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Abstract

For the long term planning of railway infrastructure several analyses are necesarry.
One of them is the prognosticated demand for future railway transportation. This
information serves as input parameter for the capacity and benefit cost analysis. For
the capacity analysis, timetable independent analytical methods that can estimate the
scheduled waiting time in dependency of the number of trains running on the line is
required. If the scheduled waiting time is too long, the operators risk losing customers
and the infrastructure operators risk losing the operators as customers. Changes must
be made in infrastructure or in train mixture to reduce the scheduled waiting time in
an early planning stage.

There are only a few existing models concerning scheduled waiting time. The
crossing situation has hardly been investigated in studies since the main focus has
been on double track lines. The scheduled waiting time as a topic so far has not been
paid enough attention to since unscheduled waiting time has been the main focus.
Estimating the scheduled waiting time is even important than the estimation of the
unscheduled waiting time. An overbooked railway line will seldom be as successful as
a balanced railway line as a transportation offer or in operation. The planner’s task is
to estimate and design an infrastructure that will support the market on time in best
way with regards to both scheduled and unscheduled waiting time.

There is a demand to develop and to improve models for the calculation of scheduled
waiting time. This thesis is an attempt to meet a part of the demand of the research
within this subject. In this thesis a deterministic analysis of the crossing situation of
trains on single track lines has been performed. A new model for the calculation of
the number of crossings, the expected waiting time for crossing and merging has been
developed on the basis of the conditions formed for incuring a crossing. This analysis
states that the conditions for a train to incur a crossing is similar to the conditions
given in [Schw81] for an overtaking to take place.

The analytical model developed makes use of stochastics in order to estimate the
expected waiting time from crossing for each train model. This ensures a timetable
independent estimation. The model focuses on mixed train traffic in both directions
with a strict hierarchical priority system. An exponential buffer time distribution be-
tween the requested train paths of higher priority is assumed to make it possible for
trains of lower priority to merge in between the trains of higher priority. This phi-
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losophy is based on a timetable construction process where different train models are
given different priority due to their trackage rights achieved. The train model with
highest priority will be included into the timetable first. The expected waiting time
from crossing within a train model can then be estimated. In the model deduced, one
direction is chosen to take priority over the opposite direction. The prior direction can,
for example, be outward traffic. This means that the trains running in the direction
of lower priority risks incuring waiting time from crossing.

A case study of the timetable characteristics on single track lines was carried out
to investigate whether the timetables follow a cyclic or a stochatic pattern. The
noncyclic timetables were further analysed by a χ2-test of goodness of fit of the buffer
time between the trains of higher priority if the buffer time distribution could be
exponential, hyper-exponential or Erlang2 distributed.

An asynchronous simulation tool has been used to control and evaluate the model.
Random timetables were generated and served as input to the simulation tool. A
dummy illustrating a railway single track line was constructed and served as the main
study object. An existing train model was chosen to run the line in both directions.
The number of crossings, the number of multiple crossings and the waiting times were
recorded and compared with the results from the model established. The evaluation of
the reliability of the model requires more research by simulation before a satisfactory
statement can be fulfilled.

Two different priority strategies were simulated and compared. A priority strategy
with equal priority between the trains of opposite directions tend to generate more
crossings than a strategy with strict priority for one direction. On the other hand a
strategy with one direction priori over the opposite direction tend to generated more
multiple crossings relative to the number of crossings compared to the equal priority
strategy.

An attempt has been made to use the same methodology for the derivation of
a model for the estimation of the expected waiting time from crossing with constant
buffer times between the requested train paths of higher priority. This model has some
weaknesses and has therefore not been further analysed.

Finally, a sensitivity analysis of the model developed illustrates that the time gap
necessary for a train to reach the next station before meeting an opposing train has the
most influence on the estimated result. The model is therefore probably most suited
for railway lines with less variation in the occupation time between the stations.
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Chapter 1

Introduction and scope

1.1 Introduction

One of the major tasks of the infrastructure operator is dimensioning the infrastruc-
ture according to the rail transport demand. The rail transport demand is made up
by two markets that need to be satisfied. The primary market is the one between
passenger or loader and the railway operator. The secondary market is between the
railway operator and the infrastructure manager. The infrastructure manager has to
make a prognosis for both markets in order for them to be able to meet their re-
quirements. Dimensioning future railway lines to meet the future traffic demand on
time, is a long time process with large investments. Prognosis of the future traffic
demand has to be made on the basis of expected development of society. For long
term planning, the future railway timetable is not known, only an estimation on the
number of trains and the type of trains according to the prognosticated traffic demand.

Once the traffic prognosis is established the dimensioning work can start. For the
existing line investigated, the flow or capacity can be calculated. With the capacity
number, the expected queue length and thus the waiting time can be estimated. The
queue length or the waiting time is a measure of the timetable quality. An increased
number of trains running on the line results in an increase in queue length and waiting
time, which means less quality. Both scheduled and unscheduled waiting time can be
estimated. The latter is also called delay during operation. The scheduled waiting
time arises during timetable construction when two different trains prefer to occupy
the same block or line segment at the same time. The train with lower priority has to
make space for the train with higher priority and therefore incurs waiting time before
entering the preferred line element. The scheduled waiting time is an additive to the
typical journey time. The calculation of scheduled/unscheduled waiting time can be
carried out in two ways:

• by simulation of timetables and operation
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• by using mathematical analytical methods

The simulation method is very time consuming, which thus is limiting this method.
Only a limited set of timetables is feasible with respect to time for the estimation of
the scheduled waiting time. The same yields also for the calculation of the unsched-
uled waiting time. Only a selected set of timetables can be analysed. The analytical
method saves time compared to simulation and saves disk space as well. The analyti-
cal method is able to estimate the expected waiting time without the need for a fixed
timetable. Schwanhäußer [Schw74, Schw78, Schw81] was the first to develop mathe-
matical analytical methods for the calculation of unscheduled and scheduled waiting
time.

If the expected scheduled and unscheduled waiting time is too high, the operator
will have to carry higher costs because of the loss of a customer. In a market with free
competition an operator has to be financially sound to exist on the market. This gives
the need to take economy into account when deciding the upper limit for scheduled
and unscheduled waiting time and for the decision of the optimal capacity. For the
infrastructure manager, the costs connected to the maintenance and investments of in-
frastructure must also be included. This can be carried out in a cost-benefit analysis.
These results proide directions for the dimensioning of existing or new infrastructure.

The calculations of expected waiting time also has its use for short term planning.
For changes in the timetable, for example due to temporary reparations, also leads to
changes in the amount of waiting time. The same also applies for ad-hoc decisions
that the train dispatcher meets when the traffic is disturbed. There are methods and
tools developed to meet the challenge to find an optimum designed according to cer-
tain criteria. Still, there are several unfilled gaps within this area, and there is a big
need for improvement of already existing models. Some of the main challenges for
the improvement of the analytical models would be to increase the level of detail of
input and output information. This especially yields models calculating on networks
where graph theory is used. To make the model useable the graph might be too far
reduced, so that important information is lost. On the other hand, models calculating
on separate infrastructure elements, like for example a node or a line segment, might
often have a higher degree of detail compared to network models. The drawback is
that a high level of detail generates many constraints which makes these models less
available for interconnection in order to make calculations as a network based model.

There are only a few models concerning the scheduled waiting time compared with
the number of methods used for the investigation of the unscheduled waiting time. In
an attempt to narrow the gap within this research area, this thesis develops a new
model for scheduled waiting time from crossing on single track lines. In this thesis a
new and detailed study of the crossing situation on single track lines where the de-
pendencies between the trains of opposite direction are outlined. This work has been
inspired by a model from Schwanhäußer [Schw81] concerning the estimation of the
scheduled waiting time from overtaking on double track line.
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The topic was chosen on behalf of Jernbaneverket (the Norwegian infrastructure
operator). There is a need especially for Jernbaneverket to develop models for dimen-
sioning single track lines since the Norwegian railway network consist mainly of single
track line (about 95% of 4100 km track in total [Svin05]). This study is based on
an asynchronous timetable construction methodology which is in accordance with the
EU’s demand for free trackage rights. Another important aspect is that single track
lines are very sensitive for the generation of waiting time. So far there are very few
studies concerning dimensioning and operating single track lines.

The mathematical analytical model in this study makes use of exponentially dis-
tributed buffer times between the trains of higher priority in the schedule. This means
that there is stochastic demand for train paths. Then there will exist spacing times
of different sizes. There also might be spaces long enough for irregular freight traffic
to be included into the timetable. In less traffic dense periods of the day, this might
be a possible solution to fill up the schedule with ad-hoc freight trains. The effort of
this research, apart from dimensioning questions, will be to evaluate possibilities for
transferring more freight transport from the road to the line by offering the freight
operators a second attractive choice besides the road. The possibility of including
freight trains into the schedule will not only depend on the number of trains in total
and the infrastructure characteristics, but also how far the schedule chosen is from
stochastic operation. The closer a cyclic timetable operation is, the more constraints
have to be regarded. A cyclic timetable is therefore less flexible than timetables with
stochastic operation. The spacing time between the trains in a cyclic timetable tends
to be constant, and with high train density this will make it difficult to fit in slow and
long freight trains.

1.2 Scope and outline of this study

This study focuses on the calculation of scheduled waiting time from crossing on single
track line. Research has been done on relevant models for the calculation of sched-
uled waiting time. The theory arisen at the RWTH Aachen University makes a clear
distinction between scheduled and unscheduled waiting time. The scheduled waiting
time generated in an asynchronous timetable construction process is based on a train
hierarchy with the use of minimum spacing time (visualized in time-way diagram as
blocking time stairs). The asynchronous timetable construction process takes care of
the free trackage rights as demanded by the EU. Therefore an asynchronous timetable
construction methodology was chosen as the basis in this work. The model has been
developed with the aim of extending the palette of scheduled waiting time models for
dimensioning purposes. In addition to a dimensioning purpose, this study is basically
working with stochastic running trains in the schedule as an attempt of introducing
ad-hoc train traffic. A timetable study has been conducted for selected lines to in-
vestigate the timetable characteristics today. Finally, the model has been tested and
evaluated in a discussion.
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This study has been divided into these following main parts:

• In Chapter 2 some fundamentals necessary for the calculation of waiting time
and capacity are briefly described.

• Chapter 3 presents and evaluates some of the past works that have importance
to the waiting time calculation. The chapter starts with presenting some studies
concerning the estimation of the optimal capacity since they provide an un-
derstanding of the importance of the waiting time calculation as a part of the
capacity analysis. The models for capacity analysis are also commented.

• In Chapter 4 the model for the calculation of scheduled waiting time from cross-
ing on single track line is developed. The model for scheduled waiting time from
crossing uses exponential distributed buffer times between the trains of higher
priority. According to the asynchronous timetable construction process, trains
with highest priority are to be included first into the timetable. Second, the
trains with the second highest priority are to be included into the timetable.
This process is repeated until all trains are included into the timetable. In the
end of the Chapter 4 an attempt has been made to adjust the model for con-
stant buffer times between the trains of higher priority. This section 4.4 is kept
short since the assumptions made in early stage of the model were not satisfying
enough with respect to the level of detail.

• Chapter 5 provides a summary of the timetable analysis for three single track
lines. This chapter starts with a description of timetable construction in a market
with free competition of the trackage rights. The timetables analyzed are charac-
terized whether the operation runs stochastically or follows a cyclic pattern. For
the stochastic schedules a χ2-test of goodness of fit of the buffer time between
the trains of higher priority in the schedule were made to analyse if the buffer
time distribution could be exponential, hyper-exponential or Erlang2 distributed.

• In Chapter 6 the model for the calculation of scheduled waiting time from cross-
ing with exponential buffer time distribution presented in Chapter 4 is analyzed
and evaluated by using an asynchronous simulation tool.

• In Chapter 7 a summary of the most important results and factors influencing
them are provided. Finally, a suggestion for further work is described.



Chapter 2

Fundamentals of capacity
assessment in railway
operations research

This chapter provides a brief introduction to some fundamentals necessary for the
calculation of capacity and waiting time described in this thesis. The first section 2.1
concerns fundamentals assigned by the infrastructure characteristics. The second and
the third section 2.2-2.3 describes capacity and waiting time and their relation.

2.1 Infrastructure based fundamentals

2.1.1 Decomposition of the railway line

There are several possibilities how to decompose the railway network into smaller
fragments. In accordance with UIC codex 406 [UIC/406], a railway line is the distance
between two nodes, figure 2.1. A node can be a station or a junction. The traffic mix
and the train order should not change remarkably on the railway line, or else a further
partition of the line is necessary. In a station overtaking, crossing and directions
reversals are possible. In a junction at least two lines converge and neither overtaking,
crossing nor direction reversals are possible.

A block section is the distance between two main signals. A section can consists
of several blocks. In a section the traffic mix and the number of trains do not change
fundamentally. In this study a section will be referred to as the distance between
two neighboring stations, where crossing or overtaking can take place. The point at
which the section is measured from can vary. The point must successively be chosen
consistent for the following stations. For example a section can be measured from
the outward signal in station (i) to the outward signal in station (i+1), or from the
clearance point station inwards in station (i) to the next clearance point inwards in
station (i+1).
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Node NodeStation

Railway single track line

Section

Block section

Figure 2.1: Decomposition of a single track railway line

Another possibility is to decompose a railway line or a railway node into single
channels. This partition is useful in models where the waiting time is calculated
with use of queueing theory. These results illustrates the bottleneck in a node or a
railway line. Schwanhäußer proposes a decomposition of the railway line into single
channels called interlocking route junction (IRJ) or ”Teilfahrstrassenknoten” (TFK) in
German, figure 2.2. An IRJ is a part of a complete interlocking route junction (CIRJ),
or ”Gesamtfahrstrassenknoten” (GFK) in German. An IRJ is defined as the longest
carriage way where all carriage ways are mutually exclusive [Schw78].

IRJ

Figure 2.2: Decomposition of a station into interlocking route junctions

Another useful model is done by treating the railway network as a graph. The
nodes are converted into vertices, and the distance between the vertices are edges. The
graph theory is a useful tool for calculations on an entire network. Such calculations
for example, can be for designing and optimizing cyclic timetables [Brak93, Eng02]
and waiting time calculations [Huis02].

2.1.2 Occupation time in a block section

The smallest distance on a railway line is the block section. Happel [Happ59] was
the first to define the occupation time in a block section. Only one train can occupy
a block section at a time. The occupation time depends on block system, signaling
system and safety technology [UIC/406]. The elementary occupation time consists of:
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• Time for route formation: tform

• Time the driver needs to discover the signal (visual distance): tview

• Time for approach the main signal: tapp

• Time it takes to travel the entire block section (journey time): tjourney

• Time for clearing the block section left behind. The train has to pass a contact
point or be at least one train length behind the signal: tclear

• Time for route release: trelease

The occupation time is shown schematically in figure 2.3. The time-way-line is
the front of the train. When all occupation times for a railway line are mapped in a
time-way graph, they form blocking time stairs.

Occupation time

Time for route formation

Time for visual distance
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Figure 2.3: Elementary occupation time

2.1.3 Journey time

This thesis makes use of the typical journey time for the computation of the sched-
uled waiting time. The typical journey time is defined by UIC [UIC/406] to be the
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time it takes for a train to run a certain distance according to line and rolling stock
characteristics plus a time supplement. This time supplement is usually about 3-5%
depending on the train model.

UIC also defines the timetable journey time to be the time given in the final
timetable. The timetable journey time includes the typical journey time, additional
time which result from market requirements (for example synchronization time, pro-
longed travel time of night trains) and additional time which result from timetable
construction constraints.

Some studies commented next in Chapter 3 use other definitions as mentioned by
UIC.

Hertel [Hert92] makes use of the term expected time spent on the line which consists
of the expected scheduled waiting time and the expected typical journey time.

Oetting [Oett05] uses the Beförderungszeit as the real running time which includes
the typical journey time, the scheduled and unscheduled waiting time.

Schwanhäußer [Schw81] uses the difference in typical journey time for the calcula-
tion of scheduled waiting time from overtaking. Gast [Gast86] modifies this expression
by including the signaling system and names this expression Bereichszugfolgezeit. This
is the time gap necessary between two trains for a second train to merge in between
them without generating any conflict for the following train. This is a better expres-
sion than the mean typical journey time difference since the signaling system is taken
into account.

2.1.4 The minimum spacing time

The minimum spacing time, ts, is the minimum time a train j can follow a train i
without reaching into conflict on the first common entering line section. In a blocking
time stair graph (time-way graph), the minimum spacing time can be found by moving
the blocking time stair of the following train j until it touches, but not overlaps the
blocking time stair of its descender train i, shown in figure 2.4.

On a single track line the minimum spacing time is measured at the point of the
line where the crossing trains pass the main signal out of the station, as shown in figure
2.5 [Brün92]. Train j can first leave the station after train i has passed the clearance
point and the green signal has been given. If train j is waiting next to the main signal
time for approaching it will be skipped. Time for viewing the signal is mainly shorter
than when running on the free line.

Figure 2.6 shows Happel’s [Happ59] definition of minimum spacing time for crossing
trains. This spacing time consists of following components:

• time for clearing after train i

• time for route release after train i

• time for route formation for train j
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ts, ij

Train i Train j

Figure 2.4: Minimum spacing time with unidirectional traffic

ts, ij

Train i Train j

Clearance point

Figure 2.5: Minimum spacing time for single track line with bidirectional traffic
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In this special case of a crossing Happel has skipped time for approaching the
signal. This yields only for halting trains. In the time for route formation for train j a
reaction time for the driver to register the signal is to be included. Happel’s minimum
spacing time explains the minimum time it takes before the halting train j can leave
the station after train i has arrived.

ts, ij

Train i Train j

Clearance point

tclear, i

trelease, i

tform, j

Figure 2.6: Minimum spacing time for crossing according to Happel

2.1.5 The minimum time necessary for a crossing

The minimum time necessary for a crossing (min tx) is a technical quantity based on
the infrastructure, signaling and safety system and rolling stock characteristics. This
is the minimum time needed to carry out a crossing without incuring any waiting
time from crossing. Figure 2.7 illustrates a conventionalized crossing where a train of
rank(2) has lower priority than a train of rank(1). Train of rank(2) is running into the
siding to meet the opposing train of rank(1).

The minimum time for a crossing consists of:
tr, 2 = tv→0 − tv is the addition in time for train of rank(2) because of slowing down
to halt (which is made out of: tv→0 − tv the running time difference for a halting and
not halting train)
trelease, 2 is the route release time for train of rank(2)
tform+view, 1 is the time for route formation and time for visual distance for train of
rank(1)
tapp, 1 is the time train of rank(1) needs for approaching the section
tjourney, 1 is the journey time for train of rank(1)
tclear, 1 is the clearing time for train of rank(1)
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min t
x

Train of rank(2)Train of rank(1)

tr, 2

tform+view, 2

t ac, 2

trelease, 2

tform+view, 1

tapp, 1

tjourney, 1

tclear, 1
trelase, 1

Figure 2.7: The minimum time necessary for a crossing

trelease, 1 is the route release time for train of rank(1)
tform+view, 2 is the route formation time for train of rank(2)
tac, 2 = t0→v − tv is the addition in time for train of rank(2) incurs because of the
acceleration

Note that train of rank(2) has a reaction time for viewing the signal which is mainly
shorter than the time for visual distance, since the train is halting in front of the signal.
For manual operated signal cabins the operator could theoretically handle the switches
to minimize the time each component needs. For an independent station a locking time
for crossing replaces the time lost because of retardation and route release for train
of rank(2). The locking time for crossing is the time the train of rank(2) needs for
entering the siding and slowing down to halt. This quantity depends mainly on the
length of the siding. According to Jernbaneverket this time is mostly 50-70 seconds
[Skar98].

2.1.6 Train model

For the calculations of waiting time it is not only necessary to have information about
the infrastructure, but also about the rolling stock that are supposed to run the line
in the future. The model that will be presented in the next chapter makes use of
blocking time stairs. The model input parameters from the different trains will be their
minimum spacing time. To achieve the minimum spacing time, technical information
about the train must be available such as haulage capacity, speed, mass, length and
brake system (for the retardation). Together with the infrastructure characteristics and



12 Fundamentals of capacity assessment in railway operations research

information about the halts of trains (station and minimum halting time), minimum
spacing times can be generated. To make it more surveyable, trains with similar
technical quantities builds the same train model.

2.2 Capacity definitions

There are several ways of defining capacity. UIC [UIC/406] refers to capacity as the
total number of paths in a defined window. Capacity can be divided into theoretical
and practical capacity of a line section. The theoretical capacity is a theoretical max-
imum expressed in terms of the maximum number of trains that can be calculated by
defining ideal circumstances [UIC/406].

The practical capacity, according to Schwanhäußer, is the most optimal for opera-
tion, where the profit is at its highest [Schw94]. Hohnecker has described the practical
capacity in this way: The practical capacity expresses the number of trains that passes
through a line section, according to the spacing time which depends on the train order
and train mixture depending on density and direction, further their individual rank, the
delays for the certain line and the quality level [Hohn95]. Bär et al. [Bär88] describes
railway line capacity to the capacity of a system is the production or throughput of a
special performance with respect to the available technology. The capacity is a stochas-
tic quantity. The maximum capacity is described as the capacity of a system where
all technical parameters are maximally exploitated. The theoretical capacity is a real-
ization of the stochastic capacity quantity.

Bär et al.’s definition fits Schwanhäußer’s definition of theoretical capacity. This
is the absolute maximum number of trains per time unit that is technically achievable
regardless any operational qualities. Hohnecker’s definition of the practical capacity
covers a wide range of limiting factors. His definition is vague about the referred quality
level. It could be the quality level with highest timetable stability or that quality level
that gives the highest profit for the operator/manager. These two quality levels must
not be the same. Schwanhäußer on the other hand defines operational quality to be
monetary.

2.3 Waiting time versus capacity

As described in the previous section, capacity defined as trains per unit time does not
express anything about the timetable or operational quality. Second, because of the
difference in geometry, topology and rolling stock etc. of the lines it makes it difficult
to compare the capacity number between the different railway lines. Capacity de-
pends on several parameters/factors. The most important parameters/factors are the
timetable quality and the operational quality. On one hand it is the scheduled wait-
ing time which affects the customer when choosing a form of transportation. When
the scheduled waiting time is increasing, the quality decreases. On the other hand it
is the buffer time constructed in the timetable which should buffer the unscheduled
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waiting time. If the buffer time is not large enough, unscheduled waiting time will still
be generated during operation. Both scheduled and unscheduled waiting times are
parameters that can be estimated and calculated and serves as a measure for quality
which makes it possible to make comparisons with other lines.

Scheduled waiting time arises during timetable construction whereas unscheduled
waiting time is generated during operation. The unscheduled waiting time is all of
the deviation compared to the timetable. Therefore unscheduled waiting time also
contains arrivals that are too early.

There is a close connection between unscheduled waiting time and capacity (trains
per time unit) on a railway line. Figure 2.8 illustrates the relation between the capacity
and the unscheduled waiting time. As the traffic load increases (trains per time unit
increases), the unscheduled waiting time increases rapidly. The closer the number of
trains an hour it gets to the theoretical capacity, the more queues there will be until
an infinite queue is reached.

Unscheduled
waiting time

Number of trains an hour
Cp Ctheo

Figure 2.8: The dependency between the unscheduled waiting time and capacity

In the next two subsections the basics of scheduled and unscheduled waiting time
will be explained.

2.3.1 Scheduled waiting time

Scheduled waiting time arises during time table constructions. In a market with several
train operators, or in a market with several train services, there is an optimal time
table for every train service/operator. This optimal timetable is the one that could
give the operator highest profit. If all these optimal timetables are coordinated by the
timetable constructor, several block occupational conflicts arise. After the decision
has been made as to which operator/train service is given first priority, the conflict
between the trains can be solved in different ways. The train not given first priority
can be:
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• placed in a siding if one is available.

• given longer journey time

• given earlier or later departure time than the train with first priority.

• dismissed if no other possibilities are available.

In some cases many operators do not know their optimal timetable. This might
be because of lack of knowledge of their market. If there is a difference in the ordered
timetable from the operator and their optimal timetable there will be loss of income for
the operator. This has no affect on the timetable construction process. The method
of timetable construction mentioned here follows a hierarchical procedure which char-
acterizes the asynchronous timetable construction. It is also possible to use a partial
hierarchical priority procedure by introducing certain criteria for when a priority order
can be shifted during the timetable construction. The DB AG uses conversation as a
method to solve conflicts between the different operators involved in addition to the
strict hierarchical priority list. These conversations makes it possible to shift priority
without following any certain criteria.

In many railway timetables international train routes and important connections
and cyclic departures must be taken care of. The waiting time for designing a cyclic
timetable or the waiting time for a connection between two train services is called syn-
chronization time [DB405.0101]. As wll, environmental protection can cause waiting
time. For example, a line can have restrictions for noise-intensive train movements.
The timetable designer is restricted to an upper limit of the number of trains traveling
during certain times of the day. The more constraints a time table has, the more
waiting time there will be, and the lower the capacity becomes [UIC/406]. Wether
the synchronization time and the waiting time are due to environmental or other con-
straints is not part of the general waiting time due to block occupational conflicts.

The following figures 2.9-2.13 illustrates common situations where scheduled wait-
ing time occurs [DB405.0101].

In figure 2.9 train of rank(2) has a scheduled halt in the siding. An overtaking
train of higher priority (rank(1)) has to pass before train of rank(2) can merge back
into the line. Train of rank(2) is given a later departure time. The time difference
from the requested departure time and the scheduled time is equal to the scheduled
waiting time. The same condition yields if train of rank(2) has no halt in the siding.
Then the scheduled waiting time increases compared to the halting situation.

Figure 2.10 illustrates a train of rank(2) that is about to traverse a junction. Train
of rank(1) has a later departure time than train of rank(2). The departure time
difference between the trains still leads to occupational conflicts of the first block
ahead. Train of rank(2) is given a new and later departure time.

Another possible solution for the situation in figure 2.10 would be to let train of
rank(1) incur a waiting time if the operator makes an agreement. In figure 2.11 train
of rank(1) is given a later departure time. The scheduled waiting time in this case is
smaller than is the first case.
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Figure 2.9: Scheduled waiting time from overtaking
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Figure 2.10: Train of rank(2) incurs later departure time
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Figure 2.11: Train of rank(1) incurs later departure time
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Figure 2.12: Train of rank(2) incurs longer journey time
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In figure 2.12 a train of rank(2) catches up with train of rank(1) within a section.
Train of rank(2) has a lower priority and will be slowed down. The time additive
caused by the slowdown is in this case the scheduled waiting time.

Train of rank(2)Train of rank(1)

thalt, 2

tw

Requested
departure

Requested departure

Scheduled
departure

Scheduled departure

Figure 2.13: Scheduled waiting time from crossing

Figure 2.13 illustrates a train of rank(2) that incurs waiting time because of an
opposing train of higher priority. Similarly to figure 2.9, the scheduled waiting time
is the difference between the requested departure time and the scheduled departure
time.

2.3.2 Unscheduled waiting time

Unscheduled waiting time is also referred to as a econdary delay which arises during
operation. This waiting time is not incorporated in the timetable. Delay in general
can be divided into different types as shown in figure 2.14:

• tPD: Primary delay on arrival to the area of survey.

• tCD: Source delay during the time spent in the area of survey. This is an
external delay caused by for example trouble in signals, braks and other technical
interruptions and commute hour traffic.

• tSD: Secondary delay is the delay a train receives from a delayed train or from
itself when it is delayed.
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Node NodeStation

Area of survey

tSD

tPD

tND

tCD

Figure 2.14: Delay in area of survey

• tGD = tPD + tCD + tSD: Gross delay is the sum of primary-, secondary- and
source delay.

• tND: Net delay leaving the area of survey, is the gross delay reduced by the
running and dwell time supplements during the time spent in the area of survey.

In other references [Higg98] secondary delay is referred to as Knock-on-delay. The
term Delay due to late connections consists of synchronization time, delay caused by
block occupational conflicts and time due to set allocation.

In 1974 Schwanhäußer investigated the distribution of primary delay. He assumed
a combination of a one point distribution and an exponential distribution [Schw74].
His assumption is confirmed by [Eng02, Heis78].

The primary delay of a line is a random variable TPD with a combined discrete
and continuous distribution function. The amount of delayed trains is given by pPD

and the amount of non delayed trains by 1− pPD. This forms a discrete distribution:

P (TPD = 0) = 1 − pPD and P (TPD > 0) = pPD

The delay of the delayed trains is separately modeled by an exponential distribution
with parameter λ. This is a continuous distribution on the form:

FTP D (t) =

{
0 ; t < 0,

1 − pPD e−λ·t ; t ≥ 0

The expectation of the delay distribution function is:

E[TPD] =
pPD

λ
(2.1)

This is the mean primary delay of all trains running the line. The mean primary
delay of the delayed trains then becomes 1/λ.

At pPD = 1 all trains are primary delayed and the probability distribution function
turns into a continuous exponential distribution function. In the opposite case, pPD =
0 builds a discrete one point distribution since all trains are on time.

In figure 2.15 the probability distribution function for primary delay is illustrated.
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Continuous distribution for t > 0

Figure 2.15: The probability distribution function for primary delay of delayed trains

The probability density function for primary delay of the dalyed trains is given by:

f(t) =

{
0 ; t < 0,

λ e−λ·t ; t > 0

The density function of the exponential distribution function is illustrated in figure
2.16.

f(t)

t

Figure 2.16: The probability density function for primary delay
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The probability density function of the delayed trains illustrates that there are far
fewer large primary delays than there are small primary delays, which makes sense for
mixed railway traffic.

2.3.3 Queueing theory in the railway

Queueing theory is a method suitable for the calculation of both the scheduled and
unscheduled waiting time. In general, a queueing system consists of an input and
output stream. The input stream describes the interarrival time between the trains.
Figure 2.17 illustrates an input stream of trains arriving in the waiting space, before
getting served. The serving time is the minimum spacing time that makes the output
stream.

Input Waiting
space

OutputService space
Source Sink

Queueing system

Figure 2.17: A queueing system

The most common way in describing a queueing system is done by use of the
Kendall notation:

A/S/s/m

where

A : arrival process

S : service time process

s : the number of servants

m : size of the waiting space

Both the arrival process and the service time process can be treated as stochastic
variables. The arrival and service process can be described differently:

M : Markowian process, the stochastic variables are independent exponential dis-
tributed with parameters λ (arrival rate) and μ (service rate). Often one uses
the Poisson distribution to describe the interarrival time for mixed train traffic.
Here the variance coefficients for arrival rate VA and service rate VS are equal to
1 [Schw74, FeHi96].
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Ek : The Erlang process, is a combination of k independent exponential distributions,
with parameters k and λ. The parameter k is a natural number and λ a real
number. The Erlang distribution is also a stochastic process. If k takes a real
number above zero, it becomes the general gamma Γ(k) distribution.

D : In the Dirac process, the interarrival- and service time is constant point distribu-
tion. This means that the variances VA or VS are equal to 0. This process can
be found in the arrival and departure of shuttle-trains, for example at airports
(which has a homogeneous traffic flow).

GI : General-independent process, the independent stochastic variable has no depen-
dencies to other processes [Wako85].

G : General process, the stochastic variable has no restriction at all. For the unsched-
uled waiting time calculation the arrival process is strongly dependent on the
timetable relations.

The size of the waiting space decides how many trains are allowed to wait for
service. In a railway queueing system the waiting space is set to be m = ∞. If the
waiting space was a fixed number, (given number of available tracks or IRJ’s) and
the arrival stream was high, trains could be lost out of the system (system with loss,
m = k) which is not possible. If the real waiting space at a node is not large enough,
a train can wait at a previous node.

The rate of arrival λ, which is the number of trains by time or the inverse of the
mean interarrival time E[TA] (same as expected inter arrival time):

λ =
1

E[TA]

The rate of service μ, which is the number of trains by time or the inverse of the
mean service time E[TS]:

μ =
1

E[TS ]

The traffic load ρ, which is the arrival rate divided by service rate, or the mean
service time divided by the mean interarrival time:

ρ =
λ

μ
=

E[TS]
E[TA]

Queueing systems are only stable as long as λ
μ < 1. If the load ρ reaches above

1, it will come to infinite queues. To solve traffic problems, one is most interested in
calculating the queue. The queue is described by the mean waiting time for a customer
in the queue E[TWq], and the length of the queue E[LNq] (average number of waiting
customers in the queue). Both are treated as stochastic variables. Little’s formula
gives their relation:

E[TWq] =
E[LNq]

λ
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Little’s formula can also be used for the entire queueing system:

E[TWs] =
E[LNs]

λ

where E[TWs] is the average amount of time a customer spends in the system, and
E[LNs] is the average number of customers in the system [Ross00, Fisc90]. The sum
of waiting time spent by all customers during time of survey will be:∑

TWq = E[LNq] · T



Chapter 3

Past studies

This chapter is divided into six sections. In the first sections 3.1-3.3 some models de-
scribing capacity are introduced. These sections provide an insight that the capacity
number alone is not sufficient enough for investigation of line capacity. Capacity is
strongly related to scheduled and unscheduled waiting time, whose models are intro-
duced in section 3.4 and 3.5 respectively. Finally a summary of the reference research
is given in section 3.6.

3.1 Deterministic methods for describing capacity

How to achieve a fluid railway operation has always long been a current theme. In 1952
Dilli [Dill52] estimated the buffer time between steam locomotive trains. The actual
capacity for a certain railway line can be found from the timetable. The capacity
number is given by:

C =
T

tb + ts

where
T = time of survey
tb = the mean buffer time between the trains
ts = the mean spacing time between the trains

The buffer time should be big enough to prevent delay. Dilli estimates the mean
buffer time on different bottlenecks to minimize delay during operation. During oper-
ation the difficulty, w, for a train is recorded:

w =
tPD

tb, sched

where



24 Past studies

tPD= mean primary delay
tb, sched= scheduled buffer time

The number of difficulty S makes the sum of all train sequences through the bot-
tleneck:

S =
∑

train sequences

tPD

tb, sched

If the number of difficulty:
S = 1 ; all delays are equal the scheduled buffer times
S > 1 ; delays are larger than the scheduled buffer times and queues arise
S < 1 ; delays are smaller than the scheduled buffer times

Dilli suggests that the number of difficulty must be somewhere between 0 − 1 to
satisfy operational quality. The closer to 0, the less delay there will be. He calls the
buffer time the tolerance of the schedule. He explains the importance of calculating
this number for the purpose of improving the existing timetable and for dimensioning
of infrastructure. His investigation advises a buffer time of 5.5 minutes for a tolerant
operation.

Dilli’s method was a good and clear method for the registration of delays, yet it
was also very time consuming. The day of survey should be representative for the
whole year and therefore is chosen very carefully. This aspect makes Dilli’s analysis
risky.

Adler [Adle67] defines the chained exploitation rate in his dissertation. The chained
exploitation rate is the amount of time that a railway line is occupied:

chained exploitation rate =
T − ∑

tb
T

where
T = the time of survey∑

tb = the sum of the buffer times within the time of survey

With means of time-way-graphs the exploitation rate can be increased by changing
train orders. The buffer times can be monitored directly from the time-way graphs.
The bottleneck of the line is identified for which section the sum of the buffer times
are smallest and the exploitation rate highest.

Adler’s method is also a manual time consuming empirical method. Which ex-
ploitation rate is acceptable for a given line and timetable is based on experience.

UIC [UIC/406] presents a method for the calculation of the capacity consump-
tion. UIC’s capacity consumption method is a simplification of the compression of
railway paths which Adler used in his dissertation [Adle67]. This method takes into
account that the level of capacity consumption is the only value that can be measured
objectively. The method was developed with the aim of a common definition and
methodology to express capacity on an international level between different countries.

Figure 3.1 illustrates the original timetable for a line.
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60 min.

Figure 3.1: The original timetable for a line

The compressed form of this timetable is illustrated in figure 3.2. To compress a
timetable means to chain the train paths in the schedule. Figure 3.2 illustrates the
capacity exploitation for exactly this schedule and the remaining time which can be
expressed in percent.

60 min.

Capacity
exploitation

Remaining
time

Figure 3.2: The original timetable has been compressed

The remaining time consists of buffer time, supplement for maintenance, available
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and lost capacity. It is possible to calculate the available capacity by adding trains
into the original timetable. After compressing the enriched timetable, the difference
between the new capacity exploitation and the original capacity exploitation makes the
available capacity. The remaining time components cannot be separated into buffer
time, supplement for maintenance and lost capacity with this method. Other methods
must then be used, like for example the STRELE formula [Schw74] for the investigation
of the required buffer time. The UIC capacity consumption method is easy to carry
out, but it does not take any quality parameters into account.

Janić [Jani84] performed a capacity study on single track line. For a given train
mix the rates of traffic in both directions are varied as complements. In figure 3.3 the
traffic load ρ1 of direction No. 1 is shown on the horizontal axis versus the capacity
on the vertical axis. In this study the traffic load is interpreted as:

ρ1 = n1
N

where
n1 =the number of trains scheduled in direction No. 1
N = the number of trains scheduled in both directions together

Capacity [trains/24 h]

1

Traffic load in direction no. 1

65

70

75

80

0.1 0.3 0.5 0.7 0.9

Figure 3.3: Capacity versus traffic load in one direction on a single track line

The capacity varies according to the traffic distribution of the particular directions.
For example when ρ1 → 1.0 or ρ1 → 0 the trains run only in one direction, the capacity
has the highest values for a given number of N . The lowest capacity is achieved with
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bidrectional traffic and equally distributed traffic flow in each direction at ρ1 = 0.5.
Janić emphasizes that the capacity is very low on single track line compared to

double track line with unidirectional traffic. The graph in figure 3.3 is based on an
ideal operational situation with no delay. Lower numbers for capacity will probably
be reached if delay will be taken into account.

3.2 Capacity described by fundamental diagrams

There are many ways how capacity can be measured and expressed. In road trans-
portation, capacity can be described by use of fundamental diagrams.

In figure 3.4 a the flow1 of vehicles an hour versus density is illustrated. By an
increasing flow of vehicles, the density will also increase until a certain point. Here
the capacity will drop as will the vehicle’s speed. The speed will decrease until the
vehicle density has reached its maximum and traffic will then stand still. In figure 3.4
b the vehicle velocity versus density is illustrated. By increasing vehicle density the
slower the vehicles will have to drive. At a certain density queue formation starts, and
velocity drops drastically [Scha06].

1.0 1.0

1.0

0.5 0.5

0.5

5.0

2.5

a b

Density Density

Flow Velocity
Capacity drop

Queue

Figure 3.4: Fundamental diagram for road transportation. Figure a: Flow versus
density. Figure b: Velocity versus density.

In figure a a linear dependency is made between the flow and density given by:

Flow = vo · Density (3.1)

With this equation the optimal velocity for a maximum flow, Vo can be found.

1In fundamental diagrams the term flow is used. Both terms flow and capacity have the same
units: vehicles/hour.
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Potthoff [Pott80] makes use of the fundamental diagram from road transportation
to estimate the maximum flow of trains on a certain railway line. Figure 3.5 illustrates
a plot flow versus density on a railway line. The flow and density is measured every
hour during a period of 24 hours. The spreading of the measuring is explained by
the daily traffic profile that has two peak periods, one in the morning and one in the
afternoon. Through linear regression a parable is placed through the mean flow and
mean density, having a tangent, as illustrated in the graph. From this parable the
maximum flow and density can be estimated. Potthoff points out that although this
still is a rough estimation, it is useful for quick analysises. The main drawback with
analysis of railway traffic flow expressed in fundamental diagrams is that the timetable
quality in terms of waiting time is not explicitly expressed.

Density

Flow

Mean Density

Mean Flow

Max. Flow

Max. Density

Figure 3.5: Fundamental diagram used by Potthoff

Hertel [Hert92] points out that railway traffic does not operate like road transport
where vehicles run with distances equal to the relative braking distance. Instead, rail-
way traffic operates with a separation distance to ensure safety and security. Therefore
railway traffic does not obey the same relations as road traffic does. The relations valid
for road traffic has to be modified to yield for railway operation. The fluidity of railway
traffic in dependent on its density. With use of the approximation given in equation
(3.1) Hertel describes this dependency with use of queueing theory. He describes the
mean traffic performance with:

E[Q] = E[Lb] · v (3.2)
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where
E[Lb] = mean train density
v = mean velocity

For the comparison of different lines, Hertel standardizes the equation (3.2) by
using a unit length of 1 km. Equation (3.2) can then be expressed as:

E[Q] = E[Tjourney] · N

T
· unit length

E[Tv]
(3.3)

where
E[Tjourney] = the expected typical journey time
N = the number of trains running during the time of survey
T = the time of survey
E[Tv] = the expected time spent on the line

The expected time spent on the line consists of the expected scheduled waiting
time, E[TWF ] and the expected typical journey time. Equation (3.3) can now be
rearranged to:

E[Q] =
E[Tjourney ] · N

T

E[TWF ] + E[Tjourney ]
(3.4)

By the standardization to a unit length of 1 km in equation (3.4) is referred to as the
mean standard traffic performance (Mittlere normierte Verkehrsleistung) in equation
(3.5):

E[QN ] =
ρ

1 + E[TWF ]/E[Tjourney]
(3.5)

Equation 3.5 gives:
ρ = 0 then E[QN ] = 0
ρ = 1 then E[QN ] = 0
0 < ρ < 1 then 0 < E[QN ] < 1

Figure 3.6 illustrates the mean standard traffic performance. The E[QN] takes
values in the range [0, 1]. The shape of the graph for three different queueing systems
are illustrated in figure a. Increased E[QN] is achieved for systems tending to cyclic
behavior. When the traffic load increases above the maximum point of the graph,
queues arise. By further increase (up to ρ = 1) of the traffic load, the traffic will run
slower and finally stop. Then there is an infinite queue with infinite waiting time. For
different lines investigated Hertel found an upper limit for the traffic load to be in the
range of 0.5 < ρ < 0.7.

The relative timetable sensibility (Relative Fahrplanempfindlichkeit) EMPF is also
illustrated in figure 3.6. The EMPF is the changes to mean waiting time due to
merging or overtaking for a given train model with dependency of the traffic load.
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Figure 3.6: Graph a: mean traffic performance as a function of the traffic load. Graph
b: the relative time table sensibility as a function of the traffic load. Graph c: The
optimal traffic load for operation.

EMPF =
δE[TW ]

δρ · E[TW ]
(3.6)

Figure 3.6b illustrates that there is an optimal traffic load that gives a stable timetable
due to changes in waiting time. This is given as the minimum point of the graph. Hertel
explains that beyond this traffic load very little timetable quality is gained. For an
optimal train operation the traffic load is advised to be between the upper limit given
by the E[QN ] and the lower limit given by the EMPF, as illustrated in figure 3.6c.

Hertel makes no clear distinction between scheduled and unscheduled waiting time
in his model. In equation (3.5) and (3.6) only the scheduled waiting time is explicitly
expressed as timetable quality. One possibility would be to include the unscheduled
waiting time in the calculations. Which effect this change has on the model has not
been investigated so far.

Schwanhäußer investigates the compatability of the fundamental diagram for road
transportation with railway transportation [Schw90]. In figure 3.7 the most significant
differences from road transportation are illustrated.

For railway traffic underlying a main- / distant signal system, a minimum distance
must be held between the trains. By means of simulation the progress in flow ver-
sus density was investigated for a railway line. A maximum flow was not found, as
illustrated in figure a. I figure b the linear dependency between the flow and velocity
approximation from the road transportation given in equation (3.1) was investigated.
Figure b illustrates that there is no linear dependency between the parameters. Here-
with emphasizes Schwanhäußer that the railway traffic does not obey the same de-
pendency between flow and density. Therefore it is impossible to establish the same
sort of fundamental diagram for railway traffic underlying a main- / distant signal
system. Schwanhäußer’s statement is in accordance with Hertel’s observation that
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Figure 3.7: Fundamental diagram for railway transportation. Figure a: Flow versus
density. Figure b: Velocity versus density.

railway traffic does not progress as road transportation. Schwanhäußer’s statement
also confirms that Hertel’s approximation given in equation (3.2), where the linear
dependency between flow and velocity is being modified, must be used with care.

3.3 Describing capacity by economical relations

The practical capacity, in the ideal case, might be set to the point where the profit is
at its highest. Often compromises are made, and the traffic load is set higher than in
an optimal situation. If the track is overloaded, the operator risks losing customers.
In figure 3.8 [Schw99] costs and revenue is related to the number of trains an hour
running on a line section. This relation was first time mentioned by Schwanhäußer
in [Schw87]. The fixed costs are the investments in infrastructure. The variable costs
are costs connected to the number of trains running on the line. These costs are
maintainance of the infrastructure, trains and energy costs. In a market with high
transport demand that is not saturated, the income increases linearly with the number
of trains that are running on the line section. This under the assumption that all trains
are filled equally with passengers. Is the number of trains low, there will probably be
no queues. As the number of trains increases waiting time arises, and the variable
costs increase progressively. The waiting time is a time dependent cost and consists of
scheduled and unscheduled waiting time. The scheduled waiting time arises because
the more train paths that are requested in a schedule, the more often a route has to
be replaced. The unscheduled waiting time arises because the more trains running on
the line, the higher the probability will be for delay. As the number of trains increases
even more, the waiting time increases drastically until it reaches infinity. This is the
theoretical maximum number of trains, which is not realistic. A certain amount of
waiting time seems to be acceptable in the market, but if the waiting time becomes
too high, the operator loses customers and income. There is an area of profit blended
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out in the figure. Where this area is at its widest, the profit is at its maximum. This
point is referred to as the optimal number of trains. If the number of trains is lower,
the railway line section is underloaded. If the number of trains is higher than optimal,
the line section is overloaded [Schw99].

Costs and
revenue

Np Ntheo

Fixed costs

Variable costs

Queue dependent
costs

Total costs

Max. Profit

Revenue

Profit area

Number of trains

Figure 3.8: Costs and revenue related to the number of trains on a line section

Schwanhäußer defines the traffic flow in gross train mass an hour, mgt, which is
another expression of capacity, number of trains an hour. The product of the real
journey velocity vreal and the traffic flow makes the Transport force:

FTr =
mgt

T
· vreal (3.7)

The real journey velocity is based on the typical journey time, tjourney and both
scheduled tWF and unscheduled tWB waiting time and is given by:

vreal =
1000
60

· l [m]
(tjourney + tWF + tWB)[s]

(3.8)

Oetting [Oett05] goes further with Schwanhäußer’s assessment and develops the
model for the evaluation of railway line capacity. In her dissertation she relates physical
quantities like length of the railway line, masses of the trains, typical journey time and
waiting times to the profit. The profit is given as:

Profit = Revenue − Costs (3.9)

The costs and revenue depending on the number of trains running on the line is
illustrated in figure 3.8.

According to figure 3.8 the total costs for a line can be expressed as:

Ctotal = c0 · lline + c1 ·
∑
Z

mZ + c2 ·
∑
Z

(mZ · treal) (3.10)
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where
mZ = the mass of the train model
lline = the length of the line
treal = the real running time (equal the denominator in equation (3.8))

The first part of equation (3.10) illustrates the fixed costs depending of the length
of the line. The second part is the sum of all trains running on the line which makes
the linear costs. The third part is the variable costs which is time dependent.
In figure 3.9 Oetting illustrates the profit given in equation (3.9). The subtraction of
the total costs from the revenue makes the profit, illustrated by the dotted function.

Costs and
revenue

Total costs

Max. Profit

Revenue

Profit area

Traffic load [ ]ρρoptimal

Profit

Figure 3.9: Profit of a railway line

The fixed costs (infrastructure) and the variable costs (number of trains and real
running time) are modeled as a proportional ratio to the total costs given in equation
(3.11):

Ctotal ∼ m0 · lline

v0
+

∑
Z

(mZ · treal) (3.11)

Equation (3.11) does not directly express the linear costs (depending on the num-
ber of trains). Oetting concludes that the linear costs are small compared to the fixed
and non linear costs and are therefore included into these two components. This as-
sumption is a crucial point in her work.
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The ratio m0
v0

in equation (3.11) is an equivalent for the fixed costs of the infras-
tructure given as:

m0

v0
=

CFix

lline
·
∑

Z(mZ · treal)
CV ar

(3.12)

CFix

CV ar
=

m0·lline

v0∑
Z(mZ · treal)

(3.13)

The real running time treal of a train model on the a line is given in equation (3.14):

treal = tjourney + tWF + tWB (3.14)

The profit in equation (3.9) for one train model and for one specified traffic load
can be described as:

PZ = RZ − CZ (3.15)

This can be split up into:

PZ = cr,Z · rZ − ck,Z · cZ (3.16)

where
cr,Z = proportionality constant for revenue of one train model given in [ euro

t·km ].
ck,Z = proportionality constant for costs of one train model given in [ euro

t·min. ].
rZ = revenue equivalent of one train model given in [t · km].
cZ = cost equivalent of one train model given in [t · min.].

The revenue RZ of one train model is given by:

RZ = cr,Z · mZ · lline · fN (3.17)

where fN is a unit less function given in equation (3.18):

fN =
tjourney · ZBjourney

(tjourney + tWF ) · ZBjourney + tWB · ZBWB
(3.18)

The time evaluation factor ZBjourney for the typical journey time and the time
evaluation factor ZBWB for the delay during operation are subjective quantities.

Multiplying the first equation (3.16) with cr,PNV

cr,PNV
where cr,PNV is the proportional-

ity constant for passenger trains and then multiplying only the second part with cr,Z

cr,Z

gives:
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PZ = cr,PNV ·
(

cr,Z

cr,PNV
· rZ − ck,Z

cr,PNV
· cr,Z

cr,Z
· cZ

)
(3.19)

The following ratio is introduced for the the revenue and costs for one train model:

cR,Z =
cr,Z

cr,PNV
and cK,Z =

ck,Z

cr,Z

Inserting cR,Z and cK,Z into equation (3.19) and rearranging it gives the profit for
one train model:

PZ = cr,PNV [cR,Z · rZ − cR,Z · cK,Z · cZ ] (3.20)

The sum over all train models for the part of the product within the brackets in
equation (3.20) is called the transport momentum difference Δp:

Δp =
∑
Z

[cR,Z · rZ − cR,Z · cK,Z · cZ ] (3.21)

The transport momentum illustrates the maximum profit equivalent in figure 3.9.
With this Oetting has shown how mass and real running time is related to the profit
of a railway line without having exact information about the real costs and revenue
of the operator. This relation is of interest when dimensioning infrastructure. The
drawback of this model are the abstract parameters defined which makes the model
less handable. The final question is whether the globalization of the parameters holds
for any railway line to be investigated.

3.4 Models describing scheduled waiting time

All of the models mentioned in this section are suited for short- and long term planning
of infrastructure. These models have the strength in being time table independent,
compared to other timetable dependent models. This means that the future timetable
is not known, which is an effort for long term planning. Models that need a known
time table should be preferred in optimization of todays schedule and to solve smaller
infrastructural problems. The time table independent models usually also work for
known time tables. For future planning of infrastructure the quantity of waiting time
generated is a useful measure for dimensioning infrastructure. There are not so many
methods that clearly distinguish between the calculation of scheduled and unsched-
uled waiting time. The following two sections present some models that concentrate
on scheduled waiting time.

3.4.1 Analytical models for scheduled waiting time calculation

Potthoff makes an estimation of the number of crossings for the entire line [Pott62].
The number of crossings builds the basis for the calculation of scheduled waiting time
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from crossing. At first Potthoff calculates the theoretical distance between two cross-
ings.

Fast train

Slow train

Fast train 1

Fast train 2

T

t1

t2

dx

Figure 3.10: Theoretical distance between two crossings

Figure 3.10 illustrates the distance dx with it’s respective time T between two
crossings. The time can be described by:

T = t1 + t2

Inserting the mean speed from train 1 (first crossing) and train 2 (second crossing)
on the actual section with t1 = dx/v1 and t1 = dx/v2 gives:

T =
dx

v1
+

dx

v2
(3.22)

Solving for dx in equation (3.22) gives the theoretical distance between two crossings
according to Potthoff:

dx = T ·
(

v1 · v2

v1 + v2

)
(3.23)

The time T consists of the minimum spacing time and buffer time.

To obtain the mean distance between two crossings in equation (3.23) the mean
values of the trains velocity and their buffer time for the entire line must be inserted.
This is necessary for the calculation of the total number of crossings for the entire
line. The mean distance between two crossings can be obtained by either taking
the arithmetical mean for every section or by using global values for the entire line.
According to Potthoff the number of crossings for the entire line is achieved by dividing
the length of the entire line by the mean distance between two crossings and then
multiplying it with the number of trains in one direction. Then the number of crossings
can be expressed as:
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nx = n2 · lline

dx

(3.24)

This function depends on the number of trains n2 in one direction and the density of
opposing trains from equation (3.23). The density is given by the sum of the minimum
spacing time and buffer time.
The distance a train of rank(2) can run is expressed analogous to equation (3.23)

dx,2 =
tb,11 + ts,11

1/v1 + 1/v2
(3.25)

Where v1 and v2 is the mean velocity for the entire line for train of rank(1) and
rank(2) respectively. The mean minimum spacing time is applied when calculating
the number of crossings on the entire line. Inserting dx,2 from equation (3.25) into
equation (3.24) gives:

nx =
lline · n2 · (1/v1 + 1/v2)

tb,11 + ts,11
(3.26)

Where the number of trains of rank(2) is given by n2 = T/(tb,22 + ts,22).
When Tjourney1,line and Tjourney2,line is the typical journey time for the entire line

respectively for train of rank(1) and rank(2), then the number of crossings can be
expressed as:

nx =
n2 · (Tjourney1,line + Tjourney2,line)

(tb,11 + ts,11)
(3.27)

Inserting the number of trains of rank(1) n1 = T/(tb,11 + ts,11) equation (3.27)
becomes:

nx =
n1 · n2 · (Tjourney1,line + Tjourney2,line)

T
(3.28)

If the typical journey time for train of rank(1) and rank(2) is equal and the number
of trains in each direction is equal, then equation (3.27) can be expressed as:

nx =
n2 · 2 · Tjourney, line

T
(3.29)

The number of crossings forms a function depending of n2. The number of cross-
ings can reach infinity according to Potthoff’s estimation. In practice the number
of crossings will never reach infinity since infinite queues will arise before this stage.
Therefore Potthoff’s estimation only yields for small numbers of trains in one direction.

Schwanhäußer presents in [Schw81] an analytical method for the calculation of
scheduled waiting time from overtaking. On a double track line with mixed unidirec-
tional traffic freight trains with lower speed and lower priority than passenger trains
incur waiting time from overtaking. This method is based on an exponentially dis-
tributed buffer time between the faster passenger trains. Figure 3.11 illustrates the
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buffer time between two faster trains that is exactly necessary for a slow train to merge
in between them. The buffer time in this case is equally the minimum spacing time
for a fast train to follow a slow train (ts,SF ).

Slow trainFast train

tjourney, SF
t = ideal ts, SF b, FF

Station i Station +1i

Figure 3.11: Ideal buffer time for overtaking

These sets of buffer times that makes a slow train reaching the next, second, third
and so on station are called the ideal buffer times given by:

ideal tb,FF = ts,SF + m · Δtjourney

where
m = 0, 1, 2, 3, ....
Δtjourney = the mean typical journey time difference between the slow and fast train
(tjourney,SF ) given by:

Δtjourney =
l

VS

− l

VF

(3.30)

Schwanhäußer differs two cases from each other. First the case when the buffer time
between the fast train is smaller than the minimum spacing time ts,SF , is the condition
for the calculation of the mean waiting time for merging. In the second case when the
buffer time between the fast trains is larger than the minimum spacing time, this gives
the condition for the calculation of the mean waiting time for when overtaking occurs.
The entire waiting time for the entire line is then given by the product of the mean
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waiting time and the number of cases where an overtaking occurs. The number of
overtakings on the entire line according to Schwanhäußer is:

no = nS ·
(

lline−max l

l

)
·
(

1 − e
−Δtjourney

tb,F F

)
(3.31)

where
nS = the number of slow trains
lline = the length of the entire line
max l = the longest section of the line
l = the mean section length

The product in equation (3.31) consists of three factors:
The first factor is the number of slow trains to be included into the timetable.
The middle factor is the number of stations on the line.
The third factor is the probability for overtaking in one station.

Gast uses Schwanhäußer’s assessment in his thesis [Gast86]. He substitutes the
mean typical journey time difference by the Bereichszugfolgezeit, Δb, which is the time
gap needed for a slower train to reach the next station. This is a better parameter
than the mean typical journey time difference since the signaling system is taken into
account. The number of overtakings according to Gast becomes:

no =
∑

station

(nS · nF )
N

·
(

1 − e
− Δb

tb,F F

)
(3.32)

where
N = the total number of trains running on the line
nF = the number of fast trains

The first part of the product in equation (3.32) is the probability for the train
sequence slow train followed by a fast train.
The last part is the probability for overtaking in one station.
This is summated for every station on the line.

With this formula, Gast makes an attempt to determine the number of overtak-
ings for each station, which indicates whether there are enough sidings available at a
particular station on the line investigated.

The number of overtakings on a line according to Gast given in equation (3.32)
is compared to the number of overtakings on a line according to Schwanhäußer given
in equation (3.31). The factors building the number of stations on the line and the
probability for overtaking in one station are approximately the same. This results in
that:

nS �= (nS · nF )
N

(3.33)
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Gast’s definition of the probability for the train sequence slow train followed by a
fast train is not in accordance with the definition of the probability of train sequences
for timetable independent calculations given in equation (3.34):

pij = pi · pj =
ni

N
· nj

N
(3.34)

where
pij = the probability for a train sequence train i followed by train j
ni and nj the number of train i and j respectively
N = the total number of trains

The expected number of train sequences can be described by:

nij = pi · pj =
ni

N
· nj

N
· Ntrain sequences (3.35)

where
Ntrain sequences = the number of all train sequences

Given that i is the slow train and j the fast train. If the number of train sequence
is the same as the entire number of trains running the line, equation (3.35) becomes
equal to the first part of the product in Gast’s equation (3.32). The second part in the
product is the probability for a slow train to incur an overtaking by a fast train. The
probability for a slow train to be overtaken in one station is to be multiplied with the
number of slow trains and not the number of train sequences to achieve the number of
overtakings. This might be the point where Gast’s assessment for the calculation of
the number of overtakings on a line fails.

3.4.2 Queueing theory for scheduled waiting time calculation

In 1978 Schwanhäußer presented a method for dimensioning railway junctions [Schw78].
This method calculates the expected scheduled waiting time. He decomposes the
junction into single channels, thus IRJ, as described in 2.1.1. He makes use of the
Pollaczek/Chintschin’s formula [Ross00] for waiting time for a M/GI/1/-queue:

E[TW ] =
λE[T 2

S ]
2(1 − λE[TS ])

(3.36)

where TW is the waiting time in queue and TS is the service time. Schwanhäußer
modifies this formula to:

E[TW ] =
ϕλE[T 2

S ]
2(1 − ϕλE[TS ])

(3.37)

by introducing the chaining factor ϕ defined by Potthoff [Pott62].

ϕ =
Nϕ

Nall
(3.38)
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where
ϕ = the probability of train sequences that rise conflicts
Nϕ = number of chained trips
Nall = complete number of trips

The inverse of the chaining factor, (1/ϕ), is the number of channels that give ser-
vice at the same time in a junction.

Wakob goes further with Schwanhäußer’s work [Schw78]. In his thesis, the sched-
uled waiting time has been calculated for an IRJ, using a GI/GI/1/∞ -queueing model
[Wako85]. This makes sense under the assumption that the different operators have
ordered their routes independent of other operators. The arrival stream of trains and
their service time then becomes stochastic and independent. This queueing model has
no analytical exact solution. He uses four approximations to approach the solution for
the GI/GI/1/∞ system. He ends up with a Erlang distribution which is indepen-
dent and gamma-distributed. He makes 5 approaches for estimating the parameters k
and l in Ek/El/1/∞-queue. Page has calculated the exact values for k and l, which
Wakob uses [Page72]. Wakob also compares his result with the approximation formula
of Gudehus for the same system [Gude76]. For a variation coefficient of the arrival
stream VA, equal 1, Wakob’s estimation for the expected waiting time becomes equal
to Gudehus approximation. Wakob’s formula works best in the range where the traffic
load ρ is between 0.3-0.7, where most train traffic usually is. Wakob’s approximation
is an improvement compared to Gudehus’ approximation, which is only suitable when
ρ is approaching 1, called a Heavy-Traffic-Approximation. Wakob’s approximation
makes it possible to identify the bottleneck in a rail junction or node.

Schwanhäußer’s and Wakob’s models calculate the waiting time that arises by solv-
ing the conflicts between two trains (train-couples) at a time on the basis of the min-
imum spacing time. Schwanhäußer’s and Wakob’s models hold for systems with low
traffic load where ρ << n and is referred to as Light-Traffic-Model. With high traffic
load these models are no longer accurate. Wendler [Wend99] makes an attempt to im-
prove these models by expanding to train-triples to solve some problems more exactly.
For example, in branch-off points sometimes the inequality of the minimum spacing
times of a train-triple is not fulfilled. In such a case the classic queuing models do not
operate correctly. Wendler develops in his dissertation a Light-Heavy-Traffic-Model
for the inclusion of heavy traffic load into the previous models. He develops solutions
for the utilization of time gaps between high priority trains and for alternative routing
of trains for the reduction of scheduled waiting time. Figure 3.12 illustrates a problem
that can occur during a time table construction process. Here the classical queuing
models using FIFO discipline do not hold2.

In the branch-off point train k is supposed to merge in to the line. Considering the
first block train i arrives before train j. In the second block train k lies after train j.
This builds the train sequence i − j − k. In the second block train k is before train i,

2The blocking time stairs in figure 3.12 are moved a little bit to the right and left for better
visualizing.
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Train k

Train i, j

Train i, j, k

Train i

Train k

Train j

Figure 3.12: Occupational conflicts between train i and j and the merging train k

which would switch the train order to j − k − i.

Wendler has qualitatively improved the train-couple models by going into detail
with a train-triple model. Especially important is that the potential reduction in wait-
ing time by alternative routing has been solved. Wendler’s train-triple model is very
complex compared to the train-couple models where there are only three cases to be
distinguished (equal rank, unequal rank with priority given to train 1 or train 2 re-
spectively). In a train-triple model there are 35 cases to be handled. A model that
would even go further into detail compared to the train-triple containing four trains
would be too complex at the moment.

Potthoff developed a model for the calculation of the number of tracks within a
node [Pott62]. He makes use of a GI/D/n/0 queue. The arrival process is Gamma dis-
tributed and the service time is constant. The queueing system estimates the number
of tracks n necessary in the node. In this system there is no waiting space available,
which is a system with loss. Since there are no waiting space available the probability
for waiting is set equal to the probability for loss. This assumption holds for systems
with low traffic load where ρ << n, a Light-Traffic-Model.

Hertel [Hert85] develops a model for the calculations of track groups which have
fewer bounds compared to Potthoff’s model. He uses a GI/GI/n/∞ queue. Both
arrival stream and service time are modeled as general independent processes. The
waiting space is infinite. This means that if there are not enough tracks available a
train will wait somewhere else in the network. This method is suited for high traffic
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load where ρ → n a Heavy-Traffic-Model.
Both models from Potthoff and Hertel are suitable for the dimensioning of track

groups, since they also can be used for the calculation of unscheduled waiting time.
The general independent arrival stream of trains is also valid in shunting yards where
trains arrive independently of each other. For the arrival stream of passenger trains
in a conflict free timetable, the arrival stream is no longer independent, and the GI
is therefore not valid. The models should therefore not be used for regular interval
timetables.

3.4.3 Simulation for scheduled waiting time calculation

The estimation of the scheduled waiting time by simulation follows an asynchronous
time table construction process. Most known asynchronous simulation methods has
been NSIM (Network simulation) and BABSI (Simulation of timetable construction
and railway operation) developed at the RWTH Aachen. Asynchronous simulation is
based on a hierarchical procedure visualized in a blocking time stair time-way graph.
At first, a timetable has to be constructed. Trains are grouped into train models
with a ranking or priority number. Trains of highest priority are included first into
the time table. Trains of lower priority are included afterwards. For every train that
is included, conflicts due to block occupation might arise. These conflicts are solved
successively step by step within the line sections formed between the stations. An
algorithm searches for the best solution by first investigating the possibility for using
the siding, second the possibility for introducing a halt. If this does not solve the
conflict, the third possibility is to move the entire train path to the next possible
time gap between two trains. The conflict solution might give rise to a new conflict
that then has to be solved the same way. This timetable construction process needs a
predefined train hierarchy [Grög02, Grög04].

3.5 Models describing unscheduled waiting time

3.5.1 Analytical models for unscheduled waiting time calcula-
tion

In 1974 Schwanhäußer proposed an analytical model to calculate the secondary delay
on a railway line [Schw74]. This model became a break-through since now it was
possible to relate the line capacity to the quality parameter of secondary delay. His
model is based on a schedule without conflicts. This schedule does not have to be
known and can be considered as independent. He calculates the secondary delay
between two trains of equal rank and of different rank. This model is meant as a
short- and long term planning tool.

If the trains have different rank, thus train 1 has higher rank than train 2, train 2
will be secondary delayed if:

tb + tPD,2 < tPD,1 < tb + tPD,2 + ts,12 + ts,21 (3.39)
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where

tb = the buffer time
ts,12 = the minimum spacing time train 1 followed by train 2
ts,21 = the minimum spacing time train 2 followed by train 1

tPD,1 and tPD,2 = primary delay of train 1 respectively train 2

The secondary delay illustrated in figure 3.13 becomes:

tSD,2 = tPD,1 − tb − tPD,2 (3.40)

In the opposite situation, train 1 has lower rank than train 2. Train 1 becomes
secondary delayed if:

tb + tPD,2 < tPD,1 < tb + tPD,2 + ts,12 + ts,21 (3.41)

The secondary delay of train 1 illustrated in figure 3.14 becomes:

tSD,1 = ts,12 + ts,21 + tb + tPD,2 − tPD,1 (3.42)

If the trains are equal in rank the successor, train 2, receives a secondary delay if
the primary delay of train 1 lies within the following interval:

tb + tPD,2 < tPD,1 < tb + tPD,2 + ts,12 (3.43)

The equation of secondary delay for train 2 becomes the same as in equation (3.40),
where the rank is different.

If the primary delay of train 1 is bigger than:

tPD,1 > tb + tPD,2 + ts,12 (3.44)

then the trains will have to switch order. Train 1 receives a secondary delay if:

tb + ts,12 + tPD,2 < tPD,1 < ts,12 + ts,21 + tb + tPD,2 (3.45)

In this situation the equation of secondary delay for train 1 becomes the same as in
equation (3.42).

The overall secondary delay is calculated by the summation of the secondary delay
of all four cases and multiplied with the frequency of primary delay. As described
in Chapter 2.3.2, Schwanhäußer found the primary delay to be a combination of a
one point Dirac distribution and a negative exponential distribution. This yields for
traffic without long queues. If the primary delay is high, all successive trains will
be secondary delayed. The operation is chaotic and trains arrive independently. To
achieve the highest capacity in a queued situation, all trains should travel at the same
speed. That means that the service time is constant. This description fits to a M/D/1
queue. The overall secondary delay with respect of both operating situations (little
queue and long queue) becomes:
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tS, 12

tS, 12
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tPD, 2

tPD, 1

tSD, 2

: Scheduled carriage way : Unscheduled carriage way

Train 1

Train 1

Train 2

Train 2

Figure 3.13: Secondary delay for train 2 if train 2 has equal or lower rank than train 1
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tS, 21
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Figure 3.14: Secondary delay for train 1 if train 1 has equal or lower rank than train 2
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E[TSD] = tPD (1−pPD

2
)

⎡
⎣pe(1 − e−mts,e)2 + (1 − pe)mts,p (1 − e−2mts,p) + ts

tb
(1 − e−mts)2

mtb + 1 − emts

⎤
⎦

(3.46)

where
pe = probability of a train sequence of equal rank
m = 1

tPD
; the inverse of the mean primary delay

ts,e = the mean minimum spacing time between trains of equal rank
ts,p = the mean minimum spacing time between trains of non equal rank
Schwanhäußer’s formula is also referred to as the STRELE formula since it is imple-
mented in the tool STRELE (Strecken Leistungsfähigkeit), which is in use of the DB
AG [DS405/12].

The second part in Gast’s thesis analyses the unscheduled waiting time from over-
taking on a railway line. He distinguishes between three cases where waiting time
arises due to occupation of the same block. The faster trains have priority over the
slower trains in operation. The first case is illustrated in figure 3.15. The slower train
has an obligation to halt in station (i) and the faster train was then scheduled to over-
take the slow train. The faster train has a primary delay tPD,F , large enough for the
slower train to reach station (i+1). In the case that the slower train has no scheduled
halt in station (i+1) it will incur waiting time from overtaking.

Station -1i Station i Station +1i

Slow train

Fast train

Scheduled departure Unscheduled departure

Unscheduled
overtaking

tPD

tSD

Scheduled overtaking
and halt

Figure 3.15: Case 1: The slower train incurs waiting time from overtaking in station
(i+1)

The number of overtakings in station (i+1) becomes according to Gast in case 1:
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no(i + 1) = no(i) · pF (PD) · (1 − pS(PD)) ·
(

e
− b(0,+)

tP D,F − e
− b(0,+2)

tP D,F

)
(3.47)

where
no(i) = the number of of scheduled overtakings in station (i) given in equation
(3.32)
pF (PD) = the probability for primary delay of the faster train
pS(PD) = the probability for primary delay of the slower train
b(0, +) = the time gap from station (i) to station (i+1)
b(0, +2) = the time gap from station (i) to station (i+2)

In case 2 both trains arrive the area of survey with a primary delay. Figure 3.16
illustrates that the slower train still has an obligatory halt in station (i). Since the
primary delay of the slower train is less than the scheduled waiting time from overtak-
ing, the slower train can leave on time station (i). If the slower train has no scheduled
halt in station (i+1), it will incur waiting time from overtaking in this station.

Station i-1 Station i Station +1i

Slow train

Fast train

Scheduled departure Unscheduled departure

tPD

tPD

tSD

Scheduled overtaking
and halt

Unscheduled
overtaking

Figure 3.16: Case 2: Both trains are delayed. The slower train incurs waiting time
from overtaking in station (i+1).

The number of overtakings in station (i+1) becomes according to Gast in case 2:

no(i + 1) = no(i) · pF (PD) · pS(PD) · (1 − e
− two(i)

tP D,S ) ·
(

e
− b(0,+)

tP D,F − e
− b(0,+2)

tP D,F

)
(3.48)
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where
two(i) = the scheduled waiting time from one overtaking in station (i)

Equation (3.48) is different from equation (3.47) with respect to the probability of
the primary delay of the slower train and the probability for this delay to be less than
the scheduled waiting time from overtaking.

Figure 3.17 illustrates the 3rd case where both trains arrive the area of survey with
a primary delay. This time the slow train has no halt in station (i). At this point the
primary delay is reduced to red tPD,S . The faster train is so much delayed that the
scheduled overtaking is moved from station (i) to station (i+1). In the case that the
slower train exactly manages to reach station (i+1), no extra waiting time (secondary
delay) will be generated. The slower train will leave the area of survey with a net
delay tND,S . If the slower train reaches station (i+1) before the faster train, it will
incur waiting time from overtaking.

Station -1i Station i Station +1i

Slow train

Fast train

Scheduled departure Unscheduled departure

tPD, F

tPD, S

tND, S

red t. PD, S

tSD

t (i)o

Scheduled overtaking

Unscheduled
overtaking

Figure 3.17: Case 3: Both trains are delayed. The scheduled overtaking in station (i)
is moved to station (i+1).

The number of overtakings in station (i+1) becomes according to Gast in case 3:

no(i + 1) = no(i) · pF (PD) · pS(PD) · e−
two(i)
tP D,S

· tPD,F

tPD,F + red tPD,S
·
(

e
− b(0,+)

tP D,F − e
− b(0,+2)

tP D,F

)
(3.49)

The last product in equation (3.49) is the probability for the difference in primary
delay tPD,F − red tPD,S to be within the interval [Δb = b(0, +), b(0, +2)].
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In equation (3.47)-(3.49) the scheduled number of overtakings from equation (3.32)
is inserted. In the previous section it was pointed out that the probability of the train
sequence in this equation was not in accordance with the theoretical definition. Gast’s
theory that unscheduled waiting time is generated from overtaking probably holds for
passenger trains with scheduled halts. If the slow trains are freight trains without a
schedule, then no waiting time from overtaking will be generated. A delaying passen-
ger train will only move the overtaking from one station to the next station.

Higgins et al. [Higg98] estimate delay (unscheduled waiting time) analytically
aimed for optimal timetable constructions. The authors separate source delay, knock-
on delay (secondary delay) and delay due to late connections. In figure 3.18 an example
is given for knock-on delay.

Link -1k Link k Link +1k

Train l

Train i

Scheduled departure time + current delay

Delay to train i

t + tl PD, l

t + t + tl PD, l CD, l
t + ti PD, i

ts, li

Figure 3.18: Knock-on delay to train i

The time distance graph in figure 3.18 illustrates the knock-on delay train i incurs
from train l. The track is divided into links, for example block segments. Train l has
scheduled departure time tl with current primary delay tPD,l in link k. Train l incurs
a source delay of duration tCD,l. The successive train i also has a departure time ti
with current primary delay tPD,i in link k. The knock-on delay train i due to train l
in link k becomes then:

tl + tPD,l + tCD,l + ts,li − ti − tPD,i

where ts,li is the minimum spacing time train l followed by train i in link k. The
system forms a set of equations that is found using an iterative refinement algorithm.
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The model was verified using stochastic simulation technique. Necessary input data
was taken from earlier studies and historical data from Queensland Rail (Australia).
The model slightly underestimated the simulated results. This model’s inaccuracy
may be due to the distribution of primary delay (Erlang3), which is sensitive to long
term knock-on delays such as those that occur in peak periods, being slightly different
from the regular periods for some trains.

Higgins et al. [Higg97] developed a model to determine the number and positioning
of sidings on single track lines for a given cyclic schedule. The sidings are positioned to
minimize both the risk of delays and the delays caused by train conflicts. The risk of
delay represents the likely amount of delay caused by three types of unexpected events,
namely: those related to track problems; those caused by terminal/station problems;
and those which are the result of rolling stock malfunctions. In order to estimate the
likely risk of delay to each train caused by each delay type, it is necessary to have
as an input the corresponding distributions of source delays. The model is subjected
to various constraints to ensure safe operation, enforce speed restrictions and permit
stops.

The siding location model is decomposed into two sub-models. One is solved for
optimal track segment lengths and arrival and departure times given a fixed schedule.
The other sub-model is solved for the optimal train schedule given the track segment
lengths that are fixed. The process will iterate between the two sub-models until there
is no more improvement.

The siding location model was tested on a real single track line corridor. The new
computations showed a reduction in conflict and risk of delay compared to the original
infrastructure and schedule. Next the model was tested out for designing the sidings
on a new rail corridor. With a prefixed level of service reliability, the number of sidings
and their position were defined for known departure times. Finally the results serves
as an input to a full cost-benefit analysis of new track infrastructure.

The authors point out that there are many considerations to be made for a suc-
cessful siding location that might be difficult to fit into the model. The model assumes
that the costs of locating a siding is independent of its position on the corridor. In
practice some parts of the track are less accessible than others, making the costs of
building higher (for example boggy ground). Safety reasons also play an important
role, l. e. it is not desirable to place a siding in a slope. Therefore the model should
be used together with other considerations for the problem of siding location. An
alternative is to use the model developed to estimate the minimum number of sidings
needed for efficient and punctual train operation.

3.5.2 Queueing theory for unscheduled waiting time calcula-
tion

Huisman et al. [Huis02] use a M/M/k/∞ - queueing model to calculate the unsched-
uled waiting time in an entire railway network of double tracks. The components of
the network are modeled in a global way, where it is possible for more detailed analysis
of components in isolation. The model is meant as a tool for first stages of design,
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to identify bottlenecks in the network, to compare alternative designs in a global way,
or to analyze several traffic scenarios. The network is divided into stations, junctions
and sections.

Stations: The stations are modeled as a first-come-first-served multiserever queueing
system, in which each server represents a halting track and in which the server
time corresponds to the occupation time of a platform track.

Juctions: The junction consists of two switches and a crossing. A train can enter
the junction only if its entire route over the junction is free. If this is the case,
it occupies its route during the time needed to cross the junction. If its route
is occupied by another train, it has to wait on the section track leading to the
junction until all elements of its route are released. Waiting trains are shifted
from the section tracks to imaginary queues immediately before the junction.
This is in confirmation with the theory in 2.3.3 that no trains can be lost in a
network, and this applies for all components in the model.

Sections: A section consists of a number of parallel tracks that are not connected to
each other. Section tracks can be used by multiple trains simultaneously if they
consists of more than one block. Overtaking is physically impossible. The first
and the last block on the section is modeled by two first-come-first-served single
server queues, one at the beginning and one at the end of the track section. The
remaining part of the track is modeled by a tandem of M/M/1-queues.

Network: All queueing systems in the model have exponential service time, and ar-
rivals at the network occur according to a Poisson process. The network is mod-
eled by a continuous-time Markov chain. The steady-state distribution of this
Markov chain is found by observing that all the queues in the model are quasi-
reversible. The total waiting time for a train is then the sum of the expected
waiting time for each component that this train penetrates.

The model has been tested out on real data from the Netherlands which supports the
practical value of the model. The most important problem with the model of Huisman
is the assumption of exponential service times. Huisman points out that a general
distribution for the service time might be better, but this gives no analytical solution
for the stationary distribution of the network. Approximation methods must be used
to solve this problem. On the other hand, this model shows very clearly one possibility
how to decompose the network into smaller components for analysis.

One of the main efforts of the models made by Schwanhäußer, Gast and Huisman
et al. is that they can calculate delay without knowing the future time table. This is
ideal for dimensioning future infrastructure, where the time table is not known. These
methods serve as short and long term infrastructure planning. There are methods that
calculates delay from a known time table. These better serve as short term planning
tool. If these models are used for long term planning, several time table scenarios must
be evaluated. It requires an effort to compare these calculations together with a time
table independent method before decisions are made.
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3.5.3 Simulation for unscheduled waiting time calculation

Since computer aided tools havev become available, simulation of the existing schedules
has become popular for the analysis of timetable stability. Timetable stability indicates
the timetable’s quality, how robust the timetable is against disturbance and how fast
the disturbed traffic can be regenerated and become regular again. This is important
knowledge for an optimal operation. The timetable stability does not tell us anything
about the scheduled waiting time which is another important piece of information
about the timetable.

The basics of this method consists of introducing primary delay to a given timetable.
The primary delay generates secondary delay. By using algorithms, the secondary de-
lay, timetable stability and recoverability of the timetable are some of the information
that can be recorded. Timetable simulation can be used for long term planning for
the evaluation of alternative infrastructure variants or to evaluate the effects on the
waiting time by introduction of different signaling systems. The drawback of simula-
tion for long term planning is that it can only be simulated on given timetables. It is
time limited how many timetable alternatives that can be investigated. Therefore a
timetable independent analytical method should also be preferred in the investigation.
In the area of short term planning simulation is useful to optimize a preferred schedule
or to adjust a schedule due to temporary maintenance work or small changes in the
infrastructure. Simulation can also be used for ad-hoc decisions, for example as a
support tool for the train dispatcher. The support tool is online for the current train
graph. By use of given priority rules solutions for the further train dispatching can be
suggested. Simulation is divided into two main groups:

A: Synchronous simulation

B: Asynchronous simulation

A general description of these two methods follows.

A: Synchronous simulation

The most famous synchronous simulation tool is RailSys developed at the University
of Hannover. The area of survey (infrastructure of interest) is applicated as nodes and
edges in a directed graph. The edges are in practice line sections with attributes like
velocity, length, gradient etc. Only one train can occupy an edge at a time. Within the
directed graph, trains can according to their schedule preblock their preferred route
over several time steps. The arrival time is estimated for a certain point in the graph.
This generates a time-way diagram. With use of the ”First-in-first-out”’ principle
(FIFO) the trains are dispatched automatically by the algorithm that evaluates differ-
ent routes and other options [Klah94]. With use of graph-theory in the synchronous
simulation, it is possible to investigate large railway networks. The drawback is the
reduction of the railway network infrastructure into a handling graph. In this step
a lot of interesting data is lost. The results are of general character. A lot of work
is still being invested to improve the details of the infrastructure reduction. For the
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investigation of smaller network parts, the synchron simulation has been succesful.
Another problem to be mentioned is the preblocking over several time steps. Figure
3.19 provides an example.

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaICE

Freigth

Preblocking

Track 1

Track 3

Track 2

Figure 3.19: Preblocking of route leads to reduced line capacity

The ICE train on track 2 preblocks its route. The preblocking of the ICE train
happens that early so that usually the freight train can be shunted over to track 3.
Though the preblocking of the ICE train makes it impossible for the freight train to
cross track 2. This results in a capacity loss where the real line capacity could actually
be higher [Grög97]. An other problem with long distance preblocking is that large
amounts of the simulations on single track line run into deadlocks.

Railway operation is based on the timetable. Theoretically one can assume that
there will be no occupational conflicts during operation when the timetable is followed.
In practice railway operation is influenced by many stochastic events. Some of these
events can lead to a shift in the train order which can result in deadlocks. According to
Pachl [Pach97] a deadlock is defined as: A deadlock is a situation in a serving system
where the proceding process runs in to a cyclic chain of prefered occupations. Two
examples of deadlocks on single track line are illustrated in figure 3.20 and 3.21.

Figure 3.20: Deadlock on single track free line

In figure 3.20 all trains could theoretically run into the free block lying ahead of
them. In every situation a deadlock will occur. In figure 3.21 train 1 and 2 have
entered the line correctly, but run into a deadlock when entering the station in the
middle of the line.

1 21

Figure 3.21: Deadlock in a station
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B: Asynchronous simulation

Most known asynchron simulation methods has been NSIM (network simulation),
STRESI (timetable construction and operation of double track lines) and BABSI de-
veloped at the RWTH Aachen. Asynchronous simulation is based on a hierarchical
procedure visualized in a blocking time stair time-way graph. A primary delay is in-
troduced when starting the simulation of the operation for the given and conflict free
timetable. The delay generates conflicts that are solved with the same hierarchical
principle as for the timetable construction process as described in 3.4.3. Different
from the synchronous simulation is that the algorithm only looks at the first coming
conflict and solves it (only one operation at a time within the section) [Grög02, Grög04].

The synchronous simulation with its preblocking decides on a longer distance which
train will run into the FIFO queue first, and which trains will have to wait. The
FIFO works hierarchically independent compared to the asynchronous method. The
effort of step-by-step conflict solution is that situations as illustrated in figure 3.19
will not be registered as a conflict, and the freight train on track 1 can cross track 2
without incuring any waiting time. Another important notable effort is the simulation
of timetable construction process, where the scheduled waiting time is recorded. A
drawback is that so far it has been difficult to simulate large railway networks. The
complexity rises within the nodes (which are the connections between the lines) within
a network. Investigating each part separately has been successful so far.

3.6 Summary of the reference research

This reference research has shown that models describing railway capacity must be
able to show the relation between the utilization (number of trains) and scheduled and
unscheduled waiting time. Very few models are able to illustrate this relation at the
same time. Dilli’s [Dill52] and Potthoff’s [Pott80] models are based on operation and
are rather rough approximations. Hertel’s model [Hert92] is based on scheduled wait-
ing time and has no clear relation between capacity and waiting time. Schwanhäußer
[Schw74] made for the first time in 1974 a direct relation between capacity and op-
erational quality by calculating the unscheduled waiting time. His statement from
1994 [Schw94] confirms that the practical capacity is a monetary quantity. The ca-
pacity model presented in 1999 [Schw99] capacity is related to both scheduled and
unscheduled waiting time. Oetting [Oett05] confirms this statement and develops
Schwanhäußer’s models further.

The research in railway capacity models has shown that there is a need to develop
sub-models for scheduled and unscheduled waiting time calculation for the implemen-
tation into the global capacity models.

Already some models exist for the calculation of the scheduled waiting time on
different track segments. The models mentioned are mainly designed for double track
line. Schwanhäußer and Gast [Schw81, Gast86] calculate the scheduled waiting time
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from overtaking on double track line. After closer study, Gast’s formula for the num-
ber of overtakings is not in accordance with the theoretical definition of probability
of train sequences for independent schedules. Potthoff makes an estimation of the
number of crossings on single track line. He does not explicitly make any model for
the scheduled waiting time from crossing. The other models presented are mainly
designed for nodes and junctions [Schw78, Wako85, Wend99]. Though they can also
be used for line sections when treating the section as a single channel queuing system.
Potthoff and Hertel [Pott62, Hert85] developed models for the dimensioning of track
groups within nodes. The great effort of these models are that they are timetable
independent which is useful for long term planning.

After Schwanhäußer’s break through in 1974, other studies by Gast, Higgins et al.
and Huisman et al. followed [Gast86, Higg97, Huis02]. Higgins developed a model for
the optimization of schedules on single track lines [Higg98]. In another study Higgins et
al. develops a model for the position and number of sidings on single track line. These
models make use of a given timetable and are therefore suited for short-term planning.
For the model of the siding positioning, a timetable independent model should be pref-
ered. This is the effort of Schwanhäußer’s, Gast’s and Huisman’s models. Huisman
calculates the unscheduled waiting time in a network using a M/M/k/∞-queue. The
drawback in this model is the assumption of an exponentially distributed service time.

Another method for the calculation of waiting time is simulation. For the cal-
culation of scheduled waiting time, a given timetable serves as input. At this point
this method differs from the analytical methods for scheduled waiting time calcula-
tion, which focuses on timetable independency. This applies also for the simulation
methods for the calculation of the unscheduled waiting time. They serve best for the
investigation of given timetables for short-term planning.

The research has shown that there are many models for the calculation of waiting
time. Rather few are directly designed for single track line since the focus has been
on double track lines.
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Chapter 4

Scheduled waiting time from
crossing on single track lines

The buffer time distribution between the fast trains is the input parameter in the
model for the calculations of scheduled waiting time. The buffer time distribution
indicates what kind of timetable structure the fast trains follow, whether it is cyclic or
stochastic. Different buffer time distribution will give different results in the amount
of waiting time. The model introduced in this chapter calculates the scheduled waiting
time from crossing following an asynchronous timetable construction process. With
this timetable inclusion process the scheduled waiting time within the same train model
is derivated.

First, in this chapter a brief introduction of the timetable construction methodology
the model is based on is given in section 4.1. In section 4.2 the conditions for crossing
are analysed. In section 4.3 the model for scheduled waiting time from crossing with
exponential buffer time distribution is deduced. Special assumptions and derivation
of the model with constant buffer time as given in section 4.4.

4.1 Asynchronous timetable construction process

The calculation of scheduled waiting time from overtaking by Schwanhäußer is based
on a certain timetable construction methodology. The train operators can send in
their traffic orders to a central timetable coordinator. Each train model is assigned a
ranking number. If a train model has rank(1), it will be put first into the timetable.
Which rank a train models receives depends on the ranking policy used. In Germany
so far the train model with higher speed has priority over a slower train model. In
Norway very often the commuter passenger train model has highest priority when
creating time tables, since it occupies more time on the infrastructure than a train
model with higher speed. If the train model with higher speed were included into the
time table before the slow commuter train, it could be difficult to have enough buffer
time between the fast trains to fit in the slow train between the fast trains. This is an
important aspect for single track lines which dominate rail infrastructure in Norway.
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This ranking policy can benefit the faster train if it is allowed to overtake the slower
train in a siding. Then there is a partial priority between the fast and slow train.

Requested
departure

Scheduled
departure

TW

Train of rank(2)Train of rank(1)

Conflict

Figure 4.1: Overlapping occupation time. Solving the conflict generates waiting time.

The train model of rank(1) is put first into the timetable. Then the train model
with rank(2) is included to the timetable. If there happens to be an overlapping
occupation time between the train model of rank(1) and rank(2), the train model
of rank(2) (which has a lower rank) is assigned to another departure time, slowed
down or given another path until the conflict is solved. An example of an overlapping
occupation time is illustrated in a time-way graph in figure 4.1. At this point scheduled
waiting time is generated for train model of rank(2). This procedure is repeated until
all conflicts are solved. In the end a new time table exists containing two train models.
For train model of rank(3), the same procedure is applied, until all train models are
fitted into the time table.

4.2 Condition analysis

In Schwanhäußer’s model [Schw81] the possibility that a slow train can merge in be-
tween two fast trains with higher priority on a double track line with unidirectional
traffic is calculated. His idea is based on following assumption illustrated in figure 4.2.

Schwanhäußer presents the relation between the minimum spacing time ts between
fast and slow trains with the buffer time tb,FF between the fast trains. His equality
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ts,FS

ts,SF

ts,FF

ts,FF

tb,FF

Slow trainFast train

Figure 4.2: Condition for slow train to merge in between two fast trains for unidirec-
tional traffic.

can be illustrated as:
ts,FS + ts,SF = ts,FF + tb,FF

The minimum spacing times are approximately constant quantities. This approxima-
tion holds when the scheduled waiting time calculations are based on precalculated
occupation times. The occupation time is dependent on the accurancy of the journey
time calculation and type of interlocking plant. The buffer time is a stochastic pa-
rameter, and can therefore become (in this case for merging) larger than illustrated in
figure: 4.2:

ts,FS + ts,SF ≤ ts,FF + tb,FF

tb,FF ≥ ts,FS + ts,SF − ts,FF (4.1)

if
ts,FS = ts,FF (4.2)

then
tb,FF ≥ ts,SF (4.3)

The last condition in (4.3) means that a slow train can merge in between two faster
trains if the buffer time between the fast trains is at least as big as the minimum spac-
ing time for the train sequence slow train followed by fast train.

The sub index ts,first train, second train = is meant as follows:

first train means the first train arriving the block section of reference. The train
can arrive from both directions.
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second train means the second train arriving the same block section of reference.
The train can arrive from both directions.

For example ts,SF in equation (4.3) means that the slower train S running in direc-
tion is arriving the block section first and the faster train F also running in direction
arrives the same block section afterwards.

For bidirectional traffic on single track line, Schwanhäußer’s condition for a slow
train to merge in between two fast trains holds if there is only one block section between
the station. This is illustrated in figure 4.3, where the slow train runs from the left to
the right and the opposing faster trains run from the right to the left.

ts,FS

ts,SF

ts,FF

tb,FF

Fast train Slow train

Figure 4.3: Condition for slow train to merge in between two fast trains for bidirectional
traffic. Only one block section between the stations.

Figure 4.3 gives the merging condition:

tb,FF ≥ ts,SF (4.4)
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The minimum spacing time and buffer time is measured in the first block section
in the same section as defined in Chapter 2.1.4. Since there is only one block section
between the stations, both the buffer time between the fast trains and the minimum
spacing time between the trains can be measured in the same block section. If there
are two or more block sections between the stations, the buffer time between the faster
trains is not necessarily measured in the same block section as the minimum spacing
time between a slow train followed by a fast train. Figure 4.4 illustrates a single track
line with 3 block sections between the stations. The buffer time between the fast trains
and the minimum spacing time between the fast trains is measured in block section c,
which is the first block section when entering the section. The minimum spacing time
for a fast train followed by a slow train and for a slow train followed by a fast train is
measured by combining block section a and c.

ts,FS

ts,SF

ts,FF

tb,FF

Slow trainFast train

Block a Block b Block c

Figure 4.4: Condition for slow train to merge in between two fast trains for bidirectional
traffic. Line with two or more block sections between the stations.
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Schwanhäußer’s assumption for unidirectional traffic is adjusted in equation (4.7)
to bidirectional traffic

ts,FS + ts,SF = ts,FF + tb,FF

The main equation is analogous to equation (4.1), but the terms might have a different
quantity.

ts,FS + ts,SF ≤ ts,FF + tb,FF

tb,FF ≥ ts,FS + ts,SF − ts,FF (4.5)

if
ts,FS > ts,FF (4.6)

then
tb,FF ≥ ts,FS + ts,SF − ts,FF (4.7)

Equation (4.7) is the condition for a slow train to merge in between two fast trains.
The buffer time between the fast trains must be the quantity ts,FS − ts,FF bigger than
in the case for unidirectional traffic.

4.3 Waiting time from crossing with exponential buffer
time distribution

In this section an exponential buffer time distribution between the trains of higher
priority will be assumed for the calculation of waiting time from crossing on single
track lines. The asynchronous timetable construction process given in Chapter 4.1
is based on a ranking policy. Train model with the highest priority, referred to as
rank(1) will be included first into the timetable and train model of lower priority,
referred to as rank(2) will be included into the timetable afterwards. If a conflict
between train model of rank(1) and rank(2) arises, the train model of rank(2) incurs a
scheduled waiting time. Not only do conflicts between trains of different rank generate
waiting time, but also do conflicts between trains of equal rank. For example on single
track line, when trains of equal rank depart stochastically in each direction, scheduled
crossings can arise on the free line. To solve these conflicts, the crossings have to be
placed to one of its neighbouring stations. The train given lower priority (after certain
criteria) in this case has to wait in the crossing station and incurs a waiting time from
crossing.

Figure 4.5 illustrates a scheduled crossing on the free line between trains of rank(1).
Within rank(1) a decision based on a chosen policy can be used for which of the trains
that have to wait for crossing. In this case the train running from the left to the
right has to wait in the siding for the opposing train. In the further calculations the
waiting time from crossing for trains running in one direction will be calculated. These
trains receive lower priority than the opposing trains. The opposing trains of superior
direction will be treated as rank(1). Trains running in a non superior direction will be
treated as rank(2). This suggestion to solve the problem of ranking within the same
train model can be an effort for large nodes. The superior direction could for example
be outbound of the node.
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min tx

min tx

twx

Rank(1)

Rank(1)

Figure 4.5: Waiting time from crossing for trains with the same ranking number

4.3.1 Expected waiting time for crossing

With an exponential buffer time distribution, there will exist small and large buffer
times between the trains of rank(1). Figure 4.6 illustrates the ideal buffer time that is
necessary between the trains of rank(1) tb,11 for a train of rank(2) to merge in between
the trains of opposing direction. With only one block section between the stations
Schwanhäußer’s assumption holds as described in Chapter 4.2. In this case 1 the ideal
buffer time is equal the minimum spacing time for the train sequence train of rank(2)
followed by train of rank(1). In case 2 the train of rank(2) needs an additional time gap
Δt(i, i + 1) for exactly managing to run a further section before meeting the opposing
train in station (i+1).

For running three sections, two time gaps are needed.
In case 3 a comparison is performed between the necessary time gap needed for

respectively an overtaking and a crossing to take place in station (i+1). The blocking
time stairs graph illustrates that the time gap needed in case of a crossing is larger
than the time gap needed for an overtaking:

Δtx > Δto

This means that the probability for a crossing is higher than the probability for an
overtaking. The further derivation will concern only crossings, therefore the subindex
x in the time gap will be skipped.

If there are two or more block sections between the stations on a single track line,
Schwanhäußer’s assumption given in equation (4.3) must be changed. The condition
for a train of rank(2) to merge in between two trains of rank(1) becomes in analogy
to equation (4.7):

tb,11 ≥ ts,12 + ts,21 − ts,11 (4.8)

To simplify the notation, let:

Δts,1 = ts,12 − ts,11 (4.9)
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Station ( -1)i Station ( +1)iStation ( )i
l i( )l i-( 1)

Case 2:
crossing in
station ( +1)i

Case 3:
time gap is larger
for crossing than
for overtaking

Case 1:
crossing in
station ( )i

ts,21

ts,21

t1 (

t1 (

ts,21

ts,21

ideal tb,11

ideal tb,11

t i, i+2( 1)

i+ i1, )

i+ i1, )

t i, i+2( 1)

t

t

t i, i+2( 1)

Train of rank(1) Train of rank(2)

Figure 4.6: Condition for crossing in station (i) and station (i+1). There is one block
section between the stations.
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Figure 4.7 illustrates a single track line with two block sections between the stations.
The condition for merging changes from one block section to two or more block sections
between the stations given in equation (4.8). This condition is viualized in figure 4.7.
In the first case the train of rank(2) exactly manages to reach station (i). The ideal
buffer time between the trains of rank(1) becomes for case 1:

ideal tb,11 = ts,21 + Δts,1 (4.10)

In the second case, an additional time gap Δt2(i, i+1)+Δt1(i+1, i) is necessary
for the train of rank(2) to reach station (i+1). The ideal buffer time is measured as
the train of rank(2) enters the section between station (i-1) and station (i). The ideal
buffer time between the trains of rank(1) becomes for case 2:

ideal tb,11 = ts,21 + Δts,1 + Δt2(i, i + 1) + Δt1(i + 1, i) (4.11)

In the third case, the train of rank(2) exactly manages to reach station (i+2). The
time gap needed must be larger than the time gap needed in case 2. The ideal buffer
time between the trains of rank(1) becomes for case 3:

ideal tb,11 = ts,21 + Δts,1 + Δt2(i, i + 2) + Δt1(i + 2, i) (4.12)

In general this becomes:

ideal tb,11 = ts,21 + Δts,1 + m · (Δt2 + Δt1) (4.13)

where
Δt2 = the mean of all time gaps necessary for train of rank(2) to reach the next station
(i+1)
Δt1 = the mean of all time gaps necessary for train of rank(1) to reach the next station
(i)
m = 0, 1, 2, 3, ..........number of sections

In equation (4.13) the mean of all time gaps like (Δt2(i, i+1)+Δt1(i+1, i)), (Δt2(i+
1, i+2)+Δt1(i+2, i+1)), (Δt2(i+2, i+3)+Δt1(i+3, i+2)) is used. The quantity
of the time gap depends on the distance between the stations, the speed of the trains
and the signaling system. The product of number of stations m and the mean time gap
Δt2 +Δt1 in equation (4.13) forms a generalization of the further development of case
1, 2, 3 illustrated in figure 4.7. This approximation holds for less variation in topology.

For great variations in the time gap, this assumption will be less true. With ex-
ponentially distributed buffer times and timetable independent calculations, one will
not exactly know how large the biggest buffer time between the trains of rank(1) will
be. Further more if the single track line is a part of a bigger railway network, the
time gap might be large enough to run into the other parts of the network where other
conditions and settings apply. Therefore the mean time gap for reaching one station
further is used as an estimation for the calculations of the expected waiting time for
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Figure 4.7: Condition for crossing in station (i), (i+1) and station (i+2). There are
two or more block sections between the stations.
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crossing.

To simplify equation (4.13) the mean time gap Δt will substitute Δt2 + Δt1:

ideal tb,11 = ts,21 + Δts,1 + m · (Δt) (4.14)

In this thesis the exponential distribution is assumed. The exponential distribution
is a special case of the gamma disitribution. The probability density function of the
gamma distribution has the form:

f(tb,11) =
λk∫ ∞

0
tk−1
b,11 · e−tb,11 · dtb,11

· tk−1
b,11 · e−λ·tb,11 ; tb,11 > 0

For k = 1 and λ = 1/tb,11 the probability gamma density function forms the
exponential probability density function with parameter λ:

f(tb,11) =
1

tb,11
· e−

tb,11
tb,11 ; tb,11 > 0

where tb,11 is the mean buffer time between trains of rank(1) given by:

tb,11 =
T

n1
− ts,11 (4.15)

where
T = time of investigation, mostly 24 hours.
n1 = the number of trains of rank(1) in one direction.
ts,11 = the mean minimum spacing time between the trains of rank(1) on the entire
line investigated.

The exponential distribution is chosen because it is in accordance with stochastic
departure times in both directions which is the focus in this study.

The probability density function of the exponential distribution is illustrated in
figure 4.8. The graph shows that there is a high probability for a buffer time as large
as the minimum spacing time ts,21 which is needed for reaching the next station. As
expected, the probability for buffer times big enough for reaching two or more stations
decreases. There are also buffer times smaller or larger than the ideal buffer time given
in equation (4.13). These buffer times generates waiting time for the train of rank(2).
If the buffer time is smaller than ts,21 waiting time for merging is generated. If the
buffer time is larger than ts,21 but not exactly equal to ts,21 + m ·Δt, waiting time for
crossing arises.

The further derivation will concern the situation with two or more block sections
between the stations, since in this case the merging condition changes compared to
those in Schwanhäußer’s model. For the derivation of the situation with 1 block section
between the stations, the reader is referred to [Schw81].
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f(t )b,11

tb,11

Non-useful time gaps

ts,21 t + ts,21 t ts,21+2

1
tb,11

Figure 4.8: Probability density function of the buffer time between the trains of rank(1)
with useful and non-useful time gaps

If the buffer time between the trains of rank(1) is bigger than the ideal buffer time
for reaching the first station and smaller than the ideal buffer time for reaching the
second station, then waiting time is generated:

ts,21 + Δts,1 ≤ tb,11 < ts,21 + Δts,1 + Δt (4.16)

The expected waiting time for one crossing with buffer times given in equation (4.16)
becomes, according to Schwanhäußer:

E[twx1] =
∫ ts,21+Δts,1+Δt

ts,21+Δts,1

(tb,11 − ts,21 − Δts,1) · f(tb,11) · dtb,11

=
∫ ts,21+Δts,1+Δt

ts,21+Δts,1

1
tb,11

· (tb,11 − ts,21 − Δts,1) · e−
tb,11
tb,11 · dtb,11

=
(
−tb,11 · e−

tb,11
tb,11 − tb,11 · e−

tb,11
tb,11 + ts,21 · e−

tb,11
tb,11 + Δts,1 · e−

tb,11
tb,11

)∣∣∣∣
ts,21+Δts,1+Δt

ts,21+Δts,1

= e
− (ts,21+Δts,1)

tb,11 ·
(

tb,11 − (tb,11 + Δt) · e−
Δt

tb,11

)
(4.17)

Buffer times large enough for the train of rank(2) to reach the second station and
almost the third station is given in equation (4.18):

ts,21 + Δts,1 ≤ tb,11 + Δt < ts,21 + Δts,1 + 2Δt (4.18)

The integrating limits in equation (4.17) are enlarged by Δt given in equation
(4.19):
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E[twx2] =
∫ ts,21+Δts,1+2Δt

ts,21+Δts,1+Δt

(tb,11 − ts,21 − Δts,1 − Δt) · f(tb,11) · dtb,11

=
∫ ts,21+Δts,1+2Δt

ts,21+Δts,1+Δt

1
tb,11

· (tb,11 − ts,21 − Δts,1 − Δt) · e−
tb,11
tb,11 · dtb,11

=
(
−tb,11 · e−

tb,11
tb,11 − tb,11 · e−

tb,11
tb,11 + ts,21 · e−

tb,11
tb,11

+Δts,1 · e−
tb,11
tb,11 + Δt · e−

tb,11
tb,11

)∣∣∣∣
ts,21+Δts,1+2Δt

ts,21+Δts,1+Δt

= e
− (ts,21+Δts,1)

tb,11 ·
(

tb,11 − (tb,11 + Δt) · e−
Δt

tb,11

)
· e−

Δt
tb,11 (4.19)

Buffer times large enough for the train of rank(2) to reach the third station and
almost the fourth station is given in equation (4.20):

ts,21 + Δts,1 ≤ tb,11 + 2Δt < ts,21 + Δts,1 + 3Δt (4.20)

The integrating limits in equation (4.19) are enlarged by Δt given in equation
(4.21):

E[twx3] =
∫ ts,21+Δts,1+3Δt

ts,21+Δts,1+2Δt

(tb,11 − ts,21 − Δts,1 − 2Δt) · f(tb,11) · dtb,11

=
∫ ts,21+Δts,1+3Δt

ts,21+Δts,1+2Δt

1
tb,11

· (tb,11 − ts,21 − Δts,1 − 2Δt) · e−
tb,11
tb,11 · dtb,11

=
(
−tb,11 · e−

tb,11
tb,11 − tb,11 · e−

tb,11
tb,11 + ts,21 · e−

tb,11
tb,11

+Δts,1 · e−
tb,11
tb,11 + 2Δt · e−

tb,11
tb,11

)∣∣∣∣
ts,21+Δts,1+3Δt

ts,21+Δts,1+2Δt

= e
− (ts,21+Δts,1)

tb,11 ·
(

tb,11 − (tb,11 + Δt) · e−
Δt

tb,11

)
· e−

Δt
tb,11 · e−

Δt
tb,11 (4.21)

For an independent timetable with exponentially distributed buffer times, the num-
ber of stations the train of rank(2) can run in the extreme case is assumed to be infinite.
The further development of equation (4.17), (4.19) and (4.21) builds an infinite geo-
metrical series:

E[twx] =
∞∑
i

E[twxi] (4.22)
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∞∑
i=1

E[twxi] = e
− ts,21+Δts,1

tb,11 ·
(

tb,11 − (tb,11 + Δt) · e−
Δt

tb,11

)

·
(

1 + e
− Δt

tb,11 + (e
− Δt

tb,11 )2 + (e
− Δt

tb,11 )3 + · · · + (e
− Δt

tb,11 )i−1 + · · ·
)

(4.23)

In general i → ∞ an infinite geometrical serie on the general form has solution:

∞∑
i=1

aqi−1 =
a

1 − q
; |q| < 1 (4.24)

In this case

a = e
− ts,21+Δts,1

tb,11 ·
(

tb,11 − (tb,11 + Δt) · e−
Δt

tb,11

)
and
q = e

− Δt
tb,11

It is requested that q < 1. This holds if the following two conditions are satisfied:

Condition 1: There must be stations where crossings can take place. The time gap
can then be measured.
Condition 2: There must be opposing trains of rank(1). Then the buffer time between
the trains of rank(1) can be calculated.

The opposite situation when there are no crossings to estimate is given in the special
case when:

q = 1

e
− Δt

tb,11 = 1

and the exponent:

− Δt
tb,11

= 0

The exponent can only become zero if either the nominator becomes zero or the
denominator reaches infinity. This means that the time gap is only zero when the dis-
tance between the stations also is zero. On the other hand, if the buffer time between
the trains of rank(1) goes to infinity it means that there are no opposing trains and
no crossings will take place. Equation (4.24) is therefore valid for buffer times in the
range: (ts,21 + Δts,1 ≤ tb,11 < ∞).

Making use of equation (4.24) in equation (4.23) the expected waiting time for
crossing becomes:
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E[twx] = e
− ts,21+Δts,1

tb,11 ·
(

tb,11 − (tb,11 + Δt) · e−
Δt

tb,11

)
· 1

1 − e
− Δt

tb,11

(4.25)

In the special case of equation (4.25) with one block between the station, Δts,1

becomes 0. The expected waiting time for crossing then becomes:

E[twx]Δts,1=0 = e
− ts,21

tb,11 ·
(

tb,11 − (tb,11 + Δt) · e−
Δt

tb,11

)
· 1

1 − e
− Δt

tb,11

(4.26)

4.3.2 The number of crossings

The number of crossings one train receives for running the entire line can be described
as:

nx =
lline − l

dx

(4.27)

where dx is the conditional expected mean distance a train can run before meeting
an opposing train. The entire length of the line is lline and the average section1 distance
is l.

The expected length between two crossings according to Schwanhäußer is:

E[dx] = l

∫ ts,21+Δts,1+Δt

ts,21+Δts,1

1
tb,11

e
− tb,11

tb,11 dtb,11 +

2 · l
∫ ts,21+Δts,1+2Δt

ts,21+Δts,1+Δt

1
tb,11

e
− tb,11

tb,11 dtb,11 +

3 · l
∫ ts,21+Δts,1+3Δt

ts,21+Δts,1+2Δt

1
tb,11

e
− tb,11

tb,11 dtb,11 + · · · +

m · l
∫ ts,21+Δts,1+mΔt

ts,21+Δts,1+(m−1)Δt

1
tb,11

e
− tb,11

tb,11 dtb,11 (4.28)

After integration equation (4.28) becomes:

E[dx] = l · e−
ts,21+Δts,1

tb,11 ·
(

(1 − e
− Δt

tb,11 ) +

2 · (e−
Δt

tb,11 − e
− 2Δt

tb,11 ) +

3 · (e−
2Δt

tb,11 − e
− 3Δt

tb,11 ) + · · · +
m · (e−

(m−1)Δt

tb,11 − e
− mΔt

tb,11 )
)

(4.29)

1Recall that a section is the distance between two neighboring stations, Chapter 2.1.1.
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Setting q = e
− Δt

tb,11 equation (4.29) can be expressed as:

E[dx] = l · e−
ts,21+Δts,1

tb,11 ·
(

(1 − q) +

2 · (q − q2) +
3 · (q2 − q3) + · · · +
m · (q(m−1) − qm)

)
(4.30)

Equation (4.30) forms a geometrical serie. For m → ∞ and q < 1 the sum of this
series becomes:

E[dx] = l · e−
ts,21+Δts,1

tb,11 ·
∞∑

m=1

m · (1 − q) · qm−1

= l · e−
ts,21+Δts,1

tb,11 · (1 − q)
(q − 1)2

= l · e−
ts,21+Δts,1

tb,11 · −1
(q + 1)

= l · e−
ts,21+Δts,1

tb,11 · 1
(1 − q)

(4.31)

Rearranging equation (4.31) gives:

E[dx] = l · e−
ts,21+Δts,1

tb,11 · 1
1 − q

= l · e
− ts,21+Δts,1

tb,11

1 − e
− Δt

tb,11

(4.32)

The probability for buffer times large enough for the train of rank(2) to merge back
into the line is given by:

p(ts,21 + Δts,1 ≤ tb,11 < ∞) =
∫ ∞

ts,21+Δts,1

1
tb,11

e
− tb,11

tb,11 dtb,11

= (e
− tb,11

tb,11 )
∣∣∣∣
∞

ts,21+Δts,1

= e
− ts,21+Δts,1

tb,11 (4.33)

Figure 4.9 illustrates the probability density function for buffer times between trains
of rank(1) for buffer times large enough for merging. It makes sense that a train of
rank(2) has to merge into the line before it can meet an opposing train. Therefore
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f(t )b,11

tb,11

Buffer times large
enough for merging

t + ts, s,21 1

1
tb,11

Figure 4.9: Probability density function of the buffer time between the trains of
rank(1). Area for buffer times large enough for merging is indicated.

only the sum of all probabilites for buffer times larger than or equal ts,21 + Δts,1 can
be taken into account.

The conditional expected mean distance between two crossings is given by:

dx =
E[dx]

1
tb,11

· ∫ ∞
ts,21+Δts,1

e
− tb,11

tb,11 dtb,11

(4.34)

where E[dx] is the expected length between two crossings. The denominator is the
probability for buffer times large enough for merging. After inserting equation (4.32)
and equation (4.33) into (4.34) the conditional expected mean distance between two
crossings becomes:

dx =
l

1 − e
− Δt

tb,11

(4.35)

Equation (4.35) is another manner to express equation (4.34). The average distance
a train can run before it meets an opposing train is the mean section distance devided
by the probability for buffer times large enough for reaching the next station(i), which
is the probability for crossing in station(i). With decreasing probability for buffer
times large enough to reach the next station(i), the probability increases for reaching
station(i+1) and dx increases.

Inserting equation (4.35) into equation (4.27) gives the number of crossings for one
train on the entire line:

nx =
lline − l

l
· (1 − e

− Δt
tb,11 ) (4.36)
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The first term in equation (4.36) is equal the number of stations. The second term
is equal the probability for buffer times large enough for merging to the next station.
This is equal to the probability for crossing in one station.

4.3.3 Expected waiting time for merging

If the buffer time between the trains of rank(1) is smaller than the ideal buffer time
necessary for train of rank(2) to reach the next station before meeting an opposing
train, waiting time for merging arises. Figure 4.10 illustrates a train of rank(2) which
cannot merge into the line because the buffer time is too small. The train has to wait
ts,12 + tb,11 − Δts,1. If the second opportunity to merge does not succeed, the train
has to wait an other ts,12 + tb,11 − Δts,1.

The expected waiting time if the first possibility to merge fails becomes:

E[twm1] =
∫ ts,21+Δts,1

0

(tb,11 + ts,12 − Δts,1) · f(tb,11) · dtb,11

=
∫ ts,21+Δts,1

0

· 1
tb,11

(tb,11 + ts,12 − Δts,1) · e−
tb,11
tb,11 · dtb,11

=
(
−tb,11 · e−

tb,11
tb,11 − tb,11 · e−

tb,11
tb,11 − ts,12 · e−

tb,11
tb,11 + Δts,1 · e−

tb,11
tb,11

)∣∣∣∣
ts,21+Δts,1

0

= −(ts,21 + Δts,1) · e−
(ts,21+Δts,1)

tb,11 − tb,11 · e−
(ts,21+Δts,1)

tb,11 − ts,12 · e−
(ts,21+Δts,1)

tb,11

+Δts,1 · e−
(ts,21+Δts,1)

tb,11 + tb,11 + ts,12 − Δts,1

= tb,11 − tb,11 · e−
ts,21+Δts,1

tb,11 − (ts,21 + Δts,1) · e−
ts,21+Δts,1

tb,11

+(ts,12 − Δts,1) − (ts,12 − Δts,1) · e−
ts,21+Δts,1

tb,11

= (1 − e
− ts,21+Δts,1

tb,11 ) · (tb,11 + ts,12) − ts,21 · e−
ts,21+Δts,1

tb,11 − Δts,1

(4.37)

The probability for buffer times between the trains of rank(1) smaller than ts,21 +
Δts,1 is:

p(tb,11 < ts,21 + Δts,1) = 1 − e
− ts,21+Δts,1

tb,11 (4.38)

If the second possibility to merge back into the line fails, the waiting time for
merging becomes:

E[twm2] = E[twm1] · p(tb,11 < ts,21 + Δts,1)

=
(

(1 − e
− ts,21+Δts,1

tb,11 ) · (tb,11 + ts,12) − ts,21 · e−
ts,21+Δts,1

tb,11 − Δts,1

)
· (1 − e

− ts,21+Δts,1
tb,11 )

(4.39)
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Figure 4.10: Train of rank(2) incurs waiting time for merging. There are two or more
block sections between the stations.



76 Scheduled waiting time from crossing on single track lines

The buffer time between the trains of rank(1) and the waiting time for merging are
stochastic variables. In equation (4.39) the expected waiting time for merging into the
first possibility and the probability for the next buffer time to be too small for merging
back into the line forms a product. This product can be formed since the waiting time
generated for not being able to merge back into the line is independent of the buffer
time between the trains of rank(1) forming the next possibility for merging. Whether
the buffer time between the trains of rank(1) is large enough for merging or not is a
stochastic event. The buffer time is independent of the earlier or later buffer times in
the same schedule.

If also the third possibility to merge back into the line fails, the expected waiting
time becomes:

E[twm3] = E[twm1] · p(tb,11 < ts,21 + Δts,1) · p(tb,11 < ts,21 + Δts,1)

=
(

(1 − e
− ts,21+Δts,1

tb,11 ) · (tb,11 + ts,12) − ts,21 · e−
ts,21+Δts,1

tb,11 − Δts,1

)
· (1 − e

− ts,21+Δts,1
tb,11 )2

(4.40)

The expected waiting time for merging for i possibilities then becomes:

E[twm] =
∞∑
i

E[twmi]

∞∑
i=1

E[twmi] = E[twm1] ·
∞∑

i=1

(
p(tb,11 < ts,21 + Δts,1

)(i−1)

=
(

(1 − e
− ts,21+Δts,1

tb,11 ) · (tb,11 + ts,12) − ts,21 · e−
ts,21+Δts,1

tb,11 − Δts,1

)

·
∞∑

i=1

(1 − e
− ts,21+Δts,1

tb,11 )(i−1) (4.41)

The second term in the product in equation (4.41) builds a geometrical serie. Let-
ting the quotient be:

q = 1 − e
− ts,21+Δts,1

tb,11 (4.42)

Then equation (4.41) can be expressed as:

∞∑
i=1

E[twmi] =
(

(1 − e
− ts,21+Δts,1

tb,11 ) · (tb,11 + ts,12) − ts,21 · e−
ts,21+Δts,1

tb,11 − Δts,1

)

·
∞∑

i=1

(1 + q + q2 + q3 · · · qi−1) (4.43)

The geometrical serie in (4.43) converges when i → ∞:
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∞∑
i=1

qi−1 =
1

1 − q
; |q| < 1 (4.44)

Note that equation (4.44) is not the sum of all probabilities for buffer times
tb,11 < ts,21 + Δts,1. The sum of equation (4.44) is larger than 1. The probability
for not merging back into the line in the first possibility is included into equation
(4.37), respectively in the first part of the product in equation (4.43). The sum of
all probabilities for not merging back into the line is thus given in equation (4.43).
This partition of equation (4.41) into a product is necessary for the formation of a
converging series of the second part of the product in equation (4.43). The sum of all
probabilities for not merging back into the line would include the probability for not
merging into the first possibility into equation (4.44):

∑
p(tb,11 < ts,21+Δts,1) = q

(1−q)

which satisfies the condition q
(1−q) ≤ 1.

Inserting for q from equation (4.42) into equation (4.44) makes :

1
1 − q

=
1

1 − (1 − e
− ts,21+Δts,1

tb,11 )

= e
ts,21+Δts,1

tb,11 (4.45)

Inserting the sum of equation (4.44) given in (4.45) into equation (4.43) gives the
overall expected waiting time for merging for one train:

E[twm] =
(

(1 − e
− ts,21+Δts,1

tb,11 ) · (tb,11 + ts,12) − ts,21 · e−
ts,21+Δts,1

tb,11 − Δts,1

)
· e

ts,21+Δts,1
tb,11

= tb,11 · e
ts,21+Δts,1

tb,11 + ts,12 · e
ts,21+Δts,1

tb,11 − tb,11 − ts,12 − ts,21 − Δts,1 · e
ts,21+Δts,1

tb,11

= (tb,11 + ts,12)(e
ts,21+Δts,1

tb,11 − 1) − ts,21 − Δts,1 · e
ts,21+Δts,1

tb,11 (4.46)

In analogy to equation (4.46) the expected waiting time for merging in the special
case of one block section between the stations becomes:

E[twm]Δts,1=0 = (tb,11 + ts,12)(e
ts,21
tb,11 − 1) − ts,21 (4.47)

4.3.4 Expected waiting time from crossing

To obtain the entire scheduled waiting time from crossing for the entire line, the
expected waiting time for crossing and merging respectively, must be multiplied by
the number of trains n2 that are to be included into the schedule and the number of
crossings, as described in formula (4.48):

TWX = n2 · nx · (min tx + E[twx] + E[twm]) (4.48)
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The term min tx, which is a constant, is the minimum time necessary for one
crossing decribed in Chapter 2.1.5. Inserting for the number of crossings from equation
(4.36) into equation (4.48):

TWX = n2 · lline − l

l
· (1 − e

− Δt
tb,11 ) · (min tx + E[twx] + E[twm]) (4.49)

Inserting the expected waiting time for crossing and merging from equation (4.25)
and (4.46) gives the waiting time from crossing for the entire line for all the trains of
rank(2) that are to be included.

TWX = n2 · lline − l

l
· (1 − e

− Δt
tb,11 )

·
(

min tx +

e
− ts,21+Δts,1

tb,11 ·
(

tb,11 − (tb,11 + Δt) · e−
Δt

tb,11

)
· 1

1 − e
− Δt

tb,11

+ (tb,11 + ts,12)(e
ts,21+Δts,1

tb,11 − 1) − ts,21 − Δts,1 · e
ts,21+Δts,1

tb,11

)
(4.50)

For the special case where there are only one block section between the stations,
Δts,1 is set equal zero in equation (4.50). For the special case of a single track line
with mixed numbers of block sections between the stations, equation (4.50) can be
fractionated:

TWX = n2 · n≥1 block

Nstations
· (1 − e

− Δt
tb,11 ) · (min tx + E[twx] + E[twm]) +

n2 ·
nΔts,1=0

Nstations
· (1 − e

− Δt
tb,11 ) · (min tx + E[twx]Δts,1=0 + E[twm]Δts,1=0)

(4.51)

where

n≥1 block

Nstations
= the proportion of sections with two or more block sections between the

stations.
n1 block

Nstations
= the proportion of sections with one block section between the stations.

In the next step of the timetable construction, another train model of lower priority
with ranking number 2 is to be included into the existing timetable of train model of
rank(1). In this case equation (4.51) must be calculated for the number of trains that
are to be included for both directions seperately.
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4.4 Special assumption for constant buffer times

Figure 4.11 illustrates three different cyclic timetables on a fictitous single track railway
line. They are cyclic since the cycle time, tc, between the departures for one direction
is constant. Timetable A has traffic only in one direction. On single track lines, there is
mostly traffic in both directions. The cyclic timetable in A is not a common timetable
for single track. Timetable A only serves as an example.

B C

tc,2A

tc,3A

tc,4A

A

tc,1B

tc,2B

tc,1C

tc,2C

tc,1A

Figure 4.11: Three examples of cyclic timetables

Timetable B and C have traffic in both directions. In timetable C the trains are
crossing.

When the buffer time between the trains of rank(1) is treated as a constant, only
the number of trains in superior direction needs to be known for the calculation of
the mean buffer time given in equation (4.15). A constant buffer time between the
trains of rank(1) is only an assumption. With constant train velocity but variation
in the distance between the stations, it gives different minimum spacing time which
influences the buffer time in equation (4.15). With additional variation in the train
velocity, it gives even larger variation in the minimum spacing time between the trains
of rank(1) and the buffer time between the trains of rank(1). The larger the deviation
in buffer time, the less the assumption of constant buffer time holds.

In the following derivation there are few variations in topology and distance between
the stations assumed. The train velocity is kept constant over the entire line to ensure
an approximately constant buffer times between the trains of rank(1) on the entire
line. In practise there will always be some variation in the buffer time between the
trains of rank(1), therefore the mean quantity of the buffer times between the trains
of rank(1) wil be used as an approximation for a constant buffer time denoted with
tb,11. The constant buffer time is given in equation (4.15). For the estimation of the
waiting time from crossing and overtaking, it is assumed that one direction is prior
over the opposite direction, as in section 4.3.1.



80 Scheduled waiting time from crossing on single track lines

4.4.1 Waiting time from crossing and overtaking with constant
buffer time

Figure 4.12 illustrates the buffer time needed for a crossing to take place in station
(i), case 1, and station (i+1), case 2. In the first case, the train of rank(2), running in
one direction, manages to reach station (i). The ideal buffer time between the trains
of rank(1) is equal to the minimum spacing time ts,21. In case 2 the train of rank(2)
manages exactly to reach the station (i+1). In this case the ideal buffer time needed
between the trains of rank(1) is analogous to equation (4.11):

ideal tb,11 = ts,21 + Δts,1 + Δt2(i, i + 1) + Δt1(i + 1, i)

Station ( 1)i- Station ( 1)i+Station ( )i
l i( )l i-( 1)

Train of rank(1)

Case 2: crossing
in station ( +1)i

Case 1: crossing
in station ( )i

Train of rank(2)

ts,21

t i i1( +1, )

ideal tb, 11
t i2( ), i+1t

Figure 4.12: Ideal buffer time between trains of rank(1) for crossing with train of
rank(2) in station (i) and (i+1)

Figure 4.13 shows a situation for an overtaking. A train of rank(2) starting from
station (i-1), running in one direction can exactly reach the next station (i), or even
one or more stations further, if the constant buffer time between the trains of rank(1)
is big enough. In the ideal case, the train of rank(2) manages to reach the next station
without generating any waiting time in addition to the minimum time needed for
overtaking.

In case 1 a train of rank(2) is being overtaken in station (i) or station (i+1) which is
case 2, depending on how big the constant buffer time is between the trains of rank(1).
In the first case, the buffer time between the trains of rank(1) must at least equal the
minimum spacing time, ts,21, on the section l(i − 1). In the second case, if the train
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Station ( -1)i Station ( 1)i+Station ( )i
l i( )l i-( 1)

Train of rank(1)

Case 1: overtaking
in station ( )i

Case 2: overtaking
in station ( +1)i

Train of rank(2)

ideal tb,11

ts,21

t i2( ),i+1

Figure 4.13: Ideal buffer time between trains of rank(1) for overtaking the train of
rank(2) in station (i) and (i+1)

of rank(2) were exactly to reach one more station (i+1), the ideal buffer time between
the trains of rank(1) becomes:

ideal tb,11 = ts,21 + Δt2(i, i + 1)o (4.52)

where
Δt2(i, i + 1)o = is the time gap needed in addition to the minimum spacing time for
reaching station (i).

The same derivation for the ideal buffer time for crossing and overtaking follows
the same principles as given in equation (4.11)-(4.13).

When using the same train model as in the example for overtaking, given in figure
4.13, the time gap needed for the train of rank(2) to reach the next station for a
crossing is bigger than the time gap needed in the case of an overtaking on the same
line sections:

Δt(i, i + 1)o < Δt2(i, i + 1)x + Δt1(i + 1, i)x

Δto < Δtx (4.53)

This is the same observation as in section 4.3.1.

If the trains of rank(1) have a constant buffer time bigger than the mean minimum
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spacing time, the train of rank(2) will manage to run at least one station further:

tb,11 > ts,21

This is the buffer time referred to in equation (4.15).

If the buffer time between the trains of rank(1) is constant and the distance between
the stations is equal, then the waiting time for every crossing becomes:

twx = tb,11 − ts,21 − m · Δtx (4.54)

and for every overtaking:

two = tb,11 − ts,21 − m · Δto (4.55)

where
m = 0, 1, 2, 3...

For small variations in the buffer time between the trains of rank(1) and the dis-
tance between the stations is spreading, following approximation for the waiting time
can be used for every crossing:

twx ≈ Δtx
2

(4.56)

and for every overtaking:

two ≈ Δto
2

(4.57)

When the buffer time between the trains of rank(1) is spreading the quantity of
time gap needed for the train of rank(2) to reach the next station will normally also
spread. In this case the waiting time will be Δt

2 .

Figure 4.14 serves as an example for the explanation of equation (4.56). Four
variants of one schedule with constant buffer time is illustrated. In this example the
opposing trains of rank(1) have priority over trains running from the left to the right.
The requested crossing is marked by a circle. In schedule 1 the train of rank(2) and
lower priority almost manages to reach the next station (i+1). This train incurs
waiting time from crossing in station(i). In the second schedule the requested crossing
is situated in the middle of the section. In this schedule the train of rank(2) also incurs
waiting time from crossing which is a little larger as in schedule 1. In the third schedule
the train of rank(2) is not running far before meeting the opposing train. It incurs a
small amount of waiting time for crossing in station(i). In the last example, schedule
4, the train of rank(2) exactly manges to reach the next station (i+1) before meeting
the opposing train. This train incurs no waiting time for crossing. These 4 example
schedules illustrate that the requested departure for the trains of lower priority can
run into a crossing with the opposing train at any point on the section when timetable
independent estimation is used. The same explanantion yields for the occurence of
waiting time for overtaking.
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Figure 4.14: Four examples of equal probability of requested timetables
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If tb,11 ≥ ts,21, then the mean distance do a train of rank(2) can run on average
before an overtaking takes place becomes:

do = l · ( tb,11 − ts,21

Δto
+ 1) (4.58)

The mean distance dx a train of rank(2) can run on average before a crossing takes
place becomes:

dx = l · ( tb,11 − ts,21

Δtx
+ 1) (4.59)

The number of overtakings for one train on the entire line will then be:

no =
(lline − l)

do

(4.60)

Analogous with the number of overtakings, the number of crossings for one train on
the entire line becomes:

nx =
(lline − l)

dx

(4.61)

where
l = the mean section distance between the stations.

Inserting for d from equation (4.59), the number of overtakings and crossings for
one train on the entire line becomes, respectively:

no =
(lline − l)

l
· Δto

(tb,11 − ts,21 + Δto)
(4.62)

and

nx =
(lline − l)

l
· Δtx

(tb,11 − ts,21 + Δtx)
(4.63)

where
lline = the entire length of the line investigated.
The first term in equation (4.62) and (4.63) represents the number of stations on the
line.

In the first round of inclusion of the timetable the waiting time between trains of
equal rank with trains in the opposite direction being superior becomes:

TW,d, 1−incl. = n2,d·
(

nx · (twx + min tx)
)

(4.64)

where n2,d = the number of trains of rank(2) to be included in one direction
min tx = the minimum time theoretical needed for a crossing described in Chapter
2.1.5
min to = the minimum time theoretical needed for an overtaking



4.4 Special assumption for constant buffer times 85

In the first round of inclusion there is no waiting time from overtaking, since all
trains within the same train model are assumed to run with the same speed. In the
second round of inclusion of trains into the timetable waiting time from overtaking
might also occur. If the velocity of the including trains is lower than the velocity
of the already included trains of rank(1), then the waiting time from crossing and
overtaking becomes in the second inclusion:

TW,d, 2−incl. = n2,d·
(

no · (two + min to) + nx · (twx + min tx)
)

(4.65)

Inserting equation (4.62) and (4.63) for the number of overtakings and crossings, and
the equations (4.57) and (4.56) for the waiting time for one overtaking and crossing
into equation (4.65) gives:

TW,d, 2−incl. = n2,d · (lline − l)
l

·
(

Δto

(tb,11 − ts,21 + Δto)
· (Δto

2
+ min to)

+
Δtx

(tb,11 − ts,21 + Δtx)
· (Δtx

2
min + tx)

)
(4.66)

Note that from the second round of inclusion new quantities must be recorded for
tb,11, ts,21 and Δtx. The number of trains running in the opposite direction treated
as trains of rank(1) is the sum of trains running in the opposite direction from the
first and second round of inclusion. If the sum of the number of trains running in
the opposite direction in the second round of inclusion is larger than the number of
trains running in the opposite direction in the first round of inclusion, the buffer time
between the trains of rank(1) in the second round of inclusion is smaller than in the
first round of inclusion. This means that the trains running in direction might incur
waiting time from crossing with trains from the first and second round of inclusion.

For the third inclusion into the timetable equation (4.65) is repeated with new
quantites for tb,11, ts,21 and Δtx. For the overall waiting time from crossing and
overtaking for all rounds of m inclusions in one direction becomes:

TW,d = n2,d·
(

nx · (twx + min tx)
)

+
m∑

i=2−icl.

TW,d, i−incl. (4.67)

Trains of the opposite direction might incur waiting time from overtaking and
crossing. This can occur from the second round of inclusion into the timetable. The
trains running in the opposite direction can only incur waiting time from crossing when
crossing with a train from the first round of inclusion with higher priority, running in
direction. Trains running in the opposite direction will not incur waiting time from
crossing when crossing with a train running in direction from the second round of
inclusion. The train running in direction from the second round of inclusion already
incured this waiting time given in equation (4.65).

The trains running in the opposite direction cannot incur waiting time from crossing
because of their priority over trains running in one direction. The waiting time from
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crossing and overtaking for trains running in the opposite direction for the second
round of inclusion becomes:

TW,od, 2−incl. = n2,od·
(

no · (two + min to) + nx · (twx + min tx)
)

(4.68)

where
n2,od = the number of trains of rank(2) to be included in opposite direction

For the third inclusion into the timetable equation (4.68) is repeated.

The overall waiting time from crossing for all rounds of m inclusions in the opposite
direction becomes:

TW,od =
m∑

i=2−incl.

TW,od, i−incl. (4.69)

The overall waiting time for the entire line for both direction is the sum of equation
(4.67) and (4.69):

TW = n2,d·
(

nx · (twx + min tx)
)

+
m∑

i=2−incl.

TW,d, i−incl.

+
m∑

i=2−incl.

TW,od, i−incl. (4.70)



Chapter 5

Case study of single track
lines

In this chapter a case study of the timetable characteristics of three single track lines
is performed. The study is built up in three parts I-III as described in section 5.1.
Section 5.2 lists the results of each line. Section 5.3 summarizes the results of case
study I, where section 5.4 gives the result of case II and section 5.5 gives the results
of case III.

5.1 Timetable characteristics on single track lines

In this section the timetable characteristics for three single track lines were investi-
gated. This case study serves the purpose of providing a rough picture to what extent
the schedules in this study are stochastic or cyclic. At first the main timetable char-
acteristics for each train model were investigated as to whether they were cyclic or
stochastic. Second, for the stochastic schedules a buffer time analysis was conducted
to determine whether an exponential, hyper-exponential or an Erlang distribution can
be accepted as distribution. This analysis was carried out with a χ2-test of goodness
of fit. This will be a rough approximation compared with the study made by Kaas
[Kaas98], where the distribution of the arrival rate at Glostrup station were analysed
in detail. Glostrup station is situated between Copenhagen and the national airport
on a double track line. Since Schwanhäußer showed that the buffer times between fast
trains on double track lines with mixed traffic in most cases is approximately negative
exponentially distributed [Schw74], it is obvious to check whether this also applies to
single track lines.

A definition of a cyclic timetable is made by Dirmeier [Dirm77]:

A cyclic schedule has a repeating cycle time tC between two trains travelling in the
same direction on the same line.
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For example a cycle time of 60 minutes means that the same train model departs
every 60 minutes from the same point. For single track line, this definition also holds.
In most cases the cycle time is the same for both directions within the same schedule.

The following three single track lines were investigated:

• Line A: Eidsvoll-Hamar (Norway). Day of survey was Thursday, April 18th, 2002.

• Line B: Day of survey was Thursday, April 18th, 2002

• Line C: Day of survey was Thursday, April 17th, 2003

Upon request from the infrastructure operator, no details regarding the track line B
and line C will be disclosed in this paper. Common for all three single track lines
is that four to five different train models operate, where one of the train models is a
freight train model. On the mentioned week days, 51-75 passengers and freight trains
frequented each line over 24 hours. For these lines this is a high traffic load.

The following data were collected for different line sections on the three lines:

I: The timetable characteristics for each train model individually were extracted
from the time tables

II: The timetable characteristics for a selection of pairs of two train models together
were extracted from the time tables. The buffer time between the trains was
analyzed.

III: The buffer time was extracted from the time tables for all train models together

All three timetables were or had to be built in a time-way graph that illustrated the
occupation time of each train individually. In this time-way graph it is possible to
extract the buffer time between the trains. Details are given in Appendix B.

5.2 Results of all three lines

5.2.1 Line A: Eidsvoll-Hamar

One of the lines investigated was Eidsvoll-Hamar, which is a single track line north of
the national Norwegian Gardermoen Airport. This line is about 55 km long, and has
9 stations for overtaking and crossing between the nodes Eidsvoll and Hamar. The
single track line is a part of an entire line from Oslo to Trondheim in the north, as
illustrated in figure 5.1. A conventionalized track diagram of line A from Eidsvoll to
Hamar is illustrated in figure 5.2.

On April 18th, 2002, 62 passengers and freight trains (Ft) were scheduled on this
line over 24 hours. Figure 5.3 illustrates the timetable structure of two of three pas-
sengers train models running on the single track line Eidsvoll-Hamar. The third train
model is a passenger train running only at night (Nt) with one departure in each
direction. The Inter-City-Express train model (ICE, called Signatur in Norway) has
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Figure 5.1: Localization of line A: Eidsvoll-Hamar in Norway
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Eidsvoll Vettastølen Minnesund Molykkja Morskogen

Strandlykkja Klev Espa Tangen Steinsrud

Sørli Stange Ottestad
Hamar

Akersvika

Figure 5.2: Conventionalized track diagram of line A: Eidsvoll-Hamar

four departures during the day in each direction. The departure times of the ICE
trains are not regular. The trains travel two by two with a time distance of 2 hours in
between. Their origin and destination is Oslo and Trondheim respectively. The other
train model is an Inter-City train (IC) with regular departures of 1 hour from Eidsvoll
and Hamar. This timetable is cyclic. The ICE and IC train do not operate during the
night from 12am to 5am.

The 17 scheduled freight trains (Ft) on the line Eidsvoll-Hamar run irregularly.
There were no freight trains scheduled between 12pm and 3am. Their timetable is
stochastic. A χ2-test of goodness of fit of the buffer time between the freight trains on
the section between station Tangen and Steinsrud gave conformity with an exponential
distribution and a hyper-exponential distribution with a significance level of α = 0.05.

A buffer time analysis of the IC trains and freight trains together in the same
schedule on the same section provided no conformity with the wanted distributions.
There are 35 IC trains that operate cyclically, and 17 freight trains that operate
stochastically. The cyclic schedule has a dominating influence on the buffer time
distribution. This can be seen by the high number of observations in the same time
interval.

The analysis of the buffer time between all trains in the timetable on the section
between station Tangen and Steinsrud did not conform to any of the investigated dis-
tributions. For the section Molykkja-Morskogen the buffer time distribution conforms
with an exponential and hyper exponential distribution with a significance level of
α = 0.05. Since the coefficient of variation VT = 1.35 > 1.2, the investigated distribu-
tion is closer to a hyper-exponential distribution than to an exponential distribution.
The buffer times from section Espa-Tangen did not conform to any of the investigated
distributions.

There is no clear priority detected in the schedules between the passenger train
models. For some crossings, the ICE train model uses the siding in a station, and
other times does not. The same holds for the IC train model. Comparing the freight
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Figure 5.3: Timetable characteristics of the ICE train and the IC train on the single
track line Eidsvoll-Hamar

trains with the passenger trains, a priority is clearly detected. All passenger trains
have priority over the freight trains.

A summary of line A is given in table 5.1

Train Section Number Buffer time α VT

model of trains distribution
Nt Tangen-Steinsrud 2 not defined
ICE Tangen-Steinsrud 8 not defined
IC Tangen-Steinsrud 35 cyclic
Ft Tangen-Steinsrud 17 Expo., H. − expo. 0.05 1.35
ICE+IC Tangen-Steinsrud 43 cyclic domination
IC+Ft Tangen-Steinsrud 52 not defined 1.64
All Tangen-Steinsrud 62 not defined 0.05 1.41
All Molykkja-Morskogen 62 Expo., H. − expo. 0.05 1.66
All Espa-Tangen 62 not defined 0.05 1.47

Table 5.1: Summary of line A: Eidsvoll-Hamar

5.2.2 Line B

On line B there are four different train models operating. The three passenger trains
models operate between 4am and 11pm, and the freight train between 3am and 11pm.
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One of the passenger train models contains only one IC train. For this train model it
cannot be decided whether this train model follows a cyclic or a stochastic schedule.
A model using only one train is not sufficient for such a description. The other two
train models are a Inter-Regional train model (IR) and a Regional train model (RB).
The IR train model has in total 15 trains in both directions, and the Regional train
model has in total 25 trains in both directions on section 2, 3 and 4. On section 1
41 Regional trains operate. Sixteen of them terminate at the first station. Figure
5.4 illustrates the timetable characteristics of the IR train model and the RB train
model. They have a cyclic schedule with departures every 2 hours in each direction.
In the timetable, the cyclic behavior of both schedules is recognized as a systematic
pattern in the time-way-graph with crossing on the same station. The time-way graph
illustrates that the IR train model has higher priority than the RB train model, since
the latter uses the siding during the crossing.

2h

2h

Regional-train Regional- and Inter Regional-trainInter Regional-train

2h

2h

Figure 5.4: Timetable characteristics of the IR train and the RB train on the single
track line B

There were in total 11 freight trains operating in both directions together. Their
schedule is stochastic. A χ2-test of goodness of fit of the buffer time between the freight
trains conforms with an exponential and Erlang2 distribution with a significance level
of 0.05. Since the coefficient of variation is VT = 0.76, the investigated distribution is
closer to an Erlang distribution than an exponential distribution.

A buffer time analysis between the RB trains and freight trains together in the same
schedule on the same section conforms with an exponential and hyper-exponential
distribution with a significance level of 0.05. The coefficient of variation is VT = 1.24
indicates that the investigated distribution is closer to a hyper-exponential distribution
than to an exponential distribution.

The buffer time analysis between all trains in the time table on section 1 did not
fit into any of the investigated distributions. On section 2, the buffer time distribution
between all trains gave conforms with an Erlang2 distribution with a significance level
α = 0.05. Both section 3 and 4 conforms with an exponential and hyper-exponential
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distribution with a significance level of α = 0.05. Since the coefficient of variation in
both cases was above 1.20, it is assumed that the buffer time distributions investigated
are closer to a hyper-exponential distribution than to an exponential distribution. The
time-way-graph of the entire timetable also illustrated that the passenger trains all
have priority over the freight trains.

A summary for line B is given in table 5.2.

Train Section Number Buffer time α VT

model of trains distribution
IC all 1 not defined
IR all 15 cyclic
RB 1, (2, 3), 4 41, (25), 23 cyclic
Ft 3 11 Expo., Erlang2 0.05 0.76
IR+RB all 40 cyclic domination
RB+Ft 3 36 Expo., H. − expo. 0.05 1.24
All 1 71 not defined 1.48
All 2 55 Erlang2 0.05 1.07
All 3 55 Expo., H. − expo. 0.05 1.36
All 4 53 Expo., H. − expo. 0.05 1.21

Table 5.2: Summary of line B

5.2.3 Line C

On line C 5 different train models operate. These operate between 4am and 11pm.
Two of the four passenger train models count only one or two trains within the model.
As in the case of line B, this is too little information to make any conclusion about the
type of schedule. The other two passenger train models are, like line B, an IR train
model and a RB train model. Their timetable characteristics are illustrated in figure
5.5. The IR train model has in total 14 trains, thus 7 trains in each direction depart
every second hour. This is a cyclic schedule. The RB train model has in total 37 trains
in both directions together. This schedule consists of two integrated cyclic schedules
with departure every second hour respectively. One of these schedules has trains that
run the entire line with a crossing in the same station. The other schedule alternates
with the first. The trains here travel only to the crossing station before returning
back in the other direction. The last illustration in figure 5.5 shows both train models
together in the same schedule. A repeating pattern is still to be observed when adding
these two cyclic schedules together. It is not clear if the IR train model has priority
over the RB train model, since there are no overtakings and crossings scheduled in the
time table.

The last train model in this timetable is the schedule of the freight trains. There
were 21 freight trains operating between 2am and 11am. This schedule is stochas-
tic like the other freight train schedules investigated so far. A buffer time analysis
with the χ2-test of goodness of fit conforms with an exponential distribution and a
hyper-exponential distribution with a significance level of 0.05. Since the coefficient of
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Figure 5.5: Timetable characteristics of the IR train and the RB train on the single
track line C

variation , VT = 1.07, is close to 1.00, the exponential distribution will be the better
estimate than the hyper-exponential distribution.

As for line B, a buffer time analysis between the RB trains and freight trains
together in the same schedule was investigated. On section 1 the χ2-test of goodness
of fit did not conform with any of the compared distributions.

The χ2-test of goodness of fit of the buffer time between all trains in the timetable
on section 1 did not conform with any of the investigated distributions. On section
2, a conformity with the exponential distribution was observed. In this case a too
high coefficient of variation was observed, VT = 1.53. This distribution might fit to
a hyper-exponential distribution, but the analysis gave no conformity with the hyper-
exponential distribution. On section 3 both conformity with an exponential, a hyper-
exponential and an Erlang2 distribution was observed. The coefficient of variation was
close to 1.00, therefore it is assumed that the investigated distribution better suits an
exponential distribution. All tests were made with a significance level of α = 0.05. As
for line A and B, the time-way-graph of the entire timetable also illustrated that the
passenger trains all have priority over the freight trains.

A summary for line C is given in table 5.3.
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Train Section Number Buffer time α VT

model of trains distribution
Nt all 1 not defined
IC all 2 not defined
IR all 14 cyclic
RB 1,2, (3) 37, (21) cyclic
Ft 1 21 Expo., H. − expo. 0.05 1.07
IR+RB 1 51 cyclic domination
RB+Ft 1 58 not defined 1.50
All 1 77 Erlang2 0.05 1.48
All 2 77 Expo. 0.05 1.53
All 3 61 Expo., H. − expo., Erlang2 0.05 1.03

Table 5.3: Summary of line C

More details are given in Appendix B.

5.2.4 Summary of all lines

5.3 Case study I: Time table characteristics for each

train model individually extracted from the time-
tables

For the three single track lines investigated in general, a cyclical schedule was observed
among the passenger trains. For the freight trains a stochastic schedule was observed.
This is in accordance to the principle of the freight train operation. Operating freight
is mostly a short term decision compared to operating passenger trains, which does
not change too much over the longer term. It is not clear which stochastic distribution
should be preferred. The previous analysis of the buffer time distribution between
the three freight trains schedule confirmed an exponential, a hyper-exponential and an
Erlang2 distribution separately.

5.4 Case study II: Time table characteristics for a
selection of pairs of two train models together

extracted from the timetables

The analysis of pairs of cyclic passenger train schedules still showed a cyclical dom-
ination. If several cyclic schedules are added on the same line, the schedule will be
less cyclical in total. This is illustrated in figure 5.6 for a double track line. The
cycle time is denoted with tC . Dirmeier [Dirm77] showed that the inter-arrival time
between the cyclic trains in a node is stochastic. This is possible if two or more cyclic
timetables (with several cyclic schedules) arrive in the node. This example illustrates
that several cyclic schedules in the timetable makes the cyclic pattern in the timetable
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less dominant. However, there must be many overlapping cyclic schedules to make a
stochastic timetable, as is possible in a node. For a single track line the number of
cyclic schedules are limited.

Train A: t = 60 min.C

Train B: 30 min.t =C

Train C: t = 20 min.C

Train D:

Train D

Train C

Train B

Train C

t = 30 min.CTrain E: t = 120 min.C

60
min.

Figure 5.6: Several different cyclical schedules in the same timetable

The buffer time distribution of a cyclic passenger train schedule combined with one
stochastic freight train schedule provides no confirmity with the examined distributions
for line A and line C. For line B, a hyper-exponential distribution was accepted.

5.5 Case study III: The buffer time extracted from
the timetables for all train models together

The χ2-test of goodness of fit confirms that the three complete timetables have stochas-
tic buffer time distributions. Table 5.4 summarizes the χ2-test of goodness of fit for
all three lines investigated.

Line Expo. Erlang2 Hyper − expo.
A VT = 1.66 > 1.2, ! VT = 1.66
B VT = 1.07 > 0.8, !
B VT = 1.36 > 1.2, ! VT = 1.36
B VT = 1.21 VT = 1.21
C VT = 1.53 > 1.2, !
C VT = 1.03 VT = 1.03 > 0.8, ! VT = 1.03 < 1.2, !
Sum 2 0 3

Table 5.4: Summary of line A, B and C. The coefficient of variation is given for the
corresponding analysis.

For line A the test confirmed an exponential distribution, but the coefficient of
variation is too high. For an exponential distribution the variation coefficient should
be between 0.8 < VT < 1.2. For an Erlang2 distribution the coefficient of variation
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should be between 0.3 < VT < 0.8, and for a hyper-exponential distribution the
coefficient of variation should be VT > 1.2. If these criteria are determined, then there
are two analysis that correspond to an exponential distribution and three analysis that
correspond to a hyper-exponential distribution.
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Chapter 6

Results and discussion

In this chapter the model will be compared with the results from the simulation. In the
first section 6.1 line D (dummy of Eidsvoll-Hamar) and line A (Eidsvoll-Hamar) used
in the simulation are presented. In section 6.2 a failure in the simulation algorithm
is documented. In the following sections 6.3 and 6.4 the number of crossings and
multiple crossings are analyzed and compared. In section 6.5 the expected waiting
time for crossing, merging and the overall waiting time from crossings is analyzed.
Finally a discussion followed by a sensitivity analysis is carried out in section 6.6 and
section 6.7 respectively .

6.1 Lines investigated by simulation

For the investigation of the number of crossings between trains of equal rank on the
entire line, 100 stochastic timetables were simulated and the number of crossings reg-
istered for two different single track lines. Line A is the single track line running from
Eidsvoll to Hamar described in Chapter 5.2.1. Line A has 9 stations with one or two
block sections between the stations. Line D is a dummy version of line A where only
one block section is situated between the stations. The 13 block sections in the dummy
between Eidsvoll and Hamar are equally spaced. The distance between Eidsvoll and
Hamar is not changed from the original Line A. Second, the analysis of line D also
serves to demonstrate another type of line compared to line A. A schematic illustration
of line D is given in figure 6.1.

For line D and A two simulations were carried out with different priority between
the trains of different direction:

• Simulation alternative 1: trains running from Eidsvoll to Hamar have lower pri-
ority than trains running from Hamar to Eidsvoll (also denoted with ”alternative
1”)

• Simulation alternative 2: trains running from both directions have equal priority
(also denoted with ”alternative 2”)
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Eidsvoll Vettastølen Minnesund Molykkja Morskogen

Strandlykkja Klev Espa Tangen Steinsrud

Sørli Stange Ottestad HamarAkersvika

Figure 6.1: Schematic illustration of the dummy of Eidsvoll-Hamar

The main comparing study is between the results from the model established and
simulation alternative 1, where the priority strategy is the same. Simulation alternative
2 is introduced to illustrate the effect of a strategy with equal priority between the
trains of different direction. Also here a comparing analysis between the results from
the model and the simulation is performed. In this case the time of survey and the
buffer time between the fast trains are those from simulation alternative 2.

The 100 stochastic timetables were generated in Excel with use of a random func-
tion. Both simulation alternatives were carried out with the same timetables. Only
trains of rank(1) were included in the timetables. These trains arrived with exponen-
tial distributed buffer times. The simulations were carried out with a locomotive of
type EL16 with no wagons attached to it1. The train runs at its permitted speed at
the original line A. In line D the train runs at a speed 70 km/h on the entire line.
Six freight trains were scheduled in each direction separately during a survey time of
3 hours. The freight trains run non-stop on the entire line. A stop is only required
to solve a conflict. It is assumed that it is possible to stop on every station and sid-
ing if necessary. The departure times generated in Excel were constructed in BABSI
(Version 6.0, from now on BABSI). These original timetables contained conflicts. The
simulation program solved the conflicts by using asynchronous algorithms.

For every simulated schedule the number of crossings between the nodes were
recorded. The time of survey became in most cases larger than 3 hours because
of the conflict resolution. In the simulation conflicts are solved and the train incurs
waiting time which is a positive addition on the time. Therefore a timetable of 3 hours
duration with conflicts becomes a timetable with solved conflicts with longer duration.
The new survey time after simulation was recorded for every timetable. This will be
the time of survey for both the model established and for the simulation. Making
use of the same input parameters in the model as in the simulation is necessary for a
comparing analysis. The necessary input parameters for the model were recorded in
BABSI for all both lines. Details are given in Appendix A.

1Note that the original timetable presented in Chapter 5.2.1 is not used. This analysis concerns
only the number of crossings between trains of equal rank. Therefore only one train model was chosen.
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6.2 Comments to simulation alternative 1

A 100 stochastic timetables were simulated for line D and A respectively. Simulation
alternative 1 has the same priority strategy as the model deduced in this thesis. The
results from these simulations should be compared with the results from the model.
The simulation of these timetables for alternative 1 did not succeed in BABSI. Figure
6.2 is a screen shot from BABSI from a simulated file of line D which illustrates a
typical failure BABSI makes during the simulation.

KLEVSTRA ESPA TANG STEI

Train no. 7 of rank(2)

Train no. 9 of rank(2)

Figure 6.2: Screen shot in BABSI of line D alternative 1

The crossing in station KLEV between train no. 7 of rank(2) and an opposing
train of rank(1) illustrates several aspects where BABSI operates differently from the
properties in the model. In alternative 1, the trains of rank(2) have lower priority
than the opposing trains of rank(1). At this point there is no distinction between the
simulation and the model. In figure 6.3 the same file has been adjusted to the condition
of the model. The model calculates the probability the distance a train of rank(2) can
run before meeting an opposing train. In this case the train no. 7 of rank(2) actually
could run to station STEI (Steinsrud) before meeting an opposing train. This action
increases the number of crossings calculated compared to the number recorded from
the simulation.



102 Results and discussion

STRA KLEV ESPA TANG STEI

Train no. 7 of rank(2)

Additional crossing

Figure 6.3: Screen shot in BABSI of line D alternative 1 adjusted to model

Figure 6.2 also illustrates that train no. 7 is overtaken by a train of equal rank
running in the same direction. According to the model an overtaking cannot take
place in the first round of inclusion into the timetable. An overtaking is only possible
within the model from the second round of inclusion into the timetable when there
is different speed and priority between trains running in the same direction. BABSI
treats train no. 7 with lower priority than train no. 9.

The algorithm in BABSI is supposed to solve the conflicts which occurs successively
as they appear. If the algorithm in BABSI had operated properly, no overtaking of
train no. 7 by train no. 9 in figure 6.2 would occur. Train no. 7 would continue running
after the crossing with the opposing train in station KLEV as illustrated in figure
6.3. These failures were found in almost every simulated file. Fifty of the simulated
files of line D were adjusted manually to operate as the algorithm was supposed to
work. These 50 files will serve as basis for the comparing analysis between simulation
alternative 1 and the model deduced. This problem was not detected in simulation
alternative 2.

6.3 Comparing analysis of the number of crossings

6.3.1 Analysis of the number of crossings on line D: dummy of
Eidsvoll-Hamar

The number of crossings on the entire line with the corresponding time of survey
was recorded for each timetable established in BABSI. The number of crossings for
the entire line versus frequency for the 50 respectively 100 timetables for simulation
alternative 1 and 2 are illustrated in figure 6.4. The peak for simulation alternative
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1 is 12 crossings per timetable, whereas the peak for alternative 2 is in the range of
14-17 crossings per timetable.
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Alt. 2: Both directions have equal priority

Alt.1: Direction Hamar Eidsvoll has
priority over direction Eidsvoll Hamar

Figure 6.4: Frequency versus the number of crossings for alternative 1 and 2 on line
D: dummy of Eidsvoll-Hamar

The number of crossings simulated will be compared to the number of crossings
calculated in the next two subsections.

Alternative 1: Direction Hamar to Eidsvoll has priority over direction Ei-
dsvoll to Hamar

The arithmetical mean becomes 13.4 crossings per timetable with variance 14.6 and
standard deviation 3.8. The arithmetical mean time of survey was 230.8 min.

The arithmetical mean of 13.4 crossings for the entire line gives:

13.4 crossings per timetable
6 trains

= 2.2 crossings per train

This result is compared with the result from equation (4.36):

nx =
lline − l

l
· (1 − e

− Δt
tb,11 ) (6.1)

With ts,11 = 4.3 min., the mean buffer time between the trains of rank(1) becomes:

tb,11 =
T

n1
− ts,11 =

230.8 min.
6 trains

− 4.3 min. = 34.2 min.

where
n1 = the number of trains of rank(1) in one direction

The mean time gap necessary for reaching the next station was recorded:
Δt = 11.8 min.
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After inserting into equation (6.1) the number of crossings for one train on the
entire line gives:

nx = 13 stations · (1 − e−
11.8 min.
34.2 min. ) = 3.8 crossings per train

Comparing the estimated result with the simulated result makes a deviation of 1.6
crossings per train. This is 73% larger than the simulated result.

Alternative 2: Both directions have equal priority

The arithmetical mean becomes 15.2 crossings per timetable with variance 13.2 and
standard deviation 3.6. The arithmetical mean time of survey was 227.7 min.

The arithmetical mean of 15.2 crossings for the entire line gives:

15.2 crossings per timetable
6 trains

= 2.5 crossings per train

This result is compared with the calculated result. The same mean spacing time
is used as in alternative 1. The mean buffer time between the trains of rank(1) becomes:

tb,11 =
T

N11
− ts,11 =

227.7 min.
6 trains

− 4.3 min. = 33.7 min.

After inserting into equation (6.1) the number of crossings for one train on the
entire line gives:

nx = 13 stations · (1 − e−
11.8 min.
33.7 min. ) = 3.8 crossings per train

where the mean time gap is the same as used in alternative 1.
Comparing the estimated result with the simulated result makes a deviation of 1.3

crossings per train. This is 52% larger than the simulated result.
Comparing the simulation results from alternative 1 with alternative 2 illustrates

the effect of difference in priority strategy. With equal priority between the trains
from both directions the number of crossings increases compared to the strategy with
one superior direction.

6.3.2 Analysis of the number of crossings on line A: Eidsvoll-
Hamar

The number of crossings on the entire line with the corresponding time of survey was
recorded for each timetable established in BABSI. The number of crossings for the
entire line versus frequency is illustrated in figure 6.5. The peak is on 11 crossings
recorded 17 times for alternative 2.

The number of crossings from the simulation will be compared to the calculated
result in the next subsection.
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Figure 6.5: Frequency versus the number of crossings for alternative 2 on line A:
Eidsvoll-Hamar

Alternative 2: Both directions have equal priority

The 100 registrations give a mean of 11 crossings per timetable with variance 9.2 and
standard deviation 3.0. The arithmetical mean time of survey was 217.7 min. The
arithmetical mean of 11 crossings for the entire line gives:

11 crossings per timetable
6 trains

= 1.8 crossings per train

This result is compared with the number of crossings estimated given in equation
(6.1).

With ts,11 = 3.7 min. The mean buffer time between the trains of rank(1) becomes:

tb,11 =
T

N11
− ts,11 =

217.7 min.
6 trains

− 3.7 min. = 32.6 min.

The mean time gap necessary for reaching the next station was recorded:
Δt = 11.7 min.

After inserting into equation (4.36) the number of crossings for one train on the
entire line gives:
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nx = 9 stations · (1 − e−
11.7 min.
32.6 min. ) = 2.7 crossings per train

Comparing the estimated result with the simulated result makes a deviation of 0.9
crossing per train. This is 50% larger than the simulated result.

6.4 Comparing analysis of the number of multiple
crossings

When a train incurs waiting time because of a crossing it might incur waiting time
for merging, too. The number of crossings (multiple crossings) where waiting time for
merging occurred, (nm) were recorded from timetables simulated for line D and A.
For every multiple crossing the number of additional passing trains (n1(passing)) was
registered. In figure 6.6 the terms nm and n1(passing) are explained.

Station ( -1)i Station ( +1)iStation ( )i
l(i) l(i+1)l(i-1)

Case 1: = 1

= 0

= 0

n

n

n

x

m

1(passing)

Case 2: = 1

= 1

= 1

n

n

n

x

m

1(passing)

Case 3: = 1

= 1

= 2

n

n

n

x

m

1(passing)

= Train of rank(1) = Train of rank(2)

Figure 6.6: Explaination of the terms nm and n1(passing)

In case 1 train of rank(2) only incurs waiting time for crossing. In case 2 train of
rank(2) incurs both waiting time for crossing and merging. In this case the train has
to wait for only one additional train to pass in station (i). In the 3rd case the train
has to wait for two additional passing trains, thus n1(passing) is equal 2 but nm still
remains equal to 1.
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6.4.1 Analysis of the number of multiple crossings on line D:
dummy of Eidsvoll-Hamar

There were in total 669 crossings recorded among the 50 timetables simulated in al-
ternative 1. Of these 192 were multiple crossings. In alternative 2 there were in
total 1520 crossings recorded among the 100 timetables simulated. Of these 402 were
multiple crossings. Table 6.1 summarizes the number of multiple crossings with the
correspondent number of additional passing trains from the simulated timetables in
both alternatives.

Alt.1 : Non equal priority Alt. 2: Equal priority
n1(passing) nm

∑
n1(passing) nm

∑
n1(passing)

1 160 160 280 280
2 32 64 87 174
3 0 0 28 84
4 0 0 7 28
Sum all timetables 192 224 402 565
Sum/timetable 3.84 4.48 4.02 5.65
Sum/train 0.64 0.75 0.67 0.94

Table 6.1: The distribution of passing trains for every multiple crossing for both
alternatives

In alternative 1 there were 160 multiple crossings with only one additional train
passing. Only 32 multiple crossings occured with two additional passing trains.

For alternative 2 with equal priority between the directions there were 280 multiple
crossings with one additional train passing. In 87 of the multiple crossings there were
two additional passing trains. In 28 of the multiple crossings there were three additional
passing trains. There were only 7 multiple crossings with four additional passing trains.

For both alternatives the number of additional passing trains drop exponentially
in accordance with the exponentially distributed buffer time. Figure 6.7 illustrates the
exponential drop in number of passing trains in dependence to the number of multiple
crossings.

Figure 6.8 illustrates the frequency of the number of multiple crossings for every
timetable recorded for both alternatives. Alternative 1 has its peak at four multiple
crossings recorded in 12 timetables. In alternative 2 there were two peaks recorded in
19 timetables for two and five multiple crossings each, respectively.

In figure 6.9 the frequency of additional passing trains for all timetables simulated
is illustrated. Alternative 1 has the largest peak at four additional passings trains
recorded in 13 timetables. The second largest peak is at two additional passings
trains recorded 8 times. In alternative 2 there are several peaks in the interval of 1-6
additional passings trains recorded up to 14 times. This is in accordance with figure
6.8 where the main interval for the number of multiple crossings is 2-5 for alternative
2. The peak at one additional passing train recorded once in alternative 1 can be
explained because there are many small time gaps where a train cannot merge back
into the line, but still large enough for merging back into the line after one additional
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Figure 6.7: Frequency of the number of additional passing trains for every crossing
including waiting time for merging for 50 and 100 timetables simulated for alternative
1 and alternative 2
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train has passed. There are fewer large time gaps. There were rather few registrations
with the number of additional passing trains larger than 10. This means that after
several small time gaps a larger time gap appears which makes it possible for the
waiting train to merge back into the line. These occurances are due to the exponential
distributed buffer time.
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Figure 6.9: Frequency of the number of additional passing trains for every timetable
recorded for both alternatives

Comparing the number of multiple crossings on line D

The number of multiple crossings from the simulation is compared with the estimated
number of multiple crossings for alternative 1 and 2 on line D.

The sum of incuring waiting time for merging is given by:

∑
p(tb,11 < ts,21 + Δts,1) = (1 − e

− ts,21+Δts,1
tb,11 ) · e

ts,21+Δts,1
tb,11 (6.2)

Inserting data into equation (6.2) with 5.7 min. for ts,21 gives for alternative 1:∑
p(tb,11 < ts,21 + Δts,1) = (1 − e−

5.7 min.
34.2 min. ) · e 5.7 min.

34.2 min. = 0.18

For every crossing there is a probability of 0.18 for incuring waiting time for merg-
ing. For alternative 2 there is also a probability of 0.18 for incuring waiting time for
merging. In section 6.4.1 the number of crossings per timetable was estimated to be
22.8 for both alternatives. The estimated number of multiple crossings per timetable
then becomes for alternative 1:

nm = 22.8 crossings/timetable · 0.18 = 4.1 multiple crossings per timetable

There were 3.8 multiple crossings per timetable simulated. This gives a deviation
of 0.3 which is 8% larger than the simulated result. For alternative 2 there were 4.0
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multiple crossings per timetable simulated. The estimated result gives a deviation of
0.1 which is only 3% larger than the simulated result.

6.4.2 Analysis of the number of multiple crossings on line A:
Eidsvoll-Hamar

In alternative 2 there 1100 crossings registered of the 100 timetables generated. Of
them 330 were multiple crossings. Table 6.2 summarizes the number of multiple cross-
ings with the corresponding number of passing trains from the 100 timetables simu-
lated.

Alt. 2: Equal priority
n1(passing) nm

∑
n1(passing)

1 228 228
2 81 162
3 16 48
4 5 20
Sum all timetables 330 458
Sum/timetable 3.3 4.58
Sum/train 0.55 0.76

Table 6.2: The distribution of passing trains for every multiple crossing for alternative
2

In alternative 2 there were 228 multiple crossings with only one additional train
passing. There were 81 multiple crossings with two additional passing trains. Alter-
native 2 further has only 21 multiple crossings with three to four additional passing
trains. As for line D the number of additional passing trains drops exponentially in
accordance with the exponentially distributed buffer time. Figure 6.10a illustrates the
drop in number of passing trains in dependence to the number of multiple crossings.

Figure 6.10b illustrates the frequency of the number of multiple crossings for every
timetable simulated. The peak is at three multiple crossings recorded in 22 timetables.
There were only 7 timetables without any multiple crossing. There were few timetables
with more than four multiple crossings.

Figure 6.11 illustrates the frequency of the number of additional passing trains.
Alternative 2 has three peaks in the interval with one to three additional passing
trains recorded up to 19 times each. The histogram of line A shows the same effect of
the exponential distributed buffer time as for line D.
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Figure 6.10: A: Frequency of the number of additional passing trains for every multiple
crossing for 100 simulated timetables. B: Frequency of the number of multiple crossings
for 100 simulated timetables
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timetables
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Comparing the number of multiple crossings on line A

Only the number of multiple crossings simulated in alternative 2 could be compared
with the estimated result. Inserting 6.5 min. for the mean of ts,21 and 2.0 min. for the
mean of Δts,1 into equation (6.2) gives the sum of incuring waiting time for merging:2

∑
p(tb,11 < ts,21 + Δts,1) = (1 − e−

6.5 min.+2.0 min.
32.6 min. ) · e 6.5 min.+2.0 min.

32.6 min. = 0.30

For every crossing there is a probability of 0.30 for incuring waiting time for merg-
ing. In section 6.3.2 the number of crossings per timetable were estimated to be 16.2
in alternative 2. The estimated number of multiple crossings per timetable becomes:

nm = 16.2 crossings/timetable · 0.30 = 4.9 multiple crossings per timetable

There were 3.3 multiple crossings per timetable simulated. This gives a deviation
of 1.6 which is 48% larger than the simulated result.

6.5 Comparing analysis of the overall waiting time

To illustrate the difference in waiting time between the model and BABSI, 50 of the
simulated timetables of line D for both alternatives were recorded separately with
respect to the generated waiting time. Due to the rather low number of timetables
analyzed, the results given are a rough estimation which serves for the discussion of
the waiting time calculated. Details are given in Appendix A.2.1. The waiting time
of the 50 timetables was registered in three groups:

• Waiting time for crossing including the minimum waiting time necessary for
crossing.

• Waiting time for merging when a crossing had occurred.

• Waiting time from overtaking.

The recorded results are summarized in table 6.3.

2Since the occupation time between the stations is spreading mean quantities are inserted for ts,21

and Δts,1.



6.5 Comparing analysis of the overall waiting time 113

Alt. 1 Alt. 2
Waiting time [min./timetable] [min./timetable]
Twx + min tx 125 143
Twm 36 38
Twx + min tx + Twm 161 181∑

Tox + TOMom + min to 0 25∑
Twx + min tx + Twm + Tox + Tom + min to 161 206

Table 6.3: Mean waiting time for 50 simulated timetables for both alternatives

In both alternatives the waiting time for crossing is much larger than the waiting
time for merging. The waiting time for crossing in alternative 2 is larger than in
alternative 1. This is due to the difference in priority strategy. An equal priority
strategy generates more crossings than with a non-equal priority strategy. The waiting
time for merging is almost equal in both alternatives. In a non-equal priority strategy
a train of lower rank cannot continue to the next station if an opposing train is entering
the common section. A train in simulation alternative 1 therefore risks longer waiting
time for merging compared to a flexible priority strategy as in alternative 2. On the
other hand simulation alternative 2 has more crossings than simulation alternative 1.
For every crossing there is a risk of incuring waiting time for merging. In simulation
alternative 2 on average every 3.8 crossing is a multiple crossing, whereas for simulation
alternative 1 on average every 3.5 crossing a multiple crossings takes place. This
confirms that alternative 1 generates more waiting time for merging relative to the
number of crossings than alternative 2.

Simulation alternative 2 also generates waiting time for overtaking, which is not
possible in alternative 1. The overall waiting time from crossing is larger in alternative
2 than in alternative 1. This is due to the larger waiting time for crossing and the
waiting time for overtaking in alternative 2. This relation is illustrated in figure 6.12.

12%

88%

Waiting time from crossing

Waiting time from overtaking

Figure 6.12: Waiting time from crossing is dominating waiting time from overtaking
for alternative 2 on line D

From table 6.3 the waiting time for one crossing can be calculated:
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125 min./13.4 crossings/timetable− 5.80 min. = 9.3 min. − 5.80 min. = 3.5 min.

The quantity 5.80 min. is the minimum time necessary for one crossing. The
waiting time for merging becomes:

36 min./13.4 crossings/timetable = 2.7 min.

These numbers for both alternatives are listed in table 6.4-6.5 and compared with
the simulated results.

Waiting time Simulation Calculation Deviation Deviation [%]
E[twx] 3.5 4.7 1.2 34
E[twm] 2.7 1.5 -1.2 -44∑

min tx + E[twx] + E[twm] 12.0 12.0 0 0

Table 6.4: Comparing the simulated result for one crossing with the calculated result
for alternative 1 on line D. The units are given in [min./crossing].

Waiting time Simulation Calculation Deviation Deviation [%]
E[twx] 3.6 4.7 1.1 31
E[twm] 2.5 1.5 -1.0 -40∑

min tx + E[twx] + E[twm] 11.9 12.0 0.1 1

Table 6.5: Comparing the simulated result for one crossing with the calculated result
for alternative 2 on line D. The units are given in [min./crossing].

Table 6.4 illustrates the deviations between the estimated and the simulated quan-
tities. The model estimates an expected waiting time for crossing which is 34% larger
than the simulated quantity. The expected waiting time for merging is estimated as
44% lower than the simulated result. These deviations are large. The overall waiting
time from crossing does not deviate from the simulated result. The same trend is
observed when comparing simulation alternative 2 with the model.

6.6 Discussion

6.6.1 Discussion of the number of crossings and multiple cross-
ings

Table 6.6 compares the results for the number of crossings and multiple crossings
respectively from simulation alternative 1 with the estimations from the model devel-
oped.
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Simulation Calculation Deviation [%]
nx[per train] 2.2 3.8 73
nm[per train] 0.64 0.68 6

Table 6.6: Summary of results from simulation of line D, alternative 1, and calculation
for the number of crossings and multiple crossings

The estimation of the number of crossings from the model is 73% larger than the
simulated quantity. This deviation is very large. The number of crossings forms the
product with the expected waiting time from one crossing. Therefore the number of
crossings is an important factor in the equation for the calculation of the entire waiting
time from crossing.
The estimated number of multiple crossings deviates by 6% from the simulated result.
A deviation of 6% is acceptible. Almost the same deviations between the model and
the simulation in alternative 2 is registered and given in table 6.7. The deviations
between the results of the model and simulation alternative 2 is a little less than for
simulation alternative 1.

Table 6.7 compares the results from simulation alternative 2 with the results from
the model.

Simulation Calculation Deviation [%]
nx[per train] 2.5 3.8 52
nm[per train] 0.67 0.68 1

Table 6.7: Summary of results from simulation of line D, alternative 2, and calculation
for the number of crossings and multiple crossings

The small deviation between the estimated number of multiple crossings and the
simulated result can have its origin in the stochastic generation of buffer times when
creating the requested timetables for simulation. This explaination does not hold for
the deviation between the estimated number of crossing and the simulated result.
These deviations are far too large. The most reasonable explaination for the large de-
viations of the number of crossings between the model and the simulated result is that
only 50 timetables investigated is far too small to serve as a basis for a comparative
study. Calculating the chained exploitation rate [UIC/406] for some of the simulations
in alternative 1 gives a chained exploitation rate between 0.8-1.0. Opposing traffic
on single track lines generally generates larger chained exploitation rates compared
to lines with unidirectional traffic. In general large chained exploitation rates require
many simulations to achieve a stable result.

In simulation alternative 1 the mean number of crossings were calculated to be 13.4
crossings per timetable with a variance of 14.6. The large variance illustrates that that
there is a large spreading of the data registered. This indicates that the number of
crossings calculated from the registrations is not a final number.

Comparing simulation alternative 1 with simulation alternative 2 illustrates that
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an equal priority strategy between the trains of opposing directions generates more
crossings and multiple than a strategy with strict priority between the trains. This
observation seems logical, and would probably not be affected by an increased number
of simulations.

6.6.2 Discussion of the expected waiting time for crossing and
merging

The deviation in the expected waiting time for crossing and merging in table 6.4 is very
large. The expected waiting time for crossing estimated is larger than the simulated
quantity. Contradictionally the expected waiting time for merging estimated is far
to low. The estimated overall waiting time from crossing is equal to the simulated
result. This means that the low quantity of the expected waiting time for merging
compensates for the too large estimated quantity for the expected waiting time for
crossing. For a fixed number of trains within a specified time and area of survey, a
dependency seems to exist between the waiting time for crossing and merging. The
more crossings a schedule has, the less number of multiple crossings are expected
and vice versa. The large deviations for both expected waiting time for crossing and
merging can only be explained by the low number of simulations carried out. For this
reason it might be a coincidence that the overal waiting time from crossing estimated
is equal to the simulated result.

In the first round of inclusion into timetable according to the model established,
waiting time from overtaking is not possible. In the second round of inclusion into
the timetable overtakings are possible. The model deduced makes a clear distinction
between waiting time for merging after a crossing, i. e. illustration A in figure 6.13
or after an overtaking, i. e. illustration B. Figure 6.13 also illustrates two other
variants for the number of multiple crossings and overtakings, variant C and D, which
occured in simulation alternative 2. In variant C a train has to wait because of a
crossing followed by an overtaking train. Variant D illustrates the opposite situation,
an overtaking followed by a crossing. In the model developed, only the variants A
and B are possible. In fact, variant C and D are realistic cases in the second round of
inclusion.
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A B C D

Figure 6.13: Variants of multiple crossings and overtakings

The model deduced is a two-train model where one model of lower rank is included
into the timetable with a train model of higher rank. For example, in the inclusion of
the third round train model with rank(1) and rank(2) are grouped together as rank(1)
when train model of rank(3) is included into the timetable as rank(2). When grouping
two train models into one train model, new mean quantites for each parameter used in
the model must be calculated. The new time gap for train of rank(1) in the third round
of inclusion is based on the previously used time gaps in inclusion round 2. This leads
to larger variances of the parameters, and the accurancy of the estimations decreases.
One opportunity to reduce the variance when calculating a new mean quantity for the
second round of inclusion would be to weight the time gaps with respect to the number
of trains of the respective train model.

6.6.3 Discussion of the model with constant buffer time

Variation in infrastructure, velocity and rolling stock characteristics influences the
minimum spacing time ts,21 and the time gap between the stations. Together these
form the buffer time between the trains of rank(1). A variation of these parameters
might result in a variation of the buffer time. The larger the variation of the minimum
spacing time and the time gap between the trains of rank(1) is, the more a variation
of the buffer time between the trains of rank(1) is expected. The approximation
of constant buffer time will not hold for large variations of these parameters given
in equation (4.54)- (4.55). In the model there is assumed that only few variations
of the parameter quantity might be acceptible. Under this assumption the model
could be derived. In reality variations of the parameters can be expected. Due of
this weakness this model has not been further analyzed by simulation. With small
deviations in the buffer time between the trains of rank(1), the model might serve as
an estimation for the prediction of the number of crossings and the waiting time from
crossing. Therefore the approximated waiting time from crossing and overtaking given
in equation (4.56) and (4.57) where the distance between the station is spreading is a
better approximation in most cases. There already exist several models for the purpose
of optimization of cyclic timetables, for example by using graph theory [Brak93].
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6.6.4 Discussion of the timetable characteristics on single track
lines

The investigation of the buffer time distribution of the three different timetables of
the three different lines illustrates that cyclic and stochastic timetable patterns are
combined in the same schedule. For the part of the schedule following a stochastic
pattern, two buffer time distributions conformed with an exponential distribution and
three buffer time distributions conformed with a hyper-exponential distribution. The
analysis of only three single track lines is too small to make a general statement
about which distribution the buffer time between the trains conforms with. This
analysis illustrates that stochastic buffer time distributions were found in parts of
these timetables. This supports the assumption of exponential buffer time distribution
betwen the trains of rank(1) made in the model.

6.7 Sensitivity analysis

A sensitivity analysis was carried out on the model developed with the parameters from
simulation alternative 1 on line D. The effect of increasing each parameter quantity
separately with 10% on the number of crossings and the waiting time was studied.
Table 6.8 lists the results.

Parameter Alt. 1 [min.] +10% [min.] nx[%] E[twx][%] E[twm][%] TWX [%]
tb,11 34.2 37.6 -7.7 2.1 -9.7 -8.1
Δt 11.8 13.0 8.2 9.3 12.2
ts,21 5.7 6.3 -1.7 14.6 1.1
ts,12 5.3 5.8 6.6 1.0

Table 6.8: The effect on the waiting time with an increase of 10% to the parameter
quantity

The mean time gap and the mean buffer time between the trains of rank(1) have
almost both equal influence on the number of crossings. The time gap has remarkably
more influence on the expected waiting time for crossing than the mean buffer time
and the mean minimum spacing time ts,21 have. In the analysis of the expected waiting
time for merging the mean minimum spacing time ts,21 has the greatest effect. On the
overall waiting time from crossing both the mean time gap and the mean buffer time
between the trains of rank(1) have a large effect. The mean minimum spacing time
ts,12 hardly generates any change to the overall waiting time.

A change in the mean time gap probably has the greatest influence apart from the
mean buffer time between the trains of rank(1) on the waiting time from crossing. A
change in an exponent generates large effects on the output. A change in the buffer
time is due to a change in the number of trains. A change in the time gap is controlled
by the infrastructure (especially the signaling system), the rolling stock characteristics
and the train velocities. On this information the blocking time stairs are generated
and the time gap is calculated.
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On line D the stations are equally spaced and the maximum permitted train velocity
on the line stays constant. The rolling stock characteristics is the same within the same
train model. In this special case a variation in the time gap is not reasonable. In most
real cases the velocity on a line shifts, and the stations are generally not exactly equally
spaced. Line A is a real case. The time gap represents the spacing of the stations. In
table 6.9 a summary of the variance analysis of the mean time gap on line A is given.

Parameter Direction Variance Smallest reg. [min.] Largest reg. [min.]
Δt Eidsvoll→ Hamar 2.6 8.9 14.2
Δt Hamar→ Eidsvoll 4.4 8.5 14.5
Δt Both directions 3.5 8.5 14.5

Table 6.9: Summary of the variance and spreading of the time gap on line A

The variation of the time gap on line A is smaller in direction Eidsvoll→Hamar,
which is simulation alternative 1, than for the opposite direction. Simulation alterna-
tive 2 with equal priority uses the mean time gap of both directions together. The
smallest registration of Δt in direction Eidsvoll→Hamar is 15% lower than the mean
time gap calculated (Δt = 7.5 min.). The largest registration is 25% larger than the
mean quantity. The results in table 6.8 illustrate that even a deviation of 10% in Δt
gives about 12% change in the overall waiting time from crossing. This is probably
the most sensitive point in the model. When calculating the mean time gap for both
directions together the spreading in Δt increases.

Single track railway lines with variations in the distance between the stations gen-
erally results in variations in the time gap. Long distances between the stations can
give longer occupation times than shorter distances between the stations. Long dis-
tances can be divided into several block sections. Line A is an example where some
sections between the stations contain one block section whereas other setions contain
two block sections. Figure 6.14 illustrates that the time gap for line A becomes larger
when there are two block sections (between station Strandlykkja and Espa) than when
there are one block section (between station Tangen and Steinsrud). The variance of
4.4 for direction Hamar to Eidsvoll confirms that there are large variations in the time
gap for this direction.
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t

t

Strandlykkja Espa Tangen Steinsrud

2 block sections between Strandlykkja
and Espa

1 blocksection between Espa
and Tangen

Figure 6.14: Screen shot in BABSI of line A alternative 1



Chapter 7

Conclusion

7.1 Conclusions

During this work a new model for the calculation of the expected scheduled waiting
time from crossing with exponential buffer time distribution on single track lines has
been developed.

At first the assumption made by Schwanhäußer [Schw81] for the overtaking case
was analyzed in detail and compared with the crossing situation on single track line.
Similarities and dissimiliarities have been detected between the overtaking and cross-
ing situation. New assumptions had to be developed for the crossing situation. On
this basis it has been possible to deduce the expected waiting time for one crossing
and the expected waiting time for merging. The mean number of crossings one train
incurs has also been derived. Finally, the model has was compared with the results
from an asynchronous simulation tool (BABSI).

A model for the estimation for the scheduled waiting time from crossing with
constant buffer time between the trains was also derived.

7.1.1 Conditions

It has been shown that the condition for merging back into the line after a crossing
given in (4.7) follows the similar principle as for merging back into the line after an
overtaking given in equation (4.1). In the crossing case the buffer time between the
fast trains must be the quantity ts,FS − ts,FF larger than in the overtaking case.

In the model an exponential buffer time distribution between the trains of rank(1)
is assumed. An independent timetable request from operators with different train
models generates a stochastic arrival process of trains to the timetable coordinator.
The exponential distribution is one suitable stochastic distribution. In reality it is so
far not known which stochastic distribution the buffer time follows. The main focus
in this study was to show that is was possible to deduce a model for the estimation
of the scheduled waiting time from crossing with a stochastic arrival process. The
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exponential distribution is therefore assumed to be satisfactory for this study.

7.1.2 Factors influencing the expected waiting time from cross-
ing with exponential buffer time distribution

During the derivation of the expected waiting time for crossing it has been shown that
the time gap necessary for a train to reach the next station (i) before being overtaken
or meeting an opposing train must be larger in a crossing situation than in an over-
taking situation.

The calculation of the expected waiting time for crossing and the number of cross-
ings the time gap a train needs for reaching the next station has the largest influence,
and the buffer time between the trains of rank(1) has the second largest influence on
the result. The model uses the mean time gap as input parameter. Large variations in
the time gap on the line will reduce the reliability of the calculations. An analysis of
the single track line from Eidsvoll to Hamar has shown that the distance between the
stations is spreading. For a model train of type EL16 a mean time gap of 11.7 min.
with variance 3.5 was calculated for both directions together. The line from Eidsvoll to
Hamar serves as an example that the time gap in reality can spread. If the variations
in the time gap is too large, then the model is not recommended.

The same statement applies for the calculation of the expected waiting time for
merging. Large variations of the minimum spacing time train of rank(2) followed by
a train of rank(1) has the largest influence on the expected waiting time for merging.
For the calculation of the overall waiting time from crossing, the waiting time for
merging is small compared to the overall waiting time. The time gap and the buffer
time between the trains of rank(1) has the largest influence on the overall waiting time
from crossing since they are included in both number of crossing and the expected
waiting time for crossing.

7.1.3 Factors influencing the expected waiting time from cross-
ing with constant buffer time

A model for the estimation of the scheduled waiting time from crossing with constant
buffer time between the trains of rank(1) has been deduced. The mean time gap has
also in this case the most influence on the waiting time from crossing. Variation in
the time gap generates variations in the buffer time which is a contradiction to the
assumed constant buffer time between the trains of rank(1). With small deviations
in the buffer time the model might serve as an estimation for the prediction of the
number of crossings and the waiting time from crossing. Due to this weakness other
existing models for the optimization of cyclic timetables should be preferred.
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7.1.4 Priority strategy has influence on the scheduled waiting
time

The results from the model were compared with the results from randomly generated
timetables simulated in BABSI. There were two different simulation alternatives inves-
tigated. Simulation alternative 1 had the same priority strategy as the model deduced
where trains of one direction took priority over trains running in the opposite direction.
Simulation alternative 2 had equal priority between the trains of opposite directions.
This simulation alternative served to illustrate the effect of an equal priority strategy
compared to a superior strategy.

Comparing the simulation results from alternative 1 with alternative 2 in this study
illustrates that an equal priority strategy generates more crossings than a strategy
with superior priority for one direction. In this case alternative 2 generated 12%
more crossings compared to alternative 1. On the other hand a strategy with superior
priority generates more multiple crossings per crossing compared to an equal priority
strategy. In this case there were about 12% more multiple crossings per crossing
compared to alternative 2. These observations are probably independent of the number
of timetables investigated.

7.2 Reliability of the model

The accuracy of the model decreases with increasing number of inclusions in the
timetable. In the model deduced trains of rank(2) running in one direction have lower
priority than trains of rank(2) running in the opposite direction. In the first round of
inclusion into the timetable, these trains are of the same train model. In the second
round of inclusion a second train model is included into the conflict free timetable of
the first train model. New mean quantities of the input parameters of the model must
be calculated. The variance of the parameters will probably increase.

The simulations results from simulation alternative 1 illustrates that there is large
spreading of the results. The mean number of crossings simulated became 13.4 cross-
ings/timetable with variance 14.6. Comparing the simulated result with the calculated
number of crossings showed a deviation of 73% which is very large. The number of
crossings is a very important part of the formula for the calculation of the overall
waiting time since it forms a product with the expected waiting time for one crossing
including merging.

The main reasons for the large deviation is probably that the investigation of 50 ran-
dom timetables is not enough to make an accurate statement. Analysis of the chained
exploitation rate expresses a system which is highly exploitated, between 0.8-1.0. Ex-
ploitations rates which are that high indicates that there might be many simulations
necessary to generate a stable result. The simulations in this analysis were performed
manually since there were no other suitable tool available during the study period.
Comprehensive simulation work needs to be carried out to achieve a more precise eval-
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uation statement.
The other reason is an asynchronous simulation algorithm that solves the existing
conflicts successively by moving the non-priority train to a later departure time than
requested. This results in that trains are moved out of the time of survey window
to later departures than 3 hours from start. After these 3 hours there are no re-
quested train departures, therefore these trains do not run into any further conflicts or
crossings. This contributes to underestimating the number of crossings and number of
multiple crossings. A lower number of crossing incurs lower waiting time from crossing.

7.3 Suggestions for further research

The study of crossing situations on single track lines is very complex with many param-
eters involved. Within the scope of this thesis the most important aspects concerning
the generation and computation of the scheduled waiting time from crossing has been
prioritized.

For a better evaluation of the model there must be investments made in improving
and developing the simulation tools for the generation of stochastic timetables followed
by a simulation algorithm for the generation of conflict free timetables with the neces-
sary output information. With this strategy, a very large number of timetables could
be investigated which would improve the basis for the evaluation of the model. If the
simulation results should confirm the model as reliable, further work can be invested
into expanding the model to other conditions.

In future work the most interesting option would be to expand the model to apply
for equal priority between trains of different directions. This could be done by intro-
ducing a point between the sections where the train paths would cross if the trains
started from the station at the same time. The train first passing this point can con-
tinue to the next station whereas the other opposing train has to wait in the previous
station. The probability for passing the point for a train of one direction can be cal-
culated using the same principle as in the model for strict priority for one direction.
Another option could be to separate the estimation of the number of multiple cross-
ings into different situations where a crossing is followed by an overtaking. Finally, the
buffer time distribution between the trains of rank(1) can be analyzed and substituted
by an other distribution.
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[Schw99] Schwanhäußer, W., Kenngrössen zur Fahrwegkapazitt, Aachen, Dezember,
1999.



128 BIBLIOGRAPHY

[Skar98] Skartsæterhagen, S., Kapasitet p̊a jernbanestrekninger, Institutt for veg- og
jernbanebygging, Norges tekniske-naturvitenskapelige universitet, 1998.

[Svin05] Svingheim, N., Nøkkeltall for norske baner, Jernbaneverket, Published on the
internet, 2005.

[UIC/406] Union internationale des chemins de fer, Capacity, 1st ed., Sept., 2004.

[Wako85] Wakob, H., Ableitung eines generellen Wartemodells zur Ermittlung der
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Appendix A

Simulation results and
quantities recorded

In section A.1 the simulation preparations and conditions are listed. In section A.2
the simulation results recorded are listed in tables. In section A.3 - A.5 the quantities
recorded from BABSI serving as input data for the computations are presented.

A.1 Simulation preparations

A.1.1 Train characteristics

The train model 100 SBB Re 4/4 III in the train model database of Faktus.451 was
manipulated to an EL 16 (Norwegian freight train locomotive). This locomotive has
maximum velocity of 140 km/h and a mass of 80 metric tons. The haulage capacity
graph had to be found for every 2.5 km/h, given in table A.1.
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Velocity [km/h] Estimated force [kN ] Given force [kN ]
0-45 320 (const.) 320 (const.)
47.5 309.3
50 298.8 298
52.2 288.7
55 278.8 277
57.5 269.3
60 260.0 260
62.5 251.0
65 242.4 243
67.5 234.0
70 225.9 227
72.5 218.1
75 210.7 212
77.5 203.5
80 196.6 198
82.5 190.0
85 183.7 184
87.5 177.7
90 172.0 172
92.2 166.6
95 161.3 162
97.5 156.3
100 151.5 152
102.5 146.9
105 142.5 143
107.5 138.3
110 134.3 134
112.5 130.6
115 127.0 127
117.5 123.7
120 120.5 120
122.5 117.6
125 114.9 113
127.5 112.4
130 110.1 109
132.5 108.0
135 106.1 105
137.5 104.5
140 103.0 103

Table A.1: Haulage capacity for EL16 estimated every 2.5 km/h
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A.1.2 Creation of stochastic timetables

The timetables were generated in Excel. With the random generator, buffer times
were generated following an exponential distribution. To make the simulation feasible
a survey time of 3 hours was chosen. In this analysis six trains run in a time window
of 3 hours in each direction. The six buffer times for each direction was generated in
Excel. In some cases the trains in a direction and opposite direction did not match
within the same time window of 3 hours. This can happen when generating large
buffer times for one directions and small buffer times for the opposite direction. For
making an analysis on the number of crossings it made sense to adjust the buffer time
(still following an exponential distribution) to fit into the same time window. This
adjustment holds if the operator making the order of train paths plans to order 6
trains in each direction within the time window, which would be natural in reality.
The 3 hours represent the 24 hours of a day. Both software tools Faktus and BABSI
are created for a 24 hour analysis. In the simulation, BABSI does not realize the time
window of 3 hours. BABSI treats the schedule as it was to fit into a 24 hour schedule.
BABSI solves the conflicts between the trains and moves the trains ”‘downwards”’
and exceeds 3 hours. Therefore a new time of survey had to be recorded after the
simulation to establish the same basis for the further computations.

A.1.3 Simulation parameters

Figure A.1 and A.2 illustrates the parameters chosen in BABSI. Figure A.1 illustrates
that the simulation is to be carried out without any buffer time between the trains
when solving a conflict. This is chosen to make the analysis more easy to handle and
has no influence on the analysis result.

Figure A.2 illustrates the standard options BABSI suggests. The only change is
done in the last window. Option 3 is chosen instead of option 4. This makes it possible
for freight trains of equal rank to stop if necessarry.
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Figure A.1: Simulation modus in BABSI with chosen options
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Figure A.2: Parameter options chosen for the simulation of timetables in BABSI

A.2 Simulation results

In this section the simulation results are listed. First follows the result from line D:
dummy of Eidsvoll-Hamar. Afterwards follows the results from line A: Eidsvoll-Hamar.
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A.2.1 Results recorded for line D: dummy of Eidsvoll-Hamar

Alternative 1, modified files: Direction Hamar to Eidsvoll has priority over
direction Eidsvoll to Hamar

Table A.2 lists the number of crossings, multiple crossings with the respective number
of additional passing trains.

File No. nx nm n1(p.) = 1 n1(p.) = 2
∑

n1(p.)

8601/02 15 4 4 0 4
8603/04 12 4 0 4 8
8605/06 15 6 6 0 6
8607/08 13 7 7 0 7
8609/10 9 2 0 2 4
8613/14 8 3 3 0 3
8615/16 18 0 0 0 0
8617/18 19 2 2 0 2
8619/20 11 3 0 3 6
8623/24 7 4 4 0 4
8625/26 14 4 4 0 4
8627/28 14 7 7 0 7
8633/34 15 3 3 0 3
8635/36 12 2 2 0 2
8637/38 12 2 2 0 2
8641/42 9 6 2 4 10
8643/44 17 2 2 0 2
8649/50 17 4 4 0 4
8651/52 13 7 7 0 7
8655/56 20 5 5 0 5
8657/58 16 4 4 0 4
8659/60 10 1 0 2 2
8661/62 10 5 5 0 5
8665/66 17 4 4 0 4
8667/68 16 2 2 0 2
8669/70 15 1 1 0 1
8671/72 7 5 5 0 5
8673/74 11 4 4 0 4
8675/76 12 7 7 0 7
8677/78 12 7 7 0 7
8685/86 13 8 6 2 10
8687/88 8 2 0 2 4
8689/90 7 6 4 2 8
8691/92 15 4 0 4 8
8695/96 15 4 4 0 4
8697/98 12 2 2 0 2
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File No. nx nm n1(p.) = 1 n1(p.) = 2
∑

n1(p.)

8699/00 22 0 0 0 0
8701/02 20 0 0 0 0
8705/06 12 5 5 0 5
8707/08 12 2 0 2 4
8709/10 10 10 10 0 10
8711/12 13 8 5 3 11
8713/14 18 4 4 0 4
8715/16 19 3 3 0 3
8717/18 6 4 4 0 4
8719/20 11 0 0 0 0
8721/22 8 2 2 0 2
8723/24 16 0 0 0 0
8725/26 16 6 6 0 6
8727/28 8 5 2 3 8
Mean 13.38 3.84 3.20 1.28 4.48

Table A.2: Number of crossings, multiple crossings and additional
passing trains simulated in BABSI for modified alternative 1

Statistical analysis of the number of crossings:
Sample: 50 timetables
Mean time of survey: T = 230.8 min.
Largest registration: 22 crossings/timetable
Smallest registration: 7 crossings/timetable
Sample mean: t = 1

n · ∑n
i=1 ti= 13.4 crossings/timetable

Sample variance: σ2 = 1
n−1 · ∑n

i=1(ti − t)2=14.60
Sample standard deviation: σ =

√
σ2=3.82

Table A.3 illustrates the recorded scheduled waiting time for crossing, merging,
overtaking and minimum time necessary for crossing.

File No. Twx + min tx[min.] Twm[min.]
∑

Tw [min.]
8601/02 119.7 39.6 159.3
8603/04 110.3 91.3 210.6
8605/06 147.8 54.6 202.4
8607/08 129.5 38.3 167.8
8609/10 102.3 20.4 122.7
8613/14 82.0 18.4 100.4
8615/16 160.1 0 160.1
8617/18 184.1 20.4 204.5
8619/20 109.2 51.9 161.1
8623/24 76.5 38.3 114.8
8625/26 127.5 24.6 152.1
8627/28 149.7 61.8 211.5
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File No. Twx + min tx[min.] Twm[min.]
∑

Tw [min.]
8633/34 156.9 22.0 178.9
8635/36 107.1 10.3 117.4
8637/38 124.5 10.2 134.7
8641/42 90.1 67.8 157.9
8643/44 169.4 21.1 190.6
8649/50 149.7 24.6 174.3
8651/52 135.2 48.2 183.4
8655/56 200.1 55.4 255.5
8657/58 130.7 22.3 153.0
8659/60 104.0 12.4 116.4
8661/62 89.4 48.4 137.7
8665/66 164.3 44.8 209.1
8667/68 161.4 17.8 179.2
8669/70 156.1 8.5 164.6
8671/72 64.9 33.7 98.6
8673/74 117.6 43.0 160.6
8675/76 108.3 50.1 158.4
8677/78 113.0 59.2 172.2
8685/86 82.9 110.2 193.1
8687/88 74.7 27.6 102.3
8689/90 70.0 56.4 126.4
8691/92 130.5 49.4 179.9
8695/96 133.5 36.1 169.6
8697/98 107.0 18.6 125.6
8699/00 211.0 0 211.0
8701/02 175.2 0 175.2
8705/06 112.5 34.1 146.6
8707/08 115.0 24.8 139.8
8709/10 104.8 71.7 176.5
8711/12 106.7 98.1 204.8
8713/14 178.1 19.6 197.7
8715/16 158.6 41.9 200.5
8717/18 59.0 41.9 100.9
8719/20 126.5 0 126.5
8721/22 79.2 17.3 96.5
8723/24 134.2 0 134.2
8725/26 144.1 27.9 172.0
8727/28 80.5 62.7 143.2
Mean 124.5 36.0 160.5

Table A.3: Waiting time for crossing, merging and overtaking sim-
ulated in BABSI for modified alternative 1

In table A.4 a summary of a statistical evaluation of the data given in table A.3 is
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presented.

Tw Max [min] Min [min] Mean [min] Variance Standard deviation
Twx + mintx 211.0 59.0 124.5 1288.4 35.9
Twm 110.2 0 36.0 662.5 25.7∑

Tw 255.5 96.5 160.5 1334.8 36.5

Table A.4: Statistical evaluation of the data given in table A.3

Alternative 2: Both directions have equal priority

Table A.5 lists the number of crossings and survey time recorded for each of the 100
files of alternative 2. Of the 100 simulations 14 files marked with a * in table A.5
and A.6 are simulations where the algorithm ran in an infinite loop. This loop was
manipulated manually in BABSI, and the simulation could continue.

File No. nx T [min.] File No. nx T [min.]
9007/08 14 357.6 9107/08 15 239.3
9009/10 10 236,3 9109/10 17 197.0
9011/12* 12 247.9 9111/12 16 235.1
9013/14 16 233.4 9113/14 16 247.1
9015/16 19 224.7 9115/16 14 195.3
9017/18 16 201.4 9117/18 17 213.7
9019/20 21 242.8 9119/20 13 234.0
9021/22* 19 233.5 9121/22 12 227.2
9023/24 10 227.2 9123/24 17 224.9
9025/26 19 232,8 9125/26 17 227.2
9027/28 15 238.6 9127/28 15 234.6
9029/30* 14 227.2 9129/30 15 243.7
9031/32* 13 224.1 9131/32 19 233.8
9033/34 15 238.5 9133/34 13 254.6
9035/36 18 238.8 9135/36 16 233.1
9037/38 17 233.3 9137/38 12 248.8
9039/40* 3 184.7 9139/40 14 239.9
9041/42 19 227.2 9141/42* 14 210.6
9043/44 14 234.0 9143/44 15 227.2
9045/46* 16 230.8 9145/46 16 187.7
9047/48 9 264.3 9147/48 12 227.2
9049/50 11 227.2 9149/50 23 227.2
9051/52 14 227.2 9151/52 20 218.0
9053/54* 18 227.2 9153/54 10 227.2
9055/56 23 232.0 9155/56 15 227.2
9057/58 15 227.2 9157/58 21 227.2
9059/60 18 227.2 9159/60 18 227.2
9061/62 16 227.2 9161/62* 17 209.0
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File No. nx T [min.] File No. nx T [min.]
9063/64* 12 227.7 9163/64 19 193.7
9065/66 16 227.2 9165/66 13 253.0
9067/68 10 241.8 9167/68 19 211.5
9069/70 18 235.1 9169/70 16 201.0
9071/72 9 227.2 9171/72 14 237.7
9073/74 18 244.2 9173/74 21 216.0
9075/76 17 249.7 9175/76 15 227.2
9077/78 17 243.0 9177/78 13 227.3
9079/80* 11 227.2 9179/80 16 194.5
9081/82* 12 230.9 9181/82 14 227.2
9083/84 17 183.7 9183/84 6 251.1
9085/86 15 193.1 9185/86 17 235.1
9087/88 15 233.4 9187/88 10 227.2
9089/90 12 227.2 9189/90 14 213.0
9091/92 17 218.7 9191/92 9 227.2
9093/94* 15 181.4 9193/94 10 227.2
9095/96 18 271.7 9195/96 24 215.1
9097/98 19 239.0 9197/98 20 234.8
9099/00 19 221.8 9199/00 12 227.2
9101/02 10 186.2 9001/02 14 234.9
9103/04* 17 254.7 9003/04 14 249.5
9105/06 11 240.4 9005/06 19 237.8

Table A.5: Number of crossings simulated in BABSI with the cor-
responding time of survey for alternative 2

Statistical analysis of the number of crossings:
Sample: 100 timetables
Mean time of survey: T = 227.7 min.
Largest registration: 24 crossings/timetable
Smallest registration: 3 crossings/timetable
Sample mean: t = 1

n · ∑n
i=1 ti= 15.2 crossings/timetable

Sample variance: σ2 = 1
n−1 · ∑n

i=1(ti − t)2=13.19
Sample standard deviation: σ =

√
σ2=3.63

Table A.6 lists the number of multiple crossings with the corresponding additional
passing trains recorded for each of the 100 files.

File No. nm n1(p.) = 1 n1(p.) = 2 n1(p.) = 3 n1(p.) = 4
∑

n1(p.)

9001/02 3 3 0 0 0 3
9003/04 3 3 0 0 0 6
9005/06 2 2 0 0 0 2
9007/08 6 5 1 0 0 7
9009/10 2 1 0 1 0 4
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File No. nm n1(p.) = 1 n1(p.) = 2 n1(p.) = 3 n1(p.) = 4
∑

n1(p.)

9011/12* 4 3 1 0 0 5
9013/14 2 2 0 0 0 2
9015/16 2 0 2 0 0 4
9017/18 5 4 1 0 0 6
9019/20 2 2 0 0 0 2
9021/22* 5 4 1 0 0 6
9023/24 4 0 2 2 0 8
9025/26 3 3 0 0 0 3
9027/28 4 1 3 0 0 7
9029/30* 9 9 0 0 0 9
9031/32* 5 2 2 1 0 9
9033/34 5 5 0 0 0 5
9035/36 2 2 0 0 0 2
9037/38 1 1 0 0 0 1
9039/40* 3 1 0 2 0 7
9041/42 10 10 0 0 0 10
9043/44 4 4 0 0 0 4
9045/46* 4 1 3 0 0 7
9047/48 5 4 0 1 0 7
9049/50 4 1 0 3 0 10
9051/52 7 7 0 0 0 7
9053/54* 8 5 3 0 0 11
9055/56 3 3 0 0 0 3
9057/58 2 1 1 0 0 3
9059/60 5 5 0 0 0 5
9061/62 7 7 0 0 0 7
9063/64* 4 2 0 1 1 9
9065/66 2 2 0 0 0 2
9067/68 2 0 2 0 0 4
9069/70 2 2 0 0 0 2
9071/72 5 5 0 0 0 5
9073/74 5 5 0 0 0 5
9075/76 2 2 0 0 0 2
9077/78 5 4 1 0 0 6
9079/80* 4 2 2 0 0 6
9081/82* 2 0 0 2 0 6
9083/84 11 8 3 0 0 14
9085/86 8 8 0 0 0 8
9087/88 0 0 0 0 0 0
9089/90 5 5 0 0 0 5
9091/92 5 4 1 0 0 6
9093/94* 9 6 3 0 0 12
9095/96 1 1 0 0 0 1
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File No. nm n1(p.) = 1 n1(p.) = 2 n1(p.) = 3 n1(p.) = 4
∑

n1(p.)

9097/98 0 0 0 0 0 0
9099/00 4 4 0 0 0 4
9101/02 5 0 0 2 3 18
9103/04* 2 1 1 0 0 3
9105/06 3 3 0 0 0 3
9107/08 1 1 0 0 0 1
9109/10 5 3 1 1 0 8
9111/12 9 6 3 0 0 12
9113/14 7 6 1 0 0 8
9115/16 2 0 0 2 0 6
9117/18 3 3 0 0 0 3
9119/20 2 1 1 0 0 3
9121/22 0 0 0 0 0 0
9123/24 0 0 0 0 0 0
9125/26 5 4 1 0 0 6
9127/28 5 4 1 0 0 6
9129/30 9 4 5 0 0 14
9131/32 1 0 1 0 0 2
9133/34 4 0 4 0 0 8
9135/36 2 1 1 0 0 3
9137/38 3 0 3 0 0 6
9139/40 5 5 0 0 0 5
9141/42* 6 4 2 0 0 8
9143/44 0 0 0 0 0 0
9145/46 6 0 2 4 0 16
9147/48 4 4 0 0 0 4
9149/50 0 0 0 0 0 0
9151/52 0 0 0 0 0 0
9153/54 5 5 0 0 0 5
9155/56 2 1 1 0 0 3
9157/58 3 0 3 0 0 6
9159/60 6 6 0 0 0 6
9161/62* 10 7 3 0 0 13
9163/64 9 8 1 0 0 10
9165/66 4 2 2 0 0 6
9167/68 7 4 3 0 0 10
9169/70 9 5 4 0 0 13
9171/72 1 0 1 0 0 2
9173/74 2 2 0 0 0 2
9175/76 1 1 0 0 0 1
9177/78 3 3 0 0 0 3
9179/80 3 1 2 0 0 5
9181/82 9 9 0 0 0 9
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File No. nm n1(p.) = 1 n1(p.) = 2 n1(p.) = 3 n1(p.) = 4
∑

n1(p.)

9183/84 3 0 0 0 3 12
9185/86 4 4 0 0 0 4
9187/88 6 0 0 6 0 18
9189/90 3 1 2 0 0 5
9191/92 4 4 0 0 0 4
9193/94 5 3 2 0 0 7
9195/96 1 1 0 0 0 1
9197/98 5 5 0 0 0 5
9199/00 2 0 2 0 0 4
Mean 4.03 2.83 0.85 0.28 0.07 5.65

Table A.6: Number of multiple crossings and additional passing
trains simulated in BABSI for alternative 2

Table A.7 illustrates the recorded scheduled waiting time for crossing, merging,
overtaking and minimum time necessary for crossing. Of the 100 timetables simulated
50 were selected for this partition. Only the timetables where the simulation did not
stop were analyzed starting from the beginning of the list.

File No. Twx + mintx[min.] Twm[min.] Two + minto [min.]
∑

Tw [min.]
9001/02 122.57 9.60 42.43 174.60
9003/04 120.76 41.40 0 162.16
9005/06 168.54 4.40 43.43 216.37
9007/08 169.15 39.10 0 208.25
9009/10 79.30 22.91 76.07 178.28
9013/14 149.90 11.90 0 161.80
9015/16 172.28 28.80 15.30 216.38
9017/18 171.06 54.80 38.93 264.79
9019/20 208.70 15.60 0 224.30
9023/24 92.23 63.20 31.23 186.66
9025/26 169.46 11.80 57.80 239.06
9027/28 136.21 67.60 24.46 228.27
9033/34 145.76 25.20 23.22 194.18
9035/36 165.08 21.40 14.31 200.79
9037/38 148.42 5.90 0 154.32
9041/42 190.16 87.30 0 277.46
9043/44 178.30 34.20 0 212.50
9049/50 100.23 74.00 21.81 196.04
9051/52 153.39 57.80 0 211.19
9055/56 222.45 24.40 58.34 305.19
9057/58 126.24 23.80 55.95 205.99
9059/60 149.35 36.40 0 185.75
9061/62 151.96 58.40 0 210.36
9065/66 159.65 5.60 21.64 186.89
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File No. Twx + mintx[min.] Twm[min.] Two + minto [min.]
∑

Tw [min.]
9067/68 93.50 38.10 14.50 146.10
9069/70 118.99 17.60 34.10 170.69
9071/72 84.81 28.40 0 113.21
9073/74 132.23 52.00 34.02 218.25
9075/76 155.80 22.40 15.85 194.05
9077/78 176.63 47.10 12.30 236.03
9085/86 134.00 51.00 24.30 209.30
9087/88 110.28 0 16.93 127.21
9089/90 114.86 46.40 17.21 178.47
9091/92 145.01 37.80 34.33 217.14
9095/96 178.30 5.10 0 183.40
9097/98 148.21 0 0 148.21
9099/00 198.20 33.80 35.21 267.21
9101/02 88.37 104.30 92.23 284.90
9105/06 100.96 23.60 0 124.56
9107/08 133.33 6.20 0 139.53
9109/10 129.99 65.90 102.94 298.83
9111/12 145.80 142.50 55.52 343.82
9113/14 208.70 129.70 0 338.40
9115/16 104.80 31.50 61.20 197.50
9117/18 135.38 21.90 46.83 204.11
9119/20 123.50 34.90 15.60 174.00
9121/22 111.32 23.00 0 134.32
9123/24 160.29 0 0 160.29
9125/26 117.86 42.50 66.66 227.02
9127/28 136.05 44.00 23.30 203.35
9109/10 129.99 65.90 102.94 298.83
9111/12 145.80 142.50 55.52 343.82
Mean 142.77 37.50 24.56 204.83

Table A.7: Waiting time for crossing, merging and overtaking sim-
ulated in BABSI

In table A.8 a summary of a statistical evaluation of the data given in table A.7 is
presented.

Tw Max [min] Min [min] Mean [min] Variance Standard deviation
Twx + mintx 222.45 79.30 142.77 1140.2 33.8
Twm 142.50 0 37.50 946.6 30.8
Two + minto 102.94 0 24.56 695.5 26.4∑

Tw 343.82 113.21 204.8 2669.6 51.7

Table A.8: Statistical evaluation of the data given in table A.7
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A.2.2 Results recorded for line A: Eidsvoll-Hamar

Alternative 2: Both directions have equal priority

Table A.9 lists the number of crossings and survey time recorded for each of the 100
files. Of the 100 simulations 19 files marked with a * in table A.9 and A.10 are
simulations where the algorithm ran in an infinite loop. This loop was manipulated
manually in BABSI, and the simulation could continue.

File No. nx T [min.] File No. nx T [min.]
4007/08 7 235.8 4107/08* 11 213.0
4009/10 15 186.4 4109/10 16 229.4
4011/12* 15 180.0 4111/12 12 192.2
4013/14 10 205.5 4113/14 11 214.0
4015/16 9 180.0 4115/16 7 251.8
4017/18 14 214.0 4117/18 8 241.5
4019/20 7 235.8 4119/20 12 214.0
4021/22* 13 180.0 4121/22 8 218.7
4023/24* 11 246.1 4123/24 17 213.0
4025/26 14 213.0 4125/26 13 220.9
4027/28 11 187.2 4127/28* 11 201.0
4029/30 11 237.9 4129/30* 9 213.0
4031/32 16 185.3 4131/32 15 213.2
4033/34 12 214.0 4133/34 14 231.0
4035/36 12 237.1 4135/36 11 224.1
4037/38 12 222.1 4137/38 10 209.3
4039/40 8 240.1 4139/40 10 222.0
4041/42 9 220.3 4141/42 9 222.1
4043/44 13 198.5 4143/44 11 220.6
4045/46 15 232.5 4145/46 9 214.0
4047/48 14 213.0 4147/48 11 214.0
4049/50 10 230.3 4149/50 12 206.6
4051/52 10 214.0 4151/52* 7 214.0
4053/54 9 229.0 4153/54 14 223.5
4055/56 12 228.6 4155/56* 6 222.1
4057/58* 10 222.1 4157/58 8 244.7
4059/60* 16 229.8 4159/60* 13 201.6
4061/62 14 223.2 4161/62 13 223.3
4063/64 10 253.3 4163/64 14 242.1
4065/66 11 230.3 4165/66 12 214.0
4067/68 8 214.0 4167/68 5 213.0
4069/70 13 200.6 4169/70 13 219.7
4071/72 7 233.7 4171/72* 15 202.6
4073/74 11 247.7 4173/74 13 191.3
4075/76 11 231.2 4175/76 13 206.8
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File No. nx T [min.] File No. nx T [min.]
4077/78* 10 217.8 4177/78 11 214.0
4079/80* 19 180.0 4179/80* 6 209.1
4081/82 13 229.8 4181/82 13 229.4
4083/84 6 237.5 4183/84 17 225.7
4085/86 6 206.9 4185/86 14 214.0
4087/88 12 196.3 4187/88* 11 213.0
4089/90 11 214.0 4189/90* 9 214.0
4091/92 14 246.5 4191/92 14 220.9
4093/94 11 213.0 4193/94 9 222.1
4095/96 9 222.8 4195/96 10 214.0
4097/98 4 218.1 4197/98 2 213.0
4099/00 9 214.0 4199/00* 8 213.0
4101/02 12 237.8 4201/02 9 213.0
4103/04 11 214.0 4203/04 7 226.8
4105/06 8 230.3 4205/06* 12 180.0

Table A.9: Number of crossings simulated in BABSI with the cor-
responding time of survey for alternative 2

Statistical analysis of the number of crossings:
Sample: 100 timetables
Mean time of survey: T = 217.7 min.
Largest registration: 19 crossings/timetable
Smallest registration: 2 crossings/timetable
Sample mean: t = 1

n · ∑n
i=1 ti = 11 crossings/timetable

Sample variance: σ2 = 1
n−1 · ∑n

i=1(ti − t)2=9.23
Sample standard deviation: σ =

√
σ2=3.04

Table A.10 lists the number of multiple crossings with the correspondent passing
trains recorded for each of the 100 files.

File No. nm n1(p.) = 1 n1(p.) = 2 n1(p.) = 3 n1(p.) = 4
∑

n1(p.)

4007/08 4 2 2 0 0 6
4009/10 8 6 2 0 0 10
4011/12* 6 5 1 0 0 7
4013/14 1 0 1 0 0 2
4015/16 2 2 0 0 0 2
4017/18 1 0 1 0 0 2
4019/20 3 3 0 0 0 3
4021/22* 10 5 3 2 0 17
4023/24 7 4 3 0 0 10
4025/26 3 3 0 0 0 3
4027/28 4 3 0 1 0 6
4029/30 1 1 0 0 0 1
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File No. nm n1(p.) = 1 n1(p.) = 2 n1(p.) = 3 n1(p.) = 4
∑

n1(p.)

4031/32 8 8 0 0 0 8
4033/34 2 2 0 0 0 2
4035/36 1 1 0 0 0 1
4037/38 1 1 0 0 0 1
4039/40 3 2 1 0 0 4
4041/42 2 2 0 0 0 2
4043/44 3 3 0 0 0 3
4045/46 3 3 0 0 0 3
4047/48 3 3 0 0 0 3
4049/50 2 2 0 0 0 2
4051/52 1 1 0 0 0 1
4053/54 2 2 0 0 0 2
4055/56 3 3 0 0 0 3
4057/58* 3 2 1 0 0 4
4059/60* 2 2 0 0 0 2
4061/62 2 2 0 0 0 2
4063/64 3 3 0 0 0 3
4065/66 1 1 0 0 0 1
4067/68 3 3 0 0 0 3
4069/70 4 2 1 1 0 7
4071/72 4 1 3 0 0 7
4073/74 3 3 0 0 0 3
4075/76 2 2 0 0 0 2
4077/78* 6 5 1 0 0 7
4079/80* 9 6 2 1 0 13
4081/82 0 0 0 0 0 0
4083/84 3 3 0 0 0 3
4085/86 3 0 3 0 0 6
4087/88 4 4 0 0 0 4
4089/90 4 4 0 0 0 4
4091/92 1 1 0 0 0 1
4093/94 6 6 0 0 0 6
4095/96 0 0 0 0 0 0
4097/98 1 0 0 1 0 3
4099/00 2 0 2 0 0 4
4101/02 3 3 0 0 0 3
4103/04 3 3 0 0 0 3
4105/06 5 5 0 0 0 5
4107/08* 7 7 0 0 0 7
4109/10 0 0 0 0 0 0
4111/12 7 6 1 0 0 8
4113/14 4 3 1 0 0 5
4115/16 4 1 2 1 0 8
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File No. nm n1(p.) = 1 n1(p.) = 2 n1(p.) = 3 n1(p.) = 4
∑

n1(p.)

4117/18 2 2 0 0 0 2
4119/20 3 2 1 0 0 4
4121/22 4 3 1 0 0 5
4123/24 1 1 0 0 0 1
4125/26 4 0 4 0 0 8
4127/28* 7 7 0 0 0 7
4129/30* 3 1 2 0 0 5
4131/32 2 1 1 0 0 3
4133/34 0 0 0 0 0 0
4135/36 1 1 0 0 0 1
4137/38 4 3 1 0 0 5
4139/40 4 1 3 0 0 7
4141/42 5 5 0 0 0 5
4143/44 3 0 3 0 0 6
4145/46 2 0 0 2 0 6
4147/48 5 5 0 0 0 5
4149/50 4 4 0 0 0 4
4151/52* 4 1 3 0 0 7
4153/54 1 1 0 0 0 1
4155/56* 2 0 0 0 2 8
4157/58 4 0 4 0 0 8
4159/60* 2 1 1 0 0 3
4161/62 3 3 0 0 0 3
4163/64 2 2 0 0 0 2
4165/66 5 1 4 0 0 9
4167/68 1 0 0 1 0 3
4169/70 0 0 0 0 0 0
4171/72* 5 3 1 1 0 8
4173/74 6 6 0 0 0 6
4175/76 4 3 1 0 0 5
4177/78 2 2 0 0 0 2
4179/80* 3 1 2 0 0 5
4181/82 3 3 0 0 0 3
4183/84 4 3 1 0 0 5
4185/86 4 4 0 0 0 4
4187/88* 5 1 2 1 1 12
4189/90* 4 0 0 4 0 12
4191/92 0 0 0 0 0 0
4193/94 5 2 3 0 0 8
4195/96 7 3 3 0 1 13
4197/98 0 0 0 0 0 0
4199/00* 4 2 1 0 1 8
4201/02 3 3 0 0 0 3
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File No. nm n1(p.) = 1 n1(p.) = 2 n1(p.) = 3 n1(p.) = 4
∑

n1(p.)

4203/04 1 0 1 0 0 2
4205/06* 9 2 7 0 0 16
Mean 3.3 2.28 0.85 0.12 0.05 4.58

Table A.10: Number of mergings and passing trains simulated in
BABSI for alternative 2

A.3 Quantities for the calculation of the number of
crossings

First in this section the conditions of recording the minimum spacing time and the
time gap used in the calculations in this thesis are presented. The records of these two
parameters follows afterwards for both lines D and A. All quantities were recorded in
BABSI (VO.60).

A.3.1 Recording of the minimum spacing time between trains
of rank(1)

The minimum spacing time was recorded on the first block when entering the section
according to description in Chapter 2.1.4. The train does not halt and runs through
the main track with the speed permitted for the actual space.

A.3.2 Recording of the time gap

The time gap necessary for a train to reach the next station was recorded. The
recording is based on a halt in the siding in station (i-1) and station (i+1) for the
train of rank(2) with lower priority. An example from BABSI is illustrated in figure
A.3.

A.3.3 Line D: dummy of Eidsvoll-Hamar

In line D every block and station is equal which means that the following quantities
are the same for every section in both directions.
The minimum spacing time between the trains of rank(1) in one direction:
ts,11 = 4.3 min.
The time gap necesarry for a train to reach the next station:
Δt = 11.8 min.

A.3.4 Line A: Eidsvoll-Hamar

The minimum spacing time ts,11 for each section in both directions between Eidsvoll
and Hamar was recorded and illustrated in table A.11.
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t i i2( , +1)

t i i1( , +1)

t i i( , +1)

ts,21

Train of rank(2)

Train of rank(1)

Station( -1)i Station( )i Station( +1)i

Figure A.3: Example of a time gap recorded in BABSI with locomotive EL16

Section in Eidsvoll → Hamar ts,11 [min] Section in Hamar → Eidsvoll ts,11 [min]
Eidsvoll-Minnesund 3.4 Hamar-Ottestad 3.1
Minnesund-Molykkja 4.0 Ottestad-Stange 3.1
Molykkja-Morskogen 3.7 Stange-Steinsrud 4.3
Morskogen-Strandlykkja 4.6 Steinsrud-Tangen 4.6
Strandlykkja-Espa 3.3 Tangen-Espa 3.8
Espa-Tangen 3.9 Espa-Strandlykkja 3.4
Tangen-Steinsrud 4.5 Strandlykkja-Morskogen 4.4
Steinsrud-Stange 2.6 Morskogen-Molykkja 3.9
Stange-Ottestad 3.1 Molykkja-Minnesund 4.0
Ottestad-Hamar 3.2 Minnesund-Eidsvoll 3.5
Mean 3.63 Mean 3.81

Table A.11: The minimum spacing time between train of rank(1) for each section for
both directions

The mean minimum spacing time for both directions together becomes:

ts,11 =
3.63 min. + 3.81 min.

2
= 3.72 min. (A.1)

The time gap Δt necessary for reaching the next station (i + 1) was recorded for
each station (i) and illustrated in table A.12.
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Section in Eidsvoll → Hamar Δt [min] Section in Hamar → Eidsvoll Δt [min]
Eidsvoll-Minnesund-Molykkja 10.2 Hamar-Ottestad-Stange 8.5
Minnesund-Molykkja-Morskogen 11.5 Ottestad-Stange-Steinsrud 13.0
Molykkja-Morskogen-Strandlykkja 11.3 Stange-Steinsrud-Tangen 13.7
Morskogen-Strandlykkja-Espa 13.8 Steinsrud-Tangen-Espa 10.5
Strandlykkja-Espa-Tangen 14.2 Tangen-Espa-Strandlykkja 14.5
Espa-Tangen-Steinsrud 10.8 Espa-Strandlykkja-Morskogen 14.3
Tangen-Steinsrud-Stange 10.9 Strandlykkja-Morskogen-Molykkja 10.6
Steinsrud-Stange-Ottestad 8.9 Morskogen-Molykkja-Minnesund 10.7
Stange-Ottestad-Hamar 12.9 Molykkja-Minnesund-Edisvoll 9.4
Mean 11.7 Mean 11.7

Table A.12: Time gap necessary for reaching the next station (i+1) for both directions

The mean time gap for both directions together becomes:

Δt =
11.7 min. + 11.7 min.

2
= 11.7 min. (A.2)

Variance of Δt for the entire registrations for both directions together: 3.5

A.4 Quantities for the calculation of the number of
multiple crossings

First in this section the conditions of recording the minimum spacing time between
train of rank(2) and rank(1) and vice versa used in the calculations in this thesis is
presented. The records follows afterwards for both lines D and A. All quantities were
recorded in BABSI.

A.4.1 Recording of the minimum spacing time between train
of rank(2) and rank(1)

The mininum spacing time for a train of rank(2) running in one direction and train of
rank(1) running in opposite direction is illustrated in figure A.4.

A.4.2 Recording of the minimum spacing time between train
of rank(1) and rank(2)

The mininum spacing time for a train of rank(1) running in one direction and train of
rank(2) running in opposite direction is illustrated in figure A.5.

A.4.3 Line D: dummy of Eidsvoll-Hamar

The minimum spacing time between train of rank(2) and rank(1) and vice versa for
line D was only recorded once since every section was equally constructed.
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ts,21

Train of rank(2) Train of rank(1)

Figure A.4: Example of minimum spacing time between train of rank(2) and rank(1)
in BABSI with locomotive EL16

ts,12

Rank(2)

Rank(1)

Figure A.5: Example of minimum spacing time between train of rank(1) and rank(2)
in BABSI with locomotive EL16
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ts,21 = 5.7 min.
ts,12 = 5.3 min.

A.4.4 Line A: Eidsvoll-Hamar

The minimum spacing time ts,21 for each section in both directions between Eidsvoll
and Hamar was recorded and illustrated in table A.13.

Section in Eidsvoll → Hamar ts,21 [min] Section in Hamar → Eidsvoll ts,21 [min]
Eidsvoll-Minnesund 7.5 Hamar-Ottestad 7.3
Minnesund-Molykkja 6.3 Ottestad-Stange 5.5
Molykkja-Morskogen 6.3 Stange-Steinsrud 5.0
Morskogen-Strandlykkja 6.9 Steinsrud-Tangen 6.8
Strandlykkja-Espa 7.5 Tangen-Espa 6.3
Espa-Tangen 6.1 Espa-Strandlykkja 7.7
Tangen-Steinsrud 7.4 Strandlykkja-Morskogen 6.9
Steinsrud-Stange 6.1 Morskogen-Molykkja 5.8
Stange-Ottestad 5.4 Molykkja-Minnesund 6.8
Ottestad-Hamar 6.2 Minnesund-Eidsvoll 6.5
Mean 6.57 Mean 6.46

Table A.13: The minimum spacing time between train of rank(1) for each section for
both directions

The mean minimum spacing time for both directions together becomes:

ts,21 =
6.57 min. + 6.46 min.

2
= 6.5 min. (A.3)

The minimum spacing time addition Δts,1 for each section in both directions be-
tween Eidsvoll and Hamar was recorded and illustrated in table A.14. For values of
Δts,1 equal zero means that there is only one block section between the stations.
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Section in Eidsvoll → Hamar Δts,1 [min] Section in Hamar → Eidsvoll Δts,1 [min]
Eidsvoll-Minnesund 1.5 Hamar-Ottestad 2.3
Minnesund-Molykkja 0 Ottestad-Stange 0
Molykkja-Morskogen 0 Stange-Steinsrud 2.0
Morskogen-Strandlykkja 0 Steinsrud-Tangen 0
Strandlykkja-Espa 1.9 Tangen-Espa 0
Espa-Tangen 0 Espa-Strandlykkja 2.3
Tangen-Steinsrud 0 Strandlykkja-Morskogen 0
Steinsrud-Stange 1.6 Morskogen-Molykkja 0
Stange-Ottestad 0 Molykkja-Minnesund 0
Ottestad-Hamar 2.1 Minnesund-Eidsvoll 2.5
Mean 1.78 Mean 2.28

Table A.14: The minimum spacing time between train of rank(1) for each section for
both directions

The mean minimum spacing time addition Δts,1 for both directions together be-
comes:

Δts,1 =
1.78 min. + 2.28 min.

2
= 2.03 min. (A.4)

The minimum spacing time ts,12 for each section in direction Eidsvoll → Hamar
was recorded and illustrated in table A.15. It is assumed that the qunatity for ts,12

in direction Hamar → Eidsvoll is equal the quantity of ts,12 in direction Eidsvoll →
Hamar.

Section in Eidsvoll → Hamar ts,12 [min]
Eidsvoll-Minnesund 4.7
Minnesund-Molykkja 4.4
Molykkja-Morskogen 5.0
Morskogen-Strandlykkja 5.8
Strandlykkja-Espa 4.5
Espa-Tangen 5.1
Tangen-Steinsrud 4.8
Steinsrud-Stange 3.6
Stange-Ottestad 5.2
Mean 4.78

Table A.15: The minimum spacing time between train of rank(1) followed by train of
rank(2) for each section in direction Eidsvoll → Hamar

A.5 Quantities for the calculation of the scheduled

waiting time

Figure A.6 is a screenshot from BABSI illustrating the recording of the minimum time
necessary for one crossing.
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Train of rank(1) with higher priority Train of rank(2) with lower priority

Station ( )i

min tx

Acceleration

Retardation

Minimum time for halt

Figure A.6: Minimum time for a crossing between train of rank(2) and rank(1) in
BABSI with locomotive EL16

The minimum time necessary for one crossing min tx was determined in BABSI:
Time lost because of slowing down to halt: 0.84 min.
Minimum time for a halt when crossing: 4.8 min.
Time lost because of acceleration: 0.16 min.
min tx: 5.80 min.
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Appendix B

Buffer time analysis on single
track lines

In section B.1 data from the χ2-test of goodness of fit of the buffer times in schedule
from Line A is listed. In section B.2 and B.3 follow the data recorded from the χ2-test
of goodness of fit for schedules from line B respectively line C .

Parameters:

Sample mean: t = 1
n · ∑n

i=1 ti
Sample variance: σ2 = 1

n−1 · ∑n
i=1(ti − t)2

Sample standard deviation: σ =
√

σ2

Coefficient of variation: VT = σ
t

Estimated parameters:

Exponential distribution: λ = 1
t

Hyper-exponential distribution: λ = 1
t

and ξ = 1
2 · (1 −

√
V 2−1
V 2+1 )

Erlang2 distribution: λ = 1
t

and k = 2

B.1 Line A: Eidsvoll-Hamar

B.1.1 χ2-test of the buffer times between the freight trains on
section Tangen-Steinsrud.

Day of investigation: Thursday 18.04.2002
Sample: 17 freight trains
Largest registration: 395 minutes
Smallest registration: 4 minutes
Sample mean t = 78.41
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Sample variance σ2 = 11198.00
Sample standard deviation σ = 105.82
Coefficient of variation VT = 1.35
Estimated parameter: λ = 1

t
= 0.01

Estimated parameter ξ = 0.23

Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 25 6 4.64 0.398
2 50 4 3.37 0.116
3 75 3 2.45 0.122
4 100 0 1.78 1.783
5 400 4 4.64 0.090
Sum 17 16.897 2.509

Table B.1: χ2-test of an exponential buffer time distribution between the freight trains
on section Tangen-Steinsrud

Table B.1 lists the values for a χ2-test for an exponential distribution.
Number of classes z = 5
Number of estimated parameters r = 1
Degree of freedom z − r − 1 = 3
Level of significance α = 0.05
Since 2.51 < 7.81 the exponential distribution can be accepted.

Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 25 6 5.61 0.027
2 50 4 3.57 0.052
3 75 3 2.30 0.213
4 100 0 1.51 1.508
5 400 4 3.63 0.037
Sum 17 16.621 1.837

Table B.2: χ2-test of a hyper-exponential buffer time distribution between freight
trains on the Tangen-Steinsrud section

Table B.2 lists the values for a χ2-test for a hyper-exponential distribution.
Number of classes z = 5
Number of estimated parameters r = 2
Degree of freedom z − r − 1 = 2
Level of significance α = 0.05
Since 1.84 < 5.99 the hyper-exponential distribution can be accepted.
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B.1.2 χ2-test of the buffer times between the freight trains and
the IC trains on section Tangen-Steinsrud

Day of investigation: Thursday 18.04.2002
Sample: 17 freight trains and 35 IC trains
Largest registration: 264 minutes
Smallest registration: 0 minutes
Sample mean t = 22.35
Sample variance σ2 = 1339.90
Sample standard deviation σ = 36.60
Coefficient of variation VT = 1.64
Estimated parameter: λ = 1

t
= 0.04

Estimated parameter ξ = 0.16

Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 6 6 16.49 6.674
2 12 9 10.71 0.273
3 18 14 7.01 6.971
4 24 11 4.63 8.744
5 30 1 3.11 1.428
6 36 6 2.12 7.109
7 270 5 7.76 1.150
Sum 52 52 32.349

Table B.3: χ2-test of a hyper-exponential buffer time distribution between the freight
and IC trains on section Tangen-Steinsrud

Table B.3 lists the values for a χ2-test for a hyper-exponential distribution.
Number of classes z = 7
Number of estimated parameters r = 2
Degree of freedom z − r − 1 = 4
Level of significance α = 0.05
Since 32.35 > 9.49 the hyper-exponential distribution cannot be accepted as buffer
time distribution beteween the freight and IC trains.

B.1.3 χ2-test of the buffer times between all of the trains on
section Tangen-Steinsrud

Day of investigation: Thursday 18.04.2002
Sample: 17 freight trains, 35 IC trains, 8 ICE trains and 2 Night trains (Nt)
Largest registration: 196 minutes
Smallest registration: 0 minutes
Sample mean t = 18.26
Sample variance σ2 = 660.71
Sample standard deviation σ = 25.70
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Coefficient of variation VT = 1.41
Estimated parameter: λ = 1

t
= 0.05

Estimated parameter ξ = 0.21

Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 4 7 15.40 4.582
2 8 6 11.15 2.378
3 12 7 8.12 0.153
4 16 17 5.95 20.538
5 20 7 4.39 1.546
6 24 8 3.28 6.807
7 28 1 2.47 0.876
8 32 0 1.89 1.887
9 36 6 1.46 14.105
10 200 3 7.77 3.055
Sum 62 62 55.927

Table B.4: χ2-test of a hyper-exponential buffer time distribution between all of the
trains on section Tangen-Steinsrud. Time interval 4 minutes.

Table B.4 lists the values for a χ2-test for a hyper-exponential distribution.
Number of classes z = 10
Number of estimated parameters r = 2
Degree of freedom z − r − 1 = 7
Level of significance α = 0.05
Since 14.07 > 55.93 the hyper-exponential distribution can not be accepted.

B.1.4 χ2-test of the buffer times between all of the trains on
section Molykkja-Morskogen

Day of investigation: Thursday 18.04.2002
Sample: 17 freight trains, 35 IC trains, 8 ICE trains and 2 night trains
Largest registration: 231 minutes
Smallest registration: 0 minutes
Sample mean t = 19.15
Sample variance σ2 = 1013.92
Sample standard deviation σ = 31.84
Coefficient of variation VT = 1.66
Estimated parameter: λ = 1

t
= 0.05

Estimated parameter ξ = 0.16
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Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 5 20 14.25 2.320
2 10 9 10.97 0.355
3 15 4 8.45 2.345
4 20 11 6.51 3.097
5 25 3 5.01 0.809
6 30 3 3.86 0.192
7 35 2 2.97 0.319
8 235 10 9.96 0
Sum 62 62 9.438

Table B.5: χ2-test of an exponential buffer time distribution between all of the trains
on section Molykkja-Morskogen

Table B.5 lists the values for a χ2-test for an exponential distribution.
Number of classes z = 8
Number of estimated parameters r = 1
Degree of freedom z − r − 1 = 6
Level of significance α = 0.05
Since 9.44 < 12.59 the exponential distribution can be accepted.

Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 5 20 19.36 0.021
2 10 9 12.68 1.070
3 15 4 8.37 2.279
4 20 11 5.57 5.295
5 25 3 3.75 0.151
6 30 3 2.57 0.071
7 35 2 1.80 0.023
8 235 10 7.69 0.695
Sum 62 61.796 9.606

Table B.6: χ2-test of a hyper-exponential buffer time distribution between all of the
trains on section Molykkja-Morskogen

Table B.6 lists the values for a χ2-test for a hyper-exponential distribution.
Number of classes z = 8
Number of estimated parameters r = 2
Degree of freedom z − r − 1 = 5
Level of significance α = 0.05
Since 9.61 < 11.07 the hyper-exponential distribution can be accepted.
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B.1.5 χ2-test of the buffer times between all of the trains on
section Espa-Tangen

Day of investigation: Thursday 18.04.2002
Sample: 17 freight trains, 35 IC trains, 8 ICE trains and 2 night trains
Largest registration: 204 minutes
Smallest registration: 0 minutes
Sample mean t = 18.20
Sample variance σ2 = 712.88
Sample standard deviation σ = 26.70
Coefficient of variation VT = 1.47
Estimated parameter: λ = 1

t
= 0.05

Estimated parameter ξ = 0.20

Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 5 11 14.90 1.019
2 10 9 11.32 0.475
3 15 12 8.60 1.346
4 20 5 6.53 0.359
5 25 15 4.96 20.300
6 30 6 3.77 1.319
7 35 1 2.86 1.214
8 205 3 9.06 4.050
Sum 62 61.9992 30.082

Table B.7: χ2-test of an exponential buffer time distribution between all trains on
section Espa-Tangen

Table B.8 lists the values for a χ2-test for an exponential distribution.
Number of classes z = 8
Number of estimated parameters r = 1
Degree of freedom z − r − 1 = 6
Level of significance α = 0.05
Since 30.08 > 12.59 the exponential distribution cannot be accepted.
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Class no Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 4 9 12.24 0.856
2 8 10 9.82 0.003
3 12 5 7.88 1.054
4 16 10 6.33 2.132
5 20 3 5.08 0.851
6 24 12 4.08 15.403
7 28 4 3.27 0.162
8 32 6 2.63 4.335
9 270 3 10.68 5.523
Sum 62 62 30.319

Table B.8: χ2-test of a hyper-exponential buffer time distribution between all trains
on section Espa-Tangen

Table B.8 lists the values for a χ2-test for a hyper-exponential distribution.
Number of classes z = 9
Number of estimated parameters r = 2
Degree of freedom z − r − 1 = 6
Level of significance α = 0.05
Since 30.32 > 14.07 the hyper-exponential distribution cannot be accepted.

B.2 Line B

B.2.1 χ2-test of the buffer times between the freight trains on
section 3

Day of investigation: Thursday 18.04.2002
Sample: 11 freight trains
Largest registration: 266 minutes
Smallest registration: 1 minutes
Sample mean t = 122.25
Sample variance σ2 = 8707.26
Sample standard deviation σ = 93.31
Coefficient of variation VT = 0.76
Estimated parameter: λ = 1

t
= 0.01

Estimated parameter k = 2
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Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 60 3 4.27 0.376
2 120 4 2.61 0.738
3 180 1 1.60 0.224
4 270 3 1.31 2.160
Sum 11 9.791 3.498

Table B.9: χ2-test of an exponential buffer time distribution between the freight trains
on section 3

Table B.9 lists the values for a χ2-test for an exponential distribution.
Number of classes z = 4
Number of estimated parameters r = 1
Degree of freedom z − r − 1 = 2
Level of significance α = 0.05
Since 3.498 < 5.99 the exponential distribution can be accepted.

Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 60 3 2.83 0.376
2 120 4 3.59 0.738
3 180 1 2.29 0.224
4 270 3 1.56 2.160
Sum 11 10.281 2.105

Table B.10: χ2-test of an Erlang2 buffer time distribution between the freight trains
on section 3

Table B.10 lists the values for a χ2-test for an Erlang2 distribution.
Number of classes z = 4
Number of estimated parameters r = 2
Degree of freedom z − r − 1 = 1
Level of significance α = 0.05
Since 2.11 < 3.84 the Erlang2 distribution can be accepted.

B.2.2 χ2-test of the buffer times between the freight trains and
the RB trains on section 3

Day of investigation: Thursday 18.04.2002
Sample: 11 freight trains and 25 RB trains
Largest registration: 237 minutes
Smallest registration: 1 minutes
Sample mean t = 34.57
Sample variance σ2 = 1828.78
Sample standard deviation σ = 42.76
Variation coefficient VT = 1.24
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Estimated parameter: λ = 1
t

= 0.03
Estimated parameter ξ = 0.27

Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 5 5 4.71 0.017
2 10 5 4.08 0.208
3 15 3 3.53 0.079
4 20 4 3.05 0.293
5 25 2 2.64 0.156
6 30 1 2.29 0.724
7 240 15 14.66 0.008
Sum 35 34.966 1.486

Table B.11: χ2-test of an exponential buffer time distribution between the freight and
RB trains on section 3

Table B.11 lists the values for a χ2-test for an exponential distribution.
Number of classes z = 7
Number of estimated parameters r = 1
Degree of freedom z − r − 1 = 5
Level of significance α = 0.05
Since 1.49 < 11.07 the exponential distribution can be accepted as buffer time distri-
bution between the freight and RB trains.

Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 5 5 5.57 0.057
2 10 5 4.59 0.037
3 15 3 3.79 0.166
4 20 4 3.14 0.234
5 25 2 2.61 0.142
6 30 1 2.17 0.634
7 240 15 12.91 0.339
Sum 35 34.779 1.610

Table B.12: χ2-test of a hyper-exponential buffer time distribution between the freight
and RB trains on section 3

Table B.12 lists the values for a χ2-test for a hyper-exponential distribution.
Number of classes z = 7
Number of estimated parameters r = 2
Degree of freedom z − r − 1 = 4
Level of significance α = 0.05
Since 1.61 < 9.49 the hyper-exponential distribution can be accepted as buffer time
distribution between the freight and RB trains.
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B.2.3 χ2-test of the buffer times between all of the trains on
section 1

Day of investigation: Thursday 18.04.2002
Sample: 1 IC train, 15 IR trains, 41 RB trains, 11 freight trains and 3 non defined
locomotives = 71 trains
Largest registration: 109 minutes
Smallest registration: 1 minutes
Sample mean t = 13.08
Sample variance σ2 = 376.90
Sample standard deviation σ = 19.41
Coefficient of variation VT = 1.48
Estimated parameter: λ = 1

t
= 0.08

Estimated parameter ξ = 0.19

Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 3 6 18.86 8.772
2 6 20 13.29 3.382
3 9 12 9.43 0.703
4 12 7 6.73 0.011
5 15 4 4.85 0.149
6 18 10 3.54 11.820
7 21 0 2.61 2.611
8 24 8 1.96 18.651
9 180 4 9.66 3.386
Sum 71 71 49.485

Table B.13: χ2-test of a hyper-exponential buffer time distribution between all of the
trains on section 1

Table B.13 lists the values for a χ2-test for a hyper-exponential distribution.
Number of classes z = 9
Number of estimated parameters r = 2
Degree of freedom z − r − 1 = 6
Level of significance α = 0.05
Since 49.49 > 12.59 the hyper-exponential distribution cannot be accepted as buffer
time distribution between all of the trains.

B.2.4 χ2-test of the buffer times between all of the trains on
section 2

Day of investigation: Thursday 18.04.2002
Sample: 1 IC train, 15 IR trains, 25 RB trains, 11 freight trains and 3 not defined
locomotives = 55 trains
Largest registration: 111 minutes
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Smallest registration: 1 minutes
Sample mean t = 21.21
Sample variance σ2 = 519.34
Sample standard deviation σ = 22.79
Coefficient of variation VT = 1.07
Estimated parameter: λ = 1

t
= 0.05

Estimated parameter k = 2

Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 5 5 11.55 3.715
2 10 10 9.13 0.084
3 15 12 7.21 3.185
4 20 11 5.69 4.942
5 25 2 4.50 1.388
6 30 2 3.55 0.679
7 35 5 2.81 1.712
8 270 8 10.56 0.621
Sum 55 55 16.327

Table B.14: χ2-test of an exponential buffer time distribution between all of the trains
on section 2

Table B.15 lists the values for a χ2-test for an exponential distribution.
Number of classes z = 7
Number of estimated parameters r = 1
Degree of freedom z − r − 1 = 5
Level of significance α = 0.05
Since 16.33 > 12.59 the exponential distribution cannot be accepted as buffer time
distribution between all of the trains.

Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 4 3 3.05 0.001
2 8 6 6.57 0.049
3 12 8 7.57 0.025
4 16 10 7.29 1.005
5 20 11 6.44 3.223
6 24 2 5.41 2.147
7 180 15 18.67 0.721
Sum 55 55 7.171

Table B.15: χ2-test of an Erlang2 buffer time distribution between all of the trains on
section 2

Table B.15 lists the values for a χ2-test for an Erlang2 distribution.
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Number of classes z = 7
Number of estimated parameters r = 2
Degree of freedom z − r − 1 = 4
Level of significance α = 0.05
Since 7.17 < 9.49 the Erlang2 distribution can be accepted as buffer time distribution
between all of the trains.

B.2.5 χ2-test of the buffer times between all of the trains on
section 3

Day of investigation: Thursday 18.04.2002
Sample: 1 IC train, 15 IR trains, 25 RB trains, 11 freight trains and 3 non defined
locomotives = 55 trains
Largest registration: 107 minutes
Smallest registration: 0 minutes
Sample mean t = 18.07
Sample variance σ2 = 603.84
Sample standard deviation σ = 24.57
Coefficient of variation VT = 1.36
Estimated parameter: λ = 1

t
= 0.05

Estimated parameter ξ = 0.23

Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 6 18 15.54 0.390
2 12 15 11.15 1.330
3 18 3 8.00 3.124
4 24 6 5.74 0.012
5 30 1 4.12 2.360
6 36 1 2.95 1.293
7 42 4 2.12 1.668
8 180 7 5.38 0.488
Sum 55 55 10.665

Table B.16: χ2-test of an exponential buffer time distribution between all of the trains
on section 3

Table B.16 lists the values for a χ2-test for an exponential distribution.
Number of classes z = 8
Number of estimated parameters r = 1
Degree of freedom z − r − 1 = 6
Level of significance α = 0.05
Since 10.67 < 12.59 the exponential distribution can be accepted as buffer time distri-
bution between all of the trains.
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Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 6 18 18.82 0.035
2 12 15 11.72 0.919
3 18 3 7.41 2.622
4 24 6 4.77 0.316
5 30 1 3.15 1.464
6 36 1 2.13 0.602
7 42 4 1.49 4.216
8 180 7 5.38 0.487
Sum 55 54.864 10.663

Table B.17: χ2-test of a hyper-exponential buffer time distribution between all of the
trains on section 3

Table B.17 lists the values for a χ2-test for a hyper-exponential distribution.
Number of classes z = 8
Number of estimated parameters r = 2
Degree of freedom z − r − 1 = 5
Level of significance α = 0.05
Since 10.66 < 12.59 the hyper-exponential distribution can be accepted as buffer time
distribution between all of the trains.

B.2.6 χ2-test of the buffer times between all of the trains on
section 4

Day of investigation: Thursday 18.04.2002
Sample: 1 IC train, 15 IR trains, 25 RB trains and 11 freight trains = 52 trains
Largest registration: 133 minutes
Smallest registration: 1 minutes
Sample mean t = 23.06
Sample variance σ2 = 773.02
Sample standard deviation σ = 27.80
Coefficient of variation VT = 1.21
Estimated parameter: λ = 1

t
= 0.04

Estimated parameter ξ = 0.29
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Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 8 15 15.53 0.018
2 16 17 10.98 3.299
3 24 4 7.76 1.824
4 32 7 5.49 0.417
5 40 1 3.88 2.137
6 48 1 2.74 1.107
7 180 8 6.59 0.301
Sum 53 52.9784 9.103

Table B.18: χ2-test of an exponential buffer time distribution between all of the trains
on section 4

Table B.18 lists the values for a χ2-test for an exponential distribution.
Number of classes z = 7
Number of estimated parameters r = 1
Degree of freedom z − r − 1 = 5
Level of significance α = 0.05
Since 9.10 < 11.07 the exponential distribution can be accepted as buffer time distri-
bution between all of the trains.

Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 8 15 17.53 0.364
2 16 17 11.25 2.942
3 24 4 7.32 1.506
4 32 7 4.84 0.959
5 40 1 3.27 1.573
6 48 1 2.25 0.694
7 180 8 6.37 0.418
Sum 53 52.823 8.457

Table B.19: χ2-test of a hyper-exponential buffer time distribution between all of the
trains on section 4

Table B.19 lists the values for a χ2-test for a hyper exponential distribution.
Number of classes z = 7
Number of estimated parameters r = 2
Degree of freedom z − r − 1 = 4
Level of significance α = 0.05
Since 8.46 < 9.49 the hyper-exponential distribution can be accepted as buffer time
distribution between all of the trains.
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B.3 Line C

B.3.1 χ2 − test of the buffer times between all of the freight
trains on section 1

Day of investigation: Thursday 17.04.2003
Sample: 21 freight trains
Largest registration: 232 minutes
Smallest registration: 1 minutes
Sample mean t = 61.96
Sample variance σ2 = 4406.82
Sample standard deviation σ = 66.38
Coefficient of variation VT = 1.07
Estimated parameter: λ = 1

t
= 0.02

Estimated parameter ξ = 0.37

Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 30 8 8.06 0.000
2 60 7 4.97 0.833
3 90 1 3.06 1.387
4 120 1 1.89 0.416
5 350 4 2.95 0.370
Sum 21 20.926 3.007

Table B.20: χ2-test of an exponential buffer time distribution between all of the freight
trains on section 1

Table B.20 lists the values for a χ2 − test for an exponential distribution.
Number of classes z = 5
Number of estimated parameters r = 1
Degree of freedom z − r − 1 = 3
Level of significance α = 0.05
Since 3.01 < 7.82 the exponential distribution can be accepted as buffer time distri-
bution between all of the freight trains.
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Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 30 8 8.39 0.018
2 60 7 4.92 0.882
3 90 1 2.92 1.266
4 120 1 1.77 0.332
5 350 4 2.88 0.440
Sum 21 20.869 2.938

Table B.21: χ2-test of a hyper-exponential buffer time distribution between all of the
freight trains on section 1

Table B.21 lists the values for a χ2-test for a hyper-exponential distribution.
Number of classes z = 5
Number of estimated parameters r = 2
Degree of freedom z − r − 1 = 2
Level of significance α = 0.05
Since 2.94 < 5.99 the hyper-exponential distribution can be accepted as buffer time
distribution between all of the freight trains.

B.3.2 χ2-test of the buffer times between the freight trains and
the RB trains on section 1

Day of investigation: Thursday 17.04.2003
Sample: 37 RB trains and 21 freight trains =58 trains
Largest registration: 232 minutes
Smallest registration: 1 minutes
Sample mean t = 20.65
Sample variance σ2 = 963.99
Sample standard deviation σ = 31.05
Coefficient of variation VT = 1.50
Estimated parameter: λ = 1

t
= 0.05

Estimated parameter ξ = 0.19
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Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 6 7 18.82 7.422
2 12 7 12.06 2.120
3 18 27 7.80 47.232
4 24 4 5.12 0.245
5 30 5 3.42 0.732
6 36 3 2.33 0.190
7 42 0 1.64 1.635
8 235 5 6.67 0.566
Sum 58 58 60.143

Table B.22: χ2-test of a hyper-exponential buffer time distribution between the freight
trains and the RB trains on section 1

Table B.22 lists the values for a χ2-test for a hyper-exponential distribution.
Number of classes z = 8
Number of estimated parameters r = 2
Degree of freedom z − r − 1 = 5
Level of significance α = 0.05
Since 60.14 > 11.07 the hyper-exponential distribution cannot be accepted as buffer
time distribution between freight trains and the RB trains on section 1.

B.3.3 χ2-test of the buffer times between all of the trains on
section 1

Day of investigation: Thursday 17.04.2003
Sample: 1 night train (Nt), 2 IC trains, 14 IR trains, 37 RB trains, 21 freight trains
(Ft) and 2 single locomotives = 77 trains
Largest registration: 172 minutes
Smallest registration: 1 minutes
Sample mean t = 13.45
Sample variance σ2 = 398.56
Sample standard deviation σ = 19.96
Coefficient of variation VT = 1.48
Estimated parameter: λ = 1

t
= 0.07

Estimated parameter ξ = 0.19
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Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 6 16 34.21 9.690
2 12 22 17.50 1.156
3 18 27 9.23 34.201
4 24 8 5.09 1.663
5 30 1 2.98 1.315
6 36 1 1.87 0.406
7 42 0 1.26 1.265
8 48 0 0.91 0.913
9 54 0 0.70 0.695
10 60 1 0.55 0.370
11 300 1 2.69 1.069
Sum 77 77 52.742

Table B.23: χ2-test of a hyper-exponential buffer time distribution between all of the
trains on section 1

Table B.23 lists the values for a χ2-test for a hyper-exponential distribution.
Number of classes z = 11
Number of estimated parameters r = 2
Degree of freedom z − r − 1 = 8
Level of significance α = 0.05
Since 52.74 > 15.51 the hyper-exponential distribution cannot be accepted as buffer
time distribution between all of the trains on section 1.

B.3.4 χ2-test of the buffer times between all of the trains on
section 2

Day of investigation: Thursday 17.04.2003
Sample: 1 night train (Nt), 2 IC trains, 14 IR trains, 37 RB trains, 21 freight trains
(Ft) and 2 single locomotives = 77 trains
Largest registration: 131 minutes
Smallest registration: 1 minutes
Sample mean t = 11.01
Sample variance σ2 = 281.74.56
Sample standard deviation σ = 16.79
Coefficient of variation VT = 1.53
Estimated parameter: λ = 1

t
= 0.09

Estimated parameter ξ = 0.18
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Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 5 36 35.07 0.025
2 10 10 17.52 3.227
3 15 8 9.03 0.118
4 20 9 4.88 3.474
5 25 7 2.82 6.221
6 30 5 1.76 6.000
7 35 0 1.19 1.186
8 40 0 0.86 0.861
9 180 2 3.85 0.923
Sum 77 77 22.034

Table B.24: χ2-test of a hyper-exponential buffer time distribution between all of the
trains on section 2

Table B.25 lists the values for a χ2-test for a hyper-exponential distribution.
Number of classes z = 9
Number of estimated parameters r = 2
Degree of freedom z − r − 1 = 6
Level of significance α = 0.05
Since 22.03 > 12.59 the hyper-exponential distribution cannot be accepted as buffer
time distribution between all of the trains on section 2.

Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 5 36 28.11 2.212
2 10 10 17.85 3.452
3 15 8 11.33 0.980
4 20 9 7.19 0.453
5 25 7 4.57 1.295
6 30 5 2.90 1.521
7 35 0 1.84 1.841
8 40 0 1.17 1.169
9 180 2 2.03 0.001
Sum 77 77 12.923

Table B.25: χ2-test of an exponential buffer time distribution between all of the trains
on section 2

Table B.25 lists the values for a χ2-test for an exponential distribution.
Number of classes z = 9
Number of estimated parameters r = 1
Degree of freedom z − r − 1 = 7
Level of significance α = 0.05
Since 12.92 < 14.07 the exponential distribution can be accepted as buffer time distri-
bution between all of the trains on section 2.
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B.3.5 χ2-test of the buffer times between all of the trains on
section 3

Day of investigation: Thursday 17.04.2003
Sample: 1 Night tra (Nt), 2 IC trains, 14 IR trains, 21 RB trains, 21 freight trains
(Ft) and 2 single locomotives = 61 trains
Largest registration: 123 minutes
Smallest registration: 1 minutes
Sample mean t = 18.24
Sample variance σ2 = 350.58
Sample standard deviation σ = 18.72
Coefficient of variation VT = 1.03
Estimated parameter: λ = 1

t
= 0.05

Estimated parameter ξ = 0.42
Estimated parameter k = 2

Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 5 3 9.25 4.222
2 10 10 7.85 0.591
3 15 5 6.66 0.412
4 20 6 5.65 0.022
5 25 7 4.79 1.018
6 30 6 4.06 0.921
7 35 3 3.45 0.058
8 180 21 19.29 0.151
Sum 61 61 7.397

Table B.26: χ2-test of an exponential buffer time distribution between all of the trains
on section 3

Table B.26 lists the values for a χ2-test for an exponential distribution.
Number of classes z = 8
Number of estimated parameters r = 1
Degree of freedom z − r − 1 = 6
Level of significance α = 0.05
Since 7.40 < 12.59 the exponential distribution can be accepted as buffer time distri-
bution between all of the trains on section 3.
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Class no. Time interval [min)] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 5 3 9.45 4.222
2 10 10 7.96 0.591
3 15 5 6.70 0.412
4 20 6 5.65 0.022
5 25 7 4.77 1.018
6 30 6 4.02 0.921
7 35 3 3.40 0.058
8 180 21 19.04 0.202
Sum 61 60.993 7.648

Table B.27: χ2-test of a hyper-exponential buffer time distribution between all of the
trains on section 3

Table B.27 lists the values for a χ2-test for a hyper-exponential distribution.
Number of classes z = 8
Number of estimated parameters r = 2
Degree of freedom z − r − 1 = 5
Level of significance α = 0.05
Since 7.65 < 11.07 the hyper-exponential distribution can be accepted as buffer time
distribution between all of the trains on section 3.

Class no. Time interval [min] Obs. frequency hi Theo. frequency yi
(hi−yi)

2

yi

1 5 3 2.66 0.044
2 10 10 5.96 2.740
3 15 5 7.20 0.673
4 20 6 7.28 0.225
5 25 7 6.75 0.009
6 30 6 5.94 0.001
7 35 3 5.06 0.838
8 180 21 20.15 0.036
Sum 61 61 4.565

Table B.28: χ2-test of an Erlang2 buffer time distribution between all of the trains on
section 3

Table B.28 lists the values for a χ2-test for an Erlang2 distribution.
Number of classes z = 8
Number of estimated parameters r = 2
Degree of freedom z − r − 1 = 5
Level of significance α = 0.05
Since 4.57 < 11.07 the Erlang2 distribution can be accepted as buffer time distribution
between all of the trains on section 3.
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