
Hongze Ma

PhD-thesis 2003:96

An Integrated
Methodology for Design
of Distribution Chain

Faculty of Engineering Science and Technology
Narvik University College

URN:NBN:no-3444

An Integrated Methodology for

Design of Distribution Chain

Hongze Ma

Narvik University College
Narvik, Norway

Submitted to the Norwegian University of Science and Technology (NTNU) in
partial fulfillment of the requirements for a Doctor of Engineering Degree

Narvik, 2003

URN:NBN:no-3444

 II

PREFACE

This research is carried out during September 1999 and September 2003, and this
dissertation is presented at Norwegian University of Science and Technology, Norway
in fulfillment of the requirements for a Doctor of Engineering Degree.

First of all, I would like to express my cordial gratitude to my supervisors Professor
Ziqiong Deng, Professor Øyvind Bjørke and Professor Kesheng Wang for their
guidance and encouragement in the course of this research work.

My special thanks also go to Associate Professors Arne Lakså, Per Åge Ljunggren, and
Børre Bang for their valuable advice and kind help.

Further, I would like to thank my colleagues and friends at Narvik University College:
Dr. Reggie Davidrajuh, Dr. Wei Deng Solvang and Dr. Bjørn Solvang for their
valuable advice, discussions and friendship.

Finally, my warmest thanks go to my wife Yanqin Zhang for her love, encouragement
and patience.

 Hongze Ma
 February 2003
 Narvik, Norway

URN:NBN:no-3444

 III

ABSTRACT

In today’s buyer market, the key question for an enterprise is how to sell products
rather than how to produce products. That is why the study on distribution part of a
supply chain is attracting extensive attentions from both academics and industry. In
this dissertation, an integrated methodology is developed to design a distribution chain.
According to this methodology, a distribution chain is designed by following three
phases:

(1) Problem formulation phase. In this phase, the present situation for the host
enterprise is analyzed, and the goal to design this distribution chain is set. By this
analysis, the objective and constraints for designing the distribution chain are
determined.

(2) System design phase. In this phase, first, all possible distributors are evaluated
through a trilogy:

 Determine the factors needed to be considered when evaluating a possible
distributor.

 Collect data from geographically distributed distributors by a mobile agent based
information acquisition system.

 Evaluate possible distributors quantitatively by a FL (Fuzzy Logic)-ABL (Array
Based Logic) inference engine.

After evaluation, a set of eligible distributors are selected as candidates for designing
this distribution chain.

With these candidates at hand, a set of models, formulae and algorithms are developed
to design a distribution chain. To determine the exact customer demand at each retailer
(candidate), an ANN (Artificial Neural Network) model is developed to estimate the
retailer’s market share in its customer zone. By this estimated market share, the
customer demands at retailers are determined, and the configuration of a distribution
chain, including the number and location of distributors, is determined by MIP (Mixed
Integer Programming) model. The inventory control parameters at each node of this
distribution chain are optimized by probability theory, and routes for vehicles to
deliver products between different nodes are optimized by genetic algorithm. After
this, the designing process for a distribution chain is finished.

(3) Performance evaluation phase. To verify the design result, a new form of Petri net,
combinatorial Petri net, is developed, and the performance of the distribution chain
designed above is evaluated by this newly developed Petri net form. If the performance
is not satisfactory, the distribution chain needs to be re-designed.

All models, algorithms and formulae used in this dissertation have been implemented
by computer applications. This gives possibility to realize automatic design of a

URN:NBN:no-3444

 IV

distribution chain. At last, a numerical example is given to illustrate how to apply this
methodology in practice.

URN:NBN:no-3444

 V

TABLE OF CONTENTS

PREFACE ……………………………………………………………………….…. II

ABSTRACT ………………………………………………………………………. III

TABLE OF CONTENTS ………………………………………….………………V

LIST OF FIGURES ………………………………….……………………………VIII

LIST OF TABLES ……………………………………………………………….. XI

ACRONYM …………………………………………………………………..……. XII

CHAPTER 1 INTRODUCTION……………………………………. …………..…. 1

1.1 Research Motivation ……………………………..………………………….. 1
1.2 Research objectives ………..…………….……………...….....………… 1
1.3 Thesis Structure ……………………………………………….....…………. 3

CHAPTER 2 DISTRIBUTION CHAIN ………………….………………………. 5

 2.1 Introduction ……………………………………….…………………………. 5
 2.2 Definition and Life Cycle of Distribution Chain ………….………...………. 5
 2.3 Current Research Fields on Distribution Chain ……….………………...…... 6
 2.4 The State of the Art on Distribution Chain Research ………..……...……….. 9
 2.4.1 Formation ………………………………………….……………………9
 2.4.2 Operation ……………………………………….………….……………10
 2.5 Summary …………………………………………………….…………….. 12

CHAPTER 3 STRUCTURE OF THE INTEGRATED METHODOLOGY FOR
DISTRIBUTION CHAIN DESIGN ……………………………….. 15

 3.1 Introduction ………………………………………………………………… 15
 3.2 Analysis of Existing Methodologies for Distribution Chain Design …….... 15
 3.2.1 Review of existing design methodologies ……………………………. 15
 3.2.2 Shortcomings of existing design methodologies ……………………….18
 3.3 Structure of the Integrated Methodology for Distribution Chain Design 19
 3.3.1 General problem solving framework .. 20
 3.3.2 Structure of the integrated methodology for distribution chain design ... 21
 3.4 Summary .. 24

CHAPTER 4 PROBLEM FORMULATION ... 27

 4.1 Design Object and Scope ..27
 4.2 Setting Objective .. 30

URN:NBN:no-3444

 VI

 4.3 Summary ………………………………………...…………………………. 32

CHAPTER 5 EVALUATION OF POSSIBLE DISTRIBUTORS ……….………33

5.1 Introduction ……………...…………………………………………………. 33
 5.2 Factor Set …………………………………………………………………… 34
 5.2.1 Literature review ……………………………...……………………… 34
 5.2.2 A relatively complete factor set for evaluating a distributor …...……. 35
 5.2.2.1 Internal factors .. 35
 5.2.2.2 External factors ………………………...…………………….. 37
 5.3 Acquiring Information from Possible Distributors ……...…………………. 38
 5.3.1 Introduction …………………………………………..………………. 38
 5.3.2 Structure of the mobile agent based information acquisition system …. 41
 5.3.3 Testing prototype ………………………...…………...……….……… 42
 5.4 Distributor Evaluation ……………………………………….………………. 48
 5.4.1 Analysis of existing evaluation methods ………...…………………… 48
 5.4.2 Requirements for the new method …………………………………….. 48
 5.4.3 A survey of possible methods ………………….…….………………. 50
 5.4.4 Simple introduction to FL and ABL ……...…..……………………… 52
 5.4.4.1 FL ………………………………..………...…………………. 52
 5.4.4.2 ABL …………………….…………………………………….. 54
 5.4.5 The new evaluation method: integration of FL and ABL ….………… 56
 5.4.6 Case study: evaluating a distributor …………………….…...……….. 59
 5.5 Summary ………………………………...………….……………………… 63

CHAPTER 6 DESIGN OF DISTRIBUTION CHAIN ……….…………….…… 65

 6.1 Introduction ………………………………………………………………….. 65
 6.2 Market Share Estimation ………………………………..………………….. 67
 6.2.1 Review and analysis of existing models for estimating market share . 68
 6.2.2 Simple introduction to ANN ………………………….……………… 70
 6.2.3 Identifying marketing mix variables ………………….……………… 72
 6.2.4 Determining the ANN model ………………...……….……………… 74
 6.2.5 Realization of the ANN model ………………………………………. 76
 6.3 Determining the Configuration of a Distribution Chain …………………… 79
 6.3.1 Simple introduction to MIP …………………………….…………….. 80
 6.3.2 MIP optimization model ……………………….…………………….. 80
 6.3.2.1 Objective function ……………………………….……...……. 80
 6.3.2.2 Constraints …………………………………….……….……… 83
 6.4 Determining Inventory Model at Each Node of the Distribution Chain 86
 6.5 Planning Product Delivery Routes in a Distribution Chain ………...……… 89
 6.5.1 Simple introduction to genetic algorithm …………………….………. 90
 6.5.2 Genetic algorithm model ……………………………….…………….. 90
 6.5.2.1 Chromosome and fitness function ……………….…………… 91
 6.5.2.2 Optimization process ……………………………….………… 94
 6.5.3 Allocating distance related cost to retailers in a route ……….……… 97
 6.5.4 Case study ……………………………………………………………. 98

URN:NBN:no-3444

 VII

 6.6 Summary …………………………………………………………………… 99

CHAPTER 7 PERFORMANCE EVALUATION FOR THE DESIGNED
DISTRIBUTION CHAIN …………………………………………. 101

 7.1 Introduction ………………………………………………………………… 101
 7.2 Key Performance Measures for a Distribution Chain ……………...………. 101
 7.3 Method to Evaluate the Performance Measures of a Distribution Chain ….. 102
 7.4 Simple Introduction to Petri Net ……….…………………………………. 103
 7.5 Combinatorial Petri Net ……………………………………………………. 104
 7.5.1 Traditional Petri net …………………………….………………….. 106
 7.5.2 Combinatorial Petri net ………………………………………………. 107
 7.5.2.1 Definition……………………………...……………………… 107
 7.5.2.2 Enabling rule ………………………………………………… 110
 7.5.2.3 Firing rule ……………………………………………………. 114
 7.5.2.4 Case study ……………………………………………………. 116
 7.6 Modeling and Performance Evaluation of a Distribution Chain ………….. 122
 7.6.1 Problem description …………………………………………………. 122
 7.6.2 Combinatorial Petri net model ………...……………………………. 123
 7.6.3 Realization of the combinatorial Petri net model and performance

evaluation of the distribution chain ………………………………….. 131
 7.7 Summary …………………………………………..……………………… 132

CHAPTER 8 A NUMERICAL EXAMPLE FOR THE DESIGN OF
DISTRIBUTION CHAIN …………………………………………. 133

 8.1 Introduction ……………………………………………………….………. 133
 8.2 Pre-design of the Distribution Chain …………………………..………….. 133
 8.3 Design of the Distribution Chain ……………………………….………… 136
 8.3.1 Determine configuration of the distribution chain ………..………… 136
 8.3.2 Determine inventory control parameters at each node …..………….. 137
 8.3.3 Plan product delivery routes between different nodes ….………….. 138
 8.4 Performance Evaluation for the Designed Distribution Chain …………….. 140

CHAPTER 9 CONCLUSION AND FUTURE WORK ……………...………… 145

 9.1 Conclusion ………………………………………………………..……….. 145
 9.2 Future Work ……………………………..……………………….………… 147

PUBLICATIONS …………………………………………….………………….. 149

REFERENCES ……………………………………….………………………… 151

APPENDIX ……………………………………………..……………………….. 159

URN:NBN:no-3444

 VIII

LIST OF FIGURES

Figure 1-1 General model of the distribution chain to be designed

Figure 2-1 Supply chain structure
Figure 2-2 Search result in ISI
Figure 2-3 Search result in OCLC
Figure 2-4 Search result in BLPC
Figure 2-5 Literature distribution for distribution chain
Figure 2-6 Research fields in distribution chain

Figure 3-1 General problem solving cycle [Wu, 1994]
Figure 3-2 Structure of the integrated methodology for distribution chain design
Figure 3-3 The design process for a distribution chain
Figure 3-4 The framework of this dissertation

Figure 4-1 General distribution chain types
Figure 4-2 Delimitation of the integrated methodology for distribution chain

design

Figure 5-1 Hierarchical representation of the relocation of a hybrid

manufacturing/distribution facility
Figure 5-2 Criteria for evaluating foreign distributors
Figure 5-3 A hierarchical representation of factor set for evaluating a possible

distributor, and the evaluation result for one distributor.
Figure 5-4 Interaction between host enterprise and distributor (a): request-reply

model. (b): mobile agent model
Figure 5-5 Structure of the information acquisition system
Figure 5-6 Architecture of the testing prototype
Figure 5-7 Part of source code for launching a mobile agent in Concordia
Figure 5-8 Part of source code for inserting value into database
Figure 5-9 An example of XML document facForInvData.xml, and its

accompanying DTD file facForInvData.dtd
Figure 5-10 Sample of source code to parse a XML document: facForInvData.xml

by DOM parser
Figure 5-11 DOM tree parsed for file facForInvData.xml
Figure 5-12 Part of source code to extract information from a DOM tree structure

and put it into “Hashtable”
Figure 5-13 Part of source code for extracting information from command line
Figure 5-14 Membership function for linguistic variable floorSpace
Figure 5-15 Composition of a fuzzy inference system
Figure 5-16 An ABL inference module
Figure 5-17 Different treatment of input variable floorSpace in FL and ABL
Figure 5-18 Interface from ABL to FL
Figure 5-19 Fuzzification of variable commSystem
Figure 5-20 Model for evaluation of “inventory maintaining facility”

URN:NBN:no-3444

 IX

Figure 5-21 (a) Membership function for input variable floorSpace
Figure 5-21 (b) Membership function for input variable costInv
Figure 5-21 (c) Membership function for input variable relia
Figure 5-21 (d) Membership function for output variable invFacility
Figure 5-22 Fuzzification of variable commSystem

Figure 6-1 A customer zone with several retailers that sell the same product
Figure 6-2 Flow chart for the module of distribution chain design
Figure 6-3 Schematic representation of an artificial neuron
Figure 6-4 A fully connected, feedforward neural network
Figure 6-5 Supervised training process
Figure 6-6 Procedure to realize an ANN model in MATLAB
Figure 6-7 Abstract structure of the distribution chain to be designed
Figure 6-8 Wholesaler j’s opening cost function with respect to its possible

highest inventory level
Figure 6-9 Demand process at a node
Figure 6-10 Inventory maintaining cost for parameter pair (sk,Ql) (Q=S-s)
Figure 6-11 Problem illustration
Figure 6-12 Time related cost
Figure 6-13 Explanation of inter-service time Ti
Figure 6-14 Flow chart for optimizing a population
Figure 6-15 A route with n retailers and a wholesaler
Figure 6-16 Fitness values over 15 generations
Figure 6-17 Routing solution

Figure 7-1 A Petri net model
Figure 7-2 A simple combinatorial Petri net model
Figure 7-3 A node in combinatorial Petri net
Figure 7-4 A transition with its input and output places
Figure 7-5 Flow chart to run a combinatorial Petri net model
Figure 7-6 The initialized combinatorial Petri net model for the example shown in

Figure 7-2
Figure 7-7 The markings of places after the first cycle
Figure 7-8 The markings of places after the second cycle
Figure 7-9 A simplified distribution chain with one wholesaler and eight retailers
Figure 7-10 Combinatorial Petri net model for releasing vehicle at wholesaler and

product delivering from wholesaler to retailer R1

Figure 7-11 Combinatorial Petri net model for unloading product at a retailer and
delivering product between retailers

Figure 7-12 Combinatorial Petri net model for selling products to customers and
carrying inventory at retailer R1

Figure 7-13 Combinatorial Petri net model for the simplified distribution chain
shown in Figure 7-9

Figure 7-14. Distribution of other performance measures for 8 retailers (R1-R8) and
two vehicles (V1-V2)

URN:NBN:no-3444

 X

Figure 8-1 Flow chart on how to use the methodology developed in this

dissertation in designing a distribution chain
Figure 8-2 Configuration of the distribution chain
Figure 8-3 Routes in the distribution chain
Figure 8-4 The combinatorial model from distribution centre to wholesalers W1

and W2
Figure 8-5 Combinatorial Petri net model from wholesaler W1 to its retailers
Figure 8-6 Local revenues at retailers (1000$)
Figure 8-7 Inventory maintaining cost at retailers, wholesalers and distribution

center (1000$)
Figure 8-8 Transportation cost and utilization ratio for vehicles

URN:NBN:no-3444

 XI

LIST OF TABLES

Table 5-1 Characteristics of all input variables for the evaluation model
Table 5-2 Summary of the possible methods
Table 5-3 The main functions in SABL package
Table 5-4 Numerical examples for the evaluation results in evaluating “Inventory

maintaining facility”, “Transportation facility”, “Human factor”,
“Financial factor”, “Communication system”, and “Hardware”.

Table 5-5 The global domain of subsystem “Communication system”

Table 6-1 Marketing mix variables and their effect on market share
Table 6-2 Parameters in the ANN model for market share estimation
Table 6-3 Notation explanation for the MIP optimization model
Table 6-4 Parameters for a retailer
Table 6-5 Basic parameters for a route
Table 6-6 Other parameters for the route

Table 7-1 Global domain for the inference system of vehicle releasing

Table 7-1 Parameters for the distribution chain shown in Figure 7-3
Table 7-2 Parameters for retailer 1~retailer 4
Table 7-3 Calculating results for the marking of place P6.
Table 7-4 Parameters for the distribution chain shown in Figure 7-9
Table 7-5 Explanation for notations used in arc expressions of Figure 7-10
Table 7-6 Explanation for notations used in arc expressions of Figure 7-11
Table 7-7 Explanation for notations used in arc expressions of Figure 7-12

Table 8-1 Parameters for selected retailers
Table 8-2 Possible locations to build wholesalers
Table 8-3 Market share, actual demand and price at each customer zone
Table 8-4 Initial values for parameters at possible retailers
Table 8-5 Initial values for parameters at possible wholesalers
Table 8-6 Initial values for parameters at the distribution center and host enterprise
Table 8-7 Selected retailers and wholesalers (The grey ones are not selected)
Table 8-8 Inventory related parameters for retailers
Table 8-9 Inventory related parameters for wholesalers
Table 8-10 Optimal parameter pairs (s, Q) and corresponding cost for retailers and

wholesalers
Table 8-11 Route related parameters for retailers
Table 8-12 Other route related parameters
Table 8-13 Main performance measures for this distribution chain

URN:NBN:no-3444

 XII

ACRONYM

ABC Activity Based Costing
ABL Array Based Logic
AHP Analytical Hierarchical Process
ANN Artificial Neural Network
API Application Programming Interface
BLPC British Library Public Catalogue
COA Center Of Area
COS Center Of Sums
CVRP Capacitated Vehicle Routing Problem
DEDS Discrete Event Dynamic System
DOM Document Object Model
DTD Data Type Definition
FL Fuzzy Logic
GMP Generalized Modus Ponens
GMT Generalized Modus Tollens
GUI Graphical User Interface
HTML HyperText Markup Language
IP Internet Protocol
ISI Institute of Scientific Information
ISP Integer Stochastic Programming
MCI Multiplicative Competitive Interaction
MIP Mixed Integer Programming
MNL Multinomial Logit
MOM Mean of Maxima
OCLC Online Computer Library Center
PDF Probability Density Function
SABL Structural Array Based Logic
SAX Simple API for XML
SMNL Switching Multinomial Logit
SMTP Simple Mail Transfer Protocol
TSP Travelling Salesman Problem
URL Uniform Resource Locator
VRI Vehicle Releasing Indicator
XML eXtensible Markup Languag

URN:NBN:no-3444

URN:NBN:no-3444

Chapter 1

1

CHAPTER 1 INTRODUCTION

1.1 Research Motivation

In today’s buyer market, the enterprises that can win the market will win the
competition. That is why the study on market has aroused extensive interests in both
academics and industry. Under such circumstance, for an enterprise, the question on
how to sell its products is becoming more and more important. So the study on the
parts that are closely related to market is becoming the main concern for decision
makers. But, as indicated in chapter 2, compared with their significance, the research
on them is still unsatisfactory. So, in this dissertation, we will take these parts as our
research object.

Generally, a supply chain centered with host enterprise is composed of three parts:
supply, production and distribution part. To satisfy the customer demand, maximize its
profit and win the competition in the increasingly globalized economy, the host
enterprise needs first to analyze the market and understand the customer demand,
decide what and how much to produce based on this analysis, and then it may begin to
plan its production process and organize its supply chain. Obviously, the distribution
part plays crucial role for the success of distribution chain management. Of course,
these three parts are related with each other, and we should study them simultaneously.
But, for limited energy, source and time, it is difficult to cover all these three parts in
one dissertation. If we care about all parts in detail, maybe, the resulted model will be
too large to be solved, or the solution will be too general to be applied in practice. To
avoid these problems, in this dissertation, we mainly concentrate on the distribution
part (which is closely related to market) of a supply chain, and formally define it as
distribution chain (detail is shown in chapter 2).

Like any other systems, before implementing a distribution chain, we need to design it.
Distribution chain is a large system. Once formed, it is difficult and costly to change it.
Obviously, the quality of distribution chain design has long term influence on its
management. This property further emphasizes the significance of designing a
distribution chain properly. For
these reasons, we will take
distribution chain design as our
main concern in this dissertation.

1.2 Research Objectives

The main objective for this
dissertation is to develop a
methodology for the design of
distribution chain. The general
model of the distribution chain to be
designed is shown in Figure 1-1. By
the methodology developed here,

Factory
Customer
demand

Distribution
center

Wholesalers Retailers

Figure 1-1 General model of the distribution chain to
be designed

URN:NBN:no-3444

Introduction

2

we can get following design results:

 Configuration of the distribution chain, including number and locations of retailers
and wholesalers, and the assignment of retailers to wholesalers.

 Inventory control policy and parameters at each node of the distribution chain.
 Routes for vehicles to deliver product between different nodes (i.e. from

distribution center to wholesalers, and from wholesalers to retailers).

To get these results, the methodology for distribution chain design must have following
functions:

• Formulate the problem. Before designing a distribution chain, the situation for the

host enterprise needs to be analyzed. Based on this analysis, constraints and
objective for this design can be identified.

• Collect data from possible distributors. To some extent, designing a distribution
chain can also be viewed as selecting or locating distributors. Before designing, we
need to collect data from all possible distributors. Our task is to develop an
approach to acquire information from these geographically distributed distributors
efficiently and economically. Fortunately, Internet technology can help us to
achieve this goal.

• Evaluate all possible distributors. We can imagine that, when designing a
distribution chain, how large it will be for both the number of possible distributors
and the scale of information for one possible distributor. Facing such large scale of
information, we need to develop an efficient method to evaluate individual
distributor quantitatively, and then select a set of eligible ones to design the
distribution chain.

• Determine configuration of the distribution chain. As the possible distributors were
only evaluated individually above, the ones selected previously can only act as
candidates for designing a distribution chain. In this step, the entire structure of
distribution chain will be optimized, and final acceptance/rejection of candidates
(including wholesalers and retailers) will be decided. Obviously, a mathematical
model needs to be founded to accomplish this optimization process.

• Determine inventory control policy and parameters for each node of the
distribution chain. Inventory control is an inevitable issue in distribution chain
design and operation. In this design methodology, we will use a simulation based
model to determine when and how much to order at retailers and wholesalers.

• Optimize routes for vehicles to deliver product between different nodes. Delivering
product between different nodes is another important issue in distribution chain
design and operation. When delivering products between different nodes, a lot of
routes can be options. Our mission is to develop an algorithm to select the optimal
one.

• Verify the design results. After determining the configuration of the distribution
chain, inventory parameters at each node, and routes for delivering products
between different nodes, the design process has been finished. The last step is to
verify these design results by evaluating the performance of this designed
distribution chain.

URN:NBN:no-3444

Chapter 1

3

Finally, to design a distribution chain efficiently, all models, algorithms, and formulae
used in this methodology need to be computerized.

1.3 Thesis Structure

This thesis is composed of 9 chapters, and they are organized as follows.

In chapter 2, after a simple introduction to supply chain, distribution chain is formally
defined, and the state of the art for current research on distribution chain is illustrated.
Based on the analysis of different research fields in distribution chain management,
distribution chain design is identified as our main concern in this dissertation.

In chapter 3, a literature review on distribution chain design is carried out, and most of
the existing design methodologies are analyzed. After this analysis, structure of the
integrated methodology for distribution chain design is turned out.

In chapter 4, the following questions are answered: what kind of distribution chain can
be designed by the methodology developed in this dissertation? And what is the design
objective for this methodology?

In chapter 5, a module for evaluating possible distributors is described. This evaluation
is realized by three steps: determine factors needed to be considered when evaluating a
distributor, acquire information from distributors, and evaluate a distributor by a FL
(Fuzzy Logic)-ABL (Array Based Logic) inference engine. After this evaluation, a set
of distributors are selected as candidates in designing the distribution chain.

In chapter 6, with these candidates at hand, a set of models, formulae and algorithms
are developed to design a distribution chain. First, to determine the exact customer
demand at each retailer, an ANN (Artificial Neural Network) based model is developed
to estimate the retailer’s market share in its customer zone. Then, based on the
estimated market share, configuration of the distribution chain is optimized by MIP
(Mixed Integer Programming) model, inventory control parameters at each node of the
distribution chain are determined by simulation, and product delivering routes between
different nodes are identified by genetic algorithm. An iterative design process is used
to guide the sequence in applying these models in practice.

In chapter 7, to verify the design result turned out above, a new Petri net form,
combinational Petri net, is put forth, and performance of the designed distribution
chain is evaluated by this newly developed Petri net form.

In chapter 8, a case study is carried out to illustrate how to apply the methodology
developed in this dissertation in designing a distribution chain.

In chapter 9, the methodology developed in this dissertation is summarized, some
conclusions are given, and the future research direction in this area is illustrated.

URN:NBN:no-3444

Introduction

4

URN:NBN:no-3444

Chapter 2

5

CHAPTER 2 DISTRIBUTION CHAIN

2.1 Introduction

In recent years, supply chain management is becoming more important than the
manufacturing process itself [Yam et al., 2000]. By proper supply chain management,
the host enterprise can coordinate all activities in the supply chain, and cooperate with
other enterprises so as to minimize its cost and maximize its profit. A supply chain
centered with host enterprise may be divided into three parts: supply, production and
distribution part, as shown in Figure 2-1 [Solvang, 2001]. Supply part mainly deals
with the activities for
procurement of raw
materials or parts that are
needed to produce the end
products. Production
process includes entities and
activities for manufacturing
parts or semi-finished
products and assembling
them into end products.
Distribution part includes
the entities and activities for
distributing and delivering
end products to consumers.
As mentioned previously, the distribution part is our main concern in this dissertation.

2.2 Definition and Life Cycle of Distribution Chain

Definition. In existing literatures, normally the distribution part of a supply chain is
referred as distribution network or production-distribution system. To give an explicit
concept, we separate the distribution part from supply chain, and formally define it as
distribution chain:

A distribution chain is a network of facilities, including distribution center at the host
enterprise, and wholesalers and retailers geographically distributed all over the world.
These facilities are connected by transportation lines. This network performs store and
delivery of end products to fulfill the customer demand efficiently and maximize profit
for the host enterprise effectively.

Two issues are addressed in this definition: the scope and mission of a distribution
chain. To focus on the study of distribution part, the production process itself is not
included in a distribution chain, so the scope of a distribution chain is narrowed and
only distribution center, wholesalers and retailers are included in it. The mission of a
distribution chain is two-folded: serving the customers and maximizing profit for the
enterprise. For an enterprise, maximizing profit is the intuitive aim. At the same time, it
also needs to satisfy the consumer’s requirements to meet its long term goal. The

S11

S12

S13

S21

S22

S23

S24

P D0

D21

D11

D12

D13

D22

D23

D24

Sk: Supplier P: production Dk: Distributor

 Figure 2-1 Supply chain structure.

Customer
demand

URN:NBN:no-3444

Distribution Chain

6

decision makers in the enterprise need to achieve nice balance between two aspects.
After designing the distribution chain, some valuable information, such as the
necessary production rate for the host enterprise, etc., may be gotten to guide the
planning of the production process.

Life cycle. Generally, a system life cycle is constructed by three parts [Asbjornsen,
1992]: the first part brings the system into being. Questions, such as how to develop,
design and organize the system, are answered in this phase; the second part deals with
problems on operation and maintenance of the system. When the environment for the
system changes, the system may be ended or reconfigured, that is what to be done
during the third part.

Based on such principle, the life cycle of distribution chain is divided into three phases:
formation, operation, and reconfiguration or extinction phase. In the formation phase,
the host enterprise needs to determine the marketing strategy, select partners,
determine the structure of its distribution chain, product delivery mode, and other
strategic issues. In the operation phase, all issues related to maintaining inventory,
delivering product, and cooperation between different facilities (or even enterprises)
are addressed. For a distribution chain, it faces a dynamic environment: market, and it
needs to cope with the strong competition with other enterprises. When its environment
changes remarkably, the existing distribution chain may be unfit. At this point, the host
enterprise may reconfigure the distribution chain to accommodate the new
environment, or totally destroy it if it is no longer profitable. The third phase is used to
deal with all issues about reconfiguring or destroying a distribution chain.

2.3 Current Research Fields on Distribution Chain

As mentioned above, the study on distribution chain has attracted the attention of
researchers and practitioners for several decades, and a lot of papers have been
published on the distribution chain management. We have searched related papers in
three databases: ISI (Institute for Scientific Information), OCLC (Online Computer
Library Center) and BLPC (British Library Public Catalogue), the searching results are
shown in Figures 2-2, 2-3, and 2-4.

In these figures, the words in quotation marks are the key words used during the
searching process, and the followed value is the number of articles searched by the
corresponding key words. For example, in the first tier of Figure 2-2, “supply chain” is
the key word, and 1037 is the searching result in database ISI. In each figure, there are
three tiers. For blocks in the second and third tier, the key words used in searching
process are the key words in themselves plus their super-tier’s keywords. For example,
for the block in the second tier of Figure 2-2, the key words actually used in searching
process are “supply chain” AND “distribution”, the corresponding searching result is
151. For the right most block in the third tier, the key words are “supply chain” AND
“supply chain” AND “distribution” AND “Internet”, and the corresponding searching
result is 8. The sum of numbers in the third tier may be slightly greater than, rather
than equal to the number in the second tier. The reason is that: some papers may cover

URN:NBN:no-3444

Chapter 2

7

more than one topic (e.g. some papers concern both inventory control and routing
algorithm), and such papers may be searched in more than one block.

Summing up the articles searched by same key words in three databases, we get Figure
2-5, which can roughly reflect the literature distribution for the study on distribution
chain. By this figure, we find that, the most popular issues in distribution chain
research are: transportation or routing algorithm for delivering products to customers,
inventory control, design of distribution chain, and coordination (or cooperation) in the
management of a distribution chain.

As mentioned above, the life cycle of distribution chain is divided into three phases:
formation, operation, reconfiguration or extinction phase. Actually, reconfiguring a

1: “partner” 2: “design” 3: “inventory”
4: “routing” or “transportation”
5: “coordination” or “cooperation” 6: “performance”
7: “marketing” or “pricing” 8: “Internet”

Figure 2-5. Literature distribution for
distribution chain

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8

“inventory”,4

“routing” or “transportation”, 3

“cooperation” or “coordination”, 2

“perform
ance”, 1

“m
arketing” or“pricing”, 5

“Partner”, 0

“design”, 1

“supply chain”, 266

“distribution”,13

“Internet”,1

Figure 2-4. Search result in BLPC

“inventory”,53

“routing”
or

“transportation”,
24

“cooperation” or “coordination”,
16

”perform
ance”, 42

“m
arketing” or “pricing”, 21

“Partner”, 3

“design”, 33

“supply chain”, 1037

“distribution”, 151

“Internet”, 8

Figure 2-2. Search result in ISI

“inventory”,42

“routing” or “transportation”,
84

“cooperation” or “coordination”,
34

“perform
ance”, 5

“m
arketing” or“pricing”, 4

“Partner”, 5

“design”, 27

“supply chain”, 2693

“distribution”, 198

“Internet”, 9

Figure 2-3. Search result in OCLC

URN:NBN:no-3444

Distribution Chain

8

distribution chain is similar to forming it, so we categorize all articles searched in three
databases into three parts: formation, operation, and extinction. All articles based on
the condition that the distribution chain has not been constructed belong to the first
category. The articles that are based on a formed distribution chain and mainly
concentrate on the operation of a distribution chain belong to the second category.
Other articles mainly concentrate on the destruction of a distribution chain belong to
the third one. Next, let’s take a quick look at the articles searched by different key
words, and then identify which category they belong to.

(1) “partner”. Articles searched by key word “partner” (actually, the key words are
“supply chain” AND “distribution chain” AND “partner”) mainly illustrate the
procedures or methods on how to select a partner. Obviously, such articles belong to
the formation category.

(2) “design”. Such articles
mainly address the
methods on how to
determine the structure of
a distribution chain. They
belong to the formation
category too.

(3) “inventory”. Such
articles illustrate the
methods on how to
determine the inventory
control policy, reorder
point and ordering
quantity, etc. Obviously,
these articles are based on
the condition that the
distribution chain has
been formed, and so they
belong to the operation
category.

(4) “transportation” or
“routing”. Such articles
provide methods to solve
the routing problems
when delivering products
to wholesalers, retailers
and customers. Same as
articles in “inventory”, they belong to operation category.

Figure 2-6. Research fields in distribution chain

Partner selection

Design of distribution chain

Cooperation and
coordination in distribution

chain management

Transportation and routing
algorithms for delivering

products

Inventory control

Performance estimation

Benefits of Internet

Marketing skills and pricing
method

Formation

Operation

Extinction

Distribution
chain

URN:NBN:no-3444

Chapter 2

9

(5) “coordination” or “cooperation”. Such articles concern the cooperation between
different facilities in a distribution chain, and coordination between information flow
and material flow, etc. They belong to the operation category.

(6) “performance”. Such articles mainly address the performance measures for a
distribution chain, and methods to estimate these measures. As the performance
estimation models mainly reflect the operational aspect of a distribution chain, they are
put into the operation category.

(7) “marketing” or “pricing”. Such articles mainly illustrate the marketing skills and
pricing methods when operating a distribution chain, they belong to the operation
category.

(8) “Internet”. Such articles mainly illustrate the influence and benefits brought by
Internet when operating a distribution chain, so they belong to operation category.

No article is found for the destruction of a distribution chain.

Summarizing the categorizing results mentioned above, we get Figure 2-6, which
roughly depicts the current research fields on distribution chain.

2.4 The State of the Art on Distribution Chain Research

In the previous subsection, the main research fields in distribution chain are identified,
and numbers of articles on different fields are listed. Now, let’s begin to analyze the
research state in this area, and illustrate what have been done by these articles. It is
impossible to illustrate all papers for all research areas in this literature review. For the
limited space, here we only list the typical articles to demonstrate the main
achievements in each field.

2.4.1 Formation

(1) Partner selection.

Before selecting partners, we need to evaluate all the possible ones. When
evaluating a partner, first, we need to determine the factors needed to be
considered when evaluating it. The normally considered factors are: site
characteristics, cost, traffic access, market opportunity, and quality of living and
local incentives [Min et al., 1999]. Cavusgil et al. [1995] provided criteria
especially for evaluating foreign distributors. They categorized the criteria as financial
and company strengths, product factors, marketing skills, commitment and facilitating
factors. In practice, what kind of factors to be considered heavily depends on the goal
for the host enterprise to construct its distribution chain.

Methods on how to evaluate partners have been studied for decades, and different
approaches have been developed. Houshyar et al. [1992] gave an 8-step supplier
evaluation model. The 8-step procedure is given as follows:

URN:NBN:no-3444

Distribution Chain

10

• Define the critical factors, objective factors, and subjective factors.
• Evaluate the critical factor measures.
• Evaluate the objective factor measures.
• Determine the subjective factor weights.
• Determine the supplier weight.
• Evaluate the subjective factor measures.
• Determine objective factor decision weight.
• Calculate supplier performance measure.

Similar descriptive model may also be found in [Motwani et al., 1999, Chick et al.,
2000, etc.]

To evaluate a partner quantitatively, some other approaches were developed. Cavusgil
et al. [1995] used expert system to evaluate a foreign distributor; Min et al. [1999]
applied AHP (Analytical Hierarchy Process) to assess a domestic partner, etc.

For the existing evaluation methods, the final result is given by scoring method, i.e.
each category is assigned a weight of importance, and each factor in this category is
scored by expertise. Summing up these weighted scores, the final score for this partner
is gotten as the indication of its performance. Obviously, such methods are largely
affected by subjective judgement, and it is difficult to computerize them.

(2) Design of Distribution Chain

Almost all of the existing design methodologies view the design of a distribution chain
as an optimization process, and the most popular optimization method is MIP [Carlos
et al., 1997]. Researchers used MIP to minimize cost [Brown et al., 1987, Cohen and
Moon, 1991, Cole, 1995, Jayaraman, 1998, etc.] or maximize profit [Cohen and Lee,
1989, Chen et al., 1997, etc.] for multicommodity distribution chain, and then
determine its configuration and corresponding parameters.

Besides MIP, other optimization methods are also used for distribution chain design.
Berry et al. [1998] used genetic algorithm to optimize the topology of distribution
network. Anthony [2000] used simulated annealing method to optimize the structure of
a distribution chain, and he claimed that the simulated annealing method behaves better
than MIP. About the research on distribution chain design, further literature review will
be given in Chapter 3.

2.4.2 Operation

(1) Inventory control

The basic inventory control policies are: (R, S) and (s, S) policy. For (R, S) policy, a
replenishment order is placed to raise the inventory position to S for every period of R
unit time. For (s, S) policy, the order is placed to raise the inventory position to S once

URN:NBN:no-3444

Chapter 2

11

the at hand stock is less than or equal to s [Henk, 1994]. A lot of methods have been
developed to determine these parameters by minimizing the inventory carrying cost or
satisfying the given fill rate. Diks [1998] developed a set of formulae to calculate the
parameters for (R, S) policy by minimizing inventory carrying cost. Heijden [1997] put
forward a new rationing rule (ration limited capacity to a set of warehouses) for the (R,
S) control policy. And then based on this rationing rule, an optimization model was
founded to calculate control parameters by satisfying the fill rate constraint [Heijden,
1999, 2000]. Besides (R, S) policy, (s, S) was also well studied. Silver [1985] (and
Sabri, [2000], etc.) used safety stock to determine the reorder point s, and then
determined the order up to level S by minimizing inventory carrying cost. Other
optimization model for (s, S) policy can be found in [Henk, 1994] and [Ganeshan,
1999].

(2) Transportation and routing algorithms.

In this field, TSP (Travelling Salesman Problem) plays an important role [Tayur et al.,
1999]. The purpose for TSP is to find shortest path given the visiting constraints for the
salesman (or the vehicle). Combinatorial optimization algorithm can be used to solve
such kind of problems [Kreyszig, 1999]. When the vehicle capacity is considered, the
problem becomes CVRP (Capacitated Vehicle Routing Problem). A lot of heuristics
has been proposed for the CVRP. These heuristics may be categorized into:
Constructive method [Paessens, 1988, etc.], Route First-Cluster Second method
[Haimovich et al., 1985, etc.], Cluster First-Route Second method [Noon et al., 1991,
etc.], and Incomplete Optimization method [Fisher, 1994].

Genetic algorithm is another effective approach for solving the vehicle routing and
scheduling problem [Park, 2001]. For example, Gabbert et al. [1991] presented a
genetic algorithm approach to learning low-cost routes and schedules for a large rail
freight transportation network; Cheng et al. [1996] proposed a hybrid genetic algorithm
to solve the fuzzy vehicle routing and scheduling problem, etc.

Some researchers realized that, the transportation planning and inventory control need
to be integrated, rather than operated separately [Chandra, 1993, etc.]. Dempster et al.
[2000] (and other researchers, such as Murthy et al. [2001], etc.) used IP (Integer
Programming) method to plan the inventory-transportation system. In these articles,
following objective functions are normally used: minimizing cost, minimizing total
distance covered or maximizing total volume delivered. Obviously, for some situations
(such as in distribution chain planning, etc), it is absolutely necessary to consider
transportation planning and inventory control simultaneously.

(3) Coordination (or cooperation) in distribution chain management

Weng [1999] (and Gavirneni et al., [1999], etc.) compared the performance of a
distribution network in the presence and absence of coordination, and pointed out that,
the coordination is important to achieve joint profit, especially when the demand is
sensitive to price. There are mainly two types of coordination in managing a

URN:NBN:no-3444

Distribution Chain

12

distribution chain: information coordination in managing multi-echelon inventory
systems [Gavirneni, 2001], and coordination between transportation and inventory
control [Geunes, 2001]. In these articles, models and formulae have been developed to
determine the coordination parameters.

(4) Performance estimation.

The following performance measures of a distribution chain are normally defined and
estimated in existing articles: profit, cost, customer service, flexibility, quality, asset
utilization, fill rate and lead time [Viswanadham, 1997, Jayashankar, 1998, Beamon,
1999, Solvang, 2001]. The main methods to estimate these performance measures are:
mathematical method [Beamon, 1999], Fuzzy Logic [Solvang, 2001], simulation based
method [Alfieri, 1997, Reis, 2001, Gjerdrum, 2001]. As stated in [Solvang, 2001],
performance estimation is becoming one of the major research areas in supply chain
(distribution chain) management. For this research field, further literature review will
be given in Chapter 7.

(5) Marketing skills and pricing methods

Carter et al. [2002] (and Min, et al. [2000]) studied the marketing skills and purchasing
social responsibility (PSR), and concluded that, PSR has direct and positive impact on
supplier performance.

Pricing is another important issue in managing a distribution chain. Singh [1997]
developed an IT support generic model to help decision makers in determining the
price for their product, and claimed that the resulted price enables the firm to meet all
its costs and make a profit whilst meeting its longer term strategic goals. Other pricing
model may be found in [Nagle, 1987] and [Singh, 1996].

When there are several companies in a distribution chain, these companies negotiate to
determine the transfer price, i.e. the price for products shipped between primary and
secondary companies, or secondary and tertiary companies. Gjerdrum [2001]
developed an IP model to determine the transfer price by maximizing the joint profit.
Other transfer pricing model may be found in [Carlos, 2001].

(6) Benefit of Internet

Internet has brought tremendous revolution for our life, including distribution chain
management. It may benefit the retailing industry [Rao, 1999], information exchange
[Dasgupta et al., 1999], and distribution chain operation [Gavirneni et al., 1999].
In the future, obviously it will play more important role for the integration of different
enterprises in a distribution chain.

2.5 Summary

In this chapter, after a simple introduction to supply chain, the formal definition for
distribution chain is given, and then the scope, mission and life cycle for a distribution

URN:NBN:no-3444

Chapter 2

13

chain are specified. Then, a literature search is carried out to illustrate the research state
on distribution chain management, and main research fields are identified and
categorized based on the division of life cycle. The main purpose for this literature
review is to identify the main concern for this dissertation.

It is impossible to study all fields in a dissertation. So, we need to select one of them as
our main concern. Among these research fields, distribution chain design is mainly
used to determine the configuration of a distribution chain, including number and
locations of distributors. Obviously, such result may affect the management of a
distribution chain for a long term, and once the distribution chain is formed, it is costly,
even impossible to change it. Because distribution chain design is so important, a lot of
study has been done on it. As indicated in Figure 2-6, it is the third most popular
research field in distribution chain management. But, unfortunately, the achievement is
not so satisfactory. As mentioned above, almost all of the existing methodologies view
the design of distribution chain as an optimization process. Distribution chain is a large
system. To design such a large system, a lot of factors, including qualitative and logic
factors, must be considered. Obviously, such factors are difficult to be considered in an
optimization model. During forming the optimization model, some less important
factors may be neglected. So, the design result must be verified by estimating the
performance of the designed distribution chain. Unfortunately, no verification is
provided in existing design methodologies. Based on this analysis, we will take
distribution chain design as our main concern in this dissertation. In the next chapter,
existing methodologies for distribution chain design will be further analyzed, and the
structure of our integrated design methodology will be illustrated.

URN:NBN:no-3444

Distribution Chain

14

URN:NBN:no-3444

Chapter 3

15

CHAPTER 3 STRUCTURE OF THE INTEGRATED
METHODOLOGY FOR DISTRIBUTION CHAIN
DESIGN

3.1 Introduction

Design exists almost every where in our life, especially in industry area. For example,
before developing a new product, it needs to be designed; before implementing a
manufacturing system, it also needs to be designed. The quality of design is a vital
factor for the success of developing this product, or implementing this manufacturing
system.

Same as any other systems, a distribution chain needs to be designed before
implemented. Korpela et al. [1999] described distribution chain design as “a strategic
level network design problem” (i.e. determining the number and location of
wholesalers and retailers strategically), and stated that “the nature of the decision is
long-term and the influence of the warehouse location decision on the profitability of
the company will last for years”. Baunach et al. [1995] analyzed Germany construction
industry, and gave the benefit of distribution chain design in more detail: by opening
two main depots and closure of five sub-depots (according to the analysis and design
result), their case company can increase turnover by 5%, and the profit by 20%. Other
literatures, such as [Carlos et al., 1997], [Escudero et al., 1999], [Lakhal et al., 2001]
etc., also stated that the design of distribution chain is a vital step to achieve the
success of distribution chain management.

Facing with volatile market and intensive competition, an enterprise always needs to
reconsider its distribution strategy. Aronsson [2000] examined the structural changes in
distribution, and concluded that best practice enterprises use a time based distribution
strategy. This means that the enterprise needs to design and re-design its distribution
chain from time to time. This statement illustrates the significance of distribution chain
design again.

Compared with its importance, research on distribution chain design is not so
satisfactory. In what follows, we will give a literature review on the main existing
methodologies for distribution chain design, then illustrate their shortcomings. Based
on this analysis, the structure of the integrated design methodology will be put forward.

3.2 Analysis of Existing Methodologies for Distribution Chain
Design

3.2.1 Review of existing design methodologies

Probably, [Geoffrion et al., 1974] is the first paper to use MIP (Mixed Integer
Programming) in designing a production-distribution system. Since then, mathematical
programming, heuristics, simulation annealing, etc. have largely been used to design a

URN:NBN:no-3444

Structure of the Integrated Methodology for Distribution Chain Design

16

distribution chain (or production-distribution network as called in these papers). In
existing methodologies, optimization is the main design approach [Vidal et al., 1997,
Sabri et al., 2000]. For an optimization model, following general form is explicitly or
implicitly applied:

Objective function: Minimize cost = production cost + inventory maintaining cost (3-1)

 + transportation cost +…… ,
 Or: Maximize profit = all revenues – total cost
 ……

Subject to: Production capacity constraints (3-2)
 Inventory capacity constraints
 Transportation capacity constraints
 ……

In existing design methodologies, following three steps are normally used to realize
this general model:

 Setting the design objective(s).
 Building the model.
 And solving the model.

In what follows, we will review existing design methodologies from these three
aspects.

(1) Setting design objective(s)

In existing design methodologies, minimizing cost and maximizing profit were
popularly set as design objectives [Brown et al., 1987 (minimizing cost), Cohen and
Lee, 1989 (maximizing profit), Cohen and Moon, 1991 (minimizing cost), Cole, 1995
(minimizing cost), Chen et al., 1995 (maximizing profit), etc.]. In these design
methodologies, the total cost includes production cost, facilities opening cost,
inventory maintaining cost, transportation cost, etc., and profit is expressed as total
revenue minus total cost.

Korpela et al. [1999] put forward a customer oriented approach to design a warehouse
network. They stated that “costs are often used as the major factor…, whereas enough
attention is not paid to the various quantitative and qualitative customer service
elements”. Based on this analysis, they took maximizing customer satisfaction as their
design objective.

Some researchers realized that, solely optimizing a single performance can not fulfil
the requirement of production-distribution management, so they began to study multi-
objective optimization model. Sabri et al. [2000] provided a multi-objective MIP
approach in supply chain design. In this optimization model, cost, customer service
level (fill rate) and system flexibility were considered simultaneously in their objective
function.

URN:NBN:no-3444

Chapter 3

17

(2) Building the model

As shown in the general form, there are two parts in an optimization model: objective
function and constraints. To simplify the design process, some researchers built models
for designing multi-commodity, but single-product production-distribution system
[Cohen and Lee, 1985, Geotschalckx et al., 1995, Dogan et al., 1999, etc.]. In the
objective functions of such models, following basic items were normally considered:

 Revenues at retailers.
 Production cost.
 Inventory opening and maintaining cost.
 Product delivery cost.
 Etc.

For constraints, following types of constraints were normally considered in these
models:

• Constraints for customer demand satisfaction.
• Capacity constraints for each facility
• Material flow balance.
• Etc.

For the decision variables, binary variables were used to indicate the selection/rejection
of a facility, and continuous variables were used to model the volume of products to be
produced at plant, kept at different warehouses, etc.

For some production-distribution systems, single-product is not the case, so Jayaraman
[1998] (and Sabri et al. [2000], etc.) extended the model into a multi-product situation.
For such kind of models, besides the items considered above, costs for different
production methods were also considered. Obviously, this makes the model more
complex, but more realistic and useful.

Because of the economic globalization, Hoder et al. [1986] described an international
plant location model. Besides the common items mentioned above, exchange rate
fluctuation, international interest rates, and other related factors were considered in
their model.

In practice, when designing a distribution chain, some factors (such as customer
demand, transportation time, etc.) are uncertain. The design methodologies mentioned
above neglected the uncertainties of these factors, and took them as constant. Such
kind of treatment can simplify the design model, but bring considerable error. To
improve the design, some existing design methodologies took demand as stochastic
[Escudero, 1999, MirHassani et al., 2000], and ISP (Integer Stochastic Programming)
or other stochastic mathematical methods were used to design the distribution chain.

URN:NBN:no-3444

Structure of the Integrated Methodology for Distribution Chain Design

18

(3) Solving the model

Vidal et al. [1997] claimed that, MIP is the main method in solving the models built
above. My search in database ISI releases the same result: about 85% of the existing
design methodologies used MIP to solve their models. Some of them also integrated
MIP with other techniques. For example, Korpela et al. [1999] used AHP (Analytical
Hierarchical Process) to analyze alternative warehouse operators, and then used MIP to
maximize the customer satisfaction; Jayaraman [1998] developed an efficient
procedure for warehouse network design: a MIP model was used to minimize the cost,
and a procedure, called as WARELOG, was used to solve this large scale model. As
uncertain demand was considered in [MirHassani et al., 2000], the stochastic form of
IP (Integer Programming), ISP was used to solve their model.

Besides MIP, other methods were also used to design a production-distribution system.
Berry et al. [1998] used genetic algorithm to optimize the topology of distribution
network. In this method, a chromosome represents one topology of the network, and
the optimized topology of distribution network is determined by minimizing cost.
Anthony [2000] used simulated annealing method to optimize the production-
distribution system. The simulated annealing process alters potential configurations to
arrive at the final configuration with lowest cost.

After solving the model, values for decision variables are acquired. Then the
configuration of the distribution chain (i.e. the numbers and locations of wholesalers
and retailers, and assignments of retailers to wholesalers) is determined. That is the
design result.

3.2.2 Shortcomings of existing design methodologies

In previous subsection, existing methodologies for distribution chain design are
reviewed. The common feature for existing methodologies is that, most of them used
optimization approach to design their distribution chains. When formulating their
objective functions, revenues and costs (including production cost, inventory
maintenance cost, product delivery cost, etc.) were considered. Of course, these items
are basic factors that need to be considered when designing a distribution chain. But,
distribution chain is a large and complicated system. Just considering these basic
factors is far from enough. For example, when selecting a retailer, its marketing
environment must be considered. It is unimaginable to select a retailer with bad
marketing environment, even if its product delivery cost (or other costs) is low.
Unfortunately, such qualitative factors can not be reflected in existing design
methodologies. As mentioned previously, formulae (3-1) and (3-2) are used as general
form in existing design methodologies. It is difficult to express qualitative or logic
factors in such mathematical models. But, without considering these factors, the resulted
configuration of the distribution chain can not be ideal, even if the model is claimed to be
optimized.

Decision maker’s preference is another important issue to be considered when locating
retailers, and this preference may be different for different products. For example, for

URN:NBN:no-3444

Chapter 3

19

some products, technical service is important, so the decision makers prefer to select
those retailers that can provide such technical service. But, such preference can not be
reflected in the existing methodologies too.

Existing design methodologies may encounter difficulty when designing large scale
distribution chains. In practice, when an enterprise wants to design or redesign its
distribution chain, it faces hundreds, even thousands of possible distributors. If inputting
these candidates directly into the existing design methodologies, the resulted optimization
model may be very large, even intractable to be solved.

If we set a distributor evaluation and selection module before designing the distribution
chain, the problems mentioned above may be solved. By this module, a distributor can be
evaluated comprehensively. All factors related to the profit (including those qualitative and
logic factors) can be considered, and the decision maker’s preference may be reflected in
the evaluating process. After evaluating all possible distributors, a set of eligible ones are
selected to design a distribution chain. This filter process can reduce the scale of the design
model, and make it tractable.

There is another type of shortcoming in existing design methodologies: no verification
is set for the design result. As mentioned in previous subsection, after solving the
model, design result is obtained. This result is taken as the final design without
verification. Distribution chain is a large system. Without verification, it is dangerous
to implement the design directly. For example, in existing design methodologies, the
static feature of a distribution chain was considered, but the dynamic feature and
interaction between different processes were neglected. This raises a question: whether
there is conflict when operating the designed distribution chain? The existing design
methodologies can not answer this question.

At the same time, existing design methodologies can not guarantee that the performance
of the designed distribution chain is satisfactory. The design model is an abstract of reality.
During the abstracting process, some less important properties of the system are ignored. It
is not guaranteed that the ignored properties are trivial for the performance of resulted
distribution chain. This raises a question: although optimization method has been used in
the designing process, is the performance satisfactory for the decision makers of the host
enterprise? The existing design methodologies can not answer this question too.

All these shortcomings are vital, not trivial for the success of distribution chain
management. Based on this analysis, it is necessary to develop a new methodology for
distribution chain design.

3.3 Structure of the Integrated Methodology for Distribution Chain
Design

Distribution chain is a large system. Without guidance of systematic approach, the
result in designing such a large system may be incomplete, or even useless. The
general problem-solving framework (as shown in Figure 3-1) has long been recognized
as a useful model for structured decision making [Wu, 1994]. In this subsection, first,
this general problem-solving framework is simply introduced. Then, with the guidance

URN:NBN:no-3444

Structure of the Integrated Methodology for Distribution Chain Design

20

of this systematic approach, the structure of the integrated methodology for distribution
chain design is illustrated.

3.3.1 General problem solving framework

Wu [1994] illustrated a general problem-solving framework, shown as Figure 3-1. This
framework is composed of following blocks:

(1) Analysis of situation. This is similar to answer “where we are now?” in a journey
planning process. Analysis of the
problematic situation is the first stage for
this systematic approach. The aim of this
stage is to analyze the existing system and
identify the problem to be solved.

(2) Formulation of objectives. Having
answered the question “where we are
now?” in planning a journey, it is time to
answer “where to go?” The goal for this
stage is to determine the required
performance of the system to be designed,
identify objectives and constraints. The
combination of first two stages in this
general problem-solving model, i.e.
analysis of situation and formulation of
objectives, has been referred as problem
formulation, because these two stages
together identify the gap between the
present system state and future one.

(3) Synthesis of concepts. After
completion of problem formulation, we
come to the next phase: problem solving
phase, synthesis and analysis of concepts
in Figure 3-1 belong to this phase. The
first task involved in problem solving is to
generate a set of possible alternative
routes to the objectives. That is finished
by “synthesis of concepts”. Synthesis of
concepts requires creation of a comprehensive set of alternative solutions. The number
of ideas generated should be as great as possible given the time and resource
constraints of project.

(4) Analysis of concepts. After generating all possible routes, we come to the second
stage of problem solving phase: analysis of concepts. Analysis of concepts can be
viewed as a continuous refining process. With this process, the original set of

Initiation

Analysis of situation

Formulation of objectives

Synthesis of concepts

Analysis of concepts

Evaluation of concept

Making decision

Solution

Figure 3-1 General problem solving cycle
[Wu, 1994]

URN:NBN:no-3444

Chapter 3

21

possibilities is gradually narrowed down, or converged, until one or more solutions are
left which satisfy the project objectives.

(5) Evaluation of concepts and making decision. After problem solving process, one or
more solutions are determined. The next task is to evaluate the refined solution(s) and
then make the final decision, that is the decision making process. During decision
making process, the first task is to verify whether the refined solution(s) can fulfill the
requirement of system objectives. If it is true, the final decision is made, and the
solution is output; otherwise, the problem formulating and solving processes need to be
re-considered.

3.3.2 Structure of the integrated methodology for distribution chain
design

With the guidance of this general problem solving cycle, the structure of integrated
methodology for distribution chain design is developed, as shown in Figure 3-2. This
structure is mainly composed of three blocks: problem formulation, system design and
making decision. In the first block, the problem is analyzed. A clearly understanding of
the problem is the foundation to solve it successfully. In the second block, steps and
methods for solving the problem are presented. By applying these procedures and
methods, the distribution chain is designed. In the third block, this design result is
evaluated, and the final solution is given out. Next, we will explain these three blocks
in detail.

(1) Problem formulation

In this phase, the first task is to analyze the present situation of the system. Based on
this analysis, the designers need to determine what kind of distribution chain will be
designed. To answer this big question, following two sub-questions need to be
answered:

 What is the object to be distributed? This is a simple but crucial question, because
different object may result in different types of distribution chain. For example,
distribution chains used to distribute service or product are different.

 What type of distribution chain will be designed? For the host enterprise, to sell its
product, it may directly face the customers, or employ retailers (even wholesalers)
to distribute its product. At this point, the designers need to decide which type of
distribution chain is appropriate. This may be decided according to the product’s
characteristics.

After determining the type of a distribution chain, designers need to specify the design
scope. Distribution chain is a large system. When designing it, a lot of parameters need
to be determined. It is impossible to address all issues in a design methodology. So,
before designing it, designers need to narrow the problem, and specify their concerns.

Determining constraints is another issue that must be addressed before beginning the
design process. Some basic constraints such as production capacity of the host

URN:NBN:no-3444

Structure of the Integrated Methodology for Distribution Chain Design

22

enterprise, transportation capacities of warehouses, etc. must be specified before
designing a distribution chain.

After analyzing the design object, designers can begin to set the designing objectives.
Normally used objectives include minimizing cost, maximizing profit, etc. What kind
of objective will be used in designing a distribution chain depends on the state of the
enterprise, its present problems, and its goals.

The problem formulation phase is
an iterative process: after
analyzing the design object, the
objectives are set. After setting
objectives, the design object may
be re-analyzed, and the
possibility to realize these
objectives is checked. Such
iterative process will continue
until the design object is clearly
understood and the objectives are
properly set.

(2) System design

Different from existing design
methodologies, a pre-design
process (i.e. evaluation of
possible distributors) is added
into this system design phase. In
this pre-design process, all
possible distributors (including
wholesalers and retailers) are
evaluated by an evaluation
module. This module is partly
similar to “synthesis of concepts”
block in Figure 3-1. After this
evaluation, a set of eligible
distributors are selected as
candidates according to pre-
defined criteria, and only these
candidates are allowed to go into
the following design process.
Main functions of this evaluation
module are depicted as follows
(the detail of this module is
referred to chapter 5).

 Situation analysis

Setting
objectives

Problem
formulation

 Evaluation of
possible

distributors

Design of
distribution

chain

System design

 Performance
evaluation for
the designed
distribution

chain

Decision

Making
decision

Figure 3-2 Architecture of the new distribution
chain design methodology

Performance
satisfied?

N

Y

Start

Design result

URN:NBN:no-3444

Chapter 3

23

• It can evaluate a distributor comprehensively. After a systematic analysis, almost
all of the factors related to the design objectives, including qualitative even logic
factors, are listed hierarchically by AHP (Analytical Hierarchical Process). These
factors will be considered in the evaluating process.

• It is possible to integrate decision maker’s idea into the evaluating process. The
evaluation of a distributor is finished by an integrated FL-ABL approach. Both FL
and ABL have capability to integrate semantic expertise and complicated
knowledge into the inference process. This makes it possible to consider decision
maker’s preference in the evaluation module.

• It can reduce the scale of design model remarkably. After evaluating all possible
distributors, only a set of them are selected to enter the next process: design of
distribution chain. This can reduce scale of the design model, and make it possible
to use our design methodology in practice.

After evaluating all possible distributors, a set of selected distributors are input into the
next module: design of distribution chain. Detail for the module of distribution chain
design is referred to Chapter 6. By this design module, the configuration of a
distribution chain is determined, inventory parameters at each node of the distribution
chain are optimized, and routes for delivering product between different nodes are
identified. All models in this design module are formulated based on the objectives and
constraints set in problem formulation phase.

(3) Making decision

After system design phase, the design process for a distribution chain is finished. To
verify the design result, a simulation based module is developed to evaluate the
performance of this designed distribution chain. The detail of this module is referred to
Chapter 7. By this performance evaluation module, following questions can be
answered:

• Whether there are conflicts when running this designed distribution chain? As

mentioned above, this performance evaluation module is simulation based, so it
can reflect the dynamic properties of activities and interaction between them. This
makes it possible to find conflicts when implementing the designed distribution
chain.

• Whether the performance of this “to be” distribution chain is satisfactory? By
running the simulation model, performance measures such as cost, profit, etc. can
be estimated. This gives us opportunity to check whether the designed distribution
chain is satisfactory.

After performance evaluation, the decision on whether this designed distribution chain
can be implemented may be made. If the designed distribution chain can satisfy the
objectives set in problem formulation phase, then the design methodology outputs the
design result as final solution. If one or more of the performance measures is not
satisfactory, we may find the cause by analyzing this simulation model, and then re-
consider the corresponding factors in the former pre-design and design modules.

URN:NBN:no-3444

Structure of the Integrated Methodology for Distribution Chain Design

24

Three modules, namely, distributor evaluation module, design module and
performance evaluation module, form the core of this integrated design methodology.
The role of each module and the design process of a distribution chain can roughly be
shown as Figure 3-3. Distributor evaluation can be viewed as pre-design of a
distribution chain. To some extent, design of a distribution chain can be viewed as
selection of possible distributors, and this pre-design module provides candidates for
the selection process. Performance evaluation can be viewed as post-design of a
distribution chain. It provides opportunity for us to verify the design result.

As mentioned in previous subsection, in existing methodologies, a distribution chain is
designed by three steps: setting design objective(s), building the model and solving the
model. Comparing this design procedure with Figure 3-2, we find that, two modules
are added into the integrated methodology, i.e. distributor evaluation module and
performance evaluation module. In our integrated design methodology, these two
modules are indispensable.

3.4 Summary

In this chapter, first, a literature review is carried out on the existing methodologies for
distribution chain design. Based on the analysis of these existing methodologies, a new
methodology, integrated methodology, is put forth for the design of distribution chain,
and then its structure is illustrated, as shown in Figure 3-2. This is a key figure in this
dissertation. With the guidance of this structure, this integrated methodology is
developed, and each module will be illustrated in the later chapters of this dissertation.
Based on this structure, the framework of this dissertation is shown as Figure 3-4.

Module of
performance
evaluation

All possible
distributors

A set of
selected

distributors

Designed
distribution

chain

Figure 3-3 The design process for a distribution chain

Module of
distributor
evaluation

Performance
measures

Module of
distribution
chain design

URN:NBN:no-3444

Chapter 3

25

Chapter 2 Distribution chain

Chapter 3 Structure of the integrated methodology for distribution chain design

Problem formulation

System design

Evaluation of
possible

distributors

Design of
distribution chain

Making decision

Chapter 4 Problem
formulation

Chapter 5
Evaluation of

possible
distributors

Chapter 6 Design
of distribution

chain

Chapter 7 Performance
evaluation for the designed

distribution chain

Chapter 8 A numerical example for the
design of distribution chain

Chapter 9 Conclusion and future work

Figure 3-4 The framework of this dissertation

URN:NBN:no-3444

Structure of the Integrated Methodology for Distribution Chain Design

26

URN:NBN:no-3444

Chapter 4

27

CHAPTER 4 PROBLEM FORMULATION

As shown in Figure 3-2, the first stage in designing a distribution chain is problem
formulation. A good understanding of the facing problem is the prerequisite to solve it
successfully. As mentioned in the previous chapter, there are two processes in this
phase: situation analysis and setting objectives. Next, we will illustrate these two
processes in detail.

4.1 Design Object and Scope

These two issues are
determined by situation
analysis. In this process, based
on the analysis of host
enterprise’s present situation,
following questions are
answered: what type of
distribution chain will be
designed (design object), and
what to be determined by this
design (design scope).

(1) What to be distributed

Before determining the type
of distribution chain, we need
to answer: what is the object
to be distributed? Normally,
there are two kinds of objects:
physically visible object:
products and physically
invisible object: service. As
manufacture is the main part
in industry area, the former
one is selected, i.e. we will
design a distribution chain
which is used to distribute
products. In modern industry,
mass production is still one of
the main manners in
producing products, so we
assume that the production
mode for the host enterprise is
mass production.
 Figure 4-1 General distribution chain types

Factory
Customer

demand

Distribution
center

Wholesalers Retailers

Factory Customer

demand
Distribution

center

Factory
Customer

demand

Distribution
center

Retailers

Factory Customer

demand

Distribution
center

Intermediate
nodes

Retailers

(d)

(a)

(b)

(c)

URN:NBN:no-3444

Problem Formulation

28

(2) Type of the distribution chain

For a distribution chain used to distribute products, generally, there are following four
types (as shown in Figure 4-1):

 The enterprise directly distributes its products, as shown in Figure 4-1(a).
 The enterprise employs retailers to distribute its products, as shown in Figure 4-

1(b).
 The enterprise adds a tier of wholesalers between its distribution center and

retailers, as shown in Figure 4-1(c).
 The enterprise adds two or more tiers of wholesalers between its distribution

center and retailers. Some times, a wholesaler may go around the descendent
wholesaler, and directly reaches the retailer(s), as shown in Figure 4-1(d).

For an enterprise with mass production, normally, it does not distribute its products by
itself, so the first type is out of our consideration. To achieve scale effects for small
customers, normally, host enterprises set regional distribution centres at different
customer zones, and these centres act as wholesalers for those zones, so the second one
(direct distribution) is not so popular, and it is out of our consideration too. The third
one is a general model of distribution chain [Heijden, 2000]. Moreover, by studying
this common and basic form, the general principle for designing a distribution chain
can be turned out, and this principle may be extended to design those complicated
distribution chains (such as the forth type as shown in Figure 4-1(d)). The general
design principle turned out here may also be applied for direct distribution. For
example, we can view a wholesaler in Figure 4-1(c) as a distribution centre, then the
relationship between this wholesaler and retailers connected to it can be an example of
direct distribution.

To simplify the design object and focus on the design principle itself, in this
dissertation, we will take the third type as design object, i.e. we will design a
distribution chain with one distribution center, one tier of wholesalers and a set of
retailers. For the designs of more complex distribution chains (e.g. the distribution
chains with more tiers of wholesalers, or distribution chains implementing several
distribution strategies), we leave them as future work. In this basic form, we assume
that the host enterprise will build distribution center by itself. Here, wholesalers are
referred to those regional distribution centres which belong to the host enterprise, so
they will also be built by the host enterprise itself. Retailers are selected from existing
ones. These assumptions accord with reality.

 (3) Design perspective: process design

Before specifying design scope, we need to determine the design perspective.
According to [Aronsson 2000], there are three perspectives in designing a supply chain
(or distribution chain): process design, function design and organization design.
Process design is mainly concerned with the consecutive order and delivery cycles,

URN:NBN:no-3444

Chapter 4

29

including their lead times, storage point locations, activities inside each cycle and their
integration. Function design determines functions for each facility, resources needed
for each function, and relationship between different functions. Organization design is
concerned with how the logistics is organized within and between companies,
including the description of how the responsibility for logistics activities is organized
in the company, which logistics activities are performed within the company, and
which are outsourced, etc. Process design is the basic component for the entire design
of a distribution chain. Only when the process design is determined, the functions for
each facility can be specified, and the organization can be designed. For its
significance, in this dissertation, we will concentrate on process design of a distribution
chain.

(4) Design scope

In this dissertation, we will concentrate on following issues in designing a distribution
chain:

 The configuration of the distribution chain, including number and locations of
retailers and wholesalers, and the assignment of retailers to wholesalers.

 Inventory control policy and parameters at each node of the distribution chain.
 Routes for vehicles to deliver products between different nodes (i.e. from

distribution center to wholesalers, and from wholesalers to retailers).

(5) Other issues

Constraints such as production capacity, transportation capacity, etc. are specified
according to the present situation of the host enterprise. To concentrate on the basic
issues in designing a distribution chain, we do not consider exchange rate fluctuation,
international interest rate, etc. in this dissertation.

According to above analysis, the delimitation of our integrated methodology for
distribution chain design is formed and shown in Figure 4-2. The shaded part is our
concern.

Object to be
distributed

Scale of
enterprise

Production
mode

Design
perspective

Customers

 Small Per unit
production

Function design Few customers

Products Medium to
large

Mass
production

Process design Many customers

Service Organization
design

Figure 4-2 Delimitation of the integrated methodology for distribution chain design

URN:NBN:no-3444

Problem Formulation

30

4.2 Design Objective

Following three objectives are widely applied in designing a distribution chain (or
supply chain):

(1) Minimizing cost. Each activity inside a distribution chain causes cost. By

minimizing the sum of these costs, activities may be organized properly.
(2) Maximizing profit. There is no doubt that the objective for an enterprise is to

make profit. Without being profitable, there is no meaning for an enterprise to
survive. To some extent, maximizing profit also means minimizing cost, so this
objective can partly cover the above one.

(3) Maximizing customer satisfaction. In recent years, this objective has been
attracting attention of researchers. Customer satisfaction is a complex issue, and it
is not easy to be described as profit or cost. Korpela et al. [1999] deducted
customer satisfaction from three aspects: reliability, flexibility and customer’s
logistics costs.

For an enterprise, maximizing profit and satisfying customer requirements are basic
objectives, and they are mutually affected. Making money is the ultimate goal for an
enterprise, but if it only considers its profit, and pays no attention on customer
requirements, it will lose the market share and then profit eventually. Based on this
point, in this dissertation, we set the objective for designing a distribution chain as:
maximizing profit subject to satisfying customer requirements. Generally, maximizing
profit is the ultimate objective of an enterprise, and satisfying customer requirements is
for its long term goal to win the competition. Next, we will discuss these two issues in
detail.

(1) Maximizing profit

According to the formula:

 Profit = price × sale - cost

Maximizing profit means maximizing price, volume of sale and minimizing cost. None
of the three factors is isolated, and the relationship between them is complicated. Next
we will discuss a little about these three factors.

Price is a crucial parameter in managing a distribution chain. Higher price means more
revenue, but unreasonably high price may cause the loss of market share, then lower
revenue. Singh et al. [1997] stated the pricing principle as: “the prices and resulted sale
volumes should enable the firm to meet all its costs and make a profit whilst meeting
its longer term strategic goals of capturing or retaining appropriate levels of market
share”.

Volume of sale is related to many factors such as market environment, price, product
quality, customer service, etc. To have better market environment is one of sub-

URN:NBN:no-3444

Chapter 4

31

objectives to manage a distribution chain. It is unimaginable for an enterprise to locate
its retailers where only a few of its products are needed. So, when the enterprise selects
its retailers, it needs carefully to consider the present situation and market potential for
retailers. The detail for retailer selection is referred to Chapter 5. As mentioned above,
high price is normally a negative factor for volume of sale. Good product quality and
customer service are positive factors to volume of sale, but both of them mean more
cost. The enterprise needs to make a compromise and select an appropriate standard of
quality and level of customer service.

Cost is mostly related to the inside activities such as purchasing raw material,
production process, maintaining inventory, delivering products, etc. According to
[Themido et al., 2000], every activity costs a set of resources, including labour,
equipment, materials, etc. Given standard of quality and level of customer service, an
enterprise needs to optimize its production and distribution planning, and improve its
management to reduce cost.

(2) Satisfying customer requirements

Satisfying customer requirements is closely related to some performance measures
such as fill rate, flexibility, etc. Next, the relationship between customer satisfaction
and these performance measures will be discussed.

Mobråtan [1996] (reference from [Solvang, 2000]) stated that, the customer will be
satisfied when following six Rs are present:

 the Right volume of the Right bundle of products and services
 to the Right place
 at Right time
 in Right quality and
 at Right price.

The six Rs can partly be indicated by fill rate (which is defined as the fraction of
demand satisfied from stock on hand [Heijden, 1999]). Obviously, raising inventory
level can increase fill rate, but this will cause the increase of cost for maintaining
inventory. The challenge for decision makers is to find the balance point between
satisfying customer requirements and reducing cost.

Solvang [2000] defined the flexibility of supply chain as: “the ability of a supply chain
to satisfy dynamic customer requirements by handling environmental uncertainties
with profitability”. In the current buyer-market, to win the drastic competition,
enterprise needs to improve its flexibility to properly handle the urgent deliveries,
special requests, etc. Of course, this will also cause the increase of cost, so the decision
maker is facing same problem: balance between improving flexibility and reducing
cost.

URN:NBN:no-3444

Problem Formulation

32

4.3 Summary

In this chapter, following two questions are answered:

(1) What kind of distribution chain will be designed by the methodology developed in

this dissertation? Figure 4-2 gives the answer, and describes different facets of
such a distribution chain.

(2) What is the objective to design a distribution chain? In this dissertation, we specify
the objective as: maximizing profit subject to satisfying customer requirements.
Here, customer satisfaction may be indicated by some performance measures such
as fill rate, flexibility, etc.

After answering these two questions, the exact designing process for a distribution
chain can begin.

URN:NBN:no-3444

Chapter 5

33

CHAPTER 5 EVALUATION OF POSSIBLE DISTRIBUTORS

According to Figure 3-2, after formulating the problem, we come to the system design
phase. Two modules are involved in this phase: evaluation of possible distributors and
design of distribution chain. The first module will be finished here, i.e., in this chapter
we will develop a module to evaluate all possible distributors, and then select a set of
eligible ones to design the distribution chain.

5.1 Introduction

When a host enterprise wants to design its distribution chain, it faces a lot of possible
distributors. The number of possible distributors is so large, that it is difficult to begin
the designing process at once. So, the host enterprise needs a distributor evaluation and
selection module to filter all the possible distributors, and select a set of eligible ones to
design its distribution chain. Of course, the method used here may also be applied in
partner selection for an enterprise.

The research on partner evaluation and selection has received considerable attention of
academicians and practitioners over the last several decades. Next, we will introduce
two typical distributor selection modules to illustrate the main achievement in this area.

Cavusgil et al. [1995] developed an expert system for the selection of a foreign
distributor. In this paper, a distributor is evaluated from five aspects, namely, financial
& company strength, product factors, marketing skills, commitment and facilitating
factors, then, an expert system is used to evaluate a distributor. Actually, the approach
is a scoring method: every aspect is given a weight to express its importance and a
score to express its priority. The final evaluation of a distributor is achieved by
summing up the weighted scores.

Min et al. [1999] developed a module for the relocation of a hybrid
manufacturing/distribution facility. In this module, six location categories are
considered when evaluating a hybrid manufacturing/distribution facility, i.e. site
characteristics, cost, traffic access, market opportunity, quality of living and local
incentives. Then, AHP (Analytic Hierarchical Process) is used to list criteria for all
location categories. The final evaluation of a distributor is also given out by summing
up the weighted scores for all criteria.

For existing modules, a distributor is normally evaluated by following process: identify
a set of factors, and evaluate it by scoring method. By analyzing these existing
modules, following three questions are raised:

 Are these factors complete when evaluating a distributor?
 How to acquire information from possible distributors? The possible distributors

are geographically distributed. This makes the information acquisition difficult.
But the method to acquire information from distributors is not touched in the
existing modules.

URN:NBN:no-3444

Evaluation of Possible Distributors

34

 Whether the scoring method, which largely depends on the subjective judgment
(expertise), and can not be realized by software, is appropriate when evaluating a
distributor?

To answer these questions, in this chapter, a new evaluation module is developed, by
which a distributor is evaluated according to following steps:

 Identify the factor set which needs to be considered when evaluating a distributor.
 Collect data from possible distributors by a mobile agent based information

acquisition system
 Evaluate a distributor quantitatively by an integrated FL-ABL approach.

These three steps will be illustrated in the following sections.

5.2 Factor Set

5.2.1 Literature review

As shown in Figure 5-1, Min et al. [1999] considered six categories in their evaluation
module. This module mainly considered the external condition (environment) of a
distributor, but ignored the internal factors, such as the facility for maintaining
inventory, communication system, financial state of the company, etc. Obviously, this
factor set is not complete.

Cavusgil et al. [1995] evaluated a foreign distributor from five aspects: financial &
company strength, product factors, marketing skills, commitment and facilitating
factors. For every aspect, there are several factors to be considered, as shown in Figure
5-2. This model pays more attention on software of a company, but limited attention on
the hardware and environment of a company, so the factor set is not complete too.

Goal: Relocation of a hybrid manufacturing/distribution facility

Site
characteristics

Cost Traffic
access

Market
opportunity

Quality of
living

Local
incentives

Compatibility

Capacity

Deed

Building

Expension

Soil

Start-up

Operating

Highway

Rail

Terminal

Waterway

Union

Tax

Park service

Laws

Skilled labor

Customer

Competitor

Alpha

Market
potential

Supplier

Climate

Crime

Living
expense

Congestion

Figure 5-1 Hierarchical representation of the relocation of a hybrid manufacturing
distribution facility

URN:NBN:no-3444

Chapter 5

35

As there was no systematic analysis in the above literatures, the resulted factor set is
not complete. Incomplete factor set may cause inaccurate, even wrong evaluation.
Next, we try to determine a relatively complete factor set by systematic analysis.

5.2.2 A relatively complete factor set for evaluating a distributor

All factors related to the design objective set in Chapter 4 need to be considered when
evaluating a distributor. These factors can be divided into two parts: internal factors
and external factors. A distributor may be a firm or other kind of economic entity.
Internal factors are referred to the factors that are associated with the internal
operations of a firm, e.g. maintaining inventory, transporting materials etc. External
factors are referred to the factors that are associated with the interactions between the
firm and its surrounding marketing environment. Both will be discussed next.

5.2.2.1 Internal factors

Like any other economic entities, the internal status of a firm can be evaluated from
two points of view: hardware and software. Normally, hardware is referred to those
physically visible objects, such as infrastructure, human resource, etc. Software is
referred to physically invisible factors, such as management, commitment, etc. Based
on this analysis, all internal factors can be categorized into hardware factors and
software factors.

Overall qualification

Financial &
Company strength

(1). Ability to finance
initial sales and
subsequent growth
(2). Ability to raise
additional funding
(3). Ability to provide
adequate promotion and
advertising funds
(4). Product and market
expertise
(5). Ability to maintain
inventory
(6). Quality of
management team
(7). Reputation among
past and current
customers
(8). Ability to formulate
and implement 2 to 3
years marketing plans

Product factors
(1). Familiarity with
the product
(2) Complementarity
of product lines
(3) Quality and
sophistication of
product lines
(4). Condition of
physical facilities
(5). Patent security

Marketing skills
(1) Experience
with target
customers
(2) Geometric
coverage
(3) Customer
service
(4) On-time
deliveries
(5) Sales force
(6) Market share
(7) Participation in
trade fairs
(8) Member in
trade association

Commitment
(1) Volatility of
product mix
(2) Percent of
business accounted
by a single supplier.
(3) Willing to keep
sufficient inventory
(4) Willing to
commit advertising
dollars
(5) Commitment to
achieving minimum
sales targets
(6) Undivided
attention to product
(7) Willing to invest
in sales training
(8) Willing to drop
competing product
lines

Facilitating factors
(1) Connections
with influential
people.
(2) Working
experience with
other exporters
(3) Track record
with past suppliers
(4) Knowledge of
international
business
(5) Proficiency in
English

Figure 5-2 Criteria for evaluating foreign distributors

URN:NBN:no-3444

Evaluation of Possible Distributors

36

Hardware factors. The hardware of a firm is mainly composed of three parts:
infrastructure, human resource and financial capability. As this firm will possibly act as
a distributor, its main activities are maintaining inventory, delivering product, and
communication. So, the infrastructure we care about includes inventory carrying
facilities, transportation facilities, and communication system. In what follows, all
hardware factors will be introduced individually.

 Inventory carrying facilities. An inventory carrying facility is evaluated from three
aspects: its capacity, cost, and reliability. Inventory carrying capacity can be
indicated by the floor space of the firm. Cost is measured by the carrying cost per
unit floor space. During running in a firm, a part of the floor space may be broken.
If less part of the floor space is broken, we say that the facility is more reliable;
vice versa. So the reliability of inventory carrying facility is indicated by the
percentage of broken floor space during a given period (e.g. one year).

 Transportation facilities. Here, the transportation facilities are mainly referred to
the facilities used for delivering product. A transportation facility can also be
evaluated from three aspects: capacity, cost, and reliability. Transportation
capacity is indicated by the firm’s throughput. Cost is represented by the product
delivery cost per day. During delivering products, some of the transportation
facilities (e.g. vehicles) may be broken. If fewer facilities are broken, we say that
the transportation system is more reliable; vice versa. So the reliability of
transportation facilities is also indicated by the percentage of broken facilities
during a given period.

 Communication system. The communication system for a firm is evaluated from
two aspects: communication methods and cost. The normal communication
methods are telephone, fax, Intranet and Internet. Cost is measured by the
communication cost per unit time (e.g. per month) for a given workload.

 Human resource. Human resource is one of the most important resources for a
distributor. The human resource for a firm can be evaluated from two aspects:
quantity and quality. The number of employees is associated with the scale of a
firm and cost for salary; quality of employees is indicated by the percentage of
educated (or trained) workers.

 Financial capability. Financial capability is another hardware factor for a firm. As
the firm will act as a distributor, three types of financial capability are mainly
concerned: capability to finance sale, capability for additional funding and
capability for funding advertisement.

Software factors. A firm possessing good hardware can not guarantee successful
operation. The software of this firm is equivalently important as its hardware.
Management is the basic type of software factor for a firm. As the firm will act as a
distributor for a given product, its commitment to the host enterprise, its familiarity and
technical support to the product also need to be evaluated. In what follows, we
illustrate these software factors individually.

 Management. The management for a firm can be evaluated from three aspects: the
firm’s efficiency, management cost, and safety. The efficiency of a firm can be
reflected by the throughput per employee. For management costs, we mainly care

URN:NBN:no-3444

Chapter 5

37

about transaction costs here. Safety can be indicated by the number of accidents
for a given period. As the firm is used to distribute a special product, the
percentage of damaged product is also considered as a type of safety.

 Commitment. If a firm does not commit to the host enterprise, it can not distribute
the product efficiently even if it has this capability. For a distributor, normally,
three types of commitment are evaluated: willing to keep appropriate inventory,
willing to provide advertisement fund, and willing to invest in training employees.

 Product factors. When the host enterprise wants to employ a firm to distribute its
product, it hopes that the firm is familiar with the product, or has experience in
selling similar products. For some products, producer needs to provide service
after selling. To reduce supporting cost, the host enterprise hopes that the firm has
technical capability to provide such services. Product factors mentioned here are
concerned with these items.

5.2.2.2 External factors

For a distributor, two kinds of external factors need to be considered: its location and
marketing environment. The former one is related with the product delivery, and the
later one is associated with product sale.

Location factors. Following two factors are normally viewed as location factors:

 Unit product delivery cost for the firm. This factor includes two sub-factors:
distance between the host enterprise and the firm, and the freight balance for that
firm. In order to reduce product delivery cost, the host enterprise hopes to select
those firms with lower unit product delivery cost.

 Traffic access to the firm. Normally, there are four kinds of possible traffic access
to a firm: highway, waterway, railway and aircraft. Which one is preferred
depends on the product property, and this preference will be reflected in the
inference rules used when evaluating this possible distributor.

Marketing environment. As the firm will act as a distributor for a given product, its
marketing environment is vital for the success of distribution chain management. For a
marketing environment, following issues are normally evaluated:

 Buying power. It is indicated by the net personal income (= gross personal income
− personal taxes − non-tax payment) [Min et al, 1999]. Buying power is a measure
of market ability to buy. Host enterprise will select those firms located in the
region with higher buying power.

 Geographical coverage. It is expressed as the number of possible customers
covered by the firm. Obviously, larger geometric coverage means larger market
potential. Market potential is a crucial factor for long term success of the
distribution chain management.

 Market share of the firm. Here, it is referred to the general market share of the
firm in its customer zone. This is a synthetic reflection of reputation, service, etc.
for the firm. In Chapter 6, we will talk about market share again. At that time, it

URN:NBN:no-3444

Evaluation of Possible Distributors

38

will be referred to the market share only for the products to be distributed. By this
market share, the exact customer demand at this retailer can be calculated.

 Number of competitors. Competitors are referred to those firms that sell the same
product as the one produced by the host enterprise. Obviously, this is a negative
factor for the enterprise to sell its product. The more competitors are there in the
region, the stronger the competition will be when the enterprise initiates its sale.

 Tax reduction. It can be viewed as an incentive factor from the local government.
Tax reduction can directly reduce cost for the enterprise, and to some extent, it
also means the law support to the product to be distributed.

 Number of skilled labors. If the region where the firm is located can provide
enough skilled labor, the firm may employ high quality workers. This is important
for the further development of this firm.

Now, about 30 factors are identified to be considered when evaluating a distributor. As
stated in [Min et al., 1999], AHP is an effective tool for dealing with decisions
involving a large number of factors with different scales. Obviously, it is the
appropriate tool to organize all these factors. The organized factors are shown in Figure
5-3. Each factor listed at the rightmost tier of Figure 5-3 can be indicated by a
parameter. In next section, we will illustrate how to acquire values on these parameters
from possible distributors.

5.3 Acquiring Information from Possible Distributors

In the previous subsection, factors needed to be considered when evaluating a possible
distributor are identified. Before beginning the evaluation process, parameters for these
factors need to be acquired from possible distributors. All possible distributors are
distributed in geography, and both the number of possible distributors and the scale of
information needed for one possible distributor are large. This raises a question: how to
acquire the large amount of information from distributors efficiently and economically?
In this subsection, we will mainly illustrate a mobile agent based information
acquisition system, and then a prototype is given to show the designing principle.

5.3.1 Introduction

There are several ways for an enterprise to acquire information from distributors. For
example, it can send a man (a real agent) to collect data, or alternatively, it can acquire
information by telephone, fax etc. Internet provides another alternative for acquiring
information from possible distributors. For traditional information acquisition methods
(e.g. telephone, fax, etc.), it is unnecessary to explain them here. In what follows, we
will mainly illustrate how to acquire information via Internet.

To acquire information via Internet is not a new idea. The normally used methods can
be divided into asynchronous (the message sender proceeds to next task without
waiting for the reply from the message receiver) and synchronous (not proceed until
receiving the reply) approaches. Among asynchronous messaging methods, E-mail is
the most familiar one for us. As it is easy to be used, here, we do not mention any more
on it.

URN:NBN:no-3444

Chapter 5

39

Floor space (m2). Input: 6000

Cost ($/m2). Input: 8

Percentage of broken space (%). Input: 5

Throughput (tonnes/day). Input: 90

Cost ($/day). Input: 100

Percentage of broken vehicles (%). Input: 2

Communication method. Input: Tel.-Fax-Int

Communication cost ($/month). Input: 150

Number of employee. Input: 500

Average salary ($/month). Input: 2000

Percentage of educated employees (%). Input: 50

Inventory
carrying
facility
Method: FL
Result: 60.1

Hardware
Method: FL
Result: 54

Internal
factor
Method: FL
Result: 56.2

Evaluation of
a distributor
Method: FL
Result: 59.4

Capability to finance sale (M$). Input: 3

Capability for additional funding (M$). Input: 5

Capability for funding ad (M$). Input: 1

Transportation
facility
Method: FL
Result: 75.1

Comm. sys.
Method: ABL
Result: 4

Throughput per employee. Input 500

Transaction costs ($). 500

Number of accidents per year. Input: 5

Product damage percentage (%). Input: 0.5

Willing to keep inventory. Input: fully

Willing to provide fund for ad. Input: partly

Willing to invest in training. Input: fully

Familiarity with the product. Input: familiar

Past experience. Input: experienced

Technical support. Input: partly

Traffic access. Input: highway-rail

Unit product delivery cost ($). Input: 50

Buying power ($). Input: 800

Geographical coverage. Input: 300000

Market share of the firm (%). Input: 30

Number of skilled labors. Input: 3000

Number of competitors. Input: 2

Human
resource
Method: FL
Result: 66.7

Financial
capability
Method: FL
Result: 50

Management
Method: FL
Result: 54.6

Commitment
Method: ABL
Result: 4

Product factor
Method: ABL
Result: 3

Loc. factor
Method: ABL
Result: 3

Marketing
environment
Method: FL
Result: 65

Software
Method: FL
Result: 57.4

External
factor
Method: FL
Result: 61

In the blocks located at rightmost tier,
values following key word “Input”
indicate the information acquired from a
distributor. In the blocks at other tiers,
values following key word “Method”
indicate the method used to evaluate this
subsystem; the values following key word
“Result” indicate the evaluation result.

Figure 5-3 A hierarchical representation of factor set for evaluating a possible distributor,
and the evaluation result for one distributor.

Tax reduction (%). Input: 1

URN:NBN:no-3444

Evaluation of Possible Distributors

40

For synchronous messaging methods such as Sockets, HTTP, CORBA/IIOP, etc., most
of them take request-reply model, i.e. the host enterprise sends a request to query
information to a potential distributor, and then the distributor replies, such process
proceeds until the host enterprise gets all information needed, as shown in Figure 5-
4(a). In practice, the host enterprise needs not only to acquire information from
distributors, but also possibly to discuss, even negotiate with the distributor, so the
interaction between them may be tremendous, and the cost for Internet’s band-width is
large.

Mobile agent
changes the way
of interaction, as
shown in Figure 5-
4(b). This
technology allows
an agent in the
form of program
code, data, and
execution state to
be packaged into a
message and sent
across the network
to a remote
computer
[Dagupta, et al., 1999]. So the interaction mainly takes place inside the distributor’s
computer. Given a “thin” agent, mobile agent can remarkably reduce the cost of band
width, and provide reliable message delivery and delivery confirmation by its security
management system. In this dissertation, we will use mobile agent as an alternative
method to acquire information from potential distributors.

Several programming languages such as Java, C++, etc., can be used to develop a
mobile agent. Among them, Java provides following unique features:

 Platform independency. Java is designed according to “writing once, run
anywhere” rule, i.e., the application developed for a specific platform, say UNIX,
can also run on other platforms such as Windows NT or Mac OS. As the mobile
agent designed to acquire information from distributors will run on remote
computers, which are possibly based on different operating system, this property
is crucial for us.

 Security. With several layers of security control protection against malicious code,
Java is claimed to be one of the most secure languages. Security is always an
important issue for a network based application. Any attack caused by malicious
code may damage the system, or steal business secrets. So this property is also
very important for us.

 Simplicity. Java also offers cleaner and simpler code (than C++) and component
model. This property makes it easy to develop a large system.

Host enterprise’s computer Distributor’s computer

 Internet

Host enterprise’s
application

 Mobile
agent

Distributor’s
application

(b)

Figure 5-4 Interaction between host enterprise and distributor
(a): request-reply model. (b): mobile agent model

Host enterprise’s
application

Host enterprise’s computer

Distributor’s
application

Distributor’s computer

(a)

Internet

URN:NBN:no-3444

Chapter 5

41

For these reasons, Java based mobile agent is used to develop our information
acquisition system. Several Java based agent development systems are available in the
market, such as Concordia, Aglet, Voyager, etc. For its simple API (Application
Programming Interface) and security management, Concordia is selected as the
development platform to design our mobile agent system.

5.3.2 Structure of the mobile agent based information acquisition system

The structure of the mobile agent based information acquisition system is shown as
Figure 5-5. Possible distributors are divided into several regions, say N regions,
according to their geographical location. The host enterprise dispatches one mobile
agent for each region. The mobile agents visit every distributor in their corresponding
regions, acquire information, and then go back to report all acquired information to the
host enterprise’s stationary agent. Each distributor has a stationary agent to receive the
mobile agent and interact with it. Every agent is actually a program, and all these
processes are finished on Internet according to following procedure:

(1) Initialization. Before dispatching the mobile agent, the host enterprise needs to
prepare:

 URLs (Uniform Resource Locator) of potential distributors’ computers. As the
information acquiring process is finished on Internet, the destinations of mobile
agents are expressed as URLs. An enterprise can locate the URLs of potential
distributors by search engine or other approaches.

 Variable table. That is used to express what kind of information to be acquired by
the mobile agent. Actually, the items in this table are the factors shown at the
rightmost tier of Figure 5-3.

(2) Host enterprise dispatches mobile agents to distributors. After determining where to
go and what to be acquired for mobile agents, the host enterprise stationary agent
creates the mobile agents, and dispatches them to potential distributors by the tool
provided in Concordia package.

Region 1 Region N

Distributor’s
stationary agent

Distributor’s
stationary agent

Figure 5-5 Structure of the information acquisition system

Host enterprise

 Enterprise’s
stationary agent

Mobile agent 1 Mobile agent N

Distributor’s
stationary agent

Distributor’s
stationary agent

URN:NBN:no-3444

Evaluation of Possible Distributors

42

(3) Mobile agents acquire information from distributors. After dispatched, the mobile
agents begin to travel on Internet, arrive at destinations and execute pre-defined
methods to acquire information according to the prepared variable table. At that time,
the mobile agent may do some initial analysis on the information, interact or negotiate
with the distributor’s stationary agent.

(4) Mobile agents report information to host enterprise’s stationary agent. After
visiting all distributors, the mobile agents travel back to the host enterprise, execute
pre-defined method to report the acquired information to the stationary agent.

(5) Host enterprise’s stationary agent stores acquired information into its database. The
host enterprise’s stationary agent receives all mobile agents, and stores the acquired
information into its database for future use.

5.3.3 Testing prototype

To illustrate the design principle, we realized a testing prototype with one host
enterprise’s stationary agent, a mobile agent and several distributors’ stationary agents
in our laboratory, which can be sketched as Figure 5-6. This prototype is mainly
composed of three modules: host enterprise’s stationary agent, mobile agent and
distributor’s stationary agent. Next, we will introduce them individually.

(1) Host enterprise’s stationary agent.

It runs on the host enterprise’s computer, and acts as the bridge between mobile agent
and other parts of the computer. The main functions for this stationary agent are:

Variable table

Database

URL of distributors

GUI
Enterprise’s

stationary agent

Database

GUI

Distributor’s
stationary agent

Mobile agent

Mobile agent

Distributor 1 Distributor 2

Distributor 3

Figure 5-6. Architecture of the
testing prototype

Host
enterprise

URN:NBN:no-3444

Chapter 5

43

launching mobile agents and managing database. Concordia provides the following
three approaches for launching a mobile agent:

 Agent launch wizard. This is an interactive process for launching a mobile agent.
The wizard prompts operator to specify the mobile agent class file and related
classes to be packed with the agent, input the destinations for the mobile agent,
and specify method(s) to be executed remotely. Then the agent can be launched
immediately.

 Command line tool. The launching process is very similar to the one in “Agent
Launch Wizard”. The only difference is that, here, command line rather than
wizard is used.

 API. Concordia provides methods for assigning itinerary for mobile agent,
determining method(s) to be executed remotely, and launching the mobile agent.

To realize an automatic launching process, in this testing prototype, we use API to
launch a mobile agent, and part of source code is shown as Figure 5-7

When the mobile agent comes back to host enterprise, it reports the acquired
information to enterprise’s stationary. Then the stationary agent inserts the reported
information into its database. Part of the source code for this function is shown in
Figure 5-8.

Alternatively, we can also put this part of code in mobile agent, but for the following
two reasons, we put them in the stationary agent:

import java.sgl.*; //import the SQL package
…
DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver()); //load the driver
Conn=DriverManager.getConnection("jdbc:oracle:thin:@(description=(address=(host=ipto.hin.no)(protocol=tcp)(
port=1521))(connect_data=(sid=stud)))", "homa", "hongze"); //make the connection
stmt = conn.createStatement (); //create the statement
…
stmt.executeUpdate("insert into InvFacilities (“+key”) values ("+ value +")"); //insert value into database
…

Figure 5-8. Part of source code for inserting value into database

import COM.meitca.concordia.*; // import the Concordia package.

…
Itinerary itinerary = new Itinerary(); //create an Itinerary object.
itinerary.addDestination(new Destination ("distrbutor_1", "query")); // specify the first destination “distrbutor_1”

and method to be executed there named as
"query”.

itinerary.addDestination(new Destination ("distributor_2", "query")); // specify the second destination and method..
…
agent.setItinerary(itinerary); //set the itinerary for the mobile agent.
…
agent.launch(); //launch the mobile agent

Figure 5-7. Part of source code for launching a mobile agent in Concordia

URN:NBN:no-3444

Evaluation of Possible Distributors

44

 To make the mobile agent as “thin” as possible. As the mobile agent will travel on
Internet, this arrangement can reduce the Internet cost.

 Some sources for the database management, such as Driver, etc., are platform
dependent. When the mobile agent comes back to the enterprise’s computer or
visits a distributor’s computer, maybe, it does not know what kind of Driver is
installed on that machine, so it is better to make this part of code as local, not
global.

(2) Mobile agent.

Three functions are designed for the mobile agent: accessing database, parsing XML
(eXtensible Markup Language) documents, and extracting information from command
line. Next, let’s discuss these three functions in detail.

Accessing database. Traditionally, database is the main method for an enterprise to
manage its information, so, accessing database is the basic function for a mobile agent.
If the needed information is stored in distributor’s database, this function can be used
to acquire it. For the reasons mentioned above, the function itself is installed on the
Concordia server of the distributor’s computer, and expressed as a service for mobile
agent. When the mobile agent visits this distributor, it passes variable table to the
service, and calls the service to acquire information. As the source code for this
function is similar to the one shown in Figure 5-8, for brevity, we do not list it here.

Parsing XML document. Similar to HTML (HyperText Markup Language), XML is
developed for Web application. The main difference between XML and HTML is that:
in HTML, tag set is fixed, and it is originally designed to present information on screen
for people; in XML, the tag set is flexible and extensible (as its name implies), and the
new rules can be created, agreed upon, and specified in the accompanying DTD (Data
Type Definition) file. So XML is more powerful to treat data, and it can be used
conveniently to exchange data between Web applications. As stated in [Ray, 2001],
XML is becoming the main format for common data exchange between databases, or
message exchange on Internet. For this reason, the function for parsing XML document
is also developed in the mobile agent. If the needed information is stored in an XML
document on distributor’s computer, this function can be called to parse the document
and extract information from the parsed XML document.

A sample of XML document is shown as Figure 5-9(a), which is used to express the
information of an inventory carrying facility. Its accompanying DTD file is shown as
Figure 5-9(b).

URN:NBN:no-3444

Chapter 5

45

Both the XML file and
DTD file are stored in
distributor’s computer.
The task for mobile
agent is to read and
parse the XML file,
then extract data from it.
XML for Java provides
SAX (Simple API for
XML) parser and DOM
(Document Object
Model) parser. SAX
parser is selected when
the document is very
large, and only a few
elements are needed.
On the other hand, if
the document is not large, and most of the information is needed, DOM parser is used.
Obviously, DOM parser is more appropriate for our application. The source code to
parse a XML document by DOM parser is shown as Figure 5-10.

After parsed, the XML document
facForInvData.xml becomes a DOM tree
structure, as shown in Figure 5-11. The
source code shown in Figure 5-12 extracts
information from such DOM tree
structure, and put them into “Hashtable”
as key-value pairs. The mobile agent takes
this “Hashtable” back to host enterprise,
and reports it to the host enterprise’s
stationary agent.

<?xml version=”1.0”?>
<!DOCTYPE facForInvData SYSTEM
“facForInvData.dtd”>
<facForInvData>
 <key>floorSpace</key>
 <value>5000</value>
 <key>cost</key>
 <value>10</value>
 <key>reliability</key>
 <value>2</value>
</facForInvData>

<!ELEMENT FacForInvData(key,
value)>
<!ELEMENT key (#PCDATA)>
<!ELEMENT value (#PCDATA)>

(b).

(a).

Figure 5-9 An example of XML document facForInvData.xml, and its accompanying DTD
 file facForInvData.dtd

Figure 5-11 DOM tree parsed for file
facForInvData.xml

facForInvData

key value

“floorSpace” “5000” “cost” “10” “reliability” “2”

value value key key

import com.ibm.xml.parser.Parser; //import the DOM Parser from XML for
Java package
import java.io.FileInputStream;
import java.io.InputStream;
import org.w3c.dom.Document;
…
String myfile = "facForInvData.xml"; //specify the XML file
facForInvData.xml
InputStream is = new FileInputStream(myfile); //create an InputStream
object to open the file
Parser parser = new Parser(myfile); //create an object of DOM Parser
Document doc = parser.readStream(is); //read the file and parse it
…

Figure 5-10 Sample of source code to parse a XML document:
facForInvData.xml by DOM parser

URN:NBN:no-3444

Evaluation of Possible Distributors

46

Extracting information from command line. It is possible that the acquired
information from database and/or XML document is not complete, so the third function,
extracting information from command line, is called. In this function, first, a prompt is
presented to operator of the computer, asking him/her to enter the value for a variable.
Then the system directly reads the value from keyboard, and put them into “Hashtable”
as key-value pair. This “Hashtable” will be reported to host enterprise’s stationary
agent when the mobile agent travels back to host enterprise. The source code for this
function is shown in Figure 5-13(a), and the corresponding running result is shown in
Figure 5-13(b).

import java.util.Hashtable;
import org.w3c.dom.*;
…
Hashtable hash = new Hashtable();
String key = null, value = null;
for (Node child = doc.getDocumentElement().getFirstChild();child!=null; child=kvchild.getNextSibling()) {
 if (kvchild instanceof Element) {
 if (kvchild.getNodeName().equals("key")) {
 key = makeChildrenText(kvchild); //extract “key” value
 }
 else if (kvchild.getNodeName().equals("value")) {
 value = makeChildrenText(kvchild); //extract “value” value
 if (key!=null) {
 hash.put(key, value); //put the key-value pair into hash table
 key=null;
 }
 }
 }
 }
…

private static String makeChildrenText(Node node) {
 StringBuffer buffer = new StringBuffer();
 return makeChildrenText1(node, buffer);
 }

private static String makeChildrenText1(Node node, StringBuffer buffer) {
 for (Node ch=node.getFirstChild(); ch!=null; ch=ch.getNextSibling()) { //scan all its child nodes
 if (ch instanceof Element || ch instanceof EntityReference) {
 buffer.append(makeChildrenText(ch)); //recursively call method makeChildrenText(Node node)
 }
 else if (ch instanceof Text) {
 buffer.append(ch.getNodeValue()); //if it is a text node, just get the value.
 }
 }
 return buffer.toString(); //return the value
 }
}

Figure 5-12 Part of source code to extract information from a DOM tree structure and put
it into “Hashtable”

URN:NBN:no-3444

Chapter 5

47

For limited time, the negotiation function between mobile agent and distributor’s
stationary agent is not realized in this testing prototype, but it is necessary in practice,
it is left as future work.

(3) Distributor’s stationary agent.

Similar to enterprise’s stationary agent, distributor’s stationary agent is also a
Concordia server. Besides receiving mobile agent, it also provides the service of
accessing its own database. When mobile agent visits this distributor, it invokes this
service, acquire the information from distributor’s database, and bring back to host
enterprise.

Although this testing prototype is realized in our laboratory, in principle, it can be
realized in reality between host enterprise and potential distributors which are
distributed all over the world, because the prototype only works with the IP (Internet
Protocol) addresses of different computers on Internet when the mobile agent visits
different distributors. The only requirement for distributors is that, they must run
Concordia server, and install needed services on their computer.

In this section, a mobile agent based information acquisition system is developed to
collect data from possible distributors. Three functions are developed for the mobile
agent: accessing database, parsing XML documents, and extracting information from
command line. If the mobile agent is authorized to access distributor’s database, the
first function is activated; if the possible distributor puts some information on its web
site in XML form, then the second function is called. The mobile agent can also
interact with the operator of the distributor via the third function. If none of above
situations is applicable, or the information acquired by mobile agent is not complete,
other methods such as telephone, fax, E-mail can be used to collect data from possible
distributors.

 import java.io.*;
 import java.util.Hashtable;
 …
 Hashtable hash = new Hashtable(); //create an object of Hashtable
 BufferedReader stdin = new BufferedReader(new

InputStreamReader(System.in));
 //ready to read input from key board
 System.out.println("please enter " +key); //present prompt to operator
 string = stdin.readLine(); //read input from key board
 hash.put(key, string); //put key-value pair into Hashtable
 value=Integer.parseInt((String)hash.get(key));
 System.out.println(key+" is "+value); //print the result to operator for

checking

Please enter cost: 10
Cost is 10

(a)

(b)

Figure 5-13. Part of source code for extracting information from command line.

URN:NBN:no-3444

Evaluation of Possible Distributors

48

5.4 Distributor Evaluation

After acquiring the needed information from possible distributors, we come to the third
stage of distributor evaluation module: evaluating the distributors. In this subsection,
first, the existing evaluation methods are analyzed. Then, after a survey of possible
methods, our new evaluation method is put forth. At last, a case study is given to
illustrate how to use this new method in evaluating a distributor.

5.4.1 Analysis of existing evaluation methods

Cavusgil et al. [1995] developed an expert system, called DISTEVAL, in evaluating a
foreign distributor. In this system, each criterion is assigned a weight to express its
importance and score to express its priority, and both are determined via the knowledge
acquisition process. Based on the sum of weighted scores, the evaluation from
DISTEVAL produces scores ranging from 0 to 100 for each of the dimensions, which
can be used to interpret the evaluation results qualitatively.

Min et al. [1999] used AHP model to evaluate a hybrid production/distribution facility.
In this model, each criterion is also assigned an importance weight and a priority score,
which were derived from pairwise comparisons and management team’s judgment. At
last, the sum of weighted scores produces the synthesized priority for this
production/distribution facility.

The core of existing evaluation methods is scoring. Normally, scoring method suffers
following shortcomings:

 As both importance weight and priority score are assigned by expert (human
being), the result is largely affected by subjective judgement.

 As main parameters are determined subjectively, it is difficult to use computer
application to realize the evaluation process.

 The final result is only a linear combination of all criteria. Generally, the
relationship between each criterion and the evaluation of a distributor is
unnecessary to be linear, so the scoring method may cause error in evaluating a
distributor.

As mentioned above, the existing evaluation method (scoring method) can neither
reflect the relationship between factors and the evaluation of a distributor properly, nor
fulfill our requirement of automatic distributor evaluation, so we need to find a new
method for evaluating a distributor.

5.4.2 Requirements for the new method

The requirements for the new method are analyzed from three aspects: input, mapping
process and output.

(1) Input

URN:NBN:no-3444

Chapter 5

49

As shown in Figure 5-3, there are four types of input variables for this evaluation
module:

 Quantitative variable, such as “floor space”, etc.
 Qualitative-I variable. This kind of variables are qualitative, but they can be

indicated by the system perception of a quantitative value. For example, for the
variable “reliability of inventory carrying facilities”, it can be indicated by the
percentage of broken floor space.

 Qualitative-II variable. This kind of variables is qualitative, and they are difficult
or almost impossible to be indicated by quantitative values. For example, for the
variable “familiarity with the product”, the possible values for it are: ‘not-
familiar’, ‘partly-familiar’, ‘familiar’, etc. It is difficult to indicate it by a
quantitative value, but easy by multi-value logic value.

 Logic variable. Some variables are originally logic variable. For example, for the
variable “communication-method”, the possible values are: ‘no-telephone_no-
fax_no-Internet_no-Intranet’, ……, ‘telephone_fax_Internet_Intranet’, i.e. it can
only be expressed by logic variable.

The characteristics of all input variables for this evaluation module are shown in Table
5-1. The new evaluation method must have capability to handle all these four kinds of
variables.

Table 5-1 Characteristics of all input variables in the evaluation module

Variable Character
 Quantitative Qualitative-I Qualitative-II Logic
Floor space (m2) √
Inventory carrying cost ($/m2) √
Reliability of inventory carrying facilities (indicated by
percentage of broken space) (%)

 √

Throughput (tonnes/day) √
Product delivery cost ($/day) √
Reliability of product delivery facilities (indicated by
percentage of broken facilities) (%)

 √

Communication method √
Communication cost ($/month) √
Number of employees √
Average salary ($/month) √
Education status for employees √
Ability to finance initial sales (M$) √
Ability for additional funding (M$) √
Ability for advertising fund (M$) √
Efficiency (throughput per employee) (tonnes) √
Safety (number of accidents per year) √
Transaction costs ($) √
Percentage of damaged product (%) √
Willing to keep enough inventory √
Willing to provide enough fund for advertising √
Willing to invest in employee training √
Familiarity with the product √
Past experience with similar product √
Technical support √
Unit product delivery cost ($) √
Traffic access √
Buying power ($) √
Geographic coverage √
Market share (%) √
Number of competitors √
Tax reduction (%) √
Number of skilled labour √

URN:NBN:no-3444

Evaluation of Possible Distributors

50

(2) Mapping process

The evaluation process can be viewed as a mapping process from all factors to the
evaluation of a distributor. This mapping process has the following properties:

 The relationship between factors and evaluation of a distributor is normally not
linear.

 Actually, the evaluation process is a human-thinking like process. It is usually
involved with expert knowledge, and the expertise is expressed by linguistic or
logic rules.

These properties require that the new method can not only reflect the non-linear
relationship between input and output, but also integrate the expertise into the mapping
process.

(3) Output

The new method needs to output a value, which can be used to reflect the evaluation of
a distributor, and compare between different distributors.

5.4.3 A survey of possible methods

As mentioned above, evaluation process can be viewed as a mapping process from all
factors to the evaluation of a distributor, so, all methods related to mapping can be
viewed as possible ones. Before developing the new evaluation method, a survey of
these possible methods is given as below.

(1) Mathematical method

Mathematical function is an intuitive choice for a mapping process, but it suffers
following disadvantages: (1) Normally, mathematical function is good at treating
quantitative variables, but not at qualitative and logic variables. (2) It is difficult to
integrate expertise (linguistic or logic rules) into a mathematical function. So, it is
eliminated from our choice scope.

(2) Artificial intelligence methods

The possible artificial intelligence methods are ANN and FL.

ANN. Theoretically, ANN can fulfill almost all the requirements mentioned in
subsection 5.4.2, but in practice, it is difficult to realize it. ANN needs a huge number
of data to train it. For one distributor, it needs training data to describe all possible
states, and the host enterprise needs to get the necessary data from all potential
distributors to train the ANN. So, we can imagine how large the scale of data is, and
how difficult it will be to acquire these data. At the same time, it is difficult to change

URN:NBN:no-3444

Chapter 5

51

the trained ANN model when the decision makers change their evaluation rules. Based
on this analysis, ANN is also eliminated from our choice scope.

FL. For the input variables, FL is good at handling quantitative and qualitative-I
variables. For the mapping process, FL can fulfill all the requirements. At the same
time, FL can also output a value to indicate the evaluation of a distributor. Especially,
in practice, FL is realizable in our module: we only need to define if-then rules to
express the expertise. So, FL is one of the possible choices for our evaluation module.
The remained problem is: how to handle the qualitative-II and logic variables?

(3) ABL (Array Based Logic)

As the remained problem is related with logic variables, we will explore logic methods.
Davidrajuh [2001] stated that, ABL is a promising technology in dealing with large
scale logic inference problems. Comparing with other logic inference technologies,
ABL possesses following special advantages:

 It can deal with three kinds of variables: nominal variable (Boolean and multi-
value logic variable), ordinal variable (e.g. coordinates [2,3], [3,4], etc.), and
interval variable (e.g. interval like ‘greater than 50 and less than 100’, etc.).

 For other logic inference technologies, if there are M variables and N values for
each variable, there will be MN combinations for the system, this is called
‘combination explosion’. The exponential growth of combinations with increasing
number of variables makes the inference process intractable. ABL solves this
problem by compressing MN subspaces into linear M×N representations, and the
resulted system is complete and compact. That is why it is good at dealing with
large inference problems.

In distributor evaluation module, there are a lot of variables, and these variables may
be nominal, ordinal, or interval. Obviously, for such inference module, ABL is the
appropriate technology. Especially, the advantages mentioned above can complement
the disadvantages of FL in dealing with input variables for an evaluation module. For
the mapping process, ABL uses logic rules (premises) to express expertise, and it can
output logic value to indicate the evaluation of a system. So ABL also locates within
our choice scope.

The survey of possible methods is summarized by Table 5-2.

Table 5-2 Summary of the possible methods

Methods Mathematical function Artificial Neural
Network

Fuzzy Logic Array Based Logic

Fulfilling requirements
for input variables

Not Partly Partly Partly

Fulfilling requirements
for mapping process

Not Fully Fully Fully

Fulfilling requirements
for output variables

Not Fully Fully Fully

Whether realizable in practice Not Not Yes Yes

URN:NBN:no-3444

Evaluation of Possible Distributors

52

By this survey, following conclusions are achieved: (1) none of methods can fully
fulfill the requirements described in subsection 5.4.2. And (2) Both FL and ABL can
fulfill a part of the requirements, and they are mutually complement. The second
conclusion gives us a hint: whether we can integrate FL and ABL to evaluate a
distributor? Next, we will simply introduce these two technologies, and then illustrate
the new evaluation method based on this introduction.

5.4.4 Simple introduction to FL and ABL

5.4.4.1 FL

Fuzzy sets theory was developed by Lotfi Zadeh in early 1960s [Zadeh, 1965], and the
application of FL for industrial control was first demonstrated by E.H.Mamdani in
1974 [Mamdani, 1974]. Since then, FL has largely been applied in automatic control,
inference engine and other areas. Next, the basic concepts, composition of a fuzzy
inference module, and realization tool for FL are simply introduced.

(1) Basic concepts in FL

Fuzzy sets. Fuzzy sets are defined versus crisp sets. For crisp sets, the element either
belongs to or not belongs to a set totally. For fuzzy sets, it permits the element to
belong to a set partially, and the degree of membership is indicated by a number
between 0 and 1. If X is the universe discourse and x is a particular element of X, then a
fuzzy set A defined on X can be written as:

 A = { (x, µA(x))}

Where x∈ X, µA(x) is the membership function of x.

Linguistic variable. It is
a variable whose
arguments are
represented by fuzzy
sets. For example,
floorSpace is a linguistic
variable (as shown in
Figure 5-14), its
arguments are fuzzy sets:
small, medium and large.

Fuzzy algorithm. Fuzzy
algorithm is a procedure
for performing a task
formulated as a
collection of fuzzy

Figure 5-14 Membership function for linguistic variable
floorSpace

URN:NBN:no-3444

Chapter 5

53

if/then rules [Tsoukalas, 1997]. A fuzzy if/then rule looks like:

 IF floorSpace is large, THEN invFacility is selected

Where floorSpace and invFacility are linguistic variables, large and selected are values
for corresponding variables.

(2) Fuzzy inference module

A Fuzzy inference module is composed of three parts: fuzzification, inference and
defuzzification (as shown in Figure 5-15).

Fuzzification. Fuzzification is used to convert a crisp value into fuzzy value. The
degree of membership is found by the intersection point of an input value on the
horizontal axis with the curve defining membership functions. For example, for
linguistic variable floorSpace mentioned above, when the input value is 4050, the value
for the variable is medium, and the corresponding degree of membership is 0.61 (as
shown in Figure 5-14).

Inference. Fuzzy inference refers to the procedure to evaluate the linguistic output
value based on inputs and fuzzy if/then rules. The commonly used procedures are GMP
(Generalized Modus Ponens) and GMT (Generalized Modus Tollens) [Tsoukalas,
1997]. For example, a simple system for selection of inventory carrying facility can be
depicted as:

 IF floorSpace is large, THEN invFacility is selected ELSE
 IF floorSpace is medium OR small, THEN invFacility is rejected

Given the fuzzy value for floorSpace, the output value for invFacility can be computed.

Defuzzification. Defuzzification is the process to convert fuzzy value back to crisp
value. After computing the output (fuzzy value) by combination of input fuzzy value
and if/then rules, we need to change the fuzzy value into crisp value to understand its
meaning. The commonly used defuzzification methods are COA (Center of Area),
COS (Center of Sums) and MOM (Mean of Maxima).

(3) Realization tool

Fuzzification
(Input interface)

Inference
(If/then rules)

Defuzzification
(Output interface)

Inputs Outputs

Figure 5-15 Composition of a fuzzy inference module

Fuzzy inference module

URN:NBN:no-3444

Evaluation of Possible Distributors

54

The realization tool for FL, Fuzzy Logic Toolbox, has been developed in MATLAB
environment. Fuzzy Logic Toolbox is a collection of functions that allow the developer
to create, edit and implement the fuzzy inference system. The tool box provides three
categories of tools:

 Command line functions. They are made up of functions that can be called from
the command line. Actually, most of these functions are MATLAB M-files or
series of MATLAB statements that implement specialized fuzzy logic algorithms.

 Graphical, interactive tools. These tools allow the developer to access the
functions through GUI (Graphical User Interface). The GUI based tools also
provide an environment for fuzzy inference system design, analysis and
implementation.

 Simulink blocks and examples. This category of tools is a set of blocks for use
with Simulink simulation software. It is specially designed for high speed fuzzy
logic inference in the Simulink environment.

The first one, command line functions, will be used to realize the fuzzy inference
process in our distributor evaluation module.

5.4.4.2 ABL

ABL is first illustrated in [Møller, 1995], which is founded on a geometrical
representation of logic in terms of nested data arrays. Same as FL, we will also
introduce ABL from three aspects: basic concepts, modeling procedure, and realization
tool.

(1) Basic concepts

Domain. In ABL, the domain of a variable is an ordered finite set with n unique items
to represent all possible values for this variable.

System. A system can be viewed as a set of interconnected premises. A premise is a
logic expression of the inference rule. To some extent, a premise is similar to an if/then
rule in FL. For example, a premise may be:

 Temperature is greater than 100°C IMPLIES light needs to be switched on

(2) Modeling procedure.

In ABL, there are three steps to realize an inference system: define the global domain,
model the system, and interact with the environment.

Define the global domain. In this step, the domains of all variables for the system
(including input and output variables) are defined. For example, in a temperature-light
system, there are two variables: temperature and light. The possible value for

URN:NBN:no-3444

Chapter 5

55

temperature ranges in interval [50, 250], and the possible states of light are: ‘on’ and
‘off’, so the global domain for this system is defined as:

temperature [50, 250] light {‘on’, ‘off’}

Model the system. In this step, a set
of premises are defined according to
inference rules (or expertise), and then
these premises are connected by
appropriate logic operators such as
AND, OR, etc. Which connector is
used depends on the system’s
property. The connected premises
form an ABL inference module (as
shown in Figure 5-16). This step is
similar to defining if/then rules in FL
inference system. After modeling the
system, it is ready to get outputs (i.e.
evaluation results) by presenting
inputs onto the inference module.

Interact with environment. Here, the so called environment provides inputs for the
inference module, and the interaction with environment can be viewed as the process
of presenting inputs onto the inference module. As mentioned above, after presenting
inputs onto the inference module, outputs are obtained.

(3) Realization tool

In [Møller, 1995], ABL is realized by APL (A Programming Language). As it is
difficult to integrate APL with other tools, Davidrajuh [2001] developed ABL’s
realization tool, SABL (Structural Array Based Logic), in MATLAB environment. The
main functions in SABL package is listed in Table 5-3.

Table 5-3 The main functions in SABL package

Function Operation
Basic operations
disjunct OR operator
conjunct AND operator
dimp Direct implication
bimp Binary implication (equivalence)
Operations for interval variable
interval Create an interval variable
union Union (combination) of intervals
Deductions
fuse Remove superfluous axes (variables)
state Find state of a system (or outputs) for a given input
Utility fuctions
element Create a logic variable (or primitive logic element)
assign Assign new value to a multi-valued logic variable
domain Assign new domain to an interval variable
join Combines relations (premiese) through common variables
print Print out a relation (variables, premises, combined system)

ABL inference module

Premise 1

Premise 2

Premise n-1

Premise n

Connector 1

Connector m

Figure 5-16 An ABL inference
module

Inputs Outputs

URN:NBN:no-3444

Evaluation of Possible Distributors

56

The normal procedure to realize an ABL inference module by this package is:

 Define the domain for each variable by element function
 Define premises by basic operations disjunct, conjunct, interval, union, etc.
 join premises to form the inference module
 fuse (remove) the common variables
 assign values to each input variable to form input vector
 presenting the input vector onto the inference module to compute the output

vector by state function
 print the output vector.

5.4.5 The new evaluation method: integration of FL and ABL

(1) Why we need to integrate FL and ABL

As mentioned in subsection 5.4.3, ABL is an appropriate technology to deal with
inference systems with large number of variables, and these variables can be nominal,
ordinal, and interval scale. So, theoretically, ABL is capable to treat all input variables
and finish the inference process for the distributor evaluation module. But, in ABL, the
treatment for some input variables, especially for quantitative variables, is imprecise.
This can be illustrated by following example.

Figure 5-17 shows the different treatment of input variable floorSpace in FL and ABL.
In FL, a crisp value belongs to a set with a degree of membership. For example, when
floorSpace is 3700, it belongs to set medium with a degree of 0.45, when floorSpace is
4300, it belongs to set medium with a degree of 0.75. In ABL, a value only belongs to,
or does not belong to a set entirely, i.e. the answer can only be ‘YES’ or ‘NO’. For

small large

Figure 5-17. Different treatment of input variable floorSpace in FL and ABL

FL ABL

URN:NBN:no-3444

Chapter 5

57

example, in ABL, when floorSpace is 3700, it is small, but when floorSpace is 4300, it
becomes medium! Comparing these two ways, it is obvious that the treatment of input
variable floorSpace by FL is more precise.

By this analysis, following conclusions are achieved: it is more precise to treat
quantitative and qualitative-I input variables by FL, and treat qualitative-II and logic
variables by ABL. That is why we have to integrate FL and ABL in evaluating a
distributor.

(2) How to integrate FL and ABL

After deciding to integrate FL and ABL in the new evaluation module, a question is
raised immediately: how to integrate them? Before answering this question, first, we
illustrate the evaluating process for a distributor.

In Figure 5-3, a tree structure is used to depict the distributor evaluation module. We
call a branch in this tree structure as a subsystem. For example, “Inventory carrying
facility” and its descendent three factors, “Floor space”, “Cost”, and “Percentage of
broken space” form a subsystem. When evaluating a subsystem, either FL or ABL is
selected according to following rules:

 For the bottom subsystems (located at the rightmost tier of Figure 5-3), ABL is
used if there are qualitative-II and/or logic input variables in this subsystem;
otherwise, FL is used.

 For all other subsystems, to evaluate a distributor more precisely, FL is used.

When evaluating a distributor, a bottom-up approach is applied, i.e., first the bottom
subsystems are evaluated, then the upper subsystems are evaluated according to Figure
5-3. Such process proceeds until the upmost one, “Evaluation of a distributor”, is
evaluated. For example, to evaluate the software factor of a possible distributor, first,
its three descendent subsystems, “Management”, “Commitment”, and “Product factor”,
are evaluated, and then FL is used to evaluate “Software” itself by these three
evaluation results.

As both FL and ABL are applied in one evaluation module, following problems are
raised. If ABL is used in the lower subsystem (e.g. evaluation of “Commitment”), and
FL is used in the upper subsystem (e.g. evaluation of “Software”), then the evaluation
result of the lower subsystem (a logic variable) needs to be fuzzified when used as an
input in the FL inference module. We call this as the interface from ABL to FL. On the
other hand, if FL is used in lower subsystem, and ABL is used in upper subsystem,
then the output of lower subsystem (a crisp value) will also be converted into a logic
value when it is used as an input in the ABL inference module. This is called interface
from FL to ABL. Following rules are used to solve these problems.

URN:NBN:no-3444

Evaluation of Possible Distributors

58

Interface from ABL to FL.
This interface is shown as
Figure 5-18. When ABL is
used for lower subsystem, and
FL is used for upper
subsystem, we stipulate that
ABL outputs a logic variable
with multi-value. This logic
variable is expressed as an
integer to indicate the
evaluation result. When used in
FL inference module, this
integer is fuzzified directly.
For example, as there is logic
input variable (communication
method) when evaluating
“Communication system”,
ABL is used for this
subsystem. We can express the
evaluation result of
communication system by an
integer ranging from 0 to 10 to
indicate its satisfaction level
(how many levels it is divided
into depends on the
requirement of precision. More
levels mean higher precision,
but more complicated
inference module). According
to the method selection rule mentioned above, FL will be used to evaluate “Hardware”,
so, we need to fuzzify this integer. Approximately, this integer can be viewed as a
quantitative variable, and fuzzified directly (as shown in Figure 5-19).

Interface from FL to ABL. When FL is used for lower subsystem, and ABL is used
for upper subsystem, we need to convert the crisp value into a logic value. This
conversion can be simply finished by the way shown at the right part of Figure 5-17.
Of course, this treatment will cause imprecision. Fortunately, it is unnecessary to
convert a crisp variable into logic one in this evaluation module.

After solving interface problem between ABL and FL, the new evaluation method, i.e.
integration of ABL and FL, is developed. For this new method, we summarize it as
follows:

 In this new method, both FL and ABL are used in evaluating a distributor.
 When evaluating a subsystem, either ABL or FL is selected according to

following rules: for bottom subsystems, ABL is selected if there is qualitative-II

Figure 5-19 Fuzzification of variable commSystem

ABL

Interface from ABL to FL

ABL outputs a logic
variable with multi-value.

This logic variable is
expressed as an integer (e.g.
an integer ranging from 0 to
10). This integer is directly

fuzzified and used in FL
inference module

FL

Figure 5-18 Interface from ABL to FL

URN:NBN:no-3444

Chapter 5

59

and/or logic input variables in this subsystem; otherwise, FL is used. For other
subsystems, FL is selected.

 When evaluating a distributor, a bottom-up approach is applied according to
Figure 5-3. First, all bottom subsystems are evaluated, so we can get the
evaluation results for factors in the second rightmost tier. Based on these
evaluation results for the factors in the second rightmost tier, the factors in the
third rightmost tier are evaluated, ……. This evaluation process proceeds until the
leftmost one, “Evaluation of a distributor”, is evaluated.

 The interface problem from ABL to FL is solved according to the rule shown in
Figure 5-18.

As indicated in subsection 5.4.4, the software tools for both FL and ABL are developed
in MATLAB environment. This makes it easy to develop computer application for the
new evaluation method. Next, we use a case study to illustrate how to apply this new
method in evaluating a distributor.

5.4.6 Case study: evaluating a distributor

In this subsection, an example is used to illustrate how to evaluate a distributor in
practice. For brevity, here we use the evaluation of “Hardware” to illustrate the whole
evaluating process. According to the rules mentioned above, before evaluating
“Hardware” itself, its five descendent factors, “Inventory carrying facility”,
“Transportation facility”, “Communication system”, “Human factor”, and “Financial
factor” need to be evaluated first.

(1) Evaluation of “Inventory carrying
facility”

“Inventory carrying facility”
(invFacility) is determined by three
variables: “Floor space” (floorSpace),
“Cost” (costInv) and “Percentage of
broken space” (relia). All inputs for this
evaluation model are quantitative.
According to the rule mentioned above,
FL is used here. As shown in Figure 5-
20, this evaluating process is finished by
following steps.

Fuzzification. Here, Gauss membership
function is used to fuzzify floorSpace
and costInv, and trapezoid membership
function is used to fuzzify relia. The corresponding results are shown in Figure 5-
21(a), Figure 5-21(b), and Figure 5-21(c). Output variable invFacility is also fuzzified
by Gauss membership function (as shown in Figure 5-21 (d)).

Fuzzification

Inference

Defuzzification

Evaluation
of

inventory
carrying
facility

floorSpace costInv relia

invFacility

Figure 5-20 Model for evaluation of
“Inventory carrying facility”

URN:NBN:no-3444

Evaluation of Possible Distributors

60

Inference. Inference process is executed based on a set of predefined if-then rules.
These if-then rules reflect the decision maker’s distributor selection preference. So the
inference process can successfully integrate decision maker’s role into the evaluation
process. For this subsystem, there are three input variables, and for each variable, there
are three linguistic values, so a complete inference system needs 3×3×3=27 rules. The
detail is referred to rule list in A-1 of Appendix A. An example for these if-then rules is
shown as:

 IF floorSpace is large AND costInv is medium AND relia is medium, THEN
invFacility is eligible.

Defuzzification. The result calculated by inference process is fuzzy value. To
understand its meaning, this fuzzy value needs to be converted into crisp value. This
process is called defuzzification. Here, COA is selected as the defuzzification method.

This inference model has been realized by Fuzzy Logic Toolbox in MATLAB, and the
corresponding program is shown in A-1 of Appendix A. A numerical example for the
evaluation result is shown in Table 5-4.

Figure 5-21 (c). Membership functions for
input variable relia

Figure 5-21 (d). Membership functions for
output variable
invFacility

Figure 5-21 (a). Membership functions for
input variable floorSpace

Figure 5-21 (b). Membership functions for
input variable costInv

URN:NBN:no-3444

Chapter 5

61

Table 5-4 Numerical examples for the evaluation results in evaluating “Inventory carrying
facility”, “Transportation facility”, “Human resource”, “Financial factor”, “Communication
system”, and “Hardware”.

Inventory carrying facility Transportation facility Human factor

Inputs Output Inputs Output Inputs Output

6000 90 500

8 100 2000

5

60.1

2

75.1

50

66.7

Financial factor Communication system Hardware

Inputs Output Inputs Output Inputs Output

3 60.1

75.1
5

telephone-fax-
Internet

 4
66.7

1

50

150

4

50

54

(2) Evaluation of “Transportation facility”, “Human resource”, “Financial factor”

All input variables for these three evaluation models are quantitative or qualitative-I
variables. According to the method selection rule mentioned above, FL is used to
evaluate them. As the evaluating processes are similar to the one in evaluating
“Inventory carrying facility”, we do not illustrate them in detail here. These inference
models have been realized by Fuzzy Logic Toolbox in MATLAB, and the
corresponding program is shown in A-2, A-3, and A-4 of Appendix A. The
corresponding numerical examples for evaluation results are shown in Table 5-4.

(3) Evaluation of “Communication system”

“Communication system” (commSystem) is determined by two variables:
“Communication cost” (commCost) and “Communication method” (commMethod).
CommCost is a quantitative variable, but commMethod is a logic variable, so ABL is
used to finish the evaluation process. As mentioned in subsection 5.4.4.2, this
evaluation is carried out according to following procedure.

Define the global domain. In this subsystem, there are three variables: commMethod,
commCost, and commSystem. For commMethod, there are 7 possible values which are
listed in Table 5-5. For commCost, three values are used to describe it: ‘high’, ‘fair’,
and ‘low’. For the output variable commSystem, the evaluation result is divided into
five levels, and indexed by integer 1 to 5. The global domain of this subsystem is
shown as Table 5-5.

Table 5-5 The global domain of subsystem “Communication system”

CommCost {‘high’, ‘fair’, ‘low’}
CommMethod {'telephone', 'fax', 'Internet', 'telephon_fax', ‘telephon_Internet’,

'fax_Internet', ’telephon_fax_Internet’, 'telepnon_fax_Internet_Intranet'}

commSystem {‘1’, ‘2’, ‘3’, ‘4’, ‘5’}

URN:NBN:no-3444

Evaluation of Possible Distributors

62

In SABL, the domain of a variable is defined by function element. For example, the
domain of CommCost is defined by:

communicationCost=element('n', {'high', 'fair', 'low'}, {}, 'Communication Cost');

Model the system. Modeling the system means defining premises and connecting
them by appropriate logic operators. A sample premise is shown as:

commCost is ’fair’ AND commMethod is ('telephon_Internet' OR
'telephon_fax_Internet') IMPLIES commSystem is ’4’.

In SABL, this premise is expressed by following statements:

x12 = assign(communicationCost, {'fair'});
x22 = assign(communicationMethod, {'telephon_Internet', 'telephon_fax_Internet'});
y4 = assign(commSystem, {'4'});
y=conjunct(x12, x22);
Premise_4=bimp(y, y4);

The full premise set is shown in A-5 of Appendix A. Same as in FL inference process,
such premises can reflect the decision maker’s opinion, so ABL can also integrate the
decision maker’s role into the design process.

Interact with environment. This interaction process can be expressed as: forming the
input vector, presenting this input vector to the system modeled above, and then
computing the output vector. This output vector is the evaluation result.

In SABL, this process is accomplished by function state, e.g.:

output_SV = state(input_SV, System);

Here, input_SV is the input vector, System is the inference system formed by connected
premises, and output_SV is the output vector.

This inference model has been realized by SABL in MATLAB, and the corresponding
program is shown in A-5 of Appendix A. A numerical example for the evaluation
result is shown in Table 5-4.

(4) Evaluation of “Hardware”.

After evaluating its five descendent branches, it is time to evaluate “Hardware” itself.
According to the method selection rules mentioned in subsection 5.4.5, FL is used to
evaluate it. The evaluation process is same as the one in evaluating “Inventory carrying
facility” except following two points:

URN:NBN:no-3444

Chapter 5

63

 As FL is used here, the evaluation
model is similar to Figure 5-20. The
only difference is that, in this
model, there are five rather than
three input variables.

 As ABL is used to evaluate
“Communication system”, one input
for this model, commSystem, is a
multi-value logic variable, and it is
expressed by an integer ranging
from 1 to 5. Now, this input variable
needs to be fuzzified. As mentioned
in subsection 5.4.5, we can view it
as a quantitative variable, and
fuzzify it directly. The Fuzzification
result is shown in Figure 5-22.

After fuzzifying commSystem, all the remained evaluating process is same as the one in
evaluating “Inventory carrying facility”. This inference model has been realized by
Fuzzy Logic Toolbox in MATLAB, and the corresponding program is shown in A-6 of
Appendix A. A numerical example for the evaluation result is shown in Table 5-4.

Same as the evaluation process for “Hardware”, the factor “Software” of the firm can
be evaluated. Based on the evaluation results for “Hardware” and “Software”, the
factor “Internal factor” of the firm is evaluated. At last, the final evaluation result for
the firm, “Evaluation of a distributor”, is obtained by the evaluation results for factors
“Internal factor” and “External factor”.

Based on this evaluating procedure, we evaluated a distributor, and the result is shown
in Figure 5-3. The input values for this evaluation module are shown at the rightmost
tier of Figure 5-3, and indicated by “Input” in each block. In the blocks at other tiers,
the method (FL or ABL) used for evaluating the corresponding subsystems is indicated
by keyword “Method”, and the evaluation result for this subsystem is indicated by
keyword “Result”. By the evaluation result, this distributor can be compared with other
possible ones, and the selection/rejection decision may be made.

5.5 Summary

In this chapter, a distributor evaluation module is developed according to following
steps:

 The factors to be considered when evaluating a distributor are determined, and
listed in hierarchical form by AHP. By systematic analysis, this factor set is
relatively complete.

 A mobile agent based information acquisition system is developed to collect data
from possible distributors. As the information is acquired via Internet, this
approach is economical and efficient. If, due to some reasons, the mobile agent

Figure 5-22 Fuzzification of variable
commSystem

URN:NBN:no-3444

Evaluation of Possible Distributors

64

approach is not applicable for some distributors, or the information acquired by
mobile agent is not complete, other methods such as telephone, fax, E-mail can be
used to collect data from these distributors. Actually, for this mobile agent system,
to collect data is just its initial mission. In the future, it may act as an information
infrastructure for the integration of entire distribution chain. From this point of
view, this research is still valuable even if some of its functions can not be applied
in reality.

 FL and ABL are integrated to evaluate a distributor quantitatively. This method
can deal with quantitative, qualitative and logic input variables, and the evaluation
does reflect the decision makers’ preference.

After evaluating all potential distributors, some eligible ones are selected. Based on the
selected retailers, some locations are identified as possible places to build wholesalers.
All these selected retailers and possible locations for building wholesalers act as
candidates to design a distribution chain. These candidates will be input into the design
module to be illustrated in next chapter.

URN:NBN:no-3444

Chapter 6

65

CHAPTER 6 DESIGN OF DISTRIBUTION CHAIN

According to Figure 3-2, after evaluating all possible distributors and selecting the
eligible ones, we come to the second module of system design phase: design of
distribution chain. This module can be viewed as the core of this integrated design
methodology. In this chapter, a set of models, formulae and algorithms will be
provided to design a distribution chain.

6.1 Introduction

As mentioned in Chapter 3, in existing design methodologies, formulae (3-1) and (3-2)
were widely used as general form to design a distribution chain (or supply chain). In
these formulae, two types of parameters were determined inaccurately: customer
demands at retailers and operation related parameters. Detail is given below.

First, let’s talk about customer demands at
retailers. As shown in Figure 6-1, in a customer
zone, possibly, there are several retailers that
sell the same product as the one to be
distributed by this distribution chain. Normally,
we only select one of them as our retailer in this
zone. Assume that Retailer 1 is the candidate
selected by the evaluation module mentioned in
previous chapter. By the acquired information,
we can only approximately estimate the total
demand for this customer zone. To calculate the
exact demand at Retailer 1, we must know its
market share for this product in its customer
zone. Especially, this market share may be
different for different marketing variables such
as price, customer service, etc. In designing a
distribution chain, customer demands are important parameters. They are related with
revenue, product delivery cost, etc. Unfortunately, in existing design methodologies,
market share was not estimated, and customer demands were normally taken as
constant with respect to marketing variables. That is why we say that the customer
demands were not determined accurately in existing methodologies.

Operation related parameters are another type of parameters which were not
determined accurately in existing design methodologies. As mentioned in chapter 3,
product delivery cost and inventory carrying cost are main costs considered in
designing a distribution chain. To calculate product delivery cost, two parameters are
used: delivery cost per unit product and volume of product to be delivered. To
calculate inventory carrying cost, we need to know the average inventory level and unit
holding cost. In reality, delivery cost per unit product and average inventory level are
operation related parameters, i.e. different operation modes may result in different
value for them. For example, when different routes are selected to deliver product, the

A customer zone

Retailer n

Retailer i

Retailer 1

Figure 6-1 A customer zone with
several retailers that sell
the same product

URN:NBN:no-3444

Design of Distribution Chain

66

delivery cost per unit product may be different; average inventory level may also be
different if taking different inventory control parameters. In existing design
methodologies, to simplify the design process, these parameters were taken as constant
regardless different operation modes, and they were determined by experience.
Obviously, this simplification may cause remarkable error in designing a distribution
chain.

To determine these two
types of parameters more
precisely, we employ the
flow chart shown in
Figure 6-2 to guide the
design process of a
distribution chain.
According to Figure 3-2,
all contents in this
chapter belong to the
module of distribution
chain design (the second
module of system design
phase). This module can
be divided into two sub-
modules: market share
estimation and design.

In sub-module of market
share estimation, first,
marketing variables are
determined, then the
retailer’s market share for
the product to be
distributed is estimated.
Based on this estimated
market share, the
customer demand at this
retailer can be calculated.
The main purpose to
develop this sub-module
is to determine customer
demands more precisely.

Now, let’s talk about operation related parameters. These parameters will be used in
the model of determining configuration of a distribution chain (including numbers and
locations of wholesalers and retailers, and assignments of retailers to wholesalers), but
they can only be calculated after the inventory model and product delivery routes are
determined, and these two models depend on the configuration of distribution chain.
This means that, these parameters need to be used in determining configuration, but

 Determine marketing variables

Estimate the market share

Estimation of
market share

Figure 6-2 Flow chart for the module of distribution chain
design

Determine configuration of the
distribution chain

Determine inventory control model at
each node of the distribution chain

First iteration?

N

Y

Y

N

Report the design result

Determine product delivery routes
between different nodes of the

distribution chain

Converge?

Recalculate
the

operation
related

parameters,
and update

them

Design

Initialization

URN:NBN:no-3444

Chapter 6

67

they can only be calculated after configuration is determined. To solve this conflict and
determine operation related parameters more precisely, in sub-module of design, an
iterative process is used to design a distribution chain. First, in the “Initialization”
block, all parameters (including operation related parameters) are specified by
experience. Then, based on these initial values, the configuration of distribution chain
is determined. Given this distribution chain configuration, the inventory model at each
node of the distribution chain is optimized, and routes for delivering product between
different nodes are identified. After determining inventory model at each node and
product delivery routes between different nodes, all operation related parameters are
re-calculated and updated. Based on these newly updated parameters, configuration of
the distribution chain is re-determined, and inventory models and product delivery
routes are re-optimized. This iterative process proceeds until the design process
converges, i.e. there is no significant difference between successive configurations of
the distribution chain. The main purpose for applying this iterative design process is to
determine the operation related parameters more precisely.

The flow chart shown in Figure 6-2 illustrates the sequence on how to apply models
developed in this chapter in designing a distribution chain. Based on this flow chart,
this chapter is organized as follows. In section 6.2, an ANN model is developed to
estimate a retailer’s market share for the product to be distributed in its customer zone.
This model can reflect the relationship between the firm’s distribution strategy and its
market response, and the estimated market share can be used to calculate the customer
demand at this retailer. Based on the calculated customer demands, in section 6.3,
configuration of the distribution chain is determined by a MIP model. Given this
distribution chain configuration, the inventory model at each node is determined in
section 6.4, and routes for delivering product between different nodes are identified in
section 6.5. To realize automatic design of distribution chain, all models, formulae and
algorithms used in this chapter have been implemented by computer applications.

6.2 Market Share Estimation

Given a competitive market environment, a firm’s distribution strategy may be
indicated by marketing mix variables such as price, customer service level, etc. The
market response to these variables can be expressed by market share [Lau et al., 1997].
In this section, after a review and analysis of existing models for market share
estimation, ANN is selected to estimate a firm’s market share in its customer zone.

Note that, the market share talked here is different from the one talked in section 5.2.
In section 5.2, we took a retailer’s general market share as an argument to evaluate its
marketing environment. That market share can be viewed as the reflection of a
retailer’s competitive power. In this section, as we will calculate the exact customer
demand at this retailer, so we only care about the retailer’s market share for the product
to be distributed, rather than its general market share. As the product is to be
distributed, we can only forecast its market share based on the marketing variables.

URN:NBN:no-3444

Design of Distribution Chain

68

6.2.1 Review and analysis of existing models for estimating market share

Improving market share is one of main concerns for marketers, so the estimation of
market share has been attracting the attention of researchers and practitioners for
decades. Next, after analyzing the existing models for market share estimation, our
new estimation model is put forward.

The simplest model in estimating market share may be naive or linear model [Huff,
1964]. A naive model can be shown as follows:

And a linear model can be:

Where, sit: market share of brand i in period t.
 αi: brand i’s constant component.
 βki: brand i’s effect of kth marketing instrument.
 Xkit: the predictor of variable k for brand i in period t.
 εit: the stochastic error of brand i in period t.

Both naive and linear models take linear function to estimate market share. Such kind
of approximation may make the model simple, but the estimated result is inaccurate,
because the relationship between market share and marketing mix variables is
unnecessarily to be linear. To overcome this problem, other models, such as MCI
(Multiplicative Competitive Interaction) and MNL (Multinomial Logit) models are
developed. The general form of a MCI model may be depicted as [Jain et al., 1979]:

Where, Pik: Probability of customers (market share) in market zone k shopping at store

i,
 e: identifier of retailer store attributes, e=1, …, E.
 Aike: variable describing the eth attribute of store i serving zone k.
 βe: attraction parameter associated with attribute e.

This MCI model is calibrated by following procedure: first collect data on historical
buying patterns of randomly selected customers at each facility, and then calibrate the
model’s parameters by least square or other methods. The vital drawback for MCI

)16(1 −++= − ititiiit ss εβα

)26(
1

−++= ∑
=

K

k

itkitkiiit Xs εβα

)36(

1 1

1 −=

∑∏

∏

= =

=
n

i

E

e
ike

E

e
ike

ik

e

e

A

A

P
β

β

URN:NBN:no-3444

Chapter 6

69

model is that, models built for one geographic region may not hold in others, and it is
almost impossible to build an individual MCI model for each potential facility location.

An MNL model may be shown as [Lau et al., 1997]:

Where, Pijk: estimated market share in market zone k for product family j when served

from facility i.
 s: an index representing the performance level on a particular attribute (such

as price or a customer service element) that is offered from facility i to
customers of product family j in market zone k.

 βsjk: beta coefficient describing the customer zone k’s attractiveness to attribute
s when purchasing product family j from facility i.

 Xsjk: binary variable describing presence or absence of attribute s when product
j is supplied to market zone k from facility i.

 αjk: logit model intercept for purchases of product family j from market zone k
at facility i.

The calibration process for MNL is similar to that of MCI. As there is a binary variable
Xsjk in MNL to indicate the presence or absence of an attribute, MNL model is flexible
to model the different condition for different geographic regions, so the resulted MNL
model may be a general model for different customer zones. At the same time, the
market share estimated by MNL model is bounded asymptotically by zero and one, this
insures that the market share estimates will take on feasible values, and never be
negative or exceed 100%.

Based on MNL model, Lau et al. [1997] developed a SMNL (Switching Multinomial
Logit) model, which can be viewed as a piecewise linear approximation to MNL
model. By SMNL, the points where consumer response to price (or other variables)
changes is nonlinear are identified, and these points are crucial in making decisions.

For all these estimation models, there is a common feature: the function form is pre-
defined, and only the parameters in the pre-defined functions are determined during the
calibration process. For example, linear function is pre-defined in naive and linear
models, and exponential function is pre-defined in MCI and MNL models, etc.
Actually, the relationship between market share and marketing mix variables is very
complicated, and we do not know which function form is appropriate to reflect the
case. If this relationship is approximated by one function form, the approximation may
bring remarkable error in the estimation result. To estimate market share more
precisely, a new method needs to be developed.

)46(

1 1

1

−

+

=
∑

∑

=

=

+∂

+∂

S

s
sjksjkjk

S

s
sjksjkik

X

X

ijk

e

e
P

β

β

URN:NBN:no-3444

Design of Distribution Chain

70

As mentioned in [Tsoukalas, 1997], ANN is a good pattern recognizer, and it learns by
examples. The main reason that we can not precisely describe the relationship between
market share and marketing mix variables is that, we do not know its pattern. But, by
the past marketing experience, we have enough historical examples to describe this
relationship. Obviously, ANN is the appropriate technology to work here: it can
recognize the pattern of the relationship between market share and marketing mix
variables by learning these examples, and then estimate market share by this
recognized pattern. Based on this analysis, we will use ANN to establish a model for
market share estimation. Next, after a simple introduction to ANN, we will use two
steps to establish the model for market share estimation: identifying marketing mix
variables and determining the ANN model.

6.2.2 Simple introduction to ANN

Since first put forth in [Mcculloch et al., 1943], ANN has largely been applied in
production scheduling and process control, system identification, inspection and
forecasting, etc. An ANN model can be defined as a data processing system consisting
of a large number of simple, highly interconnected processing elements (artificial
neurons) in an architecture inspired by the structure of cerebral cortex of the brain
[Tsoukalas, et al., 1997]. Some basic concepts and formulae in ANN are introduced
next.

Artificial neuron.
Figure 6-3 shows a
schematic
representation of an
artificial neuron, in
which there are two
functions: sum of
weighted inputs and
activation function.
The first function
simply aggregates the
weighted inputs and
yields a quantity Ij:

The second part is a filter, usually called as the activation function, through which the
combined signal flows. The normal formulae used as activation function are Linear
function, Threshold function, Signum function and Logistic function, shown as below:

 Sum of
wighted
inputs

Activation
function

wnj
x1

xn

x0

w1j

w0j

Neuron j

yj

Figure 6-3 Schematic representation of an artificial neuron

)56(
1

−=∑
=

n

i

iijj xwI

URN:NBN:no-3444

Chapter 6

71

Linear function makes the neuron reflect the sum of weighted inputs linearly, and be
able to output any value. For the Threshold function, the information is passed only
when the output I of the first part of artificial neuron exceeds threshold T, and output is
restricted among 0 and 1. Signum function passes negative information when this
output is less than threshold T, and positive information when it is greater than T, this
function restrict output value between -1 and +1. Contrast to these two functions,
Logistic function is a continuous one that varies gradually between two asymptotic
values, typically 0 and +1. Parameter α is used to control the varying speed, or shape
of the curve. These non-linear transfer functions give an ANN capability to learn or
simulate both linear and non-linear relationships between inputs and outputs.

Neural network. As defined above, an
ANN is an interconnected network of
such neurons introduced previously. A
typical neural network is fully
connected, i.e. there is a connection
between each of the neurons in any
given layer with each of neurons in the
next layer. When there are no lateral
connections between neurons in a given
layer, and none back to previous layers,
the network is said to be feedforward.
Figure 6-4 shows a fully connected and feedforward neural network. For each
connection, there is a weight wij (as shown in Figure 6-3) assigned to it.

Training. Training is the process of adapting the connection weights in an artificial
neural network to produce the desired output vector in response to a stimulus presented
to the input buffer [Tsoukalas et al., 1997]. A supervised training process can be
depicted as Figure 6-5. There are mainly four types of supervised training algorithms
[Patterson, 1996]:

 Hebbian training. In this algorithm, a connection weight is incremented if both the
input and desired output are large.

 Competitive training. In competitive training, the weights are adjusted to favor
neurons that initially respond most strongly to given input stimuli. Neurons in a
given layer compete to represent an input pattern, but only a single unit wins.

II αφ =)(

≤−
>+

=
TI

TI
I

1

1
)(φ

≤
>

=
TI

TI
I

0

1
)(φ

Ie
I αφ −+

=
1

1
)(

Linear function

Threshold function

Signum function

Logistic function

Inputs Intermediate output

Figure 6-4 A fully connected, feedforward
neural network

URN:NBN:no-3444

Design of Distribution Chain

72

 Stochastic training. It adjusts
weights in a probabilistic
manner. Stochastic training is
also called as Boltzmann
training.

 Error correction training. It takes
place when there is error (i.e.
there is difference between
desired output and the actual
output), and its goal is to
minimize this error.

By far, the most common method
among error correction training algorithm is referred as back propagation, which is a 2-
phase, gradient descent optimization algorithm. Initially, weights are randomly
assigned to each connection, and then back propagation method is used to minimize the
sum of squared errors between the actual outputs and those estimated by the network.
During the optimization process, weights are adjusted iteratively until the sum of
squared errors is small enough. Once trained, the ANN can be used to estimate outputs
by inputs, which is referred as recall process (for a full description of ANN, see
[Tsoukalas et al., 1997]).

6.2.3 Identifying marketing mix variables

After introducing the method for estimating market share, it is time to identify main
marketing mix variables that determine the firm’s market share for the product to be
distributed. As a firm runs in a competitive environment, the marketing variables come
from two sources: the firm itself (internal factors) and its marketing environment
(external factors). For the firm itself, the main factors that have influence on market
share include product price, customer service, product feature, and advertise
expenditure. For its marketing environment, such factors include number of
competitors, the competitive power of all competitors, and average product price for
them. Note that, in section 5.2, we talked about internal and external factors, but they
are different from the ones talked here. In section 5.2, as we wanted to evaluate a firm
comprehensively, all internal and external factors related to the design objectives were
considered there. But here, as we want to estimate market share for a product, so we
only consider those internal and external factors which are related with market share.

Internal factors. Such factors have determinative function on the firm’s market share,
and they may be decided by the decision makers. Such factors include:

(1) Product price. Price for the selling product has crucial effect on the firm’s market
share for this product. Normally, high price yields low market share, and vice versa.
For the firm, its ultimate goal is to make profit, and high price is a possible way to
make more profit. But high price may result in low market share, and finally reduce
profit for the firm, so decision makers need to make compromise between the positive
and negative effects of price.

Neural Network

Adjust weights

Compare
Input

Output

Target

Figure 6-5 Supervised training process

URN:NBN:no-3444

Chapter 6

73

(2) Customer service. Besides low price, improving customer service is another way to
increase market share. But, higher customer service level means more cost for the firm,
so, same as price, the decision maker also needs to make compromise and keep an
appropriate customer service level for customers. Normally, a firm uses following
variables to indicate customer service level:

 Fill rate. Fill rate is defined as the fraction of demand satisfied from the stock on
hand. High fill rate can earn good reputation for the firm, and then result in high
market share. On the other hand, as customer demand is a random variable, high
fill rate may mean more safety stock, high inventory level and more inventory
maintenance cost for the firm, this is the negative effect of high fill rate.

 Flexibility. Flexibility of a firm is defined as its capability to satisfy dynamic
customer requirements by handling environmental uncertainty with profitability
[Slolvang, 2001]. It can be indicated by the percentage of slack throughput for a
warehouse. Similar to fill rate, high flexibility can also earn goodwill, and then
bring high market share for the firm. But higher flexibility means more production
and transportation capacity, and then more opening cost for a facility.
Unnecessary high flexibility may result in waste of source.

 Technical support. For some products, the firm needs to provide after selling
technical service for customers. Obviously, providing nice technical support may
increase market share for the firm, but cause extra cost.

(3) Product features. They include quality, package, and other features of the product.
These features, especially the quality of a product, remarkably influence the firm’s
market share for this product. As they are mainly determined during the production,
rather than distribution process, we will not explain them here. In the ANN model
mentioned next, a score ranging from 0 to 100 is used to indicate the product features.

(4) Advertising expenditure. Excellent advertisement is another way to increase market
share, but advertising expenditure adds cost for the firm.

External factors. We view all competitors as an entity. The factors that have influence
on the firm’s market share include:

(1) Number of competitors in this customer zone. Normally, the more competitors are
there in a customer zone, the stronger the competition will be, and the resulted market
share for the firm may be lower, so this is a negative factor for market share.

(2) Competition power for all competitors. We use an enterprise’s global market share
(i.e. its market share all over the world) to indicate its competition power. So, the
competition power for all competitors is indicated by the sum of their global market
shares. Obviously, this is a negative factor for the firm’s market share.

(3) Average product price of all competitors. We use the following formula to calculate
this variable:

URN:NBN:no-3444

Design of Distribution Chain

74

Where, Pa: Average product price of all competitors.
 Pi: product price of competitor i, i =1, …, n.
 Si: local market share (a competitor’s market share in this customer zone) for

competitor i.

This variable is the counterpart of product price for the firm. Its effect on the firm’s
market share is also negative.

All the variables identified above and their effect on the firm’s market share is
summarized as Table 6-1.

Table 6-1 Marketing mix variables and their effect on the firm’s market share

Variable Effect

Product price for the firm ($) Negative
Fill rate (%) Positive
Flexibility (%) Positive

Customer service

Technical support (%) Positive

Product features positive
Advertising expenditure ($) positive
Number of competitors in the customer zone negative
Competitive power for all competitors (%) negative
Average product price for all competitors ($) negative

6.2.4 Determining the ANN model

There are two issues to be addressed when determining an ANN model: its structure
and parameters in training process. A multi-layer fully connected feedforward neural
network is applied in this market share estimation model. For its structure, we need to
determine the number of layers, and number of nodes in each layer. For training
process parameters, we need to determine learning rate and momentum. Next, the rules
on how to determine these parameters are illustrated individually.

Structure of the ANN model. The ability of neural network to model input-output
patterns is directly related to its structure. Patterson [1996] suggested that: to model
interaction and non-linearity, the typical network consists of a single intermediate layer
between input and output layers. When discontinuities are present in the data, two
intermediate layers are desirable. For our model, a single intermediate layer neural
network is selected, i.e. there will be three layers in this ANN model: input layer, one
intermediate layer and output layer.

)66(

1

1 −=

∑

∑

=

=
n

i

i

n

i

ii

a

S

SP

P

URN:NBN:no-3444

Chapter 6

75

For the input layer, as nine marketing mix variables are identified above, there will be
nine nodes in this layer. For the output layer, only one node is needed as there is only
one output variable. For intermediate layer, too many nodes may make the model over-
fit the training data; on the other hand, too little nodes may limit its modeling ability.
Hornik et al. [1989] suggested that the number of nodes in intermediate layer ranges
from (2N+P)1.2 to (2N+1), where N is the number of nodes for input layer, and P is
number of nodes for output layer. We determine the number of intermediate nodes as
25.

For a function approximation (or regression) ANN, the typical activation function for
neurons in intermediate layer is Logistic function, and for output layer, linear function
is the appropriate one. To speed the training process, a bias is added to each neuron.
This bias can produce an effect equivalent to offsetting the origin of activation
function, and then may result in more rapid training.

Parameters in training process. Back propagation is taken as the training method for
this ANN model. The training process can be shown by the following formula:

Where, ∆wpq.k(N+1): increment of the weight between node p (in jth layer) and node q

(in kth layer) in (N+1)th iteration.
 ηpq: training (or learning) rate for weight between node p and q.
 δpq.k: is defined as 2α(Tq-φq.k) φq.k(1-φq.k), where α is the constant in

Logistic function, Tq is the target output for node q (in kth layer),
φq.k is the output for node q.

 φp.j: the output for node p in jth layer.

For this training process, the parameter to be determined is training rate η (e.g. ηpq).
According to [Tsoukalas 1997], η must range between 0 and 1. If η is large (e.g. 0.8 or
thereabouts), the weight vector will take relatively large step and find the minimum
faster. However, if the input data patterns are not highly compacted around the “ideal”
example, this will cause the network to jump wildly each time a new input pattern is
presented. If η is small (0.2 or thereabouts), the learning step will not be so wild, but
the network may require longer time to learn the patterns, and the resulted network
may be over-fitted. As a compromise, the learning rate for our model is specified as
0.4.

To reduce the training time, momentum is introduced into the training process. As
stated in [Tsoukalas, 1997], momentum is used to keep the training process going in
the same general direction analogous to the way that momentum of a moving object
behaves. By adding momentum into the training process, the formula shown above
becomes:

)86()()1(.... −∆+−=+∆ NwNw kpqjpkpqpqkpq µφδη

)76()1(... −−=+∆ jpkpqpqkpq Nw φδη

URN:NBN:no-3444

Design of Distribution Chain

76

Where µ is the momentum coefficient, ∆wpq.k is the previous (Nth iteration) adjustment
of weight between node p in (k-1)th layer and node q in kth layer. As suggested in
[Tsoukalas 1997], momentum coefficient in our model is specified as 0.9.

All parameters determined above can be summarized as Table 6-2. By these
parameters, the ANN model is determined.

Table 6-2 Parameters in the ANN model for market share estimation.

Number of layers 3
Number of nodes in input layer 9
Number of nodes in intermediate layer 25
Number of nodes in output layer 1
Activation function for intermediate layer Logistic function
Activation function for output layer Linear function
Learning rate 0.4
Momentum coefficient 0.9

6.2.5 Realization of ANN model

An ANN model can be realized by Neural Network
Toolbox in MATLAB. The procedure to realize the
ANN model determined above is shown as Figure 6-6.

(1) Pre-process inputs and targets. Before applied to
estimate market share, the ANN model needs to be
trained by a set of inputs and targets (desired outputs).
Neural network is sensitive to absolute magnitudes of
different variables. For example, in this model, price
may range from 1000 to 5000, while fill rate only
ranges from 0 to 1, the fluctuations in price will tend to
swamp any change in fill rate. To minimize the
influence of absolute scale, all inputs in this model are
normalized to range from 0 to 1 by function premnmx
provided by Neural Network Toolbox. The
corresponding form is:

 [pn, minp, maxp, tn, mint, maxt] = premnmx (p, t).

Where, p is input matrix, t is target matrix, pn and tn
are normalized input and target matrices respectively.

(2) Divide all inputs and targets into three subsets: two
fourths of data for training set, one fourth for validation
set, and the rest for test set.

(3) Create the ANN. Function newff is used to create
and initialize an ANN, the form is:

Pre-process inputs and targets

Divide all inputs and targets into
three subsets

Evaluate the trained ANN

Query result

Create the ANN

Train the ANN

Start

Start

Figure 6-6 Procedure to realize
an ANN model in
MATLAB

URN:NBN:no-3444

Chapter 6

77

 net=newff(minmax(ptr), [25,1], {‘logsig’, purelin’}, ‘traingdm’).

In this function, the first argument is the matrix of minimum and maximum values of
input variables. The second argument is used to indicate the number of nodes in
intermediate layer (here 25) and output layer (here 1). The third argument indicates the
activation function for nodes of intermediate layer (here Logistic function, called as
‘logsig’ in MATLAB) and output layer (here linear function, called as ‘purelin’ in
MATLAB. The fourth argument is the training function which will be explained next.
Function newff automatically call function init, which is used to initialize the weights
and biases by default functions.

(4) Train the ANN. During training process, weights and biases are iteratively adjusted
to minimize the Mean Square Errors (MSE), which can be shown as follows:

Where, ti is the target (desired output) for node i in output layer, i=1, …, n. In this

model, n=1.
 ai is the actual output for node i in output layer.

As mentioned above, back propagation algorithm is selected to train the neural
network. The learning rate can be set by variable net.trainParam.lr, and momentum
coefficient by net.trainParam.mc.

One of the problems that occur during training process is overfitting, i.e., the error on
the training set is driven to a very small value, but it becomes very large when new
data is presented to the network. The network has memorized the training examples,
but it has not generalized to new situation. To improve the generalizing capability, an
early stopping technique is used in the training process [Demuth et al., 2001]. In
procedure 2, data have been divided into three sets: training set, validation set and test
set. In early stopping technique, the training set is used for computing gradient and
updating the weights and biases for the network. The error on the validation set is
monitored during the training process. The validation error will normally decrease
during the initial phase of training. However, when the network begins to overfit the
data, error on validation set will begin to rise. When the validation error increases for a
specified number of iterations, the training process is stopped. Such training process
can be finished by function train

 [trainedNet, tr]=train(net, ptn, ttn, [], [], v)

Where, net is the neural network to be trained, trainedNet is the trained network.
 ptn and ttn are normalized inputs and target in training set.
 v is a structure including inputs and targets in validation set.

)96()(
1

1

2 −−= ∑
=

n

i

ii at
n

MSE

URN:NBN:no-3444

Design of Distribution Chain

78

The fourth and fifth arguments in function train are initial input and layer conditions,
which are null here.

(5) Evaluate the trained ANN. Test set is used to analyze the performance of the
trained network by following commands:

 answer=sim(trainedNet, testInput)
 [slope, intercept, correlation]=postreg(answer, testTarget)

In these routines, first, the inputs in test set, testInput, are presented at the trained
network trainedNet, the corresponding result, answer, is output by function sim.
Secondly, both the network output and targets (desired outputs) in test set are input into
function postreg, which analyses the relationship between them. This function returns
three parameters: slope and intercept correspond to the slope and y-intercept of the best
linear regression relating targets and network outputs, correlation is the correlation
coefficient between targets and network outputs. If both slope and correlation are close
to 1, and intercept is close to 0, then the trained network is satisfied, otherwise the
structure of the neural network needs to be adjusted.

(6) Query result. After trained and evaluated, the neural network trainedNet can be
used to estimate the output (market share) by inputs (marketing mix variables), and it is
finished by function sim

 marketShare=sim(treainedNet, input)

Where input is the input presented at the trained neural network trainedNet, and
marketShare is the resulted market share. This estimated market share will be used in
the design model developed in next section.

In this ANN based market share estimation model, both internal and external factors
for a retailer have been considered. These factors are universal for any retailer, so the
model can be applied for all retailers, not only for a particular one. The model is
trained by the historical data of the host enterprise, so it can also be applied for the
retailers which have no experience of distributing the product of concern. If the host
enterprise estimates market share for a new product, and it has no experience in
distributing such product, then this model is not applicable.

Besides estimating a firm’s market share in its customer zone, the ANN model
developed above can also help decision makers to determine values for marketing mix
variables. We take price as an example to illustrate the determining process. First, fix
other marketing mix variables, and vary price in the possible range, and then present
them onto the trained neural network to get the corresponding market share. Then,
approximate the relationship between price and market share into a function:
marketShare = f(price) by least square method. At last, the price can be determined by
maximizing price × f(price), which is roughly proportional to profit.

URN:NBN:no-3444

Chapter 6

79

In practice, pricing is a complex process. When determining product price, the decision
makers need to consider costs, sales, and the strategic distribution strategy, etc. But
these factors are difficult to be expressed by mathematical models, so the process
mentioned above can only be viewed as an assistant.

6.3 Determining the Configuration of a Distribution Chain

According to Figure 6-2, after estimating the possible retailers’ market shares in their
customer zones, it is ready to design a distribution chain. In this design sub-module,
after initialization, the first step is to determine the configuration of a distribution
chain. In this section, an optimization model will be developed to accomplish this
work.

In chapter 5, all possible distributors were evaluated, and a set of eligible ones were
selected according to pre-determined criteria. Based on the selected possible
distributors, some locations were identified as possible places to build wholesalers. We
call the selected possible distributors as retailer candidates (as the distributors will act
as retailers), and possible places for building wholesalers as wholesaler candidates.

As mentioned in section 4.1, we will design a distribution chain with one distribution
center, one tier of wholesalers and a set of retailers. The abstract structure of such a
distribution chain can be shown as Figure 6-7. Based on this abstract structure, the task
for determining the configuration of a distribution chain is two-folded:

 Determine the selection/rejection of retailer candidates and wholesaler candidates.
 Determine the assignments of retailers to wholesalers.

Before finding the method to
accomplish these tasks, we need to
analyze property of the problem we
are facing. In mathematics, these
tasks can be expressed by binary
variables. For example, a binary
variable can be used to indicate the
selection/rejection of retailer and
wholesaler candidates (e.g. 1
indicates selection, and 0 indicates
rejection), or assignments of
retailers to wholesalers (e.g. 1 if a
retailer is assigned to one
wholesaler, 0 otherwise). Assume
that, we have n retailer candidates
and m wholesaler candidates, then there will be (m+n) binary variables to express the
selection/rejection of retailer and wholesaler candidates, and (m×n) binary variables to
indicate the assignments of retailers to wholesalers. We can imagine that, how large the
problem will be if there are hundreds even thousands of retailer candidates and dozens
of wholesaler candidates. As set in section 4-2, in this dissertation, the objective for

Factory
Customer
demand

Distribution
center

Wholesalers Retailers

Figure 6-7 Abstract structure of the distribution chain
to be designed

URN:NBN:no-3444

Design of Distribution Chain

80

designing a distribution chain is to maximize its profit subject to satisfying customer
requirements. Obviously, the problem we are facing is an optimization problem with
large scale. As stated in [Kreyszig, 1999], MIP (Mixed Integer Programming) is an
appropriate optimization method for large scale problems, and the software package to
realize it is available in market. Based on this analysis, in this dissertation, MIP will be
used to determine the configuration of a distribution chain.

6.3.1 Simple introduction to MIP

The general form of a MIP model may be depicted as follows [Kreyszig, 1999]:

Maximize (or Minimize):)106(),,(22111 −+++= nnn xcxcxcxxf KK
Subject to

Where x1…xn are called control variables, a11…amn, b1…bm and c1…cm are parameters.
Control variables may be integer or binary.

The most common method to solve a MIP model is Branch and Bound approach (see
[Nemhauser et al., 1988] for detail).

6.3.2 MIP optimization model

As shown in formula (6-10), an MIP model is composed of two parts: objective
function and constraints. Next, we will illustrate them separately.

6.3.2.1 Objective function

As determined in chapter 4, the objective for our design methodology is to maximize
profit subject to satisfying customer service requirements. Customer service
requirements are expressed as constraints, so, only maximizing profit is left in the
objective function. In a distribution chain, profit can be expressed as sum of revenues
minus sum of distribution costs.

Revenue. In a customer zone, the revenue for a retailer can be formulated as:

Where Pi: the product price at retailer i.
 Si: the market share of retailer i in its customer zone. This market share is

estimated by the ANN model developed in previous section.
 Di: total customer demand in this customer zone during a planning period. In

practice, demand is a random variable. As we are considering long term

),,1(0
11

22121

11111

nix

bxaxa

bxaxa

bxaxa

i

mnmnm

nn

nn

K

K

KKK

K

K

=≥
=++

=++
=++

iii DSP

URN:NBN:no-3444

Chapter 6

81

demand in this model, we use its average value to represent this random
variable. According to [Jayaraman et al., 2001], such simplification is
acceptable.

The sum of revenues for all retailers in a distribution chain is expressed as:

Where ui is the decision variable to indicate retailer i is selected/rejected. If retailer i is
selected, ui=1, otherwise ui=0. n is the number of retailer candidates selected by the
distributor evaluation module developed in chapter 5.

Cost. In a distribution chain, there are mainly two types of cost: inventory carrying
cost at each node and product delivery cost between different nodes. As assumed
before, retailers do not belong to the host enterprise. So their inventory carrying cost is
not counted here. Next, each part of the cost is explained in detail.

(1) Product delivery cost from wholesalers to retailers. Then sum of all product
delivery costs from wholesalers to retailers can be formulated by the following linear
function:

Where, wij: the decision variable to indicate whether retailer i is assigned to warehouse

j. If retailer i is assigned to j, wij=1; otherwise wij =0.
 m: number of possible places where wholesalers can be located.
 Cji: unit product delivery cost from warehouse j to retailer i.

Cji is an operation related parameter. For example, when a vehicle serves several
retailers, the delivery cost per unit product allocated to a retailer largely depends on
which route to be taken.

(2) Inventory cost at wholesalers. Inventory cost
at a wholesaler is composed of two parts: fixed
cost for opening a warehouse and variable cost
for carrying the inventory. For the opening cost,
most existing design methodologies took it as
constant with respect to inventory level ([Chen
et al., 1997], [Jayaraman et al., 2001], etc.). In
practice, this is not the case. Normally the
relationship between the highest inventory level
at a wholesaler and the cost to open it can be
depicted as Figure 6-8. Especially, such effect
may be different for different locations. In our
design methodology, this effect is considered,

∑
=

n

i

iiii DSPu
1

∑∑
= =

m

j

n

i

iijiij SDCw
1 1

Ihj

Copenj(Ihj)

Figure 6-8 Wholesaler j’s opening cost
function with respect to its
possible highest inventory
level

URN:NBN:no-3444

Design of Distribution Chain

82

and the opening cost for a wholesaler is determined according to its possible highest
inventory level. The sum of inventory costs for all wholesalers is formulated as
follows:

Where vj: the decision variable to indicate whether wholesaler j is selected. If selected,

vj=1, otherwise vj=0.
 Copenj(Ihj): function to indicate the opening cost for wholesaler j. Ihj is the

possible highest inventory level at it.
 Ij: the average inventory level for wholesaler j, it is an operation-related

parameter.
 Cj: inventory carrying cost per unit product per unit time for wholesaler j.
 T: strategic planning period.

(3) Delivery cost from distribution center to wholesalers. This cost can be shown as:

Where C0j: unit product delivery cost from distribution center to warehouse j. It is also

an operation-related parameter.
 dwj: total demand at wholesaler j during a planning period. Here, dwj can be

represented by:

 ∑
=

=
n

i

iiijwj DSwd
1

(4) Inventory cost at distribution center. Same as the inventory cost at wholesalers,
inventory cost at distribution centre is also composed of two parts: fixed cost for
opening the distribution centre and variable cost for carrying the inventory. This
opening cost is also related with the highest inventory level at distribution centre. The
total inventory cost at distribution centre can be depicted as:

Where Copen0(Ih0): function to indicate the opening cost for distribution centre. Ih0 is the

possible highest inventory level at it.
 C0: inventory carrying cost per unit product per unit time for distribution center

0.
 I0: average inventory level at distribution center 0, it is an operation-related

parameter.

∑
=

+
m

j

jjhjopenjj TCIICv
1

))((

∑
=

m

j

wjjdC
1

0

TICIC hopen 0000)(+

URN:NBN:no-3444

Chapter 6

83

6.3.2.2 Constraints

Flexibility constraints. For a distribution chain, we mainly care about two types of
flexibilities: production volume flexibility and delivery volume flexibility. Production
volume flexibility is measured by the percentage of slack production capacity for an
enterprise [Slack, 1987]. According to this definition, the production volume flexibility
constraint is expressed as:

Where Cpmax: the maximum production capacity for the host enterprise, so the

numerator represents the slack production capacity.
 εp: the required production volume flexibility.

At the same time, sum of demands at all retailers must exceed the minimal production
capability to ensure enough resource utilization rate, i.e.

Where, Cpmin is the minimal production capability for the host enterprise.

Similar to production volume flexibility, delivery volume flexibility is defined as the
percentage of slack throughput of a warehouse. So the delivery volume flexibility
constraints for wholesalers are:

Where Ctmaxj: the maximum throughput for wholesaler j,
 εtj: the required delivery volume flexibility for wholesaler j, which is

determined by the decision makers.

Same as production capability, to ensure resource utilization rate, the real throughput
for a wholesaler must also exceed its minimal capability, i.e.:

Where, Ctminj is the minimal throughput for wholesaler j.

)116(
max

1

max

−≥

−∑
=

p
p

n

i

iiip

C

DSuC

ε

)136(
max

1

max

−∀≥

−∑
= j

C

DSwC

tj
jt

n

i

iiijjt

ε

)126(min
1

−≥∑
=

p

n

i
iii CDSu

)146(min

1

−∀≥∑
=

jCDSw jt

n

i

iiij

URN:NBN:no-3444

Design of Distribution Chain

84

Normal constraints on variables. All variables must be non-negative, and ui, vj, wij

are binary variables. For these binary variables, there are other constraints. First, a
retailer can only be assigned to a warehouse, i.e.

Secondly, only when both retailer i and warehouse j are selected, this retailer can be
assigned to the wholesaler, i.e.

After identifying the objective function and constraints, the MIP model can be formed
as follows (the corresponding notation explanation is shown in Table 6-3):

))(()(

)176())((

0000

1 1

0

11 11

TICICDSwC

TCIICvDSCwDSPuprofitMaximize

hopen

m

j

n

i

iiijj

m

j

jjhjopenjj

m

j

n

i

iijiij

n

i

iiii

+−−

−+−−=

∑ ∑

∑∑∑∑

= =

== ==

Subject to

)156(
1

−∀=∑
=

iuw i

m

j

ij

)166(
1

−=∑
=

j

n

i

ij vw

)186(
max

1

max

−≥

−∑
=

p
p

n

i

iiip

C

DSuC

ε

)196(min

1

−≥∑
=

p

n

i

iii CDSu

)206(
max

1

max

−∀≥

−∑
= j

C

DSwC

tj
jt

n

i

iiijjt

ε

)216(min

1

−∀≥∑
=

jCDSw jt

n

i

iiij

)226(
1

−=∑
=

i

m

j

ij uw

)236(
1

−=∑
=

j

n

i

ij vw

)246(,10,, −∀= jiorwvu ijji

URN:NBN:no-3444

Chapter 6

85

Table 6-3 Notation explanation for the MIP optimization model
Variables Definition
index
i Retailer index
j Wholesaler index
parameters
n Number of retailer candidates selected in chapter 5
m Number of wholesaler candidates selected in chapter 5
Pi Product price at retailer i
Di Total demand in retailer i’s customer zone during a planning period
Si Market share of retailer i in its customer zone, which is estimated in previous section.
Cji Unit product delivery cost from wholesaler j to retailer i (operation related parameter)
Ihj Possible highest inventory level at wholesaler j
Copenj(Ihj) Opening cost for wholesaler j. It is a function with respect to Ihj. The function may be determined by

experience
Ij Average inventory level for wholesaler j (operation related parameter)
Cj Inventory carrying cost at wholesaler j per unit product per unit time
T Planning period
C0j Unit product delivery cost from central depot to wholesaler j (operation related parameter).
Ih0 Possible highest inventory level at distribution centre 0
Copen0(Ih0) Opening cost for distribution centre 0. It is a function with respect to Ih0. The function may be

determined by experience
C0 Unit inventory carrying cost at distribution centre 0
I0 Average inventory level at central depot (operation related parameter)
Cpmax Maximum production capacity for the host enterprise
Cpmin Minimal production capacity for the host enterprise
εp Required production volume flexibility for the host enterprise
Ctmax Maximal throughput for wholesaler j
Ctmin Minimal throughput for wholesaler j
εtj Required delivery volume flexibility for wholesaler j
Decision variables (binary)
ui 1 if the retailer i is selected, 0 otherwise
vj 1 if the wholesaler j is selected, 0 otherwise
wij 1 if retailer i is assigned to wholesaler j, 0 otherwise

For this MIP model, we give following further explanations:

 In this model, we only consider those retailer candidates and wholesaler
candidates that were selected in Chapter 5. n is the number of retailer candidates,
and m is the number of wholesaler candidates.

 When calculating revenue at a retailer (say retailer i), we use Si×Di to represent
the customer demand at this retailer. Here, Di is the total customer demand for this
customer zone during a planning period, and Si is the market share of this retailer
in its customer zone. The market share is estimated by the model established in
previous section.

 After solving the model, we get values for all decision variables, then the
configuration of the distribution chain is determined. For example, when ui
(i=1~n) are determined, all retailers are located. When vj (j=1~m) are determined,
the decision on where to build wholesalers is made. When wij are determined, the
connections between wholesaler and retailers are identified.

Some commercial packages such as LINDO & LINGO, etc. have been developed to
solve a MIP model, so we can conveniently use these existing computer applications to
solve our model.

URN:NBN:no-3444

Design of Distribution Chain

86

6.4 Determining Inventory Control Model at Each Node of the
Distribution Chain

Maintaining inventory is one of the main activities in managing a distribution chain.
According to Figure 6-2, after determining its configuration, it is time to plan inventory
control models for each node of a distribution chain. Note that, although retailers do
not belong to the host enterprise, the parameters for their inventory control must be
determined so as to found the transportation model from wholesalers to retailers.

According to [Tijms, 1994], there are mainly four types of inventory control models,
and the basic forms are: periodic review (R, S) model and continuous review (s, Q)
model. In (R, S) model, an order is placed every R unit time to raise the inventory level
to S. In (s, Q) model, an order Q is placed when at hand inventory is less than or equal
to s. Due to the random customer demand at retailers, (R, S) model may cause
following problems: the order may come when it is unnecessary (the at hand inventory
level is high enough to meet the demand), or may not come when it is necessary (the at
hand inventory level is less than safety stock). Both situations may cause extra cost for
the retailer. So, we select (s, Q) as our inventory control policy.

For (s, Q) model, following formula was normally used to determine parameter s
[Silver, 1985, Johnson et al., 1996]:

Where, s is the reorder point (or safety stock)
 L is the total demand during lead time.
 n is the safety factor, which is determined by subjective judgement.
 σ is the standard deviation of demand during lead time.

Parameter Q was determined by minimizing inventory carrying cost which is shown as
follows:

Where, TC is the total inventory carrying cost.
 TD is the total demand between successive replenishments.
 Q is the ordering quantity for each replenishment.
 co and ch are ordering cost and unit holding cost respectively.

In these formulae, when determining Q, the demand was assumed implicitly to be
linear with respect to time, and so the average inventory level at the retailer was
expressed as: nσ+Q/2. In practice, such assumption may not hold, and it may cause
error when determining the inventory model at a retailer. To determine the inventory
control parameters more precisely, we developed a simulation-based estimation model
shown as follows.

)256(−+= σnLs

)266()
2

(−×++×= ho cn
Q

c
Q

TD
TC σ

URN:NBN:no-3444

Chapter 6

87

The working process at a node (a
retailer, a wholesaler or
distribution centre) can be
described as: the node faces a
random demand process. When
the at hand inventory level is less
than or equal to s, an order Q is
placed. This order will come after
a lead time. Our objective is to
minimize the inventory carrying
cost per unit time (e.g. per day).

The random demand process at a
node can be shown as Figure 6-9.
Here, di (or di+1) represents the
volume of an individual demand, Ui represents the inter-arrival time for successive
demands. Both volume of individual demand and inter-arrival time for successive
demands are assumed to be random variable with normal distribution. At retailers, the
parameters (mean and standard deviation) of these two variables are estimated based
on historical customer demand. At wholesalers and distribution centre, these
parameters are obtained by simulation. After determining the inventory control
parameters at retailers and assignments of retailers to wholesalers, the demand process
at wholesalers can be simulated; after determining inventory control parameters at
wholesalers, the demand process at distribution centre can also be simulated. Based on
these simulation models, the parameters mentioned above can be obtained. We have
realized these simulation models in MATLAB.

If we view retailers (or wholesalers) as customers for wholesalers (or distribution
center), the working process at a wholesaler (or distribution center) is same as the one
at a retailer. So we will take a retailer as an example to illustrate the inventory control
model for all nodes in a distribution chain.

The inventory carrying cost at a retailer includes holding cost and shortage cost, and
the cost function is expressed as:

Where, Ut is the inter-arrival time for successive demands.
 Nt is net inventory. It equals to on hand inventory minus backlogged orders,

Both Ut and Nt are random variables.
Ch is holding cost per unit product per unit time. Cs is shortage cost per unit

product per unit time.

According to [Reuven, 1998], if a process can be split into several replicas, and for
every replica, they have the same initiate state and independent, identical distribution,

)276(
0

0
),(−

<

≥
=

ttts

ttth
tt NUNC

NUNC
UNϕ

Ui

Demand

Time

di

di+1

Figure 6-9 Demand process at a node

d0

dn

URN:NBN:no-3444

Design of Distribution Chain

88

then this process can be called Regenerative Process. The inventory carrying process at
a node can approximately be viewed as a regenerative process. Every time when the
absolute value of net inventory is less than a small number, a new regenerative begins.
Assume that the inventory carrying process at a node is simulated within N
regenerative cycles, then the inventory carrying cost per unit time can be estimated by
following formula:

Where,
C(s, Q) is the inventory carrying cost per unit time, which is a function with respect to

s and Q.
N is the number of regenerative cycles.
Mi is order times during regenerative cycle i.
τij is the number of demands in a replenishment cycle.
φ((s+Q-∑dijt), Uijt) is the cost function defined in formula (6-27). Its value is obtained
by simulation. The first argument in this function represents the net inventory.
K is the fixed ordering cost.

Following procedure can be used to realize this simulation model and search the
optimal parameter pair (s, Q):

 Generate random samples
 Inter-arrival time: (u1,1, ……uτ1,1, ……,u1,N, ……, uτN,N)
 and demand :(d1,1, ……dτ1,1, ……,d1,N, ……, dτN,N) from corresponding PDFs

(Probability Density Functions) based on N regenerative cycles.
 Simulate the working process at a retailer, and calculate the corresponding

inventory carrying cost by function φ((s+Q-∑dijt), Uijt).
 Determine range for parameter s and Q by experience, and evenly take values

from their corresponding ranges to form parameter pairs (sk,Ql).
 Estimate cost C(sk,Ql) by formula (6-28), find the minimal cost. The parameter

pair corresponding to this minimal cost is the optimal one (s*,Q*).

We have realized this simulation model in MATLAB, and the corresponding program
is shown in B-1 of Appendix B. Next, an example is given to illustrate the utilization of
this tool. The parameters for a retailer are shown in Table 6-4.

By the tool developed in MATLAB, the inventory carrying cost for different parameter
pairs (sk, Ql) is estimated, as shown in Figure 6-10. By this searching result, following
conclusions are reached: when Q=100 (100units) and s=50 (100units), inventory
carrying cost per unit time reaches minimum, and it is 108.67$/day.

)286(

))),(((

),(

1 1

1

0

1 1

1

0 −

+−+

=

∑∑∑

∑∑ ∑ ∑

= =

−

=

= =

−

=
N

i

M

j t

ijt

N

i

M

j t

ijt

t

ijt

i ij

i ij

U

KUdQs

QsC τ

τ

ϕ

URN:NBN:no-3444

Chapter 6

89

Table 6-4 Parameters for a retailer
Holding cost coefficient, Ch
($/100units*day)

1 Mean, µd
(100units/day)

6.1

Shortage cost coefficient, Cs
($/100units*day)

10

Demand

Variance, σd
(100units/day)

1

Cost

Reordering cost, Corder ($) 1000 Mean, µt (day) 1

Lead time, L (day) 8

Interarrival
time Variance, σt (day) 0.2

Search range for order up to level, S (S=s+Q)
(100units)

140~180 Search range for reordering point, s
(100units)

30~70

After getting optimal (s, Q) for a
retailer, its average inventory level
can be estimated by this simulation
model. For example, the estimated
average inventory level for this
retailer is 111.2 (100units)

Although this model is developed for
a retailer, it is applicable for all nodes
in a distribution chain, including
distribution center and wholesalers.
By this model, the optimal
parameters for inventory control at
each node can be determined, and the
average inventory level can be
estimated. As mentioned in section
6.1, average inventory level at each node is an operation related parameter. In the
iterative design process shown in Figure 6-2, this parameter will be updated when re-
determining the configuration of the distribution chain.

6.5 Planning Product Delivery Routes in a Distribution Chain

Delivering product is another type of main activities in distribution chain management.
First, let’s consider the product delivery routes from wholesalers to retailers. After
determining (s, Q) for each retailer, it is time to plan the transportation from
wholesalers to retailers. Almost all of existing design methodologies consider a simple
transportation mode, i.e. one vehicle serves a retailer [Sarbi, 2000, etc.]. In practice, the
order quantity by a retailer is normally small, so one vehicle may serve several retailers
in one journey. For such situation, following questions are raised: (1) how to cluster
retailers; and (2) how to determine routes for vehicles? This is a typical vehicle routing
problem.

Genetic algorithms have proven to be a versatile and effective approach for solving the
vehicle routing and scheduling problem [Park, 2001]. For example, Gabbert et al.
[1991] presented a genetic algorithm approach to learning low-cost routes and
schedules for a large rail freight transportation network, Cheng et al. [1996] proposed a
hybrid genetic algorithm to solve the fuzzy vehicle routing and scheduling problem,
etc.

S s

cost

Figure 6-10 Inventory carrying cost for
parameter pairs (sk Ql) (Q=S-s)

URN:NBN:no-3444

Design of Distribution Chain

90

When planning product delivery routes in a distribution chain, the transportation cost
and inventory carrying cost must be considered simultaneously. To reduce
transportation cost, we hope that the sum of distances traveled by all vehicles is
minimized. To reduce inventory carrying cost, we hope that all retailers are served at
the right time (not too late, not too early). The key point is to make compromise
between them, and minimize the sum of two types of cost. Unfortunately, in the
existing genetic algorithm based routing approaches, normally the transportation aspect
was emphasized, but inventory carrying aspect was ignored. For example, when they
calculated cost in their objective function, the inventory carrying cost was not
considered. Such ignorance may cause terrible mistake when planning product delivery
routes in a distribution chain. To overcome this drawback, we will develop a genetic
algorithm based model which deals with them simultaneously.

6.5.1 Simple introduction to genetic algorithm

Genetic algorithm was initiated and developed in early 1970s by John Holland, but its
applications to practical problems were almost two decades in developing [Lefteri,
1997]. The primary purpose of using genetic algorithm is optimization. The specific
nature of the problem to which optimization is applied will determine the type of
genetic algorithm used, and especially fitness function. In what follows, some basic
concepts in genetic algorithm are introduced.

Chromosome. It is defined as strings of artificial genetic systems which encode
solutions for the problem, which are analogous to chromosomes in biological systems.

Mutation. It is the process by which a single component of a chromosome is changed
randomly.

Crossover. The chromosomes of two parents are mixed by a process called
”crossover”, in which two new chromosomes are reproduced, each having some of the
characteristics of the two parents. The genetic process evolves by mutation and
crossover.

Fitness function. It is the function on which an optimization operates, i.e. seeking its
maximum or minimum. In genetic algorithm, “fitness” is the quantity that determines
the quality of a chromosome, from which a determination can be made as to whether it
is better or worse than other chromosomes in the population.

6.5.2 Genetic algorithm model

A routing problem can be depicted as
Figure 6-11. The wholesaler (denoted by
0) that possesses a set of identical vehicles
will serve a set of retailers (denoted by
1… p, …, q…n). Retailer i (i=1∼ n) will
order Qi units product when its inventory

0

1

Figure 6-11 Problem illustration

p q n

URN:NBN:no-3444

Chapter 6

91

level is less than or equal to si (Qi and si were determined in the previous section). The
task for us is to route vehicles to different retailers by minimizing the sum of
transportation and inventory carrying cost.

Before optimizing the routes by genetic algorithm, its chromosome and fitness function
must be specified, and mutation (or crossover) strategy to guide the optimization
process must be determined.

6.5.2.1 Chromosome and fitness function

(1) Chromosome.

Similar to [Park, 2001], a chromosome is represented by two strings. The first string
includes all retailers except the wholesaler. The second string has the same number of
fields as the first one, and it denotes the vehicle numbers assigned to the retailers at the
corresponding fields in the first string. Following example represents a routing solution
which has 3 vehicles (denoted by 1∼ 3) and 15 retailers (denoted by 1∼ 15):

String 1: 2 4 6 8 9 3 12 15 14 11 13 7 1 5 10
String 2: 1 2 1 3 3 2 1 2 1 3 2 1 1 3 2

The example shown above represents three routes: 0-2-6-12-14-7-1-0 (served by
vehicle 1), 0-4-3-15-13-10-0 (served by vehicle 2), and 0-8-9-11-5-0 (served by
vehicle 3), where 0 denotes the wholesaler.

(2) Fitness function

The intuitive objective in planning product delivery routes is minimizing cost,
including transportation cost and inventory carrying cost. One problem in applying
genetic algorithm is premature selection, i.e. the evolution process may converge to a
local optimum. As stated in [Patrick, 1993], it can be as good to be different as it is to
be fit, and largely scattered chromosomes can prevent the optimization process from
premature selection (or local optimum). To avoid local optimum, we introduce
diversity into the fitness function. Here diversity is used to indicate the scattering of
chromosomes. Based on this analysis, the fitness function is calculated based on
following two objectives: minimizing cost and maximizing diversity. Cost is composed
of time related cost, distance related cost and vehicle-renting cost. Next, each part of
the fitness function will be explained in detail.

Time related cost. It is related to inventory carrying cost. For a retailer, it hopes to be
replenished when its net inventory is zero. If the vehicle arrives late when the retailer’s
net inventory is negative, the retailer will suffer from inventory shortage cost. If the
vehicle arrives early when the retailer’s inventory level is positive, the retailer will pay
extra inventory carrying cost. As these two costs are related to the time when vehicle
arrives at the retailer, we call them as time related cost. Time related cost is depicted as
Figure 6-12. Here, Ni represents the net inventory at retailer i when vehicle arrives at it,
Cs represents the unit inventory shortage cost, and Ch represents unit inventory holding

URN:NBN:no-3444

Design of Distribution Chain

92

cost. If the net inventory is zero when vehicle
arrives at the retailer, the time related cost will
be zero; if the net inventory is negative, then
the time related cost is –CsNi (left part of Figure
6-12); if the net inventory is positive, then the
time related cost is ChNi (right part of Figure 6-
12).

Before depicting how to estimate the time
related cost, we introduce a concept: inter-
service time for a retailer (say retailer
i). The net inventory process for
retailer i can be shown as Figure 6-13.
At time point a and b, the retailer is
replenished (served) by a vehicle. So,
the period between these two
successive services is defined as inter-
service time for retailer i. In a routing
solution, every retailer belongs to a
route. Here we assume that, retailer i
belongs to route j. As all retailers in a
route are served by one vehicle, the
inter-service times for all retailers in
this route are same. We indicate this
common inter-service time as Tj.

As the demand at a retailer is random, when vehicle arrives at the retailer, the retailer’s
net inventory is also random, and it can be calculated by:

Where, Qi is the ordering quantity for retailer i
 Tj is inter-service time for route j. Here, we assume retailer i belongs to route j.
 di is the per unit time demand at retailer i.

Different from the previous section, to simplify the problem, here, we use demand rate
(per unit time demand) to represent the demand process at a retailer.

We assume that the demand rate at retailer i is a random variable with normal
distribution, and the corresponding PDF is:

)296()(−−= ijiji dTQTN

)306())(
2

1
exp(

2

1
)(2 −−−=

i

ii

i
i

d
dp

σ
µ

πσ

Cost

Cs

 Ni

Ch

Figure 6-12. Time related cost

t

Ni

b a

Ti

Figure 6-13 Explanation of inter-service time Ti

URN:NBN:no-3444

Chapter 6

93

Where, µi and σi are mean and standard deviation of demand di. Then the PDF of net
inventory Ni, p(Ni), can be calculated by formula (6-29). Based on P(Ni), the
mathematical expectation of time related cost for retailer i , Cti(Tj), can be estimated by
following formula:

In this formula, the first item represents the extra inventory carrying cost, and the
second item represents the inventory shortage cost. According to formula (6-29), time
related cost for a retailer is a function with respect to its inter-service time Tj.

For a routing solution, its total time related cost Ct is expressed as:

Distance related cost. It is proportional to the sum of distances traveled by all vehicles
in a routing solution, shown as follows:

Where, Bj is the traveling distance for vehicle j.
 cd is unit traveling cost.
 Cd is total distance related cost for a routing solution.

Vehicle renting cost. It is proportional to the number of vehicles used in a routing
solution, shown as:

Where, n is the number of vehicles used in a routing solution, cr is the unit renting cost.

Diversity. Here, diversity can be expressed as the difference between chromosomes.
So the diversity for a chromosome is calculated by the sum of inverse squared
distances between that chromosome and others in the population. The distance between
chromosomes i and j is defined as:

Where, Vik is the vehicle number for retailer k in chromosome i, k=1∼ m, m is the

number of retailers in a chromosome.
 Vjk is the vehicle number for retailer k in chromosome j.

)316()()()(

0

0

−−+= ∫∫
−∞

∞+

iiisiiihjti dNNpNCdNNpNCTC

)336(−= ∑
j

jdd BcC

)346(−= ncC rr

)356()(
1

22 −−=∑
=

m

k

jkikij VVd

)326()(−=∑
i

jtit TCC

URN:NBN:no-3444

Design of Distribution Chain

94

So the diversity for a routing solution is:

Where, N is the collection of all chromosomes in the population. So maximizing
diversity means minimizing Dd.

Summing up the four parts mentioned
above, we get the fitness function:

Where, wc and wd are weights for cost
and diversity, wc+wd=1. Both are
determined by subjective judgement.
The objective for this optimization
process is to minimize f.

6.5.2.2 Optimization process

Normally, genetic algorithm uses
random mutation and crossover to find
the optimal solution. Because of the
limited capacity of vehicles and other
routing constraints, such random
process may cause infeasible solution
in this situation. To avoid this problem,
we only apply guided mutation in this
optimization process, and its flow chart
is shown as Figure 6-14. In what
follows, each block of this flow chart is
illustrated individually.

(1) Generate initial population

A population is composed of a set of
chromosomes. Because of the capacity
constraint for vehicles, we can not
generate chromosomes randomly too.
In this model, following procedure is
used to generate a chromosome. The
first string of a chromosome is

)376()(−+++= ddrdtc DwCCCwf

)366(
1

\
2

−=∑∑
∈i iNj ij

d
d

D

Y

Start

Generate initial population

Optimize routes in each chromosome

Mutate to reduce time related cost and optimize
routes in each chromosome

Mutate to reduce distance related cost and optimize
routes in each chromosome

Mutate to reduce vehicle renting cost and optimize
routes in each chromosome

Calculate the average fitness value for the new
generation population

Generation No.>Gmin
N

Report the optimal solution

Y
N

End

Figure 6-14. Flow chart for optimizing a
population

Calculate fitness value for each chromosome, and
select a set of best chromosomes to form the new

population for next generation

Converge?

URN:NBN:no-3444

Chapter 6

95

generated randomly in order, and it must include all retailers in it. The corresponding
second string is constructed by following way: assign vehicle 1 to the first retailer in
the first string, then find the geographically closest retailer to latest assigned one, and
assign vehicle 1 to it. Such process will continue until the capacity of vehicle 1 is full.
Then assign vehicle 2 to the rightmost unassigned retailer, repeat the assigning process
as for vehicle 1 to finish the assignment of vehicle 2, ……. When all retailers in the
first string are assigned, this chromosome is constructed. After constructing a set of
such genes, a population is formed.

(2) Optimize routes

In the previous step, all retailers in a chromosome are clustered; now let’s optimize its
routes. According to combinatorial optimization algorithm in [Kreyzig, 1999], the
shortest path in a route can be found by following procedure:

Step 1. Label wholesaler with 0
Step 2. Set i=0
Step 3. Among all unlabeled retailers, find the retailer closest to wholesaler (or retailer)

i, label it with i+1, and update i (i=i+1).
Step 4. Go to step 3 until all retailers are labeled.

After all retailers are labeled, the shortest path is found, and the serving sequence (or
the route for the vehicle) is: 0-1-2-…-k-0, k is the number of retailers in this route.

(3) Mutation to reduce time related cost.

For each retailer, there is an ideal inter-service time which minimizes the time related
cost for it. For all retailers in a route, as they are served by a vehicle, the actual inter-
service time for them is same, so almost none of them will be served according to its
own ideal inter-service times. If we can make the ideal inter-service times of retailers
in one route as close as possible, the sum of time related costs for this route will be
reduced remarkably. The mutation to reduce time related cost is designed according to
this idea, and it is finished according to following steps:

Step 1. Select the route with largest time related cost in a chromosome.
Step 2. Select the retailer in this route which satisfies:

 Where, Tj is the inter-service time for route j.
 Nj is the collection of all retailers in route j.
 Ti is the ideal inter-service time for retailer i.
Step 3. Change the route for this retailer to another route which satisfies:

2)(max ji
Ni

TT
j

−
∈

2)(min ji
Mj

TT −
∈

URN:NBN:no-3444

Design of Distribution Chain

96

 Where, Ti is the ideal inter-service time for retailer i that is the one selected in
previous step.

 M is the collection of all routes in this chromosome which have enough
free capacity to accept retailer i. If M is empty, give up this
mutation.

(4) Mutation to reduce distance related cost.

For a route that has k retailers, we can use the combinatorial optimization algorithm
(mentioned previously) to determine the service sequence: 0-1-2-…-k-0. The traveling
distance for circle 0-1-…-k-0 is called total traveling distance for this route, and it is
used to calculate the distance related cost. The traveling distance from 1 to k is called
service traveling distance. This mutation is used to reduce service traveling distance,
and it is achieved by grouping retailers which are close to each other into a route. The
mutation is finished by following steps:

Step 1. Select the route (e.g. route j) with largest service traveling distance.
Step 2. Select the retailer i (in route j) which satisfies:

 Where dij is the distance between retailer i and j
Step 3. Change its route number to another one which is closest to it. If impossible to

find a route to accept this retailer, just give up this mutation.

(5) Mutation to reduce vehicle renting cost.

This mutation is used to reduce the number of vehicles used in a chromosome. It is
finished according to following steps:

Step 1. Select the route with largest slack vehicle capacity
Step 2. Distribute all retailers in this route into other routes which have enough free

capacity to accept one or two of them. After distributing all retailers in this
route, the number of vehicles needed for this chromosome is reduced by one.
If such distribution is impossible, give up this mutation.

As indicated in Figure 6-14, after one generation, the fitness value for each
chromosome is calculated, and the best m chromosomes are selected to form the new
population for next generation. If the average fitness value for newly formed
population converges (i.e. there is no significant change at it), just stop the
optimization process, select the best chromosome, and report the solution. Otherwise,
continue it.

After this optimization process, the product delivery routes from one wholesaler to all
its retailers are identified. The transportation model from wholesalers to retailers can
be planned by this genetic algorithm model.

∑
∈

∈
iNj

ij
Ni

j
j

d
\

2max

URN:NBN:no-3444

Chapter 6

97

6.5.3 Allocating distance related cost to retailers in a route

As mentioned above, one of the purposes for us
to found this optimization model is to calculate
the unit product delivering cost for each retailer.
But here, a vehicle serves several retailers, so we
need to allocate the total distance related cost to
all retailers in this route (note here, only distance
related cost is related to product delivering cost
and needs to be allocated). Here we take a route
as example to illustrate the allocation principle.

Figure 6-15 shows a route with n retailers (1~n) and one wholesaler (0). The direct
traveling distance from wholesaler 0 to retailer i is denoted as di . Similar to [Berman et
al., 2001], following formulae are provided to allocate the travel distance Ai to retailer
i:

So the unit product delivering cost for retailer i is

Where, Qi is the order quantity for retailer i.
 Cdj is the distance related cost for route j.

Now, let’s consider the product delivery routes from distribution center to wholesalers.
Normally, the amount of product demanded by a wholesaler is large. A vehicle can
only serve one wholesaler in its journey. So we assume that there is no routing problem
in this transportation model. Simply, the unit product delivering cost from distribution
center to wholesaler j can be calculated by:

Where,
Cl0 is the unit loading cost at distribution center.
C0j is the unit transportation cost from distribution center 0 to wholesaler j
Cuj is the unit unloading cost at wholesaler j

)396(
1 −=
∑ dj

i

i

i

i
ti C

A

A

Q
C

)386(
1

2 1 −+−= d
n

RdA iii

213232

11

)(
2

1
2

)(
1

2
2

1
2

RRddRR

dd
n

n
RRd

n

n
R nnnnnn

=−×+=

−
−
−×+=−×= −−

LLL

)406(00 −++= ujjlj CCCC

0

n
n-1

1
2

Figure 6-15. A route with n retailers
and a wholesaler

URN:NBN:no-3444

Design of Distribution Chain

98

If there is routing problem in this transportation model, models provided in subsection
6.5.2 can be used again to determine routes for vehicles, and formula (6-39) can be
used to calculate the delivery cost per unit product from distribution center to
wholesalers.

So far, the method for planning product delivery routes in a distribution chain has been
developed. If one vehicle serves a set of retailers in its journey, the genetic algorithm
based optimization model developed in subsection 6.5.2 is used to identify the product
delivery routes, and formula (6-39) is used to calculate the unit product delivery cost
for each retailer. If one vehicle only serves a retailer in its journey, there is no routing
problem, and formula (6-40) is used to calculate the unit product delivery cost. Next,
we give an example to illustrate how to apply this method in practice.

6.5.4 Case study

Assume that we want to plan a route with one wholesaler and fifteen retailers. The
parameters for this route are shown in Table 6-5 and Table 6-6. In this route, a vehicle
will serve several retaielrs.

Table 6-5 Basic parameters for a route

Retailers and
wholesaler

Order up to level
S (unit)

Reorder point
s (unit)

Mean of demand
d (unit/day)

Variance of
demand σ(unit)

Position
(Km)

Wholesaler 0 [0, 0]
Retailer 1 500 39 30 3 [30, 20]
Retailer 2 1100 112 85 9 [40, 20]
Retailer 3 1800 180 150 10 [50, 10]
Retailer 4 1000 91 67 8 [70, 80]
Retailer 5 2000 221 170 17 [40, 50]
Retailer 6 1600 172 130 14 [80, 100]
Retailer 7 1200 104 80 8 [20, 30]
Retailer 8 1000 78 60 6 [80, 10]
Retailer 9 2000 195 150 15 [20, 50]

Retailer 10 2000 221 170 17 [30, 70]
Retailer 11 1300 117 90 9 [70, 20]
Retailer 12 1100 104 80 8 [20, 10]
Retailer 13 2000 143 110 11 [50, 20]
Retailer 14 1400 169 130 13 [30, 80]
Retailer 15 2200 195 150 15 [20, 100]

Table 6-6 Other parameters for the route

Cost coefficient for
early arrival α

($/unit)

Cost coefficient for
late arrival β

($/unit)

Cost coefficient for
stock out γ

($/unit)

Ideal refill point R
(unit)

Capacity for
vehicles

(unit)

1 0.5 10 3 4500

As one vehicle serves several retailers in its journey, the genetic algorithm model
developed in subsection 6.5.2 will be used to solve this routing problem. This model
has been realized in MATLAB, and the corresponding program is shown in B-2 of
Appendix B. By running this program, the fitness value over 15 generations is shown
in Figure 6-16, and the best chromosome is shown as follows:
String 1: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
String 2: 1 2 2 5 2 4 1 3 3 4 3 1 1 4 5

URN:NBN:no-3444

Chapter 6

99

This routing solution can be shown as Figure 6-17.

After optimizing routes, the traveling distance can be allocated to retailers by formula
(6-38), and the unit product delivering cost for each retailer can be calculated by
formula (6-39).

6.6 Summary

In this chapter, a set of models, algorithms, and formulae are developed to design a
distribution chain, and the procedure to apply them is shown in Figure 6-2. In the first
module of Figure 6-2, an ANN model is founded to estimate a retailer’s market share
for the product to be distributed in its customer zone. Based on the estimated market
shares, the exact demands at all retailers are calculated. After determining customer
demands at retailers, a distribution chain can be designed according to the procedure
shown in the lower part of Figure 6-2. In this iterative process, first, based on given
initial values for all parameters, the configuration of a distribution chain is determined
by the MIP model developed in section 6.3. Given this distribution chain configuration,
the inventory model at each node is optimized by the model developed in section 6.4,
and routes for delivering product between different nodes are planned by the model
illustrated in section 6.5. After determining inventory model at each node and product
delivery routes between different nodes, all operation related parameters are re-
calculated and updated. Based on these newly updated parameters, configuration of the
distribution chain is re-determined, and inventory models and product delivery routes
are re-optimized. This iterative process proceeds until the design process converges,
i.e. there is no significant difference between successive configurations of the
distribution chain. The design system provided in this chapter can turn out following
results:

Generations

Fitness

Figure 6-16 Fitness value over 15
generations

R4

R6

R14

R1

R9
R1

R8

R1
R12 R1

R7

R5

R2

R3

R1

W0

Figure 6-17 Routing solution

URN:NBN:no-3444

Design of Distribution Chain

100

 The configuration of the distribution chain, including number and locations of
retailers and wholesalers, and the assignment of retailers to wholesalers.

 Inventory control policy and parameters at each node of the distribution chain.
 Product delivery routes between different nodes (i.e. from distribution center to

wholesalers, and from wholesalers to retailers).

All models, formulae and algorithms developed in this chapter have been implemented
by computer applications.

So far, the design process of a distribution chain has been finished, and the design
requirements set in section 4.1 has been fulfilled. But, without verification, the
designed distribution chain can not be implemented. In next chapter, to verify the
design results, a simulation based model is founded to evaluate the performance of this
designed distribution chain. By this evaluation, the decision makers can decide whether
this designed distribution chain is good enough to be implemented.

URN:NBN:no-3444

Chapter 7

101

CHAPTER 7 PERFORMANCE EVALUATION FOR THE
DESIGNED DISTRIBUTION CHAIN

According to Figure 3-2, after designing a distribution chain, we need to verify the
design results by performance evaluation. In this chapter, a new Petri net form,
combinatorial Petri net is put forth. Then, by this newly developed Petri net form, the
performance of the designed distribution chain is evaluated.

7.1 Introduction

In previous chapter, the configuration of a distribution chain, inventory control
parameters at each node, and product delivering routes between different nodes were
determined, i.e. the design process has been finished. As a set of less important factors
was ignored during the designing process, there is no guarantee that the designed
distribution chain is satisfactory even if optimization approaches have been applied. To
verify the design result, in this chapter, the performance of the designed distribution
chain is evaluated by a Petri net based model. Of course, the model developed here
may also be used to analyze an existing distribution chain.

For a distribution chain, there are mainly two kinds of processes to be modeled:
working process (e.g. the product delivering process, inventory maintaining process,
etc.) at different facilities, and inferring process (e.g. when to release vehicles to serve
different routes, how to ration limited vehicle capacity for different retailers, etc.) at
decision making points. Normally, Petri net is good at modeling the working process,
but relatively poor at simulating the inferring process. To overcome this drawback, a
new Petri net form: combinatorial Petri net is developed by combining ABL with Petri
net. Here, ABL is mainly used to simulate the inferring process. By this Petri net form,
both working and inferring process in a distribution chain can be simulated properly.

This chapter is organized as follows: in the second section, key performance measures
for a distribution chain are identified. Then in the third section, after a literature
review, the method to model a distribution chain and evaluate its performance is
determined. In the fourth section, the traditional Petri net is simply introduced. In the
fifth section, the new Petri net form: combinatorial Petri net is illustrated. Then, in the
following section, a simplified distribution chain is modeled by this new Petri net form,
and its performance is evaluated. The computer applications to realize this Petri net
model and the corresponding evaluation results are illustrated in the seventh section.

7.2 Key Performance Measures for a Distribution Chain

Before developing the model to evaluate a distribution chain’s performance, we need
to identify what to be evaluated. As distribution chain is a part of a supply chain, the
performance measures used for the supply chain can partly be used for a distribution
chain. Normally, for a supply chain, cost, productivity, flexibility are viewed as the key
performance measures [Beamon, 1999, Solvang et al., 2001]. Besides these, lead time,
equipment utilization ratio, etc. were also considered in some literatures [Miltenbueg,
1996, Viswanadham et al., 1997, Venkatesh, 1996]. As mentioned above, the main

URN:NBN:no-3444

Performance Evaluation for the Designed Distribution Chain

102

purpose to develop this performance evaluation model is to verify the design result,
and the objective to design a distribution chain is to maximize profit subject to
satisfying customer requirements, so we will mainly evaluate following performance
measures for a distribution chain:

(1) Profit. Profit equals total revenue minus total cost. Maximizing profit means
maximizing revenue and minimizing cost simultaneously. For a designed distribution
chain, profit can be used to indicate whether retailers are located reasonably, and
whether the product delivering and inventory maintaining systems are organized
properly.

(2) Local revenues and local costs. Local revenues are the revenues at individual
retailers. They can be used to indicate the distribution of revenue, and then help
decision-makers to further analyze the selection of retailers. Local costs are the costs
for individual activities. They can help the decision-makers to analyze whether
activities are organized properly.

(3) Utilization ratios for facilities. In a distribution chain, facilities mainly include
vehicles for delivering products, buildings and equipment for maintaining inventory,
etc. Obviously, more facilities mean more capacity for the distribution chain and better
service for customers, but at the same time, it also means more investment. A good
distribution chain design must keep a reasonable utilization ratio for facilities.

(4) Flexibility. For a distribution chain, flexibility mainly includes throughput
flexibility at warehouses and transportation flexibility at different routes. Both are
expressed as the slack capacity. Because of random demands at retailers, flexibility is
necessary for emergent requests. Obviously, more flexibility means better service for
customers, but more investment for constructing this distribution chain. Similar to
utilization ratio, a good design needs to keep a reasonable flexibility for the distribution
chain. As its effect is similar to that of facility utilization ratio, we will not evaluate
flexibility of a distribution chain explicitly.

(5) Fill rate at retailers. Fill rate at a retailer is defined as the fraction of demand
satisfied by at hand inventory. High fill rate may result in high inventory level and then
more inventory carrying cost; low fill rate may cause stock out, and then loss of
goodwill for the enterprise. The decision-makers need to make compromise between
them.

These measures can reflect the main aspects of the performance for a distribution
chain. In the following sections, we will illustrate how to evaluate them.

7.3 Method to Evaluate the Performance Measures of a Distribution
Chain

In previous section, we have identified what to be measured; now, it is time to
determine how to measure. A set of approaches has been developed to evaluate the
performance of a distribution chain, including mathematical method, artificial

URN:NBN:no-3444

Chapter 7

103

intelligence, simulation, etc. In mathematical method, some formulae were defined to
calculate cost [Sabri et al, 1999], flexibility [Beamon, 1999], etc. In [Solvang, 2001],
FL and ANN were used to evaluate the flexibility of a supply chain. Distribution chain
is a large and complicated system, performance measures calculated by mathematical
method can mainly reflect its static properties, but ignore its dynamic ones and
complicated interactions between different facilities. To evaluate a distribution chain
more comprehensively, some other approaches were developed.

Themido [2000] used ABC (Activity Based Costing) approach to assess logistic costs.
As ABC takes activity as the center, it can partly reflect the dynamic properties of a
system. But its implementation requires complete cost information and good
experience in cost measurement. Obviously, these requirements are too much for a just
designed distribution chain. To model the dynamic properties, some software
technologies such as object-oriented software technology [Alfieri et al, 1997], multi-
agent system [Swaminathan, 1998, Reis et al., 2001], were also used to simulate the
working process of a supply chain, and then evaluate its performance measures. For a
simulation model realized by object-oriented software or multi-agent system, the
programming load is prohibitive. Especially, when the structure of a distribution chain
is changed, the re-programming load is also tremendous. To model a distribution chain
more efficiently, new approach needs to be developed.

Petri net is a powerful and efficient modeling approach to solve many problems related
to DEDSs (Discrete Event Dynamic Systems) [Murata 1989]. Compared with other
approaches, Petri net possesses following advantages:

 It is powerful to describe almost all kinds of activities in any discrete event
systems. Distribution chain is a typical discrete event system. Obviously, Petri net
is applicable here.

 It has strong mathematical foundation. By analyzing a Petri net model, we may
understand the cause for problems like bottlenecks, deadlocks, etc. Such results
are important when analyzing a distribution chain.

 It is general and open. It is not difficult to combine Petri net with other
technologies. For example, FL has been combined with Petri net to form Fuzzy
Petri net. As mentioned above, to simulate the working and inferring process in a
distribution chain simultaneously, we need to combine ABL with Petri net.
Obviously, this property is important for us.

 A Petri net model may take module structure. This makes it easier to change the
model when the system is reconfigured.

 For its graphical representation, it is not difficult to understand a Petri net model.

All these properties are important for us. So, in this dissertation, we will take Petri net
as the basic method to model a distribution chain, and then evaluate its performance.

7.4 Simple Introduction to Petri net

Petri net was first developed by C. A. Petri in 1962. Since then, it has been widely used
to model and simulate discrete event systems. Figure 7-1 shows a simple Petri net

URN:NBN:no-3444

Performance Evaluation for the Designed Distribution Chain

104

model. The states of the system are indicated by places in
Petri net. Each place may contain a dynamically varying
number of black dots, which are called tokens, as in places S
and Aq. An arbitrary distribution of tokens in the places is
called a marking. The actions of the system are indicated by
rectangles, which are called transitions in Petri net. Places
and transitions of a Petri net are collectively referred as
nodes. The Petri net also contains a set of directed arrows as
indicated in Figure 7-1, which are called arcs. Each arc
connects a place with a transition, or a transition with a
place. Each arc may have a positive integer attached to it,
e.g. 2 is attached to the arc from place Aq to transition T1q.
this integer is called the arc expression. A node (place or
transition) x is called an input node of another node y when
there is an arc from x to y. Analogously, node x is called an
output node when there is a directed arc from y to x.

The working process of a Petri net can be explained as
follows. Each transition represents a potential action in the model. An action becomes
possible when each input place of the transition contains at least the number of tokens
prescribed by the arc expression of the corresponding input arc, then we say that the
transition is enabled. When a transition is enabled, the corresponding action may take
place. If this happens, we say that the transition occurs. The effect of an occurrence is
that, tokens are removed from input places and added to the output places. The number
of removed/added tokens is specified by the arc expression of corresponding
input/output arc.

To model more complex systems, some high level Petri nets are developed, such as
colored Petri net, timed Petri net, etc. In these high level Petri nets, complex arc
expressions may be used to describe the condition for working processes, or define the
transition delay to describe time needed for an action. But the principle for checking
the enabled transition and firing a transition is similar to the ordinary Petri net
mentioned above.

7.5 Combinatorial Petri Net

For the existing Petri net forms, when checking whether a transition is enabled, they
separately make comparison between arc expressions and their corresponding input
places’ states, but the relationship between different input places is not considered.
They do not have capability to simulate the inferring process for deciding whether or
not a transition is enabled. For example, when deciding when to release vehicles to
serve retailers, the inventory levels at these retailers need to be considered
synthetically, and the decision is made based on a set of pre-defined rules. Existing
Petri net forms do not possess capability to simulate this decision making process. To
supplement its modeling capability, an inferring technique needs to be combined with
Petri net.

T1q

T3q

Figure 7-1 A Petri net
model

S

Aq

2

URN:NBN:no-3444

Chapter 7

105

As mentioned previously, ABL is a promising inferring technology. It is good at
solving large scale inferring problems with quantitative and logic variables. By
combining ABL with Petri net, a new Petri net form: combinatorial Petri net is
developed. The main difference between traditional Petri net and combinatorial Petri
net is that, in traditional Petri net, a transition is enabled when each input place
contains more tokens than the number defined by corresponding arc expression. In
combinatorial Petri net, all states of the transition’s input places are considered
synthetically, and an inferring process is used to decide whether this transition is
enabled. This inferring process is finished by ABL, and the inferring rules are
predefined by decision-makers. Compared with traditional Petri net, there are mainly
following two improvements in combinatorial Petri net.

(1) Improvement in enabling rule

The enabling rule for traditional Petri net form is shown in formula (7-2) (mentioned
next). It means that, a transition is enabled when the numbers of tokens possessed by
its input places are more than or equal to the ones specified by corresponding arc
expressions. Actually, this enabling rule can only guarantee that the input places
possess enough resource to support the occurrence of this action. But, in reality,
holding enough resource can not make sure that the action may happen. Sometimes,
when checking whether an action is enabled, the relevant statuses need to be evaluated
synthetically, and the decision is made by inference. Obviously, traditional Petri net
does not have capability to simulate this inferring process. To simulate this
complicated decision making process, we combined ABL with Petri net in the
combinatorial Petri net, and ABL is the one that will accomplish this inferring process.
In combinatorial Petri net, when forming the Petri net model, a set of inference rules
(premises) may be defined for a transition. Then, as mentioned in subsection 5.4.4.2,
ABL technology is used to connect these premises by appropriate connector to form an
ABL inference module, and this module is represented by a function. Here, we call this
function as ABL (any other name may also be used). Function ABL takes the markings
of all input places for a transition as its arguments, and returns a logic value to indicate
whether this transition is enabled. Each transition has its own ABL function. When
checking whether a transition is enabled, the checking process is accomplished by two
steps. In the first step, all input places for this transition are checked whether there is
enough resource to support the occurrence of this action. If the answer is “yes”, then
the checking process comes to the second step; otherwise, this transition is not enabled.
In the second step, the markings of all input places for this transition are input into its
ABL function that is formed above. This function will output a logic value to indicate
whether this transition is enabled. If no inference rule is defined for a transition, then
its ABL function automatically returns 1. In such situation, the enabling rule in
combinatorial Petri net is same as the one in traditional Petri net.

(2) Improvement in firing rule

In traditional Petri net, the firing rule is shown in formula (7-3) (mentioned next).
When a transition is fired, tokens are removed (or added) in its input (or output) places
according to corresponding arc expressions. In reality, sometimes, the result for the

URN:NBN:no-3444

Performance Evaluation for the Designed Distribution Chain

106

occurrence of an action can not be simply expressed by adding or removing tokens. For
example, when we want to evaluate the cost for an activity, some simple calculation
needs to be executed. Obviously, traditional Petri net can not fulfill this requirement.
To make the Petri net model more general, in combinatorial Petri net, we specify the
firing rule as: when a transition is fired, all its input and output arc expressions are
directly executed. Such arc expressions may include almost any kind of calculations,
including the operation of adding and removing tokens.

To compare combinatorial Petri net with traditional Petri net, the definition, enabling
rule and firing rule for both of them are illustrated next.

7.5.1 Traditional Petri net

As combinatorial Petri net is extended from colored Petri net, we take colored Petri net
as an example to illustrate the basic concepts for traditional Petri net forms. According
to [Jensen, 1992], the definition, enabling rule and firing rule for colored Petri net are
given as follows.

Definition. A colored Petri net is defined as:

CPN = (∑, P, T, A, N, C, G, E, I) (7-1)

Where, ∑ is a finite set of non-empty types, called color sets here. All token colors for

a given place must belong to a specified type. This type is called color set.
The set of color sets determines the types, operations, functions that can be
used in the net inscriptions.

 P is a finite set of places.
 T is a finite set of transitions.
 A is a finite set of arcs such that: P∩T = P∩A = T∩A = Φ.
 N is a node function. It is defined from A into P×T ∪ T×P. This node function

maps each arc into a pair where the first element is the source node and the
second is the destination node.

 C is a color function. It maps each place to a color set.
 G is the guard function. It maps each transition into an expression of type

Boolean.
 E is the arc expression function. It maps each arc into an expression.
 I is the initialization function. It is defined from P into closed expressions (an

expression without variables is said to be closed expression).

Enabling rule. For a transition, when each of its input places contains at least the
tokens to which the corresponding arc expression evaluates, this transition is enabled.
A step Y is enabled in a marking M iff the following property is satisfied:

)27()(),(:
),(

−≤∈∀ ∑
∈

pMbtpEPp
Ybt

URN:NBN:no-3444

Chapter 7

107

Firing rule. When a step is enabled, it may occur, and this means that tokens are
removed from input places and added to the output places of the occurring transitions.
When step Y is enabled in a marking M1, it changes marking M1 into marking M2,
defined by:

In this formula, the first sum is called the removed tokens, while the second one is
called the added tokens

7.5.2 Combinatorial Petri net

To some extent, combinatorial Petri net can be viewed as an extension of colored Petri
net. In what follows, we use mathematical models and examples to elucidate the
definition, enabling rule and firing rule for a combinatorial Petri net.

7.5.2.1 Definition

First, we give the definition of combinatorial Petri net. Some explanations for the
individual parts of this definition are given immediately below the definition.
Analogous to colored Petri net, a combinatorial Petri net, ComPN, is defined as:

 ComPN = (∑, P, T, A, N, C, E, I) (7-4)

Where, ∑ is a finite set of non-empty types, called color sets here.
 P is a finite set of places.
 T is a finite set of transitions.
 A is a finite set of arcs such that: P∩T = P∩A = T∩A =Φ.
 N is a node function. It is defined from A into P×T ∪ T×P.
 C is a color function. It maps each place to a color set.
 E is the arc expression function. It is defined from A into expressions.
 I is the initialization function, it is defined from P into expressions.
 No guard function is defined in combinatorial Petri net.

(1) A color set is a type. In combinatorial Petri net, a color set may be primitive data
type (such as integer, real, etc.) or user defined type (such as structure, etc.). As
combinatorial Petri net accepts user defined type to describe the color of a token, this
makes it powerful and extensible in modeling complex situations.

(2) A place represents a state. In a place, there may be one or more tokens. The color
of a token may be described by a primitive data type or a user defined type, and the
marking of this place is described by an array of tokens. Figure 7-2 shows a simplified
combinatorial Petri net model for vehicle releasing at a wholesaler (the working
process of this model will be explained later). In this model, place P7 indicates the
available vehicles at the wholesaler. In this place, one token represents one vehicle. As
we only care about the serial number of a vehicle, so the color of a token can be

)37(),()),()(()(:
),(),(

12 −+−=∈∀ ∑∑
∈∈ YbtYbt

bptEbtpEpMpMPp

URN:NBN:no-3444

Performance Evaluation for the Designed Distribution Chain

108

described by an integer (e.g. 1) to indicate the vehicle No., and the marking of this
place can be described by an array. For example, P7=[1 2] means there are two
vehicles at the wholesaler, and they are vehicle 1 and vehicle 2. Place P9 indicates the
loaded vehicles at the wholesaler. A token represents a loaded vehicle, and its color can
be described by following structure:

 struct loadedVehicle {
 int vehicleNumber;
 float amount;
 }

There are two members in this structure: the first one indicates the vehicle No., and the
second one indicates the amount of product shipped on the vehicle. The marking of this
place can be described by an array of this structure to indicate all loaded vehicles at the
wholesaler.

(3) A transition represents a possible action. The attribute of a transition is described
by following structure:

P8

P7

P5

P4

P3

P2

P1

T1

P6

T2

P9

Places and transitions:
P1-P4: inventory level at retailer1-4
P5: place to indicate whether route 1 is being served
P6: pool of route(s) that need to be served.
P7: available vehicles at the wholesaler
P8: inventory level at the wholesaler
P9: loaded vehicle at the wholesaler
T1: inferring process for the vehicle releasing of route 1
T2: loading and vehicle releasing process at the wholesaler

E2 arc expressions:
IA5-1: P5.delRoute(1)=P5.route(1); P5.route(1)=[];
OA1-6: P6.VRI=[P6.VRI T1.abl], P6.route=[P6.route P5.delRoute(1)], P6.amount=[P6.amount SUM(I1, I2,

I3, I4)];
IA6-2: I=MAX(P6.index), P6.delRoute(1)=P6.route(I), P6.route(I)=[], P6.delAmount(1)=P6.amount(I),

P1.amount(I)=[], P6.VRI(I)=[];.
IA7-2: P7.delVehicle(1)=P7.vehicle(1), P7.vehicle(1)=[];
IA8-2: P8.inventory(1)=P8.inventory(1)-P6.delAmount(1);
OA2-9: P9.vehicle=[P9.vehicle P7.delVehicle(1)], P9.amount=[P9.amount P6.delAmount(1)];

Note (here and throughout): OA represents output arc expressions, e.g. OA1-6 indicates output arc
expressions from transition 1 to place 6; IA represents input arc expressions, e.g. IA5-1 indicates the input arc
expressions from place 5 to transition 1. Convention used here is compliant to the one in MATLAB.

Figure 7-2 A simple combinatorial Petri net model

URN:NBN:no-3444

Chapter 7

109

 struct transition {
 int delay;
 int firingTime
 int abl;
 }

In this structure, the first member delay indicates the time needed to accomplish this
action. It can be deterministic or random. The second member firingTime indicates
when to fire this transition. The third member abl is an integer to indicate the inference
result. As mentioned above, in combinatorial Petri net, a set of inference rules can be
defined for a transition. ABL is used to form a function to accomplish the inferring
process. This function takes the current markings of all the transition’s input places as
its arguments, and returns an integer to indicate the inference result. This result is
assigned to abl. Detail on this inferring process will be explained later in the enabling
rule.

(4) The meanings of arcs, nodes, and colors are same as the ones in colored Petri net.

(5) As shown in Figure 7-3, an arc
connects a place and a transition. For
each arc, we can attach arc expressions
to it. In combinatorial Petri net, there are
two types of arc expressions: E1 and E2.
E1 specifies the number of tokens needed
for the occurrence of this transition. It
will be used in enabling rule. E2 tells what will happen when the transition is fired. It
will be used in firing rule. For an input arc (the arc connecting an input place and a
transition), both E1 and E2 are attached. For an output arc (the arc connecting a
transition and an output place), only E2 is attached. If no E1 arc expression is defined
for an input arc, we automatically assign default value 1 to it. This means that at least
one token is needed from the input place for the occurrence of this transition. If no E2
is defined for an arc, then nothing will happen for the place when this transition is
fired. This means that the occurrence of this transition has no influence on the place.
To explain how the arc expressions work in combinatorial Petri net, we take one node
from Figure 7-2, and show it in Figure 7-3. In this node, place P7 represents the
available vehicles at the wholesaler, and transition T2 represents the vehicle loading
process at this wholesaler. No E1 arc expression is defined for this input arc, so we
assign 1 to it. This means that, at least one token (vehicle) is needed from place P7 for
the occurrence of T2. When T2 is fired, E2 arc expression is executed directly. The
result is: the first token in place P7 is deleted by P7.vehicle(1)=[], and the information
on this deleted token is temporarily stored in P7.delVehicle(1) by
P7.delVehicle(1)=P7.vehicle(1).

(6) In the initialization function, both number of tokens for each place and color for
each token must be specified.

T2

Figure 7-3 A node in combinatorial Petri net

P7
E2: P7.delVehicle(1)=P7.vehicle(1);

 P7.vehicle(1)=[];

URN:NBN:no-3444

Performance Evaluation for the Designed Distribution Chain

110

7.5.2.2 Enabling rule

In combinatorial Petri net, two steps are used to check whether a transition is enabled.
In the first step, all the input places for the transition are checked whether they have
enough token(s) to support the occurrence of this transition. If each input place of the
transition contains at least the number of tokens prescribed by the E1 expression of the
corresponding input arc, then the transition is token-enabled. A token-enabled
transition is qualified to enter the second checking process. If a transition is not token-
enabled, it will not be enabled. As mentioned above, a set of inference rules can be
defined for a transition. In the second step, ABL is used to form a function, ABL(),
based on this set of inference rules. ABL() takes the current markings of the input
places of the transition as its arguments, and returns an integer to indicate whether or
not this transition can be enabled. If the value returned by ABL() is non-zero, then the
transition is enabled; otherwise, it is not. If no inference rule is defined for a transition,
the function ABL() for this transition automatically returns 1. In such situation, the
enabling rule for combinatorial Petri net is same as the one for colored Petri net. In
what follows, we use an example to illustrate how the enabling rule works in
combinatorial Petri net.

We take transition T1 and its input and output places from Figure 7-2, and show them
in Figure 7-4. In this model, transition T1 simulates the decision-making process on
whether or not to release a vehicle to serve a route (say route 1). T1 has five input
places: P1-P4 represent the inventory states of retailer R1-R4 (retailers in route 1), P5
indicates whether the route is being served. If it is being served, P5 is empty; otherwise,
a token exists in P5, and the color of this token indicates the route number. Transition
T1 has one output place: P6, which represents the decision. The color of token(s) in P6

P4

P3

E2: P5.delRoute(1)=P5.route(1);
P5.route(1)=[]; P5

P2

P1

T1

E2: P6.VRI=[P6.VRI T1.abl],
 P6.route=[P6.route P5.delRoute(1)],
 P6.amount=[P6.amount SUM(I1, I2, I3, I4)];

P6

 Figure 7-4 A transition with its input and output places

URN:NBN:no-3444

Chapter 7

111

tells which route needs to be served, and how much product needs to be loaded on the
vehicle. Next, we use this example to illustrate how enabling rule works in
combinatorial Petri net.

As mentioned above, there are two steps in checking whether a transition can be
enabled. In the first step, all input places for the transition are checked whether they
have enough token(s) to support the occurrence of the transition. For transition T1,
there are five input places: P1-P5, and no E1 arc expression is defined for their
corresponding input arcs. According to the rule stated in the definition of arc
expression, default value 1 will be taken for these E1 arc expressions. It means that, if
there is at least one token in places P1-P5, transition T1 will be token-enabled. Place
P1-P4 indicates the inventory state of retailer R1-R4, so there is always one token in
each of them. Therefore place P5 can decide whether T1 can be token-enabled. P5
indicates whether the route is being served: if it is not being served, there is one token
in place P5, and its color is the route number; otherwise, place P5 is empty. So, the
meaning of this checking process is: if the route is not being served, we will always
check whether it needs to be served. Here, we assume that route 1 is not being served,
then, place P5 is not empty, and transition T1 is token-enabled. A token-enabled
transition is qualified to enter the second step of the checking process.

In the second step, ABL will be used to accomplish the inferring process, and the
inferring result decides whether or not this transition is enabled. In Figure 7-4,
transition T1 simulates the decision making process on whether to release a vehicle to
serve a route. In reality, such decision is made based on following premises:

 I1-L1>0 AND I2-L2>0 AND I3- L3>0 AND I4-L4>0 IMPLIES VRI is 0
 I1-L1<0 AND I2-L2>0 AND I3- L3>0 AND I4-L4>0 IMPLIES VRI is 1
……

 I1-L1<0 AND I2-L2<0 AND I3- L3>0 AND I4-L4>0 IMPLIES VRI is 2
 ……

 I1-L1<0 AND I2-L2<0 AND I3- L3<0 AND I4-L4>0 IMPLIES VRI is 3
 ……
 I1-L1<0 AND I2-L2<0 AND I3- L3<0 AND I4-L4<0 IMPLIES VRI is 4

Where,
 Ii: the inventory level for retailer i.
 Li: the expectative lead time demand for retailer i. So Ii-Li is the expectative inventory

level when the vehicle arrives at retailer i.
 VRI: the abbreviation of Vehicle Releasing Indicator. VRI is an integer ranging from 0

to 4. It is used to indicate the degree of urgency for a route to be served. VRI=0
means the route is unnecessary to be served; VRI=1 ~ 4 means the route needs to
be served, and the larger the value is, the more urgently the route needs to be
served.

Here, we only give these premises as an example. In practice, what kind of premises to
be used depends on the decision maker’s opinion. At the left side of these premises, Li

URN:NBN:no-3444

Performance Evaluation for the Designed Distribution Chain

112

(i=1~4) are parameters given by experience, and Ii (i=1~4) are variables indicating the
present inventory level for retailers. At the right side, VRI represents the inferring
result. These premises form an inference system. Every time when we present values
of variables Ii onto the system, it will return a VRI value to indicate whether this route
needs to be served. This is just like the mapping process of a function, so we call this
inference system as a function, and express it as:

 VRI=ABL(I1, I2, I3, I4) (7-5)

Here, we only borrow the concept of function to express an inference system. Of
course, the function shown in formula (7-5) is different from normal mathematical
functions, as we can not realize an inference system by mathematical operators. In
what follows, we will illustrate how to get this function (inference system) by ABL. As
mentioned in subsection 5.4.4.2, there are three steps in forming an inference system
by ABL: define the global domain, model the system, and interact with the
environment.

Define the global domain. In this inference system, there are five variables: I1~I4 and
VRI. For the inventory level of retailer i, we divide its possible range into two intervals:
[Imini, Li] and (Li, Imaxi]. For the output variable VRI, we use an integer ranging from 0
to 4 to express it. So, the global domain of this inference system can be shown as Table
7-1.

Table 7-1 Global domain for the inference system of vehicle releasing

I1 {[Imin1, L1], (L1, Imax1]} I2 {[Imin2, L2], (L2, Imax2]}
I3 {[Imin3, L3], (L3, Imax3]} I4 {[Imin4, L4], (L4, Imax4]}

VRI {‘0’, ‘1’, ‘2’, ‘3’, ‘4’}

In SABL, the domain of a variable is defined by function element. For example, the
domain of variable R1 can be defined by following statements:

lowerIntervalR1 = interval (‘ge’, Imin1,, ‘le’, L1);
upperIntervalR1 = interval (‘gt’, L1,, ‘le’, Imax1);
I1=element ('n', {lowerIntervalR1, upperIntervalR1}, {}, 'Inventory of retailer R1');

Model the system. Modeling the system means defining premises and connecting
them by appropriate logic operators. The premises for this inference system are shown
above. All these premises can be modeled by SABL. For example, the first premise can
be expressed by following statements:

x11=assign (I1, upperIntervalR1);
x12=assign (I2, upperIntervalR2);
x13=assign (I3, upperIntervalR3);
x14=assign (I4, upperIntervalR4);
y1 = assign (VRI, {'0'});
y12=conjunct (x11, x12);
y34=conjunct (x13, x24);

URN:NBN:no-3444

Chapter 7

113

y1234=conjunct (y12, y34);
premise_1=bimp (y1234, y1)

All premises are connected by logic operator AND. In SABL, this is realized by
function conjunct. For example, premise 1 and premise 2 can be connected by:

Premise_12 = conjunct (Premise_1, Premise_2);

This connected system is realized by program in SABL. Conceptually, it can be viewed
as a function shown in formula (7-5). Every time when we input values of I1~I4 into
this function, the resulted VRI is obtained. Note here, this function is a program rather
than a set of mathematical operations.

Interact with environment. This interaction process can be expressed as: forming the
input vector, presenting this input vector to the system modeled above, and then
computing the output vector. In SABL, this process is accomplished by function state,
e.g.:

output_SV = state (input_SV, System);

Here, input_SV is the input vector, System is the inference system formed by connected
premises, and output_SV is the output vector.

Every time when checking whether transition T1 is enabled, the current markings for
input places of transition T1 (i.e. values of variables I1~I4) form the input vector. This
input vector is input into function (7-5), and the function returns a value of variable
VRI. If this value is non-zero, then transition T1 is enabled; otherwise, it is not.

Now, we use mathematical model to express the enabling rule in combinatorial Petri
net. A transition tj∈T is enabled iff:

Where,
I(tj): collection of all input places for transition tj. So, here, p presents any one of the

input places for transition tj.
|p| is the number of tokens in place p.
E1(p, tj): E1 arc expression from place p to transition tj.
M(p): the marking of place p. So, ∑

∈)(

)(

jtIp

pM represents the collection of markings for all

input places of transition tj.

∑
∈)(

))((

jtIp

pMABL : tj’s ABL function which takes the current markings of input places for

transition tj as arguments, and returns an integer to indicate whether
this transition can be enabled.

0))((&&),(:)(
)(

1 ≠<∈∀ ∑
∈ jtIp

jj pMABLtpEptIp

URN:NBN:no-3444

Performance Evaluation for the Designed Distribution Chain

114

In other words, in combinatorial Petri net, a transition tj is enabled if and only if there
are enough tokens in each input place of tj, and the value returned by inferring function
ABL() is non-zero. Following pseudo-code can be used to express this checking
process:

 if (there are enough tokens in input places of transition tj)
 if (∑

∈)(

))((

jtIp

pMABL)

 transition tj is enabled
 end
 end

If a set of premises are defined for transition tj, ABL is used to form function

∑
∈)(

))((

jtIp

pMABL according to following procedure [Møller, 1995]:

 Define domain for all variables.
 Model each premise, and connect them by appropriate logic operator to form the

inference system. This inference system can be viewed as function

∑
∈)(

))((

jtIp

pMABL which takes markings of all input places for transition tj as

arguments, and returns a value to indicate whether or not this transition can be
enabled.

 Input the current markings of all input places for transition tj into
function ∑

∈)(

))((

jtIp

pMABL , then it returns an integer to indicate whether tj is enabled.

If no premise is defined for transition tj, function ∑

∈)(

))((

jtIp

pMABL returns 1. For such

situation, the enabling rule in combinatorial Petri net is same as the one in traditional
Petri net.

If there is no input place for a transition, this transition is always enabled.

7.5.2.3 Firing rule

After checking all transitions by enabling rule, we come to the next step: firing the
enabled transitions. For each transition, there may be a set of input and output places.
Correspondingly, for each place, there is an arc (input or output arc) to connect this
place to the transition. For each arc, one or more E2 arc expressions may be attached to
it. Firing a transition means executing all these E2 arc expressions related to the
transition. Executing E2 arc expressions can be expressed by following formulae:

URN:NBN:no-3444

Chapter 7

115

 M2(pi)=IE2(pi-tj)(M1(pi)) for all pi∈I(tj) (7-6)
 And M2(pk)=OE2(tj-pk)(M1(pk)) for all pk∈O(tj)

Where,
 M2(pi): the new marking for place pi, and M1(pi) is its old marking.
 IE2(pi-tj)(M1(pi)): input E2 arc expressions from pi to tj, IE2(pi-tj)(M1(pi))∈E
 OE2(tj-pk)(M1(pk)): output E2 arc expressions from tj to pk, OE2(tj-pk)(M1(pk))∈E
I(tj): collection of all input places for transition tj
O(tj): collection of all output places for transition tj

These formulae show that, E2 arc expressions take old marking as their arguments, and
return new markings to the corresponding places. When a transition is fired, the
markings of relevant places are updated by this way.

As mentioned in the definition of a combinatorial Petri net, every transition has a
parameter delay to indicate how long time it needs to accomplish this action. If a
transition’s delay is zero, we call it as zero-delay transition; otherwise, we call it as
non-zero-delay transition. Next, we illustrate when to execute its input and output E2
arc expressions when a transition is fired.

For the zero-delay transitions, when they are enabled, they are fired immediately, and
their input and output E2 arc expressions are executed simultaneously.

For the non-zero-delay transitions, when they are enabled, their input E2 arc
expressions are executed immediately, but their output E2 arc expressions will be
executed later. Similar to timed Petri net, a global clock is introduced into a
combinatorial Petri net model, and its value represents the model time which starts at
0. When transition tj is enabled, its input E2 arc expressions are executed immediately,
and its parameter firingTime is updated to the current model time plus its delay. Then,
this transition is put into event queue. After putting all enabled non-zero-delay
transitions into event queue, we take one transition which has smallest firingTime from
event queue, and fire it, i.e. execute its output E2 arc expressions. After firing this
transition, the model time proceeds to this transition’s firingTime, and this cycle is
finished. Then, the process goes to next cycle, i.e. checking all transitions by enabling
rule again, and firing a part of the enabled transitions according to the rules mentioned
above.

The flow chart to run a combinatorial Petri net model can be shown as Figure 7-5.
When running a combinatorial Petri net model, first, it is initialized, i.e. the model time
is set to 0, and all places are given initial markings. Secondly, all transitions are
checked by enabling rule. For the enabled transitions, we fire them according to
following rules: for zero-delay transitions, fire them immediately; for non-zero-delay
transitions, execute their input E2 arc expressions, update their firingTime, and put
them into event queue. Then, we only select one transition which has smallest
firingTime from the event queue, and fire it. After firing this transition, the model time
proceeds to its firingTime. According to this flow chart, every time after a set of

URN:NBN:no-3444

Performance Evaluation for the Designed Distribution Chain

116

transitions are fired, the ending
condition (e.g. the maximal running
time, etc.) is checked. If it is
satisfied, just end the running
process; otherwise, a new cycle
begins.

7.5.2.4 Case study

To illustrate the application of
combinatorial Petri net, we give this
case study based on the example
shown in Figure 7-2. In this case
study, we mainly concentrate on
three things: what an initialized
combinatorial Petri net model looks
like, how to check a transition by
enabling rule, and how to fire an
enabled transition. In what follows,
we first initialize the combinatorial
Petri net model shown in Figure 7-2,
and then run it step by step.

(1) Initialization

According to Figure 7-5, the first step to run a combinatorial Petri net model is to
initialize it. The initialized combinatorial Petri net model for the example shown in
Figure 7-2 is shown in Figure 7-6.

Places P1~P4 and P8 represent the inventory status at retailers R1~R4 and wholesaler.
Following structure is used to describe the inventory status for a warehouse:

 Structure inventory
 {
 float inventoryLevel;
 int updatedTime;
 }

The first member indicates the present inventory level for the warehouse, and the
second member indicates the latest time when this warehouse’s inventory is updated.
This second member is used to calculate the inventory carrying cost. It is useless in this
case study. In Figure 7-6, the marking in place P1 means that, the present inventory
level at retailer R1 is 65 (units), and this inventory was updated at time 0.

No
Yes

Initialization
(Set model time to 0, set initial markings)

Start

Check all transitions by enabling rule.

For all zero-delay enabled transitions, fire them
immediately

For non-zero-delay enabled transitions, execute

their input E2 arc expressions, update their
firingTime, and put them into event queue.

Then, select one transition which has smallest
firingTine from event queue, and fire it.

End the running process?

End

Figure 7-5 Flow chart to run a combinatorial Petri
net model

URN:NBN:no-3444

Chapter 7

117

Place P5 indicates whether a route is being served. In Figure 7-6, a token is placed in
P5, and the color of this token is 1. This means route 1 is not being served for the
moment.

Place P6 represents the decision on whether to serve a route. As no decision is made
yet, it is empty.

Place P7 indicates the available vehicles at the wholesaler. There are two tokens in it,
and the colors for these two tokens are 1 and 2, it means there are two vehicles at the
wholesaler, and the vehicle No. for them are 1 and 2.

Place P9 represents the loaded vehicle at the wholesaler. As no vehicle is loaded now,
it is empty.

The global clock modelTime is set to 0.

Transition T1 represents the decision making process on whether route 1 needs to be
served. As mentioned in subsection 7.5.2.1, there are three parameters to indicate the

P7

1 2

P8

654
0

P5

1

P4

12
0

P3

23
0

P2

6
0

P1

65
0

P6

P9

T1

T2

Figure 7-6 The initialized combinatorial Petri net model for the
example shown in Figure 7-2

URN:NBN:no-3444

Performance Evaluation for the Designed Distribution Chain

118

attribute of a transition: delay, firingTime and abl. For transition T1, assume that a
decision can be made immediately after getting the needed information, so: T1.delay=0.
As T1’s delay is zero, so it will not be put into event queue, and its firingTime is
useless. The premises for T1 are same as the ones shown in subsection 7.5.2.2. T1.abl
will be assigned after the inference process is finished. For the moment, its value is
arbitrary.

Transition T2 represents the vehicle loading process at the wholesaler. Assume that it
needs 5 (units) time to finish this loading process, so T2.delay=5. T2.firingTime will be
assigned when it is put into the event queue. As no premise is defined for this transition,
T2.abl=1.

(2) Checking transitions by enabling rule

For transition T1, no E1 arc expressions are attached to all its input arcs. This means at
least one token is needed in each input place to make T1 token-enabled. As shown in
Figure 7-6, there is one token in places P1~P5, so T1 is token-enabled. The premises
for this transition are shown in subsection 7.5.2.2. Based on these premises, the
inference system is formed by ABL, and it can be represented by function (7-5).
Actually, the inference system is realized by a program, and it is conceptually
represented by a function. There are two kinds of inputs for this function: parameters
L1~L4 and variables I1~I4. Li indicates the lead time demand for retailer i; Ii represents
the current inventory level for retailer i, so Ii=Pi.inventoryLevel (e.g.
I1=P1.inventoryLevel=65, etc.). These inputs are shown in Table 7-2.

Table 7-2 Parameters for retailer 1~retailer 4

Retailer No. Ii Li Si

1 65 30 300

2 8 20 300

3 23 20 300

4 12 25 300

Inputting Li and Ri into function (7-5), we can get the output VRI=2. Then this value is
assigned to T1.abl, i.e. Ti.abl=VRI=2. As this value is non-zero, T1 is enabled.

For transition T2, no E1 arc expression is attached to all its input arcs too. This means
at least one token is needed in each input place to make T2 token-enabled. But, place
P6 is empty, so T2 is not token-enabled, and it is not enabled.

(3) Firing the enabled transition(s)

Here, only transition T1 is enabled. As its delay is zero, so it is fired immediately. No
E2 arc expressions are defined from places P1~P4 to T1. This means the firing of
transition T1 has no influence on these places, so their markings are kept unchanged.
This is reasonable. When we make the decision on whether to serve a route, we only

URN:NBN:no-3444

Chapter 7

119

need the information on the inventory status of retailers in this route, but the inventory
status itself is not changed. After making the decision, it is no longer necessary to
evaluate the inventory status of retailers in this route, so the token in place P5 is
deleted by P5.route(1)=[]; As the color of this token (i.e. the route No.) will be used in
the future programming, so we store this information temporarily in a deleted token by
P5.delRoute(1)=P5.route(1); This deleted token is just used to store information, it has
no effect when evaluating whether a transition can be enabled.

After evaluating the current inventory status of retailers in a route, a decision on
whether or not to send a vehicle to serve this route is made. The decision is expressed
by a token, and this token is added to place P6. We use following structure to express
the color of this token:

 Structure decision
 {
 int VRI;
 int route;
 float amount;
 }

The first member, VRI, is the Vehicle Release Indicator for this route. It indicates the
degree of urgency for the route to be served. Its value is returned by function (7-5), and
here it is 2. The second member route represents the route No. As indicated by the
color of token in place P5, here it is 1. The third one amount indicates how much
product will be loaded onto the vehicle when releasing it. Following formula is used to
determine it:

Where,
 Si: the order up to level for retailer i
 Ii: the present inventory level for retailer i

 Li: the expectative lead time demand for retailer i

Inputting all parameters shown in Table 7-2 into function (7-7), we get Q=SUM(I1, I2,

I3, I4) = 1187. All the calculating results for place P6 are shown in Table 7-3.

Table 7-3 Calculating results for the marking of place P6.

Members in structure
decision

The results come from: Results

VRI T1.abl 2
route P5.delRoute(1) 1

amount SUM(I1, I2, I3, I4) 1187

The token is added to place P6 by following expressions: expression P6.VRI=[P6.VRI
T1.abl] adds the latest inferring result into the array. Expression P6.route=[P6.route

)77()(),,,(
4

1

4321 −+−== ∑
=i

iii LISIIIISUMQ

URN:NBN:no-3444

Performance Evaluation for the Designed Distribution Chain

120

P5.delRoute(1)] adds the route No. into the queue, and expression
P6.amount=[P6.amount SUM(I1, I2, I3, I4)] adds the amount of product into the array.
After firing transition T1, the markings of this combinatorial Petri net model are
changed from Figure 7-6 to Figure 7-7. Here, we use dotted circle to represent a
deleted token.

After firing T1, the first cycle in running this combinatorial Petri net model is finished.
As T1’s delay is zero, so modelTime is unchanged, i.e. it is still zero.

(4) Checking transitions by enabling rule

After firing transition T1, the first cycle is finished, and we come to the second cycle,
i.e. check all transitions by enabling rule again, and fire the enabled one(s).

For transition T1, as place P5 is empty, so it is not token-enabled, and it is not enabled
too.

P7

1 2

P8

6540
0

P5

1

P4

12
0

P3

23
0

P2

6
0

P1

65
0

P9

T1

T2

Figure 7-7 The markings of places after the first cycle

P6

2
1

1187

URN:NBN:no-3444

Chapter 7

121

For transition T2, no E1 arc expressions are attached to all its input arcs. This means at
least one token is needed in each input place to make T2 token-enabled. As shown in
Figure 7-7, one token is located in place P6 and P8, and two tokens in place P7, so T2
is token-enabled. No premise is defined for transition T2, so it is also enabled.

(5) Firing the enabled transition(s)

In this cycle, only T2 is enabled. As its delay is not zero, so we first execute its input E2
arc expressions, update its firingTime, and then put it into event queue.

Transition T2 represents the loading vehicle process at the wholesaler. After firing T2,
the vehicle releasing decision is no longer useful, so we delete the token in input place
P6 by executing corresponding E2 expressions. As the color of this token will be used
in later programming, we store such information temporarily in a deleted token. After
loading the vehicle, the available vehicles at the wholesaler is reduced by one, so a
token is deleted from place P7 by P7.vehicle(1)=[];, and its color is also stored in a
deleted token by P7.delVehicle(1)=P7.vehicle(1);. For place P8, the amount of product
is subtracted from the current inventory of the wholesaler by expression
P8.inventory(1)=P8.inventory(1)-P6.delAmount(1);. Note here, we just reduce the
wholesaler’s inventory level, but the token is not deleted. After executing all input E2
arc expressions, T2’s firingTime is updated to modelTime+T2.delay=0+5=5. Then, we
put this transition into event queue.

In the event queue, there is only one transition: T2, so it is fired and its output E2 arc
expressions are executed. Place P9 represents the loaded vehicle at the wholesaler. We
use following structure to describe the color of tokens in this place:

 structure loadedVehicle
 {
 int vehicleNumber;
 float amount;
 }

The first member indicates the vehicle number. Here, it is 1. The second member
indicates how much product is loaded on the vehicle. Here, it is
T6.delAmount(1)=1187; After executing output E2 arc expressions from transition T2
to place P9, a token is added to place P9.

After firing T2, modelTime proceeds to T2.firingTime=5. Then, this cycle is finished,
and the markings are changed from Figure 7-7 to Figure 7-8.

(6) Checking transitions by enabling rule

As shown in Figure 7-8, for both transitions, there is one empty input place, so they are
not enabled, and the running process stops.

URN:NBN:no-3444

Performance Evaluation for the Designed Distribution Chain

122

As Figure 7-2 only shows a part of a combinatorial Petri net model, so there is dead
lock in running it. In practice, the loaded vehicle (the token in place P9) will transport
to retailers, and the inventories of these retailers will be replenished. Then, because of
customer demand, the retailers’ inventory level will be reduced gradually. After all
retailers are served, the vehicle comes back to the wholesaler, and a token is added to
place P5. So T1 will be enabled again to decide whether it is necessary to release
another vehicle to serve the route. Then, this model will be alive again. This iterative
running process proceeds until time out.

7.6 Modeling and Performance Evaluation of a Distribution Chain

In this section, we use the combinatorial Petri net developed above to model a
simplified distribution chain, and then evaluate its performance by running this model.

7.6.1 Problem description

P7

1 2

P8

5353
5

P5

1

P4

12
0

P3

23
0

P2

6
0

P1

65
0

T1

T2

Figure 7-8 The markings of places after the second cycle

P6

2
1

1187
P9

1

1187

URN:NBN:no-3444

Chapter 7

123

A general distribution chain model includes
one distribution center, a set of wholesalers
and retailers. Its configuration, inventory
control parameters at each node and product
delivery routes between different nodes
have been determined in previous chapter.
Given these results, the working process of
this distribution chain can be modeled by
combinatorial Petri net, and its performance
can be estimated by running this model.

We view a wholesaler and all retailers
connected to it as a group. Obviously, the
operation for different groups is similar to
each other. To simplify the Petri net model, here, we only take one group as our
modeling object. Figure 7-9 shows a simplified distribution chain with one wholesaler
and eight retailers. According to routing result, all retailers are divided into two routes:
R1-4 and R5-8, and each route is served by one vehicle. Parameters for this simplified
distribution chain are shown in Table 7-4.

Table 7-4 Parameters for the distribution chain shown in Figure 7-9

Demand
(1000units)

Inter-arrival time
(day)

Price
($/unit)

Position
(km)

Unit inventory cost
($/1000unit/day)

Inventory control
parameters
(1000units)

Retailer

mean variance mean variance shortage
cost

carrying
cost

reorder
point

s

ordering
quantity

Q

W (0,0) 0 5
R1 5 1 10 2 5 (30,240) 100 10 5 10
R2 6.5 1.4 13 3 6 (80,180) 100 10 5.6 11
R3 4.3 1 8 1 5 (50,130) 100 10 3 9
R4 6.8 1.6 4 1 5 (40,110) 100 10 6.5 11.5
R5 12 2 15 3 4 (10,-60) 100 10 12.5 17.5
R6 9.7 1.8 12 2 4 (40,-100) 100 10 10 13.5
R7 3.8 0.8 9 2 8 (30,-150) 100 10 3.5 8.5
R8 4.5 1 8 2 5 (40,-180) 100 10 4 9

In this distribution chain, two types of costs are considered: inventory cost and product
delivery cost. Inventory cost includes inventory carrying cost and inventory shortage
cost. The product delivery cost is proportional to the traveling distance for vehicles,
and the unit cost is assumed to be a constant. To reflect the reality, we assume that the
traveling time between two nodes is a random variable with normal distribution, and
the mean of traveling time is proportional to the distance between two nodes.

7.6.2 Combinatorial Petri net model

For the simplified distribution chain shown in Figure 7-9, there are mainly three types
of operations: releasing vehicles at wholesaler and delivering product from wholesaler
to retailers, delivering product between retailers, and selling product to customers and
maintaining inventory at retailers. In this subsection, we will first illustrate the sub-
models for these three types of operations, and then integrate them together to form the
whole combinatorial Petri net model.

W

R1

Figure 7-9 A simplified distribution
chain with one wholesaler and
eight retailers

Retailers

Retailers

Wholesaler

R2 R3 R4

R5 R6 R7 R8

URN:NBN:no-3444

Performance Evaluation for the Designed Distribution Chain

124

(1) Sub-model 1: Releasing vehicles at wholesaler and delivering product from

wholesaler to retailers.

Figure 7-10 shows the combinatorial Petri net model for releasing vehicle at wholesaler
and delivering product from wholesaler to a retailer (e.g. R1), the corresponding
notation explanation is shown in Table 7-5. In this model, there are five transitions, and
no E1 arc expression is defined for them. It means that, if none of the input places for a
transition is empty, then it will be token enabled. Next, we will explain these
transitions one by one.

T5

T4 T3

P3 P2

T1

R1 R2 R3 R4

T2

R5 R6 R7 R8

P1

P9 P10

P8 P7 P6

P5 P4

Places and transitions:
R1-R8: inventory level for retailer1-8
P1: pool of routes that need to be served
P2: inventory level at the wholesaler
P3: available vehicles at the wholesaler
P4: loaded vehicle for route 1
P5: loaded vehicle for route 2
P6: transportation costs for different vehicles.
P7: run time for different vehicles
P8: arrival vehicle at the first retailer of route 1
P9: place to indicate whether route 1 is being served
P10: place to indicate whether route 2 is being served
T1: inferring process for the vehicle releasing of route 1
T2: inferring process for the vehicle releasing of route 2
T3: loading and vehicle releasing process at the

wholesaler
T4: return token to origin for the un-served routes
T5: transportation process from wholesaler to the first

retailer of route1

E2 arc expressions:
OA1-1: P1.VRI=[P1.VRI T1.abl], P1.route=[P1.route P9.delRoute(1)], P1.amount=[P1.amount SUM(I1, I2,

I3, I4)];
OA2-1: P2.VRI=[P2.VRI T2.abl], P2.route=[P2.route P10.delRoute(1)], P2.amount=[P2.amount SUM(I5, I6,

I7, I8)];
IA1-4: P1.delVRI=P1.VRI; P1.delRoute=P1.route; P1.delAmount=P1.amount; P1.VRI=[]; P1.route=[];

P1.amount=[];
OA4-9: if P1.delroute(1)==1 or P1.delroute(2)==1 P9.route=[1];
OA4-10: if P1.delroute(1)==2 or P1.delroute(2)==2 P10.route=[2];
IA1-3: I=MAX(P1.VRI), P1.delRoute(1)=P1.route(I), P1.route(I)=[], P1.delAmount(1)=P1.amount(I),

P1.amount(I)=[], P1VRI(I)=[];.
IA2-3: P2.inventory(1)=P2.inventory(1)-P1.delAmount(1);
IA3-3: P3.delVehicle(1)=P3.vehicle(1), P3.vehicle(1)=[];
OA3-4: if P1.delRoute==1, P4.vehicle=[P4.vehicle P3.delVehicle(1)], P4.amount=[P4.amount

P1.delAmount];
OA3-5: if P1.delRoute==2, P5.vehicle=[P5.vehicle P3.delVehicle(1)], P5.amount=[P5.amount

P1.delAmount];
IA4-5: P4.delVehicle(1)=P4.vehicle(1), P4.delAmount(1)=P4.amount (1), P4.vehicle(1)=[], P4.amount(1)=[

];
OA5-6: P6.tranCost(P4.delVehicle(1))= P6.tranCost(P4.delVehicle(1)) + (CT(W, R1)*P4.delAmount(1) +

CF(W, R1));
OA5-7: P7.runTime(P4.delVehicle(1)) = P7.runTime(P4.delVehicle(1))+T5.delay;
OA5-8: P8.vehicle=[P8.vehicle P4.delVehicle(1)], P8.amount=[P8.amount P4.delAmount(1)];

Figure 7-10 Combinatorial Petri net model for releasing vehicle at wholesaler and
product delivering from wholesaler to retailer R1

URN:NBN:no-3444

Chapter 7

125

Table 7-5 Explanation for notations used in arc expressions of Figure 7-10
Notation Explanation
P1.VRI An array of VRI for all routes to be served.
P1.route An array of route numbers to be served
P1.amount An array to indicate the amount of products to be loaded on vehicles when serving corresponding

routes
I The index of most urgent route to be served, it is found by function MAX(P1.VRI)
MAX Function to find the index of most urgent route to be served.
P2.inventory Inventory status at wholesaler
P3.vehicle Queue of vehicles available at the wholesaler
P4.vehicle The vehicle that has been loaded and is waiting for releasing to route 1
P4.amount Amount of product loaded on the vehicle which is waiting for releasing to route 1
P5.vehicle The vehicle that has been loaded and is waiting for releasing to route 2
P5.amount Amount of product loaded on the vehicle which is waiting for releasing to route 2
P6.tranCost Array of transportation costs for different vehicles
CT(W, R1) Unit transportation cost from wholesaler to retailer R1

CF(W, R1) Fixed transportation cost from wholesaler to retailer R1
P7.runTime Array of run time for different vehicles
P8.vehicle Queue vehicles arrived at retailer R1
P8.amount Amount of products loaded on the vehicles arrived at retailer R1
P9.route Token to indicate whether route 1 is being served
P10.route Token to indicate whether route 2 is being served

Transition T1 represents the decision-making process for releasing a vehicle to serve
route 1. T2 represents the decision-making process for releasing a vehicle to serve
route 2. Both T1 and T2 are same as the transition T1 in Figure 7-2. The working
process for such kind of transition has been explained in previous section, so it is
unnecessary to say more about them here.

Transition T3 represents the vehicle loading process at wholesaler. If vehicle(s) is
available at the wholesaler (i.e. P3 is non-empty), and there is route(s) needing to be
served (i.e. P1 is non-empty), T3 is enabled (as no inference rule is defined for it).
When it is fired, the most urgent route is selected by arc expression I=MAX(P1.index)
and served. If no vehicle is available (P3 is empty) and there is queue of routes which
need to be served (i.e. P1 is non-empty), T3 is un-enabled, but T4 is enabled. When T4
is fired, it adds a token to P9 (if route 1 is not served) or P10 (if route 2 is not served),
then T1 or T2 is enabled again to re-evaluate the degree of urgency for corresponding
route to be served.

Transition T5 describes the product delivering process from wholesaler to retailer R1

(the first retailer in route 1). Here, no inferring rule is defined for it. If necessary, some
rules can be defined to indicate the condition that a vehicle can or not begin its journey.
When the loaded vehicle is available at place P4, T5 is enabled. When it is fired, the
loaded vehicle is added into place P8 after a period of T5.delay, transportation cost and
vehicle utilization time are calculated by corresponding arc expressions, and the results
are put into place P6 and P7 respectively.

(2) Sub-model 2: Unloading product at a retailer and delivering product between

retailers

URN:NBN:no-3444

Performance Evaluation for the Designed Distribution Chain

126

The combinatorial Petri net model for unloading product at retailer R1 and delivering
product from retailer R1 to retailer R2 is shown in Figure 7-11, and the corresponding
notation explanation is shown in Table 7-6. In this model, there are four transitions,
and no E1 arc expression is defined for them. It means that, if none of the input places
for a transition is empty, then the transition will be token enabled. In what follows, we
will explain these transitions in detail.

Transition T7 represents the product delivering process from wholesaler to retailer R1.
This transition has been explained above. Transition T6 represents the volume
rationing process at retailer R1. When the vehicle is released at the wholesaler, the
amount of product loaded on that vehicle was determined according to the inventory
level of retailers at that time. Because of random demand at retailers, when the vehicle
arrives at a retailer, inventory status of retailers may be unexpected, so we need to re-
ration the limited amount of product loaded on this vehicle to retailers. A variance-
related rule is used to ration the present amount of product loaded on the vehicle:

Where,
 Q1: amount of product to be unloaded at retailer R1.
 Si: order up to level for retailer Ri
 Ii: present inventory level at retailer Ri
 σi: standard deviation of demand at retailer Ri.

 Qv: present volume of product on the vehicle.
 L1i: expected lead time demand when the vehicle travels from retailer R1 to Ri.

When the loaded vehicle arrives at retailer R1, P12 is non-empty, so T6 is enabled.
When it is fired, function Ration(Qv, I1, I2, I3, I4) is called to calculate how many
products to be unloaded at retailer R1, and the calculation result is put into place P11.

Transition T8 represents the unloading process at retailer R1. As no inference rule is
defined for T8, once the vehicle arrives at retailer R1 (P12 is non-empty) and the
volume of product on the vehicle is re-rationed (P11 is non-empty), T8 is enabled.
When it is fired, unloaded amount of product is added to inventory of retailer R1 (P13);
inventory cost is calculated, and result is put into P15; and the token representing the
unloaded vehicle is put into P14, which indicates that the vehicle is ready to continue
its journey.

Transition T9 represents the product delivering process from retailer R1 to R2. Delay for
T9 represents the transportation time between these two retailers. For other aspects, as
they are similar to that of transition T5 in Figure 7-10, we do not give further
explanation here.

)87()))(((),,,,(
4

1

14

1

1
1143211 −−−−+−== ∑
∑ =

=

i

iiiv

i

i

v LISQISIIIIQRationQ

σ

σ

URN:NBN:no-3444

Chapter 7

127

Table 7-6 Explanation for notations used in arc expressions of Figure 7-11

Variable Explanation
P11.amount Amount of product to be unloaded at retailer R1

P12.vehicle Queue of vehicles arrived at retailer R1
P12.amount Amount of product loaded on vehicles when they arrive at retailer R1
P13.inventoryLevel Present inventory level at retailer R1
P13.updatedTime Time when R1’s inventory is updated
P14.vehicle Queue of vehicles unloaded from retailer R1.
P14.amount Left amount of product loaded on the vehicle when it leaves retailer R1.
P15.inventoryCost Array of inventory carrying costs for all retailers
CI1 Unit inventory carrying cost at retailer R1
CS1 Unit product shortage cost at retailer R1
CT(R1, R2) Unit product delivering cost between retailer R1 and R2
CF(R1, R2) Fixed transportation cost between retailer R1 and R2
T9.delay delay for transition T9, it is a random variable

(3) Sub-model 3: selling product to customers and carrying inventory at retailers.

Figure 7-11 Combinatorial Petri net model for unloading product at a retailer and delivering
product between retailers

E2 arc expressions:
OA6-11: P11.amount(1)=Ration(P12.amount(1), I1, I2, I3, I4);
IA11-8: P11.delAmount=P11.amount(1), P11.amount(1)=[];
IA12-8: P12.delVehicle(1)=P12.vehicle(1), P12.delAmount(1)=P12.amount(1), P12.vehicle(1)=[],

P12.amount(1)=[];
OA8-15: If P13.delInventoryLevel(1)≥0 P15.inventoryCost(1)=P15.inventoryCost(1) +

CI1*P13.delInventoryLevel(1)*(P13.updatedTime(1)- P13.delUpdatedTime(1)),
If P13.delInventoryLevel(1)<0 P15.inventoryCost(1)=P15.inventoryCost(1) +
CS1*P13.delInventoryLevel(1)*(P13.updatedTime(1)- P13.delUpdatedTime(1)),

OA8-14: P14.vehicle=[P14.vehicle P12.delVehicle(1)], P14.amount=[P14.amount (P12.delAmount(1)-
P11.delAmount(1))]

OA8-13: P13.delInventoryLevel(1)=P13.inventoryLevel(1), P13.inventoryLevel(1)=P13.inventoryLevel(1) +
P11.delAmount, P13.delUpdatedTime=P13.updatedTime, P13.updatedTime=T;

IA14-9: P14.delVehicle(1)=P14.vehicle(1), P14.delAmount(1)=P14.amount(1), P14.vehicle(1)=[],
P14.amount(1)=[];

OA9-6: P6.tranCost(P14.delVehicle(1))= P6.tranCost(P14.delVehicle(1))+(CT(R1, R2)*P14.delAmount+CF(R1,
R2))

OA9-7: P7.runTime(P14.delVehicle(1))= P7.runTime(P14.delVehicle(1))+T9.delay;
OA9-16: P16.vehicle=[P16.vehicle P14.delVehicle(1)], P16.amount=[P16.amount P14.delAmount(1)]

T7

T9

T6

 R1 R2 R3 R4

P12 P11

P15 P14 P13

T8

P6 P16 P7 Places and transitions:
P6: transportation cost for vehicles.
P7: run time for vehicles.
P11: amount of product to be unloaded at retailer R1.
P12: arrival vehicle at retailer R1.
P13: inventory status at retailer R1
P14: unloaded vehicle departing from retailer R1
P15: inventory cost for retailers
P16: arrival vehicle (loaded) at retailer R2
T6: rationing calculation.
T7: product delivering from wholesaler to retailer R1
T8: unloading process at retailer R1
T9: product delivering from retailer R1 to retailer R2.

URN:NBN:no-3444

Performance Evaluation for the Designed Distribution Chain

128

Figure 7-12 shows the combinatorial Petri net model for selling product to customers
and carrying inventory at a retailer (e.g. retailer R1). All notations used in this figure
are explained in Table 7-7. In this model, there are two transitions, and no E1 arc
expression is defined for them. It means that, if none of the input places for a transition
is empty, then the transition is token enabled. In what follows, we will explain these
transitions in detail.

Transition T10 represents the action of generating customer demands. No input place is
defined for it. This means that the transition is always enabled. When it is fired, one
demand (a random value) is generated and put into place P20. Delay for T10 is also a
random variable. It represents the inter-arrival time of successive demands.

Transition T11 represents the action of selling products to customers. When there are
demand (P20 is non-empty) and product at retailer R1 (P13 is non-empty), T11 is
enabled (as no inference rule is defined for this transition). When it is fired, inventory

E2 arc expressions:

OA10-20: D1=uD1+dD1*Rand(n1); n1=n1+1; P20.demand=[P20.demand D1];
IA20-11: P20.delDemand(1)=P20.demand(1); P20.demand(1)=[];
IA13-11: P13.delInventoryLevel(1)=P13.inventoryLevel(1); P13.inventoryLevel(1)=P13.inventoryLevel(1)

–P20.delDemand; P13.delUpdatedTime=P13.updatedTime, P13.updatedTime=T;
OA11-17: If P13.delInventoryLevel(1)>P20.delDemand(1)
 P17.gloRevenue(1)= P17.gloRevenue(1)+PR1* P20.delDemand(1);

If 0< P13.delInventoryLevel (1)< P20.delDemand(1)
P17.gloRevenue(1)= P17.gloRevenue(1) + PR1* P13.delInventoryLevel(1);

OA11-18: If P13.delInventoryLevel(1)>P20.delDemand(1)
 P18.revenues(1) = P18.revenues(1) + PR1* P20.delDemand(1);

If 0< P13.delInventoryLevel (1)< P20.delDemand(1)
P18.revenues(1) = P18.revenues(1) + PR1* P13.delInventoryLevel(1);

OA11-15: If P13.delInventoryLevel(1)≥0 P15.inventoryCost(1)=P15.inventoryCost(1) +
CI1*P13.delInventoryLevel(1)*(P13.updatedTime(1)- P13.delUpdatedTime(1)),

 If P13.delInventoryLevel(1)<0 P15.inventoryCost(1)=P15.inventoryCost(1) +
CS1*P13.delInventoryLevel(1)*(P13.updatedTime(1)- P13.delUpdatedTime(1)),

OA11-19: P19.sumOfDemand(1)=P19.sumOfDemand(1)+ P20.delDemand(1);
If 0< P13.delInventoryLevel (1)< P20.delDemand(1)

 P19.short(1)=P19.short(1)+P20.delDemand(1)- P13.delInventoryLevel (1);
 If P13.delInventoryLevel (1)<0
 P19.short(1)=P19.short(1)+ P20.delDemand(1);

Places and transitions:
P13: inventory level at retailer R1

P15: inventory costs at retailers
P17: global revenue
P18: revenues at retailers
P19: fill rates at retailers
P20: customer demand at retailer R1
T10: generate customer demands
T11: sell products to customers

P20
T10

P13

 P18

 P15

 P19

T11
P17

Figure 7-12 Combinatorial Petri net model for selling products to customers and
carrying inventory at retailer R1

URN:NBN:no-3444

Chapter 7

129

level at retailer R1 (P13) is updated, global revenue (P17), local revenue (P18),
inventory cost for R1 (P15), and fill rate at R1 (P19) are calculated by corresponding
arc expressions.

Table 7-7 Explanation for notations used in arc expressions of Figure 7-12

Notation Explanation
D1 Demand at retailer 1, it is a random variable
uD1 Mean of variable D1
dD1 Standard deviation of variable D1
Rand An array of random number with normal distribution (mean is 0, and standard deviation

is 1)
P20.demand Queue of demands generated by transition T10
P17.gloRevenue Sum of revenues for this distribution chain
PR1 Product price at retailer R1

P18.revenues Array of revenues for different retailers
P19.sumOfDemand An array of total demands at different retailers
P19.short Array of total product shortages (in quantity) for different retailers

The sub-models for main operations in a distribution chain have been illustrated above.
Now, we integrate them together to form the whole combinatorial Petri net model (as
shown in Figure 7-13) for the simplified distribution chain shown in Figure 7-9. In
Figure 7-13, the shaded boxes represent retailers R1~R8. For brevity, the actions inside
a retailer (e.g. generating demands, etc.) are not shown here. Place P55 represents the
available vehicles at the wholesaler. Once a vehicle finishes its journey in serving a
route, it comes back to this place. Places P51 and P52 indicates whether the
corresponding routes (route 1 and route 2) are being served. For example, when route 1
is being served by a vehicle, P51 is empty; when it is not served for the moment, P51
is not empty, so T25 is enabled to assess whether route 1 needs to be served. Other
places and transitions have been explained previously, for brevity, we do not mention
them again here.

URN:NBN:no-3444

Performance Evaluation for the Designed Distribution Chain

130

T22

T25

R
4

P04

P03

P02

P01

R
1

P04

P03

P02

P01

P03 P08 P07

T02

P06 P05

P09 P11 P10

T03

P03 P27 P26

T10
R

8

P04

P03

P02

P01

R
5

P04

P03

P02

P01

P03 P31 P30

T12

P29 P28

P09 P32 P10

T13

P03 P48 P47

T20

P03

P49

P09

P10

P50

P51

P52

P55

P54

P53

P09

P10

T23

T24

T21

Performance indicators:
P01: global revenue
P02: local revenue
P03: inventory cost at retailers
P04: fill rate at retailers
P09: transportation cost for vehicles
P10: utilization ratio for vehicles

Figure 7-13 Combinatorial Petri net model for the simplified distribution chain
shown in Figure 7-9

T01

URN:NBN:no-3444

Chapter 7

131

7.6.3 Realization of the combinatorial Petri net model and performance
evaluation of the distribution chain

In the previous sub-section, to evaluate the performance of a distribution chain, we
established its combinatorial Petri net model. According to this model, all the
performance measures are calculated during the running process. In this sub-section,
computer application will be used to run this model, simulate the working process of a
distribution chain, and evaluate its performance. For the following two reasons,
MATLAB is selected to develop this computer application:

 MATLAB can provide abundant functions in operating matrix. As shown above,
most parameters in this Petri net model are expressed by matrix, so it is efficient
to develop our simulation tool in MATLAB environment.

 In this dissertation, almost all of the computer tools are developed in MATLAB
environment. If this simulation tool is also developed in it, it will be convenient to
integrate all these tools together to form a systematic one.

By the tool developed in MATLAB, a combinatorial Petri net model is realized
according to following steps:

Step 1. Form the combinatorial Petri net model

(1) Initialize the Petri net model by function initialization
(2) Define places by function node, e.g.

P(1)=node(‘place’, 1, iniMarking, PN);
Here the third argument is the initial marking for place P(1).

(3) Define transitions. A transition can also be defined by function node, e.g.
T(3)=node(‘transition’, 3, initParameters, PN);
Here the third argument is the initial parameters for transition T(3).

(4) Form function ABL for transitions based on given inference rules, e.g.
T(3).abl=ABL(3, M(pi: pi∈ I(T(3))));

(5) Store arc expressions in function arc_expressions.

Step 2. Check the enabled transitions according to enabling rule, and put the enabled

ones into eventQueue. This is accomplished by function: enabling.
Step 3. Fire transitions in eventQueue according to firing rule. This is accomplished by

function firing.
Step 4. Check the ending condition, and decide to begin a new circle, or end the

program (as shown in Figure 7-5).

The main functions used above are shown in Appendix C.

Once the distribution chain is changed, we only need to change some parameters, or re-
define the related places, transitions and arcs, but keep other parts unchanged.
Obviously, the re-programming load is reasonable.

URN:NBN:no-3444

Performance Evaluation for the Designed Distribution Chain

132

After running this combinatorial Petri net model, we get following results: the total
profit for this distribution chain is
24212 $/day (global revenue is 25920
$/day, and global cost is 1708 $/day).
The distribution of other performance
measures is shown in Figure 7-14. By
these results, we can verify whether
this distribution chain design is
satisfactory.

7.7 Summary

In this chapter, to verify the design
result, a combinatorial Petri net
model is developed, and then it is
used to evaluate the performance of a
designed distribution chain.
Normally, traditional Petri net is good
at simulating the working process of
a discrete event system, but poor at
simulating the inferring process. To
supplement this weak point, ABL is
combined with the traditional Petri
net to form the combinatorial Petri
net. This newly developed Petri net
form can simulate both working and
inferring process of a discrete event
system. With this new form of Petri
net, a simplified distribution chain is
modeled, and its performance is
evaluated by running this model. By
this evaluation result, the decision
makers can decide whether this
designed distribution chain is applicable in practice. This Petri net form has been
realized by computer applications in MATLAB environment.

For this newly developed Petri net form, in the future, we need to do more research
work in following directions:

 Here, only some basic definition and rules for combinatorial Petri net are given. In
the future, we need to complete the theoretical part of this new Petri net form.

 By combinatorial Petri net, the modeling process is boring. In the future, we will
try to simplify this new Petri net form, and develop more basic blocks or sub-
models that are re-usable in modeling large scale systems.

 At the same time, we will also complete the computer application to make it more
convenient when used in practice.

0

20

40

60

80

100

Local revenue (x100$/day)
Inventory cost (x10$/day)
Fill rate (%)

 R1 R2 R3 R4 R5 R6 R7 R8

0

10

20

30

40

50

60

70

v1 V2

Transportation cost (x10$/day)

Utilization ratio (%)

Figure 7-14. Distribution of other performance
measures for 8 retailers (R1-R8)
and two vehicles (V1-V2)

URN:NBN:no-3444

Chapter 8

133

CHAPTER 8 A NUMERICAL EXAMPLE FOR THE DESIGN OF
DISTRIBUTION CHAIN

8.1 Introduction

In chapter 3, the structure of the integrated methodology for distribution chain design is
illustrated. To realize this methodology, a set of models, formulae and algorithms are
developed in the subsequent chapters. As they are introduced individually in those
chapters, the procedure on how to use them in designing a distribution chain is not
clear. To solve this problem, we use Figure 8-1 to show the flow chart on how to apply
these models in practice. This flow chart accords with the structure of this design
methodology shown in Figure 3-2. In this chapter, a numerical example will be given to
illustrate the procedure on designing a distribution chain by the methodology developed
in this dissertation.

The distribution chain to be designed is described as follows: an enterprise wants to
design a divergent multi-echelon distribution chain with one distribution center, one tier
of wholesalers and a set of retailers. The enterprise plans to select retailers from
potential ones, and build wholesalers and distribution center to form this distribution
center. The task for this design is to determine the configuration of the distribution
chain, inventory control policy and parameters at each node, and product delivering
routes between different nodes. The objective to design this distribution chain is to
maximize profit for the host enterprise subject to satisfying customer requirements.

In this chapter, the distribution chain is designed according to the flowchart shown in
Figure 8-1. In section 8.2, after selecting a set of retailer and wholesaler candidates, the
information about them is given. The distribution center is located closely to the host
enterprise. This process can also be viewed as pre-design. In section 8.3, based on the
candidates identified above, the configuration of distribution chain, inventory control
policy and parameters at each node of this distribution chain, and routes for delivering
products between different nodes are determined. In section 8.4, these design results are
verified by estimating the performance of this designed distribution chain.

8.2 Pre-design of the Distribution Chain

According to Figure 8-1, after analysing the enterprise’s situation and setting design
objectives, we come to the first stage of designing a distribution chain: pre-design.
There are mainly two purposes for setting this pre-design stage: selecting the eligible
distributors and reducing the scale of the problem. When an enterprise begins to design
its distribution chain, it faces a lot of possible distributors. If these distributors are
directly input into the design model, the resulted model may be too large to be solved.
To avoid this problem, we set this pre-design process to evaluate all possible
distributors comprehensively, and select the eligible ones to form the design model.
Moreover, the evaluation process is accomplished by an ABL-FL inference module.
This inference module can take qualitative even logic variables into account, which are
difficult to be considered in the later design stage. Obviously, by setting this pre-design

URN:NBN:no-3444

A Numerical Example for the Design of Distribution Chain

134

Satisfied?

Y

N

Analyze the enterprise’s situation, and set the design objective

 Determine factors to be considered when evaluating a possible distributor

Acquire necessary information from possible distributors by the mobile agent system developed in
section 5.3

Evaluate all possible distributors by the model founded in section 5.4, and select a set of
eligible ones as candidates for designing this distribution chain

Pre-design

Specify initial value for all parameters

Determine the configuration of the distribution chain by the MIP model shown in section 6.3

Estimate retailers’ market shares in their customer zones by the ANN model created in section

Based on this distribution chain configuration, determine inventory control parameters at each
node by the model developed in section 6.4, and optimize product delivering routes between

different nodes by formulae and algorithms founded in section 6.5

Calculate operation related parameters, and update them

Converges?

Output the configuration of the distribution chain, inventory control parameters at each node, and
product delivering routes between different nodes

Y

N

Design

Evaluate performance of this designed distribution chain by the Petri net model founded

in chapter 7

Performance
evaluation

Output the design, including the configuration of the distribution chain, inventory control parameters at each
node, and routes for vehicles to deliver products between different nodes

Figure 8-1 Flow chart on how to use the methodology developed in this dissertation in
designing a distribution chain

URN:NBN:no-3444

Chapter 8

135

stage, we can evaluate possible distributors more comprehensively, select the really
eligible distributors, and improve the design quality. This pre-design is finished
according to following procedure:

 Form the variable table based on the evaluating factors shown in Figure 5-3.
 According to this variable table, acquire information from all possible distributors

by any kind of approaches, including the mobile agent approach created in section
5.3.

 Evaluate all possible distributors by the ABL-FL inference module founded in
section 5.4, and select the eligible ones by subjective judgement.

In subsection 5.4.5, the procedure on how to evaluate a distributor is illustrated. This
procedure is based on the model shown in Figure 5-3. Then, in subsection 5.4.6, a case
study is given to show how to evaluate a distributor in reality. By this procedure, all
possible distributors can be evaluated, and the evaluation results are indicated by
numbers ranging from 0 to 100. Based on these results, the decision makers can select
the eligible distributors by subjective judgement.

As the evaluation processes for any other distributors are same as the one in the case
study given in subsection 5.4.6, here, for brevity, we do not give the detail evaluation
processes for the possible distributors, but just show the evaluation and selection result.
Assume that we have finished the evaluation process, and a set of distributors have been
selected as retailer candidates. The parameters for these selected retailers are shown as
Table 8-1.

Table 8-1 Parameters for selected retailers

Retailers R1-R10 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
Total demand at its
customer zone (unit/day)

960 1330 1270 1660 1590 2940 2000 2100 3550 2610

Position (coordinate) (km) [-30,
20]

[0,
30]

[10,
40]

[10,
20]

[20,
30]

[30,
10]

[35,
30]

[45,
10]

[58,
49]

[68,
-75]

Retailers R11-R20 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20
Total demand at its
customer zone (unit/day)

990 1550 1500 2740 2540 1350 3580 1500 1350 1800

Position (coordinate) (km) [-30,
-10]

[-20,
-20]

[-10,
-10]

[0,
-20]

[15,
-10]

[20,
-40]

[35,
-10]

[45,
-10]

[45,
-20]

[30,
-30]

Based on these retailer candidates, three locations are identified as the possible places to
build wholesalers. The parameters for them are shown in Table 8-2. Based on these
retailer and wholesaler candidates, we can begin the design process.

Table 8-2 Possible locations to build wholesalers

Locations L1~L3 L1 L2 L3
Position (coordinate) (km) [30, 30] [20, -10] [-30, -30]

URN:NBN:no-3444

A Numerical Example for the Design of Distribution Chain

136

8.3 Design of the Distribution Chain

8.3.1 Determine configuration of the distribution chain

In Table 8-1, the total demands at customer zones are given. Normally, there may be
several firms in a customer zone that sell the same product as the one to be distributed.
To determine the actual demand at a selected retailer, we need to estimate its market
share in its customer zone. As mentioned in section 6.2, a firm’s market share in a
customer zone is related to nine factors, and it can be estimated by the ANN model
founded there. This estimation is finished according to following procedure:

 Train the ANN model by historical samples.
 Determine values of factors for a retailer.
 Input these values into the trained ANN model, then the resulted market share in

the customer zone is estimated.

As there is no real case here, and so there are no historical samples to train the ANN
model. To continue the design process, we assume that the estimation process has been
finished, and the results are shown in Table 8-3. As this numerical example is mainly
used to illustrate the design process, such assumption is allowable. The product price at
each retailer is also shown in Table 8-3.

Table 8-3 Market share, actual demand and price at each customer zone

Retailers R1-R10 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
Market share (%) 35 32 30 34 38 26 24 25 20 24
Customer demand at the retailer
(unit/day)

340 430 380 570 610 770 480 530 710 630

Price ($/unit) 4 4.5 5 4.5 4 6 5.5 5.5 6 5.5
Retailers R11-R20 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20
Market share (%) 35 30 28 21 26 29 20 28 30 27
Customer demand at the retailer
(unit/day)

350 470 420 580 660 390 720 420 410 490

Price ($/unit) 4.8 5.5 4.8 6.3 5.4 4.9 6.1 5.6 4.9 5.4

After giving market shares for retailers and determining customer demands at them, the
configuration of the distribution chain can be determined by the MIP model developed
in section 6.3. The initial values for parameters at possible retailers, wholesalers and
distribution center are shown in Table 8-4, Table 8-5, and Table 8-6 respectively.
Inputting these initial values into the program shown in Appendix D, we can obtain
values for variables ui (i=1-20), vj (j=1-3), and wij. ui indicate the selection /rejection of
possible retailers (1 indicates selection, and 0 indicates rejection), vi indicate the
selection /rejection of possible wholesalers, and wij indicate the assignments of retailers
to wholesalers. After solving this model, we get following results: among 20 possible
retailers, 14 of them are finally selected. As for the wholesalers, 2 of the 3 possible
locations are selected. The detail of these selections is shown in Table 8-7. Besides the
selections of possible retailers and wholesalers, the program also outputs values for wij
to indicate the assignments of retailers to wholesalers. So the configuration of this
distribution chain is determined, and shown in Figure 8-2.

URN:NBN:no-3444

Chapter 8

137

Table 8-4 Initial values for parameters at possible retailers
Retailers R1-R10 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
Unit product delivery
cost from W1 ($/unit)

0.6 0.31 0.22 0.22 0.1 0.2 0.05 0.25 0.34 1.12

Unit product delivery
cost from W2 ($/unit)

0.78 0.67 0.72 0.54 0.61 0.40 0.60 0.42 0.84 0.59

Unit product delivery
cost from W3 ($/unit)

0.5 0.67 0.82 0.64 0.78 [0.72 0.88 0.85 1.18 1.08

Retailers R11-R20 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20
Unit product delivery
cost from W1 ($/unit)

0.72 0.71 0.57 0.58 0.43 1.15 0.40 0.43 0.52 0.60

Unit product delivery
cost from W2 ($/unit)

0.62 0.51 0.45 0.32 0.25 0.19 0.21 0.25 0.19 0.10

Unit product delivery
cost from W3 ($/unit)

0.20 0.14 0.29 0.32 0.49 0.95 0.68 0.79 0.77 0.60

Table 8-5 Initial values for parameters at possible wholesalers

Wholesalers W1~W3 W1 W2 W3
Average inventory level Ij (1000 units) 380 420 460
Highest inventory level Ihj (1000 units) 95.2 99.6 114.8
Opening cost Copenj(Ihj) (allocated for one planning period) ($) 50000 50000 60000
Unit inventory maintaining cost Cj ($/unit*day) 0.01 0.01 0.01
Maximal throughput Ctmax (1000 units) 1000 1100 1300
Minimal throughput Ctmin (1000 units) 500 500 500
Required delivery flexibility εtj (%) 20 20 20
Position (km) [30, 30] [20, -10] [-30, -30]

Table 8-6 Initial values for parameters at the distribution center and host enterprise

Planning period T (day) 200 Required production volume flexibility εp (%) 20
Maximal production capacity Cpmax (1000 units) 1920 Average inventory level I0 (1000 units) 500
Minimal production capacity Cpmin(1000 units) 1000 Inventory maintaining cost C0 ($/unit*day) 0.005

Table 8-7 The selected retailers and wholesalers (The grey ones are not selected)

Retailers R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19,
R20

wholesalers W1, W2, W3

8.3.2 Determine inventory
control parameters at each
node

The inventory related parameters
for the nodes in Figure 8-2 are
shown in Table 8-8 and Table 8-
9. Based on these given
parameters, the model created in
section 6.4 can be used to
determine the optimal parameter
pair (s, Q) (s is the re-ordering

R4 R5 R6 R7 R8 R9

W1

C0

W2

R20 R19 R18 R17 R15 R14 R13 R12

Figure 8-2 Configuration of the distribution chain

URN:NBN:no-3444

A Numerical Example for the Design of Distribution Chain

138

point, Q is the ordering quantity) and corresponding inventory maintaining cost for
retailers and wholesalers in Figure 8-2. This process is accomplished by the program
shown in B-1 of Appendix B, and the corresponding results are shown in Table 8-10.

Table 8-8 inventory related parameters for retailers

Nodes R4 R5 R6 R7 R8 R9 R12
Mean 570 610 770 480 530 710 460 Demand (unit)
Standard deviation 0.1 0.1 0.15 0.1 0.1 0.15 0.1
Mean 1 1 1 1 1 1 1 Interarrival (day)
Standard deviation 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Holding cost ($/1000units*day) 10 10 10 10 10 10 10 Cost coefficient
Shortage cost ($/1000units*day) 100 100 100 100 100 100 100

 Lead time (day) 10 8 9 7 10 14 10
 Ordering cost ($) 1000 1000 1000 1000 1000 1000 1000
Nodes R13 R14 R15 R17 R18 R19 R20

Mean 420 580 660 720 420 410 490 Demand (unit)
Standard deviation 0.1 0.1 0.1 0.15 0.1 0.1 0.1
Mean 1 1 1 1 1 1 1 Interarrival (day)
Standard deviation 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Holding cost ($/1000units*day) 10 10 10 10 10 10 10 Cost coefficient
Shortage cost ($/1000units*day) 100 100 100 100 100 100 100

 Lead time (day) 9 8 6 8 9 10 7
 Ordering cost ($) 1000 1000 1000 1000 1000 1000 1000

Table 8-9 Inventory related parameters for wholesalers

 W1 W2
Mean 10.5 9.5 Demand (1000 units)
Standard deviation 2 1.8
Mean 3 2.2 Interarrival (day)
Standard deviation 0.5 0.4
Holding cost ($/1000units*day) 10 10 Cost coefficient
Shortage cost ($/1000units*day) 100 100

 Lead time (day) 15 15
 Ordering cost ($) 10000 10000

Table 8-10 Optimal parameter pairs (s, Q) and corresponding cost for retailers and wholesalers

Nodes R4 R5 R6 R7 R8 R9 R12 R13
Re-ordering point s (1000 units) 5 5 8 3 5 10 4 3
Ordering quantity Q (1000 units) 11 10 12 10 9 11 9 9
Inventory maintaining cost ($/day) 106 109 125 95.2 102.3 122.7 95.6 90.5
Nodes R14 R15 R17 R18 R19 R20 W1 W2
Re-ordering point s (1000 units) 4 4 6 4 4 5 60 70
Ordering quantity Q (1000 units) 10 11 12 8 8 9 80 90
Inventory maintaining cost ($/day) 106.8 112 118.9 90.9 89.7 97.95 878.9 966.5

8.3.3 Plan product delivery routes between different nodes

After determining inventory control parameters for retailers, the genetic algorithm
model provided in section 6.5 can be used to optimize product delivering routes from
wholesalers to retailers. Before applying this model, we need to give some route related
parameters. In addition to the inventory related parameters given above, we give the
route related parameters which are in Table 8-11 and Table 8-12. Both will be used in
the genetic algorithm model.

URN:NBN:no-3444

Chapter 8

139

Table 8-11 Route related parameters for retailers
Retailers R4 R5 R6 R7 R8 R9 R12

Early arrival cost coefficient α ($/1000units) 10 10 10 10 10 10 10
Late arrival cost coefficient β ($/1000units) 5 5 5 5 5 5 5
Stock out cost coefficient γ ($/1000units) 100 100 100 100 100 100 100

Time related cost

Ideal refill point (1000 units) 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Retailers R13 R14 R15 R17 R18 R19 R20

Early arrival cost coefficient α ($/1000units) 10 10 10 10 10 10 10
Late arrival cost coefficient β ($/1000units) 5 5 5 5 5 5 5
Stock out cost coefficient γ ($/1000units) 100 100 100 100 100 100 100

Time related cost

Ideal refill point (1000 units) 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table 8-12 Other route related parameters

Distance related cost coefficient ($/km) Vehicle renting cost coefficient ($/vehicle) Vehicle capacity (1000units)
5 2000 350

Inputting these parameters into the
program shown in B-2 of Appendix B,
the product delivering routes from
wholesalers to retailers are optimized.
As there are only several retailers in a
route, the optimization process
converges in a few generations, and
the optimized routes for this
distribution chain are (1) W1-R7-R5-
R4-W1; (2) W1-R6-R8-R9-W1; (3)
W2-R15-R17-R18-R19-W2; (4) W2-
R20-R14-R13-R12-W2 (as shown in
Figure 8-3). Actually, for such small
scale problem, the advantage of routing algorithm provided in this dissertation is not
significant. When there are dozens, even hundreds of retailers in a route, this
optimization approach will be very helpful in determining routes for vehicles.

According to the iterative design process shown in Figure 8-1, after determining the
inventory control parameters for each retailer, the average inventory levels at them are
re-calculated and updated. After planning the product delivery routes from wholesalers
to retailers, the delivery cost per unit product for each retailer is also re-calculated and
updated. These updated parameters are input into the program shown in Appendix D,
and the configuration of the distribution chain is re-determined. The re-determined
configuration is same as the one shown in Figure 8-2, this means that the design process
converges, and the results shown above can be viewed as the final design.

So far, we have finished the design of this distribution chain. The configuration of the
distribution chain is shown in Figure 8-2. Inventory control parameters at each node of
this distribution chain are shown in Table 8-10. Product delivery routes between
different nodes are shown in Figure 8-3. After designing a distribution chain, we can
evaluate its performance by “running” it. In next section, we will use combinatorial
Petri net to simulate the running process of this distribution chain, and then evaluating
its performance to verify our design.

R4

R5

R6 R7
R8

R9 W1

C0

W2

R20

R19

R18

R17
R15

R14

R13

R12

Figure 8-3 Routes in the distribution chain

URN:NBN:no-3444

A Numerical Example for the Design of Distribution Chain

140

8.4 Performance evaluation for the designed distribution chain

Based on the distribution chain shown in Figure 8-2 and routes sketched in Figure 8-3,
with all necessary parameters (including inventory maintaining parameters) at hand, the
combinatorial Petri net model developed in chapter 7 can be used to evaluate
performance of this designed distribution chain.

The combinatorial Petri net model from distribution centre to wholesalers W1 and W2 is
shown in Figure 8-4. This model is similar to the model shown in Figure 7-10. Now, we
simply introduce its working process.

First, according to the present inventory status of wholesaler W1 and W2, the decision
on whether wholesaler(s) need to be served is made by transition T1, and the decision is
put into place P01. If wholesaler W1 needs to be served, a vehicle at the distribution

T1

P04

P02

P01

T2

P05

P06

P10

P07

P09 T3

P10

P12

P09 T4

P11

P03

P08 T5

P14

P03

P13 T6

P10

P09

T8

P10

P09

T7

Places:
P01: pool of wholesalers that need

to be served.
P02: inventory level at the

distribution centre
P03: inventory carrying cost at

wholesalers
P04: available vehicles at the

distribution centre
P05: loaded vehicle for wholesaler

W1
P06: loaded vehicle for wholesaler

W2
P07: arrival vehicle at wholesaler

W1
P08: inventory level at wholesaler

W1
P09: transportation costs for

vehicles
P10: utilization ratios for vehicles
P11: unloaded vehicle at wholesaler

W1
P12: arrival vehicle at wholesaler

W2
P13: inventory level at wholesaler

W2
P14: unloaded vehicle at wholesaler

W2

Transitions:
T1: decision making process for releasing vehicles to wholesalers
T2: loading and vehicle releasing process at the distribution centre
T3: transportation process from distribution centre to wholesaler W1
T4: transportation process from distribution centre to wholesaler W2
T5: unloading process at wholesaler W1
T6: unloading process at wholesaler W2
T7: transportation process from wholesaler W2 back to distribution centre
T8: transportation process from wholesaler W1 back to distribution centre

Figure 8-4 The combinatorial model from distribution centre to wholesalers W1 and W2

URN:NBN:no-3444

Chapter 8

141

centre is loaded (the loading process is represented by transition T2), and the loaded
vehicle (a token) is put into place P05. This loaded vehicle travels to wholesaler W1
(the travelling process is presented by transition T3), and a token is added to place P07
to represent the arrival vehicle at wholesaler W1. This arrival vehicle is unloaded at
wholesaler W1 (the unloading process is represented by T5), and the inventory level at
wholesaler W1 (place P08) is updated. The working process for wholesaler W2 is same
as the one for W1. For brevity, we do not mention it here.

The combinatorial Petri net model from wholesaler W1 to its retailers is shown in
Figure 8-5. It is almost same as the model shown in Figure 7-13. In this model, there are
two routes: route W1-R7-R5-R4-W1 and route W1-R6-R8-R9-W1. First the decision on
whether the route(s) need to be served is made at transition T09 and T10. This decision
is put into place P45. Based on this decision, vehicles are released from wholesaler W1
and begin their journey to serve the corresponding routes. After serving routes, these
vehicles come back to wholesaler W1, and corresponding tokens are put into place P47.
As this working process has been explained in Chapter 7, we will not explain it in detail
here.

The combinatorial Petri net model from wholesaler W2 to its retailers is almost same as
the one shown in Figure 8-5. For brevity, we do not show the detail model here.

Integrating these three models together, we get the combinatorial Petri net model for the
distribution chain shown in Figure 8-2. This model can be realized by the functions
shown in Appendix C. By running this Petri net model, the main performance measures
for this distribution chain is shown in Table 8-13, and the distribution of local avenues
at retailers, and costs for different activities are shown in Figure 8-6, Figure 8-7, and
Figure 8-8. By these results, the decision makers can decide whether this designed
distribution chain is good enough to be implemented.

Table 8-13 Main performance measures for this distribution chain

Total revenue
(1000$)

Sum of inventory maintaining cost
(1000$)

Sum of transportation cost
(1000$)

Total profit
(1000$)

8358.9 604.6 24.1 7730.2

By Table 8-13, we find that, as one vehicle only serves a route, the utilization ratios for
vehicles are very low. In the future, the situation that one vehicle serves several routes
needs to be considered. Because of limited time, we leave it as future work.

URN:NBN:no-3444

A Numerical Example for the Design of Distribution Chain

142

T12

T09

R
4

P17

P03

P16

P15

R
7

P17

P03

P16

P15

P03 P21 P20

T15

P18 P19

P09 P22 P10

T16

P03 P29 P28

T20
R

9

P17

P03

P16

P15

R
6

P17

P03

P16

P15

P03 P33 P32

T22

P31 P30

P09 P34 P10

T23

P03 P41 P40

T27

P03

P42

P09

P10

P43

P44

P48

P47

P46

P45

P09

P10

T11

T10

T13

Performance indicators:
P15: global revenue
P16: local revenue
P03: inventory cost at nodes
P17: fill rate at retailers
P09: transportation cost for vehicles
P10: utilization ratio for vehicles

Figure 8-5 Combinatorial Petri net model from wholesaler W1 to its retailers

T14

T21

T28

URN:NBN:no-3444

Chapter 8

143

0
10
20
30
40
50
60
70
80

V1-1 V1-2 V2-1 V 2-2 V0-1 V0-2

trans portation cos t (100$)

utilization ratio (%)

V1-1: the vehicle serving retailers R4, R5, R7. V1-2: the vehicle serving retailers R6, R8, R9
V2-1: the vehicle serving retailers R15, R17, R18, R19 V2-2: the vehicle serving retailers R20, R14, R13, R12.
V0-1: the vehicle serving wholesaler 1 V0-2: the vehicle serving wholesaler 2

Figure 8-8 Transportation cost and utilization ratio for vehicles

0

200

400

600

800

1000

R4 R5 R6 R7 R8 R9 R12 R13 R14 R15 R17 R18 R19 R20

Figure 8-6 Local revenues at retailers (1000$)

0

50

100

150

200

250

R4 R5 R6 R7 R8 R9 R12 R13 R14 R15 R17 R18 R19 R20 W1 W2 W0

Figure 8-7 Inventory maintaining cost at retailers, wholesalers and distribution
center (1000$)

URN:NBN:no-3444

A Numerical Example for the Design of Distribution Chain

144

URN:NBN:no-3444

Chapter 9

145

CHAPTER 9 CONCLUSION AND FUTURE WORK

9.1 Conclusion

Generally, a supply chain is composed of three parts: supply, production and
distribution part. The distribution part plays crucial role for the success of supply chain
management. To study it in depth, we separate the distribution part from supply chain,
and define it as distribution chain. Like any other systems, a distribution chain needs to
be designed before implemented. The primary objective for this dissertation is to
provide an integrated methodology for the design of distribution chain.

To get high quality design, first, the structure of this design methodology is developed.
According to this structure, before designing a distribution chain, the present status of
the host enterprise needs to be analyzed. Based on this analysis, the objective for
designing this distribution chain is set. The design objective set in this dissertation is to
maximize profit subject to satisfying customer requirements. When designing the
distribution chain, first, all possible distributors need to be evaluated, and a set of
eligible ones are selected as candidates to design a distribution chain. With these
candidates, mathematical models are used to finish the design process. After designing
the distribution chain, the performance of this designed distribution chain must be
evaluated to verify the design result. This structure acts as guidance in developing the
methodology. The methodology developed here can be used to design a distribution
chain for medium or large enterprises with mass production.

In the distributor evaluation module, a trilogy is applied. First, to evaluate a distributor
more comprehensively, a relatively complete factor set is identified by systematic
analysis. All these factors will be considered when evaluating a possible distributor.
Secondly, to acquire information on these factors efficiently and economically, a
mobile agent system is developed, by which the host enterprise can collect data from
possible distributors on Internet. Thirdly, based on these acquired information, an
integrated FL-ABL approach is developed to evaluate a distributor quantitatively.
Compared with traditional evaluation method, this integrated approach can better
reflect the complicated relationship between factors and the evaluation of a firm. At the
same time, it successfully integrates the decision makers’ opinion into the evaluation
process. After evaluating all possible distributors, a set of eligible ones are selected as
candidates for designing a distribution chain.

After selecting candidates, we may begin to design the distribution chain. Customer
demands at retailers are crucial parameters in designing a distribution chain, but they
were not determined precisely in existing design methodologies. To solve this problem,
in this dissertation, an ANN based model is developed for market share estimation.
First, marketing mix variables that have influence on a firm’s market share are
identified, then the ANN model is determined to estimate the resulted market share of

URN:NBN:no-3444

Conclusion and Future Work

146

this firm in its customer zone. By the estimated market share, the customer demands at
retailers can be determined more precisely.

Operation related parameters are another type of parameters which were not
determined accurately in existing design methodologies. To solve this problem, in this
dissertation, an iterative process is used to design a distribution chain. First, initial
values for parameters (including operation related parameters) are specified by
experience. Based on these initial values, the configuration of a distribution chain is
determined by a MIP model. Given this configuration, the operation models are
optimized, i.e. the inventory control parameters at each node are determined by
probability theory, and product delivering routes between different nodes are optimized
by a genetic algorithm model. After optimizing the operation models, all operation
related parameters are re-calculated and updated. These updated parameters are input
into the MIP model mentioned above, the configuration of this distribution chain is re-
determined, and operation models are re-optimized. This process proceeds until there is
no significant difference between two successive designs. As operation related
parameters are determined after optimizing the operation models, obviously, they are
closer to the exact value than the ones determined by experience in existing
methodologies. This design module turns out following results:

• The configuration of the distribution chain, i.e. the numbers and locations of

wholesalers and retailers, and the assignments of retailers to wholesalers.
• Inventory control policy and parameters at each node.
• And product delivering routes between different nodes, i.e. from distribution

center to wholesalers, and from wholesalers to retailers.

We use performance evaluation to verify the design results. In the performance
evaluation module, to simulate the working and inferring process simultaneously in a
discrete event system, a new Petri net form: combinatorial Petri net is developed by
combining ABL with traditional Petri net. With this newly developed Petri net form,
the distribution chain designed above is modelled, and its performance is evaluated by
running this model. This performance evaluation module outputs main performance
measures for this designed distribution chain. These performance measures can help
the decision makers to assess whether this designed distribution chain is satisfactory. If
not, the decision-makers may re-consider some subjective judgements or re-assess the
objectives set before, and then design the distribution chain again.

Any of these modules can be used individually in practice. For example, the distributor
evaluation module can be applied in distributor selection; the performance evaluation
module can be used to analyze and evaluate the performance of an existing distribution
chain, etc.

All models, algorithms and formulae used in this design methodology have been
implemented by computer applications, and most of them are developed in our
laboratory. This makes it possible to realize automatic distribution chain deign.

URN:NBN:no-3444

Chapter 9

147

9.2 Future Work

Distribution chain design is a large research area. Because of limited time, it is
impossible to solve all problems in one dissertation. In the future, we need to do further
research work in following directions:

• Extend distribution chain design into supply chain design. In this dissertation, to

simplify the problem, we concentrate on the design of distribution chain, and only
consider distribution activities. Actually, some parameters in distribution chain
(such as the lead time, etc.) are tightly related to production process, and
remarkably affected by the supply part. In the future, we need to consider the
design of entire supply chain. In principle, it is possible to extend the methodology
developed here into the one for design of supply chain. Of course, it will not be a
simple extension, as in supply chain, we will face more activities and much more
complex situations.

• Consider other distribution chain forms. In this dissertation, an integrated
methodology is developed to design the basic distribution chain form shown in
Figure 4-1(c). In the future, we need to consider other forms shown in this figure,
and develop methodology to design them. As the basic form is considered in this
dissertation, the methodology developed here will be very helpful in developing
other methodologies.

• Develop commercialized computer application for distribution chain design. At
present, although all models, algorithms and formulae are implemented by
computer applications, they are only separate islands. In the future, we will
integrate them to form a commercialized computer application for the design of
distribution chain. As most of the applications in this dissertation are developed in
MATLAB environment, this is not a tough work.

URN:NBN:no-3444

Conclusion and Future Work

148

URN:NBN:no-3444

Publications

149

PUBLICATIONS

[1] Hongze Ma, Ziqiong Deng, Wei Deng Solvang, “Optimization of distribution chain
structure with considering market share”, International Conference of
Computational Engineering in Systems Application (cesa2003).

[2] Hongze Ma and Ziqiong Deng, (2002), “Architecture of methodology for
distribution chain design”, Proceedings of International Conference on e-Business
(ICEB2002).

[3] Hongze Ma, Bjorn Solvang, and Ziqiong Deng, (2000), “Realizing efficient and
user-friendly simulation for material flow in shop floor”, Proceedings of WCC
(World Computer Conference) 2000.

[4] Hongze Ma, Ziqiong Deng and Wei Deng Solvang, “An on-line approach for

distributor benchmarking”, accepted for publication in Benchmarking – An
International Journal.

[5] Hongze Ma and Ziqiong Deng, “An intelligent Petri net approach for performance

evaluation of distribution chain”, submitted for publication in Petri net Newsletter.
[6] Hongze Ma and Ziqiong Deng, “An integrated approach for the design of

distribution chain”, submitted for publication in International Journal of Physical
Distribution & Logistic Management.

URN:NBN:no-3444

Publications

150

URN:NBN:no-3444

References

151

REFERENCES
Alfieri, A., Brandimarte, P. (1997), “Object-oriented modelling and simulation of integrated
production/distribution systems”, Computer Integrated Manufacturing Systems, Vol. 10, No. 4.

Anthony, D., Ross, A., (2000), “Two-phased approach to the supply network reconfiguration
problem”, European Journal of Operational Research 122.

Arntzen, B.C., Brown, G.G., (1995), “Global supply chain management at digital equipment
corporation”, Institute for Operation Research and the Management Sciences.

Aronsson, H., (2000), Three perspectives on supply chain design, Dissertation of Linkoping
Institute of Technology, No. 44.

Asbjornsen, O.A., (1992), System engineering—Principles and practices, Marland, System
Knowledge Application to Real-time Process Operating Deficiency Diagnosis.

Ballou, R.H., (1992), Business logistics management, 3rd ed., Prentice-Hall, Englewood Cliffs,
NJ.

Baunach, B., Mercer, A., Napp, A., (1995), “Sales effects on depot locations”, European
Journal of Operational Research 81, 474—478.

Beamon, B.M., (1999), “Measuring supply chain performance”, International Journal of
Operation & Production Management, Volume 19, No. 3

Berman, O., Larson, R.C., (2001), “Deliveries in an inventory/routing problem using stochastic
dynamic programming”, Transportation Science, Vol. 35, No. 2, May.

Berry, L.M., Murtagh, B.A., Welling, .L.D., (1998), “Generic algorithms in the design of
complex distribution networks”, International Journal of Physical Distribution & Logistics
Management, Volume 28, No.5.

Brown, G.G., Grave, G.W., and Honczarenko, W.D., (1987), “Design and operation of a
multicommodity production/distribution system using primal goal decomposition”,
Management Science, 33/11, 1469—1480.

Carter, C.R., Jennings, M.M., (2002), “Social responsibility and supply chain relationships”,
Transportation Research Part E-logistics and Transportation Review, 38 (1): 37-52.

Cavusgil, S. T., Yeoh, P. L., (1995), “Selecting foreign distributors, an expert systems
approach”, Industrial Marketing Management 24.

Chandra, P., (1993), “A dynamic distribution model with warehouse and customer
replenishment requirements”, Journal of Operation Research Society Vol. 44, No. 7.

Chao, M.I., (2002), “A tabu search method for the truck and trailer routing problem”,
Computers & Operations Research 29, 33-51.

Chen, R., Gen, M., (1996), “Fuzzy vehicle routing and scheduling problem using genetic
algorithms”, Genetic Algorithms and Soft Computing, Spriger, Berline, 683-709.

URN:NBN:no-3444

References

152

Chen, M., Wang, W., (1997), “A linear programming model for integrated steel production and
distribution planning”, International Journal of Operations & Production Management, Vol. 17,
No. 6.

Chen, X., Wan, W., Xu, X., (1998), “Modeling rolling batch planning as vehicle routing
problem with time windows”, Computers and Operations Research 25 (12), 1127-1136

Chick, S.E., Olsen, T.L., Sethuraman, K., Stecke, K.E., “A descriptive multi-attribute model for
reconfigurable machining system selection examing buyer-supplier relationships”, International
Journal of Agile Management Systems, 2/1, 33-48.

Christofides, N., (1985), “Vehicle routing, the traveling salesman problem”, John Wiley & Sons
Ltd., NewYork, 431-448.

Cohen, M.A., and Lee, H.L., (1985), Manufacturing strategy: concepts and methods, The
Management of Productivity and Technology in Manufacturing, Plenum, New York.

Cohen, M.A., and Lee, H.L., (1989), “Resource deployment analysis of global manufacturing
and distribution networks”, Journal of Manufacturing Operations Management 2, 81—104.

Cohen, M.A., and Moon, S., (1991), “An integrated plant loading model economies of scale and
scope”, European Journal of Operational Research 50, 266—279.

Cole. M.H., (1995), Service considerations and the design of strategic distribution systems,
Ph.D Thesis, School of Industrial and Systems Engineering, Georgia Institute of Technology,
Atlanta, GA.

Dasgupta, P., Narasimhan, N., Moser, L.E., Melliar-Smith, P.M., (1999), “MAgNET: Mobile
agents for networked electronic trading”, IEEE Transactions on Knowledge and Data
Engineering, Vol. 11, No. 4, July/August.

Davidrajuh, R., (2001), Automating supplier selection procedures, Ph.D. Dissertation,
Norwegian University of Science and Technology.

Dempster, M., Pedron, N. H., (2000) , “Planning logistics operations in the oil industry”,
Journal of the Operational Research Society.

Demuth, H., Beale, M., (2001), User’s guide for MATLAB, Neural Network Toolbox.

Diks, E.B., Kok, A.G., (1998), “Optimal control of a divergent multi-echelon inventory
system”, European Journal of Operational Research.

Dogan, K., Goetschalckx, M., (1999), “A primal decomposition method for the integrated
design of multi-period production-distribution systems”, HE Transactions.

Escudero, L. F., Galindo, E., Garcia, G., (1999), ”Schumann, a modeling framework for supply
chain management under uncertainty”, European Journal of Operational Research 119, 14—34.

Fisher, M. L., (1994), “Vehicle routing, Optimal solution of Vehicle Routing Problems using
minimum K-Tress”, Operations Research 42: 626—642.

URN:NBN:no-3444

References

153

Franksen, O. I. (1979), Group representation of finite polyvalent logic—a case study using APL
notation , In Niemi, A. (ed.): A link between science and application of automatic control,
Pergamon Press, Oxford and New York.

Gabbert, P., Brown, D., Huntley, C., (1991), “A system for learning routes and schedules with
genetic algorithms”, Proceedings of Fourth International Conference on Genetic Algorithm,
430-436.

Ganeshan, R., (1999), “Managing supply chain inventories: a multiple retailer, one warehouse,
multiple supplier model”, International Journal of Production Economics 59.

Gavirneni, S., et al, (1999), “Value of information in capacitated supply chains”, Management
Science, Vol. 45, No. 1.

Gavirneni, S., (2001), “Benefits of co-operation in a production distribution environment”,
European Journal of Operation Research 130.

Geoffrion A.M., Graves, (1974), “Multicommodity distribution system design by Benders
decomposition”, Management Science, 20/5.

Geotschalckx, M., Cole, M.H., Dogan, K., and Wei, R., (1995), “A generic model for the
strategic design of production-distribution systems”, Version 1.0.

Geunes, J., Amy, Z., (2001), “Impacts of inventory shortage policies on transportation
requirements in two-stage distribution systems”, European Journal of Operational Research
129.

Gjerdrum, J., et al, (2001), “Transfer prices for multi-enterprise supply chain organization”, Ind.
Eng. Chem. Res.

Gjerdrum, J., Shan N., et al, (2001), “A combined optimization and agent-based approach to
supply chain modeling and performance assessment”, Production Planning and Control,
Volume 12, No. 1.

Haimovich, M., et al., (1985), “Bounds and heuristics for Capacitated Routing Problems”,
Mathematics of Operations Research 10:527—542.

Heijden, M.C., (1997), “Supply rationing in multi-echelon divergent systems”, European
Journal of Operational Research.

Heijden, M.C., (1999), “Inventory control in multi-echelon divergent systems with random lead
times”, Springer Verlag.

Heijden, M.C., (2000), “Near-optimal inventory control policies for divergent networks under
fill rate constraints”, International Journal of Production Economics 63, 161-179.

Henk, C. T., Stochastic models, John Wiley & Sons, 1994.

Hoder, J.E., and Dincer, M.C., (1986), “A multi-factor model for international plant location
and financing under uncertainty”, Computers and Operations Research 13/5.

URN:NBN:no-3444

References

154

Hornik, K., Stinchcobe, M., (1989), “Multilayer feedforward networks are universal
approximators”, Neural Networks, 4, 251-257.

Houshyar, A., Lyth, D., (1992), “A systematic supplier selection procedure”, Computers and
Industrial Engineering, Vol. 23, No 1-4, 173-176.

Huff, D., (1964), “Defining and estimating a trading area”, Journal of Marketing, 28, 34-38.

Lakhal, S., Martel, A., (2001), ”On the optimization of supply chain networking decision”,
European Journal of Operational Research 129, 259—270.

Lau, K., Kagan, A., Post, G., (1997), “Marketing share modeling within a switching regression
framework”, Omega Int. J. Mgmt. Sci. Vol. 25, No. 3, pp. 345-353.

Lee, YH, Kim, SH, Moon, C., (2002), “Production-distribution planning in supply chain using a
hybrid approach”, Production Planning and Control, 13 (1): 35-46.

Lefteri, H.T., Robert, E.U., (1997), Fuzzy and neural application in engineering, John Wiley &
Sons, Inc.

Jain, A. K., Mahajan, V., (1979), “Evaluating the competitive environment in retailing using
multiplicative competitive interactive models”, Research in Marketing, Greenwich, CT: JAI
Press.

Jayaraman,V., (1998), “An efficient heuristic procedure for practical-sized capacitated
warehouse design and management”, Decision Sciences, Vol. 29, No. 3.

Jayaraman, V., Pirkul, H., (2001), “Planning and coordination of production and distribution
facilities for multiple commodities”, European Journal of Operational Research 133, 394-408.

Jayashankar, M. S., (1998), “Modelling supply chain dynamics: a multi-agent approach”,
Decision Science, Volume 29, No. 3.

Jensen, K., (1992), Coloured Petri net: basic concepts, analysis methods and practical use, Vol.
1, Springer-Verlag.

Johnson, M.E., Davis, T., Lee, H.L., (1996), “Robustness of order reliability models with
applications to order aging”, International Journal of Production Research, 34 (12).

Korpela, J., Lehmusvaara, A., (1999), “A customer oriented approach to warehouse network
evaluation and design”, International Journal of Production Economics 59.

Kreyszig, E., (1999), Advanced engineering mathematics, John Wiley & Sons. Inc.

Mamdani, E.H., (1974), “Application of Fuzzy Algorithms for Control of Simple Dynamic
Plants”, Proceedings of IEE, Vol. 121, No. 12.

Mcculloch, W.S., Pitts, W., (1943), “A logical calculus of ideas immanent in nervous activity”,
Bulletin of Mathematical Biophysics, Vol. 5.

URN:NBN:no-3444

References

155

Miltenbueg, J., (1996), “Managing and reducing total cycle time: models and analysis”,
International Journal of Production Economics, 46-47 (1996) 89-108.

Min, H., Melachrinoudis, E., (1999), “The relocation of a hybrid manufacturing/distribution
facility from supply chain perspectives: a case study, Omega. Int. J Mamt. Sci. 27.

Min, S., Mentzer, J.T., (2000), “The role of marketing in supply chain management”,
International Journal of Physical Distribution & Logistics Management 30, no. 9: 765-787.

Mintzberg, H., Raisinghani, D. & Theoret, A., “The structure of unstructured decision
processes”, Administrative Science Quarterly, Vol. 21, June, 246—275, 1976.

MirHassani, S.A., et al, (2000), “Computational solution of capacity planning models under
uncertainty”, Parallel Computing 26.

Mobråten, B., (1996), Performance measurement of logistics processes, Norwegian University
of Science and Technology, Trondheim, Norway.

Motwani, J., Youssef, M., Kathawala, Y., Futch, E., (1999), “Supplier selection in developing
countries: a model development”, Integrated Manufacturing Systems, 10/3, 154-161.

Murata, T., (1989), “Petri nets --- properties, analysis, and applications”, Proceedings of the
IEEE, 77, April, pp541-580.

Murthy, I., et al, (2001), “Bicriterion distribution planning for agriculture power fuels”, INFOR,
Vol. 39.

Møller, G. L. (1995), On the technology of Array-Based logic, Ph.D. Dissertation, Technical
university of Denmark.

Nagle, T., (1987), “The strategy and tactics of pricing”, Prentice-Hall, Englewood California.

Nemhauser, G. L., Wolsey, L. A., (1988), Integer and combinatorial optimization, John Wiley
& Sons. Inc.

Noon, C. E., Mitththal, J., (1991), “A TSSP+1 decomposition approach for the capacity
constrained vehicle routing problem”, Working paper, Management Science Group, Univensity
of Tennessee, Knoxville, TN.

Paessens, H., (1988), “The Savings Algorithm for the Vehicle Routing Problem”, European
Journal of Operations Research, 34: 336—344.

Park, Y.B., (2001), “A hybrid genetic algorithm for the vehicle scheduling problem with due
times and time deadlines”, International Journal of Production Economics 73, 175-188.

Patrick, H.W., (1993), Artificial intelligence, Addison-Wesley Publishing Company.

Patterson, D.W., (1996), Artificial neural network – theory and applications, Prentice Hall.

Popken, D.A., (1994), An algorithm for multi-attribute, multi-commodity flow problem with
freight consolidation and inventory costs, Operational Research 42, 274-286.

URN:NBN:no-3444

References

156

Rao, B., (1999), “The Internet and the revolution in distribution: a cross-industry examination”,
Institute for Technology and Enterprise, Polytechnic University, New York, USA.

Ray, E.T., (2001), Learning XML, O’Reilly & Associates, Inc.

Reis, J., et al, (2001), “Locally perceiving hard global constraints in multi-agent scheduling”,
Journal of Intelligent Manufacturing 12.

Reisig, W., (1987), Place/Transition systems: Lecture notes on Computer Science, Vol. 254,
Springer Verlag.

Reuven, Y. R., (1998), Modern simulation and modelling, John Wiley & Sons, Inc. 1998

Robinson, E.P., (1998), “Decision distribution systems to support vendor strategies in supply
chain management”, Decision Sciences, Vol. 29, No. 3.

Saaty TL, (1980), The analytic hierarchy process, New York, NY: McGraw-Hill Book Co.

Sabri, E.H., Beamon, B.M., (2000), “A multi-objective approach to simultaneous strategic and
operational planning in supply chain design”, International Journal of Management Science,
Vol. 28.

Scarpelli, H., et al, (1994), High-level fuzzy Petri net and backward reasoning, Proc. IPMU,
Paris, France, 1275-1280.

Silver, E.A., Peterson, R., (1985), Decision systems for inventory management and production
planning, New York, Wiley.

Singh, M.G., (1996), “Knowledge support for profitable pricing in a competitive environment”,
4th Intl. conference on the Cognitive Foundations of Economics and Management, Paris.

Singh, M.G., Cassaigne, N., (1997), “IT support for the generic tactical decision making
process of pricing in competitive consumer markets”, Proceedings of the OE/IFIP/IEEE
International Conference on Integrated and Sustainable Industrial Production.

Solvang, W.D., (2001), Architecture for supply chain analysis and methodology for quantitative
measurement of supply chain flexibility, Ph.D dissertation of Norwegian University of Science
and Technology.

Swaminathan, J.S., (1998), “Modeling supply chain dynamics: a multi-agent approach”,
Decision Science, Volume 29, No. 3.

Tayur, S., Ganeshan, R., Magazine, M., (1999), Quantitative models for supply chain
management, Kluwer Academic Publishers, Boston/Dordrecht/London.

Themido, I., Arantes, A., Fernandes, A.P.,(2000), “Logistics costs case study----an ABC
approach”, Journal of the Operational Research Society 51, 1148—1157.

Tijms, H.C., (1994), Stochastic Models: An Algorithmic Approach, John Wiley & Sons Ltd.
P51-71.

URN:NBN:no-3444

References

157

Tsoukalas,L.H., Uhrig, R.E., (1997), Fuzzy and Neural Approaches in Engineering, John Wiley
& sons, Inc

Venkatesh, K., et al, (1996), A Petri net approach to investigating push and pull paradigms in
flexible factory automated systems, International Journal of Production Research, Vol.34, No.
3.

Vidal, C. J., Goetschalckx, M., (1997), “Strategic production-distribution models: a critical
review with emphasis on global supply chain models”, European Journal of Operational
Research 98, 1-18.

Vidal, C. J., et al, (2001), “A global supply chain model with transfer pricing and transportation
cost allocation”, European Journal of Operation Research 129.

Viswanadham, N., et al, (1997), “Flexibility in manufacturing enterprise”, Sadhana, Vol. 22.

Viswanathan, S., Mathur, K., (1997), “Integrating routing and inventory decisions in one-
warehouse multi-retailer multi-product distribution systems”, Management Science, Vol. 43,
No. 3.

Wendy, W.Q., James, H.B., Paul, I., (1999), “An integrated inventory-transportation system
with modified periodic policy for multiple products”, European Journal of Operational Research
115, 254-269.

Weng, Z. K., (1999), “The power of coordinated decisions for short-life-cycle products in a
manufacturing and distribution supply chain”, HE transactions.

Wu, B. (1994), Manufacturing systems design and analysis: context and techniques, Second
edition, Chapman & Hall.

Yam, R., Lo, W., (2000), “Enhancement of global competitiveness for Hong Kong/China
manufacturing industries through I-agile virtual enterprising”, Managing Innovative
Manufacturing Conference (MIM2000), Aston Business School, U.K.

Zadeh, L. A., (1965), Fuzzy Sets, Information and Control, Vol. 8.

URN:NBN:no-3444

References

158

URN:NBN:no-3444

Appendix

159

Appendix A Program in Distributor Evaluation Module

A-1 Evaluation of “Inventory maintaining facility”

%A subsystem for the evaluation of inventory facility

%declaring a new fis system

a=newfis('invfacility')

%declaring the first input variable

a=addvar(a, 'input', 'floorSpace', [1000 10000]);

%defining the membership function

a=addmf(a, 'input', 1, 'small', 'gaussmf', [1500 1000]);

a=addmf(a, 'input', 1, 'medium', 'gaussmf', [1500 5500]);

a=addmf(a, 'input', 1, 'large', 'gaussmf', [1500 10000]);

%declaring the second input variable

a=addvar(a, 'input', 'costInv', [5 15]);

%defining the membership function

a=addmf(a, 'input', 2, 'expensive', 'gaussmf', [3 15]);

a=addmf(a, 'input', 2, 'medium', 'gaussmf', [3 10]);

a=addmf(a, 'input', 2, 'cheap', 'gaussmf', [3 5]);

%declaring the third input variable

a=addvar(a, 'input', 'relia', [0 100]);

%defining the membership function

a=addmf(a, 'input', 3, 'unreliable', 'trapmf', [8 10 100 102]);

a=addmf(a, 'input', 3, 'medium', 'trapmf', [2 5 8 11]);

a=addmf(a, 'input', 3, 'ok', 'trapmf', [-5 -2 2 5]);

%declaring the output variable variable

a=addvar(a, 'output', 'invFacility', [0 100]);

%defining the membership function

a=addmf(a, 'output', 1, 'bad', 'gaussmf', [15 0]);

a=addmf(a, 'output', 1, 'eligible', 'gaussmf', [15 50]);

a=addmf(a, 'output', 1, 'excellent', 'gaussmf', [15 100]);

%defining inference rules

ruleList=[...

 1 1 1 1 1 1

 1 1 2 1 1 1

 1 1 3 2 1 1

 1 2 1 2 1 1

 1 2 2 2 1 1

URN:NBN:no-3444

Appendix

160

 1 2 3 2 1 1

 1 3 1 2 1 1

 1 3 2 2 1 1

 1 3 3 2 1 1

 2 1 1 1 1 1

 2 1 2 2 1 1

 2 1 3 2 1 1

 2 2 1 2 1 1

 2 2 2 2 1 1

 2 2 3 2 1 1

 2 3 1 2 1 1

 2 3 2 3 1 1

 2 3 3 3 1 1

 3 1 1 1 1 1

 3 1 2 2 1 1

 3 1 3 2 1 1

 3 2 1 2 1 1

 3 2 2 3 1 1

 3 2 3 3 1 1

 3 3 1 2 1 1

 3 3 2 3 1 1

 3 3 3 3 1 1

];

%add rules to the system

a=addrule(a, ruleList);

% assign input value and evaluating the inventory facility system

invFacilityVal=evalfis([6000 8 5], a)

A-2 Evaluation of “Transportation facility”

%A subsystem for the evaluation of transportation facility

%declaring a new fis system

a=newfis('transFacility')

%declaring the first input variable

a=addvar(a, 'input', 'throughput', [5 100]);

%defining the membership function

a=addmf(a, 'input', 1, 'small', 'gaussmf', [10 5]);

a=addmf(a, 'input', 1, 'medium', 'gaussmf', [10 50]);

a=addmf(a, 'input', 1, 'large', 'gaussmf', [10 100]);

%declaring the second input variable

a=addvar(a, 'input', 'tranCost', [5 150]);

URN:NBN:no-3444

Appendix

161

%defining the membership function

a=addmf(a, 'input', 2, 'expensive', 'gaussmf', [20 150]);

a=addmf(a, 'input', 2, 'average', 'gaussmf', [20 70]);

a=addmf(a, 'input', 2, 'cheap', 'gaussmf', [20 5]);

%declaring the third input variable

a=addvar(a, 'input', 'reliability', [0 100]);

%defining the membership function

a=addmf(a, 'input', 3, 'unreliable', 'trapmf', [8 10 100 102]);

a=addmf(a, 'input', 3, 'medium', 'trapmf', [2 5 8 11]);

a=addmf(a, 'input', 3, 'reliable', 'trapmf', [-5 -2 2 5]);

%declaring the output variable variable

a=addvar(a, 'output', 'transFacility', [0 100]);

%defining the membership function

a=addmf(a, 'output', 1, 'bad', 'gaussmf', [15 0]);

a=addmf(a, 'output', 1, 'eligible', 'gaussmf', [15 50]);

a=addmf(a, 'output', 1, 'excellent', 'gaussmf', [15 100]);

%defining inference rules

ruleList=[...

 1 1 1 1 1 1

 1 1 2 1 1 1

 1 1 3 2 1 1

 1 2 1 2 1 1

 1 2 2 2 1 1

 1 2 3 2 1 1

 1 3 1 2 1 1

 1 3 2 2 1 1

 1 3 3 2 1 1

 2 1 1 1 1 1

 2 1 2 2 1 1

 2 1 3 2 1 1

 2 2 1 2 1 1

 2 2 2 2 1 1

 2 2 3 2 1 1

 2 3 1 2 1 1

 2 3 2 3 1 1

 2 3 3 3 1 1

 3 1 1 1 1 1

 3 1 2 2 1 1

 3 1 3 2 1 1

 3 2 1 2 1 1

 3 2 2 3 1 1

 3 2 3 3 1 1

URN:NBN:no-3444

Appendix

162

 3 3 1 2 1 1

 3 3 2 3 1 1

 3 3 3 3 1 1

];

%add rules to the system

a=addrule(a, ruleList);

%load the fis system

%a=readfis('invfacility')

% assign input value and evaluating the inventory facility system

insTransportationVal=evalfis([90 100 2], a)

A-3 Evaluation of “Human resource”

%A subsystem for the evaluation of human factor

%declaring a new fis system

a=newfis('humanFactor')

%declaring the first input variable

a=addvar(a, 'input', 'noOfEmployee', [50 1000]);

%defining the membership function

a=addmf(a, 'input', 1, 'small', 'gaussmf', [150 50]);

a=addmf(a, 'input', 1, 'large', 'gaussmf', [150 1000]);

a=addmf(a, 'input', 1, 'medium', 'gaussmf', [150 500]);

%declaring the second input variable

a=addvar(a, 'input', 'salary', [1000 5000]);

%defining the membership function

a=addmf(a, 'input', 2, 'high', 'gaussmf', [500 5000]);

a=addmf(a, 'input', 2, 'average', 'gaussmf', [500 3000]);

a=addmf(a, 'input', 2, 'low', 'gaussmf', [500 1000]);

%declaring the third input variable

a=addvar(a, 'input', 'eduState', [0 100]);

%defining the membership function

a=addmf(a, 'input', 3, 'low', 'gaussmf', [20 0]);

a=addmf(a, 'input', 3, 'average', 'gaussmf', [20 50]);

a=addmf(a, 'input', 3, 'high', 'gaussmf', [20 100]);

%declaring the output variable variable

a=addvar(a, 'output', 'transFacility', [0 100]);

%defining the membership function

a=addmf(a, 'output', 1, 'bad', 'gaussmf', [15 0]);

a=addmf(a, 'output', 1, 'eligible', 'gaussmf', [15 50]);

URN:NBN:no-3444

Appendix

163

a=addmf(a, 'output', 1, 'excellent', 'gaussmf', [15 100]);

%defining inference rules

ruleList=[...

 1 1 1 1 1 1

 1 1 2 1 1 1

 1 1 3 2 1 1

 1 2 1 2 1 1

 1 2 2 2 1 1

 1 2 3 2 1 1

 1 3 1 2 1 1

 1 3 2 2 1 1

 1 3 3 2 1 1

 2 1 1 1 1 1

 2 1 2 2 1 1

 2 1 3 2 1 1

 2 2 1 2 1 1

 2 2 2 2 1 1

 2 2 3 2 1 1

 2 3 1 2 1 1

 2 3 2 3 1 1

 2 3 3 3 1 1

 3 1 1 1 1 1

 3 1 2 2 1 1

 3 1 3 2 1 1

 3 2 1 2 1 1

 3 2 2 3 1 1

 3 2 3 3 1 1

 3 3 1 2 1 1

 3 3 2 3 1 1

 3 3 3 3 1 1

];

%add rules to the system

a=addrule(a, ruleList);

%load the fis system

%a=readfis('invfacility')

% assign input value and evaluating the inventory facility system

insTransportationVal=evalfis([500 2000 50], a)

A-4 Evaluation of “Financial factor”

%A subsystem for the evaluation of financial factor

%declaring a new fis system

URN:NBN:no-3444

Appendix

164

a=newfis('financFactor')

%declaring the first input variable

a=addvar(a, 'input', 'finSale', [1 5]);

%defining the membership function

a=addmf(a, 'input', 1, 'small', 'gaussmf', [0.5 1]);

a=addmf(a, 'input', 1, 'medium', 'gaussmf', [0.5 3]);

a=addmf(a, 'input', 1, 'large', 'gaussmf', [0.5 5]);

%declaring the second input variable

a=addvar(a, 'input', 'finAdd', [1 10]);

%defining the membership function

a=addmf(a, 'input', 2, 'small', 'gaussmf', [1 1]);

a=addmf(a, 'input', 2, 'medium', 'gaussmf', [1 5]);

a=addmf(a, 'input', 2, 'large', 'gaussmf', [1 10]);

%declaring the third input variable

a=addvar(a, 'input', 'finAd', [0 5]);

%defining the membership function

a=addmf(a, 'input', 3, 'small', 'gaussmf', [0.5 0]);

a=addmf(a, 'input', 3, 'medium', 'gaussmf', [0.5 2.5]);

a=addmf(a, 'input', 3, 'large', 'gaussmf', [0.5 5]);

%declaring the output variable variable

a=addvar(a, 'output', 'transFacility', [0 100]);

%defining the membership function

a=addmf(a, 'output', 1, 'bad', 'gaussmf', [15 0]);

a=addmf(a, 'output', 1, 'eligible', 'gaussmf', [15 50]);

a=addmf(a, 'output', 1, 'excellent', 'gaussmf', [15 100]);

%defining inference rules

ruleList=[...

 1 1 1 1 1 1

 1 1 2 1 1 1

 1 1 3 2 1 1

 1 2 1 2 1 1

 1 2 2 2 1 1

 1 2 3 2 1 1

 1 3 1 2 1 1

 1 3 2 2 1 1

 1 3 3 2 1 1

 2 1 1 1 1 1

 2 1 2 2 1 1

 2 1 3 2 1 1

 2 2 1 2 1 1

URN:NBN:no-3444

Appendix

165

 2 2 2 2 1 1

 2 2 3 2 1 1

 2 3 1 2 1 1

 2 3 2 3 1 1

 2 3 3 3 1 1

 3 1 1 1 1 1

 3 1 2 2 1 1

 3 1 3 2 1 1

 3 2 1 2 1 1

 3 2 2 3 1 1

 3 2 3 3 1 1

 3 3 1 2 1 1

 3 3 2 3 1 1

 3 3 3 3 1 1

];

%add rules to the system

a=addrule(a, ruleList);

%load the fis system

%a=readfis('invfacility')

% assign input value and evaluating the inventory facility system

insTransportationVal=evalfis([3 5 1], a)

A-5 Evaluation of “Communication system”

%evaluating the communication system

%declaring input variables

communicationCost=element('n', {'high', 'fair', 'low'}, {}, 'Communication Cost');

communicationMethod=element('n', {'telephon', 'fax', 'Internet', 'telephon_fax',

'telephon_Internet', 'fax_Internet', 'telephon_fax_Internet',

'telepnon_fax_Internet_Intranet'}, {}, 'communication Method');

%declaring output variables

commSystem=element('n',{'1', '2', '3', '4', '5'}, {}, 'Communication System');

%assing input value

x11 = assign(communicationCost, {'high'});

x12 = assign(communicationCost, {'fair'});

x13 = assign(communicationCost, {'low'});

x21 = assign(communicationMethod, {'telephon', 'fax'});

x22 = assign(communicationMethod, {'Internet', 'telephon_fax', 'telephon_Internet',

'fax_Internet'});

x23 = assign(communicationMethod, {'telephon_fax_Internet',

'telepnon_fax_Internet_Intranet'});

URN:NBN:no-3444

Appendix

166

%assign output value

y1 = assign(commSystem, {'1'});

y2 = assign(commSystem, {'2'});

y3 = assign(commSystem, {'3'});

y4 = assign(commSystem, {'4'});

y5 = assign(commSystem, {'5'});

%inference rules

y=conjunct(x11, x21);

Premise_1=bimp(y, y1);

y21=conjunct(x11, x22);

y22=conjunct(x12, x21);

y=disjunct(y21, y22);

y=fuse(y);

Premise_2=bimp(y, y2);

y31=conjunct(x11, x23);

y32=conjunct(x12, x22);

y=disjunct(y31, y32);

y=fuse(y);

y33=conjunct(x13, x21);

y=disjunct(y, y33);

y=fuse(y);

Premise_3=bimp(y, y3);

y41=conjunct(x12, x23);

y42=conjunct(x13, x22);

y=disjunct(y41, y42);

y=fuse(y);

Premise_4=bimp(y, y4);

y=conjunct(x13, x23);

Premise_5=bimp(y, y5);

%getting the inference system

Premise_12 = conjunct(Premise_1, Premise_2); % combination of the first two

premises

Premise_12 = fuse(Premise_12); % remove the duplicates

Premise_123 = conjunct(Premise_12, Premise_3); % combination of all three

Premise_123 = fuse(Premise_123);

Premise_1234 = conjunct(Premise_123, Premise_4);

URN:NBN:no-3444

Appendix

167

Premise_1234 = fuse(Premise_1234);

Premise_12345 = conjunct(Premise_1234, Premise_5);

System = fuse(Premise_12345); % remove the duplicates gives the system

%assigning input vector

t2 =assign(communicationMethod, {'telephon_fax_Internet'});

%handle the input variable communication cost

inputCost=150; %input the communication cost value

minCost=20;

setPoint1=100;

setPoint2=200;

maxCost=250;

t1 =assign(communicationCost, {'high'});

if ((inputCost>=minCost) & (inputCost<=setPoint1))

 t1 =assign(communicationCost, {'low'});

elseif ((inputCost>setPoint1) & (inputCost<=setPoint2))

 t1 =assign(communicationCost, {'fair'});

elseif ((inputCost>setPoint2) & (inputCost<=maxCost))

 t1 =assign(communicationCost, {'high'});

end

input_SV = [t1 t2] % put together the individual inputs as an input vector

%get output vector

output_SV = state(input_SV, System) %computing the output state vector

%print(output_SV)

%get output value

for i=1:length(output_SV.array)

 if (output_SV.array(i))

 communicationVal=output_SV.elements.domain{i}

 end

end

%changing the string value into number

communicationVal=str2num(communicationVal)

A-6 Evaluation of “Hardware”

%A subsystem for the evaluation of hardware

%declaring a new fis system

a=newfis('software')

%declaring the first input variable

a=addvar(a, 'input', 'invFacility', [0 100]);

%defining the membership function

a=addmf(a, 'input', 1, 'bad', 'gaussmf', [15 0]);

URN:NBN:no-3444

Appendix

168

a=addmf(a, 'input', 1, 'eligible', 'gaussmf', [15 50]);

a=addmf(a, 'input', 1, 'excellent', 'gaussmf', [15 100]);

%declaring the second input variable

a=addvar(a, 'input', 'transFacility', [0 100]);

%defining the membership function

a=addmf(a, 'input', 2, 'bad', 'gaussmf', [15 0]);

a=addmf(a, 'input', 2, 'eligible', 'gaussmf', [15 50]);

a=addmf(a, 'input', 2, 'excellent', 'gaussmf', [15 100]);

%declaring the third input variable

a=addvar(a, 'input', 'commSystem', [1 5]);

%defining the membership function

a=addmf(a, 'input', 3, 'bad', 'gaussmf', [0.5 1]);

a=addmf(a, 'input', 3, 'eligible', 'gaussmf', [0.5 3]);

a=addmf(a, 'input', 3, 'excellent', 'gaussmf', [0.5 5]);

%declaring the forth input variable

a=addvar(a, 'input', 'humanFactor', [0 100]);

%defining the membership function

a=addmf(a, 'input', 4, 'bad', 'gaussmf', [15 0]);

a=addmf(a, 'input', 4, 'eligible', 'gaussmf', [15 50]);

a=addmf(a, 'input', 4, 'excellent', 'gaussmf', [15 100]);

%declaring the fifth input variable

a=addvar(a, 'input', 'finFactor', [0 100]);

%defining the membership function

a=addmf(a, 'input', 5, 'bad', 'gaussmf', [15 0]);

a=addmf(a, 'input', 5, 'eligible', 'gaussmf', [15 50]);

a=addmf(a, 'input', 5, 'excellent', 'gaussmf', [15 100]);

%declaring the output variable variable

a=addvar(a, 'output', 'transFacility', [0 100]);

%defining the membership function

a=addmf(a, 'output', 1, 'bad', 'gaussmf', [15 0]);

a=addmf(a, 'output', 1, 'eligible', 'gaussmf', [15 50]);

a=addmf(a, 'output', 1, 'excellent', 'gaussmf', [15 100]);

%defining inference rules

ruleList=[...

 1 1 1 1 1 1 1 1

 1 1 2 1 2 1 1 1

 1 1 3 2 2 2 1 1

 1 2 1 2 1 2 1 1

 1 2 2 2 3 2 1 1

URN:NBN:no-3444

Appendix

169

 1 2 3 2 1 2 1 1

 1 3 1 2 1 2 1 1

 1 3 2 1 2 2 1 1

 1 3 3 2 1 2 1 1

 2 1 1 1 1 1 1 1

 2 1 2 2 1 2 1 1

 2 1 3 1 1 2 1 1

 2 2 1 1 2 2 1 1

 2 2 2 2 2 2 1 1

 2 2 3 1 2 2 1 1

 2 3 1 3 1 2 1 1

 2 3 2 3 2 3 1 1

 2 3 3 2 3 3 1 1

 3 1 1 1 2 1 1 1

 3 1 2 3 1 2 1 1

 3 1 3 1 3 2 1 1

 3 2 1 2 1 2 1 1

 3 2 2 3 2 3 1 1

 3 2 3 3 3 3 1 1

 3 3 1 3 1 2 1 1

 3 3 2 3 3 3 1 1

 3 3 3 3 3 3 1 1

];

%add rules to the system

a=addrule(a, ruleList);

%load the fis system

%a=readfis('invfacility')

% assign input value and evaluating the inventory facility system

insTransportationVal=evalfis([60.1 75.1 4 66.7 50], a)

URN:NBN:no-3444

Appendix

170

Appendix B Program in Module of Distribution Chain Design

B-1 Determine inventory control model at a retailer

SS=[140:10:180]; %%Specify the searching range for order up to level

ss=[30:10:70]; %%Specify the searching range for reorder point

LL=zeros(5,5);

LLS=zeros(5,5);

LLs=zeros(5,5);

for k=1:5

 for l=1:5

 N=40; %%number of regenerative processes

 M=200; %%maximum time number of one regenerative cycle

 Dr=0; %%sum of demand during lead time,initial value

 B=10; %%lead time

 S=SS(k); %%order up to level

 s=ss(l); %%reordering point

 Q=S-s;

 S0=SS(3); %base value for S

 s0=ss(3); % base value for s

 Q0=S0-s0; %base value for Q

 Ch=1; %%constant for holding cost

 Cs=10; %%constant for shortage cost

 Corder=1000; %%ordering cost

 uT=1; %%mean of interarrival time

 sT=0.2; %%standard deviation of interarrival time

 uD=5.6; %%mean of demand

 sD=1; %%standard deviation of demand

 T0=randn(N,M); %%generate standard normal distribution matrix

 T=uT+sT*T0; %%generaate interarrival time matrix

 D0=randn(N,M);

 D1=uD+sD*D0;

 D2=zeros(N,1);

 D=[D2 D1]; %%generate demand matrix

 L1=0; %%initial value for the numerator of L

 L2=0; %%initial value for the denominator of L

 L1i=zeros(1,N); %%in one regenerative cycle, initial value for numerator

 L2i=zeros(1,N); %%in one regenerative cycle, initial value for denominator

 W1=ones(N, 1); %%initial value for W1,likelihood ratio for demand

 for i=1:N %%regenerative cycles

 Dr=0; %%initial value for sum of lead time demand

 Tsum=0; %%sum of time passed in one regenerative cycle

 j=1; %%j is customer indicator in one regenerative cycle

 while Tsum<100

URN:NBN:no-3444

Appendix

171

 Lt=S-Dr; % net inventory level after replenishment

 Dr=0; %%sum of demand during lead time

 Tr=0; %%initial value for sum of time after placing order

 ti=0;

 while Tr<B %%before the replenishment order comes

 if Lt>s %%before placing and an order

 Lt=Lt-D(i,j); %%the demand is fulfilled

 cost=Ch*abs(T(i,j))*Lt; %%holding cost between two successive orders

 Tsum=Tsum+abs(T(i,j));

 L1i(1,i)=L1i(1,i)+cost*W1(i); %%numerator for one regenerative cycle

 ti=ti+T(i,j);

 j=j+1; %%next demand

 else %% if Lt>s0, after replacing an order

 Tr=Tr+abs(T(i,j)); %%sum of time after placing an order

 Dr=Dr+D(i,j); %%sum of demands after placing an order

 Lt=Lt-D(i,j);

 if Lt>0

 cost=Ch*abs(T(i,j))*Lt;

 else %%a shortage occurs

 cost=Cs*abs(T(i,j))*abs(Lt);

 end

 L1i(1,i)=L1i(1,i)+cost*W1(i);

 Tsum=Tsum+abs(T(i,j));

 ti=ti+T(i,j);

 j=j+1;

 end %if Lt>s0

 end %while Tr<B

 L1i(1,i)=L1i(1,i)+Corder;

 %L2i(1,i)=1+(ti-1)*W1(i);

 L2i(1,i)=L2i(1,i)+ti;

 end %while Tsum<100

 end %for i=1:N

 L1=sum(L1i');

 L2=sum(L2i');

 L=L1/L2; %%estimator of the performance

 LL(k,l)=L;

 LLS(k,l)=S;

 LLs(k,l)=s;

 end %for l=1:5

end %for k=1:5

surf(SS, ss, LL')

B-2 Planning product delivery routes by genetic algorithm

% generate 4*10 chromosomes

URN:NBN:no-3444

Appendix

172

for i=1:4

 for j=1:10

 chro(i,j).retailer=randperm(15);

 end

end

%order up level for each node

node(1).S=500;

node(2).S=1100;

node(3).S=1800;

node(4).S=1000;

node(5).S=2000;

node(6).S=1600;

node(7).S=1200;

node(8).S=1000;

node(9).S=2000;

node(10).S=2000;

node(11).S=1300;

node(12).S=1100;

node(13).S=2000;

node(14).S=1400;

node(15).S=2200;

%mean of demand for each node

node(1).d=30;

node(2).d=85;

node(3).d=150;

node(4).d=67;

node(5).d=170;

node(6).d=130;

node(7).d=80;

node(8).d=60;

node(9).d=150;

node(10).d=170;

node(11).d=90;

node(12).d=80;

node(13).d=110;

node(14).d=130;

node(15).d=150;

%standard deviation for each node

node(1).sigma=3;

URN:NBN:no-3444

Appendix

173

node(2).sigma=9;

node(3).sigma=10;

node(4).sigma=8;

node(5).sigma=17;

node(6).sigma=14;

node(7).sigma=8;

node(8).sigma=6;

node(9).sigma=15;

node(10).sigma=17;

node(11).sigma=9;

node(12).sigma=8;

node(13).sigma=11;

node(14).sigma=13;

node(15).sigma=15;

%location for each node

node(1).loc=[30,20];

node(2).loc=[40,20];

node(3).loc=[50,10];

node(4).loc=[70,80];

node(5).loc=[40,50];

node(6).loc=[80,100];

node(7).loc=[20,30];

node(8).loc=[80,10];

node(9).loc=[20,50];

node(10).loc=[30,70];

node(11).loc=[70,20];

node(12).loc=[20,10];

node(13).loc=[50,20];

node(14).loc=[30,80];

node(15).loc=[20,100];

%s: reorder point, Q: order quantity, T: inter-service time,

%alpha: unit cost for earluness, belta: unit cost for lateness,

%gama: penalty for back order, safety factor n=3, lead time L=1.

n=3; L=1;

for i=1:15

 node(i).s=n*node(i).sigma+L*node(i).d;

 node(i).Q=node(i).S-node(i).s;

 node(i).T=node(i).Q/node(i).d;

 node(i).alpha=1;

 node(i).belta=0.5;

 node(i).gama=10;

URN:NBN:no-3444

Appendix

174

 node(i).safe=3;

end

Cveh=4500; %capacity of the vehicles: 4500

for i=1:15

 for j=1:15

 dis(i,j)=(node(i).loc(1)-node(j).loc(1))^2+(node(i).loc(2)-node(j).loc(2))^2;

 end

end

%initialize routes for each chromosome

for i=1:4

 for j=1:10

 chro(i,j).routes=[];

 Chro=chro(i,j).retailer;

 chro(i,j).vehicle=zeros(1,15);

 k=0;

 while (~isempty(Chro))

 k=k+1;

 route(i,j,k).ret=[Chro(1)]; %first node in the new route

 route(i,j,k).nofret=1; %calculate the number of nodes in one route

 route(i,j,k).vehicle=k; %vehicle number for the route

 chro(i,j).routes=[chro(i,j).routes k];

 Reta=Chro(1); %the node to be added into a route

 chro(i,j).vehicle(Reta)=k; %assign vehicle number to the corresponding

node position

 route(i,j,k).T=node(Reta).T; %calculate the inter-service time for one route

 route(i,j,k).Cleft=Cveh-node(Reta).Q; %left capacity for a route

 Chro(1)=[]; %delete the node from original chromosome

 if (isempty(Chro))

 break

 end

 while (route(i,j,k).Cleft>=0) %check if there is more vehicle capacity

 Dis=[];

 for n=1:length(Chro)

 Dis=[Dis dis(Reta, Chro(n))];

 end

 [Y I]=min(Dis); %find the shortest distance, and indexed as I

 Reta=Chro(I); %Ith node is the one to be assigned into the present

route

 if (route(i,j,k).Cleft>=node(Reta).Q) %if the left capacity is enough for this

node

 route(i,j,k).ret=[route(i,j,k).ret Chro(I)]; %adding this node into the route

URN:NBN:no-3444

Appendix

175

 chro(i,j).vehicle(Reta)=k;

 route(i,j,k).nofret=route(i,j,k).nofret+1;

 route(i,j,k).T=route(i,j,k).T+node(Reta).T;

 Chro(I)=[]; %delete the node from original chromosome

 end

 route(i,j,k).Cleft=route(i,j,k).Cleft-node(Reta).Q; %left capacity for the route

 if (isempty(Chro)) %if there is no more nodes, just end this chromosome

routing

 break

 end

 end %while (route(i,j,k).Cleft>=0)

 if (route(i,j,k).Cleft<0) %if the left capacity is negative, add the last Q to it

 route(i,j,k).Cleft=route(i,j,k).Cleft+node(Reta).Q;

 end

 route(i,j,k).T=route(i,j,k).T/route(i,j,k).nofret;

 end %while (~isempty(Chro))

 chro(i,j).nofroute=k;

 end %for j=1:10

end %for i=1:4

%begin to calculate performances for one route

for i=1:4

 totalCost(i,1)=0;

 for j=1:10

 %chro(i,j).fitness=0;

 chro(i,j).distanceCost=0;

 chro(i,j).timeCost=0;

 for k=1:chro(i,j).nofroute %for each route in one chromosome

 route(i,j,k).L=1;

%begin to calculate distance related cost

 route(i,j,k).travelD=0; %travelD: traveling distance for one route

 route(i,j,k).serviceD=0; %serviceD: service traveling distance for one route

 route(i,j,k).sequence=[]; %sequence: serving squence of nodes in one route

 Ret=route(i,j,k).ret; %Ret: indicate the nodes in one route

 Dis=[];

 for n=1:length(Ret)

 Dist=(node(Ret(n)).loc(1))^2+(node(Ret(n)).loc(2))^2;

 Dis=[Dis Dist];

 end

 [Y I]=min(Dis); %find the closest node to warehouse

 Reta=Ret(I);

URN:NBN:no-3444

Appendix

176

 route(i,j,k).sequence=[route(i,j,k).sequence Reta]; %first node to be served

 Ret(I)=[]; %delete this node from the array of nodes in one route

 route(i,j,k).travelD=route(i,j,k).travelD+Y^(1/2);

 while (~isempty(Ret))

 Dis=[];

 for n=1:length(Ret)

 Dis=[Dis dis(Reta, Ret(n))];

 end

 [Y I]=min(Dis); %find the closest one

 Reta=Ret(I); %this node is saved in Reta temporarily

 route(i,j,k).sequence=[route(i,j,k).sequence Reta];

 Ret(I)=[]; %delete this node

 route(i,j,k).travelD=route(i,j,k).travelD+Y^(1/2);

 route(i,j,k).serviceD=route(i,j,k).serviceD+Y^(1/2);

 end

 route(i,j,k).lastR=Reta; %the last node to be served in one route

 Dist=(node(Reta).loc(1))^2+(node(Reta).loc(2))^2;

 route(i,j,k).travelD=route(i,j,k).travelD+Dist^(1/2);

 chro(i,j).distanceCost=chro(i,j).distanceCost+route(i,j,k).travelD;

 %begin to calculate the time related cost

 route(i,j,k).timeCost=0;

 Ret=route(i,j,k).ret; %Ret: indicate the nodes in one route

 for m=1:length(Ret)

 earCost=earlyCost(node(Ret(m)).alpha, node(Ret(m)).S, route(i,j,k).T,

route(i,j,k).L, node(Ret(m)).d, node(Ret(m)).sigma,

node(Ret(m)).safe, 10); %calculate early cost for one node

 [lCost penalty laCost]=lateCost(node(Ret(m)).belta, node(Ret(m)).gama,

node(Ret(m)).S, route(i,j,k).T, route(i,j,k).L,

node(Ret(m)).d, node(Ret(m)).sigma,

node(Ret(m)).safe, 10); %calculate late cost for one

node

 tCost=earCost+laCost; %calculate total time cost for one node

 route(i,j,k).timeCost=route(i,j,k).timeCost+tCost;

 end

 chro(i,j).timeCost=chro(i,j).timeCost+route(i,j,k).timeCost;

 end

chro(i,j).fitness=chro(i,j).timeCost+5*chro(i,j).distanceCost+2000*chro(i,j).nofro

ute; totalCost(i,1)=totalCost(i,1)+chro(i,j).fitness;

 end

end

%next generation begins here

for generation=2:20

URN:NBN:no-3444

Appendix

177

for i=1:4

 for j=1:10

 %begin to excecute time related mutation

 TCost=[];

 for k=1:chro(i,j).nofroute

 TCost=[TCost route(i,j,chro(i,j).routes(k)).timeCost];

 end

 [max delRouteI]=max(TCost); %find the largest time related cost route

 Ret=route(i,j,chro(i,j).routes(delRouteI)).ret; %node array of this route

 timeDiff=[];

 for m=1:length(Ret)

 timeD=(node(Ret(m)).T-route(i,j,chro(i,j).routes(delRouteI)).T)^2;

 timeDiff=[timeDiff timeD];

 end

 [timeMax nodeI]=max(timeDiff); %find the node with largest time difference

 oriRoute=route(i,j,chro(i,j).routes(delRouteI));

 TimeDelRoute=deleteNode(oriRoute, nodeI);

 for k=1:chro(i,j).nofroute

 timeRoute(i,j,chro(i,j).routes(k))=route(i,j,chro(i,j).routes(k));

 end

 timeRoute(i,j,chro(i,j).routes(delRouteI))=TimeDelRoute; %the mutated route

 Ret=route(i,j,chro(i,j).routes(delRouteI)).ret;

 delNode=node(Ret(nodeI)); %get the node to be deleted

 Routes=chro(i,j).routes;

 while (~isempty(Routes)) %try to add this node to another route

 timeDif=[];

 for k=1:length(Routes)

 timeDi=(delNode.T-timeRoute(i,j,Routes(k)).T)^2;

 timeDif=[timeDif timeDi];

 end

 [min addRouteI]=min(timeDif); %find the route with minimum time difference

 if delNode.Q<=timeRoute(i,j,Routes(addRouteI)).Cleft %if the capacity is

enough

 oriRoute=timeRoute(i,j,Routes(addRouteI));

 timeRoute(i,j,Routes(addRouteI))=addNode(oriRoute, Ret(nodeI));

 break

 else

 Routes(addRouteI)=[];

 end

 end

 %begin to execute the distance related mutation

 SerD=[];

 for k=1:chro(i,j).nofroute

URN:NBN:no-3444

Appendix

178

 SerD=[SerD timeRoute(i,j,chro(i,j).routes(k)).serviceD];

 end

 [maxSD delRouteI]=max(SerD); %find the route with largest service travel

distance

 oriRoute=timeRoute(i,j,chro(i,j).routes(delRouteI)); %the route to be mutated

 nodeInd=oriRoute.lastR; %the node to be deleted

 for m=1:length(oriRoute.ret)

 if nodeInd==oriRoute.ret(m)

 nodeI=m; %get the index of the node to be deleted

 break

 end

 end

 DistDelRoute=deleteNode(oriRoute, nodeI); %delete this node

 for k=1:chro(i,j).nofroute

 distRoute(i,j,chro(i,j).routes(k))=timeRoute(i,j,chro(i,j).routes(k));

 end

 distRoute(i,j,chro(i,j).routes(delRouteI))=DistDelRoute;

 Routes=chro(i,j).routes;

 while (~isempty(Routes)) %search where to add the deleted node

 averDist=[];

 for m=1:length(Routes) %find the route closest to this node

 nRDist=0;

 Ret=distRoute(i,j,Routes(m)).ret;

 for n=1:length(Ret)

 nRDist=nRDist+dis(nodeInd, Ret(n));

 end

 nRDist=nRDist/length(Ret);

 averDist=[averDist nRDist];

 end

 [minDist addRouteI]=min(averDist); %find the closest route

 if node(nodeInd).Q<=distRoute(i,j,Routes(addRouteI)).Cleft

 oriRoute=distRoute(i,j,Routes(addRouteI));

 distRoute(i,j,Routes(addRouteI))=addNode(oriRoute, nodeInd);

 break

 else

 Routes(addRouteI)=[]; %otherwise, delete this route, and continue to search

 end

 end

 %begin the merge mutation

 capaLeft=[];

 for k=1:chro(i,j).nofroute

 capaLeft=[capaLeft distRoute(i,j,chro(i,j).routes(k)).Cleft]; %array for left

capacity

URN:NBN:no-3444

Appendix

179

 end

 [max delRouteI]=max(capaLeft); %find the route with largest left capacity

 Routes=chro(i,j).routes;

 Routes(delRouteI)=[];

 capaLeft(delRouteI)=[];

 Ret=distRoute(i,j,chro(i,j).routes(delRouteI)).ret;

 oriRoutes=[];

 nodeInds=[];

 while ~isempty(Ret)

 find=0;

 for k=1:length(capaLeft)

 if node(Ret(1)).Q<=capaLeft(k) %find the route with enough capacity

 capaLeft(k)=capaLeft(k)-node(Ret(1)).Q;

 oriRoutes=[oriRoutes Routes(k)]; %remember the route

 nodeInds=[nodeInds Ret(1)]; %remember the node

 find=1;

 break

 end

 end

 if find==0

 break

 end

 Ret(1)=[]; %delete this node, continue to test next node

 end

 if length(oriRoutes)==length(distRoute(i,j,chro(i,j).routes(delRouteI)).ret)

 for k=1:length(oriRoutes)

 tranRoute=addNode(distRoute(i,j,oriRoutes(k)), nodeInds(k));

 distRoute(i,j,oriRoutes(k))=tranRoute; %add this node to the route

 end

 mutChro(i,j).routes=chro(i,j).routes;

 mutChro(i,j).routes(delRouteI)=[];

 mutChro(i,j).nofroute=chro(i,j).nofroute-1;

 else

 mutChro(i,j).routes=chro(i,j).routes;

 mutChro(i,j).nofroute=chro(i,j).nofroute;

 end

 end

end

for i=1:4

 totalCost(i,generation)=0

 for j=1:10

 mutChro(i,j).distanceCost=0;

 mutChro(i,j).timeCost=0;

 mutChro(i,j).fitness=0;

URN:NBN:no-3444

Appendix

180

 for k=1:mutChro(i,j).nofroute

mutChro(i,j).distanceCost=mutChro(i,j).distanceCost+distRoute(i,j,mutChro(i,j)

.routes(k)).travelD;

mutChro(i,j).timeCost=mutChro(i,j).timeCost+distRoute(i,j,mutChro(i,j).routes(

k)).timeCost;

 end

mutChro(i,j).fitness=mutChro(i,j).timeCost+5*mutChro(i,j).distanceCost+2000*mu

tChro(i,j).nofroute;

 totalCost(i,generation)=totalCost(i,generation)+mutChro(i,j).fitness;

 end

end

for i=1:4

 for j=1:10

 newChro(i,j).routes=chro(i,j).routes;

 newChro(i,j).nofroute=chro(i,j).nofroute;

 newChro(i,j).distanceCost=chro(i,j).distanceCost;

 newChro(i,j).timeCost=chro(i,j).timeCost;

 newChro(i,j).fitness=chro(i,j).fitness;

 end

end

for i=1:4

 chroPoolFit=[];

 chroPool=[];

 for j=1:10

 chroPoolFit=[chroPoolFit newChro(i,j).fitness];

 chroPool=[chroPool newChro(i,j)];

 for k=1:newChro(i,j).nofroute

 poolRoutes((2*j-1),k)=route(i,j,newChro(i,j).routes(k));

 end

 chroPoolFit=[chroPoolFit mutChro(i,j).fitness];

 chroPool=[chroPool mutChro(i,j)];

 for k=1:mutChro(i,j).nofroute

 poolRoutes((2*j),k)=distRoute(i,j,mutChro(i,j).routes(k));

 end

 end

 for m=1:10

 [maxCost I]=max(chroPoolFit);

 chroPoolFit(I)=[];

 chroPool(I)=[];

 poolRoutes(I,:)=[];

URN:NBN:no-3444

Appendix

181

 end

 for j=1:10

 chro(i,j).routes=chroPool(j).routes;

 chro(i,j).nofroute=chroPool(j).nofroute;

 chro(i,j).distanceCost=chroPool(j).distanceCost;

 chro(i,j).timeCost=chroPool(j).timeCost;

 chro(i,j).fitness=chroPool(j).fitness;

 for k=1:chro(i,j).nofroute

 route(i,j,k)=poolRoutes(j,k);

 end

 end

end

end %for generation

x=1:15;

y=totalCost(4, x);

plot(x,y)

URN:NBN:no-3444

Appendix

182

Appendix C Main Functions in the Application of Combinatorial
Petri Net Model

function petriNet=initialization(placeSize, transitionSize)

%initialization for a Petri net

petriNet.clock=0;

petriNet.incidenceMatrix=zeros(transitionSize, 2*placeSize);

petriNet.maxTime=100;

petriNet.placeSize=placeSize;

petriNet.transitionSize=transitionSize;

petriNet.eventQueue=[];

petriNet.randArray=randn(1, 1000);

function [ele, petriNet]=node(type, n, init, PN)

%Define an element for a Petri net model

petriNet=PN;

switch type

 case 'place'

 ele=init;

 case 'transition'

 ele=init;

 for i=1:length(ele.inputPlaces)

 petriNet.incidenceMatrix(n, ele.inputPlaces(i))=1;

 end

 for i=1:length(ele.outputPlaces)

 petriNet.incidenceMatrix(n, (petriNet.placeSize+ele.outputPlaces(i)))=1;

 end

 otherwise

 error('invalide element')

end

function [places, petriNet]=enabling(P, T, PN)

%checking enabling transitions, and put them into event queue.

petriNet=PN;

places=P;

TRUE=1; FALSE=0;

for i=1:petriNet.transitionSize

 T(i).enabled=FALSE;

 T(i).tokenEnabled=TRUE;

 if length(T(i).inputPlaces)==0

 if T(i).abl(1)==1

 T(i).enabled=TRUE;

URN:NBN:no-3444

Appendix

183

 end

 else %if length(T(i).inputPlaces)==0

 for j=1:length(T(i).inputPlaces)

 if isempty(P(T(i).inputPlaces(j)).index)

 T(i).tokenEnabled=FALSE;

 break

 end

 end %for k=1:length(T(i).inputPlaces)

 if T(i).tokenEnabled==TRUE

 if T(i).abl(1)==1

 T(i).enabled=TRUE;

 else %if T(i).abl(1)==1

 m=i;

 T(i).abl(2)=ABL(P, T, m)

 if T(i).abl(2)~=0

 T(i).enabled=TRUE;

 end

 end %if T(i).abl(1)==1

 end %if T(i).tokenEnabled==TRUE

 end %if length(T(i).inputPlaces)==0

 if T(i).enabled==TRUE

 if length(T(i).delay)==3

 Delay=T(i).delay(1)+T(i).delay(2)*petriNet.randArray(T(i).delay(3));

 T(i).delay(3)=T(i).delay(3)+1;

 else

 Delay=T(i).delay(1);

 end

 T(i).fireTime=petriNet.clock+Delay;

 PN=petriNet;

 petriNet.eventQueue=add_event(T(i), PN.eventQueue);

 for j=1:length(T(i).inputPlaces)

 t=i;

 p=T(i).inputPlaces(j);

 PN=petriNet;

 places=arc_expressions(t, p, P, PN);

 P=places;

 end

 end %if T(i).enabled==TRUE

end %for i=1:petriNet.transitionSize

function eventQueue=add_event(event, EQ)

%add an event into the event queue

if isempty(EQ)

 eventQueue=[event];

URN:NBN:no-3444

Appendix

184

else

 skip=0;

 if event.fireTime<=EQ(1).fireTime

 eventQueue=[event EQ];

 else

 for j=2:length(EQ)

 if event.fireTime<=EQ(j).fireTime

 eventQueue=[EQ(1:(j-1)) event EQ(j:length(EQ))]

 skip=1;

 break

 end

 end

 if skip==0

 eventQueue=[EQ event];

 end

 end

end

function [places, petriNet]=firing(P, T, PN)

%fire all events with zero delay and one event with non-zero delay

petriNet=PN;

places=P;

delete=0;

if ~isempty(petriNet.eventQueue)

 for i=1:length(petriNet.eventQueue)

 %transition=petriNet.eventQueue(i);

 t=petriNet.eventQueue(i-delete).number

 for j=1:length(petriNet.eventQueue(i-delete).outputPlaces)

 p=petriNet.eventQueue(i-delete).outputPlaces(j);

 places=arc_expressions(t, p, P, PN);

 P=places;

 end

 petriNet.clock=petriNet.eventQueue(i-delete).fireTime;

 Delay=petriNet.eventQueue(i-delete).delay;

 petriNet.eventQueue(i-delete)=[];

 delete=delete+1;

 if Delay>0

 break

 end

 end

end

URN:NBN:no-3444

Appendix

185

Appendix D Program in Determining the Configuration of a
Distribution Chain

max

272u1+383u2+380u3+509u4+484u5+918u6+528u7+578u8+852u9+688u10+331u11+

512u12+403u13+725u14+713u15+725u16+872u17+470u18+397u19+524u20-41w11-

26w12-17w13-25w14-12w15-31w16-5w17-26w18-48w19-140w110-50w111-66w112-

48w113-67w114-57w115-90w116-57w117-36w118-42w119-58w120-53w21-57w22-

55w23-61w24-74w25-61w26-58w27-45w28-119w29-74w210-43w211-47w212-

38w213-37w214-33w215-15w216-30w217-21w218-15w219-34w31-57w32-62w33-

72w34-94w35-110w36-84w37-89w38-168w39-135w310-14w311-13w312-24w313-

37w314-65w315-74w316-97w317-66w318-62w319-58w320-810v1-890v2-980v3-

336v1-370v2-437v3-500

ST

-0.035u1-0.044u2-0.039u3-0.059u4-0.063u5-0.079u6-0.05u7-0.055u8-0.074u9-

0.065u10-0.036u11-0.048u12-0.044u13-0.06u14-0.069u15-0.077u16-0.074u17-

0.044u18-0.042u19-0.051u20>-0.8

68u1+85u2+76u3+113u4+121u5+153u6+96u7+105u8+142u9+125u10+69u11+93u12

+84u13+115u14+132u15+148u16+143u17+84u18+81u19+97u20>1000

-0.068w11-0.085w12-0.076w13-0.113w14-0.121w15-0.153w16-0.096w17-0.105w18-

0.142w19-0.125w110-0.069w111-0.093w112-0.084w113-0.115w114-0.132w115-

0.148w116-0.143w117-0.084w118-0.081w119-0.097w120>-0.8

-0.062w21-0.077w22-0.069w23-0.103w24-0.11w25-0.139w26-0.087w27-0.095w28-

0.129w29-0.114w210-0.063w211-0.085w212-0.076w213-0.105w214-0.12w215-

0.135w216-0.13w217-0.076w218-0.074w219-0.088w220>-0.8

-0.052w31-0.065w32-0.058w33-0.087w34-0.093w35-0.118w36-0.074w37-0.081w38-

0.109w39-0.096w310-0.053w311-0.072w312-0.065w313-0.088w314-0.102w315-

0.114w316-0.11w317-0.065w318-0.062w319-0.075w320>-0.8

68w11+85w12+76w13+113w14+121w15+153w16+96w17+105w18+142w19+

125w110+69w111+93w112+84w113+115w114+132w115+148w116+143w117+84w11

8+81w119+97w120>500

68w21+85w22+76w23+113w24+121w25+153w26+96w27+105w28+142w29+125w21

0+69w211+93w212+84w213+115w214+132w215+148w216+143w217+84w218+81w2

19+97w220>500

68w31+85w32+76w33+113w34+121w35+153w36+96w37+105w38+142w39+125w31

0+69w311+93w312+84w313+115w314+132w315+148w316+143w317+84w318+81w3

19+97w320>500

URN:NBN:no-3444

Appendix

186

w11+w21+w31=1

w12+w22+w32=1

w13+w23+w33=1

w14+w24+w34=1

w15+w25+w35=1

w16+w26+w36=1

w17+w27+w37=1

w18+w28+w38=1

w19+w29+w39=1

w110+w210+w310=1

w111+w211+w311=1

w112+w212+w312=1

w113+w213+w313=1

w114+w214+w314=1

w115+w215+w315=1

w116+w216+w316=1

w117+w217+w317=1

w118+w218+w318=1

w119+w219+w319=1

w120+w220+w320=1

end

int u1

int u2

int u3

int u4

int u5

int u6

int u7

int u8

int u9

int u10

int u11

int u12

int u13

int u14

int u15

int u16

int u17

int u18

int u19

int u20

int v1

int v2

URN:NBN:no-3444

Appendix

187

int v3

int w11

int w12

int w13

int w14

int w15

int w16

int w17

int w18

int w19

int w110

int w111

int w112

int w113

int w114

int w115

int w116

int w117

int w118

int w119

int w120

int w21

int w22

int w23

int w24

int w25

int w26

int w27

int w28

int w29

int w210

int w211

int w212

int w213

int w214

int w215

int w216

int w217

int w218

int w219

int w220

int w31

int w32

int w33

int w34

URN:NBN:no-3444

Appendix

188

int w35

int w36

int w37

int w38

int w39

int w310

int w311

int w312

int w313

int w314

int w315

int w316

int w317

int w318

int w319

int w320

URN:NBN:no-3444

