
Temporal and Spatial 
Analyses of Continuous 
GPS Observations  

Doctoral thesis
for the degree of doktor ingeniør
  

Trondheim, 2005

Norwegian University of Science and Technology
Faculty of Engineering Science and Technology 
Department of Civil and Transport Engineering 

Trond Arve Haakonsen

I n n o v a t i o n  a n d  C r e a t i v i t y



NTNU
Norwegian University of Science and Technology
Doctoral thesis
for the degree of doktor ingeniør
Faculty of Engineering Science and Technology 
Department of Civil and Transport Engineering

© Trond Arve Haakonsen

ISBN 82-471-7231-3 (printed ver.)
ISBN 82-471-7230-5 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2005:171

Printed by NTNU-trykk



Abstract

The objective of this thesis is to increase the understanding of land motion, using
statistical analysis of the available three-dimensional (3-D) time series from Con-
tinuously operated Global Positioning System stations (CGPS). A primary goal
has been to search for new procedures and determine a spectrum of univariate
CGPS time series. A new program package has been developed for adjustment
and spectral analysis of the CGPS time series for possible future studies. This
will take into account the possibility of weighting and managing, non-stationary
and time series with missing data. The least squares spectrum and its relation to
covariance and correlation functions are explained in detail. Different estimation
methods of such functions that are used to visualise temporal correlations have
been tested. A challenge of the work has been the handling data jumps revealed in
the numerical investigations, that vitally affect the estimation of correlation func-
tions and spectra.

The work has also included numerical analyses of two independently pre-processed
data sets from a Norwegian and a European network of CGPS. The spectral anal-
ysis has shown large contributions of annual cycles for most series. In addition
semi-annual and three-month cycles have been found. After the removal of these
effects, the resulting spectra estimated from the residual series of CGPS time se-
ries shows similarities with Markov-processes that are closely related to white
noise processes. The detection of a Chandler-like period is more surprising be-
cause this period should have been corrected for in the pre-processing stage of
CGPS time series. A Principal Component Analysis (PCA) has been implemented
to determine the spatial pattern of CGPS data. So far this has not been performed
either for a network of Norwegian CGPS stations or for a network covering the
whole of Europe. The results from both analyses confirm that the first mode ob-
tained up to 50 percent of the overall variance in all station series. In addition to
a high inter-station correlation, only slightly decreasing as a function of distance,
this implies at least one common effect for the entire network. The spatial and
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partially temporal pattern for the first three modes in CGPS data show similar-
ity with corresponding modes extracted from predictions of atmospheric loading
of surface displacements. These relations have been further investigated for the
purpose of deriving possible model relations. Numerical investigations using the
derived models to correct the CGPS data for the atmospheric loading effect have
shown a possible sample variance reduction of up to 10 percent for the vertical
component of CGPS data.

Keywords: GPS permanent stations, Time series analysis, Jump detection, Trend
analysis, Weighted regression, Spectral analysis, Correlation analysis, Principal
Component Analysis, Empirical Orthogonal Functions.
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Chapter 1

Background

1.1 Introduction

Since the early 1980s, the International GPS Service (IGS) has stimulated the es-
tablishment of increasingly denser regional and global networks of Continuous
GPS (CGPS) stations. The main purpose of these activities was to provide very
precise satellite orbits and clock parameters required for high-precision analysis of
GPS observations. CGPS data processing has been improved over the last decade
as well as the approaches to realise a high accuracy and stable reference frame.
Present three-dimensional (3-D) CGPS time series allow signals to be detected on
the millimetre level [e.g. Smith et al., 2004]. This makes it possible to use time
series from CGPS networks to derive the spatial and temporal pattern of the dom-
inant geophysical signals in the displacements of the Earth’s surface. The char-
acteristics can be used to identify the major processes causing the displacements.
In this way, CGPS-determined time series help to validate the geophysical models
used for the predictions of displacements. On the other hand, well-determined
effects from improved displacement predictions may be used as future correc-
tions in the pre-processing stage of GPS, and thus improve future GPS models.
There is reason to believe that neighbouring CGPS stations are co-varying. In that
context, an idea would be to separate out common motion (in time). One possi-
ble method is creating a common mode signal that can represent all the stations.
This is called Principal Component Analysis (PCA). The method is also known as
Empirical Orthogonal Functions (EOF) or Common Modes (CM) analyses. The
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theory has been known for a while [Lorenz, 1956]. However, the formulas require
de-trended or zero mean expectation univariate data series as input, which CGPS
time series are generally not. A great challenge, if really possible, will therefore
be to ensure de-trended CGPS series as input, without removing any of the global
or regional effects which are searched in the later multivariate PCA. A detailed
examination of each single series both in the time and frequency domain will be
required. For trend analyses in time domain, classical regression approaches [as
in Wetherill, 1986] or [Johnson and Wichern, 1998] seem reasonable. The theory
of Least Squares Spectral Analysis (LSSA), described by Wells et al. [1985],Van-
icek and Krakiwsky [1986] and Craymer [1998] will be used to investigate non-
stationary time series the in frequency domain. The goal of PCA is to identify
those modes that contribute most to the variance of the time series. In order to
achieve this, the modes can be constructed as a set of linear combinations of the
original data. A search is made for the directions of maximum variation, subject
to the constraint that they all are orthogonal to each other. Thus the modes can
be found from an orthogonal transformation from the original directions. Most
often, common modes are considered as disturbing noise and attempts are made
to remove them. Scherneck et al. [2000] use EOFs to extract common modes
from Scandinavian CGPS time series and attribute the main modes to errors in
satellite orbits and clocks. Smith et al. [2004] use the daily average of stations
from a local network to remove common effects to all stations, and thus be able
to detect minor differential movements with respect to one station. In stable ar-
eas not affected by tectonic motion, de-trended daily CGPS time series appear to
have high inter station correlations. An EOF analysis of the vertical component
for a network of Swedish and Finnish CGPS stations made by [Johansson et al.,
2002], revealed a correlated noise across a large region (∼ 1000km) only slightly
decreasing with distance. They conclude that identification and elimination of this
source (or sources) will make it possible to reduce the velocity uncertainties from
GPS by approximately 50 percent.

Surface loading due to mass relocations such as in the atmosphere, the ocean,
the terrestrial hydrosphere and the cryosphere constantly deforms the solid Earth.
Model estimates indicate that radial displacements of the Earth’s surface due to
loading range from a few centimetres at diurnal time scales to about one cen-
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timetre with seasonal to annual time scales. Horizontal displacements are typ-
ically one third or less of the radial displacements. For known surface loads,
geophysical models are used to predict the surface displacements due to load-
ing with an increasing accuracy [van Dam et al., 2003]. The IERS conventions
(2003) [McCarthy and Petit, 2004] specify models for most of these processes.
However, uncertainties in the surface loads as well as the Earth model limit the
accuracy of the predictions. In tectonically active regions or regions with large
man-made subsidence, tectonic and man-made processes may also contribute sig-
nificantly to such displacements. At present Earth tides and ocean tidal loading
can be modelled with high accuracy [McCarthy and Petit, 2004] and are generally
taken into account in state-of-the-art analysis of CGPS data. Models for atmo-
spheric surface loading induced displacements that are generally far less accurate
mainly due to uncertainties in the surface load itself, but also the geophysical
models used. Therefore, these loading signals are normally not taken into account
in the processing of CGPS observations. During the last year, several data sets
of various atmospheric loading predictions are available for research purposes at
http://www.sbl.statkart.no. At the end of this thesis, possible relations between the
vertical components of this data and CGPS time series will be investigated. Sepa-
rate PCAs will be made for a network of common stations of both CGPS data and
atmospheric loading predictions. Then an attempt will be made to identify and
compare extracted modes for the two data sets. If possible, a model relation will
be derived.

1.1.1 The problem of observing land motion with GPS

Considering CGPS sites on the continuously deforming Earth’s surface, as the
corners or nodes of a polyhedron, this makes the Earth in to a multi-corner body.
CGPS networks measure the surface displacements as position changes of the
nodes in time (velocities). Some of the contributions to the surface displacement
can be modelled while others are still rather uncertain. Therefore, much is in-
cluded in a model for station movements commonly known as the station motion
model. It is a goal to improve this model. For each of the three components de-
fined in a terrestrial reference frame as Cartesian coordinates, or alternatively as
north, east and vertical components in a local topocentric system, the position of
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a point x(t) of epoch t can be represented in the station motion model by:

x(t) = x0 + v0(t − t0) + ε(t) (1.1)

where x0 and v0 are the position and velocity at epoch t = t0, and ε(t) is an error
term. Ideally the only unknowns in the station motion model in Eq. (1.1) are x0

and v0. Then Eq. (1.1) expresses a general equation for a basic linear regression
problem, fitting a straight line through a series of points x(t) at epochs t. The
surface of the Earth is constantly displaced due to various internal and external
forces. Examples are the tectonic forces from the Earth’s interior, post glacial
rebound, surface loading due to atmosphere, ocean, cryosphere, terrestrial hydro-
sphere, man made or not. External forces include Earth tides due to the Moon,
the Sun and planets, also a tide-like force induced by polar motion. The various
factors have different spatial wave lengths and different temporal scales. Some
forces such as solid Earth tides and ocean tides are often considered as reasonably
well known and are then already included in the GPS processing stage. Thus the
CGPS time series x(t) is already corrected for these effects. From several geo-
physical or other processes one may in a general set:

∆(t) =
k∑

j=1

δxj(t) (1.2)

where ∆(t) is a sum of corrections δxj(t) due to the j-th process including time-
and place variable contributions to the coordinates. The corrections can be applied
to the station motion model in either of two ways. For known error free effects, the
time series x(t) can be corrected directly before the regression. Or, for unknown
effects with known functional relations to the observations, ∆(t) may be added
to the right hand side of Eq. (1.1) and the unknowns δxj be solved in a linear
regression. In addition to noise, the time series of residuals after a linear regression
still have the effects that are not included in the station motion model. This means
that only the known effects that are corrected or solved for are modelled. Possible
unknown effects that are not understood are still left in the noise part ε(t). Perhaps
even more dangerous for a parameter interpretation are, that these unknown effects
may affect and distort the parameter estimates of the effects that already assumed
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to be known and solved for.

1.1.2 Approach to the solution.

Several time series in a regional network are available. A goal is to separate
the understandable part, the signal, from the not understandable which is then
called noise. Based on a search for realistic uncertainties and measures of accu-
racy of observations and parameter estimates, the discussion still goes on whether
the remaining series of CGPS residuals from regressions represents pure random
noise or not. For these purposes stochastic models including the use of a full a
priori covariance matrix are commonly investigated. An attempt to improve ex-
isting models will require another focus. Searching for a complete separation of
all contributing effects to a CGPS time series, the use of other than a diagonal
covariance matrix may affect and distort possible interpretations of the solved pa-
rameters. From this point of view, a deterministic approach should be preferred.
All known effects from land motions will be identified as model predictions in
the observed observations. Interacting processes may be difficult to separate from
each other. They may appear as highly correlated parameter estimates from the
regression. For example, using too short CGPS time series to solve long-term
trends may lead to the problem of over-parameterisation. A detailed examination
of univariate series is essential to investigate such possible relations.

1.2 Analysis strategy

First, possible outliers, data offsets and highly correlated parameter estimates will
be investigated successive to the implementation of spectral analyses of each sin-
gle series. Second, the PCA procedure is carried out for the residual CGPS series,
attempting to characterise any common effects in the region.

An analysis strategy for the deterministic model improvements of univariate time
series of CGPS data may be described in a schematic way as in Figure 1.1. It
is commonly known as trend analysis, for which a deterministic model will be
fitted to the observations. The differences between the observations and a fitted
deterministic model, will be denoted residuals. The residuals can be considered
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as estimates for the unknown true errors which the derived models are based on.
A critical phase using this method is the choice of an optimal deterministic model
which is performed in a least squares sense.
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Figure 1.1: Model improvement.

In an early phase of model identification,
the correct choice of an optimal model
is difficult. An incomplete deterministic
model will introduce a bias or a system-
atic deviation or linear dependency between
the residuals. The analysing procedure has
to contain a test for outliers or suspicious
observations. For the introduction of a
test variable, some assumptions of density
functions representing the errors have to be
done. In Subsection 3.2.1 a test for the de-
tection of outliers is used for the numerical
investigations in Chapter 6. This test as-
sumes that the time series of normalised er-
rors are independently normally distributed,
N(0, 1). Some observations may be sorted
incorrectly as outliers in an early phase of
the analysis. For each improvement of the
model, all the observations have to be tested
again for possible outliers. A search for
an optimal model will thus be an iterative
procedure. Diagnostics based on the nor-
malised residuals such as tests of normal-
ity or interpretation of their estimated Auto
Correlation Function (ACF) will give some information about the success of a
chosen model. The residual diagnostic can thus be used in a discussion of the
correct choice of model. The results using the likelihood ratio test for simultane-
ous significance of parameter estimates introduced in Subsection 3.2.3 can also be
used. Because a normalised spectrum and the ACF contain identical information,
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a determination of the spectrum of CGPS data will be an alternative way to find
the temporal correlation. A great simplification would be if the adjustment using
the final model will generate independent normally distributed normalised resid-
uals. Then the assumptions for the test of simultaneous significance of estimated
parameters and the test for outliers will be correct, as well as the use of a diagonal
a priori covariance matrix for adjustment.

For the multivariate PCA, it is a goal to use de-trended data. It is a great chal-
lenge to ensure that the regressions for univariate series only remove local effects
such as jumps and not any of the global effects that should be investigated. As
an example, parameters for linear and long periodic trends are highly correlated.
Removing a linear trend may influence the long periodic trend in the remaining
series. This stresses the investigation of each single series before de-trending is
performed.

1.3 Reference systems and frames

The determination of high precision satellite orbits requires a set of differential
equations to be solved in a well-defined reference system, or in fact two reference
systems are used. A terrestrial reference system which is co-rotating with the
Earth “fixed” to its crust, and a celestial reference system “fixed” to the celestial
sphere. The relative orientation between the two reference systems is represented
by five Earth Orientation Parameters (EOP). Reference systems can be materi-
alised through a reference frame, such as a set of coordinates for a network of
stations valid for a certain reference epoch. Two standard reference systems de-
fined for space geodetic purposes are the International Terrestrial Reference Sys-
tem (ITRS) and the International Celestial Reference System (ICRS), defined in
the IERS conventions (2003) [McCarthy and Petit, 2004] realised by the Interna-
tional Earth Rotation Service (IERS). Based on available space geodetic obser-
vation techniques and the analysis methods for these observations, the reference
systems can be realised through appropriate reference frames such as the Interna-
tional Terrestrial Reference Frame (ITRF) or the International Celestial Reference
Frame (ICRF)
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Assume the points in a global network define the corners of a polyhedron, that
is as a multi-corner body. The points may either define the corners of a terrestrial
polyhedron, or projecting the directions from very distant radio sources to points
on the celestial sphere, they can also define a celestial polyhedron. The Earth’s
surface is continuously deformed with time due to internal and external forces.
In general all points on (and in) the Earth move relative to each other, so the ter-
restrial polyhedron will deform in time. In extreme cases, the relative motion of
the corners can reach up to 20 cm per year [Andersen, 2002]. Also the celestial
polyhedron will deform in time, but this deformation rate is several orders of mag-
nitude smaller and can thus be neglected for a time interval of a few decades. If
the coordinates of the corners are known, the scale and each of the three axes of
a reference frame are given implicitly. If the velocities of the corners are known,
the change of direction and scale of the axes with time is given implicitly.

Following the line of thought above, the realisation of ITRS to ITRF are given
by a table of coordinates and velocities for the points, valid for a certain refer-
ence epoch. The velocities can be considered as estimates for deformations due to
geophysical processes. Present computations of coordinates and velocities of the
corners in the terrestrial and celestial polyhedrons, and their relating EOP series
are based on observations from several space observation techniques (of which
GPS is only one), each with its own type specific analysis software. The obser-
vations are usually analysed in daily (24h) intervals, thus individual daily realisa-
tions of the terrestrial and celestial polyhedrons including consistent estimates of
the EOPs are computed. The daily solutions are combined to averages for a time
interval of several years. On the basis of analyses carried out by several analy-
sis centres, IERS combines the individual average polyhedrons to one common
ITRF solution of the terrestrial polyhedron, as a set of average coordinates and
velocities, including full variance matrices, and EOP time series. Currently, ITRF
solutions are published nearly annually. The ITRF network has been improved
with time in terms of the number of sites and collocations, as well as their distri-
bution over the globe. Mainly because of improved analysis strategies, velocity
and coordinate precisions are also improved with time. The current version, the
ITRF2000 network contains about 500 sites, intended to be a standard solution
for geo-referencing all Earth science applications. Processes to be included in the
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analyses and their underlying geophysical models are specified in the IERS con-
ventions (2003) [McCarthy and Petit, 2004]. In May 2001, the latest realisation
of ITRS, the ITRF2000 was introduced. It is considered to be the most precise
reference frame (RF).

Compared to other space geodetic techniques, monitoring deformations of the
Earth’s surface, GPS appears to be the more economic solution if highest pre-
cision and temporal resolution are required [Prescott, 1996a]; [Prescott, 1996b];
[Savage, 1996]. GPS coordinates and orbits are basically not given in the ITRF
frame. Several techniques are used to relate the CGPS time series to a version of
ITRF2000, inter- or extrapolated to a certain daily epoch.

1.4 The database

1.4.1 The Norwegian network of 14 CGPS stations

Several data sets are delivered from the Norwegian Mapping Authority (NMA).
They have shown to be of various quality. The investigations is mainly based on
the third and last data set. These 14 series are of different lengths and contain
several intervals of missing data, which makes a consistent multivariate analy-
sis problematic. All Norwegian data have been analysed with the GPS Inferred
Position SYstem - Orbit Analysis and SImulation II-software. (GIPSY-OASIS-
II), using the fiducial-free Precise Point Positioning technique (PPP) described
in [Zumberge et al., 1997]. Fiducial-free precise orbits, time corrections to the
satellite clocks, and EOPs from one of the IGS analysis centres, namely NASA’s
Jet Propulsion Laboratory (JPL), have been used. The satellite orbits, clocks and
EOPs are highly constrained, while station clocks and zenith total delays are esti-
mated as stochastic parameters. The station clock bias is estimated as white noise
process (σ = 1µs) and the zenith total tropospheric delay as random walk process
with 1cm/

√
h as the rate of change of the parameter variance, (h = hour). Fur-

thermore, the azimuth dependency of the ray bending delay of the GPS signals
through the troposphere is included by estimating the north-south and the east-
west gradient vectors. JPL processes the data from a globally distributed net of
about 40 to 50 IGS stations, and the processing is carried out using a free-network
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approach [see Heflin et al., 1992]. The resulting orbits, clocks, and EOP are there-
fore given in a free GPS reference frame, materialised with loose constraints. This
free GPS solution then has to be transformed to an already established reference
frame such as the latest ITRF. This is done by constraining selected IGS stations
given in the ITRF frame. JPL’s approach is to convert the solution to the ITRF on
a weekly basis. The resulting products are precise orbits, clocks, and EOP given in
ITRF. Additionally, JPL provides seven transformation parameters (3 origin off-
sets (TX, TY, TZ), 3 rotation angles (RX, RY, RZ), and a scale (s)) based on one
day’s solution. JPL denotes these solutions their quick transformation parameters
(qx). The latency on these products are 8-15 days and they are the recommended
parameters to be used in precise point positioning using the free-network prod-
ucts. This frame is called the IGS00 reference frame. However, JPL also com-
putes more precise transformation parameters which are based on the solutions
from many years which are more rigorously computed. The latency for these
products denoted as x-files is up to 6 months. In the transformation from the free
GPS solution to ITRF, NMA has only used the precise transformation parameters
(x-solutions). The Norwegian data sets of CGPS time series, are closely aligned
to ITRF, of which the last one to ITRF2000, is given for the epoch 2002 Jan 01
[Altamimi et al., 2002]. None of the data provided by NMA in this study are cor-
rected for the ocean tidal loading. The CGPS time series used in this study are
daily (24h) estimates of station coordinates given for the North, East and Vertical
components including standard deviations as a measure of their precision, in a
local topocentric system.

1.4.2 The European network of 28 CGPS stations

CGPS data from 28 stations are provided from the JPL website of [Heflin, 2004,
(cited: 18 October 2004)]. As for the Norwegian data, these time series are daily
estimates found using PPP with no ambiguity resolution. They consist of station
coordinates given for the East, North and Vertical components in a local topocen-
tric system. The daily samples given are coordinate variations in ITRF2000 [Al-
tamimi et al., 2002, see] with respect to the station coordinates at the reference
epoch 1 January 2000. The samples also include standard deviation of the daily
analyses. The satellite offsets and clocks are those provided by JPL [Heflin et al.,
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2002] which result in coordinate time series closely aligned to ITRF2000. Only
the Vertical component has been investigated, where the variability is at least fac-
tor three larger than the horizontal components. The time interval was selected
to account for a trade off between maximum spatial coverage and length of time
series. Moreover, data quality has improved considerably over time and this gives
a higher weight to more recent data. The interval 2000.0 to 2004.0 was found
to have a sufficient number of records covering most of the time window. All
selected stations have been used for the determination of ITRF2000.

1.4.3 Atmospheric surface loading predictions

Atmospheric loading predictions were taken from the web page of the Special
Bureau for Loading (SBL) [http://sbl.gdiv.statkart.no], see van Dam et al. [2003]
for a discription of the Global Geophysical Fluid Center (GGFC), which is part
of the International Earth Rotation and Reference Systems Service (IERS). Five
different sets of time series for most of the ITRF sites are provided, see Table 6.7.
These sets (P1-P5) differ mainly with respect to the computation of the air pres-
sure anomaly but also in the computational method, the applied Earth model, and
the reference frame. Two pairs are identical in computation and Earth model but
different in the reference frame namely, sets P1+P3 and P2+P4, respectively. The
first set in each pair uses pressure anomalies computed from the National Center
for Environmental Prediction (NCEP) surface pressure data. The second set is
created on the basis of the European Centre for Medium Range Weather Forecast
(ECMWF) sea level pressure data. In both cases, the anomalies are computed
as the difference between each six-hourly pressure field and a reference surface
pressure computed from multi-year data sets [van Dam, 2004, in review]. The
load-induced displacements are computed using either Green’s function for a spa-
tial convolution with the load anomaly [Farrell, 1972] or the corresponding Load
Love Numbers in a summation of a spherical harmonic expansion of the load [van
Dam et al., 2003]. The Load Love Numbers used are computed for spherical sym-
metric, non-rotating, elastic and isotropic Earth models, The two reference frames
used in the computation of the load-induced displacements have their origin in the
Centre of mass of the solid Earth (CE) and in the Centre of Mass of the Earth
system (CM), which for the particular loading computations consists of the solid
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Earth plus atmosphere, respectively. The difference between these frames is dis-
cussed in detail by Blewitt [2002]. The reference frame as realised by the time
series of Heflin [2004] is an approximation to ITRF, which with respect to its ori-
gin is close to a Centre of Figure of the solid Earth frame (CF). The CF frame is
very similar to the CM frame [Blewitt, 2002] and therefore, we expect that the CE
series provide predictions better representing the loading signal as captured by the
CGPS time series than the CM predictions.

1.5 Author’s contribution

CGPS stations have been monitoring surface displacements for up to ten years in
increasingly denser regional and global networks. In the early stage of this study
(2000), no smoothly working strategy to handle CGPS time series in a statistical
defensible way had been implemented. The author hopes that this thesis will make
a contribution to the investigation of methods and models applied for CGPS time
series, such as outlier detection, jump detection, estimation of correlation func-
tions and spectral analysis for non-stationary CGPS time series. Some statistical
tests, such as for outliers, parameters, amplitudes in frequency domain or correla-
tion matrices are found suitable. Hopefully, the introduction and investigation of
PCA will make sense for future work with multivariate CGPS time series.

Careful examination of the Norwegian network of CGPS data is made for uni-
variate data series. A detailed description of search procedures for jumps which
are unknown in time has been performed, as well as estimation techniques for cor-
relation functions and spectral analysis of non-stationary data. A final goal was
to determine and possibly interpret and separate local and regional effects in data.
This is done through successive model improvements and interpretations. Finally,
PCAs have been made for all three directions to investigate and determine possi-
ble common modes in the Norwegian CGPS data.

From a network of European CGPS stations, a PCA for the vertical component has
been performed. Common modes have been investigated trying to identify their
causes. Separate PCAs are made for five data sets of atmospheric loading surface
predictions for 28 identical sites to the European CGPS stations. Extracted modes
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from the separate PCAs of atmospheric loading predictions are then compared
and correlated with the modes identified in the CGPS data. An interpretation of
possible connections has been made in an attempt to find a model that can apply
corrections for atmospheric surface loading effects on processed GPS data in the
future.

Some parts of this thesis have already been presented at international conferences
and also submitted for publication in refereed journals. These are:

T.A. Haakonsen and H. Nahavandchi. Error analysis of GPS/SATREF data. Pre-
sentation at Geodesi og Hydrografidagene, Hønefoss, Norway, 2003.

T.A. Haakonsen and H. Nahavandchi. Correlation and spectral analysis of the
Norwegian permanent GPS stations using a Least-squares procedure. Presenta-
tion in European Geosciences Union, Nice, France, 2004a.

T.A. Haakonsen, H. Nahavandchi, and H-P. Plag. Determination of the Error-
Spectrum of Continuous GPS Observations. Presentation in EGS-AGU-EUG
Joint Assembly, Nice, France, 2003.

T.A. Haakonsen, H. Nahavandchi, and H-P. Plag. Principal Component Analysis
of the Norwegian permanent GPS stations. Presentation in European Geosciences
Union, Nice, France, 2004a.

T.A. Haakonsen, H-P. Plag, and H.P. Kierulf. Common modes in GPS-determined
vertical land motion in Europe and their relation to atmospheric loading. J. Geo-
phys. Res., 2004b. Submitted.

T.A. Haakonsen, H-P. Plag, H.P. Kierulf, and G. Blewitt. Improving reference
frame stability by modelling common modes of surface displacements using Em-
pirical Orthogonal Functions. Presentation AGU Fall Meeting, San Francisco,
USA, 2004c.
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1.6 Outline of the thesis

The first chapter of this thesis is meant to explain the background for the geodetic
tasks to be investigated. Observations or measurements taken as functions of time
are rarely independent. A vital question is how to get a measure of this tempo-
ral dependency when it is possible to get only one sample at one specific place
and interval of time. The time series analysis makes use of the assumption weak
stationarity, discussed in Chapter 2. Estimates of Covariance- and Correlation
functions may act as measures of linear dependency. Most common estimators
for these functions assume complete data series, free of gaps, recorded at equidis-
tant intervals. The CGPS data do not fulfil these requirements, neither are they
weakly stationary. To overcome these problems, the theory of time series analysis
is combined with the use of regression models, described in Chapter 3. A lin-
ear regression model is commonly known by geodesists as a linear version of the
Least Squares- or the Gauss-Markov model. These models can be partitioned in
one mathematical functional or a deterministic part, and one random or stochastic
part. A correct decomposition of a time series in these two parts may be hard or
impossible to carry out. A main challenge will be to find the best fitted model to
the observations. To represent the series in the frequency domain, the combination
of non-stationary time series and regression models leads to the theory of LSSA
described in Chapter 4. At the end of the chapter, some simulations with synthetic
data are presented to illustrate the separation problem. In Chapter 5, the PCA
theory that assumes de-trended data is presented. Finally Chapter 6 is devoted to
the numerical investigations, followed by the conclusions and recommendations
in Chapter 7



Chapter 2

Stochastic processes and spectral
analysis

This chapter will give a brief introduction to the theory of stochastic processes and
spectral analysis. For further details about these subjects see Shumway and Stof-
fer [2000], Wei [1990], Newland [1993], Box et al. [1994], Kedem and Fokianos
[2000],Priestley [1981] and Howell [2001].

CGPS time series is expected to be influnced by periodicity, such as points on
the Earth’s surface responding with differing vertical displacements in the sum-
mer than in the winter. A single time series is commonly plotted in a space or
domain, using time as argument along the horizontal axis. If periodicity in a time
series should be investigated, it is possible to reproduce the series from the time
domain in another space or domain with the period as an argument along the hor-
izontal axis. This also applies its inverse, the frequency as argument. The vertical
axis in this new domain, the frequency or spectral domain, represents the influence
from each frequency component to the original time series. The relations between
the two domains can be mathematically expressed through a mapping function or
a transformation which introduces an evident tool for time series analysis. De-
pending on the purposes, one can swich between the two domains for any view of
the series that is required. Under certain conditions restricted to the time series,
one possible transformation can be the well-known Fourier transform. This is a
linear transformation designed using orthogonal base functions, thus this gives an
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ortogonal transformation, with several advantages. A complete reconstruction of
the series from the frequency to time domain is possible with the inverse Fourier
transform. Considering that a basis for the searched transformation is a represen-
tation of the original time series in frequency domain, it may not be a surprise that
the coefficients representing the linear relation between the two spaces are found
from functions represented by sine- and cosine terms. Thus the transformation
from the time to the frequency domain may also be interpreted as a correlation
procedure. Frequencies can be represented by combinations of sine- and cosine
terms. Composed frequency components in a certain range are all correlated with
the time series, one by one. The response becomes large for similarities between
the series and the composed frequencies.

2.1 Stochastic processes

2.1.1 Time series analysis

The main intention in time series analysis is often to find an optimal model de-
scribing the stochastic process that may have generated the time series. It is usu-
ally done by attempting to separate the time series information into one deter-
ministic or “signal” part and one stochastic or “noise” part. Careful modelling is
necessary to obtain meaningful results.

A time series may be defined either as:

• A collection of stochastic variables representing a stochastic process, in-
dexed according to the order they are obtained in time, or as

• The sequence of values these stochastic variables may take on during a sam-
ple, a data series or a realisation of the stochastic process.

A stochastic process is also explained as an ensemble or (theoretically regarded)
an infinite collection of sample functions: xj(t), j = 1, 2, ..., where the time argu-
ment t may be continuous: t ∈ [−∞,∞] or discrete: t = .... − 2,−1, 0, 1, 2, ....

(with the time unit selected so that the sampling interval corresponds to one time
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unit). Time series taken only at specific time intervals, are said to be discrete.
Continuous time series also provide only digitised values at discrete intervals. For
a discussion of the distinction between continuous and discrete time processes,
the reader is referred to Priestley [1981]. In most cases, only one realisation of a
stochastic process is available. Dealing with univariate time series only, the index
j will be omitted. A usual notation for univariate time series is: x(t) or xt, where
the index t = 1, 2, ..., n will refer to the order the value is obtained in time. A re-
alisation of n stochastic variables x1, x2, ..., xn may also be seen as a sample from
a n-dimensional joint distribution function. This joint distribution function should
be used for a complete description of the data. However, apart from that, this joint
distribution function is hardly ever known. Consequently, this is an unwieldy tool
for an analysis of time series.

2.1.2 Stationary and ergodic processes

A process is said to be completely or strictly stationary if its statistical properties
do not change with absolute time. A process is n−th order weak stationary if all
its joint statistical moments up to n exists and are time invariant. A second order
weak stationary or a covariance stationary process has constant first and second
order statistical moments which means that the mean and variance are constant
through time. The covariance and correlation will be functions of the time differ-
ence only, and thus they are independent of the absolute time. A Gaussian process
is completely defined with its first two statistical moments. In that case second or-
der stationarity is equivalent to completely stationarity. A process will obviously
not be stationary in the mean (the first order statistical moment) if a trend appears
in the data. If sufficient realisations of a stochastic process are available it would
be possible to approximate suitable probability density functions for all stochastic
variables at requested times. Parameters, such as for the mean and variance for
these density functions could then be estimated using averaging across the whole
ensemble. In most cases only one realisation is available. Some assumptions have
to be done to make the theory applicable. A stationary stochastic process is said
to be ergodic if every particular member of the ensemble is representative for all
members Priestley [1981]. Then ensemble averaging is equivalent to averaging
along the time axis and implies that all statistical information about the process
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can be found in one single realisation. An ergodic process will always be sta-
tionary, but a stationary process will not necessarily be ergodic. However, it is
common to assume that a stochastic process is ergodic, but this cannot be verified.

2.1.3 General covariance and correlation functions

Different definitions of the covariance and correlation functions exist. The formu-
las presented in this subsection can be used for equidistant and equally weighted
data and are identical with the definitions of Shumway and Stoffer [2000]. The
prefix auto is often used when covariances and correlations within a time series
is computed. Handling two different series, the prefix cross will be used. Let �

denote a definition and E represents the usual expected value operator from prob-
ability and statistics theory.

The general Auto Covariance Function (ACvF) is defined as the second moment
product:

γx(t, s) � E[(xt − µxt)(xs − µxs)] (2.1)

The auto covariance is thus a measure of linear dependence between two points
in a series observed at different times t and s = t + τ . τ is the time difference,
delay or lag between the times s and t. Recall from classical statistics that if
γx(t, s) = 0, xt and xs are not linear related, but there still may be some de-
pendence structure between them. However, if xt and xs are bivariate normal,
γx(t, s) = 0 ensures their independence. For s = t the auto covariance reduces to
the variance:

γx(t, t) � E[(xt − µxt)
2] (2.2)

Analogous to the correlation coefficient in classical statistics, it is often more con-
venient to deal with a measure between -1 and 1. This leads to a definition of the
general Auto Correlation Function (ACF):
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ρx(t, s) �
γx(t, s)√

γx(s, s)γx(t, t)
(2.3)

Equivalent functions are also defined for covariances and correlations between
two different time series xt and ys, the general Cross Covariance Function (CCvF):

γxy(t, s) � E[(xt − µxt)(ys − µys)] (2.4)

and a scaled version of the CCvF with possible values between -1 and 1 is the
general Cross Correlation Function (CCF) defined as:

ρxy(t, s) �
γxy(t, s)√

γx(t, t)γy(s, s)
(2.5)

2.1.4 Covariance and correlation functions of ergodic processes

Assuming ergodic processes, it is possible to simplify the more general formulas
for covariance- and correlation functions. From second order stationarity assump-
tions it follows that mean µ, and variance σ2, will be constant and independent of
absolute time, thus:

E[x(t)] = E[x(t + τ)] = µx and σ2
x(t) = σ2

x(t+τ) = σ2
x (2.6)

and equivalent for y(t). Auto covariance and auto correlations are computed from
one time series only. The index x is unnecessary and often removed. so the nota-
tion for the ACvF in Eq. (2.1) is simplified to:

γ(τ) � E[(xt − µx)(xt+τ − µx)] (2.7)

and the ACF:
ρ(τ) �

γ(τ)

γ(0)
(2.8)

where the auto covariance for τ = 0, γ(0) is equal to the variance σ2
x in Eq.(2.6).

Now, let x(t) and y(t) be two different ergodic processes of time. The CCvF is
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the covariance between x(t) and y(t) as a function of the time delay τ :

CCvF = γxy(τ) � E[(xt − µx)(yt+τ − µy)] (2.9)

Finally the cross correlation function CCF which describes linear dependency be-
tween two ergodic processes x(t) and y(t) as a function of time delay τ is:

CCF = ρxy(τ) �
γxy(τ)√

γx(0)γy(0)
(2.10)

2.1.5 Estimation of covariance and correlation functions

Direct estimation for equally spaced and equally weighted data

For discrete time series sampled with constant interval, auto and cross covariances
and correlations are computed at the integer steps of the sampling interval. In the
discrete case, an integer k will be used as the lag-argument. Let the symbol ∀
denote for all.

Estimated/Sample means :

x̄ =
1

n

n∑
t=1

xt (= µ̂x) , ȳ =
1

n

n∑
t=1

yt (= µ̂y) (2.11)

Estimated/Sample ACvF

γ̂(k) =
1

n

n−k∑
t=1

(xt − x̄)(xt+k − x̄) ∀ k (2.12)

Estimated/Sample ACF :

ρ̂(k) =
γ̂(k)

γ̂(0)
∀ k (2.13)

Estimated/Sample CCvF:

γ̂xy(k) =

{
1
n

∑n−k
t=1 (xt − x̄)(yt+k − ȳ) k ≥ 0

1
n

∑n+k
t=1 (yt − ȳ)(xt−k − x̄) k ≤ 0

(2.14)
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Estimated/Sample CCF :

ρ̂xy(k) =
γ̂xy(k)√

γ̂x(0)γ̂y(0)
∀ k (2.15)

Some authors prefer (n − k) instead of n in the denominator of Eqs. (2.12) and
(2.14). None of the four estimators are unbiased. This is proved by reseachers,
such as Wei [1990]. However, if ρ(k) → 0 as k → ∞ then they are all asymptoti-
cally unbiased. As shown in Appendix C these equations can be used to compute
the elements in covariance and correlation matrices. Eqs. (2.12) and (2.14) ensure
such matrices are positive semidefinite, thus they will be preferred. For a number
of n observations, Wei [1990] recommends at most k = n/4 estimates are to be
computed.

2.1.6 Auto and cross correlation estimation with gaps in data

Most derived estimators require equally spaced data in complete series without
gaps. Experiences during the recording phase have often shown that this is hard
to make. If one succeeds to sample data with a constant sampling frequency, just
a small problem with measuring equipment will cause gaps in sampled observa-
tions. A discussion how to handle such gaps still goes on. Some recommend to
fill these holes with artificial observations. Others are warning just to do that.

(i) Direct estimation using interpolation

Artificial observations may be estimated as the mean of the total series or values
computed from a probability density function approximated with a part of the time
series around the “gap”area. Then the estimators in Eqs. (2.12) - (2.15) can be
used straightforwardly.

(ii) Direct estimation using valid combinations
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Figure 2.1: Cross correlating two arrays
with gaps. White cells represent data
gaps.

Another direct method would be to
use valid combinations, representing
only the common epochs of two data
series in the estimation. For each
k the number of valid combinations
in two data series y(t) and x(t) is
counted, see Figure 2.1. Actually data
is stored in two new arrays. Then for
each k, Eqs. (2.14) or (2.15) can be
used. To find the ACF or ACvF for
one data series x(t), the data series
y(t) can be set to x(t) in Figure 2.1.

(iii) Indirect estimation using the inverse Fourier transform

As will be discussed later in Subsection 2.2.3, there is a relation between the
ACvF and the Fourier spectrum, and between the ACF and the normalised Fourier
spectrum. They are connected through the Fourier Transform and the Inverse
Fourier Transform and hence they are said to be Fourier Transform pairs. Provided
that the Fourier spectrum or normalised Fourier spectrum is given, it is possible
to compute the ACvF or ACF through an inverse Fourier transform.

2.1.7 Weighted and unequally spaced data

A transformation comparable to the Fourier transform is derived for unequally
spaced data, [see Vanicek and Krakiwsky, 1986]. This transform denoted the
Least Squares Transformation (LST) is developed to also manage observations of
different weights, [see Craymer, 1998].

2.2 Spectral analysis, stationary data

The most common method to detect the contents of periodic components of a time
series is Fourier Analysis, named after the French mathematican Jean-Baptiste
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Figure 2.2: A sequence of sine waves

Joseph Fourier (1768-1830). The method is well suitable to investigate time in-
variant signals of sine wave form, but there are some limitations which should be
mentioned. The data have to be second order (weak) stationary, and no trends are
allowed. The theory will not be directly applicable to the CGPS data, but an intro-
duction is necessary to point out similarities and differences to the Least Squares
Spectral Analysis, introduced in Section 4.2. When data are equally spaced, the
use of a computing algoritm, the Fast Fourier Transform (FFT) is customary to
find the spectrum. The FFT alogoritm is an efficient tool to improve the computa-
tional speed reducing the number of operations from a function of n2 to a function
of nlog2n. The algorithm is well described in the literature, [see Press et al., 1992,
among others] and will be disregarded here.

2.2.1 Wave theory

A sequence of sine waves as in Figure 2.2 may be described using three variables:

1. The amplitude Ak decides the “height” of the wave, e.g. Ak = 1 keeps the
ordinate within the interval [−1.1].

2. The phase or phase angle φk ∈ [−π, π] defines a shift relative to the time
origo. A change of phase implies a translation along the abcissa-axis. The
positive sign in the paranthesis defines the positive φk-direction towards the
left.

3. The angular frequency ωk = 2πk/p. The index k decides the number of
oscillations per period p and can thus distinguish different wavelengths or
angular frequencies.
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This sequence can be written as:

xk(t) = Aksin(ωkt + φk) (2.16)

where the index k is used to distinguish different waves or frequency components.
It is not related to the integer k denoting the delay or lags for correlation functions.

2.2.2 Fourier analysis

A periodic function represented by trigonometric series

Fourier’s basic premise was that any finite length, infinitely repeated time series
x(t), defined over the principal interval [0, L] with special choices of ωk, can be
exactly reproduced using a sufficient sum of sequences or sine waves as in Eq.
(2.16) at the form:

x(t) � A0 +
∑

k

Aksin(ωkt + φk) (2.17)

By summing up just a few simple sine waves, it is possible to create rather com-
plicated looking functions. With the indentity:

sin(α + β) = sinα · cosβ + cosα · sinβ (2.18)

x(t) can also be written as:

x(t) = A0 +
∑

k

Ak [sin(ωkt)cosφk + cos(ωkt)sinφk] (2.19)

and by setting:

a0 = 2A0 ak = Aksinφk bk = Akcosφk (2.20)

one finally arrives the more common expression:

x(t) =
a0

2
+
∑

k

[akcos(ωkt) + bksin(ωkt)] (2.21)

known as the Fourier series of x(t) in which a0/2 is the mean value of the record
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of length L, and ak and bk are constants. In signal analysis, the record average
is also denoted the DC-offset or DC-level (Direct Current). Limiting k to inte-
gers makes some favourable properties. The coefficients ak and bk are then called
Fourier coefficients and the periodic trigonometric functions in Eq. (2.21) become
orthogonal base functions, which means that the coefficients for a given angu-
lar frequency can be computed independently from the others. Provided enough
Fourier components are used, each value of the original series can be totally re-
constructed over the principle interval.

Amplitudes Ak and phase angles φk are now given by:

Ak =
√

a2
k + b2

k φk = arctan(ak/bk) (k ≥ 1) (2.22)

Note that other definitions of the phase angle exists. Some refer the phase angle
to a cosine-wave, which is in fact nothing but a phase shifted sine-wave.

The Fourier coefficients, can be written as [see e.g Newland, 1993] :

A0
k=0

=
1

L

∫ L

0

x(t)dt =
1

L

∫ L/2

−L/2

x(t)dt (2.23)

ak
k≥1

=
2

L

∫ L

0

x(t)cos(ωkt)dt =
2

L

∫ L/2

−L/2

x(t)cos(ωkt)dt (2.24)

bk
k≥1

=
2

L

∫ L

0

x(t)sin(ωkt)dt =
2

L

∫ L/2

−L/2

x(t)sin(ωkt)dt (2.25)

The kernals in Eqs. (2.23) - (2.25) are all periodic functions with period L. Thus
the values of these integrals remain unchanged if the interval of integration (0, L)

is replaced with any other interval of length L, for instance the symmetric interval
(−L/2, L/2).

The angular frequency ωk can be expressed as an integer multiple of the fun-
damental angular frequency ω1 = 2π/L:

ωk = kω1 =
2πk

L
(2.26)
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The space between the Fourier- or integer angular frequencies is :

∆ω =
2π(k + 1)

L
− 2πk

L
=

2π

L
(= ω1) (2.27)

The angular frequency is related to the frequency f as:

ω = 2πf (2.28)

which again is the inverse of a period or a wave length. The Fourier coefficients
represent the strength of the different frequencies in the analysed time series. A
possible way to visualise the frequency content of a data series would be to use the
obtained Fourier coefficients to compute the amplitudes Ak and phases from Eq.
(2.22) , and plot them in the frequency domain (as a function of frequency). They
are commonly known as the amplitude- and phase spectrum. However, different
kinds of spectra are used. Later in this thesis, focus will be put on finding the
frequency content of stochastic time series, which is related to the corresponding
Spectral Density Function (SDF).

Non periodic functions

Non periodic functions cannot be represented by Fourier series, as in Eq.(2.21),
but subject to certain conditions, one can still follow the line of thought as above.
It is possible to define a new periodic function with a period equal to the length
of the non periodic function in a finite interval, and then assume this function will
repeat itself at the infinity t-axis, outside this interval. The reader is refered to
Priestley [1981].

Discrete Fourier Transformation (DFT)

It is not possible to record a continuous process of time for all time points or for
infinitely long time. Observations or measurements of a stochastic process are
often attempted to be digitised at equidistant intervals, as a discrete time series of
finite duration. A goal is to find the frequency content of the infinite long con-
tinuous series, analysing the available recorded discrete time series. Assume xi

is sampled with constant interval ∆t with finite duration L. The total of n sam-
ple points exists. Their locations in time are: x(i∆t) � xi(i = 1, 2, ..., n). One
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wants to reproduce the original time series as a sum of trigonometric terms of
different amplitudes and phases, equivalently a sum of Fourier coefficient pairs.
Assume an even number n, of available observations. The integrals in Eqs. (2.24)
and (2.25) may be replaced approximately by the sums [see Emery and Thomson,
2001, among others];

ak =
2

n

n∑
i=1

xicos(2πki/n) k = 0, 1, 2, ...(n/2) (2.29)

bk =
2

n

n∑
i=1

xisin(2πki/n) k = 1, 2...(n/2) (2.30)

Eqs. (2.29) and (2.30) are known as Discrete Fourier Transforms (DFT). Because
of symmetry and the difficulties in an interpretation of negative frequencies, these
equations are simplified by a factor 2, and derived to be computed only for posi-
tive integers of k. The finite discrete trigonometric Fourier series will be denoted
the Inverse Discrete Fourier Transform (IDFT) and become:

xi =
a0

2
+

n/2∑
k=1

[akcos(2πki/n) + bksin(2πki/n)] i = 1, ..., n (2.31)

Introducing j as the imaginary unit and set:

cos(2πki/n) =
ej2πki/n + e−j2πki/n

2
(2.32)

and

sin(2πki/n) =
ej2πki/n − e−j2πki/n

2j
(2.33)

the finite trigonometric Fourier series in Eq. (2.31) may also be rewritten in
terms of complex exponentials as the Inverse Complex Discrete Fourier Trans-
form (ICDFT):

xi =
n−1∑
k=0

Xke
j2πki/n i = 1, 2, ..., n (2.34)
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and the Complex Discrete Fourier Transform (CDFT) as:

Xk =
1

n

n∑
i=1

xie
−j(2πki)/n k = 0, 1, 2, ..., n (2.35)

The Nyquist frequency

As can be seen from the Eqs. (2.29) and (2.30), an upper limit for the number
of integer frequencies to be computed is decided by the Nyquist frequency or the
folding frequency when k = n/2. Outside this range of frequencies, the Fourier
coefficients will repeat themselves, and even more dangerous, the constituents of
frequency components in data outside this range will be reflected or mirrored in-
side the range to be investigated and distort the spectrum. The phenomena is called
aliasing, and care must be taken also for estimated values inside the limits, partic-
ularly if they are close to the Nyquist frequency. In fact, it is not re-commended
to estimate Fourier coefficients from Eqs. (2.29) and (2.30) for both k = 0 (the
DC-offset) and k = n/2 (the Nyquist frequency) because they are aliased and thus
contain some common frequency information.

The first or lower angular frequency to be computed is the fundamental angular
frequency ω1 = ωlowlim, limited by the record length L = n∆t. Setting maximum
k = (n/2) we find the upper limit ωuplim to be detected from a sample as:

(ωn/2 =) ωuplim =
n

2
· ωlowlim =

n

2
· 2π

L
=

π

∆t
(2.36)

which is decided by the sampling interval, ∆t. Deciding a correct sampling inter-
val, ∆t is therefore of great importance. As an example, the satellites in the GPS
system have approximately a semi-diurnal cycle. CGPS data used to compute
the Fourier coefficients, have to be averaged over one or several complete GPS
periods, e.g. a diurnal cycle. If not, estimates of Fourier coefficients for angular
frequencies greater than the Nyquist frequency, will reflect and distort coefficients
found for smaller frequencies.
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Table 2.1: Limits for different spectrum arguments

Argument Symb. Unit Lower limit Upper limit
angular freq. ω [rad/time unit] 2π/L π/∆t

frequency f [cycles/time unit] 1/L 1/2∆t

period f−1 [time units/cycle] 2∆t L

There are different kinds and definitions of a spectrum. Because of the random na-
ture of measured data (recorded time series), spectral density functions have been
defined. A better interpretation may be made using the frequency f = 2π/ω , or
the inverse frequency, the period f−1 as arguments. Limits for different spectrum
arguments are listed in Table 2.1. Their relations can be seen from the example
of an amplitude spectrum shown in Figure 2.3. For stochastic time series, the
spectrum is commonly written as continuous over the interval of permitted fre-
quencies.

Phenomena in the nature is often expected to be of periodic character. The
main task of spectral analysis is to find the unknown angular frequencies ωk. and
the coefficients ak and bk based on the measurements of the phenomena e.g. a
recorded time series. Periodic functions as in Eq. (2.21) are often unknown. The
angular frequency ωk makes this to a non linear problem. However, if the angular
frequencies are known (for instance chosen to be Fourier- or integer frequencies)
the remaining task, to evaluate ak and bk may be solved using linear models.
Significant frequency components found from a recorded time series hardly ever
coincide with the integer Fourier frequencies. As an example, assume we want to
investigate the importance of periods like f−1 = 2L/3 in the lower part of Figure
2.3. The Fourier analysis will not give a proper answer, because it only computes
values for the periods f−1 = L/2 and f−1 = L. Later, the Least Squares Spec-
tral Analysis (LSSA) will be presented. A main advantage of using LSSA is the
possibility to make a zoomable argument. However, it is very demanding in terms
of orthogonality to make this possible. The advantages of orthogonality will be
left and coefficients ak and bk cannot be computed independent of each other any
longer.
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Figure 2.3: Example of Amplitude spectrum with different arguments (1) angular
frequency ω, (2) frequency f , (3) period (inverse frequency) f−1

2.2.3 Spectral density

Consider x(t) as a zero mean, weak stationary process with E(xt) = µx = 0.
The time history of a weak stationary sample function x(t) is not periodic. The
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condition: ∫ ∞

−∞

|x(t)|dt < ∞ (2.37)

is not satisfied so x(t) cannot be represented by a discrete Fourier series, but
nevertheless the ACvF contains information about the frequency contents of the
process x(t). Instead of x(t), the ACvF, γx(τ) of x(t) is analysed. Provided that
γx(τ) in Eq. (2.7), fulfils the conditions:

γx(τ) → 0 when τ → ∞ and
∫ ∞

−∞

|γx(τ)|dτ < ∞ (2.38)

the Fourier Transform of γx(τ) and its inverse may be defined [Newland, 1993,
see] as:

Sx(ω) �
1

2π

∫ ∞

−∞

γx(τ)e−jωτdτ (2.39)

and

γx(τ) �

∫ ∞

−∞

Sx(ω)ejωτdω (2.40)

Sx(ω) is a function of angular frequency ω, denoted the spectral density function
of the process x(t).

Sx(ω) has the properties:

1. Sx(ω) is a real even function of ω.

2. Sx(ω) is never negative.

3. Sx(ω) is symmetric around (ω = 0) (if γx(τ) is real).

In the special case when (τ = 0) in Eq. (2.40) one gets:

γx(τ = 0) =

∫ ∞

−∞

Sx(ω)dω (2.41)
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which is the total variance, γx(0). Graphically it represents the area under the
Sx(ω)-curve. If x(t) is a zero mean process, the total variance equals the mean
square value so it is possible to write

γx(0) = E[x(t)2] =
1

n

∫ ∞

−∞

[x(t)]2dt =

∫ ∞

−∞

Sx(ω)dω (2.42)

which is a form of Bessel’s equality scaled with 1/n, see Howell [2001]. Note
that the area of Sx(ω) between the limits −ωk and ωk is∫ ωk

−ωk

Sx(ω)dω (2.43)

for any ωk, and whenever ωk is an integer frequency or not, this part of the to-
tal area is a positive value representing the portion of the total variance of xt,
attributed by components of angular frequencies with absolute value less than ωk.

Normalised spectral density function versus ACF

The spectral density function in Eq.(2.39) and the ACvF (2.40) is related through
the FT and its inverse. Dividing Eqs. (2.39) and (2.40) by γx(0), it can be shown
that the ACF and a normalised version of the spectral density function also are
FT-pairs. Sx(ω)norm

Sx(ω)norm �
1

2π

∫ ∞

−∞

ρx(τ)e−jωτdτ (2.44)

and

ρx(τ) �

∫ ∞

−∞

Sx(ω)norm ejωτdω (2.45)

Sx(ω)norm satisfies:

Sx(ω)norm ≥ 0 ∀ ω

∫∞

−∞
Sx(ω)normdω = 1

(2.46)

which means Sx(ω)norm is a probability density function
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The contribution to the total variance of xt caused by angular frequency com-
ponents in the band ωk to ωk + ∆ω is:∫ ωk+∆ω

ωk

Sx(ω)normdω (2.47)

Three different representations of x(t)

A time series may now be given as three different representations, as the time
series x(t) itself, as the ACvF, or as the spectral density function Sx(ω). Inves-
tigations of each of these representations give valuable information about which
kind of process that may have generated the time series. The ACvF, γx(τ) and the
Sx(ω) contain identical information about the frequencies contributing in x(t).
They are related through the FT and IFT and are thus denoted as Fourier pairs.
Depending of what their spectrum looks like, which is the picture of their fre-
quency content, they can be classified in narrow- or broad band processes.

The two-sided spectral density function is defined for both negative and positive
angular frequencies. Recalling that Sx(ω) is symmetric, and γx(τ) is real valued,
one can avoid the difficulties handling the negative frequencies using the relation:∫ ωk

−ωk

Sx(ω)dω = 2

∫ ωk

0

Sx(ω)dω (2.48)

to find the one-sided spectrum.

Estimation of a spectrum (Spectral values)

In the past, a common way to compute values in a spectrum, estimated spectral
values Ŝ(ωk) or spectral coefficients Sk, was first to estimate the ACvF from Eq.
(2.40), then during a Fourier transform computing the estimates for the spectral
density Eq. (2.39). After the invention of Fast Fourier Transform (FFT), a newer
so-called direct method was produced to obtain the estimates Sk of Sx(ω). The
computation of the ACvF is not really necessary. Instead, the CDFT of the time
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series itself will be computed to get estimates for Xk in Eq. (2.35). The relation
between Sk and Xk is

Sk = X∗
kXk = X−kXk = |Xk|2 (2.49)

where X−k = X∗
k is the complex conjugate of Xk, that can be computed directly

from the coefficients in Eqs. (2.29) and (2.30) with:

Xk =


1
2
(ak − jbk) k ≥ 1

1
2
a0 k = 0

1
2
(a|k| + jb|k|) k ≤ −1

(2.50)

Estimates for the normalised spectral values (NSV) may be found as:

Sk−norm =
Sk∑n
k=1 Sk

(2.51)

Physical interpretation

The total energy of a process x(t) may be defined as

Total energy �

∫ ∞

−∞

[x(t)]2dt = nγx(0) (2.52)

which is not a finite measure. It is usually more convenient to define the total
power as total energy per unit of time over the finite interval equal to the length L

of the recorded time series.

Total power �
1

L

∫ L

0

[x(t)]2dt (2.53)

Using the available discrete data of finite length L = n∆t, the integral of Eq.
(2.53) can be approximated by a Riemann sum, and a discrete expression for the
total power would be

1

n∆t

n∑
i=1

x2
i ∆t =

1

n

n∑
i=1

x2
i = γ̂x(0) (2.54)
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for a zero mean process, which again can be expressed as the finite sum of spectral
values in the range k = 0 to k = n − 1,

∑n−1
k=0 |Xk|2 and explains why the phrase

power spectrum is commonly used for Sx(ω).

2.2.4 Matrix notations

Let the time series of a zero-mean process (with a0/2-term equal zero), be repre-
sented in a time shifted even numbered observation vector y = [x1, x2, ...., xi, ..., xn]T .
The Fourier coefficients up to the Nyquist frequency may be collected in a vector:

β = [a1, b1, a2, b2, ..., ak, bk, ..., a(n/2)−1, b(n/2)−1]
T︸ ︷︷ ︸

(1·(n−2))

(2.55)

For k = 1, 2, ..., (n/2) − 1 defining column vectors for cosine- and sine terms of
length n:

cωk
=



cos(2πk1/n)

cos(2πk2/n)
...

cos(2πki/n)
...

cos(2πkn)/n)


sωk

=



sin(2πk1/n)

sin(2πk2/n)
...

sin(2πki/n)
...

sin(2πkn/n)


(2.56)

The column vectors may be collected again in a design matrix:

X = [cω1

...sω1

...cω2

...sω2

......
...cωk

...sωk

......
...cω(n/2)−1

...sω(n/2)−1
]︸ ︷︷ ︸

(n·(n−2))

(2.57)

So the system of linear equations in Eq. (2.31) can be expressed as:

y
(n·1)

= Xβ
(n·(n−2))·((n−2)·1)

(2.58)

Because of length(y) > length(β), this gives an overdetermined system of linear
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equations for a solution of β, that can be found using the least squares estimator:

β̂ = (XTX)−1XTy (2.59)

with:

XT = [cT
ω1

...sT
ω1

...cT
ω2

...sT
ω2

......
...cT

ωk

...sT
ωk

......
...cT

ω(n/2)−1

...sT
ω(n/2)−1

]T (2.60)

and taking the advantage of special properties because the columns of X are con-
structed from orthogonal base functions, one get

XTX
((n−2)·(n−2))

=



cT
ω1

cω1 cT
ω1

sω1 cT
ω1

cω2 . . . . . .

sT
ω1

cω1 sT
ω1

sω1 sT
ω1

cω2 . . . . . .

cT
ω2

cω1 cT
ω2

sω1 cT
ω2

cω2 . . . . . .
...

...
... . . .

...
...

... . . .


=

n

2
· I (2.61)

because of the sums:

cT
ωk

cωl
=
∑n

i=1 cos(2πki/n)cos(2πli/n)

=


n if k = l = n/2 or n

n/2 if k = l, l 	= n/2 or n

0 else ∀ k 	= l

sT
ωk

sωl
=
∑n

i=1 sin(2πki/n)sin(2πli/n)

=


0 if k = l = n/2 or n

n/2 if k = l, l 	= n/2 or n

0 else ∀ k 	= l

cT
ωk

sωl
=
∑n

i=1 cos(2πki/n)sin(2πli/n) = 0, ∀ k and l

(2.62)



2.2 Spectral analysis, stationary data 37

and finally a solution for the vector of Fourier coefficients can be found, avoiding
a matrix inversion as:

β̂ =
2

n
XTy (2.63)
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Chapter 3

Regression models and time series

The formulas in Chapter 2, assume second order weak stationarity, but this is
hardly ever the case for recorded data. A question is how to handle the non-
stationary time series data. Most of the statistical literature suggest, a differen-
tiation technique to remove all kinds of polynomial trends. This may work for
equally spaced data, but for series of unevenly spaced or missing data, this is not
a straightforward method.

A more common way to handle non-stationary data may be to use a functional
or a deterministic model taking care of all kinds of trends, of which a classical
regression model can be one choice. The non-stationary time series will now be
used as observations, and the task of the deterministic model is to absorb all kind
of trends in the non-stationary time series. In accordance with the principles of
least squares adjustment, the outcome of using such a model, will be a new time
series of residuals with constant zero mean. For equally weighted input data,
the outcome will also satisfy constant variance, and thus the residuals satisfy the
second order weak stationarity assumptions. The residuals can be interpreted as
estimates for the unknown true errors remaining after the effect of a fitted model
has been removed. They are used, both for validation of the chosen determinis-
tic model, and in further analyses, such as a spectral analysis. However, this is a
subject that is full of pitfalls. A main challenge is trying to separate the observa-
tions in one deterministic and one stochastic part. Only in a very few cases is this
possible. If one does not succeed, an erroneous effect will affect the parameters
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to be solved in some way. Interpretations and attempts to improve the first cho-
sen models for detected effects during the analysis are possible but difficult. This
is mainly because of correlated parameter estimates in the deterministic and the
stochastic parts of the model, and also between the two parts.

CGPS time series should actually be seen as 3-D observations as a basis for ad-
justment, of which the multivariate regression model would be a better choice of
model. For very long time series this implies a serious computational burden. In
the case of in-dependency among the components north, east and height, a great
simplification would be to split them into isolated time series, and then separately
use univariate regression models for each components. A likelihood ratio test for
the multivariate case will be introduced to test the assumptions of in-dependency
between components for each station. Numerical investigations of CGPS data will
show that the assumption of independent components can be justified. However,
some parameters to be solved for have to be chosen as common for each compo-
nents in one station. As an example, if a jump is detected in the height component,
the jump time is assumed common for all the three directions.

3.1 Classical linear regression

Classical regression models are derived under the assumptions of independent
errors, but time series are often time correlated. The temporal correlation cannot
be ignored, so an investigation of the residuals remaining after the model fit is
essential.

3.1.1 Classical linear regression model

A classical linear regression model [see Johnson and Wichern, 1998, among oth-
ers] can be described as:
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y1

y2

...

...
yi

...
yn


︸ ︷︷ ︸

n×1

=



1 x11 x12 . . . x1r

1 x21 x22 . . . x2r

...
...

...
...

...
...

...
...

1 xi1 xi2 . . . xir

...
...

...
...

1 xn1 xn2 . . . xnr


︸ ︷︷ ︸

n×(r+1)

·



β0

β1

...
βj

...
βr


︸ ︷︷ ︸
(r+1)×1

+



ε1

ε2

...

...
εi

...
εn


︸ ︷︷ ︸

n×1

(3.1)

or

y = Xβ + ε (3.2)

where y is an observed response vector (observations) and X is the matrix of val-
ues from corresponding predictor variables. X may also be denoted as the design
matrix. It describes the geometrical and physical relation between the observa-
tions in y and the unknown parameters in β and thus the design of the experi-
ment. n is an integer number of observations and (r + 1) is the integer number
of unknown parameters to be estimated. For an overdetermined solution of the
system of linear equations one need n > (r + 1). ε is the vector of errors which
is assumed to have the properties:

E(ε) = 0 , cov(y) = cov(ε) = σ2I (3.3)

where 0 is a (n × 1) zero vector, I the (n × n) identity matrix and σ2 the a priori
reference variance or the variance of unit weight. It is common to set (σ2 = 1).
The assumptions in Eq.(3.3) mean:

• Single errors εi in ε do have the same constant variance, and

• They are expected to be (linear) independent.

The values of the (theoretical expression) true errors in ε are impossible to find in
most cases. Estimation of this error vector is common. The estimate of ε is ε̂ and
will be denoted the residual vector.
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3.1.2 Least squares estimation

Setting σ2 = 1, the least squares estimator for the unknown parameters βj ,
j=0,...,r is the specific vector β which minimises the main function m of sum
of error squares: m(εT ε) = m((y − Xβ)T (y − Xβ)).

∂m(εTε)

∂(β)
= 0 ⇔ β̂ = (XTX)−1XTy (3.4)

This estimator can be shown to give a minimum value for the sum of error squares,
and is identical to the maximum likelihood estimator, assuming errors (or ob-
servations) to be normally distributed. The fitted values of y can be found as:
ŷ = Xβ̂ = Hy, where H = X(XTX)−1XT is denoted the "hat" matrix.
The vector of residuals becomes:

ε̂ = y − ŷ = (I − H)y (3.5)

The residual vector ε̂, contains information about the remaining unknown param-
eter σ2. It can be shown that the maximum likelihood estimator for the constant
reference variance, also known as the variance of unit weight is

ˆ̂σ2 =
(ε̂T

ε̂)

n
(3.6)

The unbiased estimator is more commonly used

σ̂2 =
(ε̂T

ε̂)

(n − (r + 1))
(3.7)

which is divided by the redundancy or the degrees of freedom, that is corrected
by the number of parameters to be solved for. If n is large, the choice between the
two estimators has no consequence.

β̂ = (XTX)−1XTy = (XTX)−1XT(Xβ + ε) = β + (XTX)−1XTε

Taking the expectation on both sides of the above expression gives

E(β̂) = β + (XTX)−1XT E(ε)︸ ︷︷ ︸
0

= β ⇒ β̂ an unbiased estimator for β
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Using the law of error propagation (LEP), see Appendix A, on Eq. (3.4), the
covariance matrix for β̂ can be derived as:

cov(β̂) = (XTX)−1XTcov(ε)((XTX)−1XT )T = σ2(XTX)−1 (3.8)

Note that:

XT ε̂ = XT(I − H)y = (XT − XTX(XTX)−1︸ ︷︷ ︸
I

XT)y =

(XT − XT)y = 0

ŷT ε̂ = (Xβ̂)T ε̂ = β̂T XT ε̂︸ ︷︷ ︸
0

= 0

(3.9)

and the matrix [I − H] = [I − X(XTX)−1XT ] satisfies the properties

• [I − H]T = [I − H] ⇒ Symmetric

• [I − H][I − H] = [I − H] ⇒ Idempotent

Using the LEP, see the Appendix A, again on the expression ε̂ = (I − H)y

gives:

cov(ε̂) = (I − H)cov(ε)(I − H)T = (I − H)cov(ε) =

σ2[I − X(XTX)−1XT ]
(3.10)

because of the properties of (I − H).

Because β̂ and ε̂ are uncorrelated, one gets: cov(β̂, ε̂) = 0

3.1.3 The weighted linear regression model

The observed responses yi are sometimes assumed to be of variable accuracy. In
such cases it is usual to give an observed response a specific weight. Finding
suitable approximations for these weights might often be a problem. Variance-
and covariance estimates from earlier experience may often be the best a priori
values of accuracy that can be achieved.
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Independent observations

If the observed responses yi are independent, it is sufficient to use a simple diago-
nal weight matrix in the adjustment. It is reasonable that a precise observation, in
the meaning of low a priori variance, should influence the estimated parameters
more than observations with greater variance. The inverse of an a priori covari-
ance matrix, may be used as an input weight matrix W for adjustment. A diagonal
matrix is straightforward to invert.

W = cov(y)−1 =




1
σ2
11

0 0 0 0

0 1
σ2
22

0 . . . 0

0 0
. . .

...

0
...

. . . 0

0 0 0 0 1
σ2

nn




︸ ︷︷ ︸
n×n

(3.11)

Weights are relative quantities. Thus the weight matrix can also be defined as the
inverse of a co-factor matrix Σyy, which is related to covariance matrices through:

cov(y) = σ2Σyy ⇔ cov(y)−1 =
1

σ2
Σ−1

yy
(3.12)

Using a trick, setting the a priori reference variance equal to one (σ2 = 1), the
co-factor and the a priori covariance matrix become identical. For a special case
of all weights equal to one, we got Σyy = I which leads back to the unweighted
case of Eq. (3.3).

Dependency among observations

If the observed yi is not independent, it is possible to use a complete a priori-
covariance matrix. Outside the diagonal consisting of variances, the covariances
can describe the grade of linear dependency between the observations. An inver-
sion of a full symmetric quadratic matrix requires a number of multiplications as
a function of n3, [see Press et al., 1992]. For large samples n, this might cause nu-
merical and processing-time problems. Obviously there is a relationship between
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the use of a complete a priori covariance matrix and possible linear dependency
between the corresponding errors. For the time being cov(y) or Σyy are assumed
to be diagonal. However, the estimators to be derived in Subsection 3.1.4 are valid
also for complete co-factor and covariance matrices.

3.1.4 Weighted least squares estimation

Using the same reasoning as in the unweighted case, a least squares estimator for
β can be derived, minimising the main function of weighted error sum of squares:

∂m(εTΣ−1
yy

ε)

∂(β)
= 0 ⇔ β̂ = (XTΣ−1

yy
X)−1XTΣ−1

yy
y (3.13)

which also can be shown to give an unbiased estimator for β.
The fitted values of y; ŷ = Xβ̂, and the residuals:

ε̂ = y − Xβ̂ = (I − X(XTΣ−1
yy

X)−1XTΣ−1
yy

)y (3.14)

The covariance matrix of the estimated parameters:

cov(β̂) = σ2Σβ̂β̂ = σ2(XTΣ−1
yy

X)−1 (3.15)

An unbiased estimator for the variance of unit weight:

σ̂2 =
ε̂TΣ−1

yy
ε̂

n − (r + 1)
(3.16)

The covariance matrix of the residuals

cov(ε̂) = σ2[Σyy − X(XTΣ−1
yy

X)−1XT ] (3.17)

3.1.5 Non-linearity, linearising

This thesis only discusses linear problems. Sometimes the relations between ob-
served responses and unknown parameters are non-linear. However, linear mod-
els may even be used to solve non-linear problems, making use of linearising
together with an iteration procedure. Assuming that preliminary values of proper
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accuracy exist for unknown parameters, it is possible to expand the original non-
linear functional model in a Taylor series. Here it is common to neglect terms
of the second and higher powers. The final solution is found by several itera-
tions, and subsequent improvements of preliminary values, until the corrections
are too small to make any sense. In mathematics, a similar procedure is known
as the Newton-Raphson method [see Kreyszig, 1999, p.841 among others]. Intro-
ducing stochastic variables, stochastic errors will also affect the corrections. The
extended method is then called Gauss-Newton’s method [see Koch, 1999]. The
Gauss-Newton iterative method has often been shown to give a fast converging
solution. If one uses "good" initial values, only one computation is enough. How-
ever, it is usual to make several iterations where initial values are updated, until
their improvements converge to a chosen limit that is close enough to zero. The
linearising procedure reduces an original non-linear model problem to a linear re-
gression problem. In geodesy the combination, non-linear model, reduced to a
linear one, and then used an iterative way, is usually known as the least squares
method.

3.2 Statistical tests

In a weighted regression model, the use of a diagonal Σyy is equivalent to expect-
ing that the errors in the ε-vector are independent. Some assumptions have to be
made to derive test statistics. Each element in the ε-vector is assumed to be nor-
mally distributed, with zero expectation, but different variances are allowed. Each
error may then be looked upon as a single realisation from n different normal
distributions.

3.2.1 Outlier detection

A normalisation has to be made in order to make the residuals remaining after a
weighted regression comparable to each other. According to Johnson and Wich-
ern [1998], most statisticians prefer diagnostics based on studentised residuals,
computed by dividing each residual with the square root of the corresponding el-
ement in ĉov(ε̂). Using σ̂2 as estimator for σ2, an estimate for cov(ε̂) can be
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computed as:

ĉov(ε̂) = σ̂2[Σyy − X(XTΣ−1
yy

X)−1XT ] (3.18)

Out-of-context test for outliers

Vanicek and Krakiwsky [1986] use the term standardised residuals. Their defini-
tion is:

Standardised residuals � ε̂∗i =
ε̂i√

(ĉov(ε̂))ii

(3.19)

According to Vanicek and Krakiwsky [1986] the standardised or normalised resid-
uals computed using estimates for both unknown mean and variance, these are τ -
distributed (τ = tau) with n− (r + 1) degrees of freedom. The τ -distribution has
been investigated by Pope [1976]. An approximation formula using the relation
between τ -distribution and the student T distribution is presented in Leick [2004]
. However, for large samples the difference is negligible. For a large number
of observations n, the standardised residuals will be approximately student-T dis-
tributed with n−(r+1) degrees of freedom. In its turn, this is then approximately
normally distributed with zero mean and variance one, so:

Standardised residuals ≈ N(0, 1) if n is large (3.20)

Normality assumption is common for most outlier tests. The magnitudes of the
standardised residuals are often used to identify a possible outlier in correspond-
ing observations. Here it is common to exclude observations where the absolute
value of corresponding standardised residuals exceeds a limit or a k-factor. How-
ever, the k-factor is related to a significance level α. A problem might be that
a possible outlier will influence the size of σ̂2 and thus affects the values of all
computed standardised residuals, especially in cases of few observations. As it is
best to avoid this, it is customary to standardise ε̂i using the delete-one estimated
variance , which is the residual mean square when the i−th observation is dropped
from the estimation. The standardising trick ignores the covariances between the
residuals, so ε̂i has actually been taken out of context of the other residuals. This
means that, the existence of the other members of the series has been disregarded.
Each observation is then tested independently of the others. Vanicek and Kraki-
wsky [1986] use the expression out-of-context. The test is derived, assuming only
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one outlier is hidden in the observations. If an outlier is found, the test has to be
redone. If the test recommends a total significance level αtot, each standardised
residual ε̂∗i , has to be tested with a smaller, individual significance level αind. As-
suming that the probability to detect an individual outlier is pind = (1 − αind)

and the errors are independent, the total probability to detect one outlier out of n

observations is ptot = (1−αtot). The multiple of the n single probabilities will be

(1 − αtot) = (1 − αind)
n ⇔ αind = 1 − (1 − αtot)

1
n ≈ αtot/n (3.21)

because (1 − α)
1
n ≈ 1 − (α/n) is a good approximation when n is large.

Outlier test based on conditional probabilities (in-the-context)

The individual observations yi tested through an investigation of ε̂i can also be
examined in-the-context of being member of a series. According to Vanicek and
Krakiwsky [1986], this is not a straightforward method, but can be made by set-
ting a modified αsim 	= αind in Eq. (3.21) which accounts for the simultaneity
of all the tested elements in the vector y. A test using conditional probabilities
to treat all the observations simultaneously, or in-the-context with each other, will
request a value αsim > αind in Eq.(3.21).

A choice of significance level, and thus a proper value for the k-factor is dif-
ficult. Using this approach for time series, the correlations between errors are
requested to be small for a final chosen model. An indication of correlations may
be found looking at the standardised residuals as a time series and estimate their
ACF. However, it is clear that the estimated auto correlations is a very uncertain
measure of the true dependency. A wrong chosen deterministic model may intro-
duce large estimates for the ACF. Each statistical test should therefore be handled
with care.

Each time a possible outlier has been detected and excluded, a new adjustment
and a new outlier-test has to be done for all remaining observations. When several
outliers are detected, an optimal procedure should, in an iterative way, replace the
first out-sorted outliers one by one and test if they could be included again. In
most software a variable k-factor is used to evaluate if the total number of out-
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sorted observations is reasonable for the whole sample. In this way the k-factor
can be used as an adjusting screw, to filter the number of input observations.

3.2.2 Goodness-of-fit test

The residuals lack of fit for the final chosen model may be examined using a
Goodness-of-fit test, [see Emery and Thomson, 2001], based on the test statistics:

X2 =

∑k
i=1(fi − Fi)

2

Fi

(3.22)

X2 is then χ2
ν .-distributed (chi-square) with ν degrees of freedom. The test as-

sumes the observations from a variable X , to be independent. The idea is to group
the total of n observations into k class intervals, whose plots form a frequency
histogram or observed probability density function po(X). fi is the observed fre-
quency in the ith class interval. The test compares fi with the expected frequency
Fi, in the ith class for the theoretically probability density function p(X), that the
observations are assumed to be sampled from. Generally the null hypothesis will
be:

H0 : po(X) = p(X) versus HA : po(X) 	= p(X) (3.23)

where HA is the alternative hypothesis. A normality test considering if the stan-
dardised residuals are N(0, 1)-distributed can then be made forming the null hy-
pothesis:

H0 : po =
e

x2

2√
2π

versus HA : po(X) 	= e
x2

2√
2π

(3.24)

The number of degrees of freedom to be used for the χ2-distribution is ν = k −
3. One degree is lost through the restriction that if (k − 1) class intervals are
determined, the k-th class interval follows automatically. Two degrees of freedom
are lost when mean and variance has to be estimated. A good fit means generally
fi close to Fi for all k groups. X2 then becomes small and vice versa, so the upper
part of the χ2-distribution has to be used. The null hypothesis will be rejected at a
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chosen significance level α, if the observed value

X2 > χ2
ν(α) (3.25)

3.2.3 Likelihood ratio test for regression parameters

A test of simultaneous significance for a group of parameters in β will be intro-
duced, for the case of different weighted, but independent observations. One of
many applications is to test the simultaneous significance of several frequency
components (constructed from pairs of spectral parameters) in the weighted least
squares procedure introduced in Section 4.2. The deterministic part of the re-
gression model will be divided in two parts. The first part will be denoted with
subscript 1, as X1β1. The second part with subscript 2, as X2β2:

y − ε = Xβ =

[
X1

n·(q+1)

... X2
n·(r−q)

]
β1

(q+1)·1

. . .

β2
(r−q)·1

 = X1β1 + X2β2 (3.26)

A test is required which reveals the simultaneous influence from the predictors
x(q+1), x(q+2), ...., xr on the responses in y. This is analogous to a simultaneous
test if the parameters in β2 are significantly different from the zero vector. The
null hypothesis will be:

H0 : β2 =


βq+1

βq+2

...
βr

 = 0 versus HA : β2 �= 0 (3.27)

where HA is any alternative hypothesis. Rejecting H0 at the chosen significance
level (α) indicates that the parameters in β2 are significant and cannot be omitted.

Likelihood function

Assume the design matrix X has full rank, and Σ−1
yy is diagonal. Given the data

and the normal assumptions, the likelihood associated with the parameters β and
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σ2 is

L(β, σ2) �
1

(2πσ2)n/2|Σ−1
yy |1/2

e−
1

2σ2 (y−Xβ)T Σ
−1
yy (y−Xβ) (3.28)

σ2 is often set equal to one and omitted, but in the context of deriving a likeli-
hood ratio test, it will later be replaced with other expressions. The maximum
functional value is achieved when β and σ2 are estimated using the Maximum
Likelihood Estimators (MLE). The MLE for σ2 in the case of weighted observa-
tions analogous to the one in Eq. (3.6) is:

ˆ̂σ2
MLE =

(y − Xβ̂)
T
Σ−1

yy
(y − Xβ̂)

n
(3.29)

It can be shown that the MLE for β in the weighted case is equal to the weighted
Least Squares Estimator (LSE) [see Koch, 1999].

ˆ̂
βMLE = (XTΣ−1

yy
X)−1XTΣ−1

yy
y (3.30)

All other estimators than the MLE will give a smaller functional value in Eq.
(3.28). Under H0 (If H0 is correct), one gets y = X1β1 + ε and:

ˆ̂
β1 = (XT

1 Σ−1
yy

X1)
−1XT

1 Σ−1
yy

y (3.31)

ˆ̂σ2
1 =

(y − X1β̂1)
TΣ−1

yy (y − X1β̂1)

n
(3.32)

Test statistics

A test statistic W will be presented in order to test the hypothesis in Eq. (3.27).
W should be understood as the ratio of the maximum of estimated values of the
likelihood function with and without the constraint of the null hypothesis.

Likelihood ratio = W =

max
β1,σ2

1

L(β, σ2)

max
β,σ2

L(β, σ2)
(3.33)
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The denominator is always equal or greater than the numerator. For large differ-
ences, W is much smaller than one and H0 : β2 = 0 will be rejected. Inserting
for the MLE in Eq. (3.28) one gets:

max
β1,σ2

1

L(β, σ2) =
1

(2π ˆ̂σ2
1)

n/2|Σyy|1/2
e

−(y−X1
ˆ̂
β1)T Σ

−1
yy (y−X1

ˆ̂
β1)

2(y−X1
ˆ̂
β1)T Σ

−1
yy (y−X1

ˆ̂
β1)/n (3.34)

and:

max
β,σ2

L(β, σ2) =
1

(2π ˆ̂σ2)n/2|Σyy|1/2
e

−(y−X
ˆ̂
β)T Σ

−1
yy (y−X

ˆ̂
β)

2(y−X
ˆ̂
β)T Σ

−1
yy (y−X

ˆ̂
β)/n (3.35)

and the likelihood ratio reduces to:

W =

(
ˆ̂σ2

1

ˆ̂σ2

)−n/2

=

(
ˆ̂σ2 + ˆ̂σ2

1 − ˆ̂σ2

ˆ̂σ2

)−n/2

=

(
1 +

ˆ̂σ2
1 − ˆ̂σ2

ˆ̂σ2

)−n/2

(3.36)

Rejecting H0 for small values of W is equivalent to rejecting H0 for large values
of (ˆ̂σ2

1−
ˆ̂σ2)

ˆ̂σ2
, or with the relations to the unbiased LSE’s we find the scaled version,

[see Johnson and Wichern, 1998]:

n(ˆ̂σ2
1 − ˆ̂σ2)/(r − q)

nˆ̂σ2/(n − r − 1)
=

(RWSS1 − RWSS)/(r − q)

RWSS/(n − r − 1)
= F (3.37)

where RWSS and RWSS1 denotes the Residual Weighted Sum of Squares (RWSS)
from adjustments, respectively, with parameter vectors β and β1. This F -ratio of
two χ2-distributed quantities has a F-distribution. A test of simultaneous signifi-
cance of several parameters in a vector β2 Eq. (3.27), will be rejected if the ratio:

(RWSS1 − RWSS)

RWSS
>

(r − q)

(n − r − 1)
F(r−q,n−r−1)(α) (3.38)

where F(r−q,n−r−1)(α) is the upper 100α percentile of the F-distribution with
(r − q) and (n − r − 1) degrees of freedom.
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3.3 Heaviside function and detection of data offsets

Recorded time series, often include jumps or offsets. For various reasons, they
may be known or unknown in time.

Known jumps

If the time tβj
, for a jump j is known, the modelling of jump size βj can be done

using a unit step function, also called the Heaviside function. Using time as ar-
gument, the definition of the Heaviside function is [See Kreyszig, 1999, among
others]

h(t − tβj
) =

{
0 if t < tβj

1 else
(3.39)

An observation equation for the model in Eq. (3.1) including parameters for con-
stant term, linear trend (slope) and several jumps, let us say the total number of
jumps are: njump, will be of the form:

y(t) = β0 + β1(t) +

njump+1∑
j=2

βjh(t − tβj
) + ε(t) (3.40)

or for a general observation i:

yi = β0 + β1ti +

njump+1∑
j=2

βjh(ti − tβj
) + εi (3.41)

Using matrix notations for a set of linear equations, for the estimation of one jump
at the time (tβj

= ti) may look like:
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y1

y2

...

...
yi

...
yn


︸ ︷︷ ︸

n×1

=



1 t1 0

1 t2 0
...

...
...

1 ti−1 0

1 ti 1
...

...
...

1 tn 1


︸ ︷︷ ︸

n×3

·

 β0

β1

β2


︸ ︷︷ ︸

3×1

+



ε1

ε2

...

...
εi

...
εn


︸ ︷︷ ︸

n×1

(3.42)

or
y = Xβ + ε (3.43)

The model can easily be expanded for several jumps, by adding more columns to
the X matrix and jump-parameters to the β-vector.

Unknown jumps

However it would be interesting to clarify even if a time series contains unknown
jumps. This is of special interest because such jumps in a time series will violate
the assumption of constant expectation for the residuals which is essential for all
further analyses.

Assume there are one or several unknown jumps hidden in the data. For which
time do these jumps occur? One possible way to investigate the problem will be
to estimate a jump for all possible points in time. This can be seen as a “sliding”
of the Heaviside function through the last column of the X-matrix in Eq. (3.42).
Making a new adjustment for each step it is possible to estimate both the jump
size and the a posteriori reference variance. The selection of a possible jump may
be done using either the criterion:

• L1-norm: A jump exists corresponding to the time which gives the maxi-
mum estimated absolute value for the parameter itself, or

• L2-norm: A jump exists at the time corresponding to minimum estimated
reference variance
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Mainly the second (least squares) criterion will be used to detect possible un-
known jumps in the time series of CGPS data in this thesis. As an alternative to
plot the estimated reference variance σ̂2

0 , as a function of the jump time σ̂2
0(t) to

find a minimum value, a new variable V R(t) is constructed. V R(t) shows the ref-
erence Variance Reduction (VR) as a function of time and will give a maximum
value at the time for which we expect a jump to appear. The reduced reference
variance is compared to the reference variance estimated without any jumps, de-
noted σ̂2

0(0):

V R(ti) =
σ̂2

0(0) − σ̂2
0(ti)

σ̂2
0(0)

= 1 − σ̂2
0(ti)

σ̂2
0(0)

(3.44)

The biased estimator that does not correct for degrees of freedom in Eq. (3.6) will
be preferred because it ensures σ̂2

0(0) ≥ σ̂2
0(ti) and (0 ≤ V R(ti) ≤ 1).

In the analysis of CGPS data, the method has shown some weaknesses, as will
be discussed in Subsection 6.1.1. For a network represented by several co-varying
series, cross correlation functions can be an alternative tool that can be used for
the detection of data offsets.

3.4 Multivariate linear regression

An optimal adjustment of CGPS data should be made using observations from all
three components in one simultaneous estimation. This is possible by an expan-
sion of the observation vector y to a Y -matrix with the number of columns equal
to the number of components to be estimated simultaneously. A multivariate re-
gression model is described in Johnson and Wichern [1998]. Very long time series
may cause serious computing problems. If an observed time series from different
components behaves independently of each other, it becomes a great advantage
to treat them as three univariate time series. A significance test of correlations
between the three components will be introduced, to test whether it is possible to
avoid the time consuming simultaneously adjustment,
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3.4.1 Likelihood ratio test of the correlation matrix

The purpose of this subsection is to derive a test of cross correlations between
data from an expected p-dimensional multi-normal distribution. If correlations
between dimensions can be ignored, it may be possible to reduce an original p-
dimensional problem to p univariate ones.

Assume data are available in a data matrix consisting of:
p = number of variables (not necessary independent) in columns.
n = number of independent samples (observations) in rows.

Data matrix:

x
(n×p)

=



x11 x12 . . . x1p

x21 x22 . . . x2p

...
...

...
...

...
...

xj1 xj2 . . . xjp

...
...

...
xn1 xn2 . . . xnp


=



x1
T

x2
T

...

...
xj

T

...
xn

T


(3.45)

The row vectors: xj
T = [xj1, xj2 . . . . . . xjp], (j = 1, 2, ..., n) represent inde-

pendent observations and are said to form a random sample from a common joint
distribution with density function f(x) = f(x1, x2, . . . , xp). x is then said to be
(p-dimensional) multi-normal distributed, with expectation vector µ and a priori
covariance matrix Σ:

x ∼ Np( µ
(p×1)

, Σ
(p×p)

) (3.46)

Likelihood ratio test

As in the test in Subsection 3.2.3, a test statistic will be presented based on the
ratio between maximum values of two maximum likelihood functions, with and
without constraints. In Subsection 3.2.3, the significance of parameters was con-
sidered and in a similar way it will be possible to derive a test statistic for co-
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variance matrices. In accordance with Koch [1999], the test may be applied if
estimated covariance matrices are to be replaced by matrices of simpler structure,
possibly by diagonal matrices. The hypothesis will be:

H0 : Σ = ΣDiag versus HA : Σ�=ΣDiag (3.47)

An alternative to a test of covariance matrices would be a test of the correlation
matrix ρ versus the identity matrix I . In a special case, when observations are all
N(0, 1)-distributed, the correlation and covariance matrix are identical. Then the
hypothesis will be:

H0 : ρ = I versus HA : ρ�=I (3.48)

A likelihood function (joint density function) valid for multi-normal distributed
observations is:

L(µ, Σ) �
1

(2π)np/2|Σ|n/2
e−

1
2

Pn
j=1 (xj−µ)T Σ−1(xj−µ) (3.49)

Maximum functional value is achieved when µ and Σ are estimated using the
Maximum Likelihood Estimators (MLE):

µ̃ = x̄ =



x̄1

x̄2

...

...
x̄p


and Σ̃ =

1

n

n∑
j=1

(xj − x̄)(xj − x̄)T (3.50)

All other estimators will give a smaller function value in Eq. (3.49). A test statis-
tic Λ will be derived, to test the hypothesis in Eq. (3.47). Λ should be understood
as the ratio of the maximum of estimated values of the likelihood function with
and without the constraint of the null hypothesis.

Likelihood ratio = Λ =

maximum
µ,Σ∈ΣDiag

L(µ, ΣDiag)

maximum
µ,Σ

L(µ, Σ)
< C (3.51)
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Maximum for the likelihood function in the numerator is obtained by allowing
µ to vary over all values, but keeping Σ restricted to the subset ΣDiag. Without
restrictions, the maximum for the denominator is achieved when the MLEs x̄

and Σ̃ are inserted. The nominator will always be smaller than the denominator,
except when ΣDiag = Σ̃. Hence 0 ≤ Λ ≤ 1 and the null hypothesis in Eq.
(3.47) has to be rejected for values of Λ very different from one. If the sampling
distribution of the test statistic Λ is known, C can be selected to choose a test with
a specified significance level α. Johnson and Wichern [1998] derived the exponent
in Eq. (3.49) as:

− 1

2

n∑
j=1

(xj − µ)TΣ−1(xj − µ) =

− 1

2
tr[Σ−1(

n∑
j=1

(xj − x̄)(xj − x̄)T ]

+

n∑
j=1

(x̄ − µ)TΣ−1(x̄ − µ)

(3.52)

Replacing µ with the estimator µ̃ = x̄, the last term will disappear. The expres-
sion

∑n
j=1 (xj − x̄)(xj − x̄)T can be written as nΣ̃, see Eq.(3.50), so one gets:

Λ =
e(− 1

2
tr[Σ

−1
Diag

(
Pn

j=1(xj−x̄)(xj−x̄)T ])

(2π)np/2|ΣDiag|n/2
· (2π)np/2|Σ̃|

n/2

e(− 1
2
tr[Σ̃−1(

Pn
j=1(xj−x̄)(xj−x̄)T ])

=

( |Σ̃|
|ΣDiag|

)(n/2)

· e−
1
2
tr[Σ−1

DiagnΣ̃]

e−
1
2
tr[Σ̃

−1
nΣ̃]

=

( |Σ̃|
|ΣDiag|

)(n/2)

· e
n
2
tr[ I

(p·p)
]

e
1
2
tr[Σ−1

DiagnΣ̃]

=

( |Σ̃|
|ΣDiag|

)(n/2)

· e
np
2

e
n
2

tr[Σ−1
DiagΣ̃]

=

( |Σ̃|
|ΣDiag|

)(n/2)

· e(p−tr[Σ−1
DiagΣ̃])

(3.53)

An unbiased estimator may be used instead of the biased MLE for the covari-
ance matrix Σ̃. However, if n is large, this will not make a difference thus this
correction is omitted here. While testing a special variant of covariance matrices,
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the estimated correlation matrix R with the hypothesis in Eq. (3.48), the last ex-
pression for Λ in Eq.(3.53) will be simplified by: Σ−1

Diag = I and |ΣDiag| = 1.
Σ̃ = R which has trace p, so the final test statistic is reduced to:

Λ = |R|(n/2) < C (3.54)

Note: The determinant of R is one, if all off diagonal elements in R are zero. In
any other case, the determinant of R is smaller than one. For a large sample size
−2 ln Λ is approximately χ2

p(p−1)/2-distributed [see Johnson and Wichern, 1998,
p.505]. Then H0 in Eq. (3.48) can be expressed:

reject H0 if: − 2lnΛ > χ2
p(p−1)/2(α) (3.55)

The significance of correlations between directions for each of the Norwegian
CGPS-stations is tested in Subsection 6.1.5 using the CGPS time series of nor-
malised residuals as input in the data matrix in Eq. (3.45).
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Chapter 4

Spectral analysis of non-stationary
data

The most common method for spectral analysis, i.e. original Fourier analysis, is
not recommended for the non-stationary CGPS time series including several gaps.
In this chapter, methods for spectral analysis of non-stationary non-equidistant
data will be introduced. Some methods using least squares curve fit in the time
domain will be discussed. They are all different variants of weighted regression
analysis and differ basically in the model function, and consequently, the design
of normal equations. The theory of Least Squares Spectral Analysis (LSSA) is de-
scribed by Wells et al. [1985],Vanicek and Krakiwsky [1986] and Craymer [1998].
A similar method is used by Plag [1988]. He denotes the resulting spectrum as a
Variance Spectrum (VS). An alternatively relation to FT exists between the Least
Squares Spectrum (LSS) and the ACvF. Craymer [1998] denotes this relation the
Least Squares Transform (LST)

In the presentation of Fourier analysis in Chapter 2, integer frequencies were cho-
sen to estimate the Fourier coefficients ak and bk. Values for the coefficients will
not be bounded to integers of k any longer, but they will still belong to an interval
limited by the Nyquist frequency and the length of the time series as described in
Table 2.1 . To separate the notations, the parameters will from now on be written
as a(ωk) and b(ωk). Because of their relations to later introduced spectral values,
they will be referred to as spectral parameters. The main task of spectral analysis
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is to find the frequency content of a time series. A model for non-stationary data
has to contain both trend- and spectral parameters. The model will be separated
in two parts, a deterministic part for trend parameters and spectral part for the
spectral parameters. In the context of spectral analysis, the solution of trend pa-
rameters is of minor interest, but the correlations between estimates for spectral
components and other parameters have to be considered. Some simulations will
be performed to investigate the LSSA-method.

4.1 Weighted Least Squares (WLS) procedure

4.1.1 Weighted Sum of Squares (WSS) decomposition

The WLS estimator from Eq. (3.13) can be written:

β̂ = (XTΣ−1
yy X)−1︸ ︷︷ ︸

N−1=Σ
β̂β̂

XTΣ−1
yy y︸ ︷︷ ︸

u

= N−1u (4.1)

The weighted sum of squared observations is a scalar and can be decomposed as:

yTΣ−1
yy

y = (ŷ + y − ŷ)TΣ−1
yy

(ŷ + y − ŷ) =

(ŷ + ε̂)TΣ−1
yy (ŷ + ε̂) =

ŷTΣ−1
yy

ŷ + ε̂TΣ−1
yy

ŷ + ŷTΣ−1
yy

ε̂ + ε̂TΣ−1
yy

ε̂ =

ŷTΣ−1
yy

ŷ + ε̂TΣ−1
yy

ε̂

(4.2)

The WLS estimator can be interpreted as an orthogonal projection. [see Teunis-
sen, 2000], Analogous to the unweighted case of Eq. (3.9), the term
ε̂TΣ−1

yy
ŷ + ŷTΣ−1

yy
ε̂ vanishes.

Defining the different parts of WSS as:

Observation Weighted Sum of Squares: OWSS � yTΣ−1
yy y

Fitted Model Weighted Sum of Squares: MWSS � ŷTΣ−1
yy

ŷ

Residual Weighted Sum of Squares: RWSS � ε̂TΣ−1
yy

ε̂

(4.3)

and using the shorter notations N = XTΣ−1
yy

X and u = XTΣ−1
yy

y, it is possi-
ble to derive:

ŷTΣ−1
yy

ŷ = (Xβ̂)TΣ−1
yy

Xβ̂ = β̂T (XTΣ−1
yy

X)β̂ = β̂TNβ̂ (4.4)
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β̂TNβ̂ = (N−1u)T NN−1︸ ︷︷ ︸
I

u = uTN−1u (4.5)

as alternatively expressions for MWSS, so:

MWSS = ŷTΣ−1
yy

ŷ = β̂TNβ̂ = uTN−1u (4.6)

4.1.2 Stationary data

First assume the vector y consisting of a time series from a zero mean process,
with known a priori covariance matrix, cov(y) = σ2Σyy. The vector β consists
of chosen pairs of parameters a(ωk), b(ωk), corresponding to frequencies which
are not necessarily limited to the Fourier frequencies:

β = [a(ω1), b(ω1), a(ω2), b(ω2), ..., a(ωk), b(ωk), ..., a(ωm), b(ωm)]︸ ︷︷ ︸
(1·2m)

T (4.7)

For k = 1, 2, ..., m, corresponding column vectors for cosine- and sine terms of
length n could be written as:

cωk
=



cos(ωkt1)

cos(ωkt2)
...

cos(ωkti)
...

cos(ωktn)


sωk

=



sin(ωkt1)

sin(ωkt2)
...

sin(ωkti)
...

sin(ωktn)


(4.8)

The column vectors may be collected again in a design matrix:

X = [cω1

...sω1

...cω2

...sω2

......
...cωk

...sωk

......
...cωm

...sωm]︸ ︷︷ ︸
n·2m

(4.9)

With the choice m < n/2, the system of linear equations is overdetermined, and
a WLS estimator for β is:

β̂ = (XTΣ−1
yy

X)−1XTΣ−1
yy

y (4.10)
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The relation to Fourier

Assume a complete, equally spaced and equally weighted (Σyy = I) data series.
For the choice of Fourier frequencies in the X-matrix, the estimated parameters
in β̂ will be identical to the Fourier coefficients. In other words, Fourier analysis
is a special case of the more general WLS procedure. This is shown by Craymer
[1998]

Using Fourier frequencies ωk, the column vectors in the X-matrix will be or-
thogonal, which means the parameter estimates in β̂ become independent of each
other. Sub-matrices and sub-vectors representing the frequency ωk will be:

Xk
(n·2)

= [cωk

...sωk
] βk

(2·1)

= [a(ωk)
...b(ωk)]

T (4.11)

It will be possible to solve the pairs of parameters β̂k, independently from each
other, and separate their contributions to the total observation sum of squares in
partial sums from each pair of estimated Fourier coefficients:

yTy = ŷT ŷ + ε̂T ε̂ = β̂TXTXβ̂ + ε̂T ε̂ (4.12)

with

β̂TXTXβ̂ = β̂T
1 XT

1 X1β̂1 + β̂T
2 XT

2 X2β̂2 + . . . +

β̂T
k
XT

k
Xkβ̂k + . . . + β̂T

m
XT

m
Xmβ̂m

(4.13)

where the contribution to the total sum of squares explained by the wave, or fre-
quency k is:

β̂T
k XT

k Xkβ̂k (4.14)

A graphical interpretation is possible. Assume that a wave k as in Figure 2.2 is
fitted to a zero mean stationary data series using a least squares procedure. In a
special case when the wave does not fit the data at all, the estimated amplitude:

Âk =

√
â(ωk)2 + b̂(ωk)2 (4.15)
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becomes zero (and the fitted wave a straight line). The residual sum of squares, or
the reference variance will remain unchanged. For all other fitted waves, the re-
maining residual sum of squares, or the reference variance will always be smaller.
The contribution to the total variance (for the zero mean process) explained by the
wave or frequency k is:

Sk−norm =
β̂T

k XT
k Xkβ̂k

yTΣ−1
yy

y
(4.16)

where

β̂T
k XT

k Xkβ̂k =[
â(ωk)

...̂b(ωk)

] [ ∑n
i=1 cos2(ωkti) 0

0
∑n

i=1 sin2(ωkti)

] â(ωk)

· · ·
b̂(ωk)

 =

n[â(ωk)
2 + b̂(ωk)

2] = nÂ2
k

(4.17)

using analogous expressions for sums as in Eq. (2.62). The expression in Eq.
(4.16) is always between zero and one and may thus be seen as an estimate for
the normalised spectral density function for the one-sided Fourier or amplitude
spectrum.

4.1.3 Non-stationary weighted data

For the challenge to find the spectral contents of a non-stationary data series with
different kinds of trends, several difficult problems have to be considered.

1. Using other than the Fourier frequencies, it is not possible to separate the
partial sums as for β̂TXTXβ̂ in Eq. (4.13), because the spectral parameter
estimates in β̂ will be correlated.

2. For non-stationary data, the effect of trend parameters in the deterministic
part of the model have to be accounted for when solving the parameter esti-
mates in the spectral part of the model. This problem is further complicated
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because very strong correlations between parameter estimates in the deter-
ministic and the spectral part of the model may cause numerical problems.
The parameter solutions can be incorrect and the spectrum distorted.

To avoid the first problem, assume the spectral contents for only one frequency k

should be computed. The WSS explained by the trend or the deterministic part
of the model will be denoted by subscript d. To avoid the second problem, as-
sume there is no linear dependency between parameters in the deterministic and
the spectral part of the model. Then the WSS is decomposed to:

yTΣ−1
yy

y = β̂T
d
XT

d
Σ−1

yy
Xdβ̂d + β̂T

k
XT

k
Σ−1

yy
Xkβ̂k + ε̂TΣ−1

yy
ε̂ (4.18)

The contribution from frequency k to the total variance remaining after the trend
has been removed will be:

Sk−norm =
β̂T

k
XT

k
Σ−1

yy
Xkβ̂k

yTΣ−1
yy

y − β̂T
d
XT

d
Σ−1

yy
Xdβ̂d

(4.19)

One weakness of the method is the required time of computations. For different
frequencies k, not only the sum β̂T

k
XT

k
Σ−1

yy
Xkβ̂k, but also the sum

β̂T
d
XT

d
Σ−1

yy
Xdβ̂d will change. For each frequency k, a new adjustment will be

necessary.

The second problem has to be considered. When linear dependency between pa-
rameters in the deterministic and the spectral part of the model exists, then the
terms:

β̂T
k
XT

k
Σ−1

yy
Xkβ̂k + β̂T

d
XT

d
Σ−1

yy
Xdβ̂d (4.20)

in Eq. (4.18) cannot possibly be separated. A separate adjustment in a frequency
free model with trend parameters only, has to be done to find the RWSS in the
denominator of Eq. (4.19) as:

ε̂T
d
Σ−1

yy
ε̂d = yTΣ−1

yy
y − β̂T

d
XT

d
Σ−1

yy
Xdβ̂d (4.21)
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For the problem of very strong correlations between parameter estimates in the
deterministic and the spectral part of the model, one could try first to remove the
trend Xβ̂ from the observations y and then compute a spectrum of the remaining
residuals ε̂. To handle jumps in data, some simulations using this method have
been made in Section 4.4.

The relation to Variance Spectrum (VS)

The numerator in Eq. (4.19) referred to Eq. (4.18) can be written:

β̂T
k
XT

k
Σ−1

yy
Xkβ̂k = yTΣ−1

yy
y − β̂T

d
XT

d
Σ−1

yy
Xdβ̂d − ε̂TΣ−1

yy
ε̂ =

ε̂T
dΣ−1

yy ε̂d − ε̂TΣ−1
yy ε̂

(4.22)

so Eq. (4.19) can be written:

1 − ε̂TΣ−1
yy

ε̂

ε̂T
d
Σ−1

yy
ε̂d

= V S(k) (4.23)

Accounting for the effect of cov(β̂d, β̂k) �= 0, a separate adjustment is made to
estimate ε̂T

d
Σ−1

yy
ε̂d. This is equivalent to the weighted form of variance spectrum

(VS), used by Plag [1988]. The values of V S(k) will always be in the interval
0 ≤ V S(k) ≤ 1, in fact this are the normalised spectral values from a spectral
density function.

From regression analysis the expression for V S(k) in Eq. (4.23) is known as
the coefficient of determination R2 [Walpole and Myers, 1993] that measures the
quality of model fit. If the fitted wave k passes through all data points, so ε̂ = 0,
then R2 = 1. At the other extreme, R2 = 0.

Test statistics for spectral parameters

Rewriting V S(k) in Eq. (4.23) as:

V S(k) =
(RWSSd − RWSS(s+d))

RWSSd
(4.24)
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Comparing this expression with Eq. (3.38), it is possible to derive a similar test
for several pairs of spectral parameters. Let d be the number of parameters in the
deterministic model, and (s + d) the sum of parameters in both the deterministic
and the spectral part of the model. For a test of one frequency only, the num-
ber of spectral parameters are (s = 2), but it is possible to derive an extended
test, for more than one frequency, using several pairs of spectral parameters when
computing RWSS(s+d). Several pairs of spectral parameters are simultaneously
significant if:

(RWSSd − RWSS(s+d))

RWSSd

>
(s)

(n − d)
F(s,n−d)(α) (4.25)

4.2 Weighted Least Squares Spectral Analysis

In LSSA, the parameters in the deterministic part of the model are in fact not es-
timated at all, but within the estimation of spectral components there have to be
taken account for the effect of the deterministic model. A trick is to separate the
parameter vector β in two parts, one for parameters as a solution of the determin-
istic part of the model βd, with subscript d. Another one βs, for the parameters
a(ωk) and b(ωk), we want to solve in the spectral part of the model, with subscript
s. The parameter vector βs will include pairs of spectral parameters for all the
frequencies k wanted to be solved for, and is not bounded to a single frequency
βk as in Subsection 4.1.3. A second design matrix Xs describes the linear com-
binations of the residuals in sin- and cos terms, as in Eq. (4.9).

An expression for the spectral parameters in βs which are related to the later
computed spectral values will be derived without computing the solution of βd.
This is made splitting the full normal matrix N into four blocks, which results in
a less computable demanding form for an inversion to the cofactor matrix Σβ̂β̂.
The final matrix expressions may look rather complex, but can be collecting into
reduced matrices an vectors (denoted with stars) that can be used in classical least
squares algorithms.

The formula for the common solution vector β = [βd

...βs]
T is an estimator de-
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rived from the principle of least squares:

E[y] = y − ε = Xβ =
[

Xd

... Xs

] βd

. . .

βs

 = Xdβd + Xsβs (4.26)

Least squares estimators:

β̂ = (XTΣ−1
yy

X)−1︸ ︷︷ ︸
N−1

XTΣ−1
yy

y︸ ︷︷ ︸
u

= N−1u (4.27)

or divided: β̂d

. . .

β̂s

 =

 XT
d
Σ−1

yy
Xd

... XT
d
Σ−1

yy
Xs

. . . . . .

XT
s
Σ−1

yy
Xd

... XT
s
Σ−1

yy
Xs


−1

·

 XT
d
Σ−1

yy
y

. . .

XT
s
Σ−1

yy
y

 =

 Ndd

... Nds

. . . . . .

Nsd

... Nss


−1

·

 ud

. . .

us

 =

 Mdd

... Mds

. . . . . .

Msd

... Mss

 ·

 ud

. . .

us


(4.28)

The inverse of the normal equation hyper matrix N can be written: Ndd

... Nds

. . . . . .

Nsd

... Nss


−1

=

 Mdd

... Mds

. . . . . .

Msd

... Mss

 (4.29)

where:

Mdd = N
−1
dd + N

−1
dd Nds (Nss − NsdN

−1
dd Nds)

−1︸ ︷︷ ︸
N∗−1

NsdN
−1
dd (4.30)

Mds = N
−1
dd Nds (Nss − NsdN

−1
dd Nds)

−1︸ ︷︷ ︸
N∗−1

(4.31)

Msd = − (Nss − NsdN
−1
dd Nds)

−1︸ ︷︷ ︸
N∗−1

NsdN
−1
dd (4.32)

Mss = (Nss − NsdN
−1
dd Nds)

−1︸ ︷︷ ︸
N∗−1

(4.33)
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A proof of the matrix inversion method is given in Appendix B. The solution for
βs is now found inserting the expressions for Msd from Eq. (4.32) and Mss from
Eq. (4.33) into Eq. (4.28).

β̂s = Msdud + Mssus

= −N∗−1NsdN
−1
dd ud + N∗−1us

= N∗−1 (us − NsdN
−1
dd ud)︸ ︷︷ ︸

u∗

= N∗−1u∗

(4.34)

which is a solution for β̂s without solving β̂d. As an alternative to the derived
formula (4.34) it is possible to compute β̂s making use of a corrected or reduced
inverse covariance matrix Σ∗−1

yy
. Looking back at Eq. (4.28) one get:

β̂s = N∗−1u∗ = (Nss − NsdN
−1
dd Nds)

−1(us − NsdN
−1
dd ud) =

(XT
s
Σ−1

yy
Xs − XT

s
Σ−1

yy
XdN

−1
dd XT

d
Σ−1

yy
Xs)

−1·
(XT

s Σ−1
yy y − XT

s Σ−1
yy XdN

−1
dd XT

d Σ−1
yy y) =

[XT
s

(Σ−1
yy

− Σ−1
yy

XdN−1
dd XT

d
Σ−1

yy
)︸ ︷︷ ︸

Σ
∗−1
yy

Xs]
−1·

XT
s

(Σ−1
yy

− Σ−1
yy

XdN
−1
dd XT

d
Σ−1

yy
)︸ ︷︷ ︸

Σ
∗−1
yy

y =

β̂s = [XT
s
Σ∗−1

yy
Xs]

−1 · XT
s
Σ∗−1

yy
y

(4.35)

So changing the a priori covariance matrix to:

Σ∗−1
yy

= (Σ−1
yy

− Σ−1
yy

XdN
−1
dd XT

d
Σ−1

yy
) (4.36)

makes it possible to find the solution for the parameters in β̂s in Eq. (4.34) or
Eq. (4.35), and nevertheless account for the effect of the deterministic part of the
model, using a classical least-squares algorithm.
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4.2.1 Normalised Spectral Values

Accounting for the effect of the deterministic model, spectral estimates S∗
k , may

be found handling the reduced normal matrix N ∗ in two different ways. Craymer
[1998] denotes the methods as independent and simultaneous spectral estimations.

Simultaneous spectral estimation

First compute N∗ which is diagonal only in the case when Fourier frequencies
are chosen. Then invert the total N∗ to find N∗−1 = Σβ̂sβ̂s

. To avoid singularity
problems, care must be taken for the choice of frequencies. Spectral estimates
S∗

k for frequency k are found, picking two corresponding elements from the β̂s-
vector, alternatively the easier computable u∗-vector and the (2·2) quadratic block
element from the N∗−1-matrix

S∗
k

(1·1)

= (β̂s)
T
k

(1·2)

(N∗)k
(2·2)

(β̂s)k
(2·1)

= u∗
k

T

(1·2)

(N∗−1)k
(2·2)

u∗
k

(2·1)

(4.37)

The relation with other frequency components is accounted for during the inver-
sion of N∗, thus this method is denoted simultaneous or in-the-context spectral
estimation. Normalised spectral values, always between zero and one are found
dividing this value at the reduced OWSS (that will be introduced in Eq. (4.41)):

S∗
k−norm =

S∗
k

yTΣ∗−1
yy

y
(4.38)

Independent spectral estimation

An alternative more robust computation of spectral values can be made inverting
only separately picked (2 · 2) quadratic block elements from N . Each spectral es-
timate is computed without concerning correlations with other spectral estimates.
The method is denoted independently or out-of-context spectral estimation.

S∗
k

(1·1)

= u∗
k

T

(1·2)

(N∗
k
)−1

(2·2)

u∗
k

(2·1)

(4.39)

Normalised spectral values:

S∗
k−norm =

S∗
k

yTΣ∗−1
yy

y
(4.40)
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Going backwards, it may be easier to show that the independent estimated spectral
value above is equivalent with the expression in Eq.(4.19). The reduced OWSS in
the denominator of Eqs. (4.40) and (4.38) is:

yTΣ∗−1
yy

y = yT [Σ−1
yy

− Σ−1
yy

XdN
−1
dd XT

d
Σ−1

yy
]y =

yTΣ−1
yy

y − yTΣ−1
yy

XdN
−1
dd XT

d
Σ−1

yy
y =

yTΣ−1
yy

y − (XT
d
Σ−1

yy
y)TN

−1
dd (XT

d
Σ−1

yy
y) =

yTΣ−1
yy y − uT

d N
−1
dd NddN

−1
dd ud =

yTΣ−1
yy

y − β̂T
d
XT

d
Σ−1

yy
XT

d
β̂d =

ε̂T
d
Σ−1

yy
ε̂d

(4.41)

For only one frequency k, the numerator in Eq. (4.40) can also be shown to be
equal to the numerator in Eq. (4.23) and hence the normalised spectral value
found for the Independent Least Squares Spectrum (ILSS) is also equivalent with
a weighted form of variance spectrum from Plag [1988]. The derived spectra in
the simulations in Section 4.4 and in the numerical investigations in Chapter 6 are
all Independent Least Squares Spectra.

4.2.2 Merging effects

In addition to the problem of aliasing, already discussed in Section 2.2.2, there are
some other effects affecting the estimated spectrum which has to be mentioned.

Spectral leakage

Simplifying from a time series of length (L → ∞), to a time series of finite dura-
tion L, will cause some distortions in the Fourier Spectrum called spectral leakage.
Peaks are spread over the frequency domain. Close peaks may be overlapped or
merged together, and side lobes of the original peaks may appear as ghost peaks.
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Spectral resolution

Spectral resolution depends on the length L of the time series [see Abbasi, 1999].
The difference between two frequencies in a Fourier spectrum has to be:

|f1 − f2| >
1

L
(4.42)

to be separated.

Primary, secondary and higher order spectra

The problems mentioned above may appear even more noticeably with trends in
data and the use of LSSA. Investigations of the first or primary estimated spec-
trum may not be enough to give a sufficient picture of a time series frequency
contents. Moving selected parameters for significant frequencies from the pri-
mary spectrum over to the deterministic part of the model, a secondary spectrum
can be estimated. This may reveal some frequencies that are hidden in the pri-
mary estimated spectrum. One should beware of estimation of frequencies in the
secondary spectrum close to frequencies moved to the deterministic part. It will
often cause ill-conditioning and numerical problems.

Finally, a number of significant frequencies have to be chosen. Iterative numerical
routines may compensate for some of the merging effect, caused by correlations
or spectral leakage between spectral values. A simultaneous test of significance,
may be done for the selected choice of frequencies. The result may cause a de-
cision of adding or removing a frequency. In that case the demanding iterative
merging routine computation has to be redone.
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4.3 Iteratively re-weighted least squares estimation

Craymer [1998] describes a procedure for stochastically modelling residuals from
different weighted and unequally spaced time series of observations, based on a
weighted regression model named iteratively re-weighted least squares estima-
tion. A short description of this procedure follows:

Figure 4.1: Iteratively re-
weighted least squares esti-
mation. Figure from Craymer
[1998]

Assume that an optimal functional model is
found. Start with some known a priori (of-
ten diagonal) covariance matrix cov(y) =

σ2Σyy. Make an adjustment and estimate a
normalised spectrum of the residuals. This
spectrum, named the weighted Least Squares
Spectrum (LSS) is derived in Section 4.2. He
denotes the relation u = XTΣ−1

yy
y (analo-

gous to the Fourier Transform) a Least Squares
Transform (LST), which is valid also for a
weighted data-series with gaps. An estimated
ACF for the residuals can be found during an
inverse LST of the normalised weighted LSS.
Using a priori variances combined with the in-
direct estimated ACF, a new full covariance
matrix cov(y) can be generated. This one is
included in a new least squares adjustment, to
estimate a new set of residuals, spectrum and
ACF. The procedure will then be repeated until
the solution for the deterministic model and the
covariance matrix converge to a stable form.
The procedure is illustrated in Figure 4.1.

Investigations by Craymer [1998] on simulated data showed that even for highly
autocorrelated observations, the estimated parameters were not significantly af-
fected. From the conclusion on p.157-158 in Craymer [1998]: Ignoring the corre-
lations was found to have little effect on the results (estimated spectra and model
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parameters) but it significantly increases the computational efficiency. On the
other hand, the use of a priori correlations among the observations generally
gives more realistic estimates of the uncertainties associated with the estimated
model parameters. Ignoring correlations generally results in overly optimistic
estimates of the standard deviations.

4.4 Simulations with non-stationary data

Some simulations have been performed to validate the new written software and
for a detailed study of the theory of spectral analysis used for the non-stationary
data. The simulations have shown that detection of all data jumps and their in-
cludsion in the deterministic part of the model are of vital importance to derive
correct spectra.

4.4.1 Distortions of the Independent Least Squares Spectrum

Several equally weighted time series, more than three years long have been cre-
ated. The values chosen for the synthetic series are typical for the later investiga-
tion of CGPS data. The time array that is used with gaps included is identical to
the one from the Norwegian series trh3 of station Trondheim. Observations have
been derived from the function:

f(t) = β0 + β1t +
3∑

j=2

βjh(t − tβj
) +

2∑
k=1

Aksin(2πfkt + φk) + ε(t) (4.43)

The first three terms are identical to the definitions from the model in Eq. (3.40).
The fourth term represents two wave components as described in Eq. (2.16)
with ωk = 2πfk. The last term ε(t), is independent Gaussian white noise from
a N(0, σ2

ε )-distribution. Values used to form different synthetic time series are
listed in Table 4.1. As an example, the synthetic time series used for the two first
simulations sim01 and sim02 includes all parts of Eq.(4.43) except for the noise
term. The series is plotted in Figure 4.2. Except for the missing jump effect, the
synthetic series used for the simulation sim03 is identical to the one used for sim-
ulation sim01 and so on. An identical series to the one in Figure 4.2, except for
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Table 4.1: Simulated time series

Synthetic time series (2000JAN01-2003APR26)
Par: β0 β1 β2 tβ2

β3 tβ3
f1 A1 φ1 f2 A2 φ2 σε

unit⇒
name⇓ mm mm

y
mm y mm y c

y
mm rad c

y
mm rad mm

sim01 -10000 5 40 2001 -30 2002 1 3 0 2 5 − π
2

sim02 -10000 5 40 2001 -30 2002 1 3 0 2 5 − π
2

sim03 -10000 5 1 3 0 2 5 −π
2

sim04 0 0 1 3 0 2 5 −π
2

sim06 -10000 5 200 2001 -100 2002 1 3 0 2 5 − π
2

sim07 -10000 5 40 2001 1 3 0 2 5 − π
2

sim08 -10000 5 40 2001 -30 2002 1 3 0 2 5 − π
2 2
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Figure 4.2: Synthetic noise free time series used for simulations: sim01 and
sim02.
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Figure 4.3: The synthetic time series with noise used for simulation: sim08. The
series sim08 are identical to sim01 in Figure 4.2, except for the noise added from
a N(0, 4)-distribution.
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Table 4.2: Parameters solved for in the deterministic model under the LSSA
Parameters in det. model

Par./name β0 β1 β2 β3

sim01 * *
sim02 * * * *
sim03 * *
sim04 * *
sim06 * * * *
sim07 * *
sim08 * *

noise added from a N(0, 4)-distribution is plotted in Figure 4.3 and used in sim-
ulation sim08. Several deterministic models are used in the investigations. The
parameters included and solved for in the various deterministic models are listed
in Table 4.2. The resulting spectra are shown in Figures 4.4 to 4.7.

Interpretation of LSSA-simulations

Simulation sim01 illustrates the situation of two jumps in data which is not in-
cluded and solved for in the deterministic model. The depicted ILSS is shown
on the left-hand side of Figure 4.4. The resulting spectrum is completely useless.
The same happens with the ILSS from simulation sim07 shown in the right-hand
side of Figure 4.6. One jump , β2 at time tβ2 was used when the synthetic time se-
ries was created, but not solved for in the deterministic under the ILSS estimation.
The resulting spectrum indicates somehow the two periods, but they are more or
less distorted.

For simulations sim03 and sim04, Figure 4.5 shows that the LSSA method has
detected the annual and semi-annual periods very well, independent of values
chosen for β0 and β1 in the synthetic series, that distinguishes the two simula-
tions. A small distortion can be seen for long periods. The problem increases if
the data series includes jumps as shown for sim02 in the right-hand part of Fig-
ure 4.4 and for sim06 in the left-hand part of Figure 4.6. A deterministic model
containing two jump parameters β2 and β3 at times tβ2 and tβ3 was used for these
estimations. The annual and semi-annual periods can still be precisely detected,
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Figure 4.4: ILSS, simulations sim01 andsim02
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Figure 4.5: ILSS, simulations sim03 and sim04

but the spectra for long periods show some larger distortions. However, the dis-
tortion is independent of the jump values which differs from the synthetic series
sim02 and sim06. The series sim08 is identical to sim02, except that noise from
a N(0, 4)-distribution is added. The spectrum in Figure 4.7 shows that annual and
semi-annual periods still seem to be precisely detected almost unaffected by the
noise, but this ILSS also has distortions for low frequencies.

The simulations have shown that the choice of a correct deterministic model when
computing the ILSS is of vital importance. An insufficient selected number of
jumps or steps in the deterministic model will completely destroy the ILSS as in
sim01 and sim07. Even if jump parameters are included precisely in time, some
distortion are found in the lower frequency band (long periods) as shown in the
spectra for sim02 in Figure 4.4 and sim06 in Figure 4.6. The distortion may be
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Figure 4.6: ILSS, simulations sim06 and sim07
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Figure 4.7: ILSS, simulation sim08

explained by correlations between estimates for the spectral values and jump pa-
rameters and will be further investigated in Subsection 4.4.3. A small distortion or
spectral leakage can also be seen in the spectra for the jump free series sim03 and
sim04 in Figure 4.5. This probably belongs to the correlations between the linear
trend and long period wavelengths. However, the investigations have shown that
care must be taken when selecting the spectral values to be estimated, especially
in the low frequency band.

4.4.2 ILSS-distortions caused by jumps

A strict proof is not shown here, but an explanation of why undetected jumps in
data completely destroy the spectrum will be given. The main advantages of the



80 Chapter 4 . Spectral analysis of non-stationary data

� �

� � � � � �

� � � � � � � � � � � � 	 
 � � � � � � � 
 � � � � � � 	 
 �

 � 
 � � 
 � � � � � � � � � � � 
 � � 
 � � 
 � � � � � �

� � � � � �� � � � � 	 
 �

Figure 4.8: Synthetic time series of observations

VS and LSSA methods are their handling of correlations between parameter esti-
mates in the deterministic and the stochastic parts of the model. To simplify this
explanation we will disregard these correlations for a while. This can be done be-
cause simulations in Subsection 4.4.1 have shown that this correlation influence is
a lot smaller than the effect of a missing jump in the model which is pointed out
here. Consequently, in this explanation, a technique will be used which removes
the trend before the spectrum computation.

Consider a noise free equally spaced synthetic time series with sampling inter-
val dt and length L has been created using the parameters, const = 0, slope = a

and one jump = b at time t = L/2. A plot of such a series is shown in Figure
4.8. Assume that a correct 3-parameter model with parameters const, slope and
jump at the time t = L/2 was used. After an adjustment, basically no frequency
components should fit the remaining residuals which would all be zero. Missing
the fact that the time series contains a jump, an incomplete 2-parameters model
will be used. As can be seen in Figure 4.8, the two estimated parameters const and
slope in found from a least squares fit using such a model would both be zero. Re-
maining residuals after the adjustment, using this model, would then be just like
the original data. A best fit of periodic components, in the least-squares sense,
to the residuals using this incomplete deterministic model will be explained. In
the fit of a sequence of sine waves Asin(ωt), simplified by setting the phase to
zero, this includes only two variables: the angular frequency ω and the amplitude
A. In this process one is looking for the values of A and ω which give the lowest
estimated sum of squares or alternatively the minimum reference variance. New
residuals will be the deviations between the observations in the y-vector, simu-
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Figure 4.9: Illustration of the Sum of Squares = SS in Eq.(4.44) (= The residuals,
squared and then summed).

lated by the functions y(t) = at or y(t) = at − b, and the variable sine wave
sequence Asin(ωt), see Figure 4.9. In the special case, when a jump occurs at
time t = L/2, the sum of squares is:

SS =

t= L
2∫

t=0

(at − Asin(ωt))2dt +

t=L∫
t= L

2

(at − b − Asin(ωt))2dt (4.44)

Looking for a minimum, extreme values may be found, taking the partial deriva-
tives of the integral solution in Formula (4.44) and setting them equal to zero:

∂SS(A, ω)/∂A = 0 (4.45)

∂SS(A, ω)/∂ω = 0 (4.46)

Omitting the mathematical problems to solve the integration, it may be easier
to see graphically that an optimal fit of a wave to this data in a least-squares
sense is found when the wavelength is approximately equal to L, see Figure 4.10.
Note that the estimated amplitude for such a fitted (false) wave would be less
than half of the jump size, provided that the jump missed in the deterministic
model appears at time t = L/2. A wavelength of L corresponds to ω = 2π/L

which is known as the fundamental frequency or the lowest frequency that can be
found in a time series. The conclusion is not unexpected: Using an incomplete
deterministic model caused by unidentified jumps will give large distortions in the
lower frequency band or for long periods in the ILSS.
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Figure 4.10: Least Sum of Squares .

4.4.3 Jump detection and correction before LSSA

The simulations in Subsection 4.4.1 have shown:

• The importance of detecting all possible jumps before the estimation of a
spectrum.

• Distortions for low frequencies, probably caused by correlations between
parameter estimates of jumps, linear trend and spectral values for low fre-
quencies.

In this Subsection some further simulations will be done to demonstrate the jump
detection procedure described in Section 3.3 and also show the changes of the
estimated ACF through different phases of model improvement. The possibilities
of correcting the time series for the effect of jumps before the LSSA will be in-
vestigated. The purpose is to improve the estimation of spectral values for low
frequencies. Using synthetic time series with periodic components , it is clear that
jump times and sizes found during the procedure will be different from the true
values which generated the synthetic series. A procedure for this investigation
will be:

1. Make a synthetic series with the function in Eq.(4.43).

2. Detect jump times tβj
and jump size estimates β̂j as described in the proce-

dure in Section 3.3.
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3. Remove the effect of jumps from the real series using:

y(t)new = y(t)old −
njump+1∑

j=2

β̂jh(t − tβj
) (4.47)

4. Do a new LSSA with the jump free data series and evaluate the differences
with ILSS from Subsection 4.4.1 using models including jump parameters.
The differences in the low frequency band may give particularly interesting
results.

The synthetic series sim02 containing parameters for constant term, linear trend,
jumps at times tβ2 = 2001 and tβ3 = 2002 and annual and semi-annual frequency
components will be investigated. For parameter values, see Table 4.1 and Figure
4.2. These computations for five different models are denoted sim12-sim16.

sim12

A deterministic model containing only two parameters, a constant term and linear
trend was used. The left-hand side of Figure 4.11 shows the estimated ACF of
normalised residuals. It indicates very large ACF-values using this temporary or
incomplete model. The method explained in Section 3.3 have been used to detect
jumps. The upper part of the right-hand side of Figure 4.11 shows the possible
reference variance reduction for a single new jump inserted to each epoch for the
whole time series. The maximum reduction was correctly found on 1 January
2001. Introducing a jump parameter at this point in time would reduce the sum
of squares or the reference variance with more than 80 percent. The red coloured
line in the lower part of the right-hand side of Figure 4.11 shows the estimated
jump value for all epochs. However, the size of jumps is computed incorrectly i.e.
a value of more than 50 mm on 1 January 2001, and a negative value of about 45

mm for a jump around turn of the year 2001 and 2002. The correct jump sizes as
used in the synthetic series are: β2 = 40 mm and β3 = −30 mm.

sim13

One jump parameter at time 2001.0000 was added to the earlier deterministic
model from sim12. Estimated ACF and results from a new jump detection are



84 Chapter 4 . Spectral analysis of non-stationary data

0 50 100 150 200 250 300 350
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Estimated ACF and Confidence limits of +/−2 st.dev. for the series sim12H

lags in days (k)

E
st

im
at

ed
 A

C
F

(k
)

ACF(k)

Confidence limits: +/− 2 S
ACF(k)

2000 2000.5 2001 2001.5 2002 2002.5 2003
0

20

40

60

80

Variance reduction , time: series sim12.H01

maximum reference variance reduction at time:  2001.0021 = 2001jan01

%
 V

ar
ia

nc
e 

re
du

ct
io

n

2000 2000.5 2001 2001.5 2002 2002.5 2003

−60

−40

−20

0

20

40

60

80
 red: estimated jump parameters, blue: Confidence interval Iimits [mm] 

time

C
I−

lim
its

:  
4.

0 
tim

es
 e

st
. s

t.d
ev

. 

2001−jan−01

Figure 4.11: Estimated ACF of normalised residuals and results of jump detection
for simulation sim12.
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Figure 4.12: Estimated ACF of normalised residuals and results of jump detection
for simulation sim13.

shown in Figure 4.12. The estimated ACF function decreases faster and values
are lower than for Sim12. The second jump has been correctly detected 1 January
2002. Adding such a new jump parameter at time 2002.0000 will reduce the new
reference variance by approximately 65 percent.

sim14

The model was extended with a second new jump parameter inserted at time
2002.0. Data, fitted model, estimated jumps and remaining residuals are shown in
Figure 4.13. The estimated jump sizes β̂2 = 44.6 mm and β̂3 = −23.9 mm should
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Figure 4.13: In the upper plot: Observations and Fitted model, in the middle:
Estimated jumps and the lower plot: remaining residuals for series sim14.

be compared to the true input values in the simulation β2 = 40 mm and β3 = −30

mm. Figure 4.14 shows the estimated ACF of normalised residuals and the result
of a new possible jump detection. Again estimated ACF has decreased. The jump
detection plot gives rise for concern. The plot shows a reference variance reduc-
tion of almost 40 percent inserting a new jump parameter at time 2003.0856. In an
analysis of real data, this may be one of the pitfalls. Making the mistake to model
such erroneous jump will probably introduce errors in ILSS.

In order to investigate the influence on LSSA, the data were (incorrectly) adjusted
with the effect of the estimated jump parameters β̂2 = 44.6 mm and β̂3 = −23.9

mm found using Eq. (4.47). The resulting estimated ILSS is shown on the left-
hand side of Figure 4.15 (sim24). The distortion for long periods was somehow
reduced compared to the estimated spectrum sim02 shown in Figure 4.4. The
differences between the incorrect estimated jump parameters in β̂ and their real
values cannot be found in a real situation. To compare this effect in the spec-
trum an ILSS was computed using true values β2 = 40 mm and β3 = −30 mm
(sim25). The results are shown on the right-hand side of Figure 4.15 and as it
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Figure 4.14: Estimated ACF of normalised residuals and results of jump detection
for simulation Sim14.
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Figure 4.15: ILSS for series corrected for jump estimates: sim24 (left) and real
jump values sim25 (right).

was expected, these results are then comparable to the situations from sim03 and
sim04 with spectra shown in Figure 4.5.

sim15

To show the further behaviour of the estimated ACF, a model containing parame-
ters as in sim14 plus parameters for only an annual period were fitted to the data.
The results are shown in Figure 4.16.
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Figure 4.16: Estimated ACF of normalised residuals and fitted model for simula-
tion sim15.

sim16

The result of LSSA of the series sim14 showed two significant periods, so the
final chosen deterministic model includes parameters for:

• constant term

• linear trend

• jumps at times tβ2 = 2001.0000 and tβ3 = 2002.0000

• annual and semi-annual frequency components

The results are shown in Figure 4.17. All parameters were estimated exactly equal
to true values. The remaining residuals are all very close to zero. The estimated
ACF are almost, but not exactly, zero for all lags k 	= 0. Small estimated ACF
are probably caused by some numerical instabilities when all residuals are close
to zero.

sim17

A last simulation has been performed as in the case sim16, but with noise from
a N(0, 4)-distribution added to the synthetic series as shown in Figure 4.3. The
results are shown in Figure 4.18. Estimated parameters largely agree with the true
values.
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Figure 4.17: Estimated ACF of normalised residuals and fitted model for simula-
tion sim16. (Noise free time series)
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Figure 4.18: Estimated ACF of normalised residuals and fitted model for simula-
tion sim17. (Time series with noise)

Summary

• Using an incomplete model generates rather large ACF estimates.

• The estimated ACF decreases successively through stepwise model improve-
ment.

• Residual diagnostics such as tests for goodness-of-fit or (linear) dependen-
cies cannot be done before the best possible model is found.



Chapter 5

Principal component analysis

Principal Components Analysis (PCA) is often mentioned as one specific method
in the more general theory of Factor Analysis. In PCA, the data is not restricted
to be normally distributed, which is a great advantage compared to other meth-
ods. PCA is commonly known as Empirical Orthogonal Function (EOF) analysis
in oceanography [Emery and Thomson, 2001]. The main purpose of PCA is of-
ten to consider a data reduction. In an expanded sense, the idea can be used to
determine and investigate influences from a few extracted common modes or fac-
tors that contribute most to the variance of the time series. Understanding the
relations between the original variables and these factors may give valuable con-
tributions to model improvements. A transformation from the time series to their
frequency representations was focused on in spectral analysis. For the multivari-
ate PCA analysis of CGPS data another linear transformation is sought. That is
a transformation in the multi-dimensional orthogonal space, to determine the di-
rections of maximum variance. The coefficients expressing these linear relations
or rotations, are given by another set of orthogonal base functions than those in
the Fourier transform. These are the eigenvector elements found from a spectral
decomposition of the sample covariance matrix of the original series. Because the
covariance matrix is computed from the sample, the eigenvector elements are said
to be found empirically. They are commonly denoted as Empirical Orthogonal
Functions, and the method is termed EOF analysis. The time series representation
related to the new set of (principal) axes is denoted the time series of amplitudes.
From a statistical point of view these series represent the principal components or
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modes. A complete reconstruction from the amplitudes to the original time series
is possible with the inverse transformation.

Suppose that we have a set of p-dimensional stochastic variables in X . Typi-
cally the stochastic variables will be represented by a p-dimensional sample of n

observations, e.g. as a p-dimensional time series of length n. Thus parameters
such as means, variances and covariances can be estimated from the values of the
observations. Assume now that this sample contains some common variation rep-
resenting one or more common modes. Information about such common modes
will be hidden in the covariance or correlation structure of the p variables. The
idea behind PCA is to express a new set of p stochastic variables Y or Principal
Components, that expresses possible modes as uncorrelated linear combinations
of the original variables X . As in Fourier Analysis, the linear combinations ex-
pressing the relation between X and Y , will be represented by a set of orthogonal
basis functions. However, the j-th orthogonal function searched in PCA will be
the one that maximises the variance of Yj. These orthogonal functions will be
collected in a square orthogonal matrix and sorted after the magnitudes of their
variances in descending order. This matrix can be interpreted as an operator or
a orthogonal transformation matrix that represents the transformation from a p-
dimensional X-space to a p-dimensional Y -space. It will be shown that the or-
thogonal matrix contains the eigenvectors ej of Cov(X) and their corresponding
eigenvalues λj are the diagonal elements in Cov(Y ). Considering time series rep-
resenting the stochastic variables in X and Y , the PCA will be characterised by
three quantities. First, amplitude time series yj describing the temporal variation
of the j-th mode. Second, eigenvector vectors ej as orthogonal base functions
describing the contribution of this mode to each individual time series xj (and
for the data used in this study, describing the geographical pattern of the mode).
And third, eigenvalues λj quantifying the contribution of this mode to the overall
variance of the data set.

For the moment the distribution of the underlying stochastic variables will be
considered, rather than the particular observations.
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5.1 Theory

Let X = [X1, X2, ...., Xj, ...Xp]
T be a p-dimensional vector of stochastic vari-

ables with expectation vector E(X) = µ = 0

Let the reference variance be σ2 = 1 and Cov(X) = Σ be the covariance matrix
of X:

Σ
(p×p)

=



V ar(X1) Cov(X1X2) . . . Cov(X1Xj) . . . Cov(X1Xp)

Cov(X2X1) V ar(X2) . . . Cov(X2Xj) . . . Cov(X2Xp)
...

...
. . .

...
Cov(XjX1) Cov(XjX2) V ar(Xj) Cov(XjXp)

...
...

. . .
...

Cov(XpX1) Cov(XpX2) . . . Cov(XpXj) . . . V ar(Xp)


(5.1)

Consider linear relations, given by the coefficients in a square matrix

A =


a11 a12 . . . a1j . . . a1p

a21 a22 . . . a2j . . . a2p

...
...

... . . .
...

ap1 ap2 . . . apj . . . app

 = [a1
...a2

... . . .
...aj

... . . .
...ap] (5.2)

between the X-vector and another stochastic vector Y = [Y1, Y2, ...., Yj, ...Yp]
T :

Y
(p×1)

= AT

(p×p)
X

(p×1)



aT
1

aT
2
...

aT
j
...

aT
p


·



X1

X2

...
Xj

...
Xp


=



aT
1 X

aT
2 X
...

aT
j
X
...

aT
p
X


(5.3)

with e.g. : aT
1 X = [a11, a21, ..., ap1]X =

∑p
j=1 aj1Xj .

Applying the LEP, from Appendix A tp Eq. (5.3), the elements in the covari-
ance matrix of Y is found to be:
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V ar(Yj) = aT
j
Σaj j = 1, 2, ..., p (5.4)

Cov(Yj, Yk) = aT
j
Σak j, k = 1, 2, ..., p j 	= k (5.5)

or

Cov(Y )
(p×p)

= AT
ΣA =



aT
1
Σa1 aT

1
Σa2 . . . aT

1
Σaj . . . aT

1
Σap

aT
2
Σa1 aT

2
Σa2 . . . aT

2
Σaj . . . aT

2
Σap

...
...

. . .
...

aT
j Σa1 aT

j Σa2 aT
j Σaj aT

j Σap

...
...

. . .
...

aT
p Σa1 aT

p Σa2 . . . aT
p Σaj . . . aT

p Σap


(5.6)

The uncorrelated linear combinations of Yj ; j = 1, 2, .., p are searched, whose
variances are as large as possible. The variance in Eq. (5.4) can be increased by
multiplying any aj by some constant, so the maximum has to be reached under
some constraints to the aj-vectors. Bounding the scalar aT

j
aj to be one is equiv-

alent to claim the vectors aj(j = 1, 2, ..., p) to be of unit length.

5.1.1 Definition of principal components

The first principal component is defined as the linear combination PC(1) = Y1 =

aT
1 X that maximises V ar(Y1) subject to aT

1 a1 = 1. This constrained maximi-
sation problem could be solved using Lagrange multipliers, considering the main
function:

m(a1, λ) = aT
1 Σa1 − λ(aT

1 a1 − 1) (5.7)

and use matrix derivation:
∂m

∂a1
= 2(Σ − λI)a1 (5.8)

and set this expression equal to the zero vector one gets:

(Σ − λI)a1 = Σa1 − λa1 = 0 (5.9)

This expression frequently turns up in the matrix theory and states that:
a1 is an eigenvector of Σ corresponding to to the eigenvalue λ
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The second principal component is the linear combination PC(2) = Y2 = aT
2 X

that maximises V ar(Y2) subject to the two restrictions, aT
2 a2 = 1 and Cov(Y1, Y2) =

aT
1 Σa2 = 0, and so on. Thus all inner products are restricted to:

aT
j
aj = 1 j = 1, 2, ..., p (5.10)

aT
j
ak = 0 j, k = 1, 2, ..., p j 	= k (5.11)

which ensure all column vectors of A to be orthogonal and even also orthonormal,
and thus A becomes an orthogonal matrix. Orthogonal matrices have some special
useful properties [see Kreyszig, 1999, among others]. If A is orthogonal, then
AT = A−1 so

AAT = I = ATA (5.12)

which means that both the row vectors and column vectors in A are orthogonal
and thus AT is also an orthogonal matrix.

The AT -matrix may be interpreted as an operator that transforms points given
in an p-dimensional orthogonal coordinate system X to another p-dimensional
orthogonal coordinate system Y. The relations between directions in the two or-
thogonal systems X and Y are given by the elements in the transformation matrix
AT . An orthogonal transformation does not include shifts or scale changes, these
relations include rotations only. The characteristics of PCA is the choice of Y -
axis in directions with maximum variability to provide a simpler description of
the covariance structure.

5.1.2 Spectral decomposition

The covariance matrix

Let λ1 > λ2 > . . . > λj > . . . > λp > 0 be the eigenvalues of descending order
of the positive definite symmetric quadratic covariance matrix Σ, and
e1, e2, . . . , ej, . . . , ep their corresponding normalised eigenvectors. Then it can
be shown that [see Johnson and Wichern, 1998, p.81-84]:
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max
aj �=0

(
aT

j
Σaj

aT
j
aj

)
= λj when aj = ej (5.13)

so then we find for j = 1, 2, ..., p:

V ar(Yj) = max
aj �=0

(
aT

j
Σaj

aT
j

aj

)
= λj and

Yj = PC(j) = eT
j
X

(5.14)

Collecting the eigenvalues of descending order in a square diagonal matrix:

Cov(Y ) = Λ =


λ1 0 . . . 0

0 λ2 . . . 0
...

... . . . ...
0 0 . . . λp

 (5.15)

and their corresponding normalised eigenvectors in a matrix:

E = [e1
...e2

... . . .
...ej

... . . .
...ep], and then using the LEP from Appendix A on

Y = ETX one gets:

Λ = ETΣE (5.16)

Because both the column and the row vectors in E are orthogonal, and of unit
length we have: EET = ETE = I and thus the E-matrix is orthogonal and

Σ = EΛET =

p∑
j=1

λjeje
T
j (5.17)

The last terms are also known as the spectral decomposition of Σ [see Johnson
and Wichern, 1998, p. 104].

The total population variance is:
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p∑
j=1

V ar(Xj) = tr(Σ) = tr(EΛET ) =

tr(ΛETE) = tr(Λ) =

p∑
j=1

V ar(Yj)

(5.18)

The part of the total variance explained by the j-th principal component is:

λj

λ1 + λ2 + ... + λj + ... + λp

=
λj∑p
j=1 λj

j = 1, 2, ..., p (5.19)

The accumulated value of the first few λ’s, is of great interest, considering a vari-
able reduction. If most of the total population variance can be attributed to a
few, let us say q components, then these components can replace the original p

variables without much loss of information. The elements in the eigenvectors
ej = [e1j , e2j , ..., ekj, ..., epj]

T also have an interpretation. The magnitude of ekj

measures the importance of the k-th variable to the j-th principal component irre-
spective of the other variables.

The inverse covariance matrix

If the inverse covariance matrix Σ−1 is available, it is not necessary to make an
inversion to find the eigenvalues and eigenvectors. For a positive definite Σ and
an eigenvector e 	= 0 one obtains:

Σe = λe =⇒ Σ−1e =
1

λ
e (5.20)

So the eigenvalue-eigenvector pair (λ, e) for Σ corresponds to the eigenvalue-
eigenvector pair ( 1

λ
, e) for Σ−1 and thus the spectral decomposition of Σ−1 is:

Σ−1 = EΛ−1ET =

p∑
j=1

1

λj
eje

T
j (5.21)

A proof is given in Johnson and Wichern [1998].
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5.1.3 Loadings

To visualise the contribution from common factors, the elements in the normalised
eigenvectors corresponding to the largest eigenvalues can be investigated. Alter-
natively another version, scaled with the root of the corresponding eigenvalues is
often used. They are denoted factor loadings, component loadings or only load-
ings and is defined as:

L
(p·p)

=

[√
λ1e1

...
√

λ2e2
... . . .

...
√

λqeq

... . . .
...
√

λpep

]
⇔ LLT = Σ (5.22)

The loadings reflect the contribution from the original variables on the PC’s. Ac-
cepting a small loss of information, it is then possible to explain the covariance
structure of the original p variables in terms of just a few (q < p) new variables or
common factors. If the last (p − q) eigenvalues are small, the contributions from
the (p − q) last columns of L, can be neglected and the covariance matrix can be
approximated with L

(p·q)
LT

(q·p)
.

5.1.4 Statistical modes

For a choice of q = p statistical modes in Y one gets:

Y
(p·1)

= ET

(p·p)
X
(p·1)

(5.23)

and because E is an orthogonal matrix, a complete reconstruction of the original
variables X from the statistical modes is possible with:

X
(p·1)

= E
(p·p)

Y
(p·1)

(5.24)

Extracting only a few q < p of the modes can easily be done, using only the
eigenvectors corresponding to the q largest eigenvalues:

Y (q)

(q·1)
= ET

(q·p)
X
(p·1)

(5.25)
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The effect on the original variables, only from the first q selected modes, inter-
preted as a common mode signal can be found as:

X(q)

(p·1)
= E

(p·q)
Y (q)

(q·1)
(5.26)

5.2 Data application and interpretation

The principle of PCA can be explained analogously to Fourier Analysis. In Fourier
Analysis, a finite length time series can be completely reproduced using a linear
summation of sines and cosines as in Eq. (2.21). Because the principle of Fourier
Analysis is to determine the contribution of periodic components in the data, dif-
ferent frequency components expressed in sin and cos terms are fitted to the data.
To ensure the basis functions sin(ωkt) and cos(ωkt) becoming orthogonal, only
equidistant angular frequencies (Fourier frequencies) are chosen. This makes it
possible to solve each Fourier coefficient independent of the others. The ampli-
tudes computed from the Fourier coefficients measures the frequency contribution
in the data. Using matrix notation, the basis functions are commonly used in the
columns of a coefficient matrix as in Eq. (4.11). In PCA, the frequency content is
not focused. Another set of orthogonal basis functions, the set that can explain the
largest variance contribution is searched. The eigenvectors in E represents such
orthogonal functions.

Now data series will be introduced as samples for the stochastic variables in Eq.
(5.23). Assume a data matrix X̃

(p·n)
with p rows of observation series, each of length

n. To satisfy the model assumptions E(X) = 0, the X̃-matrix now represents,
the data after their row-means have been subtracted, so that the row totals of X̃

are all zero. In practise Cov(X) is often unknown. It is common to estimate
Cov(X) by the sample covariance matrix S as:

S =
X̃X̃T

n
or Sunbiased =

X̃X̃T

n − 1
(5.27)

in which case one finds the estimates:
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λ̂j of λj and êj of ej (5.28)

to be placed in Λ̂ and Ê. The orthogonal functions in the columns of Ê are found
an empirical way, thus they are denoted Empirical Orthogonal Functions, which
explains why PCA also is also known as EOF analysis. With the relation:

Ỹ
(p·n)

= ÊT

(p·p)
X̃

(p·n)
(5.29)

the p series of length n in Ỹ
(p·n)

can be found, which also has an interpretation.

Analogous to the theory of Fourier Analysis, they are often denoted the series of
amplitudes representing each statistical mode. A complete reconstruction of the p

observation series is possible when using all p linear combinations of the ampli-
tude series.

X̃
(p·n)

= Ê
(p·p)

Ỹ
(p·n)

(5.30)

5.3 Model validation

Assume the common mode signals from two separately performed PCAs, recom-
puted to effects influencing each of the original variables. Consider these effects
represented in two data matrices, X̃

(q)
and Z̃

(q)
of the form:

X̃
(p·n)

(q)
=



x11 x12 . . . x1k . . . x1n

x21 x22 . . . x2k . . . x2n

...
...

... . . .
...

xj1 xj2 . . . xjk . . . xjn

...
...

... . . .
...

xp1 xp2 . . . xpk . . . xpn


=



x1

x2

...
xj

...
xp


(5.31)

In order to compare the effects from different PCAs, regression coefficients γj can
be estimated for the corresponding p series of n observations in the rows of each
data matrix. The matrix form of least squares models, handling the row vectors
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xj in X(q) as observations and the row vectors zj in Z(q) as predictors is:

xj = zjγj + εj for j = 1, 2, . . . , p (5.32)

εj are vectors of independent identical distributed errors. Minimising the sum of
squared errors leads to the least squares estimators for the scalar γj:

γ̂j = (zT
j
zj)

−1zT
j
xj (5.33)

Another factor for a comparison is the correlation coefficients ρ̂j computed from
the series xj and zj. However, for zero mean time series in zj and xj, ρ̂j and γ̂j

are related through:

ρ̂j = γ̂j

√
s2

zj

s2
xj

(5.34)

where s2
zj

and s2
xj

are the sample variances from the series zj and xj respectively.

5.4 Normalised data

Sometimes data series appear to be of different length, variability, or even of dif-
ferent units. Variables of great variability may dominate a PCA. Normalising the
data to have unit variances before the analysis implies that the variables are to be
of equally importance or gives them equal weights. For normalised data, the co-
variance matrix S then becomes identical with the correlation matrix R. However,
it is important to realise that the eigenvalues and eigenvectors of R is generally
not the same as those of S.
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Chapter 6

Numerical investigations

6.1 The Norwegian CGPS network

Several CGPS data sets for the numerical investigations analysed in this study are
obtained from NMA. A preliminary data description is given in Subsection 1.4.1.
The data anaysis, in the first step, was a very time-consuming work [See also
Haakonsen and Nahavandchi, 2003]. Based on the different analysis and tests it
was decided to choose the third Norwegian data set, which is assumed to be the
best one, for further analysis. These are series from 14 stations from the Nor-
wegian network of permanent GPS stations, “SATelittbasert REFeransesystem”
(SATREF) of fairly various lengths, and include several intervals of missing data.
To avoid confusion, the new series were renamed. The new and the official station
abbreviation (four letters) used on the Norwegian CGPS data are listed in Table
6.1 together with the complete station names. A map with locations of the sites
in this data set is shown in Figure 6.1. In the following subsections the different
steps of model improvement will be performed for univariate series as illustrated
in Figure 1.1 see also [Haakonsen and Nahavandchi, 2004]. The time series re-
maining after outlier detections to be used for final model fits are shown in the
upper plots of Figures 6.15 to 6.35
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Figure 6.1: Map with locations of the Norwegian sites

6.1.1 Jump detection

The data series to be analysed revealed some rather large unexpected jumps (off-
sets or shifts). Such jumps can be explained by incidents, known or unknown in
time and quantity. Coordinate offsets may be introduced by all changes in the
antenna configuration or the up-grading of the receiver software [see Scherneck
et al., 1998] and for some examples due to changes in the radome. The selec-
tion of the correct number of, and time for possible offsets in the data series was
shown to be of vital importance, especially for the later spectral analysis. Some
of them are introduced because of known incidents at the specific sites. Others
are inexplicable, but were detected by the use of the jump detection procedure
described in Section 3.3. The jump detection procedure was executed for each
series isolated. There is reason to believe that if a jump appears in one direc-
tion, jumps are also expected at the same time for the other two directions for a
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Table 6.1: Table of station names, official and renamed abbreviations of the Nor-
wegian CGPS data

Site Official New abbr.
Andøya 1 ande an3e
Andøya 2 ando an3o
Bergen berg ber3
Bodø bodo bod3
Dagali dags dag3
Dombås doms dom3
Kristiansand kris kri3
Oslo oslo osl3
Stavanger stav sta3
Trondheim tron trh3
Tromsø 2 trom trm3
Tromsø 1 tro1 tro3
Trysil trys try3
Vardø vard var3

station. For all computations in this study, identical station-offset files of jump
times are used for all three directions of a station. The method has shown some
weaknesses. Sometimes a second jump with the opposite sign is detected close to
earlier found jumps. A visual control of the series has turned out to be necessary.
In the case of small correlations between estimates of jumps and other parameters,
the estimated variance for each jump value gives a preliminary indication of their
importance. In a later phase, after the final deterministic models have been cho-
sen, time series of normalised residuals can be correlated with the neighbouring
stations, trying to reveal any missed offsets. For several series, an offset around
time: tβ = 2000.0000 was found. A satisfying explanation of this jump time has
not been given. Another small offset around time: tβ = 2000.7338 was located
for some series, but because of the risk of mistaken it for an annual change from
summer to winter, it was considered to be omitted in the further analysis, . The
final selected jump times for the Norwegian CGPS data set are listed in Table 6.2.
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Table 6.2: Table of offset times tβ for the Norwegian CGPS data set

Data series tβ2
tβ3

tβ4

an3o 2000.3285
ber3 1998.7516 2000.0000 2000.2985
bod3 2000.0000
kri3 1998.6300 1999.0938 2000.0000
osl3 2001.0184 2001.0706
sta3 1998.3326 2000.0000
trh3 1998.4723 1998.7214 2000.0000
trm3 1998.8884 2000.0000
var3 1998.4586 2000.0000

A jump detection example

A graphical example of the jump detection procedure described in Section 3.3
is demonstrated in Figure 6.2. Possible jumps in the time series ales.h (Series
representing the vertical component from station Ålesund) from an earlier data
set are investigated. The example shows that estimating a possible new jump in
the data series at time ti = 1997.7605 will reduce the reference variance more than
60 percent (upper plot) and its parameter value will be almost 50 mm (lower plot).
The blue confidence limits around the estimated jump value in the lower plot is
computed as four times the estimated standard deviation for the jump parameter.

6.1.2 Independent least squares spectrum estimation

Determination of the ILSS, may be seen as an early phase of model improvement.
In that context it is desirable to filter out a minimum of observations. The k-factor
used in the outlier detection routine was set to a large value (k = 7), for the estima-
tion of primary ILSS for the time series of the Norwegian CGPS data, Too strong
filtering may impact on the frequency components with large amplitudes, and
some correct observations can erroneously be sorted out. For data series includ-
ing jumps, two different estimations have been made. Strong correlations between
parameter estimates indicate a dangerous situation of over-parameterisation that
also might cause numerical problems. Simulations in Section 4.4 have shown that
jump- and spectral parameters for long periods are strongly correlated. This makes
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Figure 6.2: Jump detection example, time series ales.h.

the spectral estimates sensitive to jumps in the deterministic model as shown in the
simulation part in Section 4.4. The effect of a jump may reflect the corresponding
correlated spectral estimates and destroy the spectrum for long periods and vice
versa. Long periodic components in the data may also be erroneously reflected to
the modelled jump parameters.

For the nine stations with series including one or more jumps, two different de-
terministic models have been used for the estimation of the ILSS. The spectra
in the left-hand side plots of Figures 6.3 to 6.11 are the results from estimations
with deterministic models containing parameters for constant term, linear trend
and jumps as in Eq. (3.3). The spectra in the right-hand side plots of Figures
6.3 to 6.11 are results for which jump sizes for the known jump times from Table
6.2 first were computed, and then their effect was subtracted from the original
time series as illustrated in Eq. (4.47). The spectra are thus estimated from cor-
rected series using deterministic models with parameters for constant term and
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Figure 6.3: Independent Least Squares Spectrum for series: an3o

(left) and an3o corrected for the effect of jumps (right).
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Figure 6.4: Independent Least Squares Spectrum for series: ber3

(left) and ber3 corrected for the effect of jumps (right).

linear trend only. For the rest of the spectra, representing the stations assuming no
jumps in data, deterministic models including parameters for constant term, linear
trend and jumps are used. These spectra are shown in Figures 6.12 to 6.14

Upper three subplots in Figures 6.3 to 6.14 are the normalised residuals after
adjustments. The lower four subplots are respectively LSS for the components
North, East, Height separately and North, East, Height together. The first impres-
sion is that the spectra are rather different. However most of them show domi-
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Figure 6.5: Independent Least Squares Spectrum for series: bod3

(left) and bod3 corrected for the effect of jumps (right).
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Figure 6.6: Independent Least Squares Spectrum for series: kri3

(left) and kri3 corrected for the effect of jumps (right).

nating peaks more or less close to annual periods. Some spectra for the height
components show periods close to the annual and semi-annual, but seem to be
some days short. Further it is not easy to establish any local characteristics. Even
if effects of possible jumps are removed before the estimations, some stations have
dominant periods of more than one year. Except for annual and semi-annual peri-
ods it is not easy to identify common periods in all spectra. However a seasonal
period of three months may be visualised in some series at high latitudes, e.g.
trm3 and an3e. Before a conclusion can be drawn, a more complete discussion
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Figure 6.7: Independent Least Squares Spectrum for series: osl3

(left) and osl3 corrected for the effect of jumps (right).
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Figure 6.8: Independent Least Squares Spectrum for series: sta3

(left) and sta3 corrected for the effect of jumps (right).

of these results will be carried out in the next section.

6.1.3 Final choice of univariate regression models

Using the identity from Eq. (2.18) the periodic or frequency components k can be
expressed as:

Aksin(2πfkt + φk) = Ak [sin(2πfkt)cosφk + cos(2πfkt)sinφk] =

βak
cos(2πfkt) + βbk

sin(2πfkt)
(6.1)
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Figure 6.9: Independent Least Squares Spectrum for series: trh3

(left) and trh3 corrected for the effect of jumps (right).
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Figure 6.10: Independent Least Squares Spectrum for series: trm3

(left) and trm3 corrected for the effect of jumps (right).

with the parameters βak
= Aksinφk and βbk

= Akcosφk. In addition to Eq. (3.3),
a general observation yi with the total number of q jumps and m frequency com-
ponents becomes:

yi = β0 + β1ti +

q+1∑
j=2

βjh(ti − tβj
) +

m∑
k=1

[βak
cos(2πfkti) + βbk

sin(2πfkti)] + εi

(6.2)



110 Chapter 6 . Numerical investigations

1998 1999 2000 2001 2002 2003 2004
−4
−2

0
2
4

S
t. 

re
s.

 N

NORMALISED RESIDUALS   var3

1998 1999 2000 2001 2002 2003 2004
−4
−2

0
2
4

S
t.r

es
. E

1998 1999 2000 2001 2002 2003 2004
−4
−2

0
2
4

 time [years]

S
t.r

es
.H

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.05

0.1

N
S

V
 N

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.05

N
S

V
 E

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.05

0.1

N
S

V
 H

0 100 200 300 400 500 600 700 800 900
0

0.05

0.1

LEAST SQUARES NORMALISED POWER SPECTRUM period [days]   red:N, blue:E, cyan:H

N
S

V
 N

,E
,H

1998 1999 2000 2001 2002 2003 2004
−4
−2

0
2
4

S
t. 

re
s.

 N

NORMALISED RESIDUALS   var3

1998 1999 2000 2001 2002 2003 2004
−4
−2

0
2
4

S
t.r

es
. E

1998 1999 2000 2001 2002 2003 2004
−4
−2

0
2
4

 time [years]

S
t.r

es
.H

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.05

0.1

N
S

V
 N

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.05

N
S

V
 E

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.05

0.1

N
S

V
 H

0 100 200 300 400 500 600 700 800 900
0

0.05

0.1

LEAST SQUARES NORMALISED POWER SPECTRUM period [days]   red:N, blue:E, cyan:H

N
S

V
 N

,E
,H

Figure 6.11: Independent Least Squares Spectrum for series: var3

(left) and var3 corrected for the effect of jumps (right).
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Figure 6.12: Independent Least Squares Spectrum for series: an3e

The choice of the periodic components may be justified from the estimated spec-
tra as well as the expectations that at least annual and semi-annual periods must
be included in the time series of CGPS residuals. The seasonal effect (3 months)
might not be included in the deterministic model. However, the modelling of
spectral parameters as deterministic and not stochastic parameters becomes a ma-
jor advantage here. Using no a priori error properties, no constraints are made to
the adjustment from these parameters. Let us assume the data do not contain a
chosen frequency component, but an attempt is made to model such an effect. For
very small amplitudes in data, the corresponding pair of estimated parameters β̂ak

and β̂bk
will both become very small (Âk =

√
β̂2

ak
+ β̂2

bk
). Removing this small
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Figure 6.13: Independent Least Squares Spectrum for dag3 and dom3
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Figure 6.14: Independent Least Squares Spectrum for tro3 and try3

effect from the original series will hardly make any difference to the remaining
time series of residuals, that later will be used as input in a PCA for the Norwe-
gian network.

The analysis of univariate time series of the Norwegian network chose final deter-
ministic models including parameters for:

• β0; constant

• β1; linear trend

• β2-β(q+1); The number of q offsets, and times from Table 6.2.

• βak
and βbk

representing m = 3 periodic components of one, two and four
cycles per year. (f1 = 1, f2 = 2, f3 = 4)
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to be included in a parameter vector β and solved in the final weighted regression
matrix model:

y
(n·1)

= X
(n·(2+q+2m))

β
((2+q+2m)·1)

+ ε
(n·1)

(6.3)

Results are shown in Figures 6.15 to 6.35. In the upper plots, the observations (as
points) and the fitted models (curves). If jumps are estimated, they are shown as
bars in the middle plots. (Software errors in a plot routine of Matlab gave con-
fusing various width for the bars, but the interesting part, their height seems to be
correct.) Lower plots show the remaining residuals after least squares model fits.
After final deterministic models were chosen, the factor in the outlier-detection
procedure described in Subsection 3.2.1 was set to k = 3.

6.1.4 Residual diagnostics for univariate time series

Goodness-of-fit tests

Adjustments with final chosen deterministic models with parameters as explained
in Subsection 6.1.3 have been made. The time series of normalised residuals re-
maining after all known effects have been removed will be investigated. The out-
lier test in Subsection 3.2.1 is derived and thus valid for N(0,1)-distributed data
only. To test the normality of data, the goodness-of-fit test in Subsection 3.2.2
is used. Least squares procedures, using inverse diagonal cov-matrices as in Eq.
(3.11) assume the observations to be independent. To visualise the linear depen-
dency between normalised residuals, ACFs are estimated and plotted for all series.
Factor k=3 was used in the outlier test explained in section 3.2.1. Each series of
normalised residuals for each direction of the fourteen CGPS stations of the Nor-
wegian network was used in a Goodness-of-fit test, described in subsection 3.2.2
with the Null hypothesis:

H0 : Normalised residuals are observations from a N(0,1)-distribution.

At the significance level α = 0.05, H0 will be rejected for computed sample
values X2 greater than 16.9, taken from a χ2-table (chi-squared) with 9 degrees
of freedom. Results and computed values for test statistics are listed in Table 6.3.
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Figure 6.15: Fitted models, North component, stations: an3e and an3o
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Figure 6.16: Fitted models, East component, stations: an3e and an3o
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Figure 6.17: Fitted models, Height component, stations: an3e and an3o
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Figure 6.18: Fitted models, North component, stations: ber3 and bod3
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Figure 6.19: Fitted models, East component, stations: ber3 and bod3
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Figure 6.20: Fitted models, Height component, stations: ber3 and bod3
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Figure 6.21: Fitted models, North component, stations: dag3 and dom3

2001.2 2001.4 2001.6 2001.8 2002 2002.2 2002.4 2002.6 2002.8 2003 2003.2

−20

0

20

Fitted model: dag3.E00

o
b
s
:y

, 
m

o
d
e
l:
y
−

h
a
t

2001.2 2001.4 2001.6 2001.8 2002 2002.2 2002.4 2002.6 2002.8 2003 2003.2

−10

0

10

time

re
s
id

u
a
ls

2002.2 2002.4 2002.6 2002.8 2003 2003.2

0

20

40
Fitted model: dom3.E00

o
b
s
:y

, 
m

o
d
e
l:
y
−

h
a
t

2002.2 2002.4 2002.6 2002.8 2003 2003.2

−10

0

10

time

re
s
id

u
a
ls

Figure 6.22: Fitted models, East component, stations: dag3 and dom3
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Figure 6.23: Fitted models, Height component, stations: dag3 and dom3
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Figure 6.24: Fitted models, North component, stations: kri3 and osl3
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Figure 6.25: Fitted models, East component, stations: kri3 and osl3
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Figure 6.26: Fitted models, Height component, stations: kri3 and osl3
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Figure 6.27: Fitted models, North component, stations: sta3 and trh3
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Figure 6.28: Fitted models, East component, stations: sta3 and trh3
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Figure 6.29: Fitted models, Height component, stations: sta3 and trh3
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Figure 6.30: Fitted models, North component, stations: trm3 and tro3
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Figure 6.31: Fitted models, East component, stations: trm3 and tro3
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Figure 6.32: Fitted models, Height component, stations: trm3 and tro3
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Figure 6.33: Fitted models, North component, stations: try3 and var3
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Figure 6.34: Fitted models, East component, stations: try3 and var3
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Figure 6.35: Fitted models, Height component, stations: try3 and var3
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Table 6.3: Goodness-of-fit tests for each station and direction of the Norwegian
CGPS data. X2 is the computed sample value for each station and direction. The
test will be rejected for computed X2 greater than 16.9, which is the χ2-table
(chi-squared) value at the significance level (α = 0.05).

Goodness-of-fit tests for Norwegian CGPS data, (k = 3), α = 0.05

Station North X2 East X2 Height X2

an3e rejected 33.60 Accepted 12.16 Accepted 7.27
an3o Accepted 13.91 Accepted 9.15 Accepted 11.00
ber3 Accepted 9.27 Accepted 10.63 Accepted 15.26
bod3 Accepted 7.97 rejected 20.96 Accepted 11.62
dag3 rejected 35.96 rejected 20.65 Accepted 6.34
dom3 Accepted 8.09 Accepted 13.21 Accepted 4.20
kri3 Accepted 15.64 Accepted 4.72 Accepted 16.80
osl3 Accepted 15.05 Accepted 5.81 rejected 17.73
sta3 Accepted 8.29 Accepted 10.47 Accepted 11.49
trh3 Accepted 10.31 rejected 19.20 Accepted 15.22
trm3 rejected 27.76 Accepted 10.65 Accepted 10.94
tro3 Accepted 11.57 Accepted 9.05 Accepted 6.77
try3 rejected 20.88 Accepted 5.28 Accepted 6.12
var3 Accepted 5.05 Accepted 11.74 Accepted 7.21

Out of a total 42 tests, 8 of them, or 19 percent were rejected, against the expected
5 percent. However, the results show that the time series of normalised residuals
mainly are, or at least are close to data taken from a N(0, 1)-distribution. As will
be discussed in Subsection 6.1.4, this test is derived assuming observations to be
independent of each other. Small estimated autocorrelations in the series make the
test uncertain, but it indicates the assumption of normality to hold for the series of
normalised residuals. Possible future improvements of the deterministic models
will probably decrease the number of rejections in the tests above.
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ACF-estimation
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Figure 6.36: Estimation of ACF using three
different methods.

Three different estimation meth-
ods, the first two are described
in Subsection 2.1.6, have been
used to compute the ACF for the
normalised residuals. The third
method is the indirect one via
the LST described in Figure 4.1.
The methods generally gave iden-
tical results, even for data series
with large gaps. As an exam-
ple, three different estimated ACFs
have been estimated for the height
component of station Oslo from
the first data set. They are all
shown in Figure 6.36.

The first interpolation method was chosen to estimate the ACFs for all series of
normalised residuals in the Norwegian data set 3. Resulting plots for all stations
and directions are shown in the Figures 6.37 to 6.50.

Comments on the results of ACF estimation for the Norwegian data

Some single lag-one auto correlations up to ACF (1) = 0.4 are found, but most of
the lag-one auto correlations are around ACF (1) = 0.2. All estimated ACFs
are exponential decreasing, which means that the series of normalised residu-
als may be interpreted as realisations from first order auto-regressive processes
AR(1) with very small parameter values, also known as Markov-processes [see
Wei, 1990, among others]. A brief description can be found in Appendix C. For
equally weighted data, re-adjustments could be done using the known approxi-
mation to the inverse co-factor matrix from Eq. (C.8). As can be seen directly
from the approximation formula, for small lag-one auto correlations, this hardly
makes any difference for the estimated parameters. This is also certified by nu-
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Figure 6.37: Auto correlation functions: an3e N,E,H
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Figure 6.38: Auto correlation functions: an3o N,E,H
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Figure 6.39: Auto correlation functions: ber3 N,E,H
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Figure 6.40: Auto correlation functions: bod3 N,E,H

merical investigations of Craymer [1998] who’s conclusion is cited in Section 4.3.

For the weighted data, a re-scaling using the variances for each observation could
be done to find a new a priori covariance matrix, but the correlation structure will
still be identical, so any numerical re-computations have not been performed for
the final Norwegian data set. In fact the auto correlations are so small for all the
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Figure 6.41: Auto correlation functions: dag3 N,E,H
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Figure 6.42: Auto correlation functions: dom3 N,E,H
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Figure 6.43: Auto correlation functions: kri3 N,E,H
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Figure 6.44: Auto correlation functions: osl3 N,E,H

series, that it may not be a great mistake to assume the normalised residuals to be
independent Gaussian white noise (taken from a N(0, 1)-distribution) and thus the
model assumptions of independent errors will hold. Together with an interpreta-
tion of estimated spectra, some of the series with largest lag-one auto correlations
show possible undetected jumps. It is reasonable to believe that the lag-one auto
correlations will further decrease if such jumps are determined in the future.
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Figure 6.45: Auto correlation functions: sta3 N,E,H
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Figure 6.46: Auto correlation functions: trh3 N,E,H
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Figure 6.47: Auto correlation functions: trm3 N,E,H
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Figure 6.48: Auto correlation functions: tro3 N,E,H

6.1.5 Likelihood ratio test for direction correlations

Goodness-of-fit tests in Section 6.1.4 have shown accordance with assumptions
of the normalised residuals to be approximately N(0, 1)-distributed. In Subsec-
tion 3.4.1 a likelihood ratio test was derived under assumptions of multi-normal
distributed data. Based on time series of normalised residuals, correlation ma-



6.1 The Norwegian CGPS network 125

0 50 100 150 200 250
−0.2

0

0.2

0.4

0.6

0.8

ACF−try3N

lags in days

A
C

F

0 50 100 150 200 250
−0.2

0

0.2

0.4

0.6

0.8

ACF−try3E

lags in days

A
C

F

0 50 100 150 200 250
−0.2

0

0.2

0.4

0.6

0.8

ACF−try3H

lags in days

A
C

F

Figure 6.49: Auto correlation functions: try3 N,E,H
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Figure 6.50: Auto correlation functions: var3 N,E,H

trices (which are identical to covariance matrices for normalised data) have been
estimated. The correlation matrices will be tested for the hypothesis from Eq.
(3.48). If the null hypothesis is not rejected, there is no significant difference in
an estimated ρNEH-matrix, denoted R, and the identity matrix I. The conclu-
sion would be that an I-matrix can replace the estimated correlation matrix R.
In other words, correlations among the directions North, East and Height are not
significant. Such a simplification makes it possible to reduce the original three di-
mensional multivariate problem to three univariate ones, which actually have been
done all along through this study. This will particularly help the time of compu-
tation. With p = 3 variables (N, E, H) and a random sample j of normalised
residuals denoted xj

T = [nj , ej , hj], (j = 1, 2, ..., n), the data matrix:

x
(n×3)

=



x11 x12 x13

x21 x22 x23

...
...

...
...

...
...

xj1 xj2 xj3

...
...

...
xn1 xn2 xn3


=



n1 e1 h1

n2 e2 h2

...
...

...
...

...
...

nj ej hj

...
...

...
nn en hn


(6.4)
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may be used as input to compute R in Eq. (3.54). It should be pointed out that
the test assumes the samples j to be independent, which because of the small val-
ues of the ACFs is close to the reality for the Norwegian data. For each station,
correlation matrices were estimated from the normalised residuals remaining af-
ter a final choice of deterministic models as described in the Section 6.1.3. Factor
(k = 3) was used in the outlier test explained in Subsection 3.2.1. No interpo-
lation has been made for the data gaps. Only valid combinations of observations
of all three directions have been used. In a special case when all off diagonal el-
ements are equal to zero in R, the determinant: |R| = 1. The larger the positive
correlations of off diagonal elements, the smaller becomes the determinant |R|.
The correlation matrices RNEH for all 14 stations are listed below.

Station: an3e

R =




1.0000 0.1177 −0.0413

0.1177 1.0000 0.1689

−0.0413 0.1689 1.0000




Station: an3o

R =




1.0000 0.0064 0.0454

0.0064 1.0000 0.0496

0.0454 0.0496 1.0000




Station: ber3

R =




1.0000 0.0174 −0.0240

0.0174 1.0000 0.0227

−0.0240 0.0227 1.0000




Station: bod3

R =




1.0000 0.0451 −0.0062

0.0451 1.0000 0.0396

−0.0062 0.0396 1.0000




Station: dag3

R =




1.0000 0.2246 −0.0012

0.2246 1.0000 −0.0198

−0.0012 −0.0198 1.0000




Station: dom3

R =




1.0000 0.0569 0.0158

0.0569 1.0000 −0.0214

0.0158 −0.0214 1.0000




Station: kri3

R =




1.0000 −0.0190 −0.0318

−0.0190 1.0000 0.0723

−0.0318 0.0723 1.0000




Station: osl3

R =




1.0000 0.0563 0.0351

0.0563 1.0000 −0.0123

0.0351 −0.0123 1.0000




(6.5)
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Station: sta3

R =




1.0000 −0.0210 0.0241

−0.0210 1.0000 0.0678

0.0241 0.0678 1.0000




Station: trh3

R =




1.0000 0.0173 0.0744

0.0173 1.0000 0.0352

0.0744 0.0352 1.0000




Station: trm3

R =




1.0000 0.0804 −0.0252

0.0804 1.0000 0.0360

−0.0252 0.0360 1.0000




Station: tro3

R =




1.0000 0.0526 0.0144

0.0526 1.0000 0.1174

0.0144 0.1174 1.0000




Station: try3

R =




1.0000 0.0617 −0.0237

0.0617 1.0000 0.0536

−0.0237 0.0536 1.0000




Station: var3

R =




1.0000 −0.0120 −0.0146

−0.0120 1.0000 −0.0150

−0.0146 −0.0150 1.0000




(6.6)
The largest correlation found was rne = 0.2246 for the series dag3. Except for
two of the correlations for the series an3e and one for the series tro3, no corre-
lation coefficients exceeds the value 0.1. Computed values for the test statistics
−2 ln Λ from Eq. (3.55) are compared to values taken from the χ2-distribution
table: χ2

3(α = 0.05) = 7.81, and χ2
3(α = 0.01) = 11.34. H0 is rejected for

−2 ln Λ > χ2
3(α) Results and computed values for test statistics is listed in Table

6.4

At significance level (α = 0.05) eight out of fourteen tests were rejected, while
four out of fourteen tests were rejected at significance level (α = 0.01). Differ-
ent values of the k-factor in the outlier detection routine are tested but it does not
seems to have a large effect for the test of significant cross correlations.

Dependencies other than a linear one may occur between the time series of nor-
malised residuals, Plots are investigated for each station between series repre-
senting the directions, as is done for station var3 in Figure 6.51. No suspicious
dependencies were indicated.



128 Chapter 6 . Numerical investigations

Table 6.4: Likelihood ratio tests of correlation matrices estimated from time se-
ries of normalised residuals representing each of the Norwegian CGPS stations.
Accepting H0 means there is no significant difference between a full or complete
correlation matrix and a unity matrix.

Likelihood-ratio test, Norwegian data (k = 3) H0 : RNEH = I

station determinant nobs −2 ln Λ H0(α = 0.05) H0(α = 0.01)

an3e 0.9543 774 36.23 rejected rejected
an3o 0.9955 1751 7.952 rejected accepted
ber3 0.9986 1710 2.417 accepted accepted
bod3 0.9963 1544 5.675 accepted accepted
dag3 0.9492 754 39.33 rejected rejected
dom3 0.9960 455 1.815 accepted accepted
kri3 0.9935 1335 8.716 rejected accepted
osl3 0.9954 1636 7.530 accepted accepted
sta3 0.9943 1711 9.750 rejected accepted
trh3 0.9930 1723 12.07 rejected rejected
trm3 0.9915 1209 10.38 rejected accepted
tro3 0.9834 1438 22.11 rejected rejected
try3 0.9926 526 3.910 accepted accepted
var3 0.9994 1697 1.001 accepted accepted
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Figure 6.51: Pairs of normalised residual series representing the directions, station
var3

A question is how possible future improved deterministic models will influence
the test. Probably an improved model will decrease the estimated cross correla-
tions and most of the resulting tests from Table 6.4 can be accepted.



6.1 The Norwegian CGPS network 129

6.1.6 Cross correlations

A weighted linear regression for each station and direction was performed with
deterministic models including parameters described in Section 6.1.3. The fac-
tor (k = 3) was used in the outlier detection procedure from Subsection 3.2.1.
Because of a major portion of gaps in the series, the correlation procedure using
only valid pairs of observations from the series as described in Subsection 2.1.6,
has been used. Correlation matrices representing each of the three directions were
estimated from the remaining time series of normalised residuals of the p = 14

stations, for the station vector:

[ an3e an3o ber3 bod3 dag3 dom3 kri3 osl3 sta3 trh3 trm3 tro3 try3 var3 ]T

The matrices were computed to: for direction N:, RN =

1.00 0.33 0.34 0.42 0.30 0.17 0.31 0.30 0.38 0.37 0.36 0.22 0.41 0.35

0.33 1.00 0.42 0.60 0.30 0.33 0.43 0.43 0.46 0.52 0.53 0.42 0.49 0.52

0.34 0.42 1.00 0.53 0.53 0.51 0.66 0.60 0.73 0.55 0.37 0.31 0.69 0.33

0.42 0.60 0.53 1.00 0.38 0.46 0.55 0.53 0.59 0.62 0.50 0.46 0.62 0.53

0.30 0.30 0.53 0.38 1.00 0.38 0.52 0.39 0.58 0.44 0.36 0.21 0.59 0.30

0.17 0.33 0.51 0.46 0.38 1.00 0.47 0.42 0.56 0.51 0.33 0.25 0.49 0.30

0.31 0.43 0.66 0.55 0.52 0.47 1.00 0.66 0.75 0.56 0.40 0.33 0.66 0.36

0.30 0.43 0.60 0.53 0.39 0.42 0.66 1.00 0.65 0.55 0.33 0.31 0.57 0.36

0.38 0.46 0.73 0.59 0.58 0.56 0.75 0.65 1.00 0.61 0.43 0.33 0.75 0.37

0.37 0.52 0.55 0.62 0.44 0.51 0.56 0.55 0.61 1.00 0.41 0.35 0.66 0.42

0.36 0.53 0.37 0.50 0.36 0.33 0.40 0.33 0.43 0.41 1.00 0.50 0.45 0.51

0.22 0.42 0.31 0.46 0.21 0.25 0.33 0.31 0.33 0.35 0.50 1.00 0.30 0.45

0.41 0.49 0.69 0.62 0.59 0.49 0.66 0.57 0.75 0.66 0.45 0.30 1.00 0.42

0.35 0.52 0.33 0.53 0.30 0.30 0.36 0.36 0.37 0.42 0.51 0.45 0.42 1.00


for direction E: RE =

1.00 0.39 0.32 0.41 0.24 0.28 0.36 0.31 0.37 0.36 0.33 0.20 0.34 0.31

0.39 1.00 0.35 0.52 0.38 0.31 0.36 0.40 0.38 0.37 0.46 0.43 0.40 0.37

0.32 0.35 1.00 0.45 0.52 0.43 0.45 0.44 0.54 0.42 0.30 0.31 0.54 0.20

0.41 0.52 0.45 1.00 0.42 0.37 0.44 0.40 0.47 0.47 0.46 0.46 0.49 0.40

0.24 0.38 0.52 0.42 1.00 0.40 0.49 0.29 0.54 0.49 0.31 0.28 0.44 0.24

0.28 0.31 0.43 0.37 0.40 1.00 0.38 0.33 0.43 0.47 0.22 0.28 0.27 0.22

0.36 0.36 0.45 0.44 0.49 0.38 1.00 0.43 0.55 0.42 0.30 0.34 0.53 0.20

0.31 0.40 0.44 0.40 0.29 0.33 0.43 1.00 0.45 0.44 0.28 0.28 0.47 0.24

0.37 0.38 0.54 0.47 0.54 0.43 0.55 0.45 1.00 0.45 0.29 0.36 0.53 0.21

0.36 0.37 0.42 0.47 0.49 0.47 0.42 0.44 0.45 1.00 0.31 0.34 0.52 0.25

0.33 0.46 0.30 0.46 0.31 0.22 0.30 0.28 0.29 0.31 1.00 0.60 0.34 0.35

0.20 0.43 0.31 0.46 0.28 0.28 0.34 0.28 0.36 0.34 0.60 1.00 0.31 0.32

0.34 0.40 0.54 0.49 0.44 0.27 0.53 0.47 0.53 0.52 0.34 0.31 1.00 0.32

0.31 0.37 0.20 0.40 0.24 0.22 0.20 0.24 0.21 0.25 0.35 0.32 0.32 1.00
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Figure 6.52: osl3 height vs some others, 3D-plot and the 3D rotated to a 2D-plot

and for direction H: RH =

1.00 0.41 0.30 0.45 0.20 0.26 0.25 0.23 0.28 0.34 0.36 0.38 0.30 0.29

0.41 1.00 0.37 0.53 0.27 0.27 0.32 0.38 0.31 0.44 0.46 0.52 0.41 0.47

0.30 0.37 1.00 0.48 0.40 0.45 0.47 0.46 0.58 0.46 0.35 0.40 0.52 0.26

0.45 0.53 0.48 1.00 0.30 0.34 0.41 0.39 0.42 0.55 0.55 0.55 0.49 0.44

0.20 0.27 0.40 0.30 1.00 0.50 0.34 0.43 0.36 0.38 0.24 0.25 0.51 0.19

0.26 0.27 0.45 0.34 0.50 1.00 0.40 0.40 0.38 0.40 0.27 0.29 0.55 0.23

0.25 0.32 0.47 0.41 0.34 0.40 1.00 0.55 0.63 0.44 0.36 0.34 0.50 0.29

0.23 0.38 0.46 0.39 0.43 0.40 0.55 1.00 0.50 0.48 0.31 0.33 0.59 0.34

0.28 0.31 0.58 0.42 0.36 0.38 0.63 0.50 1.00 0.43 0.33 0.34 0.48 0.24

0.34 0.44 0.46 0.55 0.38 0.40 0.44 0.48 0.43 1.00 0.41 0.43 0.56 0.34

0.36 0.46 0.35 0.55 0.24 0.27 0.36 0.31 0.33 0.41 1.00 0.76 0.35 0.45

0.38 0.52 0.40 0.55 0.25 0.29 0.34 0.33 0.34 0.43 0.76 1.00 0.34 0.48

0.30 0.41 0.52 0.49 0.51 0.55 0.50 0.59 0.48 0.56 0.35 0.34 1.00 0.31

0.29 0.47 0.26 0.44 0.19 0.23 0.29 0.34 0.24 0.34 0.45 0.48 0.31 1.00


Cross correlation functions

A large number of cross correlation functions have been investigated. An example
is given in Figure 6.52 for the vertical component of the normalised residual series
from osl3 among some other stations.

Correlation as a function of distance between sites

In Figures 6.53 and 6.54, the correlations are plotted as a function of the distance
between different stations. The correlation decreases only slightly with the dis-
tance. A least squares fit of a linear regression model for the height components
resulted in the equation: y = −0.00017x + 0.52, where y is the correlation, and
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Figure 6.53: Correlation as a function of distance, H-component

x is the distance in km. Almost identical results are obtained for the other direc-
tions. Note that, this is close to the results for the height component, obtained
by Johansson et al. [2002]. They computed y = −0.0002x + 0.6 for an almost
similar investigation of the CGPS network of Sweden and Finland, and conclude
that this correlation might be caused by at least one common effect in the GPS
system, probably a reference frame or orbital-type effect.

6.1.7 Principal Component Analysis

The applied theory for this subsection is described in Chapter 5. The cross cor-
relation matrices estimated in Subsection 6.1.6 show some large correlation coef-
ficients between most sites, and for all directions, and makes an PCA of current
interest. The CGPS data series from the Norwegian network include several in-
tervals of missing data, and they are of fairly different lengths. This introduces a
scale factor problem for the estimation of variances and covariances. To avoid this
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Figure 6.54: Correlation as a function of distance, N and E-component

error, the normalised residuals have been chosen as input to the three separately
performed PCAs for the directions North, East and Height. For normalised data,
the estimated covariance matrix becomes a correlation matrix, and thus the ma-
trices from Subsection 6.1.6 can be used. Using correlation matrices which have
diagonal elements one, ensures that the stations become equally weighted in the
PCA. On the other hand, this will disregard the different variability of each sta-
tion series and thus introduce another scale problem. Compared with Root Mean
Square (RMS) values of each single series, the latter problem is considered to give
a smaller influence on the PCAs and will therefore be chosen for the Norwegian
data. For the purpose using CGPS data to identify geophysical processes, an-
other question would be if larger variability at some sites is really a consequence
of lager magnitudes of surface displacements or is it also a result of poor GPS-
satellite geometry and thus lower precision of the CGPS observations?

Results

Eigenvalues sorted by size and the accumulated part of the total sample variance
obtained by each PC are listed in Table 6.5 and visualised in Figure 6.55. Figure
6.55 shows that more than 50 percent of the total variance for the north direction
are explained by the first PC or statistical mode, and more than 60 percent by the
two first PC’s and so on. For the other directions, east and height, the overall vari-
ance explanation by the two first PCs is a bit smaller, but they also show a very
significant first PC or mode. This indicates that at least one common mode is dom-
inating the data series from all stations and directions. The contribution from each
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Table 6.5: Eigenvalues for the North, East and Height component of the Norwe-
gian CGPS data. j refers to the number of eigenvalues which is sorted in descend-
ing order, λj is the eigenvalue and accum. the fraction of variance explained by
the first j modes

North East Height
j λj accum. λj accum. λj accum.
1 7.044 0.503 5.987 0.428 6.153 0.439
2 1.407 0.604 1.328 0.522 1.609 0.554
3 0.840 0.664 0.868 0.584 0.826 0.613
4 0.694 0.713 0.784 0.640 0.783 0.669
5 0.633 0.758 0.704 0.691 0.693 0.719
6 0.559 0.798 0.685 0.740 0.599 0.762
7 0.497 0.834 0.586 0.782 0.543 0.800
8 0.461 0.867 0.568 0.822 0.521 0.838
9 0.392 0.895 0.547 0.861 0.473 0.871
10 0.361 0.921 0.482 0.896 0.445 0.903
11 0.337 0.945 0.434 0.927 0.395 0.931
12 0.309 0.967 0.413 0.956 0.369 0.958
13 0.260 0.985 0.357 0.982 0.340 0.982
14 0.205 1.000 0.258 1.000 0.252 1.000
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Figure 6.55: Overall variance explanation from the PC’s.

station to the overall variance obtained by each mode is given as the magnitudes
of the eigenvector elements, or their scaled version, the factor loadings. To show
this spatial pattern, the first three loadings are illustrated as arrows for all direc-
tions in Figure 6.56. These values, as well as numerical values of the normalised
eigenvectors to the corresponding six largest eigenvalues are listed in Tables D.1
to D.6 in Appendix D. All stations score positive at the first loadings for all direc-
tions. This confirms that one mode is common for the entire network of Norway.
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The second factor loadings differ for the stations in the northern and southern
parts. Identical patterns are shown for all directions, a dip of the country around
an North-East to South-West axis north of Trondheim. From the third and higher
order PCs, it is more difficult to see a pattern. However, the third loadings for the
height component may indicate a possible local effect in the mountain region of
southern Norway. Only a few stations are located in mountain regions, hence this
effect is more uncertain. An interpretation of the modes and their causing pro-
cesses is more difficult. The contributions to each mode may also be caused by
one or more interacting effects. Moreover, the Norwegian CGPS data have shown
to be of variable quality. To confirm the results from the PCA of Norwegian data,
it was decided to work out a new PCA for a larger area based on another, inde-
pendently pre-processed, data set from an European network of CGPS stations.
Results and conclusions from the Norwegian PCA will be drawn out and related
to the European PCA analysis performed in Section 6.2. More results from the
PCA of the Norwegian data set can be found in [Haakonsen et al., 2004a].

6.2 PCA of European CGPS data

Another approach is used for the PCA of the European CGPS data. It is expected
that most harmonic constituents visible in the station series are of a regional or
global spatial scale. Such signals are expected to be expressed in the first few
modes, while local effects are assumed to appear in the higher modes from a
PCA. Station dependent local effects will probably not affect the results if only
the modes of lower order are treated.

A preliminary description of the four years (2000.0-2004.0) CGPS data from the
European network is made in Subsection 1.4.2. A further selection of stations was
made on the basis of a pre-processing of the coordinate time series. For that, only
the time series of vertical components was de-trended and a test for outliers was
carried out. Outliers were removed from the time series. Weighted linear regres-
sions were performed for each station, using a priori diagonal observation weight
matrices created from the inverted output variances of the PPP. Epochs of known
jumps in the time series were provided by Heflin (personal communication 2004)
and included in the linear regression as Heaveside step functions. No periodic
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Figure 6.56: PCA of the Norwegian CGPS data, Loadings for the North, East
and Height components of the first three modes. mean1,mean2 and mean3 are the
mean values of first, second and third loadings, respectively.
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Figure 6.57: Location of the 28 European CGPS sites.

components were included in the regression models. Subsequently, time series of
residuals were computed by removing a constant, a linear trend, and any jumps as
determined in the regressions. For the further analysis, the zero mean time series
of residuals remaining from the weighted regressions are used, so no weights are
used in the subsequent analyses. The intension was to use more than the 28 finally
selected European stations. Some series e.g. MADR, MAD2 (both in Spain) and
PENC (Hungary) showed very low computed cross correlation coefficient consid-
ered to the other station series. It was assumed that these low correlations were
due to local problems at these sites (e.g. undetected offsets) and therefore, these
stations were excluded from the analysis. Furthermore, the station KIRU (Kiruna,
Sweden) revealed problems due to snow cover on the antenna in late winter, and
this station was also excluded. The final selection resulted in 28 European IGS
stations covering most of the chosen time interval. Their locations are shown in
Figure 6.57. The average amount of data gaps for all series remaining after outlier
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Figure 6.58: The fraction of variance explained by each mode of the European
CGPS data

detections is 7.8 percent. Most of the stations are located in the middle and south
of Europe, with only a few stations in Scandinavia. Thus, the spatial coverage
is not optimal. The eigenvalues for observed vertical land motion from the un-
weighted residual time series of European CGPS data are shown in Table 6.6. The
fraction of overall variance associated with each mode is shown in Figure 6.58.
Normalised eigenvector elements (or normalised loading factors) for the first six
modes found from the de-trended European CGPS data are shown in Figure 6.59.
Temporal variations, illustrated by the time series of amplitudes representing each
of the modes are shown in the left-hand side and the Least Squares or the Variance
Spectra of these series are shown in the right-hand side of Figure 6.60.

Results

Very similar to the PCA of the Norwegian data, the European data also reveals
the existence of a few common modes. The first mode accounts for 42 percent,
the second mode 8 percent and the third mode explains 7 percent of the overall
sample variance. This is almost identical to the results from the vertical compo-
nent of the Norwegian CGPS data shown in Figure 6.55. As shown in Table 6.6
all subsequent modes have non-zero variance associated with them. The loadings
shown in Figure 6.59 illustrate the geographical pattern for the first six modes.
As with the Norwegian data, the first mode corresponds to a common up and
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Table 6.6: Eigenvalues from the unweighted residual time series of European
CGPS data. j refers to the number of the PC or mode. λj is the eigenvalue,
Fract. the fraction of variance associated with this mode, and Accum. the fraction
of variance explained by the first q modes.

j λj Fract. Accum.
1 8.301 0.419 0.419
2 1.592 0.080 0.500
3 1.299 0.066 0.565
4 0.875 0.044 0.609
5 0.731 0.037 0.646
6 0.627 0.032 0.678
7 0.585 0.030 0.708
8 0.518 0.026 0.734
9 0.502 0.025 0.759

10 0.455 0.023 0.782
11 0.438 0.022 0.804
12 0.388 0.020 0.824
13 0.340 0.017 0.841
14 0.319 0.016 0.857
15 0.308 0.016 0.873
16 0.290 0.015 0.887
17 0.275 0.014 0.901
18 0.261 0.013 0.914
19 0.247 0.012 0.927
20 0.225 0.011 0.938
21 0.199 0.010 0.948
22 0.190 0.010 0.958
23 0.174 0.009 0.967
24 0.164 0.008 0.975
25 0.145 0.007 0.982
26 0.137 0.007 0.989
27 0.108 0.005 0.995
28 0.106 0.005 1.000

Sum 19.800

down motion of the entire network. The second mode describes a tilting of the
network over an axis approximately running from NW to SE through the centre
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Figure 6.59: Eigenvector elements (normalised loading factors) for the first six
common modes in de-trended European CGPS data.

of the Network, while the third mode is a similar motion over an axis running
from SW to NE. Concerning the temporal variations of the modes in Figure 6.60,
only a few frequencies are dominating, while some of them are found in several
modes. For the first mode, which is the most important one considering a vari-
ance reduction, a twin peak is found around frequencies representing an annual
and a fifteen month cycle. These are closer than the separation limit for the LSS
shown in Eq.(4.42) and make a precise determination uncertain. Nevertheless,
the fifteen month period is close to the Chandler wobble period in polar motion.
However, displacements induced by polar motion are taken into account in the
EOP series that is used when processing the CGPS time series. Therefore, the 15
month signal is tentatively associated here with the Fourteen to Sixteen months
Oscillation (FSO) identified by Plag [1997] in air pressure and further described
by Plag [2004]. A non-linear iterative fit routine as discussed in Subsection 4.2.2
and described in Plag [1988] has been used. Initial values are taken for four fre-
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Figure 6.60: The time series of amplitudes representing the first six modes (M1-
M6) of the de-trended equally weighted European CGPS data and their Least
Squares or Variance Spectra (V).

quencies from the first mode spectra in Figure 6.60. Final results after this fit give
frequencies corresponding to periods of 446, 382, 218 and 87 days for the first
mode. This confirms the results from the spectral analysis of univariate series of
the Norwegian CGPS data in Subsection 6.1.7 as well as for the data set used in
Haakonsen et al. [2003], which revealed such periods for several sites. Domi-
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nant frequencies are found using the same iteration technique for the other modes.
They are presented in Table 6.12 together with the possible variances that can be
achieved if the parameters were included in the deterministic model used in the
LSSA for the first mode. The spectrum of the second mode shows dominant peaks
for frequencies around one, two and three cycles per year which have also been
found for the Norwegian data.

An interpretation of the magnitudes of the amplitude series is not performed. As
will be shown in Table 6.15, the sample variance for a single series is within
the interval 0.5-1.4 cm2 which corresponds to standard deviations in the interval
0.7-1.2 cm. The first PC or mode is found along the specific chosen direction
of maximal variance in the 28-dimensional space with orthogonal axis related to
the 28-dimensional points from the original station series. For strong correlations
between the 28 variables represented by the station series, the variance of the first
mode in a 28-D space is summed up and can be very large. For the European
data, the maximum variance is 42 percent out of 19.8 cm2, respectively. This
gives a standard deviation of 2.9 cm. Assuming normally distributed data, this
means that one third of all amplitudes will be situated outside the limits of ±2.9
cm as shown for the first mode in 6.60. It may be more interesting is to find out
which amplitudes this summed signal will contribute to each station if it is recon-
stituted to the original time domain. With sample variances for the station series
in the interval 0.5-1.4 cm2, and the first mode contribution of 42 percent, this im-
plies that two thirds of the values in the station series in average will be limited
by standard deviations within the interval ±(0.4-0.8) cm. If one assumes that the
common mode signal is a kind of average value, this means that most of the recon-
stituted first mode series have two thirds of their values within the interval: ±0.6
cm. Two examples are plotted in Figure 6.61, the time series with respectively
the lowest and largest sample variance (WSRT and VENE) together with a signal
composed from the first mode of CGPS data and reconstituted to the the original
time domain. In order to visualise the spatial dependency, inter-station correlation
coefficients y plotted as a function of distance x are shown together with fitted
linear regression models in Figure 6.62. Input series for the correlation estimation
are: (1) de-trended European CGPS series (left-hand side), (2) de-trended Euro-
pean CGPS series where the effect from the first mode has been removed (in the
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Figure 6.61: De-trended series from CGPS data (dots) and a signal composed
from the first common mode (lines) for the stations WSRT (upper plot) and VENE
(lower plot)

middle) and (3) de-trended European CGPS series where the effects of the first
and second modes have been removed (right-hand side). The fit in the first plot
may not be comparable to the results from the Norwegian CGPS data in Figure
6.53 or from the results from Johansson et al. [2002] because the effect of some
periodic components were subtracted in the de-trending of these data. However,
the fitted regression models happen to be almost identical. In the second plot of
Figure 6.62, the effect of the first mode has been removed before the correlation
estimation. It shows that most of the spatial correlation is vanished. A further
decrease is found removing the effect from the first two modes as in the third plot.
To summarise: If one or more effects are determined and found to explain most
of the variation in the first mode from CGPS data, correction for these effects
applied on the CGPS time series can considerably decrease their spatial correla-
tion. Atmospheric surface loading predictions will be investigated as one possible
contributing effect. Some more results from the PCA of the European CGPS data
set can be found in [Haakonsen et al., 2004b] or [Haakonsen et al., 2004c]
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Figure 6.62: Inter-station correlation coefficients y plotted as a function of dis-
tance x and fitted linear regression models. The series used for correlation estima-
tion are: (1) de-trended European CGPS series, (2) de-trended European CGPS
series where the effect from the first mode has been removed, and (3) de-trended
European CGPS series where the effects of the first and second modes have been
removed. Note that different ranges are used for the y-axes in second and third
plot.

6.3 PCA of Atmospheric Loading Predictions

Five data sets of atmospheric loading predictions of surface displacements have
been investigated. A preliminary description is given in Subsection 1.4.3. The five
data sets of predictions are denoted as P1 to P5, see Table 6.7. In order to ensure
consistency with the residual time series of European CGPS data, atmospheric
loading time series of six hour samples were averaged to daily (24h) solutions, for
the time interval 2000.0-2004.0, and tested for trends. No significant trends were
found in the predictions over the four year interval considered. However, in order
to ensure constant zero mean, and for the later comparison with CGPS data, simple
regressions have also been performed for these series and the de-trended residual
time series are used in the further analyses. It is pointed out that no weights are
used in the subsequent analyses, thus the a posteriori variance information from
the linear regressions is not used to weight the individual time series.

PCA of atmospheric loading predictions P3

This Section will now only present the results from the PCA using data set P3.
The eigenvalues from the PCA of de-trended P3 data are shown in Table 6.8 and
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Table 6.7: Models and input data set used for predictions of displacements in-
duced by atmospheric loading. The predictions are denoted as P1 to P5. Sources
for air pressure fields are European Center for Medium Range Weather Forecast
(ECMWF) and National Center for Environmental Prediction (NCEP). Origin of
the reference frames are the Center of mass of the solid Earth (CE) and the Cen-
ter of Mass of the earth system (CM), which in this case means the solid Earth
and the atmosphere. Earth models are PREM [Dziewonski and Anderson, 1981]
and G+B [Gutenberg - Bullen, see Farrell, 1972]. Computation methods are SHE:
Summation of spherical Harmonic Expansion, and CGF: Convolution of Green’s
Function and load anomaly. Authors are PG: Pascal Gegout and TvD: Tonie van
Dam. Data source is http://www.sbl.statkart.no [cited: 30 October 2004].

Prediction Input Ref.Fr. Earth M. Comp. Author

P1 ECWMF CE PREM SHE PG
P2 ECWMF CM PREM SHE PG
P3 NCEP CE PREM SHE PG
P4 NCEP CM PREM SHE PG
P5 NCEP CE G+B CGF TvD

illustrated in Figure 6.63. Eigenvalues for modes of order higher than 14 are be-
low 10−4 and therefore omitted. Normalised eigenvector elements (or normalised
loading factors) for the first six modes are shown in Figure 6.64. The tempo-
ral variation, illustrated by the time series of amplitudes representing each of the
modes are shown in the left-hand side, and their Least Squares or Variance Spectra
are shown in the right-hand side of Figure 6.65. Inter-station correlation coeffi-
cients y plotted as a function of distance x are shown in Figure 6.66.

Results

As can be seen in Table 6.8 and Figure 6.63, the PCA for the atmospheric loading
predictions only reveal a few dominant modes. The first mode accounts for 76
percent of the overall sample variance, the second for 13 percent and the third
6 percent. Together these three modes explains 95 percent of the total variance,
while a signal extracted from the six lowest modes will account for more than 99
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Figure 6.63: The fraction of variance explained by each PC or mode for the atmo-
spheric loading predictions of data set P3.

Table 6.8: Eigenvalues for predicted vertical land motion. Values are for P3 pre-
dictions from Table 6.7. j refers to the number of PC or mode. λj is the eigen-
value, Fract. the fraction of variance associated with this mode, and Accum. the
fraction of variance explained by the first j modes. Note that all eigenvalues for
modes with j > 14 are below 10−4 and therefore omitted.

j λj Fract. Accum.
1 2.050 0.763 0.763
2 0.356 0.132 0.895
3 0.147 0.055 0.950
4 0.064 0.024 0.974
5 0.032 0.012 0.986
6 0.018 0.007 0.992
7 0.007 0.003 0.995
8 0.005 0.002 0.997
9 0.003 0.001 0.998

10 0.002 0.001 0.999
11 0.001 0.000 0.999
12 0.001 0.000 0.999
13 0.001 0.000 0.999
14 0.001 0.000 1.000

...
...

...
...

Sum 2.686
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Figure 6.64: Eigenvector elements (normalised loading factors) for the first six
common modes in atmospheric loading predictions, P3 in Table 6.7.

percent. Only a small variance information will be lost if the original 28 series
are represented by a few modes. The geographical patterns of the loadings for
the first six modes are illustrated in Figure 6.64. As for the European CGPS
data, the first mode shows a common up and down motion of the whole network.
The second mode describes a tilting along a line approximately parallel to the
52◦N meridian. The third mode has a geographical pattern which is again very
similar to the one found for the third mode in European CGPS data, a tilting of
the network along an axis crossing the Alps from SW to NE. The fourth mode
shows differences for the stations in Central Europe and the surroundings. The
temporal variation of the P3 data illustrated in Figure 6.65 shows a few dominating
frequency components for the lower order modes. The spectrum computed from
the amplitude time series of the first mode are dominated by periodic components
of 541, 402, 149, 115 and 84 days. The largest variance reduction to be achieved
modelling one periodic component only is up to 5 percent using the last one. The
spectrum of the second mode shows mainly periodic components of 724, 183, 119
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Figure 6.65: The time series of amplitudes representing the first six modes (M1-
M6) of the atmospheric loading predictions P3 and their Least Squares or the
Variance Spectra.

and 85 days that can account for up to ten percent of the variance part explained
by this mode. Surprisingly an annual period was found to be small for the second
mode. However, a very large annual peak is visible in the third mode. Detected
periods and possible variance reductions if the harmonic constituents are modelled
are shown in Table 6.12. The inter-station correlation for the atmospheric loading
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Figure 6.66: Inter-station correlation coefficients y plotted as a function of dis-
tance x for the atmospheric loading predictions P3.

predictions P3 is shown in Figure 6.66. These correlations are even higher than
for the CGPS data with values of more than 0.3 for distances up to 2000 km.
The correlations do not decrease linearly as a function of distance, as the case
of CGPS data. A cosine-formed correlation function would be a better choice
to describe the spatial correlation of the pressure loading effect and therefore, no
linear regression model is performed here.

6.4 Relations between CGPS-data and atmospheric
loading predictions

A search will now be made for the data set of predictions that shows most con-
formity to the de-trended CGPS data. Five separate PCAs were computed for the
five sets of atmospheric loading predictions described in Table 6.7. All figures as
given for the P3 data in last section will not be presented. An attempt to deter-
mine similarities will be made, based on the patterns of spatial correlations and
an extraction of a few lower modes that can be reconstituted to the station series
and compared with corresponding series from CGPS data. The latter will be per-
formed through regression and correlation analyses of these pairs of station series.
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Table 6.9: Correlation of spatial pattern of the common modes in European CGPS
data and the five sets of atmospheric loading predictions given in Table 6.7. The
correlation coefficients are computed for pairs of eigenvector elements to corre-
sponding modes of European CGPS data and one of the loading predictions. The
direction of eigenvectors are found in a maximising procedure of which one of
two arbitrary opposite directions can be chosen. The negative signs, at least for
the first three modes can thus be neglected. The coefficients are given for the first
six modes, only. Coefficients for the other modes are not significant.

No. P1 P2 P3 P4 P5
1 0.782 0.777 0.788 0.792 0.735
2 -0.707 -0.682 -0.758 -0.734 -0.725
3 0.664 -0.617 0.663 -0.638 0.655
4 -0.085 -0.113 -0.041 -0.070 -0.112
5 -0.180 -0.181 0.222 -0.212 -0.298
6 -0.053 0.057 -0.014 -0.115 0.070

Normalised loadings which are the magnitudes of the eigenvector elements for
the European CGPS and atmospheric loading predictions P3 are shown in Figures
6.59 and 6.64. Similar plots could be used to illustrate the geographical pattern
of the modes for the data sets P1, P2, P4 and P5. Instead, correlation coefficients
have been computed using the eigenvector elements from the first six eigenvec-
tors of the P1-P5 data sets and the first six eigenvectors of CGPS data. The results
are shown in Table 6.9. Correlation and regression coefficients as described in
Eq.(5.33) have been estimated to relate the different station series of CGPS with
atmospheric loading predictions. First the original series have been used. (These
series can be seen as a special case where a choice of all q = 28 modes are ex-
tracted and reconstituted to the stations, see Eq.(5.31)). Station dependent regres-
sion coefficients computed between each of the de-trended atmospheric loading
data sets P1 to P5 (predictors) and the de-trended CGPS data (observations) are
listed in Table 6.10. Computed correlation coefficients for these series are given
in Table 6.11. It is not obvious that the second mode of atmospheric loading pre-
dictions should look more similar to the second mode of CGPS than for example
the third mode would do, or vice versa. However, this seems to be the case. This
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Table 6.10: Station dependent regression coefficients for de-trended atmospheric
loading predictions (predictors) for the five data sets given in Table 6.7 and Euro-
pean CGPS data (observations). The regression coefficients are dimensionless.

Regression coefficients
No. Station P1 P2 P3 P4 P5

1 BOR1 0.861 0.676 0.943 0.731 0.821
2 BRUS 0.754 0.290 0.842 0.642 0.675
3 BUCU 1.166 0.864 1.191 0.879 1.094
4 BZRG 0.970 0.708 0.879 0.627 0.803
5 CAGL 0.326 0.292 0.538 0.453 0.263
6 EBRE 0.828 0.583 0.795 0.604 0.648
7 GENO 0.627 0.426 0.695 0.492 0.539
8 GOPE 0.817 0.656 0.855 0.705 0.752
9 GRAS 0.424 0.267 0.537 0.341 0.464

10 GRAZ 0.806 0.651 0.826 0.673 0.723
11 HERS 0.644 0.504 0.779 0.619 0.558
12 HFLK 0.630 0.350 0.733 0.438 0.615
13 JOZE 0.928 0.682 0.955 0.707 0.820
14 KOSG 0.799 0.618 0.878 0.678 0.701
15 LAMA 0.675 0.550 0.721 0.587 0.671
16 MATE 0.541 0.381 0.844 0.492 0.728
17 MEDI 0.517 0.345 0.593 0.432 0.530
18 METS 0.579 0.478 0.674 0.525 0.531
19 ONSA 0.607 0.469 0.791 0.548 0.568
20 POTS 0.844 0.672 0.952 0.739 0.825
21 SFER 0.753 0.493 0.672 0.484 0.606
22 SOFI 0.941 0.707 0.922 0.686 0.894
23 TROM 0.816 0.547 0.940 0.596 0.683
24 VENE 0.794 0.718 0.714 0.684 0.679
25 VILL 0.496 0.332 0.494 0.362 0.446
26 WSRT 0.749 0.541 0.890 0.628 0.674
27 WTZT 0.800 0.623 0.845 0.663 0.718
28 ZIMM 0.553 0.393 0.581 0.442 0.570

MEAN 0.723 0.529 0.788 0.588 0.664

can be seen in the spatial patterns for the first three modes of CGPS data shown
in Figure 6.59 and atmospheric loading predictions (represented by data set P3
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Table 6.11: Station dependent correlation coefficients for observed and predicted
vertical land motion. The atmospheric loading predictions are as given in Table
6.7. The correlation coefficients are computed for pairs of vertical land motion
observed by CGPS and one of the five different atmospheric loading predictions.
The correlation coefficients are dimensionless.

Correlation coefficients
No. Station P1 P2 P3 P4 P5

1 BOR1 0.464 0.423 0.468 0.420 0.424
2 BRUS 0.356 0.178 0.363 0.309 0.337
3 BUCU 0.464 0.430 0.438 0.400 0.402
4 BZRG 0.340 0.291 0.294 0.243 0.277
5 CAGL 0.071 0.087 0.069 0.094 0.066
6 EBRE 0.227 0.196 0.221 0.198 0.184
7 GENO 0.215 0.179 0.210 0.181 0.192
8 GOPE 0.358 0.337 0.362 0.343 0.328
9 GRAS 0.135 0.105 0.135 0.109 0.137

10 GRAZ 0.334 0.320 0.327 0.310 0.294
11 HERS 0.260 0.228 0.263 0.236 0.254
12 HFLK 0.266 0.174 0.291 0.202 0.263
13 JOZE 0.389 0.336 0.391 0.334 0.339
14 KOSG 0.415 0.364 0.426 0.369 0.387
15 LAMA 0.325 0.309 0.326 0.308 0.315
16 MATE 0.159 0.149 0.167 0.143 0.179
17 MEDI 0.190 0.156 0.208 0.181 0.196
18 METS 0.383 0.362 0.378 0.343 0.357
19 ONSA 0.367 0.325 0.361 0.297 0.350
20 POTS 0.450 0.412 0.449 0.401 0.417
21 SFER 0.199 0.171 0.189 0.170 0.174
22 SOFI 0.270 0.263 0.248 0.235 0.250
23 TROM 0.369 0.289 0.368 0.276 0.332
24 VENE 0.214 0.234 0.191 0.214 0.184
25 VILL 0.143 0.110 0.149 0.123 0.129
26 WSRT 0.416 0.343 0.432 0.348 0.402
27 WTZT 0.340 0.309 0.335 0.304 0.306
28 ZIMM 0.241 0.200 0.251 0.218 0.249

MEAN 0.299 0.260 0.297 0.261 0.276



152 Chapter 6 . Numerical investigations

in Figure 6.64). This is also confirmed to be the case for all five sets of atmo-
spheric loading predictions because of the large absolute values of the correlation
coefficients in Table 6.9. Based on similarities in the spatial patterns for the first
three modes, more station dependent regression coefficients are computed. The
results are presented in Appendix E. Station series used for these estimations are
constructed from signals extracted from each of the first three modes and then
reconstituted to the stations, Tables E.2 to E.4 . Finally a signal constructed from
a combination of the first three modes is used in Table E.5. Mainly because most
of the signal in atmospheric loading predictions is attributed to the first mode,
some strange regression coefficients are found combining the station series of the
second and third modes. This is probably because all values in some station se-
ries are very close to zero. However, the correlation coefficients computed for
both sets of station series composed from the extracted first modes in Table E.1
are larger than the coefficients in Table 6.9. This is likely to be due to the lower
amount of noise in these CGPS series. Interpreting extracted modes as a signal
in CGPS, these series may be considered as filtered versions of the original series
with lower noise level, and the correlation coefficients become smaller. In this
way the regression coefficient may be a better tool for data comparison than the
relative correlation coefficient. The results from these investigations confirm that
the best fit between the European CGPS data and the atmospheric loading predic-
tions are achieved using the complete series without extracting any of the modes.
It may not be a greate surprise that the atmospheric loading prediction data set
P3 seems to give the highest conformity with the European CGPS data, which
explains why the results from a PCA of these data are selected in Section 6.3. The
choice of P3 can also be argued with the regression coefficients that are closest to
one in the third column in Table 6.10. Spectra of the different modes representing
both data sets are dominated by a few frequencies summarised for the first three
modes in Table 6.12. The frequencies were found in a non-linear fit [see Plag,
1988] of a start model determined from the spectra shown in the Figures 6.60 and
6.65. Some frequency components are found in several modes. The annual con-
stituent is found in most modes both in the CGPS series and the predictions. In
general, there appears to be good agreement between the harmonic constituents
found in the amplitude functions of modes from both P3 predictions and CGPS
data. However, the amplitudes for the constituents in the modes from P3 predic-
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Table 6.12: Main harmonic constituents determined in the spectra from time vary-
ing amplitudes of European CGPS data in Figure 6.60 and the atmospheric load-
ing predictions P3 in Figure 6.65 representing the first three modes. The period is
given in years, variance is the possible variance reduction in percentage that can
be achieved if the harmonic constituent is included in the deterministic model.

CGPS P3
Mode no. Period [year] Variance [%] Period [year] Variance [%]

M1 1.222 8.3 1.482 2.4
1.047 6.6 1.100 1.8
0.596 1.1 0.407 1.0
0.238 2.4 0.315 2.2

0.230 4.9
M2 1.395 3.7 1.982 10.1

0.986 10.5 1.015 1.4
0.455 3.3 0.501 8.1
0.318 8.6 0.326 6.4

0.234 3.7
M3 1.052 3.5 1.401 1.4

0.722 3.9 1.019 16.3
0.579 2.3 0.506 1.4
0.498 10.1 0.319 0.7

0.178 1.4

tions are much smaller than in the modes from CGPS, indicating that there must
be additional processes contributing to the CGPS data. Moreover, some of the
constituents appear to be present in a certain mode of the the P3 predictions but in
a different mode of the CGPS data. Thus, there seems to be a kind of cross-mode
leakage of harmonic constituents between the P3 predictions and the CGPS data,
which again may be due to other, partly correlated processes contributing to the
CGPS observations, which are not accounted for in the P3 predictions.

An attempt has been made to examine time varations of computed correlation
coefficients between the station series of CGPS and P3 predictions. For a time
window of one year, correlation and regression coefficients have been computed
in steps of two months. The average correlation coefficients for all stations are
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Figure 6.67: Time variations of average correlation (left) and regression (right)
coefficients computed from the station series of CGPS and atmospheric loading
predictions P3. For a time window of one year, average correlation and regression
coefficients are computed in steps of two months.

shown in Figure 6.67. The graph shows an unexpected wave formed increase
through time. As can be seen from the time series of amplitudes representing the
first mode of CGPS data in Figure 6.60, the pattern of the last year of first the
mode is different from the first part. The winter 2003/2004 seems to be rather
dominant. This may introduce biases to the correlation estimation. Another ex-
planation can be the improved CGPS data precision over time. The variance is
mainly lower for the latest part of the series, which could contribute to an increase
in the computed correlation coefficients.

6.5 CGPS corrected for atmospheric loading

Finally PCAs have been performed with de-trended CGPS data corrected for var-
ious combinations of atmospheric loading predictions P3. Based on the argument
stated in the end of Section 6.2, two assumptions will be :

1. Assuming that an unmodelled part of CGPS data mostly is due to atmo-
spheric surface loading effects, the overall sample variance in such PCA
will significantly decrease, compared to the overall sample variance from a
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Table 6.13: Various combinations of de-trended European data corrected for at-
mospheric loading predictions P3

Data Data description
set 1 De-trended CGPS data.
set 2 De-trended CGPS minus P3 loadings.
set 3 De-trended CGPS minus P3 loadings scaled with the station dependent regression

coefficients γ from Table 6.10.
set 4 De-trended CGPS minus the first mode (M1) of P3 loadings scaled with station

dependent regression coefficients γ(M1) from Table E.2.
set 5 De-trended CGPS minus first and second mode (M1+M2) of P3 loading data scaled

with station dependent regression coefficients γ(M1+M2).
set 6 De-trended CGPS minus first, second and third mode (M1+M2+M3) of P3 loading data

scaled with station dependent regression coefficients γ(M1+M2+M3) from Table E.5

PCA with CGPS data only.

2. A successful modelling of contributing effects to the CGPS data will signif-
icantly reduce the amount of variance from 42 percent for the first common
mode, as the remaining residuals after a correction are closer to independent
white noise. In a theoretical view, when all contributing effects and their in-
teractions are identified in the CGPS time series, only independent white
noise will appear in the de-trended series. Thus very small correlations be-
tween these series can be found and the magnitudes of the eigenvalues from
a PCA probably becomes almost equal in size (≈ 1/28).

The different de-trended European CGPS data, corrected for various combinations
of atmospheric loading predictions P3 for the time interval 2000.0-2004.0 for this
investigations are given in Table 6.13. The results from the PCAs are given in Ta-
ble 6.14. Computed sample variances for each station series and the total variance
reduction compared to data set 1 are shown in Table 6.15. Finally plots illustrating
the inter-station correlation for data sets 2 and 3 are shown in Figure 6.68. The
largest variance reduction is achieved in the data set corrected with the original
P3 data and scaled with the regression coefficients relating them to CGPS data.
A variance reduction up to ten percent is possible. Correcting the CGPS data
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Table 6.14: PCAs separately performed for the six different data sets given in
Table 6.13. Columns for each data set are: Eigenvalues (eig.val), variance expla-
nation (var.) and accumulated part of total variance (acc.) explained by the first
six modes. Var.red. is the variance reduction compared to the sum of eigenvalues
in the first data set

Data ⇒ set 1 set 2 set 3

No eig.val var. acc. eig.val var. acc. eig.val var. acc.
1 8.301 0.419 0.419 7.024 0.388 0.388 6.947 0.387 0.387
2 1.592 0.080 0.500 1.510 0.083 0.471 1.461 0.081 0.468
3 1.299 0.066 0.565 1.204 0.067 0.538 1.208 0.067 0.536
4 0.875 0.044 0.609 0.839 0.046 0.584 0.824 0.046 0.581
5 0.731 0.037 0.646 0.725 0.040 0.624 0.718 0.040 0.622
6 0.627 0.032 0.678 0.608 0.034 0.658 0.607 0.034 0.655
: : : :

Sum 19.800 18.103 17.939
Var.red. 8.6% 9.4 %

Data ⇒ set 4 set 5 set 6

No eig.val var. acc. eig.val var. acc. eig.val var. acc.
1 6.942 0.377 0.377 6.947 0.380 0.380 6.971 0.384 0.384
2 1.581 0.086 0.463 1.461 0.080 0.460 1.485 0.082 0.466
3 1.298 0.071 0.533 1.302 0.071 0.531 1.213 0.067 0.532
4 0.876 0.048 0.581 0.882 0.048 0.579 0.838 0.046 0.579
5 0.729 0.040 0.621 0.732 0.040 0.619 0.728 0.040 0.619
6 0.623 0.034 0.654 0.610 0.033 0.653 0.612 0.034 0.652
: : : :

Sum 18.413 18.290 18.162
Var.red. 7.0 7.6% 8.3%

with atmospheric loading predictions will only slightly reduce the correlation as
a function of distance. For the atmospheric loading predictions P3 a reduction
from 0.604 to 0.555 for the constant term of the linear regression equation (the
correlation coefficient at zero distance) was achieved. As argued in the end of
Section 6.4, the large amount of variance attributed to the first mode of CGPS
data after the corrections for atmospheric loading predictions, probably means
that other unknown contributing processes and their interactions are present in the
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Table 6.15: Sample variances for station series composed from CGPS and five
different sets of mode combinations with atmospheric loadings (P3) data given
in Table 6.13. tot.sum is the column sums, var.red. is total variance reductions
compared to the first column.

Data⇒ set 1 set 2 set 3 set 4 set 5 set 6

No. Station Var1 Var2 Var3 Var4 Var5 Var6
1 BOR1 0.574 0.449 0.448 0.468 0.461 0.464
2 BRUS 0.602 0.525 0.522 0.560 0.550 0.534
3 BUCU 0.720 0.585 0.581 0.635 0.630 0.609
4 BZRG 0.947 0.867 0.864 0.863 0.858 0.859
5 CAGL 0.792 0.791 0.788 0.810 0.799 0.795
6 EBRE 0.754 0.720 0.717 0.724 0.717 0.713
7 GENO 0.682 0.658 0.652 0.643 0.649 0.650
8 GOPE 0.746 0.651 0.648 0.658 0.658 0.659
9 GRAS 0.682 0.678 0.669 0.672 0.672 0.672

10 GRAZ 0.721 0.648 0.644 0.641 0.643 0.643
11 HERS 0.730 0.683 0.679 0.715 0.701 0.687
12 HFLK 0.709 0.657 0.648 0.654 0.652 0.650
13 JOZE 0.982 0.832 0.832 0.875 0.843 0.851
14 KOSG 0.498 0.410 0.407 0.443 0.440 0.423
15 LAMA 0.757 0.689 0.676 0.682 0.676 0.679
16 MATE 0.617 0.600 0.599 0.614 0.614 0.604
17 MEDI 0.673 0.657 0.643 0.637 0.644 0.644
18 METS 0.500 0.445 0.428 0.448 0.431 0.432
19 ONSA 0.442 0.389 0.385 0.377 0.398 0.394
20 POTS 0.586 0.468 0.468 0.493 0.487 0.481
21 SFER 0.488 0.475 0.471 0.495 0.482 0.481
22 SOFI 0.995 0.934 0.933 0.944 0.947 0.931
23 TROM 0.681 0.589 0.589 0.662 0.643 0.638
24 VENE 1.397 1.354 1.345 1.339 1.352 1.348
25 VILL 0.778 0.780 0.761 0.786 0.770 0.770
26 WSRT 0.428 0.349 0.348 0.377 0.379 0.363
27 WTZT 0.751 0.670 0.666 0.664 0.664 0.662
28 ZIMM 0.565 0.548 0.529 0.535 0.530 0.526

tot.sum 19.800 18.103 17.939 18.413 18.290 18.162
var.red. 8.6% 9.4% 7.0% 7.6% 8.3%
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Figure 6.68: Inter-station correlations, CGPS corrected for P3 data only (left),
and CGPS corrected for P3 data scaled with regression coefficients from the P3
column of Table 6.10 (right)

CGPS data. Another question would be whetter these biases are really the result
of geophysical processes or effects due to satellite orbit modelling ?

6.6 Variance explained by periodicity in CGPS data

Determination of the amplitudes and sample variance reductions, caused by the
effect of the annual and fifteen months period in the European CGPS data will
be performed. As can be seen in Figure 6.60, the first mode of de-trended CGPS
data are dominated by two frequencies, determined to the periods 382.4 and 446.3
days. Parameters representing these frequencies will be highly correlated, and
their estimates rather uncertain, using a least squares fit with a time series of four
years as observations. 382.4 days may thus be the annual period of 365.25 days
that is expected for the CGPS data. 446.3 is quite close to the Chandler period of
435 days that should have be corrected for in the pre-processing stage of CGPS
time series. Nevertheless a similar period is visible in the data. In order to make a
picture of their order of magnitude on each station, spectral parameters represent-
ing the pairs 382.4 and 446.3 days, and 365.25 and 435 days respectively have
been included in the weighted regressions used for a de-trending of each station
series of CGPS data. Amplitudes are computed as in Eq.(2.22). For the remaining
residual time series after the regressions, the weight information is omitted and
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sample variances have been estimated for each station. The results are shown in
Table 6.16. The columns are (1): station number, (2): station name, (3): sample
variances for the series of unweighted residuals when parameters for constant, lin-
ear trend and jumps are included in the deterministic model. (4): sample variances
for the series of unweighted residuals using parameters as in column (3) and two
periodic components of 446.3 and 382.4 days. (5) and (6): Computed amplitudes
in cm for the periodic components of 446.3 and 382.4 days, respectively from a
weighted regression with parameters as in (4). (7): sample variances for the series
of unweighted residuals using parameters as in column 3 and two periodic com-
ponents of 435.0 and 365.25 days. (8) and (9): Computed amplitudes in cm for
the periodic components of respectively 435.0 and 365.25 days from a weighted
regression with parameters as in (7). tot.sum = Total sums of sample variances
for all series. var.red. = Total variance reduction compared to the first column.
The results show that a variance reduction of 12-13 percent is possible including
these periodic components in the regressions. The amplitudes are found to be sig-
nificant for most of the sites. Magnitudes up to 0.8 cm appear for some stations.
Finally, it should be pointed out that the 446 days period should not be interpreted
as the Chandler period. It inserted in Table 6.16 to show the order of magnitude
for amplitudes for an interpretation in this frequency band.
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Table 6.16: Sample variances (unit: cm2) and computed amplitudes (unit: cm)
for various de-trended European CGPS station series when spectral parameters
for two periodic components are included in the weighted regressions.

No. Station var. var. A446.3 A382.4 var. A435.0 A365.25

1 BOR1 0.574 0.475 0.46 0.53 0.486 0.31 0.48
2 BRUS 0.602 0.518 0.35 0.48 0.537 0.19 0.39
3 BUCU 0.720 0.482 0.68 0.80 0.501 0.47 0.72
4 BZRG 0.947 0.817 0.67 0.43 0.825 0.52 0.45
5 CAGL 0.792 0.758 0.33 0.19 0.761 0.31 0.17
6 EBRE 0.754 0.741 0.13 0.13 0.743 0.12 0.10
7 GENO 0.682 0.605 0.44 0.47 0.615 0.31 0.42
8 GOPE 0.746 0.638 0.65 0.28 0.635 0.61 0.32
9 GRAS 0.682 0.620 0.44 0.31 0.625 0.37 0.32

10 GRAZ 0.721 0.536 0.65 0.71 0.559 0.47 0.62
11 HERS 0.730 0.669 0.38 0.19 0.679 0.34 0.12
12 HFLK 0.709 0.567 0.36 0.71 0.585 0.15 0.55
13 JOZE 0.982 0.768 0.64 0.81 0.762 0.44 0.77
14 KOSG 0.498 0.432 0.29 0.44 0.435 0.16 0.40
15 LAMA 0.757 0.655 0.48 0.49 0.652 0.46 0.44
16 MATE 0.617 0.545 0.43 0.35 0.546 0.37 0.33
17 MEDI 0.673 0.610 0.47 0.43 0.622 0.34 0.38
18 METS 0.500 0.410 0.28 0.50 0.407 0.18 0.47
19 ONSA 0.442 0.406 0.26 0.33 0.408 0.16 0.30
20 POTS 0.586 0.456 0.53 0.56 0.468 0.40 0.50
21 SFER 0.488 0.472 0.12 0.21 0.472 0.06 0.19
22 SOFI 0.995 0.857 0.46 0.65 0.853 0.31 0.60
23 TROM 0.681 0.588 0.39 0.51 0.584 0.30 0.47
24 VENE 1.397 1.280 0.72 0.40 1.290 0.64 0.40
25 VILL 0.778 0.761 0.16 0.09 0.760 0.17 0.10
26 WSRT 0.428 0.411 0.22 0.18 0.415 0.16 0.15
27 WTZT 0.751 0.615 0.58 0.59 0.626 0.46 0.53
28 ZIMM 0.565 0.504 0.43 0.40 0.512 0.32 0.36

tot.var. 19.800 17.196 17.363
var.red 13.2% 12.3%



Chapter 7

Conclusions and recommendations

7.1 Conclusions

During past few years, the computation of CGPS-time series of daily solutions has
been customary in most European countries that have participated in the project
within the EUREF Permanent Network (EPN). The exploration of the contributing
processes to CGPS-time series is still incomplete. Up to now, most investigations
have started by analysing univariate series with the purpose of characterising lo-
cal or site dependent effects. However, the influences and interactions from other
effects make this characterisation difficult.

The main purpose of this thesis was to study preliminary CGPS time series in
order to determine the possible contributory influence from this data, especially
that of a periodic kind. In the first part of numerical investigations, univariate se-
ries from the Norwegian network have been carefully examined. An attempt to
remove detected and interpreted effects have been made. After the de-trending
the remaining series have been normalised to compose an input multivariate data
set to perform a Principal Component Analysis (PCA). In the second part of the
investigations, time series from a European network of CGPS stations have been
analysed. Another approach has been used for these data. The goal of the PCA
is to find a transformation in the orthogonal multi-dimensional space, to another
orthogonal set of axis, that identifies the directions of maximal variances. The
components representing these directions are denoted as the principal components
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or modes. Through this orthogonal transformation, the original time series can be
exactly represented by a new set of series, namely the time series of amplitudes
representing the modes. A complete reconstruction from amplitudes to original
series is possible with the inverse orthogonal transformation. It is assumed that
the global or regional effects give the largest contributions to the overall variance
of all series. Selecting only a few lower order modes for a reconstitution of the
series to the original system of orthogonal axis will bring out these effects. The
investigations of the European network of CGPS data has concentrated on the re-
gional effects found in the lower order modes. Local effects are assumed to appear
in the higher order modes.

7.1.1 Univariate analyses of Norwegian CGPS series

The study of the Norwegian CGPS data has been performed in two steps. First,
univariate time series of CGPS data, representing each site and direction (N, E,
H-components) have been investigated with a focus on the spectral analysis and
jump detection techniques. In a second stage, the remaining de-trended series of
residuals have been normalised. These series are then combined to multivariate
series, and used as input to a PCA. Simulations as well as investigations of the
univariate CGPS-time series, have shown that the detection of unknown jumps
is a great challenge. Jump or offset estimates may be largely correlated with
other parameter estimates. Wrong decisions in the jump detection phase, may
affect other parameter estimates and are of vital importance for correlation func-
tion and spectrum estimation. Three different methods of ACF-estimation have
been investigated. They gave almost identical results for the investigated time
series. Estimated auto correlation functions for normalised residuals remaining
after weighted linear regressions with final models, show small values, also for
lower lags. Thus, CGPS residual time series may be interpreted as realisations
from first order auto regressive processes with small parameter values which are
also known as Markov-processes and are not very different from white noise pro-
cesses. Tests of normality show that the normalised residuals from each station
series show similarity with normally distributed data with zero mean and variance
one. Cross correlation coefficients between time series of normalised residuals
have been computed and tested. The investigations reveal very small or insignifi-
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cant correlation coefficients between the components for each site. This probably
arises from the fact that the CGPS data are daily (24h) samples, covering almost
exactly two complete cycles for the GPS satellites. Thus all possible satellite
geometries have been repeated twice, which may explain that high correlations
between components for shorter GPS series are more related to the geometry.
This statement gives an opportunity to treat the components of each station indi-
vidually, which is a major advantage for the time consuming computations. On
the other hand, corresponding components for different stations show significant
spatial correlation up to 0.7 for nearby stations. This correlation is only slightly
decreasing with distance and indicates one or more common effects for the entire
network in Norway. Considering these facts, it was decided to make a multivariate
analyses of CGPS data.

7.1.2 Multivariate analyses

The time series of residuals remaining after de-trending, using weighted regres-
sions, have been combined in two different ways for the computation of sample
covariance matrices required for the PCAs of the Norwegian and European net-
works.

The CGPS data series from the Norwegian network include several intervals of
missing data, and they are of fairly different lengths. This introduces a scale
factor problem for the estimation of variances and covariances that makes a con-
sistent mutivariate analysis problematic. In order to avoid this possible error, the
residuals, normalised with a posteriori standard deviations from the weighted re-
gressions have been used as input to separate PCAs for the three directions of the
Norwegian data. Using normalised data, the covariance matrix becomes identical
to the correlation matrix. Correlation matrices have all diagonal elements equal
to one which ensures that the stations become equally weighted in a PCA. This
disregards the different variability of each station series and introduces another
scale problem. After a comparison of RMS-values of each single series, the latter
solution was considered to give a smaller influence and was chosen for the Norwe-
gian data. The results from the PCAs of Norwegian data show that more than 50
percent of the total variance is explained by the first mode for the N-direction. For
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the E- and H-directions, respectively, the first mode explains 43 and 44 percent.
More than 60 percent of the total variance is explained by the two first modes for
the N-direction and almost the same for the other components. This indicates at
least one or two dominating common effects or factors that contribute to the series
for all stations and directions. The first loadings show a common variation for the
entire network of Norway that is almost uniform for all directions. The second
loadings show one or more local effects which are different for the southern and
northern parts for all directions. An axis from north-west to south-east north of
Trondheim separates the regions. The third loadings indicate a possible local ef-
fect for stations in the mountain areas. This is visible in the height direction, but
the few number of stations in the mountain area makes this interpretation uncer-
tain. It was decided to analyse an independently pre-processed data set from a
European network to confirm the results from the analysis of Norwegian data.

In the PCA for European CGPS data, only the vertical component has been used.
Unlike the Norwegian case, the a posteriori variance information from the weighted
linear regressions has not been used to weight the de-trended series in subsequent
analyses. A sample covariance matrix from the station series of residuals in the
common time interval (2000.0-2004.0) has been computed. This analysis con-
firms the results from the Norwegian network. The first, second and third mode
respectively, represent 42, 8 and 7 percent of the overall sample variance. The
spatial pattern of normalised loadings representing the first mode shows a com-
mon up and down motion for the entire network. The spectrum of time varying
amplitudes of the first mode shows approximately dominant peaks for an annual
period and a period close to the Chandler period. The annual variation is expected
and is attributed to seasonal variations. On the other hand, the period close to the
Chandler period was unexpected, as this period should be taken into account in the
pre-processing stage of the CGPS time series. The investigation has shown that
including parameters for these periods in the regression models make it possible to
reduce the average sample variance for the stations by 12-13 percent. Magnitudes
of amplitudes computed from these periodic components found in a simultane-
ously estimation are up to 8 mm for the annual and 6 mm for the Chandler-like
period, respectively. The spatial pattern of the second mode shows a tilting over
a NW to SE axis through the centre of the Network, while the pattern represent-
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ing the third mode is a similar motion over an axis running from SW to NE. The
spectrum of time varying amplitudes of second mode is dominated by frequency
components approximately of 1, 2 and 3 cycles per year, while spectra represent-
ing almost all the other modes includes semi-annual and annual periods. The
computation of inter-station correlation coefficients shows that the spatial correla-
tion in CGPS data only decreases slightly as a function of distance. This confirms
earlier results from similar investigations of the height component for the Swedish
and Finnish network performed by Johansson et al. [2002]. This correlation will
vanish after a removal of the effect from first mode. A determination of possible
effects contributing to each mode has proved to be difficult as several effects and
interactions may appear in different modes. However, an attempt has been made
to relate CGPS data to five different data sets of atmospheric surface loading pre-
dictions.

A comparison has been made of station series as well as extracted modes from
separate PCAs for the CGPS and the atmospheric loading predictions. The spatial
patterns of the first three modes are quite similar. The spectra of time varying
amplitudes representing the modes also look quite similar, except for a dominant
double peak in the first mode of the CGPS data. The variance explained by the
first three modes for one selected data set of predictions, data set P3 is 76, 13 and
6 percent, thus the first three modes account for 95 percent of the overall vari-
ance. Model relations for series of CGPS and atmospheric loading predictions
are searched using regression and correlation techniques. The best fitted data set
of predictions was selected for further examination. Different corrections for this
atmospheric loading effect on CGPS data using the derived models have been per-
formed. Investigations show that a total variance reduction of CGPS data up to 10
percent is possible when correcting for the effect of atmospheric loading. Some
investigations of the time variability for computed correlation and regression co-
efficients have used a “sliding” one-year time window in two-month steps through
the series. The precision of CGPS data is better for the last part of the time inter-
val, thus a correlation coefficient is assumed to increase with time. Results also
confirm this, but it also shows an unexpected wave form with a minimum value at
the turn of the year 2001/2002.
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7.2 Further investigations

Using longer (future) series it would be of interest to find out more about the time
varying relation between estimated correlation and regression coefficients. Here,
one must ask if this really is a wave-formed relation in time, or if the results in this
study are related to the present pre-processing technique of CGPS-time series and
the handling of the reference frame shift from ITRF97 to ITRF2000. However, the
results confirm that a discussion of the homogeneity of CGPS time series should
continue. In this context the time series of varying amplitudes for the first mode
of CGPS should be mentioned as it shows a very significant effect of the winter
2003/2004 in the first mode.

Most data sets from CGPS used in this investigation show an unexpected sig-
nal close to the Chandler period. EOP time series are used in the pre-processing
stage of CGPS time series to account for the effect of the Chandler period. Further
investigations of this signal should be made. The spatial correlation of CGPS data
is mainly attributed to the first mode. An explanation of the contributing effects
to the first mode becomes essential in the near future. Until these effects are de-
termined, the PCA has proved to be a good alternative when used as a filtering
technique for improvement of the data series in a region.

In the final part of this study, PCA is used as a tool to separately determine the
common modes in the CGPS data and the atmospheric loading predictions that
are valid for the particular Euro-Asian techtonic plate. The effect of atmospheric
loadings may probably appear different for other continents. Newertheless, the
determination of corresponding relations between common modes in CGPS time
series and atmospheric or other loading effects for other techtonic plates, would
be of valuable interest. So far the PCA method has not shown any limitations
in use even for larger scales. Future studies may focus on PCA for both hemi-
spheres or even for the entire globe. The goal of modelling all displacements
on the Earth’s surface with proper accuracy in near real-time is being sought for
several purposes. Improved monitoring of displacements related to the Earth’s
surface will contribute to a better determination of precise reference frames. As
such work would also cover the most unstable areas, the prediction of natural dis-
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asters such as earthquakes and volcanic activity would be most valuable. For such
applications it can be relevant to use the PCA filtering technique as a tool in the
monitoring of the Earth. PCA can be used to extract a common mode signal for
a region. Reconstituted to each CGPS station time series this can be seen as a fil-
tered version of the original CGPS station series. Reconstructing the signal from
the lowest modes gives global or regional effects. Equivalently, a signal recon-
structed from a sum of the highest modes would probably represent local effects.
In a combination with a prediction and filtering approach as in Koch [1999], the
predicted values in near future as well as their confidence interval limits can be es-
timated. Later observed values outside these limits will indicate an unusual local
motion and might give a warning in possible earthquake areas.
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Appendix A

Law of covariances

The following linear equations have been defined to explain error propagation

y1 = A1x1 + b1 y2 = A2x2 + b2 (A.1)

The elements in the y1-vector is linear combinations of the elements in the x1-
vector. Hence the A1-matrix is a coefficient matrix. b1 is a vector of constants.
The elements in the y2-vector is linear combinations of the elements in the x2-
vector. Hence the A2-matrix is a coefficient matrix. b2 is a vector of constants.
The expectation of the vectors y1 and y2 can be written as

E(y1) = A1E(x1) + b1 E(y2) = A2E(x2) + b2 (A.2)

and the covariance of the two vectors follows as:

cov(y1, y2) =E[(y1 − E(y1))(y2 − E(y2))
T ]

=E[((A1x1 + b1) − (A1E(x1) + b1))

((A2x2 + b2) − (A2E(x2) + b2))
T ]

=E[A1(x1 − E(x1))((A2(x2 − E(x2)))
T ]

=E[A1(x1 − E(x1))(x2 − E(x2))
T A2

T ]

=A1E[(x1 − E(x1))(x2 − E(x2))
T ]A2

T

=A1cov(x1, x2)A2
T
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Therefore the covariance law can be defined as

cov(y1, y1) = A1cov(x1, x1)A1
T (A.3)

or more often written as:

cov(y1) = A1cov(x1)A1
T (A.4)
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The inverse of a regular quadratic
block matrix

Let N be a regular quadratic block matrix of dimensions (d + s) · (d + s) and M

its inverse

N =

 Ndd

... Nds

. . . . . .

Nsd

... Nss

 ⇔N−1 = M =

 Mdd

... Mds

. . . . . .

Msd

... Mss

 (B.1)

Because of NN−1 = I it is possible to write: Ndd

... Nds

. . . . . .

Nsd

... Nss

 ·

 Mdd

... Mds

. . . . . .

Msd

... Mss

 =

 Idd

... 0ds

. . . . . .

0sd

... Iss

 (B.2)

Multiplying the sub-matrices gives the equations:

NddMdd + NdsMsd = Idd (B.3)

NddMds + NdsMss = 0ds (B.4)

NsdMdd + NssMsd = 0sd (B.5)

NsdMds + NssMss = Iss (B.6)
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Inserting Mdd = N
−1
dd − N

−1
dd NdsMsd from Eq.(B.3) into Eq.(B.5) gives

NsdN
−1
dd − NsdN

−1
dd NdsMsd + NssMsd = 0sd ⇔

Msd = −(Nss − NsdN
−1
dd Nds)

−1NsdN
−1
dd

and Mdd may now be rewritten as an expression of N -sub matrices only:

Mdd = N
−1
dd + N

−1
dd Nds(Nss − NsdN

−1
dd Nds)

−1NsdN
−1
dd (B.7)

Inserting Eq.(B.4) Mds = −N
−1
dd NdsMss in Eq.(B.6), one finds

−NsdN
−1
dd NdsMss + NssMss = Iss ⇔

(Nss − NsdN
−1
dd Nds)Mss = Iss ⇔

Mss = (Nss − NsdN
−1
dd Nds)

−1

Finally, the inverse of the regular quadratic block matrix N is

N−1 = M =

 Mdd

... Mds

. . . . . .

Msd

... Mss

 (B.8)

with sub matrices given by:

Mdd = N
−1
dd + N

−1
dd Nds(Nss − NsdN

−1
dd Nds)

−1
NsdN

−1
dd (B.9)

Mds = N
−1
dd Nds(Nss − NsdN

−1
dd Nds)

−1
(B.10)

Msd = −(Nss − NsdN
−1
dd Nds)

−1
NsdN

−1
dd (B.11)

Mss = (Nss − NsdN
−1
dd Nds)

−1
(B.12)
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Models with autocorrelated errors

The following is a short summary of ARIMA time series models and the relation
between the specific Auto Regressive (AR)- and the more traditional regression
model. For a more detailed discussion, the reader is referred to Shumway and
Stoffer [2000], Wei [1990] and Wetherill [1986]. A regression model of assumed
equally weighted observations has the form:

y = Xβ + ε (C.1)

where y is an (n × 1) observed response vector and X the (n × (r + 1)) design
matrix of corresponding predictor variables. ε is the (n × 1) vector of errors
assumed to have following properties:

E(ε) = 0 , cov(y) = cov(ε) = σ2Σyy (C.2)

where 0 is a zero vector and Σyy a (n × n) a priori known cofactor matrix. In a
special case of independent errors of equal weights, a unity matrix I can be used
as the cofactor matrix Σyy.

For data taken serially in time the error terms in ε are nearly always correlated.
If we assume the errors to fulfil second order weak stationarity, that means cor-
relation between following errors εi and εi+1 to be equal, correlations between εi

and εi+2, and so on correlations between εi and εi+j, for all possible i and j in the
time series, then the Σyy-matrix will take the form:
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Σyy =



1 ρ1 ρ2 ρ3 . . .

ρ1 1 ρ1 ρ2 . . .

ρ2 ρ1 1 ρ1

ρ3 ρ2 ρ1 1
. . .

...
... . . . . . .


(C.3)

where ρ(k) = ρk, (k = 1, 2, ..., n − 1) are values from the ACF for the time
series of errors. Inverting such a cofactor matrix might be a problem. It would be
easier if the correlation structure of the errors was known. Knowledge about the
correlation structure helps to classify the kind of process that might have generated
the errors. Simpler approximation formulas to compute the inverse of a cofactor
matrix, given the kind of process have been derived long time ago. A way of
classifying stochastic processes is using ARIMA-modelling [e.g. Wei, 1990].

Classification of stochastic processes (ARIMA)

Different kinds of classification can be done for stochastic processes. They can
be grouped as broad- or narrow-band processes based on their properties in fre-
quency domain. Because the normalised spectrum and the ACF contain identical
information, it is possible to classify the kind of process analysing the ACF or
ACvF of the process in time domain. Based on the estimated ACF and the Par-
tial Auto Correlation Function (PACF), [see e.g. Wei, 1990], a classification of
stochastic process can be done. Some use the terms Auto Regressive- (AR) or
moving average (MA) processes. Combinations and integrated (I) types of these
may also be used. The notation ARIMA is very common.

Auto Regressive processes of order p, AR(p) and
Moving Average processes of order q, MA(q) or a combination of them
Auto Regressive Moving Average processes of order p, q, ARMA(p, q)
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AR(p)-process

Assume that εt is a zero mean process, and the term εt is purely random or white
noise. An AR(p) model (with p parameters) can then be written as:

εt = φ1εt−1 + φ2εt−2 + . . . + φpεt−p + εt (C.4)

This represents a regression or prediction of the current value εt of a time series
as a function of the past p values of the series, and hence the term Auto regression
is suggested for this kind of models.

AR(1)-process

An AR(1) model can be written as:

εt = φ1εt−1 + εt (C.5)

As can be seen, the observation at time t is a function of the observation at the time
t − 1, and are thus also influenced by earlier errors. For Gaussian distributed data,
the AR(1)-process is also known as a Markov process [see e.g. Wei, 1990]. In an
AR(1)-process, the first coefficient of the PACF is φ1, the linear relation between
εt and εt−1. For coefficients |φ1| < 1, the process is stationary. For estimation of
the PACF see Wei [1990]. The ACF of an AR(1) process has the known form:

ρk = φ1ρk−1 = φk
1, k ≥ 0 and ρ0 = 1 (C.6)

Characteristics for an AR(1) process are:
ACF Exponentially decreasing as can be seen from Eq. (C.6)
PACF A spike at lag one (= φ1), then the PACF cuts off.

If it is reasonable that a time series of residuals arises from an AR(1) process,
the Σyy-matrix in Eq. (C.3), becomes:

Σyy =



1 ρ ρ2 ρ3 . . .

ρ 1 ρ ρ2 . . .

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1
. . .

...
... . . . . . .


(C.7)
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where all the ρ ’s should have index 1, and therefore are skipped. It can be shown
that its inverse can be approximated with [see e.g. Wetherill, 1986]:

Σ−1
yy

≈ 1

1 − ρ2



1 −ρ 0 0 . . .

−ρ (1 + ρ2) −ρ 0 . . .

0 −ρ
. . . . . .

...
... . . . (1 + ρ2) −ρ

0 0 −ρ 1


(C.8)

Remark:
If the parameter φ1 = ρ1 in an AR(1)-process is small, the cofactor matrix Σyy

will be almost like the identity-matrix as in the independent case.



Appendix D

More PCA results with Norwegian
data

Table D.1: Columns of normalised eigenvectors to the corresponding six largest
eigenvalues in the North component in the Norwegian CGPS data.

Coloumns of normalised eigenvectors.
No. 1. 2. 3. 4. 5. 6.

1 0.194 -0.168 -0.804 0.158 -0.036 0.448
2 0.257 -0.317 0.067 0.250 -0.104 -0.461
3 0.296 0.259 0.018 -0.032 0.148 0.098
4 0.299 -0.166 0.024 0.266 -0.130 0.012
5 0.241 0.235 -0.220 -0.666 -0.055 -0.273
6 0.238 0.190 0.384 -0.052 -0.634 0.429
7 0.299 0.229 0.061 0.024 0.328 -0.043
8 0.277 0.177 0.119 0.356 0.403 -0.054
9 0.319 0.244 -0.002 -0.036 0.110 0.054

10 0.293 0.039 0.031 0.249 -0.263 -0.022
11 0.241 -0.384 0.000 -0.384 -0.021 -0.006
12 0.199 -0.438 0.342 -0.230 0.413 0.458
13 0.316 0.169 -0.129 -0.041 -0.066 -0.139
14 0.231 -0.416 0.001 -0.033 -0.134 -0.283
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Table D.2: Columns of station number, station name and 1st, 2nd and 3rd factor
loadings for the North component in the Norwegian CGPS data.

Factor loadings.
No Station 1.load 2.load 3.load

1 an3e 0.514 -0.200 -0.737
2 an3o 0.683 -0.376 0.061
3 ber3 0.786 0.307 0.017
4 bod3 0.793 -0.196 0.022
5 dag3 0.640 0.279 -0.202
6 dom3 0.632 0.225 0.352
7 kri3 0.795 0.271 0.056
8 osl3 0.735 0.211 0.109
9 sta3 0.847 0.289 -0.002

10 trh3 0.777 0.047 0.029
11 trm3 0.640 -0.455 0.000
12 tro3 0.527 -0.519 0.313
13 try3 0.838 0.201 -0.118
14 var3 0.613 -0.493 0.001

sum loadings 9.820 -0.409 -0.098

Table D.3: Columns of normalised eigenvectors to the corresponding six largest
eigenvalues for the East component in the Norwegian CGPS data.

Coloumns of normalised eigenvectors.
No. 1. 2. 3. 4. 5. 6.

1 0.230 -0.097 0.622 -0.079 -0.229 -0.584
2 0.273 -0.274 0.099 0.004 -0.093 -0.005
3 0.285 0.261 -0.107 0.096 0.097 -0.007
4 0.305 -0.162 0.041 -0.010 0.060 -0.019
5 0.274 0.236 -0.280 -0.137 0.464 -0.189
6 0.240 0.202 -0.114 -0.722 -0.283 0.101
7 0.284 0.219 -0.030 0.218 0.014 -0.219
8 0.259 0.120 0.230 0.285 -0.406 0.575
9 0.300 0.261 -0.084 0.102 0.022 -0.156

10 0.285 0.146 0.026 -0.249 -0.131 0.188
11 0.245 -0.478 -0.269 0.133 -0.121 -0.182
12 0.243 -0.405 -0.487 0.059 -0.208 0.034
13 0.297 0.135 0.127 0.387 0.241 0.157
14 0.197 -0.402 0.334 -0.268 0.575 0.340
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Table D.4: Columns of station number, station name and 1st, 2nd and 3rd factor
loadings for the East component in the Norwegian CGPS data.

Factor loadings.
No Station 1.load 2.load 3.load

1 an3e 0.562 -0.112 0.580
2 an3o 0.669 -0.315 0.092
3 ber3 0.698 0.301 -0.100
4 bod3 0.746 -0.187 0.038
5 dag3 0.671 0.272 -0.261
6 dom3 0.588 0.233 -0.106
7 kri3 0.695 0.252 -0.028
8 osl3 0.633 0.138 0.214
9 sta3 0.735 0.301 -0.078

10 trh3 0.698 0.168 0.024
11 trm3 0.599 -0.551 -0.251
12 tro3 0.595 -0.467 -0.454
13 try3 0.726 0.156 0.118
14 var3 0.483 -0.464 0.311

sum loadings 9.097 -0.273 0.100

Table D.5: Columns of normalised eigenvectors to the corresponding six largest
eigenvalues for the Height component in the Norwegian CGPS data.

Coloumns of normalised eigenvectors.
No. 1. 2. 3. 4. 5. 6.

1 0.214 -0.240 -0.076 -0.740 -0.223 0.334
2 0.269 -0.282 -0.000 0.006 -0.312 0.006
3 0.280 0.207 0.176 -0.233 0.238 0.052
4 0.299 -0.205 0.041 -0.156 -0.066 -0.309
5 0.234 0.291 -0.534 0.106 0.105 0.146
6 0.251 0.257 -0.495 -0.042 0.130 0.202
7 0.273 0.240 0.409 0.143 0.027 0.105
8 0.279 0.217 0.143 0.298 -0.266 0.048
9 0.270 0.260 0.464 -0.150 0.179 0.180

10 0.289 0.037 -0.071 -0.067 -0.235 -0.692
11 0.265 -0.374 0.017 0.159 0.513 -0.072
12 0.271 -0.390 -0.075 0.135 0.408 -0.006
13 0.308 0.226 -0.131 0.066 -0.151 -0.142
14 0.222 -0.334 0.016 0.420 -0.390 0.422
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Table D.6: Columns of station number, station name 1st, 2nd and 3rd factor loadings
for the Height component in the Norwegian CGPS data.

Factor loadings.
No Station 1.load 2.load 3.load

1 an3e 0.530 -0.304 -0.070
2 an3o 0.668 -0.357 -0.000
3 ber3 0.696 0.262 0.160
4 bod3 0.741 -0.260 0.038
5 dag3 0.581 0.369 -0.485
6 dom3 0.622 0.326 -0.450
7 kri3 0.677 0.305 0.372
8 osl3 0.691 0.275 0.130
9 sta3 0.670 0.330 0.422

10 trh3 0.716 0.046 -0.065
11 trm3 0.657 -0.474 0.015
12 tro3 0.673 -0.494 -0.069
13 try3 0.764 0.287 -0.119
14 var3 0.550 -0.423 0.014

sum loadings 9.236 -0.112 -0.105
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Table E.1: Station dependent correlation coefficients for de-trended atmospheric
loading predictions (predictors) for the five data sets given in Table 6.7 and Euro-
pean CGPS (observations) station series extracted from the first modes.

Correlation coefficients M1 series
1 BOR1 0.413 0.360 0.411 0.356 0.387
2 BRUS 0.419 0.363 0.419 0.361 0.392
3 BUCU 0.418 0.363 0.417 0.359 0.390
4 BZRG 0.431 0.372 0.432 0.372 0.404
5 CAGL 0.414 0.359 0.412 0.355 0.393
6 EBRE 0.410 0.357 0.410 0.354 0.383
7 GENO 0.421 0.367 0.421 0.365 0.396
8 GOPE 0.407 0.351 0.405 0.346 0.380
9 GRAS 0.409 0.354 0.406 0.348 0.387

10 GRAZ 0.419 0.368 0.417 0.364 0.393
11 HERS 0.415 0.370 0.413 0.365 0.388
12 HFLK 0.343 0.279 0.348 0.282 0.328
13 JOZE 0.407 0.351 0.405 0.346 0.380
14 KOSG 0.414 0.360 0.412 0.356 0.387
15 LAMA 0.409 0.357 0.407 0.351 0.379
16 MATE 0.416 0.363 0.415 0.358 0.390
17 MEDI 0.418 0.363 0.417 0.360 0.390
18 METS 0.412 0.357 0.411 0.353 0.386
19 ONSA 0.412 0.355 0.411 0.351 0.385
20 POTS 0.416 0.361 0.415 0.357 0.390
21 SFER 0.422 0.374 0.420 0.370 0.393
22 SOFI 0.405 0.356 0.401 0.350 0.384
23 TROM 0.430 0.371 0.431 0.370 0.401
24 VENE 0.407 0.349 0.406 0.347 0.380
25 VILL 0.427 0.384 0.424 0.375 0.400
26 WSRT 0.422 0.366 0.422 0.363 0.395
27 WTZT 0.424 0.374 0.423 0.369 0.398
28 ZIMM 0.420 0.367 0.420 0.365 0.394

MEAN 0.414 0.360 0.413 0.356 0.388
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Table E.2: Station dependent regression coefficients for de-trended atmospheric
loading predictions (predictors) for the five data sets given in Table 6.7 and Euro-
pean CGPS (observations) station series extracted from the first modes.

Regression coefficients M1 series
No Station P1 P2 P3 P4 P5

1 BOR1 0.600 0.445 0.652 0.483 0.591
2 BRUS 0.670 0.413 0.732 0.555 0.590
3 BUCU 0.886 0.547 0.955 0.599 0.904
4 BZRG 0.830 0.602 0.851 0.630 0.776
5 CAGL 1.175 0.679 1.835 0.925 0.967
6 EBRE 0.884 0.554 0.886 0.572 0.798
7 GENO 0.917 0.635 1.032 0.715 0.833
8 GOPE 0.591 0.436 0.611 0.455 0.558
9 GRAS 0.892 0.606 1.106 0.721 0.904

10 GRAZ 0.804 0.592 0.834 0.623 0.771
11 HERS 0.612 0.477 0.724 0.543 0.507
12 HFLK 0.635 0.440 0.674 0.470 0.590
13 JOZE 0.661 0.471 0.683 0.491 0.637
14 KOSG 0.616 0.470 0.657 0.501 0.544
15 LAMA 0.574 0.412 0.619 0.444 0.554
16 MATE 1.066 0.641 1.455 0.820 1.154
17 MEDI 0.812 0.560 0.843 0.594 0.754
18 METS 0.575 0.374 0.713 0.446 0.548
19 ONSA 0.536 0.382 0.733 0.492 0.496
20 POTS 0.631 0.476 0.711 0.531 0.622
21 SFER 0.954 0.458 0.867 0.454 0.786
22 SOFI 0.920 0.558 0.964 0.599 0.915
23 TROM 0.838 0.415 1.073 0.499 0.819
24 VENE 0.760 0.531 0.754 0.546 0.706
25 VILL 0.641 0.402 0.609 0.396 0.586
26 WSRT 0.523 0.395 0.599 0.445 0.457
27 WTZT 0.711 0.537 0.760 0.575 0.665
28 ZIMM 0.733 0.542 0.733 0.552 0.680

MEAN 0.752 0.502 0.845 0.560 0.704
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Table E.3: Station dependent regression coefficients for de-trended atmospheric
loading predictions (predictors) for the five data sets given in Table 6.7 and Euro-
pean CGPS (observations) station series extracted from the second modes.

Regression coefficients M2 series
No Station P1 P2 P3 P4 P5

1 BOR1 0.553 0.595 0.561 0.576 0.495
2 BRUS 0.225 -0.152 0.204 0.199 0.154
3 BUCU -2.466 -1.409 7.399 65.820 -11.613
4 BZRG -0.154 -0.137 -0.190 -0.165 -0.140
5 CAGL 0.921 0.833 2.066 2.135 0.726
6 EBRE 0.642 0.604 0.625 0.597 0.547
7 GENO 0.281 0.255 0.350 0.326 0.238
8 GOPE 0.118 0.069 -0.770 0.226 0.215
9 GRAS 0.555 0.515 0.773 0.749 0.570

10 GRAZ -0.326 -0.276 -0.469 -0.384 -0.338
11 HERS 0.684 0.794 0.664 0.725 0.398
12 HFLK 0.189 0.169 0.226 0.200 0.170
13 JOZE 0.713 0.781 0.621 0.634 0.594
14 KOSG 0.621 2.175 0.158 0.161 0.175
15 LAMA 0.334 0.347 0.328 0.322 0.290
16 MATE 0.247 0.212 0.613 0.591 0.328
17 MEDI 0.287 0.258 0.355 0.323 0.272
18 METS 0.185 0.183 0.223 0.205 0.159
19 ONSA 0.123 0.118 0.161 0.146 0.108
20 POTS 0.671 0.699 0.837 0.863 0.703
21 SFER 0.753 0.683 0.700 0.670 0.612
22 SOFI -0.797 -0.606 -2.047 -1.502 -0.996
23 TROM 0.227 0.214 0.286 0.247 0.190
24 VENE 0.713 0.636 0.855 0.758 0.656
25 VILL 0.908 0.865 0.852 0.818 0.806
26 WSRT -0.432 -0.354 -3.641 -1.611 -1.485
27 WTZT -0.737 -0.638 -1.047 -0.859 -0.804
28 ZIMM 0.273 0.258 0.290 0.267 0.253

MEAN 0.190 0.275 0.392 2.608 -0.240
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Table E.4: Station dependent regression coefficients for de-trended atmospheric
loading predictions (predictors) for the five data sets given in Table 6.7 and Euro-
pean CGPS (observations) station series extracted from the third modes.

Regression coefficients M3 series
No Station P1 P2 P3 P4 P5

1 BOR1 -0.543 -11.515 -0.687 -5.727 -0.334
2 BRUS 0.385 -39.707 0.416 0.376 0.328
3 BUCU 0.422 0.426 0.400 0.391 0.380
4 BZRG -1.014 2.713 -1.034 -3.829 -0.648
5 CAGL 1.374 0.898 2.221 0.853 0.748
6 EBRE 1.761 3.588 1.757 10.378 2.421
7 GENO -0.187 -0.307 -0.190 -0.132 -0.091
8 GOPE 3.107 -1.468 3.846 -1.915 1.240
9 GRAS 4.929 5.317 -10.845 -0.463 -1.134

10 GRAZ 0.483 0.884 0.468 0.653 0.366
11 HERS 0.757 0.718 0.870 0.869 0.584
12 HFLK 7.338 2.062 53.959 4.801 -9.056
13 JOZE -0.098 -0.128 -0.106 -0.133 -0.077
14 KOSG 0.528 0.458 0.528 0.469 0.414
15 LAMA -0.283 -0.359 -0.332 -0.395 -0.225
16 MATE 0.717 0.654 1.007 0.744 0.688
17 MEDI 0.186 0.247 0.168 0.174 0.137
18 METS -0.413 -0.261 3.446 -0.783 -0.365
19 ONSA 0.585 0.564 0.567 0.689 0.422
20 POTS 0.656 0.360 0.662 0.422 0.766
21 SFER 22.698 -1.403 -4.433 -0.844 -2.753
22 SOFI 0.779 0.756 0.681 0.640 0.605
23 TROM 0.799 -4.476 0.456 1.119 0.508
24 VENE 5.643 8.543 5.681 6.999 4.202
25 VILL 0.956 1.948 0.931 4.329 1.345
26 WSRT 0.421 0.363 0.445 0.403 0.324
27 WTZT 1.257 0.452 1.976 0.695 5.255
28 ZIMM 1.042 0.796 1.204 1.012 1.227

MEAN 1.939 -0.996 2.288 0.778 0.260
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Table E.5: Station dependent regression coefficients for de-trended atmospheric
loading predictions (predictors) for the five data sets given in Table 6.7 and Euro-
pean CGPS (observations) station series extracted from the first three modes.

Regression coefficients M1+M2+M3 series
No Station P1 P2 P3 P4 P5

1 BOR1 0.686 0.517 0.737 0.544 0.665
2 BRUS 0.619 0.333 0.688 0.544 0.534
3 BUCU 0.808 0.584 0.826 0.591 0.836
4 BZRG 0.821 0.608 0.846 0.638 0.775
5 CAGL 0.695 0.466 1.161 0.677 0.582
6 EBRE 0.601 0.345 0.636 0.428 0.576
7 GENO 0.739 0.529 0.845 0.613 0.684
8 GOPE 0.587 0.453 0.604 0.468 0.550
9 GRAS 0.629 0.431 0.804 0.545 0.666

10 GRAZ 0.799 0.611 0.824 0.631 0.767
11 HERS 0.590 0.428 0.718 0.516 0.489
12 HFLK 0.617 0.415 0.670 0.458 0.595
13 JOZE 0.762 0.561 0.770 0.557 0.720
14 KOSG 0.615 0.471 0.669 0.514 0.533
15 LAMA 0.609 0.451 0.640 0.461 0.581
16 MATE 0.752 0.529 1.122 0.711 0.870
17 MEDI 0.661 0.472 0.695 0.511 0.629
18 METS 0.415 0.327 0.495 0.366 0.366
19 ONSA 0.462 0.355 0.603 0.427 0.412
20 POTS 0.714 0.547 0.806 0.600 0.695
21 SFER 0.562 0.185 0.570 0.272 0.502
22 SOFI 0.915 0.659 0.929 0.672 0.890
23 TROM 0.363 0.299 0.427 0.332 0.278
24 VENE 0.590 0.562 0.526 0.532 0.491
25 VILL 0.399 0.212 0.428 0.291 0.402
26 WSRT 0.488 0.366 0.572 0.423 0.420
27 WTZT 0.774 0.589 0.824 0.622 0.721
28 ZIMM 0.637 0.464 0.651 0.494 0.607

MEAN 0.640 0.456 0.717 0.516 0.601


