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Abstract

The present thesis deals with ultimate strength and collapse analysis of ship structures.
Within this area, the attention is directed towards simple and efficient nonlinear finite ele-
ment models for stiffened plate panels in ship structures. Several types of Morley elements
are investigated and two are selected for further development. These triangular elements
assume constant stress distribution over the element area.

The first element considered is a nonlinear facet shell element which is valid within
moderate rotations. Its elastic formulation has been proposed earlier. In this work, the
element matrices are extended to account for material plasticity. The second element, is
a displacement-based curved element which undergoes arbitrary large displacements and
rotations. The discrete equilibrium equations for this element are re-derived so as to make
them more efficient with standard Newton-Raphson solution procedures.

Material plasticity formulation using through-the thickness integration as well as
resultants plasticity is presented. The evolution laws are derived from the natural laws of
thermodynamics, and a return mapping algorithm with a backward Euler difference scheme
is used for the solution of the evolution equations. The plasticity computations involve a
solution of a single scalar yield surface for the plasticity multiplier. By performing the
matrix algebra analytically, simple and explicit expressions are derived. These equations
reduce the computational costs remarkably.

Numerical examples, mostly selected from well-known benchmark problems, are pre-
sented to demonstrate the performance of the proposed formulations. Very good agreement
is obtained when compared with published results. In addition, typical problems for ulti-
mate strength and collapse analysis of ship hull-girder are analyzed. These include plate
girders, stiffened plate panels, as well as a cruciform element. The results show good agree-
ment not only with those obtained from commercial finite element programs, but also from
the experimental observations. For stiffened plate panels, comparison is made with DNV
design rules, which is found to give non—conservative estimates for some loading conditions.

Finally, a study on multi-span stiffened panels is performed so as to compare the
estimates provided by the conventional single span model. It is observed that the con-
ventional model provides conservative estimates, and the effect of transverse frames is
especially significant in the finite element model of stiffened panels.
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Nomenclature

All symbols are defined when they first appear in the text. If deemed necessary, the
following list of the most common used notations can be considered as a guide.

Constants and Variables

a; constants defined by z—coordinates of the triangle vertexes
aop first fundamental tensor

b; constants defined by y—coordinates of the triangle vertexes
c constant (0.5 or 2)

f yield function (for Chapter 6 it is a scaling factor)
he, transformation terms for practical components

l; length of element side i

Lik dependent quantities of [;

nt Cartesian components of the unit normal k&

ng number of free degrees of freedom

t thickness

U membrane displacement function

U; membrane displacement u at vertex ¢

v membrane displacement function

v; membrane displacement v at vertex ¢

w out—of—plane displacement function

w; out—of—plane displacement at vertex i

x variable along the z—axis in Cartesian coordinates
x; xz—coordinate at vertex ¢ (Except for Section 2.6)
Y variable along the y—axis in Cartesian coordinates
Ui y—coordinate at vertex i (Except for Section 2.6)
z variable along the z—axis in Cartesian coordinates
i z—coordinate at vertex i (Except for Section 2.6)
A area

A; area of sub triangle ¢

Ch initial element configuration



Ch current element configuration

E Young’s modulus

E;; components of the Green—Lagrange strain tensor

Fj components in the matrix of material deformation gradient
H isotropic hardening modulus

J Jacobian

MeP covariant components of M
Map components of M

NeB covariant components of N

Nag components of N

R;; components of the rotation tensor R

Sk components of the second Piola—Kirchhoff stress tensor
T;; components of matrix T

wi internal work

a material plasticity constant

material plasticity constant

material plasticity constant

material plasticity constant
B components of x

= W™ QI

055 Kronecker delta

Omeen, ~ mechanical (material) dissipation

Yas components of v

i normal membrane strain corresponding to side ¢
Kag components of covariant curvature tensor

A plasticity multiplier (or consistency parameter)
v Poisson’s ratio

W constants

Q Helmbholtz’s free energy function

Vits measure of deflections of the mid-side nodes

p mass density

o subsequent yield stress

0o yield stress

Ou ultimate stress

Okl components of the stress tensor o

0; mid-side rotation at node number ¢ + 3

eP scalar variable representing isotropic hardening
g8 contravariant permutation tensor

€aB components of covariant membrane strain tensor
& area or triangular coordinates

¢ intensity of external loads

e the current correction of applied loads intensity
Al the current increment of applied loads intensity
O. partial derivative with respect to the area coordinate &%
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Vectors and Matrices

a displacement vector without rotational DOF

b body forces

¢ matrices defined by Equation (4.28)

d; vectors of triangular constants defined in Equation (4.27)
e strain (resultants) vector

e unit vector along the Cartesian axis

Vi internal force vector

o natural base vectors

k unit normal to the undeformed surface

n vector of n?

7 plastic flow direction

n; scalar components of vector f in Equation (5.98)

p the current accumulation of applied loads

P constant vector of the actual applied loads

p position vector

r element displacement vector (DOF)

s stress resultants vector

S; vector in the direction of side ¢

t; initial unit vectors to the element flat surface

L current unit vectors to the element flat surface

u membrane displacement vector

v membrane displacement vector

w out—of-plane displacement vector

w incremental velocity vector

Wo initial incremental velocity vector of step n + 1

Wy, current incremental velocity vector due to applied loads
W, current incremental velocity vector due to unbalanced forces
or the current correction of displacement vector

Ar the current increment of displacement vector

A 6x6 constant matrix

B the complete 12x12 nonlinear strain—displacement matrix
B, strain—deflection matrix

B, the sum of B,; and B

B, strain—curvature matrix

B, strain—displacement matrix

B, strain—deflection matrix

Bgy geometric stiffness from

Ba, geometric stiffness from a

Bgy, geometric stiffness from k

Bg., geometric stiffness from w
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the sum of By, and By,

rotated B, matrix with respect to Ra;
strain—initial curvature matrix
strain—deformational curvature matrix
linear strain—displacement matrix
nonlinear strain—displacement matrix
membrane rigidity matrix

bending rigidity matrix
deflection-rotation matrix
deflection—displacement matrix
rotated E,, matrix with respect to Rs;
material transformation matrix

secant stiffness matrix

tangent stiffness matrix

moments

membrane forces

3x3 constant matrix

element transformation matrix

strain transformation matrix
membrane-bending coupling rigidity matrix

scalar components of matrix A in Equations (5.79) and (5.81-5.82)
scalar components of matrix A in Equations (5.86-5.88)

elasticity modular matrix

elasticity modular matrix

consistent elasto—plastic tangent modular matrix

elasticity resultant modular matrix

scalar components of matrix C in Equation (5.69)

material compliance matrix

scalar components of matrix H similar to Equation (5.38) but for resultants plasticity
scalar components of matrix P in Equation (5.51)

scalar components of matrix P in Equation (5.54)

matrix of eigenvectors of the product matrix CP

matrix of eigenvectors of the product matrix CA

scalar components of vector R defined in Equations (5.96-5.96)
matrix relating the correct stresses to the trial elastic stresses
scalar components of matrix V in Equations (5.79-5.80)

time or time-like derivative

vector in the local xy—coordinates

flexural strain tensor (curvature changes)
strain tensor

elastic strains

plastic strains
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€ strain resultant tensor

€ strain rate

0 membrane strain tensor

v average membrane strains along element sides

K covariant curvature tensor

[ vector of ;3

p residual force vector

o stress tensor

o stress resultant tensor

€ covariant membrane strain tensor

® mid-side rotation vector

A diagonal matrix of eigenvalues of the product matrix CP

A diagonal matrix of eigenvalues of the product matrix CA
Abbreviations

ABAQUS computer program as elaborated in the reference list
CR co-rotational description

DOF degree of freedom

DNV Det Norske Veritas

NINT number of integration points through-the thickness
NSHEL computer program as elaborated in the reference list
TL total Lagrangian description

UL updated Lagrangian description

VCCL very large crude oil carrier
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Chapter 1

Introduction

In structural design of ships and offshore structures, the ultimate capacity of the individual
components of the system is usually not to be exceeded under normal conditions. However,
an overload on a single or a group of components does not necessarily mean a complete
structural failure. Due to static indeterminacy, there exists strength reserves by which the
structure can sustain more load before a complete failure.

The maximum load at which the structure can not sustain any more loading is called
the ultimate strength. If the load effects are beyond this margin, the structure is considered
not fit for service. The most important situation where the reserve strength needs to be
evaluated is during accidental conditions — such as ship grounding and collision, explosions
and fire — and extreme environmental loads.

In conjunction with accidental loads, analysis is carried out beyond the ultimate
strength by considering progressive collapse of the structure. In this range, load redis-
tribution between the system components and the behaviour in the post—collapse range
can be studied. Of particular importance in the post—collapse range is the energy dissi-
pation capability of the system and its components. This is given by the area under the
load—displacement curve.

The present thesis deals with ultimate strength and collapse analysis of ship struc-
tures. Within this area, the attention is mainly directed towards simple and efficient finite
element methods for stiffened plate panels in ship structures. Though the discussions are
made with reference to ship structures, the ideas are applicable to other (offshore and civil
engineering) structures composed of similar components as well.

Generally, the overall dimensions of the ship structure make a boxed shape. This box
is commonly known as the ship hull-girder and it is composed of various stiffened panels
as illustrated in Figure 1.1. The individual panels consist of main plating, longitudinal
stiffeners, and transverse frames. The main function of the transverse frames is to resist
the loads induced by the hydrostatic and dynamic forces on the bottom and side shells.
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4

%W

frames

. Tp stiffeners

£ L L

Oz

Figure 1.1 The ship hull girder.

The transverse frames of the hull-girder are normally heavier and possess higher
stiffness than the longitudinal stiffeners. They provide extra longitudinal rigidity by stim-
ulating interframe collapse of the stiffened panels as opposed to an overall collapse. Con-
sequently, the stiffened panels are usually assumed to be well supported by the transverse
frames.

The longitudinal strength of the ship hull-girder is one of the fundamental strength of
the ship structure. This strength is characterized by the ultimate strength of the stiffened
panels. The major loading that utilizes this strength is the longitudinal bending moment
produced by distributed hull weight, cargo, and environmental loads.

Stiffened panels are not only the resisting elements in ships and offshore structures,
but also are the main components of a wide range of other structures such as bridges and
dock gates. Therefore, it is essential to predict accurately the behaviour of these panels
in order to produce rational design. Understanding the behaviour of individual panels can
be considered as the first step towards understanding the overall behaviour.

1.1 Background and Motivation

Recent and historical events have demonstrated significant hazards due to ship collision
and grounding. The consequences of these events are loss of human lives, financial losses,
and environmental hazards. The most typical consequence of the latter is the oil spill in
the sea. This leads to extended and involving problems related to sea pollution.
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Examples of these events include the grounding of the crude oil tanker Sea Empress
in 1996. This resulted in the discharge of approximately 72000 tons of oil into the seas
around the coast of South—West Wales. It is one of the most serious oil pollution incidents
in the European history. In 1997, the Russian tanker Nakhodka discharged about 6000
tons of heavy fuel oil into the sea of Japan when it failed to resist a severe storm.

As a result of catastrophic ship accidents owing to collision and grounding, ships with
high strength are being demanded. As a first step any oil tanker larger than 5000DWT is
required to have a double hull structure. The treaty of MARPOL (1992) established by
International Maritime Organization (IMO) requires the double hull space of Very Large
Crude oil Carrier (VLCC) to be more than 2 meters. This is mandatory for all new tankers
and for all existing tankers beyond the year 2015. Until then, single hull ships will continue
to transport oil.

Although the double hull concept is not a perfect solution, it is an effective way of
preventing oil spills during grounding and collision. As long as the inner plating remains
intact, oil spill will not occur immediately after the accident even though the outer shell
plating has been torn or ruptured. This is only true when the ultimate strength capacity
is not exceeded.

Under bad maintenance and gross human error, the ultimate strength reduction is
very common even under normal conditions. This may also be the case in a damaged
condition due to accidental loads. In these situations, the ship hull-girder is more prone
and may, at any time, collapse in the form of breakage and be lost completely. This incident
is associated with more severe oil spill as compared to oil leaking in a damaged condition.
Examples of ship failures in breakage is the VLCC Energy concentration, and the tankers
Ryoyo-Maru and Nakhodka (Yao 1999). It is reported by Ohtsubo et al. (1999) that the
main causes of Nakhodka failure were serious corrosion and the separation of main plating
from the longitudinal stiffeners.

Classification rules such as DNV (1995) and ABS (1995) require that the damaged
ship hull-girder retain a minimum hull-girder residual strength. This should prevent or
substantially reduce the risk of losing the damaged ship completely due to post—accidental
collapse or disintegration of the hull structure during tow or rescue operation.

1.2 Ship Strength Analysis

Prior the midfifties, full scale tests were usually employed to study the ultimate longitu-
dinal strength of the hull girder (Yao 1999). Since then, only parts of ship components
have been studied. With the advent computer technology, most of these tests have been
replaced by numerical simulations. Generally, the simulations are much cheaper to perform
than the complete tests. Indeed, it has been clarified by Lenselink and Thung (1992) that
the behaviour in collision could be simulated with sufficient accuracy owing to the great
progress in numerical simulation technology.
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Generally, research in ship collision and grounding seems to be generic in the sense
that assumptions are made for a number of parameters that enter the analysis. Most
of the procedures developed for analysis and design employ simple analytical or semi—
analytical expressions. Although most of these methods can be used directly, some require
computer implementation for efficient evaluation. The most advanced methods are based
on nonlinear finite element analysis. Therefore, it is usually considered that simplified
methods are those which do not employ finite elements.

Conventional design of stiffened panels is usually based on simple analytical methods.
Several Classification societies use the beam—column concept. This approach is illustrated
in Figure 1.2 for DNV (1992) design code.

/

|
! N =
e -
\\\

Ml

P
Oz \ ay 0o
1 7=q(p)

Stiffened plate = Beam—column

Figure 1.2 Beam—column approach.

Contrary to conventional ultimate strength analysis, system effects should be taken
into account during accidental conditions. In other words, local collapse is accepted pro-
vided that global integrity is not put into jeopardy. If such effects are to be considered in
a nonlinear finite element analysis, efficient computational algorithms are required. This
is the central part of the present thesis.

The most common failure type of the hull-girder is buckling and plastic collapse
of the deck and bottom stiffened plates. This may progress into physical effects such as
folding and fracture. The initial buckling is especially important in the sense that it may
determine the geometry of subsequent deformations.

Another important phenomenon is plate tearing which is usually associated with ship
grounding. It signifies the process whereby sharp objects force a crack to develop and move
in a plate with little plastic deformation except in the vicinity of the crack tip. Bending
and folding of adjacent material often accompanies this process.
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1.3 Scope and Objectives

The objective of the present thesis is to develop efficient nonlinear finite elements formu-
lations for ultimate strength and collapse analysis of stiffened panels. The overall scope
may be summarized as follows,

— Investigation and development of a simple nonlinear shell finite element formulation
considering arbitrary large displacements and rotations.

— Investigation and development of a simple material plasticity formulation assuming
small strains.

— Implementation of the element and material plasticity formulations in a nonlinear
finite element computer program.

— Test the formulations using benchmark problems, as well as practical problems which
are typical in ultimate strength and crashworthiness.

— Parametric studies on single and multi-span stiffened plate panels subjected to com-
bined compression and lateral pressure.

The intended destination of the proposed formulations is in the nonlinear computer pro-
gram USFOS (1998). This program was originally developed for progressive collapse anal-
ysis of offshore structures based on space—frame representation. With the implementation
of nonlinear shell finite elements, refined modelling in areas with large inelastic deforma-
tions is made possible, while the rest of the structure can remain as beam elements. In
USFOS, the present formulations will provide another alternative to the implementation
of Skallerud and Haugen (1999) which is already in place for three and four node facet
elements.

Due to technical issues, the task of direct implementation of the present formulations
into USFOS (1998) is not tied with the present thesis. One of the main reasons is the
difference in the number of degrees of freedom per node between USFOS’s beam element
and the elements in this thesis.

1.4 Thesis Organization and Contributions

Having introduced the problem in the present chapter, the thesis continues to give a brief
overview on the basics of shell finite elements in Chapter 2. Thereafter, two elasto—plastic
shell finite elements of Morley type are presented in the following chapters. The first
element, which appears in Chapter 3, is based on the von Karman nonlinear theory. The
elastic formulation of this element was derived by Providas (1990) and Morley (1991) and
is valid for moderate rotations.
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The present investigation finds considerable computational advantage for the element
presented in Chapter 3. In this thesis, the element matrices are extended to include material
plasticity based on stress resultants. To the authors knowledge, combining resultants
plasticity with Morley element is the second attempt after Crisfield and Peng (1992) who
reported numerical problems. Here it is shown that the elasto—plastic formulation performs
well within the element range of validity. Most of the material in this chapter has appeared
in a journal paper by Mohammed et al. (2001). A short presentation is also made by
Mohammed et al. (2000Db).

An element which is valid for arbitrary large displacements and rotations is presented
in Chapter 4. It constitutes the basics of the displacement—based element proposed by Bout
(1993), which resulted in a constant tangent stiffness matrix within an increment. In this
chapter, the discrete equilibrium equations are re-derived and a variable tangent stiffness
matrix is obtained for an arbitrary increment. The new equilibrium equations converge
faster with standard Newton-Raphson solution procedures, and they have been presented
by Mohammed et al. (2001b).

The material plasticity formulation is presented in Chapter 5. Both, through-the
thickness integration and resultant plasticity procedures are described. All formulations
involve a solution of a single scalar yield function for the plasticity multiplier. A very
comprehensive description of associated plasticity with Huber—von Mises types of yield
surfaces is given. The computational time required in matrix operations is reduced by
performing them analytically. As a result, very simplified expressions and explicit yield
functions are obtained for efficient computations.

In Chapter 6, a nonlinear solution procedure of the equilibrium equations is pre-
sented. It is followed by numerical examples to demonstrate the performance of element
and material formulations, as well as the implementation. The numerical examples are
typical benchmark problems and the results are compared with those from other publica-
tions. Difficult benchmark problems are analyzed with very good results. Some of these
examples are very complicated and many existing finite elements have not been able to
trace their response completely.

Next to benchmark problems, the efficiency of resultants plasticity versus through—
the thickness integration is studied. The same is done for the various element formulations
in the family of Morley shell elements. The results, in terms of CPU time, are tabulated
for different cases of general examples. It is demonstrated that a complete double surface
resultants plasticity does not seem to offer significant computational advantages. However,
its modified version presented in Chapter 5 shows a computational advantage of about 30—
50 percent over through—the thickness integration using 3-5 points.

Examples which are of more practical interest and related directly to ship structures
are presented in Chapter 7. They include stiffened panels, plate girders, and a cruciform
element. The results compare very well with other finite elements and experimental ob-
servations. For stiffened plate panels, it is observed that the beam—column approach used
by DNV (1992) gives non—conservative estimates for some loading conditions. Most of the
material in this chapter has been presented by Mohammed et al. (2001a).
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Chapter 8 studies the ultimate strength analysis of multi-span stiffened panels. The
aim is to investigate the influence of practical boundary conditions and the rigidity of
transverse frames on single span model. It is found that the single span model produces
conservative estimates of ultimate strength. The rigidity of transverse frames is found to
be significant since it reduces the effective buckling length. The straight edge boundary
condition in the longitudinal edges is studied and found to give an upper bound solu-
tion. The lower bound is associated with transversely free boundary condition. Chapter 9
summarizes the concluding remarks and recommendation for further work.
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Chapter 2

Basics of Shell Finite Elements

2.1 Introduction

The concepts of finite element method were developed about fifty years ago with the pio-
neering works of Argyris (1960) and Turner et al. (1956), and the term appears to have
first been used by Clough (1960). The ideas were originally developed for use in structural
mechanics but they are now applied in other fields as well.

The finite element procedure involves an approximate division or discretization of a
structure into several fictitious elements of finite magnitude that represent the physical
model. These elements are known as finite elements and they exist in several shapes
ranging from one to three dimensions with plane or curved edges.

Each finite element is given a name associated with its behaviour. The choice of a
finite element model for a specific structure depends on the geometry and the physical
behaviour that it is supposed to represent or reproduce. For a detailed discussion on the
subject, the reader is referred to the various standard textbooks including Zienkiewicz and
Taylor (2000a) and Crisfield (1991).

Shells form a curved surface in space and are in fact three-dimensional solids. How-
ever, their dimension in one direction is much smaller than in the other two directions, i.e.
they are thin as compared to their spans. Therefore, a shell is geometrically described by
its thickness and the shape of its mid—surface. Shells are load carrying structures and dis-
play bending stresses and membrane stresses with no possibility on the separation between
the two.

The bending stresses in a shell correspond to the bending stresses in a plate and
produce bending and twisting moments. The membrane stresses correspond to the stresses
in a plane stress problem and they act tangent to the mid—surface. Plate elements differ
from shell elements by having flat surface with no membrane forces.
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A complete three—dimensional analysis of shells is not only demanding but often
leads to numerical ill-conditioning problems (Zienkiewicz and Taylor 2000b). To simplify
the solution, several assumptions regarding shell behaviour have been introduced in the
past. The outcome of these assumptions were the mathematical models or approximate
theories. Their classical treatments are discussed extensively in the standard texts such as
Timoshenko and Woianowsky-Krieger (1959) and Fliigge (1960).

The governing differential equations resulting from shell theories are complicated
and have not been solved analytically except for cases with simple geometry and boundary
conditions. Instead, numerical methods were deviced but since the advent of powerful
computer technology, the finite element method have replaced most of these techniques.

In the context of finite element methods, there are mainly three options for modelling
shell structures. These can be classified as,

— Curved elements designed from shallow or deep shell theory.
— Curved elements designed from isoparametric concept.

— Flat or facet elements from an assembly of plate and membrane elements.

In the present work, the element formulations are based on the third option. The next
(or better) and effective but still simple way of modelling the curved shell element is the
shallow shell approach of Marguerre (1938). Even with a facet formulation, however, it
will appear in Chapter 3 that the initial curvature can be introduced in the stiffness matrix
so as to represent a curved surface.

Under the assumption that the shell is thin, it is possible to reduce the shell problem
from a three to a two—dimensional one. This procedure follows from the so—called thin
or Kirchhoff plate theory. The early version of this theory was presented about 200 years
ago by Sophie Germain (Bucciarelli and Dworsky 1980), but the final version is based on
assumptions formalized by Kirchhoff (1850). In a slightly different way, Reissner (1945) and
Mindlin (1951) introduced the effect of transverse shearing deformations. This modification
extended the thin plate theory to the application on thick plates. It is commonly known
as the Reissner-Mindlin plate theory.

The so—called Love’s first approzimation says that "the strain energy is the sum of
extensional and flexural energies” (Koiter 1960). For thin shells, this approximation is
usually used along with the Kirchhoff plate theory. The result is the so—called Kirchhoff-
Love hypothesis for thin shells. In this thesis, it is assumed that the shell is thin and
the formulations are based on the Kirchhoff-Love theory. Therefore, the following two
postulates in the order of their importance are respected. Namely,

— Sections normal to the mid—surface of the shell surface remain plane and normal to
the mid—surface during deformation and do not change their lengths.

— Direct stresses in the normal direction to the shell mid—surface are small and therefore
direct strains in that direction can be neglected.
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2.2 Finite Element Approximations

In the design of finite elements, researchers have pursued many ways and there is no
universal or unique approach that is commonly accepted. Among the diversities is the
choice of the so—called shape functions which is the first and important step in the finite
element approximation. Generally, there are four alternatives on which the finite element
approximation may be based. Namely,

— Displacement formulation.
— Two-field mixed formulation.
— Three—field mixed formulation.

— Three-field enhanced strain mixed formulation.

The last three options are collectively known as the mized or reducible formulations. The
first option is irreducible in the sense that none of the components in the assumed depen-
dent variables can be eliminated while still leaving a well defined problem.

In mixed formulations, the discrete equations may be derived from the variational
principles by requiring the stationary of the resulting energy potential. However, direct
procedures can also be applied (see e.g. Zienkiewicz and Taylor (2000a)). Within a mixed
formulation either the stresses, the strains, or both are approximated independently. For
a two—field approximation, the outcome is usually the so—called Hellinger—Reissner vari-
ational principle with the stress tensor as a primary variable. On the other hand, the
three—field approximation includes also the strain approximations leading to the so—called
Hu-Washizu variational principle (Washizu 1982).

An alternative to the three—field approximation, is the enhanced strain model. The
key idea in this method is the splitting of the strains into the usual displacement gradient
term and the added enhanced strain term. More precisely, it is a parameterization of the
deformation gradient in terms of the mixed and enhanced deformation gradient from which
a consistent formulation is derived.

The formulations in this thesis are based on assumed displacements. In the assumed
displacement formulations, only the displacements are used for finite element approxi-
mation. Though, all the approaches have their own advantages and disadvantages, the
displacement based finite elements appear to be most popular. In some cases, however,
like the incompressible elasticity, it may be essential to use the mixed formulation. For
rectangular or quadratic elements, the displacement shapes can be conveniently chosen
as polynomials defined in Cartesian coordinates. In triangular elements, however, the
polynomials in area coordinates are usually the natural choice.

The shape functions play a paramount role in ensuring convergence to the exact
solution. The selection of these functions requires several conditions to be satisfied (see e.g.
Zienkiewicz and Taylor (2000a)). If the displacement function has discontinuity between
elements, it leads to the so—called non—conforming elements. When a non—conforming
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finite element has been designed from a suitable choice of shape functions, its condition for
convergence can only be sufficiently verified by the so—called patch test. This procedure
was proposed by Irons in 1965 (see e.g. Irons and Razzaque (1972), Strang (1972), and
Strang and Fix (1973)). The test requires that, for any mesh orientation the element is able
to produce the constant strain condition and rigid body motions without self straining.

The patch test is not dealt with in this thesis, simply because the elements to be
presented are the assembly of well defined plate and membrane elements for which the
patch test has been already verified. See for example the work of Providas (1990).

2.3 Equilibrium Equations

Assuming that the shape function is selected using only the displacements @ as primary
variables, the equilibrium conditions may be established by means of the virtual work
principle, such that

/(5€T0' dA:/éﬂTb dA+/6ﬁTf as (2.1)
A A s

where A is the area, € are the strains, o are the stresses, b are the body forces, and ¢
are the tractions prescribed on the surface S. In this equation, it is assumed that the
structure is loaded from a stress free condition. If residual stresses are present, they can
added directly to the equilibrium condition. Equation (2.1) simply says that the internal
virtual work must balance the corresponding external virtual work.

For each element, the displacements are approximated by,

where N; contains the shape functions defined in terms of the independent primary vari-
ables, and r is the element displacement (degrees of freedom) vector. The strains are
related to the displacements through the matrix operator £ as,

e=Lu (2.3)

When Equations (2.2) and (2.3) are submitted to (2.1), they provide the residual
force as a function of the virtual displacements 0r. Assigning arbitrary values for these
displacements, leads to an element equilibrium equation. This can generally be expressed
as

)

P(TaC) = Kr - p = fint - fezt =0 (24)

where K is the secant stiffness matrix, p is the external load vector, and p is the residual
force vector. The product K7 represents the internal force vector. The displacement vector
r and the intensity of the applied loads (, are denoted as the control parameters.
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For linear problems, the secant stiffness matrix is constant and usually symmetric and
positive definite. Accordingly, the solution can be achieved by a single load step involving
numerical technique such as Gauss elimination or Cholesky decomposition. In nonlinear
problems, however, K is a function of the displacements and is in general not symmetric.
Consequently, the solution is obtained through a numerical incremental-iterative technique
where the so—called tangent stiffness is required.

The tangent stiffness matrix is obtained by linearizing the residual or equilibrium
Equation (2.4) with respect to the displacements r. This matrix is also a function of
the displacements but it is usually symmetric. The external load vector p is independent
of displacements, only when conservative systems are considered. For non—conservative
systems, for example follower loads such as hydrostatic pressure, it is also a function of
the displacements. For these cases, the equilibrium equations do not follow from the total
potential energy.

2.4 Nonlinearities

For solids, the source of nonlinear behaviour may exist in the form of material nonlinearity
and geometric nonlinearity. The simplest case of nonlinear material behaviour is that of
elasticity where the strains are not linearly related to the stresses through the Hooke’s law.
The more general form is that where the loading and unloading response of the material
is different. Material plasticity falls into this category and we shall devote Chapter 5 for
its discussion.

When structural displacements become large, it is necessary to include the geometric
changes in the equilibrium equations. This phenomenon is known as geometric nonlinearity.
It is achieved by introducing the nonlinear terms of the deformation gradients into the
strain—displacement relations. Usually, these terms introduce considerable changes in the
structural response.

For many applications, geometric nonlinearity goes concurrently with material plas-
ticity. For instance, in offshore plate panels large displacements and buckling may render
the typical behavior of the constitutive equations to be nonlinear. This will require the
treatment of material nonlinearity. However, in aerospace structures and marine risers,
similar states can be reached with the constitutive equations remaining essentially linear.

2.4.1 Geometric Nonlinearity

There are generally three finite element approaches of treating large displacements. These
procedures are distinguished by their ways of defining the reference and base configurations
from which the strains are measured. A comprehensive review of these methods can be
obtained from the work of Mattiasson (1983). The procedures can be grouped as,
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— Total Lagrangian description (TL),
— Updated Lagrangian description (UL),

— Co-rotational description (CR).

In the Total Lagrangian description, the reference configuration is seldom or never changed.
It is often kept equal to the base configuration throughout the analysis, and the strains
and stresses are measured with respect to this configuration.

For the Updated Lagrangian description, once the last target configuration has been
reached, it becomes the next reference configuration. The strains and stresses are redefined
as soon as the reference configuration is updated.

In the Co-rotational description, which is sometimes confused with the Updated
Lagrangian description, the reference configuration is split into two. Strains and stresses
are measured from the co—rotated configuration while the base configuration is maintained
as a reference for measuring the rigid body motions. More precisely, the idea behind the
CR formulation is the splitting of the displacements into the pure deformations and rigid
body motions.

In this thesis, we shall use the Total Lagrangian description for the element to be
presented in Chapter 3. The same method will be used along with a special kind of
Co-rotational description for the bending behavior in Chapter 4. Before proceeding, the
concept of CR description is introduced in a little more detail.

The co-rotational formulation

The description of finite rotations in thin shell analysis is especially challenging. The de-
composition of element motion into a deformational and rigid body motion has recently
become a common practice whereby arbitrary large rotations can be described. This ap-
proach, referred to as the co-rotational (CR) method, was initially introduced by Wempner
(1969), Belytschko and Hseih (1973), and Belytschko and Schwer (1977). The method has
much in common with the natural approach of Argyris et al. (1979).

The key concept in the CR description is the splitting or decomposition of the ref-
erence configuration into two, the initial or base configuration and the co-rotated con-
figuration. The initial configuration is kept fixed throughout the analysis, and serves as
the immovable reference configuration, while the co-rotated configuration of the individ-
ual element is the rigid body motion of the element’s base configuration. The element
deformations are measured with respect to the co-rotated configuration as the associated
coordinate system moves with the element like a shadow.

In the history of co—rotational formulation, more effort has been placed on deriving
consistent discrete equations. By consistent it is meant that the tangent stiffness matrix is
derived from a consistent differentiation of the relationships that are used for the updating.
Though consistent co—rotational formulation can sometimes be quite involving in terms of
the underlying variational calculus, it has the advantage that the rate of convergence is
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not impaired by the size of incremental steps. In addition, it is often element independent
for elements of the same geometry and connectors as demonstrated by Haugen (1994).
On the contrary, inconsistent formulations may require more incremental steps and be
increment—dependent, however, their underlying mathematics are generally simpler.

In the context of nonlinear analysis, however, a more informative load—displacement
history to an engineer is the one that captures as many important points as possible. In
addition, the size of incremental steps may well be limited or controlled by the degree of
material nonlinearities in the structure. Consequently, a nonlinear analysis does in general
require a number of incremental steps. With this in mind, the benefit of attempting
to derive a consistent formulation in the present work does not justify its mathematical
complexity.

As an alternative, a co—rotational formulation is invoked for the bending behavior
only. The method is restricted to moderate rotational increments. In that way, only the
changes of curvatures are extended to the regime of arbitrary large rotations with CR
description while the membrane strains are measured in the Total Lagrangian approach.
The main theme in this procedure is that the outward unit normal is rotated at the end
of each increment and the incremental curvature changes are evaluated and added to the
total values for updating.

A method which uses co-rotational technique only partly was proposed by Besseling
(1980) and Ernst (1981), and has been applied with success by Bout (1993) and van Keulen
(1993). This inconsistent formulation is dependent on incremental steps. A consistent
and refined CR formulation of the same kind has been given by van Keulen and Booij
(1996), however, the resulting equations appear to be complicated in terms of finite element
implementation, and improvements in terms of accuracy appear to be very minor.

Peng and Crisfield (1992) and Zhong and Crisfield (1998) have presented alternative
consistent formulation that can be applied directly to a linear version of the Morley shell
element in Cartesian coordinates. It is unfortunate that a complete implementation of
these formulations has not been fully successful in the present work.

2.5 Description of Geometry

The majority of the formulations in this thesis use the rectangular or Cartesian coordinate
system. An exception is the geometrically nonlinear element to be presented in Chapter 3
where non-orthogonal coordinate system is used. While the Cartesian coordinate descrip-
tion is quite straight forward, the non—orthogonal system is somewhat more involving.

In non-orthogonal coordinates, there is a need to distinguish between various ten-
sor components as covariant, contravariant, and physical components. In this section, a
brief description of this coordinate system is given. To start, we consider the triangular
element shown in Figure 2.1 where the so—called area coordinates are introduced. The
non—orthogonal axes are defined by (£, £2).
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Figure 2.1 Non-orthogonal coordinates.

The position vector of a point on the undeformed mid—surface is defined with respect
to the fixed rectangular or Cartesian coordinate system (z,y, z) as,

j) = ZTe; +y62+263 (25)

where e;, e, and ez are the corresponding unit vectors for z, y and z—axes, respectively.
These axes are related to non—orthogonal coordinates such that,

T =16 + 2267 4 2363 (2.6)
y = 116 + 126 + s (2.7)
2= 216"+ 5 + 283 (2.8)

where z;, y; and z; are respectively the magnitude of x, y and z at vertex ;. The area
coordinates ', which are natural for a triangular element, are defined by,
1 2 3 i A;
§+E+HE=1 ngzzgl (2.9)
where A is the total area of the triangle and A; is the area of one of the three sub—triangles
as depicted in Figure 2.1.

Differentiation with respect to the in—plane Cartesian coordinates can be expressed
in terms of the area coordinates such that,

= — = — — == (2.10)
’ or  2A0¢ ’ Oy 2A0¢&
where [ represents any variable to be differentiated, and
a; = —T; + T b; = +Y; — Yk (211)
in which ¢, j, and k take a cyclic value of 1, 2, and 3, respectively.
In non-orthogonal coordinate system, the natural base vectors are defined as,
9o = i),a =Tq€1 + Y2 + Za€3 (212)
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where the Greek indices take values between 1 and 2 with no sum. The subscript comma in-
dicates the partial derivative with respect to the area coordinates £%. For Equations (2.6)—
(2.8), these are given by
T1 =21 — T3 To =Ty — T3 (213)
plus similar expressions for y and z.
The covariant components of the metric or first fundamental tensor of the mid—surface
are defined by the scalar products of the natural base vectors as,
Ao = Ga * 9B (214)
When the necessary vector products have been carried out, the result is,
1
ay] = l% A9y = l% 19 = Qg1 = 5[12 (215)
where [; is the length of side 7 (which is defined to be opposite to vertex ¢) and,

Lo=0G+10-13 (2.16)
by=0+15-1; (2.17)
Ia=0G+0E-1; (2.18)

The contravariant components a®? of the first fundamental tensor are obtained through
the transformation,

apa® = 5) (2.19)

where &) is the Kronecker delta. Noting that the determinant of the metric tensor provides
the area of the triangle A as,

1
a = det(aag) = 4A2 A= Z\/IIQZQS + 123131 + 131112 (220)
the contravariant components can be expressed as,
12 12 l
11 _ "1 22 _ "2 12 _ 21 12
= = e (2.21)

The unit normal vector to the undeformed middle surface of the triangle is given by,

- 1
k= gaﬁ[ga -gsl = nte; +n’ey + nle; (2.22)

2
11:822:0 812:_821:1/\/6

3

where €*? is the contravariant permutation tensor, and n' are the Cartesian components
of the unit normal,

1
n 1 | Y122 = 21y
n=|n’| =— |z1z2— 2122 (2.23)
3 2A
n Ta¥2 — Y1z
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2.6 Description of Motion

When considering arbitrary large displacements, it is necessary to distinguish between the
initial undeformed state of the structure and the current deformed state. These config-
urations are illustrated in Figure 2.2 for a particle of a body or structure. Note that for
the present section, and only in this section, we have selected to denote the three axes in
terms of components X; and x; for convenient tensorial presentation.

current

T3
Figure 2.2 The reference and current configurations.

In the undeformed initial configuration, the position vector of a particle is described
by the coordinates X; of a fixed coordinate system. When the structure moves to the
current configuration, the position vector is defined by the coordinates z;. The X; coordi-
nates are usually known as the material coordinates, whereas z; are known as the spatial
coordinates.

In the so—called Lagrangian description, the current configuration is defined with
reference to the initial configuration. In other words, the material coordinates are the
independent variables. This implies,

- 0X;

where Fj; are components of the so—called matrix of deformation gradients. The determi-
nant of this matrix is known as Jacobian,

J = det(Fj;) > 0 (2.25)

2.6.1 Strain and Stress Measures

The strains are the measure of deformations in the material and they are independent of
the rigid body motions. A strain tensor is defined as a change in distance of two particles
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when the structure moves from the initial to the current configuration. There are different
strain measures with their corresponding stress measures. In the present section, however,
only the so—called Green—Lagrange strain tensor is focused.

In Lagrangian description, the change in distance can be obtained from,

where E;; is the components of the Green-Lagrange strain tensor which was introduced
by Green in 1841 and St. Venant in 1844. These components are given by,

1
Eij = 5 (FiiFi; = bij) (2.27)

where 6;; is the Kronecker delta. With reference to Figure 2.2, the position vector of a
particle in the current configuration is given by,

where w; is the displacement vector. As a result of Equation (2.28), the deformation
gradient (2.24) becomes,

8ui

F’i.:_
70X,

+ 5ij (2.29)

When this gradient is inserted into Equation (2.27), the components of the Green—Lagrange
strain tensor become,

Eij:§

0X; ' 0X; 0X;0X;

1 <6ul— Ouj  Ouy, 8uk> (2.30)

The stress tensor which is energy conjugate to the Green-Lagrange strain tensor, is
the so—called second Piola—Kirchhoff stress tensor. It was introduced by Piola in 1833 and
by Kirchhoff in 1852. The components of this stress tensor are given by,

00X, 0X,

Skl = Ja—l‘lo—”a—l']

(2.31)

where o;; are the components of the Cauchy or true stress tensor. Detailed derivation of
Equation (2.31) can be found in several publications such as Malvern (1969).

Assuming small strains and rotations, the Jacobian is approximately equal to unity
and the various stress measures are approximately equal. This will be the basic assumption
for the material plasticity formulation to be presented in Chapter 5. As a consequence,
the Cauchy stress tensor will substitute the second Piola—Kirchhoff stress tensor.
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2.7 Shell Forces

Before discussing the resultant forces acting within the shell element, it is important to
introduce the concept of material sampling points. These are the points where the plas-
ticity flow equations are integrated to obtain stresses and material modular matrix. In
this respect, two types of stress distributions are considered within the element — the
distribution along the element plane and the distribution over the shell thickness.

Since the element formulations in this thesis assume constant stress distribution over
the area, the area integration is not required. However, through-the thickness integra-
tion need to be performed. If resultants plasticity is used, this is performed analytically.
Numerically, this integration is performed along with the plasticity computations. In this
procedure, the shell is usually divided into several layers and the stresses and modular
matrices are evaluated in these layers. In the present work, the overall contribution from
individual layers is achieved through the Gaussian integration technique.

2.7.1 Stress Resultants

Consider Figure 2.3 which shows a general shell with thickness ¢ perpendicular to the mid—
surface. The z and y—axes represent the orthogonal rectilinear coordinates on the middle
surface and z is the distance along the normal to that surface. Corresponding to these
axes, are the respective triplet of mutually orthogonal unit vectors e;, es, and e3. They
represent a point or particle on the middle surface and are oriented such that e; and e
are tangent to x and y—axes, respectively, and ez is normal to the mid-surface.

mid—surface

Figure 2.3 General shell geometry.

Assuming Kirchhoff-Love theory, that plane sections remain plane, the kinematics of
the middle surface of the shell determines the deformation of the entire shell. Therefore,
the problem is reduced from three to two dimensions with two independent variables being
z and y. Based on this assumption the strains at any point of the shell can be expressed
as

e=7v+zx (2.32)

where the first and second terms represent the symmetric extensional and the flexural
strains, respectively. These strains define the entire deformation.
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The generalized forces to be considered are stress resultants N and stress couples
M . The stress resultants are associated with membrane forces whereas the stress couples
are the results of bending moments. The generalized forces are obtained by integrating the
stress distribution through the thickness of the shell such that,

N = /a’ dz, M = /az dz, (2.33)
¢ ¢

where o is the stress tensor conjugate to €. In what follows, both N and M will be
referred to as stress resultants for simplicity. With resultant plasticity, Equation (2.33) is
pre—-integrated analytically by neglecting any partial yielding within the shell cross—section.

2.7.2 Constitutive Equations

The constitutive laws or constitutive equations define the relationship between the stresses
and strains within the material. For elements to be presented in Chapters 3 and 4, the con-
stitutive equations need to be formulated in terms of stress resultants. This is irrespective
of whether stress resultants or through—the thickness integration is used.

For elasto—plastic material formulation, it is necessary to express the constitutive
laws in incremental form. Starting from Equation (2.32), the incremental strains can be
expressed by means of variational calculus as,

de = 6y + z0x (2.34)

where « are the membrane strains, x are the changes of curvature, and z is the distance
along the shell thickness.

At a given integration point, the incremental stresses are related to the incremental
strains through the tangent modular matrix C; as,

o = C,e (2.35)

In stress resultants representation, Equation (2.35) need to be expressed in terms of gen-
eralized variables.

The relation between the generalized stresses and strains can be achieved by substi-
tuting Equation (2.32) and (2.35) into (2.33). This leads to,

OIN| 0y + z6x | C X |6y
{5M] - /t(ct L:&y + z%x} dz = {XT D} {5){ (2.36)
where the sub—matrices are defined by,

C:/de X:/dez D:/Ctzzdz (2.37)
¢ ¢ ¢



URN:NBN:no-1282

22 Chapter 2. Basics of Shell Finite Elements

Analogous to Equation (2.36), the corresponding tensors and tangent modular matrix
in terms of generalized variables are given by,

] el eefgl e

For elastic material, the sub-matrices are obtained directly by analytical integration
of Equation (2.36). In that case, the elastic resultant modular matrix becomes,

C= ﬁ)c t_go(c} (2.39)

12

where C is the symmetric 3x3 elastic modular matrix for plane stress condition.

2.8 The Constant Stress Shell Element

Since shells are often curved, one may think that only curved elements can be used. How-
ever, flat elements involving an assembly of plate and membrane elements have been fre-
quently used to approximate the curved shell surface. Some of the earliest work on linear
finite element involved facet formulation, and the concept appears to have first been ex-
tended to nonlinear analysis by Horrigmoe and Bergan (1978) using the co-rotational
approach.

There exists a number of flat (or facet) shell elements for nonlinear analysis. Every
formulation is not always superior for all problems and its degree in computational efficiency
is an important factor. More precisely, there are computationally expensive and cheap
elements as well as mathematically complex and simple elements. In the choice of finite
element modelling, a particular geometrically nonlinear shell element can be preferred
based on the range of problems it can solve. One of the simplest and most efficient finite
elements is the constant stress resultants shell element, which is commonly known as the
Morley element. This element type is the primary focus in this thesis.

The linear version of the Morley shell involves a combination of the constant—strain
membrane triangle of Turner et al. (1956) and a constant-moment bending triangle. The
former appears to be the first finite element ever designed. The latter was originally
derived by Hellan (1967) and Herrmann (1967) who used the Hellinger—Reissner variation
principle. Later, Morley (1971) derived an equivalent displacement—based element through
the principle of minimum potential energy.

Many researchers have applied the Morley shell element in problems involving large
displacements and rotations. Examples are the works of Herrmann and Campbell (1968),
Dawe (1972), and Peric and Owen (1991). Similar works have been reported by Backlund
(1973) and Chen (1979), who used an updated Lagrangian technique, and by Peng and
Crisfield (1992) using a co-rotational formulation. Bout (1993) and van Keulen (1993)
have also presented a similar formulation that is capable of handling initial curvature.



URN:NBN:no-1282

2.8. The Constant Stress Shell Element 23

Another type of a simple shell finite element combines the constant—strain membrane
triangle of Turner et al. (1956) with a Discrete Kirchhoff plate bending element. The latter
can be found in the works of Stricklin et al. (1969), Batoz et al. (1980), Batoz (1982),
and Jeyachandrabose et al. (1985), (see also Cook et al. (1989), and Talbot and Dhatt
(1986)). This 18—degrees—of—freedom linear facet shell element is also extended to include
geometric nonlinearity through the CR or UL formulations. Yet, the resulting element is
not as simple as the Morley type shell element, and the drilling degrees of freedom need
to be treated carefully.

Based on von Karman nonlinear theory, Providas (1990) and Morley (1991) described
a geometrically nonlinear Morley shell element that passes the nonlinear patch test and
is valid for moderate rotations. They assumed quadratic polynomials for both in—plane
and out—of-plane displacements and derived the local equations in the non-orthogonal
coordinate system.

Using linear and quadratic polynomials for in—plane and out—of-plane displacements,
respectively, Providas (1990) and Providas and Kattis (1999) described a simpler version
of the Morley nonlinear triangle that performs equally well. In this version, the influence
of the changes of curvature on the membrane strains was neglected as a search for further
simplicity.
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Chapter 3

Facet Element with Moderate
Rotations

3.1 Introduction

As mentioned in Chapter 2, the Morley shell element has been widely used in nonlinear
finite elements through either the co-rotational or updated Lagrangian descriptions. The
element involves a combination of the constant—strain membrane triangle of Turner et al.
(1956) and a constant-moment bending triangle of Morley (1971).

A complete nonlinear shell finite element which passes the nonlinear von Kdrmdan
patch test was re-derived by Morley (1991) under Kirchhoff theory from Hu-Washizu
functional. As a consequence of the nonlinear von Karmén theory, the element is only
valid under moderate rotations. The elastic formulation has been studied by Providas
(1990) and has shown good performance within its range of validity.

During the preparation of this thesis, numerical investigations have shown that the
new element developed by Morley (1991) is much simpler and about 2.5-5 times faster than
many of its predecessors in co-rotational formulation. Despite its simplicity and efficient
applicability in problems involving moderate rotations, this element has not received much
attention in the literature.

In fact, there exists a large number of practical problems or applications in which the
structure undergoes plastic deformations with rotations remaining essentially moderate.
It has also been pointed out by Koiter (1966) that it is hardly necessary to allow for
significant large displacements as for most practical purposes many shell structures would
become quite unserviceable.

By realizing these facts and the simplicity and efficiency of the Morley (1991) element,
it is interesting to extend it for material plasticity before modifying for large rotations.

25
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During the preparation of this thesis, it has been established that any attempt to include
large rotations would introduce a degree of complexity and increase the computational
time as far as five times.

In the present chapter, the element matrices are extended to include material nonlin-
earities. The resulting formulation will be assessed in subsequent chapters for its perfor-
mance in the buckling and collapse analysis. An alternative to this element is discussed in
Chapter 4 where another Morley element capable of handling large rotations is presented.

3.2 Element Kinematics and Basic Equations

Before proceeding with elasto—plastic element matrices, it is important to start with an
outline of the necessary definitions and kinematics of the element for completeness. For
detailed derivations, reference is made to Morley (1991) and Providas (1990). In addition,
the element makes full use of the concept of practical components especially for transfor-
mations, and for that part the reader is also referred to the work of Morley (1987).

The local element system, including all the derivations, are defined in non-orthogonal
coordinate system. Within the plasticity formulation, however, the local system will be
referred to the zy—coordinates (see Figure 3.1). The global coordinates are described as
Cartesian (X,Y, Z).

Figure 3.1 Element geometry and degrees of freedom.

The element has six nodes and twelve degrees of freedom. Namely, the three dis-
placements at each of the corner nodes, and one rotation at each of the mid—side nodes
(Figure 3.1). At the local level, the curvature tensor replaces the rotations so that the re-
sulting expressions are simplified. As a result, the vector with element degrees of freedom
in the local non-orthogonal ¢*—coordinate system takes the following form,

r’=(u" w" k") (3.1)

where u, w, and K, are the in—plane displacement vector, out—of—plane displacement vec-
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tor, and curvature tensor, respectively. These are given as,

ul =(uy v u vy us v3) (3.2)
wl = (w, wy ws)
P (fin K22 Kr12)

in which u;, v;, and w; are the respective displacements at vertex j, and x;; are the
components of the curvature tensor, all in £*—coordinates.

3.2.1 Strain—displacement Equations

The strain tensor is described by the von Kdrmdén (1910) nonlinear theory. It is similar
to the Green—Lagrange strain tensor (2.30) when the in—plane quadratic terms of displace-
ments are neglected. In the von Kdrmdn (1910) nonlinear theory, the middle surface strain
and curvature tensors are expressed as,

1
Eaf = 3 (Uap + Upa +wawg) (3.5)
Iiag = w,aﬁ (36)

where u, (u; = u, up = v) and w are the in—plane and out—of-plane displacement compo-
nents, respectively.

The displacement field is defined by quadratic functions of the triangular coordinates
for both in—plane and out—of-plane displacements (u;, v;, w;) such that,

U =€+ us? + uzE® + w126 + w3 + wa'E? (3.7)
v =v1€" + 028 + 03 + w2 + w3 + wetE? (3.8)
w = w1 € + wa€? + W€ + Y263 + s E3¢L + hllE? (3.9)

where w; and w; 3 are constants. These constants are determined in terms of w; and ;43 by
requiring satisfaction of continuity conditions at each mid-side nodes (see Morley (1991)).
The coefficients ;3 can be regarded as a measure of deflections of the mid—sides and are
illustrated in Figure 3.2.

Wa
side 1 T v

2 4

Figure 3.2 The components ;13 as a measure of deflection.

Making the necessary substitution of the displacement fields into Equation (3.5), and
following the procedures as in Morley (1991) and Providas (1990), the membrane strain
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tensor in the local non-orthogonal system is obtained as,
1 1
€ = B,u+ §wa + §Bkn (3.10)

where B,, B, and By, are the strain—displacement matrices which are defined as,

2000 -2 0
B,=3|0002 0 -2 (3.11)
0110 -1 -1

1 2(11}1 - 11)3) 0 —2(11}1 - U}g)
Bw = 5 0 2(’w2 — IU3) —2(102 - IU3) (312)
W9 — W3 w; — W3 —w; — ws + 211)3
1 |Fu + K22 K11 —2K19
Bk = — K29 K11 + K29 —2/{12 (313)
12
K12 K12 K11 + Koz — 3K12

Providas and Kattis (1999) have proposed a rather simpler but similar element. They
used linearly varying membrane shape functions while retaining the quadratic functions
for out—of—plane displacements. In their resulting strain tensor, which is similar to Equa-
tion (3.10), they have neglected the term involving curvature. This formulation is also
implemented along with the present element. For a number of problems, the simpler ele-
ment appears to perform equally well with the detailed Morley (1991) element.

3.2.2 Transformation Matrices

Due to different local systems referred for the element and material formulations, two
different transformation matrices are required. The first is a 12x12 matrix relating the
local element matrices and vectors in non—orthogonal {*—coordinates to the corresponding
values in global Cartesian coordinates (X,Y, Z). This will be referred to as the element
transformation matrix.

The second is a 3x3 matrix needed in the plasticity calculations to relate the material
modular matrix, strain and curvature tensors in the local £*—coordinate system to the
same values given in the local zy—coordinate system. This will be called the material
transformation matrix.

Element transformation matrix

All element movements are related to the initial configuration of the facet surface. There-
fore, the element transformation matrix 7' can be build—up using the initial global coor-
dinates of the element. At the current configuration, the local vectors and matrices are
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related to their corresponding global ones by the following expressions,

r=1Tr

[4 fg = TTf

K,- T"KT

(3.14)

where 7, f, and K are respectively the element displacement vector, internal force vector,
and element stiffness matrix in the local {*—coordinate system. The subscript g represents
the same vectors and matrix in the global XYZ-coordinate system.

As opposed to Equation (3.1), the element global displacement vector is re—arranged

such that,

ro=U Vi W, Uy Vo Wo Uy V3 Wy 04 05 65)"

(3.15)

Then, following the procedures as in Morley (1991) and Providas (1990), with the local
displacement vectors in the local system arranged as in Equations (3.1)—(3.4), the constant
transformation matrix T can be obtained as,

T, 02x3  Oax3  O2x3
02><3 Ta 02><3 02><3
T =] 0x3 0«3 T, O3 (3.16)
T, Tho Tz O3xs
Tcl nT TCQ nT Tcg 'n,T Tg

where T,; is a column matrix with elements given by column ¢ of matrix ¢ defined below,
T,; is a 3x3 partial-null matrix in which row ¢ is defined by the transpose of vector n in
Equation (2.23), and

13 B 17
_ l L l l
=+l B b (3.17)
2 3 3 2
Ly L )
5 5
4 g 44
ll l3
44 44 T1 Y1 21
Ty=|0 %4 4 T, = (3.18)
0 0 4A T2 Y2 22

in which the partial derivatives of x, y and z are given as in Equation (2.13).

It is important to note that a proper sign convention should be defined for the element
rotations to obtain continuity at the common side of the two adjacent elements. This sign
is to be applied to the element rotations prior to the system assembly. For convenience,
one may decide to apply this effect only in the transformation matrix 7' by multiplying
the corresponding three columns, each with its respective sign.

Material transformation matrix

The plasticity formulation that will be presented in Chapter 5 is based on Cartesian co-
ordinate system. The present element, however, is defined in non-orthogonal coordinate
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system. Therefore, for this element to be able to use the present plasticity formulation, a
material transformation matrix is required.

The transformation should provide the components of the strain and curvature tensors
in the local zy—coordinates (®¥), k%)), or the corresponding components of the conjugate
stress resultants in the local £*—coordinates (N, M). This can be achieved by applying
the transformation matrix H so that,

e = He N = HT N (@)

k) = Hk M = H" M) (3.19)

where,
hihl hihE 2hi/hi,
WLhY RLRY BMER + B2

The terms h% in Equation (3.20) are helpful in deriving expressions for the so—called
practical components of surface vectors and tensors resolved from the £*—coordinate system
to the zy—coordinate system (see Morley (1987)). These terms are different for each element
side, and the resulting zy—coordinates will be oriented as tangential and normal to the side
concerned.

In the case of isotropic material, it is enough to select one specific side. Accordingly,
matrix H is constructed for side number 1 for which the following terms apply,

l Lo 1
hlr - —— h2/ = hlr = 0 h2/ == — 7
! 24 Y 4A 2 ? I

The coordinate orientation for this side is illustrated in Figure 3.1.

3.3 The Elasticity Modular Matrix

Another difficulty in implementing material plasticity with the present element, is the
unconventional way of representing the elasticity matrix. Perhaps for seeking the symmetry
of the element matrices, Morley (1991) expressed this matrix for isotropic material as,

1 v 0
‘C'ZlEz v1 0 (3.21)
Y0 0 c(1-v)

where E is the Young’s modulus, v is the Poisson’s ratio, and the constant ¢ = 2.

As a result of this definition, the components of the strain tensor, forces, and moments
in the local £*—system appear as,

ET = [811 £99 612] (322)
NT =[N'" N* 2N"] (3.23)
M" = [M" M 2M"7] (3.24)
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Since we will encounter a conventional representation of the elasticity matrix with ¢ = 1/2
in the next chapter, it is convenient to let ¢ carry its parametric value. This will be
especially advantageous in Chapter 5 where simplified and explicit plasticity equations are
derived.

Equation (3.21) is defined in the local xy—coordinate system. In the local £*-
coordinates, the transformation matrix H can be used such that,

C=H'CH (3.25)
plus a similar transformation for C, X and D defined in Equation (2.36).

All the aspects pointed out in this section, need to be treated carefully in order to
use the plasticity formulation discussed in Chapter 5. These include the material transfor-
mations as well as the factor of 2 in the shear terms of the stress resultant tensor.

3.4 Elasto—Plastic Element Matrices

The element matrices can be derived from the internal virtual work term in the balance
Equation (2.1). In addition, the resultants expression of the constitutive Equation (2.36)
are used. Since the stresses are constant over the element, we can drop the integral over the
area and multiply the expression directly by the initial area A of the triangle. Accordingly,
we can write,
W' = Ase”s = A[6eT 5K [N ] (3.26)
M

where s is the stress resultant tensor, and e is the conjugate strain and curvature tensor.
Note that we have purposely used the notations s and e for the present chapter only.

The element internal force vector in terms of nodal forces is obtained directly by
working out the internal virtual work. Substitution of Equation (3.10) into (3.26) yields,

§Wi — A [5u”BT + 5w” BT + k" BY 6x7] {N ]

M
= A[6u"BIN + 6w"BIN + 6" BN + 6" M|
= [0u” ow” 6kT|f (3.27)
where the element internal force vector comes out as,
BI'N
f=A| BIN (3.28)
BN +M

The tangent stiffness matriz may be obtained through the variation of Equation (3.26),
which can be expressed as

SW' = A(5eT6s + 6%e’'s) (3.29)
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In working out Equation (3.29), it is convenient to re-write the following products that
appear in the geometric part of the tangent stiffness,

§BI'N = Bg, 6w §BI'N = Bgiok (3.30)
where,

Nll N12 _(Nll + N12)

Bay, = N?22 —(N?22 + N12) (3.31)
sym N1 4+ N2 4 oN12
Nll Nll + N22 2N12
Bg, = N?? 2N12 (3.32)
sym —2(N' + N* — 3N'?)

Then, by making use of Equations (3.10), (2.36), and (3.30), Equation (3.29) may be
worked out as,

PW = A <[5uTBg+5wTBg+5nTBkT w71 {XT D} {M]

+ [6w"SBT + k"SB! 0] {N ])

M
BT o
G ¢ X||B, B, B
_ T T T T w Dw D
=Aou” Sw” k7] B% 0 {XT D] { o o I ] (3.33)
B, I
0 0 0 ou
0 0 BGk 0K
=or"K,or
where K; is the symmetric tangent stiffness matrix given by,
BI'CB, B!'cCB, BI'CB, + B'X
K,=A| sym BICB, + Bg, BICB, + BI'X (3.34)
sym sym BI'CB, + X"B;,+ BI'X + D + Bg,

in which Bg, and Bgy represent the geometric part of the stiffness matrix. It can be
observed that when X is equal to a null matrix, the matrices and vectors derived from
Equation (3.26) are similar to the elastic ones derived by Providas (1990) and Morley
(1991).
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Curved Element with Large
Rotations

4.1 Introduction

In Chapter 3, elasto—plastic formulation of the constant stress shell element which is valid
for moderate rotations has been presented. The element is based on quadratic polynomials
for both in—plane and out—-of—plane displacements, and it was derived using non-orthogonal
coordinate system. The aim of the present chapter is to obtain an element of a similar type
that can perform well in problems undergoing arbitrary large displacements and rotations.
Indeed, Bout (1993) has already described a similar displacement—based geometrically
nonlinear element by using Cartesian coordinates.

For the membrane displacements, the element by Bout (1993) assumes linear shape
functions for displacements. The nonlinear strain and changes of curvatures are based
on Green—Lagrange equations. To accommodate arbitrary large rotations, a co-rotational
formulation is invoked for the bending behavior only. The method was proposed by Bessel-
ing (1980) and Ernst (1981), and it is restricted to moderate rotational increments (Sec-
tion 2.4.1). The main idea is that the outward unit-normal to the element flat surface is
rotated at the end of each increment. A mixed formulation resulting in a similar element
has been given by van Keulen (1993).

The discrete equations derived by Bout (1993) provide constant tangent stiffness
throughout an increment. In other words, a solution by standard Newton-Raphson pro-
cedure, by using these equations, would not have any advantage since it would be similar
to using its modified version. The derivations involve the splitting of displacements and
curvature changes. The split is between the next unknown incremental quantities and the
current known total quantities. In the final equations, the incremental quantities are ne-
glected leading to constant tangent stiffness. The consequence of constant tangent stiffness
is a slower convergence.

33
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In the present chapter the discrete equations are re-derived. The resulting equations
lead to a variable tangent stiffness matrix within an increment. The equations are not
only neater but the residual converges faster with standard Newton—Raphson solution
procedures. A similar approach has been used by van Keulen (1993) for an element based
on mixed formulation. Before the present derivation, the starting point is to revisit the work
of Bout (1993) and apply the fundamental ideas of his displacement—based geometrically
nonlinear element.

4.2 Basic Equations and Definitions

The geometry and degrees of freedom of the facet triangular shell element are shown in
Figure 4.1. The spatial quantities are described in Cartesian coordinate system, while the
displacement functions are described by triangular area coordinates. In addition, a local
in—plane Cartesian coordinate system (z',y’), with its origin at the mid-side, is defined for
each element side. The element has twelve degrees of freedom, namely three displacements
at each vertex, and one rotation at each mid-side.

Figure 4.1 Element geometry and degrees of freedom.

In the undeformed configuration, the flat surface is described by a position vector in
terms of its Cartesian coordinates p; with respect to the base vectors e; (see Figure 4.2).
This surface may differ slightly from the shell surface defined by a small curvature.

For the coming sections, a representation of the strain tensor « by its components
with respect to the element side directions is needed. It is convenient to establish a rela-
tion between these components and the conventional Cartesian components at this point.
Similar to van Keulen (1993), first the side directions are defined by vectors such that,

S; = a;e; — biez (41)

where a; and b; are given by vertex coordinates as defined in Equation (2.11). Then, the
membrane strain corresponding to direction s; is given by,

1
% =7 (878 (4.2)

(3
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€

Figure 4.2 Element kinematics and unit base vectors.

where [; is the length of side i, and ~ is the strain tensor with respect to the conventional
Cartesian coordinates. The latter is defined as,

Y =T e 27l =[m e 7l (4.3)

Finally, in virtue of Equations (4.1), (4.2), and (4.3), the relation between the two repre-
sentations of the strain tensor may be written as,

Vi = Ti (4.4)
where the elements of the transformation matrix are obtained as,
B 1 12bybs 12bsb, 120y b,
T = —m l%agag l%agal l§a1a2 (45)

l%(bgag + agbg) l%(bgal + agbl) l§(b1a2 + albg)

4.2.1 Local—Global Transformation Matrix

With reference to Figure 4.2, the transformation matrix T between the element local
degrees of freedom r and the corresponding global ones r, may be expressed as,

r=Tr, = 1r;= Ty (4.6)
where,

T =diaglE E E I E" =[e] e ef] (4.7)

The order of the degrees of freedom for the transformation matrix is as referred in Figure 4.1
starting from node number 1 to 6, consecutively.

It is important to note that, the elements of the identity matrix I are to be multiplied
with appropriate sign convention for side rotations, so as to obtain a smooth formulation.
For the remaining sections, the base vectors e; will be selected such that e; coincides with
the element side 3, with the head at element node 2 and the tail at node 1.
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4.2.2 Governing Equations

Nonlinear deformation quantities for thin plates are reviewed in this section. A restriction
is imposed to cases in which the Kirchhoff-Love assumptions are admissible. Therefore,
the entire strain state can be described by the middle surface strain tensor and the tensor
of curvature changes.

Displacement field

The in—plane displacements are assumed to vary linearly over the element, while the trans-
verse displacement varies quadratically such that,

u=u €+ us? 4 usl? (4.8)
v = 01&" + 06?4 a3 (4.9)
W =wiE" + wol® + w3® + s + 53¢ + e’ e’ (4.10)

in which the subscripts indicate the vertex number, and u, v, and w denote the in—plane
displacements along the = and y-axes, and out—of-plane displacements, respectively.

The coeflicients ;13 can be regarded as a measure of deflections of the mid—sides.
They were introduced in Section 3.2.1 and illustrated in Figure 3.2. The coefficients are
associated with an incompatible mode. By incompatible mode, it is implied that along
a common side of two planar adjacent elements, the out—of—plane displacement Equa-
tion (4.10) does not satisfy the slope continuity except only at the interconnection point
in the middle of the side.

The initial deflection or curvature may be added directly to these incompatible mode
components as will be shown in the coming sections. It is in this way that the present
element can be considered curved. The incompatible coefficients are determined from three
equations (one for each side of the triangle) for rotations along the sides as,

Oit3 = Pyi(is) = Wy (' =y = 0)]iss (4.11)

To evaluate Equation (4.11), it is convenient to take the derivatives with respect to non—
orthogonal coordinates and sum up the components in the local side coordinates. Accord-
ingly, we can write

L lia 1
Y iy TS ¢ =0¢==9
l2 ly 1
05 = ¢yr5 = —mw,sl + ﬂ’w’gz (52 = 0, 53 = fl = 5) (412)
l [ 1
96 = ¢y’6 = oL 23 'LUvé'Z (62 = 0, 53 = fl = 5)

VTR TA

Then, substituting the assumed displacement field Equation (4.10) into (4.12) and carrying
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out the necessary derivatives yields,

1 l l l l 4A 4A

hy == L; + i; wy — %lwg - ijg + —0s + —bs (4.13)
2 5 I3 I3 I3 ly l3
1 l l l l 4A 4A

s == —%Swl + %2 + %3 Wy — L227413 +—0s+ —bs (4.14)
2 I3 I I3 I l ls
1 l l l l 4A 4A

e = = —i;wl — i;wg + i; + i; ws + =04 + —05 (4.15)
2 I3 7 n l l>

where ly9, lo3, and [3; are constant quantities defined in Equations (2.16)—(2.18).

Strain—displacement relations

The middle surface strain tensor and the tensor of curvature changes is expressed in terms
of displacement components as,

1
Yag = 5 (Uap +Upa + Unalirg + Wall ) (4.16)
Xas = WaB (417)
where u, (u; = u, us = v) and w are the in—plane and out—of-plane displacement com-

ponents, respectively. Note that, when the third term is equal to zero Equation (4.16)
becomes identical to the von Kérman Equation (3.5).

While Equation (4.16) is valid for arbitrary rotations, Equation (4.17) remains valid
only when the rotations remain moderate. The curvature changes are modified in the com-
ing sections so that the expressions are extended to accommodate arbitrary large rotations.

4.2.3 Elasticity Modular Matrix

Contrary to Equation (3.21), the isotropic elastic modular matrix for the present element
is the conventional one which is given by,

1 v 0
v 1 0 (4.18)
00 :(1-v)

where E is the Young’s modulus, v is the Poisson’s ratio, and ¢ is the plate thickness.

E

Tl

C

In virtue of Equation (4.18), the stress resultants tensor (forces N and moments M),
the membrane strain tensor -, and the tensor of curvature changes x, are given by,

NT = [Ni1 Nay NioJ
’YT = [711 Va2 2712]

M?" =My My, My

4.19
XT = [Xll X22 2)(12] ( )
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4.3 Finite Element Formulation

Let the local element displacement vector 7, be represented as,
T =la” 7] =[u" vT w' ] (4.20)

where u, v, w, and ¢ denote the membrane displacements along the z and y—axes, out—
of—plane displacements, and mid—side rotations, respectively
ul =[u; uy us vl =[v; vy w3

421
’UJT = [U}l Wo w3] (,OT = [04 05 06] ( )

Note the difference between this arrangement of the degrees of freedom and the one for T
in Equation (4.7). With the present definitions, Equations (4.13)—(4.15) may be expressed
in matrix form as,

Y =E,w+ E,p (4.22)
where,
1 Lio/12 4 131 /12 —l31 /12 —l12/13
E,=- —ly3/13 Lo/ + 13 /13 —l2/12 (4.23)
—123/13 —lgl/l% 131/1%4—[23/1%

0 24/, 24/l
E,= 24/, 0 24/l (4.24)
2A4/L, 24/l 0

4.3.1 Large Displacements with Moderate Rotations

It has been demonstrated by Bout (1993) that as long as the membrane strain compo-
nents remain constant over the triangle, it does not make any difference whether they
are determined by a straightforward evaluation of Equation (4.16) or by transforming the
strains of the sides to the Cartesian components by Equation (4.5). The quadratic terms
in Equation (4.10), however, result in non—constant membrane strains. To obtain constant
membrane strain components in this case, average values resulting from these terms will
be calculated as by Bout (1993). In that publication, it was shown that the additional
strain of a particular side due to the quadratic terms is determined only by ;3.

Based on the above discussion, it is convenient to suppress the quadratic terms ini-
tially and determine the membrane strains in a straightforward manner. As a result, sub-
stitution of Equations (4.8)—(4.10) into (4.16), when the quadratic terms are suppressed,
yields

3= (Bu+ 1Bus) o (4.25
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where the strain-displacement matrices are given by,

dl’ 0 o uTe; vTe; wle
B,=|0 df 0 By = |uTc; vTe; wle (4.26)
df df o ule; vTles wle;

in which the following definitions have been made,

1 1
dl = 34 (b1 by b3 d; = 34 [a1 az az] (4.27)
C; = dlle Cy = ddeT C3 — dl d2T + dzle (428)

It is important to point out that the direct expression for ¢; in Equation (4.25) is
given by 2d,df. However, this expression presents difficulties and leads to asymmetry in
the tangent stiffness matrix. In the present derivation, ¢z is symmetrized to avoid this
problem. This is the central part in order to achieve the required re—derivation. It is
interesting that, though they are not numerically identical, the two expressions lead to
identical strains. This has been checked analytically with Equation (4.25) by using the
two alternatives.

The additional strains to Equation (4.25), which are due to the quadratic terms, are
obtained as average values. These are first calculated along the side directions and then
transformed to the conventional Cartesian components by using Equation (4.5). In the
direction of side ¢, the average value of the membrane strain follows from,

~av 1 %ll = !
v =) e dz'|; (4.29)
iJ -1l
where,
5 Loy 2 2
Fiuli = wli + B (u,l, +uy + w,ll) l; (4.30)

Substitution of Equations (4.8)-(4.10) and (4.30) into (4.29) yields,
3" = (B}, + 3Bly) a + By (4.31)
where,

By=2| 0 s/ 0 (4.32)
0 0 ¥s/l3

B!, = T'B, B!, = T7'B,, (4.33)
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The additional term of the membrane strain is now obvious from Equation (4.31) as com-
pared to Equation (4.25). This term can be transformed in line with Equations (4.4) and
(4.5) to obtain the membrane strain in terms of Cartesian components as,

et — LT Blap = LBap (4.34)

At this point, it is convenient to introduce the initial curvature into Equation (4.34) and
then add the resulting expression into Equation (4.25). Accordingly, by noting that the
initial curvature is a known quantity, the total constant membrane strain tensor may be
expressed as,

v = (Bu 4 iBw) a+ (By, +1iBy,) ¢ (4.35)

in which the subscripts ¢, and 14 stand for the initial and deformational curvatures,
respectively, for which

By, = B(i) By, = B(ta) (4.36)
where the strain-displacement matrix, holding for both 1, and g4, is given by

1 bybsthy bab19s b1byts
B(y) = BEEYH 2034 aza1ys a1azs (4.37)
(boas + asbs)s  (bsar + asbi)ys  (bras + a1ba)is

As for curvature changes, substitution of Equation (4.10) into (4.17) yields,

X = B,w + B,y (4.38)
where,
B, = JE, B, =JE, (4.39)
1 b2b3 b3b1 blbz
J = @ A2a3 asay a1as (440)

byas 4 asbs  bsay + azhy biaz + aiby

4.3.2 Arbitrary Large Displacements and Rotations

As mentioned in section 4.2.2, Equation (4.17) and hence (4.38) are only valid within
moderate rotations. The membrane Equations (4.16) and (4.35), however, are applicable
within large rotations. Therefore, to accommodate large rotations for bending, it may
serve the purpose to employ an updating technique to curvature changes only.

Aiming for incremental curvature changes, the current unit-normal vector ¢} in Fig-
ure 4.2 is rotated such that it coincides with the instantaneously fixed co-rotating reference
configuration as in Bout (1993) and van Keulen (1993). This reference state is obtained by
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submitting the initial geometry to the rigid body motions, governed by the displacements
of the vertices, with a restriction that the element deformations (strains) remain small. In
other words, the vertices of the instantaneously co—rotated configuration are assumed to
coincide with the deformed configuration.

Considering only the facet geometry of the triangle, the reference vectors in the
current configuration are related to the initial configuration by the expression,

ity & )" =[Rl[h & ] (4.41)

where R is the rotation tensor. Since we need to update only the unit normal vector, the
following transformation equation serves the purpose,

t7 = [Rs1 Ra Rasl[t & ts]" (4.42)

where the components of the rotation tensor may be expressed as, (see Ernst (1981))

Ra —df'w + d] wd]'v — dl wd] v
Ry | = —dfw + dfwd] v — df wdlv (4.43)
Ra3 1+ dlu+dfv+dfud]fv - dlfvd]u

With respect to the instantaneously co—rotated configuration, relative displacements
and rotations are introduced as a difference between the deformed and co-rotated reference
states. As a result, an expression similar to Equation (4.38) can be found as,

X = B, + B, (4.44)

where w and ¢ denote the relative transverse displacements and relative rotations. This
expression may be extended into the regime of finite rotation while strains remain small.
In this case, the rate equation for the discrete curvature changes may be expressed as, (see
Bout (1993) van Keulen (1993))

X = B,w, + B,p (4.45)

where the superposed dot indicates the derivative with respect to a time-like parameter.
The component vector w, contains the nodal velocities perpendicular to the instanta-
neously fixed co-rotating configuration. With reference to Equation (4.42), (4.45) may be
expressed as,

X = By (R31% + R320 + R3sw) + By (4.46)
and similarly, for the out—of-plane coefficients, Equation (4.22) may be updated to,

) = E,, (Ra1t + Ray® + Razw) + E ¢ (4.47)

Because of the rate Equations (4.46) and (4.47), the actual changes of curvature need
to be evaluated by a step—by—step integration. However, by realizing that the nonlinear
equilibrium equations are solved incrementally, the above rate equations may be taken
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for a unit time-like parameter so that for an arbitrary incremental step, the strains and
curvature changes can be expressed as,

¥ = (Bal + %Bag + [Bwo + %de] Eﬂ,) a + [B¢° + %de] EWQO (448)
X = B, (Rgl’u, + R3v + R33’LU) + Bv(p = Bga + Bv(p (449)
where,
E; =[Rs1E, RypE, Rs3E,) (4.50)
By = [Rs1By,  R3:B,  RasB.) (4.51)

The discrete equations of equilibrium can now be derived using Equations (4.48)
and (4.49) with a pre—condition. The requirement is that the total curvature changes are
obtained in incremental-update manner. At the end of each increment n+ 1, the following
expressions must be applied,

Y ="+ By (R Au 4 REAC 4 R Aw™ | + E,AQ™ (452)
v = (Byy + 1BIY) @™ 4 (By, + %B&L:l) i (4.53)
X" = X" + B, [R}Aum + R, Av™ + R Aw™ ] + B,Ap™! (4.54)

Then, for an arbitrary incremental step, the first variation of the strain tensor is given by,

(S’Y = (Bal + Baz + [Bwo + de] Eﬂ,) oa + [B¢° + B¢d] Ev,&p

= (B, + B3E;) da + B;E,d¢p (4.55)
dx = Bgda + B,ép (4.56)

where,
B, = B, + B,» By = By, + By, (4.57)

Alternatively, we can write,

_ oy _ Ba-l-Bz/;Ew lejE@ da _
de = {5X} = { B, B, Sof = Bor (4.58)

where B is the nonlinear strain—displacement matrix,

o B, + B@Ew B&Ev
B= { B B, (4.59)
The second variation of Equation (4.58) is given by,
_ 52y 0B, +6B;E; 0B;E,] [da
22 — a Y0 PHe
e { 52X} { K ; } { &0} (4.60)
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4.3.3 Discrete Equilibrium Equations

The equations of equilibrium are derived from the principle of virtual work. The element
internal virtual work equation is given by the left hand side of Equation (2.1). For constant
stresses and strain, it can be expressed as,

SWi=Aje'a (4.61)
where,
e =" x'] " =[N" M"] (4.62)
Substituting Equation (4.58) into (4.61) yields,
SWi=Aér"B'a =or'f (4.63)
from which the element internal force vector in terms of nodal forces follows as,
f=AB"g (4.64)
The variation of the internal virtual work (Equation (4.61)) is given by,
SW' = A (6”56 + 6%€"7)

- §BI + ELsBT 0
A(érTBTQB6r+{6aT 5Ty |70 F 0By HN}>

ETSBT o] \M (4.65)
Before deriving the element tangent stiffness matriz from Equation (4.65), we recog-
nize the following relations for the geometric versions of the strain-displacement matrices,

§B'N = Bg.da (4.66)
SBIN — Buydtp — [Buy| [E. E,]{ 0% 4.67
N = Bgyoy = [Bey|[Es By S (4.67)
with,
B; 0 0 L [Ba 0 0
Be,=|0 Be 0 By = -5 0 Be O (4.68)
0 0 BG 0 0 BGS

where we have defined,

B = ci‘FNH + c;‘FNzg + cgle

Bg1 = Jii N1 + Jo1 Nag + J31 Npo
Bga = JiaN11 + J2a Nag + J32 Nio
Bgs = Ji3N11 + Ja3Nag + J33Nio
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Then, substituting Equations (4.66) and (4.67) into (4.65) yields,
: _ Iy
ewi— A 5" (B"C,B + | Bo O 1 |Bul By Bs E,])br
0o of " |E!
= orTK,or (4.69)

where the tangent stiffness matrix becomes,

(4.70)

K4 [ BE B+ {BGQ + BT BayE, E};BGzﬁE@H

E'Bc,E,  E!Bg,E,

The first and second terms represent the material and geometric parts, respectively.
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Chapter 5

Material Plasticity

5.1 Introduction

The discussions and developments in the foregoing chapters have mainly been based on
the concept of equilibrium or the balance equations of momentum. The consequence of
these have led to the geometrically nonlinear formulation in Chapters 3—4. In this chapter,
we shall extend our discussions to the kinematic description of elasto—plastic deforma-
tions. In that respect, the material plasticity formulation which is suitable for the present
applications is presented.

Like the geometric nonlinearity, the material modelling due to plasticity is an impor-
tant part in the field of nonlinear finite elements. For applications involving permanent
deformations, plastic forming, plastic collapse and stability, the geometric nonlinearity
provides no meaningful results without material modelling due to plasticity.

The theory of plasticity is the mathematical theory for the analysis of irreversible
time—independent deformations. It is described in a number of standard textbooks, in-
cluding Lubliner (1990), Lemaitre and Chaboche (1990), Maugin (1992), and Besseling
and van der Giessen (1994). The theory treats the macroscopic behavior of materials in
the plastic range, and for metals and alloys it involves mainly the movement of dislocations
without the influence of viscous phenomena or the presence of de-cohesion which damages
the material.

The damage of a material (which is opposed to the that of structural mechanics
which we refer to as collapse) is treated by damage mechanics. On the other hand, when
the irreversible deformations are time—dependent, viscoplasticity should be the choice.
The validity of plasticity theory is, therefore, limited to relatively low temperatures (with
respect to the melting point), quasi-static problems, and non—damaging loads.

From a material curve point of view, one may consider Figure 5.1 which illustrates
the analogy between multi—-dimensional stress space and the uniaxial stress—strain curve.

45
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Figure 5.1 Stress space and uniaxial stress—strain curve.

The stress space denoted by a is referred to the initial yield condition and is controlled by
the yield stress o,.

The existence of hardening takes the initial condition to the ultimate condition de-
noted by b which is controlled by the ultimate stress o,. In other words, hardening charac-
terizes the subsequent yield conditions. Another important observation is that any loading
beyond o, is associated with plastic strains. These observations include the two basic
assumptions which are made in the conventional theory of plasticity. Namely,

— There exists an initial yield condition which can be illustrated by an initial yield
surface in the stress space.

— There exists a flow rule relating the plastic strain increment to the stress increment.

If subsequent yield conditions should be considered, a hardening rule or function is
defined. It relates the expansion and/or translation of the yield surface to the amount of
plastic deformation. While kinematic hardening translates the yield condition, isotropic
hardening expands it and is not associated with the so—called Bauschinger’s effect. By
Bauschinger’s effect it is meant that the material acquires a strain anisotropy after plastic
strain developments. More precisely, a previous plastic strain with a certain sign diminishes
the material resistance with respect to the next plastic strain of the opposite sign.

For small strain plasticity, a fundamental assumption is made such that the strain
tensor is decomposed into the additive elastic and plastic components. This is expressed
as

e=€"+¢€ (5.1)

where the superscripts e and p indicate the elastic and plastic terms, respectively. The
elastic strains are reversible and linearly related to the stresses by the generalized Hooke’s
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law. On the contrary, the plastic strains are irreversible and nonlinearly related to the
stresses.

5.2 Thermodynamic-Based Plasticity

The classical small strain plasticity theory, as well as the Green and Naghdi (1965) and
the multiplicative split (e.g. Kroner (1960), Lee and Liu (1967), and Lee (1969)) large
strain plasticity theories, fit well in the framework of thermodynamic theory. In other
words, all the ingredients of these plasticity formulations can be delivered (Ristinmaa and
Ottosen 1996) from the natural laws of thermodynamics. In this section, the evolution
equations are established from the final results of thermodynamics. For the description of
thermodynamic theory itself, the reader is referred to the lectures of Truesdell (1969).

First, we mention that the interest of any body or system is characterized by its state
variables from which the state function can be established. The first law of thermodynam-
ics!, which may be viewed as the principle of energy conservation, postulates the existence
of internal energy as the state function. On the other hand, the second law?, which was
named by Truesdell (1969) as the Clausius—Duhem inequality, postulates the existence of
entropy as the state function.

For the purpose of continuum mechanics or constitutive modelling, the second law
is turned to the dissipation inequality by using the first law. This dissipation is the sum
of mechanical (material) dissipation which is associated with Plank’s inequality, and the
thermal dissipation which is associated with Fourier’s inequality. Any constitutive model
that satisfies the dissipation inequality, fulfills all the formal conditions enforced by ther-
modynamics. Our mathematical presentation starts from the total dissipation inequality.

From the local form of the second law of thermodynamics, the dissipation inequality
which is a special presentation of the Clausius—Duhem inequality can be expressed in terms
of the Helmholtz’s free energy function 2. Following Truesdell (1969), (see also Ristinmaa
and Ottosen (1996)), this inequality may be expressed as,

§=—pQ+70)+0Te—07rT0 >0 (5.2)

where p is the mass density, 7 is the specific entropy, 6 is the temperature, o is the
stress tensor, F is the heat flux vector?, @' is a vector of temperature gradients over the
body, and the superposed dot denotes a time derivative. Assuming isothermal conditions,
the influence of temperature disappears leading to the dissipation which is related to the
material only. This leads to the so—called mechanical dissipation,

Omech = —pQ +oT¢e (5.3)

'The sum of the rates of kinetic energy and internal energy equals the sum of mechanical power input
and rate of heat input.

2The rate of entropy is greater than or equal to the rate of heat input per absolute temperature.

3This vector has the direction of the heat flow and its length expresses the heat per unit time which
passes through a unit surface area perpendicular to the direction of heat flow.
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An important part in constitutive modelling is the choice of proper state variables
which characterize the model. It is suitable for our purpose to assume that the plastic
process is described by a single scalar variable representing the isotropic hardening. For
a reason that will become apparent in the following presentation, we denote this variable
as €P. In addition, we also assume that the elasto—plastic process can be represented by
the elastic strains from Equation (5.1). Then, with isothermal conditions, the free energy
function is simply expressed as,

Qe eP) = Q°(€°) + QP(£P) (5.4)

which is equal to the deformation energy. When Equations (5.1) and (5.4) are submitted
to (5.3) the result is the mechanical dissipation given by,

Q¢ o0y
aee> e — st’P +oTe? >0 (5.5)

6mech = (UT —p

Equation (5.5) can be viewed as the total area enclosed by the loading—unloading
circle in Figure 5.1. Since this mechanical dissipation remains valid for any elastic strains
€, it is possible to assign arbitrary values for €°. Therefore, it follows immediately from
Equation (5.5) that,

00Q°
g = p% (56)

where we have dropped the transpose in o simply because the result of the two vectors is
similar for a scalar or dot product.

If we define ¢ as a thermodynamic force conjugate to the hardening parameter £?,
just like o is conjugate to €°, we can write

o0
— 5.7
0= (5.7)
and, the mechanical dissipation inequality (5.5) takes its suitable form as,
Smech = O €F — 0P > 0 (5.8)

5.2.1 The Yield Function

The yield function is the central part of plasticity, and its enclosed boundary defines
the yield surface. The stresses are considered to have fulfilled the yield function and
be admissible only if they are located inside the yield surface or exactly on its boundary
line. In that respect, it is convenient to let the yield function depend on the stresses.
Furthermore, since the yield surface can be expanded or translated by the amount of
hardening the material exhibits, it is evident that the thermodynamic force conjugate to
the hardening parameter characterizes the yield surface as well. Accordingly we have,

flo,0) <0 (5.9)
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This condition tells us that f < 0 defines an elastic state while f = 0 denotes a plastic
state, and a closed surface f = 0 defines the yield surface. Therefore, Equation (5.9) plays
the role of plastic potential.

For work hardening material, the so—called Drucker’s postulate (Drucker 1951) has
two implications, convexity and normality. The former means that the yield surface is
convex, and the latter indicates that the plastic strain is in the direction of the outward
normal to the yield surface. The convexity condition is used in the optimization problem
that will be encountered in the following sections.

5.2.2 Evolution Laws

The evolution laws of plasticity can be obtained by fulfilling the dissipation inequality
(5.8) and satisfying the yield function. The best approach of doing that is to adopt the
so—called postulate of maximum dissipation, and maximize .., for the constraint given
by Equation (5.9). In this way, the problem becomes a nonlinear optimization one and
may be turned into the corresponding minimization problem by minimizing the negative
Omech, for given values of €” and &P.

Following the standard mathematical literature for optimization of functionals, for
example Luenberger (1969), we obtain the evolution laws or flow rules for é” and £ exactly
as those arising from the associated plasticity theory,

g g'p:'a_f
Oo oo

& =

(5.10)
where the non-negative \ is the plasticity (Lagrangian) multiplier, which is commonly
known as the consistency parameter. In solving the above optimization problem, the

Kuhn-Tucker theorem (Luenberger 1969) of inequality constraints has been used. This
provides the so—called Kuhn—Tucker conditions subject to A and f as,

F<0 A>0 AN =0 (5.11)

The condition Af = 0 in Equation (5.11) merely says that when f is less than
zero, then the corresponding Lagrangian multiplier is absent and there is no plasticity
development, i.e. A is equal to zero. On the other hand, plasticity development only
occurs when f is equal to zero, and in that case A\ must be greater than zero. Accordingly,
should the plasticity routine returns a negative plasticity multiplier, the value must be
replaced by zero.

5.2.3 Huber-von Mises Plasticity Model

The Huber—von Mises yield criterion, commonly known as the von Mises criterion, provides
a simple and popular yield function for metals. This yield function was proposed by Huber
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Figure 5.2 Huber—von Mises yield surface.

(1904) and von Mises (1913). Figure 5.2 shows a corresponding characteristic of the Huber—
von Mises criterion with the yield criterion of Tresca (1872).

Within the following presentation, the plasticity model is built by following the
Huber—von Mises criterion. In addition, the generalized and modified forms of the sur-
faces resembling this criterion are discussed. The Huber—von Mises yield function is based
on the deviatoric stresses, and is given by,

flo,0) = \/go,’cla;d —o(e?) <0 (5.12)

where o}, are the components of the deviatoric stress tensor, and ¢ is the uniaxial subse-
quent yield stress. These are defined as,

Ol = Okt = §5k10ii o =0,+0(cP) (5.13)

where 0y, is the Kronecker delta, & is the additional stress (beyond the yield stress) as a
result of hardening, and the values of the indices ¢, & and [ ranges between 1 and 3 with
repeated sum. By inserting Equations (5.13) into the quadratic form of Equation (5.12),
the yield function for plane stress condition can be expressed as,

f =02 — 01109+ 0% + 302, — (0o + 5(P))2 =0 (5.14)

So far, the presentation has assumed isotropic hardening function of a general shape.
From now on, let the discussion be limited to the case of linear isotropic hardening for the
purpose of simplifying the derivations. Accordingly, the additional stress due to hardening
will be given by ¢ = HeP, where H is the isotropic hardening modulus just like E is the
elastic material modulus. Finally, the yield function can be expressed in its matrix form
as

)

flo,e?) = o Po — (0, + He?)? = 0 (5.15)
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T . . . T
where o = [01; 092 012]" with its corresponding € = [e17 €22 2¢15] , and

1 -1 0
P=3|-1 2 0 (5.16)
0 0 6

Submitting the yield function (5.15) to the plasticity evolution Equations (5.10), the
associated flow rule and hardening rule for our model are obtained as,

e =2\Po &P =2\o (5.17)
where the equivalent stress o follows from Equation (5.15) as,

c=Va"Pa (5.18)

5.3 Integration Algorithm

From the discussions in Section 5.2.3, it follows that the plasticity problem is subject to
the solution of the rate evolution Equations (5.17). Consequently, a numerical integration
procedure must usually be employed in order to provide an approximate solution at discrete
load increments. Within the load increment, the numerical procedure allows the elasto—
plastic problem to be treated as an equivalent elastic problem. In the present work, the
so—called return mapping algorithm, using the backward Euler difference scheme (Matthies
1989) is considered.

In advancing the solution incrementally to the current state n+1, the starting point is
from the previous converged solution at state n. Initially, the whole increment is assumed
to be elastic and the trial elastic stresses are calculated using the converged accumulated
plastic strains and Hooke’s law as,

ot = C ey — €2) (5.19)

where C is the elastic modular matrix.

The yield function (5.15) is checked by using this trial stress and the equivalent
converged plastic strain from the previous step n. If the yield surface is exceeded, plastic
flow has occurred within the current increment and, accordingly, the correct stresses must
be calculated as,

ony1 =C (6n+1 - [GZ + Aeﬁ+1]) (5.20)
where the incremental plastic strains at the current step are given by,

Aéh, =€, —¢€ (5.21)

n
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By using Equation (5.19), the correct stresses (5.20) may be expressed as,

ony = ol — C Aéh (5.22)

Application of an implicit backward Euler difference scheme to the flow rule Equa-
tions (5.17), leads to the following relations at step n + 1,

€ =€ +2( 1 — \y) Popyy = € +2\Po, 4 (5.23)

5Z+1 = SZ +2 ()\n+1 — )\n) Op+1 = 8],; + 2)\0’n+1 (524)

where we have denoted the term in the parenthesis as A, the plasticity multiplier or con-

sistency parameter corresponding to the current step. By using Equation (5.23), we can
express the plastic strain increment (5.21) as,

A€, =2 P04 (5.25)
and, for the correct stresses, Equation (5.22) becomes,
oo = [I +2\CP] " gl (5.26)

with A remaining as the sole unknown.

For the case of isotropic elastic response, the inverse of the matrix in Equation (5.26)
takes a remarkably simple form because C and P have the same characteristic subspaces.
To facilitate that simplification, the spectral decomposition theorem of the solution to the
symmetric eigenvalue problem of Parlett (1997) is utilized such that,

[CPJQ=QA = CP =QAQ" (5.27)

where Q and A = AcAp are, respectively, the matrix of eigenvectors and the diagonal
matrix of eigenvalues of the product matrix CP. Therefore, Equation (5.26) can be re-
expressed as,

Oni1 = (Q[I + 2>\A]71 Q’l) o-ffj“ll = VnHo{fﬁl (5.28)
where,
1 -1 0
2

Q= % 11 0 (5.29)

0 0 V2

1 3 FE FE ck
Au = diag |~ = Ap = di .

A dzag[2 5 3} p = diag =V T+v 010) (5.30)

This decomposition method was proposed by Matthies (1989) for simplifying the
plastic flow computations. Following this proposal, it has also been applied in resultants
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plasticity by Ibrahimbegovié¢ and Frey (1992), and Simo and Kennedy (1992). In the
coming sections, explicit components of matrix V,4; are derived.

For a material described by C and P, the solution of the eigenproblem given by Equa-
tion (5.27) is known after solving it only once. In addition, since the elastic trial stresses
can be obtained from Hooke’s law, it only remains to determine the plasticity multiplier A
which fulfills Equation (5.15). For that purpose, the Newton-Raphson iteration procedure
for the solution a nonlinear function f(\) is employed so that,

PUSID N A =0 (5.31)

in which 7 is the local iteration number, and f ) is the derivative with respect to A.

5.3.1 Consistent tangent Modular Matrix

In the context of finite element method as discussed in Chapter 2, the solution of nonlinear
equilibrium equations is usually accomplished by an iterative procedure based on Newton’s
method. The process involves a sequencial solution of linearized equations obtained from
the balance equations of momentum.

To preserve the asymptotic quadratic convergence of the iterative scheme, the con-
sistency between the element tangent stiffness and the integration algorithm of the rate
equations plays a crucial role. In other words, the tangent modular matrix that appears in
the linearized problem must be obtained by consistent linearization of the response func-
tion resulting from the integration algorithm of the rate equations. This concept appear
to have first been applied by Simo and Taylor (1985).

To obtain the tangent modular matrix C, which is consistent with the integration
algorithm presented in Section 5.3, we need a consistent linearization of the discrete stress—
strain relation (5.20),

ont1 = C(€nt1 — €,)) (5.32)
such that we have the relation,
do,+1 = Cdenyy (5.33)
Accordingly, the linearized Equation (5.32) can be expressed as,
dops = C(depi1 —deb,)) =  denp = Cldo, + deb (5.34)
in which de}, , is obtained by linearizing Equation (5.23) which gives,
deb | =2\P doy1 + 2P0 1d\ = 2\P do i + iy d) (5.35)

where we have denoted the plastic flow direction as,

7A7,7H,1 = = 2P0'n+1 (536)
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By combining the final versions of Equations (5.34) and (5.35), we obtain
dent1 = [C' + 2P| dopy1 + Rpi1d\ (5.37)

where we shall denote the terms in the brackets as the algorithmic compliance H, },. Using
the spectral decomposition theorem by doing similar to what was done in Equation (5.26),
the compliance can be expressed as,

H,y = [C' +20P] 7 = (Q[I + 220A]' Q) C = V,,;,C (5.38)

For the definition of dA which is required in Equation (5.37), we linearize the yield function
(5.15), the equivalent plastic strain (5.24), and the equivalent uniaxial stress (5.18), by
writing

df = A1 dongy — 2H (00 + Heb ) deb, =0 (5.39)
A
deb ) = 2X\ doyyr + 20041 AN = ——R | dopi1 + 20,41 dA (5.40)
On+1

Substituting Equation (5.40) into (5.39) yields,

1
d\ = /))—_i_lﬁg-i_l da’n+1 (541)

where we have introduced the following definitions,

200,41

Br1 = a=2H (0, + Hel ) (5.42)

1- CU)\/O'n+1

Now the linearized discrete stress—strain Equation (5.37) can be re—expressed as,
1 -1
do = [Hl + BfmT] de (5.43)

where we have dropped the subscript n + 1 for clarity. The inverse can be obtained by
using the Shermann—Morrison formula for the inverse of rank—one update, (see for example
Golub and Loan (1989)), and finally the consistent tangent modular matrix becomes,

HaATH

G =H-aTha 1 5

(5.44)
A similar matrix was obtained by Ibrahimbegovi¢ and Frey (1992) for elasto—plastic for-
mulation based on stress resultants.

It is important to note that the local iterations in Equation (5.31) should strictly be
based on the last converged results at state n for the effect of the consistent modular matrix
to be considered. Any solution that is based on the intermediate unconverged results will
lead to a questionable use of matrix (5.44) as a continuum tangent modular matrix (Simo
and Taylor 1985).
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5.4 Through—the Thickness Integration

There are two principal methods that are used to describe the nonlinear behavior in shell
elements, namely the volume and area approaches. In the volume approach, the consti-
tutive equations in terms of stresses and strains are applied to the shell layers and then
integrated through the thickness. This conventional method, that we will refer to it as
through—the thickness integration, is generally viewed as computationally demanding over
the other.

The area approach is generally believed to offer reasonable reduction in computer
time and storage by formulating the constitutive laws in terms of stress resultants, con-
jugate with the generalized strains of the mid-surface (Simo and Kennedy 1992). In this
way, the integration over the thickness is avoided. This method, that is called the stress
resultants plasticity, has the disadvantage that additional assumptions regarding the stress
distribution over the shell thickness must be introduced.

With respect to the computational cost, however, it will nonetheless appear in this
work that the advantage of the second approach over the first is not as significant as it is
generally believed. In addition, since the second approach is based on the pre—integrated
equations over the thickness, its final equations are usually less trivial as regard to computer
implementation. It should not be ruled out, however, that there may be cases where the
second approach can offer smoother numerical solutions than the first.

In the present section we shall focus on the volume approach and leave the area
approach for the next section. So far we have presented all the equations in this chap-
ter assuming that the rate equations will be solved at each respective integration point.
Therefore, the yield function for through—the thickness integration can be taken from its
original form as given by Equation (5.15) as,

flo,e?) = o Po — (0, + He?)? = 0 (5.45)

Following the discussion in Section 5.3, the next step will be to find an explicit form
of matrix V,,;; in Equation (5.28). Performing the involved matrix algebra analytically,
the result becomes,

S1+ S s1—852 0
Vagr =5 [s1—82 s1+s2 0 (5.46)
21 9 0 s

where the following definitions have been made,

ok o h o 2
T k+ \E > h+3)\E T h+6cAE

S1

(5.47)

in which ¥ = 1—v and h = 14 v. Note that for ¢ = 1/2, which is the usual case, s3 = 2s,.

Substitution of Equations (5.24) and (5.28) into the yield function (5.45), and use of
the spectral decomposition theorem (5.27), lead to an explicit yield function as a nonlinear
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function of a single scalar variable A,
FO) = Oriar — (00 + H [€5 + 2A04riat])* = 0 (5.48)

Where,
D trial — o IF)U ! (5 49)
trial trial trial .

P=Q 7 [I+2 A "Ap [T +2)\A] ' Q! (5.50)

in which Ap is the diagonal matrix of eigenvalues of matrix P. The subscript n + 1 has
been omitted for clarity. The matrix algebra in Equation (5.50) can also be performed
analytically to obtain,

si+3s3 s1—-3s2 0
P= 1 st —3s3 s1+3s3 0 (5.51)
0 0 3s2
where s1, so, and s3 are defined in Equation (5.47).

What remains now for the solution of the nonlinear Equation (5.31), is the derivative
of the yield function (5.45) that we can write it as,

~2
f,)\ = &f”-a, - 2H (Uo + H [Efl + 2)\0’,5741'@1]) (20’,5741'@1 + M)\) (552)

Otrial

in which,

Otrial = V Ug;ml]ﬁ)o'trial (553)

where P is given by the derivative of PP in Equation (5.50) with respect to A. This matrix
can be obtained as,

51+35 5 —35 0

. 1
P=g|5-3% 6435 0 (5.54)
0 0 353
where,
2 6 6
3 = _EEsil‘) 3y = _EESS 83 = —EcEsg (5.55)

By using Equations (5.51) and (5.54), we can go further and give the explicit expres-
sions for Equations (5.49) and (5.53) so that,

Opriat = [011 + 053] P11 + 201102P12 + 07, Pa3 (5.56)
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&tzrial = [0%1 + ng] IP)II + 20110221@12 + 0’%21@’33 (5.57)

where o0;; are the components of the stress tensor, and P;; and ]13’1-]- are respectively the
scalar components of matrices P and P.

Having solved for the plasticity multiplier A, the current stresses at the integration
point are obtained from Equation (5.28) and the consistent tangent modular matrix from
Equation (5.44). Then the resultants of the constitutive equation are obtained as described
in Section 2.7.2.

5.5 Stress Resultants Plasticity

In this section, we shall present the theoretical formulation for the modification of the flow
theory of plasticity to the application on M—N type interaction curves, instead of o—type
yield functions discussed in the foregoing sections. In other words, the constitutive laws
will be presented in terms of generalized stresses which in Kirchoff-Love assumptions are
the stress resultants N and stress couples M that we shall refer to both of them as stress
resultants. The yield function is represented by stress resultants which are obtained by
pre-integration of the corresponding equations presented in Section 2.7.2 after neglecting
any partial yielding.

Typical for the previous equations, the approximate Ilyushin (1956) yield function is
used. However, the word approximate is dropped unless needed specifically. This criterion
involves quadratic stress intensities and was derived by means of strain ratio parameters.
In fact, the Ilyushin yield criterion is a special form of the Huber—von Mises criterion
expressed in terms of stress resultants. To illustrate, let Equation (5.14) be presented in
terms of the stress resultants of the outer fibers of a shell cross—section.

As long as the material remain elastic through the depth of the shell, the stress
distribution over the cross—section is linear and the components at the outer fibers are
given by,

When Equation (5.58) is inserted to (5.14), the result is,
N | 12P  36M ,
where ¢ is given in Equation (5.13), and
N = N} — N1 Ny, + 3NZ + N2, (5.60)
M = M% — My My, + 3M3E, + M3, (5.61)
P = Ny My, — 0.5 (Nyy Mo + NopMiy) + 3N1o My + Nog Mo, (5.62)

Equation (5.59) has been applied by Eidsheim (1980) as the initial yield criterion,
while keeping the Ilyushin surface as the limit criterion.
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5.5.1 The Approximate Ilyushin Surface

The exact Ilyushin yield surface has not been used because its parametric form in which it
was described was not amenable to calculation (Burgoyne and Brennan 1993b). Instead,
its approximate version has widely been applied. In bending dominant conditions, Ilyushin
suggested an approximate surface which in its quadratic form can be expressed as,

N 4uP 16M
s 0 )—020 (5.63)

N,M)= (=
Fv o) = (4 2
where u = |P|/P = £1. What is said to be a better approximation has been given by
Ivanov (1967), (see also Crisfield (1979)).

It is seen that apart from the two coefficients of the last two terms within the paren-
thesis, Equations (5.59) and (5.63) are quite similar. This difference is mainly caused by
the assumed stress distribution over the cross—section where only two-thirds of the bend-
ing term in Equation (5.58) is needed for an almost recovery of the approximate Ilyushin
surface.

Similar to Equation (5.15), the functional (5.63) may be expressed in matrix form as,

fle,e")=6"A6 — % (0o + HeP)* =0 (5.64)

o

where & is the stress resultant tensor, and matrix A is of constant coefficients. These are
defined,

= N n_12P Qﬁgmnp
S oo

where P is given by Equation (5.16). In accordance to the discussions on stress distribution
which follows after Equation (5.63), the following definitions are used,

1
No = Oot me = ZUOL‘2 (5.66)

Expressions similar to (5.64) have been applied by Ibrahimbegovié¢ and Frey (1992), and
Simo and Kennedy (1992), to represent the Ilyushin—Shapiro yield criteria.

The yield surface defined by Equation (5.64) remains convex, however, as a result of u
being equal to £1 it has corner discontinuities. This results into a double surface for stress
update at the corner. Like other yield surfaces with corners, many works have been reported
to treat these discontinuities (see Crisfield (1997) for references). In their publications,
Burgoyne and Brennan (1993a) and Burgoyne and Brennan (1993b) have presented what
they termed as the exact Ilyushin yield surface which reduces the discontinuties from two
points to one. In the present work, a simplified approach is used to treat the discontinuities
in the approximate surface given by (5.64).
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5.5.2 Resultants Plasticity Equations

Adopting the stress resultants yield criterion, means in principle that all the plasticity
equations resulting from the integration algorithm should be re-derived using the new
yield function. For the present case, it can nonetheless be shown that the equations will
remain the same but the vectors and matrices need to be replaced with their corresponding
resultant ones. As it has appeared in Equation (5.64) and in what follows, we shall denote
all the matrices corresponding to resultants by a superposed bar, except for P which has
been replaced by A. As we have divided the resultants yield function (5.64) throughout
by the square of 0., the definition of « in Equation (5.42) is also replaced by,

2H

o

a= (0o + Heb ) (5.67)

Following a similar procedure as done for the integration through-the thickness in
Section 5.3, the correct stress resultants are given in terms of the trial stress resultants as,

Fny1 = [T +2)\CA] " airic! (5.68)

where C is the elastic modular matrix which is given by,

C— {tc 0 } (5.69)

3
0 LC

Using the spectral decomposition theorem (5.27), Equation (5.68) can be conveniently
expressed as,

Fuir = (QUI+20A) Q) ol =V, ol (5.70)

where Q is the matrix of eigenvectors of the product matrix CA, and A = AsAy is the
corresponding diagonal matrix of eigenvalues. These are given by,

= Q 0
Q= {0 o (5.71)
. 3 1 3 3
A = diag [23 M2 nZ 2m2 2m2 mg] (5.72)
A — di Et Et cEt Et? Et? cEt? (5.73)
CTMYINTT) Tvr (T+v) 120-») 120+v) 12(L+v) '

5.5.3 Modified Yield Surface

For the purpose of avoiding the corner discontinuities in the Ilyushin yield surface, we
consider a rather simplified approach by setting u = 0 in Equation (5.63). By doing so, we
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are rendering the surface (5.64) to a hyperellipse and hence a smooth single surface for stress
update of any return value, instead of two active yield surfaces on special circumstances.

With the integration algorithm presented in Section 5.3, the current modification
simplifies the calculations remarkably. The outcome is the solution of a single scalar
equation for the plasticity multiplier as it was for the through—the thickness integration in
Section 5.4. This modified form was initially proposed by Skallerud and Haugen (1999),
and it has been applied with success since then by Mohammed et al. (2001).

With respect to the approximate yield function, however, the present modification
introduces inaccuracy ranging between 0—12 percent as illustrated in Figure 5.3. By
considering the uncertainties involved in other input parameters (e.g. boundary conditions,
external loads, geometry, and material properties) and the fact that an approximation is
already introduced in the Ilyushin original surface, it may be considered acceptable to
employ this modified surface.

M /m,
—___=—modified

original

Figure 5.3 The Ilyushin yield surafce.

Substituting Equation (5.70) into the yield function (5.64) together with the update
equation for the equivalent plastic strains similar to Equation (5.24), the modified yield
surface can be expressed as a nonlinear function of a single scalar variable A as,

o

2
fO) =58 — (1 Il [ef + 2)\5m‘al]> =0 (5.74)

where,
— . — T —
Otrial = \Y; Ut”ale'trial (575)

A=Q T[T+ 20A T AT +2)\A]7' Q! (5.76)

in which A4 is the diagonal matrix of eigenvalues of matrix A. The subscript n + 1 has
been omitted for clarity. The derivative of the yield function, which is required for the
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solution of the nonlinear Equation (5.48), can be expressed as,

. 2H H 52,
f,/\ = 5—?711'(11 - <]— + — [5{; + 2>\Utrial]> (20trial + (itnal A) (577)
(X

o Oo Otrial

where,

5—trial =V &Z;mlA&trial (578)

in which A is given by the derivative of A with respect to .

5.5.4 Simplified Matrices and Explicit Equations

Following the derivations in Sections 5.5.2 and 5.5.3, one may agree that the matrix opera-
tions involved in the the nonlinear Equation (5.31) can be quite demanding with respect to
computer time. However, it will be shown in this section that these operations can actually
be performed analytically so as to minimize the computer time. As a result, simple and
explicit expressions are obtained for the plasticity calculations, notably the modified yield
surface (Equation (5.74)).

To facilitate the simplification, we first focus on Equations (5.68) and (5.76) for
matrices V and A. After lengthy matrix algebra, these matrices can be expressed as

- vr o0 A" 0
V) I Y -
in which,
ny+ng Ny — Ny 0 1 mi+mo My — Moy 0
V" = 5 ny —mne N+ no 0 V" = 5 mip — Ms M1+ Mo 0 (580)
0 0 ns 0 0 m3
1 n?+3n3 ni—3n3 0
A" = yy n?—3n3 ni+3n3 0 (5.81)
° 0 0 3n32
m?+3m3 m?—3mi 0
A" = — mi—3mi mi+3mi 0 (5.82)
° 0 0 3m3
where the following definitions have been made,
ky, hn 2N
T T B " b, 3NEt T T 6oABE (5:83)
k h 2h
T e FAES "2+ AEE L s Vor B
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in which,

kn=n2(1-v)  hy=n (l+v) kp=12mi1-v)  hy,=4m2(1+v) (5.85)

Similarly, the derivative of matrix A with respect to the consistency parameter A,
which is required in Equation (5.78), can be expressed as

- [A" 0
A = R 5.86
o (5:6)
where,
1 ni+3ny ng—3ny 0
il LU IR (5.87)
"o 0 0 33
A L [ +3ms i =3y 0
AT = s i = By di o+ iy O (5.88)
Mo 0 0 31
in which,
2 6 6
Ny = T Etn? Ny = —h—nEtng’ N3 = —h—ncEtng (5.89)
iy — — = Ettm? iy = —— Bt g = — Bt (5.90)
1 ko 1 2 - 2 3 mc mg .

Substituting Equations (5.79) and (5.81) into Equation (5.75) yields an explicit form
of 51527ial as
Oriat = [NT1 + Np] Ay + 2N NopArz + NipAgy +
(M} + M3,] Aug + 2M1y My Ays + M7yAgg (5.91)

where N;; and M;; are the components of the stress resultant tensor. A similar expression
corresponding to 6., (i.e. Equation (5.78)) can be expressed as,

A2

Otrial = [N121 + N222] Ay + 2Ny NysAyy + Nnggg +
[M121 + M222] Agg + 2M1; MypAys + M52A66 (5.92)

What we can simplify further is the tangent modular matrix in Equation (5.44)
expressed specifically for resultants plasticity. This matrix takes a remarkably simple form
as a result of a null sub—matrices and symmetry of matrices we have encountered in this
section. With the simplified surface, the corresponding symmetric matrix of compliance
H,;, from Equation (5.38) is completely described by the components,

HH = “711@11 + VlzClz ]I:H44 = “744@44 + V45C45 (593)
Hy, = V1Cp + V,Cyy Hys = V4 Cy5 + Vy5Cyy (5.94)
Hzs = V33Cys Hes = Ve Css (5.95)
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with Hy, equal to Hy; and His equal to Hys. Then, if we define a vector R = Hn and its
components to be expressed as,

Rl = Hll 'Fl;l + ng 7?7'2 ]RQ = ng ’Izl,l + ]I:]IH lFl;Q R3 = H33 ;13 (596)
R4 :H44’f1,4+H457AL5 R5 :H45’f1,4+H44’fl,5 Rﬁ :H667A7'6 (597)

in which,
h =246 (5.98)

the consistent tangent modular matrix for resultants plasticity is simplified to,

o RR”
CG=H- (5.99)
n R+3
where,
8= _ 200 5=VoT Ao (5.100)
C1-a\a 7= '

5.5.5 Yield Stress Control

As mentioned in Section 5.5.3, the modification of the Ilyushin yield surface by setting
1 = 0, introduces an overestimation as compared to the unmodified surface. With reference
to Figure 5.4, it can be shown that this overestimation can be controlled if the plasticity
calculations are based on the reduced yield stress given by,

ol = g,(1 - ) (5.101)

where r is the reduction factor. It can be readily seen that this reduction is higher with
combined membrane and bending situations, but vanishes otherwise.

A quick solution to the control of this envelope would be to set a constant factor
between 0—0.12 that will be used throughout the analysis. This must be based on a prior
knowledge of the problem. Another alternative which may turn out to require more com-
puter time would be an automatic reduction. Both, analytical and numerical investigations
have shown that it is possible to approximate the reduction factor by a polynomial function
r(z), where x stands for either M /m, or N /n..

Applying a polynomial for stress reduction is equivalent to introducing an infinite
number of hyperelliptic yield surfaces between the two boundaries — i.e. upper and lower.
The upper surface corresponds to r = 0 while the lower one corresponds to r = 0.12 for
balanced membrane-bending interaction. The value of r is calculated as a ratio of the
distance between the two surfaces to the distance from the origin. It is pointing in the
radial direction. A curve fitting gives the following polynomial,

r(z) = 0.2722 4 0.0422% — 1.2312% + 3.5672* — 4.5192° + 1.9952° (5.102)
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Figure 5.4 Yield stress control.

where when f(\) =0,
B N/n, for M/m,>1/v2
e {M/mo for N/n,>1/V/2 (5.103)

in which n, and m, are calculated before the reduction and recalculated thereafter.

Equation (5.102) is applicable only when the stress resultants are based on the pro-
posed new surface. With the reduced yield stress, the stress resultants are evaluated at the
unmodified Ilyushin surface using a reduced hyperellipse surface. The corrected trial stress
resultants based on the reduced yield stress are used to recalculate the consistency param-
eter A. This implies that the nonlinear equation need to be solved twice if the automated
yield stress reduction is used.

URN:NBN:no-1282
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Chapter 6

Nonlinear Solution and Numerical
Examples

6.1 Introduction

The governing equations for the discretized geometric nonlinear problem have been derived
in Chapters 3 and 4. The result is a set of parametrized nonlinear algebraic equations
called residuals which are analogous to Equation (2.4). The solution of these equations as
the control parameters are varied provide an equilibrium path of response. This path is
typically achieved by Newton’s method whereby a sequence of linear problems are solved.

If the linear problems are obtained by consistent linearization of the nonlinear prob-
lem, a quadratic rate of asymptotic convergence to the nonlinear problem is guaranteed.
It is, therefore, generally assumed that the solution procedure of practical importance is
based on advancing the solution by continuation. The basic idea in this process is that the
equilibrium response of the structure is followed as the control and state parameters varies
by small amounts.

The continuation process is a multilevel one and involves a hierarchical breakdown
into stages, incremental and iterative steps. The incremental steps are always present and
make the major part of the continuation. Stages are related to each other in the sense
that the end of one solution may provide the starting point for the next. In a single stage,
incremental and, if desired, iterative steps are performed. Iterative or rather corrective
steps are used to reduce or eliminate the so—called drift error which is accumulated during
incremental steps.

Usually, an equilibrium response obtained by continuation reaches a maximum load
level (or state) commonly known as the critical point. This point is illustrated in Figure 6.1,
and it is characterized by a singular stiffness matrix. The critical point is said to be a limit

65
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secondary
bifurcation —t= = primary
limit

Figure 6.1 A typical bifurcation example.

point if it is smooth, or a bifurcation point if it is sharp. The latter can be avoided by
introducing initial imperfection in the finite element modelling.

The limit point is associated with snapping, and the bifurcation point is an indication
of buckling where the response curve switches from the primary to the secondary equilib-
rium path. More precisely, bifurcation is a point where more than one equilibrium path
exist. In some cases, the equilibrium path goes through a turning point where the tangent
stiffness becomes infinity in transition from negative to positive or vice versa.

The main difficulty in advancing the solution by continuation is the traversal of critical
and turning points. These make the choice of incremental control of great importance.
Usually, the equilibrium response is traced using either load control, displacement control,
or their combination. Up to mid-seventies, nonlinear problems were solved with purely
incremental methods under load control. However, the procedure causes the computed
solution to drift away from the equilibrium path unless the size of incremental steps are
kept very small.

Following the invention of corrective methods, the shortcoming of the drift error
accumulation was overcome by iterating the solution back to the equilibrium path. As
long as it converges, the solution is independent of the incremental step size. However,
even if the load control is associated with iterative steps, it has the problem of traversing
the critical points. As an alternative, the displacement control algorithm can be used, but
it has the problem of traversing turning points.

In the past two decades, improvements have been made that allow loads and displace-
ments to be varied simultaneously. These incremental controls are widely discussed in the
literature and they include the arc-length control of Riks (1972) and Wempner (1971),
and the hyperplane displacement control of Simons et al. (1984). Unfortunately, none of
these improvements are best for all problems. However, the arc-length type algorithms are
considered the most versatile in terms of the range of problems they can solve.

In this thesis, the arc-length incremental control is used as the projector step. During
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the iterative steps, either the so—called normal plane iterations or the orthogonal trajectory
iterations is used. Each of these methods is discussed in the following sections.

6.2 The Solution Procedure

The equilibrium response or equilibrium path, which is usually presented in a load-
displacement diagram, says more about the structural behavior than just knowing the
final solution. The response path includes physical actions such as snapping and buckling.
This response curve is normally obtained by continuation method.

In Chapter 2, we have presented what we called the residual equations of nonlinear
equilibrium equations. Repeating here for convenience, it can be written as

p(r, () =f(r)—p(() =0 (6.1)

where the control parameters are the displacement vector  and the external load intensity
(. For proportional conservative loading, the external load vector can be expressed as,

p=(p (6.2)

where p is the constant vector of the actual external loads. Gradual variation of the inde-
pendent control parameters, or precisely the linearization of the residual Equation (6.1),
allow many solution points to be calculated and the equilibrium path be traced through
them.

What appears to be a formidable task, is the implementation of a solution procedure
which is capable of tracing and traversing the bifurcation points and switch the solution to
the secondary equilibrium path. Alternatively, bifurcation points can always be transferred
to limit points by introducing small geometric imperfections. In this way, the correct
equilibrium path can be asymptotically followed by avoiding to hit the bifurcation point.
Practically, this is the natural approach for solving problems in structural mechanics. This
is mainly due to the fact that structures are rarely ideal and geometric imperfections do
always exist making the bifurcation points only hypothetical.

The variation of the residual Equation (6.1) can be expressed as,

_ofor
- 0r o

5c— PP s — K — ploc =0 (6.3)

op ac % =

where K, is the tangent stiffness matrix and w is the so—called incremental velocity vector.
This representation has been conveniently used by Felippa (1996). Since §( is arbitrary,
we can write,

Kiw—p=0 (6.4)

Equation (6.4) can be solved for the incremental velocity vector w and the results be
applied over a finite increment (Ar, A() instead of virtual increments in Equation (6.3).
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This procedure provides the incremental control variable with a possible drift error. The
error can be eliminated by performing corrective iterations. With finite increments, the
incremental displacement vector can be obtained from the velocity vector as,

Ar = wA( (6.5)

6.2.1 The Arc-length Method

The arc-length method was originally proposed by Riks (1972) and Wempner (1971) and
it was developed further by Riks (1979). This method is commonly known as the Riks—
Wempner algorithm and it adds to the standard equilibrium equations a constraint equa-
tion. The constraint fixes the size of incremental steps by prescribing the tangent of equi-
librium path at the previously converged solution. Following the modifications introduced
by Crisfield (1982) and Ramm (1982), the Riks—Wempner algorithm was made suitable for
finite element method.

The arc-length method allows both loads and displacements to be incremented simul-
taneously and as long as the increments are small enough, the system equations become
singular only at bifurcation points. Therefore, limit points can be passed without diffi-
culties. Before proceeding, let a normalized tangent vector along the equilibrium path be
defined as,

m f=Vitao'w (6.6)

where f is the scaling factor.

An arc-length method which is discretization independent has been presented by
Haugen (1994). Its main advantage is that the actual displacement increment which
matches a normalized prescribed arc-length f is not influenced by mesh refinement. In
this procedure, a change in the arc-length definition is introduced by scaling the norm
of the incremental velocity vector @” @ with the number of nodes in the element mesh.
In addition to this special scaling of displacements, the loads are scaled as well. With
the latter modification, the magnification of the actual applied loads does not change the
actual step size of the path following algorithm.

For the present work, it is chosen to employ the scaling technique for the displace-
ments only. However, instead of scaling with the number of nodes in the element mesh we
shall rather use the number of equations in the system which is equal to the number of
free degrees of freedom. The main reason behind this decision is that the element nodes
in this thesis do not have an equal number of degrees of freedom.

The predictor step

The equilibrium path is a curve in N + 1 dimensional space with an unknown vector
involving = and ¢. In the finite element method, the arc-length method is a two step
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procedure involving matrices of order N. Within a continuing solution, we start from a
converged solution at step n and predict the solution at step n + 1. Between these two
steps, a number iterations can be performed to bring the solution back to the equilibrium
path.

The exact load and displacement increments to be added to the structure are initially
not known. However, the approximation of the load intensity — which in turn gives the
approximate displacements from Equation (6.5) — can be obtained from the constraint
equation given by,

1
As = \/AC2 + n—ArTAr (6.7)
d

where As is the prescribed arc—length and A( is the load increment. Note that, following
the discussion is Section 6.2.1, we have introduced the scaling factor ng equal to the number
of free degrees of freedom.

The incremental velocity vector @, is predicted by solving Equation (6.4). When the
result is submitted to Equation (6.5) followed by substitution into (6.7), it provides the
approximate load increment as,

Acmg—_ 88 (6.8)

1 — —
/14 n—don W,
The sign of A( is determined by assuming that the equilibrium path is smooth, and in

tracing this path the present predictor must form a positive vector with the previous
predictor. Alternatively, we could use the so—called positive external work criteria.

The complete incremental-iterative algorithm for arc-length method is summarized
in Table 6.1. To maintain an approximately equal number of iterations at each load
increment, an automatic scaling factor is applied to account for special circumstances,

I
=4/ I, > 1, (6.9)
In
where I; and I, are, respectively, the desired number of iterations at any incremental step
and the number of iterations in the previous converged solution. This scaling appears to
have been introduced by Providas (1990). It allows the magnitude of load increments to
be reduced automatically when severe nonlinearities occur.

A purely incremental solution with arc—length control, which avoids the corrective
step, is explained by Felippa (1996). By monitoring the numerical accuracy and stability,
the method introduces a special automatic adjustment of incremental load. This procedure
has been used during the early stages in the preparation of this thesis and has proved to
be very robust.

The corrector step

Having obtained the predictor increment (Ar, A(), the next step is to correct it for the
drift error. With reference to Figure 6.2, this is achieved by assuming that the shortest
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Figure 6.2 Normal plane iterations.

distance to the equilibrium path lies in the direction orthogonal to the predictor increment.

Since the normal plane to the predictor is a hyperplane, subsequent corrector itera-
tions are forced to be on that surface. In doing so, the solution is decomposed into two
contributions — one due to the incremental load solution, and the other due to the residual
solution which is the cause of the drift error. In other words, one solves for a set of two
equations involving,

Kw,=-p=p—f (6.11)

with a combined solution given in augmented form as,
. A P (6.12)
| |1 0 '

Forcing the iteration path to follow a plane normal to the tangent of the equilibrium
path is equivalent to introducing the constraint,

1 1
—ArTsr + ACC =0 = —wlor+86¢=0 (6.13)
Ng ng
where 67 and 0(¢ are the iterative increments. By substituting the augmented Equa-
tion (6.12) into (6.13), the iterative load increment is obtained as,
wlw
=T 6.14
¢ @g@p + ng ( )

It has been established by Haugen (1994) that the orthogonal trajectory iterations
of Fried (1984) are more effective than the normal plane iterations. This method was
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Figure 6.3 Orthogonal trajectory iterations.

originally developed as a means of inducing convergence to an equilibrium state from an
arbitrary starting configuration.

The orthogonal trajectory procedure is illustrated in Figure 6.3 and its main theme
is that the normality to the hyperplane is renewed at each subsequent iteration. More
precisely, the combined iterative solution is forced to be orthogonal to the incremental
flow at the current non—equilibrium path. Consequently, the corresponding iterative load
increment is given by,

w ! w,
6 =——L— (6.15)

-
w, Wp + Ng

This iteration procedure is the default in the computer program developed along
with this thesis. Among its advantages is that it allows larger increments than what would
have been possible with the normal plane iterations. The procedure has less possibility of
missing a critical point.

The convergence criterion

As usual for incremental-iterative solutions, the criterion for stopping the iterations need
to be set. The desired outcome is that the solution converges according to the minimum
tolerance requirement. However, it may also happen that the solution diverges or oscilla-
tions take place. In this situation, the analysis is terminated when the desired maximum
number of iterations has been exceeded.

For checking iteration convergence, there exist several criteria. These include dis-
placement norms, residual norms, energy norms, etc. If the displacement criterion is used,
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Table 6.1 Arc-length algorithm

Incremental step.
Solve Ky(r,)Ww, =P toget o
Set f=/1+ wlw,
Find p=wlp or pu=wlAr,
Define A{ = ﬁ%f
Set Ar = ACw,
Update (pp1 = ¢ + AC
Update rpp1 = 1 + A7

Iterative step.

i=1

Do while TOL < ¢
Find @, and @, by solving (6.10) and (6.11)
Find ¢ from (6.14) or (6.15)
Set 0r = w,0¢ + w,
Update ¢+t = (P + ¢
Update rit! = ri + 7
i=i+1

Continue until criterion ¢ is fulfilled.

the convergence is monitored by the Euclidean norm such that,
1
—||orTor|| = €. < TOL (6.16)
ng

where ng is the number of free degrees of freedom and TOL is a predefined tolerance for
solution convergence. For the residual force criterion, the Euclidean norm is given by,

167 pll = ¢, < TOL (6.17)

The residual energy can be considered as a compromise between the displacement
and residual force criteria. It avoids the so—called scaling problems by adopting a unique
Unit of energy for both translational and rotational degrees of freedom. The convergence
is monitored against the tolerance given by,

érTp=e < TOL (6.18)

The choice of convergence criterion and its tolerance limit is of crucial importance
in traversing the equilibrium path. For the majority of problems, monitoring by residual
energy can be the best choice. In setting the magnitude of tolerance requirement, however,
special considerations need to taken. For instance, a too strict threshold will do no better
than just increasing the computational time unnecessarily. A loose convergence threshold,
on the other hand, may not provide sufficient accuracy and soon or later it may induce
divergence due to accumulated drift error.
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6.3 Implementation and Numerical Examples

All formulations presented in this thesis have been implemented in a stand—alone computer
program NSHEL (2000). This code has been developed along with several independent
packages for mesh generation and input file processing. A number of packages from SAM
library (Bell 1997) have been used for assembly and solution of the system equations.
Among other things, the output includes a complete GLView (1999) file in a VTF format for
graphical presentation. By using this file, the structural response in terms of deformations
and stress levels can be viewed as either a video or a still picture.

In this section, numerical examples are presented to demonstrate the performance of
the foregoing formulations. Since it is not possible to present each and every benchmark
problem that has been solved during the present thesis, only a selected number of examples
are presented. Unless specifically mentioned, the stress resultants plasticity formulation is
used in the analysis.

6.3.1 Elastic Problems

Before looking into the performance of the material formulation, it is important to check
that the element formulation and the solution procedure work well in the elastic range.
In that respect, two problems which have been widely used as benchmarks are presented.
They represent a hinged cylindrical shell problem, and a plate cantilever subjected to pure
bending. Both problems involve only geometric nonlinearity.

Hinged cylindrical shell

The circular cylindrical shell of Sabir and Lock (1972) has been widely used as a benchmark
problem in testing nonlinear shell formulations. The geometry is shown in Figure 6.4 with
t = 12.7mm, R = 2540mm, L = 254mm, and # = 0.1 radian. The elastic material is
characterized by E = 3.10275 x 103MPa, and v = 0.3. The two longitudinal straight edges
are fixed against all possible translations while the curved boundaries are kept free.

The nonlinear response of this example involves a deep snap-through. This feature
makes it not only a test for geometric nonlinearity, but for robustness of the solution
procedure as well. The structure is subjected to a concentrated vertical force at the center.
Due to double symmetry in geometry and loading, only one quarter of the shell is modelled
as depicted in Figure 6.4. The finite element mesh involves 124 triangular elements.

The results are presented in Figure 6.5 along with the results by Sabir and Lock
(1972), Horrigmoe and Bergan (1978), and Meek and Tan (1986). Both elements presented
in Chapters 3 and 4 have been used. The curves from the two elements lie almost over
each other. The results correspond very well with other publications. A point should be
mentioned that, for shell problems, the Morley element is softer with coarse mesh. This
implies that improved results can be obtained with a finer mesh. The same observation
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Figure 6.4 Cylindrical shell; Geometry.
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Figure 6.5 Response of hinged cylindrical shell (¢ = 12.7mm).

was made in a study by Providas (1990) while analyzing shell structures. Due to identical
results for moderate and large rotation elements, the example can be said to be in the
range of moderate rotations.

When the thickness of this cylindrical shell is reduced by one-half, so that ¢ = 6.35mm
is used, the structural response becomes quite different from the one in Figure 6.5. In this
case, the response involves a dramatic snap—back behaviour. It is, therefore, a suitable
example for verifying path following capabilities of a solution algorithm. From the results
in Figure 6.6, it can be observed that the performance of the present formulations is of the
same quality as in the previous example.

Cantilever subjected to an end moment

In the previous example, the performance of the elastic formulations within the range of
moderate rotations were tested. In this example, the performance within arbitrary large
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Figure 6.6 Response of hinged cylindrical shell (¢ = 6.35mm).

Figure 6.7 Cantilever under pure bending.

displacements and rotations is studied. Bending of an elastic cantilever subjected to an
end moment is considered (Figure 6.7). This is a common benchmark problem for which
analytical solution exists.

Under pure bending, the beam should respond without membrane stresses. How-
ever, many finite element formulations are subjected to membrane locking and either fail
completely or give erroneous results. In those cases, they usually give over—stiff solutions
once the beam reaches a half-cylinder shape. In this analysis, the large rotation element
presented in Chapter 4 is used.

The analytical solution for the end moment is given by,

1 E ¢t
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Figure 6.8 Elastic response of a cantilever under pure bending.

where ¢ is the end rotation, L is the length, ¢ is the thickness, £ is the Young’s modulus,
and v is the Poisson’s ratio. Usually, there are no common dimensions for this problem.
In the present case, a beam having dimensions such that L = 100, b = 5, and t = 1 is
analyzed. The elastic material is described by E = 200 and v = 0.3.

The beam is folded up to 10 times before the solution fails, and the selected circles
are shown in Figure 6.7. The response is shown in Figure 6.8. It is observed that the end
rotations from the analysis correspond remarkably well with the analytical solution.

6.3.2 Elasto—Plastic Plate Problems

The examples in Section 6.3.1 indicate that the elastic formulations and numerical solu-
tion presented in Chapters 3-4 and 6 perform very well. The next task is to verify the
performance of the plasticity model as presented in Chapter 5. In the present section, sev-
eral examples on elasto—plastic plate bending, buckling, and torsion analysis are presented.
Examples involving problems on shell collapse are given in the next section.

Bending

A simply supported square plate subjected to a distributed pressure loading is analyzed.
This example was introduced by Levy (1942), and it demonstrates high membrane effects
in the post—yield range. With reference to Figure 6.9, the plate geometry is described by
side lengths @ = b = 407mm and thickness ¢t = 2.54mm. This gives a width to thickness
ratio b/t = 160. In this case the initial axial load is equal to zero. The material is assumed
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Figure 6.10 Response of a simply—supported square plate.

to be elastic—perfectly plastic with £ = 2.11 x 10°MPa, v = 0.316, 0, = 248MPa and
H=0.

The plate is fixed against translations along all four edges and a full model is analyzed.
Both, elastic and elasto—plastic analyses are considered. The finite element model uses the
large rotation element from Chapter 4. The results are shown in Figure 6.10 along with
ABAQUS (1998) predictions, and the results by Levy (1942) and Bécklund (1973).

Bécklund used integration through thickness on an element having the same degrees
of freedom as the present element. Levy analyzed this plate up to about b5mm of lateral
displacement which is in the elastic range. Very good correspondence with other simu-
lations is observed, and the evidence of pure membrane effects in the post—yield range is
very clearly seen. The deformed model and stress distribution in the post—collapse range
are shown in Figure 6.11.
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Buckling

An imperfect plate, which was introduced by Javaherian and Dowling (1985) and studied
also by Nygard (1986), is analyzed in this example. It involves elasto—plastic buckling of
a simply supported short rectangular plate. The longitudinal edges are transversely free.
With reference to Figure 6.9, the geometry is described by the aspect ratio a/b = 0.875,
slenderness b/t = 80 and thickness ¢ = 3.175mm. The material is assumed to be elastic—
perfectly plastic with £ = 2.062 x 10°MPa, v = 0.3, 0, = 250MPa and H = 0. Moderate
rotation element is used.

The loading involves proportional increments of the prescribed uniform axial dis-
placements at one of the longer edge of the plate. The lateral distributed load is absent
in this case. The initial imperfection is described by a single sine wave in both directions
with a maximum amplitude of w, = 0.001b at the plate center.

Both, elastic and elasto—plastic analyses are considered. The results shown in Fig-
ure 6.12, display a very good agreement to those of Nygard (1986) (see also Bergan et al.
(1990)), and are close to that of Javaherian and Dowling (1985).

In another buckling problem, we again consider imperfect plate with two aspect
ratios of a/b = 1, and a/b = 3. With reference to Figure 6.9, the geometry is defined by
b = 240mm and t = 4mm. The material properties are £ = 2.05 x 105Mpa, 0, = 245MPa,
v = 0.3, and H = 0. An initial single wave sinusoidal imperfection with a maximum
amplitude of w, = 1.5¢ is introduced. Moderate rotation element is used.

A uniformly distributed axial load, equivalent to P, = o,t, is applied at the shorter
side of the plate. Again, there is no distributed lateral load in this example. The results for
different mesh densities are shown in Figure 6.13. They are given as normalized load versus
normalized axial strain, and are compared to the predictions of an eight—node rectangular
ABAQUS element.

Excellent agreement is obtained with an expected deviation at the ultimate load for
a/b = 3. The overestimation is attributed to the different plasticity formulations used.
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Figure 6.13 Rectangular plate buckling (II).

While (for this example) NSHEL uses the modified resultant plasticity, ABAQUS uses
5 integration points over the thickness. The deviation is less pronounced for a/b = 1.
As far as the present resultants plasticity is concerned, these results support the previous
demonstration in Section 5.5.5. It was said that the overestimation is larger with combined
membrane and bending situations, and it vanishes for pure bending or membrane actions.
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Torsion

The torsion of a plate sheet with a hole at the center has been presented recently in a
paper by Basar and Itskov (1999). It has an aspect ratio of a/b = 5 with geometry defined
by a = 5 and ¢t = 0.05. The material with isotropic hardening is described by E = 210,
v = 0.2, 0o = 0.2 and H = 3. The circular hole has a radius of r = 0.15. The sheet
has rigid ends, and it is clamped on one end. On the other end, the axial translations are
restrained and a concentrated twisting moment is applied at the middle of this end. Large
rotation element is used.

The characteristic moment-rotation diagram for the twisted end is plotted in Fig-
ure 6.14 along with the results by Basar and Itskov (1999) and Skallerud et al. (2001).
The plate is twisted up to a rotation angle equal to 180° as shown in Figure 6.15.
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Figure 6.14 Response of plate under twisting moment.
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Figure 6.15 Plate with circular hole; Deformed model.
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6.3.3 Elasto—Plastic Shell Problems

Pinched cylinder

This example was introduced by Simo and Kennedy (1992) who used the generalized
[lyushin-Shapiro material model formulated entirely in stress resultants. Since then, it has
also been studied by Brank et al. (1997) using von Mises material and seven integration
points through thickness, and by Skallerud and Haugen (1999) using stress resultant plas-
ticity formulation similar to the present one. In this problem, the short cylinder is pinched
by two concentrated forces at its mid—section, and it is bounded by two rigid diaphragms at
its ends (see Figure 6.16). The analysis represents a complex distribution of shell stresses.

Figure 6.16 Pinched cylinder; Geometry.

The geometry of the cylinder is described by the length L = 300, thickness t = 3,
and radius B = 300. The material is characterized by an isotropic hardening plastic
response with £ = 3000, v = 0.3, 0, = 24.3 and hardening Ej, = 50. This hardening
value is different from the isotropic hardening modulus H used in the present formulation.
Therefore, an equivalent value based on a tensile test simulation using the stress resultant
model is used instead. In this way, the uniaxial hardening modulus is applied indirectly.

One octant of the cylinder is analyzed with the boundary conditions described in Fig-
ure 6.16. Large rotation element is used. The results are shown in Figure 6.17 along with
those presented by Skallerud and Haugen (1999), Simo and Kennedy (1992) and Brank
et al. (1997). The simulation by Brank et al. (1997) considers the out—of-plane shear
deformations and thickness update, and may therefore be considered to be the most accu-
rate. In general, the present results are in good agreement with all the other simulations.
The response involve sharp load drops which may be due to bifurcations.

Scordelis—Lo roof

In this example, a shallow cylindrical shell shown in Figure 6.4 is analyzed. It has been a
primary benchmark problem for testing elasto—plastic shell finite—elements, and it demon-
strates a high degree of geometric and material nonlinearities. Many researchers have
analyzed this problem with the first complete results presented by Peric and Owen (1991).
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Skallerud and Haugen (1999) have presented results based on resultants plasticity,
similar to the one in this thesis, using an ANDES finite element. While Peric and Owen
(1991) used a large strain plasticity and a number of integration points through the thick-
ness on a Morley element, Skallerud and Haugen (1999) used four integration points along
the surface. The present analysis considers a single integration point per element.

The analysis is performed under increasing self-weight of 4KN/m? up to collapse.
One quarter of the model is analyzed, restricting deformations to be symmetric along the
lines x = 0 and y = 0. The straight edge AB is free while edge BC is pinned in the y and z
directions and free axially. The geometry is described by L = R = 7.6m, ¢t = 0.076m, and
= 40°. The material is assumed to be elastic-perfectly plastic with E = 2.1 x 10'N/mm?,
v =0, and 0, = 4.2N/mm?. Moderate rotation element is used.

The results are shown in Figure 6.19 along with those presented by Peric and Owen
(1991) and Skallerud and Haugen (1999). The results from ABAQUS (1998) with a four—
node element are also included. It is seen that the present results agree well with the others
up to the ultimate load where, if we consider the fine mesh, they tend to follow those by
Peric and Owen (1991) with an earlier load drop.
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Figure 6.19 Scordelis-Lo roof; Vertical displacement at point A.

More comparisons are shown in Figure 6.20 including the results by Crisfield and
Peng (1992), Roehl and Ramm (1996), and Brank et al. (1997). The variety of solutions
in the post—collapse range is clearly observed. It demonstrates the problem’s sensitivity to
meshing, element type, number of integration points through thickness (denoted as 3PSI
and 7PSI), etc. The difference in the results obtained with fine and coarse meshes with
ABAQUS is particularly noticed.

For the present analysis, the results in Figure 6.20 are obtained by using a constant
yield stress or surface reduction factor of 12%, (see Figure 5.4). This is is considered to be
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Figure 6.21 Scordelis-Lo roof; Deformed model.

reasonable because the problem is dominated by combined membrane and bending action.
The same reduction was used by Skallerud and Haugen (1999). The deformed shapes at
different load conditions are shown in Figure 6.21.

With reference to Figure 6.20, one may assume the results by Peric and Owen (1991)
as a reference solution. Not only do they represent the averages in the post—collapse range,
but also the following results by Crisfield and Peng (1992) and Skallerud and Haugen
(1999) correspond well to them. It is interesting to notice that, apart from Skallerud and
Haugen (1999), these results are based on the Morley shell elements. An important point,
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however, is that the difficulties of using this example as a benchmark problem is clearly
identified.

6.4 Efficiency of Plasticity Computations

In this section, the computational advantage of resultants plasticity with respect to the
conventional through-the thickness integration is compared. This concern appears to have
first been put forward by Mohammed et al. (2001) where it is mentioned that such an
investigation will be presented in this thesis.

Four examples are selected for analysis. These include plate bending and buckling
as well as shell collapse. For each case, pure elastic analysis is performed and followed by
elasto—plastic analysis using resultants plasticity. Thereafter, several elasto—plastic analy-
ses are performed using different number of integration points (NINT) over the thickness.
The number of increments for each case is kept constant with the same convergence toler-
ance.

The computational efficiency is measured based on the Central Processing Unit
(CPU) time of the machine. In order to obtain the computational time which is only
demanded by the plasticity routines, CPU time of the elastic analysis is subtracted from
the total elasto—plastic CPU time. The remaining computational time is normalized with
respect the required time for resultants plasticity (NINT=1). The relative times are pre-
sented in Table 6.2. Cases 1 to 4 correspond to square plate bending, Scordelis-Lo roof,
square plate buckling, and rectangular plate buckling, respectively.

Table 6.2 CPU time versus number of integration points.

NINT | 1=Resultant 2 3 5 7 10 12
Casel 1.0000 1.2274 1.3981 1.5483 1.7539 2.2492 2.2243
Case2 1.0000 1.2835 1.3824 1.4941 1.6176 1.8529 2.0000
Case3 1.0000 1.0241 1.1270 1.2857 1.3333 1.5079 1.7460
Cased 1.0000 1.2197 1.3068 1.5227 1.8030 2.0265 2.2121
Average 1.0000 1.1887 1.3036 1.4627 1.6270 1.9092 2.0456

If we consider that most of the engineering problems would be solved efficiently using
3 to 5 number of integration points over the thickness, we can say that the time gain in a
typical problem is in average about 30 to 50 percent. It should be noted that the resultant
plasticity which is presented in Chapter 5 is very simplified in terms of computational
requirements. For example, most of the very demanding matrix operations are performed
analytically to obtain simple expressions.

It is, therefore, fair to say that most of the computational advantage depicted in Ta-
ble 6.2 is a result of the present simplification. The conclusion may be that a typical double
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surface resultants plasticity does not seem to have a significant computational advantage.
This appears reasonable since the local matrices for thin shell resultants plasticity are 6x6,
whereas 3x3 matrices appear in through-the thickness integration.

On the numerical stability, however, it seems that resultants plasticity can be more
stable in some cases towards convergence. For example, it was observed that the main
reason for CPU increase with respect to the number of integration points was generally
due to the increase in the number of iterations per increment.

6.5 Efficiency of Element Formulations

It is worth to disclose that during the initial stage of this thesis, several element formu-
lations in the family of Morley shell elements were investigated. At the end of the this
study, two formulations were selected as presented in Chapters 3—4. According to the list-
ing that follows this paragraph, these two formulations provide four alternative element
types. The remaining elements are not described in this thesis, but their implementation
in NSHEL (2000) offers the opportunity to measure their computational efficiency. The
complete listing of the various element types is classified as,

1. Simplified TL element undergoing moderate rotations as described by Providas and
Kattis (1999). This is similar to the element in Chapter 3 when B, is equal to zero.

2. TL element undergoing moderate rotations as described in Chapter 3.

3. CR element undergoing large rotations as described by Peng and Crisfield (1992).
The consistent CR, formulation is applied directly to the assembly of linear constant
strain triangle of Turner et al. (1956) and the linear constant bending element of
Morley (1971).

4. CR element undergoing large rotations. This element is similar to number 3 above
but it is derived in a different and more convenient way. It can be obtained from
the textbook by Crisfield (1997) and also in the work of Zhong and Crisfield (1998).
For this element, the implementation neglects the contribution of K,; which is the
geometric stiffness matrix resulting from coupled membrane-bending action. This
omission was motivated by the study using element 3 from which it was found to
have no significant contribution.

5. Facet TL-CR element undergoing large rotations. This is as described in Chapter 4
when the initial curvature is excluded.

6. Curved TL-CR element undergoing large rotations. It is as described in Chapter 4
when the initial curvature is included.

7. Element number 1 in this list which undergoes large rotations. It is described by
Mohammed et al. (2000a) using CR-TL formulation.
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Though, element types 3, 4 and 7 are not in fully working order, their numerical operations
are not supposed to increase after they have been debugged. Therefore, they will be treated
in a similar way to compare their computational efficiency as the other elements in the

listing.

Table 6.3 shows the CPU time comparisons for four examples. Cases 1 to 4 correspond
to square plate bending, Scordelis-Lo roof, rectangular plate buckling, and hinged roof,
respectively. For each case, the number of increments is kept equal for all formulations. It
is seen that the moderate rotation elements 1 and 2 are in average 2.8-3.6 faster than the
other elements. In some few cases, the speed gain is almost 5 times more.

Table 6.3 CPU time versus element formulations.

Type 1&2 3 4 5&6 7
Casel | 1.0000 2.4802 3.1186 2.9181 24774
Case2 | 1.0000 3.7699 4.8494 4.5021 3.7071
Case3 | 1.0000 2.4187 2.9864 2.8117 2.4038
Cased4 | 1.0000 2.5342 3.1524 2.9545 2.5324
Average | 1.0000 2.8007 3.5267 3.2966 2.7802
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Chapter 7

Ultimate Strength and Collapse
Analyses

7.1 Introduction

In Chapter 6, numerical examples have been presented to demonstrate the performance and
efficiency of the developed formulations. The cases which have been studied are typically
academic benchmark problems. The results have indicated that element formulations as
well as the solution procedure perform very well. The purpose of the present chapter is to
present examples of more practical significance.

The examples involve the study of some typical marine structural components and
subsystems. In these examples, the ultimate strength and collapse analysis, due to extreme
loads, are of great importance with respect to design. The analyses include stiffened plates
subjected to axial compression, plate girder subjected to shear loading, and axial crushing
of a cruciform. The latter is commonly known as X—element in the context of ship collision
and grounding mechanics.

7.2 Stiffened Plate Panels

In ship structural design, one of the major considerations is the ultimate strength of the
hull-girder. The key elements to this strength are the individual stiffened panels. These
include plate panels, longitudinal stiffeners, and transverse frames as illustrated in Fig-
ure 1.1. The load—shortening curves of these panels can be utilized to predict the overall
ultimate strength.

89
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For panels in compression, the basic forces are axial compression from the overall hull
girder bending moment, local bending from lateral pressure, transverse compression from
the in—plane pressure loads, and shear. The problem in question is very complex with a
large number of input parameters. Rigorously, the entire cross—section should be modelled.

In order to simplify the problem for design purposes, most of the Classification soci-
eties recommend a beam—column approach. In this approach, a single longitudinal stiffener
with associated plate flange is considered being representative for the behaviour of the lon-
gitudinally stiffened panel.

7.2.1 Initial Imperfections

In a nonlinear finite element analysis of welded structures, it is generally necessary to
introduce initial imperfections so as to obtain results of practical interest. The aim of these
imperfections is to model the effects of true initial distortions and imperfect geometry,
as well as residual stresses from fabrications. The real shape and magnitude of these
imperfections are not exactly known. Normally, they are either selected so as to satisfy the
tolerance requirements, or calibrated so that the buckling design curves are reproduced.
Often, these two procedures yield approximately the same results.

The effect of initial imperfections is very significant for buckling strength of com-
pressed members. The same is for the outcome of a numerical simulation on system
collapse. If the structure is modelled as perfect or nearly perfect, the computed buckling
resistance of various members will often be unrealistically high. An exception to this is
when the load effects introduce significant deformational components which are compatible
with the buckling mode. Numerically, the most common consequence of a perfect model
is the singularity which is caused by bifurcation as illustrated in Figure 6.1.

Sources and types of imperfections

Structural imperfections can be grouped into two — geometric deviations and residual
stresses. The geometric imperfections include deviations in axial out—of-straightness and
cross—sectional parameters such as plate thickness, stiffener profile, and initial distortions.
The out—of-straightness is particularly due to structural fabrication, but it is influenced by
profile manufacturing as well. On the other hand, cross—sectional parameters are particu-
larly due to profile manufacturing, but may also be influenced by structural fabrications.
In addition to these sources, structural components do generally exhibit some degree of
misalignments.

Residual stresses arise from manufacturing of the profile as well as fabrication of the
structure (see e.g. Sgreide (1981)). They are mainly caused by processes such as welding,
flame cutting, and hot rolling of plates and profiles. All these processes create heat affected
zones which cause expansion. The expansion is prevented by the adjacent cold regions
in the expense of elastic stress mobilization in the cold regions. This leads to plastic
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deformations in the heated zones with reduced yield stress. During cooling process, the
heated zones contracts and are usually too short under normal temperature conditions. As
a result, tension zones of residual stresses and permanent deformations are created.

While very little is known on imperfections due to fabrication of actual structures,
significant information regarding geometric deviations and residual stresses for individual
elements do exist. For stiffened plates, the residual stresses due to manufacturing balance
in self-equilibrium in the sense that the net external force is zero. Normally, there is tension
in the heat affected zones at the web toe and compression in the middle of the plate.

The beam—column approach, used in the design codes, considers the stiffener profile
with the associated effective plate flange. In fact, the approach resembles the design of a
regular beam—column where the concept of equivalent out—of-straightness is assumed to
capture the combined effect of geometric deviations and residual stresses. For stiffened
plates, however, three types of imperfections are considered. These types of imperfections
can be considered in nonlinear finite element analysis as follows:

— Plate imperfection. This is taken in the form of plate out—of—plane displacement, and
may be assumed to take a sinusoidal shape as,
o . nmr | mY
wp = wp sin ——sin —= (7.1)
where wj is the allowable tolerance, n is the number of half sine-wave in the longi-
tudinal direction, [ is the plate length, and s is the plate width.

— Interframe—stiffener imperfection. This is given in the form of stiffener out—of—
straightness relative to the plate plane. Herein, it is sometimes referred as stiffener
beam imperfection. It is given by,

wp = Wy, sin ? (7.2)

where wy is the allowable tolerance.

— Stiffener tripping imperfection. This is the angular distortion of the stiffener that
gives transverse displacements at the top of the stiffener. These displacements can
be expressed as,

ws = w; sin ? (7.3)
where w{ is again the allowable tolerance.

The tolerance requirements according to DNV (1992) Classification Note, are limited by
the following expressions,

w = 0.01s w? = 0.0015 w® = 0.0015 (7.4)

It should be noted that the best and proper way of considering initial imperfections is
to use their measured values. However, these are not always available. Instead, eigenvalue
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analysis has become a common practice in obtaining the buckling modes which are consid-
ered representative of the initial imperfections. The eigenvalue analysis is performed using
a given loading condition, and the imperfections are applied with respect to the tolerance
requirements as set for example by Equation (7.4). An alternative to eigenvalue analysis,
is a meshing in which the initial coordinates follow Equations (7.1)—(7.3).

Using measured values of initial imperfections, Yao et al. (2001) have analyzed un-
stiffened rectangular thin plates under pure axial load. They concluded that hungry-horse
imperfections cause the deflection of buckling mode to grow beyond the buckling load.
However, the plastic deformations tend to localize and cause a rapid reduction of load
carrying capacity in the post—collapse range. In a review by Soares and Sgreide (1981), it
is reported that the overall cylindrical deflection of the plate (which is caused by the weld-
ing process) may have a stiffening effect on rectangular plates. However, this increase in
ultimate strength is of little practical interest since it is followed by a more violent nature
of unloading.

Due to several uncertainties on the type and shape of the initial imperfections, and in
the absence of measured values, the plate imperfection is best approximated by eigenvalue
analysis in the form of buckling mode. Though this estimate does not represent the physical
situation, it is based on the idea that it yields a lower bound or conservative critical load.
For a stiffened plate subjected to lateral pressure, however, this procedure may not be
straight forward since the type of buckling mode according to Figure 7.1 is not initially
known. In this case, symmetric buckling is more likely, but with a low lateral pressure,
asymmetric buckling may be possible.

(a) Asymmetric buckling (b) Symmetric buckling

Figure 7.1 Buckling modes (p; < p2).

When imperfections are introduced in the form of eigenmodes, several difficulties do
arise. Generally, the individual eigenmodes are interrelated, and it may not be possible
to obtain the three types of imperfections independently. This problem may be overcome
by using, for example, a large plate thickness so as to trigger a pure stiffener beam buck-
ling mode. However, as to plate buckling and stiffener tripping, the modes are definitely
interrelated. Plate buckling induces rotations at the stiffener—plate intersection and hence
torsional deformations of the stiffener, and vice versa. Again pure tripping of stiffener
may, in principle, be obtained by using an artificially large plate thickness and add the
two modes to obtain the correct maximum amplitude. If the stiffener is too flexible, trip-
ping corresponding to correct plate imperfection may be too large. If subtraction and
superposition can be used to obtain proper imperfection, it can be applied.
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7.2.2 Reference Stiffened Plates

Nine T—stiffened plates of different geometries are analyzed. The panels are taken between
two transverse frames. The scantlings, with reference to Figure 7.2, are given in Table 7.1
in which A is the reduced slenderness ratio and [ is the plate slenderness. These are defined
as

)

0o b, Joo
= b= L\ E (7.5)

Xt -

where o, is the yield stress, o is the Euler buckling stress, and E is the Young’s modulus.
The transverse frame spacing is | = 3000mm, and the spacing between the longitudinal
stiffeners is s = b, = 1000mm. The steel material is assumed to be elastic—perfectly plastic
with E = 2.1 x 105 MPa, o, = 300 MPa, and v = 0.3.

by
| =
ty — —/——
hw —| [=— tw
tp
l| 1
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Figure 7.2 Cross—section of the stiffened plate.

Table 7.1 Geometrical parameters.

A 8 |ty [mm] hy, [mm] ¢, [mm] by [mm] ¢y mm]
1.64 | 23.00 300 15.0 100 24.0
0.19 | 2.19 | 17.25 300 10.0 100 16.0
274 13.80 300 10.0 100 11.2
1.64 | 23.00 200 11.0 100 17.0
0.32 | 2.19 | 17.25 200 9.0 100 10.8
274 13.80 200 6.0 100 7.8
1.64 | 23.00 120 12.0 100 17.0
0.51 219 17.25 120 9.0 100 11.8
2.74 | 13.80 120 6.0 100 8.7

7.2.3 Finite Element Modelling

The finite element mesh for the reference panel is shown in Figure 7.3. Depending on the
height of the web, each model consists of 19202240 triangular shell elements. Assuming
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symmetric buckling mode (Figure 7.1b), clamped boundary conditions are imposed at the
panel ends. The axial boundary condition in one of the panel end is kept straight. Along
the longer edges of the main plating, symmetric boundary conditions are imposed while
transverse displacements are restrained for convenience. It is understood that transverse
displacements are usually kept free with straight edge condition. However, numerical
investigation has shown no difference between the two conditions for the the present panels.
Slight difference could only be observed in very slender panels far from the present case.

Three types of initial imperfections are considered. They include plate imperfection,
stiffener beam imperfection, and stiffener tripping. For plate imperfection, the buckling
mode is selected as depicted in Figure 7.3 where the displacements are magnified 300
times for clarity. A single sinusoidal wave is taken as the stiffener beam imperfection.
From Figure 7.3, it can be seen that the plate imperfection in the form of buckling mode
introduces stiffener tripping inevitably. Based on DNV (1992) Classification notes, the
tolerance values are set to w) = 10mm and wj = 4.5mm (see Equation (7.4)).

Figure 7.3 The reference panel; Mesh and initial imperfection.

7.2.4 Ultimate Strength Analysis

The analysis is limited to combined axial compression and lateral pressure. Anticipating
plate induced failure, the lateral pressure is applied on the plate side in all the analyses.
Both, axial compression and lateral pressure are incremented proportionally up to collapse.
The basic idea behind simultaneous incrementation is that the ultimate capacity will be
reached earlier than when the pressure is applied to a fixed unit factor. The results are
compared with the beam—column predictions from the DNV (1992) Classification notes
using a similar loading approach.

The load—shortening curves are shown in Figures 7.4-7.6 along with the results based
on ABAQUS (1998) analysis. It is observed that there is a good agreement between the
two simulations. A typical panel after failure is shown in Figure 7.7. Though the results
from both finite element formulations show a good agreement, a deviation of up to 30% is
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Figure 7.5 Load-shortening curves for X\ = 0.32

observed for stiffer panels with A = 0.19 when comparison with DNV (1992) is made. This
is depicted in Figure 7.8 in terms of critical stress versus plate slenderness. In addition, the
ultimate strength values for the present formulations are a little higher than those from
ABAQUS results. This can be due to the difference in plasticity formulations.

Regarding critical failure mode, however, the DNV design code is found to be in
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Figure 7.6 Load-shortening curves for X = 0.54

Figure 7.7 Example of deformed model.

agreement with the finite element simulations. For instance, in panels with A = 0.19,
the finite element simulation shows that they are failing with plate induced compressive
failure. On the other hand, for A = 0.32 and A\ = 0.51, tensile yielding of the stiffener is
the governing mode. Similar predictions are made by the DNV design code.

The effect of lateral pressure

To evaluate the DNV (1992) design code for the observed deviation in ultimate capacity
with respect to stiffer panels, a panel with A\ = 0.19 and 8 = 2.19 is selected for further
investigation. Due to proportional load increments, it is anticipated that stiffer panels carry
larger pressure loads as well. Therefore, it is interesting to vary the magnitude of reference
pressure load for investigation. In doing so, the load—shortening curves are obtained as
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shown in Figure 7.9. As expected, the ultimate capacity increases with decreasing reference

lateral pressure.

The plots of critical axial stress versus critical pressure in Figure 7.10 indicates
that; while the DNV code is very conservative for lower pressure loads, it becomes non—
conservative with higher lateral pressure loading. Similar observation is also made by
Wang and Moan (1997) where a combined bi—axial and lateral pressure loads were applied
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Figure 7.10 The influence of lateral pressure.

to stiffened plates with L—type stiffeners. In the latter, the lateral pressure was applied
only to a fixed level, while the axial compression was incremented until collapse.

7.3 Shear Collapse of Aluminum Plate Girder

Generally, design criteria for plate girders without longitudinal stiffeners involve checking
of bending and shear stresses as well as the local and overall instabilities. For plates in
shear, an important component of post collapse strength may result from the diagonal
tension that develops. This effect is commonly known as the tension field action, and it
depends on the relative flexibility between the girder web and flanges.

For girders with thin webs and strong flanges, very high capacity in shear is obtained
with the web plate resisting much of the applied load in tension. This effect has been
studied for many decades. The basic theoretical background and references can be found
in ECCS (1986). In the work of Hoglund (1997), the design method and review of exper-
imental results reported in the literature (on aluminum alloy and steel plate girders) are
presented. For shear buckling resistance according to Eurocode-9 (1998), this method is
the basis.

The analyses in this section are based on the work of Langhelle and Eberg (1999)
who carried out a series of tests on aluminum plate girder under different temperatures.
Here, only the test results at room temperature are focused. The scantlings of the tested
girder, which is an end panel, are shown in Figure 7.11. In end panels, the dominating
force is the shear including horizontal forces from the inner panels. In thin webs, this
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Figure 7.11 Aluminum panel; Scantlings.

shear capacity depends on whether the end post is stiff or weak in the longitudinal girder
direction. According to Eurocode-9 (1998), the relative dimensions of this girder satisfy
the condition of having a rigid end post.

7.3.1 Finite Element Analysis

The finite element modelling considers a clamped boundary condition on one end. At the
remaining end, out—of—plane web displacements are restricted. A concentrated shear force
equal to 1000KN is applied at the free end. A similar modelling is applied in ABAQUS
(1998) analyses.

The load—displacement curves from the analyses and tests are shown in Figure 7.12.
In general, the finite element and test results correspond well. The slight deviations ob-
served can be attributed to the uncertainties of nominal material properties. The results
of the two finite element formulations are very close to each other. It should be noted that
ABAQUS uses five integration points through thickness and plane, while in the present
analysis we have considered a single integration point per element.

From Figure 7.12, it is seen that the strength prediction according to Eurocode-9
(1998) design code is very conservative. Figure 7.13 shows the deformed shape of the
girder after collapse. It can be observed that the finite element analysis has captured very
well the displacement pattern according to the test results.

7.4 Crushing Strength of a Cruciform

In the field of crashworthiness of ship structures during grounding and collision, the crush-
ing response of ship panels is of primary importance. Usually, the response involves large
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Figure 7.13 Deformed aluminum plate girder.

deformations of shells and local instabilities followed by localization of plastic deforma-
tions. Detailed analysis may often be prohibitive in terms of computer time and storage,
and therefore simplified methods based on plastic analysis become an alternative.

Simplified models are given e.g. by Amdahl (1983). The procedure is based on
dividing the structure into basic elements such as X, Y, and T—elements instead of plane
plate or shell elements. The idea is that the material in the immediate vicinity of a plate
intersection absorbs most of the energy. The energy dissipation is calculated for each basic
element, and the total energy dissipation is obtained by summing up the contributions
from all basic elements.
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7.4.1 Analytical Method

The analytical prediction of energy absorption in a structure during crushing is based on
a simplified energy method. In this approach the external work must balance the internal
energy stored or dissipated in the structure. The analytical models such as Amdahl (1983)
and Kierkegaard (1993) assume complete ductility with no material fracture.

Based on experimental work on X and T—elements made from steel material, it is sug-
gested that the structure is crushed with an intersection line between the flanges remaining
straight. This failure mode is commonly referred to as the straight edge mechanism and it
is illustrated in Figure 7.14. The basic folding mechanism has been presented by Amdahl
(1983).

Figure 7.14 Cruciform; Straight edge mechanism.

The X—element is considered more representative in the sense that the average crush-
ing force for the remaining basic elements can be deducted from it. Its average crushing

f()ICe can be Ca;l(:llla;‘ed aS,

where c is the flange length, and ¢ is the thickness. The factor n ranges between 0.6-0.8
and was introduced by Abramowicz (1983). It represents the effective crushing distance
because the structure can not be crushed to a zero length in practice. The characteristic
flow stress o is typically taken as the average between the yield and ultimate stress of the
material curve.

7.4.2 Experimental and Finite Element Methods

For the basic elements mentioned in the foregoing, a number of representative test results
exist including those by Urban et al. (1999) and Simonsen (2000). These results can be
used as a benchmark in testing the performance of finite element formulations. For that
purpose, an X—element resembling the one presented by Simonsen (2000) has been selected



URN:NBN:no-1282

102 Chapter 7. Ultimate Strength and Collapse Analyses

for the analysis. The basic idea is to compare the failure mode predicted for a typical basic
element.

The reference element has a height of 800mm, a flange width of 270mm, and a 15mm
thickness. This yields ¢/t ratio equal to 18. The material is considered to be elastic—
perfectly-plastic with E = 2.1 x 10> MPa, o, = 300 MPa, and v = 0.3. A small initial
imperfection with a maximum amplitude of lmm, based on the eigenproblem analysis, is
introduced to trigger the buckling pattern.

Since the present finite element implementation does not include material fracture
and contact algorithms, the basic element is compressed up to 100mm only. Thereafter,
the deformations can not be simulated without fracture and contact models. Within the
range of the analysis, however, the deformations show a very good agreement with the
experimental observation as shown in Figure 7.15. The deformed shape based on LS-
DYNAS3D simulations (as obtained by Simonsen (2000)) is also shown.

(a) DYNA Simulation (b) Experiment (c) NSHEL Simulation

Figure 7.15 Axial crushing of X—element.

In comparison with analytical models, the straight edge mechanism is clearly ob-
served. The results of the finite element simulation are presented in Figure 7.16. The
analytical value of the average crushing force as calculated by Equation (7.6) using n = 0.8
is also plotted in the figure.
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Chapter 8

Multi—span Stiffened Panels

8.1 Introduction

The longitudinal ship—hull strength is generally assessed by calculating the strength of
individual stiffened panels illustrated in Figure 1.1. It has been mentioned in Chapter 1
that most of the Classification rules use a beam—column approach for design of stiffened
plate panels. The procedure considers one (single span) isolated stiffener, with associated
width of the main plating, as representative of the whole panel behaviour. In finite element
analysis, a single span stiffened panel can be considered in two ways. These are shown in
Figure 8.1 as model types A and B. The beam—column model is similar to model type B.
Although both models are frequently used in finite element analysis, model type A is the
most common.

The single span approach has been in practice for many years and it is the basis of
most of the previous studies. In terms of boundary conditions used, however, it appears
that there is much to be verified against larger models and practical boundary conditions.
By larger models, we mean multi-span panels in the directions of longitudinal stiffeners
and transverse frames. With the current progress in computer technology, this type of
analysis can be carried out with similar or less computational time than what a single span
panel took a couple of years ago.

While computer simulations of single span stiffened panels can easily be performed,
such models are very difficult to test in the laboratory. In fact, even if this model is tested
in the laboratory, the uncertainties of the test setup in terms of boundary conditions may
undermine the accuracy of the results. This complexity, and the problem of appropriate
boundary conditions, can be relaxed by using a model involving multi-span stiffened panels.
It provides not only a better and practical model for finite element analysis but also a better
model for laboratory test. With this possibility, the results can be easily verified against
experimental values.

105
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stiffener

Figure 8.1 Oblique view of a stiffened panel; Model types.

With reference to Figure 8.1, model type A considers four neighboring quarters of
the plates around the frame—stiffener intersection. It is denoted as the two half span—two
half bay model. The resulting portion of the panel has magnitude equal to that of a single
span stiffened plate. In model type B, two half plates along the stiffener are considered
and it can be called one span—two half bay model. Both models have the same dimensions
but different boundary conditions.

When the panel is subjected to in—plane forces only, the boundary conditions for
models A and B can easily be specified. In the presence of lateral pressure, however,
model A is better than model B. This is mainly because both, symmetric and asymmetric,
buckling modes (Figure 7.1) can be analyzed using model A with the same boundary
conditions at the mid—span. In other words, one does not need to have a pre—knowledge
on the type of buckling mode. On the other hand, when model B is used, it is necessary
to run two analysis with clamped and simple support boundary conditions, respectively.

At the mid—span of model A, symmetric boundary conditions are applied with the
stiffener web allowed to move transversely. Concerning the boundary conditions of the plate
short edges, two possibilities exist. These are clamped and simple support conditions, in
which the actual condition depends on the plate aspect ratio. Rigorously, plates with an
even number aspect ratio should be free with respect to rotation, while plates with an odd
number aspect ratio are clamped. For intermediate values of aspect ratios, it is not straight
forward to determine the appropriate boundary conditions. The same applies when the
partial rigidity against rotation at the transverse frames is to be considered. This case may
be handled by performing two analysis with clamped and simple support condition, and
select the conservative estimates.

What appears to be significant is that neither model A nor B include the transverse
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frame physically. Normally, the effect of transverse frames is modelled by restraining lateral
displacements of the plates at frame—plate intersection. In addition, the stiffener web is
fixed in the transverse direction. The plate continuity is represented by straight boundary
condition along all edges. Though these boundary conditions appear to be quite natural
for the models which are used, there are physical effects that need to be considered and
investigated. For instance, analysis of a larger system may indicate failure of single stiffened
plate. In that case, the symmetric boundary conditions might not be able to predict the
true behaviour. In addition, considering that the frames are strong enough, there can be
a mechanism of load redistribution especially when transverse axial forces are involved.

Regarding the stiffness of the transverse frames in relation to restriction of lateral
displacements, it may be easier to compress the plate alone than a combination of plate and
frame altogether. This can be of much significance when straight edge boundary conditions
are used. In addition, the degree of plate stiffness at this plane may have much contribution
from the built—in frames. This effect may well be missed with the conventional boundary
conditions. All in all, the proper and practical boundary conditions along the plate—frame
intersection may not be correctly simulated without involving the transverse frames in the
model.

Though symmetric boundary conditions are common in structural analysis, they are
indeed a kind of idealization to which the behaviour is forced to follow. The nature of this
condition for compressed stiffened panels may have impact on the results. For example,
imperfections or even small perturbations may influence the displacements at the loaded
edge leading to a different failure mode.

Regarding the size of the model, it is reported in a review by ISSC (2000) that the
study of finite element modelling principles for stiffened plate panels has been performed
by Yao et al. (1998). In this investigation, it was concluded that a triple half-span model is
somewhat better than the two half-span (model type A) for studying the collapse behaviour
under combined compression and lateral pressure. The main feature of this approach is
that the symmetry conditions on the shorter edge are moved by one span further.

The aim of the analysis in this chapter is to employ a large model involving multi—
span panels. In doing so, the physical boundary conditions will be introduced somehow
away from the stiffened plate considered, and the symmetric boundary conditions will be
avoided. It is believed that this will minimize the influence of the imposed boundary
conditions in areas where they are usually introduced. With this model, the influence of
the transverse frames will also be investigated. The results will be compared with those
based on the conventional model of single span stiffened plate.

Contrary to the analyses in the previous chapters, the analysis in this chapter will
make use of the four-node element in the commercial computer program ABAQUS (1998).
It should, however, be pointed out that results could be efficiently obtained by using the
three—node element in NSHEL (2000). The reason for using ABAQUS is that the straight
edge boundary condition, which is much needed in this study, was not fully implemented
in NSHEL (2000) by the time of this analysis. However, similar numerical examples from
NSHEL by using the available boundary conditions will be presented to demonstrate the
performance of the foregoing formulations.
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8.2 The Reference Panels

Two reference panels of different aspect ratio and slenderness are considered. They both
represent the bottom plating, between two longitudinal girders, of a ship double-hull as
illustrated by Figure 8.2. The first panel is a part of a real oil carrier and it is denoted
as STP1. The scantlings of this panel make a very stiff panel. The second panel, that is
referred to as STP2, is an artificial panel. Its scantlings are selected such that a slender
panel with different aspect ratio is obtained.

T 7 T T I 11 T T 171

— — — —

reference panel

Figure 8.2 Part of ship double bottom; Construction detail.

A sketch of the bottom plate for both panels is as shown in Figure 8.1. In panel STP1,
the distance between the transverse frames is 3200mm while the longitudinal stiffener spac-
ing is 800mm. The corresponding dimensions for panel STP2 are 3000mm and 1000mm.
The thickness of the main plating is 18mm for both panels. The stiffeners are L-shaped
with their dimensions given in Table 8.1. The material is assumed to be elastic—perfectly
plastic with £ = 2.1 x 10°MPa, v = 0.3, and 0, = 250MPa.

Table 8.1 Panel properties.

Panel [ S tp hw tw bf tf ﬁ )\0.6 )\1_0
STP1 3200 800 18 370 13 53.5 34 |1.5335 0.1487 0.2478
STP2 3000 1000 18 200 13 53.5 24 |1.9168 0.2809 0.4680

The considered multi—span stiffened panel is enclosed within three spans between
transverse frames number 1 and 2, and four spans between longitudinal girders number 3
and 4 (see Figure 8.1). For each panel, two types of models are studied. The first model
includes all transverse frames and longitudinal stiffeners, and it is denoted as model type C.
In the second model, which is referred to as model type D, the interior transverse frames
are removed. The aim of this model is to evaluate the influence of transverse frames. The
transverse frames are represented by large T—shaped stiffener—like components. The height
is set equal to twice the web height of the stiffeners, and the web thickness is 20mm.
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Figure 8.3 Model types and Initial imperfections; Panel STP1.

8.3 Finite Element Modelling

The finite element mesh for both panels involves 5792 rectangular elements for model type
C. The corresponding number of elements is 5152 for model type D. In the single span
panel analysis, relative mesh size is used. For NSHEL (2000) analysis, the number of
elements is doubled as triangular elements are used. The finite element models are shown
in Figures 8.3-8.4 in the form of first buckling modes.

Along all four edges of the panels, simply supported and straight edge boundary
conditions are imposed. At the frame—stiffener intersection, the stiffener flanges are free
to rotate, and are not connected to the frame web. Assuming that the bending stiffness
of the transverse frames is large enough, lateral displacements are fixed at frame—plate
intersection. In model type D, the stiffeners are transversely supported at the frames. For
bi-axially loaded panels closer to the ship sides, the effect of the longitudinal boundary
condition is studied. A comparison is made between the straight edge and transversely
free edge.

As discussed in Chapter 7, it is necessary to introduce initial imperfections in the
buckling analysis. These artificial imperfections accounts for the effects of true initial
distortions, residual stresses due to fabrications, imperfect geometry, etc. In the present
analyses, however, the initial imperfections do not fully follow these requirements.
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Figure 8.4 Model types and initial imperfections; Panel STP2.

To trigger initial buckling, buckling modes based on eigenvalue analysis are consid-
ered. These are introduced such that the plate out—of—straightness follows the DNV (1992)
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Figure 8.5 Panel STP1; response under uni—axial compression.

8.4.1 Uni-axial Compression

The response curves for this case are shown in Figures 8.5-8.6. They represent the cases
of pure axial compression as well as the combined compression and lateral pressure. The
normalized ultimate strength values are given in Table 8.3. It is observed that the single
span model A provides conservative estimates of ultimate strength values. Model type C
shows an increase in ultimate strength by approximately 6 to 12 percent.

Removing the transverse frames from the finite element model, as indicated by model
type D, gives results somewhere between those of model types A and C. The increase as
compared to the single span model is approximately between 3 to 7 percent. These values
indicate not only the significance of the transverse frame rigidity but also the consequence
of smaller model with symmetric boundary condition.

For panel STP2, which is somehow slender than STP1, the response curves for multi-
span models show a moderate unloading in the post collapse range. The single span
model, however, predicts a rather steep unload. This effect is important when the energy
absorption capacity is to be considered.

Table 8.2 Lateral pressure at collapse [MPa).

Panel— STP1 STP2
Model— A C D A C D
Uni-axial | 0.3740 0.4180 0.3880 | 0.2260 0.2400 0.2350
Bi-axial | 0.3690 0.4170 0.3860 | 0.2270 0.2390 0.2320
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Figure 8.6 Panel STP2; response under uni—axial compression.

Table 8.3 Ultimate strength comparisons.

Panel— STP1 STP2
Pressure] | Model— A C D A C D
p=0 Uni-axial | 1.0000 1.0939 1.0665 | 1.0000 1.0958 1.0287
Bi-axial | 1.0000 1.0875 1.0525 | 1.0000 1.1164 1.0434
p>0 Uni-axial | 1.0000 1.1176 1.0374 | 1.0000 1.0619 1.0398
Bi-axial | 1.0000 1.1301 1.0461 | 1.0000 1.0529 1.0220

8.4.2 Bi-axial Compression

Figures 8.7-8.8 show the response curves for bi—axial compression analysis. Again, the
cases of pure compression and combined compression and lateral pressure are considered.
The normalized ultimate strength values are given in Table 8.3. The curves provide similar
observations as for uni—axial compression case in Section 8.4.1. The trend of steep unload-
ing for the single span model is also observed here. The increase in ultimate strength is
approximately 5 to 13 percent for model C' and about 2 to 5 percent for model D.

The observed failure modes are generally similar for both uni—axial and bi—axial
analyses. Due to the size of the image files, only selected examples of deformed shapes
are presented. These are given in Figures 8.9-8.10 for pure bi—axial compression, and
combined bi—axial compression and lateral pressure. Under pure bi-axial compression, it
is seen that both panels show a localized failure mode around the middle of the panel. In
addition, panel STP2 shows little lateral displacements due to interframe buckling. The
stiffener tripping is very much pronounced for panel STP1.
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Figure 8.7 Panel STP1; response under bi—axial compression.
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Figure 8.8 Panel STP2; response under bi—axial compression.

Under combined bi—axial compression and lateral pressure, the failure mode for panel
STP2 is governed by interframe buckling in the middle span. With the exception of panel
STP1 model C, the plastic utilization under this loading is generally spread over the whole
panel. For panel STP1, the failure in model C is almost localized in the middle span
with low plastic utilization in the outer spans. On the other hand, there is considerable
localization around the position of interior frames for panel STP1 model D as opposed to
model C.
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Figure 8.11 Panel STP1; Effect of longitudinal edge boundary condition.
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Figure 8.12 Panel STP2; Effect of longitudinal edge boundary condition.

The effect of straight edge condition

For plate panels closer to ship sides, it is likely that the straight edge boundary condition is
non—conservative. The plate continuity which is the main reason for straight edge condition
does not exist for ship sides. Under very high transverse compression, deformations which
do not represent straight edge may happen. To study this concept, analyses with two
different boundary conditions are performed.

While the first analysis considers the conventional straight edge condition, the second
analysis allows the edge to move freely in the transverse direction. Model types C' and
D are studied. The reference transverse compression normalized by the uni—axial critical
buckling stress (o, /0¢ry) is 1.0 for both panels STP1 and STP2. The corresponding values
for the axial compression (0, /0c,) are 0.46 and 0.25, respectively. These values are based
on 3MN transverse compression and 0.9MN axial compression.

The response curves for both panels are shown in Figures 8.11-8.12. It can be seen
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that there is a very significant effect of straight edge boundary condition for both panels.
The trend is the same whether or not transverse frames are included in the model. In
the post collapse range, the effect is even more severe for panel STP1 which is stiffer
than STP2. It has been observed from the analysis that the main cause of this effect is a
localization of the transverse displacements.

If we consider straight edge as the most strict boundary condition and the free edge as
the less strict condition, we can say that the true ultimate strength and the post collapse
response lies somewhere between the two curves. Therefore, it is more conservative to
apply the free condition in this case.

8.4.3 Uni-axial Compression Analysis by NSHEL

To demonstrate the performance of the formulations presented in Chapters 3-6, panel
STP1 has been analyzed using NSHEL (2000). Since the straight edge condition is not fully
implemented in this program, the transversely restrained condition is used instead. Because
NSHEL offers triangular elements only, the number of elements is double of that used in
the previous sections. The finite element mesh and the magnified initial imperfection are
shown in Figure 8.13.

N :
i
o
ea

Figure 8.13 NSHEL mesh and initial imperfection.

The loading and analysis conditions are similar to the ones used in Section 8.4.1. In
other words, the combined uni—axial compression and pressure are applied proportionally
up to collapse. The same reference axial compression is applied, but the lateral pressure is
applied as 0.4, 0.7 and 1.0 of the reference value in three different analyses. The response
curves are given in Figure 8.14. The results are based on through—the thickness integration
algorithm (Section 5.4) with five Gaussian points in integration. It can be seen that the
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Figure 8.14 Response of panel STP1 based on NSHEL analysis.

Figure 8.15 Deformed shape from NSHEL.

ultimate strength predictions for the two finite element formulations are very close to each
other.

The corresponding deformed shape from NSHEL (2000) analysis is shown in Fig-
ure 8.15. Just like Figure 8.9a, a localized failure mode is also observed in this analysis.
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Chapter 9

Concluding Remarks

9.1 Conclusions

Several shell finite elements in the family of constant stress elements have been investigated.
Out of these, two elements have been selected for presentation. The first element is valid
for moderate rotations and have been shown to be very efficient. It has been shown to be
computationally faster than the rest of the elements. Considering that there exist many
practical applications which undergo plastic deformations with the rotations remaining
essentially moderate, the present thesis has extended this element to include material
nonlinearity. The elasto—plastic formulation has been shown to perform very well within
the element range of validity.

For problems which undergo large rotations, an earlier proposed shell has been re—
visited and new equilibrium equations have been derived. The main advantage with these
equations is that they provide variable tangent stiffness within an increment as opposed to
constant tangent stiffness in the earlier formulation. This provides faster convergence of
the global Newton-Raphson iterations. The element is displacement—based and includes
the initial curvature of the shell surface. It is, therefore, considered as curved element.
The resulting equations appear to be very similar to those of an earlier proposed element
in a mixed—formulation.

Material plasticity formulation involving Huber—von Mises type of yield surface has
been presented. Both, through—the thickness integration and resultants plasticity have
been considered. The resultants plasticity discussed is a modified one in which the Ilyushin
yield surface has been rendered a hyperellipse to avoid corner discontinuities. The modifi-
cation introduces a non—conservatism ranging from zero to twelve percent, depending on
the degree of combination between membrane and bending forces. Means of controlling
this error have been suggested. The modified surface has an advantage that instead of
multi—surface plasticity, there is only one yield surface for stress update.
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In the plasticity equations, the most involving matrix operations have been performed
analytically. As a result, expressions which are simple and more efficient for computations
have been derived for both resultants plasticity and through—the thickness integration. The
yield surfaces are expressed by simple scalar equations of the plasticity multiplier. The
plasticity computations involve a solution of a single scalar equation.

The nonlinear finite elements and plasticity formulations have been implemented in
a stand—alone computer program. Numerical examples have been presented and compared
with the results from other publications. It has been shown that the proposed formulations
provide very good results.

With the present simplified resultants plasticity, the low cost advantage of resultants
plasticity over the integration through—the thickness has been found to be about 30 to 50
percent. This observation has assumed that a typical integration would need about 3 to
5 integration points. It can, therefore, be said that a complete double surface resultant
plasticity may not provide significant computational advantage due to its complex matrix
operations. For the case of computational efficiency, however, resultants plasticity appear
to be more stable in reaching convergence. In that case, the present modified yield surface
in stress resultants provides both computational efficiency and advantage.

Numerical examples which are more practical and significant in ultimate strength and
collapse analysis of ship structures have been presented. Results which compare very well
with experimental observations have been obtained. For stiffened plate panels, it has been
found that the beam—column approach used by DNV design code provides non—conservative
estimates of ultimate strength in some loading conditions.

The significance of multi-span modelling of stiffened panels over the conventional
single span model has been studied. The goal was to simulate results based on more
realistic boundary conditions. In addition, the influence of transverse frame rigidity to the
interframe panel collapse has also been evaluated. It has been found that the single span
model produces conservative estimates of ultimate strength. The rigidity of transverse
frames is found to be very significant since it reduces the effective buckling length. The
straight edge boundary condition in the longitudinal edges has been studied. This effect
has been found to give an upper bound solution. The lower bound is associated with
transversely free boundary condition.

9.2 Recommendations

For triangular elements which undergo arbitrary large displacements and rotations, it has
appeared in Section 6.5 that element type 7 is among those providing fastest computation.
It is unfortunate that the time frame did not allow a complete derivation. It is, therefore,
recommended to develop this element towards successful implementation. Concurrently, it
would be more convenient if this development will consider using a common presentation
of the modular matrix with the coefficient ¢ equal to 1/2. If symmetry of tangent stiffness
matrix would appear to be a problem, artificial symmetrization can be applied.
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If a four node element based on the concepts presented in this thesis is developed,
it may provide more efficiency. Towards that direction, one may suggest an element with
about 16 degrees of freedom with possible condensation technique. The element would still
assume constant stresses with the initial curvature included. Although this element might
not be very efficient for double curved surfaces, it is likely to provide more efficiency and
better model for stiffened panels and cylindrical shells.

In Chapter 7, it has appeared that the DNV design code (beam—column) give non—
conservative estimates for plate induced failure of stiffer panels. Normally these types
of panels are typical for ship deck and bottom plates. It is, therefore, recommended to
perform a thorough investigation on this area and the possible improvements for the design
code be suggested.

On multi-span panels, the effect of transverse frames appears to be significant. There-
fore, more nonlinear finite element analyses with some experimental work for validation is
required. Emphasis need to be put on the frame modelling and the significance of various
types of initial buckling modes as far as the conservative estimates are concerned.
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