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Synopsis

This thesis presents a study of turbulent flow at low Reynolds number in a straight
channel with rough walls using direct numerical simulation. It consists of two main
parts. Part one contains several chapters on the theories associated with the subject
and the numerical simulation. Part two presents results obtained from this study in
the form of four self-contained articles and one conference paper as follows:

Article I

Ashrafian, A., Andersson, H. I. & Manhart, M., 2004 ‘DNS of turbulent
flow in a rod-roughened channel’, published in the International Journal of Heat
and Fluid Flow, Vol. 25, pp. 373–383.

Article II

Ashrafian, A. & Andersson, H. I., 2004 ‘The structure of turbulence in a
rod-roughened channel’, submitted to the International Journal of Heat and Fluid
Flow.

Article III

Ashrafian, A. & Andersson, H. I., 2004 ‘Roughness effects in turbulent chan-
nel flow’, resubmitted to the International Journal of Progress in Computational
Fluid Dynamics.

Article IV

Ashrafian, A., Bakken, O. M., Krogstad, P.-Å., & Andersson, H. I.,
2004 ‘Rough-wall turbulence – a comparative study’, published in Advances in
Turbulence X, Proceedings of the 10th European Turbulence Conference, editors: H.
I. Andersson and P.-Å. Krogstad, Trondheim, Norway, 29 June–2 July, pp. 293–296,
a publishing of CIMNE, Barcelona.
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Article V

Krogstad, P.-Å, Andersson, H. I., Bakken, O. M. & Ashrafian, A., 2004
‘An experimental and numerical study of channel flow with rough walls’, resubmitted
to the Journal of Fluid Mechanics.



Abstract

Direct numerical simulation has been performed in order to study pressure-driven
turbulent flow in a rod-roughened channel at Reynolds number Reτ = 400 (based on
the mean pressure gradient). Square rods were attached to both channel walls and
protruded only 0.034 of the channel’s half-height into the flow. Roughness elements
were spaced at 7 heights, which corresponded to the so-called “k–type” laboratory
roughness.

The classical logarithmic variation of the mean velocity was found to be main-
tained in the rough-wall channel flow. The only effect roughness had was to shift the
log-profile downwards, the magnitude of which was about 7.1. This, corresponded to
the upper limit of the transitionally rough region, based on the associated equivalent
sand-grain roughness height. Within the layer of thickness about 3-5 times roughness
height (roughness sublayer), the dependency of the mean velocity and turbulence
properties on the streamwise location with respect to the rods was revealed.

Instead of viscous sublayer, an intensive shear layer was formed emanated from
the crest of roughness elements. It was observed that the wall-ward transport of the
kinetic energy was substantially increased very close to the wall while the transport
of the kinetic energy away from the wall was relatively reduced at just about the edge
of the roughness sublayer. Visualizations of the fluctuating velocities and vortices
in this region revealed the presence of elongated streaky structures very similar to
those routinely observed in the structure of the smooth-wall turbulence, with much
shorter coherence in the streamwise direction and less organization in the spanwise
direction. The intensity of the vorticity fluctuations in the roughness sublayer were
increased whereas in the outer layer, they remained unaffected. The anisotropy
invariant maps for the smooth and rough cases clearly showed that the state of
the near-wall turbulence for the two cases were substantially different, whereas in
the regions away from the wall, the two cases exhibited similarities. Generally, the
results obtained from this study supported the classical wall similarity hypothesis.
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Johann Nikuradse (1894-1979)



Chapter 1

Introduction

Surface roughness has long been recognized as having a substantial effect on the flow
resistance, be it as increased skin friction in an external flow or as increased pressure
loss in an internal flow. It is not wholly in the wrong if we state that the advent
of turbulence research finds itself in the surface roughness. It was not known until
the experiments in 1800 by Coulomb (Rouse & Ince (1957)) that surface roughness
has an effect on friction resistance. A German engineer named Hagen (1854) first
reported that there might be two regimes of viscous flow in the pipe as he observed
a sudden increase in the pressure drop by increasing the mass flow rate. It was
shortly after Hagen that a French engineer, Darcy (1857) particularly motivated the
rough-wall turbulence research by his pipe-flow experiments. The sole problem of
finding the head loss in the pipe flow was to correlate the wall friction with flow
conditions.

In this chapter a short review on early rough-wall boundary layer research is
presented. Roughness classification and in particular, issues concerning the two-
dimensional rod roughness are addressed.

1.1 Classical fluid mechanics

Darcy introduced the friction factor

f =
8τw

ρU
2 , (1.1)

as a constant of proportionality between the shear stress at the wall, τw, and the
inertial force of the fluid. U is the bulk fluid velocity of the fluid. In 1883, Osborne
Reynolds, a British engineering professor, introduced his non-dimensional parameter
Red = Ud/ν to the community and claimed that its value was responsible for the
sudden increase of pressure drop in the pipe flow at different volumetric flow rates.

1



2 Introduction

ν is the kinematic viscosity of the fluid and d, is the diameter of the pipe. He
introduced a dye streak into a pipe flow and observed transition and turbulence.
The laminar velocity distribution in pipe is called Hagen-Poiseuille flow for which
the Darcy friction factor is,

f =
64

Red

. (1.2)

Ludwig Prandtl (1875-1953), the German engineering genius, introduced the
boundary layer theory in 1904 (Prandtl, 1904). One of his earliest students, Paul R.
H. Blasius, provided a mathematical basis for boundary-layer drag and showed as
early as 1911 that the resistance to flow through smooth pipes could be expressed in
terms of the Reynolds number for both laminar and turbulent flows. His phenomenal
formula is the first correlation ever made for the turbulent pipe flow, between the
friction factor and the Reynolds number,

f = 0.316Re
−1/4
d . (1.3)

Although his formula could finally explain Hagen’s data after nearly 70 years, his
supervisor was not very happy with it because of its limited range of application
(4000 < Red < 105). 1

Prandtl left the issue of evaluating the friction factor in rough-wall pipes to his
other student, Johann Nikuradse (1894-1979) who performed his classical measure-
ments in rough pipes. Nikuradse (1933) took a number of smooth pipes of diameter
2.5, 5 and 10 cm, and tightly coated the inside walls with uniform grains of graded
sand from the Göttingen region of Germany. The relative roughness of each tube was
then defined as ε/d, where ε was the diameter of the sand grains and d the diameter
of the tube. The advantages of dimensionless numbers had been well learned from
Osborne Reynolds. Nikuradse took pressure drop and velocity profile measurements
in the pipes and obtained the corresponding f − Red graphs which are illustrated
on Figure 1.1. The range of the relative roughness was 0.002 ≤ ε/d ≤ 0.06.

Nikuradse observed that at low Reynolds numbers the laminar friction factor
correlation is valid irrespective of the grain size. However, turbulent friction corre-
lation, after an onset point, increases monotonically with ε/d. For any given relative
roughness, the friction factor eventually becomes constant at higher Reynolds num-
bers. Based on these observations, Nikuradse introduced the roughness Reynolds
number ε+ = εuτ/ν in order to characterize the observed behavior of turbulent flow
in rough pipes. Whereas ε is a geometrical quantity, ε+ is a flow quantity.

1Prandtl (1935) himself derived, f−1/2 = 1.99 log
(
Redf

1/2
)−1.02, from the logarithmic mean-

velocity profile (cf. Chapter 2). This correlation is quite recently corrected by McKeon et al. (2004)
using data from the Princeton “superpipe” for 300, 000 < Red < 36, 000, 000. The new correlation
is f−1/2 = 1.930 log

(
Redf

1/2
) − 0.537.
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Figure 1.1: The friction factor (λ) vs. Reynolds number (R) diagram resulted from the
experiments with sand-grain roughness by Nikuradse (1933). The figure is taken from
Schlichting (1968).

The hypothesis of the existence of a boundary layer assisted Nikuradse to explain
the behavior of the curves in Figure 1.1. At the walls, there can be no cross velocities
except on a molecular scale. Hence, there must be a thin layer close to each wall
through which the velocity increases from zero (actually at the wall) to some finite
velocity sufficiently far away from the wall for an eddy to exist. Although this
viscous layer is very thin, it has a marked effect on the behavior of the total flow in
the pipe. All real surfaces (even polished ones) have some degree of roughness. If
the peaks of the roughness do not protrude through the viscous sublayer (ε+ < 7)
then the surface may be described as hydraulically smooth and the wall resistance
is limited to that caused by viscous shear within the fluid. On the other hand, if
the asperities protrude well beyond the viscous sublayer, then the disturbance that
they introduce to the flow will cause additional eddies to be formed, consuming
mechanical energy and resulting in a higher resistance to the flow. Moreover, as the
velocity and, hence, the Reynolds Number increases, the thickness of the viscous
sublayer decreases such that the turbulent flow fully triggers the irregularities on
the surface of the wall at almost any scale. Any given pipe will then be hydraulically
rough if roughness projects well beyond the viscous sublayer (ε+ > 70). Between
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the two conditions there will be a transition zone (7 < ε+ < 70) where some, but
not all of the surface irregularities protrude through the viscous sublayer.

Following Nikuradse’s work, the other student of Prantl, Hermann Schlichting
(1936) argued that in many practical applications, the density of the wall roughness
is considerably smaller such that it can no longer be only described by the relative
measure of ε/d. Schlichting’s studies on the effects of “technical” roughness on the
flow resistance has remained the cornerstone of the flow measurements over well-
defined rough surfaces. He proposed the concept of equivalent sand-grain roughness
as a viable measure of the flow-resistance character of a rough surface.

Based on Nikuradse’s comprehensive data, Schlichting considered sand grain
as standard roughness. For an arbitrary roughness shape merged into a turbulent
flow at certain Reynolds number, the equivalent sand-grain roughness, ks, is the
sand-grain size that gives the same flow resistance at the same flow Reynolds num-
ber. The equivalent sand-grain roughness is simply an attempt to model a complex
phenomenon with only a single parameter, i.e., the roughness height. A general
requirement is that flow resistance data must be available in order to determine the
equivalent sand-grain roughness height for a given surface. Schlichting was indeed
aware of fitting the data obtained from commercially rough surfaces into the scale
of sand roughness. He mentioned, for example, a peculiar type of roughness which
gave very large values of resistance coefficient. This roughness shape was a rod-like
deposit formed naturally at right angles to the flow direction. The height of the
deposit was about 0.5 mm and the pipe diameter was 500 mm, giving ε/d � 0.001.
Despite the small value of ε/d, the effective sand roughness was about 30 times the
height of the deposited rods. Therefore, it was concluded that rod-like configuration
lead to much higher resistance than sand roughness of the same absolute diame-
ter. It might be supposed that normal boundary layer theory and its consequences
would be violated by so great a relative roughness, but this did not deter Schlichting
from applying the equivalent sand-grain roughness theory, nor has it deflected other
practitioners from following him.

Further experiments and analytical investigations to derive a resistance formula
for rough pipes were carried out in England by Colebrook (1938) in the late 1930’s
and followed by an engineer from Princeton, Lewis F. Moody (1944). Moody’s
landmark paper appeared after those of Nikuradse and Schlichting and represented
the first easily applied and universally accepted method of comparing flow resistance
for fully developed flow in commercially-rough pipes. It is probably the most famous
and useful figure in the fluid mechanics (White, 1999).
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Figure 1.2: Schematic of a k–type rod roughness configuration.

1.2 Laboratory roughness classification

The large difference between the effects of sand-grain roughness and those of other
arbitrary roughness distributed rather sparsely on the wall, reinforces the need for
studying particular shapes of roughness with various aspect ratios.

Different shapes of laboratory roughness elements like cylinders, cubes, spheres,
and rods are primarily classified in two groups (Raupach et al., 1991); two- and three-
dimensional roughness elements. This study deals largely with the two-dimensional
rod roughness geometry.

Two-dimensional rod roughness

For transverse square 2–D rod roughness (see Figure 1.2), the relevant length-scale
is the height of the bar, r. Other relevant length-scale is the roughness spacing,
w. Perry et al. (1969) called roughness with w/r > 1 the “k–type roughness” since
roughness effects showed clear dependency on their roughness height, k. They also
showed that the k–type scaling is not obeyed when roughness constitutes narrow
cavities (i.e. w/r ≤ 1). In fact, the flow quantities scaled themselves with the pipe
diameter, d. Since then, such a roughness has come to be known as the “d–type
roughness”.

Figure 1.3 provides a phenomenological schematic of the salient features of the
interaction of rod-type roughness and the turbulent boundary layer. The dominant
features of the interaction are flow separation and reattachment. These regions of
separated flow give rise to a momentum sink, which results in the form drag of the
element.

If the rod spacing is large enough, the boundary layer reattaches to the wall
at some point between the rods. The quantitative aspects of these separations and
reattachments are highly dependent upon the rod-roughness geometry and attributes
of the overlaying turbulent boundary layer. Thereupon, the flow over rod roughness
can be divided into three regimes (Hodge et al., 1989):

1. Reattached flow – the separated region behind the rod reattaches to the
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Figure 1.3: Regimes of the mean flow over rod roughness; (a) reattached flow, (b) un-
reattached flow, (c) skimming flow. The roughness configuration in (a) and (b) is k-type
whereas in (c) is d-type.

smooth surface between the rods (bottom wall); viscous skin friction is a significant
factor.

2. Unreattached flow – the separated regions behind and in front of the rods
merge; viscous skin friction is relatively unimportant.

3. Skimming flow – the region between the rods is completely filled with a
recirculating flow; the surface appears semi smooth.

An important point about the relative size of the roughness elements should be
noted here. Implicit in the analysis of turbulent flows over wall-mounted roughness
elements is the premise that the roughness height should be very small compared to
the bulk flow dimension so that roughness elements do not directly affect the outer
layer. According to the recent review of Jiménez (2004), the roughness height should
not exceed 2.5% of the characteristic length of the overlaying boundary layer. In
turbulent flows over rough walls with relative roughness larger than 0.025, it is likely
that direct roughness effects are felt across the boundary layer thickness. Turbulent
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flows of such will therefore be better described as flows over surface mounted bluff
bodies rather than roughness elements.

1.3 Incentives

The interaction of classified laboratory roughness elements and the overlaying bound-
ary layer has long been investigated. A thorough review of mainly experimental
studies on rod roughness showed that notwithstanding the broad range of research
work, there is a lack of consensus on several issues. Issues on which harmony exists
is mainly the mean velocity, for which a great deal of data is available and well doc-
umented. However, the effects of roughness on turbulence is mainly controversial.

The fundamental idea of the current research program was initiated from the ex-
tensive measurements of different types of roughness by Krogstad & Antonia (1999)
and Antonia & Krogstad (2001). Assisted by the availability of supercomputers to
calculate turbulent flows, a research program for a comparative study of rough-wall
turbulence was established.

This was implied through performing measurements in the lab and numerical
simulations on the supercomputers for a turbulent flow in a channel with both walls
roughened by identical transverse rods. Rod roughness, as it mentioned earlier, pro-
vides a considerably rough boundary for the overlaying turbulent flow. Roughness
effects of this type have been observed to be substantial. The motivation for this
project came from the idea of performing measurements and numerical simulations
for the similar roughness geometry emerged in an internal flow, i.e. the channel flow.

1.4 Objectives

The present investigation aims to perform direct numerical simulation (DNS) of the
turbulent flow in a rod-roughened channel with roughness elements height equal
to only 3.4% of the channel half-height. An extensive database is obtained by
calculating all sorts of statistical correlations between the frequent flow quantities.
The obtained results are compared to those obtained from the DNS of a turbulent
flow at virtually the same Reynolds number in an identical channel with smooth
walls.

Comparison with experiments constitutes another objective of this work. Whereas
DNS is capable of providing detailed information about the flow field specially in
the rough-wall proximity, the experiments are capable of providing data for a broad
range of Reynolds number. Doing the DNS and experiments simultaneously pro-
vides comprehensive database which gives clues towards a better understanding of
turbulent flows in a channel with roughened walls. The significance here is that
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no compromise has been made on the shape and size of the roughness elements in
both experiments and numerical simulations. The experimental part of this work
has been presented by Bakken (2004).

In chapter 2, a thorough review on rod-roughness turbulence research is pre-
sented. Mathematical formulation, numerical scheme and the simulation setup are
discussed in Chapter 3. A summary of articles resulted from this investigation is
presented in Chapter 4.



Chapter 2

Rough-wall Turbulence

The wonderful thing about scaling is that
you can get everything right

without understanding anything.
Robert H. Kraichnan1

During the last few decades, a considerable amount of data on rough-wall turbu-
lence has been generated. This chapter presents a brief review on part of this data
concerning the k–type rod-roughness. Several issues on the mean and turbulence
fields are addressed.

2.1 Mean velocity scaling

Wall turbulence is a multi-scale problem. In 1930, Theodore von Kàrmàn, in-
troduced the similarity assumption that the averaged velocity profile in the outer
layer is independent of the molecular viscosity, but its deviation from the center-line
velocity, UCL, must be only dependent on the pipe diameter and indeed, the friction
at the wall. He deduced the well known velocity defect law for the outer layer region
of the pipe flow as

〈UCL〉 − 〈Us〉
uτ

= F (Y ) , (2.1)

where Y = y/δ is a non-dimensional variable. Subscript “s” denotes the quantities
associated with the smooth wall and 〈 〉 is used for averaged quantities. The
quantity,

uτ =

(
τw

ρ

)1/2

, (2.2)

1As cited by Kadanoff (1990).

9



10 Rough-wall Turbulence

is termed the friction velocity only because of its dimensions. δ is the thickness of
the shear layer equivalent to the pipe radius in pipe flow, the channel half-height in
channel flow and the boundary layer thickness in turbulent boundary layer flow. τw

is the given friction stress at the wall. Using uτ and δ for normalizing the velocities
and lengths is called outer scaling.

In the subsequent discussion to the lecture of Theodore von Kàrmàn at the Third
International Congress for Applied Mechanics in Stockholm, 25 August 1930, where
he presented his universal logarithmic law for boundary layer flows at high Reynolds
numbers, Ludwig Prandtl presented his law of the wall as he said (Barenblatt, 1999):

“I want to point out a seeming contradiction concerning both representations
of the velocity distribution by Nikuradse in connection with Kàrmàn’s new
formulas and my earlier formulation using the dimensionless distance from
the wall. Kàrmàn formulas use viscosity in the boundary condition only. The
velocity distribution should be calculated without viscosity. However, the
dimensionless distance from the wall (y+ = yuτ/ν) does contain the viscosity.
According to my opinion, the explanation is that the Kàrmàn representation
should be considered as exact for very large Reynolds numbers, whereas the
representation via the dimensionless distance from the wall applies essentially
to the wall layer and streaks where the viscosity and turbulence are acting
together.”

By dimensional analysis this is equivalent to

d 〈U〉
dy

= f (η) . (2.3)

Here, η = y/δv is the non-dimensional variable in which the viscous length scale,
δv, is a length scale for the small eddies whose definition is based on the kinematic
viscosity,

δv =
ν

uτ

. (2.4)

Using the “wall units” (uτ , δv) in normalizing velocities and lengths is called inner
scaling. Quantities normalized in this way are identified by a + superscript.

By postulating that the turbulent fluctuations in the neighborhood of any two
points are similar, Kàrmàn derived a velocity profile expressed by a logarithmic
function of the distance from the wall. Prandtl (1933) also showed that the as-
sumption of the mixing length proportional to the distance from the wall yields the
logarithmic velocity profile. Independently, in 1937, C. B. Millikan showed that the
logarithmic velocity profile is a direct outcome of the existence of a region of over-
lap, without need for any specific assumption on similarity or mixing length. The
classical logarithmic law in the overlap region (y+ > 30) is〈

U+
〉

=
1

κ
ln y+ + Bs. (2.5)
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Over the full range of Reynolds numbers for internal and external turbulent flows,
the dimensionless von Kàrmàn constant, κ, is probably universal and equal to ap-
proximately, 0.41. The constant Bs, however, has to be determined independently.
It controls the friction coefficient and is about 5.5 for channel flows.

Today, we know that the first important characteristic of wall shear flows is the
presence of a strong mean velocity gradient at the wall, which provides a continuous
source of kinetic energy for the turbulence to be self-sustained. Wall flows are also
intrinsically in-homogeneous. The distance to the wall, in particular, imposes a
length scale which governs the size of turbulent motions (eddies) from a fraction of
the channel half-height to virtually zero at the wall in the infinite Reynolds number
limit. This important restriction on the size of turbulent eddies can be formulated
by the inequality

δv � y � δ. (2.6)

The classical approximation to the velocity scale is that the friction velocity, uτ ,
acts as a global velocity scale. The reason can be found through implication of the
thin-layer approximation to the momentum equations. Doing so, it can be observed
that the order of magnitude of the turbulent shear stresses is u2

τ across the shear
layer. These approximations imply that all the near-wall activities should collapse
in these wall units (uτ ,δv). In fact, it is likely to suppose that many properties of
smooth pipe and channel flows depend largely on the nature and properties of the
near-wall activities and very little on the flow outside the wall-region.

The region y+ ≤ 100 is usually considered as the wall region; this includes the
viscous sublayer (y+ < 5), the buffer region (5 < y+ < 30), and at least, part of the
logarithmic region. The rest of the shear layer is commonly referred to as the outer
region. In pipe and channel flows this can include the core region as well.

The logarithmic law, i.e. resulted solely by intuitive reasoning, is likely to be
valid for turbulent flows over rough walls too. There is no reason why the roughness
height, r, should not be the relevant length scale, if the Reynolds number is suffi-
ciently high and roughness height, r, is very large compared with the viscous length
scale, δv, i.e.,

δv � r � y � δ. (2.7)

Thereupon, Equation (2.3) can be rewritten as

d 〈Ur〉
dy

= fr

(y

r

)
(2.8)

where fr is a universal non-dimensional function for a given roughness geometry.
Subscript “r” denotes the quantities associated with the rough wall.

For y � r it can be supposed that the turbulence is again determined by local
processes, independent of r (the Reynolds number similarity) which implies that fr
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Figure 2.1: Constant Bsand in terms of roughness Reynolds number for Nikuradse’s sand
roughness experiments. Figure from Schlichting (1968).

tends asymptotically to the constant 1/κ. Then Equation (2.8) integrates to the
logarithmic law 〈

U+
r

〉
=

1

κ
ln

(y

r

)
+ Br. (2.9)

Writing this equation for y = δ, and forming the
〈
U+

rCL

〉 − 〈U+
r 〉, we obtain the

velocity-defect equation for the rough wall

〈
U+

rCL

〉 − 〈
U+

r

〉
= −1

κ
ln

(y

δ

)
(2.10)

which is independent of r, implying the similarity in the core region.
The constant Br in Equation (2.9) is generally a function of the roughness

Reynolds number, ruτ/ν, and the roughness density. We use subscript sand instead
of r, particularly for the Nikuradse’s data. The values of Bsand are shown in Figure
2.1. For the fully rough regime over sand grain roughness (k+

s > 70), Bsand = 8.5.
It is convenient to rewrite the Equation (2.9) in the form

〈
U+

r

〉
=

1

κ
ln y+ + Bs − ∆U+ (2.11)

in which

∆U+ =
〈
U+

s

〉 − 〈
U+

r

〉
=

1

κ
ln r+ + Bs − Br, (2.12)

is called the roughness function. The sole effect of roughness is neatly characterized
by 2.12 as a downward shift in the velocity profile in the logarithmic law region



2.1. Mean velocity scaling 13

ln(y+)

∆U+

Smooth, Us
+<U+>

Rough, Ur
+

Figure 2.2: Illustration of roughness function.

(Figure 2.2). The fact that the shifts in the velocity for turbulent flow over rough
surfaces are linear in the logarithmic plot can be used to express different roughness
geometries in terms of a reference roughness (the concept of equivalent sand-grain
roughness). It follows that ks is an equivalent sand-grain size which produces same
amount of downward shift in the log-law as that of arbitrary roughness with height
r, or, ∆U+

sand = ∆U+
r . From this definition the ratio between the equivalent sand

roughness and the actual roughness height can be obtained as

ks

r
=

exp[κ(3.0 + ∆U+
r )]

r+
. (2.13)

Betterman (1965), using two-dimensional rod roughness with varying spacing,
was able to correlate his measurements in terms of Equation (2.12), with the constant
∆B = Bs −Br as function of spacing (see Figure 2.3). Betterman observed that for
a certain spacing of the rods, the measured value of ∆U+ was maximum. Betterman
found that for the pitch-to-height ratio λ = p/r in the range 1 ≤ λ ≤ 5, the variation
of ∆U+ with roughness could be specified by

∆U+ = 2.43 ln r+ + 17.35(0.706 ln λ − 1), (2.14)

which is plotted in Figure 2.3. This equation shows that ∆U+ varies logarithmically
with λ. It can be seen from the Figure 2.3 that the roughness function is maximized
for values of λ between 4 and 8. The extension Betterman’s equation for λ > 5 was
accomplished by Dvorak (1969) who proposed

∆U+ = 2.43 ln r+ − 5.95(0.706 ln λ − 1). (2.15)
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Figure 2.3: The effect of roughness density on the law-of-the-wall intercept. The quantity
λ is the ratio of the total surface area to the area covered by roughness. Picture from
Cebeci & Smith (1974).

It should be noted that Equation (2.15) requires further verification before it can
be used with confidence.

2.2 Rough-wall similarity

As stated in Raupach’s review of rough-wall turbulent boundary layers (Raupach
et al., 1991), the effect of surface roughness is primarily felt in the roughness sub-
layer. Hence, close to the wall, the smooth- and rough-wall boundary layers have
quite different structures and are controlled by quite different length–scales. As the
roughness effect is supposed to be confined to the wall region, the mean velocity
and turbulent stresses in the outer layer should then be very little affected. This
important assumption, is known as wall similarity hypothesis (labeled after Perry
& Abell (1977)) which is an extension to Townsend’s Reynolds number similarity
hypothesis (Townsend, 1976). The wall similarity hypothesis found itself to be well
supported by various observations. Through the experiments of Grass (1971) and
Grass et al. (1993), the investigation of Perry & Abell (1977); Perry et al. (1987), the
comprehensive review of Raupach et al. (1991), measurements of Schultz (2000) and
Bergstrom et al. (2002) and the particle image velocimetry (PIV) investigations of
Nakagawa & Hanratty (2003). This hypothesis has been extensively used by other
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researchers to estimate the value of the skin friction coefficient, Cf (Furuya & Fujita
(1967), Bandyopadhyay (1987) and Perry et al. (1987)).

However, studies of Krogstad et al. (1992), Krogstad & Antonia (1999), Djenidi
et al. (1999) and Smalley et al. (2002) showed that the large-scale organized struc-
tures present several structural differences between the smooth- and rough-wall con-
ditions. In fact, it was Townes & Sabersky (1966) who first reported results from
their pioneering work in flow visualizations of a d–type rough-wall turbulent bound-
ary layer, that there are indications of possible significant communication, albeit
of an intermittent nature, between ejections of fluid from the roughness cavities
and the outer region of the boundary layer. On the basis of differences observed
between turbulent boundary layers over a smooth surface and a surface roughened
by a mesh screen, the wall similarity hypothesis was first questioned by Krogstad
et al. (1992). They observed distinct differences in the outer region in turbulent field
between smooth- and rough-wall boundary layers. This was in clear contradiction
to the wall similarity hypothesis. Townsend (1993), in the support of his hypothesis,
stated that

“... there must be some doubt about the necessity for bursts being set off
by conditions in the sublayer since the turbulent motion over rough bound-
aries [in the outer layer ], scaled with friction velocity and flow width, is not
distinguishable from that over smooth ones.”

Krogstad & Antonia (1994) measured the inclination angle of the two-point corre-
lation function of u between two y locations. They obtained 38o in the rough case
and 10o in the smooth case. Jiménez (2004) argued that this might be a local effect
since the measurements were done fairly near the roughness sublayer. Nakagawa &
Hanratty (2003) found no change in this quantity in their PIV measurements on
wavy surface. Krogstad & Antonia (1994), in particular, stated that there is clearly
much more activity associated with the wall-normal velocity fluctuation over the
rough surface than that of the smooth surface. The previous observations, inter
alia, suggest that there may be a fundamental difference in the momentum trans-
port process between rough- and smooth-wall boundary layers, contrary to what it
is thought to be.

2.3 Turbulence above the rough wall

Whereas there is considerable consensus among the community that law-of-the-wall
holds for the mean velocity profile over all types of rough surfaces, there is no
consensus on the effect of roughness on turbulence. In this section some results
from various measurements of turbulence on two-dimensional laboratory roughness
are presented in order to show salient features of the arguments.
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2.3.1 Second-order moments of velocity fluctuations

Reynolds normal stresses are the primary indicators of characteristics of turbulence.
(Hereinafter, u, v, w are the fluctuating components of the instantaneous velocity in
the streamwise, wall-normal and spanwise directions, respectively.) A consequence
of rough-wall similarity hypothesis is that, provided that Reynolds number is suffi-
ciently high, profiles of the Reynolds stresses should all collapse regardless of surface
roughness. Raupach (1981) tested this directly in zero pressure-gradient boundary
layer over five fully rough surfaces of different densities and found out that the
normalized profiles of Reynolds stresses collapsed to common curves except in the
roughness sublayer.

Krogstad & Antonia (1999) compared some earlier measurements carried out for
two different types of roughness (mesh screen and circular rods). Despite the dif-
ference in geometries and characteristic lengths, all roughness geometries virtually
revealed the same dynamical effect (i.e. ∆U+). Very close to the wall, 〈u2〉-profiles
for different roughness shapes showed very good collapse, while considerably large
scatter was found in 〈v2〉. Perry et al. (1987) argued that this type of scatter is
may be due to the uncertainty of X-wire measurements near the wall. Krogstad
et al. (1992) questioned the validity of this claim and noted that possible measure-
ment errors may only explain the differences observed very close to the wall, while
such differences are found everywhere; even in the outer layer where the similarity
hypothesis predicts the flow to be identical to the flow over a smooth surface.

Previous observations brought Krogstad & Antonia (1999) to an important con-
clusion that although very different surface geometries may produce the same effect
on the mean velocity profile, their generated turbulence fields may be substantially
different. Raupach’s results from measurements on vertical cylinders as roughness
elements (Raupach, 1981) was not supporting this.

Significant wall effects were observed for the k–type rod roughness (Krogstad
& Antonia, 1999; Antonia & Krogstad, 2001). The normal stress, 〈u2〉, indicated
considerable reductions in the inner layer, but there were also discernible differences
in the outer layer. Larger differences, however, were found in the wall-normal stress,
〈v2〉. This observation implied reduced damping effect of the rough wall in sup-
pressing the wall-normal Reynolds stress to zero. In other words, in the roughness
sublayer, wall-normal motions were stimulated and the information about the nature
of the surface protruded further out, which caused a higher magnitude of normal
and shear stresses in the outer layer.

2.3.2 Ratios and anisotropy of Reynolds stresses

While knowledge of a local value for uτ is important in understanding of the tur-
bulent structure near the wall surface, Reynolds stresses can be compared between
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different boundary layers without knowing the magnitude of uτ . Ratios such as
〈v2〉 / 〈u2〉, 〈v2〉 / 〈w2〉 or 〈uv〉 / 〈v2〉 provide a rough indication of the departure of
the Reynolds stresses from isotropy. Shafi & Antonia (1995) and Antonia & Krogstad
(2001) observed that the anisotropy, was reduced over a rough wall. This was more
prominent for k–type roughness (Smalley et al. (2002)). Results apparently reflected
the ability of the roughness to distribute the turbulent energy more evenly among
the three velocity fluctuations. According to the apparent differences exist in AIM
of different roughness elements, Smalley et al. (2002) proposed the idea that each
rough wall can be characterized by its own AIM signature.

2.3.3 Third-order moments of velocity fluctuations

Velocity triple products are expected to be a more sensitive indicator of the effect of
surface condition than second-order moments. Despite the numerous investigations
on smooth and rough walls, the behavior of third–order moments of the velocity
fluctuations did not seem to make a general consensus (Keirsbulck et al., 2001).
Moreover, the measurements of these statistical quantities on rough-wall remained
scarce, unlike higher even moments which contain valuable statistical information
relating to the flux of the stress that is directly attributable to coherent structures.

Andreopoulos & Bradshaw (1981) noted that triple products were spectacularly
altered for a distance up to 10 roughness heights above a surface covered with
floor-sanding paper. Bandyopadhyay & Watson (1988) reported that instantaneous
motions involved in the shear stress flux near the wall in smooth and transversely
grooved surfaces are opposite in sign to those over a three-dimensional roughness.
Antonia & Krogstad (2001) reported major differences in distributions of 〈u2v〉 and
〈u3〉 between the rod and mesh screen types of roughness. Both triple products
change sign above the rod-roughened wall. There is pronounced transport of 〈u2〉
and 〈v2〉 towards the wall over the rods, contrary to what happens over the mesh-
screen roughness where the transport is away from the wall.

2.4 The structure of rough-wall turbulence

In turbulent boundary layer, kinetic energy from the free-stream flow is converted
into turbulent fluctuations and then dissipated into internal energy by viscous action.
It is known that there are coherent motions that are actually responsible for the
maintenance of turbulence in a boundary layer. Robinson (1991) proposed the
following definition for the coherent motion in turbulence:

Coherent motion is a three-dimensional region of the flow over which at
least one fundamental flow variable exhibits significant correlation with
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itself or with another variable over a range of space and/or time that is
significantly larger than the smallest local scales of the flow.

The term coherent motion has been used interchangeably with turbulent structure
in the literature. Here, a short review of studies on rough-wall turbulent structures
is presented.

2.4.1 Quadrant analysis

For rough walls, quadrant analysis was first employed to study the coherent struc-
tures by Grass (1971). Even though the near-wall streaks were considerably affected
by the roughness elements, Grass observed, for gravel type surface roughness, that
the ejections and sweeps were similar to those previously identified over smooth
walls. Lumps of low-momentum fluid were ejected from the boundary to the dis-
tances remote from the wall. Similarly, he observed that maximum local longitudinal
velocities correlate directly with packed regions of negative vertical velocity. For the
rough case he stated that phases of fluid inrush towards the boundary is concen-
trated closer to the boundary. Raupach (1981) also found that the sweep events are
very important close to the wall and depend on the roughness density.

Krogstad et al. (1992) showed that the normalized contributions to the Reynolds
stress for the Q2 and Q4 quadrants are very intense on rough walls and their oc-
currence frequency is twice as high as on smooth walls. Nakagawa et al. (2003)
and Nakagawa & Hanratty (2003) performed Laser Doppler Velocimetry (LDV) for
turbulent flows over a flat surface and one with sinusoidal waves of small wavelength
at all three different regimes (hydraulically smooth, transitionally, and fully rough).
Comparisons with data from a previous direct numerical simulation (Cherukat et al.,
1998) of turbulent flow in the same geometry were also provided. The quadrant
analysis showed much smaller contributions from the sweeps and much larger con-
tributions from ejections in turbulent flow over wavy wall at fully rough regime.
This observation was consistent with those from the DNS results that large scale
ejections of low momentum fluid propagate from the trough region of the waves.
However, the structure of large-scales was claimed to be similar to those over the
smooth wall notwithstanding of large difference in the ratio of the contributions of
the second and fourth quadrants (Q2/Q4) throughout the boundary layer. The ratio
Q2/Q4 was significantly larger over rough surface than that over the smooth one.

2.4.2 Small-scale turbulence

Following the observation of large-scale turbulence on rough walls, one would expect
that the small-scale turbulence structure to be closer to isotropy in the rough wall
layer.
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Shafi & Antonia (1997) measured same quantities in similar flow using a four-
hot-wire vorticity probe in which the effect of spatial resolution of the probe was
corrected. They observed that the vorticity variances were slightly larger than those
over a smooth wall in the outer layer; suggesting structural differences between the
two flows. They also measured the normalized magnitudes of the velocity derivative

variances,
〈
(∂ui/∂xj)

2〉1/2
, and observed that over most of the outer layer, they

differ significantly from those over a smooth wall layer such that the flow over the
rough wall was much more isotropic than that over the smooth wall.

Ratios of variances of velocity derivative and vorticity are all equal to 1 for
isotropic turbulence. Shafi & Antonia (1997) measured these ratios for a boundary
layer flow over a mesh roughness and observed that all the ratios were approximately
equal to 1 over a significant portion of the layer.

2.5 Boundary layer vs. channel flow

Whereas the structure of turbulence over rough surfaces have been extensively in-
vestigated by means of various experiments performed on the rough-wall turbulent
boundary layers (§2.4), turbulent flows in channels with rough walls have not been
investigated alike (e.g. Mazouz et al. (1994, 1998) and Smalley et al. (2002)).

The geometrical difference between the channel and the boundary layer flow are
of prime importance. It is generally accepted that a high degree of similarity exists
between the internal flows (pipe and channel flows) concerning at least the near-wall
behavior, whereas the zero-pressure-gradient boundary layer flow stands out because
of its spatially developing character. A short but very useful study of similarities
and differences of turbulent boundary-layer, pipe and channel flow is presented by
Nieuwstadt & Bradshaw (1997). The turbulent/non-turbulent interface, an impor-
tant feature of the boundary layer, is absent in the channel flow. Instead, there are
back-to-back shear layers near the channel centerline. The shear stress gradient is
small in the inner region of a constant pressure-gradient boundary layer, but not in
a fully developed channel flow where it is balanced by the streamwise mean pressure
gradient (Antonia et al., 1992). There is also possibility that inner region structures
from the opposite walls (in case of channel flow) do in fact interact. This possibility
is greater at low Reynolds numbers. Because of this so-called “geometry effect”
(Wei & Willmarth, 1989), one might expect differences between the outer regions
of a boundary layer and a duct. Using quadrant analysis, Teitel & Antonia (1990)
showed that the extent of penetration of one shear layer into the opposite side is in
fact greater than what it was proposed by Dean & Bradshaw (1976), who claimed
that the interaction is insignificant.

Jiménez (2004) suggested that in the boundary layers, “there are vertical struc-
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tures that span the whole boundary layer thickness and feel the outer-edge condi-
tions”. The important difference between the channel and boundary layer flows is
that in the former, the excessive energy is transported by turbulent diffusion to the
core region where it compensates the dissipation, whereas in the latter, the extra
energy is used to sustain the thickening of the layer. How surface roughness alters
this scenario in both flows, is still unknown.

2.6 Numerical simulation of rough-wall turbulence

Since 1980, because of the significant improvements made in modern super-computing
technology, direct numerical simulation (DNS) has become an effective tool in pro-
viding invaluable insights into the nature of turbulence (Kim et al., 1987). Nonethe-
less, very few DNS of rough-wall boundary layer flows have been reported. Angelis
et al. (1997), Cherukat et al. (1998), Henn & Sykes (1999) and Sullivan et al. (2000),
performed numerical simulations of turbulent flows over wavy walls. The ampli-
tudes, a, of the waves were however, too large to be considered as surface roughness.
Nakayama & Sakio (2002) performed a DNS of flows over rough wavy boundaries
in view of obtaining a model for subgrid scale modelling. The relative roughness,
a/δ for their case was 0.1. Miyake et al. (2000) performed a DNS of turbulent flow
at Reτ = 400 in a channel where one wall was roughened by modelled cone-shape
roughness elements. The average roughness height to channel half height ratio was
about 0.06. Roughness Reynolds number was r+ = 25 which created a roughness
function ∆U+ = 7.5. Miyake et al. (2001) performed the similar DNS in a turbulent
channel flow with rod roughness operating at Reτ = 150. For this case the ratio r/h
was the large value of 0.13. Leonardi et al. (2003) also carried out a DNS for a fully
developed channel flow with a rod-roughened bottom wall and smooth upper wall.
The height of the square bars was about 10% of the channel height. A wide range
of pitch-to-height ratio (λ) has been studied. They partly reported their results in
Smalley et al. (2002) for two values of λ = 2 and 5. In the near-wall region, the DNS
data highlighted the dramatic variation in the AIM signature over one roughness
wavelength, reflecting the significant changes in turbulence state which may occur
between consecutive roughness elements. DNS of one-sided rod-roughened channel
flow has also been performed by Ikeda & Durbin (2002) and Nagano et al. (2003),
whereas results of a LES were presented by Cui et al. (2003). A common feature of
all these earlier computer simulations is that only one channel wall was roughened
whereas the other wall remained smooth. The height of roughness elements was
typically in between 5% and 10% of the channel height.

Results from the direct numerical simulation of turbulent incompressible plane-
channel flow between a smooth wall and one covered with regular three-dimensional
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“egg carton”-shaped roughness has been recently published by Bhaganagar et al.
(2004). They compared results from the smooth- and rough-wall sides of the chan-
nel for three different roughness heights of r+ = 5.4, 10.8, and 21.6 for Reτ of 400.
They focused on the interaction between the near-wall and outer-layer regions, in
particular the extent to which the near-wall behavior influences the flow further away
from the surface. They observed that roughness tends to increase the intensity of
the velocity and vorticity fluctuations in the inner layer. In the outer layer, although
the roughness altered the velocity fluctuations, the vorticity fluctuations were rela-
tively unaffected. The higher-order moments and the energy budgets demonstrated
significant differences between the smooth-wall and rough-wall sides in the processes
associated with the wall-normal fluxes of the Reynolds shear stresses and turbulence
kinetic energy. They found that the strength of the inner/outer-layer interactions
are greatly affected by the size of the roughness elements.

Flores & Jiménez (2004) proposed a different approach towards the DNS of
rough-wall channel flow. The idea was to simulate the effect of roughness on the
flow without having to deal with the details of the flow around them. The no-slip
and impermeability boundary conditions were replaced by prescribed zero-mean-
value perturbed velocities with characteristic intensity and wavelengths. The first
consequence of these disturbances was the generation of non-steady separation bub-
bles at the wall, the averaged height of which was taken as the roughness height. For
all cases presented (24 < k+

s < 207), the intensities collapsed in the outer regions,
indicating that the classical similarity holds disagreeing with Krogstad et al. (1992).
They also observed that away from the wall, the flow recovers the organization
typical of flows over smooth walls.





Chapter 3

Numerical Simulation

The set of differential equations governing incompressible fluid flow and the nu-
merical scheme for solving these equations are discussed in this chapter. Detailed
information about the numerical simulation set up is also presented.

3.1 Governing equations

The sole dynamics of the turbulent flow field, i.e. the spatial and temporal evolutions
of a fluid differential-element, is completely described by mass continuity and the
Navier-Stokes equations. These equations for an isothermal, incompressible fluid
are

Continuity
∂Uj

∂xj

= 0 (3.1)

Navier-Stokes
∂Ui

∂t
+

∂UiUj

∂xj

= −1

ρ

∂P

∂xi

+ ν
∂Tij

∂xj

(3.2)

where Ui stands for the velocity in the i-th direction and P for the modified pressure.
Tij is the deviatoric stress tensor given by

Tij =

(
∂Ui

∂xj

+
∂Uj

∂xj

)
, (3.3)

and ν is the kinematic viscosity defined by ν = µ/ρ, where µ, is the dynamical
viscosity of the fluid and, ρ, is the density. A summation is understood for repeated
indices. Indices are 1,2,3 respectively for the streamwise, vertical and spanwise
directions. The frame of reference is an inertial Cartesian (x, y, z) coordinates.
Here, (x, y, z) ≡ (1, 2, 3).

23
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Each of the quantities in the above equations are instantaneous and generally,
random functions of space and time. In direct numerical simulation (DNS), the
governing equations 3.1 and 3.2 are solved numerically without any further assump-
tions, to the finest spatial and temporal scales possible. If possible, a conventional
spatial and temporal averaging will then be performed in order to obtain statisti-
cally steady state averaged quantities and the associated unsteady instantaneous
counterparts. For each flow quantity Φ,

Φ = 〈Φ〉 + φ

where 〈〉 is used in order to denote the averaged part and φ is the associated fluc-
tuating part. This is the treatment first proposed by Osborne Reynolds in 1895.
Thereupon, the Reynolds-Averaged Navier-Stokes (RANS) equations can be derived
as

∂ 〈Ui〉
∂t

+
∂ 〈UiUj〉

∂xj

= −1

ρ

∂ 〈P 〉
∂xi

+ ν
∂ 〈Tij〉
∂xj

− ∂ 〈uiuj〉
∂xj

. (3.4)

The quantity −ρ 〈uiuj〉 has same dimension as that of stress and is a second
order symmetric tensor. Therefore, it is called the Reynolds stress tensor. However,
for the sake of simplicity, τij ≡ 〈uiuj〉 is conveniently referred as Reynolds stress
tensor.

For the fully developed turbulent flow inside a plane channel with smooth walls,
the momentum Equation (3.4) can be simplified and directly integrated to obtain

the total shear stress (τtotal ≡ µd〈U〉
dy

− ρ 〈uv〉) variation across the channel height as

τtotal = τw

(
1 − y

h

)
. (3.5)

Therefore, for every given wall shear stress, τw, the total shear stress has a linear
profile independent of fluid properties (ρ and µ) and regardless of the state of fluid
motion. The friction velocity based on the pressure-gradient is

uτ ≡
√

−h

ρ

d 〈P 〉
dx

, (3.6)

where h is the channel half-height.
In flows over rough surfaces, the roughness elements distort the streamwise mean

flow in the near-wall region such that the mean wall-normal velocity component, 〈V 〉,
obtains considerable magnitudes at the proximity of the rough wall. The streamwise
momentum equation for the rough-wall channel flow can then be written as

∂

∂x

(
ν
∂ 〈U〉
∂x

− 〈
u2

〉 − 〈U〉2
)

+
∂

∂y

(
ν
∂ 〈U〉
∂y

− 〈uv〉 − 〈U〉 〈V 〉
)

=
1

ρ

∂ 〈P 〉
∂x

. (3.7)
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In this case, when all the streamwise variations are negligible compared to their
wall-normal variations (like at distances far enough from the wall), the total shear
stress is obtained from

τtotal = µ
∂ 〈U〉
∂y

− ρ 〈uv〉 − ρ 〈U〉 〈V 〉 . (3.8)

There is a contribution of mean momentum transport −ρ〈U〉〈V 〉 to the shear stress.
This contribution is absent in case of a smooth channel. This roughness-induced
correlation has a direct dynamical effect in the immediate vicinity of the roughness
elements and causes the variation of the total shear stress to deviate from the linear
profile 3.5. The range of this deviation from linearity indicates the zone of influence
of the roughness elements in the channel.

A valuable scalar quantity is the turbulent kinetic energy, k, which is defined to
be the half trace of 〈uiuj〉,

k ≡ 1

2
〈u�u�〉 . (3.9)

The significance of k is that it reveals information from the large eddies. The
quantity k1/2 is frequently used in turbulence modelling as a velocity scale for the
large-scale turbulence.

The transport equation for the Reynolds stresses is

∂〈uiuj〉
∂t

= −〈U�〉 ∂〈uiuj〉
∂x�

advection rate

−〈uiu�〉 ∂〈Uj〉
∂x�

− 〈uju�〉 ∂〈Ui〉
∂x�

production rate

−∂〈uiuju�〉
∂x�

turbulent transport rate

−1
ρ

〈
ui

∂p
∂xj

+ uj
∂p
∂xi

〉
velocity–pressure– gradient term

+ν∇2 〈uiuj〉 viscous diffusion rate

−2ν
〈

∂ui

∂x�

∂uj

∂x�

〉
. dissipation rate

(3.10)

All of the various terms appear in Equation (3.10) can be calculated using the
fully resolved three-dimensional flow fields produced by DNS. Applying one contrac-
tion on the Equation (3.10) yields the transport equation for the turbulent kinetic
energy (TKE).
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3.2 Numerical method

The non-dimensional governing equations are solved using an explicit version of the
fractional-step method proposed by Chorin (1967) on a staggered Cartesian nonuni-
form grid in which the pressure, P , is defined at the center of each grid cell and
the components of the velocity vector U at the cell interfaces. Velocity components
and their derivatives, which have to be determined at locations between their cor-
responding locations, are obtained by linear interpolation and central differences,
respectively. As a result, the spatial discretization is of second-order accuracy.

Using a Leapfrog scheme for the explicit time integration of the momentum
equation with time-lagged diffusion term Manhart (2004), a second-order accuracy
in time is achieved by

Un+1 = Un−1 + 2∆t

[
N(Un) +

1

Re
∇2Un−1 −∇(Pn+1)

]
, (3.11)

where N(Un) denotes the nonlinear convection terms. The solution at the new time
level is obtained, by first taking the known pressure at time level n and solving the
explicit step

U∗ = Un−1 + 2∆t

[
N(Un) +

1

Re
∇2Un−1 −∇(Pn)

]
, (3.12)

where U∗ is an intermediate velocity field, calculated by using the old pressure term
in Equation (3.12). The pressure at the new time level P n+1 = P n + ∆P n+1 is
determined by the solution of the Poisson equation

∇2
(
∆P n+1

)
=

1

2∆t
∇ · U∗. (3.13)

A divergence–free field Un+1 is obtained after a velocity correction

Un+1 = U∗ − 2∆t∇ (
∆P n+1

)
. (3.14)

The combination of central interpolation and a Leapfrog time–step is energy conserv-
ing for the one–dimensional convection equation. In combination with the diffusion
operator, however, the Leapfrog time–step is slightly unstable. Therefore, the diffu-
sive term is taken at the time level n − 1 in Equation (3.12). Every 41 time steps,
an averaging step is performed in order to prevent 2∆t oscillations inherent in the
Leapfrog time advancement.

The Poisson Equation (3.13) is solved by an iterative procedure accelerated by
a multigrid cycle. The smoother (single-grid iteration) is based on the velocity-
pressure iteration presented by Hirt et al. (1975) with over-relaxation, Γ.
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The pressure estimate at time-step n + 1 is obtained from

∆P i+1 = Γ
1

2∆t
(∇ · U∗)i

(
1

1/∆x2 + 1/∆y2 + 1/∆z2

)
. (3.15)

Components of velocity at time-step n + 1 are corrected by

U i+1
j = U i

j + ∆P i+1 2∆t

∆xj

(3.16)

and pressure is accordingly corrected by

P i+1 = P i + ∆P i+1. (3.17)

With the over-relaxation Γ, this scheme gives the same convergence properties
as a conventional Gauss-Seidel iteration with successive over-relaxation (SOR). The
advantage of the present algorithm is the easy treatment of boundaries, at which
only velocity boundary conditions have to be specified. This has proven useful in
simulating arbitrary geometries with an immersed boundary method in Cartesian
grids (Manhart et al., 2001a).

A multi-grid algorithm is implemented in order to accelerate the convergence
of the iterative solver. For the multi-grid cycle, the so-called “restriction” (fine to
course level interpolation) is done for each component of the velocity by averaging
over four fine-grid velocities. Coarse-grid pressure is obtained by volume averaging.
For the so-called “prolongation” (coarse to fine interpolation), only the pressure on
the coarse grid is used. Therefore, the velocity correction step (3.16) make use of
only the pressure correction introduced by the coarse grid cycle, i.e.,

U i+1
j = U i

j +
(
P i+1

coarse − P i
fine

) 2∆t

∆xj

. (3.18)

The described procedure has also the advantage that during the iterations, full
control over the residual divergence of the velocity field is obtained.

3.2.1 Stability

For stable simulations of fluid flows by explicit finite difference schemes, the time step
must be smaller than a critical time step. The critical time step, ∆tc, is generally
smaller than the minimum value found for pure convection and pure diffusion. For
the leapfrog scheme these are

∆t ≤ 1
4µ

[
1

∆x2 + 1
∆y2 + 1

∆z2

]−1

pure diffusion

∆t ≤
[
|U |
∆x

+ |V |
∆y

+ |W |
∆z

]−1

pure convection
(3.19)
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The critical time step must be smaller than the minimum of two time steps above.
An acceptable lower boundary for the critical time step is (Schumann, 1975)

∆tc =

[ |U |
∆x

+
|V |
∆y

+
|W |
∆z

+ 4µ

(
1

∆x2
+

1

∆y2
+

1

∆z2

)]−1

. (3.20)

It is convenient to reduce ∆tc by a factor of 0.5 in order to account for nonlinearities.

3.2.2 The code MGLET

The above described numerical scheme is implemented in the computer code MGLET
(multi-grid large eddy turbulence) Manhart (2004) which is used for the present nu-
merical simulations. It was originally developed by Werner (1991) and subsequently
improved to include parallelization. The computational grid is divided into an ar-
bitrary number of subgrids that are treated as independent grid blocks in parallel
processing. MGLET uses a block-structured paradigm in order to manage multiple
grids that arise from the parallelization (Manhart et al., 2001b). MGLET has a long
tradition in large-eddy simulation (LES) and DNS (Friedrich et al. (2001) and Man-
hart (2004)). Validation of the simulation code has been performed in the course
of various DNS and LES studies of turbulent flow in a smooth channel, separating
and reattaching turbulent boundary layer flow (Manhart & Friedrich, 2002).

3.3 Numerical simulation setup

Any DNS approach is constrained by the spatial resolution required to resolve all
the scales of fluid motion. This constraint is even more pronounced in a DNS of
rough-wall turbulent flows where additional grid points are needed in order to fully
resolve the flow field in the vicinity and between the roughness elements. Figure
3.1 shows a sketch of the computational domain. A coordinate system is adopted
in which x is aligned with the primary flow direction, y is measured vertically from
the bottom wall, and z is parallel to the roughness crests.

Boundary conditions

Periodic boundary conditions are applied in the streamwise direction as well as in
the spanwise direction. No-slip and impermeability conditions are imposed on all the
solid boundaries. For the computational cells within the rods, the so-called blanking
technique is used, i.e., velocity components are set to zero whereas the pressure is
set to an infinitely large number. Same boundary conditions are used for both the
intermediate and divergence free velocity fields.
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To drive the turbulent flow in the channel, a fixed negative normalized pressure
gradient,

d 〈P 〉 /dx = −1, (3.21)

is imposed throughout the domain. The fixed pressure difference is explicitly en-
forced as a body force on the right-hand-side of the Equation (3.2).

Roughness geometry

Transverse square rods of cross section r× r, positioned in a non-staggered arrange-
ment are implemented on both walls. The pitch-to-height ratio, p/r, is 8. The
roughness height is only 0.034h, where h is the channel half-height.The roughness
size is fairly close to the maximum roughness size, 0.025h, proposed by Jiménez
(2004) in order to be different from bluff bodies. In this study, the roughness size
was dictated from the lab where experiments had to be performed on the already
decided geometry.

Operating Reynolds number

Based on Nikuradse’s measurements, k+
s must be greater than 70, in order that

turbulent flow be in a fully rough regime. Data from previous measurements on
rod roughness showed the following approximate correlation between the roughness
Reynolds number, r+, and its associated normalized equivalent sand grain roughness
height, k+

s :
k+

s ≈ 5r+.

Having r/h = 0.034, gives

Reτ =
hr+

r
� 1 × 70

5

0.034
� 411

as the lower bound for the fully rough regime. Therefore, the friction Reynolds
number Reτ = 400 was selected as the operating Reynolds number for the direct
numerical simulations.

Computational box

The length Lx and the width Lz of the computational domain were 6.528 h and
πh, respectively, i.e. virtually the same as those in the canonical channel flow
simulation of Moser et al. (1999) at Reτ = 395. This was believed to be sufficiently
large such that periodic boundary conditions could be used both in the streamwise
and spanwise directions. Owing to the idea that roughness elements shortens the
coherence length in the streamwise direction, several test simulations on domain
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Figure 3.1: Symmetric rod-roughened channel geometry and the configuration of the
k–type roughness.

Case Lx/h Lz/h N◦ of rods
I � 3/4π 3/4π 18 × 2
II � 3/4π π 18 × 2
III � 2π π 24 × 2

Table 3.1: Test cases for the computational domain size study.

boxes with smaller sizes in either or both of the streamwise and spanwise directions
were performed. The sufficiency of the computational box size was detected through
calculating the two-point correlations in the streamwise and spanwise directions. A
summary of the test cases is given in Table 3.3.

The computational box in Case I was too small. Therefore, the channel width,
Lz = π, was used for other two cases. For Case II, the correlation coefficient Ruu/u

′2

was sufficiently small at the channel half-length for y+ up to 40. Towards the channel
centerline, however, the correlation factor did not decay to zero, indicating that the
channel length was not long enough. Accordingly, the box size was set back to
that used by Moser et al. (1999). Calculation of correlation factors for Case III
indicated that the computational size was sufficiently large. The computational
domain therefore, encompassed 24 square rods on each wall. Alternatively, Lx can
be expressed in terms of the roughness characteristics, i.e. Lx = 192r.
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Case Nx × Ny × Nz ∆x+ ∆y+
0

a ∆y+
CL ∆z+ ∆t+c NP

b CPU-H
A 1536 × 258 × 258 1.7 0.85 12.7 4.8 0.036 64 280,000
B 768 × 328 × 192 3.4 0.85 7.5 6.54 0.04 32 123,000
C 768 × 160 × 160 3.4 1.7 15.6 7.85 0.06 32 31,000

a Within distance 3r from each wall b Number of processors
c CPU hours needed for 30 large eddy turn-over time scales = h/uτ

Table 3.2: Test cases for the grid independence and feasibility.

Computational grid

The number of grid points resolving each rod face had to be a perfect square in order
that the multigrid algorithm could be used for this problem. In the streamwise
direction resolving the crest with, e.g., 16 grid points, which gives ∆+

x = 0.85,
amounted to 3072 uniform grid points. An attempt towards using grid refinement
in the streamwise direction not significantly reduce the grid cells in the streamwise
direction, unless relatively high stretching/contracting factor is used. A uniform
grid is used in the streamwise direction in order to avoid numerical errors which are
resulting from intensive grid stretching (a factor larger than approximately 5%),

A uniform distribution of grid points is also used in the spanwise direction.
Within the roughness sublayer region (up to y = 3r), i.e., y+ < 41, a uniform
grid spacing was also used in the wall-normal direction. The mean grid width
∆+ = (∆x+∆y+∆z+)1/3 was therefore kept constant in the near-wall region. Beyond
y = 3r, ∆y+ was gradually increased towards the center of the channel.

Resolution check and feasibility

The major difficulty in performing this numerical simulation stemmed from the se-
vere restriction on the time-stepping imposed by the diffusion term in the stability
criterion for the explicit time-stepping (Equation 3.20) because of a very steep ve-
locity gradient on top of the roughness crest. A number of test cases were created
in order to check the grid independence as well as the feasibility of the simulations
in terms of the amount of CPU-hours available for this project. Table 3.3 shows
various grids which were created and tested. Cases A and B required unaffordable
amounts of CPU time. Case C was chosen as the first attempt to this simulation,
results of which are presented in this thesis. This was done mainly due to some
limitations on the amount of available CPU hours.
The adequacy of the grid resolution in Case D was known to be marginal in the vicin-
ity of the roughness elements, although the imbalance in the budgets of Reynolds



32 Numerical Simulation

stresses on top of the roughness crest as well as in the cavity region shows acceptable
levels (see Article III for details). Since the drag on the roughened walls is larger
and the smooth and roughened channels have the same pressure-gradient, the bulk
flow rate was reduced for the roughened channel. This reduction is substantial and
about 30%. Consequently, the Kolmogrov length, η+, in the core region of the chan-
nel is increased comparing to that of the smooth case. The sufficiency of the grid
resolution was studied through the method suggested by Grötzbach (1983) in which
∆+ < πη+. The Kolmogorov length scale was estimated from an earlier channel
flow simulation at Reτ = 395 (see Antonia et al., 1991, Figure 3) to be η+ ≈ 2.5. At
the centerline, the mean grid width was ∆CL � 7.5, therefore the above mentioned
criterion is fulfilled.

Turbulent flow initiation

A 3D initial flow field was obtained from a very-large eddy simulation (VLES) of
smooth channel flow with Reτ = 400. The mean velocity, however, was adjusted
to the appropriate rough-wall levels. This VLES was based on the most energetic
POD modes deduced from an earlier large-eddy simulation. Small-scale modes were
randomly imposed to assure some energy in the high wave number part of the
spectrum (see Johansson & Andersson, 2004, for details). In the presence of rods
the DNS was first advanced forward in time until a realistic turbulent flow field
evolved after a time 2 h/uτ and a statistically steady state was reached 3 h/uτ later.

Evaluation of statistics

The simulation continued for another 20 h/uτ , during which statistics were com-
puted from individual flow fields equally separated by 0.5 h/uτ or 200 viscous time
units. In addition to averaging over these 40 nearly independent flow fields, aver-
aging was also performed in the homogeneous spanwise direction. The presence of
rods precludes the streamwise direction from being homogeneous. However, since
periodically arranged roughness elements induced a streamwise periodicity on the
averaged fields, the statistical equivalence of two points (x, y, z) and (x + np, y, z),
where p is the pitch and n is an integer, was utilized and unit-wise averaging in
the streamwise direction was performed. To further increase the number of statis-
tically independent samples, averaging was also performed between both sides of
the channel, thus benefiting from the geometrical symmetry of the rod-roughened
channel.

The sampling is done at the staggered mesh locations for different correlations ap-
pearing in the Reynolds stress transport equation. The same second order dis-
cretization as those employed in the governing equations, were used for all budget
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calculations. Boundary conditions at all solid walls were carefully implemented for
the various forms of derivatives of the fluctuating velocity field and pressure.





Chapter 4

Summary of Articles

Article I:

Mean flow field and Reynolds stresses

This article mainly discusses issues regarding the effect of the roughness elements
on the mean velocity field and the variation of the Reynolds stresses across the
channel. The magnitude of the roughness function ∆U+ was found to be about 7
which suggested that the directly simulated flow field is virtually in the upper end
of the transitionally rough regime. It was observed that the two-dimensional rods
induced substantial changes in the mean velocity field in certain layers extended
about 5 times rod height. Despite the dramatic roughness effects in the roughness
sublayer, elongated streamwise streaky structures were observed in a short distance
above the plane of roughness crest. Such streaky structures have not been reported
in any of the earlier computational studies of rod-roughened channel flow.

Parts of this work was initially presented at the Third International Symposium on
Turbulence and Shear Flow Phenomena, Sendai, Japan, 25–27 June, 2003, where it
was selected for journal publishing.

Article II:

Turbulence structures

Here, the effects of surface roughness on mainly the large scales of the turbulent
incompressible flow were investigated through the examination of the higher-order
statistics. It was investigated that the intensity of the vorticity fluctuations in the
outer layer was unaffected by roughness. The anisotropy invariant maps for the

35
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smooth and rough cases clearly distinguished the substantial difference in the state
of turbulence near the smooth and rough walls. The turbulent transport processes in
the two cases were carefully studied and it was observed that the wall-ward transport
of the kinetic energy was substantially increased within the roughness sublayer while
the away-from-the-wall transport of kinetic energy was relatively reduced just about
the edge of the roughness sublayer.

Article III:

Budgets of Reynolds stresses

This article documents the DNS results with more focus on the Reynolds stresses.
Substantial effort has gone into processing the results, in particular, Reynolds stress
budgets. Through careful comparisons to a smooth- wall channel flow it was ob-
served that roughness effects were limited to the roughness sublayer. This conclusion
supported the wall-similarity hypothesis of Townsend, and as such is of definite in-
terest to the turbulence community.
Parts of this work was presented at the Fourth International Symposium on Turbu-
lence, Heat and Mass Transfer, Antalya, Turkey, 12–17 October, 2003, where it was
selected for journal publishing.

Article IV:

Comparative study – Reynolds stresses

This article presents the first part of the collaborative experimental and numerical
investigations in rough and smooth channels. Due to measurement and compu-
tational cost limitations, there were a relatively small Reynolds number difference
between the two approaches. This articles discusses in detail, the mean velocity and
Reynolds stresses variation.

Article V:

Comparative study – Further results

Further comparisons between DNS data and laboratory measurements are presented
in this article. Careful study of mean velocity profile, individual components of
the Reynolds stress tensor, quadrant analysis, stress ratios and Reynolds stress
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anisotropy suggested that the turbulence is affected differently in the present channel
flow than in rough-wall turbulent boundary layer. It was shown that the turbulence
properties in the outer layer region collapse between the rough and smooth wall for
both the experiments and the simulations, lending support to the wall similarity
hypothesis.
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querliegende Rippe in einem Plattenkanal bei hoher Reynoldszahl, PhD thesis,
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