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SUMMARY: 
This thesis assesses the proposed construction of a single span suspension bridge crossing the Sognefjord in light of 

earthquake response. There has been conducted a literature survey to investigate the theory developed to handle long-

span suspension bridges. A method found was the Pseudo Excitation Method developed to assess response of long-span 

suspension bridges using random vibrations.  

The modelling of the Sognefjord Bridge was conducted using SAP2000. Analysis showed that the first mode had a 

period of 36 seconds and that over 2000 different modes were identified for the system.  

Before conducting the analyses for the system, two damping models were assessed, Rayleigh and hysteretic damping. 

When frequency response was calculated for the 300 first frequencies and the Rayleigh damping were controlled by the 

first and hundred natural frequencies the results proved that Rayleigh damping gave a response twice what found using 

hysteretic damping for several of frequencies in range between mode 1 and mode 100.   

The Sognefjord Bridge is a very slender structure therefore were the damping effects from wind assessed. This was done 

using quasi-static theory. Using the aerodynamic derivatives from the Hardanger Bridge, a rough estimate the 

aerodynamic damping was obtained. This showed a reduction in frequency response of 25%.  

The earthquake response calculation where conducted in MATLAB, using random vibration theory in the frequency 

domain. Three analyses were conducted assuming stationary conditions; one with wave–passage and incoherence 

effects, one with only the wave-passage effect and one with no spatial effects. There were considerable differences in 

the respond from the three analyses in both size and shape. The maximum response occurred in the analysis where both 

wave-passage and incoherence effects were included and was 0.81 meters.  

As a result of the high period of the first mode of the system, the assumption of stationary conditions is not valid. A 

simplified method to assess the non-stationary condition were used, this showed that the maximum response for 

stationary conditions should be reduced substantially. 
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SEISMIC BEHAVIOUR OF LONG SPAN SUSPENSION BRIDGES 
 

Problem:  

Long span suspension bridges are currently under planning in Norway, the length of which is in 

the range 2 to 4 km, which implies tower heights up to 400 m 

Objective: 

To develop and test a computational model  

Main steps: 

 Literature survey 

 Structural modelling of the combined system: towers, cables and deck 

 Damping properties 

 Description of the seismic wave field 

 Response analysis 

 Comparative analysis and comparison with current design provisions 

 Reporting 

 

Potential outcome:  

Recommendations regarding structural design provisions  

Potential special outcome: 

 Published paper in an ISI scientific journal 

Special requirements:  

Theory of random fields and random vibrations 
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Abstract  
This thesis assesses the proposed construction of a single span suspension bridge crossing the 

Sognefjord in light of earthquake response. The proposed bridge has a span of 3700 meter and its 

pylon has a height of 455 meters. If build this will be by far the longest suspension bridge ever 

build. The current regulations are not developed to handle constructions as this. There has 

therefore been conducted a literature survey to investigate the theory developed to handle long-

span suspension bridges. A method found was the Pseudo Excitation Method developed to 

assess response of long-span suspension bridges using random vibrations. This method has in 

China been used in the seismic design of several long–span bridges and in the Chinese guidelines 

for seismic design of long-span bridges the preferred method. This method is presented in this 

thesis.  

The modelling of the Sognefjord Bridge was conducted using SAP2000. Analysis showed that the 

first mode had a period of 36 seconds and that over 2000 different modes were identified for the 

system. An investigation of the modal participation factors proved that there are high modes 

contributing significant to the response.  

Before conducting the analyses for the system two damping models were assessed; Rayleigh and 

hysteretic damping. When frequency response was calculated for the 300 first frequencies and the 

Rayleigh damping were controlled by the first and hundred natural frequencies the results proved 

that Rayleigh damping gave a response twice what found using hysteretic damping for several of 

frequencies in range between mode 1 and mode 100.  Thus, was the hysteretic damping used in 

the analyses of the bridge.  

In the Eurocode, NS-EN 1998-2 there is seen that wind is not required to be accounted for in 

seismic analyses. However, since the Sognefjord Bridge is a very slender structure the damping 

effects from wind were assessed. This was done using quasi-static theory. As the aerodynamic 

derivatives for this bridge not yet are examined, the values for the Hardanger Bridge were used. 

This gave a rough estimate of effects of the aerodynamic damping, which sowed a reduction in 

frequency response of 25% for the first natural frequency for displacement in y-direction at the 

mid-span. The reduction become less for higher modes, but was still significant. 

The earthquake response calculation where conducted in MATLAB, using random vibration 

theory in the frequency domain. Three analysis were conducted assuming stationary conditions; 

seismic wave traveling along bridge accounting for both wave–passage and incoherence effects, 

seismic wave traveling along bridge accounting for only the wave-passage effect and seismic wave 

traveling perpendicular to the bridge where no spatial effects are present. The results showed that 

there were considerable differences in the respond from the three analyses in both size and 

shape. The maximum response occurred in z- direction in the analysis where both wave-passage 

and incoherence effects were accounted for and was 0.81 meters.  

As a result of the high the period of the first mode of the system, the assumption of stationary 

conditions is not valid.  To assess the effects of non-stationary condition a simplified method 

assuming the response in each DOF as single degree of freedom systems were used. The power 

spectral densities curves for the responses investigated showed this to be a good estimate as they 
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were fairly narrow-banded. Using this there was shown that the standard deviation of the 

maximum response for stationary conditions should be reduced substantially. For the maximum 

response the reduction was approximately 50%.  
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Sammendrag 
Denne avhandlingen vurderer den foreslåtte byggingen av en hengebru i et spenn over 

Sognefjorden i lys av jordskjelv. Den foreslåtte broen har et spenn på 3700 meter og tårnene har 

en høyde på 455 meter. Om broen blir bygd vil den være den lengste hengebro noensinne bygd 

med god margin. Dagens regelverk er ikke utviklet for å håndtere konstruksjoner som dette. Det 

har derfor blitt gjennomført en litteraturstudie for å undersøke teorier utviklet for å beregne 

jordskjelv respons på lange hengebruer. En metode som ble funnet er «the Pseudo Excitation 

Method» utviklet for å vurdere seismiske påvirker på hengebroer med lange spenn ved å bruke 

teori om stokastiske svingninger. Denne metoden har i Kina vært brukt i seismisk utforming av 

flere lange hengebroer og er i den kinesiske retningslinjen for seismisk utforming av lange broer 

den foretrukne metoden. Denne metoden er presentert i denne avhandlingen. 

Modellering av den foreslåtte hengebroen over Sognefjorden ble utført ved bruk av SAP2000. 

Analyse viste at den første eigenmoden hadde en periode på 36 sekunder og at over 2000 

forskjellige moder ble identifisert i systemet. De modale deltagelses faktorer avslører at det er 

moder så høye som mode 1200 som bidrar vesentlig til responsen i systemet.  

Før respons analysene for systemet ble utført ble to dempings modeller for systemet vurdert, 

Rayleigh og hysterese demping.  Når frekvens responsen ble beregnet for de 300 første 

frekvensene og Rayleigh-dempingen ble kontrollert ved den første og hundre naturlige 

frekvensene viste resultatene at Rayleigh demping ga en respons dobbelt  så stor som ved bruk av 

hysterese demping for flere av frekvenser i området mellom mode 1 og mode 100. Dermed ble 

hysterese demping brukt i analysene av broen. 

I Eurocoden, NS-EN 1998-2 er det satt at vind ikke skal tas hensyn til  i jordskjelv analyser. Men 

siden den foreslåtte broen over Sognefjorden er en veldig slank struktur ble demping effekter fra 

vinden vurdert. Dette ble gjort ved hjelp av kvasi-statiske teori.  Siden de aerodynamiske 

konstantene for denne broen ennå ikke er undersøkt, ble verdiene for Hardangerbrua brukt. 

Dette ga et grovt estimat av virkningene av den aerodynamiske dempingen, som ga en reduksjon 

for frekvens responsen på 25 % for den første naturlige frekvens for forskyvning i y-retningen i 

midt-spennet. Reduksjonen ble mindre for høyere moder, men var fortsatt betydelig. 

Respons beregning for jordskjelv ble gjennomført i MATLAB, ved å bruke stokastisk vibrasjons 

teori i frekvensdomenet. Tre analyser ble gjennomført hvor det ble forutsatt stasjonære forhold; 

seismisk bølge i lengderetningen av broen hvor både «Wave-passage» og «Incoherence» effekter 

ble tatt hensyn til, seismisk bølge in lengderetning av broen hvor bare «Wave-passage» effekter er 

tatt hensyn til  og seismisk bølge som kommer vinkelrett på broen hvor det derfor ikke er romlige 

effekter til stede. Resultatene viste at det var betydelige forskjeller responsen fra de tre analysene 

både i størrelse og form. Maksimal respons  ble funnet i z-retning i analysen hvor både «Wave-

passage» og «Incoherence» effektene ble vurdert og var 0,81 meter. 

Som følge av den høye perioden i den første eigenmoden i systemet, er antagelsen om stasjonære 

forhold ikke gyldig. For å vurdere effekten av ikke-stasjonær forhold er en forenklet metode hvor 

responsen i hver frihetsgrad er beregnet som for et system av en frihetsgrad. Responsspekter 

kurvene for de undersøkte punktene viser at dette er et godt estimat siden de er smalbåndet. Ved 
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hjelp av dette ble det vist at standardavviket av responsen for stasjonære forhold bør reduseres 

betydelig. For den maksimale respons ble reduksjonen omkring 50%. 
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1 Introduction 
The Norwegian west coast is connected together through the road, E39, which stretches from 

Kristiansand in south to Trondheim in north. E39 connects the four most populated cities in 

Norway after Oslo (Bergen, Trondheim, Stavanger and Kristiansand) and is therefore of great 

importance.  Today eight fjords have to be crossed with ferries on this distance. In 2010 the 

Norwegian Ministry of Transport and Communication ordered a report from the Norwegian 

Public Road Administration of the possibility of crossing these fjords without using ferries.  One 

part of the report was looking at the technological aspect of these crossing.  Therefore one of the 

crossings was chosen to develop concepts for crossing of wide and deep fjords.  The crossing 

selected was Sognefjorden, which on the proposed stretch between Lavik and Oppedal has a 

width of 3700 meters and a depth of 1300 meters. Four concepts have been developed: 

suspension bridge with one span, suspension bridge/cable stayed bridge with several spans and 

floating foundations, floating bridge, pipe bridge and the combination of the two latter.  In this 

thesis the concept of suspension bridge with one span (from now on called “the Sognefjord 

Bridge”) is evaluated further in terms of earthquake response. A suspension bridge with a span of 

3700 meters has never been built. Today the longest suspension bridge span in the world is the 

Akashi Kaikyō Bridge in Japan with a main span of 1991 meters (3), but a bridge over the 

Messina Strait in Italia with a span of 3300 meters is under planning (4).   

The main challenge with long span bridges in the context of earthquake is the spatial effects, i.e. 

effects produced by the large extent of the structure.  Three types of effects are recognized. The 

first is called the “wave passage effect” and is caused by different arrival times for the seismic 

waves at the various supports.  The distance between the supports also causes loss of coherence 

because of reflections and refractions of seismic waves in inhomogeneous material, or by 

different in manner of superposition of wave travelling from an extended fault. This is called the 

“incoherence effect” (2, 5, 6). The third spatial effect is called “site response effect”, this is the 

effect caused by the local soil conditions at the supports.   

The response spectrum method which is the most common method for seismic calculations 

cannot account for these effects. Traditionally the time-history method has therefore been used 

in computation of long span structures. Since no earthquakes are alike, numerous time-histories 

must be used to give statistical average.  This makes this method computationally expensive. As a 

result of this, much research has been invested in creating more efficient computational methods 

in the last decades.  The common opinion is that the random vibration approach is the way to go. 

The main advantage of this method is that it provides a statically measure without requiring any 

arbitrary selected input variables as with the time-history method (2). Several experts have made 

great effort in developing the random vibration method.  Lee and Penzien (7) developed a 

stochastic method for seismic analyses of structures subjected to multiple support excitations in 

both time and frequency domain, where cross-correlation of the multiple-support excitations 

where accounted for. Berra and Kausel (8) proposed an extension to the response spectrum 

method, where each spectral value for the given response spectrum was adjusted by mean of a 

correlation factor. Der Kiureghian and Neuenhofer (2) developed the response spectrum 

method, which included the effects of wave passage, incoherence and local soil conditions.    
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Ernesto and Vanmarcke (9) proposed a method where the multiple support system was reduced 

to a series of linear one-degree of freedom systems in a way that fully accounts for the multi-

support input.  Common for all these methods are that they requires a large computational power 

to solve high degree random differential equations. Nevertheless, Der Kiureghian and 

Neuenhofer’s response spectrum method has been included as one of the proposed methods in 

the European seismic bridge code, NS-EN 1998-2 (10).    

Another approach to random vibration analysis is the Pseudoexcitation method (PEM), this 

method was developed by Lin (11) and first published in 1991. Further development has been 

conducted since (12-18).  PEM is a method for stationary and non-stationary random vibration 

analyses for long-span structures (18). There have been several engineering analysis conducted 

where PEM successfully have been applied and since 2008 the PEM method has the been 

recommended method in the Chinese guidelines for seismic analysis for long span bridges (16).  

A challenge when using random vibration theory on long-span bridges is that they will have long 

natural periods. Normally using random vibration there is assumed stationary condition, i.e. the 

probability does not change with time. For structures where the natural periods are small 

compared to the duration of the load this is a fair assumption, but for long span bridges the 

natural periods can be expected to be in the same range as the duration of the earthquake. The 

stationary assumption can therefore not be justified and the structure should therefore be 

analysed using non-stationary conditions.  
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1.1 Objects and Limitations  

 

 Much research has been conducted on the problem with dynamic analyses of structures 

of large extend. One of the research objective are therefore to do a literature survey on 

what research have been done and if there have been any new development the last years.  

 

 A bridge with the span of the Sognefjord Bridge has never been built. There is therefore 

unknown what the natural frequencies will be. One of the research questions is therefore 

to develop an analysis model of the Sognefjord Bridge using SAP2000 and study these 

parameters. The drawings and the information provided by the Norwegian Public Road 

Administration will be used and no further calculation of dimensions or reinforcement 

will be conducted. Soil-structure interaction will not be accounted for.  

 

 A complex and large structure as the Sognefjord Bridge will have hundreds of natural 

frequencies. The traditional Rayleigh damping which often is used in structural analysis 

controls the damping using two defined natural frequencies. Deciding these natural 

frequencies is not easy when there are so many. On research question is therefore to 

investigate an alternative damping model, hysteretic damping, and compare the result 

with the result using Rayleigh damping.   

 

 In Norway earthquake is not a large problem, nevertheless does the Eurocode require 

that structures are checked against earthquake. The pylons of the Sognefjord Bridge will 

be the highest structure ever built on the mainland of Norway and a bridge with this span 

has never been. There is therefore difficult to know what response to expect. One 

research question is therefore to calculate the response of the bridge. The structure will 

be analyses assuming stationary conditions and the spatial effects will be incorporated. If 

there is enough time non-stationarities will be investigated.  Traffic loads will not be 

regarded.  
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2 Theory 

2.1 Random Vibrations  

Earthquakes are highly unpredictable events. Time of occurrence, frequency content, magnitude 

and duration are all variables that not can be predicted in advance. Earthquakes can therefore be 

characterizes as a random vibration. The best way of characterizing an earthquake in advance is 

therefore using probability.  

 

2.1.1 Stationary Random Process in General 

A normal assumption when dealing with random vibration in engineering purposes is to assume 

stationary condition. By stationary condition, there is meant that the probability conditions for 

the random process are independent of absolute time. To decide if the random process is 

stationary, a rule of thumb is that if the process last for a long time compared to the period of the 

systems lowest natural frequency, the process is time independent and stationary conditions can 

be assumed. However, if the system has a beginning and an end the process is non-stationary. 

Earthquakes have definitely a start and an end, and are therefore non-stationary processes. In 

most cases the structures period is low compared to duration of the earthquake. Therefore, often 

a weakly stationary process is defined to simplify the analyses. A weakly stationary process is a 

process where only the mean value and autocorrelation function is not allowed to vary with time.  

For seismic ground motions a Gaussian probability distribution is usually assumed. This 

distribution is given by Eq. (3.1.1), where x  is the mean value and 
2  is the variance expressed 

by Eq. (3.1.2). 

 
2

2

1 ( )
( ) exp(

22

x x
p x




    (3.1.1) 

 

 
2 2( ) ( )x x p x dx





    (3.1.2) 

A random process can be thought of as an infinite collection of sample functions x(t) occurring 

simultaneously, in this case n numbers of Gaussian distributions at an arbitrary time instants. This 

joint probability density function, ( , )p x t , is also called a Gaussian random process. The joint 

probability density function (19) is only dependent of the mean values and the covariance, 

therefore the Gaussian random process is strictly stationary.   

In addition to the assumed Gaussian distribution, seismic ground motion record is also assumed 

to be ergodic.  A stationary process is ergodic if the average of all the individual samples is equal 

the joint distribution average, i.e. each individual sample can represent the random process.   
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An important function when investigating different values in a random process is the 

autocorrelation function. The autocorrelation function is defined by Eq. (3.1.3), where T is the 

duration and   is the separation time between the sample functions.  

  

  
/2

/2

1
( ) ( ) lim ( ) ( )

T

xx

T
T

R E x t x t x t x t dt
T

 



     (3.1.3)    

The Wiener –Khintchine theorem states that for an arbitrary stationary random process x(t), the 

auto-power spectral density (auto-PSD) is the Fourier transformed of the autocorrelation 

function as expressed in Eq(3.1.4). 

 
1

( )exp( )
2

xx xxS R i d  






    (3.1.4) 

As a result, if an auto-PSD exists, the autocorrelation can be found by the inverse Fourier 

transform, Eq. (3.1.5). 

 ( ) ( )exp( )xx xxR S iw d   




    (3.1.5) 

 Three important properties for the auto-PSD can be obtained. 

1. From Eq.(3.1.4) , it can be shown by introducing the Euler formula that xxS  is an even 

function.  

 ( ) ( )xx xxS S     (3.1.6) 

2. xxS  is a non-negative real number (19) 

 ( ) 0xxS     (3.1.7) 

3. The auto-PSD for the deviates of the random process x(t) can be calculated on the 

following matter (20). 

 2
( ) ( )xx xxS S     (3.1.8) 

 4
( ) ( )xx xxS S     (3.1.9) 

The cross-correlation functions between to stationary random functions of time x(t) and y(t) is 

defined by Eq. (3.1.10) and (3.1.11). 

  
/2

/2

1
( ) ( ) lim ( ) ( )

T

xy

T
T

R E x t y t x t y t dt
T

 



      (3.1.10) 
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  
/2

/2

1
( ) ( ) lim ( ) ( )

T

yx

T
T

R E y t x t y t x t dt
T

 



      (3.1.11) 

 

As for the auto-PSD, the cross-power spectral density (cross-PSD) can be calculated by matter of 

Fourier transformation of the cross-correlation functions 

 
1

( )exp( )
2

xy xyS R i d  






    (3.1.12) 

 
1

( )exp( )
2

yx yxS R i d  






    (3.1.13) 

 

2.1.2  Non-Stationary Random Vibrations in General  

Earthquakes are as earlier stated non-stationary random processes, but are in most cases 

simplified by using a stationary random process. For long-span bridges the first natural period is 

often higher than 15 seconds. In comparison, the duration of a strong near-fault earthquake is 

about 30 seconds (21). This means that the first period of the system is in the same range as the 

duration of the earthquake. Stationary condition can therefore not be justified for these types of 

constructions.  

Non-stationary condition can be introduced using the evolutionary power spectra method 

developed by Priestly (22),  Eq. (3.1.14).  

 ( ) ( , )exp( ) ( )f t A t i t d   




    (3.1.14) 

Here ( , )A t  is a non-uniform amplitude modulation function, also called an envelope. ( )   is 

an orthogonal process that satisfies the relations in Eq. (3.1.15) and Eq. (3.1.16).    

 ( ) exp( ) ( )x t i t d  




    (3.1.15) 

  1 2 1 2 1 1 2*( ) ( ) ( ) ( )xxE d d S d d             (3.1.16) 

Here   is the Dirac function, which is zero for all values except when 1 2  .   

 

This method is difficult to compute and the non-uniform modulation assumption is therefore 

often replaced by a uniform modulation assumption (18), which leads to Eq. (3.1.17)  
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 ( ) ( )exp( ) ( ) ( ) ( )f t g t i t dZ g t x t 




    (3.1.17) 

Here is the non-uniformly modulated function, ( , )A t , replaced by an uniformly modulated 

function g(t). This simplifies the equation substantially.  

2.1.3  

2.1.4 Parametric Model Used to Describe the Spectral Density 

The most common method used to describe the spectral density of the random field with a 

parametric model, is using the Kanai-Tajimi spectrum (23) and its extension proposes by Clough 

and Penzien (24).  Parameters in these models can be modified to account for different soil 

conditions. The Kanai model is presented in in Eq. (3.1.18). 

 
 

   

2
2

02
2 2

2

1 4

1 4

g

g g

g

g

xg
S S




 
 







 
  

 

  (3.1.18) 

Here, g and g is the characteristic frequency and damping ratio for a given soil condition. 0S is 

the amplitude of a Gaussian white process that should be adapted the expected magnitude of the 

earthquake. This is done using the prediction for the most probable peak factor for a stationary 

random Gaussian process, Eq. (3.1.19).  In which maxa  is the maximum acceleration amplitude, 

also known as the PGA, 0 is the unknown standard deviation and r is the peak factor. 

Vanmarcke and Lai (25) found that 2.74 was a reasonable value for the peak factor.      

 max

0

a
r


   (3.1.19) 

The magnitude adapted 0S  is then found by Eq. (3.1.20).       

 
2

0
0

0

0

( , 1)
gx

S

S S d



 






  (3.1.20) 

The Kanai-Tajimi filter passes low frequencies that are not typical for earthquake records. 

Therefore a high pass filter that attenuates the low frequencies is necessary. Clough and Penzien 

(24) proposed an extension to the Kanai filter, Eq. (3.1.21).     

 
 

   

 

   

2 42

02 2
2 2 2 2

22

1 4
( )

1 41 4

g h

g

h hg g

g

x

hg

S S

 
 

  
  








   

     
  

  (3.1.21) 
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Here, h and h are the frequency and damping parameter for specific soil conditions.  

Much research has been conducted in finding parameter for these spectra and several parameters 

have been proposed. Kiuregihan and Neuenhofer (2) proposed the values presented in Table 2.1. 

 

2.1.5 Power Spectral Density for Spatial Varying Ground Accelerations    

Seismic ground motions are varying over distances and the effects this causes for structures of 

large extent has been a concern for a long period. Research has shown that these effects can have 

major significance for the response of the structures (26). In most cases will these effects reduce 

the response, but for some cases the response will increase. Therefore, when dealing with 

structures of large extent and multiple-supports, multiple excitations should be applied. The PSD 

matrix for multiple excitation of N supports are shown in Eq. (3.1.22). 

 

  

1 1 1 2 1

2 1 2 2 2

1 2

N

N

N N N N

x x x x x x

x x x x x x

xx

x x x x x x

S S S

S S S
S i

S S S



 
 
 

  
 
 
 

  (3.1.22) 

Here, 
k lx xS  is the spectral density corrected for spatial effects, Eq. (3.1.23). 

 ( ) ( ) ( )
k l k lx x kl x xS i S S      (3.1.23) 

Research on local effects has shown that they have little effect on the structural response(18), 

therefore differences between 
kxS and 

lxS are of low significance and can therefore be assumed 

equal. The acceleration coherence function, ( )kl i   is found by Eq. (3.1.24).  

 ( ) | ( ) | exp( )
L
kl

app

d

kl kl v
i i i        (3.1.24) 

The last term in this equation expresses the wave passage effect. Here 
L
kld  are the projected 

distances between two supports and appv  is the wave propagation velocity. Since 
L
kld  is distance 

relative to the coordinate system, the wave passage term becomes a Hermitian matrix.   

The first term in Eq. (3.1.24)  is characterizing the incoherence effect (2). Several coherence 

models have been developed and can be uses to describe the incoherence (27-30). One of the 

Table 2.1 Parameters for the Kanai-Tajimi filter and Clough and Penzien filter proposed by 
Kiureghian and Neuenhofer (2) 

g [rad/s] g  g [rad/s] 
h  

15 0.6 1.5 0.6 
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most common models is the Harichandran –Vanmarcke model (27). The model is presented in 

Eq.(3.1.25),  

 

 
2 2

( ) ( )
( , ) exp (1 ) (1 )exp (1 )kl kld d

kl kld A A A A A A
   

              
   

  (3.1.25) 

 

where ( )   is determined from Eq. (3.1.26).  

  
0

0.5

( ) 1
b

K 


 


 

  
 

  (3.1.26) 

The constants in Eq.(3.1.25) and Eq.(3.1.26) are obtained through studies of the Smart-1 array 

(information about the Smart-1 array can found in (5)): A=0.736, 0.147  , K=5210, 

0 6.85  rad/s, b=2.78.  The distance term kld is not relative to the coordinate system, i.e. only 

positive numbers, thus is the incoherence term a symmetric matrix.  

  

2.1.6 Extreme Values  

In a design calculation an important value is the extreme value of the response.  Davenport (31) 

approximated this values by using a Poisson model which considered the independence of the 

crossing of a positive and negative symmetric threshold by the random process(5). The mean 

value of the expected extreme value is given by Eq. (3.1.27).    

 1/2
max 1/2

( ) (2ln( ))
(2ln( ))

yE y T
T


 



 
  
 

  (3.1.27) 

 Where T is the time interval, i.e. the duration of the earthquake, the Euler constant  =0.5772, 

y  is the standard deviation of the response and   is given by Eq. (3.1.28).  

 0

0

( )
1

( )

i yy

yy

S dw

S dw

 















  (3.1.28) 

The term between the brackets in Eq. (3.1.27) is known as the peak factor, pk . This extreme 

value model is developed for wind engineering. An extreme value model for earthquake was 

developed by A.D. Kiureghian  based on the work of E.H. Vanmarcke (18), but this model is not 

presented in this thesis.  
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2.2 Pseudo Excitation Method (PEM) 

The pseudo excitation method is a method for solving high-degree of freedom stochastic 

differential equation with multiple excitations developed by Lin and Zhang (15).   

 

2.2.1 Stationary Conditions  

 

If a linear system is subjected to a zero-mean single stationary random excitation x(t) with a given 

spectra density xxS , and two arbitrary selected responses, y(t) and z(t) are selected. Using the 

conventional method, the auto -PSD can be calculated as shown in Figure 2.1(b). Where ( )yH   

and ( )zH   are the complex frequency response function for the two responses and where * 

denotes the complex conjugated.  The general expression for the frequency response function for 

a coupled system with conventional damping is shown in Eq. (3.2.1).  

 2 1( ) ( )H M i C K         (3.2.1) 

By replacing the random excitation, x(t) by an assumed sinusoidal excitation(11), Eq.(3.2.2),  the 

responses, y(t) and z(t) can be written as harmonic responses.   

 ( ) exp( )xxx S i t    (3.2.2) 

This can be shown by using the frequency response method(20). Assuming the amplitude equal 

one, the excitation x(t) can be written as an harmonic input, Eq. (3.2.3). 

 ( ) exp( )x t i t   (3.2.3) 

Figure 2.1 Diagram showing the basic principle of PEM for stationary conditions  

Linear Structure   
  

  

Linear Structure 

  
  

Linear Structure   

 

Excitation Response 

(a) 

(b) 

(c) 
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As a result can the response functions also be written as a harmonic outputs when the system is 

linear, Eq. (3.2.4) and Eq. (3.2.5).   

 ( ) ( )exp( )yy t H i t    (3.2.4) 

 ( ) ( )exp( )zz t H i t    (3.2.5) 

When assuming Eq. (3.2.2), the harmonic responses for y(t) and z(t) is written respectively as Eq. 

(3.2.6) and Eq. (3.2.7).  

 ( ) ( )exp( )xx yy S H i t     (3.2.6) 

 ( ) ( )exp( )xx zz S H i t     (3.2.7) 

By taking the product of the response and its complex conjugate, Eq. (3.2.8) and Eq. (3.2.9) are 

obtained. 

 * * *( )exp( ) ( )exp( ) ( ) ( )xx y xx y y xx yy y S H i t S H i t H S H          (3.2.8) 

 * * *( )exp( ) ( )exp( ) ( ) ( )xx y xx z y xx zy z S H i t S H i t H S H          (3.2.9) 

The last term in these equation are the same as the conventional expressions, Figure 2.1(b),   

hence Eq. (3.2.10) and Eq. (3.2.11). 

  
2 *( )yy y xxS H S y y     (3.2.10)  

   * *( ) ( )yy y xx zS H S H y z      (3.2.11) 

There can also be noted that the sinuous part of Eq. (3.2.10) and Eq. (3.2.11) disappears when its 

multiplied with their complex conjugates, therefore can expression for the auto-PSD and the 

cross-PSD be written as Eq. (3.2.12) and Eq. (3.2.13).  

   * * T
yy y yS y y a a     (3.2.12) 

   * * T
yz y zS y z a a     (3.2.13) 

In which ya  is given by Eq. (3.2.14)  

  y y xa H S   (3.2.14) 

For systems subjected to multiple stationary excitations the PSD matrix has to be decomposed to 

obtain an expression for the pseudo excitation vector, Eq. (3.2.15).  

 exp( ) exp( )j j yjd i t a i t  x l   (3.2.15) 
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This decomposition can be done using Cholesky’s method, Eq.(3.2.16), since the PSD is a 

Hermitian matrix (18, 32).   

   * *

1

r
T T

xx j j j

j

d


 S L DL l l   (3.2.16) 

Here L is the lower triangular with a diagonal with values of unity, D is a nonzero diagonal 

matrix with values jd (18).  

Using Eq.(3.2.15) the displacement vector can then be calculated in the same way as for a single 

excitation, hence Eq. (3.2.17) and Eq. (3.2.18).  

 exp( )j yj i ty a   (3.2.17) 

 exp( )j zj i tz a   (3.2.18) 

The corresponding auto-PSD and cross-PSD can be calculated by Eq. (3.2.19) and Eq. (3.2.20). 

   * *

1 1

r r
T T

yy j j yj yj

j j

S y y a a
 

     (3.2.19) 

   * *

1 1

r r
T T

yz j j yj zj

j j

S y z a a
 

     (3.2.20) 

 

2.2.2 Non-Stationary Random Vibrations Using Uniformly Modulated 

Evolutionary Random Excitations  

As shown in Chapter 2.1.2 can the expression for non-stationary condition be reduced to Eq. 

(3.2.21) when a uniform modulation function is used.  

 ( ) ( ) ( )f t g t x t   (3.2.21) 

Here g(t) is a uniform slowly varying modulating function. Two typical definitions of the uniform 

modulating functions are shown in Eq. (3.2.22) and Eq. (3.2.23). 

 

 
1

2

0 1

0 1 2

0 2 2

0

( )

exp( ( ))

t
t

I t t

g t I t t t

I c t t t t


 




  
  



  (3.2.22) 

    

 
1 0

( )
0 0

t
g t

t


 


  (3.2.23) 
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Another way to describe the envelop function g(t) is using a function as Eq.(3.2.24). If this 

function is integrated with respect to time, the function will adopt a shape similar to the Arias 

intensity plot if the constants   and  are calibrated properly. This is shown in Figure 2.2, there 

is notable that this plot is done for a near-fault earthquake with low magnitude and therefore 

becomes the time duration of the uniform modulation function short.  

 ( ) exp( )g t t t     (3.2.24) 

  

 

The basic principle when using PEM for a single excitation is illustrated by Figure 2.3. Using the 

pseudo excitation method, excitation for a single degree system can be written as shown in Figure 

2.3(b). The arbitrarily pseudo response quantities  ( )y t  and ( )z t  are not as easily obtained as for 

the stationary random excitation. This is because the frequency response function ( , )H t  is 

now time dependent. The response can be calculated either by a numerical integration scheme as 

Newmark (24) or precise integration method (33), by solving the differential equation in 

traditional manner for a decoupled system or using the convolution integral. Using a convolution 

integral the response vector can be written as Eq. (3.2.25).  Here ( )j jh t   is the impulse 

response function (19).  

 

0

( , ) ( ) ( )exp( )

jt

j j j j j j xxt h t g i t d S     y   (3.2.25) 

 

The auto-PSD and cross-PSD for the response can be calculated in the same manner as for the 

stationary random excitation, this is shown in Figure 2.3(c).  

Figure 2.2 To the left: Plot of arias intensity (red) and the integrated uniform modulation function (blue). 
To the right:  Uniform fodulation function g(t) 
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For multiple excitations the evolutionary random excitation vector can be written as Eq. (3.2.26). 

Where G(t) is a diagonal matrix containing the uniform modulation functions and ( )tx is a vector 

containing the stationary random excitations.  

 ( ) ( ) ( )t t tf G x   (3.2.26) 

The stationary random excitation can be replaced by a pseudo-excitation, ( )f t , given by Eq.  

(3.2.27). 

 ( ) ( ) exp( )
gxt S i t f G BQ   (3.2.27) 

Here B is a decomposition of the term expressing the wave passage effect, Eq. (3.2.28) , Q is a 

decomposition of expression of the incoherence effect. The latter can be decomposed using 

Cholesky’s method in the same manner as in Chapter 2.2.1 or if the system is assumed fully 

coherent Q can be expresses as vector of unity.  There can also be noted that if the local effects 

are neglected the stationary random excitation, xxS  is the same for all the supports. 

 1 2(exp( ),exp( ),....,exp( ))ndiag i t i t i t     B   (3.2.28) 

 

 The auto-PSD for the non-stationary pseudo-excitation is given by Eq. (3.2.29). 

Linear Structure 

  

  

  

Linear Structure 

    

Linear Structure    

 

Excitation Response 

(a) 

(b) 

(c) 

Figure 2.3  Basic principle for the pseudoexcitation method for a single excitation 
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 
 
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 
 
 
 
 
 
   

 
  

  (3.2.29) 

  

The same methods as for non-stationary single excitation can be used to obtain output for an 

arbitrarily selected response. Using the convolution integral the response can be found by Eq. 

(3.2.30).  In which j  and kl  are variable coming from decomposition of the coherence matrix 

by using such as Cholesky’s method.  

    
0

( , ) exp( )
g

t

k k j x j k k k k kt S l t i d      y B H G   (3.2.30) 

For two arbitrarily responses ( )kjy t and ( )ljy t , the corresponding spectral densities can be 

computed by means of Eq. (3.2.31). 

      

 
1

( , ) ( ) ( )
k l

r

y y kj lj

j

S t y t y t


   (3.2.31) 
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2.3 Simplified Method Two Assess Non- Stationarities 

In section 2.2.2 there was shown that a convolution integral has to be solved to find the non-

stationary response. As this is very computational demanding an alternative method to 

approximate the effect of non-stationarities is proposed.  

Langen and Sigbjörnsson (19) calculated an example for  a single-degree system excited by an 

evolutionary non-stationary random vibration, Eq. (3.2.23) 

 2
0 0

( )
2

Q t
y y y

m
      (3.3.1) 

The spectral density input for the system was defined by Eq.(3.3.2). 

 
0

0 0
xx

I t

S

t




 
 

  (3.3.2) 

As the envelop function the uniform modulated function in Eq. (3.2.23) was used. The variance 

of the non-stationary solution of the system was shown be the result of Eq. (3.3.3). 

 
 

2

2 20 0
0

2

( ) 1 exp( ) 1 2 sin ( ) sin 2 0

( )

0 0

yy d d
d d

yy

t t t t

t

t

 
   

 

             
        





  (3.3.3) 

Here   is the damping of the system, 0  is the natural frequency of system, d is the damped 

natural frequency given by Eq. (3.3.4) and 2
yy is the variance of the stationary solution. 

 2
0 (1 )d      (3.3.4) 

This can be used to approximate the non-stationary solution from the stationary solution of a 

multi-degree of freedom system.  Using the response spectrum curve for the displacement of a 

given DOF, the dominating frequency for this DOF can be found. By setting the natural 

frequency 0 , equal this dominating frequency the function can be plotted. The time when a 

steady stated is reached is found, i.e. the point where function is closing on its asymptote. If the 

duration of the earthquake is known, the time dependent variance at the end of the earthquake is 

found from the plot. The ratio between the variance at steady state and the variance at end of the 

earthquake is obtained and can be used to estimate the reduction of variance due to non-

stationary conditions. If the response spectrum for the DOF is narrow banded this should 

produce a fair estimate.  
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2.4 Damping  

In a construction there are many mechanism contributing to damping. Examples of this are; 

micro cracks, friction in connections and thermal effects as straining and frictions in the 

materials. The most common way to account for these effects is using viscous damping. This is a 

simple way to introduce damping in the system, but has its limitations. Therefore also other types 

of damping will be discussed.     

 

2.4.1 Viscous Damping  

Viscous damping is a simple way to introduce damping idealizes as a viscous dashpot. Here the 

damping force is proportional to the velocity in the system as shown in Eq. (3.4.1), where fD is 

the damping force, c is the viscous damping coefficient and u  is the velocity.    

 Df cu   (3.4.1) 

For a multi degree of freedom (MDOF) system a damping matrix of viscous damping 

coefficients are made. Several methods can be used to construct this matrix, but the most 

common method is Rayleigh-damping. In Rayleigh-damping both the mass and stiffness matrix 

are used to construct the damping matrix, this is shown in Eq. (3.4.2).  

 0 1a ac m+ k   (3.4.2) 

Here 0a  and 1a  is the proportionality constants which can be obtained by solving the system in 

Eq. (3.2.12).      

 
0

1

11

12

i i i

j j j

a

a

  

  

    
    

    
  (3.4.3) 

To solve this system the damping ratios i  and j , corresponding to the natural frequencies i  

and j  must be set. Damping ratios for different frequencies are rarely available, therefore are 

often the same damping ratios set for both frequencies, i.e.  i j    (24). Using this 

assumption, a simplified equation for the proportionality constants can be expressed, Eq. (3.4.4). 

 
0

1

2
1

m n

m n

a

a

 

 

   
   

   
  (3.4.4) 

With Rayleigh damping the damping in the system is controlled by what natural frequencies, i  

and j  that are selected. Typically the first natural frequency and a higher natural frequency that 

contributes significantly to the dynamic response are chosen. The modes between the two 

frequencies will be damped less than  , while the other modes will be damped greater than   as 

illustrated in Figure 2.4.  
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For a construction with many natural frequencies and higher order modes with large modal 

participation factors there are some difficulties in applying the Rayleigh-damping. The challenge 

is choosing the second natural frequency needed to calculate the damping coefficients. One 

solution is to choose the highest mode as the second natural frequency, but this will give a very 

conservative damping for the intermediate modes. Another solution is to find the highest mode 

which contributes significant to the response of the system, but this can be difficult to decide.  

There is also possible to use an extended Rayleigh damping. When using an extended Rayleigh 

damping, damping at multiple natural frequencies are set. This gives a system with more than two 

proportionality constants. However, as for the traditional Rayleigh damping there can be difficult 

to choose what natural frequencies to use.  

 

2.4.2 Hysteretic Damping  

An alternative to viscous damping is using hysteretic damping, also called rate-independent 

damping, structural damping and material damping. In viscous damping the energy dissipation is 

dependent on the excitation frequency, this is seen in Eq.(3.4.5).  This equation expresses the 

energy dissipation per cycle. 

 2 2

0 02D

n

E c u u


  


    (3.4.5) 

A great deal of research indicates that the energy loss is independent of the response frequency 

(24). This is a disadvantage with viscous damping as the Rayleigh damping.  

Figure 2.4 Rayleigh damping - relation between damping ratios 
and frequencies  
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The hysteretic damping force is expressed in Eq.(3.4.6), where   is the damping coefficient. 

 
D

k
f u




   (3.4.6) 

By replacing the damping term, c in Eq.(3.4.5), the equation for energy dissipation in a hysteretic 

damped system is obtained, Eq. (3.4.7). As seen is the energy dissipation independent of the 

excitation frequency.  

 2

0DE ku   (3.4.7) 

An equivalent viscous damping coefficient  , can be obtained by equating the energy dissipation 

for viscous damping with the energy dissipation for hysteretic damping. The equation obtained 

from this procedure will be frequency dependent. This dependency can be removed by setting 

the natural frequency equal to the excitation frequency, Eq. (3.4.8) is then obtained.  

 2 eq    (3.4.8) 

The hysteretic damping can be rewritten to a complex form, the damping force is then written as 

Eq. (3.4.9). 

 Df i ku   (3.4.9) 

 

2.4.3 Non-Classical Damping  

Different materials has different damping properties. In a structure consisting of two or more 

parts made by material with significant different damping properties, these properties should be 

accounted for. An example of this is a suspension bridge where the pylons are made by concrete 

and the cables and bridge deck are made by steel. Concrete have a considerable higher damping 

ratio than steel and therefore should the damping in the pylons be higher than in the cables and 

bridge deck.  The different damping properties can be accounted for using a non-classical 

Figure 2.5  Assembling of a non-classical damping matrix (Principle 
drawing) 
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damping matrix. In the case of Rayleigh damping this matrix can be created by dividing the mass 

and stiffness matrix into two parts; one containing elements corresponding to DOFs in the 

pylons and one with elements corresponding to DOFs in cables and bridge deck.  Using these 

two matrixes, a damping matrix for each of the structural parts is made. These can be combined 

using direct assembly to obtain the complete damping matrix for the structure. The basic 

principle is shown in Figure 2.5.   

 

2.4.4 Aerodynamic Damping  

According to the book Wind loads on structures by Claës Dyrbye and Svend O. Hansen (34) can the 

aerodynamic damping be of same magnitude as the structural damping. For a slender structure as 

a long suspension bridge there is therefore likely that the aerodynamic damping can have a 

significant impact.    

The aerodynamic damping can be introduced as a quasi-static load using the buffeting theory. As 

presented, the theory is given for a line-like structure, i.e. constant height is assumed. 

Furthermore, there is assumed that structural displacements and cross-sectional rotations are 

small. Most of this theory is not relevant for this thesis and are therefore not explained in detail. 

For further reading is Theory of Bridge Aerodynamics by Einar Strømmen (35) recommended.   

The buffeting load can be expressed as in Eq.(3.4.10), where q is a static part, 
q

B v  is the 

dynamic loading from turbulence, aeC u  is the aerodynamic damping induced by velocity and 

aeK u  is the aerodynamic stiffness induced by the displacement.   

 ( , )x t    tot q ae aeq q B v C u K u   (3.4.10) 

Only the aerodynamic damping part of this expression is used. The velocity vector is given by 

Eq.(3.4.11), where the definition of direction is shown in Figure 2.6. 

 ( , ) [ ]y zu x t u u u   (3.4.11) 

 

The aerodynamic damping matrix is given by Eq. (3.4.12). Here   is the density of air, V is the 

mean wind velocity, B are the width of the cross-section, D is the height of the cross-section, DC , 

LC , MC , 'DC , 'LC  and 'MC  are load coefficients.   

 

 

2( / ) ( / )( ' ) 0

2 ' ( / ) 0
2

2 ' 0

D D L

ae L L L

M M

D B C D B C C
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C C D B C
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
 

  
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 
 

C   (3.4.12) 
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The load coefficients are determined using wind tunnel experiments. They will vary with the 

angle of incidence , but are often assumed to be constant.   

 

  

Figure 2.6 Definition of directions and cross-section data for aerodynamic damping 
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2.5 Equation of Motion for Multiple Excitations 

When dealing with multiple-support problems, the equation of motion is extended with the 

degrees of freedom (DOF) of the supports. In portioned form with all the DOFs the equation of 

motion is written as Eq.  (3.5.1).  

 
( )

s sb s sb s sbt t t

T T T
gb b bsb b sb b sb b

t

            
            

           

m m c c k k 0x x x

px x xm m c c k k
  (3.5.1) 

In which subscript s denotes structural DOFs, subscript b denotes the base DOFs, subscript t 

denotes the total displacements and the force vector ( )g tp is the support forces. The total 

displacement vector  tx  can be decomposed into two parts, Eq.  (3.5.2). 

 t s x x x   (3.5.2) 

In this equation x is the dynamic displacement vector and  sx  is the quasi-static displacement 

vector (2).  An expression for the quasi-static displacement can be found by solving the static part 

of Eq. (3.5.1) . The following equation is obtained, Eq(3.5.3). 

 1
s s sb b b

  x k k x Rx   (3.5.3) 

Here R is the influence matric. Substituting Eq. (3.5.2) and Eq. (3.5.3) into Eq. (3.5.1), the first of 

the two portioned equations can be written as Eq.(3.5.4). 

 
1 1 1( - ) ( - ) ( - )s s s s s sb sb b s s sb sb b s s sb sb b
      m x c x k x m k k m x c k k c x k k k k x   (3.5.4) 

As can be seen, the last term of the equation is zero and therefore disappears. If lumped mass is 

assumed, the sbm  terms also disappears and the equation is reduced to Eq. (3.5.5).  

 ( ) ( - )s s s s b s sb b   m x c x k x m R x c R c x   (3.5.5) 

When a hysteretic damping is applied, the damping is depending on the displacement instead of 

the velocity as shown in section 2.4.2. The portioned equation of motion with a hysteretic 

damping can be written as Eq. (3.5.6). 

 (1 )
( )

s sb s sbt t

T T
gb bsb b sb b

i
t


        

          
        

m m k k 0x x

px xm m k k
  (3.5.6) 

In which   is the damping constant. Rewriting the first of the equations in the same manner as 

for conventional damping, Eq. (3.5.7) is obtained.  

 
1 1(1 ) ( ) ( )s s s s sb b s s sb sb bi     m x k x m k k x k k k -k x   (3.5.7) 

 Here the last term becomes zero, therefore the equation can be written as Eq. (3.5.8).  

 (1 ) ( )s s s b  m x k x m R x   (3.5.8) 
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The ground acceleration in each of the support DOF, bx  can be written as a ground acceleration 

along the wave traveling direction, bu . This is done using a transfer matrix mNE  as shown in Eq.  

(3.5.9). Subscript N is the number of supports and m is the number of support DOFs.  

 b mN bx E u   (3.5.9) 

mNE can be made by setting elements of corresponding support and translation DOFs to unity.  

By setting translation matrix as this, there is assumed that the same spectral density is applied in 

all three translation directions.  The equation of motion can then be written as Eq.(3.5.10). 

 (1 ) ( )s s s mN b  m x k x m R E u   (3.5.10) 

 

2.5.1 Equation of Motion When Using PEM  

The power spectral density can be decomposed into Eq. (3.5.11) when local soil conditions are 

disregarded.  

  * * *( )
g g

T T
xx x xi S S  S B Q Q B P P   (3.5.11) 

 Where B and Q are described in section 2.2.2 and P is given by Eq. (3.5.12) 

   

 
gxSP = B Q   (3.5.12) 

According to the PEM, the pseudo-excitation can be written as Eq. (3.5.13).   

 exp( )b i tU P   (3.5.13) 

By replacing bu in Eq. (3.5.10) with the pseudo-excitation, Eq. (3.5.14) is obtained (17).   

 (1 ) ( ) exp( )s s s mN i t   m x k x m R E P   (3.5.14) 

This equation is solved as described in section 2.2.1 and the pseudo-relative displacement is 

found. To calculate the pseudo-absolute displacement, the pseudo-static displacement vector fist 

must be found, Eq. (3.5.15). 

 
2

1
exp( )s mN i t


X RE P   (3.5.15) 

  The pseudo-absolute displacement is then expressed by Eq. (3.5.16). 

 t s X X X   (3.5.16) 

Using this equation the auto-PSD matrix for the absolute displacement is Eq. (3.5.17) (17).  
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 * *( ) (( ) ( ) )
t t

T T
X X s s    S X X X X Z Z   (3.5.17) 

Where Z is expressed by Eq. (3.5.18).  

 
2

1
(( ( ) ) exp( )s mN i t 


 Z H M R R E P   (3.5.18) 
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2.6 Regulations  

In Norway the National public road administration (NPRA) is responsible for the planning, 

construction and operations of public Norwegian roads. The NPRA is responsible for developing 

the Norwegian handbooks for roads called “Håndbøker”.  These books are divided into two 

levels; the first levels consist of regulations, norm and guidelines, the second level consists of 

manuals, textbooks and road data. For bridge engineering  is  “Håndbok 185- Bruprosjektering ” 

(36) the main regulation.  

 In 2010 was the Norwegian building code, “Norsk standard” replaced by the common European 

code, the Eurocode.  This led to a revision of “Håndbok 185 Bruprosjektering” adapted the 

Eurocode regulations. The revision is named “Håndbok 185 Bruprosjektering -Eurokodeutgave” 

(37) and are not formally a regulation, but has preliminary status as a guideline. Therefore the old 

regulation is formally still current. However, the recommendation from NPRA is to use the new 

issue as basis for all bridge engineering (37).   

 

2.6.1 Handbook - “Håndbok 185 Bruprosjektering -Eurokodeutgave” 

“Håndbok 185 Bruprosjektering -Eurokodeutgave”, from now on only called “the handbook” 

states the hierarchy of handbooks, standards and other documents. Here is the handbook listed 

in front of the Eurocode. This means that if the Eurocode (NS-EN) and the Handbook 

contradicts, the handbook must be followed.   

The handbook states that for seismic loads, the loads are found using NS-EN 1998-1 (38) and  

NS-EN 1998-2(10). As for the analyses they can be conducted using response spectra, spectral 

density function or a time series.  Of this method only the response spectra method are described 

further.  

In the handbook combinations of seismic loads with other loads are not mentioned specific. But 

there is stated that loads that are time and location dependent or is occurring with their maximum 

value at the same time, should be applied as one load by combinations of loads. By this there is 

assumed that traffic load should be applied. In the old handbook, ‘Håndbook 185 – 

Bruprosjektering” there is stated that seismic loads should not be combined with other forces of 

nature.  

 

2.6.2 Eurocode – NS-EN 1998 

NS-EN-1998 is the regulations for design of structures for earthquake resistance. It consists of 

six parts, where only two of them are relevant for this thesis; NS-EN 1998-1 is the general 

regulation and NS-EN 1998-2 is the specific regulation for bridges. In the introduction of NS-

EN 1998-2 suspension bridges are not defined to be part of the scope of this standard. 

Regardless of this, the main features of NS-EN 1998-2 are summarized to get an indication of 

what should be accounted for.  
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For bridges with continuous decks NS-EN 1998-2 requires that spatial effects are accounted for 

if one of these two conditions is met.  

 If the ground type at one or more of the supports differs with more than one ground 

type from the rest. Ground types are defined in NS-EN 1998-1(38).   

 If the length of the continuous deck exceeds the length LLim and the soil properties are 

approximately uniform. LLim is set to Lg/1.5, where Lg for soil type A is 600m . 

When spatially effects should be accounted for, NS-EN 1998-2 states that even only in a 

simplified way the wave-passage, incoherence and site-response effects should be regarded.  In 

annex D of NS-EN 1998-2 several method to account for the spatially effects are presented.  

 Load combination for constructions are listed in NS-EN 1990 (39), but are also rendered in the 

NS-EN 1998-2. The loads that should be combined and accounted for is permanent actions, 

characteristic value of prestressing after losses, design seismic action, traffic loads and quasi –

permanent values of actions of long duration (earth pressure, buoyancy, currents etc.) (10). Wind 

is not required to be accounted for. 
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Figure 3.1 Pylon, Left top: section view top leg. Left middle: section view bottom leg.    
Left bottom: section definition 

3 Modelling 

3.1 The Sognefjord Bridge  

Figure 3.2 shows the longitudinal section of the design of the Sognefjord Bridge. There can be 

seen from the figure that the span of this bridge is 3700 meter and that the pylons are 455 meters 

high. The clearance from the sea at the mid-span should be 70 meters in a width of 400 meters to 

secure passing of large ships. All the data presented is provided by the NPRA unless otherwise 

specified.   
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In Figure 3.1 is the drawing of the pylon displayed. There can be seen that the pylon consist of 

two legs, fixed together by five transverse girders. The legs are tapered, and the section view of 

the bottom and the top are displayed in the left of Figure 3.1.  Sectional properties for the legs 

are calculated from the measures of the drawing and displayed in Table 3.1.  The definition of W, 

D, dW and dD can be seen in Figure 3.1, A is the area and I is the moment of inertia.  

 

From Figure 3.1 there are seen that the five transverse girders are located with different spacing 

and that they have different cross-sections. Only the outer dimensions of these girders are given 

by the drawing, they are therefore assumed to be box sections with wall thickness of 1 meter.  In 

Table 3.2 the dimensions and the calculated cross-section data is displayed. Some of the notations 

are changed from Table 3.1 because of the different orientation of the sections, but these 

definitions are shown in the brackets in Figure 3.1.  

Material properties for the pylons are not provide by the drawing, the pylon are therefore 

assumed made by C45 concrete as used for the Hardanger Bridge.   

 

Table 3.1 Section properties of bottom and top cross 
section of pylon legs  

 
Bottom 

 
Top 

W (m) 15.0 
 

10.0 

D (m) 32.0 
 

15.0 

dW (m) 1.2 
 

1.0 

dD (m) 1.0 
 

1.0 

    
A (m

2
) 95.2 

 
46.0 

yI
 

4( )m
  

12864.47 
 

1347.83 

xI
  

4( )m
  

3580.73 
 

695.33 

 

Table 3.2 Dimensions and section properties for transverse girders in the pylons 

Transverse girders: 1 
 

2 
 

3 
 

4 
 

5 

Distance from ground (m) 25 
 

160 
 

260 
 

360 
 

440 

          

W (m) 28 
 

22 
 

22 
 

16.5 
 

14 

H (m) 10 
 

20 
 

20 
 

20 
 

10 

dW (m) 1 
 

1 
 

1 
 

1 
 

1 

dH (m) 1 
 

1 
 

1 
 

1 
 

1 

          
A (m

2
) 72 

 
80 

 
80 

 
69 

 
44 

zI
 

4( )m
 

1224.00 
 

4946.67 
 

4946.67 
 

3953.00 
 

654.67 

xI
  

4( )m
 

6576.00 
 

5746.67 
 

5746.67 
 

2913.94 
 

1134.67 
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The data for the main cable and the suspenders are gien in Table 3.3 and Table 3.4. As shown by 

Figure 3.2, the suspenders are planned to have a spacing of 30 meters.  

 

The bridge deck is illustrated in Figure 3.3.  It is planned built by using two steel box girders 

(from now on called bridge girders), each carrying two road lanes and one walkway.  Data for the 

bridge girders are provided in Table 3.5.  

 

 

The two box girders are connected together by transvers girders. These are spaced with equal 

interval as the suspenders. Two types of box sections are used, one for the five first transvers 

girders at each side of the bridge (box section 1) and another section for the rest (box section 2). 

The differences between these box sections are that box section 1 are larger than box section 2.  

Data for these two sections are given in Table 3.5 and Table 3.6.  No material data are specified 

for these sections, they are therefore assumed made by the same steel as the bridge girders. 

 

 

Table 3.3 Data for main cable 

Diameter  (m) 1.3 

Effective area 
2( )m

  1.15 

Mass (kg/m) 9445 

  

 
E-modulus 

2( / )N mm
  200 000 

Tensile strength 
2( / )N mm

 1770 

 

Table 3.4 Data for suspenders 

Type Bridon LC100 

Diameter* (m) 0.1 

Nominal metallic  

cross-section* 
2( )m

 
0.699 

Mass* [kg/m] 56.2 

  
 

E-modulus 
2( / )N mm

 160 000 

Tensile strength* 
2( / )N mm

 1445 

 * Data acquired from Bridon product datasheet(1) 

Figure 3.3 Bridge deck 
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Table 3.5 Data for bridge girders 

Width (m) 12.9 

Height (m) 2.5 

A (m
2
) 0.4472 

yI 4( )m
 0.4398 

zI
 

4( )m
 6.2420 

TI  
4( )m

  1.0780 

Mass* [kg/m] 6542 

E- module [N/mm2] 210 000 

G- module [N/mm2] 80 000 

* Mass per girder, included tarmac,       

railings etc. 

 

3.2 Bridge Model 

To model the Sognefjord Bridge the analyses and design program SAP2000 have been used. This 

is a program developed by Computers and Structures which is recognised for their development 

of computer software for structure and earthquake engineering.    

 

3.2.1 Pylons 

The pylons are designed using general frame elements, i.e. the properties of the sections are 

explicitly specified instead of specifying the cross-section.  Tapered legs are in SAP2000 made by 

defining a non-prismatic section. These are modelled by first defining the top and bottom cross-

section. The legs are then made by setting the distance between the two cross-sections to 455 

meters and setting the cross-section to vary linearly. As for the legs the transverse girders in the 

pylons are modelled using general frame elements.   

A rough mesh is used for the pylons. The legs are meshed into lengths of about twenty meters 

and the transvers stiffeners are meshed as two elements.   

There is assumed that the bridge foundation is on bedrock since solid soil conditions are needed 

to support a structure of this size. The natural period of bedrock is short compared with a 

structure as this and therefore is soil-structure interaction negligible. Due to this the supports are 

fixed, but since the DOFs in translation directions at the support are needed in the analyses, this 

is done using link element. Two different link elements are defined, one for the supports of the 

main cables and one for the supports of the pylons. The link element for the main cable supports 

is configured with stiffness of 1510 kN/m in transverse direction. The same configuration is also 

set for the link element for the pylon supports, but this link element is also fixed against 

rotations.  The stiffness of 1510 kN/m is the highest stiffness that can be used before the natural 

frequencies found using SAP2000 and Matlab starts to deviate.  

The drawings do not specify any reinforcement of the pylons and since design is not a part of 

this thesis, reinforcement is not accounted for.  

Table 3.6 Properties for the transverse girders 

  Box section 1 Box section 2 

A (mm
2
) 0.318 0.179 

Iz (mm
4
) 0.3135 0.0662 

Ix(mm
4
) 0.3135 0.1539 

IT (mm
4
) 0.3988 0.115 
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3.2.2 Main Cables 

SAP2000 gives the possibility of modelling cables using both catenary cable elements and straight 

frame elements. Since the cable planned to use in the Sognefjord Bridge has a diameter of 1.3 

meter, the cable will behave similar to a beam. There is therefore chosen to use straight beam 

elements to model the cable.  

122 elements are used to model the centre span. The projection of the elements down on the 

longitudinal axes of the bridge is 50 meters for the first elements on each side and 30 meter for 

the other elements, i.e. in accordance with the spacing of the suspenders.  The shape of the cable 

is decided using the shape calculator feature in SAP2000.  As for the side spans the cable is 

modelled as a single element straight beam.  

The connection between the pylons and the main cables are plain bearing which allows 

displacement of the cable in the longitudinal direction. This bearing was failed to model, and the 

main cables were therefore also fixed to the pylons in longitudinal direction.  

 

3.2.3 Suspenders 

The suspenders are modelled using frame elements. Since the suspenders only will be subjected 

to a point load at the end and the stress gradients therefore will be zero, the suspenders are 

modelled as single frame elements.  To apply cable properties to the frame element, the 

compression limit is set to zero. Also the moment of inertia, torsional constant and the shear area 

are all set to zero.  The connection to the main cables and to the bridge deck is modelled by 

applying a moment release about the lateral direction.    

 

3.2.4 Bridge Deck 

Both bridge girders and transverse girders are modelled with general frame elements. To connect 

the bridge girders with the suspenders and the transvers girders, link elements are used. The link 

element is configured to fix the nodes connected by it. By connecting the suspenders, bridge 

girder and transvers girder with this element, the nodes will move together as a rigid body. When 

the link element is used to fix two joints together this is equivalent to assigning a joint 

constraint(40).   

The bridge deck is only modelled between the towers. Since information on the stretch between 

the start of the bridge and the pylon not are available, the bridge deck at the pylons is fixed in all 

directions. The reason for this choice is that the bridge deck in reality continues beyond the 

pylons and therefore relatively fixed by the continuous deck.  Pictures of the model is found in 

Appendix C. 

 

3.2.5 Analyses of Model in SAP2000 

Using SAP2000 a preliminary analysis is done to incorporate the geometrical stiffness due to the 

prestress of the main cables.  This is done by doing a non-linear static analysis of the model 

where the P-delta/geometric stiffness effects are incorporated. A suspension bridge will undergo 
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large displacements when the gravity load is applied and this changes the geometry of the bridge 

significant. Therefore the use of a P-delta analysis with large displacements(40) is appropriate, i.e. 

the equilibrium of the deformed geometry is found. Since this type of analysis  is more sensitive 

to convergence tolerances(40), the analysis is run both with the standard convergence tolerance 

in SAP2000, 410  and a lower tolerance of 610 .  The deviation in displacement for a node at the 

mid-span is 0.1 mm, convergence of the structure is therefore assumed.  

Several attempts were needed to obtain the right height at the mid-span. The final model was 

modelled with headroom of 110.8 meters from the sea to the main cable.  Running the analyses 

the displacement at mid-span was 25.5 meter, which corresponds to a headroom of 85.3 meters. 

The drawing specified this height to be 85 meter. To obtain zero deflection in the top of the 

pylon at this configuration a negative strain of 3.61E-3 is assigned to the main cables in the side 

spans.  
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4 Results and Discussion 
The results presented in this chapter are found using SAP2000 and MATLAB. As earlier 

described is the Sognefjord Bridge modelled using SAP2000. SAP2000 do not have the 

functionality to handle spatial effects. There is therefore chosen to export the system matrixes 

from SAP2000 and use MATLAB to calculate the response of the bridge. MATLAB is also used 

to investigate the response with Rayleigh, hysteretic and aerodynamic damping. In all the 

MATLAB calculations the lumped mass matrix and the consistent stiffness matrix are used.  All 

the formulas used in the calculations of response and damping are presented in Chapter 2. 

There is in this chapter refereed to the coordinate system, this is defined as followed; x is the axis 

along the bridge, y is the axis perpendicular to the bridge and z is vertical axis.  

 

4.1 Parameters Used in the Analyses  

4.1.1 Damping  

NS-EN 1998-2 (10) lists general values for equivalent viscous damping for bridge pylons.  These 

values are in this thesis assumed valid for the rest of the construction, hence the damping ratios: 

0.02steel  (welded steel) and 0.05concrete  .  Only the bridge deck is welded but for simplicity 

the same damping ratio is used for all steel components. For the nodes which connects the steel 

and concrete members an average damping ratio is set, 0.035com  .     

To calculate the aerodynamic damping forces, a wind velocity need to be assumed. There is not 

very likely that an earthquake will appear in combination with a very strong wind. Since the 

bridge is situated in a wide fjord not long from the coastal line a wind velocity of 15 2/m s  at the 

mid-span is not seen as unlikely. The density of air is set to 1.25 3/kg m  and the dimension of the 

sections provided by Table 3.5. 

Since only a concept design is made for the Sognefjord Bridge, no research has been done on the 

aerodynamic load coefficients for the bridge girders. The load coefficient obtained by Sven Ole 

Hansen  (41) and refereed by Ole Øiseth (42) for the Hardanger Bridge are therefore used, Table 

4.1. Theses coefficients are assumed valid for both bridge girders, i.e. there will be now difference 

in aerodynamic damping loads, although one of the girders will be sheltered by the other. This is 

a very rough estimate, but will give an indication of the effects of aerodynamic damping. 

In the quasi-static theory presented in section 2.4.4 there were assumed a line like structure, this 

is not the case for the bridge deck of the Sognefjord Bridge, but is seen as accurate enough for 

this thesis.  

Table 4.1 Aerodynamic load coefficients 

DC  LC  MC  'DC  'LC  'MC  

0.7 0 -0.25 2.4 0.01 0.74 
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4.1.2 Spectral Density for the Ground Acceleration  

The spectral density curve for the ground motion acceleration is made using the Kanai-Tajimi 

spectrum described in section 2.1.3. In this thesis Kiureghian and Neuenhofer’s parameters for 

the spectrum are used as presented in the latter chapter.  To adapt the spectrum to Norwegian 

conditions, a plausible PGA must be set. According to the national annex of the NS-EN 1998 

1(39) the PGA for the area where Sognefjorden is situated is 0.72 2/m s . This value is for an 

earthquake with a return period of 475 years. A bridge as the Sognefjord Bridge has a building 

cost of several billions kroners and would probably have a longer lifetime than ordinary buildings. 

The damage potential is high with the possibility of many cars driving over the bridge at once. A 

much more fair structure to compare this bridge with is large dams. Large dams are required to 

be checked for an earthquake with a return period of 10 000 years for ultimate limit state (43). A 

return period of 10 000 years are therefore used in these analyses. In accordance with the seismic 

zonation map of Norway (44), this  corresponds to a PGA of 3 2/m s . This PGA is equivalent 

with a standard deviation of the excitation spectrum of 1.1 2/m s .  The spectrum obtained is 

shown in Figure 4.1.  

 

 

Figure 4.1 Kanai-Tajimi spectre for PGA of 3 m/s with Kiureghian and Neuenhofer's 
parameters 
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4.1.3 Spatial Effects 

In the modelling of the structure, the structure where assumed standing on bedrock. Hence, the 

seismic wave velocity appv   is assumed as high as 3000m/s.  The distances between the supports 

are set in accordance with Figure 3.2 and the L
kld  matrix then becomes, Eq. (5.19). 

 

0 625 4325 4960

625 0 3700 4325

4325 3700 0 625

4960 4325 625 0

L

 
 


 
  
 
   

d   (5.19) 

The incoherence effects are in this thesis described using the Harichandran-Vanmarck model, 

described in section 2.1.5 

 

4.2 System Matrixes  

In Figure 4.2 the sparsity pattern of the mass and stiffness matrix of the system are shown. It can 

easily be seen that the masses are lumped. This is no surprise since SAP2000 uses a lumped mass 

formulation. The nz number at the bottom shows that there are 2272 non-zero elements in the 

matrix, which means that there are some zero elements on the diagonal as there are about 3500 

DOFs in the system.  

From the sparsity stiffness matrix there is seen that there are values outside the diagonal and that 

the matrix are symmetric, which is as expected. Since the bridge is symmetric about the mid-span 

one might expect the matrix to be bisymmetric, but since SAP2000 assign degrees of freedom as 

the construction is modelled, the matrix depends on the modelling order.  

 

Figure 4.2  Sparsity matrix of the mass matrix to the left and stiffness matrix to the right 
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Table 4.3 Natural frequencies for one of the pylons standing alone (frequency given in rad/s) 

Mode 1 2 3 4 5 6 7 8 9 10 

Frequency  0.335 0.340 0.760 1.454 1.539 2.058 3.162 3.322 3.902 4.995 

Mode 11 12 13 14 15 16 17 18 19 20 

Frequency  5.263 5.640 5.803 6.259 6.905 6.986 8.304 8.531 8.877 9.053 

Mode 30 40 50 60 70 80 90 100 150 200 

Frequency  12.566 16.032 18.741 22.707 24.539 26.249 29.362 36.446 363.968 - 

 

4.3 Modal Analyses  

Although the modal technique will not be used calculating the response, natural frequencies and 

the modal shapes give important information and are therefore calculated using SAP2000.  

 

4.3.1 Natural Frequencies 

The natural frequencies extracted from the model are displayed in Table 4.2.   

 

 

As seen from the table the first frequency is as low as 0.17 rad/s, which equals a period of 36 

seconds.  As comparison is the elastic response spectra in the Eurocode only defined in the range 

from zero to four seconds, first at mode 40 are the periods within the defined range.  Another 

important aspect is that the period of the first mode is longer than the typical duration of an 

earthquake.  

Table 1.2 gives the natural frequencies of one of the pylons. As can be seen, the frequencies are 

still very low and the first natural frequency corresponds to a period of 18 seconds. 

  

 

Table 4.2 Selected natural frequencies for the Sognefjord Bridge (frequency given in rad/s) 

Mode 1 2 3 4 5 6 7 8 9 10 

Frequency  0.174 0.297 0.379 0.395 0.476 0.520 0.533 0.544 0.564 0.611 

Mode 11 12 13 14 15 16 17 18 19 20 

Frequency  0.640 0.645 0.668 0.700 0.757 0.763 0.798 0.849 0.890 0.953 

Mode 30 40 50 60 70 80 90 100 150 200 

Frequency  1.171 1.561 2.015 2.409 2.701 3.103 3.525 3.835 5.670 7.355 

Mode 250 300 350 400 450 500 600 700 800 900 

Frequency  9.022 10.691 12.240 13.897 15.380 16.851 19.764 22.104 23.906 28.863 

Mode 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 

Frequency  41.851 75.892 119.022 158.191 190.117 222.516 233.151 249.234 305.617 554.317 
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4.3.2 Mode Shapes  

In Figure 4.3 and Figure 4.4 the mode shapes for the ten first natural frequencies are displayed 

for both one of the main cables and one of the bridge girders. The modes are normalized for the 

whole structure, and not for the local modes in the cable and the bridge deck. As seen from the 

figures the first five modes are clearly pure displacement modes for the bridge deck. The mode 

shapes in general locks very plausible, since the first, second and third order displacement in y 

direction and second and third order displacement in z direction are present in the first five mode 

shapes. Mode six is a rotational mode, but since the girders are offset the centre of the bridge 

deck, the mode also have displacement in x and y direction. Mode shape eight and nine is clearly 

displacements in the cables. In mode ten there is seen a modal displacement in the towers. In the 

Appendix D the mode shapes for the modes with the teen highest mass participation factors are 

plotted.  

 

4.3.3 Modal Participation Factors  

Table 4.4 displays the modes with the thirty highest modal participation factors in each direction. 

From the table there can be seen several modes higher than 2000 among the 30 most 

participating modes. If the mode shapes of these modes are checked in SAP2000 there is seen 

that they are translation displacements at the supports. The reason that they appears are the 

modelling of the supports with link elements that enables displacement at the supports. Since the 

supports are moving the whole structure follows and leads to significant modal participation 

factors. The high natural frequencies for these modes shows that the stiffness of the link 

elements is large compared to the rest of the structure, therefore these high modes can be 

ignored as they in practice can be regarded as fixed. 

 If the modes higher than 2000 are disregarded, it is seen from the table that the highest 

contributing modes are in the area between 1200 and 1300. From Table 4.2 there can be seen 

that mode 1300 corresponds to natural frequency of 160 seconds.  
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4.3.4 Discussion  

The results show that the first natural frequency of the Sognefjord Bridge is 36 seconds. As 

earlier mentioned, the earthquake duration for a strong near fault earthquake can be expected to 

be around 30 seconds. For a Norwegian earthquake with lower magnitude the duration is shorter, 

maybe around 10 seconds. The first natural frequency is therefore significantly longer than the 

duration for a strong Norwegian earthquake. This means that the assumption of stationary 

condition cannot be substantiated.  

Table 4.4 The thirty nodes with highest modal participation factor (MPF) in each direction 
(absolute values) 

  UX UY UZ RX RY RZ 

  Mode MPF  Mode MPF  Mode MPF  Mode MPF  Mode MPF  Mode MPF  

1 21 569 16 363 356 368 10 117890 356 680341 15 727460 

2 76 334 10 349 360 362 16 111196 360 669691 16 671288 

3 111 150 1 337 13 291 1 52246 364 595923 10 646260 

4 75 116 45 183 978 170 17 35968 354 592268 1 623547 

5 194 103 17 166 19 121 18 14662 13 537722 11 606895 

6 84 97 48 145 346 120 12 14510 342 365842 46 367058 

7 147 93 139 117 1048 118 29 13471 978 314284 45 339191 

8 2249 85 95 114 923 113 2250 11539 359 301065 2 312095 

9 2266 72 90 95 5 110 2253 11313 3 295252 17 306668 

10 261 66 29 78 1120 91 2249 10985 352 240599 48 267321 

11 2261 65 238 77 2269 87 440 9297 974 236411 94 261246 

12 3 65 179 74 419 85 2258 7822 19 223196 7 250319 

13 221 56 2261 66 350 85 438 7554 346 222244 2253 217909 

14 57 55 53 66 1170 79 2256 7550 1046 218944 139 216680 

15 268 44 2250 59 732 77 969 5769 1048 218619 95 210606 

16 14 42 34 59 2252 68 412 4864 981 209982 25 205359 

17 453 39 39 58 31 62 95 4776 923 208955 140 203425 

18 82 38 2253 56 390 62 90 3704 2259 204874 44 185961 

19 2269 35 4 56 549 58 2255 3662 5 204296 2264 184547 

20 2256 34 2249 53 1222 55 1047 3516 2272 196593 90 175948 

21 2259 34 2266 52 2258 54 34 3464 925 185313 29 144949 

22 185 31 2264 47 451 50 2252 3413 2269 173814 37 144237 

23 89 31 145 39 384 49 1119 2732 1118 171667 238 142445 

24 679 29 2256 36 2261 48 2270 2686 1120 168307 239 139543 

25 2252 28 18 35 1274 48 2257 2608 2260 162479 177 138239 

26 2260 26 83 35 40 42 32 2518 419 156944 179 136903 

27 68 26 2269 35 2249 41 48 2476 350 156489 51 127518 

28 2250 24 12 34 244 41 1171 2390 420 155130 2256 123878 

29 154 23 2258 32 22 40 2254 2332 2251 155115 2254 122930 

30 2264 23 69 31 2271 39 39 2142 14 148570 53 121633 
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Using the modal participation factors the modes that contributes the most is detected. As shown 

in the result 1300 modes have to be used if the thirty most participating modes should be 

included. When comparing with Figure 4.1 the modes with natural frequencies above 120 

seconds (mode 1200) will have very low significance to the response.  As the modes higher than 

1200 have low modal participation factor compared to the most participating modes, there is 

seen as sufficient to run analyses for frequencies up to 120 seconds. In the other end of the 

frequency spectre, there is seen from Figure 4.1 that the energy is low. This frequencies can 

however not be dismissed. As seen from Table 4.4 many of the lowest modes are among the 

most contributing, with substantially larger modal contributing factors than the rest.   
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Figure 4.3  Mode shape 1 to 5 
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Figure 4.4 Mode shape 6-10 
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4.4 Results Damping  

To investigate the differences in Rayleigh and hysteretic damping both sets of damping models 

were implemented in MATLAB. For both types non-classical damping where adopted, this was 

done as described in section 0. 

An aerodynamic damping matrix was made by locating all the relevant DOFs, i.e. displacement in 

y and z direction and rotation about the x-axis for the bridge girders. The damping was then 

applied to both girders by assigning the elements in Eq. (3.4.12) to the rows and columns 

corresponding to the found degrees of freedoms.  

A unit load vector with values at elements corresponding to DOFs in transverse direction was 

made. Using this load vector the frequency response function was found for following cases. 

 System with Rayleigh damping  

 System with hysteretic damping  

 System with hysteretic damping and aerodynamic damping  

These systems were solved for the 300 first natural frequencies. For the Rayleigh damping, the 

first and 100 natural frequencies (from now on called the first and second Rayleigh frequency) 

were used to determine the damping coefficients. The damping ratios used are described in the  

section 4.1.1. 

Figure 4.5 shows the frequency response of a DOF in y-direction at the mid-span using Rayleigh 

and hysteretic damping. There is seen that for the first natural frequency the two different 

damping models give the same result. In the area from the first natural frequency to a frequency 

of about 4 rad/s the Rayleigh damping gives significant larger response than the hysteretic 

damping. The peak values are presented in Table 4.5. The second Rayleigh frequency was 3.82 

rad/s and matches therefore the frequency found in the plot. As for frequencies higher than 4 

rad/s there is seen that Rayleigh damping gives less response than the hysteretic damping. 

Figure 4.5 Rayleigh and hysteretic damping 



  Chapter 4.  Results and Discussion    
 

47 
 

 

The effects of the aerodynamic damping are shown in Figure 4.6. Here the frequency response 

for a DOF in y-direction at the mid-span is plotted for the hysteretic damping and the hysteretic 

damping in combination with aerodynamic damping. For the first natural frequency, the 

frequency response for the hysteretic damping is 7.15 kN/m and 5.3kN/m for the combination 

with aerodynamic damping. This means that the aerodynamic damping reduces the response with 

about 25%. The difference between the hysteretic damping with and without aerodynamic 

damping decreases for higher frequencies.       

              

4.5 Discussion Damping 

The observations made from Figure 4.5  are consistent with the problem described in section 

2.4.1 in using Rayleigh damping. The Rayleigh deviated with almost 100% for several of the 

natural frequencies, if an larger frequency range than been calculated the deviation would have 

Figure 4.6 Hysteretic and Aerodynamic damping 

Table 4.5 Frequency response values at the peaks and the deviation of Rayleigh damping from 
hysteretic damping   

  (rad/s) 0.3951 0.7979 1.1280 1.3670 1.5500 1.8390 

 | |H   -Rayleigh (kN/m) 0.3459 0.0755 0.0394 0.0099 0.0118 0.0367 

 | |H  -Hysteretic  (kN/m) 0.1873 0.0227 0.0192 0.0066 0.0061 - 

Deviation  85 % 232 % 106 % 51 % 91 % * 

              

  (rad/s) 1.8750 1.9120 2.1630 0.2367 2.6900 3.1750 

 | |H   - Rayleigh (kN/m) - 0.0003 0.0053 0.0038 0.0016 0.0021 

 | |H   -Hysteretic (kN/m) 0.0050 - 0.0038 0.0028 0.0015 0.0018 

Deviation  * * 41 % 36 % 9 % 14 % 

 

* Hysteretic damping hit between two natural frequencies  
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been even larger. Thus, if Rayleigh damping had been applied in the analysis of the Sognefjord 

Bridge and the second Rayleigh frequency had been set as the last natural frequency of the 

system, the response for the intermediate modes would have been largely conservative. Or in the 

other case, if the second Rayleigh frequency had been set to a lower natural frequency, damping 

had still been conservative at the intermediate modes and the damping for the higher natural 

frequencies would have been too high.  Hence, hysteretic damping will be used for the rest of the 

analyses.  

The aerodynamic damping was shown to have significant effect on the system. The influence 

becomes lower for higher modes, but as shown in section 4.3.3 have the lowest modes the largest 

contribution to the system. The aerodynamic derivatives used were those obtained for the 

Hardanger Bridge as have very different bridge deck, this make this calculation very rough. 

However, do the results show that aerodynamic damping is an important parameter for long-

span structures as the Sognefjord Bridge and should therefore be applied also for earthquake 

analyses. Thus, aerodynamic damping will be applied to the analyses of the system.   
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4.6 Result Dynamic Analyses for Stationary Conditions  

The dynamic response of the system for stationary conditions is calculated by using Eq. (3.5.17), 

with exception of the decomposition of the PSD matrix, i.e. P in Eq. (3.5.18) is not calculated 

explicit before applied to Eq. (3.5.18)  Parameters used in the analyses are those discussed in 

section 4.1. The analysis is run in the frequency range from 0.1238 to 119.2 rad/s. This range is 

divided into 14895 elements; this is done by using a fine frequency mesh around the natural 

frequencies and a rougher mesh for the intermediate frequencies. The choice of frequency range 

is substantiated in section 4.3.4. The following three analyses are conducted.  

Analysis 1 

Seismic wave traveling along bridge/along x-axis and the wave-passage and the incoherence 

effects are accounted for.  

Analysis 2 

Seismic wave traveling along bridge/along x-axis and the wave-passage effect is accounted for.  

Analysis 3 

Seismic wave traveling perpendicular to bridge/along y-axis, where there is no spatial effects to 

account for since the seismic wave front will hit the supports at the same time. This will give the 

same result as if the wave was traveling in x direction and the spatial effect where not regarded.  

Only the results for the translational DOF are presented and discussed as the inertia forces from 

the earthquake only acts in these. The auto-PSD of the response obtained from the calculations is 

presented through two figures for each analysis. One figure is containing plots of the response in 

all three directions for one of the main cables and one of the bridge girders in the distance 

between the pylons, while the other figure is containing plots of the response of both pylons in x- 

and y-direction 

In the rest of the text is the pylon first hit by seismic wave front referred to as Pylon 1 and other 

pylon referred to as Pylon 2.  

 

4.6.1 Analysis 1 

In Figure 4.7 (a) is the response in the cable and the bridge girder displayed. From the plot there 

is seen that the response in this direction is small. The largest displacement is found in the cable 

440 meters from Pylon 1 and is 0.18 meters.  

Looking at Figure 4.7 (b) there is seen that the cable response is almost constant with a close to 

0.4 meters almost the whole length. The bridge girder obtains the largest response at 1610 and 

2090 meters from Pylon 1, where the response is 0.47 meters. As can be seen, the response of the 

bridge girder is symmetric about the mid-span.   

The largest response of Analysis 1 is appearing in the z-direction. From the figure there is seen 

that the response of the cable and bridge girder almost is identical. There is also seen that there 

are three peaks with identical response.  The three maxima are located at 1010, 1850 and 2780 

meters from Pylon 1 with response of 0.81 meter. 
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Figure 4.8  Analysis 1. Pylon 1 (blue) and Pylon 2 (red). 
(a) - x-direction, (b) - y-direction 

  

Figure 4.7  Analysis 1, Cable (blue) and Bridge girder (red). (a) – x-direction, (b) – y-direction, 
(c) – z-direction 
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In Figure 4.8 the response of the pylons are displayed for x- and y-direction. In x-direction there 

is seen that the pylon get a second order response curve with the maximum response of 0.46 

meter at the height of 260 meters. There is seen that the response in the top of Pylon 1 and Pylon 

2 in x-direction deviates, the deviation is 0.03 meter.  The response in y-direction is a bit smaller, 

with maximum displacement at the top of 0.29 meter. At the bottom of the plot, at the height of 

25 meter over the supports, the response is about 0.1 meter.  

4.6.2 Analysis 2 

In Figure 4.9 (a) the response in x-direction is displayed. There is seen that the response in both 

the cable and the bridge girder is a bit smaller than for Analysis 1. There are also notable that the 

response has become less symmetric. 

The response in y-direction is seen in Figure 4.9 (b). Here the maximum response of the bridge 

girder has increased to 0.58 meters and appears at 2090 meters form Pylon 1. The symmetry seen 

in Analysis 1 is not seen anymore.      

As for Analysis 1 is the response in z-direction the same for both the cable and the bridge girder. 

The maximum response has decreased to 0.75 meter at 2690 meters from Pylon 1. From the plot 

there is seen that the three peaks also seen in Analysis 1 are no longer identical and the response 

have lost its symmetry.  

Figure 4.9  Analysis 2, Cable (blue) and Bridge girder (red). (a) – x-direction, (b) – y-direction, (c) 
– z-direction 
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In Figure 4.10 there is seen that for Analysis 2 the response in both Pylon 1 and Pylon 2 are the 

same, which applies for both directions. The maximum value in x-direction is appearing at the 

same place as in Analysis 1, but has increased to 0.5 meters.   

 

4.6.3 Analysis 3 

Figure 4.12 (a) shows the response of the cable and bridge girder in x-direction. The maximum 

response of the cable is found 410 meter from Pylon 1 and is 0.16 meter. By looking at the figure 

there can be seen that the response of the cable is unsymmetrical.  

The maximum response in y-direction for the bridge girder is found close to the mid-span at 

1820 meter from Pylon 1 and is 0.61 meters. This is a little increase in response compared to 

Analysis 2. Both cable and bridge girder has a response that is almost symmetric about the mid-

span.  

In Figure 4.12 (c) there is seen that the response is unsymmetrical.  The cable and the bridge 

girder have still almost the same response, but the maximum value has decreased further to 0.45 

meter at 2660 meters from Pylon 1.     

 

 

Figure 4.10  Analysis 2. Pylon 1 (blue) and Pylon 2 
(red). (a) - x-direction (b) - y-direction 
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Figure 4.12  Analysis 3, Cable (blue) and Bridge girder (red). (a) – x-direction, (b) – y-
direction,   (c) – z-direction 

Figure 4.11  Analysis 3. Pylon 1 (blue) and Pylon 2 (red). (a) 
- x-direction (b) - y-direction 
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Figure 4.11 shows the response of the pylons in Analysis 3. The most remarkable with this figure 

is the difference in deflection in in x-direction. At the height of 260 meters Pylon 1 has a 

deflection of 0.57meter and Pylon 2 0.51 meters.  For the top node of the pylons the difference 

in deflection between the two pylons are 0.01 meters in x-direction.  

 

The maximum responses for the three analyses are summarized in Table 4.6 and in Table 4.7 the 

responses for the top of the pylons are summarized.   

 

Table 4.7  Response in the top Pylons 

  Direction  
Pylon 1  
σ (m) 

Pylon 2  
σ (m) 

Analysis 1 

x 0.15 0.12 

y 0.29 0.29 

z 0.1 0.1 

Analysis 2 

x 0.13 0.13 

y 0.29 0.29 

z 0.1 0.1 

Analysis 3 

x 0.11 0.12 

y 0.3 0.3 

z 0.1 0.1 

 

Table 4.6  Maximum response and distance from Pylon 1 

Maximum 
values  

  Direction  
Maximum  

σ (m) 
Distance from  

Pylon 1 (m) 

Analysis 1 

Bridge  
deck girder 

x 0.05 1820 

y 0.47 1610 and 2090 

z 0.81 1010, 1850 and 2780 

Main  
cable 

x 0.18 440 

y 0.47 1130 and 2570 

z 0.81 1850 

Analysis 2 

Bridge  
deck girder 

x 0.05 1850 

y 0.52 2480 

z 0.75 2720 

Main 
cable 

x 0.16 350 

y 0.54 2630 

z 0.74 2660 

Analysis 3 

Bridge  
deck girder 

x 0.07 1700 

y 0.61 1820 

z 0.45 2630 

Main 
cable 

x 0.16 410 

y 0.57 1130 and 2570 

z 0.45 2690 
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4.7  Discussion of Dynamic Analyses in Frequency Domain  

The maximum response of the structure was obtained in Analysis 3 in z-direction and was 0.81 

meters. This is not large response for a structure as large and slender as the Sognefjord Bridge.  A 

maximum response of this magnitude is in the lower range of what expected, but is a plausible 

result.  

The maximum response in the top of the pylons was 0.3 meter in the y-direction. Also this is a 

small value of a pylon this high. The responses in the bottom of the plots are approximately 0.1 

meters for both directions in all the analyses. If the excitation spectrum is converted to a 

displacement spectrum by using Eq. (3.1.9) and the standard deviation is calculated, this value is 

found to be 0.097 meter which corresponds with the plot.    

In Analysis 3 the bridge was excited by a seismic wave traveling in the direction perpendicular to 

the bridge. There were therefore no spatial effects apparent as the seismic wave hit all the 

supports at once. When seismic load is applied to the whole bridge at once one would expect a 

symmetric response due to the symmetry of the bridge. In y-direction this symmetry is observed, 

but as for the x- and z-direction the response is not completely symmetric as stated in the results. 

A possible reason for the lack of symmetry in these directions is the modelling of the connection 

between the main cables and the pylons. As described in section 3.2.2, this connection was model 

by fixing the main cables to the pylon and archiving equilibrium for the static case by applying a 

negative strain to the side spans. But as the structure is exposed to an earthquake load the 

equilibrium vanishes and the main cable are not uniformly stressed anymore. This damages the 

symmetry of the bridge since there are different stresses along the main cable, and could cause an 

unsymmetrical response.  

If this is the reason for the lack of symmetry, there is difficult to assess what effects this 

simplification of the cable-pylon connection has on the response. However, Figure 4.12 shows 

that the responses are close to symmetric and the simplification of the connections is therefore 

not thought to have much effect on the response.  

In Figure 4.13  the distinction between the three analyses is seen. As stated in the results, there is 

seen that the result for Analysis 3 is symmetric. The reason for this is that when all supports 

moves uniformly, only the symmetric modes are excited as the structure is symmetrical. When 

the wave passage effect is included as in Analysis 2, the supports no longer moves uniformly. The 

anti-symmetric modes are then excited and a non-symmetric response is obtained as seen in 

Figure 4.13.  In this analysis there where assumed full coherence. If the incoherence effects are 

included as in Analysis 1 there are seen that the response becomes symmetric.  The large distance 

Figure 4.13  Response in y-direction for all three analyses. 
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between the pylons makes the support excitations uncorrelated. This is probably the reason the 

incoherence effects cancels out the wave passage effect.     

The deviation between the different analyses is as seen in Figure 4.13 significant. In Table 4.8 the 

deviation between Analysis 3 and the two first analyses is presented. When accounting for the 

wave passage effect, i.e. Analysis 2, the smallest deviation is -16% in the y-direction. When also 

the incoherence effect is included, i.e. Analysis 1, the deviation increases to -23% in the latter 

direction.   

 

Another notable observation from Table 4.8 is that the spatial effects increase the response in z- 

direction, and lower the response in x- and y-direction. The increases in z-direction are 

substantial, but the reason for these effects is unknown and therefore is further research needed 

to detect the cause.   

This analysed were conducted using a lightly modified PEM method were the decomposition of 

the PSD matrix of the acceleration not conducted. The method used is therefore more like the 

traditional method since the three large matrix operations were carried out instead of the two 

vector operations as the proposed PEM method. As the consistent stiffness matrix where used in 

the calculations, the calculation of the frequency response function was the time demanding part 

of the analysis. This must have been carried out also if the PEM method had been implemented, 

and therefore is the choice of method not crucial for the computational time.  

  

Table 4.8 Deviation in maximum response for the deflection of the bridge 
girder for Analysis 1 and Analysis 2 compared to Analysis 3  

Direction  Analysis 1   Analyses 2   

x -0.02 -26 % -0.02 -32 % 

y -0.14 -23 % -0.10 -16 % 

z 0.36 81 % 0.30 67 % 
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4.8 Result with Non-Stationary Conditions 

In the latter section stationary condition were assumed. As discussed in section 4.3.1 is the 

periods of the bridge are two long to assume stationary conditions. Using the simplified method 

to assess non-stationary condition proposed in section 2.3 the effects of non-stationarity can be 

approximated. For these analyses the damping is set to be 5%, which is equal the damping in the 

concrete.  

First looking at the quarter point where the maximum deviation of the system was found in 

Analysis 1. Figure 4.14 (a) shows the PSD of the displacement in z-direction at the quarter point 

of the bridge. As seen the response spectrum is narrow banded, i.e. almost all response depends 

on one frequency, 0.67   rad/s, which corresponds to mode 13. The simplified method should 

therefore give a good estimate of the effects of the non-stationarity when 0 0.67   rad/s.  In 

Figure 4.14 (b) the non-stationary response is shown, and the steady-stat is first reached after 

approximately 150 seconds, where the variance is about 0.6 2m . If a strong Norwegian near-fault 

earthquake is assumed to have a duration of 10 seconds, there can be seen from the plot that the 

variance is 0.15 after 10 seconds. The variance of the stationary solution can therefore be reduced 

with a factor of four. Hence, the maximum response/standard deviation can be reduced to 0.405 

meters.   

Now looking on the maximum displacement for Analysis 3 as appears close to the mid-span in y-

direction.  The spectral density of the deflection is plotted in Figure 4.15 (a). From this figure 

there can be seen that there are three major contributing modes, mode 1, 10 and 45. Since there 

are several modes that contribute significantly to the displacement in this DOF, the result using 

the simplified method becomes more inaccurate. Setting the natural frequency of the single 

degree system to the average frequency of the two most contributing modes, 0 0.42 rad/s, the 

non-stationary response can be plotted, Figure 4.15(b). The steady-state is first reached after 

about 200 seconds and the stationary variance can therefore be reduced with about 85%, hence 

the response in the discussed point becomes approximately 0.24 meters.        

Figure 4.14 (a) Displacement spectral density for DOF in z- direction in bridge deck girder at the 
quarter point. (b) Non-stationary response of DOF in (a) 
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The third point investigated for the effects of non-stationarities is the top of Pylon 2 in y-

direction for Analysis 3. In Figure 4.16 (a) the PSD of the displacement is plotted. There is seen 

that there is one significant maximum which correspond to mode 45, hence is the natural 

frequency of the single degree system set to, 0 1.875  rad/s. By applying this to the simplified 

method, the non-stationary response in Figure 4.16(b) is obtained. The figure shows that this 

DOF reaches steady-state after about 50 seconds. After 10 seconds the variance is about 70 % of 

steady-state. The stationary response should therefore be reduced with approximately 15%, 

which give a non-stationary response of 0.25 meters.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 (a) Displacement spectral density for DOF in x- direction in bridge deck girder at the 
quarter point. (b) Non-stationary response of DOF in (a) 

Figure 4.16 (a) Spectral density of displacement for a DOF in y- direction on the top of Pylon 1.  
(b) Non-stationary response of DOF in (a) 
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4.9 Discussion Non-Stationary Conditions   

The result shows that the stationary response should for the three cases discussed be reduced 

with respectively 50%, 60% and 15%. These are large reductions which shows how important 

there is to apply non-stationary condition when calculating the responses of constructions as the 

Sognefjord Bridge. The method of assuming each DOF to be a single degree system is a major 

simplification. However, especially for the first case where the PSD of the response is very 

narrow banded and close to the PSD of a single degree system, this method should give a very 

good estimate of the effect of non-stationarities.  

 

4.10 Extreme Values  

Analysis 1 and Analysis 3 are the relevant analyses since they correspond to a seismic wave 

traveling along the bridge and perpendicular to the bridge. The extreme values are therefore 

found for the DOFs at three strategic points; the mid-span in one of the bridge girders, the 

quarter point of the span in the same bridge girder and at the top of Pylon 2.  These values are 

presented in Table 4.9 for stationary conditions.   

As can be seen from the table is the peak factors ( pk  ) in the range between 1.69 and 2.41. In 

Analysis 1 the maximum value of the response where located in z- direction at the mid-span with 

a value of 0.81 meters. The peak factor for this point is 2.02 which lead to an extreme value of 

1.65 meters. For Analysis 3 the maximum response were found in y-direction at the mid-span.  

Here is the peak factor 2.05 which give an extreme value of 1.25 meters.     

 

4.11 Discussion of Extreme Values 

As seen from the results of the extreme values, the peak factors are approximately two. The 

model that is used in this approximation of extreme values is a model made to consider the 

extreme values for wind. There are developed extreme values models more appropriate for 

earthquake engineering (18). 

 

 

Table 4.9 Peak factors and extreme values 

    Mid-span Quarter point Top Pylon 2 

    x y z x y z x y z 

Analysis 
1 

pk   2.40 2.05 2.02 2.35 1.89 1.97 2.24 2.17 2.32 

E( maxy  ) 0.12 0.88 1.65 0.10 0.61 1.53 0.27 0.63 0.24 

Analysis 
3 

pk  2.41 2.05 2.04 2.40 1.90 1.90 2.27 2.17 2.32 

E( maxy ) 0.16 1.25 0.69 0.12 0.66 0.66 0.28 0.66 0.24 
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5 Conclusion 
Suspension bridges are not a part of the scope of the Eurocode 8, nor is the particular Norwegian 

regulation adapted seismic analyses of long-span suspension bridges. Consequently, literature had 

to be used to find a method to calculate response of the Sognefjord Bridge. Much research has in 

the last decade been conducted on earthquake analysis on long-span bridges, in particular 

Kiureghian and Neuenhofer’s work on including spatial effects in the analyses have been of great 

importance. Of work done the last years is the development of the pseudo excitation method 

developed by Lin and Zhang interesting.  

The analysis model developed of the Sognefjord Bridge showed that the first period was 36 

seconds.  Investigating the natural frequencies and their associated modal participation factor 

showed that to include the thirty most participating modes in the calculations the first 1200 

modes had to be included in the analysis. The conclusion is that due to the long period of the 

system the assumption of stationary conditions is not valid.  

Before running the analyses two damping models, Rayleigh and hysteretic damping, were 

assessed. The frequency response plot showed that the Rayleigh damping gave a deviation from 

the hysteretic damping on almost 100% for several of the natural frequencies between the 

frequencies used to define the Rayleigh constants. There was consequently concluded that 

Rayleigh damping is not suitable to use in analyses of the Sognefjord Bridge. A rough estimate of 

the effect of aerodynamic damping was done using quasi-static theory and aerodynamic 

derivatives obtained from the Hardanger Bridge. The analysis shows that the aerodynamic 

damping was significant for an assumed wind velocity of 15m/s as the frequency response was 

reduced with about 25% for the first mode. There is concluded that the effects of aerodynamic 

damping should be considered also in earthquake analyses for the Sognefjord Bridge.  

The response of the system was calculated using random vibration technique. In the analysis 

there were assumed stationary conditions and the magnitude of the input PSD corresponded to 

an earthquake return period of 10 000 years for the area where the bridge is situated. The 

maximum response appeared in z-direction at 1010, 1850 and 2090 meters from Pylon 1 when 

the earthquake was assumed traveling along the bridge and all spatial effects were included, the 

standard deviation of the response was here 0.81 meters.  The spatial effects had significant 

effects on the system. The wave passage effect disturbed the symmetry of the response and gave 

a significant increase in response in z-direction. When the incoherence effect also was included, 

the symmetry of the system was restored. A possible explanation for this is the large distance 

between the pylons, which make the two excitations uncorrelated.  In z-direction the maximum 

response increased when the incoherence effects were included.  The conclusion is that spatial 

effects are shown to have large effects on the response, and hence, they must be included in 

analyses of long-span bridges as the Sognefjord Bridge. When analysing the system without any 

spatial effects there was discovered lack of symmetry in the system, this was not expected.  The 

reason is thought to be a result of the modelling of the connection between the main cables and 

the pylons as fixed and should therefore be further investigated.  

The effects of non-stationary conditions were approximated with a simplified method assuming 

each DOF as a single degree system. This was thought to be a good estimate since the response 
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spectra proved fairly narrow-banded. The result showed that the maximum response in the 

stationary analysis could be reduced with 50% to a response of about 0.4 meters. Hence, there is 

important to assess non-stationary condition when calculating earthquake response for the 

Sognefjord Bridge.  The main conclusion of this thesis is that earthquake response of the 

Sognefjord Bridge not seems to be a problem even with an earthquake with a return period of 

10 000 years. 
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6 Further Research  
In this thesis the earthquake response of the Sognefjord Bridge has been assessed. The results 

showed that the responses were small and that an earthquake of Norwegian scale not likely would 

be a problem. Due to this, further research is mainly to validated the results obtained.   

The connection between the main cables and the pylons were modelled as fixed. It is thought 

that this had a minor influence on the results. But the model should be further developed to 

include friction bearings at the top of the pylons, to confirm this assumption. 

For the analyses the acceleration PSD used was adapted a PGA of 3 2/m s  which corresponds to 

a Norwegian earthquake with a return period of 10 000 years. This might be a bit too high, thus 

there should be done a closer assessment on what magnitude extreme construction as the 

proposed Sognefjord Bridge should dimensioned for.  

The aerodynamic damping of this bridge was assessed using aerodynamic derivatives from the 

Hardanger Bridge. There should therefore be conducted further research on the significance of 

aerodynamic damping when the aerodynamic derivatives for the bridge deck have been obtained.    

When including spatial effects this reduced the response in x- and y- direction and increased the 

response in z-direction. Even if the responses were of low magnitude, there had been interesting 

to investigate these effects more closely to find a reason for them.   

The effects of non-stationarities were in this thesis assessed using a simplified method, but the 

estimates showed that non-stationarities had large effect on the response.  In further research this 

effects should be calculated as presented in the theory to validate the estimates and to obtain a 

more exact solution.  
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A. Undamped Frequency Response  
Figure A.1 Undamped frequency response shows the undamped frequency response for a DOF 

in y-direction at the mid-span.  

 

Figure A.1 Undamped frequency response 
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B. Response Accelerations 
Table B.1and Table B.2 contains the standard deviations of the response accelerations obtained 

from respectively Analysis 1 and Analysis 2.

 

Table B.1  Response accelerations for Analysis 1 

  UX  UY UZ RX RY RZ 

Mid-span 2( / )m s   0.490 1.747 6.708 0.007 0.013 0.004 

Quarter-point 2( / )m s  0.380 1.405 5.736 0.014 0.008 0.006 

Top pylon 2( / )m s  1.764 2.179 3.877 0.019 0.018 0.007 

 

 

Table B.2 Response accelerations for Analysis 3 

  UX  UY UZ RX RY RZ 

Mid-span 2( / )m s   0.668 2.591 2.224 0.005 0.018 0.000 

Quarter-point 2( / )m s  0.476 1.892 1.269 0.014 0.009 0.005 

Top pylon 2( / )m s  2.129 2.340 3.887 0.019 0.017 0.007 
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C. SAP2000 model 
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D. Modal Shaped Cable and Bridge Girder  
Plot of the 10 most participation modes in the translation direction.  

D.1 UX  

Figure D.1 Ten most participating modes in x-direction Mode 1-5 
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6.1   

Figure D.2 Ten most participating modes in x-direction Mode 6-10 
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D.2 UY  

Figure D.3 Ten most participating modes in y-direction Mode 1-5 
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Figure D.4 Ten most participating modes in y-direction Mode 6-10 
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D.3 UZ  

Figure D.5 Ten most participating modes in z-direction Mode 1-5 
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Figure D.6 Ten most participating modes in z-direction Mode 6-10 
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E. Mode Shapes for Pylons  
Single Pylon without the rest of the bridge, two line illustrate the two legs.   

  

Figure E.1 Tower mode shapes 1-6 
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Figure E.2 Tower mode shapes 7-12 
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F. MATLAB Calculations  
In this appendix the MATLAB routines used in the response calculations are 

F.1 Import 

This routine: 

  Imports the output file from SAP2000 created by SAP2000 and created the mass and 

stiffness matrixes. Do to this the constrained DOF must be found by matching the 

constraint numbers.  

 Import txt files were the nodes of concrete and steel are defined (made manually) and 

creates sum matrixes for the steel, concrete and common DOFs 

 Solves the eigenvalue problem  

function [kmodal,mmodal,T,m,k,mconcrete,msteel, mjoint, kconcrete, 

ksteel,kjoint,fi]=Import(update)% 
%%Descritin 
%This script import the mass and stiffness matrix from the files in matlab, 
%divided the matrixes into sub matrixes for steel, concrete and joint nodes 
%The eigenfrequencies and eigenvecors are also found 
%Created by Håkon Olav Skogmo 

  
format long g 
%Update stiffness and mass matrix and decouples system  
%%Find numbers of equations  
    fid=fopen('C:\Users\Hako\Dropbox\Skole\10. semester\Modell\Modell fra 

scratch 3\Modell fra scratch 3.txa'); 
        n = textscan(fid,'%*s%*s%*s%*s%*s%*s%f', 'HeaderLines', 

14,'collectoutput',1 ); 
    fclose(fid); 
    n=n{1}(1,1); 
    k=zeros(n);                     %Makes a matrix of zeros with n 

elements  
 %%Creates k matrix 
    fid=fopen('C:\Users\Hako\Dropbox\Skole\10. semester\Modell\Modell fra 

scratch 3\Modell fra scratch 3.txk'); 
        c = textscan(fid,'%d%d%f', 'HeaderLines', 1,'collectoutput',1 ); 
    fclose(fid); 
    for j =1:length(c{1}) 
        k(c{1}(j,1),c{1}(j,2))=c{2}(j);     %Copies values from text file 

to stiffness matrix      
    end   
    k=tril(k)+tril(k,-1)';          %Copies lower diag to upper diagonall 
%%Creates mass matrix 
    fid=fopen('C:\Users\Hako\Dropbox\Skole\10. semester\Modell\Modell fra 

scratch 3\Modell fra scratch 3.txm'); 
        c1 = textscan(fid,'%d%d%f', 'HeaderLines', 1,'collectoutput',1 ); 
    fclose(fid); 
    m=zeros(n);  
    for j =1:length(c1{1}) 
        m(c1{1}(j,1),c1{1}(j,2))=c1{2}(j);     %Copies values from text 

file to stiffness matrix      
    end    
    m=tril(m)+tril(m,-1)';          %Copies lower diag to upper diagonall    
 %% Load tabel with nodes and DOF 
    fid=fopen('C:\Users\Hako\Dropbox\Skole\10. semester\Modell\Modell fra 

scratch 3\Modell fra scratch 3.txe'); 
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        c = textscan(fid,'%f%f%f%f%f%f\r\n%f', 'HeaderLines', 

1,'collectoutput',1 ); 
    fclose(fid); 
    DOFlist=sortrows(c{1},1); 
    %% Load concrete nodes and finds DOFS 
    fid=fopen('C:\Users\Hako\Dropbox\Skole\10. semester\Matlab\Betong 

noder.txt'); 
        c = textscan(fid,'%f', 'HeaderLines', 1,'collectoutput',1 ); 
    fclose(fid);  
   concretenodes=c{1}; 
    ConcreteDOF =zeros(length(concretenodes),7); 
        for j=1:length(concretenodes) 
            a=find(DOFlist(:,1)==concretenodes(j)); 
            ConcreteDOF(j,:)=DOFlist(a,:); 
        end 
%% Load joint nodes/ nodes that are connected to both steel and concrete  
   fid=fopen('C:\Users\Hako\Dropbox\Skole\10. semester\Matlab\Felles 

noder.txt'); 
        c = textscan(fid,'%f', 'HeaderLines', 1,'collectoutput',1 ); 
    fclose(fid); 
    jointnodes=c{1}; 
    JointDOF =zeros(length(jointnodes),7); 
        for j=1:length(jointnodes) 
            a=find(DOFlist(:,1)==jointnodes(j)); 
            JointDOF(j,:)=DOFlist(a,:); 
        end  
    ConcreteDOFtemp=ConcreteDOF;                % Copies the matrix with 

Concrete DOF over in a temporary 
    ConcreteDOFtemp(:,1)=[];                 %removes row with nodes number 
    ConcreteDOFtemp=ConcreteDOFtemp(:);          % Put matrix into vector 
    ConcreteDOFtemp(ConcreteDOFtemp==0)=[];      % Removes zeros elements 

cause by fixed nodes   
    JointDOFtemp=JointDOF; 
    JointDOFtemp(:,1)=[]; 
    JointDOFtemp=JointDOFtemp(:); 
    kconcrete=zeros(n); 
    mconcrete=zeros(n); 
    %Make concrete mass and stiffness matrix  
    

kconcrete([ConcreteDOFtemp],[ConcreteDOFtemp])=k([ConcreteDOFtemp],[Concret

eDOFtemp]); % Copy stiffness terms in relation concrete elements   
    

mconcrete([ConcreteDOFtemp],[ConcreteDOFtemp])=m([ConcreteDOFtemp],[Concret

eDOFtemp]); %Copy mass terms in relation concrete elements   
    ksteel=k-kconcrete;  
    msteel=m-mconcrete; 
    kconcrete([JointDOFtemp],[JointDOFtemp])=0; 
    mconcrete([JointDOFtemp],[JointDOFtemp])=0; 
    % Make mass and stiffness matrix with joint steel and concrete elements 
    kjoint=zeros(n); 
    mjoint=zeros(n); 
    kjoint([JointDOFtemp],[JointDOFtemp])=k([JointDOFtemp],[JointDOFtemp]); 
    mjoint([JointDOFtemp],[JointDOFtemp])=m([JointDOFtemp],[JointDOFtemp]); 
%%LOad lower part of DOF list, the constraint part  
    fid=fopen('C:\Users\Hako\Dropbox\Skole\10. semester\Modell\Modell fra 

scratch 3\Modell fra scratch 3.txe'); 
        c = textscan(fid,'%s%f%f%f%f%f\r\n%f', 'HeaderLines', 

2171,'collectoutput',1 ); 
    fclose(fid); 
    Constraints=c{2};                
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%% MAkes a list of DOF where the constraints equatiin are replaced with the 

real DOF   
   DOFwithCon=zeros(length(DOFlist),7); 
 for j=1:length(DOFlist) 
     if DOFlist(j,2)<0 
        a= Constraints(:,2)==DOFlist(j,3); 
        DOFwithCon(j,1)=DOFlist(j,1); 
        DOFwithCon(j,2:7)=Constraints(a,:); 
     elseif DOFlist(j,2)>0 
         DOFwithCon(j,:)=DOFlist(j,1:7); 
     else 
         DOFwithCon(j,:)=DOFlist(j,:); 
     end 
 end      
   save('C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\Variables\DOFwithCON.mat','DOFwithCon')         
  if update==1           
%% Find eigenvalues and eigenfrequencys  
    [fi,lambda]=eig(k,m); 
    w=sqrt(diag(lambda));     
    T=linspace(1,n,n)'; 
    T(:,2)=2*pi./w; 
%% Uncoupling mass and stiffness matrix 
    kmodal=fi'*k*fi;                  
    mmodal=fi'*m*fi; 
   kmodal=kmodal-tril(kmodal,-1)-triu(kmodal,1); 
   mmodal=mmodal-tril(mmodal,-1)-triu(mmodal,1); 
   %%Write data to files  
    fid=fopen('C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\eigenperioder.txt', 'w'); 
        fprintf(fid,'%1.0d %18.12f\n', T'); 
    fclose(fid); 
    fid=fopen('C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\eigenvector.txt', 'w'); 
        fprintf(fid,'%3s %d\r %3s %d\r', 'Number of DOF', n, 'Number of 

eigenvectors', length(T)); 
        fprintf(fid,'%9.6f\n', fi' ); 
    fclose(fid); 
    fid=fopen('C:\Users\Hako\Dropbox\Skole\10. semester\Matlab\kmodal.txt', 

'w'); 
        fprintf(fid,'%4s %6d8\n', 'Number of eigenvectors',length(T));     
        fprintf(fid,'%1.4f\n', diag(kmodal)); 
    fclose(fid); 
     fid=fopen('C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\mmodal.txt', 'w'); 
        fprintf(fid,'%4s %6f\n', 'Number of eigenvectors',length(T));     
        fprintf(fid,'%1.4f\n', diag(mmodal)); 
    fclose(fid); 
 elseif update==0 
   % Import eigenvalues from file   
     fid=fopen('C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\eigenperioder.txt'); 
          c = textscan(fid,'%d%f', 'HeaderLines', 0,'collectoutput',1 ); 
    fclose(fid); 
    T=zeros(length(c{1}(:)),2); 
    T(:,1)=c{1}(:); 
    T(:,2)=c{2}(:); 

  
    %Import eigenvvectores from file 
   fid=fopen('C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\eigenvector.txt'); 
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        c = textscan(fid,'%*s%*s%*s%d\n', 'HeaderLines', 

0,'collectoutput',1 ); 
        c1 = textscan(fid,'%*s%*s%*s%d\n', 'HeaderLines', 

0,'collectoutput',1 ); 
        c2 = textscan(fid,'%f\n', 'HeaderLines', 0,'collectoutput',1 ); 
    fclose(fid); 
    DOF=c{1}(1); 
    Nreigvec=c1{1}(1); 
    fi=reshape(c2{1},Nreigvec,DOF)'; 
    Nreigvec=length(T); 
    %Import kmodal 
    fid=fopen('C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\kmodal.txt'); 
        c = textscan(fid,'%f', 'HeaderLines', 1,'collectoutput',1 ); 
    fclose(fid); 
    fid=fopen('C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\mmodal.txt'); 
        c = textscan(fid,'%f', 'HeaderLines', 1,'collectoutput',1 ); 
    fclose(fid) 
    mmodal=zeros(Nreigvec); 
    kmodal=zeros(Nreigvec);  
    for j= 1:Nreigvec 
        mmodal(j,j)=c{1}(j); 
        kmodal(j,j)=c{1}(j); 
    end 
 end 

  
end 

  

 

F.2 Frequency Response  

The function calculated the frequency response for this cases 

 Undamped system 

 Rayleigh damping 

 Hysteretic damping 

 Hysteretic and aerodynamic damping  

Functions used are cae, Import, Freq, Damping 

%% Frequency response  
% Calculate the frequency response for different damping models  
% Uses the functions: 
%   * cae 
%   * freq 
%   * Import  
%   * damping  
%    *Iforce 
% (c) Håkon Olav Skogmo 

 

  

  
clear all; 
clc; 
close all; 
calc=0; % 0 plot old results. 1 recalculate result  
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if calc==1 
update=0; 
[~,~,T,m,k,mconcrete,msteel, mjoint, kconcrete, 

ksteel,kjoint,~]=Import(update);     
temp=sortrows(T,2); 
Tsorted=sort(T(:,2),'descend'); 
wn=2*pi./Tsorted;  
%%Import function  
  [crayleigh, cmaterial,~]=damping(T, k,m, msteel, mconcrete,mjoint,ksteel, 

kconcrete, kjoint);               
%% Function that find aerodynamic damping  
[Caedamp]=Cae(length(m));              
%% Makes frequency vecor  
[w,p]=Freq(wn); 
  %Clear variable not need anymore        
  clearvars msteel mconcrete mjoint ksteel  kconcrete  kjoint 
%D 
%D(1:6) DOF in midspan 
%D(7:12) DOF in quarter-points 
%D(13:18) DOF in top Pylon           
D=[3546,3545,3544,3543,3542,3541,2986,2984,2988,2987,2985,2983,309,312,307,

310,308,311]; 
 nw=length(w) 
 [IUx,IUy,IUz,~,~,~]=Iforce(length(m)); 
I=IUx+IUy+IUz; 
Hwrayleigh=zeros(length(D),nw); 
Hwmaterial=zeros(length(D),nw); 
Hwcae=zeros(length(D),nw); 
Hwundamped=zeros(length(D),nw); 
for j=1:length(w) 
    tic; 
    Tempcae=abs((-w(j)^2*m+k+1i*cmaterial+1i*w(j)*Caedamp)\I); 
    Temprayleigh=abs((-w(j)^2*m+k+1i*w(j)*crayleigh)\I); 
    Tempmaterial=abs((-w(j)^2*m+k+1i*cmaterial)\I); 
    Tempundamped=abs((-w(j)^2*m+k)\I); 
    Hwcae(:,j)=Tempcae(D); 
    Hwrayleigh(:,j)=Temprayleigh(D); 
    Hwmaterial(:,j)=Tempmaterial(D); 
    Hwundamped(:,j)=Tempundamped(D);  
    toc 
    j 

     
end  
elseif calc==0 
    Hwundamped=importdata('C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\Datafiler\Damping\Hwundamped.mat'); 
    Hwrayleigh=importdata('C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\Datafiler\Damping\HwRayleigh.mat'); 
    Hwmaterial=importdata('C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\Datafiler\Damping\Hwmaterial.mat'); 
    Hwcae=importdata('C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\Datafiler\Damping\Hwcae.mat'); 
    w=importdata('C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\Datafiler\Damping\Omega.mat'); 
end 
%% PLot material and rayleigh damping 
h=figure; 
semilogy(w, Hwrayleigh(2,:),'r',w,Hwmaterial(2,:),'b','linewidth', 1); 
xlabel('\omega (rad/s)', 'fontsize',12) 
ylabel('|H(\omega)|','fontsize',12) 
axis([0 10 10^-5 100]) 
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 set(gca, 'fontsize', 11) 
legend('Rayleig damping', 'Hysteretic damping') 
      matl=['C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\PLot\Damping\Rayandmat']; 
      word=['C:\Users\Hako\Dropbox\Skole\10. 

semester\Oppgave\PLot\Damping\Rayandmat']; 
      saveas(h, matl,'m') 
      set(gcf,'units','pixels','PaperPosition',[0 0 25,10]) 
       print(h,'-djpeg','-r800', word)       
%% Plot material and material with aerodynamic damping   
h=figure; 
semilogy(w, Hwmaterial(2,:),'r',w,Hwcae(2,:),'b','linewidth', 1); 
xlabel('\omega (rad/s)', 'fontsize',12) 
ylabel('|H(\omega)|','fontsize',12) 
axis([0.1 1 10^-3 10]) 
 set(gca, 'fontsize', 11) 
legend('Hysteretic damping', 'Hysteretic and Aerodynamic damping') 
      matl=['C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\PLot\Damping\matandcae']; 
      word=['C:\Users\Hako\Dropbox\Skole\10. 

semester\Oppgave\PLot\Damping\matandcae']; 
      saveas(h, matl,'m') 
      set(gcf,'units','pixels','PaperPosition',[0 0 25,10]) 
       print(h,'-djpeg','-r800', word) 

 

 

F.3 Aerodynamic Damping  

Routine that creates the aerodynamic damping matrix. Used DOF list from SAP2000 and a list of 

bridge deck nodes( created manually) to find the DOFs that the aerodynamic damping term 

should be assign to. Function named “cae.mat”  

function [Caedamp]=Cae(n) 
%% Aerodynamic damping - Cae 
% Calculates the aerodynamic damping matix  

  
% 1. Assum that aerodynmic damping only occurs fr the bridge deck 
% 2. Find nodes correnspondig to bridge deck 
% 3. Find the relevant DOF; displacement in y and z direction and rotation 
% about x-axes  
% 4, Apply the relevant aerodynamic damping to the DOF  
%% Created by Håko Olav Skogmo 

  
V=10; 
B=12.9; 
D=2.5; 
CD=0.7; 
CDm=0; 
CL=-0.25; 
CLm=2.4; 
CM=0.01; 
CMm=0.74; 
ro=1.25; 

  
%% Load tabel with nodes and DOF 
 fid=fopen('C:\Users\Hako\Dropbox\Skole\10. semester\Modell\Modell fra 

scratch 3\Modell fra scratch 3.txe'); 
        c = textscan(fid,'%f%f%f%f%f%f\r\n%f', 'HeaderLines', 

1,'collectoutput',1 ); 
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    fclose(fid); 
    DOFlist=sortrows(c{1},1);    
%%Load nodes in the bridge deck girders      
    fid=fopen('C:\Users\Hako\Dropbox\Skole\10. semester\Matlab\Noder 

brodekke.txt'); 
        c = textscan(fid,'%f', 'HeaderLines', 2,'collectoutput',1 ); 
    fclose(fid);     
    BDGnodes=sort(c{1});    
%%Picks DOF in joints in bridge deck 
     BDGDOFtemp =zeros(length(BDGnodes),7); 
        for j=1:length(BDGnodes) 
            a= DOFlist(:,1)==BDGnodes(j); 
            BDGDOFtemp(j,:)=DOFlist(a,:); 
        end          
%% Load second part of DOF list - In the file .txe constrained equation is 

shown with '-'  
% berfore a number, this number is a constrain number and the the actual 

DOF equation number can be found in the  
%.txc file. In the end of the .txe list there a list of nodes with 

constraints with all the equation of the node.    
    fid=fopen('C:\Users\Hako\Dropbox\Skole\10. semester\Modell\Modell fra 

scratch 3\Modell fra scratch 3.txe'); 
        c = textscan(fid,'%s%f%f%f%f%f\r\n%f', 'HeaderLines', 

2171,'collectoutput',1 ); 
    fclose(fid); 

     
    Constraints=c{2};   

     
        for j=1:length(BDGnodes) 
            a=find(Constraints(:,2)==BDGDOFtemp(j,3)); 
            BDGDOF(j,:)=Constraints(a,:); 
        end  
    CaeDOF = BDGDOF(:,[2,3,4]); 
    Caedamp=zeros(n,n); 
    for j=1:length(CaeDOF) 
        Caedamp(CaeDOF(j,1),CaeDOF(j,1))=ro*V*D*CD; 
        Caedamp(CaeDOF(j,1),CaeDOF(j,2))=ro*V*B/2*(D/B*CDm-CL); 
        Caedamp(CaeDOF(j,2),CaeDOF(j,1))=ro*V*B*CL; 
        Caedamp(CaeDOF(j,2),CaeDOF(j,2))=ro*V*B/2*(CLm+D/B*CD); 
        Caedamp(CaeDOF(j,3),CaeDOF(j,1))=ro*V*B^2*CM; 
        Caedamp(CaeDOF(j,3),CaeDOF(j,2))=ro*V*B^2/2*CMm; 
    end    
  Caedamp=Caedamp*30./1000;  %Må gange med lengde på elementer siden test 

to see if the mass and stiffness martix is divided by 1000 

   
end         

 

F.4 Damping  

Creates the damping matrixes for Rayleigh and hysteretic damping. To create the damping matrix 

for Rayleigh damping the sub matrixes for stiffness and mass matrix found in the script Import 

are used.  Function named “damping”.  

 

function [crayleigh, cmaterial,A]=damping(T, k,m, msteel, 

mconcrete,mjoint,ksteel, kconcrete, kjoint); 
%% Creates damping matic for Rayleigh and hysteretic damping(material)  
% Created by Håkon Olav Skogmo 
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 % Damping values  
    chisteel=[0.02;0.02]; 
    chiconcrete=[0.05;0.05]; 
    chijoint=[0.035;0.035]; 

  
%%Rayleigh damping  
% Frequencies used to define Rayleig constants  
    wi=1;    % Eigenperiods to be damped  
    wj=100; %Was 100 when the analysis where conducted  
    Tsort=sort(T(:,2), 'descend'); 
    wn=2*pi./Tsort; 
    A=[1/wn(wi) wn(wi); 1/wn(wj) wn(wj)]; 
 % Creates Rayleigh constants   
    as=2*inv(A)*chisteel; 
    ac=2*inv(A)*chiconcrete;  
    aj=2*inv(A)*chijoint; 
% Calculates sub-damping matrixes     
    csteel= as(1)*msteel+as(2)*ksteel; 
    cconcrete=ac(1)*mconcrete+ac(2)*kconcrete; 
    cjoint=aj(1)*mjoint+aj(2)*kjoint; 
% Direct aasembly of the sub matrixes for steel concrete and common      
    crayleigh=csteel+cconcrete+cjoint; 
%% Material damping  
    cmaterial= 

2*chisteel(1)*ksteel+2*chiconcrete(1)*kconcrete+2*chijoint(1)*kjoint; 
  end 

 

F.5 Frequencies  

This routine creates a frequency vector for a chosen number of eigenfrequencies, and makes a 

fine mesh around the eigenfrequency and a course mesh between the eigenfrequencies   

 

function [w,p]=Freq(wn) 
%% Makes a frequency vector to use in the calculation. 
% Number of eigen frequencies are decied and number of element per eigen 
% frequeny are set (d) 
% The function dived makes a finer frequency mesh areound the the natural 
% frequencies and coured at the intermediate frequencies. It also reduce 
% number of elements per eienfrequency if the eigenfrequences are closly 
% spaced 
% Created by Håkon Olav Skogmo 

  
start=1; %Set start frequency 
d=20; %Number of element the area around each element should be divided in 
      %Must be be diviabel by four  
NumbEig=1200;  %Number of eigenfrequencies tha should be calculated  
               %1200 was used under the analyses  
               % 300 when reunnind the damping analyses 
w=zeros(30,NumbEig); 
   for j=1:NumbEig  
    p=j+start-1; 
    if j==1  
        w(1/4*d+1:3*d/4,j)=linspace(wn(p)-((wn(p+1)-

wn(p))/10),wn(p)+(wn(p+1)-wn(p))/10,d/2); 
        w(1:d/4,j)= linspace(wn(p)-0.05,w(d/4+1,j),d/4); 
    elseif abs((wn(p)-wn(p-1)))>=0.04 
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        s=w(:,j-1); 
        FirstNZ=length(s(s~=0)); 
        w(1/4*d+1:3*d/4,j)=linspace(wn(p)-((wn(p+1)-

wn(p))/10),wn(p)+(wn(p+1)-wn(p))/10,d/2); 
        w(1:d/4,j)= linspace(w(FirstNZ,j-1),w(d/4+1,j) ,d/4); 
    elseif abs((wn(p)-wn(p-1)))<0.04 && abs((wn(p)-wn(p-1)))>=0.02 
        s=w(:,j-1); 
        FirstNZ=length(s(s~=0)); 
        w(1:3*d/4,j)=linspace(w(FirstNZ,j-1),wn(p)+(wn(p+1)-

wn(p))/10,3*d/4); 
    elseif abs((wn(p)-wn(p-1)))<0.02 
        s=w(:,j-1); 
        FirstNZ=length(s(s~=0)); 
        w(1:2*d/4,j)=linspace(w(FirstNZ,j-1),wn(p)+(wn(p+1)-

wn(p))/10,2*d/4) 
    end  
   end 
w(w==0)=[]; 
w=unique(w); 
w=[w wn(1:NumbEig)'] 
sort(w,'descend'); 
w=unique(w); 
length(w); 
end 

 

F.6 Unit force vector  

Creates  vectors of unity for DOFs corresponding to each direction. I.e all DOFs corenspong to 

transverse direction x  is set to unity, all other to zero. Ans this is done for all 6 displacements 

and rotations   

function [IUx,IUy,IUz,IRx,IRy,IRz]=Iforce(n) 
%% Makes a unity matirx for DOFs in each direction, i.e all elements  
%corrensponding DOFs in x direction get unity assig but the rest of the 
%DOFs are zero. an the same for the rest of the directions 
% Created by Håkon Olav Skogmo 

  

  
%% Load tabel with nodes and DOF 
 fid=fopen('C:\Users\Hako\Dropbox\Skole\10. semester\Modell\Modell fra 

scratch 3\modell fra scratch 3.txe'); 
        c = textscan(fid,'%f%f%f%f%f%f\r\n%f', 'HeaderLines', 

1,'collectoutput',1 ); 
    fclose(fid); 

     
    DOFlist=sortrows(c{1},1); 
%%LOad lower part of DOF list, the constraint part  
    fid=fopen('C:\Users\Hako\Dropbox\Skole\10. semester\Modell\Modell fra 

scratch 3\modell fra scratch 3.txe'); 
        c = textscan(fid,'%s%f%f%f%f%f\r\n%f', 'HeaderLines', 

2171,'collectoutput',1 ); 
    fclose(fid); 
    Constraints=c{2};       
 %% MAkes a list of DOF where the constraints equatiin are replaced with 

the real DOF   
   DOFwithCon=zeros(length(DOFlist),7); 
 for j=1:length(DOFlist) 
     if DOFlist(j,2)<0 
        a=find(Constraints(:,2)==DOFlist(j,3)); 
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        DOFwithCon(j,1)=DOFlist(j,1); 
        DOFwithCon(j,2:7)=Constraints(a,:); 
     elseif DOFlist(j,2)>0 
         DOFwithCon(j,:)=DOFlist(j,1:7); 
     else 
         DOFwithCon(j,:)=DOFlist(j,:); 
     end 
 end 
 %% Make the force matrix for each of the direction wiht a 1 in the degree 

with corensponding DOF  
 IUx=zeros(n,1); 
 IUy=zeros(n,1); 
 IUz=zeros(n,1); 
 IRx=zeros(n,1); 
 IRy=zeros(n,1); 
 IRz=zeros(n,1); 
 for j =1:n 
     [a,b]=find(DOFwithCon(:,2:7)==j); 
     if b==1 
        IUx(j)=1; 
     elseif b==2 
         IUy(j)=1; 
     elseif b==3 
         IUz(j)=1; 
     elseif b==4 
         IRx(j)=1; 
     elseif b==5 
         IRy(j)=1; 
     elseif b==6 
        IRz(j)=1; 
     else 
      flag 
     end 

      
 end 
end 

  

          

 

F.7 Response  

This routine calculates variances, spectral moments and spectral densities for the system. Is 

follows the routine describe in the theory in the section Multiple support excitations.  

Functions used: Import, Damping, cae, DOFinvest, Freq, PSD, Sa 

%%Response  
%Calculates: Variance, spectral moments and spectral density 
%Used the formulation defined in chapter theory  
% Function uses 
%   *Import 
%   *Damping 
%   *cae 
%   *DOFinvest 
%   *Freq 
%   *PSD 
%   *Sa 
%Created by Håkon Olav Skogmo 
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close all 
clear all 
update=0; 
[~,~,T,m,k,mconcrete,msteel, mjoint, kconcrete, ksteel,kjoint, 

~]=Import(update);  
[~, cmaterial,~]=damping(T, k,m, msteel, mconcrete,mjoint,ksteel, 

kconcrete, kjoint); 
n=length(m); 
[Caedamp]=Cae(n); 
Tsorted=sort(T(:,2),'descend'); 
wn=2*pi./Tsorted; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %% Load tabel with nodes and DOF 
    fid=fopen('C:\Users\Hako\Dropbox\Skole\10. semester\Modell\Modell fra 

scratch 3\Modell fra scratch 3.txe'); 
        c = textscan(fid,'%f%f%f%f%f%f\r\n%f', 'HeaderLines', 

1,'collectoutput',1 ); 
    fclose(fid); 

     
    DOFlist=sortrows(c{1},1); 

  

  
% Find the supports DOF  
    c=importdata('C:\Users\Hako\Dropbox\Skole\10. semester\Matlab\TXT 

filer\Support nodes.txt'); 
   supportnodes=c.data; 

    
       SupportDOF =zeros(length(supportnodes),7); 
        for j=1:length(supportnodes) 
            a=find(DOFlist(:,1)==supportnodes(j)); 
            SupportDOF(j,:)=DOFlist(a,:); 
        end 

        
 %%Make transfer matrix 
 E=zeros(36,5); 
 telle=0; 
 for j=1:length(SupportDOF)  
     %%Set number in accordance with support  
     if 1<=j && j<=2 
        a=2; 
        telle=telle+6; 
    elseif 3<=j && j<=4 
        a=3; 
        telle=telle+3; 
    elseif 5<=j && j<=6 
        a=4; 
        telle=telle+3; 
    elseif 7<=j && j<=8 
        a=5; 
        telle=telle+6; 
    end 

         
     if a>=3 && a<=4    
        E(telle-2,1)=SupportDOF(j,2); 
        E(telle-1,1)=SupportDOF(j,3); 
        E(telle,1)=SupportDOF(j,4); 
        E(telle-2,a)=1; 
        E(telle-1,a)=1; 
        E(telle,a)=1;    
     else 
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        E(telle-5,1)=SupportDOF(j,2); 
        E(telle-4,1)=SupportDOF(j,3); 
        E(telle-3,1)=SupportDOF(j,4); 
        E(telle-2,1)=SupportDOF(j,5); 
        E(telle-1,1)=SupportDOF(j,6); 
        E(telle,1)=SupportDOF(j,7); 
        E(telle-5,a)=1; 
        E(telle-4,a)=1; 
        E(telle-3,a)=1;  
     end 
 end 
 Em=sortrows(E,1); 
 Em(:,1)=[]; 

  
 SupportDOF=reshape(SupportDOF(:,2:7)',numel(SupportDOF(:,2:7)),1); 
 SupportDOF(SupportDOF==0)=[];        
 SortedSupportDOF=sort(SupportDOF); 
 %%%%%Obs%%%% 
 % The Support DOF are sorted  

  
 %Find structure DOF 
 ks=k; 
 ms=m; 
 caes= Caedamp; 
 cs=cmaterial; 
 ks(SortedSupportDOF,:)=[]; 
 ks(:,SortedSupportDOF)=[]; 
 ms(SortedSupportDOF,:)=[]; 
 ms(:,SortedSupportDOF)=[]; 
  cs(:,SortedSupportDOF)=[]; 
 caes(:,SortedSupportDOF)=[]; 
   cs(SortedSupportDOF,:)=[]; 
 caes(SortedSupportDOF,:)=[]; 

  
 %Find base DOF 
  kb=zeros(length(SortedSupportDOF),length(SortedSupportDOF)); 
  mb=zeros(length(SortedSupportDOF),length(SortedSupportDOF)); 
  cb=zeros(length(SortedSupportDOF),length(SortedSupportDOF)); 
  caeb=zeros(length(SortedSupportDOF),length(SortedSupportDOF)); 
 kb=k(SortedSupportDOF,SortedSupportDOF); 
  mb=m(SortedSupportDOF,SortedSupportDOF); 
  cb=cmaterial(SortedSupportDOF,SortedSupportDOF); 
  caeb=Caedamp(SortedSupportDOF,SortedSupportDOF); 

  
 %Find conncected DOF  
  ksb=k; 
  msb=m; 
  caesb= Caedamp; 
  csb= cmaterial; 
  ksb(SortedSupportDOF,:)=[]; 
  msb(SortedSupportDOF,:)=[]; 
  csb(SortedSupportDOF,:)=[]; 
  ksb=ksb(:,SortedSupportDOF); 
  msb=msb(:,SortedSupportDOF); 
  csb=csb(:,SortedSupportDOF); 
  caesb=caesb(:,SortedSupportDOF); 

  
 %% Modes that should be investigated   
[D]=DOFinvest();  
%%Remove vaiable that are no need more 



                                                                  Appendix F.  MATLAB Calculations    
 

93 
 

clearvars DOFlist E SupportDOF T Tsorted supportnodes ksteel mconcrete 

mjoint msteel kjoint kconcrete fid msb m k n csb cmaterial caesb  
%%%%%%%%%%%%%%%%% 
[w]=Freq(wn); 
[Sx]=Sa(w); 
e=-ks\ksb; 
B=-ms*e*Em; 
Rs=(e*Em); 
SUX=zeros(length(ms),length(ms));%spectal density for chosen points wave  
                                    %traveling along bridge 
SUY=zeros(length(ms),length(ms));%spectal density for chosen points wave  
                                    %traveling perdicular to bridge 
SUWave=zeros(length(ms),length(ms)); %spectal density for chosen points 

wave  
                                    %traveling along bridge, only  
                                    %wave passage effects  
VarX=zeros(length(ms),length(ms));%Complete variace 
VarY=zeros(length(ms),length(ms));%Complete variace 
VarWave=zeros(length(ms),length(ms));%Complete variace 
VarMX=0; 
VarMWave=0; 
VarMY=0; 
%% Calculates response spectra, variances and spectral moments  
for j=1:length(w)-1 
   tic; 
   [Sxx,Syy,Swave]=PSD(Sx(j),w(j)) 
   Rr=(-w(j)^2*ms+ks+1i*cs+1i*w(j)*caes)\B; 

   
   Sux=(Rr+Rs./(w(j)^2))*Sxx*(Rr+Rs./(w(j)^2))'; 
   Suy=(Rr+Rs./(w(j)^2))*Syy*(Rr+Rs./(w(j)^2))'; 
   Suwave=(Rr+Rs./(w(j)^2))*Swave*(Rr+Rs./(w(j)^2))'; 

   

     
    VarX=VarX+Sux.*(w(j+1)-w(j));  
    VarY=VarY+Suy.*(w(j+1)-w(j));  
    VarWave=VarWave+Suwave.*(w(j+1)-w(j));  

  

     
    VarMX=VarMX+w(j).*Sux.*(w(j+1)-w(j));  
    VarMY=VarMY+w(j).*Suy.*(w(j+1)-w(j));  
    VarMWave=VarMWave+w(j).*Suwave.*(w(j+1)-w(j));  

  

   
   for k=1:length(D) 
       SUX(k,j)=Sux(D(k),D(k)); 
       SUY(k,j)=Suy(D(k),D(k)); 
       SUWave(k,j)=Suwave(D(k),D(k)); 
   end 
toc 
end   
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F.8 Power Spectral Density of Acceleration  

This routine calculates the Kanai-Tajimi spectrum adapted the expected magnitude of the 

earthquake. The calculation is done in the manner described in the theory 

function [Sx]=Sa(w) 
%% Calculates the kanai-Tajimi spectrum  
% Uses process descibed in the theory  
%Created by Håkon Olav Skogmo 

  
%%Kanai spectrum 
plote=1; 

  
%%Input 
S0=1; %Amplitude Gaussian noise process  
w1=15;           %7 
chi1=0.6;       %0.9     
chi2=0.6;       %0.9 
w2=1.5;         %0.2 
PGA=3; 
GF=2.73; 

  
Hw2=((w./w2).^2)./((1-(w./w2).^2)+2*1i*chi2*(w./w2)); 
Hw1=(1+2*1i*chi1.*(w./w1))./((1-(w./w1).^2)+2*1i*chi1*(w./w1)); 
S=(abs(Hw1).^2).*(abs(Hw2).^2).*S0; 
Var=0; 
for j=1:length(w)-1 
    Var=Var+S(j)*(w(j+1)-w(j)); 
end 
%sigxx=integral(Hw1,0,inf); 
S1=PGA/GF; 
I=S1^2/Var; 
Sx=(abs(Hw1).^2).*(abs(Hw2).^2)*I; 
 h=figure 
 plot(w,Sx,'linewidth' , 1) 
 title('Kanai-Tajimi spectra','fontsize' ,12) 
 ylabel('Acceleration PSD S_a (m^2/s^4 s/rad)', 'fontsize', 12); 
 xlabel('\omega (rad/s)') 
 set(gca, 'fontsize', 11) 
      matl=['C:\Users\Hako\Dropbox\Skole\10. semester\Matlab\PLot\Kanai-

Tadjimi']; 
      word=['C:\Users\Hako\Dropbox\Skole\10. semester\Oppgave\PLot\Kanai-

Tadjimi']; 
      saveas(h, matl,'m') 
      set(gcf,'units','pixels','PaperPosition',[0 0 25,10]) 
       print(h,'-djpeg','-r800', word) 

  
%%Export specter for use in SAP2000  
f=w./(2*pi);  
fid=fopen('C:\Users\Hako\Dropbox\Skole\10. semester\Matlab\SAP\Sa.txt', 

'w'); 
            fprintf(fid,'%4.6f\n', Sx); 
fclose(fid); 
 fid=fopen('C:\Users\Hako\Dropbox\Skole\10. semester\Matlab\SAP\omega.txt', 

'w'); 
            fprintf(fid,'%4.6f\n', f ); 
fclose(fid); 
    Varu=0; 
    Var1=0; 
    for j=1:length(w)-1 
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        Varu=Varu+(1/w(j+1)^4)*Sx(j)*(w(j+1)-w(j)); 
        Var1=Var1+Sx(j)*(w(j+1)-w(j)); 
    end 
end 

 

F.9 Power Spectral Density of Spatially Varying Ground Accelerations 

This routine calculates the power spectral density of spatially varying ground motion for the tree 

analyses conducted.  

 

function [Sxx,Syy,Swave]=PSD(Sx,w) 
%% Calculates the power spectral density for spartially varying ground 

motions 
%The Haruchandran -Vanmarck model coherence model  
% Created by Håkon Olav Skogmo 

  
%%Coherence - Harichandran -Vanmarcke model 
v=3000; % Soil condition A 
A=0.736; 
alpha=0.147; 
K=5210; 
w0=6.85; 
b=2.78; 
dxx=[0  625 4325 4950; 
     -625 0 3700 4325; 
     -4325 -3700 0 625 
     -4900 -4326 625 0]; 

  
dyy=zeros(4);  

  
roxx=zeros(length(dxx)); 
royy=zeros(length(dyy)); 
rowave=zeros(length(dxx)); 
omega=K*(1+(1i*w/w0)^b)^-0.5; 
%Wave traveling along bridge 
roxx=A*exp(-((2*abs(dxx))./(alpha*omega))*(1-A+alpha*A))+... 
(1-A)*exp(-((2*abs(dxx))./(alpha*omega))*(1-A+alpha*A)).*exp(1i*w*dxx./v); 
%Wave traveling perdikular to bridge 
royy=A*exp(-((2*abs(dyy))./(alpha*omega))*(1-A+alpha*A))+... 
(1-A)*exp(-((2*abs(dyy))./(alpha*omega))*(1-A+alpha*A)).*exp(1i*w*dyy./v); 
%Wave travelng along bridge, bu no incoherence effects  
rowave=ones(4).*exp(1i*w*dxx./v); 

  
Sxx=Sx.*roxx; 
Syy=Sx.*royy; 
Swave=Sx.*rowave; 
end 

 

F.10 Plotting of Auto-PSD response calculations  

This routine is used to plot the response for the cable, girder and pylons. To do this the DOF in 

the system without supports DOF coupled with the DOFs in the original system(with supports 

DOF).  

Function used;  deckandgirdernodes 
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%Plots the responses of the system obtaine from the script response 
%Created By Håkon Olav Skogmo 

  
clear all 
close all  
clc 
%%%%%%%%%%!!!!!!!!!!!!!!!!!!!!!!%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%Husk å endre alle mapper når endre input fila 
Var=importdata('C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\Datafiler\Kjoring 3\VARX.mat'); 
VarY=importdata('C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\Datafiler\Kjoring 3\VARY.mat'); 
VarWave=importdata('C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\Datafiler\Kjoring 3\VARWave.mat'); 
V=zeros(length(Var),2); 
V(:,1)=linspace(1,length(Var),length(Var)); 
V(:,2)= abs(diag(Var)); 
V=sortrows(V,2); 
%% Load tabel with nodes and DOF 
fid=fopen('C:\Users\Hako\Dropbox\Skole\10. semester\Modell\Modell fra 

scratch 3\Modell fra scratch 3.txe'); 
        c = textscan(fid,'%f%f%f%f%f%f\r\n%f', 'HeaderLines', 

1,'collectoutput',1 ); 
fclose(fid);     
    DOFlist=sortrows(c{1},1); 

  
% Find the supports DOF  
    c=importdata('C:\Users\Hako\Dropbox\Skole\10. semester\Matlab\TXT 

filer\Support nodes.txt'); 
   supportnodes=c.data; 
       SupportDOF =zeros(length(supportnodes),7); 
        for j=1:length(supportnodes) 
            b=find(DOFlist(:,1)==supportnodes(j)); 
            SupportDOF(j,:)=DOFlist(b,:); 
        end    
 SupportDOF=reshape(SupportDOF(:,2:7)',numel(SupportDOF(:,2:7)),1); 
 SupportDOF(SupportDOF==0)=[];        
 SortedSupportDOF=sort(SupportDOF);      
 %% Make list of corrensponding DOF in reducesystem(without  
 %Supports) and full system 
 DOF=zeros(3564,2); 
  DOF(:,1)=linspace(1,3564,3564); 
  for j=1:length(SupportDOF) 
    b=find(DOF==SupportDOF(j)); 
    DOF(b,:)=[]; 
  end 
  DOF(:,2)=linspace(1,length(DOF),length(DOF));   
  [BDGDOFSSorted,CableDOFs,TowerDOFs1,TowerDOFs2 ]=deckandgirdernodes(); 
  %% Make plot of standard deviation for the bridge girder and cable  
  for k=2:7  
    for j=1:length(BDGDOFSSorted) 
        a=find(DOF(:,1)==BDGDOFSSorted(j,k)); 
        VARGirder(j,k)=Var(a,a); 
        VARGirderY(j,k)=VarY(a,a); 
        VARGirderWave(j,k)=VarWave(a,a); 
    end 
  end 
  xgirder=linspace(50,3650, 121); 
  Title={'(a)','(b)','(c)','(d)','(e)','(f)'}; 
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 % direction={'UX' 'UY' 'UZ' 'RX' 'RY' 'RZ'}; 
  direction=[1 2 3 4 5 6]; 
  SDGirder=sqrt(real(VARGirder(:,2:7))); 
  SDGirderY=sqrt(real(VARGirderY(:,2:7))); 
  SDGirderWave=sqrt(real(VARGirderWave(:,2:7))); 
  for k=2:7  
    for j=1:length(CableDOFs) 
        a=find(DOF(:,1)==CableDOFs(j,k)); 
        VARCable(j,k)=Var(a,a); 
    end 
  end 

   
  xcable=zeros(length(VARCable),1); 
  xcable(1)=0; 
  xcable(length(xcable))=3700; 
  xcable(2:(length(xcable)-1))=linspace(50,3650, 121); 
  Title={'(a)','(b)','(c)','(d)','(e)','(f)'}; 
  direction=[1 2 3 4 5 6]; 
  SDCable=sqrt(real(VARCable(:,2:7))); 
for j=1:3    
       h=figure(j); 
      set(h,'position',[100,100,1000,200]);  
      plot(xcable,SDCable(:,j),'b',xgirder,SDGirder(:,j),'r', 'LineWidth', 

1.5); 
      

plot(xgirder,SDGirder(:,j),'g',xgirder,SDGirderWave(:,j),'b',xgirder,SDGird

erY(:,j),'r') 
      xlabel('Length Bridge (m)', 'fontsize', 12) 
      ylabel('\sigma (m)', 'fontsize', 12) 
      legend('Analysis 1', 'Analysis 2', 'Analysis 3') 
      set(gca, 'fontsize', 12) 
      xlim([0 3700]) 
      set(gca,'ytick',[0 0.2 0.4 0.6 0.8 1]) 
      if j==1 
        set(gca,'ytick',[0 0.05 0.1 0.15 0.2 0.25]) 
      end 
      title(Title(j)); 
      grid on 
      matl=['C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\PLot\SD\SDX\allgirder', num2str(direction(j))]; 
      word=['C:\Users\Hako\Dropbox\Skole\10. 

semester\Oppgave\PLot\SDX\allgirder', num2str(direction(j))]; 
      saveas(h, matl,'m') 
      set(gcf,'units','pixels','PaperPosition',[0 0 25 5]) 
      print(h,'-djpeg','-r800', word)  
end 
%% Make plot of pylons  
 %load nodes in one of the towers in one of thepylons  only rotation  
VARTower1=zeros(length(TowerDOFs1),4); 
VARTower1(:,1)=TowerDOFs1(:,1); 
for k=2:7  
    for j=1:length(TowerDOFs1) 
        a=find(DOF(:,1)==TowerDOFs1(j,k)); 
        VARTower1(j,k)=Var(a,a); 
    end 
end 
for k=2:7  
    for j=1:length(TowerDOFs2) 
        a=find(DOF(:,1)==TowerDOFs2(j,k)); 
        VARTower2(j,k)=Var(a,a); 
    end 
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end 
SDTower1=sqrt(real(VARTower1(:,2:7))); 
SDTower2=sqrt(real(VARTower2(:,2:7))); 
y=TowerDOFs1(:,1)'; 
for j=1:3    
       h=figure(j+3); 
      set(h,'position',[100,100,200,1000]);  
      plot(SDTower1(:,j),y,'b',SDTower2(:,j),y,'r', 'LineWidth', 1.5); 
      ylabel('Height Pylon (m)', 'fontsize', 12) 
      xlabel('\sigma (m)', 'fontsize', 12) 
      set(gca, 'fontsize', 12) 
      title(Title(j)); 
      axis([0 0.6 25, 470]) 
      set(gca,'xtick',[0 0.25 0.5]) 
      grid on 
      matl=['C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\PLot\SD\SDX\SDYTower', num2str(direction(j))]; 
      word=['C:\Users\Hako\Dropbox\Skole\10. 

semester\Oppgave\PLot\SDX\SDYTower', num2str(direction(j))]; 
      saveas(h, matl,'m') 
      set(gcf,'units','pixels','PaperPosition',[0 0 4 13]) 
      print(h,'-djpeg','-r800', word)  
end 

 

 

F.11 Pylon, Bridge Deck and Cable DOFS (deckandgirdernodes) 

This is the function used in the plotting the response. The routine imports list of cable, pylon and 

tower nodes and finds their corresponding DOFs .  

function [BDGDOFSSorted,CableDOFs,TowerDOFs1, 

TowerDOFs2]=deckandgirdernodes() 
%% FInd the DOFs in Bridge deck, Cable and both the twoers  
% Created by Håko Olav Skogmo 

  

  
%% Load tabel with nodes and DOF 
 fid=fopen('C:\Users\Hako\Dropbox\Skole\10. semester\Modell\Modell fra 

scratch 3\Modell fra scratch 3.txe'); 
        c = textscan(fid,'%f%f%f%f%f%f\r\n%f', 'HeaderLines', 

1,'collectoutput',1 ); 
    fclose(fid); 

     
    DOFlist=sortrows(c{1},1); 

     
%%LOad lower part of DOF list, the constraint part  
    fid=fopen('C:\Users\Hako\Dropbox\Skole\10. semester\Modell\Modell fra 

scratch 3\Modell fra scratch 3.txe'); 
        c = textscan(fid,'%s%f%f%f%f%f\r\n%f', 'HeaderLines', 

2171,'collectoutput',1 ); 
    fclose(fid); 

     
    Constraints=c{2};       

       
 %%Load nodes for one of the bridge deck girders      
    fid=fopen('C:\Users\Hako\Dropbox\Skole\10. semester\Matlab\Noder 

brodekke.txt'); 
        

b=textscan(fid,'%*s%*s%*s%*s%*s%f','HeaderLines',1,'collectoutput',1 ); 
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    fclose(fid); 

  
   fid=fopen('C:\Users\Hako\Dropbox\Skole\10. semester\Matlab\Noder 

brodekke.txt'); 
        c = textscan(fid,'%f', 'HeaderLines', 2,'collectoutput',1 ); 
    fclose(fid); 
    BDGnodes=c{1}(1:b{1}(1));  

     
%%Loads coordinates for nodes  
c=importdata('C:\Users\Hako\Dropbox\Skole\10. semester\Matlab\TXT 

filer\Cable nodes.txt'); 
Cablenodes=sortrows(c.data(:,[1 2]),2); % Transfer nodes and x-coordinates 

to array   

  
%%Load nodes and coordinates for on of the columbs in the pylon  
c=importdata('C:\Users\Hako\Dropbox\Skole\10. semester\Matlab\TXT 

filer\Tower nodes.txt');  
Towernodes=c.data; 
Towernodes(1,:)=[]; %Remove support nodes      
 %% MAkes a list of DOF where the constraints equatiin are replaced with 

the real DOF   
   DOFwithCon=zeros(length(DOFlist),7); 
 for j=1:length(DOFlist) 
     if DOFlist(j,2)<0 
        a= Constraints(:,2)==DOFlist(j,3); 
        DOFwithCon(j,1)=DOFlist(j,1); 
        DOFwithCon(j,2:7)=Constraints(a,:); 
     elseif DOFlist(j,2)>0 
         DOFwithCon(j,:)=DOFlist(j,1:7); 
     else 
         DOFwithCon(j,:)=DOFlist(j,:); 
     end 
 end 
BDGDOFS=zeros(length(BDGnodes),7); 
%% Makes list of bridge deck girder DOF 
for j=1:length(BDGnodes) 
    a= DOFwithCon(:,1)==BDGnodes(j); 
    BDGDOFS(j,:)=DOFwithCon(a,:); 
end 
%%Makes list over cables DOF 
for j=1:length(Cablenodes) 
    a= DOFwithCon(:,1)==Cablenodes(j); 
    CableDOFs(j,:)=DOFwithCon(a,:); 
end 
%% Make list over Tower DOF  
Pylon 1 
TowerDOFs1=zeros(length(Towernodes),4); 
TowerDOFs1(:,1)=Towernodes(:,2); 
for j=1:length(Towernodes)     
    a= DOFwithCon(:,1)==Towernodes(j,1); 
    TowerDOFs1(j,2:7)=DOFwithCon(a,2:7); 
end 
%Pylon 2 
TowerDOFs2=zeros(length(Towernodes),4); 
TowerDOFs2(:,1)=Towernodes(:,4); 
for j=1:length(Towernodes) 
    a= DOFwithCon(:,1)==Towernodes(j,3); 
    TowerDOFs2(j,2:7)=DOFwithCon(a,2:7); 
end 
%%Loads coordinates for nodes  
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c=importdata('C:\Users\Hako\Dropbox\Skole\10. semester\Matlab\TXT 

filer\Koordinater.txt'); 
BDGnodesCOR=c.data(:,[1 2]); % Transfer nodes and x-coordinates to array  
%Sort the Bridge deck DOFS after coordinat in x direction  
for j=1:length(BDGnodesCOR) 
    a= BDGDOFS(:,1)==BDGnodesCOR(j,1); 
    BDGDOFSSorted(j,:)=BDGDOFS(a,:);      
end 
end 

  

         

         

F.12 Non-Stationary Response 

Plots the spectral density and simplified non-stationary response for a given DOF.  

 
%%Non-stationary response  
%%Plots spectral density of the response and the simplified non-stationary 
%%solution 
%Created by Håkon Olav Skogmo 
close all 
clear all 
%% LOAD vaiances, spectral densities and omega fro the result of analysis  
Var=importdata('C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\Datafiler\Kjoring 3\VARY.mat');  
PSDX=importdata('C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\Datafiler\Kjoring 3\SUY.mat');  
w=importdata('C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\Datafiler\Kjøring 2.0\Omega.mat');  

  
%Node number in D that is to be investigated ' 
%1-6 mid-span 
%7-12 quarter point 
%13-18 Top pylons 
DOF=14;%REMNBER TO CHANGE FILE NAME 
%% Plot spectral densities  

  
    h=figure 
    semilogx(w(1:length(w)-1),real(PSDX(DOF,:)),'linewidth', 1.5) 
    xlabel('\omega (rad/s)','fontsize', 12) 
    ylabel('Displacement   PSD   S_u (m^2 s/rad)', 'fontsize', 12) 
    set(gca, 'fontsize', 12) 
    title('(a)','fontsize',14); 
     word=['C:\Users\Hako\Dropbox\Skole\10. semester\Oppgave\PLot\Su\top']; 
    set(gcf,'units','pixels','PaperPosition',[0 0 11 9]) 
    print(h,'-djpeg','-r200', word) 

     
%% Make plot of the simplified non.stationary response.  
% if there are several maximas  
more=1 
    [values, indexs]=sort(real(PSDX(DOF,:)),'descend'); 
[value,index]=max(real(PSDX(DOF,:))); 

  
w0=w(index); 
%w0=0.42 
Damp=0.05; 

  
hor=[0 10]; 
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%Load DOF number for the DOF where the spectral density are saved.  
[D]=DOFinvest(); 
wn=w0*sqrt(1-Damp^2); 
t=linspace(0,50,1000); 
t=unique([t,10]); 
Vartime=real(Var(D(DOF),D(DOF))).*(1-exp(-

Damp.*w0.*t).*(1+2*((Damp*w0/wn)^2)... 
    .*(sin(wn.*t)).^2+Damp*w0/wn.*sin(2*wn.*t))); 
a=find(t==10) 
ver=real(Vartime(a)) 
h=figure 
hold on 
plot(t,real(Vartime),'b','linewidth', 1.5) 
plot([10 10],[0,ver],'r','linewidth', 1.5) 
plot([0 10],[ver, ver],'r','linewidth', 1.5) 
ylim([0, real(Var(D(DOF),D(DOF)))]); 
xlabel('Time (s)', 'fontsize',12) 
ylabel('Variance  \sigma^2 (m)','fontsize',12) 
set(gca, 'fontsize', 12) 
 title('(b)','fontsize',14); 
 box on 
 word=['C:\Users\Hako\Dropbox\Skole\10. semester\Oppgave\PLot\Non-

sta\top']; 
set(gcf,'units','pixels','PaperPosition',[0 0 11 9]) 
print(h,'-djpeg','-r200', word) 

 

F.13 Extreme values  

This routine calculates the extreme values for a node at the mid-span, quarter point and top of 

the pylon. 

Function used: DOFinvest 

%%Extrem value  
%% Calculate the peak factor and the extreme values 
%%Created by Håkon Olav Skogmo 
clear all 
close all 
clc 

  
%%Extreme values  
PSDX=importdata('C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\Datafiler\Kjoring 3\SUY.mat');  
w=importdata('C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\Datafiler\Kjoring 3\Omega.mat');  
VarX=importdata('C:\Users\Hako\Dropbox\Skole\10. 

semester\Matlab\Datafiler\Kjoring 3\VARY.mat');  

  
Var=zeros(18,1); 
VarM=zeros(18,1); 

  
%Node number in D that is to be investigated ' 
%1-6 mid-span 
%7-12 quarter point 
%13-18 Top pylons 
Ts=10; 
[D]=DOFinvest(); 
for k=1:18 
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    for j=1:length(w)-1 
        Var(k)=Var(k)+real(PSDX(k,j)*(w(j+1)-w(j))); 
        VarM(k)=VarM(k)+w(j)^2.*real(PSDX(k,j)*(w(j+1)-w(j))); 
    end 
    v(k)=sqrt(VarM(k)/Var(k))/pi; 
    E(k)=sqrt(2*log(v(k)*Ts))+0.5772/sqrt(2*log(v(k)*Ts));     
    Ext(k)=E(k)*sqrt(real(VarX(D(k),D(k))));    
end 
E(16:18)=[]; 
E(10:12)=[]; 
E(4:6)=[]; 

  
Ext(16:18)=[]; 
Ext(10:12)=[]; 
Ext(4:6)=[]; 

 

 

 


