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Abstract

This thesis explores the thermomechanical behavior of aluminum. Experimental
work has been conducted for a wide range of temperatures and strain rates for
three AA6060 alloys in both quasi-static and split-Hopkinson tension bar test rigs.
An induction heater system, pyrometer and high-speed camera was used to obtain
elevated temperatures and information about the geometry in the necked section
of the specimen. Some tests show slightly different material behavior between
the alloys studied with respect to yield stress and strain hardening. However, no
coherent difference can be established as the deviations are not seen from all tests,
and are probably not significant. Three material models have been fitted with an
available database containing material data for a similar alloy for a wide range
of strain rates and temperatures. No adequate fit is obtained for the investigated
models using the procedure described, but some significant differences between
the models are seen. Numerical simulations of the split-Hopkinson tension bar
experiments have been performed, but no good prediction for the material behavior
until fracture was found. The reason for this is believed to be the material model
parameters implemented. Numerical simulations with damage coupling have also
been performed and show that fracture is predicted earlier.
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Sammendrag

Denne oppgaven utforsker den termomekaniske oppførselen til aluminium. Eksper-
imentelle tester har blitt utført for et bredt spekter av temperaturer og tøyning-
shastigheter for tre AA6060-legeringer i både kvasi-statisk og split-Hopkinson ten-
sion bar testrigger. En induksjonsoppvarmer, pyrometer og høyhastighetskamera
har blitt brukt for å oppnå forhøyede temperaturer og informasjon om geome-
trien i den innsnevrede delen av prøvestykket. Noen forsøk viser noe forskjellig
materialoppførsel for de studerte legeringene med hensyn på flytespenning og fast-
ning. Likevel kan ingen betydelig forskjell bli etablert ettersom den avvikende
oppførselen ikke er sett for alle forsøk, og er antageligvis heller ikke signifikant.
Tre materialmodeller har blitt tilpasset for en tilgjengelig database som inneholder
materialdata for en liknende legering for et bredt spekter av tøyningshastigheter og
temperaturer. Ingen tilfredsstillende tilpasning er funnet for de studerte modellene
ved å bruke metoden som er beskrevet, men signifikante forskjeller mellom mod-
ellene kan sees. Numeriske simuleringer er blitt utført for split-Hopkinson tension
bar forsøkene, men ingen god prediksjon av materialoppførselen fram til brudd er
funnet. Grunnen til dette er antatt å være koblet til parametrene for materialmod-
ellen som er implementert. Numeriske simuleringer koblet med skadeutvikling er
og blitt utført og resulterer i at brudd blir predikert tidligere.
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1 Introduction

Aluminum alloys are attractive for use in different applications owing to its low
weight, high strength-to-weight ratio and good resistance to corrosion to name
a few. Aluminum has very much substituted other established metals such as
copper, steel and iron in a lot of fields. There has recently been a change in the
automotive industry where aluminum is now substituting steel in various compo-
nents due to the industry’s everlasting endeavor for lighter components. In crash
situations, automotive parts will be subjected to load cases where both high strain
rates and increasing temperatures due to adiabatic heating may be present. Ex-
plosions are another example where metals may be subjected to such load cases.
Moreover, materials are subjected to high temperatures and deformation rates in
forming operations. Material properties obtained under quasi-static loading con-
ditions cannot be directly applied to describe the material behavior during high
rate loading conditions. When designing aluminum components, e.g. for the auto-
motive industry, material properties obtained at the same loading rates that occur
during crashes should be taken into account. In such situations, local strain rates
can be of order 102 to 103 s−1.

The split-Hopkinson tension bar is a widely used and recognized test procedure
for conducting high strain rate experiments. Several methods for heating the
test specimen to elevated temperatures exists, and for this thesis, an induction
heater system is used for both quasi-static tests and split-Hopkinson tension bar
tests to conduct experiments for a wide range of temperatures. Coupled with
a pyrometer and a high-speed camera, it is possible to conduct experiments at
elevated temperatures and under controlled conditions, and local measurement
of the stress and strain state of the specimen can be obtained from the camera
recordings.

The main scope for this thesis is to conduct experiments and study the behavior
for two aluminum alloys. The aluminum alloys studied are referred to as AA6060-
L and AA6060-H, where L and H denotes respectively “low” and “high” due to the
content of alloying elements. Fig. 1.1 illustrates the magnesium (Mg) and silicon
(Si) content of the two alloys. Another AA6060 alloy, denoted AA6060-OLD, has
also similar content of alloying elements, but the specific magnesium and silicon
content is not known, but is within the same limits as for the two other, ref. Fig.
1.1.

Unfortunately, the manufacturing of tensile test specimens from the AA6060-L and
AA6060-H alloy have been delayed during the work for this thesis, such that only
a limited number of test specimens were delivered. Quasi-static tests have been
conducted for a complete range of temperatures for the AA6060-L and AA6060-H
alloys, while for split-Hopkinson tension bar tests, the number of test specimens
were not sufficient to conduct an experimental program for a complete range of
temperatures and strain rates. A limited number of quasi-static tests have also

1



1 INTRODUCTION

been conducted for the AA6060-OLD alloy.
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Figure 1.1: Overview of the silicon and magnesium content of the aluminum
alloys studied

Section 2, Theoretical Background: Gives an introduction to the most rel-
evant theory for the work on this thesis. The emphasize is on the mechanical
behavior and the internal structure of metals. A comprehensive presentation of
several constitutive relations and material models is also given.

Section 3, Experimental work: Describes in detail the execution of the exper-
imental tests done during the work for this thesis. Both split-Hopkinson tension
bar tests and quasi-static tests have been carried out.

Section 4, Experimental Results: Post-processing of experimental data from
the experimental work is presented. Results from the post-processing are presented
and discussed.

Section 5, Calibration of Material Models: Three material models have been
calibrated and fitted for experimental data for a wide range of temperatures and
strain rates. Experimental tests for a wide range of strain rates and temperatures
was unfortunately not conducted during the work for this thesis, thus the exper-
imental data used for the material model calibration have been obtained earlier,
but for a similar alloy.

Section 6, Numerical Analysis: The finite element model of the split-Hopkinson
tension bar setup is presented. Simulations with and without damage coupling
have been run and the results are presented and discussed.
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Section 7, Concluding Remarks: A short summary of the results obtained is
presented and discussed.

Section 8, Further Work: Suggestions for further work related to the work
done for this thesis are given.
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2 Theoretical Background

2.1 Mechanical Behavior of Metals

2.1.1 Elasticity and Plasticity Theory

Elastic material behavior is both reversible and path independent. Reversibility
means that there exists a unique dependence between the stress and strain, such
that the strains are recovered and no permanent physical change is present after
the material is unloaded. Path independence is meant by that the stored elastic
energy does not depend on the strain path [25].

However, for an elastic-plastic material subjected to plastic deformations, the ma-
terial behavior is both irreversible and path dependent. When a material is de-
formed into the elastic-plastic region, some of the strains will not be recovered
after unloading. This is due to permanent, physical changes on atom level, and
the irreversible strains are denoted plastic strains. The material behavior is path
dependent because the behavior does depend on the straining history, such that
there exists no unique relationship between the stress and strain [25].

2.1.2 Strain Measures

There exists several strain measures that are applicable to a variety of applications
and analysis. For a linear analysis, a linear strain measure such as the engineering
strain will express the strains adequately. For a nonlinear analysis, a finite strain
measure is needed and must be able to represent local deformations for large de-
formations. In such analysis, a body may be subjected to both large deformations
and large rigid body motions, thus the strain should vanish for arbitrary rigid body
translations and rotations. In addition, the strain must reduce to the infinitesimal
strains if it is linearized, i.e. when the nonlinear strain terms are neglected [31].

The Almansi strain, Green strain and true (logarithmic) strain are examples of
finite strain measures. When having to decide which strain measure to adopt, it
is essential that the measure is able to represent realistic finite strain values. For
large strain deformation analysis, the strain value should tend to go to −∞ for
full compression and ∞ for infinite elongation. The different strain measures are
expressed and illustrated in Table 2.1 and Fig. 2.1 where L0 refers to the initial
length and L is the current length. As seen, only the true (logarithmic) strain
measure is able to express realistic values for large strain deformations.

5



2.1 Mechanical Behavior of Metals

Finite strain Definition Zero strains for Reduce to −∞ for full ∞ for infinite

measure arbitrary rigid infinitesimal strains compression stretching

body motions if it is linearized

Engineering εe = L−L0
L0

√ √
χ

√

Logarithmic εt = ln( L
L0

)
√ √ √ √

Green εg = L2−L2
0

2L2
0

√ √
χ

√

Almansi εa = L2−L2
0

2L2
√ √ √

χ

Table 2.1: Comparison of different strain measures

3−1/2 1 31/2 2
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−1/2

0

1/2

1

2

Stretch, λ=L/L
0

S
tr

ai
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ε

Engineering
Logarithmic
Green
Almansi

Figure 2.1: Comparison of different strain measures

The logarithmic strain and true stress can be expressed in terms of the engineering
strain and stress. The following equations describe the necessary relations and the
different properties refer to a typical tensile test where L0 is the initial length, L
is the current length, F is the axial tensile load, A0 is the initial cross sectional
area, A is the current cross sectional area and u = L − L0 is the displacement [25].

The engineering strain εe, as defined in Table 2.1, is written as:

εe =
L − L0

L0
(2.1)

The engineering (or nominal) stress σe is defined as the axial force divided by the
initial area A0:

6



2.1 Mechanical Behavior of Metals

σe =
F

A0
(2.2)

For large deformations it will be necessary to account for geometrical changes of
the specimen, thus defining the strain increment with respect to the current length
rather than the original, such that:

dεt(t) =
du(t)

L
(2.3)

Integration of the strain increment gives an expression for the true (logarithmic)
strain:

εt =
ˆ u

0

du

L
=
ˆ L

L0

dL

L
= ln

(
L

L0

)
= ln(1 + εe) (2.4)

As for the true strain measurement, the true stress σt takes geometrical changes
into account, such that the axial force is divided by the current area rather than
the initial area:

σt =
F

A
=

F

A0

A0
A

= σeeεt = σe(1 + εe) (2.5)

Eq. (2.5) have been derived assuming volume constancy, such that A0L0 = AL.

2.1.3 Necking and the Effect of Non-Uniformities of Stress at Neck

The relations derived in Section 2.1.2 are based upon the assumption that the
deformation is uniform throughout the whole length of the considered body. For
a specimen stretched in tension, this assumption is only valid until the point
of necking which implies a rapid localized deformation of the cross sectional area
somewhere along the specimen with increased elongation. Necking is an instability
phenomena, and at the onset of necking, the strains can no longer be assumed to be
uniform within the considered body [15]. As the applied force reaches its maximum
value, the neck will be initiated, hence the point of neck initiation can be found as
the point of maximum stress state along the engineering stress-strain curve. This
point can therefore be found by setting the derivative of σe = F/A0 equal to zero
[25].

By using the definition of true stress in Eq. (2.5) and the chain rule, the incre-
mental change of the engineering stress can be found:

7



2.1 Mechanical Behavior of Metals

dσe = dσte
−εt − σte

−εtdεt = (dσt − σtdεt)e−εt (2.6)

As the maximum value of the engineering stress is found when dσe = 0, the point
of neck initiation can be found when

dσt

dεt
= σt (2.7)

Fig. 2.2 shows the definition for the initiation of necking for both a true stress-
strain curve and an engineering stress-strain curve. It should be noted that Fig
2.2a illustrates a true stress-strain curve determined directly from an engineering
stress-strain curve using Eqs. (2.4) and (2.5), such that only the values until the
point of necking are valid.
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dσ
e
 / dε

e
= 0

(a) (b)

Figure 2.2: (a) Definition for initiation of necking for a true stress-strain curve
and (b) the same definition only for an engineering stress-strain curve

Considering a tensile specimen subjected to tensile loading, a complex tri-axial
stress state arises in the necked area when subjected to continued straining [15].
The average true stress at the neck, defined as σt = F/Amin, where F is the axial
tensile load and Amin is the minimum cross sectional area of the specimen at the
neck, will be overestimated compared to the stress required to cause plastic flow
when considering tension load only [15].

Bridgman [12] carried out a mathematical analysis of the total stress distribution
at the neck in 1952 by taking into account transverse stresses and the geometry of
the neck. The equivalent stress distribution σeq(r) at the neck is obtained as [12]:

σeq(r) =
1

1 + ln( a2+2aR−r2

2aR )
σt (2.8)

8



2.1 Mechanical Behavior of Metals

where a is the minimum radius of the specimen at the neck, R is the radius of the
curvature of the neck, r is the radial coordinate and σt is the average true stress
at the neck.

An expression for the average equivalent stress at the neck was also obtained by
Bridgman [12]:

σeq =
1

(1 + 2R
a )ln(1 + a

2R )
σt (2.9)

The latter expression is the one that will be used later in this thesis to correct the
stress state in the smallest cross section at the neck. It should be noted that the
mathematical analysis by Bridgman was based on several assumptions; the shape
of the neck can be approximated by the arc of a circle, the cross section of the
neck has a circular shape during the whole test, and the strain distribution over
the minimum cross section is constant [15]. The applicability of the formulas by
Bridgman rely on the possibility to be able to measure the radius of curvature and
the minimum radius of the cross section at the neck.

2.1.4 Rheological Model

In order to describe material behavior for a wide range of strain values, it is
necessary to know the material dependency of strain rate and temperature for both
elastic and plastic straining. This can be illustrated by establishing a rheological
model where springs, viscous dashpots and friction elements represent respectively
elastic behavior, strain rate dependency and strain hardening. Young’s modulus
for aluminum is found to be independent of strain rate from experiments with
strain rates ranging from quasi-static testing to dynamic testing where strain rates
of approximately 106s−1 was reached [32]. However, Young’s modulus is found to
be strongly dependent on temperature and the relationship can be represented by
Eq. (2.10) and is illustrated in Fig. 2.3 [23]:

E = −3.9e0.0033T + 79 (2.10)
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Figure 2.3: Young’s modulus as function of temperature from Eq. (2.10)

For large strains, on the other hand, plastic flow will be highly dependent on both
temperature and strain rate. Strain hardening, also referred to as work hardening,
is also present and is illustrated by the friction element that will have higher
resistance for increased plastic straining. The thermoelastic-thermoviscoplastic
material behavior for aluminum can be represented with the rheological model
shown in Fig. 2.4.

Figure 2.4: Thermoelastic-thermoviscoplastic rheological model [26]
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2.2 Internal Structure of Metals

2.2 Internal Structure of Metals

When examining the internal structure of metals, the structural composition can
be subdivided into macrostructure, mesostructure, microstructure and atomic ar-
rangement. Macrostructure refers to what can be seen with the naked eye, while
an optical microscope is normally used for studying the mesostructure by a mag-
nification of 50 to 1000 times. Using an optical microscope, heterogeneities from
alloying elements or naturally occurring impurities can be seen (microstructure).
The atomic structure describes how the atoms are arranged relative to each other.
Fig. 2.5 illustrates the structural composition of aluminum at different magnifica-
tions for both cold worked and fully annealed samples.

Figure 2.5: Internal structure of aluminum at different magnifications [6]

2.2.1 Bonding Between Atoms

Material properties of solid metals, such as Young’s modulus and the yield stress,
are very much determined by the bonds holding atoms together and the way in
which atoms are packed together. The interatomic bonds are the forces that act as
“springs” to link the different atoms together in solid state, while the atom packing
defines the density of atoms and therefore also the “density of springs” in metals.
Atoms can be bound together by primary bonds or secondary bonds. Primary
bonds are the strongest, and these are either ionic, covalent or metallic. Secondary
bonds are either Van der Waals or hydrogen bonds and are in comparison much
weaker. Most metals, including aluminum, are held together by metallic bonds.
For such materials, the highest energy electrons tend to free themselves from their
original atoms, thus the atom becomes an ion. These free electrons will then
wander freely having no special attachment to any of the ions, as illustrated in
Fig. 2.6, and thus give rise to the interatomic forces. The free wandering of
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electrons is also the reason for the excellent electrical conductivity found in metals
[10].

Figure 2.6: Illustration of the free wandering of electrons [10]

2.2.2 Crystal Unit Cell Structures

More than 90% of all solids, either naturally occurring or artificially prepared,
have crystalline structure. This type of structure can be described as being a
periodic and repeating structure; a specific arrangement is repeated. A crystal is
made up of repetitions of unit cell structures, thus unit cells can be considered as
the building blocks for a crystal. Material characteristics and physical properties
are also associated with the properties of the unit cell structure. Unit cells are
always made up of atoms at its corners, and may also have additional atoms at
the center of the faces or in the middle of the cell itself [3, 13].

Even though there are 14 different types of crystal unit cell structures, most met-
als have unit cell structures described as either body-centered cubic (BCC), face-
centered cubic (FCC) or hexagonal close packed (HCP). In general, BCC metals,
e.g. iron (Fe), are usually less ductile but stronger. FCC metals, e.g. copper (Cu),
gold (Au) or aluminum (Al), are often both soft and ductile, while HCP metals,
e.g. Zinc (Zn), are usually brittle. These different material characteristics lead
to various suitable applications and designs. For instance, soft and ductile FCC
metals can more easily be bent and shaped, while HCP metals will be less suited
for bending because of their brittle behavior. Examples of other characteristics
and properties that rely on the type of crystal structure are material density, de-
formation processes and alloying behavior [3, 13]. Fig. 2.7 illustrates the different
crystal unit cell structures with respect to the atomic arrangement.
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2.2 Internal Structure of Metals

(a) (b) (c)

Figure 2.7: (a) Body-centered cubic (BCC), (b) face-centered cubic (FCC) and
(c) hexagonal close packed (HCP) unit cell structure [2]

Permanent displacement of metal atoms occurs during plastic deformation by four
primary mechanisms: slip, twinning, grain boundary sliding and diffusional creep
[35]. Slip is by far the most important deformation mode, and may be defined as
the parallel movement of two adjacent crystal regions relative to each other across
some plane (or planes) [35]. A slip system is the combination of a plane and a
direction lying in the plane where slip occurs. Slip usually occurs on the most close
packed planes, while the slip directions are always in the direction of the closest
packing [35].

The body-centered cubic unit cell is made up of one atom in the middle and atoms
at each corner, eight corners in total. Each of the corner atoms will also be the
corner of another unit cell, such that eight unit cells share the same corner atoms.
As a result of this, the net total of atoms is two in a BCC unit cell. Compared
to the FCC and HCP unit cell structure, the BCC structure does not allow the
atoms to pack together as closely. For this type of structure there are no close
packed planes, only close packed directions. The {110} planes contain the highest
atomic density, and for each six of these planes there are two (111) close packed
directions, thus a total of 12 slip systems of {110} and (111) [3, 13].

The face-centered cubic unit cell is made up of atoms at the centers of all the
faces and atoms at each corner. In similar way as for the BCC structure, eight
corner atoms is shared among eight other unit cells, but the face centered atoms
are also shared by an adjacent unit cell. The net total of atoms for this structure
is therefore four. In comparison to the BCC structure, atoms pack more closely
together in the FCC structure. This type of structure has four {111} close packed
planes with three corresponding (110) close packed directions, thus a total of 12
slip systems of {111} and (110) [3, 13].

The hexagonal close packed unit cell is made up of three layers of atoms. At the
top and bottom, six atoms are arranged in the shape of a hexagon in addition
to one atom in the middle, while in the middle layer three atoms are placed in
a triangular fashion. The net total of atoms for this structure is six, compared
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2.2 Internal Structure of Metals

to two atoms for the BCC structure and four for the FCC structure. The HCP
structure has three {001} close packed planes with only one corresponding (2TTO)
close packed direction, such that there exists only three slip systems of {001} and
(2TTO) [3, 13].

2.2.3 Stacking Sequences

An atomic plane where atoms are packed in a triangular fashion is called a close-
packed plane, and a crystal is made up of several atomic planes with identical
packing pattern lying on top of each other. The atoms take up the least volume
when placed in between the depressions between neighboring atoms, thus this
structure is referred to as a close-packed structure. The BCC structure does
not have a stacking sequence as it does neither have close-packed planes. FCC
structures, on the other hand, will stack in an ABCABC... sequence, where A, B
and C corresponds to atom center sites relative to a close-packed layer. For this
particular stacking sequence, the fourth atomic plane is therefore being placed
directly above the first plane. HCP structures will stack in an ABAB... sequence,
such that the third atomic plane is placed directly above the first plane. Fig.
2.8 illustrates how close-packed planes are stacked in ABCABC... and ABAB...
sequences for FCC and HCP structures respectively [10, 13].
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(a) (b)

(c) (d)

Figure 2.8: (a) Close-packed plane A, (b) close-packed plane B added, (c) AB-
CABC... stacking sequence and (d) ABAB... stacking sequence [10]

The atomic structure is decided by that arrangement that gives the least energy,
such that the structure may in fact not be close packed, or even geometrically
simple, but a repeating three-dimensional pattern is needed for it to be a crystal.
The energy difference between various packing structures may be very small, such
that by heating a metal, the atomic structure may change and give rise to altered
material properties [10].

2.2.4 Dislocation Mechanisms

A pure metal will in general contain numerous defects in the crystal structure that
can be classified as point defects, line defects or plane defects. Dislocations are
the only line defect and the main reason for the strain hardening behavior seen in
metals [35]. This Section is a short introduction to dislocation mechanisms.

Even though crystal structures are made up of atoms packed together in a reg-
ular and repeating pattern, they are in fact not perfect. Dislocations in crystals
are defects in the structure that very much determines the yield stress and also
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the plastic deformation behavior for metals. Plastic straining is associated with
permanent and physical changes in the atom structure, and is a direct result of dis-
location motion and rearrangement of atoms within the structure. For dislocations
to move, the shear stress that exerts the force on the dislocations must be large
enough to overcome its resistance to movement, thus the force needed for yielding
to take place will increase as the resistance to movement increases. There are two
fundamental types of dislocations; edge dislocations and screw dislocations [35].
Fig. 2.9 shows the motion sequence from the introduction of an edge dislocation
into a crystal on the left side and to its expulsion on the right side. As can be
seen, the lower part of the crystal is displaced a distance b, the Burgers vector, rel-
ative to the upper part. Such locations are also referred to as line defects because
the locus of defective points produced by the dislocation in the lattice lie along
a line [35]. Screw dislocations are much more difficult to visualize geometrically,
but it can be illustrated by that atom planes are converted into a helical surface,
and the most significant difference relative to edge dislocations is that the Burgers
vector is parallel to the dislocation line (perpendicular to the dislocation line for
edge dislocations) [10, 35]. All dislocations in crystals are either edge dislocations,
screw dislocations or a combination of the two [10].

Figure 2.9: Complete motion sequence of an edge dislocation in a crystal [10]

2.2.5 Ductile Fracture and Nucleation and Growth of Voids

Nucleation, growth and the coalescence of microscopic voids (pores) that are ini-
tiated at inclusions and second-phase particles are usually the reason for ductile
fracture in metals [9]. A tensile specimen of a very high purity material may neck
down to a sharp point, such that extremely large plastic strains and close to 100%
reduction of the cross sectional area are observed. However, materials containing
impurities will experience fracture at lower strains due to the nucleation, growth
and coalescence of voids. Fig. 2.10 illustrates the nucleation and growth of voids
in a material subjected to loading. The theory of fracture mechanics has only been
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touched briefly upon in this Section to clarify some terms.

(a) (b)

Figure 2.10: (a) Void nucleation and (b) void growth [24]

2.3 Aluminum

Aluminum is a versatile metal with unique characteristics, and has very much
substituted other established metals such as copper, steel and iron in a lot of
applications. Some of its characteristics are light weight, high strength-to-weight
ratio, resistance to corrosion and reasonable cost. In its purest form, aluminum
has a density of 2.7 g

cm3 , Young’s modulus of 69 − 72GPa and a yield strength
of 15 − 20MPa [21], but by adding alloying elements and by undergoing heat
treatment, material properties and characteristics such as yield strength, ductility
and workability can be significant altered to specific needs. Aluminum is also
easy to form and can be produced in many different shapes, such as rolled plates,
sheets, foils, castings and cables. As a result of this, aluminum is now being used
in a variety of industries, ranging from automotive and aerospace manufacturing
to building and highway structures [6].

2.3.1 Alloy Designation

Aluminum alloys can be divided into two major categories: casting alloys and
wrought alloys. Casting alloys contain a greater amount of alloying elements than
wrought alloys and are used for cast parts, while wrought alloys are suitable for
forming processes such as rolling and extrusion [6]. There exists a widely used and
recognized alloy designation system created and maintained by the Aluminum As-
sociation [1], and this system is in fact recognized by about 90% of the world’s
aluminum industry [30]. Four numerical digits are used as notation: first digit
identifies the alloy group (major alloying elements), second digit defines modifi-
cations and impurity limits, while the two last digits are used to differentiate the
alloys within the same series. A summary of the designation system together with
alloy characteristics for wrought alloys is reproduced in Table 2.2.
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Alloy Main alloying element(s) Basic behavioral and performance characteristics

1xxx Mostly pure aluminum Low strength, extremely high ductility and formability,

exceptionally high electrical conductivity and corrosion

resistance

2xxx Copper [Cu] Relatively high strength, lower ductility, less resistant

to corrosion, not readily welded, heat treatable

3xxx Manganese [Mn] Modest strength increase, relatively high formability

and ductility, very high resistance to corrosion, readily

weldable

4xxx Silicon [Si] Low to medium strength, less resistant to corrosion,

excellent flow and finishing characteristics, readily

welded, some alloys are heat treatable

5xxx Magnesium [Mg] Very high strength, exceptionally tough, readily

welded, excellent corrosion resistance

6xxx Magnesium [Mg] and silicon [Si] Very high strength, excellent corrosion resistance, easy

to extrude, readily welded, heat treatable

7xxx Zinc [Zn] Can provide the highest strengths of any alloy, less

resistant to corrosion, less tough and susceptible to

cracking, heat treatable

8xxx Other elements Contains less frequently used alloying elements such as

iron [Fe] and tin [Sn], characteristics depend on the

major alloying element(s)

9xxx Unassigned -

Table 2.2: A summary of the wrought alloy designation system [30]

2.3.2 Temper Designation

A temper designation is usually presented right after the alloy designation, refer-
ring to what treatment the alloy has undergone during production, and is made up
of a letter and one or more digits, e.g. 6060-T651. The letter represents the general
class of treatment, and the digits are used to further categorize the basic tempers
into subdivisions. A summary of the different treatment classes is reproduced in
Table 2.3.
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Class Description

F - fabricated Either wrought or cast products, no control over thermal conditions or

strain-hardening processes to obtain specific material characteristics

O - annealed Annealed wrought products to increase the workability but reduced

strength, annealed cast products to improve ductility

H - strain hardened Products with increased strength through strain hardening, may also

be subjected to thermal treatments

W - solution heat treated Alloys that age instantly after solution heat treating

T - thermally treated Thermally treated to produce stable tempers, may also be subjected

to strain hardening

Table 2.3: A summary of the temper designation treatment classes [30]

2.4 Constitutive Relations and Fracture Criteria

The material flow behavior for metals, e.g. in crash and explosion situations
where both high strain rates and temperatures may be present, is rather complex
and cannot easily be completely and accurately described. Strain, strain rate,
temperature and microstructural development will influence on the hardening and
softening mechanisms controlling the material flow behavior [28]. There has been
proposed several constitutive relations that aim to describe the material flow stress,
and these vary in both applicability and nature of origin. A constitutive relation
describes the relation between the stress and strain tensor by taking into account
one or more attributes. Depending on what potential applications the material
model is designed for, it may include attributes such as strain hardening, strain
rate effects, thermal effects and anisotropy or orthotropy, and may be applicable
to specific materials such as composites, metals or biological materials [20].

In general, constitutive relations for describing material flow can be divided into
models of phenomenological nature and physical models based on dislocation me-
chanics that may also take thermodynamics into account. Several models referred
to as physical models are in fact semi-physical, hence they do not completely de-
scribe the physical atomic behavior and interaction. The material constants for
a phenomenological model cannot be interpreted physically, while for a (semi-
)physical model the constants may be defined and interpreted by microstructural
parameters. The Johnson-Cook constitutive relation is a widely used and popular
phenomenological material model. Several models based on microstructural dislo-
cation mechanics have been proposed by Voyiadjis, Abed, Zerilli and Armstrong
(e.g. Voyiadjis and Abed (2005) [38], Abed and Voyiadjis (2005) [4] and Zerilli
and Armstrong (1987) [39]). Both the phenomenological model by Johnson and
Cook and several semi-physical models will be presented in this Section and later
evaluated for a wide range of strain rates and temperatures in Section 5.

19



2.4 Constitutive Relations and Fracture Criteria

For a certain type of applications, the complete material model must also represent
fracture. This can be done by operating with two separate models, whereas one
representing the plastic flow and the other fracture. These two models can either
be coupled or uncoupled [18]. The Cockroft-Latham fracture criterion is a rather
simple criterion that will be presented in this Section and later used in numerical
simulations in Section 6.

2.4.1 Johnson-Cook Constitutive Relation

A widely used and popular constitutive model of phenomenological nature has
been proposed by Johnson and Cook [27] that involves rather few parameters
and has proven to be well-suited for numerical simulations of static and dynamic
analysis. The main advantage of the model is that it can be calibrated rather
easily with a minimum of experimental data, and it is able to predict the flow
stress at different strain rates and temperatures. However, these two parameters
are uncoupled which implies that the strain rate hardening will be independent
of the temperature. For most metals this is in fact not the case, as it has been
found that the strain rate sensitivity increases with increasing temperature and
the resulting decrease of flow stress [38]. The Johnson-Cook model associates the
effective von Mises flow stress with the equivalent plastic strain, strain rate and
temperature, and is given on the original form as [27]:

σ = (A + Bεn
p )(1 + Clnε̇∗

p)(1 − T ∗m) (2.11)

where εp is the equivalent plastic strain, ε̇∗
p = ε̇p/ε̇0 is the dimensionless plastic

strain rate where ε̇0 is a user-defined reference strain rate typically set to the strain
rate from quasi-static tests, and T ∗ = (T − Tr)/(Tm − Tr) is the dimensionless
homologous temperature where T is the actual temperature, Tr is the reference
temperature typically set to the ambient temperature in the laboratory, and Tm is
the melting temperature of the material. A, B, n, C and m are material constants
that needs to be determined. The individual expressions in the three sets of
brackets represent respectively the strain hardening, strain rate hardening and
thermal softening and can all be calibrated separately [18]. In the situation of
very small strain rates, hence static conditions, the logarithmic function lnε̇∗

p in
Eq. (2.11) will approach −∞ and thus result in numerical difficulties. To avoid
this, a modified version of the Johnson-Cook constitutive relation can be written
as [11]:

σ = (A + Bεn
p )(1 + ε̇∗

p)C(1 − T ∗m) (2.12)

The same parameters and material constants are used in Eq. (2.12) as in Eq.
(2.11), but the constant C will take on a different value due to the altered for-
mulation. In Eq. (2.12), the strain hardening part is defined as Bεn

p , namely
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the power (or Ludwig) law, but it may also be defined by Voce rule [25]. When
replacing the power law with Voce rule involving two terms, Eq. (2.12) transforms
into:

σ = (A +
2∑

i=1
Qi(1 − e−Ciεp))(1 + ε̇p

∗)C(1 − T ∗m) (2.13)

where Q1, C1, Q2 and C2 are material constants that needs to be determined.

2.4.2 Introduction to Microstructural Based (Semi-)Physical Models

Seen from a microstructural point of view, the inelastic behavior and the material
flow stress for various strain rates and temperatures are very much closely linked
to the dislocation mechanics of the material. As the material is loaded into the
inelastic region, dislocations are generated, moved and stored within the crystal
structure. As dislocations move through the crystal, plastic strains are generated
and the material has as a result exceeded its elastic limit. Dislocations can be
classified into statistically stored dislocations and geometrically necessary dislo-
cations. The former type are dislocations stored and trapped in a random way,
while the latter are dislocations that are stored in a specific geometric pattern to
maintain the continuity of various components of the material [4, 38].

Two different types of obstacles will try to prevent any further movement through
the lattice for a dislocation, namely long-range and short-range (Peierls) barri-
ers. Long-range barriers arise as a result of the material structure and cannot be
overcome by introducing thermal energy, while short-range barriers can so. Over-
coming long-range barriers will therefore contribute to the total flow stress with
a stress component that is not thermally activated, an athermal stress compo-
nent, while overcoming short-range barriers will contribute with an thermal stress
component. Thus, the material flow stress can be additively decomposed into [38]:

σ = σath + σth (2.14)

where σath is the athermal component and σth is the thermal component. The
assumption of this decomposition has been proven through experiments and is
stated by several authors [38].

The equivalent plastic strain rate, ε̇p = (2ε̇p
ij ε̇p

ij/3)0.5, can be related to the mobile
dislocation density ρm, the dislocation speed v and the magnitude of Burgers
vector b (ref. Section 2.2.4) through Orowan’s equation [38]:

ε̇p = m̃bρmv (2.15)
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where m̃ is the Schmidt orientation factor and is a material constant. According
to Voyiadjis and Abed [38], the following equation has been suggested by Kubin
and Estrin to describe the mobile dislocation density evolution:

ρ̇m = (λ1/b2 − λ2ρm − λ3
√

ρf /b)ε̇p (2.16)

where λi are constants related to the multiplication of mobile dislocations (λ1),
their mutual annihilation and trapping (λ2) and their immobilization through
interaction with forest dislocations (λ3), and ρf is the forest dislocation density.
An equation for describing the evolution of the forest dislocation density was
also presented by the same authors. According to Voyiadjis and Abed [38], an
expression for the average dislocation velocity v has been suggested by Bammann
and Aifantis:

v = v0exp(−G(τ)/kT ) (2.17)

where v0 = d/tw is the reference dislocation velocity, where tw is the time period
a dislocation waits at an obstacle and d is the average distance the dislocation
moves between the obstacles, G is the Gibbs free energy of activation that is a
function of shear stress, temperature and the internal structure, k is Boltzmann’s
constant, and T is the absolute temperature. A relation for Gibbs free energy of
activation can be obtained by utilizing Eqs. (2.15)-(2.17) and the definition for
the evolution of the statistically stored dislocation density ρ̇ss and the plastic flow
rate ε̇p that is further discussed in a paper by Voyiadjis and Abed [38]:

G = (ln(
m̃bρmv0

m̃blλ2ρm + m̃lλ3
√

ρf − m̃lλ1/b + 1
) − lnε̇p)kT (2.18)

According to Voyiadjis and Abed [38], the Gibbs free energy of activation can also
be related to the thermal flow stress σth as suggested by Kocks et al.:

G = G0(1 − (
σth

σ̂
)p)q (2.19)

where G0 is the reference Gibbs energy at T = 0K, σ̂ is the threshold stress, i.e. the
stress state where dislocations may overcome barriers without thermal activation,
and p and q are constants associated with the short-range barrier shape.

The temperature and strain rate dependency for the activation volume has been
investigated by several researchers, for which no common conclusion was obtained.
However, it seems to be a common assumption that the activation volume decreases
for increased plastic straining for FCC metals, while it is being essentially constant
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and independent of plastic strains for BCC metals. As a result of this, the thermal
stress relation will be different for materials having these two types of unit cell
structures [38].

It has been found that for metals, the flow stress will be decreasing for increasing
temperature until a critical temperature value is reached, for which no further
decrease of flow stress is obtained. The flow stress at this point can be addressed
as the athermal stress and is independent of the strain rate, but the critical tem-
perature value will be stain rate dependent [4].

2.4.3 Microstructural Based Models for BCC and FCC Metals

Voyiadjis and Abed [38] have derived semi-physical based constitutive relations for
both BCC and FCC metals based on the concept of thermal activation analysis.
The derivation of these relations has been studied and will be presented shortly
here, while a more thoroughly presentation can be found in the original paper by
the authors [38].

Athermal component for BCC metals:

It is found that the plastic strain hardening is almost independent of strain rate and
temperature for BCC metals, such that it contributes to the athermal part only.
According to Voyiadjis and Abed [38], Nemat-Nasser and Guo studied BCC metals
and indicated that the athermal resistance to dislocation movement is linked to the
stress caused directly by dislocations, point defects, grain boundaries and other
impurities found in the material. They suggested that the elastic strain could
be used to define the mentioned reasons for the dislocation movement resistance
since the plastic strain increases monotonically and the plastic strain rate is always
positive. The athermal flow stress component can therefore be defined as [38]:

σath = Ya + B1εn1
p (2.20)

where Ya is the athermal yield stress and B1 and n1 are athermal hardening
parameters.

Athermal component for FCC metals:

The yield stress is found to be not affected by either temperature or strain rate
for most FCC metals, such that the stress-strain curve will have the same starting
point for different temperatures and strain rates when the material has not been
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subjected to previous plastic straining. The athermal component can be expressed
by the initial athermal yield stress Ya only [38]:

σath = Ya (2.21)

Thermal component for BCC metals:

It is found that the plastic yield stress for BCC metals is strongly dependent on
both temperature and strain rate, and the deformation mechanism is closely linked
to the resistance of the dislocation motion by the short-range Peierls barriers which
are responsible for the thermal activation analysis behavior. The expression for the
thermal yield stress can be found by utilizing Eqs. (2.18) and (2.19) and solving
for the thermal flow stress σth [38]:

σth = Ŷ (1 − (βT )1/q)1/p (2.22)

where Ŷ is the threshold yield stress for dislocations to move through the Peierls
barriers and β is defined as β = β1 − β2lnε̇p where β1 and β2 are defined as:

β1 =
k

G0
ln(

m̃bρmv0
1 − m̃lλ1/b + m̃blλ2ρm + m̃lλ3

√
ρf

) (2.23)

and

β2 =
k

G0
(2.24)

The strong dependency on strain rate and temperature for the thermal yield stress
for BCC metals can be addressed to the dislocation size and the corresponding
concentration of Cottrell’s atmosphere. As dislocations are moved through the
crystal, their corresponding atmosphere of interstitial atoms will also be moved,
such that a drag force arises within the lattice. This drag force will increase
with increasing concentration mismatch between the Cottrell’s atmosphere and
the surrounding solute atoms. As the concentration of solute atoms is dependent
on both strain rate and temperature, the yield strength caused by this drag force
is too [38].
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Thermal component for FCC metals:

For FCC metals, the thermal activation analysis behavior is controlled and domi-
nated by the emergence and evolution of dislocations and the long-range intersec-
tions between dislocations, such that the thermal activation is strongly dependent
on the plastic strain. From this it is seen that the activation volume, and therefore
also the distance d between dislocation intersections, will attribute to the formula-
tion of the thermal flow stress component. The thermal component will therefore
be coupled with strain rate, temperature and the plastic strain and is found in
the same way as for BCC metals. However, σ̂ (Ŷ in Eq. (2.22)) is no longer
interpreted as the threshold yield stress, but rather the flow stress that is related
to both dislocation densities and the strain, such that [4, 38]:

σth = σ̂(1 − (βT )1/q)1/p (2.25)

where

σ̂ ≈ f(b/d) ≈ σ0εn
p (2.26)

Resulting constitutive relations

The resulting constitutive relation for BCC metals is found by substituting Eqs.
(2.20) and (2.22) into Eq. (2.14):

σ = Ŷ (1 − (β1T − β2T lnε̇p)1/q)1/p + Bεn
p + Ya (2.27)

The resulting constitutive relation for FCC metals is found by substituting Eq.
(2.26) into Eq. (2.25) and utilizing Eqs. (2.14) and (2.21):

σ = Bεn
p (1 − (β1T − β2T lnε̇p)1/q)1/p + Ya (2.28)

where B (σ0 in Eq. (2.26)) and n are hardening parameters. As mentioned earlier,
and as can be seen from Eq. (2.28), the initial yield stress is independent of both
strain rate and temperature for FCC metals. However, this is not always the
behavior seen in FCC metals, and by altering the yield stress part to be slightly
temperature and strain rate sensitive this problem is overcome [38].
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2.4.4 Zerilli-Armstrong Constitutive Relation

A constitutive relation has been proposed by Zerilli and Armstrong [39] that is
based on the dislocation mechanics concept, thus being a semi-physical model.
Strain, strain rate and temperature are being coupled in the constitutive model,
and physical mechanisms such as dislocation density, Burgers vector, dislocation
velocity, thermal activation analysis and the influence by solute and grain size has
been studied to describe the various stress components that together determine the
material flow behavior. As these mechanisms depend on the type of atomic unit
cell structure, two models were proposed for BCC and FCC metals respectively
and are given on their original form as [39]:

σ = Δσ
′
G + c1exp(−c3T + c4T lnε̇p) + c5εn

p + kl−1/2 (2.29)

σ = Δσ
′
G + c2ε1/2

p exp(−c3T + c4T lnε̇p) + kl−1/2 (2.30)

where Δσ
′
G is an additional component of stress due to the influence of solute and

dislocation density on the yield stress, T is temperature, ε̇p is the plastic strain
rate, k is the microstructure stress intensity, l is the inverse square root of the
average grain diameter, and c1,c2,c3,c4,c5 and n are material parameters. kl−1/2 is
an incremental stress component that relates to the stress needed for transmission
of plastic flow between polycrystal grains and is present for both BCC and FCC
unit cell structures. As can be seen from Eqs. (2.29) and (2.30), the component
that relates to the dislocation activation area is constant for BCC metals but
proportional to ε

1/2
p for FCC metals. Hence, strain rate hardening and thermal

softening are increased for increased plastic straining for FCC metals. The strain
rate and thermal effects are uncoupled with strain hardening for BCC metals,
leading to the addition of a separate plastic strain hardening contribution from
the power law.

2.4.5 A Modified Zerilli-Armstrong Constitutive Relation

Voyiadjis and Abed [38] have suggested modified versions of the original Zerilli-
Armstrong constitutive relations. A brief summary of their proposed models is
presented here, and a more thoroughly derivation can be found in the original
paper by the authors [38]. By taking into account that the activation volume is
dependent on the temperature and applying the approximation ln(1 + x) � x,
Voyiadjis and Abed suggested a constitutive relation for BCC metals:

σ = Ya + Bεn
p + Ŷ exp(−β3T + β2T lnε̇p) (2.31)
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where β3 = β1 + (1/T )ln V ′
V0

, V0 is the activation volume independent of both
temperature and strain rate, V ′ is the activation volume dependent on tempera-
ture but not strain rate, and β1 and β2 are similar to those given in Eqs. (2.23)
and (2.24). This model is in fact quite similar to the model presented by Zer-
illi and Armstrong, but the physical parameter β1 is interpreted differently. In
the approximation ln(1 + x) � x, x is defined as (k/G0)T ln(ε̇p/m̃bρv0), and this
approximation will not be valid for low strain rates coupled with high tempera-
tures. As a result, β1, β2 and β3 can no longer be interpreted physically and these
parameters will in fact be of phenomenological nature. By considering both the
temperature and strain rate dependency for the activation volume, in addition to
using the exact value of ln(1 + x), a modified constitutive relation for BCC metals
is presented [38]:

σ = Ya + Bεn
p + Ŷ (1 + β0T m − β1T + β2T lnε̇p) (2.32)

where m is an exponent constant and β0 = f(ε̇p) is a function of the plastic strain
rate.

Voyiadjis and Abed have studied how the activation volume correlates to plastic
straining and the athermal component’s independence on temperature and strain
rate for FCC metals, and have suggested the following constitutive relation [38]:

σ = Ya + (Y0 + Bεn
p )exp(−β3T + β2T lnε̇p) (2.33)

As for BCC metals, a physical interpretation of the material parameters βi cannot
be done accurately because of the applied approximation ln(1 + x) � x. However,
if the exact value of ln(1+x) is used, the parameters can be interpreted physically
and the model is then defined as [38]:

σ = Ya + (Y0 + Bεn
p )(1 + β0T m − β1T + β2T lnε̇p) (2.34)

2.4.6 A Combined Constitutive Relation for both BCC and FCC Met-
als

As previously discussed, microstructural mechanisms that control the plastic flow
behavior are different for BCC and FCC metals. Abed and Voyiadjis [4] have
proposed a constitutive relation specifically for the AL-6XN stainless steel alloy
taking into account mechanisms for both BCC and FCC metals. The motivation
for studying this material model is due to the fact that the AA6060 alloys studied
in this thesis also show material behavior typical for both BCC and FCC metals.
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As for the other models proposed by Abed and Voyiadjis, the flow stress can be
decomposed into a thermal σth and an athermal σath stress component. The ther-
mal part, which is linked to the short-range barriers, includes the Peierls stress,
point defects (e.g. vacancies and self-interstitials) and dislocations intersection
with slip planes. The athermal part is linked to the long-range barriers and in-
cludes the stress field of dislocation forests and grain boundaries and does not
depend on either temperature or strain rate, such that there will always be a sig-
nificant amount of stress in the material independent of temperature and strain
rate. Dynamic strain aging effects such as diffusion and creep are not included
in the proposed model as they will not be dominant in the considered interval of
temperatures and strain rates, thus the flow stress is determined by considering
the motion of dislocations only [4].

FCC metals will usually have an athermal stress component that is independent
of strain, while BCC metals will have an additional strain dependent component.
Zerilli and Armstrong [39] linked the initial dislocation density and the influence
of the solute to the strain independent part of the athermal stress. For the model
suggested by Abed and Voyiadjis, the athermal flow stress component is defined
as [4]:

σath = Ya + B1εn1
p (2.35)

where Ya is the athermal yield stress and B1 and n1 are athermal hardening
parameters.

As discussed, movement of dislocations for BCC metals is linked to overcoming the
short-range barriers. These barriers are overcome by the movement of the original
(initial) dislocations, such that the dislocation movement for BCC metals will not
be dependent on the accumulation of dislocations associated with increased plastic
straining. On the contrary, for FCC metals are the cutting of dislocations forests
the main mechanism. This is attributed to both the evolution and accumulation
of dislocations, thus the thermal stress will be dependent on the plastic strain.
The thermal flow stress component can therefore be decomposed into two parts
[4]:

σth = Yth + Hth (2.36)

where Yth and Hth are defined as:

Yth = Ŷ (1 − (βY
1 T − βY

2 T lnε̇p)1/q)1/p (2.37)

Hth = B2εn2
p (1 − (βH

1 T − βH
2 T lnε̇p)1/q)1/p (2.38)
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where B2 and n2 are the thermal hardening parameters. The parameters βi
1 and

βi
2 have the same definition as for those defined in Eqs. (2.23) and (2.24), but βY

1
is related to the initial mobile dislocation density ρm, the initial forest dislocation
density ρf and the initial dislocation distance l, while βH

1 is related to the average
values of these microstructural parameters. It should be mentioned that the value
of the activation energy G0 differs for different mechanisms, such that βY

2 and βH
2

will not have the same numerical value. As both the mobile and forest dislocation
density will not be constant with increased plastic straining, defining βH

1 based
on average values will in fact not be accurate. However, this parameter can be
estimated by taking into account the plastic strain parameter by the following
expression [4]:

βH
1 ≈ k

G0
ln(

v0εp

1 − m̃lλ1/b + λ2εp + lλ3λ4ε0.5
p

) (2.39)

One major problem with this formulation is that the parameter βH
1 is no longer

constant and independent of the plastic strain, such that the higher complexity of
the resulting constitutive relation will make it more complicated to fit the model
parameters numerically.

By utilizing Eqs. (2.35), (2.37) and (2.38), the resulting expression for the flow
stress is defined as:

σ = Ya+B1εn1
p +Ŷ (1−(βY

1 T−βY
2 T lnε̇p)1/q)1/p+B2εn2

p (1−(βH
1 T−βH

2 T lnε̇p)1/q)1/p

(2.40)

2.4.7 Cockroft-Latham Fracture Criterion

Ductile fracture in metals is usually caused by nucleation, growth and coalescence
of voids in the material that are caused by second phase particles or other imper-
fections (ref. Section 2.2.5). When a material is subjected to plastic deformation,
the number of voids will grow until the voids coalesce to initiate a crack. Cockroft
and Latham have proposed an isotropic energy-based fracture criterion that have
been adopted in similar studies [16]:

W =
ˆ εp

0
max(σ̂1, 0)dεp ≥ Wcr (2.41)

where W is the Cockroft-Latham integral, σ̂1 is the maximum principal stress and
Wcr is the critical fracture parameter. In numerical simulations, the element is
eroded and all stresses are set to zero when the criterion is fulfilled. The Cockroft
and Latham criterion can also be derived for anisotropic materials [15].
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The critical fracture parameter can be obtained from:

Wcr =
ˆ εf

0
σ̂1dεp (2.42)

where εf is the fracture strain. The fracture strain can be estimated by microscope
measurements of the fractured area Af in the gauge section of a specimen subjected
to tension loading [16]:

εf = ln(
As

Af
) (2.43)

30



3 Experimental Work

3.1 The AA6060 Alloy

The aluminum alloys studied and subjected to the experimental tests for this
thesis have been processed by Hydro Aluminium. The chemical components are
tabulated in Table 3.1 and a microscope image can be seen in Fig. 3.1. According
to the manufacturer, the alloy is developed to satisfy a yield strength of 70MPa,
an ultimate tensile strength of 150MPa and Brinell hardness of 43 for the T4
temper. All three alloys studied are of the T4 temper. Special properties include
good formability, moderate machinability, suitable for all welding methods, good
corrosion resistance, well suitable for all types of mechanical surface treatment and
very good for anodizing [7]. See Section 1 for specific silicon (Si) and magnesium
(Mg) concentrations for the three alloys studied.

As the microscope image (Fig. 3.1) reveals, the individual grains are of circular
shape and of random pattern, such that the alloys should have isotropic material
behavior. The grains were measured to have an average size of 94.052μm and
92.694μm in respectively the horizontal and vertical direction in Fig. 3.1, thus the
volume is estimated to be 1.387 · 10−7μm3 assuming a spherical shape [36].

Figure 3.1: Microscope image of the AA6060-OLD alloy [36]

% Si Fe Cu Mn Mg Zn Ti Cr Other elements Al

Minimum 0.40 0.18 - - 0.45 - - - -
Balance

Maximum 0.45 0.22 0.02 0.03 0.50 0.02 0.02 0.02 0.10

Table 3.1: Chemical composition of the AA6060-alloy [7]
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3.2 Calculation of Response in Test Specimen from SHTB
Tests

This Section aims to present the relations necessary to calculate the response in
a test specimen subjected to a typical SHTB test. A thorough derivation of the
relations presented here can be found in Appendix C. One-dimensional elastic
wave theory is presented in Appendix B and is supplementary theory to better
understand the derivations presented in Appendix C.

In order to determine the response, that is the stress and strain state, of the
specimen, only two strain gauges mounted on the bars are necessary (strain gauge
2 and 3 in Fig. 3.2). The signals from the strain gauges are resistance changes
of the metal filament that is converted to voltage changes through a connected
Wheatstone bridge. Strain values are then calculated as:

ε =
2ΔV

V0k
· 1

fa
(3.1)

where ΔV is the voltage change measured from the strain gauge, V0 is the battery
output voltage and k is the gauge factor (resistance change/strain gauge elongation
proportionality coefficient). The strains are also divided by a parameter fa due to
connected amplifiers to enhance the recorded signal.

Figure 3.2: Principle overview of the split-Hopkinson tension bar test rig used
in the experiments (modified figure from [17])

As the tensile stress wave propagates towards position C and the specimen (ref.
Fig. 3.2), the strain in the incident bar will be measured by strain gauge 2 and is
referred to as the incident strain, εI . When the stress wave reaches position C, it
will partly be reflected back, and partly transmitted to the specimen. The reflected
strain measured by strain gauge 2 is denoted the reflected strain, εR, while the
transmitted strain measured by strain gauge 3 is denoted the transmitted strain,
εT . Referring to Fig. 3.2, there will be no change in signal between strain gauge 2
and point C, and between point D and strain gauge 3, except for the time lag, as
long as there are no dispersion present. Clausen and Auestad [17] have reported
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that there seems to be no dispersion present between strain gauge 2 and point C,
and between point D and strain gauge 3, for the particular SHTB test setup used
for the experimental work for this thesis, such that this possible source of error
will not be devoted further investigation.

For the relations stated below, subscript s denotes specimen, subscript 0 refers to
the bars, A is cross sectional area, E is Young’s modulus, Ls is the length of the
gauge section of the specimen, c0 is the wave propagation velocity and t is time.
The stress in the specimen is found by dividing the force at point D (or at point
C) by the cross sectional area of the specimen:

σs =
Fs

As
=

E0A0
As

εT (3.2)

By assuming that all strains in the specimen take place in the gauge section (dis-
cussed in Section 4.1), the strain in the specimen is calculated as:

εs =
c0
Ls

tˆ

0

(−εT − (−εI + εR))dτ = −2
c0
Ls

tˆ

0

εRdτ (3.3)

The corresponding strain rate is simply the time derivative of the strain state:

ε̇s =
∂εs

∂τ
= −2

c0
Ls

εR (3.4)

3.3 Experimental Tests (SHTB)

The SHTB test rig used for the experimental tests is situated in the laboratories
of the Department of Structural Engineering at the Norwegian University of Sci-
ence and Technology (NTNU). Referring to Fig. 3.2, the test rig consists of an
incident bar (A-C), transmission bar (D-E), a test specimen (C-D), a friction lock
mechanism at position B and a loading mechanism at position A. The geometry
of the test specimens is seen in Fig. 3.3. The bars are of steel quality Tibnor
52SiCrNi5 with an approximate yield stress of 900MPa, Young’s modulus of
210GPa at room temperature and have circular cross sections with diameter of
10mm, thus a cross sectional area of 78.5mm2 [17]. To ensure elastic behavior
of the two bars, the tension force N0 should not exceed 70kN . The incident and
transmission bar have respectively a length of 8140mm and 7100mm.

The test rig is mounted to a rigid steel frame supported by the floor and with
bearings between the bars and frame made of 60mm PVC tubes. The tubes are
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mounted 625mm apart from each other and ensure minimal friction and large
electrical resistivity to not affect the experimental test results. The PVC tubes
are the only physical connection between the bars and steel frame except from
position A and B. The experimental test can be studied in two phases:

First phase: right hand part of incident bar is restrained by a friction clamp,
while left hand part is stretched in tension.

Second phase: sudden release of the friction clamp such that a tensile stress
wave will propagate towards the test specimen.

Figure 3.3: Geometry of test specimens [17]

Part B-C of the incident bar is restrained against longitudinal movement by a
friction lock mechanism in the first phase. As seen in Fig. 3.4a, the friction clamp
(i)-(j) is held together by applying pressure to component (a) by use of a hydraulic
jack. It can be seen that the force from the hydraulic jack is transferred to the
clamp via components (b) to (h) as long as the bolt (f) is intact. The notched
bolt is made of cold working tool steel with an approximate hardness of HRC
50 and with diameter of 12mm in the threaded part and 6mm in the notched
part. The abrupt fracture of the bolt causes the friction forces in the clamp to be
suddenly removed, such that a tensile stress wave will be propagating from A-B
towards the test specimen. To ensure both a short rise time of the stress wave
and controlled conditions during the experiment, the brittleness of the bolt is of
crucial importance.
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(a) (b)

Figure 3.4: (a) Principal overview of friction lock mechanism [17] and (b) picture
of friction lock mechanism

Part A-B of the incident bar is stretched in tension by use of a hydraulic jack at
position A. The force from the hydraulic cylinder is transferred to the bar through
a nut, and the applied force is monitored by strain gauge 1 (ref. Fig. 3.2). When
the desired tension force is reached, the force in the friction lock is increased until
the abrupt fracture of the bolt in the friction lock mechanism. Fig. 3.5 shows the
loading mechanism.

(a) (b)

Figure 3.5: (a) Principal overview of loading mechanism [17] and (b) picture of
loading mechanism

After the abrupt fracture of the notched bolt and the release of the propagating
stress wave, the second phase of the test takes very short time. The stress wave
will be propagating towards the test specimen with velocity c0 ≈ 5100 m

s and total
duration for the entire stress wave to pass a point on the bar is 2.3 m

s , and by
then the specimen will be stressed in tension and usually ruptured [17]. To ensure
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an adequate number of data points, the minimum logging frequency required is
1MHz [17]. Strain gauges are glued on the bars at three separate locations, and
also on either side of the bars to cancel out any undesirable bending effects. As
previously mentioned, only strain gauge 2 and 3 are used for measurements of the
response of the test specimen. Due to weak signals from the strain gauges and
presence of several sources of noise, an amplifier unit is connected to each pair of
strain gauges, resulting in a total amplification of the output signal of 125 [14].
The amplifiers are connected to a PC that log the signals, see illustration in Fig.
3.6a.

(a) (b)

Figure 3.6: (a) Principal overview of data registration system [17] and (b) picture
of test rig

Experimental tests have been conducted for a wide range of temperatures, ranging
from room temperature (293K) to 633K. The temperature rise of the test spec-
imen is done by applying a water-cooled induction heater system coupled with
a coil. Induction heating refers to the process where an electrically conducting
object, e.g. a metal object, is heated electrically by electromagnetic induction. A
high-frequency alternating current (AC) is passed through the induction heater,
that consists of an electromagnet, to generate eddy currants (Foucault currents)
within the object that generates heating due to its thermo-resistivity. The in-
duction heater system used for the experiments can deliver a power of 5kW at
180kHz, such that heating rates up to approximately 10Ks−1 can be reached on
average. The induction heater system can be seen in Fig. 3.8a and the coil is seen
in Fig. 3.7b. It should be noted that the power delivered by the heating system
may lead to visible noise in the strain gauge measurements and may be overcome
by using a low-pass filter.
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(a) (b)

Figure 3.7: (a) Overview of test setup where two light sources, the pyrometer
and the high-speed camera can be seen and (b) test specimen mounted in test rig
together with coil and laser beam

A pyrometer (IP 140 MB12, Lumasense Technologies) was used to monitor the
temperature of the test specimen, which is a device that is able to intercept and
measure the thermal radiation (pyrometry) from an object by non-contact. The
surface temperature of the object can be determined from the thermal radiation
that is registered and the emissivity of the object. The test specimens were painted
black using a thermal-resistant paint applicable for temperatures ranging up to
1123K and giving a constant emissivity of about 0.95, see Fig. 3.9. The pyrometer
used for the experiments applies a laser beam onto the specimen to measure the
thermal radiation, and has a sampling frequency of 666Hz that ensures adequate
thermal control when heating the specimen to desired temperature. However, the
sampling frequency is too low to measure the adiabatic heating of the specimen
during high strain rate tests. The temperature measured was monitored from a
temperature monitoring device coupled with the pyrometer and can be seen in
Fig. 3.7a and 3.8b.

(a) (b)

Figure 3.8: (a) Power supply for induction heater system and (b) the tempera-
ture monitoring device
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As discussed in Section 2.1.3, the true stress-plastic strain curve determined from
global measurements, i.e. from strain gauge measurements in the SHTB experi-
ments, is only valid until the onset of necking. A localized and complex tri-axial
stress state will arise in the necked region, such that the stress and strain fields are
no longer uniform within the gauge section and the strain rate will be increased
inside the neck. Metals, e.g. aluminum, become relative more ductile and soft at
elevated temperatures, such that the onset of necking will occur after very little
plastic straining. This implies that the valid experimental data from conventional
strain gauge measurements will be of very limited range. However, this prob-
lem can be overcome by obtaining information of the local deformation state at
the necked section until fracture. Several methods have been applied and tested
for previous SHTB experiments by other authors, such as laser-based techniques,
frame-based techniques for detecting the edges of the sample and stereo digital
image correlation (SDIC) [37].

(a) (b)

Figure 3.9: Test specimens (a) before and (b) after painting

A solution using one high-speed digital camera to record images of the necked
section was chosen, such that the edges of the specimen during the entire test
are recorded, and, thus, the geometry of the neck can be calculated. The post-
processing of the recorded images to obtain the local deformation state at the neck
is further discussed in Section 4.4. The camera setup consists of a digital high-
speed Photron SA1.1 camera equipped with a Sigma 105mm macro lens. The
acquisition frequency used was between 50000Hz and 90000Hz depending on the
desired strain rate of the tests. As only one camera was used, the cross sectional
area of the specimen is assumed to remain circular during the whole deformation
period, hence the material is assumed to be isotropic with respect to plastic flow.
Two light sources and a white paper box were used together to minimize shadows
and increase the contrast between the test specimen and the background for easier
detection of the edges of the specimen. The recording of the images by the camera
was triggered by the incoming stress wave at strain gauge 2, ref. Fig. 3.2.
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3.4 Experimental Tests (Quasi-Static)

Experimental quasi-static tests have been conducted in the laboratories of the
Department of Structural Engineering at the Norwegian University of Science and
Technology (NTNU) for strain rates of 0.01s−1 and 1s−1 and for temperatures
ranging between 293 and 633K. The tests have been performed in a Zwick/Roell
Z030 test rig that was calibrated the day prior to the experimental tests, such
that the experimental results provided by the rig should be adequately accurate.
It can be seen from Fig. 3.10a that the same pyrometer was used as for the SHTB
tests. The same induction heater system and coil was also used, but there was
no need for a high-speed camera during these tests due to the quasi-static strain
rates. Instead, a non high-speed digital camera was used to record images of the
necked section during the test. The camera used, together with a light source and
a white paper box to minimize shadows and increase the contrast between the test
specimen and the background, and the pyrometer, can be seen in Fig. 3.10a, while
a close up picture of the specimen mounted in the test rig together with the coil
can be seen in Fig. 3.10b.

(a) (b)

Figure 3.10: (a) Overview of test setup for quasi-static tests and (b) test speci-
men mounted in test rig together with the coil

Two registration systems were present during the experiments. Fig. 3.11a shows
the registration system for the camera recordings, where the live feed from the
camera can be seen on the left laptop, while Fig. 3.11b shows the registration
system for recording of the force and displacement provided by the test rig itself.
The camera recordings were initiated manually just prior to the start of testing
as the acquisition frequency is very much relatively lower compared to the camera
recordings from the SHTB experiments. Fig. 3.8 shows the induction heater
system and the temperature monitoring device connected to the pyrometer.
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(a) (b)

Figure 3.11: Overview of data registration system (a) for camera recordings and
(b) from test rig

As discussed in Section 2.4.7, the fracture strain can be estimated from the fracture
area using Eq. (2.43). The fracture area was measured for all specimens post-
fracture from the quasi-static tests using a Carl Zeiss Jena Technival 2 microscope.
Depending on the strain rate and temperature reached, different post-fracture
shapes were observed from the tests (see Appendix G for a full overview). The
accuracy of the area measurements must be addressed carefully as the shallow
depth of field provided by the microscope resulted in difficulties determining the
edges of the fracture area for several specimens.

(a) (b)

Figure 3.12: (a) Microscope equipment for measuring post-fracture area of test
specimens and (b) test specimen mounted in microscope setup
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4 Experimental Results

4.1 Correction of Young’s Modulus and Strains

An important assumption taken into account in the derivation of Eq. (3.3) is that
the entire straining of the specimen is located in the gauge section. All plastic
strains are in fact believed to be localized in the gauge section, but during the
elastic deformation there will most likely be some elastic straining in the transi-
tional regions of the specimen where the diameter is reduced. As a result of this,
Young’s modulus calculated from the experimental data will be too low, see Fig.
4.1. Albertini and Montagnani [5] states that this error is due to the deforma-
tion taking place outside the gauge section of the specimen and have suggested a
formula to correct the strain values:

εe = εm − σe · E − Em

E · Em
(4.1)

where εe is the corrected engineering strain, εm is the measured engineering strain,
σe is the corresponding engineering stress, Em is the measured Young’s modulus
and E is the correct Young’s modulus. Young’s modulus for aluminum is found to
not vary from quasi-static to high strain rate experiments, but being dependent
on temperature [23, 32], such that the correct value can be found in the literature
and adjusted for the temperature using Eq. (2.10). Clausen and Auestad [17]
have carried out experiments with specimens of different geometry equipped with
strain gauges to investigate the correction method based on Eq. (4.1), and their
results indicate that the correction formula provides valid strain values.

41



4.2 Post-Processing of Data from Quasi-Static Experiments

Figure 4.1: Correction of Young’s modulus and strains

4.2 Post-Processing of Data from Quasi-Static Experiments

Quite some effort has been devoted to create Matlab scripts for efficient, accurate
and user-friendly post-processing of experimental data from the quasi-static tests.
This Section aims to describe how the data is processed and to discuss difficulties
and uncertainties that have arisen for the post-processing of the experimental data.

The complete Matlab code for the post-processing can be found in Appendix D.1
and can readily be modified to any experimental data from quasi-static tests; the
only input from files necessary are values for force and displacement. As a total of
47 quasi-static tests carried out needed to be post-processed (see Section 4.3.1),
the scripts have been designed with emphasize on a minimum of necessary manual
interference by the user. No local measurements from the camera recordings have
been provided for the quasi-static experiments during the work for this thesis, thus
only experimental data from the test rig have been post-processed.

Fig. 4.2a and b show two examples of (raw) experimental data in terms of force and
displacement values from the quasi-static tests carried out, respectively at 523K
and 633K and strain rate of 0.01s−1 for both tests. The two figures showcase two
examples of typical behavior that is present; some initial stabilization problems
and difficulties in terms of keeping a constant temperature throughout the whole
test for 0.01s−1 strain rate tests. The initial stabilization problems can be seen
as the force applied from the test rig has typically two constant plateaus in the
beginning of the test and can be seen from both Fig. 4.2a and b, and this behavior
is related to rigid body movements of the specimen in the test rig. As long as this
behavior is present only in the beginning of a test, such that the measured Young’s
modulus can be calculated from the elastic region, it will not have any affection
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on the resulting true stress-plastic strain curve.
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Figure 4.2: Two examples of force vs. displacement plots from quasi-static tests
for (a) 523K and 0.01s−1 and (b) 633K and 0.01s−1

The other typical behavior present is that there are more difficulties associated
with keeping the test specimen at a constant temperature for higher temperatures,
and this is noticeably more difficult for temperatures higher than 573K. The
fluctuating temperature can result in a force-displacement curve as illustrated in
Fig. 4.2b. However, at such high temperatures, the specimen will start to neck
after very little plastic straining, such that the true stress-plastic strain values until
onset of necking will most likely be hardly influenced by temperature fluctuations.
On the other hand, when applying true strain values from camera measurements to
calculate the true stress-plastic strain beyond necking, these values will be directly
influenced by the temperature fluctuations, thus the validity and applicability of
these results must be carefully assessed. The temperature fluctuations are in fact
only noticeable for tests at 0.01s−1 strain rate for the tests carried out due to the
relatively longer total time period of testing.

As discussed in Section 4.1, it is necessary to correct the engineering strain values
due to the initial straining located at the shoulders of the test specimen. In order
to do this, both the measured Young’s modulus and the correct Young’s modulus
are needed. The correct Young’s modulus is a function of temperature and is
calculated from Eq. (2.10), while the measured Young’s modulus needs to be
calculated from the uncorrected engineering stress-strain curve. The script lets
the user choose a representative data interval in the elastic region by point-and-
click and automatically calculates the measured Young’s modulus, translates the
stress and strain values to start from origo, and corrects the strain values using
Eq. (4.1). As can be seen in Fig. 4.3, the script plots both the uncorrected strains,
corrected strains and the measured Young’s modulus for stress and strain values
translated to start from origo. From this figure, the yield stress can be determined
from the intersection point between the uncorrected engineering stress-strain curve
and the measured Young’s modulus curve. It should be noted that the strain range
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4.2 Post-Processing of Data from Quasi-Static Experiments

shown in Fig. 4.3 is not the total range for the particular test, but a zoomed in
area determined by the user. As some tests show fluctuating values for both force
and displacement, the engineering stress and strain have been smoothed using a
moving average including 2 points on each side of the considered stress and strain
point. Using this number of points proved to be adequate for easier determination
of both the Young’s modulus and yield stress.

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

60

70

80

90

Engineering strain, ε
e

E
ng

in
ee

rin
g 

st
re

ss
, σ

e (
M

P
a)

Uncorrected strain values
Corrected strain values
Elastic tangent modulus

Figure 4.3: Plot showing the measured Young’s modulus together with both
uncorrected and corrected strains

As discussed in Section 2.1.3, only the true stress-strain values until onset of
necking are in fact representative for the stress and strain state within the gauge
length considered from measurements from the test rig. As a result of this, the
strain value for onset of necking has to be calculated. Fig. 4.4a shows an example of
an engineering stress-strain curve where the strain value for onset of necking cannot
be easily determined. To calculate the necking point, the script lets the user choose
a strain range (the range must contain the strain value for onset of necking), and an
approximated second degree polynomial for the stress is calculated for the defined
range. From this approximation, the necking point is found from the strain value
corresponding to the maximum approximated stress value. Fig. 4.4b illustrates
the engineering stress-strain values in the determined range, the approximated
polynomial and the resulting calculated necking point.
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Figure 4.4: (a) Engineering stress-strain curve from a test where the necking
point is difficult to locate and (b) determination of necking point using an approx-
imated polynomial

Plots of the resulting engineering stress-strain and true stress-plastic strain curves,
as shown in Fig. 4.5a and b, are automatically created and saved. The true stress-
plastic strain curves are fitted with Voce hardening parameters which takes on the
form σt = σY +

∑2
i=1 Qi(1 − e−Ciεp). The resulting plots, yield stress and Voce

hardening parameters for all tests can be found in Appendix E.
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Figure 4.5: (a) Engineering stress-strain plot and (b) true stress-plastic strain
plot from post-processing

Two, three or four tests have been carried out with the same boundary conditions
(temperature and strain rate) for the major part of the tests. This is done in order
to examine the validity of the results, as the test specimens are easily twisted when
mounted in the test rig. For the case where two tests of same boundary conditions
are believed to be valid and the specimen is assumed to not be twisted, the average
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curve for the two tests are calculated and fitted with Voce hardening parameters.
For the case with three tests with same boundary conditions, all three resulting
true stress-plastic strain curves are plotted together, see Fig. 4.6a, and an average
curve is calculated from the two most coinciding curves, as seen in Fig. 4.6b.
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Figure 4.6: (a) Comparison of tests at same temperature and strain rate and (b)
resulting two closest curves together with the average curve

4.3 Results from Quasi-Static Experiments

In this Section, results from the quasi-static experiments are presented. An
overview of the experimental program is given in Section 4.3.1, while results for
the strain hardening, yield stress and estimated fracture strain are presented in
respectively Section 4.3.2, 4.3.3 and 4.3.4.

4.3.1 Experimental Program

An overview of the experimental program for the quasi-static tests is presented
in Table 4.1. Tests have been performed for 0.01s−1 and 1s−1 strain rate and for
temperatures ranging from 293K (room temperature) to 633K. Some specimens
are believed to be damaged while mounting into the test rig, and these tests are
therefore not shown in the results presented.
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AA6060-L AA6060-H

Test # Strain rate Temp. Comment Test # Strain rate Temp. Comment

(s−1) (◦K) (s−1) (◦K)

1 0.01 293 OK 1 0.01 523 OK

2 0.01 473 D.s.* 2 0.01 523 OK

3 0.01 473 OK 3 0.01 523 OK

4 0.01 473 OK 4 0.01 523 OK

5 0.01 523 D.s.* 5 0.01 573 OK

6 0.01 523 OK 6 0.01 573 OK

7 0.01 523 OK 7 0.01 293 OK

8 0.01 573 OK 8 0.01 473 OK

9 0.01 573 OK 9 0.01 473 OK

10 0.01 633 OK 10 0.01 633 OK

11 0.01 633 OK 11 0.01 633 OK

12 1 293 OK 12 1 293 OK

13 1 473 OK 13 1 473 OK

14 1 473 OK 14 1 473 OK

15 1 523 OK 15 1 473 D.s.*

16 1 523 OK 16 1 523 OK

17 1 573 OK 17 1 523 OK

18 1 573 OK 18 1 573 OK

19 1 633 OK 19 1 573 OK

20 1 633 OK

21 1 633 OK

* D.s. = Damaged specimen (usually from mounting in the test rig)

AA6060-OLD

Test # Strain rate Temp. Comment

(s−1) (◦K)

1 1 523 OK

2 1 523 OK

3 1 573 OK

4 0.01 523 OK

5 0.01 523 Aborted

6 0.01 573 OK

7 0.01 573 OK

Table 4.1: Overview of experimental program for quasi-static tests
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4.3.2 Strain Hardening

Fig. 4.7 illustrates the results for the AA6060-OLD alloy for same temperature
but various strain rates in the same plot. For tests at 573K it is difficult to detect
any dependence on the strain rate for the strain hardening, while at 523K the test
at 0.01s−1 hardens more than the test at 1s−1. It is also seen that the yield stress
is noticeably lower for tests at 0.01s−1 compared to 1s−1 at both temperatures.
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Figure 4.7: Plots (a)-(b) show the strain hardening for same temperature but
various strain rates for AA6060-OLD

Fig. 4.8 illustrates the results for the AA6060-L alloy for same temperature but
various strain rates in the same plot. It is seen that the strain hardening is
dependent on the strain rate, but it seems to show somewhat different dependency
for different temperatures. For temperatures between 293K and 523K the material
strain hardens more for 0.01s−1 strain rate, while the opposite behavior is seen
for temperatures between 573K and 633K. Tests at same temperature and strain
rate show to some extent different behavior, especially at 473K and 523K, thus no
specific correlation between strain hardening and strain rate can be established. It
is also seen that the yield stress is noticeably lower for tests at 0.01s−1 compared
to 1s−1 for all temperatures.
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Figure 4.8: Plots (a)-(e) show the strain hardening for same temperature but
various strain rates for AA6060-L

Fig. 4.9 illustrates the results for the AA6060-H alloy for same temperature but
various strain rates in the same plot. As for the AA6060-L alloy, it is seen that
the strain hardening is dependent on the strain rate, and it also seems to show
somewhat different dependency for different temperatures. For temperature of
293K the material seems to strain harden more at 0.01s−1, while being essential
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non-dependent on the strain rate for temperatures between 473K and 573K. At
633K the material shows noticeably more strain hardening at 1s−1. It is also seen
that the yield stress is noticeably lower for tests at 0.01s−1 compared to 1s−1 for
all temperatures.
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Figure 4.9: Plots (a)-(e) show the strain hardening for same temperature but
various strain rates for AA6060-H
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Fig. 4.10 illustrates the results for (a)-(b) the AA6060-OLD alloy, (c)-(d) the
AA6060-L alloy and (e)-(f) the AA6060-H alloy for same strain rate but various
temperatures in the same plot. It is clearly seen that the strain hardening shows
strong dependency on the temperature for all materials, i.e. the materials show
less strain hardening when the temperature is increased. It is not possible to detect
any difference for the temperature dependency for the two strain rates.
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Figure 4.10: Plots show the strain hardening for same strain rate but various
temperatures for respectively (a)-(b) AA6060-OLD, (c)-(d) AA6060-L and (e)-(f)
AA6060-H
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Fig. 4.11 illustrates the results for (a) the AA6060-OLD alloy, (b) the AA6060-L
alloy and (c) the AA6060-H alloy for all tests in the same plot and sums up what
can be seen in Fig. 4.7 to 4.10. Solid lines are 0.01s−1 strain rate and dashed lines
are 1s−1 strain rate.
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Figure 4.11: Plots show the strain hardening for all temperatures and strain
rates for respectively (a) AA6060-OLD, (b) AA6060-L and (c) AA6060-H. Solid
lines are 0.01s−1 strain rate and dashed lines are 1s−1 strain rate
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Fig. 4.12 illustrates the results for all alloys and for same temperature plotted
together. Different behavior is observed with respect to the temperature depen-
dency for the strain hardening for all materials and is most noticeable for 0.01s−1

strain rate. Except for tests at 473K, the AA6060-H alloy seem to strain harden
more than the AA6060-L alloy, but the difference is in fact not significant. This is
as expected as the alloy contains more alloying elements than the AA6060-L alloy.
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Figure 4.12: Plots (a)-(e) show the strain hardening for same temperature but
various strain rates for AA6060-OLD, AA6060-L and AA6060-H
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Fig. 4.13 illustrates the results for all alloys and for same strain rate plotted
together. Solid lines are the AA6060-OLD alloy, dashed lines are the AA6060-
L alloy and dotted lines are the AA6060-H alloy. Almost coinciding temperature
dependence for the strain hardening is observed for all materials and for both strain
rates. The AA6060-H alloy seems to strain harden slightly more than the AA6060-
L alloy for all temperatures. It is also interesting to notice that the AA6060-OLD
alloy seems to strain harden more than the two other.
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Figure 4.13: Plots (a)-(b) show the strain hardening for same strain rate but var-
ious temperatures for AA6060-OLD (solid line), AA6060-L (dashed line), AA6060-
H (dotted line)

4.3.3 Yield Stress

The average yield stress has been plotted for tests with same strain rate and
temperature for the plots presented in this Section.

Fig. 4.14 illustrates the yield stress vs. temperature for all materials. It is seen
that the yield stress is clearly dependent on both strain rate and temperature. The
strain rate sensitivity seems to be constant within the whole temperature range
considered, while the temperature sensitivity varies within the temperature range.
An inverted s-shape is seen, and it looks like the increased temperature dependency
is most present between temperatures of 450K and 550K. The AA6060-H alloy
seems to have a slightly higher yield stress than the AA6060-L alloy for both strain
rates and at all temperatures. Notice also that the AA6060-OLD alloy seems to
have a higher yield stress than the other two alloys.
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Figure 4.14: Plots (a)-(c) show the yield stress vs. temperature for various strain
rates for respectively (a) AA6060-OLD, (b) AA6060-L and (c) AA6060-H. Plots
(d)-(e) show the yield stress vs. temperature for (d) 0.01s−1 and (e) 1s−1 strain
rate. Plot (f) shows plot (d) and (e) together.
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Fig. 4.15 illustrates the yield stress vs. strain rate for all materials. The strain
rate sensitivity seems to be constant within the temperature range considered for
all alloys.
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Figure 4.15: Plots (a)-(c) show the yield stress vs. strain rate for all temperatures
for respectively (a) AA6060-OLD, (b) AA6060-L and (c) AA6060-H

Fig. 4.16 illustrates the yield stress vs. strain rate for all alloys and same tem-
perature in the same plot. No significant difference between the materials is seen
with respect to the yield stress dependence on the strain rate. However, at 293K
the AA6060-L and AA6060-H alloy seem to show slightly different strain rate de-
pendency, but as this is not seen for the other temperatures, this may in fact not
represent the real behavior.
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Figure 4.16: Plots (a)-(e) show the yield stress vs. strain rate for same temper-
ature in the same plot
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4.3.4 Fracture Strain

The fracture area has been measured using a microscope for all tests, and an
estimate for the fracture strain has been calculated using Eq. (2.43). Values
from all tests have been plotted because of the large deviation associated with the
measurement from tests with same temperature and strain rate.

Fig. 4.17 illustrates the fracture strain vs. temperature for all tests. It is seen
that the temperature dependency for the fracture strain is evidently strain rate
sensitive, see Fig. 4.17b, c and f. The trend line for the temperature dependency
for both strain rates have been plotted for the AA6060-L and AA6060-H alloy and
can be seen in Fig. 4.18. Based on the microscope measurements, the fracture
strain seems to show stronger dependence on the temperature for 0.01s−1 strain
rate compared to 1s−1 strain rate for both materials.
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Figure 4.17: Plots (a)-(c) show fracture strain vs. temperature for 0.01s−1 and
1s−1 strain rate for respectively (a) AA6060-OLD, (b) AA6060-L and (c) AA6060-
H. Plots (d)-(e) show fracture strain vs. temperature for respectively (d) 0.01s−1

and (e) 1s−1 strain rate. Plot (f) show plot (d) and (e) together
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Figure 4.18: Plots show fracture strain vs. temperature for 0.01s−1 and 1s−1

strain rate for respectively (a) AA6060-L (same as Fig. 4.17b) and (b) AA6060-H
(same as Fig. 4.17c) plotted together with trend lines

Fig. 4.19 illustrates the fracture strain vs. strain rate for all tests. Fig. 4.20
shows the results for the AA6060-L and AA6060-H alloy plotted together with
trend lines. As can be seen, the strain rate dependency seems to be quite sensitive
to the temperature. At room temperature, 293K, there seems to be essentially
no strain rate dependency. For temperatures of 473K and 523K the fracture
strain is lower for 0.01s−1 strain rate compared to 1s−1 strain rate, while the
inverse dependency is seen for temperatures of 573K and 633K as the fracture
strain is significant higher for 0.01s−1 strain rate. However, there are very much
uncertainties associated with the measuring of the fracture area using a microscope
for small fracture areas. Thus, the validity of the largest estimated values for the
fracture strain must be carefully addressed before any conclusions can be drawn.
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Figure 4.19: Plots (a)-(c) show fracture strain vs. strain rate for all temperatures
for respectively (a) AA6060-OLD, (b) AA6060-L and (c) AA6060-H
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Figure 4.20: Plots show fracture strain vs. strain rate for all temperatures for
respectively (a) AA6060-L (same as Fig. 4.19b) and (b) AA6060-H (same as Fig.
4.19c) plotted together with trend lines
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4.4 Post-Processing of Data from SHTB Experiments

Post-processing of experimental data from both strain gauges and local measure-
ment from camera recordings have been done for the SHTB experiments. The
procedure for post-processing the strain gauge data is quite similar as for the
quasi-static tests as described in Section 4.2 and will therefore not be as thor-
oughly described here. As opposed to the quasi-static tests, where values for force
and displacement are given in the output files, values for engineering stress and
uncorrected engineering strain are given from the strain gauge measurements from
the SHTB tests. The post-processing of data from local measurement from cam-
era recordings is a much more tedious procedure, but provides essential data such
as the local strain rate and potentially the true stress-plastic strain curve until
fracture, and will be explained more detailed.

Measurements from strain gauges

When comparing the engineering stress-strain curve from quasi-static experiments
with SHTB experiments, some different behavior is apparent. First of all, the
stress-strain curve in the elastic region is rather slightly curved than linear for
the entire region, thus making it more difficult to approximate both the measured
Young’s modulus and the yield stress. There is also a noticeably stress plateau
after plastic strain of ≈ 0.01 for most tests. Both the slightly curved stress-strain
curve in the elastic region and the stress plateau can be seen in Fig. 4.21. The
reason for these two observed phenomena has not been further investigated.
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Figure 4.21: Plot showing the measured Young’s modulus together with both
uncorrected and corrected strains

The same procedure is used for calculating the necking point for SHTB experiments
as for quasi-static experiments. As can be seen from Fig. 4.4a and Fig. 4.22a,
there are noticeably more fluctuations in the stress-strain curve from the SHTB
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4.4 Post-Processing of Data from SHTB Experiments

tests. As a result of this, it may be even more difficult to determine the necking
point from SHTB tests compared with quasi-static tests. Fig. 4.22b illustrates
how the necking point is calculated for a typical SHTB test. Plots of the resulting
engineering stress-strain and true stress-plastic strain curves, as shown in Fig.
4.23a and b, are automatically created and saved. The true stress-plastic strain
curves are fitted with Voce hardening parameters which takes on the form σt =
σY +

∑2
i=1 Qi(1 − e−Ciεp). The resulting plots, yield stress and Voce hardening

parameters for all tests can be found in Appendix F.
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Figure 4.22: (a) Engineering stress-strain curve from a test where the neck-
ing point is difficult to locate and (b) determination of necking point using an
approximated polynomial
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Figure 4.23: (a) Engineering stress-strain plot and (b) true stress-plastic strain
plot from post-processing
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Local measurement from camera recordings

The motivation for using camera measurements has been discussed in Section 3.3.
Fig. 4.24 shows a series of representative frames from the camera recordings during
a SHTB test. Frame (a) is at the beginning of the test, frame (b) shows that the
specimen diameter has been reduced, but the neck cannot easily be located, frame
(c) shows clearly where the neck is located and its shape, while frame (d) is post-
fracture and at the end of the test. The white object that can be seen on both
sides is the coil.

(a) t = 0.0ms (b) t = 0.5ms

(c) t = 1.5ms (d) t = 2.0ms

Figure 4.24: (a)-(d) Representative frames from high-speed camera showing the
different stages during an experimental test [37]

The frames from the camera recordings have been post-processed by PhD candi-
date Vincent Vilamosa at SIMLab at NTNU using Matlab. The frames from the
camera are used to calculate the minimum diameter of the specimen at the neck
during deformation until fracture. From this, both true strain εt and true stress
σt can easily be calculated from the following equations:

εt = ln(
A0
As

) = 2ln(
D0
Ds

) (4.2)

σt = σe
A0
As

= σe
D2

0
D2

s

(4.3)

where A0 is the initial area, As is the minimum area measured at the neck, D0
is the initial diameter, D is the minimum diameter measured at the neck and σe

is the engineering stress. The true stress can also be calculated from the loading
force F = σeA0:

65



4.4 Post-Processing of Data from SHTB Experiments

σt =
F

As
=

F

πR2
s

=
F

π
4 D2

s

(4.4)

The pixel size in the frames is approximately 20x20μm2, thus approximately 150
pixels are used to represent the specimen diameter of 3mm. To determine the
edges of the specimen, both the gray level and the gray gradient level can be
used. By using the latter, the accuracy is improved with a factor of 10 relative
to using the former as the gray gradient level provides sub-pixel information [37].
Hence, measurement of displacements are narrowed down to 2μm from the camera
recordings, while in comparison strain gauge measurements have a lower limit
of 0.3μm [37]. The gray gradient level for a typical frame can be seen in Fig.
4.25b. The two peaks in Fig. 4.25b corresponds to the two edges of the sample
in Fig. 4.25a. The minimum diameter of the specimen can be calculated by first
calculating the difference in Y-axis position for both peaks for all positions along
the X-axis. By applying this procedure for all frames, values for the real minimum
diameter are then found for each frame taken during the whole test.

(a) (b)

Figure 4.25: (a) Typical frame from high-speed camera and (b) gray gradient
level along the Y axis for a given position X corresponding to (a) [37]

As significant necking was observed during the tests, especially at elevated tem-
peratures, the stress state in the specimen is believed to be rather tri-axial than
uni-axial. The Bridgman correction factor is discussed in Section 2.1.3 and has
been applied to correct the stress values. Fig. 4.26 illustrates the principle for
calculating the radius of curvature in the necked section. The shape of the edge
is approximated with a 10th degree Chebyshev polynomial. The area of interest
for determining the circle, and also the radius of curvature, see the blue line in
Fig. 4.26, is bounded by the points where the second derivative of the Cheby-
shev polynomial is equal to zero. A best fit for the circle is approximated using
least-squares method (lsqnonlin function) in Matlab.
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Figure 4.26: Determination of radius of curvature in the necked section [37]

For small deformations, i.e. large values for the radius of curvature, some part
of the area of interest may be hidden behind the coil. This is solved by back-
extrapolating the values for the radius of curvature to the beginning of the test.
Fig. 4.27 shows an example of the back-extrapolation together with calculated
values from both upper and lower part of the specimen. Note that the Bridgman
correction should only be applied to the stress values after onset of necking, and the
real value of the radius of curvature is in fact equal to ∞ until this point because no
localized deformation will be present within the gauge section. Back-extrapolating
to the beginning of the test and applying the correction formula to the stress for
the whole plastic strain range may therefore give rise to non-conservative stress
values until onset of necking, but, as can be seen from the resulting true stress-
plastic strain curves in Appendix F, the correction of the stress values until necking
is almost not detectable. This, will of course, depend on the slope of the curve for
the back-extrapolated radius of curvature.
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Figure 4.27: (a)-(b) show the interpolation and back-extrapolation for determi-
nation of radius of curvature from a typical test
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As mentioned, the applicability of the Bridgman correction rely on the possibility
to measure the geometry of the neck during deformation. This is usually both
time consuming and not easily achieved, and a purely empirical way to determine
the geometry is of course desired. Le Roy et al. [33] states that the ratio of the
minimum radius at the neck and the radius of curvature can be estimated from
an empirical formula:

a

R
=

{
0 ε̄ ≤ εu

κ(ε̄ − εu) ε̄ > εu

(4.5)

where a is the minimum radius at the neck, R is the radius of curvature, κ is
a material constant, ε̄ is the plastic strain and εu is the strain value at onset of
necking. Le Roy et al. [33] have investigated this empirical formula for steel and
have estimated the factor κ to 1.11. The ratio of the minimum radius at the neck
and the radius of curvature and the Bridgman corrected stress using Eq. (4.5)
and the estimated factor has been calculated for all tests and are compared with
direct measurements from camera recordings. An example of the comparison is
presented in Fig. 4.28, and the results from all tests can be found in Appendix F.

As seen in Fig. 4.28a, the shape of the ratio as function of the plastic strain seems
to be somewhat coinciding with camera measurements. However, it cannot be
seen directly from the figure what impact the deviation will have on the resulting
corrected true stress-plastic strain curve. Fig. 4.28b shows the resulting true
stress-plastic strain curve for this particular test. It is seen that the empirical
formula provides non-conservative correction of the true stress, and this is also
seen for all other tests from the experiments, ref. Appendix F. This indicates that
the material parameter κ set equal to 1.11 cannot be readily applied to aluminum
and the AA6060 alloy, but an adequately approximation may be achieved for an
altered value for κ as the empirical formula predicts deviations for the stress within
approximately the same range for all tests.
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Figure 4.28: (a) show the minimum radius at the neck-radius of curvature ratio
from both camera measurements and the empirical formula and (b) the resulting
true stress-plastic strain plot using Bridgman correction for a typical test

Data for true strain, minimal diameter and time from all tests provided by Vincent
Vilamosa are used to calculate the uncorrected true stress-plastic strain values until
the plastic strain value corresponding to the maximum value of the true stress.
Values for true strain and minimal diameter have to be synchronized in terms of
time with respect to the experimental data from the strain gauges to match the
force values, or engineering stress values, with the corresponding values for true
strain and minimal diameter. Fig. 4.29 shows how this is done using Matlab. The
values are believed to be synchronized when the two true strain vectors have the
same values at the beginning of straining. The correct time delay value was found
by trial and error until the two curves are coincident at the beginning of straining.

Note that the higher strain values from the strain gauge measurements are due
to the straining taking place outside the gauge section as compared to the local
strain values. It is also interesting to note that the strain curve from the local
measurement is linear, thus having a constant strain rate, until a certain point
where the curve suddenly becomes non-linear that implies an increase of strain
rate. This point should coincide with the necking point calculated from the en-
gineering stress-strain curve, as the increase of strain rate is due to the localized
deformation taking place within the necked section.
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Figure 4.29: (a) Synchronization of time for strain values from camera measure-
ment and (b) showing the same plot for a zoomed in area

To study the influence of the synchronization of true strain and diameter values
on the resulting true stress-plastic strain curve, synchronization has been done for
three time delay values for a representative test: 0.05ms (which is believed to be
the correct value), 0.03ms and 0.07ms. Fig. 4.30a shows the resulting true strain
curve with respect to time. It can be seen that the curves for 0.03ms and 0.07ms
time delay are clearly lying on each side of the strain curve from the strain gauge
measurements, such that the correct value for this particular test is believed to be
bounded by these values, and probably close to 0.05ms. Fig. 4.30b shows that
the true stress-plastic strain curve is not highly dependent on the time delay value
for small strains, but for larger strains the influence will be significant, hence it is
necessary to account for this.
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Figure 4.30: (a) Synchronization of time using different values and (b) showing
the resulting true stress-plastic strain curve

The true stress corresponding to the true strain measured by the camera is calcu-
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4.5 Results from SHTB Experiments

lated using Eq. (4.4). Since the record frequency is much higher for strain gauge
measurements compared with camera measurements, the diameter and strain val-
ues have to be fitted with a polynomial so that the engineering stress values can
be coupled with correct values for diameter and strain in terms of time. An 8th

degree polynomial has been used for the approximation and it can be seen from
Fig. 4.31 that the fit is adequate.
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Figure 4.31: Data from post-processing and approximated polynomial for (a)
minimum diameter and (b) true strain

Plots of the resulting true stress-plastic strain curves are automatically created
and saved using the script for post-processing. The true stress-plastic strain
curves are fitted with Voce hardening parameters which takes on the form σt =
σY +

∑2
i=1 Qi(1 − e−Ciεp). The resulting plots, yield stress and Voce hardening

parameters for all tests can be found in Appendix F.

4.5 Results from SHTB Experiments

In this Section, results from the SHTB experiments are presented. An overview
of the experimental program is given in Section 4.5.1, while results for the strain
hardening and yield stress are presented in Section 4.5.2.

4.5.1 Experimental Program

An overview of the experimental program for the SHTB tests is presented in
Table 4.2. Tests have been performed for strain rates between 340s−1 and 800s−1

and for temperatures ranging from 523K to 673K. Only four tests in total were
successfully conducted, such that only the results from these tests are presented.
The reason for the large number of unsuccessful tests have not been investigated,
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but it is believed that it might be that the bars were not cooled down prior to
a new test, thus modifying the response registered from the strain gauges. The
strain rates tabulated in Table 4.2 is measured by the strain gauges and is coherent
with the strain rates measured from the camera recordings until necking.

AA6060-L AA6060-H

Test # Strain rate Temp. Comment Test # Strain rate Temp. Comment

(s−1) (◦K) (s−1) (◦K)

7 340 523 N.s.* 1 350 523 N.s.*

8 372 523 N.s.* 2 376 523 OK

9 354 523 OK 3 365 613 N.s.*

10 460 523 N.s.* 4 388 673 N.s.*

11 781 523 OK 5 789 523 OK

523 N.s.* 6 800 573 N.s.*

* N.s. = not successful experiment

Table 4.2: Overview of experimental program for SHTB tests

4.5.2 Experimental Results

Fig. 4.32 shows the results from the SHTB experiments and both strain gauge
measurements and camera measurements are shown. The strain hardening seems
to be hardly influenced by the strain rate for both alloys, while it can be seen that
the AA6060-H alloy seems to harden more than the AA6060-L alloy for ∼ 350s−1

strain rate. From Fig 4.32f it is seen that the yield stress measured from the strain
gauges are 3−5% lower compared to the local measurement, and may be explained
by the reason that the strain was measured in two different ways. It is also seen
that the yield stress for AA6060-H is about 2 − 5% higher than for AA6060-L for
both strain rates.
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Figure 4.32: Plot (a)-(b) show the strain hardening for respectively the AA6060-
L and AA6060-H alloy. Plot (c)-(d) show the strain hardening for both alloys
together for respectively ∼ 350s−1 and ∼ 750s−1 strain rate. Plot (e)-(f) show the
yield stress vs. strain rate
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5 Calibration of Material Models

As not a sufficient number of SHTB experiments to obtain relevant material data
for the two alloys studied for a complete temperature and strain rate range was
conducted during the time period for this thesis, an old database with material
data for a complete temperature and strain rate range for the AA6060-OLD alloy,
both strain gauge measurements and camera measurements, has been used to
calibrate three material models. This is done in order to study whether it is
possible to get an adequate fit for a wide range of strain rates and temperatures
using a material model containing only a limited number of parameters. The
three material models that are calibrated are the modified Johnson-Cook model,
the modified Zerilli-Armstrong model and a combined material model suitable for
materials showing typical behavior from both BCC and FCC metals. The reason
for choosing the two former material models is that they are widely used and easily
implemented in non-linear finite element codes such as LS-DYNA, while the latter
model is chosen as it is believed to predict accurate results because the AA6060-
OLD alloy show material behavior seen in both BCC and FCC metals, i.e. strong
dependence of both the yield stress and strain hardening on temperature and to
some degree on strain rate. The three material models have been thoroughly
presented in Section 2.4.

The material model calibration has been done for two temperature ranges for all
three material models; first range covering all temperatures (295K to 827K), the
other range covering temperatures from 450K to 827K. The reason for choosing
the latter temperature range is that the yield stress is decreasing at a higher rate
with respect to temperature increase for temperatures exceeding approximately
450K (e.g. see Fig. 5.1), such that this range is believed to provide a better fit for
the calibrated models. The material model calibration has been done using least-
squares method (lsqnonlin function) in Matlab. The procedure for the calibration
of each model is described in their respective Sections. The complete Matlab
code for the calibration of the three mentioned material models can be found
in Appendix D.4 and is readily suitable for other experimental data by small
alterations of the code.

5.1 Modified Johnson-Cook Model

The modified Johnson-Cook model is presented in Section 2.4.1 and defined by
Eq. (2.13) which is reviewed here:

σ = (A +
2∑

i=1
Qi(1 − e−Ciεp))(1 + ε̇p

∗)C(1 − T ∗m) (5.1)
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5.1 Modified Johnson-Cook Model

The calibration is done in three steps (referring to Eq. (5.1)):

Step 1: Calibration of first bracket only, thus the hardening part, taking into
account tests at room temperature and at quasi-static strain rates only.

Step 2: Calibration of second bracket, thus the strain rate sensitivity, taking into
account tests at room temperature and at all strain rates.

Step 3: Calibration of third bracket, thus the thermal softening, taking into
account all tests from the database.

The resulting parameters are tabulated in Table 5.1 and the resulting yield stress
and strain hardening plots can be found in Fig. 5.1-5.3.

It can be seen that the model does not catch the shape of the yield stress function
when plotted vs. temperature, and the values are in general too low (Fig. 5.1). The
experimental data for yield stress plotted vs. strain rate show no identifiable shape
of the yield function, and the somewhat fluctuating values may to some degree be
explained by that they are plotted within a 100K to 150K temperature range. It
is clearly seen from Fig. 5.3 that no good fit was found for the model. For all
temperature intervals, and for both set of parameters fitted for the two temperature
ranges, the model predicts in general too low strain hardening. It is also interesting
to notice that the fit for the narrower temperature range seems to predict almost
the exact yield stress as the model taking into account all temperatures, but that
the true stress-plastic strain curves deviate even more.

Material model parameters (modified Johnson-Cook model)

Model parameters T ∈ (293 − 850K) T ∈ (450 − 850K)

A (MPa) 83.16 67.74

Q1 (MPa) 351.6 81.18

C1 0.9510 4.167

Q2 (MPa) 74.19 47.17

C2 20.62 41.53

C 0.002202 2.220E-14

m 0.3236 0.4426

Table 5.1: Calibrated material model parameters for the modified Johnson-Cook
model for two temperature ranges
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Figure 5.1: Plot (a)-(e) show the yield stress function vs. temperature for the
modified Johnson-Cook model together with experimental data. The solid line is
for the parameters fitted for the entire temperature range, while the dashed line
is for the narrower range of temperature.
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Figure 5.2: Plot (a)-(f) show the yield stress function vs. strain rate for the
modified Johnson-Cook model together with experimental data. The solid line is
for the parameters fitted for the entire temperature range, while the dashed line
is for the narrower range of temperature.
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Figure 5.3: Plot (a)-(f) show the true stress-plastic strain curve for the mod-
ified Johnson-Cook model together with experimental data. Solid lines are the
experimental data, dashed lines are for the parameters fitted for the entire tem-
perature range, while dotted lines are for the narrower range of temperatures and
are therefore only plotted in (c)-(f)
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5.2 Modified Zerilli-Armstrong Model

5.2 Modified Zerilli-Armstrong Model

The original Zerilli-Armstrong model and a modified Zerilli-Armstrong model are
presented in respectively Section 2.4.4 and Section 2.4.5. The modified model is
defined by Eq. (2.33) and reviewed here:

σ = Ya + (Y0 + Bεn
p )exp(−β3T + β2T lnε̇p) (5.2)

A slightly modified model of Eq. (5.2) is defined in LS-DYNA which the experi-
mental data has been fitted for. The slightly modified model is defined as:

σ = Ya + Y0exp(−(β0T − β1T lnε̇p)) + Bεn
p exp(−(α0T − α1T lnε̇p)) (5.3)

The calibration is done in two steps (referring to Eq. (5.3)):

Step 1: Calibration of yield stress, σY = Ya + Y0exp(−(β0T − β1T lnε̇p)), taking
into account all tests

Step 2: Calibration of strain hardening, σH = Bεn
p exp(−(α0T −α1T lnε̇p)), taking

into account all tests

The resulting parameters are tabulated in Table 5.2 and the resulting yield stress
and strain hardening plots can be found in Fig. 5.4-5.6.

The model predicts both too high and too low values for the yield stress within
the whole range for temperatures and strain rates, but does not completely catch
the shape of the yield function when plotted vs. temperature. As for the modified
Johnson-Cook model, the modified Zerilli-Armstrong model also predicts in gen-
eral too low strain hardening. When calibrated for a narrower temperature range,
both the fit for yield stress and strain hardening seems to be slightly improved.
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5.2 Modified Zerilli-Armstrong Model

Material model parameters (modified Zerilli-Armstrong model)

Model parameters T ∈ (293 − 850K) T ∈ (450 − 850K)

Ya (MPa) 1.288 5.611

Y0 (MPa) 343.6 946.4

β0 (K−1) 0.004419 0.006533

β1 (K−1) 0.00008647 0.0001018

B (MPa) 1572 4284

n 0.5087 0.4114

α0 (K−1) 0.006125 0.008581

α1 (K−1) 0.0002146 0.0003635

Table 5.2: Calibrated material model parameters for the modified Zerilli-
Armstrong model for two temperature ranges
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Figure 5.4: Plot (a)-(e) show the yield stress function vs. temperature for the
modified Zerilli-Armstrong model together with experimental data. The solid line
is for the parameters fitted for the entire temperature range, while the dashed line
is for the narrower range of temperature.
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Figure 5.5: Plot (a)-(f) show the yield stress function vs. strain rate for the
modified Zerilli-Armstrong model together with experimental data. The solid line
is for the parameters fitted for the entire temperature range, while the dashed line
is for the narrower range of temperature.

83



5.2 Modified Zerilli-Armstrong Model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

50

100

150

200

250

300

350

Plastic strain, ε
p

T
ru

e 
st

re
ss

, σ
t (

M
P

a)

0.01 s−1

1 s−1

360 s−1

930 s−1

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

Plastic strain, ε
p

T
ru

e 
st

re
ss

, σ
t (

M
P

a)

0.01 s−1

808 s−1

(a) 294-297 K (b) 300-399 K

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

200

Plastic strain, ε
p

T
ru

e 
st

re
ss

, σ
t (

M
P

a)

0.01 s−1

1 s−1

337 s−1

616 s−1

0 0.5 1 1.5 2
0

20

40

60

80

100

120

140

160

180

200

Plastic strain, ε
p

T
ru

e 
st

re
ss

, σ
t (

M
P

a)

0.01 s−1

300 s−1

373 s−1

800 s−1

(c) 400-499 K (d) 500-599 K

0 0.5 1 1.5 2 2.5
0

20

40

60

80

100

120

Plastic strain, ε
p

T
ru

e 
st

re
ss

, σ
t (

M
P

a)

0.01 s−1

1 s−1

330 s−1

800 s−1

0 0.05 0.1 0.15 0.2 0.25
0

20

40

60

80

100

120

Plastic strain, ε
p

T
ru

e 
st

re
ss

, σ
t (

M
P

a)

0.01 s−1

1 s−1

800 s−1

(e) 600-699 K (f) 700-850 K

Figure 5.6: Plot (a)-(f) show the true stress-plastic strain curve for the modi-
fied Zerilli-Armstrong model together with experimental data. Solid lines are the
experimental data, dashed lines are for the parameters fitted for the entire tem-
perature range, while dotted lines are for the narrower range of temperatures and
are therefore only plotted in (c)-(f)
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5.3 Combined BCC and FCC Model

The combined material model suitable for materials showing typical behavior from
both BCC and FCC metals is presented in Section 2.4.6 and defined by Eq. (2.40)
which is reviewed here:

σ = Ya+B1εn1
p +Ŷ (1−(βY

1 T−βY
2 T lnε̇p)1/q)1/p+B2εn2

p (1−(βH
1 T−βH

2 T lnε̇p)1/q)1/p

(5.4)

The calibration is done in two steps (referring to Eq. (5.4)):

Step 1: Calibration of yield stress, σY = Ya + Ŷ (1 − (βY
1 T − βY

2 T lnε̇p)1/q)1/p,
taking into account all tests

Step 2: Calibration of strain hardening, σH = B1εn1
p + B2εn2

p (1 − (βH
1 T −

βH
2 T lnε̇p)1/q)1/p, taking into account all tests

The resulting parameters are tabulated in Table 5.3 and the resulting yield stress
and strain hardening plots can be found in Fig. 5.7-5.9.

It can be seen that the model predicts a yield stress function very similar to the
modified Zerilli-Armstrong model, thus both too high and too low values within the
whole range for temperatures and strain rates. The predicted true stress-plastic
strain curves are also very much coinciding with the Zerilli-Armstrong model,
but it seems to predict a slightly poorer fit. The same behavior is seen for the
parameters fitted for the narrower temperature range as for the Zerilli-Armstrong
model. Notice from Fig. 5.9 that the model predicts a rather unncorrect, to say
the least, strain hardening curve for plastic strains exceeding approximately 1.
This shape of the curve is of course not what any aluminum alloy would have
shown from any experimental test.
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5.3 Combined BCC and FCC Model

Material model parameters (combined BCC and FCC model)

Model parameters T ∈ (293 − 850K) T ∈ (450 − 850K)

Ya (MPa ) 8.419 8.497

Ŷ (MPa ) 321.1 360.1

B1 (MPa ) 4.999 6.063

B2 (MPa ) 1157 1187

βY
1 (K−1 ) 0.001127 0.001159

βY
2 (K−1 ) 0.00001981 0.00001898

βH
1 (K−1 ) 0.001231 0.001242

βH
2 (K−1 ) 0.00003125 0.00003053

n1 3.450 3.363

n2 0.4671 0.4198

p 0.5 (constant) 0.5 (constant)

q 1.5 (constant) 1.5 (constant)

Table 5.3: Material model parameters for the combined BCC and FCC model
for two temperature ranges
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Figure 5.7: Plot (a)-(e) show the yield stress function vs. temperature for the
combined BCC and FCC model together with experimental data. The solid line
is for the parameters fitted for the entire temperature range, while the dashed line
is for the narrower range of temperature.
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Figure 5.8: Plot (a)-(f) show the yield stress function vs. strain rate for the
combined BCC and FCC model together with experimental data. The solid line
is for the parameters fitted for the entire temperature range, while the dashed line
is for the narrower range of temperature.
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Figure 5.9: Plot (a)-(f) show the true stress-plastic strain curve for the com-
bined BCC and FCC model together with experimental data. Solid lines are the
experimental data, dashed lines are for the parameters fitted for the entire tem-
perature range, while dotted lines are for the narrower range of temperatures and
are therefore only plotted in (c)-(f)
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5.4 Comparison of Material Models and Discussion

In this Section, a comparison between the three calibrated material models and
a short discussion of the results is presented. Fig. 5.10 and 5.11 show the yield
stress vs. respectively temperature and strain rate for all models together.

As discussed, the modified Johnson-Cook model does not catch the shape of the
yield function when plotted vs. temperature. A much better fit is seen from both
the modified Zerilli-Armstrong and combined BCC and FCC model. It is seen
from Fig 5.10a and c that the yield stress sensitivity on the temperature is in
fact varying within the temperature range considered. An increased sensitivity
between approximately 450K and 600K is seen, and is most noticeable from tests
with strain rate of 0.01s−1 and 300−400s−1. However, this inverted s-shape is not
seen for all strain rate intervals, which may be resulting from both the execution of
the experimental work and the post-processing of data, or may in fact be due to the
different strain rates. Several tests, especially for strain rates between 500s−1 and
1000s−1, are needed to better determine the correct shape of the yield function.
As the yield stress show stronger dependence on temperature than strain rate, it
is not possible to determine the shape of the yield function when plotted vs. strain
rate for temperature intervals of 100K or more. Even for tests carried out at room
temperature only, see Fig. 5.11a, no correlation between yield stress and strain
rate can be obtained. In order to so, several tests need to be carried out under
very well-controlled conditions and accurate post-processing of the experimental
data.

One important aspect that needs to be addressed regarding the calibration is that
experimental data from both strain gauges and camera measurements are used.
A better fit is believed to be achieved if the calibration was done for a complete
temperature and strain rate range from camera measurements only, since several
of the strain gauge measurements from the database are very limited in terms
of the plastic strain range. The modified Johnson-Cook model is also a purely
phenomenological model, and quite simple, as apposed to the Zerilli-Armstrong
and combined BCC and FCC model which are semi-physical and more complex
of nature. The latter model has been specifically designed for a metal showing
behavior seen from both BCC and FCC metals, which also the AA6060 alloy does.
Abed and Voyiadjis [4] have explained a much more thoroughly procedure for
determination of the material model parameters for the combined BCC and FCC
model than what has been done for this thesis, such that a better fit is believed to
be achieved if the suggested procedure is used as apposed to the simple two step
procedure shown here.

With the previous results and discussion in mind, it is without doubt that an
adequate material model for a wide range of temperatures and strain rates can
not be achieved easily for the AA6060 alloy. The material models chosen, the
procedure for determining the material model parameters and the validity of the
experimental data used for the fitting are all aspects that need to be taken carefully
into account when establishing such a material model.
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Figure 5.10: Plot (a)-(e) show the yield stress function vs. temperature for all
models together with experimental data. The solid line is for the parameters fitted
for the entire temperature range, while the dashed line is for the narrower range
of temperature.
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Figure 5.11: Plot (a)-(f) show the yield stress function vs. temperature for all
models together with experimental data. The solid line is for the parameters fitted
for the entire temperature range, while the dashed line is for the narrower range
of temperature.
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6 Numerical Analysis

6.1 Introduction

A finite element analysis of a given structure or component can provide highly
accurate results and predictions for response and material behavior. Compared to
real full-scale testing in a laboratory, numerical simulations using the finite element
method is considerably cheaper and less time consuming, and the model can easily
be adjusted to a variety of situations and conditions in short time. In order to
predict accurate results, such numerical models do have to take into account a
representative material model that will adequately describe the material behavior
depending on temperature, strain rate or other variables. Such material models
can be quite complex when non-linearities are introduced, thus all parts of the
model must be investigated carefully to ensure that it will represent realistic and
correct material behavior. As it would be too physical challenging to validate the
simulations from a complex structure directly, numerical simulations of a material
sample subjected to testing in a laboratory can be performed. In the case of
simulating SHTB tests, simulations of the specimen only or simulations of the
entire test setup can be performed. In this Section, numerical modelling of the
SHTB tests described in Section 3.3 including both bars are presented. As only a
total of four tests were successfully conducted, simulations have been performed
for these tests only.

6.2 Finite Element Model of SHTB Setup

Finite element simulations of the SHTB tests have been performed with the non-
linear finite element code LS-DYNA to evaluate the test setup and calibration of
material models. To provide most realistic numerical simulations, the entire SHTB
setup discussed in Section 3.3 has been modeled in real dimensions. By doing so,
it is also possible to extract data in the same way as done in the experiments in the
laboratory, such that these data can be compared to data extracted directly from
the specimen for validation of the setup. A principal overview of the SHTB setup
and the geometry of the test specimen were presented in Section 3.3 (respectively
Fig. 3.2 and 3.3).

The geometry and mesh for the model has been generated in Abaqus CAE and
imported to LS-DYNA by manually editing the element and node data gener-
ated by Abaqus CAE. The SHTB setup is modeled as an axis-symmetric volume
weighted model with shell elements. An axis-symmetric area weighted shell for-
mulation is not chosen as it is preferable for high explosive applications, while an
axis-symmetric volume weighted shell formulation is best situated for structural
applications [19]. This type of model is also a lot more cost-effective in terms of
computational time compared to a 3D-model using solid elements, and has also

93



6.2 Finite Element Model of SHTB Setup

been successfully adopted for similar simulations in other studies [37]. The nodes
connecting the specimen with the bars, a total of 20 nodes that can be seen in
Fig. 6.1, have been merged to best represent the contact condition between the
specimen and bars. Fig. 6.1 and 6.2 show the finite element mesh for the test
specimen respectively with and without part of bars.

Figure 6.1: Finite element mesh for test specimen and part of bars

Figure 6.2: Finite element mesh for test specimen only

Reduced integration is chosen over full integration as it is considerably more cost-
effective in terms of computational time and storage requirements due to the re-
duced number of integration points. However, reduced integration does come with
some aspects that need to be carefully taken into account. When using this tech-
nique, it may produce what is called zero-energy deformation modes, such that
for a deformation there are no straining at the integration points. This can result
in a phenomenon called “hourglassing” that can lead to propagated deformations
throughout the mesh that will provide inaccurate solutions. LS-DYNA can ac-
count for this by adding an artificial stiffness to the elements in case of these
zero-energy deformation modes [34], and a Flanagan-Belytschko stiffness form is
chosen as the hourglass control type. When using reduced integration, it is there-
fore important to check the contribution of the artificial strain energy to the total
energy, and this shall not exceed approximately 10% [8].

The numerical simulations in LS-DYNA can be considered in two steps, which is
the same as described in Section 3.3. In the first step, the top nodes at the end
of the incident bar, ref. position A in Fig. 3.2, are stretched in tension until a
desired displacement is reached. The desired displacement is reached after 0.1ms
and then kept constant throughout the simulation as seen in Fig. 6.3a. At the same
time as position A is stretched in tension, the nodes at position B are restrained
against any longitudinal movement, thus creating a tension force in part A-B of
the incident bar, while the rest of the setup remains stress free. In the second
step, the restraining of the nodes at position B is then suddenly terminated after
0.3ms, thus creating a tensile stress wave that will propagate towards position C
and the specimen, see Fig. 6.3b. The first step is run as an implicit analysis, while
the second step is run as an explicit analysis. The curves that can be seen in Fig.
6.3 (a)-(c) are implemented in LS-DYNA to respectively control the elongation at
position A, the restraining of nodes at position B and to switch from an implicit
to an explicit analysis. In Fig. 6.3c, the value 1 is associated with an implicit
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6.2 Finite Element Model of SHTB Setup

analysis, while the value 0 is associated with an explicit analysis. It should be
noted that the curves are defined for a total time period of 5ms, while the total
simulation time is set to tend = 2.5ms. The total simulation time needed to ensure
fracture during the simulation will depend on the stretching of the incident bar and
the temperature of the specimen, but a total simulation time of 2.5ms is adequate
to ensure fracture in all simulations.
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Figure 6.3: Curves implemented in LS-DYNA used for simulations of SHTB
tests: (a) stretching of top nodes at position A, (b) clamping at position B and
(c) implicit/explicit switch (ref. Fig. 3.2)

By assigning different values to the displacement of the nodes at position A, differ-
ent strain rates can be achieved. The desired displacement ΔL can be estimated
from [15]:

ΔL = εABLAB =
N

EbAb
LAB =

NLAB

EbAb
(6.1)
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6.2 Finite Element Model of SHTB Setup

where εAB is the strain in bar A-B from the experiment, LAB is the length of the
incident bar A-B, Eb is the Young’s modulus of the bar, Ab is the cross sectional
area of the bar and N is the applied force at position A. The applied force N can
be calculated from:

N = 2AbEbεI,plateau (6.2)

where εI,plateau is the incoming strain plateau in the incident bar measured from
strain gauge 2 during the experiments. Inserting Eq. (6.2) into Eq. (6.1) yields
an explicit expression for the desired displacement of nodes as function of the
incoming strain plateau and the length of the incident bar from position A to B:

ΔL = 2LabεI,plateau (6.3)

Eq. (6.3) estimated the incoming strain wave with approximately 1% error for
simulations compared to the experimental data, such that only a minor adjustment
to the elongation was needed to get the correct value for the incoming strain wave.

Results from initial simulations showed that the comparison of the local measure-
ment taken directly from the specimen were almost coincident with the experi-
mental tests until the maximum value of the true stress. However, some distinct
deviations for the measured strain wave in the strain gauges were noticed. There-
fore, a refined mesh was created for the gauge section of the specimen that was
later used in all simulations. Table 6.1 and Fig. 6.4 summarizes and illustrates
the initial and refined mesh.

Initial mesh Refined mesh

Specimen

Radial direction: 10 elements and element Radial direction: 10 elements at shoulders,

size between 0.15mm and 0.25mm. 20 elements in gauge section and element

Element size vary between 0.08mm and size between 0.08mm and 0.25mm. Element

1.5mm along the longitudinal axis. size vary between 0.04mm and 1.5mm along

1100 elements in total. the longitudinal axis. 2640 elements in total.

Bars

Radial direction: 10 elements and element Unchanged

size of 0.5mm. Element size vary between

1mm and 15mm along the longitudinal axis.

16110 elements in total.

Total 17210 elements in total 18750 elements in total

Table 6.1: Overview of number of elements and element size for numerical model
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(a)

(b)

Figure 6.4: Comparison of (a) initial and (b) refined mesh for gauge section of
specimen

6.3 Material Model

It is of uttermost importance to establish a representative material model for
the numerical simulations to get correct material behavior. There are more than
150 material models in the material library in LS-DYNA to choose from which
are applicable for simulations for a large variety of experiments and situations
[20]. Both the incident bar and transmission bar have been modeled with an
elastic material model (MAT_001), using standard values of E = 210000MPa,
ν = 0.3 and ρ = 7850 kg

m3 for steel. The material model chosen for the speci-
men is the modified Johnson-Cook model (MAT_107) that also incorporates the
Cockroft-Latham fracture criterion. The Johnson-Cook constitutive relation and
the Cockroft-Latham fracture criterion are thoroughly presented in respectively
Section 2.4.1 and 2.4.7. The parameters for the constitutive relation have been
found using least-squares method (lsqnonlin function) in Matlab, and one fit for
each material has been found. Table 6.2 summarizes the parameters implemented.

Alloy Test # A Q1 C1 Q2 C2 C m

AA6060-L 9, 11 48.03 45.31 3.49 27.35 52.27 2.22E-14 5.00

AA6060-H 2, 5 47.93 58.82 1.83 35.56 29.51 2.22E-14 5.00

Table 6.2: Parameters for the modified Johnson-Cook constitutive relation used
in numerical simulations
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6.3 Material Model

A yield criterion is needed to define the transition between elastic and plastic
straining, i.e. the yield surface represents the limitations of the elastic region
in the stress space. A phenomenological yield function for isotropic materials
proposed by several authors, e.g. Hershey and Hosford, has been adopted [15]:

σeq =
{

1
2

(|σ1 − σ2|m + |σ2 − σ3|m + |σ3 − σ1|m)
}m

(6.4)

where σ1, σ2 and σ3 are principal stresses and m is a material constant. In this
study, a value of m = 2 is used and Eq. (6.4) is therefore reduced to the well
known von Mises yield function. If, however, a value of m → ∞ is assigned, Eq.
(6.4) would reduce to the Tresca yield function [15].

Fracture and element erosion are initiated when one of the following criteria are
fulfilled [20]:

1. Damage is greater than the critical value:

D̃ ≥ DC (6.5)

2. Temperature is greater than the critical value:

T ≥ TC (6.6)

The Cockroft-Latham damage evolution is defined as:

˙̃
D =

DC

WC
max(σ1, 0)ε̇p (6.7)

where DC ≤ 1 is the critical damage, WC is the critical fracture parameter defined
in Eq. (2.42), σ1 is the principal stress and ε̇p is the plastic strain rate.

Nucleation and growth of voids are shortly discussed in Section 2.2.5 and will
reduce the effective cross sectional area of a specimen due to the damage evolution,
thus resulting in an effective damage-equivalent stress. Numerical simulations have
been performed with and without damage coupling with the stress parameter. The
damage-equivalent stress σ̃eq implemented in the numerical model is defined by:

σ̃eq =
1

1 − β( W
WC

)D
σeq (6.8)
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where β is the coupling parameter, W is the plastic work and D is the damage
coefficient. When β = 0, there are no damage coupling and σ̃eq = σeq.

As the specimen is subjected to large plastic strains and high strain rates, adia-
batic heating conditions are also taken into account in the material model by the
temperature rate Ṫ [20]:

Ṫ = χ
σ̃eq ε̇p

ρCp
(6.9)

where χ is the Taylor-Quinney empirical parameter that defines the amount of
energy due to plastic work that is converted to heat, ρ is the material density and
Cp is the specific heat capacity. The temperature rate and the plastic strain rate
can be expressed by respectively Ṫ = ΔT/Δt and ε̇p = Δεp/Δt, such that an
explicit expression for the actual temperature can be obtained:

Tn+1 = Tn + ΔT = Tn + ΔtṪ = Tn + Δtχ
σ̃eq ε̇p

ρCp
= Tn + χ

σ̃eqΔεp

ρCp
(6.10)

All parameters implemented in the model can be found in Table 6.3. Young’s
modulus is assumed to be 57000MPa at 523K from Eq. (2.10). The Taylor-
Quinney parameter χ is set to 0.9 as suggested by Børvik et al. [11]. However,
Kapoor and Nemat-Nasser [29] have reported that close to 100% of the plastic work
done during high strain rate deformation is converted to heat, thus the correct
value of χ may be essentially set equal to one. The critical fracture parameter WC

is set equal to 260MPa which is the same value as adopted in similar studies for
a similar alloy [37].

It should be noted that LS-DYNA did not take into account the initial temperature
parameter T0 in the material model, such that a user-defined material model was
implemented to solve this issue.
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Parameter Unit Value Comment

E MPa 57000 Young’s modulus

ν 0.33 Poisson’s ratio

ρ kg/m3 2700 Material density

Tm K 933 Melting temperature

Tr K 293 Room temperature

T0 K 523 Initial temperature

χ 0.9 Taylor-Quinney parameter

Cp J/KgK 9.6 Specific heat capacity

α K−1 0.0001 Thermal expansion coefficient
·

p0 s−1 0.01 Reference strain rate

DC 1 Critical damage parameter

WC J 260 Critical plastic work parameter

TC K 933 Critical temperature parameter

Table 6.3: Overview of parameters implemented in the modified Johnson-Cook
material model

6.4 Results From Simulations

As mentioned in Section 6.2, results from initial simulations showed that there were
some distinct deviations for the measured strain wave in the strain gauges. It was
believed that the reason for this could be of two possible sources: too coarse mesh
or the material model implemented. For large plastic straining and until fracture
where the cross sectional area is significantly reduced, the number of elements in
the necked section will be of uttermost importance to predict correct behavior. As
the parameters for the constitutive relation have been fitted for a limited range
of stress-strain values, the model can not be expected to be accurate within the
whole range for strain values until fracture. A refined mesh was created to check
whether the mesh might be the source of error, and the results are presented in
Fig. 6.5 and are shown for test 9, ref. Table 4.2.

As can be seen, the true stress-plastic strain curve until the maximum value for
plastic strain which the model was fitted for was not affected by the mesh refine-
ment. However, it can be seen that the strain wave in strain gauge 2 and 3 was
affected noticeably, but that the new mesh shows an even more distinct deviation
from the experimental test. On the other hand, it is seen that the shape of the
strain curve from strain gauge 3, see Fig. 6.5c, matches the experimental test
better for the refined mesh. Thus it is believed that the primary source of error
for this deviation is due to the parameters for the constitutive relation found in
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Table 6.2, taking into account the fact that a very similar numerical model has
predicted very good results in similar studies [37].
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Figure 6.5: Plots show comparison from simulation for initial and refined mesh
for respectively (a) the true stress-plastic strain curve, (b) strain measurement
from strain gauge 2 and (c) strain measurement from strain gauge 3

As mentioned in Section 6.2, the contribution from the introduced artificial energy
to the total energy must be checked and shall not exceed approximately 10% [8].
As seen from Fig. 6.6, the artificial energy accounts for approximately 0.05% of
the total energy, thus “hourglassing” is believed to not be of any concern.
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Figure 6.6: Energy plot from simulation showing the kinetic, internal, artificial
and total energy

Simulations without damage coupling

Results from the simulations without damage coupling are shown in Fig. 6.7 and
6.8. The true stress-plastic strain curve has been plotted for the experimental data,
modified Johnson-Cook constitutive relation fitted parameters and simulations.
Strain gauge measurements from the experiments and simulations are also shown.
As can be seen, the true stress-plastic strain curve from simulations is catching
the correct behavior within the strain range the parameters for the constitutive
relation are fitted for for all tests.

The strain gauge measurements from simulations show some distinct deviations
from the experimental data for all tests, and the reason for this, as discussed, is
believed to be the parameters implemented for the modified Johnson-Cock con-
stitutive relation. Notice also that the incoming strain wave measured by strain
gauge 2 is in fact very much coinciding with the experimental data when synchro-
nized in terms of time, and deviations measured from strain gauge 2 and 3 are not
noticeable until the incoming strain wave has reached the specimen.

It would be of interest to study how the results from simulations are affected when
altering the parameters for the constitutive relation, e.g. adjusting the param-
eters to get increased strain hardening for large strain values, which may have
explained the deviations seen from the simulations compared to the experimental
tests. When studying the results from strain gauge 3 in Fig. 6.7 and 6.8, it is seen
that the simulation of test 2 is by far most coinciding with the experimental tests.
By looking at the true stress-strain curves it is also seen that the fitted parame-
ters for this particular test ensures more strain hardening when compared to test
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6.4 Results From Simulations

9 and 11, and it is also better fitted with the experimental data when compared
to test 5. Significant fluctuations is seen from the experimental data for test 5 and
may be the reason for a poorer fit of the material model, which, in turn, might
be the reason for the bigger deviations seen relative to test 2 for the simulations.
Unfortunately there was no time to investigate this further during the work for
this thesis.
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Figure 6.7: Plots (a)-(b) show the true stress-plastic strain curve from exper-
iments and simulations, plots (c)-(f) show the strains from strain gauges from
experiments and simulations
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Figure 6.8: Plots (a)-(b) show the true stress-plastic strain curve from exper-
iments and simulations, plots (c)-(f) show the strains from strain gauges from
experiments and simulations
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Simulations with damage coupling

Simulations with damage coupling have also been performed. Eq. (6.8) has been
implemented in the material model to account for the development of nucleation,
growth and coalescence of voids in the necked section. However, as the strain
gauge measurements without damage coupling in fact predicts fracture too early
compared to experimental results, the introduction of damage coupling will not
improve the results. It will, in fact, predict fracture and reduction of force even
earlier. The simulations have been run only to study how the implementation of
the coupled damage equation affects the results.

Fig. 6.9 and 6.10 show the results from the simulations with the damage coefficient
D set equal to 1, 2, 3 and 4 together with the experimental results and simulations
with no damage coupling. It is seen that simulations with damage coupling and
the damage coefficient set equal to 4 seem to predict best results for the true stress-
plastic strain curve for test 9 and 11, while too much damage is predicted for test
2 and 5 for the same value. A value between 5 and 6 is believed to predict better
results for the latter tests. It is clearly seen that that a value of 1 predicts rather
inaccurate results for all simulations from the true stress-plastic strain curves.

It is seen from the strain gauge measurements that fracture is predicted significant
earlier when damage coupling is introduced. If a better prediction was obtained
from the simulations, the damage coefficient D could be calibrated rather easily
to predict fracture at the correct time to fit with the experimental results.
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Figure 6.9: Plots (a)-(b) show the true stress-plastic strain curve from experi-
ments and simulations with and without damage coupling, plots (c)-(f) show the
strains from strain gauges from experiments and simulations with and without
damage coupling
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Figure 6.10: Plots (a)-(b) show the true stress-plastic strain curve from experi-
ments and simulations with and without damage coupling, plots (c)-(f) show the
strains from strain gauges from experiments and simulations with and without
damage coupling
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7 Concluding Remarks

The work for this thesis can be divided into four parts, corresponding to Section
3-6, and will each be summarized in this Section.

Experimental work: The execution of experimental tests at both quasi-static
strain rates and at dynamic strain rates in a split-Hopkinson tension bar test setup
has been a major part of the work for this thesis. Several observations have been
acquired during the work:

• The induction heater system coupled with a coil is a simple, yet effective
device to increase the temperature in a test specimen. However, there were
significant difficulties associated with keeping a constant temperature during
the entire test for strain rates of 0.01s−1. The resulting true stress-plastic
strain curve is directly affected by this, and it is especially noticeable for
temperatures of 573K and higher, such that an improved control system for
keeping a constant temperature during the whole test is believed to improve
the validity of the results.

• A pyrometer was used to measure the temperature during the tests and
proved to be an effective solution. The accuracy of the measured temperature
has not been validated within the scope of this thesis.

• Local measurement of the geometry of the necked section was obtained us-
ing a high-speed camera, such that the response of the test specimen could
be calculated beyond the onset of necking. However, the post-processing of
the camera recordings is a time-consuming procedure and the validity of the
results obtained has not been investigated. The stress values after onset of
necking have been corrected using Bridgman’s formula, taking into account
the geometry of the necked section from camera recordings. There are un-
certainties associated with the validity of the measured geometry that may
lead to either conservative or non-conservative values of the corrected stress.

Experimental results: Experimental data have been post-processed from both
quasi-static tests and SHTB tests, and results for true stress-plastic strain curve,
yield stress and estimated fracture strain have been presented.

• It is found that both the yield stress and strain hardening for all alloys are
very much dependent on temperature, but no noticeable dependence on the
strain rate can be found.

• Some tests show slightly different material behavior between the alloys stud-
ied. However, the results do not differ significantly from each other, and the
deviations are not seen from all tests, such that no distinctive difference with
respect to material behavior can be established.
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Calibration of material models: Three material models have been fitted to
the available database containing material data for a wide range of strain rates
and temperatures.

• The modified Johnson-Cook constitutive relation predicts in general too low
yield stress for tests within the complete range of temperatures and strain
rates. The fit for the strain hardening is far from adequate.

• The modified Zerilli-Armstrong model predicts much better results for the
yield stress, and the fit for the strain hardening is also improved.

• The combined BCC and FCC material model predicts both yield stress and
strain hardening very similar to the Zerilli-Armstrong model.

• The material model parameters were calibrated for two temperature ranges
of 293K − 850K and 450K − 850K, but the narrower temperature range did
not provide considerably better fit.

• It seems that the investigated models cannot be calibrated easily to an ade-
quately fit for a wide range of temperatures and strain rates with the proce-
dure used. A better fit could possible be found from camera measurements
for the entire range of temperatures and strain rates. However, the main
reason for the poor fit is believed to be that the material models studied are
too simple to predict correct stress within such a wide range of temperatures
and strain rates.

Numerical analysis: Numerical simulations of the SHTB experiments have not
been a major part of the work for this thesis. Still, some interesting results were
observed:

• The geometry of the neck, especially for ductile fracture and for large strain
values, is rather complex and require a high mesh density to be represented
adequately. Two meshes were created for the gauge section of the specimen,
and the refined mesh proved to predict different material behavior, especially
for large strain values and until fracture. The mesh density is believed to
be of uttermost importance for SHTB test simulations and in particular for
models incorporating fracture.

• The material model parameters implemented in LS-DYNA are also believed
to be of crucial importance to predict correct material behavior. The results
from the simulations did not coincide well with the experimental tests, but
unfortunately there was no time to investigate this further. It is believed that
the main reason for the deviations seen is the predicted strain hardening from
the material model.

• Simulations with and without damage coupling was run. Results from the
simulations with damage coupling show that fracture is predicted earlier,
and the shape of the strain wave measured by strain gauge 3 seems to be
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more coinciding with the experimental tests. However, it was not possible
to calibrate the damage coupling due to the large deviations seen between
simulations and experiments.
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8 Further Work

There are a lot of uncertainties associated with conducting experimental tests
at both elevated strain rates and temperatures. Many potential sources of error
may influence on the validity of the results obtained from such experiments and
has not been investigated thoroughly for this thesis. Heating of test specimens,
the temperature measuring, local measurement from camera recordings and the
correction of stress values after onset of necking may all be sources of error that
will lead to non-valid results obtained. A study on the validity of the results
obtained from such experiments would be of great interest. In particular, it might
be worthwhile to have a closer look to the part of the test setup which is related to
temperature. Such an investigation could involve the accuracy of the temperature
measurement and the homogeneity of the temperature field in the test specimen.

The main scope for this thesis has been to conduct experimental tests for a wide
range of temperatures and strain rates for the AA6060-L and AA6060-H alloy and
was unfortunately not obtained due to delayed manufacturing of test specimens. A
natural suggestion for further work will be to continue the work which was started
during this thesis. A complete database for quasi-static loading conditions and
for temperatures ranging from 293K to 633K exists now, but several experiments
in the split-Hopkinson tension bar is needed to also include a complete range of
strain rates.

Numerical modeling of the SHTB experiments was done for this thesis, but not a
major part of the work was devoted to this. Good results were obtained for the
strain hardening until the maximum value of strain the material model was fitted
for, but fracture was predicted too early. The believed reasons for this is discussed
in Section 6.4. Further work on this part would be of great interest to identify the
problems associated with the numerical simulations.
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A Historical Overview of SHTB Test Setups

In crash situations, automotive parts may be subjected to local strain rates of
order 102s−1 to 103s−1. It is necessary to have knowledge about the mechanical
properties of the materials when subjected to such load cases to be able to design
and analyze these structures. Most servo-hydraulic test machines cannot impose
strain rates higher than 1s−1, and it is therefore necessary to apply different tech-
niques to obtain such loading conditions and elevated strain rates. This Appendix
briefly summarizes the historical development of test setups for high strain rate
experiments and is taken from the book by Chen and Song [14].

Field et al. [22] reviewed several techniques for elevated strain rate experiments,
such as use of dropweights, the split-Hopkinson bar and the Taylor impact test.
The split-Hopkinson bar can be used for both tension, compression, torsion and
combined torsion and axial loading, and this seems to be the most adopted tech-
nique for obtaining crash relevant strain rates [14].

The first versions of split-Hopkinson bars for tension loading emerged in the 1960’s.
Harding et al. (1960) designed a test setup where the input bar was made of a
hollow tube with the test specimen assembled inside the tube. The specimen was
then stressed in tension by use of a mechanical joint that transferred the compres-
sion pulse into a tension pulse. A modified version was designed by Harding and
Welsh (1983) that was very similar to a design by Hauser (1966). All these test de-
signs transferred the external impact into axial tension loading, such that loading
devices from compression bar systems could be used directly. The most evident
weakness of such systems is that the entire tension setup is inside a solid tube,
thus making it difficult to mount instrumentation devices and visual observation
is very limited [14].

Another approach suggested by Lindholm and Yeakley (1968) was to mount a
“top hat” specimen between the incident bar and a hollow transmission tube. The
gauge section of the test specimen was loaded in tension when the compression
stress wave in the incident bar strikes the inside of the specimen geometry [14].

Nicholas (1981) proposed a design where the initial compression stress wave was
reflected back as a tensile wave after traveling to the free end of the transmission
bar and thus propagating back towards the specimen [14].

However, loading by direct tension is the most commonly used method. Direct
tension can be acquired in two different ways. One method is to store elastic
energy in the incident bar by stretching in tension, and thus releasing a tensile
stress wave when the elastic energy is abruptly released. The other method is to
generate kinetic energy to strike a flange at the end of the incident bar.
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B One-Dimensional Elastic Wave Theory

It is beneficial to have a minimum insight into longitudinal stress wave theory
to understand the derivations for the calculation of the response in the specimen
during a SHTB test. This Appendix serves this purpose.

Elastic wave propagation is a three-dimensional problem. However, the bars in a
typical SHTB test rig have a small diameter-to-length ratio such that all waves
but the longitudinal waves can be neglected [17]. Lateral inertia effects are also
neglected due to the same reasons. It is further assumed that both bars have elastic
material behavior and constant cross sectional area. With these assumptions taken
into account, the differential equation of the one-dimensional wave problem is
stated as:

∂2u

∂t2 = c2 ∂2u

∂x2 (B.1)

where u is the longitudinal displacement, x is the longitudinal coordinate along
the bar, t is time and c is the wave propagation velocity defined by:

c =

√
E

ρ
(B.2)

where E is Young’s modulus and ρ is the material density. Eq. (B.1) is a partial
differential equation that has solution on the form:

u(x, t) = f(x − ct) + g(x + ct) (B.3)

It can easily be verified that Eq. (B.3) satisfies Eq. (B.1) by substitution. The
strain in the bar is found by:

ε(x, t) =
∂u

∂x
= f ′(x − ct) + g′(x + ct) (B.4)

By the definition of Hooke’s law, the stress in the bar can be found as:

σ(x, t) = Eε(x, t) = E(f ′(x − ct) + g′(x + ct)) (B.5)
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B ONE-DIMENSIONAL ELASTIC WAVE THEORY

From Eqs. (B.3), (B.4) and (B.5) it is evident that both the displacement, strain
and stress state, in addition to the particle velocity, defined as:

v(x, t) =
∂u

∂t
= c(−f ′(x − ct) + g′(x + ct)) (B.6)

will move along the bar. It can be shown that f(x−ct) and g(x+ct) are functions
that represents a wave moving respectively in positive and negative x-direction
with respect to time. For a wave traveling in positive x-direction, Eq. (B.5) will
reduce to:

σ(x, t) = Ef ′(x − ct) = −E

c
v(x, t) = −ρcv(x, t) (B.7)

by substituting Eqs. (B.2) and (B.6) into Eq. (B.5). It is seen from Eq. (B.7)
that the particle velocity is negative for a stress wave moving in the positive x-
direction. Referring to Section 3.3, it is now shown that for the incident bar
stretched in tension, the wave will propagate towards the specimen while at the
same time particles will be moving in the opposite direction, thus the specimen
will be subjected to a tension load.
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C Calculation of Response in Test Specimen from
SHTB Tests

Figure C.1: Transition between bars and specimen [17]

Referring to Fig. C.1 and the definition of the incident, reflected and transmitted
strain from Section 3.2, in addition to the derivations in Appendix B, the strain
at position C can be defined as:

ε(xc, t) = f ′(xC − c0t) + g′(xC + c0t) = εI + εR (C.1)

since f ′ represents the incoming strain (εI) and g′ represents the reflected strain
(εR). From Eqs. (B.6) and (C.1), the particle velocity at position C can be
calculated:

v(xC , t) = c0(−f ′(xC − c0t) + g′(xC + c0t)) = c0(−εI + εR) (C.2)

The displacement at position C cannot be calculated analytically, but by numerical
integration of the velocity the displacement is found:

u(xc, t) =
tˆ

0

v(xC , τ)dτ = c0

tˆ

0

(−εI + εR)dτ (C.3)

When the strain in the bar at position C is known, the corresponding force can be
found:

F (xC , t) = E0A0ε(xC , t) = E0A0(εI + εR) (C.4)
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C CALCULATION OF RESPONSE IN TEST SPECIMEN FROM SHTB
TESTS

The particle velocity, displacement and force at position D can be calculated in the
same way as for position C. It is assumed that the specimen will fracture before
any waves will be reflected at the end of the transmission bar, thus strain gauge
3 will only measure the incoming transmitted stress wave εT . Using the same
considerations as for position C, and setting εI = εT and εR = 0, the particle
velocity, displacement and force at position D are found:

v(xD, t) = −c0εT (C.5)

u(xD, t) = −c0

tˆ

0

εT dτ (C.6)

F (xD, t) = E0A0εT (C.7)

Neglecting any inertia forces, equilibrium of the specimen yields that the force
at position C must equal the force at position D. Utilizing Eqs. (C.4) and (C.7)
yields:

εI + εR = εT (C.8)

This equilibrium relation can be used to ensure the accuracy of the measured
signals from a SHTB test. The stress in the specimen is found by dividing the
force at position D (or at position C) by the cross sectional area of the specimen:

σs =
Fs

As
=

F (xD, t)
As

=
E0A0

As
εT (C.9)

By assuming that all strains in the specimen take place in the gauge section (dis-
cussed in Section 4.1), and using the relation in Eq. (C.8), the strain in the
specimen can be calculated:

εs =
u(xD, t) − u(xc, t)

Ls
=

c0
Ls

tˆ

0

(−εT − (−εI + εR))dτ = −2
c0
Ls

tˆ

0

εRdτ (C.10)

The corresponding strain rate is simply the time derivative of the strain state:
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C CALCULATION OF RESPONSE IN TEST SPECIMEN FROM SHTB
TESTS

ε̇s =
∂εs

∂τ
= −2

c0
Ls

εR (C.11)
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D Matlab Scripts

D.1 Post-Processing of Data from Quasi-Static Tests

Script name Script/function Explanation

import_new_single.m Script Post-processing of exp. data from one test only

import_new_plot.m Script Post-processing of exp. data from two or three tests

together for comparison

import_new_double.m Script Post-processing of exp. data from two or three tests

engs_func_single.m Function Calculation of approx. engineering stress around the neck

for one test only

engs_func_plot.m Function Calculation of approx. engineering stress around the neck

for two or three tests

voce_test_single.m Function Calculation of the resulting approx. true stress parameters

by Voce hardening parameters for one test only

voce_test_plot.m Function Calculation of the resulting approx. true stress parameters

by Voce hardening parameters for two or three tests

voce_test_double.m Function Calculation of the resulting approx. true stress parameters

by Voce hardening parameters for the average curve

Table D.1: Overview of Matlab scripts for post-processing of data from quasi-
static tests

import_new_single.m:

1 %% Post−processing of experimental data (for 1 data set only)
2 % Input from files needed: force and displacement
3 clearvars −except parameters results
4 global eng_strain_calc eng_stress_calc plastic_strain ...

true_plastic_stress
5

6 %% Manual input
7 % REMEMBER TO CLEAR PARAMETERS AND RESULTS VARIABLES BEFORE NEW SERIES
8 test='Filename';
9 test_n=1;

10 test_tot=10;
11 temp=293;
12 path='path\exp_data';
13 path_save='path\save';
14 cd(path)
15 gauge_length=5;
16 d=3;
17 A0=pi*(d/2)^2;
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D.1 Post-Processing of Data from Quasi-Static Tests

18

19 %% Importing data
20 f1=[path test '.txt'];
21 fid = fopen(f1);
22 fseek(fid, 0, 'eof');
23 endpos = ftell(fid);
24 fseek(fid, 0, 'bof');
25 z=1;
26

27 while ftell(fid) ~= endpos;
28 tline = fgetl(fid);
29 nn=size(tline);
30 if z>2
31 data = sscanf(tline,'%f%f%f');
32 state(z−2,1)=data(1,1);
33 state(z−2,2)=data(2,1);
34 state(z−2,3)=data(3,1);
35 end
36 z=z+1;
37 end
38

39 fclose(fid);
40 time(:,1)=state(:,1);
41 force(:,1)=state(:,2)−state(1,2);
42 displacement(:,1)=state(:,3)−state(1,3);
43

44 %% Defining relevant data interval (beginning to end of test)
45 figure
46 plot(displacement,force)
47 title('Select data range to be used')
48 xlabel('Displacement (mm)')
49 ylabel('Force (kN)')
50 legend('Experimental data (raw)','Location','NorthEast')
51

52 pause on
53 [x,y]=ginput(2);
54 x5=x(1); x6=x(2);
55 close
56

57 pos1=find(min(abs(displacement−x5))==abs(displacement−x5),1);
58 pos2=find(min(abs(displacement−x6))==abs(displacement−x6),1);
59 eng_strain=displacement(pos1:pos2)/gauge_length;
60 eng_stress=force(pos1:pos2)*1000/A0;
61

62 %% Smoothing of eng. stress−strain for data interval (using 5 points)
63 eng_strain_smooth(1)=sum(eng_strain(1:2))/2;
64 eng_strain_smooth(2)=sum(eng_strain(1:3))/3;
65 eng_strain_smooth(length(eng_strain))=sum(eng_strain(end−1:end))/2;
66 eng_strain_smooth(length(eng_strain)−1)=sum(eng_strain(end−2:end))/3;
67 for i = 3:length(eng_strain)−2
68 eng_strain_smooth(i)=sum(eng_strain(i−2:i+2))/5;
69 end
70 eng_strain=eng_strain_smooth';
71

72 eng_stress_smooth(1)=sum(eng_stress(1:2))/2;
73 eng_stress_smooth(2)=sum(eng_stress(1:3))/3;
74 eng_stress_smooth(length(eng_stress))=sum(eng_stress(end−1:end))/2;
75 eng_stress_smooth(length(eng_stress)−1)=sum(eng_stress(end−2:end))/3;
76 for i = 3:length(eng_stress)−2
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77 eng_stress_smooth(i)=sum(eng_stress(i−2:i+2))/5;
78 end
79 eng_stress=eng_stress_smooth';
80

81 %% Determing the elastic tangent modulus
82 figure
83 plot(eng_strain,eng_stress)
84 xlabel('Engineering strain')
85 ylabel('Engineering stress (MPa)')
86 title('Select data range for determining E−modulus + yield stress')
87 legend('Experimental data','Location','NorthEast')
88 axis([−0.1 max(eng_strain)*1.1 −10 max(eng_stress)*1.1])
89

90 pause on
91 [x,y]=ginput(2);
92 x5=x(1); x6=x(2);
93 close
94

95 pos1=find(min(abs(eng_strain−x5))==abs(eng_strain−x5),1);
96 pos2=find(min(abs(eng_strain−x6))==abs(eng_strain−x6),1);
97 pos1_r=pos1;
98 pos2_r=pos2;
99

100 figure
101 plot(eng_strain(pos1:pos2),eng_stress(pos1:pos2))
102 xlabel('Engineering strain')
103 ylabel('Engineering stress (MPa)')
104 title('Select data range for E−modulus')
105 legend('Experimental data','Location','NorthEast')
106 axis([0 eng_strain(pos2) 0 max(eng_stress(pos1:pos2))])
107

108 pause on
109 [x,y]=ginput(2);
110 x5=x(1); x6=x(2);
111

112 pos1=find(min(abs(eng_strain−x5))==abs(eng_strain−x5),1);
113 pos2=find(min(abs(eng_strain−x6))==abs(eng_strain−x6),1);
114 E_x=eng_strain(pos1:pos2);
115 E_y=eng_stress(pos1:pos2);
116 P=polyfit(E_x,E_y,1);
117 E_calc_x_min=min(eng_strain);
118 E_calc_x_max=eng_strain(find(eng_stress==max(eng_stress),1));
119 E_calc_x=linspace(E_calc_x_min,E_calc_x_max,100);
120 E_calc_y=P(2)+P(1).*E_calc_x;
121 E_calc_x_end=find(min(abs(E_calc_y−max(eng_stress)))==...
122 abs(E_calc_y−max(eng_stress)));
123 E_calc_x_start=find(abs(E_calc_y)==min(abs(E_calc_y)));
124 E_meas=(E_calc_y(end)−E_calc_y(1))/(E_calc_x(end)−E_calc_x(1));
125 hold on
126 plot(E_calc_x(E_calc_x_start:E_calc_x_end),E_calc_y...
127 (E_calc_x_start:E_calc_x_end),'r')
128 legend('Experimental data','Elastic tangent ...

modulus','Location','NorthEast')
129

130 %% Translating start of straining to origo
131 eps_var=eng_strain(pos1)−eng_stress(pos1)/E_meas;
132 eng_strain_corr(1)=0;
133 eng_strain_corr(2)=eng_stress(pos1)/E_meas;
134 eng_strain_corr(3:length(eng_strain(pos1:end))+2)=...
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135 eng_strain(pos1:end)−eps_var;
136 eng_stress_corr(1)=0;
137 eng_stress_corr(2)=eng_stress(pos1);
138 eng_stress_corr(3:length(eng_stress(pos1:end))+2)=eng_stress(pos1:end);
139 eng_strain=eng_strain_corr;
140 eng_stress=eng_stress_corr;
141

142 %% Correction of Young's modulus
143 E_corr=(−3.9*exp(0.0033*temp)+79)*1000;
144 eng_strain_corr=eng_strain−eng_stress.*((E_corr−E_meas)/...
145 (E_corr*E_meas));
146

147 %% Determing the yield point
148 pos2_r_new=pos2_r−pos1+2;
149 figure
150 hold on
151 plot(eng_strain(1:pos2_r_new),eng_stress(1:pos2_r_new),'b')
152 plot(E_calc_x(E_calc_x_start:E_calc_x_end)−eps_var,E_calc_y...
153 (E_calc_x_start:E_calc_x_end),'r')
154 plot(eng_strain_corr(1:pos2_r_new),eng_stress(1:pos2_r_new),...
155 'Color',[0 0.5 0])
156 title('Determine the yield point (for the uncorrected curve)')
157 xlabel('Engineering strain')
158 ylabel('Engineering stress (MPa)')
159 legend('Uncorrected strain values','Elastic tangent ...

modulus','Corrected strain values','Location','SouthEast')
160

161 pause on
162 [x,y]=ginput(1);
163 x5=x(1);
164 close all
165

166 ypos=find(min(abs(eng_strain−x5))==abs(eng_strain−x5),1);
167 eng_strain=eng_strain_corr;
168 true_strain=log(1+eng_strain);
169 true_stress=eng_stress.*(1+eng_strain);
170

171 %% Curve fitting of engineering stress−strain curve (for ...
determination of necking point)

172 figure
173 plot(eng_strain,eng_stress)
174 xlabel('Engineering strain')
175 ylabel('Engineering stress (MPa)')
176 title('Define data range for defining necking point')
177 legend('Experimental data','Location','NorthEast')
178

179 pause on
180 [x,y]=ginput(2);
181 x5=x(1); x6=x(2);
182 close
183

184 pos1=find(min(abs(eng_strain−x5))==abs(eng_strain−x5),1);
185 pos2=find(min(abs(eng_strain−x6))==abs(eng_strain−x6),1);
186 eng_strain_calc=eng_strain(pos1:pos2);
187 eng_stress_calc=eng_stress(pos1:pos2);
188

189 A0=5; B0=5; C0=5; D0=5;
190 eng_strain_0=[A0 B0 C0 D0];
191 lowerb=[−1000 −1000 −1000 −1000];
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192 upperb=[1000 1000 1000 1000];
193

194 options = optimset('TolFun', 1e−1000, 'TolX', 1e−1000, ...
'MaxFunEvals',100000,'MaxIter',100000, 'PlotFcns', ...
@optimplotresnorm);

195 [eng_strain_cal(1:4),eng_strain_cal(5)] = ...
lsqnonlin(@engs_func_single,eng_strain_0,lowerb,upperb,options);

196 close
197

198 eng_strain_lin=linspace(min(eng_strain_calc),max(eng_strain_calc),100);
199 eng_stress_calc_new=eng_strain_cal(1)+eng_strain_cal(2).*...
200 eng_strain_lin+eng_strain_cal(3).*eng_strain_lin.^2+...
201 eng_strain_cal(4).*eng_strain_lin.^3;
202 np=find(eng_stress_calc_new==max(eng_stress_calc_new),1);
203 np_strain=eng_strain_lin(np);
204 np_x_h=eng_strain_lin;
205 np_y_h=ones(length(eng_strain_lin))*max(eng_stress_calc_new);
206 np_x_v=[eng_strain_lin(np) eng_strain_lin(np)];
207 np_y_v=[min(eng_stress_calc_new) ...

min(eng_stress_calc_new)+(max(eng_stress_calc_new)−...
208 min(eng_stress_calc_new))*2];
209

210 figure
211 plot(eng_strain_calc,eng_stress_calc,eng_strain_lin,...
212 eng_stress_calc_new,np_x_h,np_y_h,'r−−',np_x_v,np_y_v,'r−−')
213 legend('Experimental data', 'Calculated curve','Necking point')
214 xlabel('Engineering strain')
215 ylabel('Engineering stress (MPa)')
216

217 %% Engineering stress−strain from start −−> onset of necking
218 np_eng=find(min(abs(eng_strain−np_strain))==abs(eng_strain−...
219 np_strain),1); %position of necking point in eng_strain vector
220 eng_strain_np=eng_strain(1:np_eng);
221 eng_stress_np=eng_stress(1:np_eng);
222

223 %% True stress−strain from start −−> onset of necking
224 np_strain_true=log(1+np_strain);
225 np_true=find(min(abs(true_strain−np_strain_true))==...
226 abs(true_strain−np_strain_true),1);
227 true_strain_np=true_strain(1:np_true);
228 true_stress_np=true_stress(1:np_true);
229

230 %% Plotting of eng. stress−strain and true stress−strain until ...
onset of necking

231 figure
232 plot(eng_strain_np,eng_stress_np,true_strain_np,true_stress_np)
233 legend('Eng. stress−strain until necking', 'True stress−strain ...

until necking', 'Location', 'SouthEast')
234

235 %% True stress−plastic strain from yield to necking
236 plastic_strain=true_strain(ypos:np_true)−true_strain(ypos);
237 true_plastic_stress=true_stress(ypos:np_true);
238

239 %% Calculating Voce−rule parameters
240 sigY_0=50; Q1_0=50; C1_0=10; Q2_0=20; C2_0=40;
241 voce_0=[sigY_0 Q1_0 C1_0 Q2_0 C2_0];
242 lowerb=[−1000 −1000 −1000 −1000 −1000 −1000];
243 upperb=[1000 1000 1000 1000 1000 1000];
244
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245 [voce(1:5),voce(6)] = ...
lsqnonlin(@voce_test_single,voce_0,lowerb,upperb,options);

246 close all
247

248 parameters(1:test_tot,1)=1:test_tot;
249 parameters(test_n,2)=true_stress(ypos);
250 parameters(test_n,3:7)=voce(1:5);
251 parameters(test_n,8)=max(plastic_strain);
252

253 %% Plotting the resulting true stress−plastic strain curve from ...
Voce parameters

254 plastic_strain_new=linspace(0,max(plastic_strain),100);
255 voce_stress=voce(1)+voce(2).*(1−exp(−voce(3).*plastic_strain_new))+...
256 voce(4).*(1−exp(−voce(5).*plastic_strain_new));
257 hFig=figure;
258 hAxes=axes;
259 hold on
260 plot(plastic_strain_new,voce_stress,'b','LineWidth',2)
261 plot(plastic_strain,true_plastic_stress,'r','LineWidth',1)
262 legend('Adaption to model', 'Experimental ...

test','Location','SouthEast')
263 xlabel('Plastic strain, \epsilon_p')
264 ylabel('True stress, \sigma_t (MPa)')
265 axis([0 ceil(max(plastic_strain_new)*1.1/0.01)*0.01 0 ...

ceil(max(voce_stress)*1.1/10)*10])
266

267 %% Saving last figure to directory
268 cd(path_save)
269 filename=sprintf('Test−0%g−(true_stress).eps',test_n);
270 save_figure_small(filename,hFig,hAxes)
271

272 %% Plotting the corrected eng. stress−strain curve
273 hFig=figure;
274 hAxes=axes;
275 plot(eng_strain,eng_stress,'r','LineWidth',2)
276 legend('Experimental test','Location','NorthEast')
277 xlabel('Engineering strain, \epsilon_e')
278 ylabel('Engineering stress, \sigma_e (MPa)')
279 axis([0 ceil(max(eng_strain)*1.1/0.1)*0.1 0 ...

ceil(max(eng_stress)*1.1/10)*10])
280

281 %% Saving last figure to directory
282 filename=sprintf('Test−0%g−(eng_stress).eps',test_n);
283 save_figure_small(filename,hFig,hAxes)
284

285 %% Saving stress−strains in "results" array
286 results{test_n}(1:length(eng_strain),1)=eng_strain;
287 results{test_n}(1:length(eng_stress),2)=eng_stress;
288 results{test_n}(1:length(true_strain_np),3)=true_strain_np;
289 results{test_n}(1:length(true_stress_np),4)=true_stress_np;
290 results{test_n}(1:length(plastic_strain),5)=plastic_strain;
291 results{test_n}(1:length(true_plastic_stress),6)=true_plastic_stress;
292 results{test_n}(1:length(plastic_strain_new),7)=plastic_strain_new;
293 results{test_n}(1:length(voce_stress),8)=voce_stress;
294

295 %% Saving of calculations to .xlsx and .mat files
296 if test_n(end)==test_tot
297 parameters_xlsx_string=arrayfun(@num2str, parameters, 'unif', 0);
298
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299 parameters_xlsx = {'Parameters for yield stress + Voce ...
hardening and max plastic strain at onset of necking', '', ...
'', '','','','',''; ...

300 'Test number' '\sigma_Y (directly)', '\sigma_Y', 'Q_1', ...
'C_1', 'Q_2', 'C_2', 'Max. plastic strain'};

301 parameters_xlsx(3:size(parameters,1)+2,1:8)=parameters_xlsx_string;
302 xlswrite('parameters.xlsx', parameters_xlsx);
303

304 save('parameters', 'parameters')
305 save('results', 'results')
306 end
307 cd('C:\Users\Eivind\Documents\MATLAB\Post−process QS')

import_new_plot.m:

1 %% Post−processing of experimental data (for 2 or 3 data sets)
2 % Input from files needed: force and displacement
3 clearvars −except parameters results
4 global eng_strain_calc_plot eng_stress_calc_plot ...

plastic_strain_plot true_plastic_stress_plot i
5

6 %% Manual input
7 % REMEMBER TO CLEAR PARAMETERS AND RESULTS VARIABLES BEFORE NEW SERIES
8 test(1,:)=strcat('Filename1');
9 test(2,:)=strcat('Filename2');

10 test(3,:)=strcat('Filename3');
11 test_n=[1 2 3];
12 test_tot=10;
13 temp=293;
14 path='path\exp_data';
15 path_save='path\save\';
16 gauge_length=5;
17 d=3;
18 A0=pi*(d/2)^2;
19

20 %% Importing data
21 for i = 1:length(test_n)
22 clear state
23 f1=[path test(i,:) '.txt'];
24 fid = fopen(f1);
25 fseek(fid, 0, 'eof');
26 endpos = ftell(fid);
27 fseek(fid, 0, 'bof');
28 z=1;
29

30 while ftell(fid) ~= endpos;
31 tline = fgetl(fid);
32 nn=size(tline);
33 if z>2
34 data = sscanf(tline,'%f%f%f');
35 state(z−2,1)=data(1,1);
36 state(z−2,2)=data(2,1);
37 state(z−2,3)=data(3,1);
38 end
39 z=z+1;
40 end
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41

42 fclose(fid);
43 time{i}=state(:,1);
44 force{i}=state(:,2)−state(1,2);
45 displacement{i}=state(:,3)−state(1,3);
46 end
47

48 %% Defining relevant data interval (beginning to end of test)
49 for i = 1:length(test_n)
50 hFig=figure;
51 hAxes=axes;
52 plot(displacement{i},force{i})
53 str = sprintf('Select data range to be used (test ...

#%g)',test_n(i));
54 title(str);
55 xlabel('Displacement, u (mm)')
56 ylabel('Force, F (kN)')
57 legend('Experimental data','Location','NorthEast')
58

59 pause on
60 [x,y]=ginput(2);
61 x5(i)=x(1); x6(i)=x(2);
62 close
63

64 pos1(i)=find(min(abs(displacement{i}−x5(i)))==...
65 abs(displacement{i}−x5(i)),1);
66 pos2(i)=find(min(abs(displacement{i}−x6(i)))==...
67 abs(displacement{i}−x6(i)),1);
68 eng_strain{i}=displacement{i}(pos1(i):pos2(i))/gauge_length;
69 eng_stress{i}=force{i}(pos1(i):pos2(i))*1000/A0;
70 end
71

72 %% Smoothing of eng stress−strain for data interval (using 5 points)
73 for i = 1:length(test_n)
74 eng_strain_smooth{i}(1)=sum(eng_strain{i}(1:2))/2;
75 eng_strain_smooth{i}(2)=sum(eng_strain{i}(1:3))/3;
76 eng_strain_smooth{i}(length(eng_strain{i}))=...
77 sum(eng_strain{i}(end−1:end))/2;
78 eng_strain_smooth{i}(length(eng_strain{i})−1)=...
79 sum(eng_strain{i}(end−2:end))/3;
80 for j = 3:length(eng_strain{i})−2
81 eng_strain_smooth{i}(j)=sum(eng_strain{i}(j−2:j+2))/5;
82 end
83 eng_strain{i}=eng_strain_smooth{i}';
84

85 eng_stress_smooth{i}(1)=sum(eng_stress{i}(1:2))/2;
86 eng_stress_smooth{i}(2)=sum(eng_stress{i}(1:3))/3;
87 eng_stress_smooth{i}(length(eng_stress{i}))=...
88 sum(eng_stress{i}(end−1:end))/2;
89 eng_stress_smooth{i}(length(eng_stress{i})−1)=...
90 sum(eng_stress{i}(end−2:end))/3;
91 for j = 3:length(eng_stress{i})−2
92 eng_stress_smooth{i}(j)=sum(eng_stress{i}(j−2:j+2))/5;
93 end
94 eng_stress{i}=eng_stress_smooth{i}';
95 end
96

97 %% Determing the elastic tangent modulus
98 for i = 1:length(test_n)
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99 figure
100 plot(eng_strain{i},eng_stress{i})
101 xlabel('Engineering strain')
102 ylabel('Engineering stress (MPa)')
103 title('Select data range for determining E−modulus + yield ...

stress')
104 legend('Experimental data','Location','NorthEast')
105 axis([−0.1 max(eng_strain{i})*1.1 −10 max(eng_stress{i})*1.1])
106

107 pause on
108 [x,y]=ginput(2);
109 x5=x(1); x6=x(2);
110 close
111

112 pos1_int(i)=find(min(abs(eng_strain{i}−x5))==...
113 abs(eng_strain{i}−x5),1);
114 pos2_int(i)=find(min(abs(eng_strain{i}−x6))==...
115 abs(eng_strain{i}−x6),1);
116 end
117

118 for i = 1:length(test_n)
119 figure
120 plot(eng_strain{i}(pos1_int(i):pos2_int(i)),...
121 eng_stress{i}(pos1_int(i):pos2_int(i)))
122 xlabel('Engineering strain')
123 ylabel('Engineering stress (MPa)')
124 str = sprintf('Select data range for E−modulus (test ...

#%g)',test_n(i));
125 title(str);
126 legend('Experimental data','Location','NorthEast')
127 axis([eng_strain{i}(pos1_int(i)) eng_strain{i}(pos2_int(i)) 0 ...

max(eng_stress{i}(pos1_int(i):pos2_int(i)))])
128

129 pause on
130 [x,y]=ginput(2);
131 x5(i)=x(1); x6(i)=x(2);
132

133 pos1=find(min(abs(eng_strain{i}−x5(i)))==...
134 abs(eng_strain{i}−x5(i)),1);
135 pos2=find(min(abs(eng_strain{i}−x6(i)))==...
136 abs(eng_strain{i}−x6(i)),1);
137 E_x{i}=eng_strain{i}(pos1:pos2);
138 E_y{i}=eng_stress{i}(pos1:pos2);
139 P(:,i)=polyfit(E_x{i},E_y{i},1);
140 E_calc_x_min(i)=min(eng_strain{i});
141 E_calc_x_max(i)=eng_strain{i}(find(eng_stress{i}==...
142 max(eng_stress{i}),1));
143 E_calc_x{i}=linspace(E_calc_x_min(i),E_calc_x_max(i),100);
144 E_calc_y{i}=P(2,i)+P(1,i).*E_calc_x{i};
145 E_calc_x_end(i)=find(min(abs(E_calc_y{i}−max(eng_stress{i})))...
146 ==abs(E_calc_y{i}−max(eng_stress{i})));
147 E_calc_x_start(i)=find(abs(E_calc_y{i})==min(abs(E_calc_y{i})));
148 E_meas(i)=(E_calc_y{i}(end)−E_calc_y{i}(1))/(E_calc_x{i}(end)−...
149 E_calc_x{i}(1));
150 hold on
151 plot(E_calc_x{i}(E_calc_x_start(i):E_calc_x_end(i)),E_calc_y{i}...
152 (E_calc_x_start(i):E_calc_x_end(i)),'r')
153 legend('Experimental data','Elastic tangent ...

modulus','Location','NorthEast')
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154

155 %% Translating start of straining to origo
156 eps_var(i)=eng_strain{i}(pos1)−eng_stress{i}(pos1)/E_meas(i);
157 eng_strain_corr{i}(1)=0;
158 eng_strain_corr{i}(2)=eng_stress{i}(pos1)/E_meas(i);
159 eng_strain_corr{i}(3:length(eng_strain{i}(pos1:end))+2)=...
160 eng_strain{i}(pos1:end)−eps_var(i);
161 eng_stress_corr{i}(1)=0;
162 eng_stress_corr{i}(2)=eng_stress{i}(pos1);
163 eng_stress_corr{i}(3:length(eng_stress{i}(pos1:end))+2)=...
164 eng_stress{i}(pos1:end);
165 eng_strain{i}=eng_strain_corr{i};
166 eng_stress{i}=eng_stress_corr{i};
167

168 %% Correction of Young's modulus
169 E_corr=(−3.9*exp(0.0033*temp)+79)*1000;
170 eng_strain_corr{i}=eng_strain{i}−eng_stress{i}.*...
171 ((E_corr−E_meas(i))/(E_corr*E_meas(i)));
172

173 %% Determing the yield point
174 pos2_int_new(i)=pos2_int(i)−pos1+2;
175 figure
176 hold on
177 plot(eng_strain{i}(1:pos2_int_new(i)),eng_stress{i}...
178 (1:pos2_int_new(i)))
179 plot(eng_strain_corr{i}(1:pos2_int_new(i)),eng_stress{i}...
180 (1:pos2_int_new(i)),'Color',[0 0.5 0])
181 plot(E_calc_x{i}(E_calc_x_start(i):E_calc_x_end(i))−eps_var(i),...
182 E_calc_y{i}(E_calc_x_start(i):E_calc_x_end(i)),'r')
183 str = sprintf('Define yield point (for the uncorrected curve) ...

(test #%g)',test_n(i));
184 title(str);
185 xlabel('Engineering strain, \epsilon_e')
186 ylabel('Engineering stress, \sigma_e (MPa)')
187 legend('Uncorrected strain values','Corrected strain ...

values','Elastic tangent modulus','Location','SouthEast')
188

189 pause on
190 [x,y]=ginput(1); x5(i)=x(1);
191 close all
192

193 ypos(i)=find(min(abs(eng_strain{i}−x5(i)))==...
194 abs(eng_strain{i}−x5(i)),1);
195 eng_strain{i}=eng_strain_corr{i};
196 true_strain{i}=log(1+eng_strain{i});
197 true_stress{i}=eng_stress{i}.*(1+eng_strain{i});
198 end
199

200 %% Curve fitting of engineering stress−strain curve (for ...
determination of necking point)

201 clear eng_strain_calc
202 clear eng_stress_calc
203 clear eng_calc
204 for i = 1:length(test_n)
205 figure
206 plot(eng_strain{i},eng_stress{i},'LineWidth',1.5)
207 xlabel('Engineering strain, \epsilon_e')
208 ylabel('Engineering stress, \sigma_e (MPa)')
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209 str = sprintf('Define data range for defining necking point ...
(test #%g)',test_n(i));

210 title(str);
211 legend('Experimental test','Location','NorthEast')
212

213 pause on
214 [x,y]=ginput(2);
215 x5(i)=x(1); x6(i)=x(2);
216 close
217

218 pos1(i)=find(min(abs(eng_strain{i}−x5(i)))==...
219 abs(eng_strain{i}−x5(i)),1);
220 pos2(i)=find(min(abs(eng_strain{i}−x6(i)))==...
221 abs(eng_strain{i}−x6(i)),1);
222 eng_strain_calc_plot{i}=eng_strain{i}(pos1(i):pos2(i));
223 eng_stress_calc_plot{i}=eng_stress{i}(pos1(i):pos2(i));
224

225 A0=5; B0=5; C0=5; D0=5;
226 eng_strain_plot_0=[A0 B0 C0 D0];
227 lowerb=[−1000 −1000 −1000 −1000];
228 upperb=[1000 1000 1000 1000];
229

230 options = optimset('TolFun', 1e−1000, 'TolX', 1e−1000, ...
'MaxFunEvals',100000,'MaxIter',100000, 'PlotFcns', ...
@optimplotresnorm);

231 [eng_strain_cal_plot(1:4,i),eng_strain_cal_plot(5,i)] = ...
lsqnonlin(@engs_func_plot,eng_strain_plot_0,lowerb,upperb,...

232 options);
233 close
234

235 eng_strain_lin{i}=linspace(min(eng_strain_calc_plot{i}),...
236 max(eng_strain_calc_plot{i}),100);
237 eng_stress_calc_new{i}=eng_strain_cal_plot(1,i)+...
238 eng_strain_cal_plot(2,i).*eng_strain_lin{i}+...
239 eng_strain_cal_plot(3,i).*eng_strain_lin{i}.^2+...
240 eng_strain_cal_plot(4,i).*eng_strain_lin{i}.^3;
241 np=find(eng_stress_calc_new{i}==max(eng_stress_calc_new{i}),1);
242 np_strain(i)=eng_strain_lin{i}(np);
243 np_x_h=eng_strain_lin{i};
244 np_y_h=ones(length(eng_strain_lin{i}))*max(eng_stress_calc_new{i});
245 np_x_v=[eng_strain_lin{i}(np) eng_strain_lin{i}(np)];
246 np_y_v=[min(eng_stress_calc_new{i}) ...

min(eng_stress_calc_new{i})+(max(eng_stress_calc_new{i})−...
247 min(eng_stress_calc_new{i}))*2];
248

249 figure
250 hold on
251 plot(eng_strain_calc_plot{i},eng_stress_calc_plot{i},'LineWidth',1)
252 plot(eng_strain_lin{i},eng_stress_calc_new{i},'Color',[0 0.5 ...

0],'LineWidth',1)
253 plot(np_x_h,np_y_h,'r−−','LineWidth',1.5)
254 plot(np_x_v,np_y_v,'r−−','LineWidth',1.5)
255 legend('Experimental test', 'Approx. polynomial', 'Necking point')
256 xlabel('Engineering strain, \epsilon_e')
257 ylabel('Engineering stress, \sigma_e (MPa)')
258 end
259

260 %% Engineering stress−strain from start −−> onset of necking
261 for i = 1:length(test_n)
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262 np_eng(i)=find(min(abs(eng_strain{i}−np_strain(i)))==...
263 abs(eng_strain{i}−np_strain(i)),1); %position of necking ...

point in eng_strain vector
264 eng_strain_np{i}=eng_strain{i}(1:np_eng(i));
265 eng_stress_np{i}=eng_stress{i}(1:np_eng(i));
266

267 %% True stress−strain from start −−> onset of necking
268 np_strain_true(i)=log(1+np_strain(i));
269 np_true(i)=find(min(abs(true_strain{i}−np_strain_true(i)))==...
270 abs(true_strain{i}−np_strain_true(i)),1);
271 true_strain_np{i}=true_strain{i}(1:np_true(i));
272 true_stress_np{i}=true_stress{i}(1:np_true(i));
273

274 %% Plotting of eng. stress−strain and true stress−strain until ...
onset of necking

275 figure
276 plot(eng_strain_np{i},eng_stress_np{i},true_strain_np{i},...
277 true_stress_np{i})
278 legend('Eng. stress−strain until necking', 'True stress−strain ...

until necking', 'Location', 'SouthEast')
279 str = sprintf('Stress−strain curves (test #%g)',test_n(i));
280 title(str);
281

282 %% True stress−plastic strain from yield to necking
283 plastic_strain_plot{i}=true_strain{i}(ypos(i):np_true(i))−...
284 true_strain{i}(ypos(i));
285 true_plastic_stress_plot{i}=true_stress{i}(ypos(i):np_true(i));
286 end
287

288 %% Calculating Voce−rule parameters
289 sigY_0=50; Q1_0=50; C1_0=10; Q2_0=20; C2_0=40;
290

291 voce_plot_0=[sigY_0 Q1_0 C1_0 Q2_0 C2_0];
292 lowerb=[−1000 −1000 −1000 −1000 −1000 −1000];
293 upperb=[1000 1000 1000 1000 1000 1000];
294

295 for i = 1:length(test_n)
296 [voce_plot(1:5,i),voce_plot(6,i)] = ...

lsqnonlin(@voce_test_plot,voce_plot_0,lowerb,upperb,options);
297 close all
298 %% Saving of Voce parameters etc
299 parameters(1:test_tot,1)=1:test_tot;
300 parameters(test_n(i),2)=true_plastic_stress_plot{i}(1);
301 parameters(test_n(i),3:7)=voce_plot(1:5,i);
302 parameters(test_n(i),8)=plastic_strain_plot{i}(end);
303 end
304

305 cd(path_save)
306 %% Plotting the resulting true stress−plastic strain curves for ...

all tests from Voce parameters
307 hFig=figure;
308 hAxes=axes;
309 for i = 1:length(test_n)
310 plastic_strain_new{i}=linspace(0,max(plastic_strain_plot{i}),100);
311 voce_stress{i}=voce_plot(1,i)+voce_plot(2,i).*...
312 (1−exp(−voce_plot(3,i).*plastic_strain_new{i}))+...
313 voce_plot(4,i).*(1−exp(−voce_plot(5,i).*plastic_strain_new{i}))
314 hold on
315 max_plastic_strain(i)=max(plastic_strain_new{i});
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316 max_voce_stress(i)=max(voce_stress{i});
317 if i==1
318 plot(plastic_strain_plot{i},true_plastic_stress_plot{i},'r',...
319 plastic_strain_new{i},voce_stress{i},'−−r')
320 elseif i==2
321 plot(plastic_strain_plot{i},true_plastic_stress_plot{i},...
322 'Color',[0 0.5 0],'LineStyle','−')
323 plot(plastic_strain_new{i},voce_stress{i},'Color',[0 0.5 ...

0],'LineStyle','−−')
324 else
325 plot(plastic_strain_plot{i},true_plastic_stress_plot{i},'b',...
326 plastic_strain_new{i},voce_stress{i},'−−b')
327 end
328 str1(i,:) = sprintf('Experimental test (test #%g)',test_n(i));
329 str2(i,:) = sprintf('Adaption to model (test #%g)',test_n(i));
330 end
331 xlabel('Plastic strain, \epsilon_p')
332 ylabel('True stress, \sigma_t (MPa)')
333 axis([0 ceil(max(max_plastic_strain)*1.1/0.01)*0.01 0 ...

ceil(max(max_voce_stress)*1.1/10)*10])
334 if length(test_n)==2
335 legend(str1(1,:), str2(1,:),str1(2,:), ...

str2(2,:),'Location','SouthEast');
336 elseif length(test_n)==3
337 legend(str1(1,:), str2(1,:),str1(2,:), str2(2,:), str1(3,:), ...

str2(3,:), 'Location','SouthEast');
338 for i = 1:2
339 if i==1
340 %% Saving last figure to directory
341 filename=sprintf('Test−0%g−0%g−0%g−(1).eps',test_n(1), ...

test_n(2), test_n(3));
342 save_figure_small(filename,hFig,hAxes)
343 else
344 axis auto
345 xlim([0 ceil(max(max_plastic_strain)*1.1/0.01)*0.01])
346 %% Saving last figure to directory
347 filename=sprintf('Test−0%g−0%g−0%g−(2).eps',test_n(1), ...

test_n(2), test_n(3));
348 save_figure_small(filename,hFig,hAxes)
349 end
350 end
351 else disp('Code is not valid!')
352 end
353

354 %%
355 for i = 1:length(test_n)
356 %% Plotting the resulting true stress−plastic strain curve ...

from Voce parameters
357 hFig=figure;
358 hAxes=axes;
359 hold on
360 plot(plastic_strain_new{i},voce_stress{i},'b','LineWidth',2)
361 plot(plastic_strain_plot{i},true_plastic_stress_plot{i},'r',...
362 'LineWidth',1)
363 legend('Adaption to model','Experimental ...

test','Location','SouthEast')
364 xlabel('Plastic strain, \epsilon_p')
365 ylabel('True stress, \sigma_t (MPa)')
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366 axis([0 ceil(max(plastic_strain_new{i})*1.1/0.01)*0.01 0 ...
ceil(max(voce_stress{i})*1.1/10)*10])

367

368 %% Saving last figure to directory
369 filename=sprintf('Test−0%g−(true_stress).eps',test_n(i));
370 save_figure_small(filename,hFig,hAxes)
371

372 %% Plotting the corrected eng. stress−strain curve
373 hFig=figure;
374 hAxes=axes;
375 plot(eng_strain{i},eng_stress{i},'r','LineWidth',2)
376 legend('Experimental test','Location','NorthEast')
377 xlabel('Engineering strain, \epsilon_e')
378 ylabel('Engineering stress, \sigma_e (MPa)')
379 axis([0 ceil(max(eng_strain{i})*1.1/0.1)*0.1 0 ...

ceil(max(eng_stress{i})*1.1/10)*10])
380

381 %% Saving last figure to directory
382 filename=sprintf('Test−0%g−(eng_stress).eps',test_n(i));
383 save_figure_small(filename,hFig,hAxes)
384 end
385

386 %% Saving stress−strains in "results" array
387 for i = 1:length(test_n)
388 results{test_n(i)}(1:length(eng_strain_np{i}),1)=eng_strain_np{i};
389 results{test_n(i)}(1:length(eng_stress_np{i}),2)=eng_stress_np{i};
390 results{test_n(i)}(1:length(true_strain_np{i}),3)=true_strain_np{i}
391 results{test_n(i)}(1:length(true_stress_np{i}),4)=true_stress_np{i}
392 results{test_n(i)}(1:length(plastic_strain_plot{i}),5)=...
393 plastic_strain_plot{i};
394 results{test_n(i)}(1:length(true_plastic_stress_plot{i}),6)=...
395 true_plastic_stress_plot{i};
396 results{test_n(i)}(1:length(plastic_strain_new{i}),7)=...
397 plastic_strain_new{i};
398 results{test_n(i)}(1:length(voce_stress{i}),8)=voce_stress{i};
399 end
400 cd('path\')

import_new_double.m:

1 %% Post−processing of experimental data (for 2 or 3 data sets)
2 global plastic_strain_new2 voce_stress_new
3

4 %% Manual input
5 % REMEMBER TO CLEAR PARAMETERS AND RESULTS VARIABLES BEFORE NEW SERIES
6 test_n_fit=[1 2];
7

8 %% Calculations
9 test_pos1=find(test_n_fit(1)==test_n);

10 test_pos2=find(test_n_fit(2)==test_n);
11 eps_p_max1=max(plastic_strain_plot{test_pos1});
12 eps_p_max2=max(plastic_strain_plot{test_pos2});
13 eps_p_max_min=min([eps_p_max1 eps_p_max2]);
14 eps_p_max_max=max([eps_p_max1 eps_p_max2]);
15 plastic_strain_new2=linspace(0,eps_p_max_min,100);
16 voce_stress_db(:,1)=voce_plot(1,test_pos1)+voce_plot(2,test_pos1).*...
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17 (1−exp(−voce_plot(3,test_pos1).*plastic_strain_new2))+...
18 voce_plot(4,test_pos1).*(1−exp(−voce_plot(5,test_pos1).*...
19 plastic_strain_new2));
20 voce_stress_db(:,2)=voce_plot(1,test_pos2)+voce_plot(2,test_pos2).*...
21 (1−exp(−voce_plot(3,test_pos2).*plastic_strain_new2))+...
22 voce_plot(4,test_pos2).*(1−exp(−voce_plot(5,test_pos2).*...
23 plastic_strain_new2));
24 voce_stress_db(:,3)=(voce_stress_db(:,1)+voce_stress_db(:,2))/2;
25 voce_stress_new=voce_stress_db(:,3);
26

27 options = optimset('TolFun', 1e−1000, 'TolX', 1e−1000, ...
'MaxFunEvals',100000,'MaxIter',100000, 'PlotFcns', ...
@optimplotresnorm);

28 [voce_new(1:5),voce_new(6)] = ...
lsqnonlin(@voce_test_double,voce_plot_0,lowerb,upperb,options);

29

30 voce_stress_db(:,4)=voce_new(1)+voce_new(2).*(1−exp(−voce_new(3).*...
31 plastic_strain_new2))+voce_new(4).*(1−exp(−voce_new(5).*...
32 plastic_strain_new2));
33

34 %% Plotting of true stress−plastic strain
35 cd(path_save)
36 for i = 1:2
37 hFig=figure;
38 hAxes=axes;
39 hold on
40 if find(test_n==test_n_fit(1))==1
41 plot(plastic_strain_plot{test_pos1},true_plastic_stress_plot...
42 {test_pos1},'−r')
43 plot(plastic_strain_new{test_pos1},voce_stress{test_pos1},'−−r')
44 end
45 if find(test_n==test_n_fit(1))==2
46 plot(plastic_strain_plot{test_pos1},true_plastic_stress_plot...
47 {test_pos1},'Color',[0 0.5 0],'LineStyle','−')
48 plot(plastic_strain_new{test_pos1},voce_stress{test_pos1},...
49 'Color',[0 0.5 0],'LineStyle','−−')
50 end
51 if find(test_n==test_n_fit(2))==2
52 plot(plastic_strain_plot{test_pos2},true_plastic_stress_plot...
53 {test_pos2},'Color',[0 0.5 0],'LineStyle','−')
54 plot(plastic_strain_new{test_pos2},voce_stress{test_pos2},...
55 'Color',[0 0.5 0],'LineStyle','−−')
56 end
57 if find(test_n==test_n_fit(2))==3
58 plot(plastic_strain_plot{test_pos2},true_plastic_stress_plot...
59 {test_pos2},'−b')
60 plot(plastic_strain_new{test_pos2},voce_stress{test_pos2},'−−b')
61 end
62 plot(plastic_strain_new2,voce_stress_db(:,3),'k')
63 plot(plastic_strain_new2,voce_stress_db(:,4),'−−k')
64 str1 = sprintf('Experimental test (test #%g)',test_n_fit(1));
65 str2 = sprintf('Adaption to model (test #%g)',test_n_fit(1));
66 str3 = sprintf('Experimental test (test #%g)',test_n_fit(2));
67 str4 = sprintf('Adaption to model (test #%g)',test_n_fit(2));
68 str5 = sprintf('Average curve');
69 str6 = sprintf('Adaption to model (average curve)');
70 legend(str1, str2 ,str3, str4, str5, str6,'Location','SouthEast');
71 xlabel('Plastic strain, \epsilon_p')
72 ylabel('True stress, \sigma_t (MPa)')
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73 if i==1
74 axis([0 ceil(eps_p_max_max*1.1/0.01)*0.01 0 ...

ceil(max([voce_stress{test_pos1} ...
voce_stress{test_pos2}])*1.1/10)*10])

75 %% Saving last figure to directory
76 filename=sprintf('Test−0%g−0%g−(1).eps',test_n_fit(1), ...

test_n_fit(2));
77 save_figure_small(filename,hFig,hAxes)
78 else
79 xlim([0 ceil(eps_p_max_max*1.1/0.01)*0.01])
80 %% Saving last figure to directory
81 filename=sprintf('Test−0%g−0%g−(2).eps',test_n_fit(1), ...

test_n_fit(2));
82 save_figure_small(filename,hFig,hAxes)
83 end
84 end
85

86 %% Saving of Voce parameters etc (for average curve)
87 if size(parameters,1)==test_tot
88 row_n=test_tot+2;
89 else
90 row_n=size(parameters,1)+1;
91 end
92 parameters(row_n,1)=test_n(1);
93 parameters(row_n,2)=(true_plastic_stress_plot{test_pos1}(1)+...
94 true_plastic_stress_plot{test_pos2}(1))/2;
95 parameters(row_n,3:7)=voce_new(1:5);
96 parameters(row_n,8)=eps_p_max_min;
97

98 %% Saving of calculations to .xlsx and .mat files
99 if test_n(end)==test_tot

100 parameters_xlsx_string=arrayfun(@num2str, parameters, 'unif', 0);
101

102 parameters_xlsx = {'Parameters for yield stress + Voce ...
hardening and max plastic strain at onset of necking', '', ...
'', '','','','',''; ...

103 'Test number' '\sigma_Y (directly)', '\sigma_Y', 'Q_1', ...
'C_1', 'Q_2', 'C_2', 'Max. plastic strain'};

104 parameters_xlsx(3:size(parameters,1)+2,1:8)=parameters_xlsx_string;
105 xlswrite('parameters.xlsx', parameters_xlsx);
106

107 save('parameters', 'parameters')
108 save('results', 'results')
109 end
110 cd('C:\Users\Eivind\Documents\MATLAB\Post−process QS')

engs_func_single.m:

1 function eng_res = engs_func_single(eng)
2 global eng_strain_calc eng_stress_calc
3

4 eng_calc=eng(1)+eng(2).*eng_strain_calc+eng(3).*eng_strain_calc.^2+...
5 eng(4).*eng_strain_calc.^3;
6 eng_res=abs(eng_calc−eng_stress_calc);
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engs_func_plot.m:

1 function eng_res_plot = engs_func_plot(eng_plot)
2 global i eng_strain_calc_plot eng_stress_calc_plot
3

4 eng_calc_plot=eng_plot(1)+eng_plot(2).*eng_strain_calc_plot{i}+...
5 eng_plot(3).*eng_strain_calc_plot{i}.^2+eng_plot(4).*...
6 eng_strain_calc_plot{i}.^3;
7 eng_res_plot=abs(eng_calc_plot−eng_stress_calc_plot{i});

voce_test_single.m:

1 function voce_res = voce_test_single(voce)
2 global plastic_strain true_plastic_stress
3

4 voce_calc=voce(1)+voce(2).*(1−exp(−voce(3).*plastic_strain))+...
5 voce(4).*(1−exp(−voce(5).*plastic_strain));
6 voce_res=abs(voce_calc−true_plastic_stress);

voce_test_plot.m:

1 function voce_res_plot = voce_test_plot(voce_plot)
2 global plastic_strain_plot true_plastic_stress_plot i
3

4 voce_calc_plot=voce_plot(1)+voce_plot(2).*(1−exp(−voce_plot(3).*...
5 plastic_strain_plot{i}))+voce_plot(4).*...
6 (1−exp(−voce_plot(5).*plastic_strain_plot{i}));
7 voce_res_plot=abs(voce_calc_plot−true_plastic_stress_plot{i});

voce_test_double.m:

1 function voce_res = voce_test_double(voce)
2 global plastic_strain_new2 voce_stress_new
3

4 voce_calc=(voce(1)+voce(2).*(1−exp(−voce(3).*plastic_strain_new2))+...
5 voce(4).*(1−exp(−voce(5).*plastic_strain_new2)))';
6 voce_res=abs(voce_calc−voce_stress_new);
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D.2 Post-Processing of Data from SHTB Tests

Script name Script/function Explanation

import_txt_strain_gauge.m Script Post-processing of exp. data from strain gauges

import_cam_measurements.m Script Post-processing of exp. data from camera

engs_func_single_shtb.m Function Calculation of approx. engineering stress around the

neck

voce_test_single_shtb.m Function Calculation of the resulting approx. true stress

parameters by Voce hardening parameters

voce_test_single_shtb_corr.m Function Calculation of the resulting approx. true stress

parameters for Bridgman correctin by Voce

hardening parameters

true_strain_cal_func.m Function Calculation of approx. polynomial for true strain

values

diameter_cal_func.m Function Calculation of approx. polynomial for min. diameter

values

rad_cal_func.m Function Calculation of approx. polynomial for radius of

curvature

Table D.2: Overview of Matlab scripts for post-processing of data from SHTB
tests

import_txt_strain_gauge.m:

1 %% Script for post−processing of data from SHTB tests (strain ...
gauge measurements)

2 clearvars −except parameters results
3 global eng_strain_calc eng_stress_calc plastic_strain ...

true_plastic_stress
4

5 %% Manual input
6 filename = 'Filename';
7 test_n=1;
8 test_id=1;
9 test_tot=10;

10 temp=293;
11 path='path\experimental_data';
12 cd(path)
13 delimiter = ',';
14 startRow = 19; % CHECK THIS!
15

16 %% Format string for each line of text:
17 formatSpec = '%s%s%s%s%s%s%s%s%s%s%[^\n\r]';
18

19 %% Open the text file.
20 fileID = fopen(filename,'r');
21 path='path\';
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22 cd(path)
23

24 %% Read columns of data according to format string.
25 dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter, ...

'HeaderLines' ,startRow−1, 'ReturnOnError', false);
26

27 %% Close the text file.
28 fclose(fileID);
29

30 %% Convert the contents of columns containing numeric strings to ...
numbers.

31 % Replace non−numeric strings with NaN.
32 raw = [dataArray{:,1:end−1}];
33 numericData = NaN(size(dataArray{1},1),size(dataArray,2));
34

35 for col=[1,2,3,4,5,6,7,8,9,10]
36 % Converts strings in the input cell array to numbers. ...

Replaced non−numeric
37 % strings with NaN.
38 rawData = dataArray{col};
39 for row=1:size(rawData, 1);
40 % Create a regular expression to detect and remove ...

non−numeric prefixes and
41 % suffixes.
42 regexstr = ...

'(?<prefix>.*?)(?<numbers>([−]*(\d+[\,]*)+[\.]{0,1}\d*...
43 [eEdD]{0,1}[−+]*\d*[i]{0,1})|([−]*(\d+[\,]*)*[\.]{1,1}\d+...
44 [eEdD]{0,1}[−+]*\d*[i]{0,1}))(?<suffix>.*)';
45 try
46 result = regexp(rawData{row}, regexstr, 'names');
47 numbers = result.numbers;
48

49 % Detected commas in non−thousand locations.
50 invalidThousandsSeparator = false;
51 if any(numbers==',');
52 thousandsRegExp = '^\d+?(\,\d{3})*\.{0,1}\d*$';
53 if isempty(regexp(thousandsRegExp, ',', 'once'));
54 numbers = NaN;
55 invalidThousandsSeparator = true;
56 end
57 end
58 % Convert numeric strings to numbers.
59 if ~invalidThousandsSeparator;
60 numbers = textscan(strrep(numbers, ',', ''), '%f');
61 numericData(row, col) = numbers{1};
62 raw{row, col} = numbers{1};
63 end
64 catch me
65 end
66 end
67 end
68

69 %% Replace non−numeric cells with 0.0
70 R = cellfun(@(x) (~isnumeric(x) && ~islogical(x)) || ...

isnan(x),raw); % Find non−numeric cells
71 raw(R) = {0.0}; % Replace non−numeric cells
72

73 %% Allocate imported array to column variable names
74 test_time = cell2mat(raw(:, 1)); %time
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75 eng_stress = cell2mat(raw(:, 2)); %engineering stress
76 eng_strain = cell2mat(raw(:, 3)); %engineering strain (not correct ...

Young's modulus)
77 test_strain_rate = cell2mat(raw(:, 4)); %engineering strain rate
78 test_ing_strain = cell2mat(raw(:, 5)); %engineering strain ...

(correct Young's modulus)
79 test_true_stress = cell2mat(raw(:, 6)); %true stress
80 test_true_strain = cell2mat(raw(:, 7)); %true strain
81 test_true_strain_rate = cell2mat(raw(:, 8)); %true strain rate
82 test_plastic_strain = cell2mat(raw(:, 9)); %plastic strain
83 test_plastic_work = cell2mat(raw(:, 10)); %plastic work
84

85 %% Clear temporary variables
86 clearvars filename delimiter startRow formatSpec fileID dataArray ...

ans raw numericData col rawData row regexstr result numbers ...
invalidThousandsSeparator thousandsRegExp me R;

87

88 %% Determining Young's modulus
89 figure
90 plot(eng_strain,eng_stress)
91 xlabel('Engineering strain')
92 ylabel('Engineering stress (MPa)')
93 title('Select data range for determining E−modulus + yield stress')
94 legend('Experimental data','Location','NorthEast')
95 axis([−0.1 max(eng_strain)*1.1 −10 max(eng_stress)*1.1])
96

97 pause on
98 [x,y]=ginput(2);
99 x5=x(1); x6=x(2);

100 close
101

102 pos1=find(min(abs(eng_strain−x5))==abs(eng_strain−x5),1);
103 pos2=find(min(abs(eng_strain−x6))==abs(eng_strain−x6),1);
104 pos1_r=pos1;
105 pos2_r=pos2;
106

107 figure
108 plot(eng_strain(pos1:pos2),eng_stress(pos1:pos2))
109 xlabel('Engineering strain')
110 ylabel('Engineering stress (MPa)')
111 title('Select data range for E−modulus')
112 legend('Experimental data','Location','NorthEast')
113 axis([0 eng_strain(pos2) 0 max(eng_stress(pos1:pos2))])
114

115 pause on
116 [x,y]=ginput(2);
117 x5=x(1); x6=x(2);
118

119 pos1=find(min(abs(eng_strain−x5))==abs(eng_strain−x5),1);
120 pos2=find(min(abs(eng_strain−x6))==abs(eng_strain−x6),1);
121 E_x=eng_strain(pos1:pos2);
122 E_y=eng_stress(pos1:pos2);
123 P=polyfit(E_x,E_y,1);
124 E_calc_x_min=min(eng_strain);
125 E_calc_x_max=eng_strain(find(eng_stress==max(eng_stress),1));
126 E_calc_x=linspace(E_calc_x_min,E_calc_x_max,100);
127 E_calc_y=P(2)+P(1).*E_calc_x;
128 E_calc_x_end=find(min(abs(E_calc_y−max(eng_stress)))==...
129 abs(E_calc_y−max(eng_stress)));
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130 E_calc_x_start=find(abs(E_calc_y)==min(abs(E_calc_y)));
131 E_meas=(E_calc_y(end)−E_calc_y(1))/(E_calc_x(end)−E_calc_x(1));
132 hold on
133 plot(E_calc_x(E_calc_x_start:E_calc_x_end),E_calc_y...
134 (E_calc_x_start:E_calc_x_end),'r')
135 legend('Experimental data','Elastic tangent ...

modulus','Location','NorthEast')
136

137 %% Translating start of straining to origo
138 eps_var=eng_strain(pos1)−eng_stress(pos1)/E_meas;
139 eng_strain_corr(1)=0;
140 eng_strain_corr(2)=eng_stress(pos1)/E_meas;
141 eng_strain_corr(3:length(eng_strain(pos1:end))+2)=...
142 eng_strain(pos1:end)−eps_var;
143 eng_stress_corr(1)=0;
144 eng_stress_corr(2)=eng_stress(pos1);
145 eng_stress_corr(3:length(eng_stress(pos1:end))+2)=eng_stress(pos1:end);
146 eng_strain=eng_strain_corr;
147 eng_stress=eng_stress_corr;
148

149 %% Correction of Young's modulus
150 E_corr=(−3.9*exp(0.0033*temp)+79)*1000;
151 eng_strain_corr=eng_strain−eng_stress.*...
152 ((E_corr−E_meas)/(E_corr*E_meas));
153

154 %% Determing the yield point
155 pos2_r_new=pos2_r−pos1+2;
156 figure
157 hold on
158 plot(eng_strain(1:pos2_r_new),eng_stress(1:pos2_r_new),'b')
159 plot(eng_strain_corr(1:pos2_r_new),eng_stress(1:pos2_r_new),'Color',...
160 [0 0.5 0])
161 plot(E_calc_x(E_calc_x_start:E_calc_x_end)−eps_var,E_calc_y...
162 (E_calc_x_start:E_calc_x_end),'r')
163 title('Determine the yield point (for the uncorrected curve)')
164 xlabel('Engineering strain, \epsilon_e')
165 ylabel('Engineering stress, \sigma_e (MPa)')
166 legend('Uncorrected strain values','Corrected strain ...

values','Elastic tangent modulus','Location','SouthEast')
167

168 pause on
169 [x,y]=ginput(1);
170 x5=x(1);
171 close all
172

173 ypos=find(min(abs(eng_strain−x5))==abs(eng_strain−x5),1);
174 eng_strain=eng_strain_corr;
175 true_strain=log(1+eng_strain);
176 true_stress=eng_stress.*(1+eng_strain);
177

178 %% Curve fitting of engineering stress−strain curve (for ...
determination of necking point)

179 figure;
180 plot(eng_strain,eng_stress,'LineWidth',1)
181 xlabel('Engineering strain, \epsilon_e')
182 ylabel('Engineering stress, \sigma_e (MPa)')
183 title('Define data range for defining necking point')
184 legend('Experimental test','Location','NorthEast')
185 axis([−0.002 0.7 0 100])
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186

187 pause on
188 [x,y]=ginput(2);
189 x5=x(1); x6=x(2);
190 close
191

192 pos1=find(min(abs(eng_strain−x5))==abs(eng_strain−x5),1);
193 pos2=find(min(abs(eng_strain−x6))==abs(eng_strain−x6),1);
194 eng_strain_calc=eng_strain(pos1:pos2);
195 eng_stress_calc=eng_stress(pos1:pos2);
196

197 A0=5; B0=5; C0=5;
198 eng_strain_0=[A0 B0 C0];
199 lowerb=[−1000 −1000 −1000];
200 upperb=[1000 1000 1000];
201

202 options = optimset('TolFun', 1e−1000, 'TolX', 1e−1000, ...
'MaxFunEvals',100000,'MaxIter',100000, 'PlotFcns', ...
@optimplotresnorm);

203 [eng_strain_cal(1:3),eng_strain_cal(4)] = ...
lsqnonlin(@engs_func_single_shtb,eng_strain_0,lowerb,upperb,...

204 options)
205 close
206

207 eng_strain_lin=linspace(min(eng_strain_calc),max(eng_strain_calc),100);
208 eng_stress_calc_new=eng_strain_cal(1)+eng_strain_cal(2).*...
209 eng_strain_lin+eng_strain_cal(3).*eng_strain_lin.^2;
210 np=find(eng_stress_calc_new==max(eng_stress_calc_new),1);
211 np_strain=eng_strain_lin(np);
212 np_x_h=eng_strain_lin;
213 np_y_h=ones(length(eng_strain_lin))*max(eng_stress_calc_new);
214 np_x_v=[eng_strain_lin(np) eng_strain_lin(np)];
215 np_y_v=[min(eng_stress_calc_new) ...

min(eng_stress_calc_new)+(max(eng_stress_calc_new)−...
216 min(eng_stress_calc_new))*2];
217

218 figure
219 hold on
220 plot(eng_strain_calc,eng_stress_calc,'b','LineWidth',1)
221 plot(eng_strain_lin,eng_stress_calc_new,'Color',[0 0.5 ...

0],'LineWidth',1)
222 plot(np_x_h,np_y_h,'r−−','LineWidth',1.5)
223 plot(np_x_v,np_y_v,'r−−','LineWidth',1.5)
224 legend('Experimental test', 'Approx. polynomial','Necking point')
225 xlabel('Engineering strain, \epsilon_e')
226 ylabel('Engineering stress, \sigma_e (MPa)')
227

228 %% Engineering stress−strain from start −−> onset of necking
229 np_eng=find(min(abs(eng_strain−np_strain))==...
230 abs(eng_strain−np_strain),1); %position of necking point in ...

eng_strain vector
231 eng_strain_np=eng_strain(1:np_eng);
232 eng_stress_np=eng_stress(1:np_eng);
233

234 %% True stress−strain from start −−> onset of necking
235 np_strain_true=log(1+np_strain);
236 np_true=find(min(abs(true_strain−np_strain_true))==...
237 abs(true_strain−np_strain_true),1);
238 true_strain_np=true_strain(1:np_true);
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239 true_stress_np=true_stress(1:np_true);
240

241 %% Plotting of eng. stress−strain and true stress−strain until ...
onset of necking

242 figure
243 plot(eng_strain_np,eng_stress_np,true_strain_np,true_stress_np)
244 legend('Eng. stress−strain until necking', 'True stress−strain ...

until necking', 'Location', 'SouthEast')
245

246 %% True stress−plastic strain from yield to necking
247 plastic_strain=true_strain(ypos:np_true)−true_strain(ypos);
248 true_plastic_stress=true_stress(ypos:np_true);
249

250 %% Calculating Voce−rule parameters
251 sigY_0=50; Q1_0=50; C1_0=10; Q2_0=20; C2_0=40;
252 voce_0=[sigY_0 Q1_0 C1_0 Q2_0 C2_0];
253 lowerb=[−1000 −1000 −1000 −1000 −1000 −1000];
254 upperb=[1000 1000 1000 1000 1000 1000];
255

256 [voce(1:5),voce(6)] = ...
lsqnonlin(@voce_test_single_shtb,voce_0,lowerb,upperb,options);

257 close all
258

259 parameters(test_n,1)=test_id;
260 parameters(test_n,2)=true_stress(ypos);
261 parameters(test_n,3:7)=voce(1:5);
262 parameters(test_n,8)=max(plastic_strain);
263

264 %% Plotting the resulting true stress−plastic strain curve from ...
Voce parameters

265 plastic_strain_new=linspace(0,max(plastic_strain),100);
266 voce_stress=voce(1)+voce(2).*(1−exp(−voce(3).*plastic_strain_new))+...
267 voce(4).*(1−exp(−voce(5).*plastic_strain_new));
268 hFig=figure;
269 hAxes=axes;
270 hold on
271 plot(plastic_strain_new,voce_stress,'b','LineWidth',2)
272 plot(plastic_strain,true_plastic_stress,'r','LineWidth',1)
273 legend('Adaption to model', 'Experimental ...

test','Location','SouthEast')
274 xlabel('Plastic strain, \epsilon_p')
275 ylabel('True stress, \sigma_t (MPa)')
276 axis([0 ceil(max(plastic_strain_new)*1.1/0.01)*0.01 0 ...

ceil(max(voce_stress)*1.1/10)*10])
277

278 %% Saving last figure to directory
279 path='path\plots_strain_gauges';
280 cd(path)
281 filename=sprintf('Test−0%g−f−Data−(true_stress).eps',test_id);
282 save_figure_small(filename,hFig,hAxes)
283

284 %% Plotting the corrected eng. stress−strain curve
285 hFig=figure;
286 hAxes=axes;
287 plot(eng_strain,eng_stress,'r','LineWidth',2)
288 legend('Experimental test','Location','NorthEast')
289 xlabel('Engineering strain, \epsilon_e')
290 ylabel('Engineering stress, \sigma_e (MPa)')
291 axis([0 ceil(max(eng_strain)*1.1/0.1)*0.1 0 ...
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ceil(max(eng_stress)*1.1/10)*10])
292

293 %% Saving last figure to directory
294 filename=sprintf('Test−0%g−f−Data−(eng_stress).eps',test_id);
295 save_figure_small(filename,hFig,hAxes)
296

297 %% Saving stress−strains in "results" array
298 results{test_n}(1:length(eng_strain),1)=eng_strain;
299 results{test_n}(1:length(eng_stress),2)=eng_stress;
300 results{test_n}(1:length(true_strain_np),3)=true_strain_np;
301 results{test_n}(1:length(true_stress_np),4)=true_stress_np;
302 results{test_n}(1:length(plastic_strain),5)=plastic_strain;
303 results{test_n}(1:length(true_plastic_stress),6)=true_plastic_stress;
304 results{test_n}(1:length(plastic_strain_new),7)=plastic_strain_new;
305 results{test_n}(1:length(voce_stress),8)=voce_stress;
306

307 %% Saving of calculations to .xlsx and .mat files
308 if test_n==test_tot
309 parameters_xlsx_string=arrayfun(@num2str, parameters, 'unif', 0);
310

311 parameters_xlsx = {'Parameters for yield stress + Voce ...
hardening and max plastic strain at onset of necking', '', ...
'', '','','','',''; ...

312 'Test number' '\sigma_Y (directly)', '\sigma_Y', 'Q_1', ...
'C_1', 'Q_2', 'C_2', 'Max. plastic strain'};

313 parameters_xlsx(3:size(parameters,1)+2,1:8)=parameters_xlsx_string;
314 xlswrite('parameters.xlsx', parameters_xlsx);
315

316 save('parameters', 'parameters')
317 save('results', 'results')
318 end
319 cd('path\')

import_cam_measurements.m:

1 %% Script for post−processing of data from SHTB tests (camera ...
measurements)

2 clearvars −except parameters results
3 global diameter_s timecam true_strain true_plastic_stress ...

plastic_strain rad_curv_data timecam_rad true_plastic_stress_corr
4

5 %% Manual input
6 path='path\exp_data\';
7 cd(path)
8 load ('Filename') % camera file
9 area_initial=pi*(3/2)^2;

10 filename = 'Filename'; % strain gauge measurement
11 temp=523;
12 E_meas_corr=2000;
13 t_delay=−0.05;
14 test_n=1;
15 test_id=1;
16 test_tot=10;
17 delimiter = ',';
18 startRow = 19; % CHECK THIS!
19
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20 %% Format string for each line of text:
21 formatSpec = '%s%s%s%s%s%s%s%s%s%s%[^\n\r]';
22

23 %% Open the text file.
24 fileID = fopen(filename,'r');
25 path='C:\Users\Eivind\Documents\MATLAB\Post−process SHTB';
26 cd(path)
27

28 %% Read columns of data according to format string.
29 dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter, ...

'HeaderLines' ,startRow−1, 'ReturnOnError', false);
30

31 %% Close the text file.
32 fclose(fileID);
33

34 %% Convert the contents of columns containing numeric strings to ...
numbers.

35 % Replace non−numeric strings with NaN.
36 raw = [dataArray{:,1:end−1}];
37 numericData = NaN(size(dataArray{1},1),size(dataArray,2));
38

39 for col=[1,2,3,4,5,6,7,8,9,10]
40 % Converts strings in the input cell array to numbers. ...

Replaced non−numeric
41 % strings with NaN.
42 rawData = dataArray{col};
43 for row=1:size(rawData, 1);
44 % Create a regular expression to detect and remove ...

non−numeric prefixes and
45 % suffixes.
46 regexstr = ...

'(?<prefix>.*?)(?<numbers>([−]*(\d+[\,]*)+[\.]{0,1}\d*...
47 [eEdD]{0,1}[−+]*\d*[i]{0,1})|([−]*(\d+[\,]*)*[\.]{1,1}\d+...
48 [eEdD]{0,1}[−+]*\d*[i]{0,1}))(?<suffix>.*)';
49 try
50 result = regexp(rawData{row}, regexstr, 'names');
51 numbers = result.numbers;
52

53 % Detected commas in non−thousand locations.
54 invalidThousandsSeparator = false;
55 if any(numbers==',');
56 thousandsRegExp = '^\d+?(\,\d{3})*\.{0,1}\d*$';
57 if isempty(regexp(thousandsRegExp, ',', 'once'));
58 numbers = NaN;
59 invalidThousandsSeparator = true;
60 end
61 end
62 % Convert numeric strings to numbers.
63 if ~invalidThousandsSeparator;
64 numbers = textscan(strrep(numbers, ',', ''), '%f');
65 numericData(row, col) = numbers{1};
66 raw{row, col} = numbers{1};
67 end
68 catch me
69 end
70 end
71 end
72

73 %% Replace non−numeric cells with 0.0
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74 R = cellfun(@(x) (~isnumeric(x) && ~islogical(x)) || ...
isnan(x),raw); % Find non−numeric cells

75 raw(R) = {0.0}; % Replace non−numeric cells
76

77 %% Allocate imported array to column variable names
78 test_time = cell2mat(raw(:, 1));
79 eng_stress = cell2mat(raw(:, 2)); %engineering stress
80 eng_strain = cell2mat(raw(:, 3)); %engineering strain (not correct ...

Young's modulus)
81 test_strain_rate = cell2mat(raw(:, 4)); %engineering strain rate
82 test_ing_strain = cell2mat(raw(:, 5)); %engineering strain ...

(correct Young's modulus)
83 test_true_stress = cell2mat(raw(:, 6)); %true stress
84 test_true_strain = cell2mat(raw(:, 7)); %true strain
85 test_true_strain_rate = cell2mat(raw(:, 8)); %true strain rate
86 test_plastic_strain = cell2mat(raw(:, 9)); %plastic strain
87

88 %% Synchronization of diameter and strains with respect to time
89 timecam=timecam+t_delay;
90 pos_d=find(abs(timecam)==min(abs(timecam)));
91 timecam=timecam(pos_d:end);
92 diameter_s=diameter_s(pos_d:end);
93 true_strain=true_strain(pos_d:end);
94 rinf=rinf(pos_d:end);
95 rsup=rsup(pos_d:end);
96

97 %% Determining the elastic tangent modulus
98 figure
99 plot(eng_strain,eng_stress)

100 xlabel('Engineering strain')
101 ylabel('Engineering stress (MPa)')
102 title('Select data range for determining E−modulus + yield stress')
103 legend('Experimental data','Location','NorthEast')
104 axis([−0.1 max(eng_strain)*1.1 −10 max(eng_stress)*1.1])
105

106 pause on
107 [x,y]=ginput(2);
108 x5=x(1);
109 x6=x(2);
110 close
111

112 pos1=find(min(abs(eng_strain−x5))==abs(eng_strain−x5),1);
113 pos2=find(min(abs(eng_strain−x6))==abs(eng_strain−x6),1);
114 figure
115 plot(eng_strain(pos1:pos2),eng_stress(pos1:pos2))
116 xlabel('Engineering strain')
117 ylabel('Engineering stress (MPa)')
118 title('Select data range for E−modulus')
119 legend('Experimental data','Location','NorthEast')
120 axis([0 eng_strain(pos2) 0 max(eng_stress(pos1:pos2))])
121

122 pause on
123 [x,y]=ginput(2);
124 x5=x(1);
125 x6=x(2);
126

127 pos1=find(min(abs(eng_strain−x5))==abs(eng_strain−x5),1);
128 pos2=find(min(abs(eng_strain−x6))==abs(eng_strain−x6),1);
129 E_x=eng_strain(pos1:pos2);
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130 E_y=eng_stress(pos1:pos2);
131 P=polyfit(E_x,E_y,1);
132 E_calc_x_min=min(eng_strain);
133 E_calc_x_max=eng_strain(find(eng_stress==max(eng_stress),1));
134 E_calc_x=linspace(E_calc_x_min,E_calc_x_max,100);
135 E_calc_y=P(2)+P(1).*E_calc_x;
136 E_calc_x_end=find(min(abs(E_calc_y−max(eng_stress)))==...
137 abs(E_calc_y−max(eng_stress)));
138 E_calc_x_start=find(abs(E_calc_y)==min(abs(E_calc_y)));
139 % E_meas=(E_calc_y(end)−E_calc_y(1))/(E_calc_x(end)−E_calc_x(1));
140 E_meas=E_meas_corr;
141

142 %% Correction of Young's modulus
143 E_corr=(−3.9*exp(0.0033*temp)+79)*1000;
144 eng_strain_corr=eng_strain−eng_stress.*...
145 ((E_corr−E_meas)/(E_corr*E_meas))
146

147 %% Plotting true strain for strain gauge measurement + camera
148 test_true_strain_new=log(1+test_ing_strain);
149 test_true_strain_formula=log(1+eng_strain_corr);
150 force=eng_stress*area_initial; %force
151

152 figure
153 hold on
154 plot(test_time,test_true_strain_formula,'r')
155 plot(timecam,true_strain,'Color',[0 0.5 0])
156 legend('True strain, strain gauges','True strain, ...

camera','Location','NorthWest')
157 xlabel('Time, t (ms)')
158 ylabel('True strain, \epsilon_t')
159

160 figure
161 plot(test_time,eng_strain,test_time,test_ing_strain,test_time,...
162 eng_strain_corr,test_time,test_true_strain,test_time,...
163 test_true_strain_new,test_time,test_true_strain_formula)
164 legend('Eng. strain (E−modulus not corrected)','Eng. strain ...

(E−modulus corrected)','Eng. strain (E−modulus corrected ...
(formula)','True strain',...

165 'True strain ln(1+eng. strain)','True strain ...
(formula)','Location','SouthEast')

166 xlabel('Time, t (s)')
167 ylabel('Strain, \epsilon')
168 title('From strain gauges')
169

170 %% Curvefitting of diameter and strains
171 options = optimset('TolFun', 1e−1000, 'TolX', 1e−1000, ...

'MaxFunEvals',100000,'MaxIter',100000, 'PlotFcns', ...
@optimplotresnorm);

172 A0=5; B0=5; C0=5; D0=5; E0=5; F0=5; G0=5; H0=5;
173 diameter_cal_0=[A0 B0 C0 D0 E0 F0 G0 H0];
174 true_strain_cal_0=[A0 B0 C0 D0 E0 F0 G0 H0];
175 lowerb=[];
176 upperb=[];
177

178 [diameter_cal(1:8),diameter_cal(9)] = ...
lsqnonlin(@diameter_cal_func,diameter_cal_0,lowerb,upperb,options);

179 close
180

181 if test_time(end)>timecam(end)
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182 pos_max=find(min(abs(test_time−timecam(end)))==...
183 abs(test_time−timecam(end)),1);
184 else
185 pos_max=length(test_time);
186 end
187

188 timecam_new=test_time(1:pos_max);
189 diameter_new=diameter_cal(1).*(timecam_new.^7)+diameter_cal(2).*...
190 (timecam_new.^6)+diameter_cal(3).*(timecam_new.^5)+...
191 diameter_cal(4).*(timecam_new.^4)+...
192 diameter_cal(5).*(timecam_new.^3)+diameter_cal(6).*...
193 (timecam_new.^2)+diameter_cal(7).*timecam_new+diameter_cal(8);
194

195 [true_strain_cal(1:8),true_strain_cal(9)] = ...
lsqnonlin(@true_strain_cal_func,true_strain_cal_0,...

196 lowerb,upperb,options);
197 close
198

199 true_strain_new=true_strain_cal(1).*(timecam_new.^7)+...
200 true_strain_cal(2).*(timecam_new.^6)+true_strain_cal(3).*...
201 (timecam_new.^5)+true_strain_cal(4).*(timecam_new.^4)+...
202 true_strain_cal(5).*(timecam_new.^3)+true_strain_cal(6).*...
203 (timecam_new.^2)+true_strain_cal(7).*timecam_new+true_strain_cal(8)
204

205 %% Curvefitting and back−extrapolation of curvature of radius
206 if test_n ~= 4
207 rad_curv_data=(rinf+rsup)./2;
208 else
209 rad_curv_data=rsup;
210 end
211 pos_cam=find(rad_curv_data>3,1);
212 timecam_rad=timecam(pos_cam:end);
213 rad_curv_data=rad_curv_data(pos_cam:end);
214

215 A0=5; B0=5; C0=5; D0=5;
216 rad_cal_0=[A0 B0 C0 D0];
217 lowerb=[];
218 upperb=[];
219 [rad_cal(1:4),rad_cal(5)] = ...

lsqnonlin(@rad_cal_func,rad_cal_0,lowerb,upperb,options);
220 rad_curv=rad_cal(1).*(timecam_new.^3)+rad_cal(2).*(timecam_new.^2)+...
221 rad_cal(3).*timecam_new+rad_cal(4);
222

223 figure
224 hold on
225 plot(timecam(pos_cam:end),rinf(pos_cam:end),'Color',[0 0.5 ...

0],'Marker','o','MarkerFaceColor',[0 0.5 0],'MarkerEdgeColor','k')
226 plot(timecam(pos_cam:end),rsup(pos_cam:end),'COlor','r','Marker',...
227 'o','MarkerFaceColor','r','MarkerEdgeColor','k')
228 plot(timecam_new,rad_curv,'k')
229 legend('Lower radius of curvature','Upper radius of ...

curvature','Back−extrapolation')
230 xlabel('Time, t (ms)')
231 ylabel('Radius of curvature, R (mm)')
232

233 %% Determing the yield point
234 true_stress=force(1:pos_max)./(pi.*(diameter_new.^2)./4);
235 figure
236 plot(true_strain_new,true_stress)
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237 title('Determine the yield point')
238 xlim([−0.05 0.3])
239 ylim([0 100])
240 legend('From camera')
241 xlabel('True strain, \epsilon_t')
242 ylabel('True stress, \sigma_t')
243

244 pause on
245 [x,y]=ginput(1);
246 x5=x(1);
247 close
248 ypos=find(min(abs(true_strain_new−x5))==abs(true_strain_new−x5),1);
249

250 %% True stress−plastic strain from yield
251 plastic_strain=true_strain_new(ypos:end)−true_strain_new(ypos);
252 true_plastic_stress=true_stress(ypos:end);
253

254 %% Bridgman correction
255 true_plastic_stress_corr=1./((1+2.*rad_curv(ypos:end)./...
256 (diameter_new(ypos:end)./2)).*log(1+(diameter_new(ypos:end)./2)...
257 ./2./rad_curv(ypos:end))).*true_plastic_stress;
258 figure
259 plot(plastic_strain,true_plastic_stress,plastic_strain,...
260 true_plastic_stress_corr)
261

262 %% Bridgman correction (Empirical formula)
263 kappa=1.11;
264 eps_uts=[0.2248 0.2194 0.1994 0.2534]; %true strain at onset of ...

necking (test 2, 5, 9, 11)
265 a_R_cam=diameter_new(ypos:end)./rad_curv(ypos:end);
266 a_R_approx=kappa.*(plastic_strain−eps_uts(test_n));
267 true_plastic_stress_corr_approx=1./((1+2./a_R_approx).*...
268 log(1+a_R_approx./2)).*true_plastic_stress;
269

270 %% Determining the maximum plastic strain value
271 figure
272 plot(plastic_strain,true_plastic_stress,...
273 plastic_strain,true_plastic_stress_corr)
274 legend('Uncorrectec', 'Bridgman corrected')
275 xlabel('True strain, \epsilon_t')
276 ylabel('True stress, \sigma_t')
277 title('Determine the maximum plastic strain value for fitting')
278

279 pause on
280 [x,y]=ginput(1);
281 x5=x(1);
282 close
283 p_max=find(min(abs(plastic_strain−x5))==abs(plastic_strain−x5),1);
284 plastic_strain=plastic_strain(1:p_max);
285 true_plastic_stress=true_plastic_stress(1:p_max);
286 true_plastic_stress_corr=true_plastic_stress_corr(1:p_max);
287 true_plastic_stress_corr_approx=...
288 true_plastic_stress_corr_approx(1:p_max);
289 a_R_cam=a_R_cam(1:p_max);
290 a_R_approx=a_R_approx(1:p_max);
291

292 %%
293 np_pos=find(min(abs(plastic_strain−eps_uts(test_n)))==...
294 abs(plastic_strain−eps_uts(test_n)));
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295 true_plastic_stress_corr_approx(1:np_pos−1)=...
296 true_plastic_stress(1:np_pos−1);
297 figure;
298 hold on
299 plot(plastic_strain(np_pos:end),a_R_cam(np_pos:end),'r')
300 plot(plastic_strain(np_pos:end),a_R_approx(np_pos:end),'k')
301 legend('Camera measurement','Empirical ...

formula','Location','NorthWest')
302 xlabel('Plastic strain, \epsilon_p')
303 ylabel('Ratio a/R')
304

305 %% Calculating Voce−rule parameters
306 sigY_0=50; Q1_0=50; C1_0=10; Q2_0=20; C2_0=40;
307 voce_0=[sigY_0 Q1_0 C1_0 Q2_0 C2_0];
308 lowerb=[−1000 −1000 −1000 −1000 −1000 −1000];
309 upperb=[1000 1000 1000 1000 1000 1000];
310 path='path\';
311 cd(path)
312

313 for i = 1:2
314 if i==1
315 [voce(1:5),voce(6)] = ...

lsqnonlin(@voce_test_single_shtb,voce_0,lowerb,...
316 upperb,options);
317 close
318 else
319 [voce_corr(1:5),voce_corr(6)] = ...

lsqnonlin(@voce_test_single_shtb_corr,voce_0,lowerb,...
320 upperb,options);
321 close
322 end
323 end
324

325 parameters(test_n,1)=test_id;
326 parameters(test_n,2)=true_stress(ypos);
327 parameters(test_n,3:7)=voce(1:5);
328 parameters(test_n,8)=max(plastic_strain);
329 parameters(test_n,9:13)=voce_corr(1:5);
330 results{test_n}(:,1)=plastic_strain;
331 results{test_n}(:,2)=true_plastic_stress_corr;
332

333 %% Plotting the resulting true stress−plastic strain curve for ...
uncorrected and corrected stress (camera+approx.)

334 hFig=figure;
335 hAxes=axes;
336 hold on
337 plot(plastic_strain,true_plastic_stress,'r','LineWidth',1)
338 plot(plastic_strain,true_plastic_stress_corr,'Color',[0 0.5 ...

0],'LineWidth',1)
339 plot(plastic_strain,true_plastic_stress_corr_approx,'b','LineWidth',1)
340 legend('No correction of stress values','Bridgman correction using ...

camera measurements','Bridgman correction using empirical ...
formula','Location','SouthEast')

341 xlabel('Plastic strain, \epsilon_p')
342 ylabel('True stress, \sigma_t (MPa)')
343 axis([0 ceil(max(plastic_strain)*1.1/0.01)*0.01 0 ...

ceil(max(true_plastic_stress)*1.1/10)*10])
344

345 %% Saving last figure to directory
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346 path='C:\Users\Eivind\Documents\MATLAB\Post−process ...
SHTB\plots_camera';

347 cd(path)
348 filename=sprintf('Test−0%g−(true_stress−plastic_strain_ALL).eps',...
349 test_id);
350 save_figure_small(filename,hFig,hAxes)
351

352 %% Plotting the resulting true stress−plastic strain curve from ...
Voce parameters for uncorrected and corrected stress

353 plastic_strain_new=linspace(0,max(plastic_strain),100);
354 voce_stress=voce(1)+voce(2).*(1−exp(−voce(3).*plastic_strain_new))+...
355 voce(4).*(1−exp(−voce(5).*plastic_strain_new));
356 voce_stress_corr=voce_corr(1)+voce_corr(2).*(1−exp(−voce_corr(3).*...
357 plastic_strain_new))+voce_corr(4).*(1−exp(−voce_corr(5).*...
358 plastic_strain_new));
359 hFig=figure;
360 hAxes=axes;
361 hold on
362 plot(plastic_strain_new,voce_stress_corr,'b','LineWidth',2)
363 plot(plastic_strain,true_plastic_stress_corr,'r','LineWidth',1)
364 plot(plastic_strain_new,voce_stress,'−−b','LineWidth',2)
365 plot(plastic_strain,true_plastic_stress,'−−r','LineWidth',1)
366 legend('Adaption to model (Bridgman corrected)', 'Experimental ...

test (Bridgman corrected)','Adaption to model (not ...
corrected)', 'Experimental test (not ...
corrected)','Location','SouthEast')

367 xlabel('Plastic strain, \epsilon_p')
368 ylabel('True stress, \sigma_t (MPa)')
369 axis([0 ceil(max(plastic_strain_new)*1.1/0.01)*0.01 0 ...

ceil(max(voce_stress)*1.1/10)*10])
370

371 %% Saving last figure to directory
372 path='C:\Users\Eivind\Documents\MATLAB\Post−process ...

SHTB\plots_camera';
373 cd(path)
374 filename=sprintf('Test−0%g−(true_stress,camera,uncorr_and_corr).eps',...
375 test_id);
376 save_figure_small(filename,hFig,hAxes)
377

378 %% Plotting the resulting true−stress−plastic strain curve for ...
corrected stress

379 hFig=figure;
380 hAxes=axes;
381 hold on
382 plot(plastic_strain_new,voce_stress_corr,'b','LineWidth',2)
383 plot(plastic_strain,true_plastic_stress_corr,'r','LineWidth',1)
384 legend('Adaption to model', 'Experimental ...

test','Location','SouthEast')
385 xlabel('Plastic strain, \epsilon_p')
386 % ylabel('True stress, \sigma_t (MPa)')
387 axis([0 ceil(max(plastic_strain_new)*1.1/0.01)*0.01 0 ...

ceil(max(voce_stress)*1.1/10)*10])
388

389 %% Saving last figure to directory
390 path='C:\Users\Eivind\Documents\MATLAB\Post−process ...

SHTB\plots_camera';
391 cd(path)
392 filename=sprintf('Test−0%g−(true_stress,camera,corr).eps',test_id);
393 save_figure_small(filename,hFig,hAxes)
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394

395 %% Saving parameters
396 if test_n==test_tot
397 parameters_xlsx_string=arrayfun(@num2str, parameters, 'unif', 0);
398

399 parameters_xlsx = {'Parameters for yield stress + Voce ...
hardening and max plastic strain at onset of necking', '', ...
'', '','','','','','','','','',''; ...

400 'Test number' '\sigma_Y (directly)', '\sigma_Y', 'Q_1', ...
'C_1', 'Q_2', 'C_2', 'Max. plastic strain','\sigma_Y', ...
'Q_1', 'C_1', 'Q_2', 'C_2'};

401 parameters_xlsx(3:size(parameters,1)+2,1:13)=parameters_xlsx_string
402 xlswrite('parameters.xlsx', parameters_xlsx);
403

404 save('parameters_cam', 'parameters')
405 save('results_cam','results')
406 end
407 cd('C:\Users\Eivind\Documents\MATLAB\Post−process SHTB')

engs_func_single_shtb.m:

1 function eng_res = engs_func_single_shtb(eng)
2 global eng_strain_calc eng_stress_calc
3

4 eng_calc=eng(1)+eng(2).*eng_strain_calc+eng(3).*eng_strain_calc.^2;
5 eng_res=abs(eng_calc−eng_stress_calc);

voce_test_single_shtb.m:

1 function voce_res = voce_test_single_shtb(voce)
2 global plastic_strain true_plastic_stress
3

4 voce_calc=voce(1)+voce(2).*(1−exp(−voce(3).*plastic_strain))+...
5 voce(4).*(1−exp(−voce(5).*plastic_strain));
6 voce_res=abs(voce_calc−true_plastic_stress);

voce_test_single_shtb_corr.m:

1 function voce_res = voce_test_single_shtb_corr(voce)
2 global plastic_strain true_plastic_stress_corr
3

4 voce_calc=voce(1)+voce(2).*(1−exp(−voce(3).*plastic_strain))+...
5 voce(4).*(1−exp(−voce(5).*plastic_strain));
6 voce_res=abs(voce_calc−true_plastic_stress_corr);

true_strain_cal_func.m:
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1 function true_strain_cal_res = true_strain_cal_func(true_strain_cal)
2 global true_strain timecam
3

4 true_strain_calc=true_strain_cal(1).*(timecam.^7)+...
5 true_strain_cal(2).*(timecam.^6)+true_strain_cal(3)...
6 .*(timecam.^5)+true_strain_cal(4).*(timecam.^4)+...
7 true_strain_cal(5).*(timecam.^3)+true_strain_cal(6)...
8 .*(timecam.^2)+true_strain_cal(7).*timecam+true_strain_cal(8);
9 true_strain_cal_res=abs(true_strain−true_strain_calc);

diameter_cal_func.m:

1 function diameter_cal_res = diameter_cal_func(diameter_cal)
2 global diameter_s timecam
3

4 diameter_calc=diameter_cal(1).*(timecam.^7)+diameter_cal(2).*...
5 (timecam.^6)+diameter_cal(3).*(timecam.^5)+diameter_cal(4)...
6 .*(timecam.^4)+...
7 diameter_cal(5).*(timecam.^3)+diameter_cal(6).*(timecam.^2)...
8 +diameter_cal(7).*timecam+diameter_cal(8);
9 diameter_cal_res=abs(diameter_s−diameter_calc);

rad_cal_func.m:

1 function rad_cal_res = rad_cal_func(rad_cal)
2 global rad_curv_data timecam_rad
3

4 rad_calc=rad_cal(1).*(timecam_rad.^3)+rad_cal(2).*(timecam_rad.^2)+...
5 rad_cal(3).*timecam_rad+rad_cal(4);
6 rad_cal_res=abs(rad_curv_data−rad_calc);
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D.3 Post-Processing of Data from Simulations in LS-DYNA

Script name Script/function Explanation

elout_nodout.m Script Importing data from LS-DYNA simulations

Table D.3: Overview of Matlab scripts for post-processing of data from LS-
DYNA simulations

elout_nodout.m:

1 %% Elout
2 % Script imports elout file from LS−DYNA simulations and saves the ...

data to variables
3

4 %% Calculations
5 fid = fopen('elout');
6 fseek(fid, 0, 'eof');
7 endpos = ftell(fid);
8 fseek(fid, 0, 'bof');
9 z=1;

10 k=0; % k defines time step k
11

12 while ftell(fid) ~= endpos;
13 if z==0
14 break
15 else
16 tline = fgetl(fid);
17 nn=size(tline);
18 if nn(1,2) >= 17
19 if strcmp(tline(1:16),' e l e m e n t ')==1
20 infot = sscanf(tline,' e l e m e n t s t r e s s c ...

a l c u l a t i o n s f o r t i m e s t e p ...
%g ( at time %g )');

21 k=k+1;
22 t(k)=infot(2);
23 elnum=1;
24 elseif strcmp(tline(1:16),' 1− 15 elastic')==1
25 infosig = sscanf(tline,' 1− 15 elastic %g %g %g ...

%g %g %g %g');
26 sig(k,:,elnum)=infosig;
27 elnum=elnum+1;
28 elseif strcmp(tline(1:10),' lower ipt')==1
29 infoeps = sscanf(tline,' lower ipt %g %g %g ...

%g %g %g');
30 eps(k,:,elnum)=infoeps;
31 elseif strcmp(tline(1:10),' upper ipt')==1
32 infoepsU = sscanf(tline,' upper ipt %g %g %g ...

%g %g %g');
33 epsU(k,:,elnum)=infoepsU;
34 elnum=elnum+1;
35 elseif strcmp(tline(1:17),' strains (global)')==1
36 elnum=1;
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37 else
38 end
39 end
40 end
41 end
42 fclose(fid);
43 save('elout_nodout')
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Script name Script/function Explanation

matmod_cal_MJC_hard.m Script Calibration of hardening part for MJC model

matmod_cal_MJC_sr.m Script Calibration of strain rate part for MJC model

matmod_cal_MJC_temp.m Script Calibration of temperature part for MJC model

matmod_cal_ZA_yield.m Script Calibration of yield function for ZA model

matmod_cal_ZA_hard.m Script Calibration of hardening function for ZA model

matmod_cal_comb_yield.m Script Calibration of yield function for comb. model

matmod_cal_comb_hard.m Script Calibration of hardening function for comb. model

matmod_cal_comb_initial.m Script Calculation of parameters used for calibration

MJC_hard.m Function Calculation of hardening parameters for MJC model

MJC_sr.m Function Calculation of strain rate parameter for MJC model

MJC_temp.m Function Calculation of temperature parameter for MJC model

ZA_yield.m Function Calculation of yield function parameters for ZA model

ZA_hard.m Function Calculation of hardening function parameters for ZA model

comb_yield.m Function Calculation of yield function parameters for comb. model

comb_hard.m Function Calculation of hardening function parameters for comb. model

Table D.4: Overview of Matlab scripts for calibration of material models

matmod_cal_MJC_hard.m:

1 clear all
2 %% Loads the database
3 load('Database')
4 global r strain_r strain_r_c n_m n_m_c sig_db sig_db_c eps_0_dot ...

test_n n_tests test_id n_strain
5

6 %% Manual input
7 eps_0_dot=0.01; %reference strain rate
8 xsi=0.9;
9 rho=2.7E−9;

10 Cp=9.6E+8;
11 Tr=293;
12 Tm=933;
13 test_n=[13 16]; %tests to fit for
14 n_strain=1000; %number of strain values
15 lol=0;
16

17 %% Calling script for initial calculations
18 matmod_cal_initial
19

20 %% Starting guess MJC parameters
21 A_MJC_0=103.669998; Q1_MJC_0=80.78500; C1_MJC_0=11.1749780; ...

Q2_MJC_0=100.277969; C2_MJC_0=15.462350;
22 MJC_0=[A_MJC_0, Q1_MJC_0, C1_MJC_0 Q2_MJC_0 C2_MJC_0];
23 lowerb_MJC=[0 0 0 0 0];
24 upperb_MJC=[1000 1000 1000 1000 1000];
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25

26 %% Fitting of MJC material model using lsqnonlin
27 options = optimset('TolFun', 1e−1000, 'TolX', 1e−1000, ...

'MaxFunEvals',100000,'MaxIter',100000, 'PlotFcns', ...
@optimplotresnorm);

28 [MJC_cal(1:5),MJC_cal(6)] = ...
lsqnonlin(@MJC_hard,MJC_0,lowerb_MJC,upperb_MJC,options);

29

30 %% Calculation stress values for resulting calibrated material ...
models (MJC)

31 for i = 1:size(r,2)
32 sigy_MJC(:,i)=MJC_cal(1)+MJC_cal(2).*(1−exp(−MJC_cal(3).*...
33 r(:,i)))+MJC_cal(4).*(1−exp(−MJC_cal(5).*r(:,i)));
34 end
35

36 %% Plotting of resulting material models (MJC) comparison
37 for i = 1:length(test_n);
38 test_id=test_n(i);
39 figure
40 plot(r(:,test_id),sig_db(:,test_id),r(:,test_id),...
41 sigy_MJC(:,test_id))
42 ylim([0 400])
43 xlabel('Strain')
44 ylabel('Stress (MPa)')
45 legend('Stress−strain from database', 'Stress−strain MJC ...

(calibrated)', 'Location', 'NorthEast')
46 legend BOXOFF
47 str = sprintf('Model %g',test_id);
48 title(str);
49 end

matmod_cal_MJC_sr.m:

1 clear all
2 %% Loads the database
3 load('Database')
4 global r strain_r strain_r_c n_m n_m_c sig_db sig_db_c eps_0_dot ...

test_n n_tests test_id n_strain A_MJC_0 Q1_MJC_0 C1_MJC_0 ...
Q2_MJC_0 C2_MJC_0

5

6 %% Manual input
7 eps_0_dot=0.01; %reference strain rate
8 xsi=0.9;
9 rho=2.7E−9;

10 Cp=9.6E+8;
11 Tr=293;
12 Tm=933;
13 test_n=[1 2 13 16 23];
14 n_strain=1000; %number of strain values
15 lol=0;
16

17 %% Pre−calibrated parameters
18 A_MJC_0=83.1606; Q1_MJC_0=351.5559; C1_MJC_0=0.951; ...

Q2_MJC_0=74.1947; C2_MJC_0=20.6163;
19

20 %% Calling script for initial calculations
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21 matmod_cal_initial
22

23 %% Starting guess MJC parameters
24 C_MJC_0=0.0500;
25 MJC_0=[C_MJC_0];
26 lowerb_MJC=[0];
27 upperb_MJC=[10];
28

29 %% Fitting of MJC material model using lsqnonlin
30 options = optimset('TolFun', 1e−1000, 'TolX', 1e−1000, ...

'MaxFunEvals',100000,'MaxIter',100000, 'PlotFcns', ...
@optimplotresnorm);

31 [MJC_cal(1),MJC_cal(2)] = ...
lsqnonlin(@MJC_sr,MJC_0,lowerb_MJC,upperb_MJC,options);

32

33 %% Calculation stress values for resulting calibrated material ...
models (MJC)

34 for i = 1:size(r,2)
35 sigy_MJC(:,i)=(A_MJC_0+Q1_MJC_0.*(1−exp(−C1_MJC_0.*r(:,i)))+...
36 Q2_MJC_0.*(1−exp(−C2_MJC_0.*r(:,i)))).*...
37 (1+strain_r(i)/eps_0_dot).^MJC_cal(1);
38 end
39

40 %% Plotting of resulting material models (MJC) comparison
41 for i = 1:length(test_n);
42 test_id=test_n(i);
43 figure
44 plot(r(:,test_id),sig_db(:,test_id),r(:,test_id),...
45 sigy_MJC(:,test_id))
46 ylim([0 400])
47 xlabel('Strain')
48 ylabel('Stress (MPa)')
49 legend('Stress−strain from database', 'Stress−strain MJC ...

(calibrated)', 'Location', 'NorthEast')
50 legend BOXOFF
51 str = sprintf('Model %g',test_id);
52 title(str);
53 end

matmod_cal_MJC_temp.m:

1 clear all
2 %% Loads the database
3 load('Database')
4 global r strain_r strain_r_c T n_m n_m_c sig_db sig_db_c eps_0_dot ...

T_homo test_n n_tests test_id n_strain A_MJC_0 Q1_MJC_0 ...
C1_MJC_0 Q2_MJC_0 C2_MJC_0 C_MJC_0

5

6 %% manual input
7 eps_0_dot=0.01; %reference strain rate
8 xsi=0.9;
9 rho=2.7E−9;

10 Cp=9.6E+8;
11 Tr=293;
12 Tm=933;
13 test_n=[1:20];
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14 n_strain=1000; %number of strain values
15 lol=0;
16

17 %% Pre−calibrated parameters
18 A_MJC_0=83.1606; Q1_MJC_0=351.5559; C1_MJC_0=0.951; ...

Q2_MJC_0=74.1947; C2_MJC_0=20.6163; C_MJC_0=0.0022;
19

20 %% Calling script for initial calculations
21 matmod_cal_initial
22

23 %% Starting guess MJC parameters
24 m_MJC_0=0.900;
25 MJC_0=[m_MJC_0];
26 lowerb_MJC=[0];
27 upperb_MJC=[10];
28

29 %% Fitting of MJC material model using lsqnonlin
30 options = optimset('TolFun', 1e−1000, 'TolX', 1e−1000, ...

'MaxFunEvals',100000,'MaxIter',100000, 'PlotFcns', ...
@optimplotresnorm);

31 [MJC_cal(1),MJC_cal(2)] = ...
lsqnonlin(@MJC_temp,MJC_0,lowerb_MJC,upperb_MJC,options);

32

33 %% Calculation stress values for resulting calibrated material ...
models (MJC)

34 for i = 1:size(r,2)
35 sigy_MJC(:,i)=(A_MJC_0+Q1_MJC_0.*(1−exp(−C1_MJC_0.*r(:,i)))+...
36 Q2_MJC_0.*(1−exp(−C2_MJC_0.*r(:,i)))).*...
37 ((1+strain_r(i)/eps_0_dot).^C_MJC_0).*...
38 (1−T_homo(:,i).^MJC_cal(1));
39 end
40

41 %% Plotting of resulting material models (MJC) comparison
42 for i = 1:length(test_n);
43 test_id=test_n(i);
44 figure
45 plot(r(:,test_id),sig_db(:,test_id),r(:,test_id),...
46 sigy_MJC(:,test_id))
47 ylim([0 400])
48 xlabel('Strain')
49 ylabel('Stress (MPa)')
50 legend('Stress−strain from database', 'Stress−strain MJC ...

(calibrated)', 'Location', 'NorthEast')
51 legend BOXOFF
52 str = sprintf('Model %g',test_id);
53 title(str);
54 end

matmod_cal_ZA_yield.m:

1 clear all
2 %% Loads the database
3 format long
4 load('Database')
5 global r strain_r strain_r_c T n_m n_m_c sig_db sig_db_c eps_0_dot ...

test_n n_tests n_strain y_test
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6

7 %% Manual input
8 eps_0_dot=0.01; %reference strain rate
9 xsi=0.9;

10 rho=2.7E−9;
11 Cp=9.6E+8;
12 Tr=293;
13 Tm=933;
14 test_n=[1:32];
15 n_strain=1000; %number of strain values
16 lol=0;
17

18 %% Calling script for initial calculations
19 matmod_cal_initial
20

21 %% Starting guess ZA parameters
22 siga_ZA_0=8; B_ZA_0=100; beta0_ZA_0=0.00012134; beta1_ZA_0=.000006434;
23 ZA_0=[siga_ZA_0 B_ZA_0 beta0_ZA_0 beta1_ZA_0];
24 lowerb_ZA=[0 0 0 0 ];
25 upperb_ZA=[50 1000 1 1];
26

27 %% Fitting of ZA material model using lsqnonlin
28 options = optimset('TolFun', 1e−1000, 'TolX', 1e−1000, ...

'MaxFunEvals',100000,'MaxIter',100000, 'PlotFcns', ...
@optimplotresnorm);

29 [ZA_cal(1:4),ZA_cal(5)] = ...
lsqnonlin(@ZA_yield,ZA_0,lowerb_ZA,upperb_ZA,options);

30

31 %% Calculation yield stress values for resulting calibrated ...
material models (ZA)

32 for i = 1:size(r,2)
33 sigy_ZA_yield(i)=ZA_cal(1)+ZA_cal(2)*exp(−(ZA_cal(3)−...
34 ZA_cal(4)*log(strain_r(i)))*T(1,i));
35 end
36

37 %% Plotting of calculated yield stress compared to tests
38 figure
39 for i = 1:length(test_n)
40 hold on
41 plot([test_n(i) test_n(i)],[sigy_ZA_yield(test_n(i)) ...

y_test(test_n(i))])
42 end
43 hold on
44 for i = 1:length(test_n)
45 scatter(test_n(i),sigy_ZA_yield(test_n(i)),50,[0.5 0 0],'+')
46 scatter(test_n(i),y_test(test_n(i)),50,[0 .5 0],'+')
47 end
48 title('Calibrated yield stress \sigma_Y for ZA model');
49 xlabel('Test number (32 total)');
50 ylabel('Yield stress, \sigma_Y (MPa)');

matmod_cal_ZA_hard.m:

1 clear all
2 %% Loads the database
3 load('Database')
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4 global r strain_r strain_r_c T n_m n_m_c sig_db sig_db_c eps_0_dot ...
test_n n_tests test_id n_strain y_test siga_ZA_0 B_ZA_0 ...
beta0_ZA_0 beta1_ZA_0

5

6 %% manual input
7 eps_0_dot=0.01; %reference strain rate
8 xsi=0.9;
9 rho=2.7E−9;

10 Cp=9.6E+8;
11 Tr=293;
12 Tm=933;
13 test_n=[1:32];
14 n_strain=1000; %number of strain values
15 lol=0;
16

17 %% Calling script for initial calculations
18 matmod_cal_initial
19

20 %% Pre−calibrated parameters
21 siga_ZA_0=1.287971; B_ZA_0=343.597; beta0_ZA_0=0.004419; ...

beta1_ZA_0=0.0000865;
22

23 %% Starting guess ZA parameters
24 A_ZA_0=150; n_ZA_0=0.5; alpha0_ZA_0=0.001; alpha1_ZA_0=0.00001;
25 ZA_0=[A_ZA_0 n_ZA_0 alpha0_ZA_0 alpha1_ZA_0];
26 lowerb_ZA=[0 0 0 0 ];
27 upperb_ZA=[50000 10 1 1];
28

29 %% Fitting of ZA material model using lsqnonlin
30 options = optimset('TolFun', 1e−1000, 'TolX', 1e−1000, ...

'MaxFunEvals',100000,'MaxIter',100000, 'PlotFcns', ...
@optimplotresnorm);

31 [ZA_cal(1:4),ZA_cal(5)] = ...
lsqnonlin(@ZA_hard,ZA_0,lowerb_ZA,upperb_ZA,options);

32

33 %% Calculation stress values for resulting calibrated material ...
models (ZA)

34 for i = 1:size(r,2)
35 sigy_ZA(:,i)=siga_ZA_0+B_ZA_0.*exp(−(beta0_ZA_0−beta1_ZA_0.*...
36 log(strain_r(i))).*T(1,i))+ZA_cal(1).*(r(:,i).^...
37 ZA_cal(2)).*exp(−(ZA_cal(3)−ZA_cal(4).*...
38 log(strain_r(i))).*T(:,i));
39 end
40

41 %% Plotting of resulting material models (ZA) comparison
42 for i = 1:length(test_n);
43 test_id=test_n(i);
44 figure
45 plot(r(:,test_id),sig_db(:,test_id),...
46 r(:,test_id),sigy_ZA(:,test_id))
47 ylim([0 400])
48 xlabel('Strain')
49 ylabel('Stress (MPa)')
50 legend('Stress−strain from database', 'Stress−strain ZA ...

(calibrated)', 'Location', 'NorthEast')
51 legend BOXOFF
52 str = sprintf('Model %g',test_id);
53 title(str);
54 end
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matmod_cal_comb_yield.m:

1 clear all
2 %% Loads the database
3 load('Database')
4 global r strain_r strain_r_c T n_m n_m_c sig_db sig_db_c test_n ...

n_tests n_strain y_test p q
5

6 %% Manual input
7 xsi=0.9;
8 rho=2.7E−9;
9 Cp=9.6E+8;

10 Tr=293;
11 Tm=933;
12 test_n=[1:32];
13 n_strain=1000; %number of strain values
14 lol=0;
15

16 %% Calling script for initial calculations
17 matmod_cal_initial
18

19 %% Starting guess comb. parameters
20 Y_a_0=139; Y_threshold_0=1100; beta_1_Y_0=0.00121; ...

beta_2_Y_0=0.0000618;
21 q=1.5; p=0.5;
22 comb_0=[Y_a_0 Y_threshold_0 beta_1_Y_0 beta_2_Y_0];
23 lowerb_comb=[0 0 0 0];
24 upperb_comb=[1000 10000 1 1];
25

26 %% Fitting of comb. material model using lsqnonlin
27 options = optimset('TolFun', 1e−1000, 'TolX', 1e−1000, ...

'MaxFunEvals',100000,'MaxIter',100000, 'PlotFcns', ...
@optimplotresnorm);

28 [comb_cal(1:4),comb_cal(5)] = ...
lsqnonlin(@comb_yield,comb_0,lowerb_comb,upperb_comb,options);

29

30 %% Calculation yield stress values for resulting calibrated ...
material models (comb)

31 for i = 1:size(r,2)
32 sigy_comb_yield(i)=comb_cal(1)+comb_cal(2)*(1−(comb_cal(3)*...
33 T(1,i)−comb_cal(4)*T(1,i)*log(strain_r(i)))^(1/q))^(1/p);
34 end
35

36 %% Plotting of calculated yield stress compared to tests
37 figure
38 for i = 1:length(test_n)
39 hold on
40 plot([test_n(i) test_n(i)],[sigy_comb_yield(test_n(i)) ...

y_test(test_n(i))])
41 end
42 hold on
43 for i = 1:length(test_n)
44 scatter(test_n(i),sigy_comb_yield(test_n(i)),50,[0.5 0 0],'+')
45 scatter(test_n(i),y_test(test_n(i)),50,[0 .5 0],'+')
46 end
47 title('Calibrated yield stress \sigma_Y for comb. model');
48 xlabel('Test number (32 total)');
49 ylabel('Yield stress, \sigma_Y (MPa)');
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matmod_cal_comb_hard.m:

1 clear all
2 %% Loads the database
3 load('Database')
4 global r strain_r strain_r_c T n_m n_m_c sig_db sig_db_c test_n ...

n_tests n_strain y_test p q Y_a Y_threshold beta_1_Y beta_2_Y
5

6 %% Manual input
7 xsi=0.9;
8 rho=2.7E−9;
9 Cp=9.6E+8;

10 Tr=293;
11 Tm=933;
12 test_n=[1:32];
13 n_strain=1000; %number of strain values
14 lol=0;
15

16 %% Calling script for initial calculations
17 matmod_cal_initial
18

19 %% Pre−calibrated parameters
20 Y_a=8.4194; Y_threshold=321.1257; beta_1_Y=0.0011269; ...

beta_2_Y=0.000019808;
21

22 %% Starting guess comb. parameters
23 B1_0=800; n1_0=0.45; B2_0=2190; n2_0=0.71; beta_1_H_0=0.00113; ...

beta_2_H_0=0.000051;
24 q=1.5; p=0.5;
25 comb_0=[B1_0 n1_0 B2_0 n2_0 beta_1_H_0 beta_2_H_0];
26 lowerb_comb=[0 0 0 0 0 0];
27 upperb_comb=[5000 10 20000 10 1 1];
28

29 %% Fitting of comb. material model using lsqnonlin
30 options = optimset('TolFun', 1e−1000, 'TolX', 1e−1000, ...

'MaxFunEvals',100000,'MaxIter',100000, 'PlotFcns', ...
@optimplotresnorm);

31 [comb_cal(1:6),comb_cal(7)] = ...
lsqnonlin(@comb_hard,comb_0,lowerb_comb,upperb_comb,options);

32

33 %% Calculation of stress values for resulting calibrated material ...
models (comb)

34 for i = 1:size(r,2)
35 sigy_comb(:,i)=Y_a+Y_threshold*(1−(beta_1_Y*T(1,i)−beta_2_Y*...
36 T(1,i)*log(strain_r(i)))^(1/q))^(1/p)+...
37 comb_cal(1).*r(:,i).^comb_cal(2)+comb_cal(3).*(r(:,i).^...
38 comb_cal(4)).*(1−(comb_cal(5).*T(:,i)−comb_cal(6).*T(:,i).*...
39 log(strain_r(i))).^(1/q)).^(1/p);
40 end
41

42 %% Plotting of resulting material models (comb.) comparison
43 for i = 1:length(test_n);
44 test_id=test_n(i);
45 figure
46 plot(r(:,test_id),sig_db(:,test_id),r(:,test_id),...
47 sigy_comb(:,test_id))
48 ylim([0 400])
49 xlabel('Strain')
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50 ylabel('Stress (MPa)')
51 legend('Stress−strain from database', 'Stress−strain comb. ...

(calibrated)', 'Location', 'NorthEast')
52 legend BOXOFF
53 str = sprintf('Model %g',test_id);
54 title(str);
55 end

matmod_cal_initial.m:

1 %% Matmod_cal_initial
2 % Database = db_table2013_03_21
3 if lol==1
4 test_n=1;
5 else
6 end
7

8 %% Various definitions
9 n_m=size(db_table2013_03_21,1); %number of tests (measured with ...

strain gauges)
10 n_m_c=size(db_table2013_03_21C,1); %number of tests (measured with ...

camera)
11 n_tests=length(test_n);
12

13 %% Assigne values to variables (from strain gauges)
14 test_n_db=db_table2013_03_21(:,1);
15 strain_r=db_table2013_03_21(:,2);
16 temp=db_table2013_03_21(:,3);
17 Ya=db_table2013_03_21(:,4);
18 Q1=db_table2013_03_21(:,5);
19 C1=db_table2013_03_21(:,6);
20 H=db_table2013_03_21(:,7);
21 eps_true_max=db_table2013_03_21(:,8);
22 eps_fracture=db_table2013_03_21(:,9);
23

24 %% assigne values to variables (from camera)
25 test_n_db_c=db_table2013_03_21C(:,1);
26 strain_r_c=db_table2013_03_21C(:,2);
27 temp_c=db_table2013_03_21C(:,3);
28 Ya_c=db_table2013_03_21C(:,4);
29 Q1_c=db_table2013_03_21C(:,5);
30 C1_c=db_table2013_03_21C(:,6);
31 Q2_c=db_table2013_03_21C(:,8);
32 C2_c=db_table2013_03_21C(:,9);
33 H_c=db_table2013_03_21C(:,7);
34 eps_true_max_c=db_table2013_03_21C(:,10);
35 eps_fracture_c=db_table2013_03_21C(:,11);
36

37 %% assigning strain rates
38 y_test=Ya;
39 y_test(n_m+1:n_m+n_m_c)=Ya_c;
40 strain_r(n_m+1:n_m+n_m_c)=strain_r_c;
41

42 %% calculation of strain matrix
43 for i = 1:n_m
44 r(:,i)=linspace(0,eps_true_max(i),n_strain);
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45 end
46 for i = 1:n_m_c
47 r_c(:,i)=linspace(0,eps_true_max_c(i),n_strain);
48 end
49 r(:,n_m+1:n_m+n_m_c)=r_c;
50

51 %% calculation of stress values from database material models
52 for i = 1:n_m
53 sig_db(:,i)=Ya(i)+Q1(i)*(1−exp(−C1(i)*r(:,i))) + H(i)*r(:,i);
54 end
55 for i = 1:n_m_c
56 sig_db_c(:,i)=Ya_c(i)+Q1_c(i)*(1−exp(−C1_c(i)*r_c(:,i)))+...
57 Q2_c(i)*(1−exp(−C2_c(i)*r_c(:,i))) + H_c(i)*r_c(:,i);
58 end
59 sig_db(:,n_m+1:n_m+n_m_c)=sig_db_c;
60

61 %% calculation of temperature and homologous temperature
62 T(1,:)=temp;
63 T(1,n_m+1:n_m+n_m_c)=temp_c;
64

65 for i = 2:n_strain
66 T(i,:)=T(i−1,:)+xsi.*sig_db(i,:).*(r(i,:)−r(i−1,:))./rho./Cp;
67 end
68

69 T_homo=(T−Tr)/(Tm−Tr);

MJC_hard.m:

1 function MJC_res = MJC_hard(MJC_p)
2 global r sig_db test_n n_tests
3

4 for k = 1:n_tests
5 sigy_MJC_calc(:,k)=MJC_p(1)+MJC_p(2).*(1−exp(−MJC_p(3).*...
6 r(:,test_n(k))))+MJC_p(4).*(1−exp(−MJC_p(5).*...
7 r(:,test_n(k))));
8 MJC_res(:,k)=abs((sig_db(:,test_n(k))−sigy_MJC_calc(:,k))).*...
9 100./sig_db(:,test_n(k));

10 end

MJC_sr.m:

1 function MJC_res = MJC_sr(MJC_p)
2 global r sig_db test_n n_tests A_MJC_0 Q1_MJC_0 C1_MJC_0 Q2_MJC_0 ...

C2_MJC_0 eps_0_dot strain_r
3

4 for k = 1:n_tests
5 sigy_MJC_calc(:,k)=(A_MJC_0+Q1_MJC_0.*(1−exp(−C1_MJC_0.*...
6 r(:,test_n(k))))+Q2_MJC_0.*(1−exp(−C2_MJC_0.*...
7 r(:,test_n(k))))).*(1+strain_r(test_n(k))/...
8 eps_0_dot).^MJC_p;
9 MJC_res(:,k)=abs((sig_db(:,test_n(k))−sigy_MJC_calc(:,k))).*...

10 100./sig_db(:,test_n(k));
11 end
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MJC_temp.m:

1 function MJC_res = MJC_temp(MJC_p)
2 global r sig_db test_n n_tests A_MJC_0 Q1_MJC_0 C1_MJC_0 Q2_MJC_0 ...

C2_MJC_0 eps_0_dot strain_r T_homo C_MJC_0
3

4 for k = 1:n_tests
5 sigy_MJC_calc(:,k)=(A_MJC_0+Q1_MJC_0.*(1−exp(−C1_MJC_0.*...
6 r(:,test_n(k))))+Q2_MJC_0.*(1−exp(−C2_MJC_0.*...
7 r(:,test_n(k))))).*((1+strain_r(test_n(k))/...
8 eps_0_dot).^C_MJC_0).*(1−T_homo(:,test_n(k))...
9 .^MJC_p);

10 MJC_res(:,k)=abs((sig_db(:,test_n(k))−sigy_MJC_calc(:,k))).*...
11 100./sig_db(:,test_n(k));
12 end

ZA_yield.m:

1 function ZA_res = ZA_yield(ZA_p)
2 global test_n n_tests strain_r T y_test
3

4 for k = 1:n_tests
5 sigy_ZA_calc(k)=ZA_p(1)+ZA_p(2)*exp(−(ZA_p(3)−ZA_p(4)*...
6 log(strain_r(test_n(k))))*T(1,test_n(k)));
7 ZA_res(k)=abs((y_test(test_n(k))−sigy_ZA_calc(k)))*...
8 100/y_test(test_n(k));
9 end

ZA_hard.m:

1 function ZA_res = ZA_hard(ZA_p)
2 global test_n n_tests strain_r T siga_ZA_0 B_ZA_0 beta0_ZA_0 ...

beta1_ZA_0 r sig_db
3

4 for k = 1:n_tests
5 sigy_ZA_calc(:,k)=siga_ZA_0+B_ZA_0.*exp(−(beta0_ZA_0−beta1_ZA_0...
6 .*log(strain_r(test_n(k)))).*T(1,test_n(k)))+ZA_p(1).*...
7 (r(:,test_n(k)).^ZA_p(2)).*exp(−(ZA_p(3)−ZA_p(4).*...
8 log(strain_r(test_n(k)))).*T(:,test_n(k)));
9 ZA_res(:,k)=abs((sig_db(:,test_n(k))−sigy_ZA_calc(:,k))).*...

10 100./sig_db(:,test_n(k));
11 end

comb_yield.m:

1 function comb_res = comb_yield(comb_p)
2 global test_n n_tests strain_r T y_test q p
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3

4 for k = 1:n_tests
5 sigy_comb_calc(k)=comb_p(1)+comb_p(2)*(1−(comb_p(3)*...
6 T(1,test_n(k))−comb_p(4)*T(1,test_n(k))*...
7 log(strain_r(test_n(k))))^(1/q))^(1/p);
8 comb_res(k)=abs((y_test(test_n(k))−sigy_comb_calc(k)))*...
9 100/y_test(test_n(k));

10 end

comb_hard.m:

1 function comb_res = comb_hard(comb_p)
2 global test_n n_tests strain_r T q p Y_a Y_threshold beta_1_Y ...

beta_2_Y r sig_db
3

4 for k = 1:n_tests
5 sigy_comb_calc(:,k)=Y_a+Y_threshold*(1−(beta_1_Y*...
6 T(1,test_n(k))−beta_2_Y*T(1,test_n(k))*...
7 log(strain_r(test_n(k))))^(1/q))^(1/p)+...
8 comb_p(1).*r(:,test_n(k)).^comb_p(2)+comb_p(3).*...
9 (r(:,test_n(k)).^comb_p(4)).*(1−(comb_p(5).*...

10 T(:,test_n(k))−comb_p(6).*T(:,test_n(k)).*...
11 log(strain_r(test_n(k)))).^(1/q)).^(1/p);
12 comb_res(:,k)=abs((sig_db(:,test_n(k))−sigy_comb_calc(:,k))).*...
13 100./sig_db(:,test_n(k));
14 end
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E Experimental Results from Quasi-Static Tests

E.1 AA6060-OLD

Table E.1 and E.2 show respectively an overview of the experimental quasi-static
tests and the resulting true stress-plastic strain parameters and estimated fracture
strain. The true stress-plastic strain parameters are fitted with Voce rule, σ = σY +∑2

i=1 Qi(1 − e−Ciεp). In Table E.2, the measured yield stress from experimental
data is denoted σY,experiment, while the yield stress fitted with Voce rule is denoted
σY . The plastic strain value at onset of necking is denoted εp,max and the estimated
fracture strain is denoted εf .

AA6060-OLD

Test # Strain rate Temp. Diameter Gauge length Comment

(s−1) (◦K) (mm) (mm)

1 1 523 3.00 5 OK

2 1 523 3.02 5 OK

3 1 573 3.02 5 OK

4 0.01 523 3.03 10 OK

5 0.01 523 3.03 10 Aborted

6 0.01 573 3.01 10 OK

7 0.01 573 3.00 10 OK

Table E.1: Overview of experimental quasi-static tests for AA6060-OLD
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AA6060-OLD

Test # σY,experiment σY Q1 C1 Q2 C2 εp,max εf

(MPa) (MPa) (MPa) (MPa)

1 68.77 68.76 31.30 10.76 9.11 112.51 0.1249 1.604

2 67.71 68.08 33.74 10.63 9.48 152.31 0.1371 1.365

3 54.31 54.23 24.08 10.07 10.01 158.94 0.1246 2.271

4 44.31 48.35 30.37 28.39 13.71 306.48 0.0995 1.946

5 - - - - - - - -

6 35.17 36.03 17.34 26.97 11.47 316.29 0.0900 2.537

7 32.62 34.24 17.62 28.81 9.28 251.13 0.0835 3.186

1-2 68.24 68.43 32.50 10.80 9.17 132.63 0.1249 -

6-7 33.89 35.15 17.50 28.02 10.32 286.27 0.0835 -

Table E.2: Resulting true stress-plastic strain parameters and estimated fracture
strain for AA6060-OLD from quasi-static experiments
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Figure E.1: Continues...
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Figure E.1: Plots (a)-(f) show the engineering stress-strain curve and true stress-
plastic strain curve from quasi-static experiments for AA6060-OLD
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Figure E.2: Plots (a)-(d) show the true stress-plastic strain curve from quasi-
static experiments for AA6060-OLD for same boundary conditions together with
the average curve. Plots in right column is equal to plots in left column, but for a
narrower range of values on the ordinate axis.
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E.2 AA6060-L

Table E.3 and E.4 show respectively an overview of the experimental quasi-static
tests and the resulting true stress-plastic strain parameters and estimated fracture
strain. The true stress-plastic strain parameters are fitted with Voce rule, σ = σY +∑2

i=1 Qi(1 − e−Ciεp). In Table E.4, the measured yield stress from experimental
data is denoted σY,experiment, while the yield stress fitted with Voce rule is denoted
σY . The plastic strain value at onset of necking is denoted εp,max and the estimated
fracture strain is denoted εf .

AA6060-L

Test # Strain rate Temp. Diameter Gauge length Comment

(s−1) (◦K) (mm) (mm)

1 0.01 293 not meas. 5 OK

2 0.01 470 not meas. 5 D.s.*

3 0.01 470 not meas. 5 OK

4 0.01 470 not meas. 5 OK

5 0.01 523 not meas. 5 D.s.*

6 0.01 523 not meas. 5 OK

7 0.01 523 not meas. 5 OK

8 0.01 573 not meas. 5 OK

9 0.01 573 not meas. 5 OK

10 0.01 630 not meas. 5 OK

11 0.01 630 not meas. 5 OK

12 1 293 not meas. 5 OK

13 1 473 not meas. 5 OK

14 1 473 not meas. 5 OK

15 1 523 not meas. 5 OK

16 1 523 not meas. 5 OK

17 1 573 not meas. 5 OK

18 1 573 not meas. 5 OK

19 1 630 not meas. 5 OK

* D.s. = Damaged specimen (usually from mounting in the test rig)

Table E.3: Overview of experimental quasi-static tests for AA6060-L
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AA6060-L

Test # σY,experiment σY Q1 C1 Q2 C2 εp,max εf

(MPa) (MPa) (MPa) (MPa)

1 68.04 73.10 175.72 4.66 21.16 64.12 0.2836 0.812

2 - - - - - - - -

3 55.14 58.84 182.05 1.42 26.80 56.76 0.2350 1.079

4 51.59 54.58 83.77 4.94 16.52 106.98 0.2349 1.040

5 - - - - - - - -

6 38.31 38.58 18.71 17.86 10.10 197.46 0.1029 1.862

7 43.36 45.89 53.02 5.53 13.22 144.55 0.2153 1.107

8 30.85 31.55 7.61 25.74 4.76 309.35 0.0682 3.169

9 23.18 23.50 4.96 167.23 3.31 1000.00 0.0158 3.778

10 22.45 22.37 2.45 149.57 3.01 1000.00 0.0199 0.803

11 16.60 16.30 4.27 8.44 5.29 470.89 0.0675 4.797

12 100.64 102.98 134.14 5.43 16.23 117.10 0.2340 0.803

13 75.22 75.84 34.45 19.37 8.11 282.31 0.1012 1.418

14 80.26 80.95 42.73 15.44 11.01 326.47 0.1194 1.360

15 58.88 60.07 26.91 12.93 7.51 183.47 0.1225 1.599

16 55.63 57.26 35.66 7.14 8.28 142.73 0.1703 1.984

17 49.04 50.61 27.02 6.27 5.39 174.42 0.1613 2.619

18 48.58 50.05 26.12 6.87 6.10 111.08 0.1575 2.155

19 34.11 34.67 11.14 19.26 5.41 446.75 0.0994 3.702

3-4 53.36 56.90 100.52 3.36 21.08 72.91 0.2349 -

6-7 40.83 42.27 29.77 10.04 11.80 163.05 0.1029 -

8-9 27.02 27.54 5.48 137.35 2.69 747.74 0.0158 -

10-11 19.52 19.36 2.04 140.63 3.69 682.87 0.0199 -

13-14 77.74 78.40 38.37 17.23 9.57 305.81 0.1012 -

15-16 57.11 58.19 29.36 10.32 8.21 164.56 0.1225 -

17-18 48.81 50.35 26.40 6.68 5.64 138.51 0.1575 -

Table E.4: Resulting true stress-plastic strain parameters and estimated fracture
strain for AA6060-L from quasi-static experiments
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Figure E.3: Continues...

E64



E.2 AA6060-L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

10

20

30

40

50

60

70

Engineering strain, ε
e

E
ng

in
ee

rin
g 

st
re

ss
, σ

e (
M

P
a)

Experimental test

0 0.02 0.04 0.06 0.08 0.1 0.12
0

10

20

30

40

50

60

70

80

Plastic strain, ε
p

T
ru

e 
st

re
ss

, σ
t (

M
P

a)

Adaption to model
Experimental test

(g) Test #6 (h) Test #6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

10

20

30

40

50

60

70

80

90

Engineering strain, ε
e

E
ng

in
ee

rin
g 

st
re

ss
, σ

e (
M

P
a)

Experimental test

0 0.05 0.1 0.15 0.2
0

10

20

30

40

50

60

70

80

90

100

110

Plastic strain, ε
p

T
ru

e 
st

re
ss

, σ
t (

M
P

a)

Adaption to model
Experimental test

(i) Test #7 (j) Test #7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

30

35

40

45

50

Engineering strain, ε
e

E
ng

in
ee

rin
g 

st
re

ss
, σ

e (
M

P
a)

Experimental test

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

5

10

15

20

25

30

35

40

45

50

Plastic strain, ε
p

T
ru

e 
st

re
ss

, σ
t (

M
P

a)

Adaption to model
Experimental test

(k) Test #8 (l) Test #8
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Figure E.3: Continues...
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Figure E.3: Plots (a)-(hh) show the engineering stress-strain curve and true
stress-plastic strain curve from quasi static experiments for AA6060-L
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Figure E.4: Plots (a)-(n) show the true stress-plastic strain curve from quasi-
static experiments for AA6060-L for same boundary conditions together with the
average curve. Plots in right column is equal to plots in left column, but for a
narrower range of values on the ordinate axis.
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E.3 AA6060-H

Table E.5 and E.6 show respectively an overview of the experimental quasi-static
tests and the resulting true stress-plastic strain parameters and estimated fracture
strain. The true stress-plastic strain parameters are fitted with Voce rule, σ = σY +∑2

i=1 Qi(1 − e−Ciεp). In Table E.6, the measured yield stress from experimental
data is denoted σY,experiment, while the yield stress fitted with Voce rule is denoted
σY . The plastic strain value at onset of necking is denoted εp,max and the estimated
fracture strain is denoted εf .

Test # Strain rate Temp. Diameter Gauge length Comment

(s−1) (◦K) (mm) (mm)

1 0.01 523 3.00 5 OK

2 0.01 523 3.02 5 OK

3 0.01 523 2.99 5 OK

4 0.01 523 2.99 5 OK

5 0.01 573 2.99 5 OK

6 0.01 573 2.99 5 OK

7 0.01 293 3.01 5 OK

8 0.01 473 3.01 5 OK

9 0.01 473 3.01 5 OK

10 0.01 633 3.01 5 OK

11 0.01 633 not meas. 5 OK

12 1 293 not meas. 5 OK

13 1 470 not meas. 5 OK

14 1 470 not meas. 5 OK

15 1 470 not meas. 5 D.s.*

16 1 523 not meas. 5 OK

17 1 523 not meas. 5 OK

18 1 573 not meas. 5 OK

19 1 573 not meas. 5 OK

20 1 633 not meas. 5 OK

21 1 633 not meas. 5 OK

Table E.5: Overview of experimental quasi-static tests for AA6060-H
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AA6060-H

Test # σY,experiment σY Q1 C1 Q2 C2 εp,max εf

(MPa) (MPa) (MPa) (MPa)

1 - - - - - - - -

2 40.37 43.00 70.41 4.70 16.90 124.60 0.2130 1.166

3 42.41 43.52 45.84 3.49 10.16 108.59 0.1902 1.234

4 43.12 43.55 43.58 8.11 12.37 140.86 0.1974 1.335

5 34.83 35.70 18.02 10.09 5.95 241.41 0.1111 2.464

6 37.44 37.94 20.44 11.15 7.30 189.46 0.1198 1.964

7 73.96 77.54 171.65 5.02 22.98 59.82 0.2667 0.645

8 60.98 61.92 63.74 4.10 11.37 98.80 0.2418 0.869

9 53.13 54.55 36.05 40.35 7.11 486.41 0.0705 0.86

10 19.90 20.93 2.72 64.53 3.70 532.19 0.0315 6.202

11 19.30 19.50 3.75 35.72 2.37 660.47 0.0389 5.726

12 93.37 95.96 124.73 6.43 23.23 137.13 0.2200 0.868

13 83.44 84.87 45.39 13.34 10.37 228.41 0.1330 1.251

14 77.35 77.63 38.83 13.96 9.45 214.56 0.1253 1.432

15 - - - - - - - -

16 61.10 62.89 30.86 12.11 9.52 196.88 0.1328 1.555

17 56.36 57.61 28.95 9.68 8.65 154.12 0.1423 1.783

18 51.48 52.59 23.36 11.33 7.60 231.02 0.1311 2.112

19 49.61 49.98 17.12 15.92 5.97 342.21 0.1049 2.329

20 38.42 38.72 8.65 23.51 5.12 343.58 0.0679 3.379

21 35.02 35.70 11.25 22.26 7.34 533.79 0.0918 3.047

2-3 41.74 43.29 54.81 6.16 14.72 129.99 0.1984 -

5-6 36.13 36.83 19.18 10.73 6.59 211.65 0.1101 -

8-9 57.06 58.54 30.35 29.11 7.25 230.46 0.0688 -

10-11 19.60 20.22 3.11 48.87 3.04 577.51 0.0322 -

13-14 80.40 81.25 42.10 13.63 9.91 221.69 0.1256 -

16-17 58.73 60.26 29.71 11.01 9.05 175.36 0.1321 -

18-19 50.55 51.31 19.93 13.50 6.73 274.11 0.1046 -

20-21 36.72 37.23 9.93 23.27 6.14 447.58 0.0680 -

Table E.6: Resulting true stress-plastic strain parameters and estimated fracture
strain for AA6060-H from quasi-static experiments
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Figure E.5: Continues...
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Figure E.5: Continues...
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Figure E.5: Plots (a)-(ll) show the engineering stress-strain curve and true stress-
plastic strain curve from quasi static experiments for AA6060-H
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Figure E.6: Continues...
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Figure E.6: Plots (a)-(p) show the true stress-plastic strain curve from quasi-
static experiments for AA6060-H for the same boundary conditions together with
the average curve. Plots in right column is equal to plots in left column, but for
a narrower range of values on the ordinate axis. Plots (q) and (r) show the true
stress-plastic strain curve for test 2, 3 and 4 with same boundary conditions.
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F Experimental Results from SHTB Tests

F.1 AA6060-L

Table F.1 and F.2 show respectively an overview of the experimental quasi-static
tests and the resulting true stress-plastic strain parameters and estimated fracture
strain. The true stress-plastic strain parameters are fitted with Voce rule, σ = σY +∑2

i=1 Qi(1 − e−Ciεp). In Table F.2, the measured yield stress from experimental
data is denoted σY,experiment, while the yield stress fitted with Voce rule is denoted
σY . The plastic strain value at onset of necking is denoted εp,max and the estimated
fracture strain is denoted εf .

AA6060-L

Test # Strain rate Temp. Diameter Gauge length Comment

(s−1) (◦K) (mm) (mm)

7 340 523 not meas. 5 N.s.*

8 372 523 not meas. 5 N.s.*

9 354 523 not meas. 5 OK

10 460 523 not meas. 5 N.s.*

11 781 523 not meas. 5 OK

* N.s. = not successful experiment

Table F.1: Overview of experimental SHTB tests for AA6060-L

AA6060-L

Test # σY,experiment σY Q1 C1 Q2 C2 εp,max εf

(MPa) (MPa) (MPa) (MPa)

9 (s.g.) 45.26 43.83 53.48 11.72 6.34 42.22 0.1994

2.1959 (camera) 45.93 44.02 42.35 3.41 33.46 44.80 0.9476

9 (camera*) 45.93 44.37 52.83 2.24 35.25 41.36 0.9476

11 (s.g.) 43.74 47.84 1000.00 0.10 31.63 17.10 0.2534

2.08811 (camera) 43.79 48.87 44.85 4.17 23.17 67.42 0.5666

11 (camera*) 43.79 49.50 58.58 2.27 26.18 53.81 0.5666

* not corrected using Bridgman’s formula

Table F.2: Resulting true stress-plastic strain parameters for AA6060-L from
SHTB experiments
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Figure F.1: Plots show the engineering stress-strain curve and true stress-plastic
strain curve from SHTB experiments for AA6060-L (strain gauge measurements)
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Table F.3: Plots (a)-(b) show both uncorrected and Bridgman corrected true
stress-plastic strain curves from camera measurements for AA6060-L. Plots (c)-
(d) show only the Bridgman corrected true stress-plastic strain curves.
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Table F.4: Plots (a)-(d) show the back-extrapolation of radius of curvature for
AA6060-L. Plots (b) and (d) show the same as (a) and (c) but for a narrower
range for both the ordinate and abscissa axis
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Figure F.2: Plots (a)-(d) show the minimum radius at the neck-radius of cur-
vature ratio from both camera measurements and the empirical formula and the
resulting true stress-plastic strain plot using Bridgman correction for AA6060-L

F89



F.2 AA6060-H

F.2 AA6060-H

Table F.5 and F.6 show respectively an overview of the experimental quasi-static
tests and the resulting true stress-plastic strain parameters and estimated fracture
strain. The true stress-plastic strain parameters are fitted with Voce rule, σ = σY +∑2

i=1 Qi(1 − e−Ciεp). In Table F.6, the measured yield stress from experimental
data is denoted σY,experiment, while the yield stress fitted with Voce rule is denoted
σY . The plastic strain value at onset of necking is denoted εp,max and the estimated
fracture strain is denoted εf .

AA6060-H

Test # Strain rate Temp. Diameter Gauge length Comment

(s−1) (◦K) (mm) (mm)

1 350 523 not meas. 5 N.s.*

2 376 523 not meas. 5 OK

3 365 613 not meas. 5 N.s.*

4 388 673 not meas. 5 N.s.*

5 789 523 not meas. 5 OK

6 800 573 not meas. 5 N.s.*

* N.s. = not successful experiment

Table F.5: Overview of experimental SHTB tests for AA6060-H

AA6060-H

Test # σY,experiment σY Q1 C1 Q2 C2 εp,max εf

(MPa) (MPa) (MPa) (MPa)

2 (s.g.) 47.19 49.26 1000.00 0.13 28.74 23.95 0.2248

1.8562 (camera) 49.92 49.94 110.25 1.08 30.84 32.93 1.4709

2 (camera*) 49.92 49.36 176.04 0.72 30.21 37.01 1.4709

5 (s.g.) 46.26 47.45 45.00 12.21 15.95 12.21 0.2194

2.0135 (camera) 51.47 51.94 59.01 1.10 38.54 32.85 1.0211

5 (camera*) 51.47 52.23 1000.00 0.06 39.35 31.47 1.0211

* not corrected using Bridgman’s formula

Table F.6: Resulting true stress-plastic strain parameters for AA6060-H from
SHTB experiments
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Figure F.3: Plots show the engineering stress-strain curve and true stress-plastic
strain curve from SHTB experiments for the AA6060-H alloy (strain gauge mea-
surements)
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Figure F.4: Plots (a)-(b) show both uncorrected and Bridgman corrected true
stress-plastic strain curves from camera measurements for AA6060-H. Plots (c)-(d)
show only the Bridgman corrected true stress-plastic strain curves.
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Table F.7: Plots (a)-(d) show the back-extrapolation of radius of curvature for
AA6060-H. Plots (b) and (d) show the same as (a) and (c) but for a narrower
range for both the ordinate and abscissa axis
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F.2 AA6060-H
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Figure F.5: Plots (a)-(d) show the minimum radius at the neck-radius of cur-
vature ratio from both camera measurements and the empirical formula and the
resulting true stress-plastic strain plot using Bridgman correction for AA6060-H
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G Pictures of Specimens Post-Fracture from Quasi-
Static Tests

Pictures have been taken of specimens post-fracture from all quasi-static and
SHTB tests. This has been done using a digital SLR camera, a tripod and a
light source to light up the shadows best possible. The specimens were placed on
a sheet of paper with a contrast color (a light green color was used, even though
it looks from Fig. G.1 the color is yellow) to be able to remove the background
using photo editing software. Two pieces of strings attached to the table and paper
sheet were used to ensure that the specimens were placed at the same exact spot
to get the same proportions of the specimens in the resulting pictures. In order
to do this effectively, an algorithm was created for Adobe Photoshop to execute
the same image processing routine for all pictures taken. Fig. G.2a and G.2b
show respectively an example of a specimen before and after applying the image
processing routine. Some remaining background noise were present in all pictures
and have been removed manually.

Figure G.1: Setup for taking pictures of tensile specimens post-fracture

(a) (b)

Figure G.2: (a)-(b): Example of picture of tensile specimen respectively before
and after subjected to image processing routine
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G.1 AA6060-OLD

G.1 AA6060-OLD
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Figure G.3: Tensile specimens post-fracture for AA6060-OLD from all quasi-
static tests
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G.2 AA6060-L
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Figure G.4: Continues...
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G.2 AA6060-L
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Figure G.4: Continues...

G98



G.2 AA6060-L
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Figure G.4: Tensile specimens post-fracture for AA6060-L from all quasi-static
tests
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G.3 AA6060-H
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Figure G.5: Continues...
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G.3 AA6060-H
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Figure G.5: Continues...
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G.3 AA6060-H
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Figure G.5: Tensile specimens post-fracture for AA6060-H from all quasi-static
tests
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H Pictures of Specimens Post-Fracture from SHTB
Tests

H.1 AA6060-L

7

8

9

10

11

Figure H.1: Tensile specimens post-fracture for AA6060-L from all SHTB tests
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H.2 AA6060-H
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Figure H.2: Tensile specimens post-fracture for AA6060-H from all SHTB tests
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I LS-DYNA Keyword File

1 $# LS−DYNA Keyword file created by LS−PrePost 4.1 (Beta) − ...
22Apr2013(19:00)

2 $# Created on Jun−07−2013 (15:09:42)
3 *KEYWORD
4 *PARAMETER
5 R ya 48.026798
6 R qe1 45.312500
7 R ce1 3.487500
8 R qe2 27.351999
9 R ce2 52.274300

10 R p0 0.010000
11 R t0 523.00000
12 R tm 933.00000
13 R cp 9.7200E+8
14 R pd 260.00000
15 R a1 1.000000
16 R b1 1.000000
17 R c1 1.000000
18 R f1 1.000000
19 R g1 1.000000
20 R h1 1.000000
21 R m1 2.000000
22 R beta1 0.000
23 R nd1 0.000
24 *TITLE
25 $# title
26 LS−DYNA keyword deck by LS−PrePost
27 *BOUNDARY_PRESCRIBED_MOTION_SET_ID
28 $# id ...

...
heading

29 0Stretching in A
30 $# nsid dof vad lcid sf vid ...

death birth
31 1 2 2 5 1.000000 ...

01.0000E+28 0.000
32 $# id ...

...
heading

33 0Clamping in B
34 $# nsid dof vad lcid sf vid ...

death birth
35 2 2 2 4 1.000000 0 ...

3.0000E−4 0.000
36 *PART
37 $# title
38 Specimen
39 $# pid secid mid eosid hgid grav ...

adpopt tmid
40 1 1 1 0 1 0 ...

0 0
41 *SECTION_SHELL_TITLE
42 Specimen
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I LS-DYNA KEYWORD FILE

43 $# secid elform shrf nip propt qr/irid ...
icomp setyp

44 1 15 1.000000 2 1 0 ...
0 1

45 $# t1 t2 t3 t4 nloc marea ...
idof edgset

46 0.000 0.000 0.000 0.000 0.000 0.000 ...
0.000 0

47 *MAT_USER_DEFINED_MATERIAL_MODELS_TITLE
48 user defined vv
49 $# mid ro mt lmc nhv iortho ...

ibulk ig
50 1 2.5000E−9 41 32 21 0 ...

29 30
51 $# ivect ifail itherm ihyper ieos lmca ...

unused unused
52 0 1 0 0 0 0
53 $# p1 p2 p3 p4 p5 p6 ...

p7 p8
54 6.900E+04 3.330E−01 &Ya &qe1 &ce1 &qe2 &ce2 ...

1.000e−004
55 $# p1 p2 p3 p4 p5 p6 ...

p7 p8
56 2.22E−14 &p0 5 293.0 &tm &Cp 2.700e −0090.9
57 $# p1 p2 p3 p4 p5 p6 ...

p7 p8
58 &pd &t0 &tm &a1 &b1 &c1 &f1 ...

&g1
59 $# p1 p2 p3 p4 p5 p6 ...

p7 p8
60 &h1 &m1 &BETA1 &ND1 6.900E+4 2.300E+4
61 *HOURGLASS
62 $# hgid ihq qm ibq q1 q2 ...

qb/vdc qw
63 1 4 0.000 0 0.000 0.000 ...

0.000 0.000
64 *PART
65 $# title
66 Bars
67 $# pid secid mid eosid hgid grav ...

adpopt tmid
68 2 2 2 0 1 0 ...

0 0
69 *SECTION_SHELL_TITLE
70 Bars
71 $# secid elform shrf nip propt qr/irid ...

icomp setyp
72 2 15 1.000000 2 1 0 ...

0 1
73 $# t1 t2 t3 t4 nloc marea ...

idof edgset
74 0.000 0.000 0.000 0.000 0.000 0.000 ...

0.000 0
75 *MAT_ELASTIC_TITLE
76 Bars
77 $# mid ro e pr da db not used
78 2 7.8500E−9 2.1000E+5 0.300000 0.000 0.000 ...

0
79 *DATABASE_DCFAIL
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80 $# dt binary lcur ioopt
81 1.0000E−6 0 0 1
82 *DATABASE_ELOUT
83 $# dt binary lcur ioopt option1 option2 ...

option3 option4
84 1.0000E−6 0 0 1 0 0 ...

0 0
85 *DATABASE_GLSTAT
86 $# dt binary lcur ioopt
87 1.0000E−6 0 0 1
88 *DATABASE_MATSUM
89 $# dt binary lcur ioopt
90 1.0000E−6 0 0 1
91 *DATABASE_NODOUT
92 $# dt binary lcur ioopt option1 option2
93 1.0000E−6 0 0 1 0.000 0
94 *DATABASE_RBDOUT
95 $# dt binary lcur ioopt
96 1.0000E−6 0 0 1
97 *DATABASE_RCFORC
98 $# dt binary lcur ioopt
99 1.0000E−6 0 0 1

100 *DATABASE_SECFORC
101 $# dt binary lcur ioopt
102 1.0000E−6 0 0 1
103 *DATABASE_BINARY_D3PLOT
104 $# dt lcdt beam npltc psetid
105 3.0000E−6 0 0 0 0
106 $# ioopt
107 0
108 *DATABASE_BINARY_D3THDT
109 $# dt lcdt beam npltc psetid
110 1.5000E−6 0 0 0 0
111 *DATABASE_EXTENT_BINARY
112 $# neiph neips maxint strflg sigflg epsflg ...

rltflg engflg
113 20 20 3 1 1 1 ...

1 1
114 $# cmpflg ieverp beamip dcomp shge stssz ...

n3thdt ialemat
115 0 0 0 1 1 1 ...

2 0
116 $# nintsld pkp_sen sclp unused msscl therm ...

intout nodout
117 0 0 1.000000 0 0STRESS
118 $# dtdt resplt
119 0 0
120 *DATABASE_HISTORY_NODE_SET
121 $# id1 id2 id3 id4 id5 id6 ...

id7 id8
122 4 0 0 0 0 0 ...

0 0
123 *DATABASE_HISTORY_SHELL_SET
124 $# id1 id2 id3 id4 id5 id6 ...

id7 id8
125 2 3 4 0 0 0 ...

0 0
126 *CONTROL_ENERGY
127 $# hgen rwen slnten rylen
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128 2 2 1 1
129 *CONTROL_IMPLICIT_AUTO
130 $# iauto iteopt itewin dtmin dtmax dtexp
131 0 11 5 0.000 0.000 0.000
132 *CONTROL_IMPLICIT_GENERAL
133 $# imflag dt0 imform nsbs igs cnstn ...

form zero_v
134 −3 1.0000E−5 2 1 2 0 ...

0 1
135 *CONTROL_IMPLICIT_SOLUTION
136 $# nsolvr ilimit maxref dctol ectol rctol ...

lstol abstol
137 2 11 15 0.001000 0.0100001.0000E+10 ...

0.9000001.0000E−10
138 $# dnorm diverg istif nlprint nlnorm d3itctl cpchk
139 2 1 1 0 2 0 ...

0
140 $# arcctl arcdir arclen arcmth arcdmp
141 0 0 0.000 1 2
142 $# lsmtd lsdir irad srad awgt sred
143 1 2 0.000 0.000 0.000 0.000
144 *CONTROL_SHELL
145 $# wrpang esort irnxx istupd theory bwc ...

miter proj
146 0.000 0 0 1 15 2 ...

1 0
147 $# rotascl intgrd lamsht cstyp6 tshell
148 0.000 0 0 0 0
149 $# psstupd sidt4tu cntco itsflg irquad
150 0 0 0 0 2
151 $# nfail1 nfail4 psnfail keepcs delfr drcpsid drcprm
152 0 0 0 0 0 0 1.000000
153 *CONTROL_SOLUTION
154 $# soln nlq isnan lcint
155 0 0 0 100
156 *CONTROL_TERMINATION
157 $# endtim endcyc dtmin endeng endmas
158 0.002500 0 0.000 0.000 0.000
159 *CONTROL_TIMESTEP
160 $# dtinit tssfac isdo tslimt dt2ms lctm ...

erode ms1st
161 0.000 0.400000 0 0.000 0.000 0 ...

0 0
162 $# dt2msf dt2mslc imscl unused unused rmscl
163 0.000 0 0 0.000

I108


	summaryformNEW
	blankNEW
	oppgavetekstNEW
	blankNEW2
	THESIS SPLIT

