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ABSTRACT 

The increasing interest on the Arctic areas has brought us new challenges that have not been met before in 

other locations due to the peculiarities of these latitudes. In this thesis the interaction between sea-ice and 

berm breakwaters has been studied. 

 

This work introduces new variables to the study of this interaction that have not been reported before, 

including higher interaction velocities and 3D effects, by varying the ice concentrations and sizes of the 

ice floes. The other variables tested were the breaking length, thickness and roughness of the ice. 

 

To reproduce this interaction, experimental investigations were carried out at NTNU and earlier setups 

were improved. The ice was modelled with paraffin and pushed against a scaled model of Sirevåg berm 

breakwater in a flume. The tests were modelled according to Froude scaling law, 1:70. 

 

The ice and the breakwater behaviour were analysed and evaluated in relation to the parameters of the ice 

floes and new findings have been reported. 

 

The speed did not have a strong influence on the forces exerted on the breakwater, but it increased the 

occurrences of ice stacking over the slope and the likeliness of local failures.  These local failures invited 

to reconsider the suitability of no-reshaped berm breakwaters when facing sea-ice.  

 

The accretion of ice rubble in front of the breakwater was reported as an effective barrier against the 

incoming ice. 

 

Finally, when introducing the 3D effects with circular ice floes at concentrations around 8/10, the result 

was always an ice accumulation over the slope of the breakwater, forming ice rubble that protected the 

structure and did not cause any apparent damage. 

 

As a recommendation for further work, improvements should be done to avoid the constraints caused by 

the flume walls. 
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1 INTRODUCTION 

1.1 Background and motivation 

The motivation to write this thesis comes from different sources. Taking the courses Marine 

Physical Environment and Port and Coastal Facilities during last year opened my eyes to a 

new event that I had never faced before: sea-ice. It was an amazing topic for someone coming 

from the south of Europe, where that is not a situation that you have to deal with in the coastal 

development of your home country. During the past summer, I enjoyed the opportunity to 

work in SAMCoT (Sustainable Arctic Marine and Coastal Technology), a Centre for 

Research-based Innovation. That experience strengthened my interest in ice-related topics, 

and brought me the opportunity to write this thesis. 

 

Berm breakwaters could be considered as a good solution for the protection of harbours, 

artificial islands and shorelines in the Arctic areas because of the pile-up effect, which may 

reduce the incoming ice actions and also increase the overall stability of the breakwater. That 

gives the berm breakwaters an advantage when facing the ice in comparison with classical 

rubble mound structures, where the probability of the ice crossing over the top of the 

breakwater is higher.  

 

A good understanding of the interaction between sea-ice and berm breakwaters will help 

optimizing the design of these structures in the Arctic. In order to improve our comprehension 

and knowledge, research has been conducted to estimate 1) the global ice actions, 2) the 

global response of the breakwater to ice action and also to the combined actions from ice and 

waves, 3) the local ice actions and finally 4) the individual armour stones behaviour. 

 

This thesis was born with the objective of improving the experimental setup of Mennessier 

(2012) including higher interaction velocities and studying the global failure of the berm 

breakwater under ice actions. Another improvement is the inclusion of 3D effects in the 

experimental setup, by varying the ice concentrations and sizes of the ice floes. 

 

Since the main focus was the relation between the force applied and the riding and piling up 

events, together with the potential failure of the breakwater, the model ice was substituted for 

paraffin. This election was first made by Mennessier (2012) and proved to represent the 

phenomena happening at full scale. The main advantages of the paraffin are that it doesn’t 

require a cold laboratory and the simplification in the complicated task of scaling down the 

ice. The main limitation of the paraffin is the breaking mechanism of the ice in the 

breakwater, which was out the scope of this work.  

 

While numerical analysis can show global failure of the structure, they can’t show the 

movements of singular stones which are the most common incidents when the sea-ice arrives 

to the breakwater. This event can be analyzed with the scale model and documented with 

video, photographs and, in case of major damage, with a laser scanning.  
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1.2 Organisation of the report 

The second chapter presents the theoretical background concerning the interaction between 

ice and both classical rubble mound and berm breakwaters. The differences between the two 

different design approaches can be observed, as well as the challenges that have to be faced in 

the Arctic areas when building breakwaters. 

An explanation of the experimental setup used during the experiments can be found in the 

third chapter. It contains an explanation about physical modelling, a description of the 

instrumentation used, the data acquisition process, the model breakwater, the model ice, and a 

justification for the different decisions taken. 

Chapter number four shows the discussion about the experimental work. The results obtained 

during the experiments are summarised, explained, analysed and compared with previous 

data. The different events concerning the model ice and the behaviour of the breakwater are 

presented, analysed and discussed. 

The last chapter, number five, contains the corroborations and findings of the experiments. It 

also proposes some improvements for the experimental setup. 
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2 ICE INTERACTION WITH RUBBLE MOUND BREAKWATERS. THEORY AND 
PREVIOUS KNOWLEDGE. 

2.1 Classical rubble mound breakwaters. 

The initial scope of this thesis was the interaction between breakwaters and level ice, 

approaching to the breakwater as a single layer. However, during the experiments carried out 

with ice concentrations lower than 100% ice ridged were formed, which will be commented 

further in this document. 

 

Most of the available literature regarding ice-breakwater interaction gives qualitative 

information. There are some points of view on the design of structures in Arctic areas and the 

required armour stone mass for these structures, like the ones proposed by Sackinger (1985), 

Chen and Leidersdorf (1988), or Timco et al. (1995). 

 

However, there is a lack of quantitative analysis on this topic. Some investigations have been 

carried out concerning the required armour stone size, mainly as laboratory or model tests in 

ice tanks. Therefore, these tests may be subjected to scale effects (Tørum 2009). 

 

Timco et al. (1995) and MacIntosh et al.(1995) reported different loading situations and 

failure modes after investigating the interaction between level ice and existing breakwaters. 

The different phenomena that may happen in the breakwater depends on the loading scenario, 

characterized by the ice flexural strength and thickness, the water depth, the slope inclination 

and the nature of the armour stones, according to the existing literature.  

 

One of the aims of this work is to extend the knowledge about the loading scenario. To check 

if the speed of the ice and the concentration affects to the forces acting on the slope and the 

level of damage that it may cause.  

 

When the sea-ice meets the structure, we can expect it to bend and break when it reaches its 

maximum flexural strength. The flexural strength is lower than the compression strength, 

which makes it the most probable failure model. Due to the use of paraffin as model ice, the 

failure models and ice properties, such as the flexural strength are out of the scope of this 

work. Different situations can follow this event. The ice may be pushed along the slope and 

ride-up, reaching or not the rear side (Figure 1). During the ride-up the pieces of broken ice 

can be form a pile of rubble on the slope (Figure 2), which maximum height depends on the 

ice thickness and the water depth.  

 

Local failures are expected on the structure during the ice crush, ride-up and piling events, 

such as plucking, sliding and bulldozing, as discussed by Timco et al. (1995). 

 

The height of the ice rubble plays an important role. The incoming ice sheet will be pushed 

between the breakwater and the rubble. That means that the more rubble there is over the 

breakwater, the more the ice sheet will be pressed against the armour. That can lead to push 

individual rocks along the slope during the ride up.  

 

Then, there will be a horizontal load over the breakwater due to the incoming ice sheet and a 

vertical load due to the accumulated ice-rubble. 
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Figure 1 – Schematic of ice over-ride of an armour boulder protected side slope. Ettema et al. (1983). 

 

 

 

 
Figure 2 – Initial bending failure and ice ride up on rubble mound structure, Lengkeek et al (2003) 

 

Another interesting fact happening in the contact between the ice and the breakwater was 

observed in the breakwaters at North Bay, Lake Nipissing (Ontario, Canada) by MacIntosh et 

al. (1995). “During the break-up, the ice melted away from the rocks before it moved off, so 

there was no potential for rafting or plucking”. His belief is that the ice present in the 

interstices between the rocks may act as cement to help resist the external ice forces. This 

observation matches with the experiments carried out by Sodhi et al. one year later (1996). 

They observed that the underside of the ice sheet was shaved during its slide over of the 

riprap, filling in the interstitial spaces between the rocks, which smoothed the riprap surface. 

 

The main damages observed in the breakwaters during the existing tests are displacements of 

individual stones. This doesn’t represent a great danger for the structure itself, but it may be 

for the facilities that the breakwater protects when these rocks reach the top of the breakwater 

or override it.  

 

With these considerations in mind, we can evaluate two different situations: with and without 

ice-rubble over the breakwater. 

 

The situation without any ice-rubble accumulated in front of the slope leads to direct contact 

between the breakwater and the incoming ice. The irregularity of the breakwater’s surface and 

the absence of any additional protection lead to some displacements of the rocks when the 
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first ice sheet hits the structure. The damage level observed due to this event observed during 

my experimental work is not severe. However, MacIntosh et al. (1995) observed that 

bulldozing can occur and cause extensive damage to a rubble mound structure, although they 

qualified this type of failure as “quite rare” (Figure 3). 

 

 
Figure 3 – Photographs showing the as-built and the ice-damaged breakwater at North Bay, Ontario, illustrating 

the “bulldozing” process. MacIntosh et al (1995). 

 

This situation can occur during the early season, when ice starts growing and can reach a great 

thickness in short periods of time. However, it may also happen in the late season in case 

there is no previous ice-rubble accumulated over the slope. 

 

On the other hand, the presence of an ice-rubble over the breakwater (which is more likely 

during the late season) has some advantages. Aside from the vertical load due to the 

accumulation of ice, it behaves as a protection for the rocks that otherwise have to face the 

incoming ice without any additional help. This avoids the local damage caused by the 

incoming ice sheets crushing against the slope and riding up. The damage is minimized if the 

ice rubble is consolidated and doesn`t slide along the slope.  

 

The rubble field in front of the structure also increases the stability of the breakwater, 

although if the ice load is too big it could lead to global deep sliding of the structure 

(Mennessier 2012). 

 



 

   6 

 

 
Figure 4 – Rubble field in front of the slope. 

  

A good summary of the different failure scenarios are the three failure modes proposed by 

Lengkeek et al. (2003), associated with three different loading scenarios (Figure 5). These 

scenarios were proposed after some numerical modelling: 

 

1) Local failure of the armour stone due to an ice sheet bending and riding up. 

2) Global slip failure due to a thick ice sheet penetrating through the armour. 

3) Global sliding due to a global distributed load from a consolidated rubble field in 

front of the structure. 

 
Figure 5 – Expected failure modes with different ice loads. Mennessier (2011). 

 

 

Another aspect to consider is the size of the stones. During their investigations on small-scale 

tests, Sodhi et al. (1996) established a relation between the ice thickness-stones diameter ratio 

and the damage level, where the damage increases almost linearly with the hi/D100 ratio. 

According to the results of Sodhi et al. (1996) there is no failure when h/D100 is smaller than 

approximately 0,5, while there is almost always failure if h/D100 is larger than 1,0. Sodhi et al. 

recommendations are less conservative than the ones provided by Ettema et al. (1986). 

 

According to Daly et al. (2008), “selective placement is a more expensive method of 

construction than random placement, but the benefits are smaller stone size requirement and 

greater resistance to ice shoves”. In the same study they evaluated the positive aspects of the 

presence of a toe in front of the structure, which improves the stability. 

 

Regarding the cover layer, Lengkeek et al (2003) recommendation says that it should be at 

least one time the design ice thickness and the rock diameter should be about half the ice 

thickness. That implies that the cover layer should have at least two layers of rocks. This 

recommendation contradicts the previous results of Sodhi et al. (1996), which indicated that 

the rock size diameter should be 1 to 2 times the ice thickness. 

 

Among Lengkeek et al. (2003) recommendations, they suggest the crest freeboard to be at 

least twice the ice thickness. 
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2.2 Berm breakwaters 

When facing ice actions, berm breakwaters and classical rubble mound breakwaters face the 

same loading case scenarios. However, the structural behaviour is not the same. 

 

The existence of a conventional rubble mound and a berm breakwater close to each other on 

the North Bay, Lake Nipissing (Ontario, Canada), gave MacIntosh et al. (1985) the 

opportunity to observe the differences in this behaviour. During one winter, there was 

significant damage done to the conventional breakwater when a moving ice sheet bulldozed a 

large section of the structure (Figure 3). The berm breakwater resisted better the ice forces, 

but it was not quantitatively analyzed. The annual ice thickness was around 0,7m and there 

was no information about the speed. 

 

MacIntosh (1985) believes that “the flatter slopes at the waterline of a berm breakwater 

reduce the likelihood of rock movement by ice”. While in a conventional rubble mound 

breakwater the ice bends and rides-up, the berm helps with the task of limiting the progression 

of the ice to the top and rear-side of the breakwater. When the ice reaches the berm it will 

most likely pile-up, preventing further damage caused by the incoming ice and the displaced 

rocks. “In addition, the berm itself can ground ice rubble for protection during the winter”.  

 

In fact, it is easier for the ice that has reached the berm to remain there than in a slope. This 

fact will provide the berm breakwater with a better stability compared with a conventional 

rubble mound breakwater. Sodhi et al (1996) also pointed out that the damage increases with 

the steepness of the slope. 

 

The rubble mechanism was analysed by Gürtner (2009) during the SIB tests (further 

explanation later on), when he noted a structural dependence regarding the inclination of the 

shoulder. The ice was grounded faster for steeper shoulder inclination than for the shallower. 

However, when a limit inclination was reached the inclination of the shoulder became 

irrelevant. In this situation the rubble mechanism didn’t contribute to increase the rubble 

height. It started developing towards the upstream side instead. After this condition was 

reached, no leeward over-riding of ice could be observed 

 

These observations are valid for the ice actions during freezing and break up, but not during 

tidal actions due to Lake Nipssing’s conditions. 

 

 
Figure 6 – Ice ride-up and pile-up on the berm (Mennessier 2011). 

 

A similar design concept was proposed by Crosadale et al. (1988). They suggested building a 

bump in the slope of a beach. It would cause high bending stresses in the ice, which would 

break and pile up at the bump.  
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In the same line, Tørum (2004, in Tørum 2011) suggested that “a static stable berm 

breakwater, with such a bump built into it, would be suitable in Arctic areas where the 

structure is subjected to ice attack”. Later, the tests of Daly et al. (2008) confirmed in a certain 

degree the advantages that a berm represents for ice barriers. 

 

This concept was the seed to develop the “Shoulder Ice Barrier (SIB)”, Gürtner (2009), 

Tørum et al. (2007).  A 1:20 model of the structure (Froude’s scaling) was built in the large 

ice tank of the HSVA (Hamburg Ship Model Basin) (Figure 7) with the purpose of protecting 

drilling platforms from ice in shallow waters. Although the SIB’s shape is similar to a berm 

breakwater, this is a steel structure. That means that the surface of the structure is very 

different from the rocks present in a breakwater. Consequently it is not possible to evaluate 

the effects of roughness, selectively placement and local failures such as stone movements. 

However, they are expected to follow a similar pattern regarding the ice force. 

 

 

 
Figure 7 – SIB model in the HSVA ice model basin, Gürtner (2009) 

 

The results of the force tests were reported by Gürtner (2009). He evaluated both horizontal 

and vertical forces and established a relationship between them. 

 

The horizontal force was divided in three phases. The first one starts when the ice hits the 

structure and the force grows steadily. The second phase happens during the formation of the 

ice rubble over the structure. There are highly fluctuating forces with several peaks of short 

duration. Each of these peaks is preceded by a fast build up of the force levels. The peaks 

correspond with the failure events, when the force exceeds the flexural strength of the ice. 

After the peaks, the horizontal force decreases abruptly and a new build up event begins. 

Once the rubble is formed and it is grounded in front of the SIB, the third phase starts, 

characterized by a stationary and high force. 

 

On the other hand, the vertical force increases steadily until it reaches a constant maximum 

force at the very end of the tests. During the first half of the run the vertical force is in the 

same order of magnitude than the horizontal force, while in the second half it is near twice the 

horizontal load. 

 

Figure 8 represents the horizontal (a) and vertical (b) forces on the shoulder for one particular 

test run. It is possible to observe the different phases and connection between the forces 

commented previously. 
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Figure 8 – Force summary plot of one particular test run with setup according to Figure 7, Gürtner (2009) 

 

The highest load peaks were observed when the ice was pushing through the unconsolidated 

ice rubble at the structure and directly failing by crushing on the SIB surface. Forces were 

higher than observed in typical out-of-plane braking ice sheet due to the constraint of gravity 

and buoyancy on either side of the ice sheet.  

 

Another aspect that should not be forgotten when designing a berm breakwater is that they are 

normally constructed with a berm that is allowed to reshape. This means that they can be 

designed either with a non reshaped static stable profile or with a reshaped (static or dynamic) 

stable profile. This needs to be considered when calculating the ice actions. Another concern 

in the design of a berm breakwater that is able to reshape is the excessive crushing and 

abrasion of individual stones as they move on the berm breakwater (Tørum 2011). However, 

the abrasion associated to the movements of stones pushed by the ice should not be something 

to worry in the reshaped profiles. On the contrary, it is considered as damage on non-

reshaping berm breakwaters.  

 

2.3 Ice action calculation for a rubble slope 

There is not a detailed knowledge of the events following the contact between the sea-ice and 

berm breakwaters. This fact, together with the uncertainties related to the ice properties make 

difficult to predict the behaviour of the ice and propose some formulae to describe the events.  

 

The ice impact on the slope was studied by Ettema et al (1983). They found that the forces 

exerted on side slopes by the ice sheets were lower than predicted for bucking of crushing 

failure. The reason was the non-simultaneous and irregular nature of the ice-sheet failure that 

occurs once the ice rubble has been accumulated along a side slope. They also came with an 

important contribution, since they established a relation between the maximum horizontal 

forces, per unit width of ice sheet, and the ice-sheet thickness. 
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Figure 9 - Max. horizontal force per unit width of ice sheet during first ride-up event (to the left) and max. 

horizontal force per unit width of ice sheet during an entire test. After Ettema et al. (1983). 

 

During their tests with a rip-rap model, Sodhi et al. (1996) observed that the maximum forces 

were associated with buckling. Although my experimental work has been carried out with 

paraffin instead of ice, I have observed that the maximum forces correspond to the events 

when two adjacent sheets bend and finally slide one over the other.  

 

The standard ISO/FDIS 19906:2010(E) provides some formulae to calculate the ice load from 

level ice on a sloping structure. Since sloping structures are more likely to make the incoming 

level ice break in bending, the proposed model is based on elastic beam bending. These 

formulae are only valid for a sloping structure (they do not consider the berm) and do not 

consider the stone displacements either. The ice-structure interaction is simplified with the 

processes illustrated in Figure 10.  

 

 

 
Figure 10 – Processes in the interaction between a sloping structure and ice sheet, ISO/FDIS 19906:2010(E). 

 

Figure 11 sketches the ice action components evaluated in the formulae below. 
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Figure 11 – Ice action components on a sloping structure for a two-dimensional condition, ISO/FDIS 

19906:2010(E) 

 

Key 

 

A  sloping face of structure;  

B  encroaching ice sheet;  

N  normal component of reaction to ice action on structure;  

μ  ice-structure friction coefficient;  

α  slope of structure face from horizontal;  

    horizontal component of ice action;  

    vertical component of ice action. 

 

The horizontal action component is determined as 

 

   
              

  
  

       

 
(1)  

 

Where    is the horizontal action due to ice breaking,    is the load component required to 

push the ice sheet through the ice rubble,    is the load to push the ice blocks up the slope 

through the ice rubble,    is the load required to lift the ice rubble on top of the advancing ice 

sheet before it breaks and    is the load to turn the ice block at the top of the slope.    is the 

flexural strength of the ice sheet and   is the thickness of the ice sheet. 

 

The relationship between the vertical and the horizontal components is 

 

   
  
 

 (2)  

 

Where 

 

  
          

          
 (3)  

 

The load component    is obtained from 

 

             
      

 

 
 

    

   
     
 

  (4)  
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Where 

    
   

              
 

   

 (5)  

 

Where E is the elastic modulus of the ice,   is the Poisson ratio (typical value 0.3),    is the 

density of the water, w is the width of the structure and g is the acceleration of gravity. 

 

The load component    is expressed as 

 

       
                  

    

    
 
  

     
 (6)  

 

Where    is the rubble height,    is the ice-to-ice friction coefficient,    is the density of the 

ice,   is the porosity of the ice rubble and   is the angle the rubble makes with the horizontal. 

 

The load component    is given by 
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(8)  

 

The load component    is given by 

 

           
                

 

    
 

 

    
    

    

    
    

        
                      

    

    
 
 

            
    

    
  

(9)  

 

Where   and   are the cohesion and the friction angle of the ice rubble. 

 

The last load component    needed in Equation (1) is given by 

 

                 
    

          
 (10)  

 

When there is high horizontal force acting on the ice sheet, it influences the flexural failure of 

the ice sheet. This is considered by using the calculated value of the horizontal action to 

modify the flexural strength as follows 

 

  
   

 
  
    

    (11)  

 

Where    is the total length of the circumferential crack, estimated as 
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To understand the physical behaviour under the formulae and the uncertainties related to the 

estimation of the variables it is useful to classify them: 

 

The structural variables   and w are known values; the ice properties are h,    ,    (which is 

difficult to estimate) and    (which depends on  ,    and c); the ice-structure interaction 

provides  ; the ice-rubble geometrical properties are  ,    , that are not so difficult to find by 

observing, and e; and the ice-rubble mechanical properties are c and  , which are difficult to 

estimate with accuracy. 

 

The predictions of this model depend considerably on the accumulated rubble on the slope. 

They are also very sensitive to the angle of repose chosen for the rubble pile. The force to 

drive the oncoming ice through this rubble pile and up the slope increases rapidly with the 

volume of the accumulated ice-rubble. This force is then transmitted to the structure and is a 

component of the total ice action.  

 

The presence of snow is another fact that brings uncertainties to the calculation. It affects to 

the ice-ice friction and structure-ice friction coefficients, the porosity or the ice-rubble and the 

ice-rubble mechanical properties. In the absence of snow the horizontal action due to ice 

breaking is the main component. 

 

When there are high speed interactions, ISO/FDIS 19906:2010(E) mention that the failure 

mode can change from bending to shear. The ice thickness has less of an influence for shear 

failure than for bending failure. Therefore shear failure is more prevalent at higher 

thicknesses. That is due to the inertial effects, which potentially increase the global ice action. 

The ice actions on sloping structures depend on the drift velocity. Speed effect is rather 

complex and its magnitude depends on the slope angle, sloping surface roughness and the 

ratio between ice thickness and waterline structure width. The effects of drift velocity on the 

breakwater and the force’s dependence on this parameter observed during my experimental 

work are analysed later in this work. 

 

While these formulae are useful to check the global stability of the structure, they do not 

provide any information about local loads to evaluate local damages such a stone movements.  

     
  

 
    (12)  
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3 EXPERIMENTAL SETUP 

This thesis was born with the objective of improving the experimental setup of Mennessier 

(2012) by including higher interaction velocities and studying the global failure of the berm 

breakwater under ice actions. Another improvement is the inclusion of 3D effects by varying 

the ice concentrations and sizes of the ice floes. 

 

In order to continue with the line of research of Mennessier (2012) several tests have been 

conducted with the experimental setup used in his experiments, improving the instrumentation 

necessary to introduce the new variables into the investigation of the interaction between sea-

ice and berm breakwaters. 

 

The tests have been carried out in a 60cm wide flume. The ice, substituted for paraffin, has 

been pushed towards a model cross section of the Sirevåg berm breakwater. The force 

required to push the ice has been recorded with two force transducers located in the pushing 

plate. The tests have been modelled according to Froude scaling law, 1:70. Every test has 

been also documented with video and photographs. A laser scan has been installed to use it in 

case of global failure is detected. 

 

3.1 Physical modelling and scaling 

Physical modelling is a very useful tool in coastal engineering. Mathematical modelling offers 

important simplifications, but that may cause effects that must be evaluated by physical 

modelling. Thus we can examine phenomena which are beyond our analytical skills on this 

field.  

 

The aim of physical modelling is to create a scaled model that behaves in the same way as it 

would at prototype scale. For this purpose the model has to preserve the properties of the 

prototype, so they are in similitude with each other.  

 

3.1.1 Prototype and model similitude 

There are three types of similarity required to be met when we build a physical model: 

geometric, kinematical and dynamical. Each of these relations is characterized by a scaling 

factor, which is defined as the ratio between a specific property of the prototype and the same 

property of the model.  

 

Geometrical similarity refers to the shape. It exists when all the corresponding linear 

dimensions have the same scale ratio, defined as 

 

  
  

  
  (13)  

Where the sub index p refers to the prototype and the sub index m refers to the model.  

 

Kinematic similarity refers to the motion. It is a similarity of velocities. It “is achieved when 

the ratio between the components of all the vectorial motions for the prototype and the model 



 

   15 

 

must be the same for all particles at all times” (Hudson et al. 1979 in Hughes, 1993). 

Considering a common time scale   , for the study domain, it is possible to define other 

kinematical scales like a velocity scale as         or an acceleration scale as        
 
, 

which are valid for all the motion field (Martin Vide, 2006).  

 

However, this    is a theoretical value difficult to model. To achieve realistic results it is 

mandatory to analyse the causes of the motion. That brings us to dynamic similarity, which 

exists for geometrical and kinematical similar systems if there is a similarity in the force 

between the prototype and the model. The following force contributions are of importance: 

inertia forces (Fi), viscous forces (Fv), gravitational forces (Fg), pressure forces (Fp), elastic 

forces in the fluid (Fe), and surface forces (Fs).  

 

Nevertheless, there is no fluid that fulfils all force ratios requirements. For that reason it is 

important to identify which forces govern the physical process that we are going to test and 

which ones are negligible. Once we know this, we can choose the proper hydraulic criterion 

for the model. 

 

In coastal engineering, the dominant driving forces of most of the problems are the 

gravitational and viscous forces, while the elastic forces in the fluid and the surface tension 

are relatively small. Consequently, the necessary condition for hydrodynamic similitude can 

be fulfilled with the similitude of Froude (inertia/gravity forces) or Reynolds (inertia/viscous 

forces) number in combination with geometric similarity (Hughes, 1993).  

 

3.1.2 Froude scaling 

Froude Number is a dimensionless number that expresses ratio of inertia to gravity forces. It 

is defined as: 

 

   
 

    
 (14)  

 

Then, the Froude model criterion should be applied when the inertial forces are principally 

balanced by the gravitational forces. In order to satisfy this criterion, the Froude Number must 

be the same in the model and in the prototype: 

 

 
 

    
 

 

  
 

    
 

 

 (15)  

 

In terms of scale ratios, the Froude Number criterion is: 

 
  

     
        or            (16)  

 

Due to the nature of the physical processes happening around the breakwater, the 

experimental work carried out by Mennessier (2012) followed Froude scaling law. The 

physical model, which I also used during my experimental work, was scaled with a 

geometrical scale ratio  , of 70. The density of the model ice and the full scale density were 

considered to be the same. For practical purposes, the gravitational scale is unity, so following 



 

   16 

 

the Froude criterion it is easy to derive other kinematical and dynamical scales, collected in 

Table 1.  

From now on, all the results and parameters given are given as model-scaled values unless 

specified otherwise. 

 
Table 1 - Froude scaling multiplication factors 

Physical parameter Dimension Similitude ratio 

Length [L]   = 70 

Time [T]    =     

Force [M L T
-2

]    =     

   

3.1.3 Scaling effects 

As complete similitude does not exist, scale effects may occur. That may happen when the 

neglected forces become important or do not scale in the same ratio than the dominant force. 

In my experiments, where Froude scaling is applied, viscosity, elasticity and surface tension 

forces are note scaled correctly. What we must wonder is if this forces that are not so 

important at full scale, become relevant after scaling the model. 

 

The forces regarding Reynolds criteria, which is the other most used scaling, are viscous 

forces. They are not a problem in the primarily and secondary armour layers, where the 

velocities are relatively high due to the permeability of these layers, which leads to high 

Reynolds numbers.  

 

Scaling effects can be reduced by building a model as large as possible, but that is not always 

possible due to the constraints on the laboratory facilities.  

 

3.2 The testing rig  

3.2.1 The flume 

The flume where the tests have been conducted is situated in the laboratory of the NTNU 

Department of Hydraulic and Environmental Engineering. Its width is 60 centimetres and 

only near 5 meters of its total length were needed to carry out the tests. The longitudinal 

direction of the flume is considered as the x-axis while the y-axis corresponds to the 

horizontal direction perpendicular to the flume. The flume is shown in Figure 12. 

 

 

 
Figure 12-The flume 
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3.2.2 Towing carriage 

A linear motion system was installed above the flume to move a plate that pushed the model 

ice against the breakwater in the x direction. The linear motion system used was Rollco 

QME30-2500, characterized by bearing shafts of 30mm diameter and a stroke length of 

2500mm. It was calibrated prior to the tests and checked every tenth test. 

 

To push the ice along the flume, a plate was hooked to the towing carriage with two jacks so 

it was able to push the ice along the x-axis. 

 

The motor used to drive the towing carriage along the linear motion system was a step motor 

provided by SINTEF. With the configuration used for the experiments motor was able to push 

the model ice with a limit speed was 2.8 centimetres per second, corresponding to 0.23 meters 

per second at full scale. That was a great upgrade (28 times faster) compared to the setup used 

by Mennessier (2012), which allowed investigating the influence of the drift speed on the ice-

breakwater interactions. However, it was not possible to drive the ice to desired maximum 

velocity of 0.5m/s (full scale). The force limitation came from the force transducers, so there 

was not necessary to push the motor characteristics to its limit in this regard. 

 

 
Figure 13 – Linear motion system (left) and pushing plate (right) 

  

 
Figure 14 – Circular shaped model ice the flume ready to be pushed before test 57 



 

   18 

 

3.2.3 Force transducers 

In order to measure the force needed to push the ice, two force transducers were fixed 

symmetrically behind the plate that pushed the ice, registering the forces exerted in the x 

direction. The force transducers’ type was S9M from HBM, which means S-shaped load cells 

for tensile and compressive forces. The serial numbers of the employed transducers were 

30879157 and 30879164. The second one was replaced during some of the tests for a new one 

with serial number 300014720 due to some damage in the cable connecting it to the data 

logger. The nominal force of each of the force transducers was 500N and the accuracy class 

0.02. The force transducers were calibrated according to the values provided by the 

manufacturer in the test certificate. They were also checked with two 1kg weights  

 

 
Figure 15-Force transducer principle (left) and detail of the installation (right) 

 

3.2.4 Profiler 

For the purpose of document any global failure or big deformations on the breakwater a 

profiler was installed by SINTEF. The data in the z-axis (height of the breakwater) was 

recorded with a laser SICK DME 2000, serial number 1010578. It was calibrated prior to use.  

 

The laser was moved in the y direction thanks to a second step motor, while the movement 

along the x-axis was possible thanks to a bar that connected the linear motion system 

responsible to move the force transducers, that has been explained in section 3.2.2. The Figure 

16shows the XY profiling system and the laser. 

 

A drawback to the laser is that the water must be removed from the flume to scan the 

breakwater due to the light refraction. That implies a lot of time emptying and filling the 

flume between every test. 

 
Figure 16-Profiling system and laser 
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3.2.5 Graphic documentation 

Every test has been recorded with a high definition video camera in order to be able to 

visually analyse the model ice behaviour and the breakwater response in detail after each 

tests. Pictures of the breakwater have also been taken before, during and after every test in 

order to document any local failure and to show the behaviour of the ice over the breakwater. 

 

3.2.6 Data acquisition and processing 

The data acquisition process from the different sensors followed similar ways from the 

sensors until it was analysed and represented in the graphics. 

 

The loads were measured with the force transducers described in section 3.2.3. Each 

transducer was connected via a single-channel amplifier plug-in module ML10B to an HBM 

MGCplus AB22A logger. The logger device was connected to a computer where the data 

were registered and displayed with the software Catman Easy (version 3.1) and exported in 

files ready to be analysed with MATLAB (version R2012b). 

 

The position data followed two different paths. On the one hand, the x-distance data were 

registered with a linear encoder, which was connected to an analog-to-digital converter, after 

passing through a pulse-voltage converter. From this point they arrived to the HBM MGCplus 

AB22A logger and followed the same path than the load data. On the other hand, the y-

distance data were registered with a step controller and digitally sent to the computer, where 

they were displayed with Catman Easy and analysed with MATLAB. 

 

The height of the breakwater, z-distance, was registered with a laser, as described in 3.2.4. 

This device was directly connected to the computer, displayed with Catman Easy and 

analysed with MATLAB. 

 

Finally, the time data were generated by the software Catman Easy for every test and it was 

analysed with MATLAB. 

 

Figure 17 sketches the path followed by the data. 
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Figure 17 Data acquisition and treatment 
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3.3 The model berm breakwater 

The berm breakwater design used to build the physical model utilized during the experimental 

work corresponds to Sirevåg berm breakwater. The location of the actual breakwater is 70km 

south of Stavanger, in Norway. The reason for the use of this design is to be able to give 

continuity to Mennessier (2012) work. That brought the opportunity to use an already built 

physical model (with some maintenance work), check the previous results and gain more in-

depth knowledge of the mechanisms that occur between the sea-ice and the berm breakwater, 

having a similar previous study to compare the results. 

 

The original reason of the use of Sirevåg berm breakwater was that it had been investigated in 

detail by Tørum et al (2003). The advantage of these studies is that its behaviour against the 

wave actions is well known.  

 

Another benefit of the Sirevåg berm breakwater is the fact of being a non reshaping 

breakwater. That means that the profile of the breakwater is known before it is subjected to 

any ice action, which is an obvious benefit when it is necessary to carry out several tests on 

the same structure. When dealing with static stable reshaping berm breakwaters, they can be 

subjected to ice loads before or after they have reached their static shape.  

 

The cross section of the built model is shown in Figure 18, while the characteristics of the 

stones are listed in Table 2. The model was installed in the flume, perpendicular to the x-axis 

previously defined. The flume floor was used as seabed, so the sand and rock bottom were not 

modelled. 

 

 

 
Figure 18-Cross section of the Sirevåg berm breakwater (Tørum et al. 2003) 

 

 
Table 2 - Characteristics of the stones for the Sirevåg berm breakwater (Tørum et al. 2003) 

 Stone class Prototype 

(tons) 

Model 

(kg) 

Gradation factor 

             

Mean volume 

reduction 

factor,       

             I 20-30 0.058-0.087 1.11 0.41 

II 10-20 0.029-0.058 1.15 0.43 

III 4-10 0.012-0.029 1.20 0.42 

IV(filter)                     

V&VI (core)                      
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3.4 The model ice 

A singular fact of this experimental work is the use of broken pieces of paraffin instead of 

modelling the ice. This experimental setup was already used by Mennessier (2012), who 

proved that the different expected behaviour (rubble formation in front of the breakwater, 

riding up and piling up) can be observed with this material and is representative of some of 

the phenomena happening at full scale.  

 

The use of paraffin provided the advantage of getting rid of some of the uncertainties that 

arise when modelling ice like the temperature play. It also helped because the same pieces of 

paraffin could be used for more than one test and made possible to carry out the tests without 

an ice tank. 

 

To prepare the paraffin it was melted and shaped in rectangular and circular pieces simulating 

the already broken ice floes. It was not possible to simulate the breaking mechanism since the 

paraffin has different flexural and compression strength than the ice. That setup is valid 

because it is assumed that the breaking mechanism does not have a great influence in the 

piling and riding up events.  

 

Different scenarios were recreated during the tests. For this purpose several parameters of the 

modelled ice floes were altered and combined during the experimental work. These were:  

 

 the shape of the broken pieces, 

 the length and diameter of the pieces (representing a breaking length), 

 the thickness,  

 the friction, 

 the drift speed and 

 the ice concentration. 

 

In order to validate Mennessier`s (2012) work and compare the new tests run at higher speeds 

with the existing data, the different lengths and thicknesses of the rectangular pieces of 

paraffin tested were the same than the ones that he used during his tests. The used lengths 

were 7.5, 10.5, 13.5, 16.5, 19.5 and 22.5 centimetres, with thicknesses of 1.5 and 3cm. These 

thicknesses represent 1.05 and 2.10 meters at full scale, which are representative of medium 

and thick first-year ice respectively. While the breaking length of the paraffin may seem not 

too large (5.25 to 15.75m at full scale) compared with the ice floes found in nature, it was 

limited by the stroke length of the linear motion system and the width of the tank. 

 

There were two different drift speeds used in the tests, 0.1 cm/s (the same one used by 

Mennessier (2012)) and 2.7cm/s. 

 

The paraffin was tested with two different roughnesses. First, the tests were executed with the 

original roughness of the paraffin. Afterwards the tests were run with an added roughness, 

obtained by gluing sand to the surface of the model ice. The average grain size of the sand 

used was 150 micrometers. Due to the impossibility of remove the glued sand from the 

paraffin used in Mennessier’s experiments, the tests with the rectangular ice floes were only 

run with the added friction. That was not a big inconvenience since Mennessier (2012) 

observed that the increased friction represented better the phenomena happening at full scale. 

“It led to less unrealistic pattern of the model ice and less unrealistic damage on the slope”. 
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In the existing work the breaking length, the ice thickness and the roughness were the only 

parameters that could be varied. In order to introduce three dimensional effects to the test 

matrix, the concentration of the ice cover was varied during my tests. In the tests run with the 

rectangular ice floes, they had a width of 58cm, occupying the whole width of the flume. That 

resulted in 10/10 concentration. The variation of the concentration was possible thanks to the 

introduction of circular shaped ice floes with different diameters (13.5 and 22cm). The 

concentration was calculated as the ratio between surface of the ice cover during each test and 

the total water surface of the flume occupied during the corresponding test. 

 

                            
    

 

 

 

   

 (17)  

 

Where D is the diameter of the ice floe and n is the number of ice floes with this diameter. 

 

                  (18)  

 

Where W and l are the width and the length of the water surface of the flume covered by ice. 

 

                  
                         

             
 (19)  

 

While the initial idea was to vary the ice cover concentration by varying the number of 

circular shaped flows in the tank, when I tried to run the tests with low concentrations, the 

paraffin pieces were just pushed together until they reached a concentration over 8/10, 

occupying the whole length of the flume (except for the obvious gaps between the different 

pieces). During this gathering process there was no action on the breakwater, so the rests of 

the tests were directly run with initial concentrations around 8/10. The ice concentrations of 

the tests run with circular shaped floes are shown in Table 5. 

 

 
Figure 19 – Aspect of the circular shaped model ice the flume before test 49 

 

Table 4 sketches the groups of tests, which were named according to the floe characteristics 

and the drift speed of each test. The following pattern was used to easily identify the 

characteristics of a test just by watching the group to which the test belongs: 
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Table 3 - Categorisation of the tests 

Position Indicates Values 

First letter Shape R (rectangular) and C (circular) 

First number Thickness 1 (1.5cm) and 2 (3cm) 

Second letter Drift speed L (low, 0.1cm/s) and H (high, 2.7cm/s) 

Third to fifth letter 
Breaking length 

or floe diameter  

A (7.5cm), B (10.5cm), C (13.5cm), D 

(16.5cm), E (19.5cm) and F (22.5cm) 

Last letter Roughness N (no friction) and F (d=150μm) 

 

For example, tests number 23, 24 and 25 belongs to the group R2HA.F. That means that the 

ice floes were rectangular (R), the thickness was 3cm (2), the drift speed was 2.7cm/s (H), the 

breaking length was 7.5cm (A) and there was added friction of d=150μm (F). 

 

If more than one letter is listed regarding the breaking length it denotes that ice floes from 

different sizes were used for that test. For example, in Test R1LABC.F breaking lengths of 

7.4, 10.5 and 13.5cm were used together. 

 
Table 4  - Groups of tests. 

Shape Rectangular 

Thickness (cm) 1.5 3 

Roughness (μm) 150 150 

Drift speed (cm/s) 0.1 2.7 0.1 2.7 

Length 

(cm) 

7.5 

TestR1LABC.F 

(1) 

TestsR1HABC.F 

(11,12,13) 

TestR2LA.F 

(5) 

TestsR2HA.F 

(23,24,25) 

10.5 
TestR2LB.F 

(6) 

TestsR2HB.F 

(26,27,28) 

13.5 
TestR2LC.F 

(7) 

TestsR2HC.F 

(29,30,31) 

16.5 
TestR1LD.F 

(2) 

TestsR1HD.F 

(14,15,16) 

TestR2LD.F 

(8) 

TestsR2HD.F 

(32,33,34) 

19.5 
TestR1LE.F 

(3) 

TestsR1HE.F 

(17,18,19) 

TestR2LE.F 

(9) 

TestsR2HE.F 

(35,36,37) 

22.5 
TestR1LF.F 

(4) 

TestsR1HF.F 

(20,21,22) 

TestR2LF.F 

(10) 

TestsR2HF.F 

(38,39,40) 

 

Shape Circular 

Thickness (cm) 1.5 3 

Roughness (μm) 0 150 0 150 

Drift speed (cm/s) 2.7 

Diameter 

(cm) 

13.5 
TestsC1HC.N 

(41,42,43) 

TestC1HC.F 

(60) 

TestsC2HC.N 

(44,45) 

TestsC2HC.F 

(55) 

22 
TestsC1HF.N 

(46,47) 

TestC1HF.F 

(61) 

TestC2HF.N 

(48) 

TestC2HF.F 

(56) 

13.5 and 22 
TestsC1HCF.N 

(49,50,51) 

TestsC1HCF.F 

(62,63,64) 

TestsC2HCF.N 

(52,53,54) 

TestsC2HCF.F 

(57,58,59) 
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Table 5 - Ice concentration on the tests 

Shape Circular 

Thickness (cm) 1,5 3 

Roughness (μm) 0 150 0 150 

Drift speed (cm/s) 2,7 

Diameter 

(cm) 

13,5 

TestsC1HC.N 

(Test 41: 

78.99% 

Tests 42-43: 

84.63%) 

TestC1HC.F 

(84.63%) 

TestsC2HC.N 

(78.99%) 

TestsC2HC.F 

(78.99%) 

22 
TestsC1HF.N 

(75.21&) 

TestC1HF.F 

(78.25%) 

TestC2HF.N 

(78.25%) 

TestC2HF.F 

(78.25%) 

13,5 and 22 
TestsC1HCF.N 

(80.27%) 

TestsC1HCF.F 

(80.27%) 

TestsC2HCF.N 

(80.27%) 

TestsC2HCF.F 

(80.27%) 

 

3.5 Experimental procedure 

The first step before running any test was the installation and calibration of the 

instrumentation described in the section 3.2.  

 

Each group of tests has been repeated three times. There were two exceptions: the groups of 

tests already tested by Mennessier (2012), which were tested just once to check the results; 

and the tests with the circular shaped ice floes with just one floe diameter. The displayed 

setup provoked the formation of an ice ridge in front of the pushing plate. That, together with 

the wall constraints, resulted in extremely high forces on the plate that were not transmitted to 

the breakwater but to the flume walls.  

 

The following pattern was repeated for every test. 

 

Prior to each test, the breakwater was checked so it had the reference shape. Otherwise, the 

results could not be compared. The water level was also checked before every test. 

 

After that, a bird’s eye view picture of the breakwater was taken in order to compare it with 

one taken after the experiments and document any possible failure. 

 

The next step was placing the pushing plate into its original position so there was enough 

room for the model ice. Once the model ice for the test was selected it was placed in the 

flume, between the pushing plate and the breakwater. During the tests with the circular shaped 

ice floes the ice concentration was calculated at this point. 

 

When the model ice was in place, the force transducers and the linear encoder are zero-

balanced. At this point the video camera, the data acquisition software and the software 

responsible to run the motor were ready to start. In the first place, the software to run the 

motor was activated. It was set up with a five seconds’ delay, so there was some time to turn 

the data acquisition software and the video camera. This way the data, the graphs and the 

videos were synchronised. 
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During the experiment, the ice and breakwater behaviour were registered in a field notebook. 

 

When the pushing plate arrived to the end of the stroke the motor stopped. That was the 

moment of taking some pictures of how the ice was accumulated in front or over the slope.  

 

Afterwards, the ice was carefully removed and another bird-eye picture was taken in order to 

compare the condition of the breakwater with the original shape. In case of any global failure, 

the breakwater should be scanned and the new profile should be compared with the original 

one. 

 

Finally, the pushing plate was brought to its initial position so a new test could be run. 
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4 DISCUSSION 

As mentioned above, the aim of the experiments is to extend the knowledge we have about 

berm breakwaters on their potential use in Arctic areas. Two new parameters have been added 

to Mennessier (2012) work to delve deeper in the knowledge of the phenomena happening 

when a berm breakwater faces sea-ice: ice-drift velocity and ice concentration.  

 

The analysis of this experimental work has been divided in three phases: the ice behaviour, 

the response of the breakwater and the analysis of the force signal. In the following pages, this 

will be analysed, focusing on the influence of the ice-drift velocity and the ice concentration.  

 

4.1 Observed ice behaviour 

The ice behaviour followed different patterns on the tests carried out with rectangular ice 

floes that in the ones carried out with circular ice floes. 

 

The ice behaviour in the tests where rectangular shaped ice floes were tested followed the 

different behaviours observed by Mennessier (2012). However, the increase on the velocity 

changed the likeliness of some of them to happen, as described below. The phenomena 

observed during these tests were:   

 Ride-up. 

 Pile-up. 

 Stacking. 

- Irregular ice rubble formation (described by Mennessier (2012) as “realistic 

stacking”) 

- Cyclical ice rubble formation (described by Mennessier (2012) as “non-realistic 

stacking”) 

 

However, the tests carried out with the circular shaped floes followed a different pattern. First 

at all, the tests carried out with ice floes of the same diameter did not report any realistic 

result. The reason was that the constraints caused by the tank walls didn’t allow the floes to 

move freely and reorganize. That brought to a completely unrealistic behaviour where ice 

rubble with a deep keel was formed in front of the pushing plate, as seen in Figure 20. The 

force transducers recorded extremely high peak loads due to this accumulation, but they were 

not transmitted to the breakwater at all. The cause of this behaviour is that the movement of 

the pushing plate was not transmitted to the ice placed in the proximities of the breakwater 

until the accumulated ice rubble formed in front of the pushing plate met that ice.  
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Figure 20 - Test 42: force-time graph and aspect of the test on second 54 

 

Nevertheless, the mixture of ice floes with different diameters led to a more realistic 

behaviour. In all the tests carried out with this mixture the ice behaviour was very similar. Ice 

rubble was formed in front of the breakwater (Figure 21), acting as a barrier for the incoming 

ice. Therefore, none of the floes rode up to reach the berm. No damage was registered 

associated to this behaviour.  

 

 
Figure 21 - Typical ice rubble formation in front of the breakwater during the tests with circular shaped ice. Test 

57  

 

The phenomena observed during rectangular shaped ice-floes tests are explained in the 

following paragraphs. Tables Table 6, Table 7, Table 8 and Table 9 compare the occurrence 

of the different phenomena for at different speeds. In these tables, in order to have the same 

number of events to compare, the occurrence of the events referring to the tests driven at 

0.1cm/s refers to the results obtained by Mennessier (2012), where each cross represents a test 

where the analysed phenomenon happened. The occurrence of the events referring to the tests 

driven at 2.7cm/s refers to my own experimental work. The numbers on these tables refer to 

the number of times that each event happened during each group of tests. 

 

4.1.1 Ride up 

When a berm breakwater is built in environments where sea-ice is present, the ride up is the 

principal phenomenon to that should be controlled.  At least to avoid that the ice rides up to 

the rear side of the slope, damaging the structures or objects that it should protect. 
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As seen in Table 6, the likeliness of this event increases with the thickness of the ice floes. 

That is due to the likeliness of the thin ice floes to slip over the following floe. When the 

thickness is bigger, the pushing surface is more stable, allowing the ice cover to act like a 

carpet, riding over the slope.  

 

A very interesting fact is that the likeliness of the ride up happening depends also on the size 

of the ice floes and on the drift speed. The shorter is the breaking length of the ice floe the 

greater is the possibility of the ice to ride up the slope.  

 

The drift speed has different consequences depending on the thickness of the ice floes. It does 

not affect to the likeliness of the ride up for the thin ice. A total of two ride up events were 

observed in the tests run at 0.1cm/s while three were observed during the ones run at 2.7cm/s. 

However, it seems to affect to the likeliness of the ride up if the thickness increases by 

decreasing it. An exception is noted when the ice floes have a small breaking length, which 

compensates the effect of the high speed. When the drift velocity is lower it seems the ice 

cover it is been pushed more carefully against the breakwater, so the breaking events are not 

so likely to happen, allowing the ice cover to ride over the slope. 

 

A perfect example of a ride up event is test 23, shown in Figure 22  where the ice cover rode 

up the slope and reached the rear side. In this figure, the time force series perfectly captures 

the course of the events. After the ice hits the breakwater, the force grows steadily from 

second 4 to 21. After that, the formation of the ice rubble is reflected in high and fluctuating 

forces with several peaks of short duration. These peaks correspond to accumulation of a new 

ice floe to the rubble. This behaviour matches with the one observed by Gürtner (2009) during 

his experimental work with the SIB model in the HSVA, as described in 2.2. 

 

There was also observed some pile up during this test, but it was too late to act as a barrier for 

the incoming ice as pretended. 

 

 
Figure 22-Test23: Typical ride up phenomenon 
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Table 6 - Occurrences of ride up 

Shape Rectangular 

Thickness (cm) 1.5 3 

Roughness (μm) 150 150 

Drift speed (cm/s) 0.1 2.7 0.1 2.7 

Length 

(cm) 

7.5 

2 3 

2 3 

10.5 1 2 

13.5 3 0 

16.5 0 0 1 1 

19.5 0 0 2 1 

22.5 0 0 1 0 

 

4.1.2 Pile up 

According to the literature review, the pile up events on the berm of the breakwater is the 

behaviour, caused by the berm that we look for when designing a berm breakwater in Arctic 

areas. 

 

However, as shown in Table 7, the likeliness of this event is not very high. Nevertheless, 

when it happens, it has been observed to act as an effective barrier for the incoming ice. It is 

to note that in some situations, like the observed in test 23 (see Figure 22), the pile up acts as 

a barrier for the incoming ice, but cannot prevent the ice reaching the rear side of the 

breakwater because it may happen before the ice piles up on the berm. This particular 

behaviour, where the ice reaches the rear side of the slope, was observed only once during my 

tests run at 2.7cm/s and was not observed at all either during the tests run at 0.1cm/s by both 

Mennessier and me, so it is not very likely the ice to reach the rear side of the structure.  

 

The effect of the speed on this behaviour is again different depending on the thickness of the 

incoming ice. On the one hand, it does not affect at all when dealing with thin ice, since the 

occurrence of the pile up events was exactly the same at both high and low speed tests. On the 

other hand, the effect of high speeds on thick ice floes depends again on the breaking length 

of the flow. At higher speeds the likeliness of the event happening is greater when the 

breaking length is shorter, but it decreases when we increase the breaking length. 

 
Table 7 - Occurrences of pile up 

Shape Rectangular 

Thickness (cm) 1.5 3 

Roughness (μm) 150 150 

Drift speed (cm/s) 0.1 2.7 0.1 2.7 

Length 

(cm) 

7.5 

1 1 

1 2 

10.5 1 2 

13.5 1 0 

16.5 0 0 0 0 

19.5 0 0 1 0 

22.5 0 0 0 0 

 



 

   31 

 

Test 28 is a perfect ambassador of the pile-up phenomenon. The aspect of the ice over the 

berm after the test can be observed in Figure 23, when the pile-up happened from second 23.  

 

 
Figure 23-Test 28, representing pile-up over the berm of the breakwater. 

 

4.1.3 Irregular ice rubble formation (described by Mennessier (2012) as realistic 
stacking) 

This is the event that is most likely to happen. It occurs when a breaking event on the ice 

cover makes the ice start accumulating in front of the breakwater without a regular pattern.  

 

This event is sometimes associated to ride up events. That happens when a single layer of ice 

is accumulated over the breakwater and it works as a softer ramp for the incoming ice to ride 

up. However, this accumulation can also provoke the opposite effect, which happens most of 

the times, when the ice rubble accumulated over the slope acts as very effective barrier to 

reduce the actions of the incoming ice over the breakwater (Figure 24). Table 8 shows the 

occurrences of this realistic stacking. 

 
Table 8 - Occurrences of realistic stacking 

Shape Rectangular 

Thickness (cm) 1.5 3 

Roughness (μm) 150 150 

Drift speed (cm/s) 0.1 2.7 0.1 2.7 

Length 

(cm) 

7.5 

2 3 

1 2 

10.5 0 2 

13.5 2 2 

16.5 3 3 2 3 

19.5 2 3 3 3 

22.5 3 2 3 3 

 

The paper of the speed on this behaviour seems to be more relevant when the ice thickness 

increases. In the tests run with 1.5cm thickness floes, there was not much difference between 

the tests run at different speeds. In those tests, independently of the size of the floes, the 

rubble formation occurred in a similar percentage of the tests: 10 out of 12 times during the 

tests run at 0.1cm/s, and 11 out of 12 times for the tests run at 2.7cm/s. However, during the 

tests carried out with 3cm thickness ice floes, there was a more noticeable increase in the 

occurrences when the velocity was higher, as can be observed in Table 8. While this kind of 
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staking was already prone to happen for the thick ice and the large floe lengths, the increase 

of the speed enlarged the occurrences for every floe length. 

 

 
Figure 24-Accretion on the slope with (left) and without (right) previous ride up.  Tests 24 (left) and  27 (right).  

 

4.1.4 Cyclical ice rubble formation (described by Mennessier (2012) as “non-realistic 
stacking”) 

This is an uncertain behaviour with a very low recurrence, as compiled in Table 9. It is 

characterized by the accumulation of ice sheets in front of the slope, parallel to it. It happens 

when the contact between two floes plunges, forming a V flooded by water. The incoming 

floe slides over the previous one, leading to a situation like the one shown in Figure 25. A 

very characteristic time-force series is associated to this behaviour, where the force grows 

steadily until two contiguous ice floes slide over each other, causing a sudden release on the 

force which will grow again until the next slide. In real ice, the maximum force of the cyclic 

peaks of these graphs would correspond to the flexural strength. 

 

 
Figure 25-Test 22: non realistic accretion at the front of the breakwater 

 

This behaviour seems to be influenced by random facts and the constraints of the tank walls, 

rather than by the drift speed or the thickness of the ice. Nonetheless it was not observed for 

the shortest breaking lengths. That can be due to the breaking pattern. 

 

No damage was registered due to this behaviour, which acted as a very effective barrier for 

the incoming ice. 

 
Table 9 - Occurrences of non realistic stacking 

Shape Rectangular 

Thickness (cm) 1.5 3 

Roughness (μm) 150 150 
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Drift speed (cm/s) 0.1 2.7 0.1 2.7 

Length 

(cm) 

7.5 

0 0 

0 0 

10.5 0 0 

13.5 2 2 

16.5 0 0 0 0 

19.5 1 0 0 0 

22.5 2 1 0 0 

 

4.2 Observed response from the breakwater 

Many local failures have happened during the tests, but no global failure has been registered, 

being the maximum total force transmitted to the breakwater during the tests 362.5N during 

test 57. Higher peak loads were recorded during tests 43, 44, 55 and 56, but they were not 

transmitted to the breakwater since the cause was the ice rubble formation in front of the 

pushing plate, as explained in 4.1.  

 

Mennessier (2012) categorized the failures as  

 

 Armour stones rolled upward. 

 Damage to the crest. 

 Damage to the toe. 

 

During my tests, many armour stones have been rolled upward, as shown in Table 10. The 

effect of the drift velocity is clear, provoking more local failures. However, it is to note that 

these failures have mainly happened due to the push of the first ice floe arriving to the berm 

breakwater. Once an ice layer was formed over the breakwater due to any of the described 

behaviours, it acted as a very effective protection for local damages. 

 

While Mennessier observed some damage to the crest during his experimental work, this part 

of the breakwater was not damaged at all during my tests, which leads to think that the events 

caused by ice coming at high speed are less harmful for the crest.  

 

Finally, the occurrence of the toe damage has been really low, as shown in Table 11. It has 

been caused by floes sliding down the slope due to a release on the force. This kind of damage 

should be even lower if we had operated with real ice attending to MacIntosh et al. (1995) 

observations, described in 2.1. His belief is that the ice present in the interstices between the 

rocks may act as cement to help resist the external ice forces. 

 

In tables Table 10 ¡Error! No se encuentra el origen de la referencia.and Table 11, which 

refer to my experimental work, letter T next to the number of the tests denotes that the stone 

has just tilted or turned but it has not suffered any displacement. Letter D denotes a 

displacement of one of more stones. If some stones have been displaced and others have just 

tilted the event is marked as D, as it is the greater damage. 

 

Sirevåg berm breakwater has the peculiarity of being a non-reshaping berm breakwater. 

Therefore, any displaced stone is considered as a failure. Even the local failures are not very 

harmful, its high recurrence should make us reconsider the use of a non reshaping berm 

breakwater as a protection against the sea-ice. 
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Table 10 – Occurrence of local failure due to armour stones rolling upward 

Shape Rectangular 

Thickness (cm) 1.5 3 

Roughness (μm) 150 150 

Drift speed (cm/s) 0.1 2.7 0.1 2.7 

Length 

(cm) 

7.5 

1T 11D ,13D 

5D 23D, 24D, 25D 

10.5 6D 26T, 28D 

13.5  29T, 30D, 31T 

16.5  14T, 15D, 16D 8D  

19.5  17D, 18D 9D 35D, 36D 

22.5 4D 20D   

 

 
Table 11 – Occurrence of local failure due to armour stones rolling down 

Shape Rectangular 

Thickness (cm) 1.5 3 

Roughness (μm) 150 150 

Drift speed (cm/s) 0.1 2.7 0.1 2.7 

Length 

(cm) 

7.5 

  

  

10.5   

13.5  30T 

16.5    34D 

19.5 3D 18T, 19D  36T 

22.5    40T 

 

4.3 Analysis of the force signal 

A key issue of this experimental work was to analyse the influence of the ice drift speed on 

the force tests. While it has a significant influence on the local damages, it does not seem to 

have a strong influence on the force registered by the force transducers compared with the 

detected at lower speeds. That may be due to the different likeliness of the breaking patterns 

to happen. Whereas for the smaller breaking lengths the velocity gives the impression to 

decrease the force (especially when the ice is thicker), this effect disappears when the 

breaking length increases, as can be observed in Figure 26. 

 

In order to compare the forces detected in the tests run at low speed (0.1cm/s) by Mennessier 

(2012) and my experimental work, run at high speed (2.7cm/s), a statistical analysis has been 

done and shown in Table 12 and Figure 26. The maximal force data of each test was collected 

with MATLAB when the time-force graphs were elaborated. The arithmetic mean and the 

standard deviation of those maximal force data have been calculated for each group of tests. 

 

The arithmetic mean gives the average of the analyzed values,   

 

   
 

 
   
 
                             [Arithmetic mean] (20)  
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The standard deviation shows the dispersion from the average. In other words, how much 

variation exists from the mean value. It is to note that higher standard deviations were found 

for the tests run at high speed (2.7cm/s) with the thicker ice (3cm). 

 

   
 

 
          
              [Standard deviation] (21)  

 

 
Table 12 – Mean maximal force in Newton for each series. Standard deviation is indicated in brackets 

Shape Rectangular 

Thickness (cm) 1.5 3 

Roughness (μm) 150 150 

Drift speed (cm/s) 0.1 2.7 0.1 2.7 

Length 

(cm) 

7.5 

57 (21) 

 

41 (16) 

191 (20) 237 (59) 

10.5 162 (33) 218 (92) 

13.5 135 (13) 126 (36) 

16.5 28 (2) 22 (8) 101 (39) 113 (5) 

19.5 58 (32) 18 (7) 128 (13) 119 (47) 

22.5 33 (2) 19 (6) 79 (16) 86 (5) 

 

 

 
Figure 26 - Mean maximal force for each series and logarithmic regression 

 

The graph above shows the relation between the breaking force and the breaking length. The 

logarithmic regression is the one that fits better with the data attending to Pearson product 

moment correlation coefficient, R
2
. 

 

   
             

                 
 (22)  
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The values from Table 12 can be compared with the ones obtained by applying the formulae 

proposed by ISO/FDIS 19906:2010(E), that have been explained in chapter 2.3. As example, 

parameters from tests 6 and 27, which where run with the same ice sheets but at different 

speeds, have been compiled and the horizontal force has been calculated. The use of these 

tests facilitates the calculations, since the ice rides up parallel to the slope of the breakwater. 

Therefore, the slope of the structure,  , and the angle the rubble makes with the horizontal,  , 

are equal. That allows simplifying formula (1) for the horizontal action component since    

(equation 6) and    (equation 9) are null, getting also rid of the estimation of the porosity, 

cohesion and friction angle of the ice rubble. As we have not considered the breaking 

mechanism and the model ice is already fractured before the tests start,     .  

 

With these considerations, the necessary equations to calculate the horizontal force are    

 

              
          

    
 

 

          
 

 

(23)  

 

                
    

          
 

 
(24)  

Therefore, the horizontal force is simplified as 

 

         
 

(25)  

 
Table 13 - Parameters from tests 6 and 27, run at 0.1 and 2.7cm/s respectively 

Parameter 

Test  

Parameter 

Test 

6 

(0.1cm/s) 

27 

(0.1cm/s) 

6 

(0.1cm/s) 

27 

(0.1cm/s) 

h 0.030m 0.030m   0.5 

   0.15m 0.13m   37° 

g 9.81m/s
2
   0.60m 

  37°    900 kg/m
3
 

 

With these parameters, the horizontal forces according to the proposed formulae should be 

         for test 6 and          for test 27, which are in the same range of the 

maximum load registered by the force transducers during these tests: 78N and 86N 

respectively. The force-time graph and a detail on the aspect of the ice over the breakwater on 

these tests can be observed in figures Figure 27 and Figure 28. 
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Figure 27 - Test 6. Force-time graph and detail on the ride up event 

 

 

 

 

Figure 28 - Test 27. Force-time graph and detail on the ice accretion 

 

This shows that the formulae proposed by ISO/FDIS 19906:2010(E) is a good approximation. 

However, the formulae do not consider the breaking length that, as shown in Table 12¡Error! 

No se encuentra el origen de la referencia., strongly influences the horizontal load.   

 

The ice-drift speed is not included in these formulae either. After observing Table 12, the drift 

speed does not have a consistent influence on the recorded loads, so we can say that these 

formulae are on the right track in this regard. 
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5 CONCLUSION AND RECOMMENDATION FOR FURTHER WORK 

5.1 Conclusion 

After the experimental work conducted to write this thesis and its comparison with earlier 

results, the following conclusions can be drawn concerning the prospective use of berm 

breakwaters in Arctic areas: 

  

 Regarding the effects of the ice velocity when it approaches the breakwater. We can 

say that the speed does not seem to have a strong and constant influence in the 

magnitude of the ice loads on the breakwater. However, higher speeds increment the 

likeliness of local failures happening on the breakwater, as well as a change on the ice 

behaviour, like decreasing the probability of the ride up. 

 

 A non-reshaped berm breakwater is not the ideal design for Arctic areas since small 

events causing local damage are expected to happen due to ice-sheets riding up the 

structure. These events have observed in more than fifty percent of the tests. A berm 

breakwater that allows reshaping is probably a more useful design. 

 

 The irregular ice rubble formation (named realistic stacking by Mennessier (2012)) 

seems to be an effective barrier to the incoming ice. As seen in the tests, berm 

breakwaters usually provoke this behaviour, which is a helpful process to protect the 

breakwater and the structures behind it. This behaviour joins the earlier predicted pile 

up as a useful barrier against the incoming ice. 

 

 Finally, the newly tested circular shaped ice floes with which the variation of the ice 

concentration was achieved, presented a completely different behaviour that the wide 

and rectangular ice floes that approached to the structure in a 2D scenario. The circular 

ice floes at concentrations around 8/10 were always accumulated in the slope of the 

breakwater, forming ice rubble that protected the structure and did not cause any 

apparent damage. 

 

5.2 Recommendation for further work 

After the experimental work conducted and the analysis of the results, some recommendation 

is given in order to delve deeper into the knowledge of the interaction between sea-ice and 

berm breakwaters. 

 

 Concerning the experimental setup, some changes should be done in order to achieve 

global failures of the breakwater that gives us the ice load that it can really resist. A 

more powerful motor should be installed so higher speeds and loads can be tested. The 

force transducers should be able to record larger loads than the actual ones in order to 

record this loads and the stiffness of the pushing plate should also be higher. 

 

 Regarding the new dimension added to the experiments with the ice concentration, the 

experimental setup can be improved. A way to push the ice that does not vary the 

concentration should be found on this regard. The small width of the flume was also a 
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strong limitation when trying to add a new dimension to the experiments due to the 

constraints of its walls.  

 

 Last but not least, it would be interesting to run more tests to be able to analyse the 

likeliness of the events with statistical tools 
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LIST OF SYMBOLS 

Roman letters 

 

D      diameter of the ice floe 

      
   

  

 
     nominal diameter of the median stone 

E      Young’s modulus 

Fr     Froude Number 

        horizontal component of ice action 

        vertical component of ice action 

       breaking load of the ice sheet 

   load required to lift the ice rubble on top of the advancing ice 

sheet prior to breaking it 

    load component required to push the sheet ice through the ice 

rubble 

    load to push the ice blocks up the slope through the ice rubble 

        load to turn the ice block at the top of the slope 

       cohesion angle of the ice rubble. 

       porosity of the ice rubble  

      acceleration of gravity 

       thickness of the ice sheet 

        water depth on berm (negative means berm is above S.W.L) 

        rubble height 

l     length of the flume covered by ice 

L     length 

Re     Reynolds Number 
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R
2
     Pearson product moment correlation coefficient 

U     particle’s velocity 

        arithmetic mean 

w       width of the breakwater 

W    width of the flume covered by ice 

 

Greek letters 

α      slope angle of the breakwater 

       geometrical scale ratio 

       ice-to-ice friction coefficient 

      angle the rubble makes with the horizontal 

      Poisson ratio 

       density of the ice 

       density of stone  

        density of water 

      standard deviation 

       flexural strength of the ice sheet 

      friction angle of the ice rubble 
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APPENDIX: RECORDED FORCE FOR ALL THE TESTS 

A time-force graphic has been generated for every test carried out during the experimental 

work. All of them are compiled in this appendix. 
 

Each graph shows the time in the horizontal axis. The force registered by each transducer, as 

well as the total force are shown in the vertical axis. The recording of negative force values 

corresponds to the moment originated by the accumulation of ice under the water surface in 

front of the pushing plate.  
 

The graphs corresponding to the tests carried out with the rectangular ice floes are displayed 

in a way that it is easy to visually compare the results of the tests carried out at high/low ice 

drift speed for ice flows with identical characteristics. 
 

All the tests carried out with the circular shaped ice floes were conducted at the same drift 

speed, 2.7cm/s. Because of that, they are displayed in a way that it is possible to compare the 

graphs of the tests carried out with the same ice flows but with different roughness. 
 

To facilitate the identification of the characteristics of every test Table 4  - Groups of tests. 

¡Error! No se encuentra el origen de la referencia.is shown again. 
 

Table 14 - Groups of tests (bis) 

Shape Rectangular 

Thickness (cm) 1,5 3 

Roughness (μm) 150 150 

Drift speed (cm/s) 0,1 2,7 0,1 2,7 

Length 
(cm) 

7,5 

TestR1LABC.F 
1 

TestsR1HABC.F 
11,12,13 

TestR2LA.F 
5 

TestsR2HA.F 
23,24,25 

10,5 
TestR2LB.F 

6 
TestsR2HB.F 

26,27,28 

13,5 
TestR2LC.F 

7 
TestsR2HC.F 

29,30,31 

16,5 
TestR1LD.F 

2 
TestsR1HD.F 

14,15,16 
TestR2LD.F 

8 
TestsR2HD.F 

32,33,34 

19,5 
TestR1LE.F 

3 
TestsR1HE.F 

17,18,19 
TestR2LE.F 

9 
TestsR2HE.F 

35,36,37 

22,5 
TestR1LF.F 

4 
TestsR1HF.F 

20,21,22 
TestR2LF.F 

10 
TestsR2HF.F 

38,39,40 
 

Shape Circular 

Thickness (cm) 1,5 3 

Roughness (μm) 0 150 0 150 

Drift speed (cm/s) 2,7 

Diameter 
(cm) 

13,5 
TestsC1HC.N 

41,42,43 
TestC1HC.F 

60 
TestsC2HC.N 

44,45 
TestsC2HC.F 

55 

22 
TestsC1HF.N 

46,47 
TestC1HF.F 

61 
TestC2HF.N 

48 
TestC2HF.F 

56 

13,5 and 22 TestsC1HCF.N TestsC1HCF.F TestsC2HCF.N TestsC2HCF.F 
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49,50,51 62,63,64 52,53,54 57,58,59 
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TESTS R1HD.F 
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