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Abstract: 

 
The objective of this study is to explore a good alternative to physical modelling in marine civil 
engineering by testing the numerical wave tank feature of the open source Computational Fluid Dynamics 
(CFD) package, REEF3D. The two tasks set to achieve this objective: first validate the numerical wave 
tank and test its performance under different numerical and wave parameters. Second to use the wave 
tank to calculate wave forces on a structure and validate the numerical solution. 
 
This work is limited to calculating a simple case of non-breaking wave forces on a single cylindrical pile 
placed in a regular wave field, as CFD is a resource intensive method and running more complex cases 
would require more time both in terms of man hours for coding and testing of the package and 
computational time to carry out the numerical experiment. 
 
The validation of the numerical wave tank is carried out by comparing the numerical results generated 
with the analytical values obtained using wave theory. Various parameters like grid cell density, time step 
size, numerical beach width, relaxation methods for wave generation and absorption and discretization 
schemes are tested. In addition, the performance of the wave tank at different amplitudes and wave types 
is observed. To validate the wave forces calculated by the model, the theoretical force acting on the pile is 
calculated using the Morison formula and compared with the numerical solution obtained. 
 
The wave tank produces good results with a wave amplitude error of 0.24% for a fifth order Stokes wave 
of  0.05m amplitude and 2m wavelength at a grid cell density of 100 cells per wavelength, Courant-
Friedrich-Lewy number 0.1 and numerical beach width of 4m using the WENO scheme for spatial 
discretization and 4th order Runge-Kutta method for time discretization. 
Wave forces calculated in the wave tank slightly is under estimated compared to the values obtained 
theoretically using the Morison equation, for four numerical experiments carried out in the study. 
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This thesis work sets out to explore the application of Computational Fluid Dynamics (CFD) in 
the field of marine civil engineering. The aim of this study is to validate a numerical wave tank 
and test its performance under different numerical and wave parameters and use it to calculate 
non-breaking wave forces on a cylindrical pile and validate the numerical result obtained. 

In the age of growing computing power, a good alternative to laboratory testing is the use of 
numerical simulations. Numerical modelling allows for testing on the real world scale, in 
comparison to the scaled down versions that have to be used in the wave flume. This can provide a 
greater detail of the phenomena that take place during the action of waves on a structure. In 
addition, a numerical wave tank offers more flexibility in terms of parameters that can be chosen 
for conducting experiments. Full scaled, three dimensional perspective of the interactions can be 
obtained using a 3-dimensional numerical simulation, which is a product of the vast field called 
CFD. 
 
TASK DESCRIPTION 
 
First, the numerical wave tank in the program is to be validated for wave generation at the inlet, 
propagation in the working zone of the wave tank and dissipation at the numerical beach. The 
effect of the varying computational parameters like the grid density and time step size is to be 
observed. In addition, performance of the wave tank for various wave types, different wave 
amplitudes and under many discretization schemes is to be explored. Finally, the model is to be 
used to determine non-breaking wave forces on a vertical pile. 
The results will be compared with available experimental data from literature and the analytical formulae. 
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Abstract

The objective of this study is to explore a good alternative to physical modelling

in marine civil engineering by testing the numerical wave tank feature of the open

source Computational Fluid Dynamics(CFD) package, REEF3D. The two tasks set to

achieve this objective: First validate the numerical wave tank and test its performance

under different numerical and wave parameters. Second to use the wave tank to

calculate wave forces on a structure and validate the numerical solution.

This work is limited to calculating a simple case of non-breaking wave forces on a

single cylindrical pile placed in a regular wave field, as CFD is a resource intensive

method and running more complex cases would require more time both in terms of

man hours for coding and testing of the package and computational time to carry out

the numerical experiment.

The validation of the numerical wave tank is carried out by comparing the numerical

results generated with the analytical values obtained using wave theory. Various

parameters like grid cell density, time step size, numerical beach width, relaxation

methods for wave generation and absorption and discretization schemes are tested.

In addition, the performance of the wave tank at different amplitudes and wave types

is observed. To validate the wave forces calculated by the model, the theoretical force

acting on the pile is calculated using the Morison formula and compared with the

numerical solution obtained.

The wave tank produces good results with a wave amplitude error of 0.24% for a fifth

order Stokes wave of 0.05m amplitude and 2m wavelength at a grid cell density of 100

cells per wavelength, Courant-Friedrich-Lewy number 0.1 and numerical beach width

of 4m using the WENO scheme for spatial discretization and 4th order Runge-Kutta

method for time discretization.

Wave forces calculated in the wave tank slightly is under estimated compared to the

values obtained theoretically using the Morison equation, for four numerical experi-

ments carried out in the study.
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The study concludes that REEF3D is a capable tool for application of CFD methods

in the field of marine civil engineering. The results obtained from the validation

of the wave tank show promise in this regard. The validation of the wave forces

calculated using the model could not be deemed to be conclusive and further study

is suggested. Due to the absence of data from simple experiments on wave force on

a single cylindrical pile and time constraints, validation was limited to comparison

against the Morison formula.
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Chapter 1

Introduction

1.1 Computational Fluid Dynamics in marine civil

engineering

Marine hydrodynamics mainly deals with the interaction between waves and marine

structures. In the course of studying this phenomenon, the characterization of the

sea state parameters poses a challenge due to the random nature of the sea state.

Many theories have been proposed to understand and analytically represent water

waves, starting from the linear wave theory to Stokes’ -second, -third, -fifth order

theories, cnoidal theory and so on. They are used to generate waves in laboratory

wave flumes to create a simplified representation in form of a regular wave field to

understand the interaction of waves with marine structures. It has to be noted,

though, that the waves used for studies in experiments are generally unidirectional

and regular, whereas in the field, the random nature of the sea state gives rise to a

much more complex wave field. In addition to the aforementioned problem, the other

obstacle in understanding wave-structure interactions is the complexity of the fluid

dynamics involved. According to Sarpkaya [26], the current analytical, experimental,

and operational knowledge is still insufficient to describe the complexities of fluid

loading and dynamic response of offshore structures accurately. Physical modelling

has been applied to simulate the field phenomena in order to aid in the design of

marine structures which can withstand a certain set of design parameters.

In the age of growing computing power, a good alternative to laboratory testing is

the use of numerical simulations. Numerical modelling allows for testing on the real

world scale, in comparison to the scaled down versions that have to be used in the

wave flume. This can provide a greater detail of the phenomena that take place

during the action of waves on a structure. In addition, a numerical wave tank offers

more flexibility in terms of parameters that can be chosen for conducting experiments.

Full scaled, three dimensional perspective of the interactions can be obtained using
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a 3-dimensional numerical simulation, which is a product of the vast field called

Computational Fluid Dynamics (CFD).

Wave forces on structures have been analytically evaluated, so far, using the potential

theory and the Morison formula. Morison formula is preferred in cases where there is

flow separation. A general definition of the conditions under which these equations

are valid is difficult to arrive at; like a criteria based on the ratio λ/D can be incorrect,

as described by Moe and Gudmestad [23]. Also, the inertia and drag coefficients used

to determine the forces are based on empirical data.

In this scenario, it is beneficial to adopt numerical simulations to evaluate wave forces

on marine structures. Accurate numerical simulations provide great insight into the

physical processes which could not be attained through an experimental approach[22].

The current state of computational power and expected future advances make it

possible to employ three dimensional numerical simulations in fluid dynamics and

obtain results in a reasonable amount of time.

Various commercial software like Star CCM+, Ansys Fluent and open source software

like REEF3D, OpenFOAM are available, to name a few, for the purpose of employing

numerical simulations to solve engineering problems. A point to be noted though is

that most of the programs available currently were not built specifically to cater to

the simulation of marine and coastal engineering free surface flows. REEF3D was

initially developed to evaluate local scouring in open channel flows[4] and is well

suited to cater to simulation of water waves.

1.2 Objectives of the study

The objective of this study is to utilize the open source CFD program, REEF3D, to

compute wave forces on marine structures, with a focus on vertical piles. The aim is

to be able to realistically visualize wave interaction with a cylindrical pile. To achieve

a photo realistic imagery of the free surface, the air-water interface is followed using

the level set method to calculate the interface in great detail.

First, the numerical wave tank in the program is to be validated for wave generation

at the inlet, propagation in the working zone of the wave tank and dissipation at the

numerical beach. The effect of the varying computational parameters like the grid

density and time step size is to be observed. In addition, performance of the wave

tank for various wave types, different wave amplitudes and under many discretization

schemes is to be explored. Finally, the model is to be used to determine non-breaking

wave forces on a vertical pile. The results will be compared with available experi-

mental data from literature and the analytical formulae.
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1.3 Limitations of the study

The main attraction of CFD is that it incorporates more physics in its calculations

with lesser amount of simplification in comparison to other tools like, say, a wave

model. It also provides more detailed description of the flow phenomena. But, these

features also give it a disadvantage in terms of making it a resource intensive envi-

ronment. Numerical modelling using CFD requires a large amount of computational

power and time. Due to this fact, the focus of the current study is to a simulate a

simple case of calculating non-breaking wave force on a single cylindrical pile placed

in a regular uni-directional wave field after the validation of the numerical wave tank.

Validation of the wave forces against experimental data could prove to be difficult

because of the following reasons. First, comparison of the numerical results to the

experimental data would require the numerical wave tank to very closely mimic the

experimental conditions. In addition, reliable, published physical experiments gener-

ally deal with more complicated scenarios than that is visualized to be carried out in

the numerical wave tank.



4

Chapter 2

Numerical Model

This chapter briefly deals with the basic concepts of CFD and the computational

methods employed in REEF3D, the CFD software to be used in this study.

2.1 Governing Equations

CFD works on a set of conservation laws. Conservation of a quantity implies that

the total amount of the quantity exiting a predefined system is equal to the sum of

the amount of the quantity entering and amount of the quantity produced/consumed

in the system. The fluid properties to which the laws are applicable are− Mass and

Momentum. It is to be noted that momentum conservation leads to the governing

equation in fluid dynamics- the Navier Stokes equation. To analytically solve these

equations, a reasonable and simplifying assumption of an incompressible fluid is con-

structed. The implication of the assumption is that the fluid retains its density at all

times and thus occupies the same volume throughout the period of observation. This

assumption is considered reasonable, as the velocities of air and water in the cases

that are to be analyzed in this study, are small enough to be consider the fluids to

be incompressible.

• Conservation of Mass:

The equation for conservation of mass is given by

∂ρ

∂t
+∇.(ρ U) = 0 (2.1)

With the assumption of incompressibility, the density does not change with

space or time. Thus, the term with the derivative of the density disappears and

the equation for incompressible flows reduces to

∂Ui
∂xi

= 0 (2.2)
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This equation is also known as the equation of continuity.

• Conservation of Momentum:

The momentum conservation arises from Newton’s second law, which states

that the rate of change of linear momentum is directly proportional to the sum

of the forces acting on the body, in this case, the fluid. The momentum equation

here can be written as

∂Ui
∂t

+
∂UiUj
∂xj

=
∂

∂xj

(
µ
∂ui
∂xj

)
− 1

ρ

∂P

∂xi
(2.3)

Using the equation of continuity 2.2 with the above equation, the Navier Stokes

equation can be formed and is written as

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1

ρ

∂P

∂xi
+

∂

∂xj

[
ν

(
∂Ui
∂xj

+
∂Uj
∂xi

)]
+ gi (2.4)

2.2 Numerical Treatment of Governing Equations

A fluid flow problem is numerically resolved by the application of numerical methods.

The first step towards the application of these methods is the discretization of the

governing equations. This means expression of a continuous equation in a form that

is applicable to a finite domain. The method of finite differences is one of the methods

that can be used to discretize the equations and is the one that is employed in this

study. Other methods that can be used for this purpose are the method of finite

elements and the method of finite volumes. These methods are not a part of this

work and shall not be discussed further.

A computational domain can be defined as a set of points on a line, for a one di-

mensional case, a set of points on a mesh for a two dimensional case and a set of

points on a three dimensional grid for 3-dimensional computation. The process of

defining discrete points over a continuous domain for the purpose of evaluating a

process numerically is called spatial discretization. The set of points so generated is

referred to as the grid. In this study, a Cartesian staggered grid is utilized for spatial

discretization.

A staggered grid is a grid on which the unknown variables are not located at the same

grid points. For example, the velocities are located on the midpoints of the cell edges

and the pressure at the centre of the grid. This is contrary to another arrangement

called the colocated grid, where all the variables are defined at the cell edges. The

main advantage of the staggered grid arrangement is that it prevents the pressure

oscillations which could occur if all the variables were defined at the cell edges as in

a colocated grid arrangement. A Cartesian grid is a grid where the points are even

placed across the domain forming congruent parallelotopes or ‘bricks’.
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Numerical approximations have two characteristics which determine the applicability

of the particular scheme to a particular scenario:

• Accuracy: This is determined by the order of the truncation error. The trunca-

tion error is the difference between the exact solution and the numerical approx-

imation. The order is determined by the order of the expression obtained after

applying Taylor expansion to the governing differential equation. The scheme

is said to be consistent when the error tends to zero as the grid or step size

approaches zero. Thus, for a consistent scheme, higher the order of the error

term, higher the accuracy obtained by improving the resolution of the grid.

• Stability: Stability of a numerical scheme refers to its ability to converge to the

exact solution. A scheme is said to be stable when there happens to be an upper

and lower bound on the errors. Otherwise, with unbound errors, the solution

will “blow up” and the numerical approximation will be nowhere close to the

exact solution.

2.2.1 Convection Discretization

Fluid flow problems are represented by differential equations which can be a convec-

tion or a convection-diffusion equation. To evaluate these equations numerically, the

first step is to discretize the convection terms. This section deals with the discretiza-

tion schemes for convection terms using the finite difference method.

The finite difference method is believed to be the oldest method used for numerical

solution of partial differential equations, introduced by Euler in the 18th century[11].

It is a simple method which uses the direct definition of derivatives to discretize the

equation. Taylor expansion is used to determine the truncation error and the order

of approximation. This method works very well with a Cartesian grid system as the

calculation of derivatives will be, simply, the difference of values across two points,

divided by the grid size.

The points used for the approximation in a scheme can be represented in geometric

sketch called the stencil. A stencil gives an idea of the order of the scheme, number of

points used in the scheme and the nature of the scheme− implicit or explicit. A wider

stencil signifies a higher order of accuracy. A stencil with more than one point at

the new time step, n+ 1, signifies that the scheme is implicit. In an implicit scheme,

equation for calculating an unknown variable at a new time step has the unknown

variable on both sides of the equation. On the other hand, explicit schemes, as the

name implies, have an explicit definition for an unknown variable.

Following are a few schemes which can be employed for convection discretization:

• First Order Upwind (FOU) Scheme

The FOU scheme is, as the name suggests, a first order scheme which uses
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the values of the cells upstream from the position where the variable is to be

evaluated. Upwind implies that the terms are evaluated in the direction of the

flow. Following is an example of FOU discretization,

∂U

∂xj
=

(Ui − Ui−1)

∆xj

• Central Difference Scheme (CDS)

This scheme utilizes grid points lying on either side of the point at which the

variable is to be evaluated. It is a second order scheme.

∂U

∂x
=
Ui+1 − Ui−1

2∆x

CDS schemes are easy to implement compared to higher order upwind schemes

as one does not have to check the direction of the flow. But this scheme is

unconditionally unstable for damped differential equations. This means for a

an equation with a friction term (or in this case viscosity), the scheme would

not perform as expected.

• Sharp and Monotonic Algorithm for Realistic Transport (SMART) Scheme

This scheme was introduced in 1988 as a new approach to approximating the

convection terms in a steady state transport equation[12]. A technique called

‘curvature compensation’ was used to develop a polynomial based discretization

scheme. This scheme is up to second order accurate. The main advantage of

this method is that it is a second order scheme and this provides for numerical

stability. This makes it attractive to use to solve a 3-dimensional fluid flow

problem.

• Weighted Essentially Non- Oscillatory (WENO) Scheme

Essentially Non-oscillatory (ENO) scheme is an adaptive stencil scheme devel-

oped by Harten and Osher in 1987. In this scheme, each cell has its own stencil

of cells. Then, by selecting the stencil which gives the smoothest solution, spu-

rious oscillations are avoided. Liu et al. [20], in 1994, went ahead to modify

this scheme such that instead of selecting just one “smoothest” stencil, multiple

stencils are chosen and assigned weights on the basis of the smoothness of the

solutions. A convex combinations of the candidate stencils then leads to a solu-

tion with a non oscillatory property in this scheme. The main advantage of this

scheme is, that unlike other higher order schemes like the MUSCL[33] or the

TVD[14], the local extrema are preserved. In the regions where the solutions

are smooth, this scheme is accurate to the 5th order and in presence of large

gradients, it reduces to a minimum of 3rd order. This study employs the WENO
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scheme for convection discretization with the Hamilton-Jacobi formulation[17].

An example of implementation of this scheme to the level set function, φ is

presented below.

Depending on the velocity at a location, the level set function can be defined

to be:

φx =


φ−x if U1 > 0

φ+
x if U1 < 0

0 if U1 = 0

(2.5)

The WENO approximation for φ±x is a convex combination of the three possible

ENO approximations:

φ±x = ω±1 φ
1±
x + ω±2 φ

2±
x + ω±3 φ

3±
x (2.6)

The three ENO stencils defined for φ are

φ1±
x =

q±1
3
− 7q±2

6
+

11q±3
6

φ2±
x = −q

±
2

6
+

5q±3
6

+
q±4
3

φ3±
x =

q±3
3

+
5q±4
6
− q±5

6

(2.7)

with,

q−1 =
φi−2 − φi−3

∆x
, q−2 =

φi−1 − φi−2

∆x
, q−3 =

φi − φi−1

∆x
,

q−4 =
φi+1 − φi

∆x
, q−5 =

φi+2 − φi+1

∆x

(2.8)

and

q+
1 =

φi+3 − φi+2

∆x
, q+

2 =
φi+2 − φi+1

∆x
, q+

3 =
φi+1 − φi

∆x
,

q+
4 =

φi − φi−1

∆x
, q+

5 =
φi−1 − φi−2

∆x

(2.9)

the weights are written as:

ω±1 =
α±1

α±1 + α±2 + α±3
, ω±2 =

α±2
α±1 + α±2 + α±3

, ω±3 =
α±3

α±1 + α±2 + α±3
, (2.10)

and
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α±1 =
1

10

1(
ε̃+ IS±1

)2 , α±2 =
6

10

1(
ε̃+ IS±2

)2 , α±3 =
3

10

1(
ε̃+ IS±3

)2 (2.11)

with the regularization parameter ε̃ = 10−6 in order to avoid division by zero

and the following smoothness indicators:

IS±1 =
13

12
(q1 − 2q2 + q3)2 +

1

4
(q1 − 4q2 + 3q3)2 ,

IS±2 =
13

12
(q2 − 2q3 + q4)2 +

1

4
(q2 − q4)2 ,

IS±3 =
13

12
(q3 − 2q4 + q5)2 +

1

4
(3q3 − 4q4 + q5)2

(2.12)

2.2.2 Time Discretization

In cases of fluid dynamics where the flow characteristics change rapidly over time, it

is essential to have a highly accurate discretization scheme for the time dependent

terms. REEF3D has the Adam-Bashforth and third and fourth order TVD Runge-

Kutta schemes included in the code for this purpose. These are explicit methods

which are easy to construct and apply, even for higher orders.

• Adam-Bashforth Scheme

This scheme is second order accurate, which utilizes values from two previous

time steps to compute the value at the next time step. An example of application

of this scheme to the level set function is presented below:

φn+1 = φn +
∆tn

2

(
∆tn + 2∆tn−1

∆tn−1

L (φn)− ∆tn
∆tn−1

L (φn)

)
(2.13)

• Total Variance Diminishing (TVD) 3rd order Runge-Kutta Scheme

A TVD scheme, developed by Harten [14], is an explicit numerical scheme that

preserves the monotonicity of the solution. It implies that there are no wiggles in

the solution as the local extrema are suppressed to maintain monotonicity. An

example of the TVD scheme is the TVD Runge-Kutta scheme [28]. An example

of application of the third order TVD Runge-Kutta scheme is as follows

φ(1) = φn + ∆tL (φn)

φ(2) =
3

4
φn +

1

4
φ(1) +

1

4
∆tL

(
φ(1)
)

φn+1 =
1

3
φn +

2

3
φ(2) +

2

3
∆tL

(
φ(2)
) (2.14)



CHAPTER 2. NUMERICAL MODEL 10

This being a three step scheme, the spatial derivatives have to be calculated

three times. So, this scheme is computationally more demanding than the

Adam-Bashforth scheme.

• 4th order Runge-Kutta Scheme A discretization scheme of a higher order un-

der is the 4th-order Runge-Kutta scheme. This scheme is a four step scheme

and provides higher accuracy in the simulations. It is computationally more

demanding than the previous two discussed above. The solutions are expected

to be more accurate due to the higher order of this scheme. An example of its

implementation is shown below:

φ(1) = φn +
∆t

2
L (φn)

φ(2) = φn +
∆t

2
L
(
φ(1)
)

φ(3) = φn + ∆tL
(
φ(2)
)

φn+1 =
−1

3
φn +

1

3
φ(1) +

2

3
φ(2) +

1

3
φ(3) +

∆t

6
L
(
φ(3)
)

(2.15)

2.2.3 Adaptive Time Stepping

To obtain a good numerical solution, it is essential that the fluid being simulated does

not move a distance that is more than the computational grid size in one time step.

This statement is the simplified content of a condition called the Courant condition[7].

Mathematically, it can be summarized as:

u∆t

∆x
≤ C (2.16)

This condition called the Courant condition is implemented in implicit time stepping

algorithms. The current study utilizes explicit time stepping methods, described

in section 2.2.2. To maintain an adequate time step size using explicit methods, a

condition called the CFL criterion is applied, where the time step size for the next step

is guided by the maximum values of velocities, viscosity and the volume and surface

forces in the current time step, following the CFL condition proposed by Courant,

Friedrichs and Lewy:

δt ≤ 2

( |u|max
δx

+ V

)
+

√(
|u|max
δx

+ V

)2

+
4 |Smax|
δx

−1

(2.17)
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with

V = max (ν + νt) ·
(

2

(δx)2 +
2

(δy)2 +
2

(δz)2

)
(2.18)

2.3 Solution of the Navier Stokes Equation

Before proceeding to solve the fluid flow problem, it is important to make a note of

the features of the Navier Stokes equations presented in equation (2.4) (reproduced

below) and the challenges posed by it in arriving at a solution. This aids in charting

a procedure to deal with the fluid flow problem.

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1

ρ

∂P

∂xi
+

∂

∂xj

[
ν

(
∂Ui
∂xj

+
∂Uj
∂xi

)]
+ gi

The first aspect that is to be noted here is that the pressure is included as source

term. But, there is no definition for the advection of the pressure. It is also to

be noted that the advection in the equation is non-linear. As mentioned in section

2.1, the Navier Stokes equations are produced by coupling the mass and momentum

equations. Hence, the result is that velocity terms are coupled in to a non-linear term

in the Navier Stokes equations.

The above aspects pose the following challenges to the solution of the Navier Stokes

equations. Due to the absence of a definition for evolution of pressure, a direct

approach to determining the pressure at the next grid point is not available. The

presence of non-linear terms also pose a challenge to arriving at an analytical so-

lution because it would involves use of implicit methods which can be lengthy and

computationally expensive. An alternative would be to explore suitable iterative

methods.

One of the methods to solve for equation (2.4) is the projection method proposed by

Chorin [5]. In this method, an intermediate velocity field is first obtained by ignoring

the pressure gradient. The intermediate velocity U∗i is computed using the transient

equation:

∂(U∗ − Un
i )

∂t
+ Un

j

∂Un
i

∂xj
=

∂

∂xj

[
ν(φn)

(
∂Un

i

∂xj
+
∂Un

j

∂xi

)]
+ gi (2.19)

At this stage, the intermediate velocity field U∗i may be erroneous and may not satisfy

the continuity equation. In the second step, the projection step, pressure is used to

determine the velocity at the next time step, n+ 1.

∂(Un+1
i − U∗i )

∂t
+

1

ρ(φn)

∂P n+1

∂xi
= 0 (2.20)
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To solve the above equation 2.20, the value of the pressure term, P n+1 needs to

be known. This is obtained by using the divergence operator on equation (2.20). A

condition that the divergence of Un+1
i is zero is applied. This condition arises from the

continuity equation, which provides for a divergence free velocity field. The equation

obtained then is called the Poisson pressure equation, formulated as:

∂

∂xi

(
1

ρ(φn)

∂P

∂xi

)
= − 1

∆t

∂U∗i
∂xi

(2.21)

The value of pressure obtained from this step is then used in the equation 2.20 and

the velocity at the new time step is determined, which complies with the continuity

equation. This occurs due to the condition of zero divergence applied to the velocity

field to arrive at equation 2.21. Upon solving this equation, the Navier Stokes equa-

tions are solved. The method to obtain a solution for equation 2.21 is presented in

the following section.

2.3.1 Pressure Solver

To solve eqn. (2.21), direct methods such as the Gaussian elimination are too ex-

pensive in terms of computational resources. Thus, an iterative method is employed

here. The various iterative methods that can be employed are: Jacobi method, Gauss-

Siedel method, Successive Over-Relaxation method, Conjugate Gradient method, Bi-

Conjugate Gradient method and Multigrid method.

There are two classes of iterative solvers for non-linear equations: Newton-like solvers

and Global solvers. Newton-like methods solve an equation by linearizing it about an

an initial estimated value of the solution using the first two terms of the Taylor series.

These methods converge very quickly if the initial estimate of the result is close to

the final solution. A bad initial estimate will impede the convergence.

Global solvers arrive at a solution by converting the equation to a minimization

problem. This means the solver tries to find the minimum of a function. This is done

by searching for the lowest point on the surface, which lies in the opposite direction

of the gradient of the function. This process of finding the minimum on a line on

the surface defined by the function is carried out iteratively until it converges to the

solution. This method is guaranteed to converge irrespective of the initial value, but

the rate of convergence is found to be very slow. Also, in functions which have minor

undulations, the solver would oscillate back and forth between two successive minima.

This happens because the solver searches for the minima in only one direction. In

order to effectively use this approach, it is required to have a solver which can minimize

the function more efficiently.

The Conjugate Gradient (CG) method, developed by Hestenes and Stiefel in 1952 is



CHAPTER 2. NUMERICAL MODEL 13

an example of an improved global solver. The distinguishing feature of the CG solver

is that it is able to minimize a function in several directions while searching in one

direction. The name ‘conjugate’ is derived from the fact that the principle is valid

when the two directions are conjugate, that is, the vectors are orthogonal. This can

be extended to as many directions as needed.

The CG method, though, is limited in its application to symmetric systems only.

Generally, problems in fluid dynamics deal with non-symmetric equations like the

convection-diffusion equations. Hence, the CG method cannot be employed in these

cases. The Bi-Conjugate Gradient (BiCG) method, developed by Fletcher in 1976,

gets around this problem by first converting the non-symmetric system into a sym-

metric system, by the use of a transpose matrix. This process results in the BiCG

method requiring twice the computational effort compared to the CG method, but

converges at about the same rate[11].

The Bi-Conjugate Gradient Stabilized (BiCGSTAB) method, is an improvement over

the BiCG, which converges faster and produces more accurate solutions[32]. A precon-

ditioned BiCGSTAB is used in this study to solve the for pressure. Preconditioning

means replacing the problem to be solved by another problem with the same solution,

but which is known to converge faster.

2.4 Turbulence Modelling

The interaction of fluids with a structure can give rise to turbulence in the flow. One

of the effects of turbulence is the production of vortices in the flow field downstream of

the structure. This change in the flow pattern has an effect on the force experienced

by the structure. Thus, a turbulence model has to be incorporated in the code to

account for phenomena arising due to turbulence. Turbulence modelling is carried out

in this study using the Wilcox’s k-ω model[34] together with the Reynolds Averaged

Navier Stokes (RANS) equation. This concept is employed in the study during the

phase of force calculation (Chapter 4). The validation and testing phase of the wave

tank Chapter 3 uses the Navier Stokes equation and two dimensional simulations

since there is is no turbulent phenomena to be dealt with.

The k-ω model is a two-equation model, which uses two additional transport equa-

tions to account for turbulence in the computational domain. One of the variables

transported is the turbulent kinetic energy, k, which determines the energy in the

turbulence. The other variable is the specific turbulent dissipation, ω, which is used

to determine the scale of turbulence in the simulation. Due to the fact that both the

energy and scale of turbulence are calculated, this model can be used in any scenario

with turbulence, without prior knowledge of the scale of the turbulence. The eddy

viscosity, νt, is then determined using these variables.
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The RANS equation is obtained by including the Reynolds stress terms to the Navier

Stokes equations (equation 2.4) as shown below:

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1

ρ

∂P

∂xi
+

∂

∂xj

[
ν

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− uiuj

]
+ gi (2.22)

The stress terms added to the Navier Stokes equations, uiuj, represent the momentum

fluxes arising from the coupling of the Navier Stokes equations with the continuity

equation. This introduces non-linearity in the equation and extra unknown quantities.

The closure of the equations now becomes a challenge due to the presence of more

unknown variables than equations. To solve the RANS equation, the stress terms are

replaced with the Boussinesq approximation which relates them to the mean strain

of the flow:

− uiuj = νt

(
∂Uj
∂xi

+
∂Ui
∂xj

)
− 2

3
kδij (2.23)

with

νt = cµ
k

ω
(2.24)

The transport equations for k and ω are defined as follows:

∂k

∂t
+ Uj

∂k

∂xj
=

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
+ 2νt |S|2 − kω (2.25)

∂ω

∂t
+ Uj

∂ω

∂xj
=

∂

∂xj

[(
ν +

νt
σω

)
∂ω

∂xj

]
+ 2cµcω1 |S|2 − cω2ω

2 (2.26)

The values of the closure coefficients used in the equations above are: cµ = 0.09,

cω1 = 5/9, cω2 = 5/6 and σω = σk = 2. The term |S|2 is constituted of the mean rate

of the strain tensor:

Sij =
1

2

(
∂Uj
∂xi

+
∂Ui
∂xj

)
(2.27)

At solid boundaries, the surface roughness is accounted for by using Schlichting’s

rough wall law [27]:

U+ =
1

κ
ln

(
30d

ks

)
(2.28)

where Near the wall, an assumption is made that the turbulent production is equal

to the dissipation of k [34]. The wall function for the specific turbulent dissipation ω

for a bed cell with the distance ∆yp from the wall to the centre of the cell is then:

ωwall = −c
3/4
µ k

1/2
w U+

w

∆yp
(2.29)

The formula gives the value for ω directly. The turbulent kinetic energy k at the wall
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is treated by integrating the source terms of equation (2.25) over the bed cell:∫
(Pk − εwall) ρ =

[
τwUw
∆yp

− ρc
3/4
µ k

3/2
w U+

w

∆yp

]
(2.30)

The rough wall law is then used to determine the wall shear stress τw and the dimen-

sionless U+
w . The terms from equation (2.30) are discretized as source terms in the

transport equation for k.

2.5 Modelling the Free Surface

In fluid dynamics, it is common to deal with multi-phase flows where the interaction

between the interface of the different phases assumes importance due the effect it has

on the engineering design. In the field of marine civil engineering, dealing with ocean

waves, the free surface of the water is modelled by assuming a two phase flow with air

and water. The various methods that can be used for this purpose are Marker and Cell

(MAC) approach, Volume of Fluids (VoF) method and the Level Set Method, to name

a few. In the MAC method many marker cells are identified on the fluid interface

and their convection is calculated in addition to solving the fluid flow problem. This

method becomes computationally expensive especially in 3-dimensional simulations,

when the number of particles to be calculated becomes very large[11].

The VoF method calculates the free surface by solving an equation for the filled

fraction of the control volumes of the fluids involved in the problem. This method

is reported to be more efficient than the MAC scheme and also found to work well

with problems involving breaking waves. This method is very robust and widely

implemented in commercial codes like Ansys Fluent, StarCCM+ and open source

CFD code− OpenFOAM. The disadvantage in this method is that the free surface

tends to get smeared over two to three cells and needs a local grid refinement to

accurately represent the free surface[11].

2.5.1 Level Set Method

The Level Set Method (LSM) is the employed in REEF3D to model the free surface.

It uses a signed distance function, called the level set function, which captures the

free surface. The property of the level set function, φ(~x, t) is such that φ(~x, t) = 0 at

the interface. Away from the interface its value is the closest distance of the point

from the interface and the sign of the function denotes the fluid which governs the
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point, as illustrated in figure 2.1. Thus, the function is defined as

φ(~x, t)


> 0 if ~x is in phase 1

= 0 if ~x is at the interface

< 0 if ~x is in phase 2

(2.31)

Figure 2.1: The Level Set Function

The movement of the interface is characterized by the convection of the level set

function determined by
∂φ

∂t
+ ~u∇φ = 0 (2.32)

For immiscible, incompressible fluids the material derivative of density and viscosity,
Dρ
Dt

and Dν
Dt

is zero. These equations, in the same form as equation (2.32), when

discretized directly, lead to numerical instability due to a jump in their values at the

interface. The solution to this problem is to define a transition zone with thickness 2ε,

where ε is proportional to the grid spacing and smoothen the region at the interface

using a regularized Heavyside function H(φ) such that

ρ(φ) = ρ1H(φ) + ρ2(1−H(φ))

ν(φ) = ν1H(φ) + ν2(1−H(φ))
(2.33)

where,

H(φ) =


0 if φ < −ε
1
2

(
1 + φ

ε
+ 1

π
sin
(
πφ
ε

))
if |φ| ≤ ε

1 if φ > ε

(2.34)

It is notable that, in equation (2.31), the level set function is smooth across the

interface. This property makes the function differentiable at the interface and avoids

the instability that would occur if the function resembled a step function, that is, with

a jump at the interface. This is the main advantage of using the level set method to

calculate the interface between the fluids.
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2.5.2 Reinitialization

The challenge in using LSM method springs from the fact that the signed distance

property of the level set function is not maintained when the interface moves. It

means that the value of φ does not remain the shortest distance of the point from

the interface. To overcome this problem, the function is reinitialized or reset after a

certain amount of time, say after every iteration. During this process, the function

should be reset without changing the position of the interface.

There are two methods to approach reinitialization, the partial differential equation

(PDE) approach and the Fast Marching Method (FMM). This study uses a PDE

based reinitialization procedure presented in [30].

∂φ

∂τ
+ S(φ)

(∣∣∣∣ ∂φ∂xj
∣∣∣∣− 1

)
= 0 (2.35)

where S(φ) is the smooth signed function by [24]

S(φ) =
φ√

φ2 +
∣∣∣ ∂φ∂xj ∣∣∣2(∆x)2

(2.36)

The signed distance property is then restored by solving equation (2.35) until steady

state. The sign function in equation (2.36) assigns the value of zero to the interface.

The values for rest of the domain are assigned according to equation (2.31).

2.6 Immersed Boundary - Ghost Cell Method

The numerical methods used in REEF3D are all finite difference methods and they

mesh perfectly with the adaptation of a regular grid like the Cartesian grid. This

provides for an uncomplicated numerical implementation. On the other hand, a

Cartesian grid is not very flexible due to its well defined, regular structure. It can not

be ‘wrapped’ around a complex geometry. This is a problem when one has to deal with

irregular structures placed in a fluid domain or an irregular boundary like in a natural

channel. One of the solutions to overcome this problem is the Immersed Boundary

Method (IBM). This method was initially proposed in 1972[25] for numerical analysis

of blood flow in the heart, where the boundaries are elastic. The IBM is incorporated

in the Navier Stokes equations as a source term which behaves like an elastic spring.

To apply this method to solid boundaries, the stiffness of the spring is set very high. In

this way, a boundary is simulated without making any changes to the computational

grid.

Further advances on the IBM method led to the formulation of the Ghost Cell IBM
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Figure 2.2: Ghost Cell Immersed Boundary

(GCIBM)[31]. In this method, the values from the fluid region are extrapolated

into the solid region and these cells are called ‘ghost cells’. The ghost cell value

is computed along an orthogonal line across the boundary as illustrated in figure

2.2. An improvement to the GCIBM method was to extend the solution smoothly

across the boundary in the same direction as the discretization for which it would

be used[3]. But, there could be scenarios where the ghost cells are updated from

multiple directions. So, it is prudent to adapt the ghost cells to store multiple values

and return the respective values when called from a particular direction. This concept

is called the Multiple Ghost Cell (MGC), which has been created for and utilized in

REEF3D[4] and realized through object oriented programming techniques.

2.7 Parallel Processing

Figure 2.3: Working of MPI - Exchange of values

With the advent of multi-core computers, which have multiple processing elements

on a single computer, it is possible to improve the performance of a code by adapt-
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ing it to parallel processing. Parallel processing refers to dividing a large problem

into smaller parts and solving them simultaneously. REEF3D has been adapted for

parallel processing by the use of a method called Message Passing Interface (MPI).

The computational domain is explicitly split into smaller pieces and assigned to dif-

ferent processors. The values at the boundaries of each process have to be then

shared among the neighbouring processes for the simulation to continue. To enable

this sharing, the values of the cells at either edge of an individual process are copied

and transmitted to the respective boundaries of the previous and next processes and

stored on a set of ghost cells at the process boundary. This process of information

exchange is handled by the Application Programming Interface (API). An illustration

is presented in figure 2.3 MPI is structured such that it can be used on both shared

memory and distributed memory architectures.
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Chapter 3

Numerical Wave Tank

Studies in the field of marine and offshore engineering using CFD need a way to

simulate an environment with wave generation and absorption to calculate the hy-

drodynamics around marine structures. This is enabled by a numerical wave tank.

The numerical experiments carried out here have to mimic the physical experiments

carried out in a wave flume in the laboratory. Numerical wave tanks can be based

on different approaches to carry out their solutions. Two popular approaches are the

RANS approach and the potential theory approach. Further, the available choices for

the numerical treatment of these approaches provides a large number of combinations

to be studied to arrive at a good combination for a certain engineering scenario. Some

of the combinations are

• Potential theory with finite element discretization

• RANS equations with free surface description by VoF method

• RANS equations with free surface description by LSM

• Combination of potential theory and RANS equations

A study[6] has reported the results obtained using the first two approaches listed

above. This study uses the RANS equations with free surface obtained using LSM.

The last item, a combination of methods, could be a subject of future inquiry. It

has been reported that the use of potential theory with the method of finite elements

results in a fast and accurate solution, though, RANS equations are preferred for the

simulation of wave-structure interactions[6].

In the implementation of the potential theory for numerical modelling of waves, a



CHAPTER 3. NUMERICAL WAVE TANK 21

Fully Non-linear Potential Flow (FNPF) model has been proposed[13]. In this model,

Green’s identity is used to transform the Laplace equations for velocity potential (Φ)

and its time derivative (∂Φ
∂t

) to obtain two Boundary Integral Equations (BIE). The so-

lution to these BIEs is obtained using a method called the Boundary Element Method

(BEM). Unlike the current study, which uses domain discretization (and method of

finite differences), the FNPF model describes the domain through shape functions or

splines and the boundary is divided into a finite number of elements. In the process of

the solution, the BIEs yield a finite number of linear algebraic equations. The system

of equations is then solved and the values of the unknowns is then determined. After

this solution, the unknowns inside the domain can be calculated explicitly without

the need for numerical approximation. This is the distinct difference between the

domain discretization methods and BEM.

Open source CFD software OpenFOAM was also used in a study to develop a numeri-

cal wave tank[1]. Here, space discretization was carried out by finite volume approach

and the free surface was determined by VoF method. The study concluded that about

200 to 400 grids per wavelength were required to obtain acceptable results.

In a further development, a wave generation toolbox was also developed for Open-

FOAM with a new method for wave generation and absorption in the wave tank[16].

3.1 Wave Generation and Absorption

One of the early works in numerical wave generation by a wavemaker in physical space

was presented by Kim et al.[18]. This model was limited to non-breaking waves. This

model was an application of the Fully Non-linear Potential Flow (FNPF) theory. Two

main methods used, so far, for numerical wave generation are

• Moving a wavemaker boundary: In this case, the normal velocities are specified

over the surface of a plane paddle. This surface behaves similar to the wave-

maker used in the laboratory. Similar to the motion of the physical wavemaker,

the numerical surface is moved to generate the waves in the numerical wave tank.

The disadvantage in this method is that, it can produce waves that travel op-

posite to the intended direction, just like the problem faced in a physical model.

• Inclusion of source term: This method generates waves by including a source

term in the governing equation, that introduces oscillations in the computa-

tional domain. Waves are produced in both directions in this method. The

scattered waves are then allowed to travel towards the open boundary and exit

the computational domain.
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3.1.1 Relaxation Method

This study uses a method attributed to Larsen et al. [19] where the simulated waves

are moderated after every time step with an analytical solution. The wave generation

region gradually moves from a fully analytical solution to a computational solution.

This method of using a combination of analytical and computational values is referred

to as the ‘relaxation method’. For this purpose, ‘relaxation zones’ are introduced in

the wave tank. The relaxation zones are controlled areas of the numerical wave tank

where relaxation functions are applied at various regions in the wave tank to generate

the waves at the beginning, absorb the waves at the end and to prevent reflected

waves from affecting the wave generation. Three relaxation zones are required to

carry out these functions. Each zone has its own relaxation function associated with

it. A typical scenario, showing the division of the wave tank into functional zones

Figure 3.1: Sections of a Numerical Wave Tank

is illustrated in figure 3.1. The first zone, zone 1, takes care of wave generation.

The second zone, right after zone 1, prevents reflected waves from affecting the wave

generation. The third zone is the numerical beach, which absorbs the waves at the

end of the tank. In the absence of zone 3, waves are reflected from the domain

boundary and this scenario can be used to simulate the formation of standing waves.

The relaxation in zone 1 and 2 is achieved using the following rules on pressure and

velocity in the zones:

Urelaxed = Ψ(x)Uanalytical + (1−Ψ(x))Ucomputational

Prelaxed = Ψ(x)Panalytical + (1−Ψ(x))Pcomputational
(3.1)

Similarly, the relaxation in zone 3 is achieved by the following set of rules for pressure

and velocity:

Urelaxed = Ψ(x)Ucomputational + (1−Ψ(x))Uanalytical

Prelaxed = Ψ(x)Pcomputational + (1−Ψ(x))Panalytical
(3.2)

The function associated with Ψ(x) changes according to the zone on which the relax-

ation is being applied. The idea behind the application of equation (3.1) is that the
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initial computational values of velocity and pressure are gradually transitioned the

analytical values, in accordance to the wave theory being applied, at the beginning

of the simulation. The computational values are the boundary conditions applied to

generate the required wave in the tank.

In the second zone, the analytical values from the end of the first zone are gradually

changed to the computational values and the wave enters the working region of the

numerical wave tank. This function can be envisioned by considering a reflected wave

that is travelling towards the wave generation zone. This reflected wave obviously

belongs to the computational values produced in the wave tank. As the wave travels

from the working zone of the wave tank, towards the wave generation zone, the com-

putational values are replaced gradually by the analytical values. At the boundary

between zone 2 and zone 1, the solution is purely analytical. In this way, the reflected

or scattered wave is virtually damped and prevented from affecting wave generation.

The relaxation function for zone 3, in equation (3.2), is designed to transition the

computational values from the working zone of the wave tank to the analytical values

at the beach. The analytical values at the end of the wave tank conform to the fluid

velocity coming down to zero as the wave is damped, simulating a beach.

3.1.2 Relaxation Functions

Relaxation functions are functions that are applied over the relaxation zones in or-

der to achieve the required objective of each zone. A set of relaxation functions

were proposed by Engsig-Karup[9] for wave absorption and generation respectively

as follows

Ψ(x) = (1− x)p (3.3)

Ψ(x) = −2x3 + 3x2 (3.4)

Using (1− x) in equation (3.4), produces the function for absorbing reflected waves,

so as to not affect the wave generation,

Ψ(x) = −2(1− x)3 + 3(1− x)2 (3.5)

The term p in equation (3.3) determines the steepness of the relaxation function. A

value of p = 6 has been used in this study. The figure 3.2 illustrates the shapes of the

relaxation functions in their respective zones. A rule of thumb suggested in [9] is to

extend the relaxation zone over 1-2 times the wavelength of the wave being simulated.

Another set of relaxation functions were proposed by Jacobsen et al. [16] for wave

generation and absorption.

ΓR(χR) = 1− exp(χ3.5
R )− 1

exp(1)− 1
for χR ∈ [0; 1] (3.6)
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Figure 3.2: Form of Relaxation Functions in the Wave Tank

This form of relaxation proposes to improve the solution by using the values from

the cell centres rather than from the cell edges as done in previous works. The mo-

tivation behind the development of this method was to avoid the need for a higher

resolution grid around the interface. This method was developed for the wave genera-

tion toolbox for OpenFOAM which uses the finite volume approach and VoF method

for calculating the interface. In this method, the numerical wave tank has only two

relaxation zones− at the inlet and the outlet. The intermediate zone, zone 2, is not

included in this method. In the current study, it is a matter of interest to observe

the behaviour of this method and its suitability for REEF3D, which implements a

Cartesian grid and LSM.

3.2 Wave Theory

To understand the forces acting on marine structures, one has to be able to represent

the wave field in the region. Waves are undulations on the surface of the water caused

by external forces. Various forces− earthquakes, wind, gravitational to name a few;

combined with varying field conditions like water depth and bed slope are deciding

factors in the form of the wave. Depending on such various factors, the waves formed

on the sea surface differ in their characteristic properties - velocity potential, particle

velocity induced etc. A highly simplified representation of waves encountered in

marine design is accomplished by defining waves using a wave theory.

Wave theories are categorized as ‘linear’ and ‘non-linear’ based on the treatment of

the boundary conditions listed below:

• Kinematic Boundary Condition

This defines the motion of the fluid at the free surface, η:

∂η

∂t
+ U

∂η

∂x
= Uk (3.7)

The physical content of equation (3.7) is that a fluid particle at the surface,

stays at the surface.
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• Dynamic Boundary Condition

Dynamic boundary condition deals with the force balance at the free surface. It

implies that the pressure at the free surface is equal to the atmospheric pressure.

Assuming irrotational flow, such that, the partial derivative of Φ in all directions

gives the velocity in that particular direction, the dynamic boundary condition

is given by:
P

ρ
+
∂Φ

∂t
+

1

2
(U2

i + U2
k ) + gη = 0 (3.8)

3.2.1 Linear Wave Theory

The linear wave theory is based on the two fundamental equations- the mass and

momentum balance equations (2.2) and (2.4), along with linearized kinematic and

dynamic boundary conditions[15]. This theory applies when the wave amplitude is

small compared to the wavelength and the water depth. This is condition is referred

to as the small amplitude approximation.

With this approximation, the kinematic boundary condition is linearized and reduced

at mean water level to
∂η(x, t)

∂t
= Uk(x, 0, t) (3.9)

The dynamic boundary condition is simplified to yield the linearized dynamic condi-

tion at the mean water level:

∂Φ(x, 0, t)

∂t
+ gη(x, t) = 0 (3.10)

The linear wave theory, thus, defines η,Φ,u,w and the dispersion relation as[2]:

η = a sin(ωf t− kfx) (3.11)

Φ =
ag

ω

cosh kf (z + d)

cosh kfd
cos(ωf t− kfx) (3.12)

Ui =
∂Φ

∂x
= ωa

cosh kf (z + d)

sinh kfd
sin(ωt− kfx) (3.13)

Uk =
∂Φ

∂z
= ωa

sinh kf (z + d)

sinh kfd
cos(ωt− kfx) (3.14)

ω2
f = gkf tanh kfd (3.15)

The limitation imposed by the small amplitude approximation requires the use of

other wave theories to define other kinds of wave motion observed in oceanic and

coastal waters.
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3.2.2 Non-linear Wave Theories

In section 3.2.1, the boundary conditions have been simplified and linearized. Non-

linear wave theories or the finite amplitude wave theories, on the other hand, include

higher order terms to solve the boundary conditions. These appear in form of an

infinite power series which is truncated at the desired higher order term. Also, the

equations are solved at the water surface, rather than the mean water level.

Second Order Stokes Wave Theory

The second order Stokes theory developed by Stokes in 1847, is applicable when the

ratio H/d is small. So, the theory is applicable in deep waters and some range of

intermediate waters. It formulates the wave characteristics in form of a power series

of the wave steepness H/λ[8]. The non-dimensional factor used in the power series

known as the perturbation factor. Here, η, Φ, Ui and Uk are formulated as:

η = a cos(kfx− ωf t) +
πH

8

H

λ

cosh kfd(2 + cosh 2kfd)

sinh3 kfd
cos 2(kfx− ωf t) (3.16)

Φ =
ag

ωf

cosh kf (d+ z)

cosh kfd
sin (kfx− ωf t) +

3πCH

16

H

λ

cosh 2kf (d+ z)

sinh4 kfd
sin 2(kfx− ωf t)

(3.17)

Ui =
∂Φ

∂x
= ωfa

cosh kf (z + d)

sinh kfd
sin(kfx−ωf t)+

H

λ

3π2H cosh(2kf (d+ z))

4T sinh4 kfd
cos2(kfx−ωf t)

(3.18)

Uk =
∂Φ

∂x
= ωfa

cosh kf (z + d)

sinh kfd
sin(kfx−ωf t)+

H

λ

3π2H sinh(2kf (d+ z))

4T sinh4 kfd
sin2(kfx−ωf t)

(3.19)

The dispersion relation remains the same as in equation (3.15) for the second order

theory. It is to be noticed that the first term in equations (3.16) and (3.17) is the same

as the expression for linear wave theory, that is, equations (3.11) and (3.12). The

second term in the expressions for η and Φ here are directly dependent on the wave

steepness. From these terms the asymmetric nature of the wave is realized, where

the troughs are shallower and the crests are higher, than linear waves of the same

amplitude. This vertical asymmetry increases with an increase in wave steepness.

Fifth Order Stokes Wave Theory

With an increase in wave height, it becomes essential to evaluate higher order per-

turbations to obtain a good representation of the wave. Fenton theory[10] for the

analytical solution for the fifth order theory is used in this work. Taylor expansion

with the perturbation factor, ε = πH
λ

, is evaluated till the fifth power. Thus, the
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relations for η,Φ,Ui and Uk according to this theory are:

η =
1

kf

5∑
n=1

εnbn cos(nθ) (3.20)

where, b1 = 1 + ε2B31 − ε4(B53 +B55)

b2 = B22 + ε2B42

b3 = −B31 + ε2B53

b4 = B44

b5 = B55

(3.21)

Φ = C0

√
g

k3

5∑
n=1

εnancosh(nkz)sin(nθ) (3.22)

where, a1 = A11 + ε2A31 + ε4A51

a2 = A22 + ε2A42

a3 = A33 + ε2A53

a4 = A44

a5 = A55

(3.23)

Ui = C0

√
g

kf

5∑
n=1

εn n ancosh(nkfz)cos(nθ) (3.24)

Uk = C0

√
g

kf

5∑
n=1

εn n ansinh(nkfz)sin(nθ) (3.25)

The coefficients C0, Aij, Bij are dimensionless functions of the water depth and

wavelength.

3.3 Validation and Testing of the Wave Tank

The first objective of this work is to validate the numerical wave tank. This is done

by comparing the numerical results with the results expected from the wave theory.

Different parameters are varied to observe their effect on the result. The results

obtained in the wave tank after 15 seconds of simulation are used for the analysis to

avoid any spurious results which could occur at the beginning of the test.

In the following sections, a 2-dimensional wave tank 15m long and 1m high with

0.5m water depth is used. Parameters like grid cell density, CFL number, numerical

beach width, wave amplitude, relaxation method, spatial discretization scheme, time

discretization scheme and wave type are varied to test performance of the wave tank
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under different configurations. The results of these trials are presented in the following

sections.

3.3.1 Effect of grid cell density

The number of grid cells per wavelength is one of the factors that affects the numerical

results. A smaller grid size (dx) would imply more number of cells per wavelength

and provide better solutions. On the other hand, this higher resolution results in a

higher computational time. It is imperative, thus, to arrive at an optimal grid size

such that the numerical results are accurate without being too expensive with regard

to computation.

In this section, trials are carried out with WENO spatial discretization scheme and

4th order Runge-Kutta time discretization scheme. Fifth order Stokes waves with an

amplitude of 0.05m are generated in the wave tank and the effect of varying the grid

density is observed.

Figure 3.3 presents the solution obtained with 10 grid cells per wavelength. A wave

with λ = 1m is generated. The grid cell size is set to 0.1m. A large reduction in wave

amplitude as the wave propagates through the wave tank is observed. This happens

due to numerical diffusion which occurs due to the low grid density and results in the

damping of the amplitude.

In figure 3.4, the solution using 20 grid cells per wavelength is presented. A wave with

λ = 2.0m is used with a grid size of 0.1m. An amplitude error is still observed, but

less severe than the first trial. Figures 3.5, 3.6 and 3.7 show the solutions obtained

for 40, 100 and 200 grid cells per wavelength, obtained using a wave with λ = 2.0m

and grid size set to 0.05m, 0.025m and 0.01m respectively.

It is seen that the numerical solutions start to match the theoretical values at a grid

density of 100 grid cells per wavelength. The convergence of the wave amplitude

to the expected amplitude on increase of the grid density can be seen in the graph

presented in figure 3.8. From this figure it is clear that the numerical diffusion of the

wave amplitude ceases considerably at a grid density of 200 cells per wavelength.

A noticeable feature in figure 3.8 is a singular upward bump in the curve for all values

of cell density. The amplitude of the wave is increased by about 0.24% at this location

for trials with grid density 100 and 200 cells per wavelength. This can be attributed

to slight reflection that occurs at the dissipation end of the wave tank. The chance

of this being an initialization problem is countered by the fact that the solutions at

t = 20s are used in this analysis. This effect is not so significant in tests with grid

cell densities less than 40 as the reducing amplitude due to numerical diffusion hides

this effect.
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Figure 3.3: Solution with 10 grid cells per wavelength (a=0.05m, λ=1.0m, dx=0.1m)
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Figure 3.4: Solution with 20 grid cells per wavelength (a=0.05m, λ=2.0m, dx=0.1m)
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Figure 3.5: Solution with 40 grid cells per wavelength (a=0.05m, λ=2.0m, dx=0.05m)

0 5 10 15
0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

X (m)

W
av

e 
am

pl
itu

de
 (m

)

 

 
Numerical
Theory

Figure 3.6: Solution with 100 grid cells per wavelength (a=0.05m, λ=2.0m,
dx=0.02m)



CHAPTER 3. NUMERICAL WAVE TANK 31

0 5 10 15
0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

X (m)

W
av

e 
am

pl
itu

de
 (m

)

 

 
Numerical
Theory

Figure 3.7: Solution with 200 grid cells per wavelength (a=0.05m, λ=2.0m,
dx=0.01m)
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Figure 3.8: Convergence of wave amplitude on increasing grid density
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3.3.2 Effect of time step size

The length of the time step is another factor that has to be considered to obtain a good

numerical solution. Since adaptive time stepping is employed in this study, the CFL

number (section 2.2.3), is used to study the effect of time step size on the solution.

Wave amplitude, wavelength and grid size of 0.01m, 2.0m and 0.05m respectively and

fifth order Stokes waves are used for all the trials in this section.

Figures 3.9 through 3.14 are the solutions obtained by for CFL numbers 0.5, 0.4, 0.3,

0.2, 0.1 and 0.05 respectively. In these figures, it can be observed that not only the

wave amplitude is dampened but also the waveform is irregular with multiple peaks

in some cases. This effect is reduced with the reduction in the CFL number pointing

to the importance of maintaining a suitably low time step to obtain a good solution.

The solution with CFL number 0.05 is seen to be almost constant and close to the

theoretically expected value. A maximum error of 0.09% is observed in this solution.

It has to be mentioned, though, that this configuration with a grid cell density of 200

and CFL number 0.05, has a very long computational time. The comparative graph

presented in figure 3.15, shows convergence of the wave amplitude to the expected

theoretical value on reduction of the CFL number from 0.5 to 0.05.
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Figure 3.9: Solution with CFL number=0.5 (dx=0.01, a=0.05, λ=2.0m)
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Figure 3.10: Solution with CFL number=0.4 (dx=0.01, a=0.05, λ=2.0m)
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Figure 3.11: Solution with CFL number=0.3 (dx=0.01, a=0.05, λ=2.0m)
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Figure 3.12: Solution with CFL number=0.2 (dx=0.01, a=0.05, λ=2.0m)
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Figure 3.13: Solution with CFL number=0.1 (dx=0.01, a=0.05, λ=2.0m)
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Figure 3.14: Solution with CFL number=0.05 (dx=0.01, a=0.05, λ=2.0m)
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Figure 3.15: Convergence of wave amplitude on reduction of CFL number
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3.3.3 Effect of length of the numerical beach

Dissipation of waves generated in the wave tank is an essential function to be taken

care of during its development. The numerical beach, created for this purpose, should

be long enough to be able to effectively absorb the incoming waves. The presence of a

long beach may help in the dissipation of the waves, but will take up a large amount

of space in the wave tank. Conversely, an inadequate length of the absorption zone

will result in reflection from the boundary and pollute the numerical solution in the

wave tank. So, it is necessary to determine the adequate length of the absorption

zone. The trials in this section have been carried out with a fifth order Stokes wave

with amplitude 0.05m, wavelength 2.0m and grid size 0.01m. WENO scheme and

TVD 4th order Runge-Kutta scheme are the spatial and time discretization schemes

used in this trial. Solutions obtained over multiple wave periods are superimposed

in the figures presented in this section, so as to visualize with more clarity, the effect

of reflection over several wave periods. The boundary between relaxation zone 2 and

the working zone of the tank is marked by a vertical dotted line.

Figure 3.16 presents the development of standing waves in the wave tank in the ab-

sence of a beach. The solutions for trials with beach length 0.5, 1.0, 2.0, and 3.0

times the wavelength respectively are presented in figures 3.17 through 3.20. It is

observed that the increase in amplitude caused by reflection from the boundary is

reduced with the increase in beach length.

A plot of the maximum heights of the crests and the maximum depths of the troughs

observed in figures 3.17 to 3.20 is presented in figure 3.21. This is done to visualize

the effect of increasing beach width on the wave amplitude error caused by reflection.

From this figure, the convergence of the wave amplitude towards the expected theo-

retical values can be seen with increase in beach width. It is noticed that increasing

the beach width beyond two times the wavelength does not seem to have a visible

effect on the results. This conforms with the rule of thumb suggested in[9], mentioned

in section 3.1.2.
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Figure 3.16: Solution in the absence of numerical beach (a=0.05, λ=2.0m)
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Figure 3.17: Solution with a numerical beach of length 1m (a=0.05, λ=2.0m)
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Figure 3.18: Solution with a numerical beach of length 2m (a=0.05, λ=2.0m)
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Figure 3.19: Solution with a numerical beach of length 4m (a=0.05, λ=2.0m)
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Figure 3.20: Solution with a numerical beach of length 6m (a=0.05, λ=2.0m)
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Figure 3.21: Convergence of amplitude maxima and minima to the theoretical on
increase of beach width (a=0.05, λ=2.0m)
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3.3.4 Performance of different convection discretization meth-

ods

Different convection discretization schemes for the momentum equation and the level

set function that can be utilized for numerical simulations employing the finite differ-

ence methods were described in section 2.2.1. This set of trials explores the solutions

obtained using the WENO, TVD and SMART schemes using a wave of amplitude

0.05m, wavelength 2.0m and grid size of 0.01m. The 4thorder Runge-Kutta time

discretization is followed for all these trials.
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Figure 3.22: Solution using the WENO scheme

From the figures presented for this set of trials, it can be noticed that the results of

the SMART scheme are comparable to the results from the WENO scheme except

for a few wiggles in some parts of the solution. The solution obtained using the TVD

scheme results in a reduction of the wavelength as the wave exits the relaxation zone

2 and propagates through the working zone of the wave tank.
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Figure 3.23: Solution using the TVD scheme
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Figure 3.24: Solution using the SMART scheme
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3.3.5 Performance of different time discretization methods

The effect of higher order time discretization of the momentum equation and the level

set function is explored in this set of tests. The time discretization schemes described

in section 2.2.2 are employed to observe the difference in the solution among methods

with second, third and fourth order time discretization schemes. Figures 3.25, 3.26

and 3.27 below are the results obtained for the Adam-Bashforth and TVD 3rd and

4th order Runge Kutta schemes respectively. The WENO scheme is employed for the

convection discretization in all these trials. A fifth order Stokes wave with amplitude

0.05m, wavelength 2.0m and grid size 0.01m is used in this section.
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Figure 3.25: Solution using the Adam-Bashforth scheme

The 4th order Runge Kutta scheme is seen to perform well. Agreement of wave

phase is seen to be better in the Adam-Bashforth method whereas the agreement in

amplitude is observed to be better in the 3rd order Runge Kutta scheme.



CHAPTER 3. NUMERICAL WAVE TANK 43

0 5 10 15
0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

X (m)

W
av

e 
am

pl
itu

de
 (m

)

 

 
Numerical
Theory

Figure 3.26: Solution using the 3rd order Runge-Kutta TVD scheme
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Figure 3.27: Solution using the 4th order Runge-Kutta scheme
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3.3.6 Performance under different relaxation methods

Two relaxation methods were presented in section 3.1.2. The performance of these

two methods are tested. A fifth order stokes wave of amplitude 0.05m and wavelength

2.0m with a water depth of 0.5m is used here. From the figures 3.28 and 3.29 it is

observed that the effect of reflection in the Jacobsen method is comparatively more

than that seen in the Engsig-Karup relaxation method.
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Figure 3.28: Solution using the Jacobsen relaxation method

A feature to be noted in this case is that the Jacobsen method of relaxation does not

consist of a second relaxation zone (zone 2) unlike in the Engsig-Karup method. This

could be one of the reasons for the increased reflective action, with reflected waves

travelling between the inlet and outlet boundaries.
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Figure 3.29: Solution using the Engsig-Karup relaxation method

3.3.7 Performance at different amplitudes

The performance of the wave tank for different wave amplitudes, in accordance to the

limitations of the wave theory used, was tested. The following figures are the results

obtained for the wave amplitudes 0.01m, 0.03m, 0.05m and 0.07m at a water depth

of 0.5m for a wavelength of 2.0m. The grid size is 0.01m and CFL number=0.1. The

WENO scheme and 4th order Runge-Kutta scheme are used for the convection and

time discretizations respectively.

A point of interest in figure 3.30 is the slight reduction in amplitude with the pro-

gression of the wave. This could be intuitively attributed to insufficient cell density

in terms of the amplitude. Other than cell density, there are two other aspects in

the numerical wave tank, which seem to effect the solution. The first aspect is the

phenomenon of the smaller wave created due to still water encountered by the wave

mentioned in section 3.3.1. This effect is seen to slowly wear off once the wave estab-

lishes itself in the tank, after a few wave periods. The second aspect is the reflection

from zone 3. For waves of higher amplitudes, the reflection causes a few crests to

deviate from the theoretically expected value as seen in figures 3.32 and 3.33. At

a lower amplitude of say 0.03m, the reflected wave seems to of high frequency and

causes the wiggles seen in fig 3.31. Overall, from this section, the wave tank seems

to show better performance at higher amplitude.
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Figure 3.30: Solution for a wave amplitude of 0.01m
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Figure 3.31: Solution for a wave amplitude of 0.03m
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Figure 3.32: Solution for a wave amplitude of 0.05m
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Figure 3.33: Solution for a wave amplitude of 0.07m
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3.3.8 Performance of different wave types

REEF3D is capable of generating waves conforming to many wave theories. The

results for waves generated using the linear wave theory, second order stokes and

the fifth order stokes wave theories are presented in the figures below. Waves with

varying amplitudes and types of wavelength 2.0m are generated with a grid size of

0.01m. WENO scheme and 4th order Runge-Kutta scheme are employed for spatial

and time discretization respectively.
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Figure 3.34: Simulation of linear waves with amplitude 0.05m

In figures 3.34 and 3.36, the solutions for first order and second order waves respec-

tively with wave amplitude of 0.05m are presented. An interesting observation is that

the effect of reflection is considerably more in these cases than at a lower amplitude

as seen in figures 3.35 and 3.37. These effects are much lesser in the fifth order Stokes

wave presented in figures 3.38 and 3.39.
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Figure 3.35: Simulation of linear waves with amplitude 0.02m
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Figure 3.36: Simulation of second order Stokes waves with amplitude 0.05m
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Figure 3.37: Simulation of second order Stokes waves with amplitude 0.02m
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Figure 3.38: Simulation of fifth order Stokes waves with amplitude 0.05m
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Figure 3.39: Simulation of fifth order Stokes waves with amplitude 0.03m
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Chapter 4

Wave Forces

4.1 Wave Forces on Structures

In civil engineering, calculation of forces on structures forms an important part of

any work because having a good idea of the forces to be withstood by the struc-

ture leads to a sound, safe and economical design. Wave forces on structures are

calculated under different scenarios, depending on the type of waves encountered−
breaking or non-breaking; dimensions of the structure− slender or large; and type

of flow regime− separated or non-separated. The Reynolds number associated with

the flow also becomes an important factor as it determines flow regime and the type

of relation that exists between the flow and the force exerted by it on the structure.

Two other important parameters in this subject are the Strouhal number and the

Keulegan-Carpenter number.

The Keulegan-Carpenter number, KC, is a non-dimensional parameter which indi-

cates the flow regime in an oscillatory flow as a function of the wave amplitude, wave

period and diameter of the cylinder, where:

KC =
a T

D
(4.1)

The Strouhal number, S0, is another dimensionless parameter that is an indicator of

the flow regime in case of flow separation and vortex formation. It is a function of

the vortex shedding frequency, cylinder diameter and the flow velocity such that:

S0 =
f0D

U
(4.2)

Froude-Krylov Force

The first concept to be looked at while studying wave forces on structures is the

calculation of the Froude-Krylov force. This is the force exerted by the fluid in an
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undisturbed wave field, that is, when the structure is considered to be transparent to

the wave. This is calculated by integrating the pressure around the cylinder as

fFK = ρ

(
πD2

4

)
U̇ (4.3)

This is actually an application of the Newton’s second law with the mass of the

‘transparent’ cylinder being equal to the mass of the water displaced by it and on

multiplication of the acceleration of the fluid, one obtains the force acting on the

surface.

Form Drag Force

A structure that is inserted normal to the current in a steady flow is subjected to a

frictional force as it acts as an obstacle in the flow regime. This frictional force is

referred to as the form drag force, calculated per unit length of the cylinder as

fd =
1

2
ρCdDU |U | (4.4)

The modulus around the velocity term in the above equation serves the purpose of

preserving the direction of the velocity as the force acts in the same direction as the

velocity of the fluid. The term Cd is a dimensionless parameter known as the drag

force coefficient which is a function of the Reynolds number defined as

Re =
UD

ν
(4.5)

The above relation in eqn. (4.4) is applicable under steady flow regimes, where the

flow properties are considered to be stationary. Also, as an extension, in case of

flow separation with high vortex shedding frequency, the flow regime can be deemed

quasi-steady and the same relation holds.

4.1.1 Potential Theory for Slender Cylinders

A cylinder is termed a slender cylinder when its diameter is small compared to the

wavelength, in principle, λ/D > 5. Under this condition, the cylinder is considered

to be small enough such that the flow regime is not disturbed to the extent of causing

flow separation downstream of the cylinder.

The potential theory is a first order theory, based on the linear wave theory and the

solutions are accurate to the first order. This is used to calculate the non-breaking

wave force on a slender cylinder. The concept of the Froude-Krylov force represented

in equation (4.3) is to be extended to account for the presence of the cylinder, which in
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reality, disturbs the wave field. The solution to be found now, for an incompressible,

inviscid fluid in irrotational flow has to follow the following conditions:

• Satisfy the Laplace equation, ∇2Φ = 0

• Particle velocities normal to the body must be zero, ∂Φ/∂n = 0

• The undisturbed velocity potential is restored at a distance far away from the

cylinder.

The above conditions can be satisfied by introducing a ‘diffraction potential’. The

total velocity potential is then the sum of this added term and the original velocity

potential. But due to the assumption of a slender cylinder the diffraction term of the

diffraction potential is considered negligible in comparison to the undisturbed velocity

potential. On integrating the dynamic pressure so obtained from the simplified new

velocity potential, the net force acting on the cylinder is found to be

f = 2ρ

(
πD2

4

)
U̇ (4.6)

It is seen that this is exactly twice the Froude-Krylov force. The force calculated in

eqn. (4.6) can be decomposed into two parts as

f = ρπ
D2

4
U̇ + ρCaπ

D2

4
U̇ (4.7)

The first term is the Froude-Krylov force from eqn. (4.3). The second term is the

hydrodynamic mass force which comes into play as the fluid particles around the

cylinder are accelerated as the cylinder moves under the influence of the fluid pressure

acting on it. For a slender cylinder, the added mass coefficient, Ca = 1. The relation

in eqn. (4.7) can thus be written as

f = (1 + Ca)ρπ
D2

4
U̇ = Cmρπ

D2

4
U̇ (4.8)

For a slender cylinder, as can be observed from eqn. (4.8), Cm = 2.

4.1.2 MacCamy Fuchs Theory

The wave forces explored in sections 4.1.1 and 4.1.3 were approximated under the as-

sumption of a slender cylinder. In cases where the cylinder does not obey the criterion
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of being slender, a different approach is required as the wave undergoes scattering

on encountering the structure. A first order theory extended to intermediate depths,

based on the potential theory was proposed in 1954 by MacCamy and Fuchs[21]. The

diffraction term in the diffraction potential as introduced in section 4.1.1 cannot be

neglected in this case and is represented by the use of an infinite series of Bessel func-

tions. The dynamic pressure is determined again and integrated around the cylinder

to obtain the net force in the direction of wave propagation as

fx =
2ρgH

kf

cosh kfz

cosh kfd

1√
A1(kfa)

cos(ωf t− α)

where, A1(kfa) = J ′ 2
1 (kfa) + Y ′ 2

1 (kfa)

and α = tan−1

(
J ′1(kfa)

Y ′1(kfa)

) (4.9)

The terms J and Y used in the above equation are Bessel functions.

4.1.3 Morison Formula

The presence of a structure in a wave field gives rise to complex flow patterns de-

pending on the Reynolds number of the flow. In some scenarios, after the passage of

a certain amount of time, the flow pattern changes and gives rise to a phenomenon

called vortex shedding. This is a process by which a boundary layer of the flow sep-

arates from the main streamlines around the cylinder rolls up and forms vortices.

These vortices stay behind the cylinder initially and then are shed alternatively into

the flow behind the cylinder. Thus, the forces acting on the cylinder are not only

dependent on the velocity field but also on the flow history. Under circumstances

where the flow is steady and there is no formation of vortices, potential theory gives a

good representation of the hydrodynamics around the cylinder as expressed in section

4.1.1. Also, production of a large number of vortices in half a flow cycle, the flow

regime can be assumed to be quasi-steady and a good approximation be obtained

by calculating the drag force as described in section 4.1. A flow regime lies between

these two cases of flow without vortices and with high vortex generation rate with

both acceleration of the structure and flow separation. The Morison equation is an

empirical formula that is used to evaluate the wave forces on the cylinder in this flow

regime.

According to the Morison equation the force on the cylinder can be calculated as the

sum of the inertia forces and the form drag on the cylinder. Each of the two terms are

then adjusted with force co-efficients Cm and Cd to obtain the force per unit length

as

f =
1

4
CmπD

2ρU̇ +
1

2
CdρDU |U | (4.10)
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It has to be noted that the force coefficients Cd and Cm used above are not the same

as the coefficients encountered in section 4.1 with the Froude-Krylov and form drag

forces. The values of the experimentally determined coefficients here are obtained

from charts which plot their values against the Reynolds number for various values

of the Keulegan Carpenter number, KC.

4.2 Method for calculation of forces in REEF3D

The general idea behind the evaluation of wave forces in sections 4.1.1 through 4.1.2

is to integrate the pressure around the cylinder. This study uses the same concept

in for numerical calculation of wave forces. The numerical model provides a very

accurate description of the surface profile and this is utilized to calculate the pressure

around the cylinder.

In the model, the pressure and shear stress around the boundary of the cylinder are

integrated as illustrated in figure 4.1. Mathematically, the surface normal vectors

are produced for the pressure and the shear force around the cylinder and the sum

of these integrated over the surface of the cylinder. This can be represented in an

equation as,

F =

∫
Γ

(−np+ n.τ)dΓ (4.11)

Figure 4.1: Calculation of wave forces by integration of pressure and shear force
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4.2.1 Calculation of Morison Force

The Morison formula is used in order to compare the numerical results obtained with

the theoretically expected values. This formula described in section 4.1.3, uses two

experimentally determined variables Cd and Cm.

The values for these coefficients are evaluated from the charts which plot their vari-

ation against the Re and for different values of KC. To effectively compare the

theoretical value with the numerical solution, the Morison formula has to be eval-

uated at every time step. In order to do this, the charts for these coefficients are

digitized and curve fitting is carried out. The curve fitting tool available in Matlab

is employed for this purpose. Polynomial fits of the sixth, seventh and eighth order

are tried and the curve with a coefficient of determination (R2) more than 0.96 and

the best visual fit is chosen. An example is shown in figure 4.2, for KC=40. The

equation obtained for this curve is an eighth degree polynomial:

Cd = 2.48e− 46 ∗Re8 − 1.277e− 39 ∗Re7 + 2.762e− 33 ∗Re6 − 3.263e− 27 ∗Re5

+2.29e− 21 ∗Re4 − 9.706e− 16 ∗Re3 + 2.406e− 10 ∗Re2 − 3.133e− 5 ∗Re+ 2.185.

This process is carried out for Cd and Cm curves for KC numbers 6, 8, 10, 15, 20,

40, 60 and 100. The curves presented in [29] are used in this study.

Values of velocity and acceleration, required for force calculation are obtained from

the wave tank as follows. An average velocity is calculated using the velocities on

either side of the pier, along the red lines illustrated in figure 4.3. This is used in the

part of the formula that accounts for the drag force. The gradient of the velocity over

a time step is then calculated and used as the acceleration in the inertial force part of

the formula. This method of calculating the acceleration can give rise to some shocks

in the solution, resulting in jumps in the solution for the inertial force. A filter can

then be applied to smoothen the solution. It is important to note that the jumps

occur in the calculation of the theoretical force and not from numerical instabilities

during force calculation by REEF3D.
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Figure 4.2: Curve fitting in Matlab for Cd at KC = 40

Figure 4.3: Calculation of average velocity for Morison formula
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4.3 Results of wave force calculation

Wave force on a cylindrical pile of with diameter 0.2m are calculated for two setups,

each with a coarse grid (dx = 0.05m) and a finer grid (dx = 0.025m). The first setup

consists of a fifth order Stokes wave with an amplitude of 0.05m, water depth 0.4m

and wavelength 1.0m in a 3-dimensional numerical wave tank that is 10.0m long,

1.0m wide and 0.8m deep. The second setup simulates a fifth order Stokes wave with

amplitude 0.075m, water depth 0.4m and wavelength 2.0m in a wave tank 15.0m

long, 1.0m wide and 0.8m deep. WENO scheme is used for spatial discretization

and 4th order Runge-Kutta scheme is used for time discretization. The turbulence is

calculated using the Wilcox’s k − ω model in both the experiments.

The three-dimensional visualization of the numerical experiment is presented in fig-

ures 4.4 through 4.6 below. The elaborate representation of the free surface using

CFD calculation can be seen in these images.

Figure 4.4: Visualization of the three-dimensional numerical wave tank

4.3.1 Coarse grid experiments

The first set of trials for force calculation is carried out on a coarse grid with dx =

0.05m in The results of this trial are presented below. It is observed that, as dis-

cussed in section 4.2.1, there are a few jumps at a few points in the calculation of

the theoretical force using the Morison formula (Figure 4.7). The force calculated

by REEF3D does not show any effects of numerical instability in the solution. The

theoretical results are then filtered to remove the spikes (Figure 4.8). The compari-

son of the filtered theoretical result with the numerical result for first wave setup is

presented in figure 4.9. It is noted that the maximum amplitude of the force obtained

numerically is less than the theoretical calculation. On an average, the difference be-

tween the numerical and theoretical result is 25%. It is worth recalling, at this point,

the conclusion of section 3.3.1 that a higher grid density provides a better solution.

From this finding, the error seen in the results here may be attributed to the lower

grid density of 20 cells per wavelength available during this trial.
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Figure 4.5: Detailed representation of the free surface: top view

Figure 4.6: Detailed representation of the free surface: side view

The result for the second setup is shown in figure 4.10. The difference between the

numerical and theoretical solution in this case is found to be marginally lower than

the first setup at 23.9%. The slight reduction in the error may be reasoned as follows:

The wavelength in this setup being 2.0m, provides a higher grid density of 40 cells

per wavelength. Again, using the conclusion from section 3.3.1, the reduced error can

be justified. Also, in section 3.3.7, it has been reported that the wave tank seems to
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Figure 4.7: Unfiltered theoretical results and numerical results
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Figure 4.8: Filtering to smoothen theoretical results

perform better at higher amplitudes. This factor can also be attributed to the lower

deviation of the numerical result from the theoretical value.
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Figure 4.9: Comparison of numerical result with theory− Coarse grid, Setup 1
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Figure 4.10: Comparison of numerical result with theory− Coarse grid, Setup 2
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4.3.2 Fine grid experiments

The second set of numerical experiments is carried out on a finer grid with dx =

0.025m, that is, double the grid density compared to the first set. It is intuitively

expected to obtain a better correlation of the numerical results at this grid resolution.

Figure 4.11 displays the results obtained for the first setup. Contrary to expectations,

the correlation between the numerical solution and the theoretical solution is seen to

be lesser in this case. On an average, the deviation of the numerically resolved

maximum force is lesser than the Morison force by 30%. The grid density in this

trial is 40 cells per wavelength. The increased error observed here is hard to explain

without further study.

The graph in figure 4.12 presents the results for the second setup. In this trial too, the

numerically obtained maximum wave force is lesser than the theoretically calculated

Morison force. But, it is interesting to note that the deviation in this case is the least

of the four cases, with the difference being 22.7%. Intuitively, this case is expected

to show the best results as it has the best grid cell density of 80 cells per wavelength.

It is to be noted that the Morisonn force obtained on the finer grid is higher than

the obtained on the coarser grid. The values of total force obtained for this grid

configuration is higher for both REEF3D and Morison force compared to the coarse

grid
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Figure 4.11: Comparison of numerical result with theory− Fine grid, Setup 1
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Figure 4.12: Comparison of numerical result with theory− Fine grid, Setup 2
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Chapter 5

Conclusions and Outlook

5.1 Summary

Non-breaking wave forces on a cylindrical pile are calculated numerically by solv-

ing the three-dimensional Navier Stokes equations in the numerical wave tank of

REEF3D. Initially, the numerical wave tank is validated by comparison of the nu-

merical results with the analytical solutions for varying grid density, time step size,

numerical beach width, wave amplitude, numerical methods− time and spatial dis-

cretization, relaxation method and wave type. The performance of the wave tank

under the aforementioned various conditions is observed. As a result the appropriate

parameters to be used for the numerical experiment are obtained. Finally, simulations

are carried out to calculate the wave forces on a cylindrical pile and the numerical

results are compared to the results obtained using the Morison formula.

During validation, it is observed that the wave tank gives good results with an error

of 0.24% in the wave amplitude at a grid density of 100 cells per wavelength and

CFL number 0.1 for a fifth order Stokes wave of amplitude 0.05m and wavelength

2m. A recent study using a different approach reported a requirement of 200 cells

per wavelength. Thus, the performance of the wave tank in this study is considered

very good.

The calculation of wave forces also shows promising results. The wave forces from

REEF3D seem to be slightly under estimated compared to the Morison force in the

four numerical experiments carried out. There exists a possibility of erroneous cal-

culation of the Morison force. There were no instabilities in the solution from the

numerical calculations. Due to the absence of simple experimental data for wave force

on a cylinder and time constraints, validation is attempted only through Morison for-

mula by adding the formula in the code. The validation of wave force calculation

could not be deemed conclusive.
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5.2 Conclusions

The numerical wave tank in REEF3D is validated and utilized for calculation of wave

forces on a cylindrical pile. Results from validation and performance testing of the

wave tank are very promising. Wave amplitude error was restricted to 0.24% with

a grid cell density of 100 cells per wavelength. In comparison to the study using

OpenFOAM[1], which required a grid density of 200 to 400 cells, this result is encour-

aging as it signifies a reduced computational time for the simulation.

The 5th order accurate WENO scheme is found to perform very well, without expe-

riencing any numerical instability in the solution.

Performance of different wave types− fifth order Stokes, second order Stokes and lin-

ear waves are found to be satisfactory, with fifth order Stokes waves producing the

best results. It can be safely concluded that REEF3D is well suited for simulating

water waves.

The computational grid used in the model currently is a uniform Cartesian grid.

Damping of smaller amplitude waves that is observed during the performance testing

may be attributed to this feature, as the grid resolution along the y-axis can not be

improved independent of the resolutions along the x and z axes. Also, use of specific

grid resolution enhancement around regions of interest like the free surface and the

vicinity of structures is not possible. Increasing the grid resolution uniformly all over

the computational domain increases the number of computational cells by a large

amount rendering the simulation inefficient.

The results obtained for the numerical experiments to calculate wave forces are sum-

marized in table 5.1.

Table 5.1: Summary of numerical experiments

Setup 1 Setup 2 dx
λ 1.0m 2.0m
a 0.05m 0.075m
d 0.4m 0.4m

error(%) 25 23.9 0.05m
30 22.7 0.025m

Looking at the configuration of the numerical experiments presented in table 5.1, it

is logical to expect that, among the four cases presented,

• the trial with the combination of coarse grid and setup 1 will provide the worst

results and
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• the combination of fine grid and setup 2 will produce the best result.

But, from the results presented in section 4.3, the above logic is not completely

followed. The best result are indeed from the second scenario. But the worst result is

produced by the trial with setup 1, running on a fine grid. This casts some doubts over

the calculation of the theoretical wave force. It is possible that the Morison formula is

not evaluated correctly from the data taken from the simulation and hence gives rise

to the anomaly in the results. This makes it difficult to effectively and conclusively

validate the numerical solutions and discuss about the quality of numerical solution.

In the absence of data from simple physical experiments for wave force on a cylinder

and time constraints to numerically reproduce the experimental data presented in

Mo et al.[22], the numerical experiment could not be validated against experimental

data.

The fact that the numerical solution in the case with fine grid-setup 2 combination

performs the best amongst the four, as expected, steers the conclusion that the mixed

state of the results may not be a result of numerical calculations by REEF3D. Also,

there is no numerical instability in the solutions produced.

5.3 Outlook

The testing of the numerical wave tank in REEF3D in this study has shown promis-

ing results. This study used the wave tank to simulate unidirectional regular waves

to calculate non-breaking wave forces on a single cylindrical pile. The capabilities of

the wave tank could be further explored, to enable simulation of scenarios with more

complex wave-structure interactions. For example, generation of random waves using

wave spectra like the JONSWAP spectrum and generation of multi-directional waves

could be explored. Application of REEF3D to solve problems with complex hydrody-

namics like wave interaction with floating structures seems to be an interesting area

of research to expand the potential of the model.

Being a CFD program, REEF3D is resource intensive and effective over smaller tem-

poral and spatial domains, compared to the popular tools in the field of marine civil

engineering: wave models. In order to expand the reach of the program to deal with

larger computational domains, the possibility of coupling the program with a Boussi-

nesq wave model should be explored. With the integration of a wave model into the

CFD code, wave generation, large regions of fetch and propagation can be covered by

the wave model. The region of interest, where the fluid interaction phenomena have

to be studied in more detail will be handled by the CFD code. This would result in

an effective tool to cater to real world engineering problems.
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With regard to implementing grid resolution enhancement at specific regions of in-

terest, employing a multi-block grid would be a good addition to the program. A

multi-block grid essentially means that grids with different grid sizes at various re-

gions of the computational domain can be used in a simulation. This will result in

more accurate and efficient computation by the use of a coarser grid for the general

domain of the region and a fine grid in regions of special interest. Through this

technique, parts of the wave tank, like the free surface and region of fluid interaction

activity around structures can be monitored with a higher resolution grid providing

a more detailed and accurate simulation.
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