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Support structures for offshore wind turbines are typically multi-member jackets with 

complex geometry. The standard design process is based a lot on experience and simplified 

analyses, since a full analysis (especially of fatigue damage) is time-consuming. In contrast to 

this intuitive-iterative design process, there exist relatively simple automatic optimization 

techniques that should lead to potentially better designs. One defines an objective function, 

based on the amount of steel used (as an indicator of total cost), and some constraints on the 

response (utilization of joint capacity), and then uses standard search algorithms to find 

locally optimal solutions in design space. 

During this master thesis, a relatively new method for the optimization of multi-member 

support structures for offshore wind turbines shall be implemented and tested. The 

performance of the designs will be evaluated by integrated time-domain analyses with 

FEDEM Windpower, a new software for flexible multibody dynamics of wind turbines. Tools 

for postprocessing already exist that allow for performing joint checks and estimating joint 

fatigue lifetimes. Spall’s simultaneous perturbation algorithm will be implemented to estimate 

a pseudo-gradient in design space and to automatically optimize the design. The method will 

initially be used for a full-height lattice tower, an alternative innovative support structure that 

is part of the NOWITECH 10 MW reference turbine. It is assumed that all sections have 

constant leg and brace dimensions. The optimization will be performed for different site 

conditions, i.e., different load cases, and the sensitivity of the design, both with regard to the 

site conditions and to changes of parameters, will be assessed. The main goal of the project is 

to understand and answer the question whether simulation-based structural optimization with 

Spall’s algorithm is feasible for offshore wind turbine support structures. 
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If there is enough time available, the following optional activities can be performed to round 

off the master thesis:  

1. optimization of other structures, e.g., the UpWind reference jacket; 

2. is it possible to optimize designs if member dimensions are allowed to change (once) 

in each section, and how will this affect the results? 

3. is it possible to optimize designs if sections can have variable heights, and by how 

much will this additional freedom improve designs? 

4. more involved simulation-based optimization methods such as response-surface 

modeling can be tested 

 

Besvarelsen organiseres i henhold til gjeldende retningslinjer. 
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Abstract - English 

Today, design of wind energy support structures is to a large extent a manual process. It 

requires a lot of experience, and the design tools are often based on simplified methods. As 

larger structures are being developed and installations move to larger water-depths, the need 

for efficient and accurate design tools increases. Simulation-based design is a promising 

technique that can help automate this process.  

In this study, Spall’s simultaneous perturbation stochastic approximation (SPSA) method was 

implemented to automatically optimize thickness and diameter of the members in offshore 

lattice tower support structures. The method utilizes a pseudo-gradient based on only two 

function evaluations per iteration, which allows for a computationally efficient process. Each 

evaluation of the design consists of time-domain simulations of the complete wind turbine in 

FEDEM Windpower, subsequent rainflow counting and calculation of joint lifetimes with 

stress concentration factors. The utilization of both ultimate and fatigue limit states is reported 

for each joint. Tower weight was chosen as an indicator of cost, and an objective function 

comprising variables for weight and joint lifetimes was defined. Joint lifetime was ignored 

whenever its value was above the design lifetime of the tower, allowing the algorithm to 

search solely for the lightest design, as long as the design lifetime constraint was sustained. 

The method has shown promising results, and is able to successfully find viable designs, even 

when starting from highly unacceptable starting points. 

Some of the major challenges when using SPSA for lattice support structures are to find a 

good objective function, as well as appropriate values for the parameters controlling 

perturbation and step size. Existing guidelines were followed when doing this calibration, but 

for an efficient search the parameters had to be adapted. Results for both appropriate 

parameters and the optimization itself are reported for the 10MW NOWITECH reference 

turbine on a full-height lattice tower. These results show that superior results can be achieved, 

but at a high cost in terms of computational time. Recommendation is given to use alternative 

methods to come up with a partially optimized staring point, from which the SPSA method 

can optimize further.  
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Samandrag – Norsk 

I dag blir fundament for offshore vindturbinar stort sett utvikla ved hjelp av manuelle 

prosedyrar. Simuleringsverktøya er ofte basert på forenkla metodar, og mykje erfarings-

kunnskap er nødvendig. Ettersom strukturene stadig blir større og blir installert på stadig 

djupare vatn blir behovet for effective og nøyaktige utviklingsverktøy stadig større. 

Simulerings-basert optimialisering er ein lovende teknikk som kan vera med på å 

automatisere denne prosessen.  

I denne studien blei simultaneous perturbation stochastic approximation (SPSA) –metode 

implementert for å automatisk optimalisere tjukkelsen og diameteren av stavane i 

fagverkskonstruksjoner for offshore vindturbiner. Denne metoden etablerer en psaudo-

gradient ved hjelp av kun to evalueringar, noko som gjer metoden effetiv i forhold til andre 

optimaliseringsalgoritmer. Kvar evaluering består av simulering av heile konstruksjonen i 

tids-domenet ved hjelp av FEDEM Windpower, etterfulgt av evaluering av lastsykluser og 

berekning av spenningskonsentrasjonsfaktorer. Ut i fra dette blir blir utnyttelsen av både 

maksimal styrke og utmattingsstyrke rapportert for kvart enkelt knutepunkt. Total vekt blei 

valgt som indikator for kostnaden, og ein evaluerings-funksjon med vekt og levetid for 

knutepunkta som variablar blei definert. Levetida for knutepunkta blei ignorert så lenge dei 

var over den dimensjonerte levetida. Algoritmen søkte dermed utelukkende etter laveste vekt 

så lenge alle krav var oppfylt. Metoden har vist veldig gode resultater og har vore i stand til å 

finna gode design, sjølv frå dårlige utgangspunkt.  

A definere ein god evaluerings-funksjon og finne gode verdiar for parameterane i algoritmen 

er nokon av utfordringane ved å bruke SPSA. Eksisterande retningslinjer blei fulgt under 

denne kalibreringa, men for å forbedre effectiviteten var ytteligare tilpassing nødvendig. 

Resultat fra ei fullstendig optimalisering av NOWITECH sin 10MW referanseturbin på eit 

full-høgde fagverkstårn, i lag med anbefalte verdiar for dei ulike parameterane vil bli 

presentert. Desse resultata viser at overlegne resultat kan bli oppnådd med denne metoden, 

men at konstaden, i form av stort tidsforbruk, er høg. Det blir anbefalt å bruke alternative 

metoder for å komme opp med eit delvis optimalisert startpunkt, for så å bruke SPSA-

metoden for vidare optimalisering.  
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1. Introduction  

1.1 Motivation 

The global demand for energy is increasing every year. Lately, there has been an increasing 

focus on the idea that the world needs to move to more environmentally friendly energy 

production. Offshore wind energy is gaining traction as one of the technologies that will 

enable the world to handle both of these demands. However, the first offshore wind farm was 

installed as late as 1991, and further development needs to be done to improve the economy 

of offshore wind energy. As turbine sizes grow, and installations move to deeper water, the 

cost of the support structure increases significantly [3]. To ensure efficient and economical 

development and production of offshore wind turbines, efficient and robust tools are essential. 

Support structures for offshore wind turbines on intermediate to deep water depths are 

typically multi-membered jacket structures with complex geometry. A critical part of the 

design process is thus to decide layout and dimensions of these members. An efficient, 

automatic tool for doing such a design would be highly desirable.  

 

1.2 Objectives 

This thesis will investigate the use of simultaneous perturbation stochastic approximation 

(SPSA) in the design of lattice support structures for offshore wind energy. The method will 

be evaluated based on its capacity of obtaining an acceptable design, the speed of the 

algorithm, and results compared to current best practice.  

The method will be tested on a reference design that is currently being developed. The goal is 

not to find the optimal design for this particular structure, but use it as a basis for comparison.  

Some important limitations apply: 

- This study will not consider the natural frequency of the structure. As this is a crucial 

feature of any wind turbine, one can argue that it should be included in an 

optimization code. The author does very much agree on that, but given the limited 

time and resources allocated to this master thesis, it had to be left for future work.  

- This study will not consider different load cases. Time was better spent focusing on 

the core implementation of the method and investigating its characteristics based on a 

single load case. Also, for a support structure for wind power to be verified and 

approved it needs to run through a large number of simulations, subject to different 
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load cases. How this process can be integrated and implemented as a part of the 

optimization process is not considered in this report.  

- As there was a limited amount of time available for this study and the main objective, 

with its many lengthy simulations, proved to be very time-consuming, none of the four 

optional activities in the problem description will be covered.  

1.3 Structure of the thesis 

The first part of this thesis will provide background information on optimization in general, 

and on the SPSA method in particular. Some general background information on offshore 

windmill structures and lattice towers will also be given, as that is the problem that will be 

optimized. In chapter 3, a more detailed review of the theory behind the SPSA method will be 

presented. Chapter 4 gives the methodology on which this study is based upon. Results will 

then be given in chapter 5, before some additional discussion and conclusions will be found in 

chapter 6.  
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2. Background 

2.1 Background on optimization methods in general 

Mathematical optimization is the process of formulating and solving mathematically defined 

optimization problems. It is methods for finding the best solution to a problem. Optimization 

is a broad theoretical field, and is applied to countless problems. New applications are 

constantly made possible thanks to ever-increasing computational power and continuous 

development the techniques and algorithms. 

While the very origin of optimization, which is simply a one-dimensional line search or root-

finding problem, has been done for centuries, the history of multivariable optimization 

methods is much shorter. The important Simplex method was introduced in the late 1940s and 

numerous methods have later followed. Important contributions are many, but [5], on finding 

function extreme values for the scalar case, and [6] on finding function extreme values for 

multivariable cases are especially important. [7] 

Stochastic optimization 

Stochastic optimization refers to the minimization (or maximization) of a function when there 

is random noise in the measurements, and/or there is a random choice made in the search 

direction as the algorithm iterates towards a solution. [8]  

Within stochastic optimization we separate between two different approaches. Traditionally 

we have many algorithms that use direct gradient evaluations in a deterministic setting. But 

this information is not always available, and that has propelled a growing interest in 

algorithms that approximate the gradient based only on measurement of an objective function. 

In general, algorithms that utilize direct gradient measures will use fewer iterations to 

converge. But even if this information is possible to attain, it can be very difficult, or it can 

require costly evaluations. Because of this one cannot say that one procedure is superior to the 

other, but normally, if information on gradients is conveniently available, gradient-based 

algorithms are usually preferred.  

Multi-objective optimization 

Multi-objective optimization is the part of the optimization theory that is concerned with 

optimization of problems with multiple, often conflicting, success factors. These success 

factors, or objectives, can be tangible features like weight, cost, production time and speed, or 

more abstract dimensions like customer satisfaction. For the rest of this report we will focus 
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on the former, as they are most relevant to the problem being addressed, and are easier to 

quantify. You usually have a set of alternatives, herby called Ѳ, which is confined within a 

design space, Ω. The design space is an n-dimensional vector space, where n is the number of 

variables in the problem. Ѳ is thus an n-dimensional vector subset to the n-dimensional vector 

space. In a multi-objective optimization there is no trivial measure of success readily 

available. We need to come up with a way to quantify how good an alternative Ѳ is, thus 

giving a way to choose the best solution. For this, an objective function is defined. The 

objective function is designed by the analyst and its main purpose is to weight the different 

objectives involved. For practical mathematical reasons it is usually the goal to minimize this 

function. When this function, say f(Ѳ), is at its minimum, the most favorable combination of 

variables, Ѳ = Ѳ*, is found. Optimization problems are, however, rarely done in a vacuum, 

and you often have to deal with more constraints and conditions. These are often called 

constraint functions and typically look something like:   ( )            [9] . 

2.2 SPSA method 

The SPSA method was introduced by James C. Spall in 1987 [10] and fully analyzed by the 

same author in 1992 [11]. It’s a stochastic optimization technique that doesn’t require direct 

gradient measures, and instead utilizes a simple but highly effective gradient approximation 

based on two evaluations of the objective function. It is relatively easy to implement, and is 

well suited for difficult multivariable problem. The method has since its introduction attracted 

considerable attention, and has been used to solve a broad range of problems. Some of the 

attractive features of the method are:  

- The key selling point for SPSA compared to other SA-algorithms is that it only 

requires two function evaluations per iteration, no matter how many variables there are 

in the problem. The more traditional SA-algorithm: finite difference stochastic 

approximation (FDSA) uses by comparison 2p function evaluations per iteration, 

where p is the number of variables. The fact that the number of evaluations in SPSA is 

independent of the number of variables makes it very suited for large multivariable 

problems.  

- SPSA does not need information on the gradient of the objective function. This 

information is not available in many real life situations, and the fact that it is not 

necessary for SPSA makes the method applicable for many more problems.  

- The function evaluations are in many situations noisy measurements, making the 

search harder. SPSA accommodates noisy measurements, making it a very robust 

algorithm.  

- Because the algorithm is only doing two function evaluations and moves towards the 

steepest descending of the two, it will not always move towards the actual steepest 

decent at that point. This, to some extent, allows it to escape local minima and search 

for global minima. However, to be certain the results are not in a local minimum, 

additional measures have to be taken. A further discussion of this topic will be 

presented later.  

- The SPSA-method is very well documented. It is not just that there are many 

interesting articles available on the subject, but most of them are also very easily 
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available through the SPSA-website [12]. This site provides, along with a very 

comprehensive list of references (with direct links to PDF-files), an easy 

understandable introduction to the method, example MATLAB-code, as well as videos 

demonstrating the method.  

However, the SPSA method is not suited for all problems. The fact that the method is only 

choosing among two function evaluations, the same mechanism that allows it to escape local 

minima, does also slow the method down. Since the gradient approximations are less 

accurate, more iterations are needed to reach a solution. If the problem is unsuited for the 

method, one risk the number of iterations increasing enough to make the total time increase, 

despite the decreased time spent per iteration.  

A more detailed description of the method will be given in chapter 3. 

2.3 Comparison to alternative optimization methods 

SPSA was first introduced in the 1990s, but other similar algorithms have been around for 

much longer. Finite difference stochastic approximation (FDSA) has been the classical 

gradient-free stochastic optimization method, and its foundation was laid by J. Kiefer and J. 

Wolfowitz in 1952 [5]. The principle behind FDSA is the same as for SPSA, and the main 

difference lies in the way perturbations are done. As will be explained in more detail later, 

SPSA does simultaneous perturbations of all the variables resulting in only two function 

evaluations per iteration (with them being opposite directions). FDSA in comparison does 

individual perturbations of each variable on a one-at-a-time basis. For a p-dimensional 

problem this leads to 2p function evaluations per iteration (each variable is perturbed in 

positive and negative directions). This is a very intuitive approach, as it closely replicates the 

way analytical gradients are derived from the partial derivative with respect to all the 

variables. Studies has shown, however, that “under reasonably general conditions, SPSA and 

FDSA achieve the same level of statistical accuracy for a given number of iterations, even 

though SPSA uses p fewer function evaluations than FDSA (because each gradient 

approximation uses only 1/p the number of function evaluations)” [13]. In other words:  “One 

properly chosen simultaneous random change in all the variables in a problem provides as 

much information for optimization as a full set of one-at-a-time changes of each variable.” 

[13]. This is somewhat surprising, but it shows that for applications with expensive function 

evaluations, SPSA can provide large saving compared to FDSA, without losing much on 

convergence rate or accuracy.  

2.4 Offshore wind energy support structures 

Design 

Offshore wind turbines can be mounted either on a bottom-fixed rigid structure, or on a 

floating structure. Floating structures are still uncommon, but several concepts have been 

investigated throughout the last 20 years [14]. Some of the more promising designs are the 

submerged tension-legged platform and the spar buoy [15]. Bottom-fixed structures are the 

dominating solution among wind farms today. Noticeable technical designs among the 

bottom-fixed solutions are: monopile, tripod, gravity foundation, and jackets [16]. Usually, a 
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tubular tower is mounted on top of the respective foundation structures, as illustrated in 

Figure 1, but as discussed in this report and described in the next sub-section also other 

solutions exist.  

Loading and critical factors 

Offshore wind turbines have a very unique and complex loading situation. Unlike onshore 

wind turbines that are only affected by wind, offshore turbines also have wave forces. These 

are, as everybody knows, periodic forces. Making the situation even more complex is the fact 

that wind and waves do not always come from the same direction, and to some extent, one of 

the two can be high, while the other is low. General characteristics that apply to all wind 

turbines are of course also present. These include the important 1p and 3p frequencies that are 

critical in wind turbine design. These are frequencies that correspond to, respectively, one and 

three loading cycles per revolution of the rotors. The 3p excitations are important because a 

blade passes the support structure three times per revolution, causing changes to the loading 

situation (given a 3-bladed turbine). These critical frequencies are often at the same order of 

magnitude as the natural frequency of the structure, which makes it very important that the 

designer is aware of them, and finds a design with a non-problematic natural frequency. This 

is because a structure that is excited by a load with a frequency close to the natural frequency 

of the structure will experience resonance, which can easily result in fatal damage. The 

designer must also avoid the frequencies of waves hitting the structure, as even small forces 

can cause large oscillations of the structure. However, waves are usually less of a problem, 

because of the relatively low frequencies of waves.  

A jacket-like structure will need some additional consideration. There will be a large number 

of relatively slender members with joints connecting them. These members can be excited 

 

Figure 1: Different wind energy support structures. From left to right: monopile, tripod, jacket, gravity, tension-

legged platform, spar buoy [2] 
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locally, in additional to global vibrations of the tower, giving additional contributions to the 

fatigue loading. The result of all of this is a structure with fatigue lifetime as the main 

dimensioning factor. [17]  

Fatigue 

Fatigue is a failure mechanism that causes structures to fail after repeated loading, even 

though the loading itself is well below the ultimate strength of the structure. The failure is 

caused by microscopic cracks that form and grow for each loading cycle. We can split the 

fatigue life into a crack initiation period, and a crack growth period. Research shows that the 

initial cracks are often formed at a very early stage of the lifetime. They are, however, very 

small, and can remain invisible for most of the structure’s lifetime. Different conditions affect 

crack growth in the two periods differently. For instance, surface roughness has negligible 

effect on the crack growth period, but can have a large effect on the crack initiation process. 

Finally, these cracks will go from a micro stage to a macro stage and become large enough to 

cause structural failure. For a lattice structure, the fatigue cracking will almost always happen 

in the joints first. This is due to the higher stress concentration factor in these areas, which is 

the most important parameter for prediction on crack initiation. [18] 

 

2.5 Full-height lattice tower 

As a part of the large NOWITECH research 

program, work has been done to develop a 10 

MW reference turbine. A part of this work is to 

develop a full-height lattice support structure for 

deep water (~60 m). Full-height lattice support 

structures have been used for small turbines 

onshore, and lattice jacket structures have been 

used for sub-surface structures for large offshore 

turbines, but the principle of using a lattice 

structure all the way from the seabed to the rotor-

nacelle-assembly has never been done in a large 

scale for offshore turbines before. A 10MW 

turbine is also much larger than anything 

currently in production and the combination of a 

large turbine, with a large rotor diameter, and 

deep water results in a massive structure. This 

alternative structure has interesting advantages 

over the more traditional tubular tower. If a 

tubular tower has a monopile sub-surface 

foundation, the diameter required for use on deep 

water poses problems for fabrication and pile-

driving. If a jacket structure is used as a 

foundation for the monopile, this requires a 

 

Figure 2: Nowitech reference turbine on full 

height lattice tower 
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transition piece that is both heavy and expensive. A full-height lattice tower would not have 

any of these problems, but one would need four piles per structure, something that can 

complicate installation. Another advantage is that a full-height lattice tower can achieve a 

significantly lower weight by reducing the total consumption of steel. However, fabrication 

will be significantly more expensive, both due to a large number of welded joints, and due to 

the increased size of the structure compared to a monopile/tubular tower design. A major 

challenge concerning full-height lattice towers is the difficulty related to designing and 

optimizing such a complex structure. There are a large number of joints and members; the 

critical design factor will be the fatigue lifetime, and fatigue lifetime analysis is very 

computationally expensive. Research is currently going on to find good optimization 

techniques that can deal with this problem. One would need a fast code that can analyze the 

design, and estimate the fatigue lifetime. Then we would need an efficient optimization 

algorithm that can optimize the design within a reasonable number of iterations / amount of 

time. Daniel Zwick has developed an algorithm that does local optimization of thickness and 

diameter for all sections in the structure based on their respectively fatigue lifetimes. His 

method is able to find attractive designs within as few as 20 iterations. A more detailed 

comparison to Zwick’s method will be given later.  

The NOWITECH program runs from 2009 to 2017. There are six work packages (WP), and 

the total budget is NOK 320 million. [19] [20]  

2.6 Simulation-based optimization 

Today, design of wind energy support structures is to 

a large extent a manual process.  It requires a lot of 

experience, and the design tools are often based on 

simplified methods. Simulation-based optimization is 

a technique where a sequence of different 

configurations is simulated to help obtain a 

configuration that is an optimal, or near the optimal, 

solution to the problem. By constantly learning from 

the previous simulations, the configuration used in the 

next simulation can be improved, and hopefully the 

algorithm is able to automatically find a good design. 

[21] 

Some researchers have been thinking about utilizing 

such simulation-based optimization techniques on 

wind turbine support structures. Most focus on tubular tower design as the lattice tower 

investigated in this study is a new and novel design. Negm and Maalawi [22] show for the 

tubular case how the interior penalty function technique can be used to optimize with respect 

to both mass and stiffness. Long and Moe lays the foundation for optimization of lattice 

suppert structures in [23] and [24]. Their work is also closely related to the work done by 

Zwick [25], which is used for comparison in this report.  

 

Figure 3: Optimization cycle 
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3. Theory 

3.1 SPSA method 

To understand the workings of the SPSA method, let’s start with a step -by -step summary of 

the procedure.  The SPSA algorithm consists of 5 steps. These are:  

1. Coefficients selection. Coefficients are:  ,  ,  ,  , and γ. All of them are used in gain 

sequence    
 

(     ) 
 and    

 

  
. The    parameter controls the step size between 

iterations, while    controls how large a gap there is between the function evaluations in each 

iteration, hereby called perturbation width. k represents the iteration counter, and should 

initially be set to 1. Often -used values for   and γ are 0.602 and 0.101 respectively. These are 

practically effective values, and also the lowest allowable values that satisfy conditions in 

[11]. Asymptotically optimal values are 1 and 1/6 respectively, and these might also be used, 

although the former values often give better performance since they maintain a larger step 

size. Anything in-between these values is of course also a legitimate choice.  A is not always 

included in the algorithm, but can be useful to reduce the very large initial step sizes that 

would often be the result without it. A is typically chosen to be 10% or less of the maximum 

allowed or expected iterations.   and   are  chosen based on the function evaluation values 

and how large step sizes are desirable. This will be described in more detail later.  

2. Generation of a simultaneous perturbation vector   . This has to be a p-dimensional 

(where p  equals the number of variables) vector generated by Monte Carlo satisfying 

conditions outlined in [11]. Among the requirements is that each component of the vector has 

to be independently generated from a zero-mean probability distribution with finite inverse 

moment. A typical choice satisfying these conditions is the Bernoulli ±1 distribution [26]. 

This is also the distribution that has been used throughout this study. 

3. Execution of the objective function evaluation. This is where most of the computational 

effort is put down. First, based on the perturbations found in step 2, calculate new positions 

for the functions evaluations (       ). Secondly, execute the objective function 

evaluations. In our case, that means to run full time-domain simulations of the structure to 

determine loading, followed by subsequent rainflow counting and calculation of joint 

lifetimes with stress concentration factors, before the resulting lifetimes and structural weight 

is inputted into the objective function and two scalar  (       ) and  (       )  -

values are obtained.  



10 

 

4. Gradient approximation. From the results in step 3, the two scalar objective-values 

 (       ) and  (       )  together with the   -vector and    makes up the gradient 

approximation:  

  (  )   
 (       )  (       )

   

[
 
 
 
   
  

   
  

 
   
  
]
 
 
 

  [27] 

5. Updating   . Using previous   -values and the gradient from step 4, the new   -estimate 

is calculated using standard SA form:  

             (  ). 

If constraints are imposed on variables, these should be dealt with at this stage.  

Iteration. Finally, if the solution is satisfactory, the algorithm can be terminated; if not, return 

to step 2, increase the iteration counter with one, (k+1), and iterate.  

 

Selection of a and c 

The a parameter controls the step size. Its value should thus be chosen based on how large a 

step is desired. Spall gives the following guideline for selection of a; “Choose a such that 
 

(   ) 
 times the magnitude of the elements in   (  ) is approximately equal to the smallest of 

the desired change magnitudes among the elements of    in the early iterations“. To follow 

these guidelines, you first need to decide on all the other parameters, then run test-simulations 

to find out how large your   (  ) is.  You also need to assess an appropriate change in your 

   -values.  

Choosing c for noise-free settings is very easy. In this setting c can simply be chosen as some 

small positive number. If the measurements of the objective function are noisy, c can be 

chosen approximately equal to the standard deviation of the measurement noise. 

Convergence, local and global minimum 

Spall provides a detailed discussion on the theory behind SPSA in the original publication on 

the method [11]. Given that his conditions A1 to A5 and Lemma 1 hold, he shows that as 

      

    
  for almost all ω ϵ Ω 

meaning as the number of iterations increase, the algorithm will for almost any case converge 

to the  -value that minimizes the objective function. (    { } denotes the sample space 

generating   ) 

Several papers on SPSA as a global optimization/minimization technique have been 

published. In [28] they show that by injecting noise into the new variable estimate: 

              (  )         
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where    is independent identically distributed N(0,I) injected noise (I = identity matrix), and 

  
  

 

 
      ( )    , and satisfying hypothesis H1 through H8 in [28], the solution will 

converge in probability to the set of global minima of the objective function. The injected 

noise does however make the algorithm more complicated, and it can slow down the 

convergence rate significantly. It is therefore very interesting that they, in the same paper, 

prove that given a different but similar set of assumptions J1 through J12, basic SPSA without 

injected noise does also in probability converge to the set of global minima of the objective 

function. These conditions are, however, not necessarily met without slowing down the 

convergence considerably, and is therefore not of particular interest for our specific problem. 

Regardless of the previous results, there is generally not a risk of converging to a saddle point, 

or to a maximum instead of a minimum, ensuring that the solution obtained is in fact a 

minimum, either a global or a local.  

Extensions, and related methods 

SPSA has great advantages in ease of use and generality [29], but the widespread adoption 

has also resulted in several extensions to the original algorithm. Spall discusses a second-

order SPSA-algorithm in [30], which uses five function evaluations per iteration to estimate 

both the objective function gradient and an inverse Hessian matrix. In [31] a variant of the 

SPSA-method that only requires one function evaluation per iteration is presented. An 

implementation of the SPSA-method for global minimization is discussed by D.C. Chin in 

[32], and in more detail in [28]. Several publications discuss various methods for smoothing 

or averaging of the objective function gradient. This can be either smoothing based on 

measurements from previous iterations [33], or averaging between several measurements per 

iteration [11]. In addition, there are a large number of publications on the theoretical and 

practical use of SPSA method and its subsets, on various specific problems.  
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4. Method 

4.1 Tower 

The tower optimized in this study is shown in Figure 

4. It is a full-height lattice tower with a total height 

of 151 m, of whom 60 are under water. There are 12 

sections with X-bracings on each side, all with 

constant brace angles. There are four legs with 24 m 

distance at the seabed, and 4 m distance at the top. 

There are a total of 240 members in the structure. 

Joints are welded together in K- and X-joints.   

This work has considered optimization with respect 

to member diameter and thickness. Thickness and 

diameter of the members was individually adjusted 

for each section, with different dimensions for legs 

and bracing. This gives a total of 48 variables (12 

sections x 2 (legs and bracings) x 2 (thickness and 

diameter)). Other parameters that could also be 

optimized, but were not considered in this study, 

include: number of legs, number of sections, section 

design (constant brace angle, constant section height 

or variable section height), bottom leg distance, and 

member dimensions changing once or more within 

each section.  

4.2 Analysis 

A complete finite element model of the whole structure, including blades, tower and soil 

properties, built using FEDEM Windpower, was used to execute integrated time domain 

simulations of the tower. This model was adjusted by the optimization code as the dimensions 

were updated.  

Stress concentration factors (SCF) for eight hot spots around the circumference of each 

member intersection were calculated. These, together with forces and moments from the 

integrated analysis, were used to determine the hot spot stress (HSS) at the same locations. 

 

Figure 4: Tower geometry 

K-joint 

Leg member 

Brace 

member 

X-joint 
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The HSS’s, result from rainflow counting of each time series, and S-N curves for tubular 

joints were used to estimate joint lifetimes. [25] 

4.3 Computer code 

The computer code necessary to implement the SPSA- method was written on top of a 

program developed by Daniel Zwick during his PhD-studies on full-height lattice support 

structures for offshore wind [25]. The optimization algorithm itself, along with post-

processing tools, was written in Matlab, while the time-domain simulations were performed in 

FEDEM Windpower. For higher efficiency, Matlab parallel computing toolbox was used to 

run the two simulations, and their post-processing in parallel. The construction of the program 

allowed implementation of the new optimization-algorithms with limited modifications to the 

rest of the program.  

4.4 Enviromental conditions and loading 

For simplicity, one single load case was used to demonstrate this method. This load case 

represents a typical condition for the structure, with the turbine operating at rated speed. An 

irregular sea state was constructed using a JONSWAP spectrum with significant wave height 

    m and mean wave period     s. Wind and wave directions were aligned, with the 

wind being a 13.5m/s turbulent wind field (16% turbulence intensity). The wind and wave 

fields were identical for all simulations and iterations, but the response of the structure did of 

course change as the structure changed.  

4.5 Measurements and noise 

An important feature of the SPSA method that is comprehensively discussed in the literature 

is its ability to cope with noisy measurements. In this study, the simulations were performed 

using identical predefined wind and wave fields. Also, the weight measurements and 

rainflow-counting are without noise and were repeated without change for every run. This 

resulted in noise-free objective function measurements: you could run two simulations with 

the same configuration and get exactly the same result. However, this does not mean that one 

actually gets identical result when running multiple similar optimization runs. For that to 

happen the random numbers that generate the perturbation vector most be reproduced, and 

that is generally not the case (unless that is what is desired). The results will therefor vary for 

identical configurations, but that is due to the random generation of the perturbation vector, 

not noisy measurements.  

Normalization of lifetimes values 

The design lifetime of the structure can change between projects. For generality and 

simplicity, all functions utilizing the lifetime of joints, members or structure used a 

normalized lifetime, where the normalization was with respect to the design lifetime. Because 

of this, from now on we will refer to a lifetime equal to one as the design lifetime. If the 

lifetime is equal to 0.5, the structure has an estimated lifetime that is half that of the design 

lifetime; similarly, if the lifetime is equal to 3.0, the structure has an estimated lifetime that is 



14 

 

three times longer than the design lifetime. The actual design lifetime used in this report was 

20 years.  

Measurements 

The two-sided SPSA method used in this study does two measurements,  (       ) and 

 (       ), to estimate the gradient at   . However, the algorithm does not require 

simulation of the actual performance at   . That means that even though you run the 

simulation long enough for the solution to converge, you have never tested the actual solution. 

It is of course trivial to implement an additional run at   , either for each iteration, or only the 

last, but it would require some extra computational resources. Also, as the optimization runs, 

the two perturbations (       ) and (       ) keep coming closer and closer to    as    

decrease. Based on this, the testing at    was not done in this study; instead, the best of the 

two perturbations, (       ) and (       ), was used to evaluate the solutions. 

Rainflow counting 

Rainflow counting is a technique for counting and analyzing cycles resulting from time 

domain simulations such that the results can be used for lifetime prediction. The technique 

utilizes the successive extremes of the loading sequence, and is well suited for situations 

where the amplitude of the loading is varying [34]. Rainflow counting was used throughout 

this study when estimated fatigue lifetimes were determined.   

Stress concentration factors 

A component, subject to internal stress, that has some kind of disturbance to its shape, like a 

hole or a constriction, will experience an increased stress around these disturbances [35]. The 

stress concentration factor can be defined as the ratio between stresses at certain hot spots, 

relative to the nominal stress range [1]. Stress concentration factors and stresses were 

calculated for a total of eight hot spots around the circumference at the intersection between 

connected members. These were calculated based on guidelines in DNV-RP-C203 [1]. 

Stresses are derived by summation of single stress components from axial, in-plane and out-

of-plane action.  

 

 

Figure 5: Superposition of stresses for tubular joints [1] 
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Time domain simulations 

The time domain simulations were all simulating 120 seconds of real world performance. The 

IEC design standard 61400-3 recommends at least six 600-second simulations, or one one-

hour simulation to ensure “statistical reliability of the estimate of the characteristic load 

effect” [36]. There is therefore an increased uncertainty in the simulation results obtained, but 

since the main goal was to investigate the performance of the SPSA method, not to obtain a 

validated optimal design, this uncertainty was accepted to achieve a faster optimization 

process.  

 

4.6 Procedure 

This work was initiated by a literature study on the SPSA method, along with work to get 

familiarized with the already existing code for optimization of lattice support structures. Next, 

a substantial amount of work was laid down to implement the optimization algorithm and all 

relevant constraints, and incorporate this into the existing pre- and post-processing. This 

phase did of course also include quite a lot of debugging. Once a functioning and stable code 

was ready, the process of finding a good objective function, along with all the corresponding 

parameters, was started. This was a highly time-consuming process, as it included a lot of trial 

and error. For every single run it takes at least 24 hours before one can say anything about its 

performance. And if the run looks promising initially, one often have to let it run for 48-72 

hours before one can say anything conclusive about its performance. In addition, for every 

single objective function that was evaluated, several runs were performed to investigate 

whether other parameters could improve its performance. Halfway through the study a better 

computer was made available, allowing parallelization of the two concurrent function 

evaluations. This allowed more efficient calculation, which made it possible to run more 

iterations in the same amount of time. However, changing the code from serial-runs to parallel 

runs was not entirely trivial and required some work, along with subsequent debugging. When 

a promising objective function was finally identified, a more systematical study on the effect 

of different parameters on that particular function was performed. Also, its tolerance for 

varying staring configurations was investigated by running several different optimization runs 

with different initial guesses for the member dimensions. A substantial effort has of course 

also been laid down to evaluate all the results, devise new improvements and write this report.  

  



16 

 

5. Results 

5.1 Implementation 

One of the main advantages of SPSA relative to other optimization techniques is its relatively 

easy implementation. Still, there is quite a variety of adjustments that can be made to 

accommodate different problems. When implementing SPSA it is only natural to follow the 

steps of the algorithm outlined in section 3.1.  

Steps one and two are completely trivial to implement once parameters and perturbation 

vector is decided on. Step three is a bit more cumbersome. Once the new positions where 

function evaluations shall be performed have been calculated, taking into account constraints, 

the program needs to write an input file that contains all relevant dimensions and parameters 

needed by FEDEM to run the simulation. That input file is sent to FEDEM, who is called to 

execute the simulations. FEDEM then writes its result to a series of files containing the time 

history for all joints in the structure. These files then need to be read by MATLAB, and then 

used by a rainflow-counting algorithm to calculate fatigue lifetime for all joints. The 

dimensions must also be used to calculate the weight, before both the weight and all joint 

lifetimes are used to calculate the objective function value.  

In step 4, an estimated gradient vector is calculated based on the two function evaluations in 

the previous step. In step 5, the new estimate for the variables is calculated, and constraints 

are enforced before the algorithm jumps back to the top and start the next iteration.  

Post processing was implemented by creating various plots and text-files containing critical 

performance measures.  

Constraints 

When working on structural optimization there can be many constraints that need to be 

complied with. In our case, we have two different types of constraints that need 

fundamentally different approaches in their treatment. First, we have constraints that place 

limitations on the variables of the problem. These constraints are relatively easy to comply 

with, as they are well defined, and we have full control over all variables. They are what we 

can call hard explicit constraints. Hard, because no variable can be taken outside the 

constraints, not even during the optimization process, and explicit because they are specified 

directly on the variables [8]. Secondly, we have constraints that place conditions on the result 

of the simulations. These are not as easily complied with, as we don’t have a linear 

relationship between the variables (our input), and the results of the simulations (the output). 
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That means that we don’t know whether the constraints have been breached until after the 

simulations are complete. These are what we can call soft implicit constraints. Soft, because 

the constraints can be breached during the optimization, as long as the final solution is ok. 

Implicit, because they are not placed directly on the variables. A way to deal with such 

constraints is to include them in the objective function. That way they will influence the 

direction the solution goes, and gradually as the iterations goes, the constraints will hopefully 

no longer be breached. In terms of offshore lattice support structures the lifetime of the 

structure is such a soft, implicit constraint. A more detailed description of how the lifetime is 

included in the objective function will be given in the next subsection.  

Let’s go back to simple constraints placed directly upon the variables. These might come from 

a designer setting some upper and lower limits for de dimensions, based on experience, 

production limitations or other factors. Others might come from more trivial reasons, like that 

the wall thickness of a member can’t be larger than the radius of the member. This might 

happened if the upper limit of the thickness is larger than half the lower limit of the diameter.  

The fatigue lifetime of the joint is 

calculated by a rainflow-counting algorithm 

that takes the stress concentration (SCF) 

factors in the joints as one of its inputs. 

These SCFs are calculated using formulas 

given in [1], and have some additional 

constraints. Figure 6 shows all the relevant 

dimensions, and these have to satisfy the 

following constraints:  
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When trying to comply with all of these constraints, you run into some challenges. If a step 

takes one of the variables outside the design space, different constraints yield different 

responses. If the breached constraint is a simple upper or lower limit, the variable can just be 

projected back into the design space. For our design, the minimum allowed member wall 

thickness is 0.005m. If the algorithm should try to use a lower value, say 0.004m, then the 

constraint would kick in and “project” the thickness back to 0.005m. If the breached 

constraint is that the thickness has become larger than radius, one has to decide which 

variable to change. During this study it was chosen to increase the diameter if this constraint 

was breached. If the bracing dimensions were getting bigger than the leg dimensions, it was 

 

Figure 6: Joint dimensions [1] 
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chosen randomly whether to decrease the bracing, or increase the leg. In both cases they 

would be increased or decreased such that the dimensions became equal.  

So far we have discussed constraints breached when the algorithm moves one step forward 

between each iteration. Constraints may, however, also be breached by the small perturbations 

within each iteration. If this happens, one also has to consider what to do with the 

corresponding  -value. If a positive  -value causes the variable    to breach a constraint, the 

situation can be temporarily saved by moving the variable to within the acceptable design 

space. However, if the algorithm finds that perturbation to be the most favorable, it will move 

in the direction indicated by the  -value, meaning it will try to breach the constraint again. 

Fixing this by changing both the  -value and the variable itself is not an option, as you will 

run into the same problem if the opposite perturbation turns out to be the best, and if you set 

the  -value to zero you will probably be stuck at that dimension. The result of all of this is 

that if the algorithm is trying to move outside your design space you just have to project the 

variable back in, leave the  -value unchanged, and hope it will move in the right direction 

next iteration.  

P. Sadegh discusses constrained optimization with SPSA in [37]. Similarly to what was 

implemented in this study, he suggests simply projecting variables that move outside the 

design space to within the design space. However, to avoid the situations where the 

perturbations breach constraints, he suggest projecting such that         is within the 

design space, not just   . This allows the perturbations, who are      long, to be executed 

without interference. Although this was not implemented in this study, it is not believed to 

affect the end results, as the most of the constraints in this study are relatively wide and are 

therefore seldom breached (with the exception that bracing dimensions have to be less than 

leg dimensions).   

Constraining step size 

When optimizing lattice support structures, there are two variables influencing each objective 

measure: thickness and diameter of the members. If both of these increase or decrease at the 

same time it will make a much larger impact on both the weight of the member, and the 

lifetime of its joint, than if the variables move in opposite directions. This is reflected in the 

objective function, which sometimes can have a quite large difference between the two 

corresponding function evaluations in each iteration. Naturally, this is not the only factor 

contributing to the varying differences of the objective function. The objective function 

includes lifetime measures for all the sections in the structure, in addition to the weight-term. 

Since the perturbations are random they will sometimes move in directions that cancel each 

other out, and sometimes move in directions that maximize the difference. Because of all of 

this, the step size between iterations can vary significantly and sometimes become 

inappropriately large. To avoid this it is possible to simply reduce  , but this will slow down 

the entire process. A better way was found to be to set a maximum step-size and thus filter out 

the extremes, while not affecting the majority of the iterations. This maximum value was tried 

to keep as high as possible, to not “disturb” the optimization process more than necessary, and 

was found effective in the  10-15% range of the magnitude of the variables. Other designs 

might have a different sensitivity and require a different maximum step size.  
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Dealing with variables with large differences in magnitude 

When optimizing simultaneously for diameter and thickness of the members, some measures 

have to be taken to account for the very different magnitude of the diameter compared to the 

thickness. Spall suggests in [13] to use matrix scaling of the gain    if information on the 

relative magnitudes is available. This, however, will result in objective function evaluations 

that are heavily dominated by either diameter or thickness, since the perturbations are not 

scaled. The probable reason for this recommendation is that the perturbations should imitate 

an infinitesimal change of the parameters, like they would if calculating gradients based on 

other numerical methods, and would therefore not need scaling. To solely scale    would 

therefore not be wrong, but a scaling of both   , and    seams more intuitive. In this study it 

was therefore chosen to scale both the gain   , and the perturbation-controlling parameter   . 

In this way it is ensured that all variables have approximately the same relative changes, 

giving approximately the same contribution to changes in the objective function. Since the 

objective function returns scalar values, it is, as already mentioned, also necessary to scale the 

gain   . This is so the actual step is in accordance with the measurements taken using a scaled 

  . The amount of scaling was chosen to be 20 for the diameter, compared to 1 for the 

thickness. These values were chosen based on the initial guess used for most of the 

simulations, where the diameter was initially chosen to be 20 times larger than the thickness.  

 

5.2 Objective function 

The objective function is perhaps the most important factor for a successful implementation of 

SPSA. With respect to lattice structure optimization, it needs to serve two purposes. First, it 

needs to ensure that the result satisfies the minimum-lifetime constraint. Secondly, it needs to 

search for the most economical (lightest) solution satisfying that constraint. The fact that we 

have two objectives that are conflicting makes this a multi-objective optimization problem 

[9]. One cannot find one single optimum that satisfies both conditions simultaneously, leading 

to an optimization process that is more dependent on decisions made by the designer. He 

needs to design the objective functions in a way that balances the two objectives. 

The choice of objective function is highly dependent on the problem it is intended to solve, 

and there is little published on how to choose it. During this work several different objective 

functions with several different configurations for the parameters have been investigated. 

Since we have two distinct objectives that should be handled by the objective function, a two 

term function was chosen, one term representing the lifetime constraint and one term 

representing the weight. Some of the considerations that were found to be important during 

this work were:  

- How many lifetime values should be included per joint? For every joint there are eight 

different hot spots, all with lifetimes calculated. All of them can be summed up, or 

averaged, or just the smallest could be used.  

- How many joints should be included? All joints can be included, or just those with 

lifetimes less than a given value.  
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Once decided on the two previous points, one needs to decide on which mathematical 

function to be used. This study has investigated function based on average, root mean square, 

root mean square deviation, curve fitted functions and sums. For those functions that don’t 

naturally have the right sign of the slope, the inverse or the negative can be used.  

Although a steep objective function for lifetimes below design lifetime is preferable to 

efficiently reach the allowed design space, it might increase the time it takes for the algorithm 

to find an economical design. This is because a steep objective function will require a small  , 

the parameter that governs the step size, to ensure that the step size is reasonable. This is of 

particular relevance if the starting point is highly under-dimensioned. An under-dimensioned 

design with a steep objective function will result in large differences in the objective function 

value for the two evaluations performed at each iteration. This again result in a large  ̂ which 

then requires a small   for the step size to be reasonable large. This problem can be 

circumvented by changing   during the optimization. The disadvantage of this measure is that 

it will require more work by the user, and the parameters will be more dependent on the initial 

starting position. A better objective function will be one that is just slightly steeper in the low-

lifetime area than it is for sufficient lifetimes. Of course, the sign of the slopes will have to be 

opposite, making a minimum where the constraint meets the wish for low weight.  

The term representing the weight in the objective function does not have that many obvious 

functions to choose from. It would either be a linear function, so that all changes to the weight 

are equally important, or a convex function to speed up improvement when the weight is high 

relative to the expected outcome.  

Generally, it is important that the function, and especially the lifetime term can only reach its 

minimum if all its inputs are also at its minimum. This means that if some sort of average or 

root mean square value is to be used, care needs to be taken to ensure that the minimum is 

unique. One cannot just average the lifetime values, because a given positive target value can 

be reached even though several members have to low lifetime, as long as there are some that 

outweigh them with longer lifetimes. To circumvent this problem one can e.g. simply average 

over all values less than the target value (If one are averaging values between 0 and 1, an 

average of either 0 or 1 can only be achieved if all inputs are at the same value), or one can 

use the root mean square deviation instead of regular root mean square.  

When trying out a new term in the objective function, one might upset the balance with the 

other terms. This means that for every new lifetime term that should be investigated, several 

different slopes for the weight term might be tried out. The same goes for the other parameters 

in the algorithm. When trying out a new objective function it most likely is required to adjust 

the gain sequence, etc.   

To find a good objective function is absolutely critical for a successful and efficient 

implementation of SPSA. Although it is time-consuming to find a good function, there is 

reason to believe that once a function is obtained, it can be reused for other, similar structures. 

If applying to a structure of significantly different size it might be necessary to change the 

slope of the weight-term, but that can be done relatively easily. The lifetime term, on the other 

hand, is only dependent on the normalized lifetime of the members, and is thus independent of 

the size of the structure.  
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Recommended objective function 

After investigating a large variety of objective functions (see appendix A, and appendix B 

page: B13–B20), the one that proved most successful was:  

(
           

  
)  ∑ ((         )

   (        )
  )

      

 

                               

                        

where the first term represents the weight, and the second the joint-lifetime constraint. The 

slope of the weight term was adjusted to the lifetime-term, and was found to be suitable at 
 

  
     . The subtraction of 1200 in the weight-term has no other purpose than to shift the 

objective function towards zero at optimum weight. The lifetime-term sums over all members 

with a lifetime less than design lifetime. It takes the lowest lifetime within each particular 

member and inserts that value in the function above. (The code does lifetime checks for 

several critical positions for all members.) Using this function, the lifetime term dominates the 

weight term for all insufficient lifetimes, while it is simply a linear function of the weight 

whenever all lifetimes are sufficient. The lifetime term consists of two individual terms. The 

first of the two is the most dominating for the majority of NLT values, while the second 

ensures an increased slope should the NLT values become very small. It does not, however, 

go to infinity if the NLT value goes to zero, and this is because there is nothing to gain on 

that. The algorithm can only handle a certain limited step-size before it does more damage 

than good, thus making it more favorable with a bounded objective function that ensures 

controlled reasonably sized steps.  Figure 7 shows the contribution on the objective function, 

with respect to weight, for a single-variable problem, and Figure 8 shows the contribution on 

the objective function from the lifetime term as a function of lifetime, for a single-variable 

problem. How the objective function looks with respect to member size, which is our main 

variable, has no easy visualization.  

 

Figure 7: Weight term of objective function 

 

Figure 8: Lifetime term of objective function. 1D example 

 



22 

 

A weakness with this function is that there is no theoretical justification behind its shape. It 

has been developed based on experiments and trial and error and chosen based on the author’s 

understanding of a good performing function. Its origin and inspiration is that of the 

calculation of root mean square deviations (RMSD). It started out as a standard RMSD, but a 

wish for a steeper function resulted in the removal of the square root that normally surrounds 

the sum. Also, to put some additional pressure on the lowest lifetime values, the second term 

of the sum was added. This term has negligible effect as long as the normalized lifetime is 

above 0.25. The most controversial aspect might, however, be that we are summing over all 

normalized lifetime values less than one, but the function takes the square of the normalized 

lifetime minus 1.25 (instead of just 1.0). This results in a small jump in the objective function 

every time a member moves from sufficient lifetime to insufficient, or the other way around. 

The jump is quite marginal at 0.0625, and was included to give members that are almost 

strong enough an extra push to the right side. Whether it improves speed is, however, 

uncertain, as it might cause undesirable interruption to the process. Others might find better 

functions, but this one was found to perform satisfactorily, and was therefore found to be 

suitable for the study in question.  

 

5.3 Performance  

The effect of the c and γ parameters 

Once a potentially good configuration was identified, several runs were performed with 

varying values for c to determine what perturbation width is the most favorable. This is of 

course also highly dependent on what other choices have been made throughout the 

implementation, but for the objective function described on the previous page noticeably 

performance gains was observed with c = 0.001, compared to the runs with c equal to 

respectively 0.0005 and 0.002. Figure 9 shows how the weight decreased using the three 

different c-values: 0.0005, 0.001 and 0.002. The general behavior is similar, but we clearly 

see that the weight decreased faster using c = 0.001. This value did also show the best 

performance with respect to acceptable joint lifetime. These tests were performed under 

completely identical conditions. Also the perturbation vectors were identical, something that 

gives us a reasonably fair comparison. However, as we will see next, repeated simulations 

with identical configurations (but with varying perturbation vectors) are necessary to say 

anything conclusive on the performance and effect of various parameters.  
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For the optimization performed with starting point at a low weight (see below), we observed 

some significant performance differences when adjusting the γ-parameter. γ controls how fast 

the perturbation width    decreases as the iterations increase, and was not expected to have 

large influence on performance. When using the asymptotically optimal γ, γ = 1/6, we observe 

a steady decrease of the structural weight throughout the process, while Spalls recommended 

γ value, γ = 0.101, levels out already after 20 iterations. Figure 11 shows    values for the 45 

first iterations with different gamma-values. Figure 10 shows how the development of the 

weight when the only change was the gamma-value. 

 

Figure 10: Optimization progress for varying gamma 

values 

 

Figure 11: Perturbation width,     for varying gamma 

values 

 

 

Figure 9: Optimization progress for varying c values 
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There is of course a significant difference between the two γ-values evaluated, but the steps 

are in both situations usually much bigger than the perturbations, and the  -value is almost 

unchanged because the    in the denominator compensates for the differences in perturbation 

width. As for the investigation of the effect of c, everything except the γ-parameter was 

identical, including the perturbations, so the reason for the big difference in behavior was 

therefore somewhat unclear. Further investigation was therefore performed to determine 

whether this result was due to pure bad luck, or if it could be reproduced for other 

perturbation vectors. Normally, the perturbation vector will be unique for every single 

optimization run. In this study the perturbation vector was controlled by setting a known seed 

in the random number generator creating the perturbations, so that parameter could be 

compared under identical conditions. Two more optimizations was performed using γ = 0.101 

and otherwise equal to the one that leveled out above, but now with different perturbation 

vectors. These optimization runs did not experience the same problems that were just 

identified. Figure 12 shows that these new optimizations behave in a similar manner to the 

first optimization that used γ = 1/6. A second optimization using γ = 1/6 was also performed. 

That one showed a similar unusual behavior, but in the opposite way; it performed drastically 

better than the others.  From this we can learn several things. First, repeated identical 

optimizations must be performed for all configurations to be able to say anything meaningful 

about the relative performance. Secondly, even a well calibrated and functioning optimization 

configuration risk drawing unfortunate perturbation vectors, drastically reducing its 

performance. Though this might increase the time spent before a good solution is obtained, 

there is reason to believe that such an unfortunate series of perturbation vectors will not exist 

for very long, thus allowing the optimization to finally reach a comparable solution sooner or 

later.  

 

Figure 12: Optimization progress.  Two identical runs with gamma = 0.1667, and three identical runs with  

gamma = 0.101 
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The effect of the a and α parameters 

a was the parameter that was most frequently adjusted during this work. a, α and A are the 

parameters controlling step size. For our particular structure, an appropriate step size was 

found to be maximum 0.002m (remember, this is the step for the thickness. The step for the 

diameter will be 20 times larger after scaling). With the selected objective function and 

parameters A and α set to 15 and 0.602 respectively, this called for a to be approximately 

0.000025. The effect of changing a is completely linear, and therefore straightforward; by 

doubling a the step size doubles as well. As the step size had a tendency to drop quicker than 

desired, the α parameter was usually kept at 0.602, the lowest value recommended by Spall. A 

higher α would cause the step size to decrease more rapidly.  

The effect of the A parameter 

The A parameter found in the gain sequence    
 

(     ) 
 is often even left out of the 

algorithm. During this study it was found to be crucial to the performance of the optimization. 

During the initial optimization runs a value between 2 and 4 was often used. This was done 

partly because it was not clear how many iterations were actually needed to find a solution, 

and partly because it was not clear how important the parameter was, and it was thus not 

given any particular attention. As it became clear that a full optimization would require a 

three-digit number of iterations, the A parameter was increased to 15 (Spall recommend 

setting A to 10% or less of the expected number of iterations). The reason why this A 

parameter is so critical is simply that without it,    becomes unmanageably large during the 

first couple of iterations, and then to avoid instability, a has to be reduced. This results in very 

large movements initially, before it rapidly calms down such that the movements are actually 

too small. By introducing A the step size will decrease at a slower and steadier pace, 

increasing performance at late iterations, while not risking instability in the initial phase.  

 

«Locking» 

With a total number of variables of 48, and low-noise function evaluations, convergence 

should be possible within a reasonable number of iterations. Each iteration is, however, very 

computationally expensive, resulting in a high time consumption before a converged solution 

is reached. Even though a short time domain of 120 seconds was used, each iteration took 

approximately 35 minutes on a regular desktop (Intel Xenon X5550 at 2.67GHz). We have 

seen most of the optimization runs run for more than a hundred iterations without even being 

close to convergence, which means that a full optimization can easily take up to a week to 

finish. The speed could of course be improved somewhat on a state-of-the-art computer, but 

as long as the simulation software, in this case FEDEM Windpower, does not benefit from 

multicore-processors the optimization is limited to parallelization of the two concurrent 

function evaluations, resulting in long simulation times. This has led to the investigation of 

techniques for improved convergence-rate.  

Motivated by the desire for improved optimizing speed, small modifications to the algorithm 

have been investigated. Key behind these investigations is the assumption that low, but 
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acceptable joint lifetime is a sign of close to optimal utilization of the structure. Assuming 

such an optimal utilization means that the weight is minimized with the current loading, we 

can let the members in question skip the part of the algorithm that takes one step forward, thus 

avoiding they step out of their assumed favorable dimensions. More and more members are 

“trapped” by this locking mechanism as the iterations go, making it easier for the rest of the 

members to improve their utilization, without ruining the “good” result already obtained.  

This method is, however, not without consequences. One of the motivations behind this study 

was to find a mathematically well-documented method for optimization with respect to 

weight. When implementing these restrictions on the free search, you get closer to the 

algorithms already in use, thus taking away some of the arguments for this new method. 

However, it is possible to relax these restrictions during the optimization, allowing “free 

search” once it closes in on the assumed optimum.  

Some results from this investigation are shown in Figure 13. They indicate that some 

increased performance can be achieved in the early iterations. However, the comparison in 

Figure 13 is not entirely fair, as some of the parameters were different. Especially the A 

parameter, that were 4 for the simulations with locking, and 15 for the one without, might 

have had a big influence on the behavior for the early iterations. One can also observe that the 

optimization runs with locking are faster to reach solutions with acceptable lifetimes. This is 

natural, as with the current implementation, the penalty on lifetime only goes into effect at the 

moment the lifetime actually becomes insufficient. This means that all members with 

sufficient lifetimes, even the one who are practically at the border, will move towards the 

insufficient region to try to reduce the weight until they actually breach the lifetime 

requirement and are pushed back. The locking feature will restrict those members from 

moving. For implementation of the method without locking, it might therefore be smart to 

punish lifetimes,             where        . This way members right at the border 

would have no, or less, incentive to reduce the lifetime further. Enabling locking shows some 

interesting results. Unfortunately, time did not permit redoing the optimization under equal 

conditions, and running enough simulations to give conclusive statements about the 

performance. It would be especially interesting to see if one can maintain the good 

performance one see initially, so that there is a real performance gain all the way till 

convergence (maybe with higher a and A). 
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Different starting points 

If the SPSA method should be utilized on a large scale in commercial software, it would need 

to be relatively robust with respect to the initial guess. Since it is in fact a guess, it would not 

be desirable to put too many restrictions on it. A brief study was performed to investigate how 

the SPSA-implementation reacts to different starting points, and how it affects the time it 

takes to find a solution. The initial guess used in most of the simulations in this study had 

equal dimensions for all legs, and equal dimensions for all bracing. This led to highly under- 

dimensioned members at the lower half of the structure, while the upper half was over- 

dimensioned. To investigate the effect of starting point, two additional optimization runs were 

performed with different starting positions: one where almost all members were highly over- 

dimensioned, and one starting from a configuration where all members had an estimated 

lifetime between 1 and 1.5. The highly over-dimensioned guess had an initial weight of 3250 

tons; the initial guess with some over-dimensioning and some under-dimensioning (mixed 

starting point) had an initial weight of 1700 tons; and the guess where all members had a 

lifetime between 1 and 1.5 had an initial weight of 1100. The three starting points can be seen 

in Figure 14, Figure 15 and Figure 17 respectively. As we can see from Figure 16 there are no 

surprises in the different behaviors. When there is a lot of excess weight, it allows for some 

increased speed, especially in the beginning when step sizes are large, but it is not enough to 

counterbalance the fact that there is a much larger potential for optimization that requires 

more iterations to reach a good design. A very large number of iterations would therefore be 

needed to optimize the over-dimensioned staring point.  

 

 

Figure 13: Optimization with, and without locking. 
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Figure 14: Minimum lifetime values for all sections,  

over-dimensioned starting point 

Figure 15: Minimum lifetime values for all sections, 

mixed starting point 

 

Figure 16: Optimization progress with different staring points 
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The Minimization of Lifetimes method 

As previously mentioned, the SPSA 

method investigated in this study was 

implemented on top of an already 

existing program for optimization of 

lattice support structures [25]. That 

program is still a work in progress, but 

the current best results will be used here 

for comparison. The method used in the 

program is not based on any particular 

mathematical optimization technique, so 

we will just call it the “Minimization of 

Lifetimes” method. It is like the SPSA 

method based on an iterative approach. 

One time-domain simulation is 

performed per iteration. Based on these 

results the lifetime values for each node 

are evaluated. If a joint has an 

insufficient lifetime, its dimensions are 

increased a predefined amount, with a 

preference on increasing the thickness 

before the diameter. This is because 

studies show that an increase in thickness 

has a better ratio between increased lifetime and increased weight than that of increasing 

diameter. If a joint has an unnecessary high lifetime, its dimensions are reduced a similar 

predefined amount.  This process is continued until all joints have a minimum lifetime within 

1 to 1.5 times the design lifetime. Nowhere in this algorithm does the weight affect the result; 

it is just assumed that the weight will be at its lowest when all joints have a high utilization. 

As shown in Figure 17 this method produces a structure, with all joint lifetimes above the 

minimum, at 1197 tons. This is done in just 19 iterations, making it a very fast method. The 

method does not, however,  search for other solutions in the vicinity that might utilize the 

material even better. The SPSA method is not capable of providing a solution in this few 

iterations, due to the random approach of the SPSA. Many of the changes of the variables in 

SPSA will actually make the structure worse than it was, but given enough iterations, these 

will be canceled out and you are left with a good design. Figure 18 show the optimization 

progress for the Minimization of Lifetimes method, compared to that of the SPSA method. 

Clearly, the convergence rate is not even comparable; the Minimization method reaches its 

solution in only 19 iterations, while the SPSA method uses 10 times as many, in addition to 

using twice as many function evaluations per iteration. But as we can see, the SPSA method is 

able to find solutions with significantly lower weight. Both methods clearly have their 

strengths and weaknesses, and to have a repertoire of different methods, with different 

characteristics, can be very useful to the designer. If he wants a quick decent solution, the 

Minimization method is a good choice, while he would need to use the SPSA method if he 

 

Figure 17: Minimum lifetime values for all sections, best 

result obtained with Minimization method 
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wants to find the best possible solution. In the next section we will take a look at how these 

two methods can be combined for an efficient and accurate optimization.   

 

Starting from a «good» configuration 

To investigate whether the SPSA can further improve on the solution from the Minimization 

of Lifetimes method, an optimization run was performed from the best solution obtained by 

that method. Because it was believed that the starting point was relatively near the optimal 

solution, both step size and perturbation width were reduced compared to a “normal” 

optimization. This is because in a “normal” optimization run, the algorithm would have taken 

several tens of iteration to reach a solution comparatively good to this starting point, thus 

giving the algorithm time to reduce    and    such that step size and perturbation width 

would be similarly small.  

The result of this investigation was a structure that was more than 5% lighter than what was 

previously achieved within 40 iterations, and a full 8% lighter after 110 iterations. Figure 19 

shows how the weight and the objective function decreased as the number of iterations 

increased. As we can see from the graphs, there is no sign of convergence as none of the 

graphs show signs of leveling out at the end. This means that if the optimization were allowed 

to run longer, it would probably improve the result even further. (Practical reasons limited the 

amount of time available for simulation.)  

 

 

 

Figure 18: Optimization progress for the Minimization of Lifetime's method compared to that of the SPSA method 
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This is indeed a very interesting result. First, it shows that SPSA’s ability to find good 

structural designs is unquestionable. But as we will see next, these results surpass what was 

achieved even after three times as many iterations, when the starting point was not equally 

good. It is therefore clear that SPSA is not a method that can be used without care. To go from 

an unfavorable starting point to a good final design requires an unserviceable amount of 

iterations; a good starting point is therefore critical if efficiency is important to the designer. 

A bad starting point does not only represent a challenge because of large time consumption 

and tie up of computational power; it is also more challenging to find appropriate parameters 

for such long runs. Parameters α and γ control how fast perturbation width and step size 

decline as a function of the number of iterations, and more effort would need to be used to 

calibrate these parameters if long runs (100+ iterations) are expected.  

It is also interesting to see that the lightest design currently identified is not the design where 

all member lifetimes are shifted as close to the design lifetime as possible. (Compare Figure 

17, which is the result of the Minimization of Lifetimes method, to Figure 20, which is the 

result of the SPSA method.) However, this does not necessarily mean that lightest possible 

design does not have most of the member lifetimes equal to the design lifetime. The only 

thing we can conclusively say is between the two best results currently obtained, the one with 

the lowest lifetime values is not the lightest. This can have several reasons. The lightest 

design might have more favorable ratios between thickness and diameter, resulting in lower 

stress concentration factors. It might also have a more favorable distribution of the load 

between legs and bracings, something that is not easy to account for in the more “manual” 

Minimization of Lifetimes algorithm. There might also be a more favorable ratio of the 

dimensions between adjacent sections. A major strength of the SPSA method is that it doesn’t 

 

Figure 19: Optimization progress for weight on the left and objective function on the right, staring from the best result 

obtained by the Minimization of Lifetime's method 
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need to consider factors like this. It simply tries two different designs, and moves towards the 

lightest. It is, however, reason to believe additional weight savings are possible if the 

utilization of this improved design can be improved. In other words, by shifting all joint 

lifetimes closer to the design lifetime, while still preserving the favorable ratios identified by 

the SPSA method. Figure 21 illustrates how the dimension has been changed by the SPSA 

algorithm.   

 

  

 

Figure 20: Minimum lifetime values for all sections, best 

results obtained with the SPSA method 

 

Figure 21: Dimensions before (green) and after (blue) optimization 

 



33 

 

A full-length optimization 

During most of this study, optimization runs were not allowed to run for more than between 

100 and 150 iterations. To get an impression of the behavior in the later part of the 

optimization process, one optimization run was allowed to run for more than 300 iterations. 

Based on the accumulated experience from the other simulations, the following parameters 

were chosen:  

c = 0.0005  a = 0.000025 γ = 0.1667 α = 0.602 A = 15 

These parameters were not chosen to be exceptionally fast in the beginning, but more to 

emphasize consistent performance throughout. As we can see in Figure 22, the weight 

decreases steadily for almost 200 iterations. The objective function decreases a bit more 

rapidly in the beginning, when the worst lifetimes are filtered out, and then flattens out 

gradually as the number of iterations increases.  

Unfortunately, almost none of the iterations provide acceptable design in terms of lifetimes. 

One design around hundred iterations, and a couple at the end, are all that meet the necessary 

lifetime requirements (indicated by arrows in Figure 22). A probable solution, as already 

mentioned, that would help on this situation would be to set the minimum of the objective 

function a bit into the approved lifetime domain. For even comparison to the other plots, this 

was not done here. For the majority of the iterations, however, the members breaching the 

constraint were few and had only barely too low lifetimes, so they could easily be adjusted 

manually if that was necessary. On the positive side, we can see that if the optimization is 

allowed to run long enough, the solution is actually getting very close to what we achieved 

when we started at a much better starting point. One of the approved designs towards the end 

 

Figure 22: Optimization progress for full-length optimization. Arrows point to approved designs 
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had a weight of 1132 tons, only 28 tons behind what was achieved when starting from a 1200 

ton starting point. Some of the other iterations were even lighter, but then with some of the 

members slightly under the design lifetime. Figure 23 shows a curve fitted with a second 

order polynomial to the weight measurements. It demonstrates the tendency of the weight and 

looks to be converging towards just over 1100 tons. This gives an indication of what it takes 

for the method to converge, but the results shown here, with little change after 200 iterations, 

do not translate directly to other cases. A different starting point might require more or less 

iterations to converge, but it shows that convergence is possible, and can be expected within a 

three-digit amount of iterations. Even though this proves that given enough time, the SPSA 

can converge towards a good solution, it is still reason to question whether any designer 

would have the time to wait for so many time-consuming iterations to finish before he gets his 

results.  

 

 

  

 

Figure 23: Green curve showing the tendency of the 

weight (blue) 
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5.4 Accuracy  

In Figure 24 the member dimensions for the 1132 ton design found in the full-length 

optimization is shown. With the exception of brace thickness, there are very few similarities 

with the dimensions shown in Figure 21, which are the final dimensions after optimizing from 

a good starting point. There is 28 tons separating them, and neither of the optimizations was 

fully converged, but the difference is so significant that it seems unlikely that they are 

converging towards the same solutions. These are interesting results that might indicate that 

there are several local minima’s in the design space. A more thorough investigation would be 

necessary to determine whether the method will converge towards the same solution, 

independent of the starting position and parameters chosen (for the same objective function). 

This has unfortunately not been possible to carry out, as it would require optimization runs to 

run until they converge, and during the study it became clear that that would require more 

iterations and more computational time than what was possible within the assigned timeframe.  

 

 

Figure 24: Dimensions before (green) and after (blue) optimization 
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6. Discussion and conclusion 

6.1 Discussion 

The SPSA method has some appreciated qualities, and has shown promising results in 

optimizing structural design of offshore lattice towers. It is, however, not given in which stage 

of the design process it has the greatest potential. To rely solely on SPSA to find a good 

design from a very rough first guess can prove inordinately expensive in terms of 

computational effort and time consumption. Yet to find a decent first guess does not 

necessarily require very much work, and can be time well spent. Despite good final designs 

with the SPSA method, in terms of computational time it seems difficult to compete with the 

Minimization of Lifetimes algorithm. That algorithm does take some shortcuts, which results 

in slightly lesser optimal results, but it is superior in terms of computational time. Not only 

does it produce good results after few iterations, it also makes do with only one function 

evaluation per iteration. A very promising procedure will be to first use the Minimization 

algorithm to find a “refined guess” from which an SPSA optimization can be performed. This 

will make the work easy for the designer, as he can make a first starting point without giving 

much thought to its position, since the minimization algorithm can take almost any input and 

bring it to a reasonable good design within a few iterations. Then the final optimization is left 

to the SPSA method, who initially rapidly improves the design, but can also pretty much keep 

improving as long as it is allowed to run, albeit at a lower rate. An experienced designer 

should also, by using a couple of manual trial simulations, be able to produce a decent first 

guess. Then this can be improved further directly with the SPSA method, allowing for a 

simpler code.  

A concern with doing optimization on a detail level this high is the increased complexity in 

production. Unless adjustments are done after the optimization, there will be a large number 

of members where almost all have different dimensions. This will complicate the logistics 

related to production. Some economy of scale is of course possible for large wind farms, 

given that many of the turbines are optimized for the same site conditions. But with more 

efficient optimization techniques it is possible to optimize each individual structure, at least if 

there are differences in water depth, etc. This could again result in every single structure being 

unique, with its own dimensions on every member. Taking the optimization to the extreme is 

therefore not necessarily a smart move, and a thorough economical evaluation is necessary. 

This is regardless outside the scope of this thesis, where total weight of the structure is used 

consistently as the indicator of cost.  
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All simulations in this report have been on just one load case. How to optimize a structure that 

satisfies all the hundreds of different load cases suggested by IEC and other design standards 

is a major challenge. Given the time consumption spent to run one SPSA optimization, it is 

clearly not practically possible to do this for all load cases. Some load cases are naturally 

more demanding on the structure than others. An idea could be to identify some of the more 

challenging load cases, and run the optimization using SPSA on them. This will make a good 

foundation for other techniques to adjust the design if it proves insufficient under other loads. 

The idea would be to use SPSA (perhaps in a combination with the Minimization of Lifetimes 

method) to come up with a good foundation for further development, not to use it as the 

concluding stage of the development. More thorough analysis of this problem is suggested as 

future work.  

This report has focused exclusively on fatigue limit state (FLS) lifetime. This was done 

because the load case that was used was a load case that typically leads to a design driven by 

fatigue. However, this is not the case for all load cases, and for those situations there is no 

problem using the same method to optimize with respect to ultimate limit state (ULS). The 

code written in this study does even extract ULS-values, and can easily be reconfigured to use 

those for optimization instead of the FLS values. It would also, with some modifications, be 

possible to use both the FLS and the ULS values simultaneously as input to the optimization.  

Results shown in this report is based on a limited number of simulations. To accurately study 

the effect of the various parameters, a systematical approach with many more simulations 

would be required. It has therefore not been possible to give conclusive recommendations on 

values for the parameter. Optimal parameters might not even be possible to obtain, as both the 

perturbations and the performance will change from time to time, and the best parameters one 

can find is those who perform best in average. However, the result does very clearly show the 

potential of the method and could therefore be seen as a “proof of concept”. Based on the 

many simulations that have been performed, a good understanding of the workings of the 

method has been achieved, and when the underlying data has been insufficient for conclusive 

results, further investigation has been suggested.   

 

6.2 Conclusion  

This paper has shown that simulation- based optimization using Spall’s SPSA method is 

indeed a viable technique for optimization of lattice support structures for offshore wind 

energy. The method has been implemented and tested on a full height reference tower, and it 

has, through several examples, been shown that the method is able to find solutions that are 

on par with or superior to those of algorithms currently in use. The greatest concern with the 

method is the number of iterations it requires to reach a solution. The per-iteration 

performance is much lower than alternative methods, e.g. the Minimization of Lifetimes 

method developed by D. Zwick. However, if the initial starting point is well thought out, 

significant savings, in terms of iterations used, can be achieved. It is therefore suggested to 

use other methods (e.g. the Minimization of Lifetimes method) to come up with a refined 

starting point, and then use the SPSA method for further optimization.  
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6.3 Future work 

Although this study has illustrated and proved some important aspects of use of the SPSA 

method in structural design of offshore wind turbines, there are still unanswered questions 

waiting for additional research.  Here are some suggestions for future work: 

- Include more variables. Number of legs, number of sections, variable section height, 

bottom leg distance and top leg distance are all variables with major impact on 

structural performance. It would be interesting to see if these variables can be included 

in the same optimization process, and how that affects the performance of the 

optimization.  

- Account for natural frequency. The current algorithm does not account for the natural 

frequency of the structure and can therefore produce a final solution that is unsuitable 

for actual implementation. Further research could investigate whether it is possible to 

include frequency as a factor in the optimization process, helping it avoid critical 

frequencies like 1p and 3p.  

- During this study, all optimization has been done based on one single load case. Real 

world development does, however, require testing with hundreds of load cases, if 

design standard recommendations are to be followed. Further work can therefore 

investigate how the optimization procedure can coexist and interact with this large 

number of load cases, resulting in a design that is in guaranteed to comply with all 

requirements.  
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 -    Objective functions  Appendix A 

Selected tested objective functions with accompanying comments. Complete (and more 

accurate) list can be found as code in appendix B.  

Objective function Comments 

All function does only consider the lowest lifetime value registered per joint. Some only 

consider the lowest value in the whole member. 
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Does not work. An optimal root mean 

squared value can be achieved even though 

several lifetimes are insufficient. Might 
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One lifetime was not enough to decide 
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Working very well! Recommended!  
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 -    Code Appendix B 

The most relevant code is given here. The “Main optimization code” contains the actual optimization 

algorithm, while the “Objective function code” contains the code for the various objective functions that has 

been investigated. For the program to run, several other files are necessary.  

 

Main optimization code: 
Input: 
project: The name of the project 

leg_num: number of legs 

sec_num: number of sections 

members: member dimensions 

tow_hei: height of the tower 

top_dis: distance between legs at top 

bot_dis: distance between legs at bottom 

NodeK: K-joint locations 

NodeX: X-joint locations 

wat-dep: water depth 

ang_opt: Constant (1) or varying(2) brace angle 

locations: folder directories 

 

 

function SPSA_fullpara_optimization(project, leg_num, sec_num, members, tow_hei, 

top_dis, bot_dis, NodeK, NodeX, ang_bra_ho, wat_dep, ang_opt, locations) 

  
% ===================================================================== 
% FUNCTION SPSA_optimization 
% ===================================================================== 
% written by Håvard Molde, 03/2012 
% based on "optimization" written by Daniel Zwick, 10/2011 

  

  
% --------------------------------------------------------------------- 
% 0) predefinitions 
% --------------------------------------------------------------------- 

     
    % Open matlabpool for increased computational speed (parallization) 
        distcomp.feature( 'LocalUseMpiexec', false );         
        matlabpool open 2;   

  
    % including soil modelling in FEDEM: (1)-true / (0)-false 
        soil=1; 

  
    % counter for number of FEDEM runs 
        runs=0; 
        runs_err=0; 

         
    % variable for record of dimension changes 
        dimch=cell(sec_num); 

  
    % split initial project name 
        pro1=project(1:8); 
        pro2=str2double(project(10:12)); 

         
    % create model batch, data and figures directory 
        dir_nam{1}=[locations{1,2} '\FEDEM\Analysis\FEDEM_Models\' pro1]; 
        dir_nam{2}=[locations{1,2} '\FEDEM\PostProcessing\data\' pro1]; 
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        dir_nam{3}=[locations{1,2} '\FEDEM\PostProcessing\figures\' pro1]; 
        for i=1:length(dir_nam) 
            if (exist(dir_nam{i},'dir') ~= 2) 
                cmd_dir{i}=sprintf('mkdir %s', dir_nam{i}); 
                system(cmd_dir{i}); 
            end 
        end 

         

  

         
    % create validity matrix for member dimensions, limited by SCF parameters 
    fil_nam=['scf_validity/' num2str(sec_num) 'sec_935_' num2str(bot_dis) 'm.mat']; 
    if (exist(fil_nam,'file') == 2) 
        load(fil_nam) 
    else 

  
        % diameter range 
            D=0.001:0.001:2.0;   % NB! maximum diameter size 2,0m 

         
        % thickness range 
            T=0.001:0.001:0.1;   % NB! maximum thickness size 100mm 

  
        % reserve member matrix for all possible and allowed values 
            mem_matrix=cell(sec_num); 
            mem_valid=zeros(length(D),length(T)); 

        
        % calculation for one brace-to-leg rate: 0.50 
            for i=1:length(T) 
                for j=1:length(D) 
                    thi=T(i); 
                    dia=D(j); 
                    for k=1:sec_num 
                        mem_matrix{k}=[dia 0.5*dia thi 0.5*thi]; 
                    end 
                    % stress concentration factor 

[scf val]=scf_calculation(sec_num, mem_matrix, tow_hei,…   

top_dis, bot_dis, ang_bra_ho); 
                    if (mean(mean(val(:,:))) == 1)   % valid SCF 
                        mem_valid(int16(1000*dia),int16(1000*thi))=1; 
                    end 
                end 
            end 
            save(fil_nam, 'mem_valid')  
    end 

  

  
% --------------------------------------------------------------------- 
% 1) START OPTIMIZATION LOOP 
% --------------------------------------------------------------------- 

  
    % Initiation and coefficient selection 
        alpha = 0.602;                       

        gamma = 0.101;  

        A = 15;     

        a = 0.000005;                          
        c = 0.0002;                           

       
    % Choose objective-function 
        obj_func = 24; 

         
    % number of members changed for initial design 
        nmc=0; 
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    % tower weight for initial design [kg] 
        M(1)=weight_calculation(leg_num, sec_num, members, NodeK)/1000;        

     
    % write to development-file. Can be removed 

  fidx=fopen([locations{2,1} '\Matlab\lists\' project(1:8) 

 '_development.txt'],'at'); 
        fprintf(fidx, 'Constants:\n'); 
   fprintf(fidx, 'a = %d, c = %d, A = %d, alpha = %d, gamma = %d\n', a, c, A,… 

   alpha, gamma); 
        fprintf(fidx, '\n'); 
        fprintf(fidx, 'Initial members dimentions: \n'); 
        for i = sec_num:-1:1 
            fprintf(fidx, '% 1.4f % 1.4f % 1.4f % 1.4f\n', members{i}(1,1),…  

      members{i}(1,2), members{i}(1,3), members{i}(1,4)); 
        end 
        fprintf(fidx, '\n'); 
        fclose(fidx);  

  

         
    iter = 0;     
    opt_run=0; 
    while (opt_run == 0) 
        iter = iter+1; 

                 
        ak=a/(iter+1+A)^alpha; 
        ck=c/(iter+1)^gamma;                 

         
    % leveling of dimensions between diameter and thickness 
        lev = [20 20 1 1 1 1 1 1]; 

         
    % Generate a SP-vector 
        delta = zeros(sec_num,8); 
        for i = 1:sec_num 
            delta(i,1:4) = 2*round(rand(1,4))-1;                       
            members_plus{i} = members{i}+ck*delta(i,:).*lev;           
            members_minus{i} = members{i}-ck*delta(i,:).*lev;  

             
            % Checking that leg dimentions are larger than brace dimentions  

  % Picking randomly the largest or smallest value 
            for j = [1 3] 
                if members_plus{i}(j+1) > members_plus{i}(j)         
                    dir = 2*round(rand(1,1))-1;  
                    members_plus{i}(j+1/2*(1+dir)) = members_plus{i}(j+1/2*(1-dir));    
                end  
                if members_minus{i}(j+1) > members_minus{i}(j) 
                    dir = 2*round(rand(1,1))-1;  
                    members_minus{i}(j+1/2*(1+dir)) = members_minus{i}(j+1/2*(1-dir));  
                end  
            end 

                         
            % Checking that every dimentions are above minimum: 
                members_minus{i}(members_minus{i}(1:2) < 0.1) = 0.1; 
                members_minus{i}(members_minus{i}(1:4) < 0.005) = 0.005; 
                members_plus{i}(members_plus{i}(1:2) < 0.1) = 0.1; 
                members_plus{i}(members_plus{i}(1:4) < 0.005) = 0.005; 

                        

            
            % checking that the diameter is larger then twise the tickness: 
            for j = [1 2] 
                if 2*members_plus{i}(j+2) > members_plus{i}(j)  
                    members_plus{i}(j) = 2*members_plus{i}(j+2); 
                elseif 2*members_minus{i}(j+2) > members_minus{i}(j) 
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                    members_minus{i}(j) = 2*members_minus{i}(j+2); 
                end 
            end 
        end 

         
        % Check that top leg diameter is larger than minimum (larger 
        % requirements then the rest of the tower) 
            members_minus{sec_num}(members_minus{sec_num}(1) < 0.5) = 0.5; 
            members_plus{sec_num}(members_plus{sec_num}(1) < 0.5) = 0.5; 
            if members_minus{sec_num}(3) < 0.06 
                members_minus{sec_num}(3) = 0.06; 
            end 
            if members_plus{sec_num}(3) < 0.06 
                members_plus{sec_num}(3) = 0.06; 
            end 

  
        % write to development-file. Can be removed 
            fidx=fopen([locations{2,1} '\Matlab\lists\' project(1:8)    

      '_development.txt'],'at'); 
            fprintf(fidx, 'Members_plus dimentions: \n'); 
            for i = sec_num:-1:1 
                fprintf(fidx, '% 1.4f % 1.4f % 1.4f % 1.4f\n', members_plus{i}(1,1),… 

         members_plus{i}(1,2), members_plus{i}(1,3), 

members_plus{i}(1,4)); 
            end 
            fprintf(fidx, '\n'); 
            fprintf(fidx, 'Members_minus dimentions: \n'); 
            for i = sec_num:-1:1 
                fprintf(fidx, '% 1.4f % 1.4f % 1.4f % 1.4f\n', members_minus{i}(1,1),… 

    members_minus{i}(1,2), members_minus{i}(1,3), 

members_minus{i}(1,4)); 
            end 
            fprintf(fidx, '\n'); 
            fclose(fidx);  

         

  

         
    % update cross sectional area and moment of inertia for new design 
        for i=1:sec_num 
            for k=1:2 
                members_plus{i}(4+k) = pi*((members_plus{i}(k))^2-(members_plus{i}(k)-… 

    2*members_plus{i}(k+2))^2)/4; 
                members_plus{i}(6+k) = pi*((members_plus{i}(k))^4-(members_plus{i}(k)-… 

    2*members_plus{i}(k+2))^4)/64; 

                 
                members_minus{i}(4+k) = pi*((members_minus{i}(k))^2-…    

     (members_minus{i}(k)-2*members_minus{i}(k+2))^2)/4; 
                members_minus{i}(6+k) = pi*((members_minus{i}(k))^4-…     

       (members_minus{i}(k)-2*members_minus{i}(k+2))^4)/64; 
            end 
        end 

         

         
    % header 
        % actual time 
            clk=datestr(clock); 
        % tower weight saved in last iteration 
            M(2)=weight_calculation(leg_num, sec_num, members, NodeK)/1000; 
            tws=M(1)-M(2); 
            M(1)=M(2); 
        % time since start 
            % a) seconds 
                tss_s=toc; 
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            % b) minutes and seconds 
                tss_m=fix(tss_s/60); 
                tss_s=rem(tss_s,60); 
            % c) hours, minutes and seconds 
                tss_h=fix(tss_m/60); 
                tss_m=rem(tss_m,60); 

         
clc 
fprintf('+-----------------------------------------------------------+\n') 
fprintf('| Lattice Tower Optimization, %s          |\n',clk) 
fprintf('+-----------------------------------------------------------+\n') 
fprintf('| Number of runs performed (error):               %3.0f (%3.0f) |\n',runs,… 

 runs_err); 
fprintf('| Number of iteration completed :                       %3.0f |\n',iter-1); 
fprintf('| Number of members changed in last iteration:          %3.0f |\n',nmc); 
fprintf('| Tower weight saved in last iteration [t]:             %3.0f |\n',tws); 
fprintf('| Time since start:                            %3.0fh %2.0fm %2.0fs… 

 |\n',tss_h,tss_m,tss_s); 
fprintf('+-----------------------------------------------------------+\n') 
fprintf('\n\n') 

      

  
project_a = [project(1:12) 'a']; 
project_b = [project(1:12) 'b']; 

  
% write FEDEM input file using slightly increased dimensions 
    fedem_input(project_a, sec_num, members_plus, soil, locations) 
    fprintf('\n') 
% write FEDEM input file using slightly decreased dimensions 
    fedem_input(project_b, sec_num, members_minus, soil, locations) 
    fprintf('\n') 

  
    lock_limit = 0; 

 
close all hidden 

       
parfor eval = 1:2          
    % 1 - evaluation using added delta-values 
    % 2 - evaluation using subtracted delta-values 

     

     
    % --------------------------------------------------------------------- 
    % 2) build and run FEDEM model 
    % --------------------------------------------------------------------- 

  

                    
     if eval == 1; 

                 
         % run FEDEM analysis 
             fil_mod=[locations{1,2} '\FEDEM\Analysis\FEDEM_Models\' project_a(1:8)… 

    '\' project_a '.fmm']; 
             cmd_run=sprintf('"C:\\Program Files (x86)\\Fedem Simulation Software R6.0-

…    i6\\fedem.exe" -f %s -solve dynamics',fil_mod); 
             fprintf([project_a ': Start FEDEM run ...\n']) 
             system(cmd_run); 
             fprintf([project_a ': FEDEM run finished\n']) 

                 
         % ULS/FLS analysis 
             sim_fil=[locations{1,1} '/FEDEM/Analysis/FEDEM_Models/' project_a(1:8)… 

    '/' project_a '_RDB/response_0001/']; 
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             SPSA_HSS_analysis(project_a, leg_num, sec_num, members_plus, tow_hei,… 

     top_dis, bot_dis, NodeK, NodeX, ang_bra_ho, sim_fil, 

lock_limit,… 

    locations) 

                 
     else 
         pause(10) 

                 
         % run FEDEM analysis 
             fil_mod=[locations{1,2} '\FEDEM\Analysis\FEDEM_Models\' project_b(1:8)…  

   '\' project_b '.fmm']; 
             cmd_run=sprintf('"C:\\Program Files (x86)\\Fedem Simulation Software R6.0-

…    i6\\fedem.exe" -f %s -solve dynamics',fil_mod); 
             fprintf([project_b ': Start FEDEM run ...\n']) 
             system(cmd_run); 
             fprintf([project_b ': FEDEM run finished\n']) 

             
         % ULS/FLS analysis 
             sim_fil=[locations{1,1} '/FEDEM/Analysis/FEDEM_Models/' project_b(1:8)… 

    '/' project_b '_RDB/response_0001/']; 
             SPSA_HSS_analysis(project_b, leg_num, sec_num, members_minus, tow_hei,… 

     top_dis, bot_dis, NodeK, NodeX, ang_bra_ho, sim_fil, 

lock_limit,…      locations) 
     end 

  
end         % of parallell loop 
 

runs = runs + 2; 

  
fprintf('\n\n') 
  

 

 
    % --------------------------------------------------------------------- 
    % 3) analyse results 
    % --------------------------------------------------------------------- 

  
    % header 
        fprintf('| 2) Post Processing                                        |\n') 
        fprintf('+-----------------------------------------------------------+\n') 

  
for eval = 1:2 

     
        if eval == 1; 
            project = [project(1:12) 'a']; 
        else 
            project = [project(1:12) 'b'];               
        end 

     
        feedback=fedem_feedback(project, locations); 
        if (feedback == 0) 
            fprintf('\n'); 
            fprintf('=====>   WARNING - Simulation ') 
            fprintf('%s',project) 
            fprintf(' failed :-(   <=====\n') 
            runs_err=runs_err+1; 
        end 

     
        % header 
            fprintf('| 3) Benchmark results %s                        |\n', project) 
            fprintf('+-----------------------------------------------------------+\n') 

  
        % read benchmark results 
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            fil_nam=[locations{1,1} '/FEDEM/PostProcessing/data/' project(1:8) '/'… 

     project '_BMi.mat']; 
            load(fil_nam) 
            element={'Legs  ';'Braces'}; 
            warnings={'ULS-warnings:'; 'FLS-warnings:'}; 

  
        % check for ULS/FLS performance and mark planned improvements 
            % variable mark(a,b)=c 
                % a - sec_num 
                % b - (1)-legs / (2)-braces 
                % c - (+) decrease in thickness 
                %     (0) no change 
                %     (-) increase in thickness 
                mark=zeros(sec_num,2); 

  
             for w=2:2   % (1)-ULS, (2)-FLS 
                fprintf('%s\n',warnings{w}); 
                for k=1:sec_num 

  
                    

********************************************************************************* 

         
                    % LEGS 
                    if ((bmi{w}(1,k) < 1.0) || (bmi{w}(2,k+1) < 1.0)) 
                        fprintf('    %s in section %2.0f < 0.5 (%f)\n', element{1}, k,… 

      min([bmi{w}(1,k) bmi{w}(2,k+1)])) 
                        mark(k,1)= -1;   
                    elseif ((bmi{w}(1,k) > lock_limit) && (bmi{w}(2,k+1) > lock_limit)… 

      && (w == 2))   % decrease for FLS only 
                        mark(k,1)= +1; 
                    end 

  
                    % BRACES 
                    if ((min(bmi{w}([3 5],k)) < 1.0) || (min(bmi{w}([4 6],k+1)) < 1.0)…

     || (min(bmi{w}(7:10,k)) < 1.0)) 
                        fprintf('    %s in section %2.0f < 0.5 (%f)\n', element{2}, k,… 

      min([min(bmi{w}([3 5],k)) min(bmi{w}([4 6],k+1))… 

       min(bmi{w}(7:10,k))])) 
                        mark(k,2)= -1; 
                    elseif ((min(bmi{w}([3 5],k)) > lock_limit) &&…  

     (min(bmi{w}([4 6],k+1)) > lock_limit) && 

(min(bmi{w}(7:10,k))...      > lock_limit) && (w == 2))   % decrease 

for FLS only 
                        mark(k,2)= +1; 
                    end 

  
                    % 

********************************************************************************* 

  
                end 
                fprintf('\n'); 
            end 
            fprintf('\n'); 

  
            if eval == 1 
                mark_a = mark; 
                bmi_a = bmi; 
            else 
                mark_b = mark; 
                bmi_b = bmi; 
            end 
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end         % of evaluation          

  
        project = project(1:12);        % Remove a/b ending. 

  
        M_a=weight_calculation(leg_num, sec_num, members_plus, NodeK)/1000; 
        M_b=weight_calculation(leg_num, sec_num, members_minus, NodeK)/1000; 

         
        % loss function evaluation 
            yplus=SPSA_loss(M_a, bmi_a, obj_func); 
            yminus=SPSA_loss(M_b, bmi_b, obj_func); 

  
  

 

 

 

 
% --------------------------------------------------------------------- 
% 4) change member dimensions 
% --------------------------------------------------------------------- 

  
    % header 
        fprintf('| 4) Update topology                                        |\n') 
        fprintf('+-----------------------------------------------------------+\n') 

         
    % save member dimensions in record variable before changing 
        for i=1:sec_num 
            for j=1:4 
                dimch{iter}(i,j)=members{i}(j);     % diameter,(1)legs and (2)braces 

[m] 
                                                    % thickness,(3)legs and (4)braces 

[m] 
            end 
        end 
        dimch{iter}(1,5)=-tws;                      % delta tower weight [t] 
        dimch{iter}(1,6)=weight_calculation(leg_num, sec_num, members, NodeK)/1000;    

             % total tower weight [t] 

         
    % save record variable to file 
        fil_nam=[locations{1,1} '/FEDEM/PostProcessing/data/' project(1:8) '/'… 

   project '_dimch.mat']; 
        save(fil_nam, 'dimch') 

         
    % apply new project name for new member dimensions 
        pro2=pro2+1; 

  
    % create project name 
        if (pro2 < 10) 
            project=[pro1,'_00',int2str(pro2)]; 
        elseif ((pro2 >= 10) && (pro2 < 100)) 
            project=[pro1,'_0',int2str(pro2)]; 
        else 
            project=[pro1,'_',int2str(pro2)]; 
        end 

         
    % gradient approximation. Applying max step size 
        g_temp = (yplus-yminus)./(2*ck); 
        if g_temp <= 0 
            g_temp=max([g_temp -0.005/ak]); 
            ghat = g_temp./delta(:,1:4); 
        elseif g_temp > 0 
            g_temp = min([g_temp 0.005/ak]); 
            ghat = g_temp./delta(:,1:4); 
        end 
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    % reset number of members changed 
            nmc=0; 
 

    % update members estimate 
        % Changing members diameter within: (0.05....2.0)m, and 
        % thickness within (0.002...0.1)m, while makeing sure diameter > 
        % diameter > 2*thickness 
        for i = 1:sec_num 
            for j = 1:2 
                    temp = members{i}([j j+2]) - ak*ghat(i,[j j+2]).*lev([j j+2]); 
                    members{i}(j+2) = min([temp(2) 0.1]); 
                    members{i}(j+2) = max([members{i}(j+2) 0.005]); 
                    members{i}(j) = min([temp(1) 2.0]); 
                    members{i}(j) = max([members{i}(j) 0.1 2*members{i}(j+2)]); 
                    nmc = nmc +2;                     
            end          
            % If brace dimentions are larger than leg dimentions: use the 
            % average on both.  
            for k = [1 3] 
                if members{i}(k) < members{i}(k+1) 
                    members{i}(k) = 0.5*(members{i}(k+1)+members{i}(k)); 
                    members{i}(k+1) = members{i}(k); 
                    if k == 1 
                        members{i}(k+1) = max([members{i}(k+1) 2*members{i}(k+3)]); 
                        members{i}(k) = max([members{i}(k+1) 2*members{i}(k+2)]); 
                    end 
                end 
            end 
        end 
        % Check that top leg diameter is larger than minimum (larger 
        % requirements then the rest of the tower) 
        members{sec_num}(members{sec_num}(1) < 0.5) = 0.5; 
        if members{sec_num}(3) < 0.06 
            members{sec_num}(3) = 0.06; 
        end 

  
        % write to development-file.  
            fidx=fopen([locations{2,1} '\Matlab\lists\' project(1:8)…  

     '_development.txt'],'at'); 
            fprintf(fidx, 'yplus      yminus      ak          ck…  

                ghat      step \n'); 
            fprintf(fidx, '% 9.4f % 10.4f % 13.8f % 12.8f % 11.2f % 8.4f\n', yplus,…  

      yminus, ak, ck, ghat(1,1), ghat(1,1)*ak); 
            fprintf(fidx, '\n'); 
            fprintf(fidx, '--------------------------------------------------------… 

      ------------- \n'); 
            fprintf(fidx, 'Iteration number: %d\n', iter+1); 
            fprintf(fidx, 'Member dimentions: \n'); 

  
            for i = sec_num:-1:1 
                fprintf(fidx, '% 1.4f % 1.4f % 1.4f % 1.4f\n', members{i}(1,1), … 

      members{i}(1,2), members{i}(1,3), members{i}(1,4)); 
            end 

  
            fprintf(fidx, '\n'); 
            fprintf(fidx, 'nmc: %d\n', nmc); 
            fprintf(fidx, '\n'); 
            fclose(fidx); 

         

         
        % update cross sectional area and moment of inertia for new design 
        for i=1:sec_num 
            for k=1:2 
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                members{i}(4+k) = pi*((members{i}(k))^2-(members{i}(k)-…   

     2*members{i}(k+2))^2)/4; 
                members{i}(6+k) = pi*((members{i}(k))^4-(members{i}(k)-…   

     2*members{i}(k+2))^4)/64; 
            end 
        end 

         
        if all(mark == 0) % terminate if converged 
            % terminate while loop 
                fprintf('Terminate while loop\n'); 
            % save command window output to log-file 
                diary([locations{1,1} '/FEDEM/PostProcessing/logfiles/' pro1 '.txt']) 
            break 
        end 
        fprintf('\n') 

         
         if iter > 100  % terminate if reached maximum number of itertions 
             % terminate while loop 
                fprintf('Terminate while loop\n'); 
             % save command window output to log-file 
                 diary([locations{1,1} '/FEDEM/PostProcessing/logfiles/' pro1 '.txt']) 
             break 
         end 
        fprintf('\n\n') 

         

     
    % save new project parameters to file (only when improvements are done) 
        if (opt_run == 0) 
            fil_nam=['parameters/',project,'.mat']; 
            save(fil_nam, 'tow_hei', 'top_dis', 'bot_dis', 'wat_dep', 'leg_num', … 

    'sec_num', 'ang_opt', 'members')  
            write_project_list(project); 
        end 

         
    % save command window output to log-file 
        diary([locations{1,1} '/FEDEM/PostProcessing/logfiles/' pro1 '.txt']) 

  
% --------------------------------------------------------------------- 
% 5) plot changes in member dimensions 
% --------------------------------------------------------------------- 

  
    % convert tower weight record from cell to vector 
        for m=1:iter 
            MT(m)=dimch{m}(1,6); 
        end 

         
    % plot member dimension record 
        figure 
            subplot(2,2,1) 
                hold on 
                axis_min=min(dimch{1}(:,1))-0.010; 
                axis_max=max(dimch{1}(:,1))+0.010; 
                for k=1:iter 
                    col_tag=1-(0.1+k/iter)/1.5; 
                    plot(dimch{k}(:,1), NodeX(:,3), '-mo', 'color', [col_tag col_tag… 

     col_tag], 'LineWidth', 1, 'MarkerSize', 3) 
                    if (min(dimch{k}(:,1)) < axis_min) 
                        axis_min=min(dimch{k}(:,1))-0.002; 
                    end 
                    if (max(dimch{k}(:,1)) > axis_max) 
                        axis_max=max(dimch{k}(:,1))+0.002; 
                    end 
                end 
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                axis([axis_min axis_max NodeK(1,3) 10*ceil(NodeK(sec_num+1,3)/10)]) 
                line([axis_min axis_max],[0 0],'Color','b','LineStyle',':')      
                xlabel('diameter [mm]') 
                ylabel('Tower height [m]') 
                title('Legs') 
                hold off 
            subplot(2,2,2) 
                hold on 
                axis_min=min(dimch{1}(:,2))-0.010; 
                axis_max=max(dimch{1}(:,2))+0.010; 
                for k=1:iter 
                    col_tag=1-(0.1+k/iter)/1.5; 
                    plot(dimch{k}(:,2), NodeX(:,3), '-mo', 'color', [col_tag col_tag… 

     col_tag], 'LineWidth', 1, 'MarkerSize', 4) 
                    if (min(dimch{k}(:,2)) < axis_min) 
                        axis_min=min(dimch{k}(:,2))-0.002; 
                    end 
                    if (max(dimch{k}(:,2)) > axis_max) 
                        axis_max=max(dimch{k}(:,2))+0.002; 
                    end 
                end 
                axis([axis_min axis_max NodeK(1,3) 10*ceil(NodeK(sec_num+1,3)/10)]) 
                line([axis_min axis_max],[0 0],'Color','b','LineStyle',':')      
                xlabel('diameter [mm]') 
                title('Braces') 
                hold off 
            subplot(2,2,3) 
                hold on 
                axis_min=min(dimch{1}(:,3))-0.010; 
                axis_max=max(dimch{1}(:,3))+0.010; 
                for k=1:iter 
                    col_tag=1-(0.1+k/iter)/1.5; 
                    plot(dimch{k}(:,3), NodeX(:,3), '-mo', 'color', [col_tag col_tag … 

     col_tag], 'LineWidth', 1, 'MarkerSize', 3) 
                    if (min(dimch{k}(:,3)) < axis_min) 
                        axis_min=min(dimch{k}(:,3))-0.002; 
                    end 
                    if (max(dimch{k}(:,3)) > axis_max) 
                        axis_max=max(dimch{k}(:,3))+0.002; 
                    end 
                end 
                axis([axis_min axis_max NodeK(1,3) 10*ceil(NodeK(sec_num+1,3)/10)]) 
                line([axis_min axis_max],[0 0],'Color','b','LineStyle',':')      
                xlabel('thickness [mm]') 
                ylabel('Tower height [m]') 
                title('Legs') 
                hold off 
            subplot(2,2,4) 
                hold on 
                axis_min=min(dimch{1}(:,4))-0.010; 
                axis_max=max(dimch{1}(:,4))+0.010; 
                for k=1:iter 
                    col_tag=1-(0.1+k/iter)/1.5; 
                    plot(dimch{k}(:,4), NodeX(:,3), '-mo', 'color', [col_tag col_tag…  

     col_tag], 'LineWidth', 1, 'MarkerSize', 4) 
                    if (min(dimch{k}(:,4)) < axis_min) 
                        axis_min=min(dimch{k}(:,4))-0.002; 
                    end 
                    if (max(dimch{k}(:,4)) > axis_max) 
                        axis_max=max(dimch{k}(:,4))+0.002; 
                    end 
                end 
                axis([axis_min axis_max NodeK(1,3) 10*ceil(NodeK(sec_num+1,3)/10)]) 
                line([axis_min axis_max],[0 0],'Color','b','LineStyle',':')      
                xlabel('thickness [mm]') 
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                title('Braces') 
                suptitle(['Dimension changes during optimization, run ' project(1:8)]) 
                hold off 
        fig_name=[locations{1,1} '/FEDEM/PostProcessing/figures/' project(1:8) '/' 

pro1…    '_optimization_dimensions.fig']; 
        hgsave(fig_name)     

         
        figure 
            hold on 
            for k=1:iter 
                bar(k,dimch{k}(1,5)) 
            end 
            box off 
            xlabel('Iteration steps') 
            ylabel('\Delta tower weight [t]') 
            h1=gca; 
            h2=axes('Position',get(h1,'Position')); 
            plot(MT,'-mo', 'color', 'green', 'LineWidth', 2, 'MarkerSize', 4); 
            box off 
            ylabel('Total tower weight [t]') 
            set(h2,'YAxisLocation','right','Color','none','XTickLabel',[]) 
            set(h2,'XLim',get(h1,'XLim'),'Layer','top') 
            title('Tower weight') 
            suptitle(['Tower weight changes during optimization, run ' project(1:8)]) 
            hold off 
        fig_name=[locations{1,1} '/FEDEM/PostProcessing/figures/' project(1:8) '/' 

pro1…     '_optimization_weight.fig']; 
        hgsave(fig_name)     

         

         
    % benchmark plots 
        if (iter > 1) 
            SPSA_BM_plots(project, locations) 
%             fprintf('Ferdig med SPSA_BM_plots \n') 
            SPSA_scf_member_plot(project, tow_hei, sec_num, top_dis, bot_dis,…  

     ang_bra_ho, locations) 
%             fprintf('Ferdig med SPSA_scf_member_plots \n') 
        end 

                      
close all hidden 

  
% --------------------------------------------------------------------- 
% 6) END OPTIMIZATION LOOP 
% --------------------------------------------------------------------- 

  
    end  
end   % of function 
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Objective function code: 

Input:  

weight: total tower weight 

bmi: lifetime values for all members 

alt: function selector 

 

 

function loss = SPSA_loss(weight, bmi, alt) 

  
[r c] = size(bmi{2}); 
temp = 0; 
teller = 0; 

  
switch alt; 

  
    % (1) ----------------------------------------------------- 
    case 1 
    % using root mean square of  all liftimes, and weight term 

  
    % calculate root mean square of the BMi-values for FLS 
        for i = 1:r 
            for j = 1:c 
                temp = temp + (bmi{2}(i,j))^2; 
            end 
        end 

  
        RMS_bmi  = sqrt(temp/(r*(c-1))); 

  
    % defining loss-function 
        loss = 1/(RMS_bmi - 1) + (weight/1000)^2;        

  
    % (2) ----------------------------------------------------- 
    case 2 
    % Not used 

 
    % (3) ----------------------------------------------------- 
    case  3 
    % use minimum lifetime-value, and weight term    

     
        min_bmi = min(nonzeros(bmi{2})); 

        
    % defining loss-function 
        loss = 1/(min_bmi - 1) + (weight/1500); 

     
    % (4) ----------------------------------------------------- 
    case  4 
    % use minimum lifetime-value, no weight term  

     
        min_bmi = min(nonzeros(bmi{2})); 

        
    % defining loss-function 
        loss = 1/(min_bmi - 1)^3; 

     
    % (5) ----------------------------------------------------- 
    case  5 
    % use average of all lifetimes < 1, and weight term  

     
        for i = 1:r 
            for j = 1:c 
                if (bmi{2}(i,j) < 1) && (bmi{2}(i,j) > 0) 
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                    temp = temp + bmi{2}(i,j); 
                    teller = teller + 1; 
                end 
            end 
        end 

         
        avg_bmi = temp/teller; 
        f 

         

         
    % defining loss-function 
        loss = 1/(avg_bmi); %+ (weight/1500); 

     
    % (6) ----------------------------------------------------- 
    case  6 
    % calculate root mean square of the BMi-values for FLS 
        for i = 1:r 
            for j = 1:c 
                temp = temp + (bmi{2}(i,j))^2; 
            end 
        end 

  
        RMS_bmi  = sqrt(temp/(r*(c-1))); 

         
    % defining loss-function 
        loss = (-log((RMS_bmi./1.2).^2)).^2 + (weight/1500);  

         
    % (7) ----------------------------------------------------- 
     case  7 
    % calculate root mean square of the minumum for X- and K- braces, and all leg BMi-

 values for FLS 
        for i = 1:c 
            temp = temp + (min([bmi{2}(3,i) bmi{2}(8,i)]))^2; 
            temp = temp + (min([bmi{2}(4,i) bmi{2}(7,i)]))^2; 
            temp = temp + (min([bmi{2}(5,i) bmi{2}(10,i)]))^2; 
            temp = temp + (min([bmi{2}(6,i) bmi{2}(9,i)]))^2; 
            temp = temp + bmi{2}(1,i)^2 + bmi{2}(2,i)^2; 
        end 

  
        RMS_bmi  = sqrt(temp/(6*(c-1)));  

         
    % defining loss-function 
        loss = ((-log(RMS_bmi./1.25)).^2)./RMS_bmi.^0.22 + (weight/1500); 

     
    % (8) ----------------------------------------------------- 
     case  8 
    % calculate root mean square of the minumum for X- and K- braces, and all leg BMi-

 values for FLS 
        for i = 1:c-1 
            temp = temp + (min(nonzeros([bmi{2}(3,i) bmi{2}(8,i) bmi{2}(4,i+1)…  

   bmi{2}(7,i) bmi{2}(5,i) bmi{2}(10,i) bmi{2}(6,i+1) bmi{2}(9,i)])))^2; 
            temp = temp + (min(nonzeros([bmi{2}(1,i) bmi{2}(2,i+1)])))^2; 
        end 

  
        RMS_bmi  = sqrt(temp/(2*(c-1))); 

         
    % defining loss-function 
        loss = ((-log(RMS_bmi./1.5)).^2)./RMS_bmi.^0.22 + (weight/1500); 

         
    % (9) ----------------------------------------------------- 
    case  9 
    % use average of all lifetimes < 1, and weight term  
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        for i = 1:r 
            for j = 1:c 
                if (bmi{2}(i,j) < 1) && (bmi{2}(i,j) > 0) 
                    temp = temp + bmi{2}(i,j); 
                    teller = teller + 1; 
                end 
            end 
        end 

         
        avg_bmi = temp/teller; 

         
        % defining loss-function 
        loss = ((-log(avg_bmi./1.5)).^2)./avg_bmi.^0.22 + (weight/1500); 

         
    % (10) ----------------------------------------------------- 
    case  10 
    % use minimum lifetime-value, and weight term    

     
        min_bmi = min(nonzeros(bmi{2})); 

         
        % defining loss-function 
        loss = ((-log(min_bmi./1.5)).^2)./min_bmi.^0.22 + (weight/1500); 

         
    % (11) ----------------------------------------------------- 
    case  11 
    % use minimum lifetime-value, without weight term    

     
        min_bmi = min(nonzeros(bmi{2})); 

         
        % defining loss-function 
        loss = ((-log(min_bmi./1.5)).^2)./min_bmi.^0.22; 

         
    % (12) ----------------------------------------------------- 
    case  12 
    % calculate average of the minumum for X- and K- braces and leg BMi-values for FLS 
        for i = 1:c-1 
            temp = temp + min(nonzeros([bmi{2}(3,i) bmi{2}(8,i) bmi{2}(4,i+1)… 

    bmi{2}(7,i) bmi{2}(5,i) bmi{2}(10,i) bmi{2}(6,i+1) bmi{2}(9,i)])); 
            temp = temp + min(nonzeros([bmi{2}(1,i) bmi{2}(2,i+1)])); 
        end 

         
        avg_bmi  = temp/(2*(c-1)); 

         
    % defining loss-function 
        loss = ((-log(avg_bmi./1.5)).^2)./avg_bmi.^0.22;% + (weight/1500); 

         
    % (13) ----------------------------------------------------- 
    case  13 
    % calculate average of 1/minumum for X- and K- braces and leg BMi-values for FLS 
        for i = 1:c-1 
            temp = temp + 1/(min(nonzeros([bmi{2}(3,i) bmi{2}(8,i) bmi{2}(4,i+1)… 

    bmi{2}(7,i) bmi{2}(5,i) bmi{2}(10,i) bmi{2}(6,i+1) bmi{2}(9,i)]))); 
            temp = temp + 1/(min(nonzeros([bmi{2}(1,i) bmi{2}(2,i+1)]))); 
        end 

         

         
        avg_bmi  = (2*(c-1))/temp; 

         

         
    % defining loss-function 
        loss = ((-log(avg_bmi./1.5)).^2)./avg_bmi.^0.22;% + (weight/1500); 
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    % (14) ----------------------------------------------------- 
    case  14 
    % calculate average of 1/minumum for X- and K- braces and leg BMi-values less than 

1  for FLS. Insert into curve-fitted function 
        for i = 1:c-1 
            prove = 1/(min(nonzeros([bmi{2}(3,i) bmi{2}(8,i) bmi{2}(4,i+1) 

bmi{2}(7,i)... 

     bmi{2}(5,i) bmi{2}(10,i) bmi{2}(6,i+1) bmi{2}(9,i)]))); 
            if prove > 1 
                temp = temp + prove; 
                teller = teller +1; 
            end 
            prove = 1/(min(nonzeros([bmi{2}(1,i) bmi{2}(2,i+1)]))); 
            if prove > 1 
                temp = temp + prove; 
                teller = teller +1; 
            end 
        end 

                 
        avg_bmi  = teller/temp; 

         
        % Loss function and parameters fund by Gaussian curve fitting with 
        % two terms, and input values x=[0.01 1 1.5 10 50 150 200], y=[15 0.5 0 0 0 0 

0]  
        a1 =       -1.85; 
        b1 =     0.02498; 
        c1 =      0.1342; 
        a2 =   8.502e+14; 
        b2 =      -18.12; 
        c2 =       3.228; 

         
    % defining loss-function 
        loss = a1*exp(-((avg_bmi-b1)./c1).^2) + a2*exp(-((avg_bmi-b2)./c2).^2) +  

      (weight/1500); 

         
     % (15) ----------------------------------------------------- 
    case  15 
    % calculate average of 1/minumum for X- and K- braces and leg BMi-values for FLS. 

 Insert into curve-fitted function 
        for i = 1:c-1 
            temp = temp + 1/(min(nonzeros([bmi{2}(3,i) bmi{2}(8,i) bmi{2}(4,i+1)...  

    bmi{2}(7,i) bmi{2}(5,i) bmi{2}(10,i) bmi{2}(6,i+1) 

bmi{2}(9,i)]))); 
            temp = temp + 1/(min(nonzeros([bmi{2}(1,i) bmi{2}(2,i+1)]))); 
        end 

         
        avg_bmi  = (2*(c-1))/temp; 

         
        % Loss function and parameters fund by Gaussian curve fitting with 
        % two terms, and input values x = [0.01 1 1.5 10 50 150 200], y = [15 0.5 0 0 0 

0 0]  
        a1 =       -1.85; 
        b1 =     0.02498; 
        c1 =      0.1342; 
        a2 =   8.502e+14; 
        b2 =      -18.12; 
        c2 =       3.228; 

         
    % defining loss-function 
        loss = a1*exp(-((avg_bmi-b1)./c1).^2) + a2*exp(-((avg_bmi-b2)./c2).^2) +…  

   (weight/1500); 
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    % (16) ----------------------------------------------------- 
    case  16 
    % calculate sum of |1.5/(minumum for X- and K- braces and leg BMi-values) -1| for 

FLS 
        for i = 1:c-1 
            temp = temp + abs(1.5/(min(nonzeros([bmi{2}(3,i) bmi{2}(8,i) bmi{2}(4,i+1)…

     bmi{2}(7,i) bmi{2}(5,i) bmi{2}(10,i) bmi{2}(6,i+1) 

bmi{2}(9,i)])))-1); 
            temp = temp + abs(1.5/(min(nonzeros([bmi{2}(1,i) bmi{2}(2,i+1)])))-1); 
        end 

         
%         loss = temp + (weight/1500)^4;          % (1) 
%         loss = temp + ((weight-1300)/250)^4;    % (2) 
%         loss = temp + ((weight-1200)/200)^2;    % (3) 
        loss = temp + ((weight-1300)/25);    % (4) 
%         loss = temp + ((weight-1200)/250)^3;    % (5) 

  
    % (17) ----------------------------------------------------- 
    case  17 
      % Find lowest brace lifetimes in each section, if less than 1, sum 

 0.5*|1.5/(lifetime-1)|. Do the same for legs. 

 
        for i = 1:c-1 
            bmi_value = min(nonzeros([bmi{2}(3,i) bmi{2}(8,i) bmi{2}(4,i+1) 

bmi{2}(7,i)…      bmi{2}(5,i) bmi{2}(10,i) bmi{2}(6,i+1) 

bmi{2}(9,i)])); 
            if bmi_value < 1 
                temp = temp + (abs(1.5/bmi_value-1))/0.5; 
            end 
            bmi_value = min(nonzeros([bmi{2}(1,i) bmi{2}(2,i+1)])); 
            if bmi_value < 1 
                temp = temp + (abs(1.5/bmi_value-1))/0.5; 
            end 
        end 

         
        loss = temp + ((weight-1300)/10);    

     
    % (18) ----------------------------------------------------- 
    case 18 

 % Find lowest brace lifetimes in each section, if less than 1, include in RMSD  
      Do the same for legs. (target RMSD-value: 1.25) 

 
        for i = 1:c-1 
            bmi_value = min(nonzeros([bmi{2}(3,i) bmi{2}(8,i) bmi{2}(4,i+1) 

bmi{2}(7,i)…      bmi{2}(5,i) bmi{2}(10,i) bmi{2}(6,i+1) 

bmi{2}(9,i)])); 
            if bmi_value < 1 
                temp = temp + (bmi_value-1.25)^2; 
                teller = teller +1; 
            end 
            bmi_value = min(nonzeros([bmi{2}(1,i) bmi{2}(2,i+1)])); 
            if bmi_value < 1 
                temp = temp + (bmi_value-1.25)^2; 
                teller = teller +1; 
            end 
        end 

  
        RMSD_bmi  = sqrt(temp/teller); 

         
        loss = RMSD_bmi + ((weight-1200)/1000);   

     
    % (19) ----------------------------------------------------- 
    case 19 
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 % Find lowest brace lifetimes in each section, if less than 1, include in MSD  
      Do the same for legs. (target MSD-value: 1.75) 

 
        for i = 1:c-1 
            bmi_value = min(nonzeros([bmi{2}(3,i) bmi{2}(8,i) bmi{2}(4,i+1) bmi{2}(7,i) 

…    bmi{2}(5,i) bmi{2}(10,i) bmi{2}(6,i+1) bmi{2}(9,i)])); 
            if bmi_value < 1 
                temp = temp + (bmi_value-1.75)^2; 
                teller = teller +1; 
            end 
            bmi_value = min(nonzeros([bmi{2}(1,i) bmi{2}(2,i+1)])); 
            if bmi_value < 1 
                temp = temp + (bmi_value-1.75)^2; 
                teller = teller +1; 
            end 
        end 

  
        MSD_bmi  = (temp/teller); 

         
        loss = MSD_bmi + ((weight-1200)/1000);  

         
    % (20) ----------------------------------------------------- 
    case 20 

 % Find lowest brace lifetimes in each section, if less than 1, include in SSD  
      Do the same for legs. (target SSD-value: 1.25) 

 
        for i = 1:c-1 
            bmi_value = min(nonzeros([bmi{2}(3,i) bmi{2}(8,i) bmi{2}(4,i+1) bmi{2}(7,i) 

…     bmi{2}(5,i) bmi{2}(10,i) bmi{2}(6,i+1) bmi{2}(9,i)])); 
            if bmi_value < 1 
                temp = temp + (bmi_value-1.25)^2; 
                teller = teller +1; 
            end 
            bmi_value = min(nonzeros([bmi{2}(1,i) bmi{2}(2,i+1)])); 
            if bmi_value < 1 
                temp = temp + (bmi_value-1.25)^2; 
                teller = teller +1; 
            end 
        end 

  
        SSD_bmi  = temp; 

         
        loss = SSD_bmi + ((weight-1200)/500);  

         
    % (21) ----------------------------------------------------- 
    case 21 

 % Find lowest brace lifetimes in each section, if less than 1, include in SSD  
      Do the same for legs. (Target SSD-value: 1.5) 
        for i = 1:c-1 
            bmi_value = min(nonzeros([bmi{2}(3,i) bmi{2}(8,i) bmi{2}(4,i+1) bmi{2}(7,i) 

…     bmi{2}(5,i) bmi{2}(10,i) bmi{2}(6,i+1) bmi{2}(9,i)])); 
            if bmi_value < 1 
                temp = temp + (bmi_value-1.5)^2; 
                teller = teller +1; 
            end 
            bmi_value = min(nonzeros([bmi{2}(1,i) bmi{2}(2,i+1)])); 
            if bmi_value < 1 
                temp = temp + (bmi_value-1.5)^2; 
                teller = teller +1; 
            end 
        end 

  
        SSD_bmi  = temp; 
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        loss = SSD_bmi + ((weight-1200)/500);  

         
    % (22) ----------------------------------------------------- 
    case 22 

 % Find lowest brace lifetimes in each section, if less than 1, include in SSD 

with  two terms. Do the same for legs. (Target SSD-value: 1.25 and 1.1) 

 
        for i = 1:c-1 
            bmi_value = min(nonzeros([bmi{2}(3,i) bmi{2}(8,i) bmi{2}(4,i+1) bmi{2}(7,i) 

…     bmi{2}(5,i) bmi{2}(10,i) bmi{2}(6,i+1) bmi{2}(9,i)])); 
            if bmi_value < 1 
                temp = temp + (bmi_value-1.25)^2 + (bmi_value-1.1).^10; 
                teller = teller +1; 
            end 
            bmi_value = min(nonzeros([bmi{2}(1,i) bmi{2}(2,i+1)])); 
            if bmi_value < 1 
                temp = temp + (bmi_value-1.25)^2 + (bmi_value-1.1).^10; 
                teller = teller +1; 
            end 
        end 

  
        SSD_bmi  = temp; 

         
        loss = SSD_bmi + ((weight-1200)/500);  

         
    % (23) ----------------------------------------------------- 
    case 23 

 % Find lowest brace lifetimes in each section, if less than 1, include in SSD 

with  two terms. Do the same for legs. (Target SSD-value: 1.25 and 1.1) 
        for i = 1:c-1 
            bmi_value = min(nonzeros([bmi{2}(3,i) bmi{2}(8,i) bmi{2}(4,i+1) bmi{2}(7,i) 

…     bmi{2}(5,i) bmi{2}(10,i) bmi{2}(6,i+1) bmi{2}(9,i)])); 
            if bmi_value < 1 
                temp = temp + (bmi_value-1.25)^2 + (bmi_value-1.1).^30; 
                teller = teller +1; 
            end 
            bmi_value = min(nonzeros([bmi{2}(1,i) bmi{2}(2,i+1)])); 
            if bmi_value < 1 
                temp = temp + (bmi_value-1.25)^2 + (bmi_value-1.1).^30; 
                teller = teller +1; 
            end 
        end 

  
        SSD_bmi  = temp; 

         
        loss = SSD_bmi + ((weight-1200)/500); 

         
    % (24) ----------------------------------------------------- 
    case 24 

      % Find lowest brace lifetimes in each section, if less than 1, include in SSD 

with               two terms. Do the same for legs. (Target SSD-value: 1.25 and 

1.1) 
        for i = 1:c-1 
            bmi_value = min(nonzeros([bmi{2}(3,i) bmi{2}(8,i) bmi{2}(4,i+1) bmi{2}(7,i) 

…     bmi{2}(5,i) bmi{2}(10,i) bmi{2}(6,i+1) bmi{2}(9,i)])); 
            if bmi_value < 1 
                temp = temp + (bmi_value-1.25)^2 + (bmi_value-1.1).^20; 
                teller = teller +1; 
            end 
            bmi_value = min(nonzeros([bmi{2}(1,i) bmi{2}(2,i+1)])); 
            if bmi_value < 1 
                temp = temp + (bmi_value-1.25)^2 + (bmi_value-1.1).^20; 
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                teller = teller +1; 
            end 
        end 

  
        SSD_bmi  = temp; 

         
        loss = SSD_bmi + ((weight-1200)/50); 
end 
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