal på 200 m^2 . Ved Ånestøl er det òg utløpsluker, 50 mfrå utløpet. Turbinene og utløpstunnelen er vist på figur 3.1.

3.3.1 Friksjonsdata

Bøkko (2005) gjorde i 2005 falltaps- og verknadsgradsmålingar for Duge kraftverk. Rapporten etter målingane gjev tal på falltapet i tunnelane opp- og nedstraums turbinene ved stasjonær strøyming, og er svært nyttige bidrag i prosessen med å kalibrera modellen i LVTrans. Fylgjande formlar for falltapet vart funne:

Falltap i tilløpet frå Svartevatn til forgreining (bukserøyr) til turbin 1 og 2:

$$j = 0.000239 \cdot Q^2 \tag{3.1}$$

der Q er samla vassføring gjennom turbin 1 og 2.

Falltap i greinrøyr (inkl. kuleventil) til turbin 1:

$$j = 0.000304 \cdot Q^2 \tag{3.2}$$

der Q er vassføring gjennom turbin 1.

Falltap i greinrøyr (inkl. kuleventil til turbin 2:

$$j = 0.000211 \cdot Q^2 \tag{3.3}$$

der Q er vassføring gjennom turbin 2.

Falltap i avløpet frå sugerøyrslukene til Valevatn/Gravatn (utløpet):

$$j = 0.001629 \cdot Q^2 \tag{3.4}$$

der Q er samla vassføring gjennom turbin 1 og 2.

3.4 Turbinene

Vanlege turbiner er optimaliserte for å ha størst mogleg verknadsgrad og kunna omdanna mest mogleg trykkenergi i vatnet om til rørsleenergi. Pumper har ei anna optimal utforming, eller karakteristikk. Duge kraftverk har to turbiner, leverte av Kværner, som kan brukast som pumper òg.

1 Sett inn nominell fallhøyde, H0								
2 Sett inn nominell	volumstrøn	n. Q0						
3 Sett aktuell nettfre	ekvens i Hz	· · · ·						
A Justor Dolpar innt	il bota? [bo	rognofl ligg	or mollom 13 og 21 grador	00	53			
		regned ngg	er menom 15 og 21 grader	40	55			
o Sett betaz [skal] li	k betaz [be	regnetj		L	6,4			
				A	12,56637			
				Twt	0,012785			
INPUT		Verdier se	om skal inn i LVTrans					
Nettfrekvens [Hz]	50	H0 [m]	215					
eta	0,947	Q0 [m3/s]	53		17			
H0 [m]	215	n [o/min]	375,00					
Q0 [m3/s]	53	Fartstall	0,55					
Polpar	8	r1 [m]	1,208					
beta_2 [skal]	22,1	r2 [m]	1,019					
		alpha1	19,1					
beta_2 [beregnet]	22,1	beta1	72,3					
		beta2	NA					
		Poler	16					
		P0 [MW]	105,97					
		T0 [kgm]	2698460					
		1.2.1						

Figur 3.2: Skjermbilete frå Excel-ark for turbinutforming

Ei turbin vert styrt av ein regulator. Regulatoren justerer leieskovlane som styrer vasstraumen inn i turbina slik at turbina alltid går med rett turtal og generatoren produserer elektrisk energi med den ynskte effekten. Regulatoren må kunna stilla seg inn etter vekslande trykk og kunna kompensera raskt og grannsamt for avvik i turtalet eller levert effekt.

Turbinene som vert brukte i modellane laga i LVTrans nyttar parametrar frå både dokumentasjonen til turbinene og utrekningar gjort med eit excel-ark som fylgde med dokumentasjonen til LVTrans. Grensesnittet for excel-arket er vist på figur 3.2. Det er ein fordel å ha rette turbindata som vil gjeva ei mest mogleg korrekt vassføring som funksjon av effekt,

Tabell 3.2: Regulatorparametrar i

Parameter	Verdi	Duge kraftverk	_
$\begin{array}{c} Q_r \\ H_r \end{array}$	$\frac{53\mathrm{m}^3/\mathrm{s}}{215\mathrm{m}}$	Parameter	Verdi
N_r	$375\mathrm{rpm}$	P_r	$100\mathrm{MW}$
$T_r \text{ og } E_r$	$2698460{\rm Nm}$	N_r	$375\mathrm{rpm}$
$lpha_{1r}$	19.1°	PID P_n	1
β_{1r}	72.3°	PID Ti_n	0
r_1	$1.208\mathrm{m}$	PID Td_n	8
r_2	$1.019\mathrm{m}$	Ti_{power}	$100\mathrm{MW}$
T_a	$6.0\mathrm{s}$	$T_{\rm ramp}$	$20\mathrm{s}$
T_{wt}	$0.1\mathrm{s}$	$Rp_{\rm droop}$	0.06
R_q	0.0	$T_{\rm close \ hi}$	$5\mathrm{s}$
R_m	0.05	$T_{\rm close \ low}$	$5\mathrm{s}$
R_d	0.04	$T_{\rm open\ hi}$	$10\mathrm{s}$
η_h	0.93	$T_{\rm open \ low}$	$10\mathrm{s}$
η_r	0.95	κ_{change}	0.5
$N_{ m turb}$	1	a	0.0
Polar	16	b	1.0
$D_{ m grid}$	0.0	c	0.0
δ_r	0.7854		
$F_{\rm grid}$	50		

Tabell 3.1: Turbinparametrar i Duge kraftverk

for samanhengen mellom dei to verdiane er ikkje heilt enkel å finna med målingar. Det er naudsynt å ha eit tal på vassføringa når tapsparametrar ved stasjonær strøyming skal finnast, sjå avsnitt 6.7.

Det viktigaste målet med dei planlagde simuleringane er som nemnt i kapittel 7 å finna svingingar etter ulike avslag og pådrag ved ymse vassføringar, inkludert vassføringar langt over Q_r . Korleis turbina og regulatoren er bygde opp er då irrelevant.

Tabell 3.1 viser dei data for turbinene som vert brukte i LVTrans, og tabell 3.2 viser data for regulatorane ved turbindrift. Data er tekne med som

3.5. LUKESJAKTA

dokumentasjon på modellen, men dei vert ikkje gjennomgått noko meir her, då dei høyrer til andre fagfelt enn vassdragsteknikk. Regulatorane for pumpedelene av turbinene er mykje simplare, men nyttar dei same verdiane som turbinregulatorane.

Figur 3.3: Sugerøyra frå turbinene til lukesjakta

3.5 Lukesjakta

Lukesjakta ligg 215 m nedstraums turbina. Ho har lukeføringar for sugerøyrslukene. Det er to rulleluker som kan søkkjast ned i utløpstunnelane dersom kraftverket skal tømast for vatn, til dømes ved revisjon av turbinene eller inspeksjon av sugerøyra. Sjakta fungerer samstundes som svingesjakt for undervatnet i utløpstunnelen. Tabell 3.3 viser horisontalt areal ved nokre høgder, og på figur 3.4 er det visualisert. Sjakta har to store svingekammer med utviding av arealet, slik at stigningsfarten her er så låg som mogleg. Det nedste svingekammeret har eit horisontalt tverrsnitt på omlag 850 m². Det øvste svingekammeret er omlag 1390 m² i areal.

På toppen av sjakta (kote 686 m) er det eit galleri med opptrekk for lukene. Det går ein køyreveg frå tilkomsttunnelen til kraftverket opp til lukesjaktgalleriet. Om vatnet i lukesjakta svingar så høgt at det renn over toppen vil det då renna rett ned i kraftstasjonen. Det vil gjeva store skadar, og er dimed svært uynskt.

I svingeberekningane som vart gjort i prosjekteringsfasen for kraftverket, er det nemnt at det verste som kan skje for Duge er om det går eit ras som blokkerer utløpstunnelen medan det er full drift på kraftverket. Då

Kotehøgd [m]	Høgd over tunnelsole [m]	Areal [sm]
627	5	5
635	13	21
635.01	13.01	850
640.5	18.5	850
644	22	250
647	25	100
678	56	100
680	58	350
680.01	58.01	1400
686	64	1400

Tabell 3.3: Flatemål i lukesjakta ved nokre høgder

vil vatnet fort byrja å stiga i lukesjakta, og deretter oversymja kraftverket. Som tiltak mot eit slikt forløp er det installert ein flottør som ved hjelp av ein brytar stengjer leieapparata til turbinene om vasstanden i lukesjakta kjem over kote 684.5 m. (Notat 1979)

3.6 Nye køyremønster

Då kraftverket vart bygd, på 1970-talet, var tanken bak pumpeturbinene at magasineringskapasiteten i Svartevatn kunne utnyttast betre ved å pumpa opp vatn om hausten då det var mykje vatn tilgjengeleg, og produsera energi om vinteren og våren, då behovet er størst og tilsiget minst. Etter at energilova kom på 1990-talet, og NordPool vart starta, vart køyremønstera heilt annleis, og det vart vanlegare å nytta dei hyppigare variasjonane i prisar til å køyra meir variabelt. På Duge kraftverk har det vorte vanlegare å bytta frå turbindrift til pumpedrift, og det er vanlegare å starta og stoppa turbinene oftare enn før.

Figur 3.4: Skjematisk oppstilling av lukesjakta

3.7 Ynske for Duge

Duge kraftverk er eit eksisterande pumpekraftverk med ei heldig geografisk plassering. Difor vil Sira-Kvina undersøkja om det er mogleg å nytta Duge kraftverk på andre måtar enn i dag:

- Installera eit ekstra aggregat
- Utvida eksisterande aggregat så dei kan køyra på høgare effekt
- Installera andre typar aggregat, slik at pumping og turbindrift kan køyrast i kortare intervall og oftare.
- Installera asynkron generator, slik at pumpa kan køyra på variable turtal, og dimed ta variabel last.

For at dei opplista framlegga skal vera moglege, må resten av kraftverket vera laga for hyppige avslag og pådrag i båe retningar (pumpe og turbin) og større vassføringar.

Kapittel 4

LVTrans

4.1 Labview

Labview er ei plattform og eit utviklingsmiljø for eit grafisk programmeringsspråk, laga av National Instruments. I Labview er program laga som blokkdiagram, der det er koplingar mellom ulike modular som gjer operasjonar. Utføringa av programmet skjer ved at data vert sendt gjennom koplingane og vert handsama av modulane. Kvart program har eit blokkdiagram som viser dataflyten og eit frontpanel med kontrollar og indikatorar. Eit Labview-program (eit såkalla virtual instrument – VI) kan byggjast inn i eit anna program, og slik kan kompliserte modular lagast av enklare byggjeklossar.

Det kan lagast fleire instansar av den same VI-en, på same måte som objekt i eit objektorientert programmeringsspråk. Kvar instans vil vera ein kopi av originalmodulen, og vil fungera heilt uavhengig av andre modular av den same typen.

4.2 LVTrans

LVTrans er ein programpakke for LabView, utvikla av dr. ing. Bjørnar Svingen i Rainpower. LVTrans vert nytta for å modellera eit vasskraftverk i

4.2. LVTRANS

éin dimensjon og å simulera køyring av det. Alle element i eit kraftverk har sin eigen modul, og dimed kan kva vasskraftverk som helst byggjast opp med modulane. Kvar modul har parametrar for lengd, tverrsnitt, lydfart, massetettleik, friksjon, kotehøgd og initialverdiar for vassføring og trykk som vert lasta inn ved oppstart av ei simulering.

Det er éin røyrmodul mellom kvar av dei andre modulane, og røyrmodulen nyttar differensiallikningane 2.22 og 2.23 til å rekna ut trykk og snøggleik (og dimed vassføring) i alle punkt på røyret. Randverdiane i røyra vert deretter nytta for alle dei andre elementa.

Programmet køyrer i sanntid, eller raskare. Det vert òg i utgangspunktet styrt i sanntid, men det er mogleg å leggja til automatisk styring av kraftverket med effekt som funksjon av tid, det vert vist i avsnitt 4.3.

Nett som i eit verkeleg kraftverk er LVTrans regulert med omsyn til effekt, og det vert styrt ved hjelp av settpunkt. Pådrag i turbina er styrt av ein regulator som nyttar proporsjonal-, integral- og derivatkonstantane for å regulera turbina på rett måte. Verkemåten til ein regulator vert ikkje gjennomgått her, i staden vert det vist til Balchen si lærebok Reguleringsteknikk.

LVTrans er laga med open kjeldekode. Difor kan kven som helst gjera endringar og forbetringar, og det er mogleg å tilpassa programmet til individuelle behov. Ei endring vart gjort i LVTrans for å kunna nytta ferdige køyremønster, sjå kapittel 4.3.

Programmet er svært avansert, og berre detaljar som er spesiallaga eller særeigne for eit pumpekraftverk vert gjennomgått nøye i denne rapporten.

4.2.1 Parametrar i LVTrans

Tidssteg

Tidsstegslengda, Δt , vert styrt i køyrevindauget til LVTrans. Δt kan gjerast så små eller så store som ynskeleg, og avgjer kor fine endringar som kan simulerast. Valet av tidsoppløysing avgjer og kor fint røyra vert oppdelte, altså storleiken på Δx , som vist i likning 2.22, andre ledd. Dersom a = 1000 m/s, og $\Delta t = 0.1 \text{ s}$, vert $\Delta x = 100 \text{ m}$. Det vil seia at alle røyr må vera minst 100 m lange, og helst litt lenger. Med kortare tidssteg, til dømes $\Delta t = 0.01$ s, treng røyra berre vera minst 10 m, men simuleringane tek samstundes lenger tid å gjennomføra.

Magasinnivå

Magasinnivåa i endane av tunnelsystema dannar grenseverdiar for trykket i kvar sine delar av systemet. Magasinnivåa er konstante gjennom heile simuleringa, og påverkar vasstrykket i resten av tunnelane. Ved stasjonær strøyming vil trykket i tunnelane innstilla seg på trykkhøgda i magasina, pluss eller minus friksjons- og singulærtap, alt etter strøymingsretninga.

I alle andre modular i LVTrans kan variabelen H_0 setjast til eit initialtrykk, men dei globale nivåa i botn og topp av systemet vil gjelda etter at systemet har stabilisert seg.

Friksjon

I tunnelmodulane er det friksjon, gjeve ved parameteren f. Ved stasjonær strøyming kan friksjonstapet reknast ut med likninga til Darcy-Weisbach:

$$h_f = f \frac{L V^2}{D_h 2g},\tag{4.1}$$

f	_	Friksjonstapet i Darcy-Weisbach si likning
L	_	Lengda på tunnelen
V	_	Vassnøggleik [m/s]
D_h	_	Hydraulisk diameter [m]
g	—	Gravitasjonskonstanten $[9.81 \mathrm{m/s^2}]$

Hydraulisk diameter har formel

$$D_h = 4R_h = 4\frac{A}{P} \tag{4.2}$$

 R_h – Hydraulisk radius [m]

A – Arealet i røyret/tunnelen [m²]

P – Våt omkrins i røyret/tunnelen [m]

4.2. LVTRANS

I runde tverrsnitt er $D_h = D$, i tunnelar med konvensjonelt tverrsnitt med kjend A, som vist på figur 4.1, er $R_h = 0.265\sqrt{A}$.

Figur 4.1: Konvensjonelt tunneltverrsnitt

f vert i utgangspunktet funne ved hjelp av Moodys diagram (sjå http:// en.wikipedia.org/wiki/File:Moody_diagram.jpg), og er ein funksjon av relativ ruheit og Reynoldstalet på vatnet. Relativ ruheit har formel

$$\bar{\Delta} = \frac{\Delta}{D_h} \tag{4.3}$$

$$\overline{\Delta}$$
 – Relativ ruheit [–]

 Δ – Absolutt ruheit [m]

Men det kan vera vanskeleg å finna ruheita i råsprengde, vassfylte tunnelar utan høve til inspeksjon. Røynsle seier at f = 0.05 er eit greitt utgangspunkt. Det tilsvarer ein råsprengt tunnel med diameter 8 m som har absolutt ruheit 17 cm.

Singulærtap

Singulærtap finst i koplingar mellom røyr, inn- og utløp, T-koplingar og for opp- og nedsving i svingesjakter. Dei har nemninga C_v , og er definert som

$$C_v = \frac{Q_0^2}{2H_0} = \frac{A^2g}{\zeta}$$
(4.4)

C_v	_	Tapsverdi brukt i LVTrans
Q_0	_	Vassføring i det aktuelle snittet
H_0	_	Trykkskilnaden i det aktuelle snittet
A	_	Areal i det aktuelle snittet
ζ	—	Tapskoeffisienten frå likning 6.1

Den beste måten å finna C_v vil vera frå målingar av tapet H_0 med vassføring Q_0 . Dette er ofte ikkje tilgjengeleg, og då kan C_v utleiast frå ζ og A.(Manual for LVtrans, 2007) Det finst mange referansebøker med tabellar over tapskoeffisientar. Sjå kapittel 6.1 og vidare for utgreiing av tapskoeffisientar brukte i modellen for Duge kraftverk.

4.3 Spesiallaga funksjonar i LVTrans

For at LVTrans skal kunna simulera eit bestemt køyremønster utan at brukaren skal måtta stilla inn effekten i regulatoren for kvar endring, er det laga ein ny modul som vart kopla på regulatoren, ein modul for å lesa Q-t-kurver. Programmet hentar ei fil som inneheld ei liste med effekter som funksjon av tid. Det vil seia at settpunktet til regulatoren vert endra automatisk etter kvart som simuleringa går. Modulen er vist på figur 4.2. Data frå Q-t-modulen vert multiplisert med settpunktet i regulatoren som vist på figur 4.3, slik at med settpunkt på 100 MW i regulatoren vil effekten vera det same som spesifisert i datafila som vert lesen av Q-t-modulen.

Q-t-modulen er ikkje særleg effektiv med tanke på reknefart, sidan han går gjennom lista for kvart einaste tidssteg for å kontrollera om det skal gjerast endringar i settpunktet. Det vil seia at lista ikkje må vera for detaljert/lang, for då vil det gjera heile simuleringa svært sein. Ei liste med settpunkt vert nytta til å simulera kraftverket med same køyremønster som då det vart gjort trykkmålingar på det. Lista er forenkla til å berre innehalda eitt settpunkt per time. Det vart gjort forsøk på å interpolera køyredataa for å ha ei oppløysing på Q-t-kurva på 10 s, men det førte til at

Figur 4.2: Spesiallaga modul til LVTrans som hentar inn Q-t-kurve

LVTrans maksimalt klarte å ha ein reknefart på 0.5, noko som ikkje er akseptabelt. I tillegg vil det vera diskrete settpunkt uansett kor fin oppløysing lista har. Det vil skapa åtskilde trykkstøyt, i motsetnad til trykkbylgjene som vert skapte av regulatoren ved jamne endringar i leieappparatet. Det er difor betre å lata regulatoren ta seg av dei små endringane, og heller velja einskilde settpunkt som vert halde ei tid, slik det vert gjort i eit ekte kraftverk.

Modulen er laga slik at ein verdi på -1 vil gjeva eit fullt avslag i regulatoren, i staden for å berre setja effekten på 0 MW. Det er vist på figur 4.3.

Dersom det er ynskeleg å styra regulatoren utan å bruka eit førebestemt mønster, kan det lagast ei fil med berre ei line med verdi 100 frå fyrste sekund. Settpunktet i brukargrensesnittet for regulatoren vil då styra gjeldande effekt i turbina.

4.4 Duge kraftverk i LVTrans

Duge kraftverk skal modellererast i LVTrans for å finna svar på om det let seg gjera å gjennomføra eitt eller fleire av dei føreslegne tiltaka som er nemnde i kapittel 3.7.

LVTrans vert sett opp som vist på figur 4.4. Det finst ingen modul i LV-

Figur 4.3: Detalj frå blokkdiagrammet til regulatoren som viser modifikasjonane for Q-t-modulen

Trans som etterliknar pumpeturbiner, difor må det gjerast ein del tilpassingar i modellen for å kunna simulera eit pumpekraftverk.

I prototypen er to pumpeturbiner kopla i parallell, med bukserøyr som samlar og deler opp vasstraumen på båe sider av turbinene. I modellen vert to francis-turbiner og to sentrifugalpumper kopla i parallell. Opp-straums og nedstraums turbinene vert alle fire maskinene samla i ein multifunksjons-T-kopling (kalla «Adaptive T» i LVTrans). Det må dimed kontrollerast under simulering at ikkje turbinene og pumpene går samstundes.

Tilpassingar av modellen

Opphavleg vart det vurdert to andre løysingar for å kombinera turbin- og pumpemodulane, ei med ein såkalla «case-structure» og ei med ventilar:

«Case-structure» er eit programmeringsverkty i LabView som gjer eitt av fleire tilfelle gyldig, basert på gjevne vilkår. Tanken var då at denne

Figur 4.4: Oppsettet i LVTrans som vert nytta til simulering av Duge kraftverk

strukturen hadde røyr-koplingar inn på båe sider som gjekk til resten av systemet. Turbinene og pumpene tilhøyrde kvar sine «cases» og kunne styrast med ein brytar. Dette let seg ikkje gjera, då berre det «case» som er gyldig ved oppstart av LVTrans vert initiert, medan dei ugyldige «cases» ikkje kan køyrast i det heile.

Ventilar som kunne styrast simultant vart vurderte opp- og nedstraums alle maskinene for å kunna byta mellom dei under køyring i sanntid, men dei vart kutta ut. Ein ventil ekstra krev ein pipe-modul ekstra, og dimed vert det vandare å få tilpassa tunnelsystemet. Anten måtte tunnelsystemet gjerast lenger, eller så måtte dei eksisterande modulane delast opp meir. Særleg rundt pumpene ville systemet vorte svært komplisert. Tunnel-modulane som omgjev kvar maskin utgjer berre ein liten del av det totale tunnelsystemet kor som er, og det vart avgjort at ventilar var overflødige.

Som vist på figur 3.3, vert dei to utløpstunnelane frå turbinene eigentleg samla *nedstraums* lukesjakta. Vatnet møtest og oppe i lukesjakta. Det er ikkje mogleg å modellera dette nøyaktig i LVTrans. Difor er dei to utløps-

tunnelane samla i den universelle T-koplinga som er sett opp med liten tapsverdi. Etter koplinga går det ein samla tunnel med dobbelt så stort tverrsnitt av det prosjekterte fram til lukesjakta og vidare i utløpstunnelen. For å simulera singulærtapet ved bukserøyret er det ei røyrkopling med tapsverdiar for strøyming i kvar retning i staden. Tapsverdien er rekna ut i avsnitt 6.3.

Parametrane for singulærtap i modulane nedstraums turbina vert funne i avsnitt 6.1.

Figur 4.5: Detalj frå figur 4.4, spesiell kopling for pumper i modellen

For at pumpemodulane skal fungera i lag med resten av modellen, må røyra tilpassast på ein særskilt måte som er vist på figur 4.5. Pumpa kan berre senda vatn frå venstre mot høgre, men det er naudsynt med motsett retning. Modulen «Adaptive T», som og vert nytta til å kopla alle maskinene saman mot resten av tunnelsystemet, kan nyttast til å kopla saman to høgre-sider av tunnel-modular, slik at pumpene vert snudde.

Kapittel 5

Målingar

Det vart gjort trykkmålingar på Duge kraftverk 25. april 2013. Éi turbin var i drift, og det vart ikkje pumpa. Tri trykkceller vart brukte. Éi celle var installert rett oppstraums kuleventilen, og to celler målte på det same punktet, i sugerøyret rett nedstraums turbina. Alle cellene var kopla på eksisterande målepunkt der det vanlegvis står trykkmålarar til avlesing. Utstyret som vart nytta står lista opp i tabell 5.1.

Туре	Trykk	Uvisse	Måleintervall
Digiquartz 4000 Digiquartz 1200A Tecsis 3233	0–2000 psi 0–200 psi 0–10 bar	$0.01\%\ 0.25\%\ 0.01\%$	$0.5/{ m s}\ 2/{ m s}\ 0.5/{ m s}$

Tabell 5.1: Oversyn, utstyr brukt på trykkmåling

Trykkcella frå Tecsis nytta ein frittståande loggar som logga direkte til tekstdokument på ein minnepinne. Trykkcellene frå Digiquartz var kopla til PC som registrerte målingane i tekstdokument. Cella som målte trykket nedstraums turbina hadde eit Perl-skript som var laga særleg til det høvet. Skriptet er tilgjengeleg i vedlegg B. Dei to trykkcellene frå Digiquartz stod på golvet på kote 605.45, og cella frå Tecsis var kopla på målerøyra ved kote 606.65.

Fylgjande personar var med på målingane:

- Ola Haugen Havrevoll, NTNU
- Kaspar Vereide, NTNU
- Asbjørn Ousdal, Sira-Kvina
- Svein Petter Ousdal, Sira-Kvina
- Tor Inge Tjørhom, Sira-Kvina
- Susanne Tveit, lærling, Sira-Kvina

Målingane vart gjort med køyreprogrammet som står i tabell 5.2.

Tabell 5.2:	Måleprogram	ved Duge	kraftverk	25. april	2013
-------------	-------------	----------	-----------	-----------	------

Tid [klokka]	Effekt [MW]
9.00	30
10.00	Avslag
11.00	70
12.00	100 eller maks
13.00	Fullt avslag

På grunn av misforståingar var den andre turbina i drift kl. 8.30, men denne vart då stoppa, slik at det berre var drift på éi turbin medan målingane pågjekk. Det gjorde likevel at det var relativt store svingingar i undervatnet då trykkmålingane vart sett i gang kl. 9.00, og det var uheldigvis ikkje mogleg å få samanlikna trykk ved turbina med vasstand i utløpsmagasinet. Svartevassmagasinet var fylt opp til kote 866 (33 m under HRV), og maksimum effekt var difor rundt 95 MW.

Det hadde vore ynskeleg å gjera vasstands-/trykkmålingar i lukesjakta og tverrslaga på Dyngjanvatn og Ånestøl. Visuelle inspeksjonar av tunnelsystemet hadde og vore ein fordel for å kunna laga modellen i LVTrans så korrekt som mogleg. Dette var ikkje praktisk mogleg å få til med tilgjengeleg utstyr og tid. Det er svært kostbart å stoppa eit kraftverk, og å tøma det for inspeksjon er tidkrevjande og dimed endå meir kostbart.

5.1 Resultat av målingane

Dei tri trykkcellene hadde ulik uvisse og måleintervall. Dei var plasserte nært turbina, både oppstraums og nedstraums. Lukesjakta er berre 215 m frå turbina, og dimed skulle trykkskilnaden mellom lukesjakta og turbina vera i storleiksorden 0.4 m ved stasjonær strøyming.

Trykkcellene frå Digiquartz gav absoluttrykk i meter vassøyle som utdata, medan trykkcella frå Tecsis gav resultatet i trykk relativt til atmosfæretrykket. Det vart dimed 9.67 m skilnad før tilkopling. Trykk før tilkopling vart trekt ifrå måledataa, og kotehøgda vart lagt til, slik at målingane kunne samanliknast med data frå simuleringar i LVTrans. Det vart og funne eit avvik på 0.154 m i målingane frå Tecsis ved atmosfærisk trykk. Formel 5.1 vart nytta på Digiquartz-målingane nedstraums turbina, og formel 5.2 vart nytta på Tecsis-målingane.

$$h_{\text{digiquartz, korr}} = h_{\text{Digiquartz, korr}} - 9.67 \,\mathrm{m} + 605.45 \,\mathrm{m}$$
 (5.1)

$$h_{\text{Tecsis, korr}} = h_{\text{Tecsis}} - 0.154 \,\mathrm{m} + 606.65 \,\mathrm{m}$$
 (5.2)

Resultata av dei korrigerte målingane nedstraums turbina er viste på figur 5.1.

5.2 Analyse av målingane

Trykkcellene var kopla på røyrveggen og målte dimed berre statisk trykk. Fartsenergien til vatnet vart difor ikkje teken med. I LVTrans er berre vassføringa Q ein variabel, så farten V må reknast ut som $V = \frac{Q}{A}$. Arealet på sugerøyret er i røynda ikkje konstant, men LVTrans gissar det statiske trykket med å rekna med ein konstant sugerøyrsdiameter på D = 2.0 m. Den innåtliggjande røyrmodulen til turbina tek med fartstrykket. Diameteren på sugerøyret ved målepunktet for trykkcellene er 2.33 m. Dimed må trykkdata frå LVTrans for turbina korrigerast med formel 5.3 for å kunna samanliknast med målingane, slik som gjort i kapittel 6.

Figur 5.1: Målingar nedstraums turbina med to trykkceller

$$h_{\rm korr} = \frac{\left(\frac{Q\cdot4}{\pi D^2}\right)^2}{2g} \tag{5.3}$$

I vidare simuleringar vert måledata frå Digiquartz nedstraums turbina i hovudsak brukt. Det er tydeleg eit avvik mellom Tecsis og Digiquartz som ikkje har vore råd å finna ut opphavet til. Tecsis-målingane har òg mykje større amplitudar på grunn av vibrasjonar, truleg på grunn av høgare oppløysing, og det gjer dei mindre eigna til nærare studiar og samanlikning med simuleringar.

Kapittel 6

Kalibrering

Modellen av Duge kraftverk i LVTrans må kalibrerast mot målingane som vart gjort på kraftverket 25. april 2013. Køyremønster for kvar av turbinene og magasinnivå for denne dagen er motteke frå driftssentralen på Sira-Kvina med oppløysing på 10 s. Det er eit mål å få avviket mellom den simulerte køyringa og den verkelege køyringa så lite som mogleg, slik at simuleringa vert realistisk og kan nyttast til å prøva ut dei ulike ynska som er nemnde i avsnitt 3.7. Mange av dei føreslegne tiltaka er avhengige av kapasiteten til systemet ved ikkjestasjonær strøyming, altså med vassføring i båe retningar og vekslande trykk.

Dei fylgjande parametrane kan endrast i modellen:

- Friksjonskoeffisientar i alle røyrmodular
- Singulærtap i tunnelane, inkludert inntak og utløp
- Tap ved oppsving og nedsving i svingesjakter
- Geometri i tunnelar
- Geometri i svingesjakter

Duge kraftverk har berre svingesjakter i utløpstunnelen. Tilløpstunnelen er relativt kort (omlag 700 m), og er ikkje utsett for andre svingingar enn trykkbylgjer ved ventilendringar. Det er difor viktigare å få ein rett modell

for tunnelsystemet i utløpstunnelen, og det vert berre lagt vekt på å få kalibrert modellen her.

6.1 Teoretiske tapsverdiar for kalibrering

Standard tapsverdi for alle modular i LVTrans er $C_v = 100000$. Jamført formel 4.4 tilsvarer det $\zeta = 0.25$ ved $A = 50 \text{ m}^2$, der ζ er tapskoeffisienten i likning 6.1. Desse verdiane må måtast til Duge kraftverk. Idelchik (1986) gjev tapskoeffisientar for strøyming i ei rekkje ulike røyrdelar, men dei er ideelle og enkle tilfelle. I røynda vil mange utrekningsmåtar passa på ein komponent, og det kan vera vanskeleg å vurdera kva som gjev rettast verdi.

Ved ikkje-stasjonær strøyming vil tapsverdiane i røynda vera svært variable, sidan trykktapet er avhengig av volumstrøyminga, medan LVTrans berre opererer med éin fast verdi. Det mest interessante i simuleringane er likevel å finna maksimum opp- og nedsving ved pådrag og avslag, og då er maksimal vassføring mest realistisk å bruka som dimensjonerande for tapsverdien.(Svingen)

6.2 Kalibrering av lukesjakta

Lukesjakta er vist detaljert på figur 3.4. Ved stasjonær strøyming vil ho fungera som ei T-kopling med ei mindre sidegrein ut frå ein stor hovudtunnel. LVtrans har ingen tapsverdi for svingesjakter når $Q_{opp} = 0$. Ved fullstendig avslag etter turbindrift med ei vassføring Q_0 vil vatnet i sugerøyret fram til lukesjakta fort stoppa heilt opp, og eit trykkstøyt vil pendla mellom lukesjakta og turbina. Vatnet i utløpstunnelen vil halda fram, og vatnet i lukesjakta vert til å byrja med drege nedover med vassføring $Q_{opp} = Q_0$, og vatnet går ut av lukesjakta og ut i hovudtunnelen. Prosjektert geometri for lukesjakta er vist i tabell 3.3. Lukesjakta har eit horisontalt areal på 5 m² ved opninga ut til hovudtunnelen. Overgangen frå lukesjakta til utløpstunnelen kan dimed karakteriserast på éin eller fleire av dei fylgjande måtane:

6.2. KALIBRERING AV LUKESJAKTA

- Eit bend på 90°.
- Ei Y-kopling med ein sidetunnel på 90° der alt vatnet går frå sidetunnelen og til den felles tunnelen.
- Ei plutseleg utviding frå $5 \,\mathrm{m}^2$ til uendeleg stort areal i tunnelen.

For alle dei ovanståande eigenskapane kan det finnast tapskoeffisientar ζ hjå Idelchik (1986) som kan brukast vidare i LVTrans. ζ er definert som:

$$\zeta = \frac{g h_s}{\rho \frac{V^2}{2}} \tag{6.1}$$

 h_s – Singulærtap [m]

6.2.1 Rektangulært bend med skarpt hjørne og nisje

Diagram 6-4 og 6-5 hjå Idelchik (1986) er nytta, med fylgjande parametrar (sjå figur 6.1 for forklaring på variablane):

Figur 6.1: Lukesjakta som eit bend

Oppsving

$$a_{0} = 2.5 \text{ m}$$

$$b_{0} = 5 \text{ m}$$

$$b_{1} = 1.7 \text{ m}$$

$$Re > 20 \cdot 10^{4}$$

$$\Delta/D = 0.001 \Rightarrow k_{\Delta} = 1.5$$

$$k_{\text{Re}} = 1.0$$

$$\zeta_{\text{w.r.}} = 2.43$$

$$\zeta_{\text{loc}} = 1.2 \cdot \zeta_{\text{w.r.}}$$

$$l_{0}/D_{h} > 10 \Rightarrow \zeta = 1.05 \cdot \zeta_{\text{loc}}$$

$$C_{v,p} = \frac{A^{2}g}{\zeta} = \frac{(12.5 \text{ m}^{2})^{2} \cdot 9.81 \text{ m/s}^{2}}{1.05 \cdot 1.2 \cdot 2.43} = 500$$

Nedsving

$$a_0 = 3.09 \text{ m}$$

$$b_0 = 1.7 \text{ m}$$

$$b_1 = 5 \text{ m}$$

$$\zeta_{\text{loc}} = 0.7$$

$$C_{v,m} = \frac{A^2 g}{\zeta} = \frac{(5 \text{ m}^2)^2 \cdot 9.81 \text{ m/s}^2}{1.05 \cdot 0.7} = 334$$
(6.3)

6.2.2 Konvergerande og divergerande Y-kopling

Diagram 7-15 og 7-4 hjå Idelchik (1986) er nytta, med fylgjande parametrar (sjå figur 6.2 for forklaring på variablane):

Figur 6.2: Lukesjakta som ei Y-kopling

Oppsving

$$F_{s} = 5 \text{ m}^{2}$$

$$F_{st} = F_{c} = 12.5 \text{ m}^{2}$$

$$Q_{s} = Q_{c}$$

$$w_{s}/w_{c} = 1.0$$

$$\zeta_{c.s} = 2.0$$

$$C_{v,p} = \frac{A^{2}g}{\zeta} = \frac{(12.5 \text{ m}^{2})^{2} \cdot 9.81 \text{ m/s}^{2}}{2.0} = 766$$

Nedsving

$$F_{st} = F_c = 12.5 \text{ m}^2$$

$$F_s = 5 \text{ m}^2$$

$$Q_{st} = 0 \text{ m}^3/\text{s}$$

$$Q_s = Q_c$$

$$F_s/F_c = 0.4$$

$$\zeta_{c.s} = 7.25$$

$$C_{v,m} = \frac{A^2g}{\zeta} = \frac{(5 \text{ m}^2)^2 \cdot 9.81 \text{ m/s}^2}{7.25} = 34$$
(6.5)

6.2.3 Innsnevring og utviding, lukesjakt

Diagram 4-9 og 11-2 hjå Idelchik (1986) er nytta, med fylgjande parametrar (sjå figur 6.3 for forklaring på variablane):

Figur 6.3: Lukesjakta som innsnevring og utviding

Oppsving, innsnevring

$$F_0 = 5 \text{ m}^2$$

$$F_1 = 12.5 \text{ m}^2$$

$$F_0/F_1 = 0.4 \Rightarrow a = 0.680$$

$$\zeta = 0.5 \cdot 0.680 + \lambda \frac{l_0}{D_h} = 0.5 \cdot 0.680 + 0.02 \cdot \frac{3.7}{2.1} = 0.38$$

$$C_{v,p} = \frac{A^2 g}{\zeta} = \frac{(12.5 \text{ m}^2)^2 \cdot 9.81 \text{ m/s}^2}{0.38} = 4033$$
(6.6)

Nedsving, utviding

$$l/a = 1.7/3 = 0.57$$

$$\zeta = 1.0$$

$$C_{v,m} = \frac{A^2g}{\zeta} = \frac{(5 \,\mathrm{m}^2)^2 \cdot 9.81 \,\mathrm{m/s^2}}{1.0} = 245.25$$
(6.7)

40

6.3 Bukserøyret nedstraums lukesjakta

Sidan tunnelane frå dei to turbinene må samlast $f \sigma r$ lukesjakta, vil bukserøyret berre representera eit singulærtap og ikkje verkeleg splitta vasstraumen i modellen. For straum ned/ut er diagram 7-30 hjå Idelchik (1986) nytta, og for straum opp/inn er diagram 7-16 hjå Idelchik (1986) nytta, sjå figur 6.4.

Figur 6.4: Bukserøyr

Straum ut

$$Q_{1s} = Q_c \Rightarrow Q_{1s}/Q_c = 1.0$$

$$\alpha = 15^{\circ}$$

$$\zeta_{1c.s} = 1.04$$

$$C_{v,p} = \frac{22.3^2 \cdot 9.81}{1.04} = 4691$$
(6.8)

Med drift i båe turbinene er

$$Q_{1s}/Q_c = 0.5$$

$$\zeta = 0.10 \Rightarrow C_v = 48784$$
(6.9)

Straum inn

$$w_{s} = \frac{Q_{s}}{A_{s}} = \frac{50}{22.3} = 2.24$$

$$w_{c} = \frac{Q_{c}}{A_{c}} = \frac{50}{50} = 1$$

$$\frac{w_{s}}{w_{c}} = 2.24$$

$$\zeta = 4 \Rightarrow C_{v} = 10219$$
(6.10)

Ved drift i båe turbinene vert det

$$\frac{w_s}{w_c} = \frac{50/22.3}{100/50} = 1.13 \Rightarrow \zeta = 0.20C_v = 122625$$
(6.11)

6.4 Tverrslaga på Dyngjanvatn og Ånestøl

Det er svært vanskeleg å setja tal på tverrslaga ved Dyngjanvatn og Ånestøl som fungerer som svingesjakter, for strøymingsretninga og vassføringa varierer sterkt, og det er umogleg å finna konstante verdiar for slike situasjonar. Men diagram 7-16 frå Idelchik (1986) (figur 6.4b) kan nyttast til å seia at når $w_{st}/w_c = 0$ er $\zeta = 0.4$, noko som gjev $C_v = 61312$. Ein betre måte å finna ein høveleg tapsverdi er å tilpassa han til målingar, noko som vert gjort i avsnitt 6.10.

6.5 Rasstad i utløpstunnel

 $C_v = 13000$ vert vald fordi det høver godt inn i falltapet for stasjonær tilstand i kapittel 6.7. Mange diagram i Idelchik (1986) kunne passa til situasjonen, og det ville vore tilfelleleg kva som vart vald.

6.6 Utløp

Utløpet får verdiar som er typiske og kan finnast i ei rekkje litteratur:

$$\zeta_{\rm ut} = 0.5 \Rightarrow C_v = 50000$$

$$\zeta_{\rm inn} = 0.7 \Rightarrow C_v = 35035$$
 (6.12)

6.7 Koeffisientar i stasjonær tilstand

For å finna falltapet, kan simuleringa i LVTrans samanliknast med trykkmålingar av kraftverket frå 2005 og 2013. På bakgrunn av samanlikningane kan parametrar for friksjon (f) og våt omkrins (P) finnast.

Falltapet i Duge kraftverk vart godt dokumentert i 2005 (Bøkko 2005). Det vart funne ein formel for falltap frå greinrøyret nedstraums turbina og til utløpet ved Valevatn, med Q som einaste variabel.

Figur 6.5: Prosjektert tverrsnitt for utløpstunnelen på Duge kraftverk

Ved å setja opp alle komponentane i utløpstunnelen frå greinrøyret og til utløpet og rekna ut samla falltap på strekninga og leggja til singulærtap med koeffisientane som er brukte i modellen av Duge kraftverk i LVTrans, kan det teoretiske falltapet lett samanliknast med det målte falltapet frå 2005. Utanom Q, er friksjon f, lengd L og hydraulisk diameter D_h variablar. I tunnelmodulen til LVTrans kan tverrsnittet skildrast på to måtar: Som diameter i ein tenkt sirkel (slik at $D = D_h$) eller med areal A og våt omkrins P. Utløpstunnelen i Duge er prosjektert med areal 50 m^2 og geometri som vist på figur 6.5, noko som gjev P = 26.8 m. Friksjonstapet i tunnelen vert rekna med Darcy-Weisbachs formel (formel (4.1)). Utløpstunnelen frå Duge får hydraulisk diameter $D_h = 4 \cdot \frac{50 \text{ m}^2}{26.8 \text{ m}} = 7.47$. Ein sirkel med areal 50 m^2 har $D = D_h = 7.98 \text{ m}$. Dersom hengen av geologiske eller anleggstekniske årsaker ikkje kan gjerast så rund som prosjektert, kan P verta mykje større, og dimed vert D_h mindre.

Mange kombinasjonar av dei nemnde variablane gjev same falltap som formel (3.4), men ved å gå ut frå at L og A er som oppgjeve på teikningar av kraftverket, står f og P att som dei usikre variablane.

Dei absolutt minste rimelege verdiane er f = 0.05 og P = 26, då vert tapet som vist i tabell 6.1. Det er brukt ein sams friksjonskoeffisient på alle tunneldelane, sidan det ikkje finst grunnlag for å seia noko om ulike tunnelseksjonar har ulik ruheit. Tabellen viser modulane og falltapet dei representerer ved stasjonær strøyming på $42.85 \text{ m}^3/\text{s}$. Det samla falltapet kan òg samanstillast i éi likning:

$$h_{\text{samla tap}} = 0.001729 \cdot Q^2 = 0.001729 \cdot 42.85^2 = 3.17 \,\mathrm{m}$$
 (6.13)

Med $Q = 42.85 \,\mathrm{m^3/s}$ vert falltapet med formel (3.4) lik

$$h = 0.001629 \cdot 42.85^2 = 2.99 \,\mathrm{m} \tag{6.14}$$

Det vert altså eit avvik på $0.0001\cdot Q^2$ eller 18 cm.

Som nemnt i avsnitt 5.2, vert simuleringsdata frå LVTrans korrigerte mot Q. Teikning av sugerøyret viser at diameteren på røyret er 2.39 m. Når simuleringa frå LVTrans vert korrigert og utløpstunnelen har P = 26 m vert simulert trykk ved stasjonær strøyming lågare enn det målte, det høver betre med ein høgare P, men ein høgare omkrins vil gjeva eit alt for stort falltap samanlikna med formel (3.4). Verdiane som vert nytta i LVTrans er difor kompromiss. Ein visuell inspeksjon kombinert med meir nøyaktige og kontrollerte målingar vil gjeva betre føresetnader for å laga ein meir korrekt modell.

Namn på modul	L [m]	Areal $[m^2]$	P [m]	C_v	$h_{\rm tap}$ [m]
Bukserøyr				4691	0.20
Utløpstunnel 1_1	4506	50	26		1.10
Rasstad				13000	0.07
Utløpstunnel 1_2	1450	50	26		0.35
Utløpstunnel 2	5698	50	26		1.39
Utløpstunnel 3	220	50	26		0.05
Utløp				50000	0.02
Sum tap					3.18

Tabell 6.1: Tapsverdiar og utrekna falltap i utløpstunnelen

6.8 Samanlikning mellom simulering og måling

Når modellen skal tilpassast til trykkmålingane frå 25. april 2013 vert det lagt vekt på det siste avslaget som vart gjort i måleserien, sidan det vart gjort med størst vassføring og dimed er mest representativt for vidare simuleringar med større vassføringar. Kurvene viser altså trykket i sugerøyret frå den eine turbina som var i drift den 25. april 2013. Som x-akse er det brukt klokkeslett som tilsvarar tida for trykkmålingane. Sidan lukesjakta ligg 215 m nedstraums turbinene, gjev turbintrykket eit godt bilete på vasstanden i lukesjakta. Den 25. april var vasstanden i Svartevatn på kote 866 m og i utløpet på Valevatn var vasstanden på kote 651.54 m. Turbindataa i tabell 3.1 tilseier at vassføring Q ved effekt 82 MW er på 42.85 m³/s, og den vassføringa vert brukt som døme utetter i kapittelet.

Med berre éi måling og ingen visuelle inspeksjonar på eit så stort og samansett kraftverk som Duge, må det gjerast ein del gissingar.

Ved simulering i LVTrans vert det lagra vassførings- og trykkdata for yttergrensene i alle komponentar. Dataa kan visualiserast som funksjonar av tid i trykk- og vassføringskurver, og trykkurvene kan samanliknast med trykkmålingar som er gjorde av kraftverket. Fire eigenskapar ved trykkurva skal likna på trykkmålingane. I tabell 6.2 er eigenskapane ved kurva sett opp saman med parametrane som styrer eigenskapane. Figur 6.6 og 6.8 viser korleis ulike parameterendringar gjev ulike utslag.

Eigenskap	Styrande parametrar	Kapittel
Amplitude	Demping ved opp- og nedsving, C_v	6.2 og 6.10
Frekvens	Areal i sv.sjakt og tunnel, tunnellengd	6.9
Form	Areal i svingesjakt	$6.9 \ 6.10$
Friksjon	Friksjonskoeffisient f i tunnelar	6.7

Tabell 6.2: Eigenskapar ved trykkurva og dei styrande parametrane

Eigenskapen «form» kan seiast å vera eit resultat av amplitude og frekvens på svingingane. Men som vist på figurane 6.6 og 6.8, vil arealendringar i tverrslag Dyngjanvatn gjeva så stort utslag at det er verdt eit eige punkt.

6.9 Svingefrekvens

Resonansfrekvensen til eit U-røyr er lik (Guttormsen 2006):

$$\omega = \frac{gA}{A_{\rm hor}L} \tag{6.15}$$

ω –	Svingefrekvensen i eit U-røyr [Hz]
A –	Arealet i tunnelen $[m^2]$
$A_{ m hor}$ –	Horisontalarealet i svingesjakta $[m^2]$
L –	Lengda på tunnelen [m]

Dei to blå linene på figur 6.6 viser at svingefrekvensen på dei opphavlege simuleringane er høgare enn på målingane. Formel (6.15) viser at auka A_{hor} og L, eller redusert A gjev lenger svingeperiode.

Det er ikkje uvanleg at kraftverksanlegg er bygd med store avvik frå prosjekteringsteikningane, og det er ikkje alltid lett å finna ut kva avvika går ut på, dersom visuell inspeksjon er vanskeleg å få til. Likevel er det ikkje realistisk at utløpstunnelen er mykje lenger enn prosjektert. Simulering med utløpstunnel som er 3000 m lenger enn prosjektert, viser tydeleg at svingefrekvensen ikkje lett let seg påverka av tunnellengda. I tillegg gjev det mykje større svingeamplitudar.

Figur 6.6: Ulike simulerte svingeperiodar

Vanlegvis er tunneltverrsnittet og nøye planlagd, og tunnelen skal ikkje sprengast mykje mindre enn prosjektert, då dette vil gå ut over falltapet, som diskutert i avsnitt 6.7. Det er meir sannsynleg at forma på tunnelen ikkje oppfyller krava gjennom heile lengda. Figur 6.6 viser ei simulering med $D_h = 5.4$. Frekvensen vert merkbart lågare, men det blir og friksjonen, som vist heilt til venstre på grafen.

Horisontalt tverrsnitt på lukesjakta kan gjerast større for å få lågare svingefrekvens. Forsøk med auka areal i lukesjakta gjev litt lågare frekvens, men det gjev og meir utjamna svingingar, utan dei små toppane som er tydelege på figur 5.1. Eit anna tiltak er å endra på tverrsnittet på dei to andre svingesjaktene, ved Dyngjanvatn og Ånestøl. Ved å gjera

Figur 6.7: Fourier-transformasjon av svingingane

tver
rsnitta der større enn det som er vist på prosjekteringsteikningane (frå
 $A_{\rm hor} = 200 \,{\rm m}^2$ til $A_{\rm hor} = 490 \,{\rm m}^2$), vert både frekvensen lågare og kurva får ei form som høver mykje betre med trykkmålinga.

Fast Fourier-transformering av trykkmålingane gjev svingingane i frekvensdomenet i staden for tidsdomenet. Figur 6.7 viser FFT av trykkmålingane og ei simulering etter eit avslag. Det er tydeleg at svingingane ikkje ligg langt frå einannan. Det er to hovudsvingingar: Ei på 0.002 Hz og ei på 0.005 Hz. Det tilsvarer høvesvis 500 s og 200 s. Frekvensen på den minste svinginga er for høg i simuleringa.

6.10 Endeleg kalibrering av modellen

Dei teoretiske tapsverdiane som er rekna ut i avsnitt 6.2-6.6 er sprikande, og det er vanskeleg å vita kva som vil vera mest rett.

Figur 6.8 på side 50 viser døme på forsøk med ulike tapsverdiar i svingesjaktene. Her er det lagt vekt på å få simuleringskurva til å passa med målekurva, utan særleg omsyn til dei teoretiske verdiane som vart utrekna tidlegare. Frå figur 6.6 er det svært tydeleg at arealet på tver
rslag Dyngjanvatn er den viktigaste parameteren med tanke på både svingemønster og frekvens. E
it horisontalt areal på rundt $380\,\mathrm{m}^2~(\Rightarrow D=23\,\mathrm{m})$ ser ut til å høva godt med målingane, og vert brukt i alle simuleringane som er viste.

Figur 6.8: Kombinasjonar av tapsverdiar i lukesjakta og tverrslag Dyngjanvatn samanlikna med trykkmåling (stipla line)

Figur 6.8a har fylgjande nykelparametrar:

• Lukesjakt

$$C_{vp} = 1000$$

 $C_{vm} = 1000$
 $A_{\text{hor, nedre svingekammer}} = 1450 \,\text{m}^2$

• Tverrslag Dyngjanvatn

$$C_{vp} = 613$$
$$C_{vm} = 500$$

På teikningane for nedre svingekammer ser det ut til at arealet er 1450 m^2 . Eit anna dokument oppgjev at arealet er 850 m^2 , og det talet vert brukt på figurane b– f. Svingesjakta i figur a har òg ein brå overgang frå 100 m^2 til nedre svingekammer. Problem: Fyrste nedsving er for langt ned. Dei to små oppsvinga kl. 13.13 og kl. 13.17 er for tidlege.

Figur 6.8b har fylgjande nykelparametrar:

• Lukesjakt

$$C_{vp} = 1000$$

$$C_{vm} = 1000$$

$$A_{\text{hor, nedre svingekammer}} = 850 \text{ m}^2$$

$$A_{\pm}500 \text{ m}^2$$

• Tverrslag Dyngjanvatn

$$C_{vp} = 6130$$
$$C_{vm} = 500$$

Med ein jamnare overgang frå den smale sjakta til svingekammeret, og eit større areal lenger oppe i sjakta, vert det fyrste nedsvinget ikkje så stort, og det vert rundare enn på figur a. Det kan sjå ut til at svingeperioden er lenger enn på figur a. Mindre oppsvingstap i tverrslag Dyngjanvatn gjev mykje større amplitude på største oppsving, både rundt kl. 13.10 og kl. 13.20, men det mindre oppsvinget kl. 13.13 passar svært godt.

Figur 6.8c har fylgjande nykelparametrar:

• Tverrslag Dyngjanvatn

$$C_{vp} = 613$$
$$C_{vm} = 5000$$

Meir dempa oppsving og mindre dempa nedsving i tverrslaget gjev større amplitude i både nedsving og oppsving. Oppsvinget kl. 13.13 er alt for stort, og perioden er kortare enn på figur b.

Figur 6.8d har fylgjande nykelparametrar:

• Lukesjakt

$$C_{vp} = 100$$
$$C_{vm} = 1000$$

• Tverrslag Dyngjanvatn

$$C_{vp} = 613$$
$$C_{vm} = 500$$

Alle svingingane får lågare amplitude. Lukesjakta er mykje nærare målepunktet som er ved turbina, men det kan sjå ut til at dempingar i tverrslaget som er rundt 6 km unna har vel så mykje å seia for amplituden.

Figur 6.8e har fylgjande nykelparametrar:

• Lukesjakt

$$C_{vp} = 1000$$
$$C_{vm} = 100$$

• Tverrslag Dyngjanvatn

$$C_{vp} = 613$$
$$C_{vm} = 500$$

Fyrste nedsving skjer mykje raskare og får mindre utslag. Trykkstøyten, som nesten ikkje viser på figuren, vert og svært dempa, så det vert mindre likt målinga, men det kan vera verdt å merkja seg effekten til seinare. Elles får svinginga mindre amplitude her og, men nedsving er kraftigare påverka enn oppsving. Figur 6.8f har fylgjande nykelparametrar:

• Lukesjakt

$$C_{vp} = 500$$
$$C_{vm} = 1000$$

• Tverrslag Dyngjanvatn

$$C_{vp} = 900$$
$$C_{vm} = 500$$

På figur e vert røynslene frå dei andre figurane nytta til å laga ei kurve som høver best. Svinginga er litt forseinka før kl. 13.12, og litt for rask etter det tidspunktet. Amplituden er litt for stor eller nokså treffande på alle svingingane. Det verkar vera vanskeleg å få ei kurve som i heilskap passar betre.

Det vart gjort forsøk med annan geometri på lukesjakta enn det som er nemnt ovanfor og oppsettet i tabell 3.3. Areal på ulike høgder kan endrast, og høgdene med ulike areal kan endrast. På alle simuleringar er det tydeleg at fyrste nedsving er for stort samanlikna med trykkmålinga. Det kan tenkjast at å auka arealet i heile eller delar av den smale delen av lukesjakta vil kunna bøta på det. Figur 6.9a viser at det ikkje er tilfelle. Svinginga vert for sein, og fyrste nedsving blir merkeleg nok mykje større enn vanleg. Eit forsøk med geometri nett som spesifisert i eit gamalt svingeberekningsdokument gjev resultat som ikkje høver med trykkmålingane i det heile, vist på figur 6.9b.

Det fører heller ikkje fram å prøva med småflikking på høgdene. Difor ser det ikkje ut til at det er råd å koma nærare ei betre tilpassing av modellen enn det som er oppnådd i vedlegg A. Den modellen vert brukt i vidare forsøk som skildra i kapittel 7, 8 og 9.

Figur 6.9: Kombinasjonar av tapsverdiar i lukesjakta og tverrslag Dyngjanvatn samanlikna med trykkmåling (stipla line)

Kapittel 7

Simuleringar av Duge kraftverk

I kapittel 3.7 vert det lagt fram ein del ynske som Sira-Kvina har for vidare utvikling av Duge kraftverk. Modellen av kraftverket i LVTrans skal brukast til å finna svar på fylgjande spørsmål:

- Kor ofte kan det gjerast avslag og pådrag? Kva er det mest uheldige tidspunktet å starta kraftverket etter eit avslag?
- Kor stor vassføring kan det eksisterande anlegget køyra med?
- Kor mykje må anlegget utvidast for å tola større vassføringar? Kan det lagast ein funksjon for naudsynt svingekammervolum ved ei gjeven vassføring?
- Kva grenser finst for vassføringa i anlegget som funksjon av vasstanden i utløpsmagasinet?
- Kva grenser finst for raskt skifte mellom turbindrift og pumpedrift av kraftverket?

Svara på spørsmåla vil vera nyttige dersom det skal planleggjast å utvida kraftverket med utstyr med større effekt (og dimed vassføring) eller utstyr som kan gjera raske avslag og pådrag. Nokre grenser er svært lette å rekna seg fram til, nemleg maksimal vassføring ved pumpedrift og turbindrift som gjev så store trykktap i tunnelen at yttergrensene for lukesjakta vert nådde.

7.1 Forsøksstrategi

Hovudstrategien ved forsøk er:

- 1. Finn ut kva tidslengd mellom avslag og pådrag som gjev størst svingingar i lukesjakta, $t_{\rm verst}$
- 2. Finn ut kva vasstand i undervatnet som gjev størst svingingar i lukesjakta
- 3. Køyr kraftverket med konstant vassføring Q til svingingane har stabilisert seg, stopp kraftverket i tida som vart funnen i punkt 1, slå det på att med same vassføring og undersøk om svingingane gjekk over maksimums- og minimumsgrensa H_{maks} og H_{min} i lukesjakta.
- 4. Dersom svingingane gjekk over grensene i lukesjakta, utvid det relevante svingekammeret og gå til punkt 3.
- 5. Dersom svingingane ikkje gjekk over grensene i lukesjakta: Auk vassføringa og gå til punkt 3.
- 6. Når vasstanden i lukesjakta ved stasjonær strøyming når maksimumseller minimumsgrensa i lukesjakta: Forsøket er ferdig.

Det kan vera naudsynt å gjera punkt 1 undervegs i forsøket, sidan resonansfrekvensen er ein funksjon av lukesjaktarealet (formel (6.15)). Når lukesjaktarealet aukar, søkk svingefrekvensen, og opphaldstida som gjev størst utsving vert forskuvd.
7.2 Kriterier

Nedre svingekammer har sole på kote 635 m. Det er absolutt nedste tilletne grense for vasstanden i lukesjakta, og vert definisjonskriteriet på godkjent/ikkje godkjent nedsving, H_{\min} . Det er mest aktuelt å testa ved pumpedrift.

Øvre svingekammer endar opp i eit galleri med teknisk utstyr og køyreveg ned til kraftstasjonen. I dei gamle svingeberekningane vart maks oppsving sett til kote 684.5 m, og det vert definert som øvre grense i forsøka her òg.

7.3 Forsøksseriar

7.3.1 Pumpedrift

Pumpeforsøk 1 Mål: Finna avslagstid t_{verst} som gjev størst utslag ved nominell vassføring, $84 \text{ m}^3/\text{s}$. Køyremønster: Pådrag, 30 min – avslag, aukande frå 1 til 8.5 min med 0.5 min hopp – pådrag, 30 min.

Vasstand, utløp: 651.54 m.

- **Pumpeforsøk 2** Mål: Finna minste vassføring med avslag på t_{verst} som ikkje gjev nedsving under H_{\min} . Køyremønster: Pådrag, 30 min – avslag t_{verst} – pådrag, 30 min. Vasstand, utløp: 651.54 m.
- **Pumpeforsøk 3–5** Mål: Finna lågaste vasstand i utløpet som ikkje gjev nedsving under H_{\min} ved $Q = 84 \,\mathrm{m}^3/\mathrm{s}$ og t_{verst} .
- **Pumpeforsøk 6–8** Mål: Finna avslagstid t_{verst} som gjev størst utslag ved nominell vassføring, $84 \text{ m}^3/\text{s}$. Køyremønster: Pådrag, $30 \min$ – avslag, aukande frå 1 til 16.5 min med 0.5 min hopp – pådrag, $30 \min$. Vasstand, utløp: 660 m (HRV).
- **Pumpeforsøk 9–10** Mål: Finna avslagstid t_{verst} som gjev størst utslag med $Q = 100 \text{ m}^3/\text{s}$ og $A_{\text{nedre sv.k.}} = 1000 \text{ m}^2$. Køyremønster: Pådrag, 30 min – avslag, aukande frå 4.5 til 6.6 min

med 0.5 min hopp – pådrag, 30 min. Vasstand, utløp: Høvesvis 654.51 m og 660 m.

Pumpeforsøk 11–31 Mål: Finna største vassføring som gjev nedsving under H_{\min} . Ved nedsving under H_{\min} : Auk $A_{\text{nedre sv.k.}}$ og prøv på nytt med same Q. Køyremønster: Pådrag, 30 min – avslag t_{verst} – pådrag, 30 min. Vasstand, utløp: 660 m.

Pumpeforsøk 32 Mål: Finna avslagstid t_{verst} som gjev størst utslag med $Q = 117.6 \text{ m}^3/\text{s}$ og $A_{\text{nedre sv.k.}} = 1550 \text{ m}^2$. Køyremønster: Pådrag, 30 min – avslag, aukande frå 4 til 10 min med 0.5 min hopp – pådrag, 30 min. Vasstand, utløp: 660 m.

Pumpeforsøk 33 Mål: Finna avslagstid t_{verst} som gjev størst utslag med $Q = 109.2 \text{ m}^3/\text{s}$ og $A_{\text{nedre sv.k.}} = 1400 \text{ m}^2$. Køyremønster: Pådrag, $30 \min$ – avslag, aukande frå 4.5 til 7.5 min med 0.5 min hopp – pådrag, $30 \min$. Vasstand, utløp: 660 m.

Pumpeforsøk 34–43 Mål: Finna største vassføring som gjev nedsving under H_{\min} . Ved nedsving under H_{\min} : Auk $A_{\text{nedre sv.k.}}$ og prøv på nytt med same Q. Køyremønster: Pådrag, 30 min – avslag t_{verst} – pådrag, 30 min. Vasstand, utløp: 660 m.

7.3.2 Turbindrift

- **Turbinforsøk 1** Mål: Finna avslagstid t_{verst} som gjev størst utslag ved nominell vassføring, $84 \text{ m}^3/\text{s}$. Køyremønster: Pådrag, $30 \min$ – avslag, aukande frå 1 til 8.5 min med 0.5 min hopp – pådrag, $30 \min$. Vasstand, utløp: 650 m.
- **Turbinforsøk 2–8** Mål: Finna største vassføring som gjev oppsving over H_{maks} . Ved oppsving over H_{maks} : Auk $A_{\text{øvre sv.k.}}$ og prøv på nytt med same Q.

7.3. FORSØKSSERIAR

Køyremønster: Pådrag, 30 min – avslag t_{verst} – pådrag, 30 min. Vasstand, utløp: 650 m (LRV).

Turbinforsøk 9–21 Mål: Finna største vassføring som gjev oppsving over H_{maks} . Ved oppsving over H_{maks} : Auk $A_{\text{øvre sv.k.}}$ og prøv på nytt med same Q. Køyremønster: Pådrag, 30 min – avslag t_{verst} – pådrag, 30 min.

Vasstand, utløp: 660 m (LRV).

7.3.3 Pumpe-turbin og turbin-pumpe

Pumpe-turbinforsøk 1–33 Mål: Finna minste avslagstid som gjev utslag under H_{maks} med varierande vassføring både i pumpedrift og turbindrift.
Køyremønster: Pådrag, pumpe, 30 min – avslag med ulike tidsrom – pådrag, turbin fram til største oppsving er nådd.
Vasstand, utløp: 660 m (LRV).

7.3.4 Andre forsøk

Det vert gjort forsøk med mange repetisjonar av turbindrift med vassføring $Q = 105 \,\mathrm{m^3/s}.$

Kapittel 8

Resultat

8.1 Generelle resultat

Ved simulering med ulike vassføringar og undervatn vart nykeldata for vassføringa funne for den eksisterande utløpstunnelen på Duge kraftverk og oppsummert i tabell 8.1. Vassføringar over dei i tabellen vil føra til at vassyta kjem under kote 635 m eller over kote 684.5 m i lukesjakta, og det er ikkje akseptabelt. Maksimal vassføring er avhengig av vasstanden i utløpsmagasinet, $H_{\rm undervatn}$. Lågaste regulerte vasstand (LRV) er på kote 650 m og høgste regulerte vasstand (HRV) er på kote 660 m.

	Stasjonæ	$r \text{ strøyming } (m^3/s)$	Inkludert	svinging (m^3/s)
$H_{\rm undervatn}$	$650\mathrm{m}$	$660\mathrm{m}$	$650\mathrm{m}$	$660\mathrm{m}$
Q_{pumpe}	93	120	59	94
$Q_{ m turbin}$	141	119	130	105

Tabell 8.1: Nykeldata for vassføring i Duge kraftverk

8.2 Pumping

Forsøka med pumping vart skildra i avsnitt 7.3.1. Dei fleste av forsøka vart gjorde med avslag og deretter pådrag etter ei tid t_{verst} . Tabell 8.2 viser t_{verst} som vart funne med varierande Q og $A_{\text{nedre sv.k.}}$.

Tabell 8.2: Minst gunstige opphaldstid for nokre vassføringar og svingekammerareal

$Q [\mathrm{m}^3/\mathrm{s}]$	$A_{\text{nedre sv.k.}} [\text{m}^2]$	$t_{\rm verst}$ [s]
84	850	5
100.8	1000	5.5
109.2	1400	5.5
117.6	1550	6.5

Døme på eit typisk forsøk med avslag og pådrag er vist på figur 8.1. Det er pumpeforsøk 18, med $Q = 102.5 \,\mathrm{m^3/s}$, $A_{\mathrm{nedre \ sv.k.}} = 1100 \,\mathrm{m^2}$ og opphald mellom pådraga på $t_{\mathrm{verst}} = 300 \,\mathrm{s.}$ Undervatnet er på HRV, kote 660 m. Positiv retning er frå turbina mot utløpet. I forsøket går vatnet motsett veg, difor er vassføringa negativ. Svinginga etter pådrag går nedanfor kote 635 m, det er lett å sjå, sidan det er ein brå tversnittsovergang der. Den vassføringa må dimed prøvast på nytt med eit større areal.

Figur 8.2 viser maksimalt nedsving etter avslag på ulike tidsrom med med $Q = 84 \,\mathrm{m}^3/\mathrm{s}$ og $A_{\mathrm{nedre \ sv.k.}} = 850 \,\mathrm{m}^2$. Undervatnet er på kote 651 m. På grunn av måten lukesjakta er utforma på i LVTrans, søkk vasstanden svært raskt mellom kotene 627 m og 635 m. Under kote 627 m utvidar tunnelen seg raskt til eit stort areal. Likevel er det svært tydeleg kva intervall som gjev størst nedsving, og det er tydeleg at det går i bylgjer. Det er ikkje køyrt simuleringar med opphald større enn 23.5 min, men mykje tyder på at bylgjene held fram med liten «demping».

I pumpeforsøk 2 vart det funne kva vassføring Q som ikkje ville gjeva nedsving under kote 635 m ved avslag og pådrag etter t_{verst} når utløpsmagasinet hadde vasstand 651 m. Med $Q = 67 \text{ m}^3/\text{s}$ og lågare ser det ut til å gå bra med den eksisterande lukesjakta.

Pumpeforsøk 3–5 vart utførde for å finna nedste moglege vasstand i utløps-

Figur 8.1: Døme på eit pumpeforsøk med avslag og pådrag

magasinet som kunne tola eit avslag og deretter pådrag etter 5.5 min med full effekt (dvs. $84 \text{ m}^3/\text{s}$) med dagens turbiner utan at vasstanden gjekk under kote 635 m i lukesjakta. Med undervatn på kote 657 m og høgare var det mogleg.

Figur 8.3 viser naudsynt areal i nedre svingekammer for å kunna handtera svingingane ved pådrag på minst gunstige tidspunkt etter eit avslag.

8.3 Turbin

I Turbinforsøk 1 vart t_{verst} funnen til å vera 5.5–6 min, vist på figur 8.4. Sidan t_{verst} vert større ved større lukesjaktareal, vart 6 min vald i dei vidare forsøka med utvida svingekammer. Undervatnet var på kote 650 m og vassføringa var 107.6 m³/s.

Døme på eit typisk forsøk med avslag og pådrag er vist på figur 8.5. Det er turbinforsøk 7, med $Q = 139.14 \,\mathrm{m^3/s}$, $A_{\text{øvre sv.k.}} = 1500 \,\mathrm{m^2}$ og opphald

Figur 8.2: Nedsving i lukesjakta med varierande opphald mellom pumpekøyring

mellom pådraga på $t_{\rm verst}=360\,{\rm s.}$ Undervatnet er på HRV, kote $650\,{\rm m.}$

Figur 8.6 viser naudsynt areal i øvre svingekammer for å kunna handtera svingingane ved pådrag på minst gunstige tidspunkt etter eit avslag.

8.4 Pumpe-turbin

Det vart gjort forsøk med ulike vassføringar for å finna ut kor lang tid det måtte gå etter eit pumpeavslag før turbindrift kunne setjast i gang med dei noverande svingekammera. Utløpsmagasinet hadde vasstand 660 m. Figur 8.7 viser resultatet.

8.5 Andre forsøk

Det vart gjort forsøk med turbindrift ($Q = 105 \,\mathrm{m}^3/\mathrm{s}$) med repeterte avslag og deretter pådrag når Q_{opp} var på sitt høgste, vist på figur 8.8. Utløpsmagasinet hadde vasstand på kote 660 m.

Figur 8.3: Naudsynt areal i nedre svingekammer som funksjon av pumpevassføring

Figur 8.4: Oppsving i lukesjakta med varierande opphald mellom turbinpådrag

Figur 8.5: Døme på eit turbinforsøk med avslag og pådrag

Figur 8.6: Naudsynt areal i øvre svingekammer som funksjon av turbinvassføring

Figur 8.7: Minste tid mellom pumpedrift og turbindrift for ulike vassføringar

Figur 8.8: Repeterte avslag og pådrag

Kapittel 9

Diskusjon

Sira-Kvina kraftselskap ynskjer å vita korleis Duge kraftverk kan nyttast på ein meir økonomisk og moderne måte. Det er eit eksisterande pumpekraftverk, og tilhøva kan difor liggja til rette for å utvida kraftverket med nye turbiner eller andre typar generatorar som kan køyrast på variable laster og med hyppige avslag og pådrag. Simuleringane som er gjorde med LVTrans kan leggja fast nokre grenser for kva som er mogleg å gjera med det eksisterande anlegget, og kva som eventuelt må gjerast for at anlegget skal tola andre køyremønster og vassføringar enn det vart bygd for.

9.1 Modell av Duge kraftverk

LVTrans er laga for å modellera eit komplett vasskraftverk med basis i likningane til Wylie og Streeter. Det er eit kraftig verkty, og nyttar teori frå både vassdragsteknikk, hydraulikk, maskinteknikk og reguleringsteknikk. Det gjer at det og krevst breid fagkunnskap for å bruka programmet på rett måte.

Modellen av Duge kraftverk som er laga i LVTrans er basert på prosjekteringsteikningar, nykeldata om turbin og regulator, munnlege referansar og éi trykkmåling. Som nemnt mange gonger har det ikkje vore mogleg å gjera visuelle inspeksjonar av tunnelsystemet, og det gjer det usikkert kor rette dei endelege parametrane er. I eit så komplisert system, kan det henda at éin verdi på ein parameter i kombinasjon med ein annan parameter gjev ei trykkurve som er *nesten* rett, men ikkje heilt. Det er mogleg å bruka mykje tid på å tilpassa desse to parametrane på alle tenkjelege måtar, men det endelege resultatet kan vera langt frå dei røynlege verdiane dersom ein tredje parameter er heilt feil.

Pumpemodulen i LVTrans vart ikkje skikkeleg stilt inn, avslag og pådrag skjer difor nærast momentant. Det vart og lagt inn «slagbegrensar» på regulatoren, så vassføringa er tilnærma konstant gjennom heile simuleringa. Det er ikkje heilt realistisk, men det vil dimed ikkje vera med på å dempa svingingane, og dimed vil resultata vera meir konservative.

Modellen har visse avgrensingar. Det viste seg å vera svært vanskeleg å simulera den store trykkstøyten som oppstod rett etter avslag slik han viste på trykkmålinga. Forsøk med auka og minka avslagstid førte ikkje fram. Det har ikkje noko å seia for svingingar i lukesjakta, men maksimumsgrenser for trykkauke ved turbina kan difor ikkje studerast med den noverande modellen.

Modellen er ikkje kalibrert med effekter større enn 82 MW, dvs omlag $43 \,\mathrm{m}^3/\mathrm{s}$, det er under halve kapasiteten til kraftverket.

Den ekstra modulen i LVTrans som hentar inn eit køyremønster frå ei tekstfil gjorde at det er svært enkelt å gjera forsøk med ulike pådrag på turbinene. Kvar turbin kan styrast individuelt, og simuleringa kan køyra på full fart gjennom heile forsøket, utan at regulatorane treng interaksjonar. Det gjer det og enkelt å samanlikna mange like køyringar med litt ulike konfigurasjonar, slik det vart gjort i kapittel 6. På grunn av den simple måten modulen er laga på, vert tekstfila henta inn frå filsystemet og gjennomlesen for kvart einaste tidssteg i simuleringa. Det krev ein del ekstra prosessorkraft for kvart tidssteg, og det gjer at simuleringane går ein del seinare enn dei gjorde utan den modulen. Det er viktig at køyrefilene ikkje inneheld for mykje data og, det vil gjera prosesseringa for kvart tidssteg endå seinare. Når det likevel frigjer menneskeleg arbeidskraft som elles måtte ha styrt regulatorane i kraftverket manuelt, er det eit godt hjelpemiddel for simuleringar.

9.2 Simuleringar

Det vert føresett at modellen er rett, eller rett nok til å kunna brukast til simuleringar for å finna svar på spørsmål om kapasiteten til kraftverket og utvidingskrav. Kalibreringa av modellen viste at fyrste nedsving etter eit avslag framleis ikkje er tilpassa heilt, og dimed vil avslag etter turbindrift i modellen visa for stort nedsving i høve til røynda. Det er likevel sjeldan nedsvinget etter turbindrift som er dimensjonerande for svingesjakta, så det har truleg ikkje nokon stor praktisk verknad for analysane eller resultata.

Dei største svingingane i lukesjakta oppstår når kraftverket vert sett i gang medan $Q_{\rm opp}$ er på sitt største, og verkar i same retning som pådraget. Det vil seia at oppsving vert størst når $Q_{\rm opp} > 0$ og kraftverket vert sett på med turbindrift, og nedsving vert størst når $Q_{\rm opp} < 0$ og kraftverket vert sett på med pumpedrift.

Falltapet ved stasjonær strøyming gjer at kraftverket ikkje kan nyttast med uavgrensa store vassføringar. Det er avhengig av vasstanden i undervatnet, men absolutt største vassføring for pumping er $120 \text{ m}^3/\text{s}$. Når vassføringa vert større enn det, vil trykket vera så lågt at vasstanden i lukesjakta ligg under solen i nedre svingekammer. Ved stasjonær strøyming er storleiken på svingekammera irrelevant, sidan trykket er avhengig av vassføringa i tunnelen og ikkje vassføringa inn og ut av svingesjakta. Likeeins vil det ikkje vera mogleg med meir enn 141 m³/s i turbindrift, det gjeld når undervatnet er på LRV. For å kunna kompensera for dei grensene må det gjerast tiltak som reduserer singulær- og friksjonstap i utløpstunnelen. Tunnelen er svært lang, og friksjon er klårt største bidragsytar til falltapet. Utrekningane i tabell 6.1, men med eit anna areal på tunnelen viser at ei utviding av heile den 12 km lange tunnelen frå 50 m² til 60 m² kan gjeva maks vassføring på rundt 180 m³/s med undervatn på LRV.

Forsøk med avslag og pådrag med pumper viser at anlegget har klåre avgrensingar slik det er i dag. Med undervatn under kote 657 m kan ikkje eksisterande pumpekapasitet, $84 \text{ m}^3/\text{s}$, brukast med hyppige avslag og pådrag utan at vasstanden i lukesjakta søkk under nedre svingekammer.

Figur 8.3 viser at for å kunna ta unna vatn frå raske avslag og pådrag, må nedre svingekammer utvidast kraftig. Svingekammeret er rundt 5 m høgt,

og ei utviding frå 850 m^2 til 2000 m^2 tyder at 5750 m^3 masse må takast ut. Øvre svingekammer må òg utvidast om det skal vera mogleg å nytta turbiner med større vassføring enn dei eksisterande. Dagens turbiner har nominell vassføring på $105 \text{ m}^3/\text{s}$. Ved å auka vassføringa til berre $115 \text{ m}^3/\text{s}$ må svingekammeret utvidast til nesten 2000 m^2 .

Figur 8.8 viser at det er vanskeleg å få resonans i kraftverket. FFT av trykkmålingane gjorde 25. april 2013 og simuleringane viser at dei to hovudsvingingane har periodar på 3 min20 s og 8 min20 s. Det vart ikkje gjort forsøk på repeterte avslag og pådrag med dei periodane, men det verkar ikkje sannsynleg at det hadde gjort nokon stor skilnad. Det er difor truleg ikkje nokon fare for at det over tid kan byggja seg opp store svingingar.

Det er mogleg å manipulera trykkutviklinga ved hjelp av endra dempingskoeffisientar i inn- og utløp til svingesjaktene, særleg lukesjakta, som vist på figur 6.8. Ein lågare C_{vp} gav mindre utslag i alle svingingar, og ein lågare C_{vm} viste at fyrste (og største) nedsving kan dempast kraftig.

Kapittel 10

Konklusjon

Duge kraftverk vart modellert i LVTrans og vart nytta til å finna grenser for opp- og nedsving ved det eksisterande kraftverket, og det vart gjort simuleringar med andre vassføringar og geometriar i tunnelsystemet for å finna ut kva som må gjerast i framtida dersom kraftverket vert vurdert utvida på noko slag.

Det er mogleg å køyra kraftverket med hyppige avslag og pådrag utan å utvida anlegget, men ikkje med så mykje større vassføringar enn det som er mogleg i dag. Ved å utvida svingekammera i lukesjakta nedstraums turbinene, vil kraftverket få betre kapasitet til å halda svingetoppane innanfor dei grensene som er sette av omsyn til tryggleik og stabilitet.

Det verste tidspunktet å setja turbiner i drift etter turbinavslag eller pumper i drift etter pumpeavslag, er mellom 5 og 6 min med dei eksisterande svingekammera, men store opp- og nedsving vil vera mogleg å få ved idriftsetjing mange minutt etter avslag, særleg 8 og 14 min.

Det verste tidspunktet å setja turbiner i drift etter pumpeavslag er momentant etter avslaget. Maksimalt oppsving vert fort redusert, og etter $2 \min 30$ s er det mogleg å køyra turbiner med $Q = 110 \text{ m}^3/\text{s}$ etter avslag frå pumpedrift på $Q = 110 \text{ m}^3/\text{s}$.

Med dagens svingekammer og hyppige avslag og pådrag vil maksimal vassføring vera avhengig av vasstanden i utløpsmagasinet. Eit oversyn kan lesast i tabell 8.1. LVTrans er eit svært nyttig verkty for modellering av kraftverk. Det simulerer godt korleis vatn oppfører seg i både turbin og tunnelsystem, og det er enkelt å gjera store og små endringar. For å få nøyaktige simuleringar er det viktig å ha gode og korrekte kunnskapar om kraftverket, noko som ikkje alltid er lett å skaffa.

I denne avhandlinga er det gjort forsøk på å gjera nokre relevante simuleringar som kan vera nyttige i ei vidare vurdering av kraftverket, men det låg ikkje føre konkrete data om køyremønster i eit typisk effektkraftverk eller nye turbintypar. Meir detaljerte data kan nyttast i modellen som er laga, og modellen kan køyrast med føremål om å finna svar på heilt konkrete tidsdata.

72

Kapittel 11

Vidare forsøk

Modellen av Duge kraftverk kan nyttast vidare til forsking og kommersielle føremål, men det vil vera ein fordel å revidera modellen med meir korrekte data for kraftverket. Alle forsøka som er gjort er dokumenterte, og det er mogleg å køyra kvart forsøk på nytt med nett dei parametrane som vart nytta i kvart tilfelle eller med endra parametrar.

Med ein datamodell som er så lett å gjera endringar på, er det berre fantasien som set grenser for kva kombinasjonar av turbin- og pumpekøyring, vassføringar og vasstandar som kan simulerast og testast.

Det vart ikkje gjort forsøk med korleis innsnevring og drossel ved inngangen til svingesjaktene kan påverka svingingane i lukesjakta. Det bør undersøkjast nærare.

Vedlegg

Tillegg A

Endeleg konfigurasjon av modellen i LVTrans

Vedlegget inneheld simulering av køyremønsteret til turbina som vart brukt til trykkmåling 25. april 2013, saman med den verkelege trykkmålinga. Parametrane er dei same som vart brukt i alle forsøka som er skildra i kapitla 7 og 8. Figuren er delt opp i to for å få strekt ut tidsaksen.

Tillegg B

Skript til bruk i trykkmåling

Vedlegget er eit perl-skript som vart laga til Digiquartz-trykkcella som vart brukt på sugerøyret. For å kunna få fleire trykkmålingar, vart temperaturdata berre henta for kvar tiande trykkdata. I tillegg vart omrekninga til meter vassøyle gjort i skriptet i staden for i trykkcella. Endringane gjorde at det var mogleg å få to målingar i sekundet i staden for éi måling kvart tredje sekund, som var standardinnstillinga. Måledata vart og tidsstempla med ei oppløysing på 1 nanosekund.

```
#!/usr/bin/perl
use warnings;
use strict;
use POSIX;
use Device::SerialPort;
use Time::HiRes "gettimeofday";
use DateTime::HiRes;
my $port = 0;
my $celle = "/dev/ttyUSB0";
$port = Device::SerialPort->new($celle);
die ("KAn_ikkje_opna_$celle_:_$!") unless ($port);
$port->user_msg("ON") || die "feil_iuser_msg$!\n";
```

```
port \rightarrow baudrate(1200) \mid die "feil_ibaud$!\n";
$port->parity("none") || die "feil_iparity$!\n";
$port->databits(8) || die "feil_i_databits$!\n";
port \rightarrow stopbits(1) \mid \mid die "feil \_i \_stopbits !\n";
port \rightarrow handshake("xoff") || die "feil_i_handsjake$!\n";
$port->write_settings() || die "feil_ikrivesettings$!\n";
\#sport->are_match("VR") // die "feil i arematch$!\n";
$port->lookclear || die "feil_i_lookclear_$!\n";
my $i=0;
my $U1;
mv $U2:
my $tau;
open(LOG, ">>logg.txt") || die "feil:_\$!\n";
select(LOG), | = 1; \# set nonbuffered mode
open( DEV, "<$celle") || die "Cannot_open_$celle:_$_";
\#init
my %init;
my @initliste =
qw(PA PM TC C1 C2 C3 D1 D2 T1 T2 T3 T4 T5 U0 Y1 Y2 Y3);
print STDOUT "Hentar_inn_utgangsverdiar:\n";
print LOG "Hentar_inn_utgangsverdiar:\n";
foreach (@initliste) {
    my $kommando = "*0100" . \ . "\r\n";
    port \rightarrow write(\$kommando) || die "feil_{uu}\$! \n";
    my \ $verdi = <DEV>;
    \operatorname{verdi} = / ( \langle d * \rangle , \langle d * \rangle ) /;
    \sinh\{\$_{} = \$1;
    print STDOUT $_, "___", $init {$_}, "___";
    print LOG $_, "___", $init{$_}, "___";
}
print STDOUT "\n";
print LOG "\n";
while (1) {
```

```
port \rightarrow write("*0100Q1 r n") || die "feil_U1-henting_{}! n";
    U1 = \langle DEV \rangle;
    U1 = /( \langle d \rangle )/;
    U1 = 1;
     print STDOUT "U1 = ", $U1, " \ n ";
#
   my \ U = \ U1 - \ init \{U0\};
   my  $D = $init {D1} + $init {D2}*$U;
   + $init{T4} *$U**3 + $init{T5} *$U**4;
   my $temp = $init {Y1}*$U + $init {Y2}*$U**2
        +  $init {Y3}*$U**3;
    port \rightarrow write("*0100P2\r\n") || die "feil_ikommando_$!\n";
    while (\$ = \langle DEV \rangle) { \# les trykkperioden, skriv til fil
        tau = _;
        tau = / (\langle d* \rangle, d*)/;
        tau = 1;
#utrekninga i psi
       my  $P = $C * (1 - T0 * 2/5tau * 2) *
            (1 - \text{\$D} * (1 - \text{\$T0} + 2/\text{\$tau} + 2));
#gjer om til mvs:
        P = P * 0.7030696;
        my ($seconds, $microseconds) = gettimeofday;
        print LOG POSIX::strftime( "%Y-%m-%d-%H:%M:%S",
                                   localtime($seconds)), ".",
        sprintf("%05d", $microseconds/10), "_", $P, "\n";
        print STDOUT POSIX::strftime( "%Y-%m-%d-%H:%M:%S",
                                      localtime($seconds)),
                                                            "."
        sprintf("%05d", $microseconds/10), "_", $P, "\n";
        $i++;
        last if (\$i = 10);
    }
    \$i = 0;
}
```

81

L____

Tillegg C

Kalibreringslogg

Diverre vart det ikkje ført logg for alle endringane som vart gjort, men frå og med simulering nr. 49 vart det loggført. Figur 6.8 viser simulering nr. 49, 56, 57, 59, 60 og 67. Figur 6.9 viser simulering nr. 51 og 78. Den endelege konfigurasjonen var henta frå simulering 77.

Simulering nr	Endring
48	Tunnelane: $P = 30, f = 0.05$
49	Tv.slag Dyngjanvatn: $D = 23$
50	Tv.slag Dyngjanvatn: $D = 24$
51	Lukesjakt: $A5-A7 = 120$, $A3-A4 = 850$
52	Tv.slag Dyngjanvatn: $D = 23$
53	Lukesjakt: $A5 = 500$
54	Tv.slag Dyngjanvatn: $D = 22$
55	Lukesjakt: A6-A7 = 100, Tv.slag dyngjanvatn: $D = 23$
56	Tv.slag Dyngjanvatn: $Cvp = 6130$
57	Tv.slag Dyngjanvatn: $Cvp = 613 Cvm = 5000$
58	Tv.slag Dyngjanvatn: $Cvp = 300 Cvm = 5000$
59	Tv.slag Dyngjanvatn: $Cvp = 613 Cvm = 500$ Lukesjakt:
	Cvp = 100 Cvm = 1000
60	Lukesjakt: $Cvp = 1000 \text{ cvm} = 100$
61	Lukesjakt: Cvm = 1000, Tv.slag dyngjanvatn: D = 25
62	Lukesjakt: Cvm = 500, Tv.slag dyngjanvatn: D = 25
63	Lukesjakt: Cvm = 1000, Tv.slag dyngjanvatn: cvm = $$
	6130 Cvp = 5000
64	Lukesjakt: $Cvp = 500 Cvm = 1000$, Tv.slag dyngjan-
	vatn: $cvm = 6130 Cvp = 5000$
65	Lukesjakt: $Cvp = 1000 Cvm = 1000$, Tv.slag dyngjan-
66	vatn: $cvm = 1000 Cvp = 1000$
00	Lukesjakt: $Cvp = 500 Cvm = 1000$, $1V.siag dyngjan-$
67	Value $CVIII = 500 CVI = 1000$ Lukesiakt: $CVIII = 500 CVIII = 1000$ Ty slag dyngian-
01	vatn: cvm = 500 Cvn = 900
68	Lukesjakt: $L5 = 21$
69	Lukesjakt: $L5 = 19 L6 = 25$
70	Lukesjakt: $Cvp = 2000$
71	Lukesjakt: $A5 = 250$
72	Lukesjakt: $L6 = 30$
73	Lukesjakt: $L3 = 13.01 L4 = 18 L5 = 19 L6 = 22 L7 =$
	56 A3 = 750 A4 = 750 A5 = 250 A6 = 100 A7 = 100
74	Lukesjakt: $A3-A4 = 950$
75	Lukesjakt: $A6-A7 = 80$
76	Utløpstunnel: $P = 32$ Lukesjakt: A6-A7 = 100, A3-A4
77	= 850 Utlangtunnel: $\mathbf{P} = 26$
11 78	Unipertunnen: $\Gamma = 20$ Lukesiakt som specifisert i svingeborekninger
72 73 74 75 76 77 78	Lukesjakt: $L6 = 30$ Lukesjakt: $L3 = 13.01 L4 = 18 L5 = 19 L6 = 22 L7 = 56 A3 = 750 A4 = 750 A5 = 250 A6 = 100 A7 = 100$ Lukesjakt: A3-A4 = 950 Lukesjakt: A6-A7 = 80 Utløpstunnel: P = 32 Lukesjakt: A6-A7 = 100, A3-A4 = 850 Utløpstunnel: P = 26 Lukesjakt som spesifisert i svingeberekningar

Tabell C.1: Simuleringar for kalibrering

Tillegg D

Simuleringslogg

Her er loggane etter simuleringane som vart lista opp i kapittel 7.

 $\mathbf{Pumpe}-\mathbf{Avslag}-\mathbf{Pumpe}$

nr.	Utløp	t	$\mathbf{Q0}$	Q1	$A_{\rm hor}$	OK?	Merknad
1	651	60	84.0	84.0	850	1	
1	651	90	84.0	84.0	850	1	
1	651	120	84.0	84.0	850	1	
1	651	150	84.0	84.0	850	1	
1	651	180	84.0	84.0	850	0	
1	651	210	84.0	84.0	850	0	
1	651	240	84.0	84.0	850	0	
1	651	270	84.0	84.0	850	0	
1	651	300	84.0	84.0	850	0	
1	651	330	84.0	84.0	850	0	
1	651	360	84.0	84.0	850	0	
1	651	390	84.0	84.0	850	0	
1	651	420	84.0	84.0	850	0	
1	651	450	84.0	84.0	850	0	
1	651	480	84.0	84.0	850	1	
1	651	510	84.0	84.0	850	1	
2	651	330	33.6	33.6	850	1	

nr.	Utløp	t	$\mathbf{Q0}$	Q1	$A_{\rm hor}$	OK?	Merknad
2	651	330	42.0	42.0	850	1	
2	651	330	50.4	50.4	850	1	
2	651	330	58.8	58.8	850	1	
2	651	330	67.2	67.2	850	0	
2	651	330	75.6	75.6	850	0	
2	651	330	84.0	84.0	850	0	
3	653	330	84.0	84.0	850	0	
4	655	330	84.0	84.0	850	0	
5	657	330	84.0	84.0	850	1	
6	660	240	84.0	84.0	850	1	
6	660	270	84.0	84.0	850	1	
6	660	300	84.0	84.0	850	1	Lågast på sim6
6	660	330	84.0	84.0	850	1	
6	660	360	84.0	84.0	850	1	
6	660	390	84.0	84.0	850	1	
$\overline{7}$	651.54	540	84.0	84.0	850	1	
7	651.54	570	84.0	84.0	850	1	
7	651.54	600	84.0	84.0	850	1	
7	651.54	630	84.0	84.0	850	1	
7	651.54	660	84.0	84.0	850	1	
7	651.54	690	84.0	84.0	850	0	
7	651.54	720	84.0	84.0	850	0	
7	651.54	750	84.0	84.0	850	0	
7	651.54	780	84.0	84.0	850	0	
7	651.54	810	84.0	84.0	850	0	
7	651.54	840	84.0	84.0	850	0	
7	651.54	870	84.0	84.0	850	0	
7	651.54	900	84.0	84.0	850	0	
7	651.54	930	84.0	84.0	850	0	
7	651.54	960	84.0	84.0	850	0	
7	651.54	990	84.0	84.0	850	1	
8	651.54	1020	84.0	84.0	850	1	
8	651.54	1050	84.0	84.0	850	1	
8	651.54	1080	84.0	84.0	850	1	

nr.	Utløp	t	$\mathbf{Q0}$	Q1	$A_{\rm hor}$	OK?	Merknad
8	651.54	1110	84.0	84.0	850	1	
8	651.54	1140	84.0	84.0	850	1	
8	651.54	1170	84.0	84.0	850	1	
8	651.54	1200	84.0	84.0	850	1	
8	651.54	1230	84.0	84.0	850	0	
8	651.54	1260	84.0	84.0	850	0	
8	651.54	1290	84.0	84.0	850	0	
8	651.54	1320	84.0	84.0	850	0	
8	651.54	1350	84.0	84.0	850	0	Lågast på sim 11
8	651.54	1380	84.0	84.0	850	0	
8	651.54	1410	84.0	84.0	850	0	
10	660	240	100.8	100.8	1000	1	120
10	660	270	100.8	100.8	1000	1	120
10	660	300	100.8	100.8	1000	0	120
10	660	330	100.8	100.8	1000	0	120
10	660	360	100.8	100.8	1000	1	120
10	660	390	100.8	100.8	1000	1	120
11	660	330	85.7	85.7	850	1	
12	660	300	90.7	90.7	850	1	108
12	660	300	92.4	92.4	850	1	110
13	660	300	94.1	94.1	850	1	112
13	660	300	95.8	95.8	850	0	114
14	660	300	95.8	95.8	900	1	114
14	660	300	97.4	97.4	900	0	116
15	660	300	97.4	97.4	950	0	116
16	660	300	97.4	97.4	1000	1	116
16	660	300	99.1	99.1	1000	0	118
17	660	300	99.1	99.1	1050	1	118
17	660	300	100.8	100.8	1050	0	120
18	660	300	100.8	100.8	1100	1	120
18	660	300	102.5	102.5	1100	0	122
19	660	300	102.5	102.5	1150	0	122
19	660	300	104.1	104.1	1150	0	124
20	660	300	102.5	102.5	1200	1	122

nr.	Utløp	t	$\mathbf{Q0}$	Q1	$A_{\rm hor}$	OK?	Merknad
20	660	300	104.1	104.1	1200	0	124
21	660	300	87.3	87.3	850	1	
22	660	300	104.1	104.1	1250	1	124
22	660	300	105.8	105.8	1250	0	126
23	660	300	105.8	105.8	1300	0	126
24	660	300	105.8	105.8	1350	1	126
24	660	300	107.5	107.5	1350	0	128
25	660	300	107.5	107.5	1400	1	128
25	660	300	109.2	109.2	1400	0	130
26	660	300	89.0	89.0	850	1	
27	660	300	109.2	109.2	1450	1	130
27	660	300	110.9	110.9	1450	0	132
28	660	300	110.9	110.9	1500	1	132
28	660	300	112.5	112.5	1500	1	134
29	660	300	114.2	114.2	1500	0	136
30	660	300	114.2	114.2	1550	1	136
30	660	300	115.9	115.9	1550	1	138
31	660	300	117.6	117.6	1550	1	140 Det ser ikkje ut til at 5 min er optim
31	660	300	119.3	119.3	1550	0	142
32	660	240	117.6	117.6	1550	1	
32	660	270	117.6	117.6	1550	1	
32	660	300	117.6	117.6	1550	1	
32	660	330	117.6	117.6	1550	0	
32	660	360	117.6	117.6	1550	0	
32	660	390	117.6	117.6	1550	0	Størst nedsving på 6,5 min
32	660	420	117.6	117.6	1550	0	
32	660	450	117.6	117.6	1550	0	
32	660	480	117.6	117.6	1550	1	
32	660	510	117.6	117.6	1550	1	
32	660	540	117.6	117.6	1550	1	
32	660	570	117.6	117.6	1550	1	
32	660	600	117.6	117.6	1550	1	
33	660	270	109.2	109.2	1400	1	
33	660	300	109.2	109.2	1400	0	

nr.	Utløp	t	$\mathbf{Q0}$	Q1	$A_{\rm hor}$	OK?	Merknad
33	660	330	109.2	109.2	1400	0	Verst på 5,5, dvs 330
33	660	360	109.2	109.2	1400	0	
33	660	390	109.2	109.2	1400	1	
33	660	420	109.2	109.2	1400	1	
33	660	450	109.2	109.2	1400	1	
34	660	390	110.9	110.9	1500	1	132
34	660	390	112.5	112.5	1500	0	134
35	660	390	112.5	112.5	1550	1	134
35	660	390	114.2	114.2	1550	0	136
36	660	390	114.2	114.2	1600	0	136
37	660	390	114.2	114.2	1650	0	136
38	660	390	114.2	114.2	1700	1	136
38	660	390	115.9	115.9	1700	0	138
39	660	390	115.9	115.9	1750	0	138
40	660	390	115.9	115.9	1800	0	138
41	660	390	115.9	115.9	1850	1	138
41	660	390	117.6	117.6	1850	0	140
42	660	390	117.6	117.6	1900	1	140
42	660	390	119.3	119.3	1900	0	142
43	660	390	119.3	119.3	1950	1	142
43	660	390	120.9	120.9	1950	0	Går ikkje.

${\bf Turbin-Avslag-turbin}$

nr.	Utløp	t	$\mathbf{Q0}$	Q1	$A_{\rm hor}$	OK?	Merknad
1	650	60	107.6	107.6	1387	1	
1	650	90	107.6	107.6	1387	1	
1	650	120	107.6	107.6	1387	1	
1	650	150	107.6	107.6	1387	1	
1	650	180	107.6	107.6	1387	1	
1	650	210	107.6	107.6	1387	1	
1	650	240	107.6	107.6	1387	1	
1	650	270	107.6	107.6	1387	1	

nr.	Utløp	t	Q0	Q1	$A_{\rm hor}$	OK?	Merknad
1	650	300	107.6	107.6	1387	1	
1	650	330	107.0 107.6	107.0	1387	1	
1	650	360	107.0 107.6	107.0	1387	1	
1	650	300	107.0 107.6	107.0 107.6	1387	1	
1	650	<i>4</i> 20	107.0 107.6	107.0	1387	1	
1	650	420	107.0 107.6	107.0	1387	1	
1 1	650	400	107.0 107.6	107.0	1387	1	
1 1	650	400 510	107.0 107.6	107.0	1387	1	
1 9	650	360	107.0	107.0	1207	1	
2	650	360	109.0 111 5	109.0 111 5	1307	1	
2 2	650	260	111.0	111.0	1907	1	
ე	650	260	112.09 117	112.4 117.0	1907	1	
3 4	650	260 260	117	117.0	1907	1	
4	050 650	300 260	120.0	120.5	1907	1	
4 5	000 650	300 260	120.10 120.7	120.2 120.7	1387	1	
Э г	050	300	129.7	129.7	1387	1	
Э С	050	300	134.9	134.9	1387	0	
0	050	330	134.9	134.9	1450	0	
(650 CF0	330	134.9	134.9	1500	1	
(650 650	330	139.14	139.1	1500	0	
8	650	330	139.1	139.1	1550	0	
8	650	330	143.35	143.4	1550	stopp	
9	660	330	105.4	105.4	1387	1	
9	660	330	110.09	110.1	1387	0	105
10	660	330	110.1	110.1	1450	0	105
11	660	330	110.1	110.1	1500	0	105
12	660	330	110.1	110.1	1550	0	105
13	660	330	110.1	110.1	1600	0	105
14	660	330	110.1	110.1	1650	1	105
14	660	330	114.74	114.7	1650	0	110
15	660	330	114.74	114.7	1700	0	110
16	660	330	114.74	114.7	1750	0	110
17	660	330	114.74	114.7	1800	0	110
18	660	330	114.74	114.7	1850	0	110
19	660	330	114.74	114.7	1900	0	110

nr.	Utløp	t	$\mathbf{Q0}$	Q1	$A_{\rm hor}$	OK?	Merknad
20	660	330	114.74	114.7	1950	1	110
21	660	360	114.74	114.7	1950	1	110
21	660	360	119.1	119.1	1950	0	stopp

Pumpe - avslag - turbin

nr.	Utløp	t	Q0	Q1	$A_{\rm hor}$	OK?	Merknad
1	660	84	90	0	1387	1	
2	660	84	100	0	1387	0	
3	660	84	100	30	1387	0	
4	660	84	100	60	1387	0	
5	660	84	100	90	1387	1	
6	660	84	100	75	1387	1	
7	660	84	110	90	1387	0	
8	660	84	110	120	1387	1	
9	660	84	120	150	1387	0	
10	660	84	120	180	1387	0	
11	660	84	120	210	1387	0	
12	660	84	120	240	1387	0	
13	660	90	90	0	1387	1	
14	660	90	100	75	1387	0	
15	660	90	100	80	1387	1	
16	660	90	110	120	1387	0	
17	660	90	110	150	1387	1	
18	660	90	110	140	1387	1	
19	660	90	110	130	1387	1	
20	660	100	90	0	1387	1	
21	660	100	100	80	1387	0	
22	660	100	100	90	1387	1	
23	660	100	110	140	1387	1	
24	660	100	110	135	1387	1	
25	660	110	90	0	1387	1	
26	660	110	100	90	1387	0	

nr.	Utløp	t	$\mathbf{Q0}$	$\mathbf{Q1}$	$A_{\rm hor}$	OK?	Merknad
27	660	110	100	100	1387	0	
28	660	110	100	110	1387	1	
29	660	110	110	135	1387	0	
30	660	110	110	140	1387	0	
31	660	110	110	150	1387	0	
32	660	110	110	160	1387	1	
33	660	110	110	155	1387	1	

Litteratur

- Bøkko, E. (2005), Duge kraftverk virkningsgradsmålinger, falltapsmålinger, Technical report, Norconsult.
- Guttormsen, O. (2006), Vassdragsteknikk II, Tapir akademisk forlag.
- Idelchik, I. E. (1986), *Handbook of hydraulic resistance*, Hemisphere publishing company.
- Lia, L. (n.d.), 'Munnleg referanse'.
- Notat (1979), Dimensjonering av svingekammer ved duge kraftverk.
- Wylie, E. B. & Streeter, V. L. (1983), *Fluid transients*, number Corr. ed., FEB Press, Ann Arbor, Mich.