
The future of web-based maps: can
vector tiles and HTML5 solve the need for
high-performance delivery of maps on
the web?

Mats Taraldsvik

Master of Science in Engineering and ICT

Supervisor: Terje Midtbø, BAT
Co-supervisor: Dr. Ing. Rune Aasgaard, Norkart Geoservice AS

Department of Civil and Transport Engineering

Submission date: June 2012

Norwegian University of Science and Technology

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF CIVIL AND TRANSPORT ENGINEERING

Date: 10.06.2012

Number of pages (incl. appendices): 136

Report Title:

The future of web-based maps: can vector tiles and HTML5 solve the
need for high-performance delivery of maps on the web?

Master Thesis X Project Work

Name: Mats Taraldsvik

Professor in charge/supervisor: Terje Midtbø

Other external professional contacts/supervisors: Dr. Ing. Rune Aasgaard, Norkart Geoservice AS

Abstract:

The majority of the current maps available on the web with a standard browser are raster-based, which impose a
couple of limitations with regard to functionality as well as performance. Most work is done on the server, and the
raster image tiles that are rendered on the client can not be interacted with directly. Some solutions are available that
solve this partially, but in the majority of cases, they depend on technology that is not standardised, and rely on
third-party extensions that are only available on certain platforms.

Creating map tiles and implementing efficient caching are crucial in high availability web maps, whether they are
raster-based or vector-based. Due to the different storage models of raster images and vector data structures, there
are also techniques that differ in their application (such as compression, client rendering), and the increased
exposure of raw information with vector data needs attention. The data formats chosen for representing spatial data
in vector-based maps, have lots of implications for the efficiency and usability of the map application itself.

The accelerated development and standardisation of the open web -- namely HTML5 -- are giving developers better
tools to meet the functionality and performance requirements for vector maps on the web, without resorting to third-
party software that is not supported across platforms. Previously, with the technology available, creating a
functional, efficient vector map on the web was hard or impossible using only open technology, but with the recent
advancements, it is interesting to see to what extent this can be accomplished.

By developing an implementation of a vector map client and server, with multiple vector data structures in both
binary and text formats for measuring efficiency between server and client, as well as assessing the impact of
techniques such as generalisation, tiling and caching, the potential for future vector-based maps on the web have
been analysed. Testing revealed interesting results, which suggest that it is possible to achieve performance with
vector based maps on the web that either matches or exceeds the current raster based maps.

Keywords:

1. efficient, web-based maps

2. HTML5, open standards

3. vector tiles, vector data

4. binary and text data formats

ii

Abstract

The majority of the current maps available on the web with a standard browser are raster-
based, which impose a couple of limitations with regard to functionality as well as perfor-
mance. Most work is done on the server, and the raster image tiles that are rendered on
the client can not be interacted with directly. Some solutions are available that solve this
partially, but in the majority of cases, they depend on technology that is not standardised,
and rely on third-party extensions that are only available on certain platforms.

Creating map tiles and implementing efficient caching are crucial in high availability web
maps, whether they are raster-based or vector-based. Due to the different storage models
of raster images and vector data structures, there are also techniques that differ in their
application (such as compression, client rendering and generalisation), and the increased
exposure of raw information with vector data needs attention. The data formats chosen for
representing spatial data in vector-based maps, have lots of implications for the efficiency
and usability of the map application itself.

The accelerated development and standardisation of the open web – namely HTML5 – are
giving developers better tools to meet the functionality and performance requirements for
vector maps on the web, without resorting to third-party software that is not supported
across platforms. Previously, with the technology available, creating a functional, efficient
vector map on the web was hard or impossible using only open technology, but with the
recent advancements, it is interesting to see to what extent this can be accomplished.

By developing an implementation of a vector map client and server, with multiple vector
data structures in both binary and text formats for measuring efficiency between server and
client, as well as assessing the impact of techniques such as generalisation, tiling and caching,
the potential for future vector-based maps on the web have been analysed. Testing revealed
interesting results, which suggest that it is possible to achieve performance with vector-based
maps on the web that either matches or exceeds the current raster-based maps.

iii

iv

Sammendrag

Det store flertallet av dagens kart på internett er basert på rasterteknologi, noe som setter
begrensninger på hva som kan oppnås, både når det gjelder funksjonalitet og ytelse. Med
rasterbaserte kart gjøres det meste av arbeidet på tjeneren, og produktet av denne prosessen
er kartfliser (tiles), der det ikke er mulig å ha direkte interaksjon med de underliggende
geometriske objektene. Det finnes hybridløsninger som bøter på problemet, men få eller
ingen som bruker åpen, standardisert, plattformuavhengig teknologi, og som ikke avhenger
av tredjeparts programvare.

Et av de store problemene med kart på web er skalering – tjenesten må takle et stort antall
samtidige brukere. Mellomlagring av data og kartfliser (tiles), er helt nødvendige teknikker
som må brukes dersom systemet skal skalere, uavhengig om underliggende data er på vek-
torformat eller rasterformat. Forskjellene mellom kart på rasterformat og vektorformat er
tidvis store, med vidt forskjellige muligheter for optimalisering mot høyere ytelse. Måten
vektorene blir representert har avgjørende betydning for størrelsen og ytelsen, og det er
viktig å undersøke hva som lønner seg.

Generalisering har vært viktig for kartografien lenge, og er en essensiell teknikk for å skape
et godt kart. Tradisjonelt har generalisering nesten utelukkende blitt brukt til å endre ut-
seendet på kartet, men med digitale data påvirker det også størrelsen på dataene. Avhengig av
hvordan dataene representeres, vil både datastørrelsen og dermed hvor raskt selve dataene
kan prosesseres kunne komprimeres i stor grad. Mens rasterdata i noen grad påvirkes av
generalisering, vil generalisering ha stor betydning for romlige data på vektorform.

Utviklingen av åpne standarder for bruk i nettapplikasjoner har i lengre tid hengt etter
den funksjonaliteten som ønskes, og dette har begrenset mulighetene for å utvikle plattfor-
muavhengige nettapplikasjoner uten bruk av tredjeparts programvare. Dette er i ferd med å
endre seg, og med HTML5 har teknologi som bedre tilfredsstiller kravene til funksjonalitet
og ytelse, samtidig som det kun avhenger av åpne standarder. Det er derfor først nå det er
mulig å lage effektive og funksjonelle vektorbaserte kart på nett, med høy tilgjengelighet og
plattformstøtte.

Oppgaven presenterer en implementasjon av vektorkart på klient- og tjenersiden, der det er
lagt spesiell vekt på dataformater i tekst- og binærformat som brukes til kommunikasjon,
og hvordan valg av dataformat påvirker ytelsen. I tillegg vurderes betydningen av gener-
alisering, oppdeling av kartet i fliser (tiles), samt mellomlagring. Implementasjonen testes
grundig, og resultatene som presenteres, viser at det vil være mulig å lage kart på nett basert
på vektordata, som yter tilsvarende eller bedre enn dagens rasterbaserte kart.

v

vi

Preface

This paper, The future of web-based maps: can vector tiles and HTML5 solve the need for high-
performance delivery of maps on the web?, and the accompanying software, data for tests
and results (see Section 1.1), is the result of the master thesis assignment in the course
TBA4925 at the division of Geomatics at the Norwegian University of Science and Tech-
nology (NTNU), with a timespan constrained to twenty weeks in the spring of 2012.

My primary advisers during the project, which I would like to thank especially for their
valuable contributions, patience and assistance, were Terje Midtbø at the division of Geo-
matics and Rune Aasgaard at Norkart Geoservice AS.

I would also like to thank Gunstein Vatnar, Harald Jansson and Sverre Wisløff at Norkart
Geoservice AS and Alexander Nossum at the division of Geomatics for valuable feedback.

June 10, 2012
Mats Taraldsvik

vii

viii

License

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported
License[1]. You may share and distribute this work freely under the same or similar license,
only if you attribute the work to the author, who is Mats Taraldsvik.

ix

Contents
1. Introduction 6

1.1. Source code for the examples . 6

I. Delivering maps on the web 7

2. History and Motivation 7

3. Tiling 9

4. Caching 10

5. Generalisation 12

6. Raster-based maps 13
6.1. Pre-generation of tiles . 14
6.2. Client load . 14

7. Vector-based maps 15
7.1. Progressive vector transmission . 15
7.2. Compression . 18
7.3. Real-time styling . 21
7.4. Client load . 21
7.5. Vector tiles . 22
7.6. Security . 23

II. How new technology will improve the web map experience 24

8. What is HTML5? 24
8.1. Background . 24
8.2. Motivation . 24
8.3. JavaScript . 25

9. Native support for inline SVG 26

10.Binary processing with TypedArray 27

11.Replacing HTTP with Web Sockets 29

12.Implementing non-blocking behaviour with Web Workers 30

13.Data formats 30
13.1. Considerations when choosing a data format . 31

1

13.2. Geography Markup Language . 32
13.3. GeoJSON . 34
13.4. BSON . 34
13.5. WKB and WKT . 35
13.6. ESRI Shapefile . 36
13.7. Non-standard formats . 38

14.Optimisation 38

III. Performance comparison of new and existing web map solu-
tions 39

15.What is Performance? 39

16.Existing maps using mature technology 41
16.1. The current map standard . 41
16.2. Reference web map experience . 42

17.A vector map using modern HTML5 technologies 45
17.1. Server Architecture . 45

17.1.1. PostGIS . 45
17.1.2. Python and Shapely . 47
17.1.3. Web Sockets . 47

17.2. Data Transmission . 48
17.2.1. Binary data . 48
17.2.2. Text data . 49
17.2.3. Data Formats . 50

17.3. Client Architecture . 51
17.3.1. SVG . 51
17.3.2. Choosing a Library . 52
17.3.3. User interaction . 52
17.3.4. Native application comparisons . 54

17.4. Implementation performance . 55
17.4.1. Data size . 56
17.4.2. Storage . 60
17.4.3. Latency . 63

IV. Conclusion 73

18.Future work 73

Appendices 76

2

A. Attachment 1: Master Thesis Assignment 77

B. The implementation and source code accompanying this paper 81

C. HTML5 Support in Web Browsers 83

D. Data Formats Example 84

E. Large versions of the visualisations of the performance test results 85

List of figures 109

List of tables 114

List of code examples 115

References 116

3

4

5

1. Introduction

The current web maps are mostly based on raster images, which makes interaction hard or
impossible. Functionality such as custom styling can not be implemented to scale, because
all processing is done on the server, and the amount of variables directly affects the speed of
the map implementation. This is why we have started exploring vector map solutions for
use on the web.

The goal in this paper is to examine new, open, standardised web technology, and whether
this technology is mature and efficient enough to handle vector data equally or better than
the current raster images, making headway for more interaction and functionality (such as
individual styling and direct queries on features). The goal is also to explore how generalisa-
tion, tiling and caching affect the end performance and efficiency of a vector web map.

1.1. Source code for the examples

The implementations and examples that were developed by the author for this paper is pub-
licly available on the collaboration site GitHub[2]. The URL to the source code repository,
is http://www.github.com/meastp/efficientvectortiles/

6

http://www.github.com/meastp/efficientvectortiles/

Part I.
Delivering maps on the web

2. History and Motivation

The first map server – Xerox PARC Map Viewer – was released as early as 1993, just four
years after the World Wide Web was invented as a document exchange system at CERN[3].
It allowed the use of interactive maps on the web by linking GIF raster image files with CGI
and Perl[4]. This sparked creativity in the community, and The World Wide Earthquake Lo-
cator was made, based on the Xerox PARC Map Viewer[5]. Following this, major progress
was made with the creation of new services, such as an online atlas (The Atlas of Canada[6]),
and a geographical database with interactive mapping (The Gazetteer for Scotland[7])[8].

Figure 1: The Xerox PARC Map Viewer with a map of Switzerland

Most of the web map solutions were proprietary, which meant that the vendors had their
own implementation that they did not share. The main problem, however, was the lack of
open standards for web mapping. Without open standards, it is very hard to collaborate
across different implementations, to be able to consume or use parts of a competitors tech-
nology, or for users to migrate data between two incompatible implementations. The Open

7

Geospatial Consortium (OGC)[9], an international voluntary standards organisation, was
created in 1994 to promote open solutions and standards in the Geographic Information
Systems (GIS) domain[10]. The organisation became involved with web mapping in 1997,
after Allan Doyle published a paper describing a ”WWW Mapping Framework“[11], and
started a task force to outline a strategy.

The next major milestone – at least for everyday use – was in 1996, when MapQuest emerged
with the first popular online map service with address lookup and a routing service[12].
MapQuest was aimed at consumers, and especially the turn-by-turn driving directions which
it provided, became very popular since it was the only one offering these services (some
dictionaries even list mapquest as a verb[13], similar to ”just google it“ today). Several
new mapping services aimed at consumers emerged following MapQuest’s success, and GIS
companies such as ESRI[14] and MapInfo[15] released server software, acknowledging the
potential of the internet for online mapping[16].

The maps were mostly static, and greater performance and interactivity was achieved by em-
ploying technologies such as Dynamic HTML, Java and ActiveX. However, when Google
Maps launched in 2005, they used asynchronous JavaScript and XML (Ajax) – a new tech-
nology – to create a ”slippy map“[17] which resembled desktop applications more closely
than previous attempts. This familiarity might partly explain why Google Maps became so
popular, but the ease of creating so-called ”mashups“ – a mixture of custom gathered data on
top of Google Maps – was probably more important because it helped to create possibilities
in the GIS field for people who were not GIS professionals[18].

The work of the Open Geospatial Consortium have also had major impact on the usefulness
of today’s different map solutions. The first version of the Web Map Service (WMS)[19],
which is an open standard specification for collecting data from a spatial database, and serv-
ing the resulting raster maps over the web to multiple clients, was released in 2000. Today,
lots of maps employ this technology, which means that it is easy to consume the maps with-
out becoming reliant on a specific vendor. This standard has also made interoperability
between vendors easier, and users have a better experience.

The amount of online maps have grown tremendously since MapQuest, and today there are
lots of web maps to choose from (Google Maps[20], OpenStreetMap[21], Bing Maps[22],
Yahoo! Maps[23], MapQuest[12]), that have become a natural part of everyday life for
the average consumer because the web makes them more available. In fact, maps are no
longer exclusive to large map sites – since integrating maps have become such a simple task,
lots of sites where it makes sense to have a map, has one. Examples are Walmart’s Store
Finder[24] and FixMyStreet[25]. Location-based services and the demand for maps on the
web have grown, and are still growing, and continued improvement of maps on the web is
more important than ever before[26][27][28].

8

3. Tiling

A map contains a lot of information, and delivering this information all at once through
the internet is either not possible due to bandwidth restrictions, or unnecessary, since the
viewer may only be interested in a subset of the map. Tiling solves both of these issues by
dividing the map into smaller sections, and deliver these sections as they are needed, instead
of transferring the whole map at once[29][30].

Online map services capable of zooming employ tiling recursively (i.e. each tile is further
divided at larger scales). The division is usually done in a quad tree-like manner, i.e each tile
is divided into four tiles when the zoom level is increased (and the other way when zoom
level is decreased)[31].

(a) (b) (c)

Figure 2: Tiling works by dividing the map (a) is into tiles (b) that are loaded independently
on demand. For maps that support zooming, the tiling process is done for every
map scale (c).

In practice, tiling is an optimisation at the cost of flexibility. Although it is a technique
that can be used to render tiles at custom scales, on-demand, it is rarely done – tiling is used
to enable delivery of maps in a scaling manner, when there are a high number of users.
Also, as long as the server has to regenerate common parts of the map (i.e tiles) on every
user’s request, the limit on the number of users the server can handle, remains fairly low.
Therefore, tiles are very often used with caching (see Section 4) to create an efficient web
map.

A Web Map Service (WMS)[19] – an Open Geospatial Consortium (OGC) standard – is
highly configurable and flexible for the user, and the server processes each user’s request,
with all custom parameters, and responds with an image tailored for the user.

Because a Web Map Service does not impose restrictions on the user, for example in terms
of map scale and style, a new image needs to be generated on every user request, which is
every time a user changes the scale, style or another available parameter. Essentially, this also

9

means that there is no way to limit the generation of images on the server, and the result is
a (disappointing) limit on the number of users the server can handle[32].

The Open Geospatial Consortium (OGC) have since complemented the Web Map Service
with another standard; the Web Map Tile Service[33] is designed especially to scale when
there are lots of users, and – as the name suggests – it uses tiles to accomplish this. The
tile map has a predefined set of scales, which reduces the possible number of tiles from
almost indefinite, to an amount of tiles – and resulting data size – which modern servers can
handle[34].

Modern maps where the user is able to pan and zoom, are called ”slippy maps“[17]. Since
the user can – in theory – view all map tiles during a single session, and transferring all tiles
at once is not feasible (it would both be too slow, and consume too much storage on the
client), the tiles are loaded in an on-demand process using JavaScript and AJAX[35].

4. Caching

To generate tiles (see Section 3) suitable for delivery to a client, they need some form of pro-
cessing, which puts a certain demand on the server, and, subsequently, increased delay for the
user of the map. For map services that responds to thousands – and even millions[36][37]
– of requests per day, the performance hit of processing every request directly would be
significant, and the server therefore use a cache in which to store generated tiles, after they
are first requested. The client often use a cache to pre-fetch tiles that are close in distance to
the tiles that are shown on the user’s screen. As long as the user behaves according to this
pattern, the result is a smoother experience.

The idea of a cache is to reduce access time on frequently used data. The cache is typically
a lot smaller in size than the resource which is cached, because a small subset of the data is
typically accessed a lot more often than the rest (also known as the principle of locality), or
that an accessed resource’s neighbours (in e.g. time or distance) are likely to be requested
(and therefore should be cached). Unfortunately, the subset of map tiles that are accessed
most frequently in map services, tend to be large, while the time a user is willing to wait for
a tile is typically low and the storage cost to cache all frequently used tiles is too high to be
viable[35][38].

The amount of processing power that is saved by using a cache, varies greatly, and depends on
the amount of requests (i.e users) the service has at any time, how expensive the generation
of tiles is, the amount of cache storage available, whether some tiles are more frequently
accessed than others and what the requirements are with regards to recency (i.e. how often
the cache needs to be updated)[39].

The generation of map tiles is either a complex process, or a simple one – this depends
greatly on the requirements of the resulting map. Depending on the data format in which
the spatial data is stored, a conversion from vector to raster, or raster to vector, needs to be
performed. To avoid making the map overly complex at small scales, different degrees of

10

generalisation might be required as well, which further increases the latency if the tiles were
to be delivered in ”real-time“. The obvious downside of a cache is that the cached resource
is static, and thus not appropriate for map services where the tile(s) need to be updated
frequently, since in that case it would be cheaper to generate the tiles on demand instead,
avoiding the latency associated with traversing the cache [40].

A simple optimisation technique for a raster tile cache when there are multiple identical
tiles is to maintain references to tiles and store it once (see Figure 3). This optimisation is
for example done with the MBTiles data format (which is essentially a SQLite database with
tiles stored as binary blobs)[41].

Figure 3: Identical tiles are stored once on disk, and referenced when displayed, to avoid
redundant data and to save space. For water tiles, which there are many of in some
datasets, this technique can save a lot of disk space.

It is also possible to cache tiles or map data on the client, which would shorten the latency
and decrease the wait time even more for the user[42]. However, the allowed cache size on
the client is often more limited than the server (if it is not, one can use e.g. MBTiles locally),
and can not keep every unique tile in the cache at once. This is a common problem, and
there are multiple cache eviction algorithms developed to solve this. To be able to choose
between the algorithms, the usage pattern of the map needs to be examined.

A common cache eviction algorithm is LRU (least recently used), which removes items
based on the last time they were accessed, but there are lots of alternative policies for remov-
ing items, like LFU (least frequently used) (removes items that are most rarely accessed),
a queue (FIFO) (remove the oldest retrieved items to make room for new items), a stack
(LIFO) (remove the last retrieved items to make room for new items) or even random re-
moval of items[43, 44, 45].

11

5. Generalisation

”Our human and natural environments are complex and full of detail. Maps
work by strategically reducing detail and grouping phenomena together. Driven
by your intent, maps emphasise and enhance a few aspects of our world and de-
emphasise everything else.“[46]

Map generalisation was relevant even before there were digital maps, and then as a manual
process, where cartographers needed to modify maps when they were published in different
scales, to ensure that the map’s information were as consumable and usable as possible,
rather than completely accurate[47].

The motivation is simple: too high accuracy leads to more complexity, and may not increase
the usability of the map, which is the end goal, and should be pursued. In other words,
generalisation is not merely a way to make a less accurate map, but a means for the cartog-
rapher decrease detail to better communicate the information encoded in the map[48]. In
that regard, the lesser detail might – and ideally should – convey overall patterns and trends
otherwise hidden, while with too much detail, the cartographic message may drown[49].

With regards to the goal of the best possible usability and readability of the map, the tran-
sition to digital maps brings nothing new. However, the need to formalise and specialise
the methods to make them suitable for automation emerged, and much work has been done
in this field to date. Early research in automated map generalisation focused on individual
map objects, which resulted in a large number of operations on individual points, lines and
areas, and the view that a solution should only perform manipulations on single objects at a
time[50].

Since map generalisation has a lot to do with behaviours and interactions between objects
– this ”layered view“, which focused on objects individually in isolation, resulted in ”com-
puter assisted cartography“[51] rather than a fully automated solution. As soon as the value
of a feature’s context on the map was realised, and the major flaw of a ”layered view“ ac-
knowledged, researchers tried to capture the context of objects in their map generalisation
algorithms. Examples are automatic displacement of point and line symbols[52][53], using
Delaunay triangulation for constraint-based generalisation (see Figure 4)[54] and solving
complex decisions regarding displacement using Artificial Intelligence[55].

12

Figure 4: Usage of Delaunay triangulation to merge two areas, with a specified triangle size
tolerance (b) – and without this constraint (a). [54]

A prominent challenge when delivering maps on the web, is to perform the actual transfer
of data as efficient as possible. By generalising the map data, the result is a more compact and
simpler data set, depending on the grade of generalisation, which may improve efficiency of
the data transfer as a positive side effect.

When transferring vector data sets, various techniques can be used in combination with map
generalisation to improve efficiency as well (see Section 7.1).

6. Raster-based maps

Raster-based maps are essentially just images, and before the transition to digital map pro-
duction, they were scans of paper maps. Images have a long history on the web, and they

13

are therefore both supported by all browsers, and hence predictable and easy to work with.
The concepts of tiling and caching (see Section 3 and 4) fits rather well with raster maps,
and is not very hard to implement, which is probably why raster-based maps have been used
throughout mainstream web mapping services since maps became popular on the web.

However, what makes a raster map simple – that it is static – is also a weakness. Interactivity
is important in modern map services, and since a raster map is a static image, this is an
expensive task to solve, since the image will need to be updated for every interaction to
simulate feedback to the user (most implementations add an independent layer on top of the
raster image for placing markers, routing etc. – this is not part of the raster map)[56][57].

Furthermore, overlapping lines are a major problem with raster images[58]. If there are
multiple, overlapping lines or rectangles in an area, that area becomes blurred in a raster
image, which makes it difficult to read accurately.

6.1. Pre-generation of tiles

A full-quality raster image, where as much detail as possible is retained from the capture
device, consumes a lot of disk space. For purposes such as transferring data between a
server and one or several clients over the internet, the data consumption of a full-quality
raster image is too large. Hence, the raster images are compressed, preferably with a lossless
compression algorithm, if it is able to compress the image enough. If a lossy compression
algorithm is chosen, the result is loss of information, lower quality and lower resolution
raster images[59].

Raster tiles are expensive to generate, especially when the source data is in vector format,
and too time consuming for on demand rendering[60]. Therefore, it is common to pre-
render all tiles in a predefined style, and store them in a disk cache. This leads to obvious
constraints on the use of raster tiles, since the generation of tiles is too resource heavy for
on-demand service, and on-demand generation is the only way for raster tiles or images to
provide (native) interactivity.

6.2. Client load

Raster maps do not require additional processing on the client. The native support in web
browsers also means that no plugin(s) are required for the map to work – sites that require
third-party plugins often suffer from a significant abandonment rate[61][62]. The light
client is one of the strongest points of the raster map, especially historically, where clients
were not very powerful.

Most of the processing work, like generating the raster map (and creating tiles), is done on
the server prior to the client’s request. Raster maps are therefore especially efficient if the
client does not have powerful hardware (which might be the case in mobile devices).

14

7. Vector-based maps

The most important difference between a vector object and a raster object, is that the vector
is stored as geometrical coordinates defining points, lines and polygons (object-based), while
the raster object is limited to the images’ resolution (field-based). If we know the projection,
and have the coordinates, vector data gives us the possibility to re-project the geometry on
the client, which is not possible with static raster images. Each vector object is thus only
dependent on the precision – and amount of detail – of its own coordinates, and having
objects with variable precision will result in consequent reduction in data size – which is
not the case with raster objects where the image resolution defines the data set’s precision.

Since vectors are objects, and can be tied to events and properties easily, they are very
suitable for user interaction and direct manipulation. Work has been done to provide
vector maps on the web, often using SVG and GML for visualisation and data transfer,
respectively[59]. However, a major issue has been the requirement of third-party plugins
to render the data, or verbose vector data structures, that results in excessive bandwidth
consumption.

7.1. Progressive vector transmission

A major hurdle when working with vector data, is the resulting size of the data. With raster
data, an image is only as large as its resolution and the number of pixels, but a vector data
structure can provide almost an infinite amount of detail, even if the details are too tiny to
be rendered on the screen, resulting in an unnecessarily large data footprint.

With raster data, the generalisation process affects the appearance of the map, and the size
of the resulting image file. However, the size of a raster image is not always affected as much
as a vector image, and a re-transfer of the whole image is required, instead of incremental
progressive transfer (see Figure 5). The most important role of cartographic generalisation
has always been to more effectively communicate the message of the map – and this is still
extremely important.

15

(a) (b) (c)

Figure 5: Progressive transmission with raster images works by starting with a coarse image
(a), and gradually transfer images with higher resolution which are replaced with
the coarser image (b), finally resulting in a high-resolution, full-detail image (c).

When using vector data, however, generalisation significantly affects the size of the data sent
to the client as well, giving it a major role in the quest of providing vector maps that are as
efficient as existing, raster-based maps – which the user expects for solutions that provide
the same functionality.

To solve the challenge of data with almost unlimited detail – and thus an equally large data
footprint – the amount of detail delivered to the client is dependent on the map scale. In
other words, the vector data needs to go through generalisation at multiple stages, and create
maps appropriate for different scales, striking a balance between data consumption, detail
and the data (and message) presented to the user. Although the data size is smaller and will
perform better at small scales, the amount of data is still high when the map is viewed at
larger scales[63].

The idea of quickly providing a coarse model of the map, and then iteratively improving it
by requesting more detailed information, has been subject to research for years, and is not
unique to vector data. Raster data, for example, also gain from this technique, by progres-
sively enhancing the image[64], and by using compression[65].

With progressive transmission using vector data, most early research was done with Trian-
gulated Irregular Networks[66, 67, 68], which is not directly applicable to web maps. The
complexity of maintaining topology and generalising vector data is high, which may explain
why there has not been much research on this topic until quite recently. Additionally, the
requirements depend on display size, as well as system and network performance – there is
a large difference between desktop computers and tablets, for example. Whether the data is
subject to further analysis, or just for rapid visualisation also affects the process[69].

The main principle of progressive vector transmission (see also Figure 6) is to initially pro-
vide a coarse map, and then dynamically reconstruct the map to appropriate detail, based
on the map scale, in the background (i.e. without freezing the interface)[70]. This pattern is

16

especially well made for a typical user that begins with the smallest scale possible, gradually
zooming to the desired location. The client is then given more time to iteratively construct
the map, saving time when rendering at the largest map scales.

Figure 6: On the server, the original object(s) of full detail is generalised into multiple incre-
mental models, from coarse to full detail ((a), (b) and (c)). The initial object(s),
which are coarse and provide limited detail (a), are sent to the client (d). Either
automatically, or as the user increase the map scale, the object(s) are upgraded in
a number of steps (b), transferring only additional points that increase detail (e),
until the original detailed object (c) is transferred to the client (f), providing equal
amount of detail on both server and client.

There has been some research on the subject of progressive vector transmission on indi-
vidual components, such as the Douglas-Peucker algorithm[71], the ”bendsimplification“
algorithm[72] and the Visvalingam algorithm[73]. Unfortunately, these do not take the ob-

17

ject’s context into the equation, which is important to maintain topology and preserve the
meaning of the map even at coarse detail levels.

To solve this, an implementation was made, which used ordering and area of all objects to
keep the context and maintain the shape characteristics and topology of the map objects. By
recording the coordinate sequences in an object, the overhead when adding more detail is
lowered[69].

Even though the research is not extensive, when the number of vector web maps grows, the
author predicts an increase in this effort, as progressive vector transmission will be a key
factor to delivering acceptably performing vector web maps, together with generalisation
these methods decide the data size, processing cost, and, in the end, user’s satisfaction with
vector maps. Vector maps’ developers should have a solid interest in this scientific field and
its progression.

7.2. Compression

Data compression reduces the data consumption of a file, object or stream, and is widely
used in a number of domains[74]. The algorithm that is used to compress and decompress
is either lossless, or lossy. A lossless algorithm does not loose information (i.e. the original
object can be reconstructed fully), while a lossy algorithm will have some information loss
in the sense that the reconstructed object is not identical.

Compression of spatial data structures has been researched for both raster and vector data[75],
and this has been important given the limited resources available for serving maps to com-
puters (and people) across the world – and the rise of mobile devices that can not handle
complex, full-scale data.

Generalisation is a process to simplify the geometry, where the primary goal is to remove
features that are unnecessary (despite correct) for the reader to understand the map. Car-
tographers have used generalisation for decades – even before maps were processed digitally
– and it is an established and thoroughly researched field. Since features are removed and
simplified, generalisation is a form of lossy compression, useful in reducing the data size (see
Figure 7).

18

(a)

(b)

Figure 7: Example of a line (a) and the line converted to a Bézier curve (b). The points in (a)
are compressed to a smooth curve (b), which consists of start, middle (P1) and end
points, with three control points (P2, P3 and P4) (the red lines are not visible, only
for illustrating the control points’ influence on the curve). Depending on the data
structure, the Bézier curve could take less space than the original line.

For example, a line with 20 points can be approximated with a mathematical function, re-
sulting in less space consumption at the cost of accuracy (i.e. lossy compression). Bézier
curves, like the B-spline can be used to create a lossy representation of lines[76, 77].

Another way of compressing data with loss, is data type conversion. A coordinate might
have more precision than it needs – for example, the display contains a finite amount of
pixels and the usefulness of overly precise numbers is therefore limited – and the type can
therefore be converted to a less precise type, with a smaller data footprint.

Lossless data compression is a way to decrease the size of our data, without changing the ge-
ometry or topology of the spatial data structure[78]. This problem is not as domain-specific
as lossy compression, since one need to be able to reconstruct the exact file when decom-

19

pressing. Lossless compression algorithms reduce repeating patterns in the data, either text
or binary, and the goal is to end up with a compressed file that is smaller than the original.

Dictionary coders and entropy encoding (see Figure 8) are the most common lossless com-
pression techniques[79]. The former identifies identical sequences, stores one copy of every
sequence in a dictionary, and replaces the original sequences with references to the dictio-
nary’s copy. Byte pair encoding is an example of this, where each byte that is not used, is
assigned to the most common two (and three, four if there are enough unused bytes) byte se-
quence. There are also multiple variants of the Lempel-Ziv algorithms (LZ77, LZ78, LZW,
LZMA ...), which starts in a predetermined state that changes during the coding process,
and reuses the already encoded information while encoding.

Figure 8: Examples of file compression with a dictionary coder and entropy encoding.

The most common use of entropy encoding is to assign a unique fixed-length code to each
symbol in the input, and then replace each code, giving the symbol that most often occur
the shortest code (see Table 1). Examples of algorithms that utilise entropy encoding are
arithmetic coding and Huffman coding[80].

word frequency code
yellow 4 0000
submarine 4 0001
in 2 0010
we 2 0011
and 1 0100
lived 1 0101
beneath 1 0110
the 1 0111
waves 1 1000
our 1 1001
all 1 1010
live 1 1011
a 1 1100

20

Table 1: The resulting code table for the entropy coding in Figure 8, using 4 bit codes to
represent the symbols.

Deflate is a lossless compression algorithm that combines Huffman coding and LZ77 to ob-
tain reduced data size[81]. The gzip algorithm[82], which is based on deflate, is supported
as a way to transfer compressed files on the web. By using the HTTP 1.1 header Content-
Encoding, browser clients may send and receive compressed HTTP requests and responses,
respectively, resulting in notably smaller file sizes and bandwidth savings[83].

7.3. Real-time styling

Handing the responsibility of rendering and drawing vector data to the client opens many
possibilities with regards to styling and interaction. The client may for example receive a
style sheet from the server that dictates the rendering of the features – and once received –
the client may change the styling according to own preferences and needs, much like HTML
and Cascading Style Sheet (CSS)[84] works in web browsers today.

The big difference worth emphasising, is that this style change can happen without any
data exchange to the server, since the whole process is client controlled. Since the styling
is decoupled from the spatial data, redundancy is reduced since the server does not have to
maintain multiple versions of a data set. For raster maps this is completely different – every
style needs to be rendered and kept on the server ready for delivery to client requests.

7.4. Client load

In contrast to raster maps, where tiles are processed on the server and rendered on the client,
handling vector tiles offloads some of the processing responsibility to the client. The geom-
etry is transferred as vector data, and needs to be processed and drawn correctly on a surface
by the client. This is more complicated and resource consuming than rendering an image
(due partly to the maturity of image renderers) – the data is not delivered in a ready-to-render
byte stream and needs to be processed before a vector graphics engine can draw the spatial
data to the screen.

There are multiple considerations that needs to be addressed because of this increase in re-
source consumption. Since every object has its own handle, large amounts of objects might
be hard for the client to cope with, since it may require greater than trivial amounts of
CPU and/or memory. While this may not be very relevant for modern desktop computers,
the mobile device and smart phone market has grown large enough to be very relevant for
general development – including web mapping applications with high accessibility require-
ments.

21

7.5. Vector tiles

The fundamental idea of tiling is easy to understand – it splits the map into parts that are
downloaded and viewed as they are needed, saving space and time for the user, who does
not have to download the whole map at once. The map also loads incrementally, which
should give the user a feeling of higher performance, because there is something happening
continuously.

With vector data, there is an additional advantage with tiles that the traditional raster map
tiles do not have. The coordinates are the largest part of most vector data structures, and
coordinates are numbers. In native binary format, numbers consume a fixed amount of
space, depending on their data type. This means that data type A, which is a two byte data
type, can store a greater number than data type B, which is a single byte data type, but A
always consume twice as much space as B.

By creating local coordinate systems inside each tile, the coordinates become relative to the
tile. Depending on the size of the tile, the coordinates then become small enough to fit in
data type A or data type B (see Figure 9). In the end, the optimal size of the tiles and data
type depend on the size of the tiles relative to the screen, and how much extra information
the user has to download, that goes outside the screens boundary.

22

(a) (b)

Figure 9: The tile in (b) is twice as large as the tile in (a). The data type in (b) therefore also
has to be twice as large as the data type in (a), to be able to store coordinates for the
entire tile. Note that Px in (b) is twice as large as Px in (a) since the size depends
on the data type – not the number stored in it.

7.6. Security

While in some countries, the public have licence-free access to the map data collected by the
state map agency, other countries does not have this privilege. The map’s underlying data
might have licensing that includes restrictions in use, distribution and it might not be free.

With raster maps this is not as problematic, since the underlying vector data is not exposed
to the client – only an image is sent from the server – but when the map data’s original data
structures is sent to the client, which is done to a degree in vector maps, there is always a
risk that someone will try to capture that data directly.

Enforcing copy protection by implementing Digital Rights Management (DRM)[85], and
other schemes, has been tried extensively in the music, movie and computer games industry.
It has, however, not proven very successful, and has been inconvenient for customers[86].

When the data is in the hands of the user, there will always be a way to get to it. Raster data
has a very high grade of information loss, because the information is translated to pixels,
while with vector data, the objects are retained, which might make the information easier

23

to extract. It might therefore be better to modify the data that is sent to the client, instead
of creating third-party plugins for copy protection (and thus decreasing wide platform sup-
port).

Part II.
How new technology will improve the
web map experience

8. What is HTML5?

8.1. Background

HTML was invented by Tim Berners-Lee in 1989 as a way for scientists to exchange data
electronically, to overcome issues with globally distributed science projects and the difficulty
of cooperating across great geographic distances[87].

The last major update to the HTML standard – done by the Web Hypertext Applica-
tion Technology Working Group (WHATWG)[88] and the World Wide Web Consortium
(W3C)[3] – was tagged HTML5[89], and is a major effort to update the open web and make
it a viable platform for development of modern applications[90].

8.2. Motivation

HTML was designed for exchanging simple documents, and for many years, that is what the
internet was – a collection of ”pages“. However, a web site today often behaves more like a
traditional desktop application, with interaction, animation and dynamic behaviour. As a
consequence, since HTML did not have the technology to support such scenarios, various
vendor-specific and third party extensions, such as Adobe Flash[91], Microsoft ActiveX[92]
and Microsoft Silverlight[93] were developed and used.

The original intent of the web was collaboration, in which it is important to maintain com-
patibility and open standards, to be able to collaborate at all. In this context, where the
web represented a common ground of compatibility between different platforms and sys-
tems, the introduction of third-party extensions was unfortunate. HTML5 is an investment
in closing the gap between the previous HTML4 standard, and the technology demand of
modern web applications, with open standards and open technology, creating a common
platform for every system with a modern, standards-compliant web browser.

In the last couple of years, the adoption of various mobile devices has grown tremendously[94],

24

along with the adoption of alternative operative systems to Microsoft Windows[95], such as
Apple OS X[96] and Ubuntu Linux[97], which has resulted in a very heterogeneous com-
puting environment[98]. There are multiple devices and operative systems widely used,
which are incompatible at the software (e.g OS X and iOS[99], Linux and Android[100])
or CPU architecture level (e.g. x86[101] and ARM[102]).

One of HTML5’s primary motivations and selling points is to unify these platforms through
the open web. The prospect of developing an application once, and for a single environment
(the web), is highly attractive for companies, because of the huge savings in time and effort
compared to developing multiple applications for each device/operative system. Since there
are so many parties, however, the support for the individual modules of HTML5 may wary,
although many have good support, and can be used today (see Appendix C)

8.3. JavaScript

JavaScript (or ECMAScript, which is its vendor neutral name)[103] is a simple program-
ming language that started as a handy tool to enrich a web page with a few ”bits and bobs“,
and has since become such a fundamental part of the modern web, that it is difficult to man-
age a web page – let alone a web application – without it. JavaScript is an object-oriented
language, but differs in some fundamental areas compared to other languages taught at uni-
versity and in wide use (C[104], C++[105], Java[106], C#[107], Python[108]), which sets
a certain barrier of adoption[109].

JavaScript was invented as early as 1995 by Netscape, and it is the only cross-platform pro-
gramming language natively supported by all major browsers, thus it managed to establish
itself as the de-facto standard early on, and has a lot of headway on other languages. With
the HTML5 standard, most APIs are exposed in JavaScript, which means that in order to
use the new technology, one has to use JavaScript. The entry barrier for new or existing lan-
guages is higher than ever, and even though JavaScript was not designed to be used to create
complex applications, it remains as the only supported (client browswer) web language.

Most media attention is on the HTML5 specification, but established technology like JavaScript
is just as important. HTML5 itself does not cover the GIS domain, for example, and it is not
intended to. HTML5 standardises the most common technology in an open way, and one
must rely on JavaScript to implement the rest.

The high reliance on JavaScript for any web application, translates into a certain demand
for performance. Traditionally, JavaScript has not been a very efficient language because
it did not have to – it was not designed to handle large, resource-hungry tasks. Today,
however, that requirement has changed, and every browser vendor has put great efforts into
optimisation of its JavaScript engine, to the extent that JavaScript is not too far behind its
traditional desktop counterparts, such as C++, C# and Java [110, 111, 112, 113, 114, 115].

25

9. Native support for inline SVG

Scalable Vector Graphics (SVG) is a quite mature XML data format for two-dimensional
graphics [116]. However, it has not yet been adopted on a large scale, partly due to the
lack of native support across all major browsers. This has changed with HTML5, which
also introduces inline SVG, where SVG objects are integrated into the HTML Document
Object Model (DOM) – which contains all the HTML elements – instead of keeping the
SVG structure in a separate file [117].

Integration of the SVG objects in the HTML DOM is an important step for easier web ap-
plication development, and is an additional advantage compared to external, plugin-based
objects. All objects in the HTML DOM can interact with each other, which makes it pos-
sible to create the application menu as HTML elements, and the rest of the application as
SVG, for example. This is not possible with external, plugin-based objects (such as Adobe
Flash, Microsoft Silverlight), because the HTML elements have no way of accessing the in-
formation contained in the proprietary object.

(a) (b)

Figure 10: By using SVG, the HTML elements can integrate with individual objects in the
SVG element (a), and an application can be created by combining the technolo-
gies. This is not possible with proprietary plugins, like Adobe Flash, where the
HTML elements can not ”see“ inside the external object (b).

Since lots of map data is stored in a spatial database in a vector format, the potential process-
ing requirements for conversion between two vector formats, is smaller than a conversion
from vector to raster.

Data conversion introduces data redundancy and consistency problems (often due to differ-
ences in precision), as well as a non-trivial performance cost and is best avoided if possible.

26

SVG is an XML data format, and can therefore be hard to work with directly (see Code
Example 1). The SVG element is very mature outside of a web context, and multiple vector
graphics suites such as Inkscape and Adobe Illustrator exists for creating and editing SVG
objects.

Code Example 1: SVG (see Appendix D for complete file contents)

<?xml v e r s i o n="1.0" encoding="UTF -8" s t a n d a l o n e="no"?>

<svg (. . .) >

(. . .)

<g i d="layer1">
<path

s t y l e="fill:none;stroke:#000000;stroke -width:1px"
d="M␣590053.5096435546875␣ -6645619.33984375␣l

␣␣␣␣␣␣␣␣␣␣(...)␣ -35.0400390625␣ -7.08984375␣z"
i d="pol1" />

(. . .)

<path
s t y l e="fill:none;stroke:#FF0000;stroke -width:1px"
d="M␣589990.1103515625␣ -6645544.4296875␣l

␣␣␣␣␣␣␣␣␣␣(...)␣3.23046875␣65.0205078125"
i d="linestr2" />

</g>
</svg>

XML is a very verbose data format, and might not always be suited for transferring large
amounts of data over the web. Libraries solve this, since only vector instructions are needed.

10. Binary processing with TypedArray

It has been difficult to implement very demanding JavaScript applications, because there was
no way to work with binary data (see Section 8.3). Media (images, video and audio) are often
standardised in binary formats, and for real-time communication, binary formats are used to
exchange messages at the rates necessary to be able to deliver the expected performance.[118]

The HTML5 canvas element, being an image, can work with binary data, and has been used
as a workaround for interfacing with binary data. When WebGL, a technology built with
the canvas element that exposes an OpenGL API, was invented, the demand for manipula-
tion of graphics, and its underlying binary data directly grew even further.

27

The Typed Array specification for ECMAScript defines a limited interface for working di-
rectly with binary data [119]. It defines an ArrayBuffer type, which is essentially raw bi-
nary data, and multiple TypedArray and DataView types, for working with ArrayBuffers
(see Code Example 2).

Code Example 2: TypedArray Example

// TypedArrays , size in bytes per item
//(U means unsigned , i.e. only positive values)

// Int8Array , 1
// Uint8Array , 1
// Int16Array , 2
// Uint16Array , 2
// Int32Array , 4
// Uint32Array , 4
// Float32Array , 4
// Float64Array , 8

// create an array of single byte values for two items
var s i n g l e b y t e a r r a y = new Uint8Array (2) ;

s i n g l e b y t e a r r a y [0] = 9 7 ; // a
s i n g l e b y t e a r r a y [1] = 9 8 ; // b

var s t r i n g _ f r o m _ a r r a y =
Str ing . fromCharCode . apply (null , s i n g l e b y t e a r r a y) ;
// string_from_array : "ab"

var s i n g l e b y t e = new Uint8Array (s i n g l e b y t e a r r a y . b u f f e r , 0 , 1) ;
// singlebyte : 97

s i n g l e b y t e = s i n g l e b y t e a r r a y . s u b a r r a y (1 , 2) ;
// singlebyte : 98

var twobytea r ray = new Uint16Array (s i n g l e b y t e a r r a y . b u f f e r)
// the buffer property is the raw binary buffer
// and can be used to view the data in different ways

A TypedArray is a fixed-length array that makes it possible to read and manipulate an Ar-
rayBuffer’s values as an integral or floating point type. Often when working with data
structures, using TypedArrays is not ideal, because the data might not be ordered according
to type (i.e. heterogeneous collection of data).

28

The DataView type makes it possible to read binary data as a stream, reading and writing
data as a stream. The efficiency of native manipulation of binary data is crucial for e.g. real-
time or demanding applications[120]. Unfortunately, at the time of writing, the support
for DataView is not good enough to be able to use it reliably (see Appendix C).

11. Replacing HTTP with Web Sockets

One of the absolutely most important parts of creating a vector map, is the transfer of data
between the client and the server. Existing tile-based raster maps are reliable and efficient,
and users are not expecting to wait very long for the map to render. A map using vector
data need to perform as well or better, to be adopted, as users will not care about technical
implementation details.

There are multiple ways to handle data transfer between client and server with web ap-
plications, but none of them are both efficient and easy to use.[121] The traditional way
of transferring data, is through HTTP. HTTP has been part of the web since the begin-
ning, and was never designed to handle transfer of massive amounts of data, and especially
not with a tight time constraint. Other methods were developed to avoid the performance
penalty of HTTP, but they were never properly standardised, and were implemented us-
ing dated technology[122]. There is ongoing work to replace the dated HTTP proto-
col, to minimise or eliminate the shortcomings, and meet the demands of modern web
applications[123, 124, 125]. However, it is not yet a standard, and the proposed reference
specification, Google’s SPDY[126, 127], has met some resistance. Therefore, the next ver-
sion of HTTP could be years ahead, and a solution is needed now.

HTML5 introduces Web Sockets[128], and gives applications the ability to provide web
developers with a socket-based, native, full-duplex communication channel, that does not
have the latency and overhead of prior solutions. Tests show that the technique allows suffi-
cient latency even for real-time web applications – which is very relevant, e.g. for temporal
maps[129, 122].

The Web Sockets protocol supports both text and binary formats as means of data trans-
portation, which means that it does not limit the data format one may use to transfer data
between the server and the client. For image data and 3D operations, there are benefits with
avoiding conversion between text and binary just to transport the data, and this applies to
coordinate-heavy spatial data formats as well, and also in a general sense[130]. However, bi-
nary data formats are more difficult to work with and debug, so the obtained performance
benefit needs to outweigh the longer development time[131].

A problem with persistent connections over the web, is that the connection needs to traverse
proxies and firewalls, and prevent closing of the connection by these (routers and firewalls).
Web Sockets was developed with this in mind, and is perfectly able to handle proxies and
firewalls, and prevent these from interrupting the connection by using a persistent tunnel
for connection.[121]

29

12. Implementing non-blocking behaviour with Web
Workers

For complex geometries, the processing and rendering of the map may often be bound by
the CPU. Processes that take a non-trivial amount of time to complete, will freeze the whole
web application until it has completed. Desktop applications solved this by spawning mul-
tiple threads, to avoid freezing the user interface during heavy work.

Web Workers is part of HTML5, and provides similar tools for web application developers.
By spawning multiple Workers, CPU-heavy algorithms can run separately from the main
process, and communicate through a Messaging API. Like with Web Sockets (see Section
11), Web Workers are allowed to transfer binary data[132].

However, this is still a copy operation, and a disadvantage that could actually hurt perfor-
mance more than the gain of multiple processes, which is the reason for direct transferring
with the HTML5 Transferable objects specification[133, 134]. It is direct transfer that avoids
copying data, transferring it directly instead. Currently, this is not supported in all browsers
yet (see Appendix C).

13. Data formats

Map applications and geodata-heavy applications consume a lot of data – and are essentially
useless without data – so it follows that the data formats that are used between the server
and the client, are a very important aspect of the application.

Figure 11: The flow of data in a vector map implementation is moving data from the server’s
spatial database (A) into a data format that is tiny and fast enough to pass through
the limited communication channel (B). The data is received by the client, and, if
the data structure does not map to the target representation, it is processed to the
desired data structure (C), and rendered (D).

With HTML5 and web applications, the limiting technologies are JavaScript (on the client)
and transport protocols between server and client.

The web application has become a ”first class citizen“ with HTML5, that closes important
gaps in technology compared to regular desktop applications.

30

13.1. Considerations when choosing a data format

Open data formats are popular for very good reasons, such as better interoperability with
other software, resistance from vendor lock-in (i.e being able to migrate the data to other
applications in the future), and lots of existing tools and documentation to work with the
particular data format. It is therefore natural to employ open data formats where possible.

Depending on the project’s main priorities, it is necessary to settle on a data format that is
either text or binary. A text format is usually chosen because it is friendly to process and
edit by hand, if necessary. A text based data format is typically not as apt to vendor lock-in
as a binary format, because a custom parser is easier to implement if the contents can be
read directly, but at the same time, the strength of being human readable may introduce a
performance penalty compared to a binary data format.

In most cases, the main content of a spatial data structure are point coordinates, as poly-
lines and areas are implemented with points and implicit vertices (i.e the data structure only
contains points in ordered sequences). Coordinates need to be parsed and converted in a
text data format, since only strings are stored. A popular text encoding standard is UCS
Transformation Format – 8-bit (UTF-8)[135], where each character consumes either one,
two, three or four bytes. UTF-8 characters that are part of American Standard Code for
Information Interchange (ASCII)[136], consume one byte each, which includes numbers.

A double precision float value, such as the coordinates x= 584000.12345 and y= 6644000.123456,
will then consume (including decimal marks) 8 b y t e s ·12= 96 b y t e s (x) and 8 b y t e s ·14=
112 b y t e s (y), whereas a binary format could represent each double precision float value in
8 bytes, for a total of 16 bytes – a huge saving over the UTF-8 text representation.

With binary data formats, one has extensive control over how the data is stored, and this can
be exploited to achieve better performance[137]. When data is stored in memory (i.e. read
from permanent storage into memory), the native data type is written to multiple addresses
or blocks of a specific size (see Figure 12). If most coordinates are doubles (which consume
eight bytes), it makes sense to store the data in eight byte blocks.

31

(a) (b)

Figure 12: The data in (a) and (b) has a type header, and lots of coordinates consuming 8
bytes each. In (a), the data is misaligned, while in (b), parts of the first block is
kept empty to align the coordinates to single blocks.

The point of this is to only access each block once for every coordinate, and extract every
double directly from each block. However, if the data is misaligned, one can not do this, but
instead need to access the blocks that each coordinate is split up into, and might even have
to combine them in a temporary block, before extracting the double value. To avoid this,
one needs to use a binary data format, as it can not be done without knowing the storage
model of the data format.

The byte-order of data must also be considered when choosing a data format, and especially
when that data format is transferred between computers. The difference between the two
byte-orders in use is the order that the data is read for multi-byte data types (i.e. data types
that consume more than a single byte such as floating point numbers). The data can either be
stored with the least significant byte first and most significant byte last – called little-endian
– or most significant byte first and least significant byte last – called big endian[138, 139].
Since the big and little endian are different, multi-byte data types will yield different values,
so they are not interchangeable. To solve this, one can agree on using the big endian byte-
order – which is the standard ”network order“ – or one can begin every data sequence with a
multi-byte number (which will be different in the two byte-orders) to differentiate between
big and little endian.

13.2. Geography Markup Language

The most descriptive and feature-rich data format for geometry, and also a popular exchange
format for geodata on the web, is the Geography Markup Language [140]. Currently at
version 3.3, GML is an XML encoding standard for geographic information, standardised
and developed by OpenGIS Consortium [9] – an organisation that develop and maintain
publicly available open standards in the geomatics field.

32

The Geography Markup Language is a very descriptive, text-based data format (see Code
Example 3). It is – like XML – intended to be both human-readable and human-editable, and
therefore contains a lot of markup and whitespace to ease readability. This greatly reduces
the performance of the data format with regard to computer processing, which, in a open
web context, is already limited to the performance of the JavaScript programming language.

Code Example 3: GML (see Appendix D for complete file contents)

<ogr : FeatureCol l e c t ion (. . .) >

(. . .)

<gml : GeometryCollection srsName="EPSG:25832">
<gml : geometryMember>
<gml : Polygon>
<gml : outerBoundaryI s>
<gml : LinearRing>
<gml : c o o r d i n a t e s>
5 8 9 9 7 9 . 0 4 0 0 0 0 0 1 5 1 7 1 2 4 5 , 6 6 4 5 6 0 9 . 0 6 9 9 9 9 8 3 6 3 8 5 2 5 , 0 (. . .)
</gml : c o o r d i n a t e s>

</gml : LinearRing>
</gml : outerBoundaryI s>

</gml : Polygon>
</gml : geometryMember>

<gml : geometryMember>
<gml : LineStr ing>
<gml : c o o r d i n a t e s>
5 8 9 9 9 0 . 1 1 0 0 0 0 0 1 5 1 2 0 0 2 2 , 6 6 4 5 5 4 4 . 4 2 9 9 9 9 8 3 5 7 8 9 2 0 4 , 0 (. . .)
</gml : c o o r d i n a t e s>

</gml : LineStr ing>
</gml : geometryMember>
</gml : GeometryCollection>

(. . .)

</ogr : FeatureCol l ec t ion>

Using GML, a smooth experience might be hard or impossible to achieve, especially on
mobile devices and web browsers with limited resources, simply because the parsing of the
data format is too time consuming.

GML is made for others to build upon, e.g. by adding national conventions and standards
to the namespace. One example of this is CityGML [140], which is an application schema
(i.e. a dialect) of GML intended for modelling virtual 3D city models.

33

13.3. GeoJSON

GeoJSON is a geometry specific JavaScript Object Notation (JSON) format, and as JSON
was designed to be easily parsable by Javascript, and more lightweight than XML, GeoJSON
is the equivalent opponent to GML for spatial data exchange purposes[141][142].

Like GML, GeoJSON is a text format (see Code Example 4), and suffers from the same dis-
advantages with machine parsing text data, and markup redundancy. However, the JSON/-
GeoJSON markup is easier to parse into native data types than XML/GML, and the data
size is a bit smaller[143].

Code Example 4: GeoJSON (see Appendix D for complete file contents)

{
"type" : "GeometryCollection" ,
"crs" : {

"type" : "name" ,
"properties" : {

"name" : "urn:ogc:def:crs:EPSG::25832"
}

} ,
"geometries" : [

{ "type" : "Polygon" ,
"coordinates" : [[[5 9 0 0 5 3 . 5 1 , 6 6 4 5 6 1 9 . 3 4] , (. . .)]]
} ,

{ "type" : "LineString" ,
"coordinates" : [[5 9 0 0 5 3 . 5 1 , 6 6 4 5 6 1 9 . 3 4] , (. . .)]
}

(. . .)
]

}

To further optimise the GeoJSON format for data transfer purposes with minimal data foot-
print, compression schemes have been developed to minimise redundancy and whitespace.
CJSON[144] and json.hpack[145] compress (Geo)JSON strings, resulting in strings that
consume significantly less space in common cases[146], although the strings are no longer
considered to be human-readable.

13.4. BSON

The BSON specification[147] is the binary counterpart of JSON – on which GeoJSON
is based – and stands for Binary JSON. Compared to its text based counterpart, BSON is

34

designed for efficiency, and the data types are a superset of JSON. BSON was created as part
of the MongoDB NoSQL database[148], and use BSON as the storage format for documents
– both on-disk storage and network transportation.

BSON is primarily designed to be superior compared to JSON in terms of storage space
and parsing speed, however, since arrays have explicit indices, and large objects are prefixed
with a length field for scanning performance, BSON will in some cases use more space
than JSON[149]. For spatial data structures, the integer and floating point data types are
probably the most interesting advantage, compared to regular JSON, since numbers are
stored natively.

However, with (1) byte-sized tiles (see Section 3), the BSON specification only has a ”raw“
binary type without further imposed structure, which frankly will not be different from a
custom binary format – nor will it have the advantages of a standard format, since the object
is a binary blob anyway. If storing numbers outside the binary type, the forced indices of
the array type might create a large space overhead as well.

13.5. WKB and WKT

The Well-known Text (WKT) and Well-known Binary (WKB) are defined as part of the
Simple Feature Access open specification[150] by the Open Geospatial Consortium (OGC).
While Well-known Text is human readable, and very much appropriate for text-representation
of spatial features (see Code Example 5), the Well-Known Binary format’s purpose is to be
read by computers in an efficient manner, and geometries are therefore represented as a
stream of bytes (see Figure 6 for a string representation of the binary data).

Code Example 5: Well-known Text (see Appendix D for complete file contents)

"POLYGON ((590053.509643555␣6645619.33984375,
␣␣␣␣590133.869995117␣6645636.04003906,␣(...)␣))"

"LINESTRING (590053.509765625␣6645619.33984375,␣(...)␣)"

Code Example 6: Well-known Binary (see Appendix D for complete file contents)

(POLYGON)

"\x010300000001000000070000000000f00␣(...)
␣␣␣␣␣␣␣␣␣f004cb0122410000c0d5dc595941"

(LINESTRING)

"\x01020000000700000000000005cb01␣(...)
␣␣␣␣␣␣␣␣␣00005cb0122410000c0d5dc595941"

35

A limitation with these formats, compared to GML, is that they only represent geometry
objects, and that the Simple Feature Access specification does not include all geometries that
are common (for example, it does not include circular lines). A web map with a minimum
amount of interaction will need a persistent reference to each geometry object – a feature id
– which needs to be linked to the geometry in the data structure. Therefore this information
will have to be stored in a different format, or use WKB/WKT as a part of the data structure.

Each point coordinate’s size is also specified in the standard to be of the type double pre-
cision, which consumes eight bytes per coordinate. When striving to create a small data
footprint by for example using local coordinate systems and tiles (see Section 3), this is un-
fortunate.

The PostGIS spatial extensions[151] for the PostgreSQL database[152] maintains exten-
sions to WKT and WKB (in addition to the OGC standard formats), because the Simple
Feature Access specification is limited in the number of geometries it defines. EWKT and
EWKT[153] extends WKT and WKB, and provide geometry types that are useful, but not
part of the Simple Feature Access specification (such as circular lines), and support for em-
bedding spatial reference systems.

13.6. ESRI Shapefile

ESRI Shapefile (see Figure 13) is a specification that includes multiple file formats to store
spatial vector data[154]. It is a partly1 open specification, and is notable because it is a
popular and widespread binary data format.

1Parts of the specification, such as the Shapefile spatial index format (suffix sbn), is not documented by ESRI.
However, it has been reverse-engineered and documented independently by the open source community

36

Figure 13: The example shapefile used in Code Example 3 and 4 shown in Quantum GIS.
Since it is a binary format, the file contents can not be read directly.

There are 15 file types in total that together comprise the shapefile specification, but only
the shape format (shp), which contain the geometry; the shape index format (shx), which is
an index to improve performance; and the attribute format database (dbf), which contains
each shape’s attributes; are mandatory.

The geometry file (shp) is a binary file, and has a fixed, 100 byte header with some meta-
data prior to the actual spatial content. Following is a number of records, each with a record
header (geometry type, bounding box etc.), and the record’s content (coordinates). All coor-
dinates are double precision values, consuming eight bytes per coordinate, like Well-known
Binary (WKB).

Shapefiles do not maintain any topology in the data structure. To be able to store topo-
logical information, one would need to store pointers geometry and possibly store the ge-
ometry multiple times, which would reduce efficiency (with pointers) or increase storage
requirements (with redundant data). The specification prohibits storing a mixture of differ-
ent shapes, even though the data structure makes this possible by having a record header for
every record.

37

13.7. Non-standard formats

There are situations when it is more sensible to invent a new data format, than to use an
existing open data format. A common reason to pursue proprietary data formats is often
performance related. By tuning the data format to suit its particular purpose, the overhead
when processing the data, and also the size of the data, will remain as small as possible.

There could also be a gap between current technology and standardisation work, because
standardisation is a very time consuming process, and a standard is built as the technology
matures, which is why standards are rarely valid options for emerging technologies. When
adapting new technology, a situation may arise, where the only way to consume the new
technology is by inventing a data format.

14. Optimisation

More often than not, the standardisation work lags behind what current technology is ca-
pable of. While unfortunate, this is natural, as standardisation is both time consuming and
hard to do properly. Therefore, there is often a gap between what is available with current
standards, and what is possible with current technology.

”First and foremost, we believe that speed is more than a feature. Speed is the
most important feature. If your application is slow, people won’t use it. I see
this more with mainstream users than I do with power users.

I think that power users sometimes have a bit of sympathetic eye to the chal-
lenges of building really fast web applications, and maybe they’re willing to live
with it, but when I look at my wife and kids, they’re my mainstream view of
the world. If something is slow, they’re just gone.“ Fred Wilson’s 10 Golden
Principles of Successful Web Apps[155]

Optimisations are likely specific, and expect certain conditions to be true (e.g. CPU archi-
tecture, amount of memory, software versions etc.), thus improving part of the application,
and possibly reducing compatibility. If this is the case, more complexity is introduced into
the application, so one should evaluate if the increased performance in a branch of the ap-
plication justifies the cost of complexity or reduced compatibility.

38

Part III.
Performance comparison of new and
existing web map solutions

15. What is Performance?

There are multiple parameters that affect the performance of a system, but they are all about
timing in some way. Essentially, the system needs to react to an event (user requests, inter-
rupts, messages etc.) in a timely manner[156]. The fact that makes performance so compli-
cated, is that the number of possible origins to trigger the event, and subsequent response
patterns, are so numerous.

Formally, the management of resources is central to performance. Any resource that affects
the response time, is part of and contributes (positively or negatively) to the end result.
Obviously, the amount a certain resource affects performance, depends on the application
itself, and its available resources.

A GIS system gets most of its requests from the user – or users, if one is able to operate
concurrently – but the requests themselves vary. The user might query for information
about an object, and expect the information back as fast as possible; she might edit a feature,
expecting the result to be reflected both on screen and in the database (the database might be
very important if it is a concurrent multi-user system) or the user might just want to look
at the map, and expect a fast response.

For any user, (lack of) performance is exposed through (longer) wait time, which means that
a possible metric for performance is the wait time of the user, who, after all, will be using the
system. However, when using such an imprecise metric as a user, it is important to be aware
that the perceived wait time is sometimes different from the actual wait time (see Figure 14),
and there are multiple possibilities to improve the performance without actually making the
system faster.

39

(a)

(b)

Figure 14: An example where the wait time can be perceived as slower when removing ex-
isting data immediately after the request, resulting in a blank map until the new
data is completely processed and rendered (a), instead of waiting to replace the
existing data until the new data is completely processed and ready to be rendered
(b)

To improve performance, one needs to decrease the response time[157]. By improving an
algorithm or a process (a), the consumption of a resource – e.g the CPU, GPU or RAM –
becomes smaller. The consequence being that some strain on the system can be relaxed –
the process could e.g. complete faster, consume less power or free resources to other tasks.
Alternatively, every process that depends on (a), and in some scenarios are blocked, waiting
for the result of (a), will now have increased performance.

40

16. Existing maps using mature technology

16.1. The current map standard

The current standard web map, measured by popularity, is composed of raster images, and
is often based on cached tiles, to be able to scale to a high number of concurrent users.
Mostly, these maps consume the Web Map Service (WMS) or Web Map Tile Service (WMTS)
standards, created and maintained by the Open Geospatial Consortium (OGC)[9], enabling
cross-compatibility with similar services.

Accounting for a large portion of the increase in use of web maps, is the increased availability
of map services that implements standard interfaces such as WMS/WMTS – which makes it
easy to aggregate maps from different sources – and the emergence of tools targeted towards
non-professional users (i.e. users without a formal degree in GIS or GIS-related subjects) for
creating maps from these map services. The demand for fast access to web maps for a lot of
users concurrently, has probably caused the increased use of tile-based models (see Section
3).

With de-facto use of WMS and WMTS and other raster-based standards, users have come
to expect a certain performance level and especially that maps are quickly delivered and
rendered to the display. Moving from raster maps to vector maps, regular users – that neither
care, nor understand the reasons for moving from raster to vector-based maps – expect at the
very minimum equal or better performance.

The Open Geospatial Consortium also maintains the Web Feature Service (WFS)[158] –
a vector data interface based on the Geography Markup Language (see Section 13.2) data
format, where interaction is done with the HTTP protocol in a request/response-pattern.
The WFS specification has been touted as a solution for providing vector maps on the web,
however, the specification has a couple of limitations that limits its performance throughput.

Since WFS uses the HTTP protocol and hence a request/response model[159], and not a
more modern technology, retrieval of spatial data is necessarily with higher latency, and
a lower bandwidth compared to a more modern approach, such as using HTML5’s Web
Sockets[122].

The recommended exchange data format – the Geography Markup Language – also con-
tributes negatively to the performance of a vector map solution based on WFS, because of
its large footprint (see Section 13.2)[59], the cost of lexically scanning the data (i.e. con-
verting the text to machine-readable tokens) and the overhead of converting text coordinate
values (which there are a lot of in a typical spatial data structure)[160]. One is not required
to use GML for these reasons, but it will hurt interoperability with other WFS services if
one chooses a different format.

41

Figure 15: Example of an interactive WFS layer, where one is able to select and query indi-
vidual features. Unfortunately, each interaction event, which triggers a request
to the server, is very noticeable, and might not be acceptable enough in terms of
performance for normal use.[161]

There are multiple users of WFS, but they almost exclusively use vector data as a secondary
layer[161], with a WMS layer for the majority of the spatial data[162]. The author’s opinion
is that the lacking adoption of the Web Feature Service specification for complete maps – as
opposed to merely being used as a supplement – is based on performance concerns, and that
it does not represent the best solution for delivering highly responsive vector maps on the
web.

16.2. Reference web map experience

To be able to compare the current user experience – strictly performance-wise – with current
raster maps, which a vector map solution would have to match were it to replace today’s
solutions, a WMS implementation was created and tested.

The PostgreSQL with PostGIS open source spatial database was used to store the spatial
data, with the popular open source GeoServer suite[163] providing the WMS interface.
GeoServer is the reference implementation of various of Open Geospatial Consortium’s
standards, including, but not limited to, the Web Map Service. It is written in Java, and is a
healthy, community-driven project, and popular enough to provide a sensible performance
baseline for comparison with competing web map implementations.

On the client, where the limitations of raster image map solutions result in simple require-
ments, the open source map library Leaflet[164] was used to consume the (tiled) WMS
service and render the map (see Figure 16). Leaflet tries to be as lightweight as possible, and
employ responsive map display (i.e. suited for devices with smaller screens), while at the
same time being quick and easy to use.

42

(a) (b)

(c) (d)

Figure 16: The tile sizes and map loading time were tested at different zoom levels, where
the tiles have varying amounts of spatial data.

The implementation acts as a baseline for the current technology, and was tested on average
tile size, total data size and total latency for the map. Data was collected through the Google
Chromium Inspection/Developer tools interface[165], and written to a JSON data file. It
was then processed and plotted with the flot JavaScript framework[166]. The complete
source code for the data processing and the resulting graphs are available (see Section 1.1 and
Appendix B) for anyone to re-run the tests and verify the end results.

As we can see in the results (see Figure 17), there are large differences in the performance of
the map at different zoom levels. All of the tiles (see Section 3) are equal in size (256 pixels x
256 pixels) [167], and there is no size difference in a raw image texture itself what colour the
pixel is, so the difference in size is probably due to the compression algorithm used on the
image (i.e ”empty“ pixels or equal colours are compressed (see Section 7.2) to reduce space
consumption).

43

(a)

(b)

(c)

Figure 17: The test results for different zoom levels: (a) the average tile data size, (b) the total
data size for the map and (c) the average map latency. (See Appendix E for larger
versions of the plots.)

44

A competing implementation, in this case using vector data, should match or improve on
the test results presented here to be considered a viable option in the user space. However,
it should be noted that comparing a raster solution with a vector solution is in many ways
comparing apples to oranges, since there are a lot of differences in how the solutions work,
and how they affect the functionality, client and server (see Section 6 and 7). With that in
mind, the comparison is still interesting to get an idea of the consequences when replacing
one solution with the other.

17. A vector map using modern HTML5 technologies

In light of recent advancements in modern web technology, it is very interesting to visit the
topic of vector maps as a viable way of presenting map data on the web, as vector data has a
lot of potential that is either hard or impossible to achieve with existing raster maps.

With vector maps, the client needs to process the vector data, and turn it into an image.
This means that there is a lot of potential for optimising data structures and algorithms,
much more so than in a raster environment, where no flexibility is given to the client.

The solution presented is an attempt to create a vector map for the web, based on new
HTML5 technologies, general improvements in JavaScript and web browsers. Lots of time
and work has been put into programming a realistic and flexible architecture to measure
the performance of different data formats, and enlighten the different aspects of vector map
systems that are different from raster-based map systems.

17.1. Server Architecture

The server is fairly modest compared to a full-scale deployment, a virtual machine running
Ubuntu Linux 11.10 with 3GB RAM and two Intel Xeon X5667 (dual core, 3.07 GHz).
As the heavy processing is done in the database, the end performance relies mainly on its
configuration and performance.

The default configuration of PostGIS is very conservative, and therefore, the theory is that
in practice, a very powerful server would only affect the end performance moderately – at
least in this implementation with a single or few concurrent users. Hence, for this imple-
mentation, and to ease comparison of the results for others, PostGIS’ default configuration
was kept.

17.1.1. PostGIS

The open source PostgreSQL[152] with PostGIS[151] spatial extensions was used to store
and generate spatial data, based on its performance[168], its availability – compared to its
competitors (Microsoft SQL[169], Oracle Spatial[170]), it is easy to get hold of and free to

45

use – and the fact that the author was familiar with the software beforehand. Both Post-
greSQL and PostGIS are present in the main repositories of the Ubuntu package system,
and thus very easy to install.

PostGIS supports a number of open, standardised output formats as results from, or input
to, an SQL query. Among the supported formats are Well-known Text, Well-known Bi-
nary, SVG, GML and GeoJSON[171, 172]. This gives the developer a lot of choice when
choosing a format, perhaps eliminating an additional format conversion between PostGIS
and the target application (by outputting the required format immediately), and also gives
opportunity for choosing an appropriate data format.

The spatial extensions includes some methods for generalisation (see Section 5), such as
ST_Simplify[173] and ST_SnapToGrid[174]. The ST_SnapToGrid algorithm is used to ap-
proximate a geometry to a grid system, such that there is only a single Point in each cell,
thus simplifying the geometry and reducing its data footprint.

A well-known algorithm for generalisation is Douglas-Peucker[71], a split-and-merge algo-
rithm which works by simplifying a curve into fewer segments, to a given threshold. A
polygon is a closed curve, which means the Douglas-Peucker algorithm will work on both
curves and polygons. PostGIS’ ST_Simplify applies the Douglas-Peucker algorithm to a ge-
ometry or a collection of geometries.

In the implementation, to illustrate the impact of even simple generalisation, ST_Simplify is
used on the geometry. The results (see Section 17.4) indicate that generalisation is crucial
to a performing vector map, and that it affects performance in a major way, as it directly
correlates with the data amount transferred. It does in no way exhaust the possibilities for
further generalisation, of which there are many (see Section 5).

A common technique to minimise data consumption, is to deliver the data in tiles (see Sec-
tion 3). Tiles were tested both on-demand and cached, with the conclusion that on-demand
tiles were too slow to be viable (ten-fifteen seconds wait time from the request to a fully
rendered map with 10 tiles).

With raster tiles, the amount of processing required to render tiles makes it unfit for on-
demand consumption, and this is also the case with this particular implementation of vector
tiles. Therefore, tiles used in the implementation were pre-generated in a separate table (see
Table 2), with each tile consuming a single row, with a GeometryCollection containing the
tile’s spatial data.

original data tiles generalised tiles
veg map-veg-tiles map-veg-tiles-simple1
bygning map-bygning-tiles map-bygning-tiles-simple1
annen-bygning map-annen-bygning-tiles map-annen-bygning-tiles-simple1

Table 2: The relationship and layout of the PostGIS database tables in the implementation.

46

17.1.2. Python and Shapely

The Java Topology Suite (JTS)[175] is an open source package of spatial algorithms and
predicates, for manipulating and working with spatial data. JTS’ design is mostly shaped
by the Open Geospatial Consortium’s Simple Feature Access specification[150], which it
supports fully. It is able to interact with the standard formats Well-known Text and Well-
known Binary, also defined by the Open Geospatial Consortium, and is well-documented
and widely used.

GEOS[176] and Shapely[177] are ports of the Java Topology Suite, for C/C++ and Python,
respectively. GEOS is the geometry engine that powers PostGIS, which is a testament to the
wide usage of JTS/GEOS/Shapely. Python is an open source, interpreted dynamic lan-
guage, and it is very efficient for prototyping and development time, compared to native,
compiled languages like C and C++.

For these reasons, the authors extensive familiarity with Python, and the fact that at the
time of writing, the Web Sockets server Autobahn[178] – which has an extensive standards-
conforming test suite[179] and was well documented[180] – had a Python implementation,
Python was chosen as the server-side development language.

Although Python might not perform as well as a native language, a working theory was that
the greatest bottleneck would be the spatial database, and this was confirmed in testing later
– from the on-screen log, one could see that the Python program did not affect performance
in a major (negative) way, compared to other parts of the implementation, like the database
and the SVG renderer.

17.1.3. Web Sockets

The Web Sockets protocol[128] was chosen for its superiority in bandwidth, latency and
ease of use, compared to HTTP-based solutions[122]. The most important functionality in
a web map, is data transfer, because a map without data is an empty canvas.

If the data is stored locally on the client, it is much easier to maintain high bandwidth and
low latency than with data stored in a remote location, simply because there is higher risk
associated with separating the spatial data from the representation.

The implementation, however, like many others, are separated into a client-server infras-
tructure, and has to transfer the map data across a network. As this connection is the main
bottleneck in a web map system, it is also the most interesting part to research with regards
to performance of the resulting application.

Autobahn is an open source Web Sockets implementation, both client and server side, pro-
vided in JavaScript, Python, PHP, Ruby and Java (for Android)[178]. It has an extensive
test suite, built to ensure proper functionality and standard compliance[179]. Conforming
with the standard is important, and essentially means that one can use native browser im-

47

plementations where possible, instead of being locked in to using both the client and server
– which, in a way, defeats the purpose of using the open Web Sockets standard.

The Autobahn Python Web Sockets server library is used to implement a Web Sockets server
to deliver vector data to clients, along with the rest of the server side Python technologies
used. The clients use their native browser implementations of the Web Sockets client where
possible, to get realistic results for the current support level in browsers.

Future implementations could employ Web Sockets servers with less overhead, such as the
WebSocket++[181] library, written in C++ using Boost.Asio[182], which is used as a per-
formance test baseline in the tool wsperf[183]. However, this would require more develop-
ment time, and might be more appropriate for deployment in highly scalable environments,
i.e. when the server should be able to handle hundreds or thousands of users concurrently,
which is not possible to test with the implementation presented here.

However, the HTML5 Web Sockets technology has proven, in the implementation tested
here, to be a robust and efficient solution for performance critical data transfer of spatial vec-
tor data, by employing techniques for immediate delivery and binary data transmission. For
data transmission purposes, HTML5 has made impressive advances – what was impossible
to achieve a couple of years ago on the open web, is now both easy and straight forward.

17.2. Data Transmission

17.2.1. Binary data

In an efficient spatial data (i.e. points, curves and areas) structure, with minimal metadata
and space consumption, points are dominant, which means coordinates – regardless of the
number of dimensions – outnumbers everything else by a large margin. A coordinate is a
number type, either a float or an (signed or unsigned) integral, which means that an efficient
storage format would need to be able to store numbers efficiently, and it should also be
efficient to process (encode and decode) the data structure and its coordinates. By using
network order, the data is consistent between the server and the client (see Section 13.1).

A binary data structure is ideal for this purpose, as it is a binary string that can store native
data formats, and also process them efficiently. The largest difference – apart from the fact
that a binary format can not be read directly by a human – is the space that is consumed
by integrals and floats. Since the binary number system is used, a number is represented
in a predefined amount of bits. One byte is eight bits, and an unsigned number can not
be negative, while a signed number need to be able to represent equally large positive and
negative numbers (i.e. 〈−a, b 〉 where a = b − 1). The difference between the positive and
negative number is due to the highest bit being used for negative numbers, and 0 in this
context is a positive value (see Table 3).

48

octal value binary value octal value binary value
0 0000 -8 1000
1 0001 -7 1001
2 0010 -6 1010
3 0011 -5 1011
4 0100 -4 1100
5 0101 -3 1101
6 0110 -2 1110
7 0111 -1 1111

Table 3: The relationship between binary and octal values for a single byte signed integer.
Note that the high bit marks a negative number, and that -1 has the highest binary
value.

So, in sixteen bytes (one byte = eight bits), one can for example – this is not an extensive
list – store sixteen unsigned numbers between 0 and (including) 255 (one byte is eight bits,
28 = 256, sixteen signed one byte numbers between -128 and 127, eight unsigned two byte
numbers between 0 and 216 − 1 = 65535 (signed between -32768 and 32767) or two eight
byte double precision float numbers (their exact representation is more complex, and unfor-
tunately not accurate).

Compared to a text format, this is a lot more efficient, resulting in a data structure that is
more compact, and does not require as much processing (i.e. converting numbers between
text and binary) as a text format. Support for both integrals and floating precision numbers
have been implemented, to compare the benefits of using binary representation. By using
tiles with local origos, one is able to use integrals of different sizes (one byte= a 256x256 tile,
two bytes= a 65536x65536 tile etc.) for coordinate representation, which further lowers the
data footprint.

It becomes clear that larger integral sizes, and even float precision numbers, represent an
area that is much larger then a normal display at a zoom level where all details are visible.
Smaller, byte-sized tiles are also suited for caching (see Section 4).

17.2.2. Text data

Text data formats are generally more popular than binary formats, because they can be
edited and created only with the help of a simple text editor. With binary formats, one either
needs software to handle (i.e. create and edit) the data format, or develop custom software,
which is not especially user friendly. Data formats that are text-based, are somewhat self-
documenting, meaning that it will often be possible to infer the data structure by looking at
it – this is much harder or impossible to do with a binary format.

The GeoJSON data format (see Section 13.3), is an open standard text based geospatial data
format, and widely supported. The support by numerous applications – both web applica-
tions and native applications – gives GeoJSON a solid foundation and it is a great choice for

49

any new application, as the format choice translates to a certain form of compatibility with
other geospatial software.

GeoJSON data is sent in the UTF-8 encoding, which employs a variable length encoding
scheme, and any value is encoded using between 1 and 3 bytes. However, only 7 of the
eight bits in each byte are used to store data – the first bit is used to encode metadata about
the encoding[184]. Compared to binary format, one loses one bit for every byte, which
accounts to a certain amount. Also, a number encoded as a string will usually consume more
space than the binary equivalent, and will also have to be parsed from string to integral. The
UTF-8 encoding stores the text as a single byte sequence, and is therefore not affected with
byte-order issues (see Section 13.1).

17.2.3. Data Formats

Multiple data formats were implemented, to be able to test and observe the differences and
consequences of choosing the most and leas efficient format. By implementing formats with
widely different characteristics, such as binary and text, and tile-based and on demand, the
results give a result that reflects the choices one has in a production environment.

FORMAT BINARY 1B CACHED TILES A custom binary data format where each co-
ordinate consumes a single byte (0-255), and uses cached tiles that are of size 256x256
units (which correspond to the coordinate range). Each tile has a local coordinate
system, which needs conversion from the spatial database (where the coordinates
are global), and on the client when creating SVG (where the coordinates need to be
global).

FORMAT BINARY 1B CACHED TILES SIMPLE Equal to FORMAT BINARY 1B
CACHED TILES except the cached tiles used are pre-generalised with the Douglas-
Peucker algorithm (see Section 5 and 7.1).

FORMAT BINARY 2B ONDEMAND A custom binary data format where each coordi-
nate consumes 2 bytes (0-65535), and uses on demand tiles (i.e. not cached, but created
by the server, after retrieval from the spatial database) that are of size 65536x65536
units (which correspond to the coordinate range). Each tile has a local coordinate
system, which needs conversion from the spatial database (where the coordinates
are global), and on the client when creating SVG (where the coordinates need to be
global).

FORMAT BINARY 2B ONDEMAND SIMPLE Equal to FORMAT BINARY 2B ON-
DEMAND except the cached tiles used are generalised on demand (i.e. by the database
during the query) with the Douglas-Peucker algorithm (see Section 5 and 7.1).

FORMAT BINARY 8B ONDEMAND A custom binary data format where each coordi-
nate is a double floating point precision number, that consumes 8 bytes (float numbers
does not have a range, as they are differently implemented than integrals). The adress-
space of this number is great enough to cover an extremely large area, and there is

50

therefore no need to split the coordinates into tiles.

FORMAT BINARY 8B ONDEMAND SIMPLE Equal to FORMAT BINARY 8B ON-
DEMAND except the geometry is generalised on demand (i.e. by the database during
the query) with the Douglas-Peucker algorithm (see Section 5 and 7.1).

FORMAT GJ CACHED TILES The popular GeoJSON data format which is a text for-
mat (see Section 13.3) and not as compact as the binary formats. The tile model,
however, is equal to the FORMAT BINARY 1B CACHED TILES – coordinates with
the range 0-255, which needs conversion from the spatial database (where the coordi-
nates are global), and on the client when creating SVG (where the coordinates need to
be global).

FORMAT GJ CACHED TILES SIMPLE Equal to FORMAT GJ CACHED TILES ex-
cept the cached tiles used are pre-generalised with the Douglas-Peucker algorithm (see
Section 5 and 7.1).

17.3. Client Architecture

The primary client machine is a Dell Latitude D830, with 4GB RAM, Intel Core Duo T7100
(dual core, 1.80 GHz), however the hardware specifics is more relevant on the server, as the
client’s task is only to receive, process and render the spatial vector data.

In principle, this could be very reliant on the computers hardware, but since the HTML5
technology is quite new, it is probably a higher chance of the browser and JavaScript perfor-
mance being the limiting factor. To increase the efficiency of the JavaScript implementation,
the implementation tries to adhere to Nokia’s best practices for JavaScript performance[185].

The implementation also uses TypedArrays (see Section 10) to store the binary data struc-
ture(s) on the client, for faster processing of numbers. Unfortunately, the JavaScript lossless
compression (see Section 7.2) libraries available did not support both text and binary formats
for compression, which was needed to be able to decompress and compare the performance
of both text and binary formats, and it was therefore not used in the implementation testing.

17.3.1. SVG

From a developers standpoint, an existing and robust specification and implementation is
more attractive than having to ”reinvent the wheel“, which is more work, and comes with a
high chance of introducing bugs in the implementation, which is best avoided if possible.

Lots of HTML5 work has been done with the canvas element, which is a simple specification
with a simple canvas, and one has to develop additional functionality or find an existing
library (at the time of writing, there are very few).

SVG has the functionality of objects built in, and it was therefore a natural choice for imple-
menting vector maps on the web, compared to the canvas element (see Section 9). Especially

51

in a scientific context, where the amount of work one has time to complete, is limited, a
solution with the canvas element would be even more difficult to achieve.

However, SVG is tedious to work with directly, manipulating and (re)calculating coordinates
and paths for spatial features is the primary activity in the client implementation. Therefore,
a library was used to avoid manipulating SVG manually.

17.3.2. Choosing a Library

There are currently a handful of libraries capable of manipulating and working with SVG
elements available that, in the authors view, are mature enough to use to render vector map
data. The most popular are Raphaël[186] and d3[187], and they fulfill both requirements,
although differing in their amount of abstraction and interfaces.

Raphaël strives to be as backwards compatible as possible. By supporting both SVG and
VML[188] (a former competitor to SVG, now deprecated), the developer can write appli-
cations that are compatible with browsers that do not have support for SVG (of the major
browsers, only Microsoft Internet Explorer versions 6.0 to and including 8.0 does not have
support for SVG[189]), although the cost is an API that supports the ”common denom-
inator“ of VML and SVG, which partly limits the functionality of the library, as well as
introducing an additional abstraction layer.

The d3 library is a generic library for directly manipulating the Document Object Model
of a document, which includes the ability to create and edit SVG. Instead of inventing a
custom abstraction, which will generally decrease performance, the d3 library tries to work
directly with the underlying technologies, making it possible to e.g create SVG objects and
define their visual appearance with the established and standardised Cascading Style Sheet
(CSS)[84], separate data from style, and – an important feature in a map context – the pos-
sibility of vector web maps with dynamic and possibly user-defined style sheets without
placing any load on the server (i.e. the re-rendering is only done on the client).

Both libraries make interaction and reuse of existing software straightforward. SVG created
in a vector graphics suite such as Inkscape can be reused in both Raphaël and d3 by opening
the SVG file in a text editor, and then capture the path string of the object(s). By using a
set-based data model, the d3 library is well suited for tile-based maps and vector data, where
caching, updating, deleting and replacing data are common operations, and the d3 library
was chosen over Raphaël, mainly because of the advantages presented, in the implementa-
tion.

17.3.3. User interaction

The resulting client application (see Figure 18 and 19) have some functions that are com-
mon in current web maps, and have the appearance of a regular map, where the controls
are familiar, and a user should be able to figure out how to navigate in the map, by using

52

the controls (zoom, pan)[190]. Note that the edges non-straightness in some cases are due
to rounding errors – to be able to store data in as little as a single byte, without any gen-
eralisation, and at a relatively small scale, the precision had to be compromised. However,
with proper generalisation, and multiple tile layers, this will not happen in a production
implementation.

(a)

(b)

Figure 18: The standard implementation map client (a) with a familiar interface for control-
ling the map, which is composed of vector tiles (b).

The styling and data formats are also very easy to change on the client, by changing the CSS
and modifying the client.html, respectively, without touching the server. Overall, the client
implementation was re-architectured and coded to make it easy to change the data format

53

used, and to make the comparison fair between data formats.

(a)

(b)

Figure 19: The styling is completely controlled by the client, which means that a change in
the CSS, e.g. road colour fill to black, will be reflected in the map client (d), with
no modification on the server.

17.3.4. Native application comparisons

The main goal of this implementation is to use open, standardised technology to achieve effi-
cient vector maps on the web. Although a standard, at the time of writing, the HTML5 spec-

54

ification is not fully implemented in all browsers yet, and the implementation is balancing
at the very edge of new, open and standardised web technology to explore the possibilities
of fully functional and platform independent, vector-based web maps.

Native map applications, either outside a web context or web applications using a third-
party plugin, would almost certainly perform as well or better than a standards conformant
implementation, before HTML5, because the standards were far behind the technology that
was needed. This is changing, the standards are catching up, and as the situation with com-
plete support across all major browsers progresses, developing pure web applications using
only open web standards will provide a viable alternative for GIS vendors.

17.4. Implementation performance

Testing the implementation is important to get performance results in a realistic environ-
ment. Even though the data formats and their resulting data size can be reasoned about with
certain accuracy, proof in terms of test results is preferred and reassuring. With latency and
processing time, it is much more difficult, or impossible, to predict the results – especially
on software with multiple concurrent users, like the map system implementation presented
here.

A realistic environment was created for the test, where multiple users collected performance
data concurrently while using the map (i.e panning and zooming). The results were collected
in JSON data files, and data was differentiated on both data format type and vector layer.
The different vector layers have different characteristics (containing buildings and roads).
The data files were then collected and processed to a single JSON file in a analysis-friendly
format.

Most test data contain a certain amount of spikes or noise, i.e. extreme values that are due
to unforeseen events, such as interference by other software, or a fault in the system. To
counter this, a median filter[191][192][193] was implemented, as spike values impact mean
values directly, and not median values with a large selection window. The filtered data,
heavily processed and now ready for use, were rendered and plotted with the flot JavaScript
framework[166].

Being able to differentiate between the different entities in the plot is crucial, which is why
extra care was taken in picking colours for the different data formats. Generalised variants
of the same data formats have dashed line versions and the same colour as the version of the
data format that is not generalised (in our legend (see Figure 20). An example is the SIMPLE
formats, where the data is generalised with the Douglas-Peucker algorithm (see Section 5 and
7.1)). Also, the different data formats have colours – it should be fairly easy to distinguish
between them.

55

Figure 20: The legend for the test results of the vector implementation

An important premise for research is the ability to confirm and verify other’s claims and
results. Extra effort has been made to make the complete source code for the implementa-
tion, data processing and the resulting graphs available (see Section 1.1 and Appendix B) for
anyone to re-run the tests and verify the end results.

17.4.1. Data size

Most tile-based web maps have multiple layers, often in a quad tree structure, to accomodate
for different map scales (see Section 3). By using this technique, the amount of tiles remains
fairly constant at all map scales. The implementation presented in this paper, however, due
to time constraints, only has a single layer, which means that the amount of tiles will vary
between map scales (see Figure 21).

56

(a) map tiles at full-scale imple-
mentation, zoom level 1

(b) map tiles at full-scale imple-
mentation, zoom level 2

(c) map tiles at full-scale imple-
mentation, zoom level 3

(d) map tiles at this paper’s im-
plementation, zoom level 1

(e) map tiles at this paper’s imple-
mentation, zoom level 2

(f) map tiles at this paper’s imple-
mentation, zoom level 3

Figure 21: The layers of a full-scale implementation means that the amount of tiles remains
constant at different zoom levels (a), (b) and (c). The implementation presented
in this paper only has a single layer, which means that the amount of tiles will
vary between zoom levels (c), (d) and (e).

By selecting a map scale where the amount of tiles is equal to what one would find in an full-
scale implementation with multiple tile layers (an example is Figure 21f), the total amount
of features that are downloaded should be fairly equal to the amount of features that are
downloaded at any map scale in a full-scale, multiple tile layer implementation.

By making this simple assumption, we found the number of features for our single layer
example at the appropriate zoom level on multiple locations in the map, and used this as
a guideline when assessing the results in Section 17.4.2 and 17.4.3. This is very useful for
approximating the performance in a full-scale environment, to get an approximate value of
the amount of features.

For the collected results, mean value (µ) and standard deviation[194] (σ) were estimated.
Then the normal distribution was created with the probability density function (see Equa-
tion 1)[195] to visualise the distribution of the observations. There were 618 observations
for both the BYGNING table and the VEG table, which means that n should be large enough

57

to approximate normal distribution, in both cases[196].) Note that this is more correct for
the VEG table than the BYGNING table.

f (x) =
1
Æ

2πσ2
e
− (x−µ)

2

2σ2 (1)

(a)

(b)

Figure 22: The number of features at an appropriate scale, fitted to a normal distribution, in
the BYGNING table (a) and VEG table (b). (See Appendix E for larger versions of
the plots.)

To quantify the results, and make it easier to assess the results, an examination of the prob-
abilities of when the number of features is above a certain amount is useful to explore. The
natural limits of one and two standard deviations is a good starting point. To be able to use

58

the values from the table[196], the data need to be converted to standard normal distribu-
tion (N(1,0)), with the function Y = X−µ

σ
, where X is our existing variable.

The results for a single and two standard deviations above the mean value for amount of
features in the BYGNING table :

P (X ≤ 1509) = P (
X −µ
σ
≤

1509−µ
σ

)

= P (
X − 1139

374
≤

1509− 1139

374
)

= P (Y ≤ 0.989)
=φ(0.989)
= 0.837

P (X ≤ 1889) = P (
X −µ
σ
≤

1889−µ
σ

)

= P (
X − 110

31
≤

1889− 1139

374
)

= P (Y ≤ 2.00)
=φ(2.00)
= 0.977

The results for a single and two standard deviations above the mean value for amount of
features in the VEG table :

P (X ≤ 141) = P (
X −µ
σ
≤

141−µ
σ

)

= P (
X − 110

31
≤

141− 110

31
)

= P (Y ≤ 1.00)
=φ(1.00)
= 0.864

59

P (X ≤ 172) = P (
X −µ
σ
≤

172−µ
σ

)

= P (
X − 110

31
≤

172− 110

31
)

= P (Y ≤ 2.00)
=φ(2.00)
= 0.977

For the performance tests, we now have an idea of typical usage, and both the standard
deviation and calculations give an estimate on the probable amount of features for the two
tables. This means that we should mostly look at less than 1700 features for the BYGNING
table, and less than 140-170 features for the VEG table.

17.4.2. Storage

The importance of generalisation in vector data sets have been stated previously (see Section
5 and 7.1), and the results that show the amounts of coordinates per feature (see Figure 23)
confirms that the storage requirements of a vector data format is not able to negate the lack
of generalisation.

The data formats with dashed lines have been generalised, while the data formats with darker
colours have not. The difference between similar shaded colours notes more efficient pack-
ing of data, i.e. less structural overhead. Note that the geometric differences in the VEG
table and BYGNING table, in essence the former consists of roads, with more coordinates
per feature, and the latter consists of buildings, with typically less coordinates per feature.
Because one does not gain much by generalising a rectangular building, the table with roads
gains more from generalisation.

60

(a) (b)

Figure 23: The relationship between the number of features (horizontal axis), and the re-
sulting number of coordinates in the BYGNING table (a) and VEG table (b). Ev-
ery generalised data format (dashed lines) consumes a lot less space in terms of
number of coordinates, than the data formats that are not generalised. The gen-
eralised GeoJSON was removed, because of an error with the median filter. (See
Appendix E for larger versions of the plots.)

In other words, even a very naive and simple generalisation – as done in this implementation
(see Section 17.1.1) – affects the amount of data in a major way. It is therefore difficult
not to draw the conclusion that an efficient vector-based map need to use generalisation to
compress the data.

To assess the efficiency of the data formats themselves, one also needs to look at the actual
space used to store the data – this is different from the number of coordinates per feature,
because the space consumption of a coordinate varies from format to format. The results (see
Figure 24a and 24b) favours the binary, single byte, tile-based vector data formats. Although
there is a notable difference, the version of it that is not generalised is very efficient as well.

61

(a) (b)

Figure 24: The efficiency of the data formats in the BYGNING table (a) and VEG table (b).
Both the space efficiency of each data format, as well as the impact of general-
isation (dashed lines), is visible. The horizontal axis represents the number of
features, and the vertical axis is data size in kB. (See Appendix E for larger ver-
sions of the plots.)

Because the space consumption of each coordinate is greater with the other binary formats
(2 bytes per coordinate, 8 bytes per coordinate), it is not very surprising that the resulting
data consumes more space. However, GeoJSON (see Section 13.3) is interesting to observe,
as it is the only text format tested in this implementation, and perhaps the only (or one of
very few) text-based, relatively efficient, human-readable geospatial data format in wide use.
It is apparent from the results that the overhead associated with using this text format does
not stack up with the space efficiency of a native, binary data format.

Another observation is how generalisation affects the data size by reducing the number
of coordinates (which is what Douglas-Peucker – which is the only generalisation algorithm
used in this implementation and test (see Section 17.1.1) – does). Logically, a reduced number
of coordinates means a smaller footprint, and a data format where a coordinate is large (for
example 8 byte per coordinate) will see a larger reduction than a data format where each

62

coordinate is tiny (for example 1 byte per coordinate).

The GeoJSON format seems to perform somewhere between the binary formats with 2
bytes per coordinate, and 8 bytes per coordinate, which should be expected with the UTF8
variable bit-length character set used to encode the text (see Section 17.2.2).

17.4.3. Latency

The bandwidth required to handle a data format is only part of the puzzle. It is also in-
teresting to measure the time requirements of database queries, and the latency overhead
associated with processing data on the server and on the client – this is especially relevant
with vector data, because the performance responsibilities are not constrained to the server
in the same manner as raster maps (see Section 6 and 7). The differences between the data
formats therefore might predict their suitability for e.g. mobile devices, which are weaker in
terms of processing power, and the chosen data format might therefore have more positive
or negative impact on the end performance.

All the data formats are built from spatial data stored in a spatial database (see Section 17.1.1),
but the differences in retrieval and what structure the data (and query result) is stored in,
affects the query performance (see Figure 25a and 25b). The GeoJSON format is the only
format where the query’s result is text-based, because GeoJSON is supported natively in
PostGIS – the generalised version improves on performance, because of the highly reduced
amount of data the query engine needs to handle.

The GeoJSON format, together with the 1 byte per coordinate binary format, queries ta-
bles with pre-generated tiles, while the 2 and 8 byte per coordinate data formats’ queries
are generated on demand. The larger difference in latency between generalised and not
generalised tile-based and generalised and not generalised on demand data formats is not sur-
prising, because the generalised tile-based data formats query pre-generalised tiles, cached in
the database, while the formats that are not tile-based compute the generalised geometries
on demand (see Section 13 for details).

The query time for the different data formats presented in the results are not very high –
between 25 ms and 100 ms for 1000 features in the BYGNING table – but the latencies stack
up, and query time is expected to be the least demanding process. In a complete map, one
should expect more layers, and an even higher amount of features, and a higher difference
in latency between the queries for different data formats.

The latency of transferring data between client and server also comes on top of this. Accu-
rate testing of this latency is very hard if one is not using a naive approach, which would
mean accurately synchronising time at microsecond level, ensuring that the time is equal in
both server and client during the entire testing session, or continuous synchronisation. It
has been proven that Web Sockets is the best technology currently available, and that it is
suitable for real-time applications, which suggests that the time spent between server and
client is small compared to client and server processing time, and query time (see Section 11

63

and 17.1.3), which is exactly what is examined here. (The functionality for this measuring
is implemented in the software presented here, but it was not accurate enough to provide
meaningful results.)

(a) (b)

Figure 25: The latency of queries in the BYGNING table (a) and VEG table (b) for the data
formats. The horizontal axis represents the number of features, and the vertical
axis is latency in ms. The generalised versions of the data formats have dashed
lines. (See Appendix E for larger versions of the plots.)

The server consumes the queries, and generates a data packet that is suitable for transferring
to the client with Web Sockets (see Section 11 and 17.1.3). Because the results from the
queries are different, and because the data formats sent to the client are different, the latency
for this process differs between the data formats. Some require more work on the server,
and less work on the client, and some require more work on the client, while less strain is
put on the server.

The best performing data format in the results (see Figure 26a and 26b) is the GeoJSON text
format. The penalty of the long database query time which resulted in a GeoJSON result
pays off, even though every coordinate still needs to be manipulated to the tile’s local origo.

64

The binary data formats require more processing, which is apparent from the higher latency
– with a noticeable improvement for generalised geometry in the VEG table (see Figure 26b).

The server processing algorithms are written in Python, a language that is highly productive,
at the expense of performance (see Section 17.1.2). There is probably lots of room for op-
timisation in this process, by implementing the algorithms in a more performance-focused
programming language (such as C or C++), at the expense of productivity (i.e. it will prob-
ably take longer to write). Therefore, the poor latency achieved in this implementation
should be considered with these optimisation possibilities in mind.

The most common way to combat high latency in map systems is through caching (see
Section 4). In this implementation, caching was limited to pre-generating the tiles in the
database, but there is much room for improvement in this area. By creating a tile-cache of
binary blobs that are ready to be sent from the server immediately – and do not require pre-
processing – the latency on the server could become very small or negligible. The binary
blobs could be stored in a database or as a file hierarchy, with a pre-determined structure like
the raster maps and their quadtree-structure (see Section 3), eliminating the spatial queries
as well.

65

(a) (b)

Figure 26: The latency of the server processes in the BYGNING table (a) and VEG table (b)
for the data formats. The horizontal axis represents the number of features, and
the vertical axis is latency in ms. The generalised versions of the data formats have
dashed lines. (See Appendix E for larger versions of the plots.)

The client plays a much larger part in the resulting performance of a vector-based map,
compared to the current raster-based maps (see Section 6 and 7), because it receives a data
structure that needs to be parsed, processed and rendered to the screen – with raster maps,
the client only needs to render the images it receives.

The largest difference between the server and the client with regards to opportunities for
optimisation, is that – to remain a standard web application with wide platform and device
support through HTML5 – the client is bound to the browser and JavaScript. There is a
good chance that there are optimisation possibilities by improving algorithms, but one is
still limited to JavaScript and the client’s JavaScript engine’s performance (see Section 8.3).

With HTML5 and the improvements in technology and especially that JavaScript handles
binary data with Typed Arrays, the single byte tile data format is the best performer in the
client processing results (see Figure 27a and 27b), even though it does a lot of work to parse
and process the data format before converting the geometry to SVG. As the VEG table is

66

more coordinate heavy per feature than the BYGNING table, the performance gain is more
apparent in Figure 27b.

The GeoJSON text format, which is not processed as heavily, just needs to correct the co-
ordinates from local (using a tile-local origo) to global. On the other hand, more effort is
needed to convert the data to SVG, because the numbers need to be parsed from text. When
using the larger binary data formats, with 2 bytes per coordinate and 8 bytes per coordinate,
the amount of data increases twofold and eightfold, respectively, and the strain on the client
becomes proportionally greater as well.

(a) (b)

Figure 27: The latency of the client processes in the BYGNING table (a) and VEG table (b)
for the data formats. The generalised versions were removed to avoid clutter, as
they did not add value to the graph, in the authors opinion. Note that there
are some noise in the data for the single byte binary format in (a) and (b). The
horizontal axis represents the number of features, and the vertical axis is latency
in ms. (See Appendix E for larger versions of the plots.)

By reorganising the data, we can see the total latencies combined. To confirm and the results

67

(i.e. verify that the median filter algorithm used previously does not invalidate the data)
a different smoothing algorithm was applied. It selects a feature data range (i.e. feature
50, with tolerance 10, will select data where the number of features is between 40-60), and
applies a filter on the range that only includes data that does not interfere with the mean
value in a major way. Since removal of a single value in a large pool of values should not
affect the mean much, values that affect the mean in a major way (a custom threshold), is
removed. This filter was used to calculate total latencies, and the results are presented below.

The formats affect the server and client processing latencies in different ways, and, although
this can be inferred from the independent latency results, it is more apparent when latencies
are combined and stacked. When comparing the single byte tile format with the GeoJSON
tile format (see Figure 28 and 29), one can see the differences clearly. There are differences
in the results between the VEG table and BYGNING table, because of the differences in
coordinate and feature density, explored earlier (see Section 17.4.2), and some characteristics
are more visible in one table than the other.

The single byte tile format is, as pointed out earlier, much more heavy on the server. How-
ever, with the help of caching (see Section 4), by producing a binary blob that does not
require pre-processing, the server latency can be reduced (especially in the VEG table, there
would be potential to increase the performance with this action). This can also be done
for the GeoJSON format, obviously, but since the latency is such a small part of the total
latency with this data format, there is not much to gain.

68

(a)

(b)

Figure 28: An overview for the latency in the BYGNING table for the not generalised ver-
sions of the binary single byte tile data format (a) and the GeoJSON tile format
(b). The horizontal axis represents the number of features, and the vertical axis is
latency in ms. (See Appendix E for larger versions of the plots.)

69

(a)

(b)

Figure 29: An overview for the latency in the VEG table for the not generalised versions of
the binary single byte tile data format (a) and the GeoJSON tile format (b). The
horizontal axis represents the number of features, and the vertical axis is latency
in ms. (See Appendix E for larger versions of the plots.)

The load on the client is approximately equal, except in the BYGNING table, when the
amount of features is small. This might be because of the overhead associated with parsing
number values, or because text is more demanding than binary (remember that the Typed
Arrays (see Section 10) are used for the binary formats, and they are more optimised than
text). There is a large increase in latency when increasing the number of features from 250
to 500 features in Figure 28, possibly because a threshold for storing the data sequentially in
memory is passed. The differences in query latency – discussed earlier – also become appar-
ent, and it looks like the latency is constant for the binary data format, while it increases
and becomes a fairly large percentage of the GeoJSON latency.

There are not many surprises when comparing the 2 byte and 8 byte binary data formats

70

(see Figure 30 and 31). They are both less efficient than the binary single byte and GeoJSON
data formats, and the difference increases with the amount of features. There are differences
between the VEG table and BYGNING table, because of the differences in coordinate and
feature density, explored earlier (see Section 17.4.2).

(a)

(b)

Figure 30: An overview for the latency in the BYGNING table for the not generalised ver-
sions of the binary 2- and 8-byte formats. The horizontal axis represents the
number of features, and the vertical axis is latency in ms. (See Appendix E for
larger versions of the plots.)

71

(a)

(b)

Figure 31: An overview for the latency in the VEG table for the not generalised versions of
the binary 2- and 8-byte formats. The horizontal axis represents the number of
features, and the vertical axis is latency in ms. (See Appendix E for larger versions
of the plots.)

The implementation tested here gives an overview of the performance possibilities and limits
with a vector-based map, implemented with open standards on the client. A lot of work has
gone into the implementation and testing, and it has been difficult and time-consuming –
especially since the technology is very new, and its use has not been explored in detail yet.
The advantages together with further optimisation possibilities makes the single byte binary
tile format a clear winner in these tests. As it is also superior in theory (see 13 and 17.2), this
is not that surprising, although the confirmation by testing makes the assumptions definite.

The test’s main purpose, is to underline the importance of various aspects of the imple-
mentation of web maps, that has not been equally important with raster-based maps. The

72

increased complexity that involves both client and server, the different data formats and the
importance of generalisation are extremely important to get right for a successful vector
map implementation, and the tests confirm this. Even though the accumulated latency in
the tests are not critically high, a production environment will have added complexity which
will impact the latency. It is therefore important to reduce latency where there are major
optimisation possibilities.

The responsiveness requirement for users to feel that they are manipulating/using directly in
real-time (this is typical for GIS applications where spatial objects are edited and/or queried,
perhaps to a lesser degree simple web maps) is 0.1 second[197], and the results shown here
does not qualify for real-time using that criteria.

Since users are generally less tolerant of unresponsive desktop applications[197] compared
to web pages[198] (i.e. information retrieval), one could perhaps argue that users are used to
waiting for web maps, as currently, tile-based raster web maps are not instantaneous (i.e. one
can observe that the tiles are rendered). However, to avoid user abandonment, one should
strive for real-time operation. The results present several optimisation possibilities, which
might close the gap, to achieve real-time, vector-based web maps.

Part IV.
Conclusion

18. Future work

The number of issues that a vector-based web map need to solve, is large. This work has
proven that the choice of data format when exchanging vector data has a noticeable effect on
the end performance (see Section 17.4). The importance of generalisation of vector data has
also been documented by the performance test results, together with the varying processing
overhead imposed on the client and server by the choice of data format. However, there is a
lot more that needs to be researched at individual and combined levels to be able to conclude
definitely on whether a complete, full-featured vector-based web map can compete with its
raster-based counterpart.

The test implementation only has one layer of data, because the amount of generalisation
work needed to create multiple layers of data would not be achievable in the relatively short
timespan of this thesis. Such a model would be an advantage with regards to performance
at smaller map scales, where, in the implementation presented here, the amount of tiles
increases when the map scale is decreased – ideally this should remain fairly constant like is
done with raster-based tiles (see Section 3 and 17.4). The amount of data would obviously
become smaller as well, also increasing performance. The results show that some tasks have
the possibility for optimisation, e.g. by rewriting the software in a more efficient language,

73

or more aggressive caching, which needs more exploration.

There are lots of general optimisation possibilities that needs more research. New technolo-
gies such as WebCL[199] would be interesting to explore, especially for converting coor-
dinates from the local tile coordinate system, to the global coordinate system, which is a
simple operation of addition and subtraction on a large amount of coordinates, and there-
fore is a prime candidate for parallelisation with GPGPU-techniques[200] (General-Purpose
computation on Graphics Processing Units). To be able to render tiles in the background,
and not blocking the main user interface, the use of HTML5 Web Workers (see Section 12)
on the client for computational-heavy tasks should be explored. It would also be interesting
to look at lossless compression algorithms, and the impact they have on data size and latency
for both text and binary data formats – however, as there are not currently suitable decom-
pression algorithms for the client, in JavaScript, it will need to be implemented, which is a
sizeable task (see Section 7.2).

A large part of the web application when providing vector maps on the web, is the client.
The functionality and performance needs more research for exploring the possibilities, ad-
vantages and disadvantages with vector maps. Currently there is parallel work on the topol-
ogy of vector maps on the web, researching e.g. the stitching of features across tiles[201].
Clipped features is a major problem when the map is used interactively, which should be
combined with this work for a more complete solution.

Conclusion

The emerge of HTML5 is helping to accommodate the increasingly heterogeneous environ-
ment we find ourselves in, with the adoption of hand-held and mobile devices alongside the
traditional desktop. The open technology that comes with the HTML5 standard – for ex-
ample Web Sockets and inline SVG – closes the gap between the desktop application and
the web application, and enables us to mimic a desktop application more closely in a purely
standard HTML browser environment. The JavaScript language have also received language
extensions such as Typed Array, and the JavaScript engines in browsers have been greatly
optimised to increase the performance and minimise the difference between the web appli-
cation and the desktop application.

Efficient and usable vector maps in the web browser using open standards have long suffered
from a lack of technology that make the process efficient enough, making the efficiency and
usability near impossible to achieve. Because the architecture that uses vector data instead of
raster data puts a higher load on the client, the browser needs to have a certain performance,
and since the web originally was not intended for fully featured applications, this was simply
non-existent.

Therefore, while current maps are mostly using raster images and technologies built on the
technology of raster image maps, vector maps are becoming an increasingly relevant com-
petitor. Raster maps have, among other reasons, gained popularity because they do not

74

require third-party applications or plugins in the browser to be able to work, and they are
reasonably fast. The demand for more functionality while retaining the current perfor-
mance is very hard to do with raster maps, where the server does all the processing, and the
pressure and demand for vector maps is therefore increasing, where some tasks are offloaded
to the client, and where more interaction with the map is possible.

An implementation of a vector map server and client have been created, with multiple im-
plementations of vector data structures, using the newest – and, in the author’s opinion, best
suited – web technologies available at the time of writing. The impact of generalisation and
data formats have been discussed thoroughly, and is found to impact the efficiency of vector
maps in a major way. The implementation have been thoroughly tested to determine both
the best data structure for most efficiency, and also tried to assess the expected performance
in a real environment. The results are positive, and suggest that it is possible to achieve
performance that either matches or exceeds the current popular raster-based maps.

75

Appendices

76

A. Attachment 1: Master Thesis Assignment

77

B. The implementation and source code accompanying
this paper

A major part of the thesis work consisted of software development, and extra care was taken
to make this source code available to anyone interested in confirming the results, or looking
at the source code (see Section 1.1).

dataformats-example

This folder contains examples used in Section 13, and the actual spatial data was taken di-
rectly from the data set used to test the vector map implementation. This extra work was
done to create realistic examples, and better understand the relationship between the differ-
ent data formats (whereas if completely random examples were used, this would not be as
clear). See Appendix D for more details.

geoserver-wms-client

This folder contains the client implementation of the current map standard – the server
is a GeoServer instance, that had to be set up manually (GeoServer does not have proper
automation tools), which took a week to complete. Because of this, the source code for the
server instance, is not that interesting.

The folder contains the map client, which was used to test the implementation, and also the
performance test (the performance-test folder) and also the result data and generated graphs.

tilestache-polymaps-client

The TileStache vector tile map server and generator was tested with PostGIS as a backend,
but was too slow and relied on old technology (HTTP), which is why the testing was not
included in this paper. Nevertheless, it is included for completeness.

websockets

The folder contains implementations of client and server (the websockets subfolder) for the
different data formats, and tile generation. It was the early implementation while the author
was familiarising himself with the technology and data structures.

81

websockets-new

The individual implementations in the websockets folder were combined and re-architectured
into a single client and server implementation. This re-architecture of the implementation
was time-consuming and hard work, but the resulting code is much simpler to inspect, and
also ensure that the different data formats are tested on as equal terms as possible.

The performance-tests folder contains both the data acquired when testing, the processing
of the data (median filter etc.), as well as the generated graphs and data visualisations.

To start the server, run runserver.py. The server will listen on port 9090. The client will
work on a local machine, without a web server, as it uses only the HTML5 open standard
and JavaScript. It should be able to connect to the server if the ip-address in client.html is
correct. The data format is chosen with a configuration parameter in client.html.

82

C. HTML5 Support in Web Browsers

HTML5 is a ”new“ standard. The support status changes at such a rapid phase, that instead
of providing a static (and quickly outdated) status report in this paper, one is encouraged to
use online resources instead. Sites such as caniuse.com[202] provides an up to date overview
of browsers with HTML5 support.

In the wake of lacking support and implementation across browsers, a handful of tools have
appeared to check if specific features are supported in the browser – the most popular is prob-
ably Modernizr[203]. Libraries that backport several features for use in ageing browsers are
also available, a great win for companies on the fence because of lacking support. Use of
such tools in encouraged if supporting legacy browsers is a priority.

83

D. Data Formats Example

Extra measures were taken, and extra work was done, to give a realistic, and comparable,
example of the various data formats. Some features used in the vector map implementation
(see Section 17) were extracted from the dataset, and processed in PostGIS (on the tables
”veg“ and ”VEG“, which contains polygons and linestrings, respectively) (see Code Example
7).

Code Example 7: SQL Query

SELECT
ST_AsGeoJSON (ST_Simpl i fy (geom , 1 0) , 2)

FROM
"veg"

WHERE
geom &&
ST_SetSRID
(

box2d (
ST_GeomFromText (

’LINESTRING(590000.0␣6645600.0,␣590010.0␣6645610.0)’
)

) ,
25832

)

The resulting GeoJSON was then formatted into a single GeometryCollection, and con-
verted to WKT, WKB, GML and SVG. Since the ESRI Shapefile does not handle Geom-
etryCollection, the GeoJSON was split into two separate files, MultiPolygon and Multi-
LineString, and converted to shapefile. Complete sources are available in the source code
(see Section 1.1 and Appendix B).

84

E. Large versions of the visualisations of the
performance test results

85

Figure 32: The average tile data size for different zoom levels in the WMS implementation.

86

Figure 33: The total tile data size for different zoom levels in the WMS implementation.

87

Figure 34: The average latency for different zoom levels in the WMS implementation.

88

Figure 35: The number of features at an appropriate scale, fitted to a normal distribution, in
the BYGNING table.

89

Figure 36: The number of features at an appropriate scale, fitted to a normal distribution, in
the VEG table.

90

Figure 37: The relationship between the number of features (horizontal axis), and the re-
sulting number of coordinates in the BYGNING table. Every generalised data
format (dashed lines) consumes a lot less space in terms of number of coordi-
nates, than the data formats that are not generalised. The generalised GeoJSON
was removed, because of an error with the median filter.

91

Figure 38: The relationship between the number of features (vertical axis), and the resulting
number of coordinates in the VEG table. Every generalised data format (dashed
lines) consumes a lot less space in terms of number of coordinates, than the data
formats that are not generalised. The generalised GeoJSON was removed, be-
cause of an error with the median filter.

92

Figure 39: The efficiency of the data formats in the BYGNING table. Both the space effi-
ciency of each data format, as well as the impact of generalisation, is visible. The
generalised versions of the data formats have dashed lines. The horizontal axis
represents the number of features, and the horizontal axis is data size in kB.

93

Figure 40: The efficiency of the data formats in the VEG table. Both the space efficiency of
each data format, as well as the impact of generalisation, is visible. The generalised
versions of the data formats have dashed lines. The horizontal axis represents the
number of features, and the horizontal axis is data size in kB.

94

Figure 41: The latency of queries in the BYGNING table for the data formats. The horizon-
tal axis represents the number of features, and the vertical axis is latency in ms.
The generalised versions of the data formats have dashed lines.

95

Figure 42: The latency of queries in the VEG table for the data formats. The horizontal
axis represents the number of features, and the vertical axis is latency in ms. The
generalised versions of the data formats have dashed lines.

96

Figure 43: The latency of the server processes in the BYGNING table for the data formats.
The horizontal axis represents the number of features, and the vertical axis is
latency in ms. The generalised versions of the data formats have dashed lines.

97

Figure 44: The latency of the server processes in the VEG table for the data formats. The
horizontal axis represents the number of features, and the vertical axis is latency
in ms. The generalised versions of the data formats have dashed lines.

98

Figure 45: The latency of the client processes in the BYGNING table for the data formats.
The generalised versions were removed to avoid clutter, as they did not add value
to the graph, in the authors opinion. Note that there are some noise in the data
for the single byte binary format. The horizontal axis represents the number of
features, and the vertical axis is latency in ms.

99

Figure 46: The latency of the client processes in the VEG table for the data formats. The
generalised versions were removed to avoid clutter, as they did not add value to
the graph, in the authors opinion. Note that there are some noise in the data
for the single byte binary format. The horizontal axis represents the number of
features, and the vertical axis is latency in ms.

100

Figure 47: An overview for the latency in the BYGNING table for the not generalised ver-
sions of the binary single byte tile data format. The horizontal axis represents the
number of features, and the vertical axis is latency in ms.

101

Figure 48: An overview for the latency in the BYGNING table for the not generalised ver-
sions of the GeoJSON tile format. The horizontal axis represents the number of
features, and the vertical axis is latency in ms.

102

Figure 49: An overview for the latency in the VEG table for the not generalised versions of
the binary single byte tile data format. The horizontal axis represents the number
of features, and the vertical axis is latency in ms.

103

Figure 50: An overview for the latency in the VEG table for the not generalised versions of
the GeoJSON tile format. The horizontal axis represents the number of features,
and the vertical axis is latency in ms.

104

Figure 51: An overview for the latency in the BYGNING table for the not generalised ver-
sions of the binary 2 byte tile data format. The horizontal axis represents the
number of features, and the vertical axis is latency in ms.

105

Figure 52: An overview for the latency in the BYGNING table for the not generalised ver-
sions of the binary 8 byte tile data format. The horizontal axis represents the
number of features, and the vertical axis is latency in ms.

106

Figure 53: An overview for the latency in the VEG table for the not generalised versions of
the binary 2 byte tile data format. The horizontal axis represents the number of
features, and the vertical axis is latency in ms.

107

Figure 54: An overview for the latency in the VEG table for the not generalised versions of
the binary 8 byte tile data format. The horizontal axis represents the number of
features, and the vertical axis is latency in ms.

108

List of Figures
1. The Xerox PARC Map Viewer with a map of Switzerland 7
2. Tiling works by dividing the map (a) is into tiles (b) that are loaded inde-

pendently on demand. For maps that support zooming, the tiling process is
done for every map scale (c). 9

3. Identical tiles are stored once on disk, and referenced when displayed, to
avoid redundant data and to save space. For water tiles, which there are
many of in some datasets, this technique can save a lot of disk space. 11

4. Usage of Delaunay triangulation to merge two areas, with a specified triangle
size tolerance (b) – and without this constraint (a). [54] 13

5. Progressive transmission with raster images works by starting with a coarse
image (a), and gradually transfer images with higher resolution which are
replaced with the coarser image (b), finally resulting in a high-resolution,
full-detail image (c). 16

6. On the server, the original object(s) of full detail is generalised into multiple
incremental models, from coarse to full detail ((a), (b) and (c)). The initial
object(s), which are coarse and provide limited detail (a), are sent to the client
(d). Either automatically, or as the user increase the map scale, the object(s)
are upgraded in a number of steps (b), transferring only additional points
that increase detail (e), until the original detailed object (c) is transferred to
the client (f), providing equal amount of detail on both server and client. . . 17

7. Example of a line (a) and the line converted to a Bézier curve (b). The points
in (a) are compressed to a smooth curve (b), which consists of start, mid-
dle (P1) and end points, with three control points (P2, P3 and P4) (the red
lines are not visible, only for illustrating the control points’ influence on the
curve). Depending on the data structure, the Bézier curve could take less
space than the original line. 19

8. Examples of file compression with a dictionary coder and entropy encoding. 20
9. The tile in (b) is twice as large as the tile in (a). The data type in (b) therefore

also has to be twice as large as the data type in (a), to be able to store coordi-
nates for the entire tile. Note that Px in (b) is twice as large as Px in (a) since
the size depends on the data type – not the number stored in it. 23

10. By using SVG, the HTML elements can integrate with individual objects
in the SVG element (a), and an application can be created by combining
the technologies. This is not possible with proprietary plugins, like Adobe
Flash, where the HTML elements can not ”see“ inside the external object (b). 26

11. The flow of data in a vector map implementation is moving data from the
server’s spatial database (A) into a data format that is tiny and fast enough
to pass through the limited communication channel (B). The data is received
by the client, and, if the data structure does not map to the target represen-
tation, it is processed to the desired data structure (C), and rendered (D). . . . 30

109

12. The data in (a) and (b) has a type header, and lots of coordinates consuming 8
bytes each. In (a), the data is misaligned, while in (b), parts of the first block
is kept empty to align the coordinates to single blocks. 32

13. The example shapefile used in Code Example 3 and 4 shown in Quantum
GIS. Since it is a binary format, the file contents can not be read directly. . . 37

14. An example where the wait time can be perceived as slower when removing
existing data immediately after the request, resulting in a blank map until
the new data is completely processed and rendered (a), instead of waiting to
replace the existing data until the new data is completely processed and ready
to be rendered (b) . 40

15. Example of an interactive WFS layer, where one is able to select and query
individual features. Unfortunately, each interaction event, which triggers a
request to the server, is very noticeable, and might not be acceptable enough
in terms of performance for normal use.[161] . 42

16. The tile sizes and map loading time were tested at different zoom levels,
where the tiles have varying amounts of spatial data. 43

17. The test results for different zoom levels: (a) the average tile data size, (b) the
total data size for the map and (c) the average map latency. (See Appendix E
for larger versions of the plots.) . 44

18. The standard implementation map client (a) with a familiar interface for con-
trolling the map, which is composed of vector tiles (b). 53

19. The styling is completely controlled by the client, which means that a change
in the CSS, e.g. road colour fill to black, will be reflected in the map client
(d), with no modification on the server. 54

20. The legend for the test results of the vector implementation 56
21. The layers of a full-scale implementation means that the amount of tiles re-

mains constant at different zoom levels (a), (b) and (c). The implementation
presented in this paper only has a single layer, which means that the amount
of tiles will vary between zoom levels (c), (d) and (e). 57

22. The number of features at an appropriate scale, fitted to a normal distribu-
tion, in the BYGNING table (a) and VEG table (b). (See Appendix E for
larger versions of the plots.) . 58

23. The relationship between the number of features (horizontal axis), and the
resulting number of coordinates in the BYGNING table (a) and VEG table
(b). Every generalised data format (dashed lines) consumes a lot less space
in terms of number of coordinates, than the data formats that are not gen-
eralised. The generalised GeoJSON was removed, because of an error with
the median filter. (See Appendix E for larger versions of the plots.) 61

24. The efficiency of the data formats in the BYGNING table (a) and VEG table
(b). Both the space efficiency of each data format, as well as the impact of
generalisation (dashed lines), is visible. The horizontal axis represents the
number of features, and the vertical axis is data size in kB. (See Appendix E
for larger versions of the plots.) . 62

110

25. The latency of queries in the BYGNING table (a) and VEG table (b) for the
data formats. The horizontal axis represents the number of features, and the
vertical axis is latency in ms. The generalised versions of the data formats
have dashed lines. (See Appendix E for larger versions of the plots.) 64

26. The latency of the server processes in the BYGNING table (a) and VEG table
(b) for the data formats. The horizontal axis represents the number of fea-
tures, and the vertical axis is latency in ms. The generalised versions of the
data formats have dashed lines. (See Appendix E for larger versions of the
plots.) . 66

27. The latency of the client processes in the BYGNING table (a) and VEG table
(b) for the data formats. The generalised versions were removed to avoid
clutter, as they did not add value to the graph, in the authors opinion. Note
that there are some noise in the data for the single byte binary format in
(a) and (b). The horizontal axis represents the number of features, and the
vertical axis is latency in ms. (See Appendix E for larger versions of the plots.) 67

28. An overview for the latency in the BYGNING table for the not generalised
versions of the binary single byte tile data format (a) and the GeoJSON tile
format (b). The horizontal axis represents the number of features, and the
vertical axis is latency in ms. (See Appendix E for larger versions of the plots.) 69

29. An overview for the latency in the VEG table for the not generalised versions
of the binary single byte tile data format (a) and the GeoJSON tile format
(b). The horizontal axis represents the number of features, and the vertical
axis is latency in ms. (See Appendix E for larger versions of the plots.) 70

30. An overview for the latency in the BYGNING table for the not generalised
versions of the binary 2- and 8-byte formats. The horizontal axis represents
the number of features, and the vertical axis is latency in ms. (See Appendix
E for larger versions of the plots.) . 71

31. An overview for the latency in the VEG table for the not generalised ver-
sions of the binary 2- and 8-byte formats. The horizontal axis represents the
number of features, and the vertical axis is latency in ms. (See Appendix E
for larger versions of the plots.) . 72

32. The average tile data size for different zoom levels in the WMS implementa-
tion. 86

33. The total tile data size for different zoom levels in the WMS implementation. 87
34. The average latency for different zoom levels in the WMS implementation. . 88
35. The number of features at an appropriate scale, fitted to a normal distribu-

tion, in the BYGNING table. 89
36. The number of features at an appropriate scale, fitted to a normal distribu-

tion, in the VEG table. 90
37. The relationship between the number of features (horizontal axis), and the

resulting number of coordinates in the BYGNING table. Every generalised
data format (dashed lines) consumes a lot less space in terms of number of
coordinates, than the data formats that are not generalised. The generalised
GeoJSON was removed, because of an error with the median filter. 91

111

38. The relationship between the number of features (vertical axis), and the re-
sulting number of coordinates in the VEG table. Every generalised data
format (dashed lines) consumes a lot less space in terms of number of co-
ordinates, than the data formats that are not generalised. The generalised
GeoJSON was removed, because of an error with the median filter. 92

39. The efficiency of the data formats in the BYGNING table. Both the space
efficiency of each data format, as well as the impact of generalisation, is vis-
ible. The generalised versions of the data formats have dashed lines. The
horizontal axis represents the number of features, and the horizontal axis is
data size in kB. 93

40. The efficiency of the data formats in the VEG table. Both the space efficiency
of each data format, as well as the impact of generalisation, is visible. The
generalised versions of the data formats have dashed lines. The horizontal
axis represents the number of features, and the horizontal axis is data size in
kB. 94

41. The latency of queries in the BYGNING table for the data formats. The
horizontal axis represents the number of features, and the vertical axis is
latency in ms. The generalised versions of the data formats have dashed lines. 95

42. The latency of queries in the VEG table for the data formats. The horizontal
axis represents the number of features, and the vertical axis is latency in ms.
The generalised versions of the data formats have dashed lines. 96

43. The latency of the server processes in the BYGNING table for the data for-
mats. The horizontal axis represents the number of features, and the verti-
cal axis is latency in ms. The generalised versions of the data formats have
dashed lines. 97

44. The latency of the server processes in the VEG table for the data formats.
The horizontal axis represents the number of features, and the vertical axis
is latency in ms. The generalised versions of the data formats have dashed lines. 98

45. The latency of the client processes in the BYGNING table for the data for-
mats. The generalised versions were removed to avoid clutter, as they did
not add value to the graph, in the authors opinion. Note that there are some
noise in the data for the single byte binary format. The horizontal axis rep-
resents the number of features, and the vertical axis is latency in ms. 99

46. The latency of the client processes in the VEG table for the data formats.
The generalised versions were removed to avoid clutter, as they did not add
value to the graph, in the authors opinion. Note that there are some noise
in the data for the single byte binary format. The horizontal axis represents
the number of features, and the vertical axis is latency in ms. 100

47. An overview for the latency in the BYGNING table for the not generalised
versions of the binary single byte tile data format. The horizontal axis rep-
resents the number of features, and the vertical axis is latency in ms. 101

48. An overview for the latency in the BYGNING table for the not generalised
versions of the GeoJSON tile format. The horizontal axis represents the
number of features, and the vertical axis is latency in ms. 102

112

49. An overview for the latency in the VEG table for the not generalised versions
of the binary single byte tile data format. The horizontal axis represents the
number of features, and the vertical axis is latency in ms. 103

50. An overview for the latency in the VEG table for the not generalised versions
of the GeoJSON tile format. The horizontal axis represents the number of
features, and the vertical axis is latency in ms. 104

51. An overview for the latency in the BYGNING table for the not generalised
versions of the binary 2 byte tile data format. The horizontal axis represents
the number of features, and the vertical axis is latency in ms. 105

52. An overview for the latency in the BYGNING table for the not generalised
versions of the binary 8 byte tile data format. The horizontal axis represents
the number of features, and the vertical axis is latency in ms. 106

53. An overview for the latency in the VEG table for the not generalised versions
of the binary 2 byte tile data format. The horizontal axis represents the
number of features, and the vertical axis is latency in ms. 107

54. An overview for the latency in the VEG table for the not generalised versions
of the binary 8 byte tile data format. The horizontal axis represents the
number of features, and the vertical axis is latency in ms. 108

113

List of Tables
1. The resulting code table for the entropy coding in Figure 8, using 4 bit codes

to represent the symbols. 20
2. The relationship and layout of the PostGIS database tables in the implemen-

tation. 46
3. The relationship between binary and octal values for a single byte signed

integer. Note that the high bit marks a negative number, and that -1 has the
highest binary value. 49

114

List of Code Examples
1. SVG (see Appendix D for complete file contents) 27
2. TypedArray Example . 28
3. GML (see Appendix D for complete file contents) 33
4. GeoJSON (see Appendix D for complete file contents) 34
5. Well-known Text (see Appendix D for complete file contents) 35
6. Well-known Binary (see Appendix D for complete file contents) 35
7. SQL Query . 84

115

References
[1] Creative Commons Attribution-ShareAlike 3.0 Unported License. URL http://

creativecommons.org/licenses/by-sa/3.0/.

[2] GitHub, . URL http://www.github.com.

[3] World Wide Web Consortium. A History of HTML, 2011. URL http://www.w3.
org/People/Raggett/book4/ch02.html.

[4] An Interactive Map Viewer, . URL http://www2.parc.com/istl/projects/
www94/mapviewer.html. Accessed 25.01.2012.

[5] The World-Wide Earhquake Locator, . URL http://tsunami.geo.ed.ac.uk/
local-bin/quakes/mapscript/home.pl. Accessed 25.01.2012.

[6] The Atlas of Canada, . URL http://atlas.nrcan.gc.ca/site/english/
aboutus/index.html. Accessed 25.01.2012.

[7] Gazetteer for Scotland: Scottish Towns, Villages, Places, People, Families, . URL
http://www.scottish-places.info/background.html. Accessed 25.01.2012.

[8] History of Web Mapping, . URL http://geospatial.referata.com/wiki/
History_of_Web_Mapping. Accessed 25.01.2012.

[9] Open Geospatial Consortium, . URL http://www.ogc.org. Accessed 11.04.2012.

[10] OGC History. URL http://www.opengeospatial.org/ogc/historylong. Ac-
cessed 05.06.2012.

[11] Allan Doyle. Www mapping framework. Open GIS Consortium, 1997.

[12] MapQuest Maps, . URL http://www.mapquest.com. Accessed 25.01.2012.

[13] Map quest - definition by the Free Online Dictionary, Thesaurus and Encyclopedia,
. URL http://www.thefreedictionary.com/Map+quest. Accessed 25.01.2012.

[14] Esri Info - Our History, . URL http://www.esri.com/about-esri/about/
history.html. Accessed 25.01.2012.

[15] MapInfo is now Pitney Bowes Software, . URL http://www.pbinsight.com/
welcome/mapinfo.html. Accessed 25.01.2012.

[16] Lesson 0: Introduction to web Mapping, . URL https://www.e-education.psu.
edu/geog863/book/export/html/1904. Accessed 25.01.2012.

[17] Slippy Map, . URL http://wiki.openstreetmap.org/wiki/Slippy_Map. Ac-
cessed 25.01.2012.

116

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://www.github.com
http://www.w3.org/People/Raggett/book4/ch02.html
http://www.w3.org/People/Raggett/book4/ch02.html
http://www2.parc.com/istl/projects/www94/mapviewer.html
http://www2.parc.com/istl/projects/www94/mapviewer.html
http://tsunami.geo.ed.ac.uk/local-bin/quakes/mapscript/home.pl
http://tsunami.geo.ed.ac.uk/local-bin/quakes/mapscript/home.pl
http://atlas.nrcan.gc.ca/site/english/aboutus/index.html
http://atlas.nrcan.gc.ca/site/english/aboutus/index.html
http://www.scottish-places.info/background.html
http://geospatial.referata.com/wiki/History_of_Web_Mapping
http://geospatial.referata.com/wiki/History_of_Web_Mapping
http://www.ogc.org
http://www.opengeospatial.org/ogc/historylong
http://www.mapquest.com
http://www.thefreedictionary.com/Map+quest
http://www.esri.com/about-esri/about/history.html
http://www.esri.com/about-esri/about/history.html
http://www.pbinsight.com/welcome/mapinfo.html
http://www.pbinsight.com/welcome/mapinfo.html
https://www.e-education.psu.edu/geog863/book/export/html/1904
https://www.e-education.psu.edu/geog863/book/export/html/1904
http://wiki.openstreetmap.org/wiki/Slippy_Map

[18] Andrew J. Turner. What is neogeography? In Introduction to Neogeography. O’Reilly
Media, Inc., 2006.

[19] Opengis web map service (wms) implementation specification, . URL http://www.
opengeospatial.org/standards/wms. Accessed 27.01.2012.

[20] Google maps, . URL http://maps.google.com. Accessed 27.01.2012.

[21] OpenStreetMap, . URL http://wwww.openstreetmap.org. Accessed 27.01.2012.

[22] Bing maps, . URL http://wwww.bing.com/maps. Accessed 27.01.2012.

[23] Yahoo! maps, . URL http://maps.yahoo.com. Accessed 27.01.2012.

[24] Walmart.com - Store Locator, . URL http://www.walmart.com/cservice/ca_
storefinder.gsp. Accessed 25.01.2012.

[25] FixMyStreet, . URL http://www.fixmystreet.com/. Accessed 25.01.2012.

[26] Eric Miltsch. Location-based Services: The Hottest Segment in Social
Media, October 2010. URL http://socialmediatoday.com/ericmiltsch/
198296/location-based-services-hottest-segment-social-media. Ac-
cessed 25.01.2012.

[27] Cris Cameron. Market for Location-Based Services is Heating Up for Star-
tups, May 2010. URL http://www.readwriteweb.com/start/2010/05/
market-for-location-based-services-heating-up-for-strartups.php.
Accessed 25.01.2012.

[28] Helen Leggatt. Location-based services "valuable" to 99% of U.S. users, Febru-
ary 2011. URL http://socialmediatoday.com/ericmiltsch/198296/
location-based-services-hottest-segment-social-media. Accessed
25.01.2012.

[29] tiling - gis dictionary, . URL http://support.esri.com/en/knowledgebase/
GISDictionary/term/tiling. Accessed 24.01.2012.

[30] Raster tiles, . URL http://edndoc.esri.com/arcsde/9.2/concepts/rasters/
entities/rastertiles.htm. Accessed 24.01.2012.

[31] Li Haiting, Peng Qingshan, and Li Yanhong. Data Security Analysis of WebGIS
Based on Tile-Map Technique. In Proceedings of the 2009 International Symposium on
Web Information Systems and Applications (WISA’09), 2009.

[32] Cubeserv R© web map tiling server (wmts), . URL http://www.cubewerx.com/
products/wmts. Accessed 27.01.2012.

[33] OpenGIS Web Map Tile Service Implementation Standard, . URL http://www.
opengeospatial.org/standards/wmts. Accessed 27.01.2012.

117

http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wms
http://maps.google.com
http://wwww.openstreetmap.org
http://wwww.bing.com/maps
http://maps.yahoo.com
http://www.walmart.com/cservice/ca_storefinder.gsp
http://www.walmart.com/cservice/ca_storefinder.gsp
http://www.fixmystreet.com/
http://socialmediatoday.com/ericmiltsch/198296/location-based-services-hottest-segment-social-media
http://socialmediatoday.com/ericmiltsch/198296/location-based-services-hottest-segment-social-media
http://www.readwriteweb.com/start/2010/05/market-for-location-based-services-heating-up-for-strartups.php
http://www.readwriteweb.com/start/2010/05/market-for-location-based-services-heating-up-for-strartups.php
http://socialmediatoday.com/ericmiltsch/198296/location-based-services-hottest-segment-social-media
http://socialmediatoday.com/ericmiltsch/198296/location-based-services-hottest-segment-social-media
http://support.esri.com/en/knowledgebase/GISDictionary/term/tiling
http://support.esri.com/en/knowledgebase/GISDictionary/term/tiling
http://edndoc.esri.com/arcsde/9.2/concepts/rasters/entities/rastertiles.htm
http://edndoc.esri.com/arcsde/9.2/concepts/rasters/entities/rastertiles.htm
http://www.cubewerx.com/products/wmts
http://www.cubewerx.com/products/wmts
http://www.opengeospatial.org/standards/wmts
http://www.opengeospatial.org/standards/wmts

[34] Review: Opengis web map tiling service (wmts) interface specification, . URL http:
//xml.coverpages.org/OGC-WMTS-Candidate.html. Accessed 27.01.2012.

[35] Zao Liu, Marlon E. Pierce, Geoffrey C. Fox, and Neil Devadasan. Fox implement-
ing a caching and tiling map server: a web 2.0 case study. In Proceedings of The
2007 International Symposium on Collaborative Technologies and Systems (CTS 2007)
http://grids.ucs.indiana.edu/ptliupages/publications/CachingTilingMapServer.pdf.

[36] Google VP lays down mobile stats, boasts 150 million Maps
users, . URL http://www.engadget.com/2011/03/14/
google-vp-lays-down-mobile-stats-boasts-150-million-maps-users/.
Accessed 26.01.2012.

[37] Big Birthday... Google Maps API Turns 5!, . URL http://googlegeodevelopers.
blogspot.com/2010/06/big-birthday-google-maps-api-turns-5.html. Ac-
cessed 26.01.2012.

[38] J. D. Blower. Gis in the cloud: implementing a web map service on google app engine.
In Proceedings of the 1st International Conference and Exhibition on Computing for
Geospatial Research & Application, COM.Geo ’10, pages 34:1–34:4, New York,
NY, USA, 2010. ACM. ISBN 978-1-4503-0031-5.

[39] Sterling Quinn and Mark Gahegan. A predictive model for frequently viewed tiles in
a web map. Transactions in GIS, 14(2):193–216, 2010.

[40] Yong-Kyoon Kang, Ki-Chang Kim, and Yoo-Sung Kim. Probability-based tile pre-
fetching and cache replacement algorithms for web geographical information sys-
tems. In Albertas Caplinskas and Johann Eder, editors, Advances in Databases and
Information Systems, volume 2151 of Lecture Notes in Computer Science, pages 127–
140. Springer Berlin /Heidelberg, 2001.

[41] MBTiles, . URL http://mapbox.com/mbtiles-spec/. Accessed 27.01.2012.

[42] Client caching. URL http://wiki.novell.com/index.php/Client_caching.
Accessed 30.05.2012.

[43] Cache Eviction Algorithms, . URL http://ehcache.org/documentation/apis/
cache-eviction-algorithms. Accessed 05.06.2012.

[44] LRU cache implementation in C++, . URL http://timday.bitbucket.org/lru.
html. Accessed 05.06.2012.

[45] Cache Eviction, . URL http://docs.codehaus.org/display/COCONUT/Cache+
Eviction. Accessed 05.06.2012.

[46] John Krygier and Denis Wood. Making Maps: A Visual Guide to Map Design for GIS.
Guilford Publications, 2 edition, 2011.

118

http://xml.coverpages.org/OGC-WMTS-Candidate.html
http://xml.coverpages.org/OGC-WMTS-Candidate.html
http://www.engadget.com/2011/03/14/google-vp-lays-down-mobile-stats-boasts-150-million-maps-users/
http://www.engadget.com/2011/03/14/google-vp-lays-down-mobile-stats-boasts-150-million-maps-users/
http://googlegeodevelopers.blogspot.com/2010/06/big-birthday-google-maps-api-turns-5.html
http://googlegeodevelopers.blogspot.com/2010/06/big-birthday-google-maps-api-turns-5.html
http://mapbox.com/mbtiles-spec/
http://wiki.novell.com/index.php/Client_caching
http://ehcache.org/documentation/apis/cache-eviction-algorithms
http://ehcache.org/documentation/apis/cache-eviction-algorithms
http://timday.bitbucket.org/lru.html
http://timday.bitbucket.org/lru.html
http://docs.codehaus.org/display/COCONUT/Cache+Eviction
http://docs.codehaus.org/display/COCONUT/Cache+Eviction

[47] K. Shea and R. Mcmaster. Cartographic generalization in a digital environment:
When and how to generalize. In AutoCarto 9, pages 56–67, Baltimore, Etats-Unis,
1989.

[48] Dianne E. Richardson and William A. Mackaness. Computational processes for map
generalization. Cartography and Geographic Information Science, 26, 1999.

[49] Ferjan J. Ormeling. Technical Geography: Core Concepts in the Mapping Sciences.
EOLSS.

[50] William A. Mackaness. Preface. In Generalisation of geographic information: carto-
graphic modelling and applications. Published on behalf of the International Carto-
graphic Association by Elsevier.

[51] R. B. McMaster and K. S. Shea. Generalization in Digital Cartography. Association
of American Geographers, 1992.

[52] F. Christ. A program for the fully automated discplacement of point and line fea-
tures in cartographic generalization. Information Relative to Cartography and Geodasy
Translations, 1978.

[53] W. A. Mackaness and R. S. Purves. Automatid displacement for large numbers of
discrete map objects. Algorithmica, (30):302–311, 2001.

[54] Christopher B. Jones, Geranit Ll. Bundy, and J. Mark Ware. Map generalization
with a triangulated data structure. Cartography and Geographic Information Systems,
22:317–331, 1995.

[55] William A. Mackaness. An algorithm for conflict identification and feature displace-
ment in automated map generalization. Cartography and Geographic Information Sys-
tems, 21:219–232, 1994.

[56] GENNADY L. ANDRIENKO and NATALIA V. ANDRIENKO. Interactive maps
for visual data exploration. International Journal of Geographical Information Science,
13(4):355–374, 1999.

[57] Sharon Oviatt. Multimodal interactive maps: designing for human performance.
Hum.-Comput. Interact., 12(1):93–129, March 1997.

[58] J. Dash and G. Lawton. Gis hits the road. Software Magazine, 16, 1996.

[59] Zhong-Ren Peng and Chuanrong Zhang. The roles of geography markup language
(gml), scalable vector graphics (svg), and web feature service (wfs) specifications in the
development of internet geographic information systems (gis). Journal of Geographi-
cal Systems, 6:95–116, 2004.

[60] Stephan Winter and Andrew U. Frank. Topology in raster and vector representation.
GeoInformatica, 4:35–65, 2000. 10.1023/A:1009828425380.

119

[61] What is the abandonment rate of users who need to install a browser plu-
gin in order to use major features of a web site?, . URL http://www.quora.com/
What-is-the-abandonment-rate-of-users-who-need-to-install-a-browser-plugin-in-order-to-use-major-features-of-a-web-site.
Accessed 13.02.2012.

[62] What is the average retention rate for a browser
extension?, . URL http://www.quora.com/
What-is-the-average-retention-rate-for-a-browser-extension. Ac-
cessed 13.02.2012.

[63] Bisheng Yang. A multi-resolution model of vector map data for rapid transmission
over the internet. Computers and Geosciences, 31, 2005.

[64] Uwe Rauschenbach and Heidrun Schumann. Demand-driven image transmission
with levels of detail and regions of interest. Computers and Graphics, 23, 1999.

[65] Philip F. Kern and James D. Carswell. An investigationinto the use of jpeg image
compression for digital photogrammetry: Does the compression of images affect
measurement accuracy? EGIS Conference Proceedings: European Conference on Ge-
ographical Information Systems, 1994.

[66] Leila De Floriani and Enrico Puppo. Hierarchical triangulation for multiresolution
surface description. ACM Transactions on Graphics, 14, 1995.

[67] Donggyu Park, Hwangue Cho, and Yangsoo Kim. A tin compression method using
delaunay triangulation. International Journal of Geographical Information Science, 15,
2001.

[68] Hugues Hoppe. Smooth view-dependent level-of-detail control and its application to
terrain rendering. Proceedings of IEEE Visualization Conference, 1998.

[69] Bisheng Yang, Ross Purves, and Robert Weibel. Efficient transmission of vector data
over the internet. International Journal of Geographical Information Science, 21, 2007.

[70] Bisheng Yang, Ross Purves, and Robert Weibel. Implementation of progressive trans-
mission algorithms for vector map data in web-based visualization. The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34,
2004.

[71] David H. Douglas and Thomas K. Peucker. Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature. Cartographica:
The International Journal for Geographic Information and Geovisualization, 10, 1973.

[72] Zeshen Wang and Jean-Claude Muller. Line generalization based on analysis of
shape characteristics. Cartography and Geographic Information Science, 25(1):3–
15, 1998. URL http://www.ingentaconnect.com/content/cagis/cagis/1998/
00000025/00000001/art00001.

120

http://www.quora.com/What-is-the-abandonment-rate-of-users-who-need-to-install-a-browser-plugin-in-order-to-use-major-features-of-a-web-site
http://www.quora.com/What-is-the-abandonment-rate-of-users-who-need-to-install-a-browser-plugin-in-order-to-use-major-features-of-a-web-site
http://www.quora.com/What-is-the-average-retention-rate-for-a-browser-extension
http://www.quora.com/What-is-the-average-retention-rate-for-a-browser-extension
http://www.ingentaconnect.com/content/cagis/cagis/1998/00000025/00000001/art00001
http://www.ingentaconnect.com/content/cagis/cagis/1998/00000025/00000001/art00001

[73] Mahes Visvalingam and Simon Herbert. A computer science perspective on the
bendsimplification algorithm. Cartography and Geographic Information Science, 26(4):
253–270, 1999. URL http://www.ingentaconnect.com/content/cagis/cagis/
1999/00000026/00000004/art00002.

[74] Introduction to Data Compression. Carnegie Mellon University, 2010.

[75] Bisheng Yang, Ross S. Purves, and Robert Weibel. Variable-resolution compression
of vector data. Geoinformatica, 12:357–376, September 2008.

[76] Bezier curve, . URL http://mathworld.wolfram.com/BezierCurve.html. Ac-
cessed 31.05.2012.

[77] B-spline, . URL http://mathworld.wolfram.com/B-Spline.html. Accessed
31.05.2012.

[78] Data compression basics, . URL http://dvd-hq.info/data_compression_1.php.
Accessed 05.03.2012.

[79] David J.C. MacKay. Information Theory, Inference and Learning Algorithms. Cam-
bridge University Press, 2005.

[80] Huffman Coding: A CS2 Assignment, . URL http://www.cs.duke.edu/csed/
poop/huff/info/. Accessed 05.03.2012.

[81] RFC 1951 - DEFLATE Compressed Data Format Specification version 1.3, . URL
http://tools.ietf.org/html/rfc1951. Accessed 05.03.2012.

[82] Gzip - GNU Project - Free Software Foundation, . URL http://www.gnu.org/
software/gzip/. Accessed 05.03.2012.

[83] RFC 2616 - Hypertext Transfer Protocol – HTTP/1.1, . URL http://tools.ietf.
org/html/rfc2616. Accessed 05.03.2012.

[84] Cascading Style Sheets, . URL http://www.w3.org/Style/CSS/Overview.en.
html. Accessed 04.05.2012.

[85] Reihaneh Safavi-Naini Qiong Liu and Nicholas Paul Sheppard. Digital rights man-
agement for content distribution. Conferences in Research and Practice in Information
Technology, 21, 2003.

[86] Digital Rights Management: A failure in the developed world, a dan-
ger to the developing world, . URL https://www.eff.org/wp/
digital-rights-management-failure-developed-world-danger-developing-world.
Accessed 06.03.2012.

[87] World Wide Web Consortium. A History of HTML, 2011. URL http://www.w3.
org/People/Raggett/book4/ch02.html.

121

http://www.ingentaconnect.com/content/cagis/cagis/1999/00000026/00000004/art00002
http://www.ingentaconnect.com/content/cagis/cagis/1999/00000026/00000004/art00002
http://mathworld.wolfram.com/BezierCurve.html
http://mathworld.wolfram.com/B-Spline.html
http://dvd-hq.info/data_compression_1.php
http://www.cs.duke.edu/csed/poop/huff/info/
http://www.cs.duke.edu/csed/poop/huff/info/
http://tools.ietf.org/html/rfc1951
http://www.gnu.org/software/gzip/
http://www.gnu.org/software/gzip/
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://www.w3.org/Style/CSS/Overview.en.html
http://www.w3.org/Style/CSS/Overview.en.html
https://www.eff.org/wp/digital-rights-management-failure-developed-world-danger-developing-world
https://www.eff.org/wp/digital-rights-management-failure-developed-world-danger-developing-world
http://www.w3.org/People/Raggett/book4/ch02.html
http://www.w3.org/People/Raggett/book4/ch02.html

[88] Web Hypertext Application Technology Group, . URL http://www.whatwg.org.

[89] Html5 – edition for web developers, . URL http://developers.whatwg.org/.
Accessed 19.04.2012.

[90] Matthew B. Hoy. HTML5: A New Standard for the Web. Medical Reference Services
Quarterly, 30:1:50–55, 2011.

[91] Adobe. Adobe - Flash Player, 2011. URL http://www.adobe.com/software/
flash/about/. Accessed 19.04.2012.

[92] Microsoft. Introduction to ActiveX Controls, 2008. URL http://msdn2.
microsoft.com/en-us/library/aa751972(VS.85).aspx. Accessed 19.04.2012.

[93] Microsoft. About Microsoft Silverlight, . URL http://www.microsoft.com/
silverlight/what-is-silverlight/. Accessed 19.04.2012.

[94] Matthew Marshall. Gartner Press Release (on mobile device growth), 2011. URL
http://www.gartner.com/it/page.jsp?id=1543014. Accessed 20.04.2012.

[95] Microsoft. Microsoft Windows, . URL http://windows.microsoft.com/. Ac-
cessed 19.04.2012.

[96] Apple. Apple OS X, . URL http://www.apple.com/macosx/. Accessed 19.04.2012.

[97] Canonical. Ubuntu Linux, . URL http://www.ubuntu.com/. Accessed 19.04.2012.

[98] Katherine Noyes. Linux and Mac OS are fastest-growing operating sys-
tems, 2011. URL http://www.pcworld.com/businesscenter/article/226564/
linux_and_mac_os_are_fastestgrowing_operating_systems.html. Accessed
20.04.2012.

[99] Apple. Apple iOS, . URL http://www.apple.com/ios/. Accessed 19.04.2012.

[100] Google. Android. URL http://www.android.com/. Accessed 19.04.2012.

[101] Canonical. Ubuntu Linux, . URL http://en.wikipedia.org/wiki/X86. Accessed
19.04.2012.

[102] ARM. ARM. URL http://www.arm.com/. Accessed 19.04.2012.

[103] Ecma International. ECMAScript Language Specification, 2011. URL http://www.
ecma-international.org/publications/standards/Ecma-262.htm. Accessed
20.04.2012.

[104] C, . URL http://www.open-std.org/JTC1/SC22/WG14/. Accessed 20.04.2012.

[105] C++, . URL http://www.open-std.org/jtc1/sc22/wg21/. Accessed 20.04.2012.

[106] Java, . URL http://www.java.com. Accessed 20.04.2012.

122

http://www.whatwg.org
http://developers.whatwg.org/
http://www.adobe.com/software/flash/about/
http://www.adobe.com/software/flash/about/
http://msdn2.microsoft.com/en-us/library/aa751972(VS.85).aspx
http://msdn2.microsoft.com/en-us/library/aa751972(VS.85).aspx
http://www.microsoft.com/silverlight/what-is-silverlight/
http://www.microsoft.com/silverlight/what-is-silverlight/
http://www.gartner.com/it/page.jsp?id=1543014
http://windows.microsoft.com/
http://www.apple.com/macosx/
http://www.ubuntu.com/
http://www.pcworld.com/businesscenter/article/226564/linux_and_mac_os_are_fastestgrowing_operating_systems.html
http://www.pcworld.com/businesscenter/article/226564/linux_and_mac_os_are_fastestgrowing_operating_systems.html
http://www.apple.com/ios/
http://www.android.com/
http://en.wikipedia.org/wiki/X86
http://www.arm.com/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.open-std.org/JTC1/SC22/WG14/
http://www.open-std.org/jtc1/sc22/wg21/
http://www.java.com

[107] C#, . URL http://www.ecma-international.org/publications/standards/
Ecma-334.htm. Accessed 20.04.2012.

[108] Python, . URL http://www.python.org. Accessed 20.04.2012.

[109] Peter Wayner. From PHP to Perl: What’s hot, what’s not in scripting lan-
guages, 2011. URL http://www.infoworld.com/d/application-development/
php-perl-whats-hot-whats-not-in-scripting-languages-175867?page=0,
1.

[110] Computer Language Benchmarks Game, 2011. URL http://shootout.alioth.
debian.org/u32/benchmark.php?test=all&lang=all. Accessed 09.12.2011.

[111] Tail Call Optimization, . URL http://paulbarry.com/articles/2009/08/30/
tail-call-optimization. Accessed 04.06.2012.

[112] Javascript memory optimization and texture loading, . URL http://blog.
tojicode.com/2012/03/javascript-memory-optimization-and.html. Ac-
cessed 04.06.2012.

[113] The Future of JavaScript Engines: replace them with javascript compilers, . URL
http://shorestreet.com/node/43. Accessed 04.06.2012.

[114] The JavaScript Revolution, . URL http://fail-forward.blogspot.no/2012/
03/javascript-revolution.html. Accessed 04.06.2012.

[115] a quick note on JavaScript engine components, . URL http://hacks.mozilla.
org/2010/03/a-quick-note-on-javascript-engine-components/. Accessed
04.06.2012.

[116] Scalable vector graphics (svg) 1.1 (second edition), . URL http://www.w3.org/TR/
SVG11/. Accessed 30.03.2012.

[117] 4.8.16 svg – html5, . URL http://dev.w3.org/html5/spec/svg-0.html#svg-0.
Accessed 30.03.2012.

[118] Working with binary data using typed arrays, . URL http://blogs.msdn.com/b/
ie/archive/2011/12/01/working-with-binary-data-using-typed-arrays.
aspx. Accessed 26.03.2012.

[119] Typed array specification, . URL https://www.khronos.org/registry/
typedarray/specs/latest/. Accessed 26.03.2012.

[120] Performance of Javascript (Binary) Byte Arrays in Modern Browsers, . URL http:
//blog.n01se.net/blog-n01se-net-p-248.html. Accessed 28.05.2012.

[121] About websocket, . URL http://websocket.org/aboutwebsocket.html. Ac-
cessed 16.03.2012.

123

http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.python.org
http://www.infoworld.com/d/application-development/php-perl-whats-hot-whats-not-in-scripting-languages-175867?page=0,1
http://www.infoworld.com/d/application-development/php-perl-whats-hot-whats-not-in-scripting-languages-175867?page=0,1
http://www.infoworld.com/d/application-development/php-perl-whats-hot-whats-not-in-scripting-languages-175867?page=0,1
http://shootout.alioth.debian.org/u32/benchmark.php?test=all&lang=all
http://shootout.alioth.debian.org/u32/benchmark.php?test=all&lang=all
http://paulbarry.com/articles/2009/08/30/tail-call-optimization
http://paulbarry.com/articles/2009/08/30/tail-call-optimization
http://blog.tojicode.com/2012/03/javascript-memory-optimization-and.html
http://blog.tojicode.com/2012/03/javascript-memory-optimization-and.html
http://shorestreet.com/node/43
http://fail-forward.blogspot.no/2012/03/javascript-revolution.html
http://fail-forward.blogspot.no/2012/03/javascript-revolution.html
http://hacks.mozilla.org/2010/03/a-quick-note-on-javascript-engine-components/
http://hacks.mozilla.org/2010/03/a-quick-note-on-javascript-engine-components/
http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/SVG11/
http://dev.w3.org/html5/spec/svg-0.html#svg-0
http://blogs.msdn.com/b/ie/archive/2011/12/01/working-with-binary-data-using-typed-arrays.aspx
http://blogs.msdn.com/b/ie/archive/2011/12/01/working-with-binary-data-using-typed-arrays.aspx
http://blogs.msdn.com/b/ie/archive/2011/12/01/working-with-binary-data-using-typed-arrays.aspx
https://www.khronos.org/registry/typedarray/specs/latest/
https://www.khronos.org/registry/typedarray/specs/latest/
http://blog.n01se.net/blog-n01se-net-p-248.html
http://blog.n01se.net/blog-n01se-net-p-248.html
http://websocket.org/aboutwebsocket.html

[122] Mats Taraldsvik. Exploring the future: is html5 the solution for gis applica-
tions on the world wide web? 2011. URL http://www.github.com/meastp/
html5andgis/.

[123] Is Microsoft Challenging Google on HTTP 2.0 with WebSocket?,
. URL http://www.readwriteweb.com/enterprise/2012/03/
microsoft-sees-googles-hand-fo.php. Accessed 04.06.2012.

[124] Hypertext Transfer Protocol Bis (httpbis), . URL https://datatracker.ietf.
org/wg/httpbis/charter/. Accessed 04.06.2012.

[125] What’s Next for HTTP, . URL http://www.mnot.net/blog/2012/03/31/whats_
next_for_http. Accessed 04.06.2012.

[126] SPDY: An experimental protocol for a faster web, . URL http://dev.chromium.
org/spdy/spdy-whitepaper. Accessed 04.06.2012.

[127] SPDY Brings Responsive and Scalable Transport to Fire-
fox 11, . URL http://hacks.mozilla.org/2012/02/
spdy-brings-responsive-and-scalable-transport-to-firefox-11/. Ac-
cessed 04.06.2012.

[128] The websocket api, . URL http://dev.w3.org/html5/websockets/. Accessed
30.04.2012.

[129] Carl A. Gutwin, Michael Lippold, and T. C. Nicholas Graham. Real-time groupware
in the browser: testing the performance of web-based networking. In Proceedings of
the ACM 2011 conference on Computer supported cooperative work, CSCW ’11, pages
167–176, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0556-3. doi: 10.1145/
1958824.1958850. URL http://doi.acm.org/10.1145/1958824.1958850.

[130] About websocket, . URL http://websocket.org/aboutwebsocket.html. Ac-
cessed 15.05.2012.

[131] Binary or text (an essay on w3c’s design principles), . URL http://www.w3.org/
People/Bos/DesignGuide/binary-or-text. Accessed 15.05.2012.

[132] Workers love ArrayBuffer, . URL http://updates.html5rocks.com/2011/09/
Workers-ArrayBuffer. Accessed 28.05.2012.

[133] Transferable Objects: Lightning fast, . URL http://updates.html5rocks.com/
2011/12/Transferable-Objects-Lightning-Fast. Accessed 28.05.2012.

[134] HTML5 2.8.4 Transferable objects, . URL http://dev.w3.org/html5/spec/
common-dom-interfaces.html#transferable-objects. Accessed 28.05.2012.

[135] RFC 3629 – UTF-8, a transformation format of ISO 10646, . URL http://tools.
ietf.org/html/rfc3629. Accessed 16.04.2012.

124

http://www.github.com/meastp/html5andgis/
http://www.github.com/meastp/html5andgis/
http://www.readwriteweb.com/enterprise/2012/03/microsoft-sees-googles-hand-fo.php
http://www.readwriteweb.com/enterprise/2012/03/microsoft-sees-googles-hand-fo.php
https://datatracker.ietf.org/wg/httpbis/charter/
https://datatracker.ietf.org/wg/httpbis/charter/
http://www.mnot.net/blog/2012/03/31/whats_next_for_http
http://www.mnot.net/blog/2012/03/31/whats_next_for_http
http://dev.chromium.org/spdy/spdy-whitepaper
http://dev.chromium.org/spdy/spdy-whitepaper
http://hacks.mozilla.org/2012/02/spdy-brings-responsive-and-scalable-transport-to-firefox-11/
http://hacks.mozilla.org/2012/02/spdy-brings-responsive-and-scalable-transport-to-firefox-11/
http://dev.w3.org/html5/websockets/
http://doi.acm.org/10.1145/1958824.1958850
http://websocket.org/aboutwebsocket.html
http://www.w3.org/People/Bos/DesignGuide/binary-or-text
http://www.w3.org/People/Bos/DesignGuide/binary-or-text
http://updates.html5rocks.com/2011/09/Workers-ArrayBuffer
http://updates.html5rocks.com/2011/09/Workers-ArrayBuffer
http://updates.html5rocks.com/2011/12/Transferable-Objects-Lightning-Fast
http://updates.html5rocks.com/2011/12/Transferable-Objects-Lightning-Fast
http://dev.w3.org/html5/spec/common-dom-interfaces.html#transferable-objects
http://dev.w3.org/html5/spec/common-dom-interfaces.html#transferable-objects
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc3629

[136] RFC 20 – ASCII format for network interchange, . URL http://tools.ietf.org/
html/rfc20. Accessed 16.04.2012.

[137] What is new in PostGIS 2.0.0. URL http://t.co/fEElTP5g. Accessed 24.05.2012.

[138] Understanding Big and Little Endian Byte Order,
. URL http://betterexplained.com/articles/
understanding-big-and-little-endian-byte-order/. Accessed 05.06.2012.

[139] An Essay on Endian Order, . URL http://people.cs.umass.edu/~verts/cs32/
endian.html. Accessed 05.06.2012.

[140] Open Geospatial Consortium. Geography Markup Language, 2007. URL http:
//www.opengeospatial.org/standards/gml. Accessed 11.04.2012.

[141] JSON, . URL http://www.json.org/. Accessed 13.04.2012.

[142] GeoJSON, . URL http://www.geojson.org/. Accessed 13.04.2012.

[143] JSON vs XML – Part 1: Data Size, . URL http://xphone.me/devnotes/2011/02/
json-vs-xml-part-1-data-size/. Accessed 13.04.2012.

[144] Compress JSON with automatic type extraction, . URL http://stevehanov.ca/
blog/index.php?id=104. Accessed 13.04.2012.

[145] json.hpack, . URL https://github.com/WebReflection/json.hpack/wiki. Ac-
cessed 13.04.2012.

[146] JSON Compression Algorithms, . URL http://web-resource-optimization.
blogspot.com/2011/06/json-compression-algorithms.html. Accessed
13.04.2012.

[147] BSON, . URL http://bsonspec.org/. Accessed 15.05.2012.

[148] MongoDB, . URL http://www.mongodb.org/. Accessed 15.05.2012.

[149] BSON specification, . URL http://bsonspec.org/#/implementation. Accessed
15.05.2012.

[150] Open Geospatial Consortium. Simple Feature Access - Part 1: Common Architec-
ture, 2011. URL http://www.opengeospatial.org/standards/sfa. Accessed
12.04.2012.

[151] PostGIS, . URL http://www.postgis.org/. Accessed 13.04.2012.

[152] PostgreSQL, . URL http://www.postgresql.org/. Accessed 13.04.2012.

[153] 4.1.2. PostGIS EWKB, EWKT and Canonical Forms, . URL http://www.postgis.
org/documentation/manual-svn/using_postgis_dbmanagement.html#EWKB_
EWKT. Accessed 13.04.2012.

125

http://tools.ietf.org/html/rfc20
http://tools.ietf.org/html/rfc20
http://t.co/fEElTP5g
http://betterexplained.com/articles/understanding-big-and-little-endian-byte-order/
http://betterexplained.com/articles/understanding-big-and-little-endian-byte-order/
http://people.cs.umass.edu/~verts/cs32/endian.html
http://people.cs.umass.edu/~verts/cs32/endian.html
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/gml
http://www.json.org/
http://www.geojson.org/
http://xphone.me/devnotes/2011/02/json-vs-xml-part-1-data-size/
http://xphone.me/devnotes/2011/02/json-vs-xml-part-1-data-size/
http://stevehanov.ca/blog/index.php?id=104
http://stevehanov.ca/blog/index.php?id=104
https://github.com/WebReflection/json.hpack/wiki
http://web-resource-optimization.blogspot.com/2011/06/json-compression-algorithms.html
http://web-resource-optimization.blogspot.com/2011/06/json-compression-algorithms.html
http://bsonspec.org/
http://www.mongodb.org/
http://bsonspec.org/#/implementation
http://www.opengeospatial.org/standards/sfa
http://www.postgis.org/
http://www.postgresql.org/
http://www.postgis.org/documentation/manual-svn/using_postgis_dbmanagement.html#EWKB_EWKT
http://www.postgis.org/documentation/manual-svn/using_postgis_dbmanagement.html#EWKB_EWKT
http://www.postgis.org/documentation/manual-svn/using_postgis_dbmanagement.html#EWKB_EWKT

[154] ESRI Shapefile Technical Description. Environmental Systems Research Institute, Inc.,
1998.

[155] Fred Wilson’s 10 Golden Principles of Successful Web Apps – Future of
Web Apps (Conference), 2011. URL http://thinkvitamin.com/web-apps/
fred-wilsons-10-golden-principles-of-successful-web-apps/. Accessed
20.04.2012.

[156] Len Bass, Paul Clements, and Rick Kazmann. Understanding Quality Attributes. In
Software Architecture in Practice, chapter 4. Pearson Education, second edition, 2009.

[157] Len Bass, Paul Clements, and Rick Kazmann. Performance Tactics. In Software
Architecture in Practice, chapter 5.4. Pearson Education, second edition, 2009.

[158] Opengis web feature service (wfs) implementation specification, . URL http://www.
opengeospatial.org/standards/wfs. Accessed 08.05.2012.

[159] Wenjue Jia, Yumin Chen, Jianya Gong, and Aixia Li. Web service based web feature
service. State Key Laboratory for Information Engineering in Surveying, Mapping
and Remote Sensing, Wuhan University.

[160] Chuanrong Zhang and Weidong Li. The roles of web feature and web map services
in real-time geospatial data sharing for time-critical applications. Cartography and
Geographic Information Science, 32(4), 2005.

[161] Wfs: Getfeature example (geoserver), . URL http://openlayers.org/dev/
examples/getfeature-wfs.html. Accessed 08.05.2012.

[162] Open source gis: Open scales and wfs, . URL http://www.webmapsolutions.com/
open-source-gis-openscales-wfs. Accessed 08.05.2012.

[163] Geoserver, . URL http://www.geoserver.org/. Accessed 08.05.2012.

[164] Lefalet - a modern, lightweight javascript library for interactive maps, . URL http:
//leaflet.cloudmade.com/. Accessed 08.05.2012.

[165] Chromium, . URL http://www.chromium.org/Home. Accessed 21.05.2012.

[166] flot – Attractive javascript plotting for jQuery, . URL http://code.google.com/
p/flot/. Accessed 21.05.2012.

[167] 2.2 Cached Tiles, . URL http://workshops.opengeo.org/openlayers-intro/
layers/cached.html. Accessed 28.05.2012.

[168] Advanced Research Lab for Geospatial Information Science and Indian Institute
of Technology Engineering. Comparison between postgis and oracle spatial. URL
http://bit.ly/xP1bDj.

126

http://thinkvitamin.com/web-apps/fred-wilsons-10-golden-principles-of-successful-web-apps/
http://thinkvitamin.com/web-apps/fred-wilsons-10-golden-principles-of-successful-web-apps/
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wfs
http://openlayers.org/dev/examples/getfeature-wfs.html
http://openlayers.org/dev/examples/getfeature-wfs.html
http://www.webmapsolutions.com/open-source-gis-openscales-wfs
http://www.webmapsolutions.com/open-source-gis-openscales-wfs
http://www.geoserver.org/
http://leaflet.cloudmade.com/
http://leaflet.cloudmade.com/
http://www.chromium.org/Home
http://code.google.com/p/flot/
http://code.google.com/p/flot/
http://workshops.opengeo.org/openlayers-intro/layers/cached.html
http://workshops.opengeo.org/openlayers-intro/layers/cached.html
http://bit.ly/xP1bDj

[169] Microsoft SQL Server, . URL http://www.microsoft.com/sql/. Accessed
30.04.2012.

[170] Oracle Spatial, . URL www.oracle.com/technetwork/database/options/
spatial/index.html. Accessed 30.04.2012.

[171] 8.6. Geometry Outputs, . URL http://postgis.org/docs/reference.html. Ac-
cessed 30.04.2012.

[172] 8.3. Geometry Consructors, . URL http://postgis.org/docs/reference.html.
Accessed 30.04.2012.

[173] ST_Simplify, . URL http://postgis.refractions.net/documentation/
manual-2.0/ST_Simplify.html. Accessed 30.04.2012.

[174] ST_SnapToGrid, . URL http://postgis.refractions.net/documentation/
manual-2.0/ST_SnapToGrid.html. Accessed 30.04.2012.

[175] JTS Topology Suite, . URL http://www.vividsolutions.com/jts/. Accessed
30.04.2012.

[176] GEOS, . URL http://www.geos.osgeo.org/. Accessed 30.04.2012.

[177] Shapely, . URL https://github.com/sgillies/shapely. Accessed 30.04.2012.

[178] Autobahn.oss, . URL http://autobahn.ws/developers. Accessed 30.04.2012.

[179] AutobahnTestSuite, . URL http://autobahn.ws/testsuite. Accessed 30.04.2012.

[180] AutobahnPython Reference, . URL http://autobahn.ws/developers/
reference/python/index.html. Accessed 30.04.2012.

[181] WebSocket++, . URL https://github.com/zaphoyd/websocketpp. Accessed
30.04.2012.

[182] Boost.Asio, . URL http://www.boost.org/doc/libs/1_49_0/doc/html/boost_
asio.html. Accessed 30.04.2012.

[183] wsperf, . URL http://www.zaphoyd.com/wsperf. Accessed 30.04.2012.

[184] UtfEight, . URL http://code.google.com/p/webgl-loader/wiki/UtfEight.
Accessed 15.05.2012.

[185] JavaScript Performance Best Practices, . URL https://www.developer.nokia.
com/Community/Wiki/JavaScript_Performance_Best_Practices. Accessed
28.05.2012.

[186] Raphaël – JavaScript Library, . URL http://raphaeljs.com/. Accessed 30.04.2012.

[187] d3.js, . URL http://mbostock.github.com/d3/. Accessed 30.04.2012.

127

http://www.microsoft.com/sql/
www.oracle.com/technetwork/database/options/spatial/index.html
www.oracle.com/technetwork/database/options/spatial/index.html
http://postgis.org/docs/reference.html
http://postgis.org/docs/reference.html
http://postgis.refractions.net/documentation/manual-2.0/ST_Simplify.html
http://postgis.refractions.net/documentation/manual-2.0/ST_Simplify.html
http://postgis.refractions.net/documentation/manual-2.0/ST_SnapToGrid.html
http://postgis.refractions.net/documentation/manual-2.0/ST_SnapToGrid.html
http://www.vividsolutions.com/jts/
http://www.geos.osgeo.org/
https://github.com/sgillies/shapely
http://autobahn.ws/developers
http://autobahn.ws/testsuite
http://autobahn.ws/developers/reference/python/index.html
http://autobahn.ws/developers/reference/python/index.html
https://github.com/zaphoyd/websocketpp
http://www.boost.org/doc/libs/1_49_0/doc/html/boost_asio.html
http://www.boost.org/doc/libs/1_49_0/doc/html/boost_asio.html
http://www.zaphoyd.com/wsperf
http://code.google.com/p/webgl-loader/wiki/UtfEight
https://www.developer.nokia.com/Community/Wiki/JavaScript_Performance_Best_Practices
https://www.developer.nokia.com/Community/Wiki/JavaScript_Performance_Best_Practices
http://raphaeljs.com/
http://mbostock.github.com/d3/

[188] VML - the Vector Markup Language, . URL http://www.w3.org/TR/NOTE-VML.
Accessed 30.04.2012.

[189] Creator of Web spots a flaw in IE, . URL http://www.msnbc.msn.com/id/
26646919#.T56H6VTWTRY. Accessed 30.04.2012.

[190] Understanding Map Projections, . URL http://macwright.org/2012/01/27/
projections-understanding.html. Accessed 28.05.2012.

[191] Algorithm Alley (Median filter), . URL http://www.drdobbs.com/parallel/
184411079. Accessed 21.05.2012.

[192] Dr. Colin Mercer. CLEANING UP DATA - Using a median filter to remove spikes
from data. Accessed 21.05.2012.

[193] Median filter, . URL http://fourier.eng.hmc.edu/e161/lectures/smooth_
sharpen/node3.html. Accessed 21.05.2012.

[194] Wikipedia. Standard deviation. http://en.wikipedia.org/wiki/Standard_
deviation, 2011. Accessed 03.12.2011.

[195] Wikipedia. Normal distribution. http://en.wikipedia.org/wiki/Normal_
distribution, 2011. Accessed 03.12.2011.

[196] Institutt for matematiske fag, NTNU. Tabeller og formler i statistikk. 2000.

[197] Jakob Nielsen. Response Times: The 3 Important Limits. In Usability Engineering,
chapter 5. 1993.

[198] Fiona Fui-Hoon Nah. A study on tolerable waiting time: how long are web users
willing to wait? Behaviour & Information Technology, 2004.

[199] WebCL, . URL http://www.khronos.org/webcl/. Accessed 23.05.2012.

[200] General-Purpose computation on Graphics Processing Units, . URL http://gpgpu.
org/. Accessed 23.05.2012.

[201] Robert Nordan. An investigation of potential methods for topology preservation in
interactive vector tile map applications. 2012.

[202] When can I use... Support tables for HTML5, CSS3, etc, . URL http://www.
caniuse.com. Accessed 28.05.2012.

[203] Modernizr, . URL http://www.modernizr.com. Accessed 28.05.2012.

128

http://www.w3.org/TR/NOTE-VML
http://www.msnbc.msn.com/id/26646919#.T56H6VTWTRY
http://www.msnbc.msn.com/id/26646919#.T56H6VTWTRY
http://macwright.org/2012/01/27/projections-understanding.html
http://macwright.org/2012/01/27/projections-understanding.html
http://www.drdobbs.com/parallel/184411079
http://www.drdobbs.com/parallel/184411079
http://fourier.eng.hmc.edu/e161/lectures/smooth_sharpen/node3.html
http://fourier.eng.hmc.edu/e161/lectures/smooth_sharpen/node3.html
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://www.khronos.org/webcl/
http://gpgpu.org/
http://gpgpu.org/
http://www.caniuse.com
http://www.caniuse.com
http://www.modernizr.com

	Title Page
	Introduction
	Source code for the examples

	Delivering maps on the web
	History and Motivation
	Tiling
	Caching
	Generalisation
	Raster-based maps
	Pre-generation of tiles
	Client load

	Vector-based maps
	Progressive vector transmission
	Compression
	Real-time styling
	Client load
	Vector tiles
	Security

	How new technology will improve the web map experience
	What is HTML5?
	Background
	Motivation
	JavaScript

	Native support for inline SVG
	Binary processing with TypedArray
	Replacing HTTP with Web Sockets
	Implementing non-blocking behaviour with Web Workers
	Data formats
	Considerations when choosing a data format
	Geography Markup Language
	GeoJSON
	BSON
	WKB and WKT
	ESRI Shapefile
	Non-standard formats

	Optimisation

	Performance comparison of new and existing web map solutions
	What is Performance?
	Existing maps using mature technology
	The current map standard
	Reference web map experience

	A vector map using modern HTML5 technologies
	Server Architecture
	PostGIS
	Python and Shapely
	Web Sockets

	Data Transmission
	Binary data
	Text data
	Data Formats

	Client Architecture
	SVG
	Choosing a Library
	User interaction
	Native application comparisons

	Implementation performance
	Data size
	Storage
	Latency

	Conclusion
	Future work
	Appendices
	Attachment 1: Master Thesis Assignment
	The implementation and source code accompanying this paper
	HTML5 Support in Web Browsers
	Data Formats Example
	Large versions of the visualisations of the performance test results
	List of figures
	List of tables
	List of code examples
	References

