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been studied at SIMLab using three different structural steels (Weldox 460E, Weldox
700E and Weldox 900E). The effects of strain hardening, strain rate hardening,
temperature softening and stress triaxiality on the material strength and ductility
were determined for the steels by conducting tensile and dynamic tests over a wide
range of strain rates and temperatures. The test data were used to determine
material constants in modified versions of the Johnson-Cook constitutive relation
and fracture criterion. Perforation tests were then carried out in a compressed gas
gun on 12 mm thick plates with blunt, conical and ogival nosed projectiles. The
experimental results indicated that for impacts with blunt projectiles the ballistic
limit velocity decreased for increasing strength, while the opposite was found in tests
with conical and ogival projectiles. FE simulations using LS-DYNA revealed that
the numerical code is able to describe the physical mechanisms in the perforation
events with reasonable accuracy, but the experimental trend of a decrease in ballistic
limit with an increase in target strength for blunt projectiles was not obtained. The
main objective in this project is to re-simulate these experimental tests using the
modified Gurson model to see if better agreement with the experimental results can
be achieved using this model.
The main topics in the research project will be as follows:

� Literature review: A state-of-the-art on the impact of steel plates with special
emphasis on dynamic fracture should be conducted.

� Material tests: Shear and plane strain tension tests on Weldox 460E, Weldox
700E and Weldox 900E should be conducted using DIC/DIT to extract the
required data.

� Calibration: Based on the available experimental data the modified Gurson
model should be calibrated and validated for the various steel alloys.

� Numerical simulations: Using the modified Gurson model, numerical simu-
lations using LS-DYNA of the plate perforation tests should be carried out.
Both adiabatic conditions and full heat transfer should be considered in the
analysis.

� Reporting.
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Preface

This thesis is written as the final part of the five year education of Christian Dalheim
Øien and Vegard Schønberg achieving the degree Master of Science. The work
was done under the supervision of prof. Odd Sture Hoppstad and prof. Tore
Børvik at the Structural Impact Laboratory (SIMLAB)1, Department of Structural
Engineering, Norwegian University of Science and Technology (NTNU).

The work with the thesis has to a great extent involved work with finite element
method (FEM) mechanics simulations using the finite element code LS–DYNA2 and
the pre- and post-processing software LS–PrePost freely availiable on the internet3.
A ‘user material sub-routine’ (UMAT) implemented by Torodd Berstad4 was used
in order to use the studied material model (the modified Gurson model) with this
code.

The work with this thesis was constituted of two main parts; first of all calibrating
the modified Gurson model parameters for three different steel alloys, and then
secondly using these calibrated material models to perform FEM simulations of
impact between blunt projectiles and steel plates. Chapter 4 describes the work
with adjusting the material parameters used in the material models, and must be
said to have taken up about 90% of the time availiable to the authors regarding
this thisis. Difficulties with the implementation of the modified Gurson model has
also slowed our work down, but has on the other side made the implementation
more robust. In chapter 5 we breifly describe impact exteriments done earlier by
dr. Sumita Dey at SIMLab, and in chapter 6 we describe the set-ups and results
regarding impact simulations that we have run. Chapter 2 gives a brief overview of
the theory that our work is based on, and in chapters 7 and 8 we draw conclusions
and propose further work to be done on the present field of study, respectively.

1www.ntnu.edu/web/simlab
2Livermore Software Technology Corporation, www.lstc.com/products/ls-dyna
3www.lstc.com/lspp
4Research scientist Torodd Berstad at SIMLab, Department of Structural Engineering, NTNU.

E-mail: torodd.berstad@ntnu.no
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Abstract

We have performed modified Gurson model calibrations to the steel alloys Weldoxr

460E, Weldoxr 700E and Weldoxr 900E through finite element method (FEM)
simulations of various tensile material tests performed, and used these material
models to perform FEM simulations of impact of blunt tool steel projectiles on
target plates made out of these steel alloys. The purpose of these FEM simulations
was to study the dependence of target plate steel alloy on the ballistic limit velocity
of the projectile resulting from the modified Gurson model. It was found that the
modified Gurson model is able to reproduce the dependence seen in experiments,
but that it is strongly dependent on a certain model parameter related to the shear
stress dependence on material damage. We have also discovered potential problems,
and possible solutions, regarding the calibration of these material models and the
use of them in the FEM impact simulations carried out.

Sammendrag

Vi har utført kabrering av den modifiserte Gurson-modellen til st̊allegeringene
Weldoxr 460E, Weldoxr 700E og Weldoxr 900E gjennom simuleringer, ved bruk
av elementmetoden (FEM), av forskjellige, utførte strekkprøver, og brukt disse ma-
terialmodellene til å simulere sammenstøt mellom flatnesede verktøyst̊alprosjektiler
og m̊alplater av disse st̊allegeringene. Formålet med disse FEM-simuleringene var
å studere avhengigheten av m̊alplatest̊allegeringen p̊a den ballistiske grensen til
sammenstøtet som den modifiserte Gurson-modellen forutsier. Det ble funnet at
den modifiserte Gurson-modellen er i stand til å reprodusere avhengigheten som
observeres i eksperimenter, men at denne avhengigheten er sterkt avhengig av en
spesifikk modellparameter som styrer avhengigheten av skjærspenninger p̊a skaden
p̊aført materialet. Vi har ogs̊a avdekket potensielle problemer, og mulige løsninger,
vedrørende kalibreringen av disse materialmodellene og bruken av dem i de utførte
FEM-simuleringene.

Vegard Schønberg Christian Dalheim Øien
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Notation

ẋ Time derivative d
dtx

δij Kronecker delta
λe, µe Lame constants of elasticity
cT Specific heat capacity
ρ Mass density
βij Thermal stress coefficient

tensor
βTQ Taylor-Quinney coefficient

of adiabatic heating
θi, Qi Voce rule strain

hardening parameters
C Strain rate hardening

parameter
m Temperature softening

parameter
σE Engineering uniaxial stress
σt True (or Cauchy) uniaxial

stress
σb Brigdman corrected uniaxial

stress
σ0 Yield stress
σij Cauchy stress tensor
sij Deviatoric Cauchy stress

tensor
σe von Mises equivalent stress
σM von Mises equivalent matrix

stress
σm Hydrostatic stress
σ∗ Stress triaxiality
L Lode parameter
ϑ Lode angle

I1, I2, I3 Cauchy stress tensor
invariants

J2, J3 Cauchy stress deviator
tensor invariants

σI, σII, σIII Principal Cauchy stresses
s1, s2, s3 Principal deviatoric Cauchy

stresses
εE Engineering uniaxial strain
εl Logarithmic (or true)

uniaxial strain
εPl Logarithmic (or true)

uniaxial plastic strain
εn True uniaxial strain at

necking
εij Strain tensor
εPij Plastic strain tensor
εe von Mises equivalent strain
εPe Plastic von Mises equivalent

strain
εPM Plastic von Mises equivalent

matrix strain
F Yield function

λ̇ Plastic multiplier
f Void volume fraction
f0 Initial void volume fraction
q1, q2 Tvergaard parameters of

the Gurson model
kω Extended Gurson model

parameter
ω(σij) Extended Gurson model

“omega” function

Einstein summation convention

aijbij · · · =
3∑
i=1

3∑
j=1

aijbij · · ·

Summation is applied over repeated indices (unless otherwise stated)
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Chapter 1

Background and motivation

Penetration and perforation experiments with steel plates exposed to ballistic im-
pact have been carried out and studied extensively over the recent years at at
SIMLab1 by, amongst others, Tore Børvik, Odd Sture Hopperstad, Torodd Berstad
and Magnus Langseth. See e.g. [5], [6], [7], [8]. It has been desirable to study
the smallest velocity in which target penetration is obtained, i.e. the ballistic limit
velocity, and its the dependence on the target plate thickness, target plate hardness
and projectile nose shape. The results have been attempted reproduced numeri-
cally using different material models and constitutive relations. Up until now the
dependency of the target plate steel alloy on the ballistic limit velocity for blunt
nodes projectiles have not been reproduced by FEM simulations. The main objec-
tive with this thesis is thus to see if this dependency can be reproduced for blunt
nosed projectiles using the modified Gurson model. If that is the case, then the
studied model is able to describe the differences in localization effects in materials
of different strength in a better way than the model used earlier.

One motivation to now use the modified Gurson model in such studies is the mod-
ification of the original Gurson model, for including shear induced failure, made
by Nahshon and Hutchinson in 2008 [26], since the shear stress dependence on the
material damage introduced is likely to have a significant effect on the perforation
process that the “plugging” of the plate is based on. Through such work the au-
thors also intend to gain knowledge on how to calibrate the modified Gurson model
properly and to document the experiences made.

1CRI Structural Impact Laboratory, see ??
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1. Background and motivation
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Chapter 2

Theory

2.1 Tension tests

We start out by explaining the basics of stress, strain and localization. In a tension
test the nominal (or engineering) stress is given by

σE =
N

A0
(2.1)

where N is the tension force and A0 is the initial cross-sectional area of the test
specimen’s parallel area. The corresponding strain is the nominal strain in the
specimen, obtained by

εE =
L− L0

L0
. (2.2)

The relations (2.1) and (2.2) are clearly valid for small deformations only, as they
are based on the original dimensions of the specimen. For larger deformations,
the decrease in cross-sectional area is significant and has to be accounted for. The
infinitesimal strain due to an infinitesimal displacement u over a length L is, as in
eq. (2.2),

dεl =
du

L

such that the true (or logarithmic) strain is given by

εl =

∫ uL

0

du

L
=

∫ L

L0

dL′

L′

εl = ln
L

L0
= ln(εE + 1). (2.3)

This quantity includes the superimposed true elastic strain εEl = σt/E where E is
the elastic modulus and σt is the true stress defined below. The true plastic strain
is hence

εPl = εl − εEl = εl − σt/E. (2.4)

Assuming plastic incompressibility and hence a constant volume of specimen’s par-
allel area yields

A0L0 = AL⇔ A = A0
L0

L

3



2. Theory

such that the true (or Cauchy) stress, using eq. (2.3), is obtained as

σt =
N

A
=

N

A0

L

L0
= σE exp(εl)

σt = σE(εE + 1). (2.5)

The equations (2.3) – (2.5) is valid for a finite, but uniform, deformation over the
length of the specimen.

2.1.1 Necking

At some point during the straining of the test specimen the uniformness of the de-
formation discontinues as a localization is initiated somewhere along the specimen’s
parallel area. This implies that the force level reaches a critical value, since in this
region the cross-sectional area will decrease rapidly along with increasing elongation
— more rapid than the material hardens. This instability is called diffuse necking
[13]. Differentiating the force N ,

N = σtA =⇒ dN = dσtA+ dAσt = 0,

dividing by Aσt and using the definition of true strain (2.3) gives

dσt
σt

= −dA

A

pl.in.
=

dL

L
= d

(
ln

L

L0

)
≡ dεl, (2.6)

noting the assumption of plastic incompressibility marked by ‘pl. in.’. Thus diffuse
necking occurs when

dσt
dεl

= σt. (2.7)

Since the deformation is localized after necking, true strain can no longer be cal-
culated from force–displacement data along with the assumption of plastic incom-
pressibility as in eq. (2.3) because of the deformation being concentrated somewhere
in the gauge length of the specimen. For cylindrical specimens, however, the true
strain can be fairly easily measured trough continuously measuring the smallest
diameter of the specimen in the necked area, viz.

εl = ln
A0

A
= ln

[
π/4

π/4

(
D0

D

)2
]

= 2 ln
D0

D
. (2.8)

Thus, in order to have true-stress-true-strain measurements over the entire course
of straining of the specimen — even after necking, the cross-sectional diameter must
be measured during the test.

Influence on the magnitude of the uniaxial tension stress

As Dieter [13] effectively explains, the formation of a neck in the tensile specimen
introduces a complex triaxial state of stress in that region [ · · · ] which is in effect

4



2.2. Thermoviscoplasticity

a mild notch. A notch under tension produces radial and transverse stresses which
raise the value of longitudinal stress required to cause plastic flow. Therefore, the
average true stress at the neck, which is determined by dividing the axial tensile load
by the minimum cross-sectional area of the specimen at the neck, is higher than the
stress [ · · · ] required to cause flow if simple tension prevailed.

A mathematical analysis, providing a correction to the average axial stress to com-
pensate for the transverse stresses, was done by Bridgman in 1944 [4]. This analysis
assumes a von Mises’ yield criterion, that strains are constant over the cross section
of the neck, and that both the arc of the neck and its cross section is circular. This
Bridgman correction to the uniaxial stress is given by

σb =
σt(

1 +
2R

a

)(
ln
[
1 +

a

2R

])

 

a 
R 

Fig. 2.1

where R is the neck radius and a is the radius of the cross section of
the neck. This specific relation is not easy to use in practice, since
a and R (especially) are hard to measure continuously. LeRoy et al.
[23] proposed, based on empirical data, that the ratio a/R could be
approximated by

a/R = a∗ ≡ 1.1(εPl − εn),

where εn is the true uniaxial strain in the specimen when necking occurs
and εPl is the true plastic strain. In contrast to a and R, a∗ is readily computed
for each displacement point in a tension test data set resulting from force and
extensometer displacement measurements only. In summary — this results in an
empirical Bridgman correction that reads

σb =
σt(

1 +
2

a∗

)
1

2
ln

(
1 +

a∗

2

) . (2.9)

2.2 Thermoviscoplasticity

The most basic assumption of plasticity models is the decomposition of the strain
rate tensor into an elastic and a plastic part

εij = εeij + εpij .

Thus the total strain of a material is constituted of a reversible and an irreversible
part, the latter causing the material to flow plastically and dissipate energy. In
viscoplasticity there are three base pillars in addition to this fundamental decom-
position [10].

5



2. Theory

� The yield criterion F (σij ,· · ·) > 0 where F (σij ,· · ·) is the yield function (or yield
surface) which is a function of the stress state, i.e. the stress tensor σij , and
possibly other tensors and/or scalars (internal variables) as we will see later. When
(and where) the criterion is satisfied the material flows plastically, i.e. it dissipates
energy as it is strained and thus deforms irreversibly. The direction and magnitude
in stress-strain-space of the plastic flow is governed by:

� The flow rule ε̇Pij = λ̇hij determining the plastic strain rate tensor, assuring that
the plastic dissipation is non-negative and specifying the magnitude and direction
of plastic flow in stress-strain-space. Here hij = ∂g/∂σij is the flow function defined

by a plastic potential g(σij ,· · ·) and λ̇ > 0 is the plastic parameter. A constitutive
relation is used to determine the plastic parameter, as e.g.

λ̇ =

{
0 , f < 0

F (σij ,· · ·)/η, f > 0
, (2.10)

which is the simplest possible choice [10], with η representing the resulting viscosity
of the material. In general, it does does in general not need to be an explicitly
defined relation as in eq. (2.10).

� The work-hardening rule σe = σe(ε
P
e ,· · ·) which specifies how some equivalent

flow stress σe evolves during plastic flow. In thermoviscoplasticity it serves as a
description of both the hardening due to increasing strain and strain rate and the
material softening due to increasing temperature, in all three cases as a function of
the respective variable. One common strain hardening rule is called the Voce law
[33] and has the form

R =
∑
i

Qi

(
1− exp

(
− θi
Qi
εPl

))
, (2.11)

introducing the material parameters σ0, Qi and θi (normally for i = 1, 2). This
strain hardening expression could be combined, e.g. multiplicatively, with a strain
rate hardening term on the form (

1 +
ε̇Pe
ε̇Pe,0

)C
,

and a temperature softening term on the form

1−
(
T − T0
Tm − T0

)m
,

introducing additional parameters C (rate dependence parameter), m (temperature
dependence parameter), ε̇Pe,0 (reference strain rate) T0 (reference temperature) and
Tm (melting temperature).
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2.3. Thermoelasticity

2.3 Thermoelasticity

Assuming an isotropic material, and that temperature and strain variations are
small enough to assure a linear behavior in those variables, the stress is given by
[10]

σij = λeεmmδij + 2µeεij − β∆Tδij

where ∆T = T − T0 is the temperature variation, T0 is the reference temperature,
βij = βδij is the 2nd order tensor of thermal stress coefficients and λe and µe are the
Lamé constants of elasticity. The inverse relation for the isotropic material reads
[10]

εij = − ν
E
σkkδij +

1 + ν

E
σij + α∆Tδij

where α = β/3K is the linear coefficient of thermal expansion.

2.4 The modified Gurson model

The extended Gurson model (cf. Nahshon and Hutchinson [26] with proposed mod-
ification of the model presented by Gurson in 1977 [20]) is a model of porous plas-
ticity, i.e. it is based on the assumption that the material to be described is a
porous media with a void volume fraction f such that a part fV of its total vol-
ume V is made out of voids. In this thesis the voided material itself is modeled as
thermoelastic-thermoviscoplastic.

Yield function

The model utilizes a yield function (or yield surface) on the form

F (σe, σm, f) =

(
σe
σM

)2

+ 2q1f cosh

(
3q2
2

σm
σM

)
− 1− (q1f)2 (2.12)

where q1 and q2 are fitting parameters proposed by Tvergaard [32] and commonly
set to q1 = 3/2 and q2 = 1. Furthermore the equivalent macroscopic stress σe =
√

3J2 =
√

3
2sijsij where sij = σij − 1

3σkkδij is the stress deviator and δij is the

Kronecker delta. This macroscopic equivalent stress is potentially degraded as a
result of the growing void volume fraction f (cf. figure 2.7), while the equivalent
microscopic stress σM is the strength of the unvoided matrix material which should
be model led to harden monotonically with the equivalent plastic strain of the matrix
material. Finally σm = 1

3σkk is the macroscopic mean (or hydrostatic) stress.

Void growth rate

The model is further incorporated through the void growth rate expressed as

ḟ = (1− f)ε̇Pkk + fkωω(σij)
sij ε̇

P
ij

σe
. (2.13)
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2. Theory

Here ε̇Pij is the plastic strain rate tensor, kω is the third and final void growth
parameter (in addition to q1and q2) and

ω(σij) = 1− 27J2
3

4J3
2

= 1−
(

27J3
2σ3

e

)2

(2.14)

is a dimensionless function of the deviatoric stress tensor invariants. Details about
this function follow in section 2.5 on page 9.

The first term in eq. (2.13) expresses the void growth rate due to volumetric strain-
ing while the second term accounts for weakening due to shearing of the voids. This
second term constitutes the aforementioned modification of the model proposed by
Nahshon and Hutchinson [26] and it is thus when kω 6= 0 that one refers to the
model as the modified Gurson model. One should note in the case of kω 6= 0 that
f is not longer an actual void fraction, but a damage variable that accounts for
weakening due to both void growth and void distortion. In some cases there is also
a third term on the right hand side of eq. (2.13) that accounts for nucleation of
new voids on inclusions and particles. Here, however, void growth from the initial
fraction f0 of voids is assumed to be the only source of degradation of the material.

Flow rule

The flow rule applied in the work with this thesis is the associated flow rule

ε̇Pij = λ̇
∂F

∂σij
, (2.15)

which means that the plastic potential is taken as the yield function F itself. The
flow rule is said to be associated since it is described by the same function as the
one describing the onset of plastic yielding. Since the flow is proportional to the
yield surface gradient ∂F/∂σij it is orthogonal to the yield surface in strain-space.

Constitutive relation

In the (extended) Gurson model there is no explicit constitutive relation determin-
ing the plastic parameter through plastic flow increments. Instead, the present
expression for work hardening σM = σM (εPM ) is inserted in the expression for the
yield function (2.12) such that F = F (σij , f, σM ) −→ F (σij , f, ε

P
M ). Now, an im-

plicit relation for εPe (which is solved numerically in the work with this thesis) is
obtained by equating the yield function to zero [21]. This is how the equivalent
(microscopic) plastic strain rate ε̇PM is determined in each time step. The plastic

parameter λ̇ is then calculated using power conjugacy and the flow rule (2.15), viz.

σij ε̇
P
ij = σij

∂F

∂σij
= (1− f)σM ε̇

P
M

=⇒ λ̇ = ε̇PM
(1− f)σM

σij
∂F

∂σij

.

8



2.5. The function ω(σij)

Adiabatic heating

In penetration and perforation simulations adiabatic heating is necessary to describe
damage initiation in the target plate arising at the perimeter of the projectile impact
zone – or the shear zone – rapidly after contact. If one could do FEM simulations of
penetration with grain scale elements one would probably [9] recover sparse tensional
and shear strains damaging the target plate in the shear zone, and hence recover
the start of the perforation process. But since in a given simulation the width
of this shear zone will be is limited to the element size one must utilize a critical
temperature element erosion criterion to describe it. Assuming adiabatic conditions
the rise in temperature in a given element is here calculated as

Ṫ = βTQ
σij ε̇

P
ij

ρcT
,

and the corresponding heat is assumed to stay in that element. Here βTQ ∈ {0, 1}
is the Taylor-Quinney coefficient defining the fraction of the plastic work that leads
to heating, ρ is the mass density and cT is the specific heat capacity.

2.5 The function ω(σij)

The function ω(σij) defined in equation (2.14), and involved in the second term in
the expression for void growth (2.13), should be looked at more closely in order to
reveal its central role in the modified Gurson model. This is done by first assuming
axisymmetric and plane stress states, respectively, to express ω in terms of the stress
triaxiality σ∗, defined as the ratio between hydrostatic and von Mises stress, and
secondly by introducing the Lode parameter [24] to describe its dependencies in a
general stress state.

2.5.1 Plane and axisymmetric stress states

Let us look at the third deviatoric stress invariant J3, contained in eq. (2.14), given
by

J3 = sijsiksjk = (σI − σm)(σII − σm)(σIII − σm)

where σI, σII, σIII are the principal stresses. Let us assume a plane stress state, such
that σII = 0. By inserting σm = σkk/3 = (σI + σIII) /3 we find that

Assuming
plane
stress J3 =

2

27
σ3
I −

1

9
σ2
I σIII −

1

9
σIσ

2
III +

2

27
σ3
III.

Expressing both σI and σIII by σe and σ∗ will therefore suffice in doing the same
with ω(σij), which is the intention of this section. For σIII we simply use that

9



2. Theory

σm = (σI + σIII)/3 such that

σIII = 3σm − σI
= 3σeσ

∗ − σI. (2.16)

To express σI by σe and σ∗ we look at the second deviatoric stress invariant J2
given by

J2 =
1

2
sijsij =

1

2
(σij −

1

3
σkkδij)(σij −

1

3
σkkδij)

=
1

2
σijσij −

1

6
σ2
kk =

1

2
(σ2

I + σ2
III)−

1

6
(σI + σIII)

2

=
1

3
(σ2

I − σIσIII + σ2
III) =

1

3
(σ2

I − σI[3σeσ∗ − σI] + [3σeσ
∗ − σI]2)

= σ2
I − 3σIσeσ

∗ + 3(σeσ
∗)2.

Since we also have, by definition, that J2 ≡ σ2
e/3 we see that σI is given by the

(smallest) root of the second order equation

σ2
I − 3σeσ

∗σI + 3σ2
e(σ∗)2 − 1

3
σ2
e = 0,

i.e.

σI = σe

(
3

2
σ∗ −

√
1

3
− 3

4
(σ∗)2

)
∈ R if − 2

3
< σ∗ <

2

3
. (2.17)

By looking at eqs. (2.16) and (2.17) we see that σe is cyclic in the function ω, such
that

ω = ω(σ∗) = 1−
(

2σ3
I − 3σ2

I σIII − 3σIσ
2
III + 2σ3

III

2σ3
e

)2

(2.18)

is a function of σ∗ only. This can be seen clearly [19] by inserting eq. (2.17) into
eq. (2.16) to obtain

σIII = σe

(
3

2
σ∗ +

√
1

3
− 3

4
(σ∗)2

)
(2.19)

and further inserting this into eq. (2.18), which, still remembering the assumption
of plane stress, yields the explicit expression

ω = ω(σ∗) = 1− 81

4

(
(σ∗)2 − 6(σ∗)4 + 9(σ∗)6

)
= 1−

(
9

2
σ∗
(
3(σ∗)2 − 1

))2

(2.20)
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2.5. The function ω(σij)

Now, instead of assuming plane stress, let us assume the stress state to be
axisymmetric

Assuming
axisym-
metric
stress

, i.e. σI ≥ σII = σIII or σI = σII ≥ σIII. Then

J3 = (σI − σm)(σII − σm)(σIII − σm)

= ± 2

27
(σI − σIII)3

= ± 2

27
σ3
e

such that

ω(σij) = 1−
(

27J3
2σ3

e

)2

= 1− 1 = 0.

In summary we then have for the function ω that

ω(σ∗) =

1−
(

9

2
σ∗
(
3(σ∗)2 − 1

))2

, plane stress

0 , axisymmetric stress

(2.21)

As in the 2008 paper by Nahshon and Hutchinson [26] proposing the modification
to the original Gurson model, one could assume plane stress for shear stress modes,
|σ∗| < 1/3, and axisymmetric stress for all cases of σ∗ ≥ 1/3. Then the function
ω(σ∗) as defined by eq. (2.21) is as curve (a) plotted in figure 2.2. For plane stress
in general the function is as given by curve (b) in the same figure and takes on real
values in the interval −2/3 < σ∗ < 2/3.

0

1/2

1

–2/3 –1/3 0 1/3 2/3 1

σ∗

ω

a
b

Fig. 2.2: The function ω = ω(σ∗) (a) given the assumptions of plane stress for |σ∗| < 1/3
and axisymmetric stress for σ∗ ≥ 1/3, i.e. as given by eq. (2.21), and (b) for plane stress
in general, i.e. as given by eq. (2.18).

We see from this figure and the void growth assumption in the modified Gurson
model, eq. (2.13), that for plane and axisymmetric stress states ω(σ∗) adds a
contribution to the void growth for stress triaxialities |σ∗| < 1/3. This means that
the modified Gurson model adds void growth in compressional and tensional shear
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2. Theory

stress states to the original model, making the modeled material more brittle in
tensional shear stress than if the original Gurson model is used, and making sure
it has brittleness at all in pure and compressional shear stress states. The size of
this contribution is evidently controlled by the only parameter introduced in the
extension of the Gurson model — kω.

2.5.2 General stress states

σ III 

P 

r  

30
o
 

σ II 

σ I 

θ 

Fig. 2.3: Graphic rep-
resentation of the Lode
angle ϑ in the deviatoric
plane

In a general stress state, i.e. without the assumptions
stated above of plane and axisymmetric stress in dif-
ferent triaxiality intervals, we need to utilize the Lode
parameter [24] to describe the function ω. It is defined
as1

L =
2σII − σI − σIII

σI − σIII
. (2.22)

Further the Lode angle of a stress state P (σI, σII, σIII) is
defined as the angle ϑ in the deviatoric plane in Haigh–
Westergaard space that separates (the projection of)
the first principal direction and the vector from the ori-
gin to P minus 30°, as shown in figure 2.3. It can then
be shown that

L = −
√

3 tan(ϑ). (2.23)

The Lode parameter thus describes the deviatoric part of a general stress state.
Also note that assuming ordered principal strains one has −π/6 < ϑ < π/6 and
−1 < L < 1.

Let us now express the third deviatoric stress invariant J3 by L. It can be shown
by geometric considerations [21] that the deviatoric stresses in Haigh–Westergaard
space can be expressed in terms of the Lode angle ϑ as

s1 = σI − σm =
1

3
σe

(√
3 cosϑ− sinϑ

)
s2 = σII − σm =

2

3
σe sinϑ (2.24)

s3 = σIII − σm =
1

3
σe

(√
3 cosϑ+ sinϑ

)
where σe =

√
3J2 =

√
3
2sijsij as mentioned earlier. Now using J3 = s1s2s3 and the

trigonometric relation

sinx(3 cos2 x− sin2 x) = sin(3x)

1Note that definitions of the Lode parameter with the opposite sign does appear in literature.
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2.5. The function ω(σij)

we arrive at

J3 =
2

27
σ3
e

(√
3 cosϑ− sinϑ

)
sinϑ

(√
3 cosϑ+ sinϑ

)
=

2

27
σ3
e sinϑ

(
3 cos2 ϑ− sin2 ϑ

)
=

2

27
σ3
e sin(3ϑ). (2.25)

Using yet another trigonometric relation, namely

sin(3 arctanx) =
3x− x3

(1 + x2)3/2
,

it is readily shown [19], rearranging eq. (2.25) and using eq. (2.23), that

27J3
2σ3

e

= sin(3ϑ) = sin
(

3 arctan(−L/
√

3)
)

=
3L− 1

3L
3

√
3
(
1
3L

2 + 1
)3/2 =

√
3
(
9L− L3

)
9
(
1
3L

2 + 1
)3/2

such that we can finally arrive at

ω(σij) ≡ 1−
(

27J3
2σ3

e

)2

= ω(L) = 1−
(
9L− L3

)2
(L2 + 3)

3 . (2.26)

0

1/2

1

–1 –1/2 0 1/2 1

L

ω

Fig. 2.4: The function ω = ω(L) for a general stress state

This general Lode parameter dependency of ω is shown in figure 2.4. As the stress
triaxiality is a measure of hydrostatic stress, i.e. relates to the distance between the
origin and the deviatoric plane in Haigh–Westergaard space, it is generally cyclic in
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2. Theory

the function ω which is proportional to J3 and thus a measure of deviatoric stress.
The Lode parameter, on the other hand, is like ω also proportional to J3 such that
L and ω are coupled. These relations contribute to induce the fact that σ∗, L and
σe span the stress space — just as well as σI, σII and σIII do.

To show how this picture commutes with the ω, σ∗ relation in plane stress [21],
depicted in figure 2.2 (curve b) above, we add the hydrostatic stress to each of the
equalities in eq. (2.24), together with invoking the trigonometric relations

cos(a± b) = cos a cos b∓ sin a sin b

with a = π/6 and b = ϑ and

cosϑ =
1

1 + tan2 ϑ
, sinϑ =

tanϑ

1 + tan2 ϑ

to obtain an expression for the principal stresses in terms of the Lode parameter:

σI = σe

(
σ∗ +

1

3

(√
3 cosϑ− sinϑ

))
=σe

(
σ∗ +

3− L
3
√

3 + L2

)
σII = σe

(
σ∗ +

2

3
sinϑ

)
=σe

(
σ∗ +

2L

3
√

3 + L2

)
(2.27)

σIII =
1

3
σe

(√
3 cosϑ+ sinϑ

)
=σe

(
σ∗ − 3 + L

3
√

3 + L2

)
By equating each of the rightmost expressions of eq. (2.27) to zero we obtain three
different relations between σ∗ and L that holds for three respective intervals of σ∗,
given plane stress:

σ∗ = σ∗(L) =



L− 3

3
√

3 + L2
, − 2/3 < σ∗ < −1/3

−2L

3
√

3 + L2
, − 1/3 < σ∗ < 1/3

3 + L

3
√

3 + L2
, 1/3 < σ∗ < 2/3

(2.28)

This relation is plotted in figure 2.5. Now using eq. (2.28) together with eq.
(2.26) we plot the possible (ω, σ∗, L) states in plane stress, as well as the complete
ω surface, in figure 2.6. This figure shows that the plane stress induced ω, σ∗

relation, as plotted in figure 2.2 (curve b), is nothing but the projection of possible
(ω, σ∗, L) states in plane stress onto a plane of constant L. Thus it is clear that ω
is independent of σ∗ in general, just not in the case of constraining the stress state
to be plane.
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− 2
3

− 1
3

0

1
3

2
3

–1 − 1
2 0 1

2 1

L

σ∗

Fig. 2.5: The pos-
sible σ∗, L combina-
tions in plane stress
states.

–1
–1/2

0
1/2

1L
–1

–2/3

–1/3

0

1/3

2/3

1

σ∗

0

1/2

1

ω

Fig. 2.6: The function ω = ω(L) for a general stress state in σ∗, L
space. The condition for plane stress (figure 2.5) is shown as the
thick line on the ω surface, with a projection onto the L = −1
plane producing a graph identical to the plot in figure 2.2 (curve
b).

2.6 A scalar approach for integration of the mod-
ified Gurson model constitutive relations

In this section it is described how one can integrate the modified Gurson model
constitutive equations during prescribed straining of material (or an element in a FE
model) using the scalar variables σm, σM and σ∗ only. To do this one could make the
assumption described in section 2.5.1 that there is a one-to-one relationship between
the stress triaxiality value and the stress state being either plane or axisymmetric.

Assume that a piece of voided material is strained to a macroscopic equivalent
plastic strain εPe . A flow stress model, such as the power law, could be used to
approximate the equivalent matrix stress σM of the material, calculated from its
actual (microscopic/matrix) equivalent plastic strain εPM ,

σM = A+B
(
εPM
)n

(given calibrated power law parameters A, B and n). This εPM can be calculated by
invoking power conjugacy between the macroscopic and microscopic entities, i.e.

σij ε̇
P
ij = σeε̇

P
e = (1− f)σM ε̇

P
M

dεPM =
σedε

P
e

(1− f)σM
. (2.29)

A desired value of triaxiality σ∗ ≡ σm/σe of the material stress state could further
be assumed, cf. the assumption of section 2.5.1, as mentioned above, that the value
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2. Theory

of σ∗ determines the stress state to be either plane or axisymmetric. Expressing
σm and σe by the principal stresses σI, σII and σIII gives

σ∗ =
σm
σe

=

√
2

3

(σI + σII + σIII)√
[(σI − σII)2 + (σI − σIII)2 + (σII − σIII)2]

. (2.30)

Since the Gurson yield function depends on both σe and σm setting σ∗ provides the
necessary second equation for determining the stress state induced by the strain.
Then, for a given equivalent plastic strain εPe , the equivalent stress σe corresponding
to εPM can be calculated implicitly by (e.g. Newton-Raphson iterations) equating
the Gurson yield function (2.12) to zero:

F (σe, σm, f) =

(
σe
σM

)2

+ 2q1f cosh

(
3q2σm
2σM

)
− 1− q3f2

F (σe, σm, f) =

(
σe
σM

)2

+ 2q1f cosh

(
3q2σeσ

∗

2σM

)
− 1− q3f2 = 0 (2.31)

The yield surface gradient ∂F/∂σij
Let us begin with obtaining an expression for the yield surface gradient ∂F/∂σij
in terms of the desired scalar quantities σe, σM and σ∗. Inserting σeσ

∗ = σm =
σkk/3 = σijδij/3 in the second term, where δij is the Kronecker delta, and using
the chain rule in the first term, of eq. (2.31) we obtain

∂F

∂σij
=

∂

∂σij

[(
σe
σM

)2

+ 2q1f cosh

(
q2σijδij

2σM

)
− 1− q3f2

]

= 2
σe
σ2
M

∂σe
∂σij

+ δij
q1q2f

σM
sinh

(
q2σijδij

2σM

)
(2.32)

The equivalent strain derivative ∂σe/∂σij is then calculated by using

σe =
√

3J2 =

√
3

2
sijsij

=

√
3

2
(σij −

1

3
σkkδij)(σij −

1

3
σkkδij)

such that

∂σe
∂σij

=
3
2 (σij − 1

3σkkδij) · 2

2
√

3
2 (σij − 1

3σkkδij)(σij −
1
3σkkδij)

=
3

2

sij
σe
. (2.33)
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Insertion of eq. (2.33) into eq. (2.32) finally yields

∂F

∂σij
= 3

sij
σ2
M

+ δij
q1q2f

σM
sinh

(
q2σkk
2σM

)
. (2.34)

Using the obtained expression (2.34) we also compute

σij
∂F

∂σij
= 3

sijsij
σ2
M

+ σmm
q1q2f

σM
sinh

(
q2σkk
2σM

)
= 2

(
σe
σM

)2

+ 3q1q2fσ
∗ σe
σM

sinh

(
3q2σ

∗

2

σe
σM

)
. (2.35)

The plastic multiplier λ̇

The plastic multiplier λ̇ needs also to be expressed by σe, σM and σ∗ only. Using
the associated flow rule (2.15) and multiplying with σij on both sides yields

σij ε̇
P
ij = λ̇σij

∂F

∂σij
.

Now, simply by invoking power conjugacy and inserting the expression for the inner
product σij∂F/∂σij from eq. (2.35), we obtain

σij ε̇
P
ij = σeε̇

P
e

= λ̇σij
∂F

∂σij

= λ̇

[
2
σ2
e

σ2
M

+ 3fq1q2σ
∗ σe
σM

sinh

(
3q2σ

∗

2

σe
σM

)]
⇔ dλ =

σedε
P
e

2

(
σe
σM

)2

+ 3fq1q2σ
∗ σe
σM

sinh

(
3q2σ

∗

2

σe
σM

) . (2.36)

The increase in void volume fraction ḟ

As for all the constitutive relations it is desired that the stress state dependency of
the void volume fraction increase given by eq. (2.13) is incorporated solely through
the scalar variables σe, σM and σ∗. Let us therefore look at the inner product
sij ε̇

P
ij appearing in the second term of the right hand side of eq. (2.13). An explicit

expression for sij ε̇
P
ij can readily be obtained [19] by using the associated flow rule
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(2.15), the expression for the yield function gradient (2.34) and σe =
√

3
2sijsij , viz.

sij ε̇
P
ij = sij λ̇

∂F

∂σij

= sij λ̇

[
3
sij
σ2
M

+ δij
q1q2f

σM
sinh

(
q2σkk
2σM

)]

= 3λ̇

=2σ2
e/3︷ ︸︸ ︷
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M

, (2.37)

where we have used that the trace of the stress deviator sijδij = skk = 0. Similarly,
sslo looking at the volumetric plastic strain εPkk by inserting eq. (2.34) into the
associated flow rule (2.15) we have

εPkk = λ̇
∂F

∂σkk

= λ̇

[
3
skk
σ2
M

+ δkk
q1q2f

σM
sinh

(
q2σkk
2σM

)]
= 3

q1q2f

σM
sinh

(
q2σkk
2σM

)
. (2.38)

Inserting eqs. (2.37) and (2.38) in eq. (2.13) finally yields the void volume fraction
growth

ḟ = (1− f)ε̇Pkk + fkωω(σij)
sij ε̇

P
ij

σe

= λ̇(1− f)
3fq1q2
σM

sinh

(
3q2σm
2σM

)
+ λ̇fkωω(σij)

2σe
σ2
M

df = dλ

[
(1− f)

3fq1q2
σM

sinh

(
3

2
q2σ
∗ σe
σM

)
+ fkωω(σij)

2σe
σ2
M

]
. (2.39)

2.6.1 Investigation of model characteristics

Utilizing the boxed eqs. (2.21) (or (2.26)), (2.29), (2.31), (2.36) and (2.39) which all
are expressions depending on the stress state through σe, σ

∗ and σM only (except
eq. (2.26)) , one can build a numerical procedure to e.g. calculate the development
of void growth and equivalent stress in a piece of material, e.g when strained at a
constant value of triaxiality σ∗ under plane stress.
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2.6. Scalar approach

A pseudo code for such a procedure could be as follows.

– Set material parameters, e.g. A, B, n, f0, q1, q2 and kω
– Declare an array of values for εPe , e.g. {0.00, 0.01, 0.02, ..., 1.99, 2.00}
– Set the value for σ∗, e.g. σ∗ = 0.5
– Calculate ω(σ∗) by eq. (2.21) (assuming plane stress)
– Set/declare εPM = f = σM = σe = ∆λ = 0
– For the chosen values of εPe

– Calculate σM = A+B
(
εPM
)n

– Set σe = σM as an approximation
– Using e.g. Newton–Raphson iterations, calculate σe to the desired accuracy

by equating the yield function (2.31) to zero
– Calculate ∆λ by eq. (2.36)
– Calculate ∆εPM , and then update εPM , by eq. (2.29)
– Calculate ∆f , and the update f , by eq. (2.39)

End

A MATLAB implementation, given in appendix A, of the pseudo code yielded the
data presented in figure 2.7. Now — using an instability or fracture criterion,
namely dσe/dε

P
e = 0 — one could use a such numerical procedure for a number of

different stress triaxialities to obtain a strain-triaxiality fracture locus. The result
of that approach is presented in figure 2.8.

Table 2.1: Material parameters used in figures 2.7 and 2.8

A B n f0 q1 q2

1.25 · 109 2 · 108 0.3 2 · 10−3 1.5 1
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2. Theory
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Chapter 3

Material tests

In order to get the data necessary to adjust the parameters of the Gurson model ten-
sile tests, shear tests and plane strain tests were carried out at SIMLab. Three dif-
ferent materials were considered; Weldoxr 460E (W460E), Weldoxr 700E (W700E)
and Weldoxr 900E (W900E). The effects of strain rate and temperature have been
studied earlier [12], and these parameter values are assumed to fit directly into the
Gurson model.

The process of calibrating the material model will be discussed in detail in chapter
4. This chapter describes the Weldoxr steel alloys and the specimens, setups and
results of the tests.

3.1 Weldoxr steel alloys

Weldoxr is an extra-high strength steel that combines its high strength with high
ductility and good weldability, which enables production of strong but lightweight
load bearing structures. This combination is obtained through a steel composition
with low content of inclusions and through controlled rolling and heat treatment
processes [12]. It is delivered with different strengths, with guaranteed nominal yield
stresses ranging from 500 to 1300 MPa [31]. One of the three alloys considered in
this thesis, W460E, is no longer produced as it is replaced with a new product,
Weldoxr 500E. But it is nonetheless considered because of the strong connection
with the studies of Dey [12].

W460E belongs to the TM steels, which means that the steel obtains its strength
and toughness by an advanced thermomechanical rolling and/or controlled cooling
procedure. W700E and W900E are in a group termed as QT, that goes through
a significant quenching and temperature process [12]. Table 3.1 gives the chemical
composition of the three alloys.

3.2 Tensile tests

All tests, both the tests done earlier by Dey [12] and the tests done in connection
with the work with this thesis, were done quasi-statically and performed at room
temperature. In order to achieve quasi-static deformation the displacement rate
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3. Material tests

Table 3.1: Nominal chemical compositions (in weight %) of W460E [12], W700E and
W900E[31]

460E 700E 900E

C 0.16 0.20 0.20
Si 0.50 0.60 0.50
Mn 1.70 1.60 1.60
P 0.025 0.020 0.020
S 0.015 0.010 0.010
B – 0.005 0.005
Nb 0.050 0.040 0.040
Cr – 0.70 0.70
V 0.10 0.090 0.060
Cu – 0.30 0.10
Ti 0.020 0.040 0.040
Al 0.015 0.015 0.018
Mo 0.050 0.70 0.70
Ni 0.10 2.0 0.10
N 0.015 0.010 0.010

were set to give an initial strain rate at approximately 5 · 10−4 s−1 in the shear
stress and plane strain tests. In the axisymmetric tests performed by Dey [12] the
displacement rates were set such that an average strain rate in the order of 10−3 s−1

was achieved. The plane strain and shear stress tests were done three time for each
steel alloy, while for the axisymmetric tests only one representatively selected data
series from each test type and alloy was available to the authors, consisting of values
of applied load, cross-head displacement and diameter reduction measured with a
one second interval.

3.2.1 Axisymmetric tests

Axisymmetric tensile tests were performed on cylindrical specimens. Tests of smooth
specimens would provide data necessary to determine the plastic hardening param-
eters in the material model, and complementing with notched specimens giving
different states of triaxiality a good basis for determining also the void volume frac-
tion parameters is achieved. This is because the void volume fraction parameters
to a high degree affect the fracture displacement of these tests. Notched tensile
tests with the three different notch radii 2.0, 0.8 and 0.4 mm were performed for all
three steel alloys. The geometry of the smooth and notched specimens are shown
in figure 3.2, where R depicts the mentioned notch radii and the angle α is zero for
the specimens with notch radius 2.0 and 17.5°for the specimens with notch radius
0.8 and 0.4 mm. The experimental results from smooth and notched specimen tests
are shown in figure 3.1.
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Fig. 3.1: Data from tensile tests with smooth and notched specimens. The notch radius
r is indicated as Rr in the legends.
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3. Material tests

Fig. 3.2: Smooth and notched test specimen geometries with dimensions in millimeter.
The radius R is the notch radius varying between 0.4, 0.8 and 2.0 mm, and the angle α
was equal to zero in the R = 2.0 specimen while α = 17.5° for the R = 0.8 and R = 0.4
mm specimens.

3.2.2 Shear tests

In a state of plane stress, ω(σ∗) ≈ 1 for σ∗ ≈ 0, according to eq. (2.21), and
hence the value of kω is significant for the material behavior. Such a stress state
is achieved by performing a shear stress test using a specimen with geometry as
shown in figure 3.3, and thus the value of kω can be obtained from inverse modeling
of the test.

Fig. 3.3: Geometry of the shear stress test specimens. Dimensions are in millimeters.

The specimen was mounted in the machine by putting bolts through the holes in the
side plates. Applied load, cross-head displacement and extensometer displacement
were measured with a frequency of ∼ 10 Hz during each test. In addition the strain
field in the mid area of the specimen were recovered after-hand using digital image
correlation (DIC)1 on images of the specimen taken with a frequency of 1 Hz.

1For more information on DIC, see [16].
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3.2.3 Plane strain tests

In order to adjust the value of kω it was done plane strain tests in addition to
the shear stress tests described above. The state of plane strain is achieved due
to the width of the specimen (with geometry shown in figure 3.5) being very large
compared to the thickness in the parallel section. Because of this the resistance
against transversal contraction in the direction marked with a ‘T’ in figure 3.5
is large enough to avoid strains in that direction, and hence the parallel area of
the specimen experiences a state of plane strain. But since the strain is of low
magnitude in the width direction, the stress in that direction must be close to half
of the longitudinal stress, while the stress in the thickness direction is low since in
that direction the parallel area can contract freely. This means that the stress state
is on the form σII ≈ σI, σIII ≈ 0 and it is evident from the definition of the Lode
parameter L in eq. 2.22 that L ≈ 0 and therefore ω(σij) ≈ 1 form eq. 2.26. It is
on this basis, in terms of the modified Gurson model, that plane strain tests to a
great extent are influenced by the value of kω.

The specimens used in the plane strain tests conducted had a geometry as shown
in figure 3.5. In the test set up, the two thicker parts of the specimen were clamped
to the test machine, as shown in figure 3.6.

During each test applied load, cross-head displacement and extensometer displace-
ment were measured. Additionally, with a frequency of ∼ 1 Hz, pictures were taken
of the specimens’ parallel area in order to perform DIC analysis after-hand. The
force–displacement data recorded is shown in in figure 3.7.
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3. Material tests

Fig. 3.5: Plane strain test geometry. RD and T marks rolling direction and plate thickness
direction respectively.The parallel section is ground parallel to the T direction.

Fig. 3.6: Plane strain test specimen clamped to test machine.

3.3 Discussion

The plane strain test set up had an important source of error. When clamping
the side plates of the specimen to the test machine, there might be a small angle
between the longitudinal direction of the specimen and the loading direction of test.
As a consequence, the test results will vary for different angles, and it was evident
that this angle could alter the fracture mechanism of the specimen. When the spec-
imen was mounted with a such angle being to big the fracture became asymmetric
and more brittle than if it was symmetric. The symmetric and asymmetric fracture
patterns are shown in figure 3.8. Figure 3.7 shows that the two only specimens that
had a symmetric fracture — 460–2 and 460–3 — endured a significantly larger dis-
placement than the other W460E specimen, and suggests that a similar fracture tail
in the force–displacement data for W700E and W900E could have been recovered if
some of these specimens were mounted with a small enough angle to the load direc-
tion. In afterthought, this fact seems to suggest that the lower degree of ductility
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Fig. 3.7: Plane strain test results. Steel alloy type and test number is marked as
‘alloy no.’-‘test no.’.

in W700E and W900E causes a higher sensitivity for slant mounting. One solution
to this problem could be to alter the specimen geometry by decreasing the length of
the parallel section, while another solution could be to redesign and dimension the
specimen so that clamping of the ends is not the only possible mounting alternative.

(a) 460–1 (after fracture) (b) 460–2 (during fracture)

Fig. 3.8: Plane strain test specimens with straight and slanted fracture

For the shear stress tests, on the other hand, such mounting problems were not
present since the cross section of the yielding area of the specimen is small. As seen
in the results in section 3.2.2, the results for the shear tests correspond well with each
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3. Material tests

other. On the other hand the test specimen geometry causes true-strain–true-stress
data to be impossible to calculate from a set of force-displacement data. In order
to obtain such data from the shear stress test DIC must be used. For the purpose
of this thesis, however, force-displacement data sufficed. All in all the experimental
results for all tests shows decent correspondence with each other. Together they
constitute the basis for calibration of the parameters in the material model that
will be used for numerical simulations of ballistic impact.
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Chapter 4

Material model calibration

In order to describe the material behavior of each of the three steel alloys to be
studied with the extended Gurson model, a number of parameter values had to
be determined — namely the Voce hardening parameters (σ0, Q1, θ1, Q2, θ2),
initial and critical void volume fraction (f0, fcr) and the parameter for scaling
the shear stress influence on the material damage (kω). All these parameters were
adjusted by performing FEM simulations of the tensile tests described in chapter
3 and comparing the results. In all simulations (also impact simulations described
in chapter 6) the element size was chosen to be consistent with other simulations,
choosing an element area (smallest face are for solid elements) to be ≈ 0.01 mm2.
This chapter describes this calibration process in detail. Parameters controlling
influence of strain rate hardening (C), temperature softening (m) and adiabatic
heating (βTQ), on the other hand, were taken, by advice from the supervisors, as
found though earlier studies and experiences.

4.1 Comments on the implementation of the
modified Gurson model

For the work with this thesis an LS–DYNA ‘user material sub-routine’ (UMAT)
made by Torodd Berstad1 was used in order to use the modified Gurson model with
the LS–DYNA finite element code.

Generally such UMAT’s work as stand-in algorithms for LS–DYNA to calculate the
update in the stress components given an update in strain components. Other than
this the LS–DYNA finite element code remains unchanged under an interchange
of one UMAT to another, and does itself contain the algorithms for iterating over
elements, setting up strain component updates, contact, etc. However, in addition
to updating stress components the UMAT specifies which history data/variables
that should be saved, and it can also override the strain increments specified by the
main code.

The UMAT used in the work with this thesis uses explicit time integration on model
level, but has a semi-implicit algorithm for stress calculation in each integration
point. By semi-implicit it is here meant that the plastic multiplier is found by

1Research scientist Torodd Berstad at SIMLab, Department of Structural Engineering, NTNU.
E-mail: torodd.berstad@ntnu.no
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4. Material model calibration

implicit iterations (or with a backward Euler scheme) by using an updated yield
surface gradient, while the plastic flow direction in stress space is found explicitly
(or by forward Euler iterations) by using an initial yield surface gradient. Thus the
algorithm does not involve solving equilibrium equations and is hence not formally
implicit.

Further on, two subtle yet very important improvements were made during the work
with this thesis in order to make the UMAT numerically stable and versatile.

1) An explicit demand for the void volume fraction being positive was applied.
More specifically, when the void volume fraction is calculated by eq. (2.13) as,

say, f
(2.13)
n+1 , then the UMAT potentially overrides this calculation as it always sets

the new value of the void volume fraction according to

fn+1 = max{0, f (2.13)n+1 }.

This is necessary in extreme cases of compression (such as the initial part of a
penetration process) where the void volume fraction decreases (according to eq.
(2.13)). Then it is possible, due to discretization, that the void volume fraction
change is a slightly larger negative amount than the value of the void volume
fraction itself, so that it is evaluated to number slightly below zero. When this
happens the void volume fraction eventually diverges to −∞ and the solution is
no longer valid.

2) Sub-stepping over the strain increment given by LS–DYNA was set to be per-
formed when the norm of the incremental strain tensor, say, ||∆εij ||, is larger
than 5 · 10−5. Specifically the UMAT divides the six strain component incre-
ments equally into n parts when the norm of the incremental strain tensor is n
times larger (rounded to nearest integer) than 5 · 10−5. This is done in a outer
for loop which iterates from 1 to n. In each sub-step the time is incremented
correspondingly to account for strain rate dependency.

Another important aspect of implementing the Gurson model is that if the void
volume fraction is allowed to take on large values (e.g. ∼ 20%), problems can be
encountered when the ratio of von Mises stress to the hydrostatic stress becomes
very small. This leads to a almost purely hydrostatic increment of the flow stress,
resulting from the associated flow rule and the yield surface taking the most extreme
form shown in figure 4.1, which literally means that the element is exploding.

It was considered eroding elements reaching such stress states (i.e. witnessing total
loss of shear strength before the critical void volume fraction fcr is reached) to
avoid divergence of the plasticity algorithm, and this was the case at the time
when the material model calibration work in this thesis was conducted. However,
this element erosion criterion was removed later on and was not present during
penetration simulations described in chapter 6. This means that the combination
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4.1. Comments on the implementation of the modified Gurson model

of high void volume fraction and values of the ratio shear stress to hydrostatic stress
very close to zero had to be avoided.
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Fig. 4.1: Plot of the Gurson model yield surface given by eq. (2.12) in normalized σe, σm

space, i.e. σe/σM as a function of σm/σM at yielding with F = 0.

The construction of the UMAT can be summarized by the following pseudo code:

– Declaration of variables
– Fetch of data from element-model keyword file and validation of this

fetching
– Fetch updated history variables
– Evaluate the norm of the incremental strain tensor ||∆εij ||
– Set n = max{1, ||∆εij ||/(5 · 10−5)}
– For i = 1 to n

– Increment each of the strain components with a factor of i/n of the
respective strain component increment prescribed by LS–DYNA

– Increment the time by a factor of i/n of the time step prescribed by LS–
DYNA

– Set up elastic trial state
– Detect yielding elements (yield function greater than zero)
– For all elastically stressed elements

– Update stress components
End
– For all plastically stressed elements

– Estimate effective plastic strain increment from viscoplasticity
(yield surface expansion)

– Iterate to compute the stress state (or stress components) and
invariants, the function ω(σij), the plastic multiplier and the
change in void volume fraction

– Update stress components
End

End
– Save new history variable values
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4. Material model calibration

4.2 Overview of the process

The values for strain rate hardening (C) and temperature softening (m) was deter-
mined based on the study of Dey showing that for the values for the steel alloys
considered in this thesis ranged from 0.0079 to 0.0115 and from 0.893 to 1.131 for C
and m, respectively [12]. For simplicity the values C = 0.01 and m = 1 was set for
all three steel alloys. This was in order to enhance the comparability of the impact
simulation results described in chapter 6.

All material tests were performed quasi-statically, which means that any heating
of the specimens was assumed to be negligible. Hence all the material tests were
simulated with Taylor-Quinney coefficient for adiabatic heating βTQ set to zero.

Strain hardening and void volume fraction parameters

The Voce parameters and void volume fraction parameters were first approximated
by analyzing the axisymmetric test results while the final adjustments was made
using inverse modeling. Specifically, the data series of measured load and specimen
diameter reduction were used to calculate a data series of true stress and true strain
values. To take necking into account, true stress data were adjusted using Bridgman
analysis. The final strain–stress data was then used to fit a Voce curve. Along with
initially assumed values for f0 and fcr, these values were used in a simulation
model of the smooth tests in LS-DYNA. Simulation results were then compared
with experimental results, and certain parameters were adjusted accordingly until
the results coincided with satisfying accuracy. In the following this is referred to as
inverse modeling. An alternative approach is to use an optimization tool, such as LS-
OPT 2, to fit parameter values automatically using e.g. least squares optimization.
For the work with this thesis the manual approach was found to be sufficient.

Due to problems with simulations of ballistic impact on targets plates of the W460E
alloy, the procedure for this specific material had to be altered. The problems were
related to a high void volume fraction level, resulting from f0 being set to high.
This problem is discussed in section 4.6, but implied in summary that additional
time had to be spent on calibrating the value f0 and fcr for W460E, along with
adjustment of the Voce parameters. In retrospect, this should probably have been
done for all three materials, but due to a strong time constraint the authors were
not able to do this.

The parameter kω
Determination the value of kω, which scales the influence of the ω-function, i.e. the
influence of shear stresses on the material damage evolution, was done by using the
Voce parameters and the void volume fraction parameters in simulation models of

2LS-OPT is an extension tool used to, among other things, calibrate parameters using the
LS-DYNA code. http://www.lsoptsupport.com/
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4.3. Use of axisymmetric test simulations

the shear stress and plane strain test described in chapter 3. Independent kω values
were obtained for each steel alloy using inverse modeling.

4.3 Use of axisymmetric test simulations

For each alloy, the calibration process started by using eqs. (2.3) and (2.5) together
with the test results for the smooth specimen to calculate true-strain–true-stress
data. For W460E, these data are shown as the solid line in figure 4.2.

As it can be seen in figure 4.2, the curve has a yield plateau due to a natural
occurrence of pinning of dislocations in the material, that ends at εl ≈ 3%. This
phenomenon is common for steel alloys and is there is seldom made efforts to recreate
it in FEM simulations. The next step in adjusting the hardening parameters is here
to do a Voce model curve fit of the stress–strain data. For simplicity, only the data
points after the yield plateau were used. This will cause a slightly low yield stress
σ0 of the modeled hardering, but this error is negligible as it only affects a small
part of the straining process.

In order to approximate true stress from force-displacement data after the necking
strain, Bridgman analysis was applied to the true stress data. Thus the necking
strain εn has to be determined, and this was done by determining numerically at
which value of true strain eq. (2.7) was satisfied. Figure 4.2 shows that the value
of εn for W460E was ≈ 14 %.
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Fig. 4.2: True stress and differentiated true stress from the W460E smooth specimen test
showing that the necking strain of the specimen was approximately 14%.

The true stress values for strains larger than εn was replaced with the new set of
stress values calculated using the Bridgman formula (i.e. eq. 2.9). Comparison of
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4. Material model calibration

the true stress and the adjusted true stress is shown in figure 4.3.
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Fig. 4.3: Bridgman adjusted stress compared with true stress

As a result of the implementation of the modified Gurson model, the Voce law,
described in section 2.2, has to be used to model the material work hardening.
In order to do this one performs a curve fit of the analytical expression to the
obtained stress-strain data, and this curve fit adjusts the hardening parameters
directly. In this case the Microsoft Excel Solver function was used to do the curve fit.
The resulting analytical stress-strain curve is compared to the Bridgman adjusted
experimental data in figure 4.4.
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Fig. 4.4: Voce curve fitted to Bridgman adjusted true stress

The set of Voce parameters, obtained through curve fitting of the Bridgman cor-
rected true-stress–true-strain data, are given in table 4.1.The next step was to determine the void volume parameters, namely f0 and fcr.
The results of Koplik and Needleman [22] suggests specifically that f0 values of
both 0.13 % and 1.04 % are possible, and thus f0 were initially set to 0.5 % for all
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4.3. Use of axisymmetric test simulations

Table 4.1: Initial Voce parameter values for W460E

σ0 = 413.84 MPa
Q1 = 201.45 MPa
θ1 = 4678.1 MPa
Q2 = 491.53 MPa
θ2 = 387.44 MPa

three materials. The value for critical void volume was initially guessed to be about
15 %.

With an initial set of parameters for strain hardening and void volume fraction, a
model for numerical simulation of the axisymmetric tensile tests was established.
The meshes used is shown in figure 4.5. After necking the straining was expected
to localize in the middle area of the specimen. Due to this the mesh was refined
in this area, while the mesh was made a lot coarser in the rest of the specimen,
to get accurate results while saving computational effort. The smallest elements,
closest to the middle, were made rectangular in order for them to be as quadratic
as possible near failure. The mesh configuration after fracture is shown in figure
4.6. Axisymmetric shell elements were used, and in addition to axisymmetric sym-
metry, symmetry about the longitudinal midpoint of the specimen was exploited
by constraining the mid cross-section of the specimen to have zero displacement in
the longitudinal direction. The displacement was applied in the top section of the
specimen. In all simulations of axisymmetric tests, a mass scaling factor of 1010

was multiplied to the material density. Since explicit time integration was used,
this will enlarge the critical time step and save computational time.

The first test of the material parameters was done by simulating a model of the
smooth specimen in LS-DYNA. From the simulation, data for force in the top section
(where displacement was applied) and the displacement in the radial direction of the
node situated in the lower right corner of the mesh (which is equivalent to the part
of the specimen where the diameter reduction was measured in the material tests).
The force and diameter reduction data of the simulation were then combined and
compared with the equivalent data from the experiments. For the W460E simulation
with the initial parameter values, this comparison is shown in figure 4.7.

The comparison shows that the initial set of parameter values makes the material to
soft in the plastic domain, especially after necking occurs. It is therefore necessary
to adjust some of the values in order to correct this difference. Inserting the values
given in table 4.1 into the Voce formulation it reads

R = 201.45

(
1− exp

(
−4678.1

201.45
εPl

))
+ 491.53

(
1− exp

(
−387.44

491.53
εPl

))
.
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4. Material model calibration

(a) smooth, 588
elements

(b) R2.0 mm
notch, 864
elements

(c) R0.8 mm
notch, 768
elements

(d) R0.4 mm
notch, 768
elements

Fig. 4.5: Meshes used in tensile test simulations.

36



4.3. Use of axisymmetric test simulations
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Fig. 4.7: Initial simulation results compared with experimental data

Each term in the formula approaches the value of their respective Qi as the expo-
nential function decreases for increasing εPl . For big values of θi compared to Qi,
this happens quickly, as is the case for the first term, while the second term has a
much smaller value for θi, which means it starts to contribute significantly to the
value of R when the first paragraph has reached its maximum value. Because of this
the curve is almost linearly asymptotic which also can be said of the stress–strain
data. Taking one more look at figure 4.7 it is found that, when disregarding the
yield plateau, the results coincide until necking. Because of this it was assumed
that the first pair of values were satisfyingly accurate, while the second had to be
adjusted. To get a less steep curve, the value of θ2 had to be increased, in order
to obtain the value of Q2 earlier. The correct value of θ2 was found by trial and
error, where the value was adjusted and the model simulated, until the simulation
result was satisfyingly accurate. This relation between the two paragraphs in the
Voce formula (one big and one small θi) was found for all three alloys.

The value of f0 set to 0.5 % gave satisfying results for both W700E and W900E,
while it made the correct fracture displacement for the notched specimens impos-
sible to obtain for W460E. In addition, f0 set to 0.5 % were problematic in the
impact simulations, as mentioned in section 4.2. When inspecting the tesnion test
simulation results in LS-PrePost it was found that the fracture happened before
the critical elements reached a void volume fraction of fcr. Instead the fracture
came as a result of the (temporarily included) erosion criterion based on complete
loss of shear strength, as discussed in section 4.1. Because of this, the fracture
was independent of the critical void volume fraction, and thus adjustment of f0 was
necessary to find the correct fracture displacement for the notched specimens. After
some trial and error with simulation of the notch R0.4 specimen, the fracture dis-
placement was obtained with good accuracy using 0.01 % as the value of f0, which
is a very significant reduction from the initial value of 0.5 %. When simulating
the smooth specimen with the new value of f0, the reduction made the fracture
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4.4. Determination of kω

displacement way too large. Because fracture occured due to void volume reaching
the critical value, the value of fcr was reduced in order to correct this. The frac-
ture displacement finally reached satisfying accuracy for fcr = 1 %. Simulation of
the notched specimens with R0.8 and R2.0 showed that these values gave accurate
results for all the specimens.

While the notched specimens were used to calibrate f0 and fcr for W460E, they
were mainly used for control of the results for W700E and W900E.

For all materials and specimens, the simulation results compared with the experi-
mental data are shown in figure 4.8.

4.4 Determination of kω

In order to adjust the parameter kω that scales the influence of shear stress flow
on the void growth rate, it was needed to re-simulate material tests where the
stress state is such that the function ω(σij) is significantly larger than zero. Such
stress states are obtained in e.g. shear stress tests (plane stress with σ∗ ∼ 0) and
plane strain tests (near plane stress with σ∗ ∼ 2/3), as will be explained later. By
performing such tests and doing inverse modeling it is possible to adjust the value of
kω that gives the best prediction of the force-displacement-behavior and/or fracture
displacement of those tests, given already adjusted hardening parameters and the
void volume fraction parameters f0 and fcr.

Digital image correlation
Both the shear stress tests and the plane strain tests were subject to digital image
correlation (DIC) analyses. This means that with a certain predetermined fre-
quency, e.g. 1 Hz, a close-up picture was taken of the samples, which had been
spray painted in order to attain a speckle pattern, and then after the tests the
image series were analyzed to set up a certain mesh and coordinate system on the
physical specimen in which the strain field was computed for each image. To verify
the reliability of the performed simulations, the strain field from these DIC analyses
was compared, visually and by means of the strain’s order of magnitude, with the
strain field from simulation results. Details about the DIC analysis method and the
calculations of von Mises equivalent strain field can be found in [16].

4.4.1 Use of shear stress test simulations

The shear stress tests described in section 3.2.2 were simulated using a reduced
integration solid element model with the LS–DYNA code. The geometry had been
modeled earlier by Gaute Gruben [19] and was re-meshed by the authors. Since
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Fig. 4.8: Results from smooth and notched specimen tensile test simulations using the
calibrated material models. ‘Simulation’ and ‘experiment’ is abbreviated as ‘sim’ and exp’
respectively and the notch radius r is indicated as -‘r’
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4.4. Determination of kω

the area of interest on the test specimen is very small compared to many other
tensile tests (only ∼ 5×4 mm) getting a proper resolution requires using very small
elements. In addition to this the specimen is asymmetric such that one cannot
model for instance only one quarter of it. To reduce the number of elements and
computation time, the authors therefore desired to vary the element size in all three
dimensions in the specimen. This was done [19] by making an unstructured mesh
of most of the main geometry seen in figure 3.3, leaving only the shear deforma-
tion region in the middle of the specimen structured. Then, in order to vary the
element size also in the thickness direction, the specimen was extruded to produce
nine and three elements over the thickness in and outside of the shear deformation
area, respectively, and bounded together with the tie algorithm “*CONTACT TIED
NODES TO SURFACE” in LS–DYNA. The meshed specimen is shown in figure 4.9
and contains 23,070 elements in total and 5,576 elements in the shear deformation
area.

(a) Whole specimen (b) Shear deformation area

Fig. 4.9: Meshed shear stress specimen. Please note that the viewing angle is the same
in (a) and (b).

In the simulations each of the two side-parts of the specimen was set to be rigid.
This gave negligible deviation from simulations where the whole specimen was mod-
eled with the calibrated modified Gurson material model. The test displacement
could then simply be modeled by specifying each of the two rigid parts to move in
the opposite direction of each other, each with half the displacement speed of the
actual experiment (pulling only one of the edges). The extensometer displacement
measured during the experiments were recovered as the relative displacement of the
two rigid parts as the extensometer clamp contact in the experiment took place in
the areas modeled as rigid in the simulations. The applied force in the simulations
was measured in a cross section through the shear deformation area. A mass scal-
ing factor of 1010 was applied, and it was controlled that the kinetic energy of the
tension event never exceeded a fraction of 10−4 of the total energy.
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4. Material model calibration

Simulation results

The results from the shear stress test simulations varying only the parameter kω,
are shown in figure 4.11. They show that the optimization of the kω value is straight
forward, and that a fairly good reproduction of the shear stress test results can be
achieved upon choosing that value. This is despite the fact that the stress level
generally is a bit too high. This matter is discussed later on in section 4.6.

Comparison of the strain field calculated from DIC analyses with the strain field
from the simulations showed good accordance, both with strain localization in a line
slightly slanted relative to the tensional direction, but with a somewhat lower strain
level in the simulation. This would suggest that the degree of localization is a bit
too low in the simulations, which is a matter of discussed in section 4.6. Comparison
between experiment and a simulation for the first W700E test (or “700–1”) at an
extensometer displacement of 1.6 mm is shown i figure 4.10.

(a) DIC analysis (b) Simulation, kω = 2.0

Fig. 4.10: DIC–simulation comparison of the strain field at 1.6 mm extensometer dis-
placement for the W700E shear stress test. The coloring shows the level of equivalent
strain, and the maximum values are 1.0 and 0.75 in the DIC analysis strain field and
simulation strain field, respectively.

4.4.2 Use of plane strain test simulations

The plane strain test was modeled with 28,859 reduced integration solid elements.
Due to symmetry only one eighth of the specimen was modeled, and most of this
model geometry, or specifically the blue part as seen in figure 4.12, was modeled
as elastic while the rest was modeled with the calibrated modified Gurson model.
The border between the two parts was placed at the position of the extensometer
clamps in the experiments, such that the extensometer displacement from the tests
was recovered as the displacement of the mid node of this border.

Symmetry constraints was naturally applied in all three symmetry planes, such that
only one edge of the specimen was constrained to move — in half the displacement
speed from the experiment. This movement was applied at the very edge of the
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Fig. 4.11: Results from shear stress test simulations using the calibrated material models.
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Fig. 4.12: Meshed plane strain specimen model, which in fact represents only one eighth
of the real specimen as symmetry is applied in three dimensions.

specimen even though the specimen was clamped a few centimeters inwards from
the edge in the experiment. This was assumed to have a negligible effect. The
reaction force was measured as a “*SEGMENT FORCE” at the moving edge of the
specimen.

Simulation results

The results from plane strain test simulations with the three steel alloys are shown
in figure 4.13. Like the simulation results from the shear stress test simulations this
figure shows fairly good accordance with the results, although the stress level is
even a bit more too high. See section 4.6 for discussion. The reader is kindly asked
to note that the fracture process is reproduced in a good manner for the W460E
simulations, and although not evident from figure 4.13 this is most probably the
case for W700E and W900E also. Here, namely, as also mentioned in section 3.3
and illustrated in figure 3.8, the clamping of the specimens was unfortunately made
in a slightly slant manner (in all three tests for both W700E and W900E) causing
the fracture mechanism in the specimens also to be slant/asymmetric. This caused
a more brittle fracture and thus the ‘fracture tail’ of the experiment data in figure
4.13(a) is neither present in figure 4.13(b) nor 4.13(c). The same incident also took
place in one of the W460E specimens (meaning that a total of seven out of nine
specimens fractured slantly), which can be seen in figure 4.14 described below.

Like the shear stress tests the plane strain tests were subjected to DIC analyses,
and strain field comparisons were performed in a similar manner, but comparison
could only be done for the tests with the two symmetrically fractured W460E spec-
imens. Comparison between a simulation and the first (asymmetric) and second
(symmetric) W460E tension test performed is shown in figure 4.14. This figure
shows that the flow pattern in the specimen is quite well reproduced — both in
terms of appearance and level of equivalent von Mises strain.
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Fig. 4.13: Results from plane strain test simulations using the calibrated material models.
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(a) DIC analysis, W460E–1 (b) DIC analysis, W460E–2

(c) Simulation

Fig. 4.14: DIC–simulation comparison of the strain field at 1.5 mm extensometer dis-
placement for the first and second W460E plane strain test. The coloring shows the level
of equivalent strain, and the maximum values are 0.5 in both the DIC analysis strain field
and the simulation strain field.

4.5 Calibration results

In summary, inverse modeling of the axisymmetric tests have yielded the material
parameters σ0, Q1, θ1, Q2, θ2, f0 and fcr while the final parameter kω was de-
termined through inverse modeling of the shear stress and plane strain tests. The
obtained values for these parameters are summarized in table 4.2.

Table 4.2: Final extended Gurson model parameter values for W460E, W700E and
W900E. For kω the first values optimizes the fracture displacement in shear stress test
simulations while the values in parentheses optimizes it in plane strain test simulations.

W460E W700E W900E

σ0[MPa] 413.84 794.52 961
Q1[MPa] 220 134.64 155
θ1[MPa] 4678.1 4681.3 3000
Q2[MPa] 491.53 2620.3 10000
θ2[MPa] 395 253.7 170
f0 [%] 0.01 0.5 0.5
fcr [%] 1 25 18
kω 5.5 (4.0) 3.5 (2.0) 3.5 (4.0)

As can be seen from figures 4.11 and 4.13 there is a tendency for the optimum kω
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4.6. Discussion

value to be higher in shear stress than in plane strain for a given steel alloy. The
optimal value is namely highest in shear stress for W460E and W700E, but for the
most brittle steel considered, W900E, it is the opposite. This is clearly seen from
the histogram in figure 4.15.
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kω

Plane strain Shear stress

0

1
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460 700 900

Fig. 4.15: Histogram of optimal kω values from plane strain and shear stress test simu-
lations, respectively, showing that for the element size chosen there is needed a higher kω
value for correct fracture displacement in in shear stress test simulations than plane strain
test simulations.

4.6 Discussion
Void volume fraction

As discussed earlier the value of f0 for W460E were initially set too high and
had to be re-adjusted. The reason for this was that the ratio of equivalent stress
to hydrostatic stress for some yielding elements became very low, i.e. they lost
almost all their shear strength before the critical void volume fraction fcr was
reached. This led to a divergence of the iterative process determining the flow of
these elements using the associated flow rule, i.e. the stress components update
could not be calculated. These problems were first avoided by having LS-DYNA
erode the elements which encountered this flow determination divergence. This was
done at the time when the material model calibration were conducted, but was later
removed as it seemed that the stress state causing the problem could be avoided.
This element erosion criterion led to the fracture strain in all the W460E notched
specimens being too small in the simulations compared to experimental data, as
they witnessed a total loss of shear strength before the critical void volume fraction
fcr was reached.

A closer look at the simulations of the W700E specimens revealed that the tension
simulations of notched specimens with R0.8 and R0.4 also witnessed element erosion
due to total loss of shear strength, i.e. not reaching fcr. Still, in contrast to the
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4. Material model calibration

first calibration of the W460E material model, the fracture strains coincided well
with the experimental results, which led the authors to believe these results were
fine. But later during penetration simulations, since this erosion criterion was not
present at the time, the numerical problems caused by large void volume fraction
prevented the completion of W700E plates for certain projectile velocities. This is
explained in chapter 6.

The yield surfaces in figure 4.1 illustrates that σe/σm may be evaluated very close
to zero if values of f in the range of 10-20 % is allowed. This means that fcr
probably should not have a value much higher than 10 %. It should nevertheless
be noted that impact simulations for both W460E with f0 = 0.01 % and fcr = 1.0
%, and W900E with f0 = 0.5 % and fcr = 18 % were conducted without numerical
problems, such that the range of possible void volume fraction parameter values is
still wide and uncertain.

Mesh dependence

The mesh dependence of the shear stress test simulations are quite strong, cf. figure
4.16, and it is reasonable to assume that the same is the case for plane strain
simulations. The authors assume that in reality the shear stress test localization
zone is very small, e.g. on the scale of the grain size, such that for a good description
of the test one might need an element size on the order of 1 µm or a number of
∼ 1010 elements for the shear stress test simulation specifically. It is also evident
that the calibration of kω is strongly dependent of chosen element size, due to the
fact that smaller element size makes the localization start sooner after the critical
force level has been reached. Further, as one can see in figure 4.11, the speed of
the fracture propagation in terms of displacement must be compromised in order to
achieve a proper fracture displacement at the desired element size, indicating that
the “true” value of kω (correct value for properly sized elements) is quite low —
possibly below 1.

Due to the size of the area of interest in the shear stress test specimen the time
step size became quite small, and hence the simulations became quite computation-
ally demanding, when the element count exceeds ∼ 105. Thus, no further mesh
refinement was made in the mesh sensitivity study.

Yield surface

With proper strain hardening parameter values from the axisymmetric tests, the
simulations of the shear stress and plane strain tests gave results that are showing
too high stress levels compared to the experimental results. A reason for this may
be the fact that the equivalent stress is here taken as von Mises equivalent stress,
viz.

σe =

√
1

2

[
(σI − σII)2 + (σII − σIII)2 + (σIIII − σI)2

]
=
√

3J2
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Fig. 4.16: Force-displacement curves from W900E shear stress test simulations with
kω = 2 and different element sizes. Clearly the mesh dependence of the simulation is
strong and its convergence is slow. The critical force–displacement points are indicated to
the right.

An alternative and most likely also more correct [10] measure that could be used is
the equivalent stress resulting from the high-exponent yield criterion,

F =

(
1

2

[
|σI − σII|m + |σII − σIII|m + |σIII − σi|m

])1/m

− σY = 0

where m ≥ 1 determines the shape and contraction of the yield surface from the
von Mises yield surface (m = 2) to the Tresca yield surface (m→∞).

When the material yields in the shear stress test, it has a stress state that approx-
imately satisfies σII = −σI, while in the plane strain test the yielding stress state
approximately satisfies σII = σI/2. In figure 4.17 the von Mises yield surface is
plotted together with the high-exponent yield surface for m = 6, 8, 20, 60 assuming
plane stress. It is evident from the figure that, given either of the two mention
states of stress, the respective equivalent stress decreases for increasing value of m
for both stress states. Please note the two arrows on the plane strain and shear
stress lines that expresses the respective flow stress level differences between the
different yield criteria, and that the differences in stress level for shear yielding are
somewhat smaller than the differences in plain strain stress levels between the Tresca
and the von Mises yield surfaces. This is namely also the case in the simulation-
test-comparisons of plane strain and shear stress tests in figures 4.11 and 4.13. The
observant reader would agree that this clearly suggests that a high exponent based
yield surface for the Gurson model might be more correct than basing it on the von
Mises yield criterion.
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Fig. 4.17: High exponent yield surfaces for plane stress (i.e. σIII = 0) with exponents
m = 2 (von Mises yield surface), m = 6, m = 8, m = 20 and , m = 60. Note that
the innermost yield surface of m = 60 is almost indistinguishable from the Tresca yield
surface. The two lines plotted together with the yield surfaces are the requirements for
tensional shear stress (σII = −σI) and tensional plane strain (σII = σI/2), respectively.
Figure taken from [10].
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Chapter 5

Impact tests

Penetration and perforation of steel plates exposed to ballistic impact have been
studied by Sumita Dey [12], proceeding extensive work done by, amongst others,
Tore Børvik, Odd Sture Hopperstad, Torodd Berstad and Magnus Langseth at SIM-
Lab, cf. e.g. [5], [6], [7], [8]. Here, the smallest velocity in which target penetration
is obtained, i.e. the ballistic limit velocity, is central as the dependencies on the
target thickness, target hardness and projectile nose shape were studied. Impact
experiment results were attempted reproduced in finite element simulations using
the Johnson-Cook and Zerilli-Armstrong material constitutive relations. (Please
see e.g. [12] for details on these constitutive relations). Both relations failed to
predict the reduction in ballistic limit velocity for increasing target hardness with
blunt projectiles, while test results for the other nose shapes were reproduced with
satisfying accuracy.

The main objective with this thesis is to reproduce impact experiment results,
with blunt nosed projectile, specifically, using the modified Gurson model, since
earlier attempts in reproducing the steel alloy dependence on the ballistic limit
velocity have not been successful. The test data used in this thesis was taken from
experiments conducted by Dey [12].

It should be mentioned that in the studies of Dey [12] two different batches of W700E
were considered, where impact tests using target plates made of the first batch were
carried out by Børvik in 2001, while tests using the second batch was carried out
by Dey in 2004. The results from material tests in this thesis are taken solely from
the second batch, and since batch deviations in the mechanical properties occur the
calibrated W700E material model can only be said to be valid for the second batch.
Because of this it was chosen to entirely disregard impact test results from the first
batch in this thesis.

5.1 Experimental setup

This section contains a brief summary of the main components in the experiments,
namely the compressed gas gun, the equipment used for measurements, the projec-
tiles and the target steel plates.
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5. Impact tests

The main components of the gas gun were a 200 bar pressure tank, a purpose-built
firing unit for compressed gas, a 10 m long smooth barrel of caliber 50 mm and a
closed 16 m3 impact chamber. This is shown i figure 5.1. The gas gun was designed
to launch a 250 g projectile/sabot package to a maximum velocity of 1000 m/s when
using helium as propellant.

Laser curtains

High-speed camera

Reinforcement

Rag-box, filled with
graded plywood

Residual velocity
measurement

Target plate/clamping rig

Trigger/velocity measurement

Sabot trap

Recoil 
absorber

Pressure
tank

Firing
section

Barrel

Support

Fig. 5.1: The gas gun, firing barrel and impact chamber used by Dey [12]. Figure taken
also from [12].

The initial velocity (vi) was measured by a photocell system consisting of two iden-
tical light-barriers. The barriers consisted of LED light sources on the upper side
of the projectile path and detectors on the lower side. When the projectile passed
between the sources and detectors, the light was interrupted and signals were given
to a nanosecond counter providing the velocity measurement data. A similar system
was also used to measure residual velocities (vres) for projectiles having perforated
the target.

The high-speed camera system used consisted of an image converter camera and
CCD camera. The image converter camera provided extremely fast shutter speeds,
while the CCD camera provided digital images that were available immediately
after testing. The system was fully computerized and capable of achieving frame
rates from 2000 to 20,000,000 frames per second with exposure times down to 10
ns, and was used both for visualization and measurements. The camera system was
set perpendicular to the projectile path in the target plane in order to record the
projectile both before and after perforation. To reconstruct a 3D description of the
penetration process, mirrors were used in some of the tests.

A more detailed explanation of test set up and implementation can be found in the
aforementioned literature.
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5.2. Test results

The original tests were performed with three different nose shapes; blunt, conical
and ogival. In this thesis only blunt nosed projectiles is considered, due to problems
with reproduction of results in numerical simulations, as mentioned above. The
cylindrical projectiles were manufactured from Arne tool steel and the target steel
plates were 12 mm thick and consisting of one of the steel alloys to be studied.

5.2 Test results

The results for all three materials are given in in table 5.1 and visualized in figure
5.2, where vi denotes the projectile initial velocity and vres denotes the residual
velocity after perforation of the target plate. In addition to the values given in
the table, for W900E a projectile with vi of 165.1 m/s gave perforation, but the
residual velocity was for some reason not measured, and it is therefore marked with
a ‘–’. It is however still considered in the calculation of the ballistic limit velocity
for W900E.

Table 5.1: Initial and residual projectile velocities from impact tests on W460E, W700E
and W900E plates, taken from Dey [12].

W460E W700E W900E
vi vres vi vres vi vres

399.6 291.3 356.7 228 307.4 193.0
303.5 199.7 305.9 195 246.0 140.6
285.4 181.1 249.4 141 202.1 95.0
244.2 132.6 200.4 92 172.2 54.0
224.7 113.7 176.8 47 165.1 –
200.4 71.4 176.3 22 156.8 0.0
199.1 67.3 171.2 20
189.6 43.7 165.1 0.0
189.6 42.0 161.0 0.0
189.2 40.1
188.8 43.2
184.3 30.8
184.8 0.0
181.5 0.0
179.4 0.0
177.3 0.0
173.7 0.0

Based on the results, the ballistic limit velocity vbl was calculated for each steel
alloy by taking the average of the highest velocity that did not give perforation
and the lowest velocity that gave complete perforation of the target plate. The
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5. Impact tests

ballistic limit velocity for each steel alloy is given in table 5.2. The results clearly
indicate a decrease in vbl for increasing yield strength, which is the key observation
desired to reproduce using the modified Gurson model. This trend comes from the
effect of increased degree of shear stress localization for increased material hardness,
making the area absorbing the projectile’s kinetic energy smaller and hence also the
necessary work done in order to perforate the plate. There is not a linear relation
between the difference in yield strength and ballistic limit though, as the decrease
in vbl relative to increase in yield strength between W460E and W700E is almost
twice as big as between W700E and W900E.

Table 5.2: Experimentally determined ballistic limit velocities for W460E, W700E and
W900E

alloy vbl [m/s]

W460E 184.6
W700E 168.2
W900E 161.0

Looking at the results in table 5.1 it is evident that the amount of data is quite
scarce, to some extent for W700E but especially for W900E. This causes a con-
siderable contribution to the uncertainty of the results, but some uncertainty also
naturally arises from the nature of the experiment. High velocity projectiles are
vulnerable to errors in both projectile shape and test setup, which can alter the
projectile orientation at impact. Despite this, the data, with a few exceptions,
show good consistency cf. figure 5.2.

The curves in figure 5.2 are fitted to the data points using an analytical model
proposed by Recht and Ipson [29], which reads

vres = a(vpi − v
p
bl)

1/p, a =
mp

mp +mpl
.

Here mp is the mass of the projectile, mpl is the mass of the plug that comes from
the target plate when complete perforation occur, and both a and p are taken as
parameters constituting the curve fit.
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Fig. 5.2: Plot of residual velocities as a function of initial velocities of the blunt projectiles,
taken from Dey [12], together with fitted RI curves
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Chapter 6

Impact simulations

From the work with tension test data and inverse modeling of those tests it is
possible to do the necessary modified Gurson model material modeling in order
to simulate the perforation event of tool steel blunt projectiles penetrating armor
plates of the three different Weldoxr steel alloys studied. By performing a number
of such simulations — varying the velocity vi of the incoming projectile — the
blunt projectile ballistic limit velocities for each alloy can be calculated, and based
on these simulation results a conclusion can be made whether the modified Gurson
model is able to reproduce the target plate stiffness dependency that is yielded
by experiments [12], i.e. that the ballistic limit velocity decreases with increasing
plate stiffness for blunt projectiles (i.e. in the event of penetration of the plate by
perforation). This would namely indicate that the modified Gurson model is able
to describe the increasing degree of stress localization for increasing stiffness in the
steel plates.

6.1 Simulation setup

The geometry was modeled by reduced integration axial symmetric shell elements,
i.e. in reality ring shaped elements with increasing radius (and volume for a given
element area) with an increasing distance from the symmetry axis. This naturally
constrains the perforation event to be axisymmetric, which is a reasonable assump-
tion given that the projectiles were sufficiently axisymmetric in the experiments
performed by Dey [12], but also saves quite a lot of computation time. The area
(or in reality the cross sectional area) of the elements in the perforation area — or
more precisely the smallest element size in the model which is in the area of the
perforation event — was set to be ≈ 0.09 mm2 which is consistent with the ele-
ment sizes of the inverse modeling simulations performed to calibrate the modified
Gurson model. The meshed geometry can be seen in figure 6.1 where symmetry is
applied (horizontally).

The mesh consisted of 20,238 reduced integration elements where 19,438 was in
the plate and 800 in the projectile. The mesh of the projectile is structured with
quadratic shaped elements while the mesh of the target plate is structured in the
impact zone, and biased such that the elements are smallest (and quite rectangular)
in the shear zone and then unstructured with the number of elements across the
thickness decreasing from 100 to 6 towards the restrained edge. See figure 6.1 for a
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6. Impact simulations

visualization of the mesh.

(a) Whole model. The contents of the rectangle is enlarged in (b).

(b) Close up of the mesh inside the rectangle in (a)

Fig. 6.1: Mesh used in penetration simulations. Note that symmetry is applied here so
that only half of the displayed elements are in the actual model and that they are all
axisymmetric shell elements, i.e. in reality thin rings.

The hourglass control used in the penetration simulations was on Flanagan-Belytschko
stiffness form and for contact the algorithm “*CONTACT 2D AUTOMATIC SIN-
GLE SURFACE” in LS–DYNA was used, both with standard parameter values.
The projectile was, in accordance with the work of Dey [12], modeled to be isotrop-
ically elastic – linearly plastic with a Young’s modulus of 204 GPa, yield strength
of 1.9 GPa and tangent modulus of 15 GPa.

The element erosion criteria used (in the UMAT implementation of the modified
Gurson model) was
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6.1. Simulation setup

1) Critical void volume fraction fcr cf. section 4.2 and 4.3,

2) Critical temperature Tcr.

As described in section 2.4 a temperature element erosion criterion is necessary for
a model with a computationally realistic element size and the critical temperature
was here set to approximately 90% of the melting temperature of steel, i.e. 1,620
K. [9] The heat that in fact causes some elements to reach that temperature and
thus get eroded is due to the assumption of adiabatic heating, or more specifically
that 90% of the plastic work done in an element is converted to heat that stays in
that element. In other words we have used a Taylor-Quinney coefficient βTQ = 0.9.
The complete list of parameters used in impact simulations is given in table 6.1.

Table 6.1: Complete list of modified Gurson model parameters used in impact simula-
tions. For kω it was used both the shear stress test adjusted values for each steel alloy in
one set of simulations, and another set of simulations was carried out using kω = 0 (i.e.
the original Gurson model).

W460E W700E W900E

σ0 [MPa] 413.84 794.52 961
Q1 [MPa] 220 134.64 155
θ1 [MPa] 4678.1 4681.3 3000
Q2 [MPa] 491.53 2620.3 10000
θ2 [MPa] 395 253.7 170
f0 [%] 0.01 0.5 0.5
fcr [%] 1 25 18
kω 5.5 (0) 3.5 (0) 3.5 (0)

ρ [kg/m3] 7.85 · 103 7.85 · 103 7.85 · 103

E [GPa] 210 210 210
ν 0.33 0.33 0.33
q1 1.5 1.5 1.5
q2 1 1 1
C 0.1 0.1 0.1
ε̇Pe,0 5 · 10−4 5 · 10−4 5 · 10−4

m 1 1 1
α [K−1] 1.2 · 10−5 1.2 · 10−5 1.2 · 10−5

βTQ 0.9 0.9 0.9
cT [J/kg K] 452 452 452
Tcr [K] 1620 1620 1620
Tm [K] 1800 1800 1800
T0 [K] 293 293 293

Finally it should be noted that impact simulations not only were performed with
the calibrated modified Gurson model parameters as such, but that additionally
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they all were performed with the original Gurson model, i.e. with kω = 0 in order
to potentially get an idea of the role that this parameter plays on the steel alloy
dependence of the ballistic limit velocity.

6.2 Results
The perforation process

The simulations show unambiguously that approximately the first one fifth of the
plate thickness is perforated due to elements reaching the critical temperature,
while the rest of the plate thickness is perforated from damage (i.e. the critical void
volume fraction being reached). These processes unfold simultaneously until at some
point the temperature erosion stops and damage erosion continues throughout the
perforation. For high impact velocities it was observed that the perforation path
bifurcated, while at lower impact velocities the projectile made a clean cut of the
target plate to produce a smooth plug.

(a) vi = 163 m/s (b) vi = 250 m/s

Fig. 6.2: Element erosion pattern from W900E penetration simulations shown on the
initial mesh configuration. Elements eroded from reaching the critical temperature are
colored red while elements eroded from reaching the critical void volume fraction are
colored blue.

The perforation process is further visualized in figure 6.3 where simulation fringe
plots of the void volume fraction is displayed at four different times during perfo-
ration of a W900E plate. Here it can be seen that, during the very first moments
after impact [6.3(a)], the void volume fraction f is reduced to zero from the ini-
tial void volume fraction f0 > 0 in the near impact area of the plate. Further on
there is a shear zone being localized before the perforation takes place [6.3(b)]. The
fracture then propagates through the plate thickness [6.3(c)], actually both by ele-
ments reaching critical temperature and elements reaching the critical void volume
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6.3. Discussion

fraction. Finally the produced plug travels through the fractured plate [6.3(d)].

Projectile residual velocity

In order to recover the projectiles’ residual velocity from simulations the velocity of
the front and rear end of the projectiles were saved at a high frequency and then
plotted as a function of time. A such plot is shown in figure 6.5, where one can see
that the projectile starts to oscillate elastically after impact. The residual velocity
was found in each simulation by finding the duration of the perforation process and
taking the average of the highest crest and the lowest troughs of the two waves (e.g.
as displayed in figure 6.5) in the first couple of wavelength after the perforation
process had finished. Repeating this process for simulations with different initial
projectile velocities, values of kω and target plate steel yielded the data visualized in
figure 6.4 (residual projectile velocity as a function of initial projectile velocity), and
the final ballistic limit velocities given in table 6.2 and visualized in figure 6.6. Figure
6.4 shows that the degree of reproduction of experiment data is varying, but that the
projectile initial velocity dependence on the projectile residual velocity is fairly the
same as in experiments. Figure 6.6 shows that the correct steel alloy dependence
on the ballistic limit for the blunt projectile is recovered from simulations with
kω = 0, and not from simulations using the adjusted values. This matter is of
utmost importance and is further discussed in section 6.3.

Table 6.2: Ballistic limit velocity vbl results for W460E, W700E and W900E simulations
and experiments visualized in figure 6.6. The data from simulations with the modified and
the original Gurson model are compared with experiments and simulation results taken
from Dey [12]. For the latter we have taken the results obtained with the most similar
mesh (Dey’s “120” mesh) and with the Cockroft–Latham (‘CL’) and the Johnson–Cook
(‘JC’) damage model, respectively.

W460E W700E W900E

experiments 184.6 168.2 161.0
simulation 151.7 163.0 165.7
sim., kω = 0 184.2 183.4 172.0
Dey, CL 205.0 209.7 219.2
Dey, JC 189.3 211.0 214.1

6.3 Discussion

All of the parameters of the modified Gurson material model was, with one excep-
tion, calibrated using simulations with shell elements. This one exception is kω,
which was determined from simulations using solid elements. Please note also that
the impact simulations themselves were done using shell elements. The fact that
results from simulations using a material model with kω = 0 gave a correct mate-
rial dependency on the ballistic limit velocity, and not using kω values calculated
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(a) t = 8 µs (b) t = 32 µs

(c) t = 56 µs (d) t = 150 µs

Fig. 6.3: Simulation visualization of the perforation of a W900E target plate by a pro-
jectile with an initial velocity of 175 m/s. The color visualizes the void volume fraction f
and the left hand side of each figure is axis of rotational symmetry.
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Fig. 6.4: Residual velocities as a function of respective initial velocities for W460E,
W700E and W900E penetration simulations and experiments (‘sim.’ denotes simulations
and ‘exp.’ denotes experiments). The blue arrow along the abscissa in 6.4(b) represents
the interval of vi that the LS–DYNA UMAT could not conduct complete simulations
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Fig. 6.5: Velocity of a W900E projectile’s frond and rear end as a function of time
during penetration. Evidently the incoming velocity of the projectile was 225 m/s in this
particular simulation.
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6.3. Discussion

from simulations with solid elements, can cast some doubt on whether the modified
Gurson model is able to predict the dependence of shear stress localization on the
material hardness in a satisfying manner. It be noted, however, that this particular
dependence might not be so clear if it had been possible to perform a complete set
of impact simulations for the W700E target plate with kω = 0, since the lack of data
on the interval 157 – 197 m/s (cf. figure 6.4(b)) greatly increases the uncertainty
of the ballistic limit velocity for the original Gurson model W700E material. There
may be other reasons for the negative influence on the accuracy of the results from
introducing kω in the material model, so that there should probably have been done
a further verification of the values for kω, especially in simulation models using shell
elements. All in all though, the results made from both the original and modified
Gurson model show a fairly good consistency with experiments. In fact they can
both be said to reproduce the approximate magnitude of the ballistic limit velocity
better than Johnson–Cook and Zerilli–Armstrong simulations performed by Dey
[12] as shown in figure 6.5.

The fracture pattern in a kω = 0 (i.e. original Gurson model) simulation is slightly
different from the pattern in a corresponding modified Gurson model simulation.
The most important difference is that the fracture evolves a bit more slowly with
the original Gurson model, and that temperature erosion of the uppermost part of
the target plate is not continuous. This means that in between elements eroded due
to temperature there are elements that were eroded due to the critical void volume
fraction being reached. This is seen in figure 6.7(b).

The mesh sensitivity of the perforation event was not studied in this thesis. The use
of shell elements and a coupled damage model causes no mesh convergence to be
obtained. This implies that the material model calibration is mesh dependent, so
the question is really whether a mesh refinement and a material model re-calibration
would have had an effects. It is known from the mesh sensitivity study of the shear
stress test (cf. figure 4.16) that the increased degree of localization due to mesh
refinement causes the optimal value of kω to decrease. This could perhaps cause
a less intense effect of shear on the void volume fraction and thus, possibly, have
a positive effect on the steel dependence on the ballistic limit velocity. A mesh
refinement would also have an effect on the temperature erosion mechanism, that
is — make it more intense, since the localization length scale would be smaller and
hence less elements would be heated dramatically.

It should further be mentioned that there has neither been done studies on the
sensitivity of the critical temperature used in the simulations. This temperature
was here set to 90% of the melting temperature of steel taken as 1,800 K, i.e. 1,620
K, due to experience of the supervisors [9], [21]. But this experience does not come
from work with the modified Gurson model specifically, and it might be that this
critical temperature is more important here than when using other constitutive
relations and damage models. In fact, the correct reproduction of steel dependence

65
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on the ballistic limit velocity might be based on the critical temperature not being
high enough to ensure a continous temperature erosion fraction of the uppermost
part of the target plate, as seen in figure 6.7.

(a) vi = 163 m/s, kω = 4.0 (b) vi = 175 m/s, kω = 0

Fig. 6.7: Element erosion patterns from W900E penetration simulations shown on the
initial mesh configuration. Elements eroded from reaching the critical temperature are
colored red while elements eroded from reaching the critical void volume fraction are
colored blue. In the kω = 0 case the simulation ballistic limit velocity was 172.0 m/s
while in the simulation with the modified Gurson model (i.e. with the correct adjusted
value of kω = 4.0) the simulation ballistic limit velocity was 165.7 m/s. One can see that
the fracture mechanism is different in the two cases by looking at the upper part of the
fracture paths.
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(a) t = 8 µs (b) t = 32 µs

(c) t = 56 µs (d) t = 150 µs

Fig. 6.8: Simulation visualization of the perforation of a W900E kω = 0 target plate by a
projectile with an initial velocity of 175 m/s. The color visualizes the void volume fraction
f and the left hand side of each figure is axis of rotational symmetry.
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Chapter 7

Concluding remarks

Calibration of the modified Gurson model

� Using the finite element model LS–DYNA the modified Gurson model has
proved to be quite possible to calibrate in the work with three different steel
alloys, using material test results and inverse modeling. Inverse modeling
with manual parameter adjustments has proved to constitute a reliable cali-
bration method. Such calibrations have yielded material models well capable
of reproducing the force–displacement behavior observed in the material tests
performed.

� Variations in the value of f0 in the modified Gurson model influences the
plastic hardening of the material, and has to be accounted for when adjusting
work hardening parameters.

� A modified Gurson material model with a relatively large value for f0, which
creates a large void volume fraction when subjected to stress, may be prob-
lematic in numerical simulations because of total loss of shear strength when
the ratio of equivalent stress to hydrostatic stress becomes small. An erosion
criterion may be introduced to remove elements experiencing this stress state,
but a more reliable solution is to pick a value of f0 small enough such that
elements are only eroded when the void volume fraction reaches fcr (when
other erosion criteria is not present). This fact has to be taken direct care of
since a pair of f0 and fcr values could be used to describe a behavior very
similar to that of a different pair with a quite different magnitude of void
volume fraction.

� Simulation results for both shear stress test and plane strain test specimens,
using material parameters valid for simulation of axisymmetric tests, both
exhibit material behavior that is too stiff. In fact, the plane strain test stress
level is a bit more too high than the shear stress test stress level, and this
clearly suggests that use of a high exponent based yield criterion should be
used instead of the von Mises based yield criterion.

Simulation of impact using the modified Gurson model

� The dependence on the blunt projectile ballistic limit velocity of the target
plate steel strength seen in experiments, i.e. that the ballistic limit velocity
decreases with increasing steel strength, is recovered using the original Gurson
model. The modified Gurson model predicts ballistic limit velocities of the
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same order of magnitude as the original Gurson model, but fails to exhibit the
correct target plate strength dependence. This dependence is in fact seen to
be quite similar to that of Johnson–Cook and Zerilli–Armstrong constitutive
relations.
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Chapter 8

Further work

In the work with this thesis the authors were not able to fully reproduce experi-
mental results from ballistic impact using blunt nose projectiles on Weldoxr steel
plates with decreasing ballistic limit velocity for increasing yield strength in the
target plate using the extended Gurson model in numerical simulations. Further
work can be done in order to get better a better perspective on the capabilities of
the modified Gurson model, and hopefully verify that it is able to reproduce the
correct target plate strength dependence on the ballistic limit velocity in impact
simulations with blunt nosed projectiles. Specifically we suggest the following.

� The value of f0 being 50 times as high for W700E and W900E as for W460E
gave satisfying results for all simulations of material tests performed in this
thesis, but the difference seems unrealistic from a physical point of view, as the
three alloys are quite similar. Further investigating and adjusting values for
f0 and fcr of the same magnitude for W700E and W900E as for W460E could
possibly create a more reliable basis for comparison of the alloys, or more
importantly, a more reliable basis for the evaluation of the modification of the
Gurson model for shear stress failure proposed by Nahshon and Hutchinson
[26].

� Implementation of a high-exponent-based yield criterion instead of the von
Mises based criterion used in this thesis with the modified Gurson model
would hopefully make the model more capable of predicting proper material
behavior, such as in shear stress and plane strain tests.

� Reproducing the shear zone in the ballistic impact experiments accurately in
numerical simulation models require a very small element size. When using
element erosion to represent fracture in FEM simulations, the element size
in the simulation model represents the width of the physical crack with in
the experiments, which in reality seems to be extremely small. Due to time
constraint and the amount of computational time needed becoming very large
due to a possible moderate element size reduction, a mesh sensitivity study
of the impact simulations was not performed. A comprehensive study, with
material calibration for different element sizes, could be performed in order
to determine a suitable element size when considering both material model
performance and computational time.

� The critical temperature value used in the temperature element erosion cri-
terion in the impact simulation has not been subjected to neither calibration
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8. Further work

nor sensitivity studies. A material test to verify, or possibly improve, the
value used would make the material model more reliable.

� In order to further study the results from material tests, a more comprehensive
utilization of digital image correlation (DIC) could be made in order to recover
data such as fracture strains.

� A method to verify values of kω calculated from solid element simulations
being used directly in simulations with shell elements could ensure better
performance of the material model in impact simulations.
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Correction Formulae for the Stress Distribution in Round Tensile Specimens
at Neck Presence, chapter 2, Springer; 2011

[19] G. Gruben,
Personal communications 2011/2012, Department of Structural Engineering,
Norwegian University of Science and Technology

[20] A. L. Gurson,
Continuum theory of ductile rupture by void nucleation and growth: Part I —
Yield criteria and flow rules for porous ductile media, Journal of Engineering
Materials and Technology 99 (1977)

[21] O. S. Hopperstad,
Personal communications 2012, Department of Structural Engineering, Nor-
wegian University of Science and Technology

[22] J. Koplik, A. Needleman,
Void growth and coalescence in porous plastic solids, International Journal of
Solids and Structures 24 (1988) 835-853

74



Bibliography

[23] G. LeRoy, J. Embury, G. Edwards and M. F. Ashby,
A model of ductile fracture based on the nucleation and growth of voids, Acta
Metallurgica 29 (1981) 1509-1522

[24] W. Lode,
The influence of the intermediate principal stress on yielding and failure of
iron, copper and nickel, Zeits. Eng. Math. Mech. 5 (1925) 142

[25] N. F. Mott,
Investigation of the fracture and fragmentation of explosively driven rings and
cylinders, Proceedings of the Royal Society of London. Series A, Mathematical
and Physical 108 (1947) 300-308

[26] K. Nahshon, J.W. Hutchinson,
Modification of the Gurson model for shear failure, European Journal of Me-
chanics and Solids 27 (2008) 1-17

[27] K. L. Nielsen, J.W. Hutchinson,
Cohesive traction-separation laws for tearing of ductile metal plates, Interna-
tional Journal of Impact Engineering (2011)

[28] A. Pandolfi, P. Krysl, M. Ortiz,
Finite element simulation of ring expansion and fragmentation: The captur-
ing of length and time scales though cohesive models of fracture, International
Journal of Fracture 95 (1999) 279-297

[29] R.F. Recht, T.W. Ipson,
Ballistic perforation dynamics,

Journal of Applied Mechanics 30 (1963) 384-390

[30] K.L. Roe, T. Siegmund,
An irreversible cohesive zone model for interface fatigue crack growth simula-
tion, Engineering Fracture Mechanics 70 (2003) 209-232

[31] SSAB on the Word Wide Web,
http://www.ssab.com/en/Brands/Weldox/Products1/
Weldox – Products, accessed January–June, 2012

[32] V. Tvergaard,
Influence of voids on shear band instabilities under plane strain conditions,
International Journal of Fracture 17 (1981) 389-407

[33] E. Voce,
Journal of the Japan Institute of Metals 74 (1948) 537-562

[34] Z. Xue, M.G. Pontin, F.W. Zokb, J.W. Hutchinson,
Calibration procedures for a computational model of ductile fracture, Engineer-
ing Fracture Mechanics 77 (2010) 492-509

75



Bibliography

[35] C. D. Øien,
Validation of a modified Gurson model LS–DYNA user material sub-routine,
Project report, Norwegian University of Science and Technology, Faculty of
Natural Sciences and Technology (2011)

76



Appendix A

MATLAB script for integration of
the modified Gurson model
constitutive equations

% Assumptions:
% - Plane stress (sigma1 >0 sigma2 =0 sigma3 <0) for |triAx | <1/3.
% - Axisymmetric stress (sigma1 >sigma2=sigma3 or sigma1=sigma2 >sigma3)
% for |triAx |>1/3.

5

clear all
close all
clc

10 % Material parameters
A=1250e6; % Power law hardening
B=200e6;
n=0.30;
f0 =0.002; % Initial void volume fraction

15 q1=1.5; % Some chosen Tvergaard fitting parameters
q2=1;
q3=q2^2;
k_omega =0:2:6; % k_omega range and resolution
triAx = -1/3:.01:1; % Triaxiality range and resolution

20 eps_p_max =10; % Strain limit
d_eps_p =1e-3; % Strain resolution
yFAccuracy =1e-6; % Accuracy in yield function solving

% Preallocating variables
25 sigmaI (1) =0;

locuseps=zeros(size(k_omega),size(triAx));
locustA=zeros(size(k_omega),size(triAx));
locussigma_e=zeros(size(k_omega),size(triAx));
locusf=zeros(size(k_omega),size(triAx));

30

% Running main loop
for l=1: length(k_omega)

% Clearing and preallocating variables
locuscount =0;

35 omega=zeros(size(triAx));
for j=1: length(triAx)

% Resetting variables
eps_p =0: d_eps_p:eps_p_max;
eps_M_p=zeros(size(eps_p));

40 f=zeros(size(eps_p));
f(1)=f0;
sigma_M=zeros(size(eps_p));
sigma_e=zeros(size(eps_p));
dLambda=zeros(size(eps_p));

45 locuscheck =0;

for i=1: length(eps_p)
sigma_M(i)=A+B*eps_M_p(i)^n;
sigma_e(i)=sigma_M(i);

50 yieldFunction =1;
% Obtaining solution for sigma_e by using the Newton -Raphson
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% iterations to equate the yieldFunction to zero.
while abs(yieldFunction)>yFAccuracy

yieldFunction =( sigma_e(i)/sigma_M(i))^2+2*q1*f(i)* ...
55 cosh (3*q2*triAx(j)/2* sigma_e(i)/sigma_M(i)) -1-f(i)^2*q3;

yieldFunctionDerivative =2* sigma_e(i)/sigma_M(i)^2+2*q1* ...
f(i)*3*q2*triAx(j)/(2* sigma_M(i))*sinh (3*q2*triAx(j) ...
/2* sigma_e(i)/sigma_M(i));

sigma_e(i) = sigma_e(i) - yieldFunction/ ...
60 yieldFunctionDerivative;

end
dLambda(i)=sigma_e(i)*d_eps_p /(2*( sigma_e(i)/sigma_M(i))^2+ ...

3*f(i)*q1*q2*triAx(j)*sigma_e(i)/sigma_M(i)*sinh (3*q2* ...
triAx(j)/2* sigma_e(i)/sigma_M(i)));

65 eps_M_p(i+1)=eps_M_p(i)+sigma_e(i)*d_eps_p /((1-f(i))* ...
sigma_M(i));

% Calculating the value of the function omega for the current
% triaxiality value
if i==1

70 if abs(triAx(j)) <1/3
a=3;
b=-9* sigma_e(i)*triAx(j);
c=9* sigma_e(i)^2* triAx(j)^2-sigma_e(i)^2;
sigma1=(-b-sqrt(b^2-4*a*c))/(2*a);

75 sigma3 =3* sigma_e(i)*triAx(j)-sigma1;
J3=2* sigma1 ^3/27- sigma1 ^2* sigma3/9-sigma1*sigma3 ^2/ ...

9+2* sigma3 ^3/27;
omega(j)=1 -(27*J3/(2* sigma_e(i)^3))^2;
sigmaI(j)=sigma1;

80 else
omega(j)=0;
sigmaI(j)=0;

end
end

85 f(i+1)=f(i)+(1-f(i))*dLambda(i)*3*f(i)*q1*q2/sigma_M(i)* ...
sinh (3*q2*triAx(j)/2* sigma_e(i)/sigma_M(i))+k_omega(l)* ...
f(i)*omega(j)*dLambda(i)*2* sigma_e(i)/sigma_M(i)^2;

% Checking for localization and possibly set values of critical
% quantities

90 if i>1
if sigma_e(i)<sigma_e(i-1)

locuscheck =1;
locuscount=locuscount +1;
locuseps(l,locuscount)=eps_p(i);

95 locuseps_M(locuscount)=eps_M_p(i);
locustA(l,locuscount)=triAx(j);
locussigma_e(l,locuscount)=sigma_e(i);
locusf(l,locuscount)=f(i);
plotlength=i;

100 break
end
end

end
if locuscheck ==0

105 plotlength=length(eps_p);
end

end
end
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LS–DYNA material card for
W460E penetraion simulation

*MAT_USER_DEFINED_MATERIAL_MODELS
$ Weldox 460E target
$1 MID RO MT LMC NHV IORTHO IBULK ISHEAR

1 7.85E+03 41 40 35 0 39 40
5 $2 IVECT IFAIL IHTERM IHYPER IEOS LCMA

1 1 0 0 0 40
$

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$ $

10 $ DEFINE THE TWO FOLLOWING CARDS IF AND ONLY IF IORTHO = 1 $

$ $

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$

$ AOPT MAXC XP YP ZP A1 A2 A3
15 $ 0 0 0 0 0 0 0

0
$ V1 V2 V3 D1 D2 D3 BETA
$ 0 0 0 0 0 0 0
$

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

20 $

$3 E PR IFLAG1 IFLAG2 IFLAG3 WC PHI GAMMA
2.100E+11 0.330000 6 1 5 0 1 1

$4 SIGMA0 THETAR1 QR1 THETAR2 QR2 THETAR3 QR3 A
4.1384+8 4.6781+9 2.20+8 3.95+8 4.9153+8 0 0 0

25 $

$$$$$$$$$ EXTENDED GURSON MODEL PARAMETERS $$$$$$$$$$

$

$5 Q1 Q2 FN PN SN KOMG FC FF
1.5000000 1.0000000 0.0000000 0.0000000 1.0000000 5.5000000 0.1000000 0.3000000

30 $6 F0 FCR
0.0001 0.01

$

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$

35 $6 - - THETAX1 QX1 THETAX2 QX2 BULK SHEAR
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2.059E+11 7.895E+10

$7 CSIGMA PSIGMA MSIGMA CQ PQ MQ ALPHA ME
0.01 5.00000 -4 1 0.0000000 0.0000000 0.0000000 1.2000 -5 0.0000000

$

40 $$$$$$$$$$ NB! SPECIFIC HEAT CT IS DEPENDENT ON LENGTH UNIT $$$$$$$$$

$

$8 T T0 TM TC RHO CT BETATQ
293.0000 293.0000 1800.0000 1620.0000 7.85000+3 452.00000 0.9000000

$9 S0 QSA ASA BSA CSA DOTPSA BETA DCR
45 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

$10 MW1 WC0 V01 WCMIN WCMAX MW2 SC0 V02
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

$11 SCMIN SCMAX DELTATC SOFT - - - -
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
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